
Thomas S. Shores

Applied Linear Algebra
and Matrix Analysis
Second Edition



Thomas S. Shores
Department of Mathematics
University of Nebraska
Lincoln, NE
USA

ISSN 0172-6056 ISSN 2197-5604 (electronic)
Undergraduate Texts in Mathematics
ISBN 978-3-319-74747-7 ISBN 978-3-319-74748-4
https://doi.org/10.1007/978-3-319-74748-4

Library of Congress Control Number: 2018930352

1st edition: c© Springer Science+Business Media, LLC 2007

2nd edition: c© Springer International Publishing AG, part of Springer Nature 2018



Preface

Preface to Revised Edition

Times change. So do learning needs, learning styles, students, teachers,
authors, and textbooks. The need for a solid understanding of linear algebra
and matrix analysis is changing as well. Arguably, as we move deeper into an
age of intellectual technology, this need is actually greater. Witness, for exam-
ple, Google’s PageRank technology, an application that has a place in nearly
every chapter of this text. In the first edition of this text (henceforth refer-
enced as ALAMA), I suggested that for many students “linear algebra will be
as fundamental in their professional work as the tools of calculus.” I believe
now that this applies to most students of technology. Hence, this revision.

So what has changed in this revision? The objectives of this text, as stated
in the preface to ALAMA, have not:

• To provide a balanced blend of applications, theory, and computation that
emphasizes their interdependence.

• To assist those who wish to incorporate mathematical experimentation
through computer technology into the class. Each chapter has computer
exercises sprinkled throughout and an optional section on applications
and computational notes. Students should use locally available tools to
carry out experiments suggested in projects and use the word processing
capabilities of their computer system to create reports of their results.

• To help students to express their thoughts clearly. Requiring written
reports is one vehicle for teaching good expression of mathematical ideas.

• To encourage cooperative learning. Mathematics educators have become
increasingly appreciative of this powerful mode of learning. Team projects
and reports are excellent vehicles for cooperative learning.

• To promote individual learning by providing a complete and readable text.
I hope that readers will find this text worthy of being a permanent part
of their reference library, particularly for the basic linear algebra needed
in the applied mathematical sciences.



What has changed in this revision is that I have incorporated improve-
ments in readability, relevance, and motivation suggested to me by many
readers. Readers have also provided many corrections and comments which
have been added to the revision. In addition, each chapter of this revised text
concludes with introductions to some of the more significant applications of
linear algebra in contemporary technology. These include graph theory and
network modeling such as Google’s PageRank; also included are modeling ex-
amples of diffusive processes, linear programming, image processing, digital
signal processing, Fourier analysis, and more.

The first edition made specific references to various computer algebra sys-
tem (CAS) and matrix algebra system (MAS) computer systems. The pro-
liferation of matrix-computing–capable devices (desktop computers, laptops,
PDAs, tablets, smartphones, smartwatches, calculators, etc.) and attendant
software makes these acronyms too narrow. And besides, who knows what’s
next ... bionic chip implants? Instructors have a large variety of systems and
devices to make available to their students. Therefore, in this revision, I will
refer to any such device or software platform as a “technology tool.” I will con-
fine occasional specific references to a few freely available tools such as Octave,
the R programming language, and the ALAMA Calculator which was written
by me specifically for this textbook.

Although calculus is usually a prerequisite for a college-level linear algebra
course, this revision could very well be used in a non-calculus–based course
without loss of matrix and linear algebra content by skipping any calculus-
based text examples or exercises. Indeed, for many students the tools of matrix
and linear algebra will be as fundamental in their professional work as the
tools of calculus if not more so; thus, it is important to ensure that students
appreciate the utility and beauty of these subjects as well as the mechanics. To
this end, applied mathematics and mathematical modeling have an important
role in an introductory treatment of linear algebra. In this way, students see
that concepts of matrix and linear algebra make otherwise intractable concrete
problems workable.

The text has a strong orientation toward numerical computation and
applied mathematics, which means that matrix analysis plays a central role.
All three of the basic components of linear algebra — theory, computation,
and applications — receive their due. The proper balance of these compo-
nents gives students the tools they need as well as the motivation to acquire
these tools. Another feature of this text is an emphasis on linear algebra as
an experimental science; this emphasis is found in certain examples, computer
exercises, and projects. Contemporary mathematical technology tools make
ideal “laboratories” for mathematical experimentation. Nonetheless, this text
is independent of specific hardware and software platforms. Applications and
ideas should take center stage, not hardware or software.

An outline of the book is as follows: Chapter 1 contains a thorough
development of Gaussian elimination. Along the way, complex numbers and
the basic language of sets are reviewed early on; experience has shown that
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this material is frequently long forgotten by many students, so such a review is
warranted. Basic properties of matrix arithmetic and determinant algebra are
developed in Chapter 2. Special types of matrices, such as elementary and sym-
metric, are also introduced. Chapter 3 begins with the “standard” Euclidean
vector spaces, both real and complex. These provide motivation for the more
sophisticated ideas of abstract vector space, subspace, and basis, which are
introduced subsequently largely in the context of the standard spaces. Chapter
4 introduces geometrical aspects of standard vector spaces such as norm, dot
product, and angle. Chapter 5 introduces eigenvalues and eigenvectors. Gen-
eral norm and inner product concepts for abstract vector spaces are examined
in Chapter 6. Each section concludes with a set of exercises and problems.

Each chapter contains a few more optional topics, which are independent
of the non-optional sections. Of course, one instructor’s optional is another’s
mandatory. Optional sections cover tensor products, change of basis and lin-
ear operators, linear programming, the Schur triangularization theorem, the
singular value decomposition, and operator norms. In addition, each chapter
has an optional section of applications and computational notes which has
been considerably expanded from the first edition along with a concluding
section of projects and reports. I employ the convention of marking sections
and subsections that I consider optional with an asterisk.

There is more than enough material in this book for a one-semester course.
Tastes vary, so there is ample material in the text to accommodate different
interests. One could increase emphasis on any one of the theoretical, applied,
or computational aspects of linear algebra by the appropriate selection of
syllabus topics. The text is well suited to a course with a three-hour lecture
and laboratory component, but computer-related material is not mandatory.
Every instructor has his/her own idea about how much time to spend on
proofs, how much on examples, which sections to skip, etc.; so the amount of
material covered will vary considerably. Instructors may mix and match any
of the optional sections according to their own interests and needs of their
students, since these sections are largely independent of each other. While it
would be very time-consuming to cover them all, every instructor ought to use
some part of this material. The unstarred sections form the core of the book;
most of this material should be covered. There are 27 unstarred sections and
17 optional sections. I hope the optional sections come in enough flavors to
please any pure, applied, or computational palate.

Of course, no one size fits all, so I will suggest two examples of how one
might use this text for a three-hour one-semester course. Such a course will
typically meet three times a week for fifteen weeks, for a total of 45 classes. The
material of most of the unstarred sections can be covered at an average rate
of about one and one-half class periods per section. Thus, the core material
could be covered in about 40 or fewer class periods. This leaves time for extra
sections and in-class examinations. In a two-semester course or a course of
more than three hours, one could expect to cover most, if not all, of the text.
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If the instructor prefers a course that emphasizes the standard Euclidean
spaces, and moves at a more leisurely pace, then the core material of the first
five chapters of the text is sufficient. This approach reduces the number of
unstarred sections to be covered from 27 to 23.

About numbering: Exercises and problems are numbered consecutively
in each section. All other numbered items (sections, theorems, definitions,
examples, etc.) are numbered consecutively in each chapter and are prefixed
by the chapter number in which the item occurs. About examples: In this
text, these are illustrative problems, so each is followed by a solution.

I employ the following taxonomy for the reader tasks presented in this
text. Exercises constitute the usual learning activities for basic skills; these
come in pairs, and solutions to the odd-numbered exercises are given in an
appendix. More advanced conceptual or computational exercises that ask for
explanations or examples are termed problems, and solutions for problems are
not given, but hints are supplied for those problems marked with an asterisk.
Some of these exercises and problems are computer-related. As with pencil-
and-paper exercises, these are learning activities for basic skills. The difference
is that some computing equipment is required to complete such exercises and
problems. At the next level are projects. These assignments involve ideas that
extend the standard text material, possibly some numerical experimentation
and some written exposition in the form of brief project papers. These are
analogous to laboratory projects in the physical sciences. Finally, at the top
level are reports. These require a more detailed exposition of ideas, consid-
erable experimentation — possibly open ended in scope — and a carefully
written report document. Reports are comparable to “scientific term papers.”
They approximate the kind of activity that many students will be involved in
throughout their professional lives and are well suited for team efforts. The
projects and reports in this text also provide templates for instructors who
wish to build their own project/report materials. Students are open to all sorts
of technology in mathematics. This openness, together with the availability
of inexpensive high-technology tools, has changed how and what we teach in
linear algebra.

I would like to thank my colleagues whose encouragement, ideas, and sug-
gestions helped me complete this project, particularly Kristin Pfabe and David
Logan. Also, thanks to all those who sent me helpful comments and correc-
tions, particularly David Taylor, David Cox, and Mats Desaix. Finally, I would
like to thank the outstanding staff at Springer for their patience and support
in bringing this project to completion.

A linear algebra page with some useful materials for instructors and stu-
dents using this text can be reached at

http://www.math.unl.edu/∼tshores1/mylinalg.html
Suggestions, corrections, or comments are welcome. These may be sent to

me at tshores1@math.unl.edu.
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1

LINEAR SYSTEMS OF EQUATIONS

Welcome to the world of linear algebra. The two central problems about which
much of the theory of linear algebra revolves are the problem of finding all
solutions to a linear system and that of finding an eigensystem for a square
matrix. The latter problem will not be encountered until Chapter 5; it requires
some background development and the motivation for this problem is fairly
sophisticated. By contrast, the former problem is easy to understand and
motivate. As a matter of fact, simple cases of this problem are a part of most
high-school algebra backgrounds. We will address the problem of existence of
solutions for a linear system and how to solve such a system for all of its solu-
tions. Examples of linear systems appear in nearly every scientific discipline;
we touch on a few in this chapter.

1.1 Some Examples

Here are a few very elementary examples of linear systems:

Example 1.1. For what values of the unknowns x and y are the following
equations satisfied?

x + 2y = 5
4x + y = 6.

Solution. One way that we were taught to solve this problem was the
geometrical approach: every equation of the form ax + by + c = 0 represents
the graph of a straight line. Thus, each equation above represents a line.
We need only graph each of the lines, then look for the point where these
lines intersect, to find the unique solution to the graph (see Figure 1.1). Of
course, the two equations may represent the same line, in which case there
are infinitely many solutions, or distinct parallel lines, in which case there
are no solutions. These could be viewed as exceptional or “degenerate” cases.
Normally, we expect the solution to be unique, which it is in this example.

We also learned how to solve such an equation algebraically: in the present
case we may use either equation to solve for one variable, say x, and substitute

http://dx.doi.org/10.1007/978-3-319-74748-4_5


2 1 LINEAR SYSTEMS OF EQUATIONS

the result into the other equation to obtain an equation that is easily solved
for y. For example, the first equation above yields x = 5−2y and substitution
into the second yields 4(5 − 2y) + y = 6, i.e., −7y = −14, so that y = 2. Now
substitute 2 for y in the first equation and obtain that x = 5 − 2(2) = 1. �

6

5

4

3

2

1

0

y

x

4 53 621

(1,2)

x + 2y = 5

4x + y = 6

Fig. 1.1: Graphical solution to Example 1.1.

Example 1.2. For what values of the unknowns x, y, and z are the following
equations satisfied?

2x + 2y + 5z = 11
4x + 6y + 8z = 24

x + y + z = 4.

Solution. The geometrical approach becomes impractical as a means of
obtaining an explicit solution to our problem: graphing in three dimensions
on a flat sheet of paper doesn’t lead to very accurate answers! Nonetheless,
the geometrical approach gives us a qualitative idea of what to expect without
actually solving the system of equations.

With reference to our system of three equations in three unknowns, the
first fact to take note of is that each of the three equations is an instance of the
general equation ax+ by + cz +d = 0. Now we know from analytical geometry
that the graph of this equation is a plane in three dimensions. In general,
two planes will intersect in a line, though there are exceptional cases of the
two planes represented being identical or distinct and parallel. Similarly, three
planes will intersect in a plane, line, point, or nothing. Hence, we know that
the above system of three equations has a solution set that is either a plane,
line, point, or the empty set.

Which outcome occurs with our system of equations? Figure 1.2 suggests
a single point, but graphical methods are not very practical for problems
with more than two variables. We need the algebraic point of view to help us
calculate the solution. The matter of dealing with three equations and three
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unknowns is a bit trickier than the problem of two equations and unknowns.
Just as with two equations and unknowns, the key idea is still to use one
equation to solve for one unknown. In this problem, subtract 2 times the
third equation from the first and 4 times the third equation from the second
to obtain the system

3z = 3
2y + 4z = 8,

which is easily solved to obtain z = 1 and y = 2. Now substitute back into
the third equation x + y + z = 4 and obtain x = 1. �

Fig. 1.2: Graphical solution to Example 1.2.

Some Key Notation

Here is a formal statement of the kind of equation that we want to study
in this chapter. This formulation gives us the notation for dealing with the
general problem later on.

Definition 1.1. Linear Equation A linear equation in the variables
x1, x2, . . . , xn is an equation of the form

a1x1 + a2x2 + ... + anxn = b

where the coefficients a1, a2, . . . , an and term b of the right-hand side are
constants.
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Of course, there are many interesting and useful nonlinear equations, such
as ax2 + bx + c = 0, or x2 + y2 = 1. But our focus is on systems that consist
solely of linear equations. Our next definition describes a general linear system.

Definition 1.2. Linear System A linear system of m equations in the n
unknowns x1, x2, . . . , xn is a list of m equations of the form

a11x1 + a12x2 + · · · + a1jxj + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2jxj + · · · + a2nxn = b2

...
...

...
ai1x1 + ai2x2 + · · · + aijxj + · · · + ainxn = bi

...
...

...
am1x1 + am2x2 + · · · + amjxj + · · · + amnxn = bm.

(1.1)

Notice how the coefficients are indexed: in the ith row the coefficient of
the jth variable, xj , is the number aij , and the right-hand side of the ith

Row and
Column Index

equation is bi. This systematic way of describing the sys-
tem will come in handy later, when we introduce the
matrix concept. About indices: it would be safer — but

less convenient — to write ai,j instead of aij , since ij could be construed to
be a single symbol. In those rare situations where confusion is possible, e.g.,
numeric indices greater than 9, we will separate row and column number with
a comma. We call the layout of of this definition the standard form of a linear
system.

* Examples of Modeling Problems

It is easy to get the impression that linear algebra is only about the simple
kinds of problems such as the preceding examples. So why develop a whole
subject? We shall consider a few examples whose solutions are not so apparent
as those of the previous two examples. The point of this chapter, as well as that
of Chapters 2 and 3, is to develop algebraic and geometrical methodologies
that are powerful enough to handle problems like these.

Diffusion Processes
Diffusion processes are studied in biology, chemistry, physics, sociology and
other areas of science. We shall examine a very simple diffusion problem, that
of the flow of heat through a homogeneous material. A basic physical observa-
tion is that change in heat is directly proportional to change in temperature. In
a wide range of problems this hypothesis is true, and we shall assume that we
are modeling such a problem. Thus, we can measure the amount of heat at a
point by measuring temperature. To fix ideas, suppose we have a rod of mate-
rial of unit length, say, situated on the x-axis, on 0 ≤ x ≤ 1. Suppose further

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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1.1 Some Examples 5

that the rod is laterally insulated, but has a known internal heat source that
doesn’t change with time. When sufficient time passes, the temperature of the
rod at each point will settle down to “steady-state” values, dependent only on
position x. Say the heat source is described by a function f(x), 0 ≤ x ≤ 1 in
heat generated per unit length at the point x. Also suppose that the left
and right ends of the rod are held at fixed temperatures yleft and yright,
respectively.

y

y1 y2 y3 y4 y5

x6x5x4x3x2x1x0
x

Fig. 1.3: Discrete approximation to temperature function (n = 5).

To model a steady state imagine that the rod is divided up into a finite
number of segments between equally spaced points, called nodes, namely
x0 = 0, x1, x2, . . . , xn+1 = 1, and that the heat on the ith segment is well
approximated by the temperature at its left node. Assume that the nodes
are a distance h apart. Since spacing is equal, the relation between h and n
is h = 1/ (n + 1). Let the temperature function be y(x) and let yi = y(xi).
Approximate y(x) in between nodes by connecting adjacent points (xi, yi)
with a line segment. (See Figure 1.3 for a graph of the resulting approxima-
tion to y(x).) We know that at the end nodes the temperature is specified:
y(x0) = yleft and y(xn+1) = yright. By examining the process at each interior
node, we can obtain the following linear equation for each interior node index
i = 1, 2, . . . , n involving a constant K called the thermal conductivity of the
material. (A detailed derivation is given in Section 1.5.) This equation can be
understood as balancing the flow of heat from a node to its neighbors:

−yi−1 + 2yi − yi+1 =
h2

K
f(xi). (1.2)

Example 1.3. Suppose we have a rod of material of conductivity K = 1
and situated on the x-axis, for 0 ≤ x ≤ 1. Suppose further that the rod is
laterally insulated, but has a known internal heat source f(x). The left and
right ends of the rod are held at 0 ◦C (degrees Celsius). With n = 5 what are
the discretized steady-state equations for this problem?

Solution. Follow the notation of the discussion preceding this example.
Notice that in this case xi = ih. Remember that y0 is given to be 0, so the term
y0 disappears. Also, the value of yn+1 = y6 is zero, so it too disappears. Thus
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we have from equation (1.2) five equations in the unknowns yi, i = 1, 2, . . . , 5.
The system of five equations in five unknowns becomes

2y1 −y2 = f (1/6) /36
−y1 +2y2 −y3 = f (2/6) /36

−y2 +2y3 −y4 = f (3/6) /36
−y3 +2y4 −y5 = f (4/6) /36

−y4 +2y5 = f (5/6) /36.

�
It is reasonable to expect that the smaller h is, the more accurately yi

will approximate y(xi). This is indeed the case. But consider what we are
confronted with when we take n = 5, so that h = 1/(5 + 1) = 1/6. This is
hardly a small value of h, yet the problem is already about as large as we
might want to work by hand, if not larger. The basic ideas of solving systems
like this are the same as in Examples 1.1 and 1.2. For very small h, say h = .01
and hence n = 99, we clearly would need some help from a technology tool.

Leontief Input–Output Models
Here is a simple model of an open economy consisting of three sectors that
supply each other and consumers. Suppose the three sectors are (M)aterials,
(P)roduction and (S)ervices and that the demands of one sector from all sec-
tors are proportional to its output. This is reasonable; if, for example, the mate-
rials sector doubled its output, one would expect its needs for materials, pro-
duction and services to likewise double. A table of these demand constants of

Consumption Matrix
Productive Matrix
Closed Economy

proportionality for production of a unit of sector
output is called a consumption matrix. Equilibrium
of the economy is reached when total production
matches consumption. If at some level of output

the economy exactly meets some positive demand, we say the system is in
equilibrium and call the consumption matrix productive. On the other hand,
if at some level of output the demands of all sectors exactly equal output, we
say the economy is closed. Of course we would like to know if the economy is
productive or closed.

Example 1.4. Given the following consumption matrix, and that consumer
demands for the output of sectors M, P, S are the constant 20, 10, 30 units,
respectively, express the equilibrium of the economy as a system of equations.

Consumed by
M P S

M
Produced by P

S

0.2 0.3 0.1
0.1 0.3 0.2
0.4 0.2 0.1
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Solution. Let x, y, z be the total outputs of the sectors M, P, and S respec-
tively. Consider how we balance the total supply and demand for materials.
The total output of materials is x units. The demands on sector M from the
three sectors M, P and S are, according to the table data, 0.2x, 0.3y, and 0.1z,
respectively. Further, consumers demand 20 units of energy. In equation form,

x = 0.2x + 0.3y + 0.1z + 20.

Likewise we can balance the input/output of the sectors P and S to arrive at
a system of three equations in three unknowns:

x = 0.2x + 0.3y + 0.1z + 20
y = 0.1x + 0.3y + 0.2z + 10
z = 0.4x + 0.2y + 0.1z + 30.

The questions that interest economists are whether this system has solutions
and if so, how to interpret them. �

Next, consider the situation of a closed economic system, that is, one in
which everything produced by the sectors of the system is consumed by those
sectors.

Example 1.5. An administrative unit has four divisions serving the inter-
nal needs of the unit, labeled (A)ccounting, (M)aintenance, (S)upplies, and
(T)raining. Each unit produces the “commodity” its name suggests, and
charges the other divisions for its services. The input–output table of demand
rates are specified by the following table. Express the equilibrium of this sys-
tem as a system of equations.

Consumed by
A M S T

A
Produced by M

S
T

0.2 0.3 0.3 0.2
0.1 0.2 0.2 0.1
0.4 0.2 0.2 0.2
0.4 0.1 0.3 0.2

Solution. Let x, y, z, w be the total outputs of the sectors A, M, S, and
T, respectively. The analysis proceeds along the lines of the previous example
and results in the system

x = 0.2x + 0.3y + 0.3z + 0.2w

y = 0.1x + 0.2y + 0.2z + 0.1w

z = 0.4x + 0.2y + 0.2z + 0.2w

w = 0.4x + 0.1y + 0.3z + 0.2w.

There is an obvious, but useless, solution to this system (all variables equal
to zero). One hopes for nontrivial solutions that are meaningful in the sense
that each variable takes on a nonnegative value. �
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The PageRank Tool
Consider the Google problem of displaying the results of a search on a certain
phrase. There could be many thousands of matching web pages. So which
ones should be displayed in the user’s window? Enter PageRank technology
(famously referenced by Kurt Bryan and Tanya Leise in [5] as a “billion dollar
eigenvalue”) which ranks the pages in terms of an “importance” score. This
remarkable technology has found significant application in areas such as chem-
istry, biology, bioinformatics, neuroscience, complex systems engineering and
even sports rankings (a comprehensive summary can be found in [13]).

Let’s start small: suppose we have a web of four pages represented as in
Figure 1.4 with pages as vertices and links from one page to another as arrows.

1

2

3

4

Fig. 1.4: A web with four pages as vertices and links as arrows.
Here is a first pass at page ranking (but not the last, we will return to this

significant example with refinements several times more in this text). We could
simply count backlinks (incoming links) of each page and rank pages according
to that score, larger being more important than smaller. One problem with
this solution is that it would give equal weight to a link from any page, whether
the linking page were of low or high rank. Another problem is that the rank of
two pages could be artificially inflated by increasing the number of backlinks
and outgoing links between them. So here is a second pass to correct some of
these deficiencies: let a page score be the sum of all scores of pages linking
to it. For page i let xi be its score and Li be the set of all indices of pages
linking to it. Then the score for vertex i is given by

xi =
∑

xj∈Li

xj . (1.3)

But that ranking could still give excess influence to a page simply by its linking
from many other pages. To correct this deficiency we make a third pass: for
page j let nj be its total number of outgoing links on that page. Then the
score for vertex i is given by

xi =
∑

xj∈Li

xj

nj
. (1.4)

The result is that each page divides its one unit of influence among all pages to
which it links, so that no page has more influence to distribute than any other.
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This is a good start on PageRank. However there are additional problems
with these formulations of the ranking problem which we shall resolve with
yet another pass at it in Section 2.5 of Chapter 2.

Example 1.6. Exhibit the systems of equations resulting from applying the
ranking systems of the preceding discussion to the web of Figure 1.4.

Solution. If we simply count backlinks, then there is nothing to solve since
counting links gives x1 = 2, x2 = 2, x3 = 2 and x4 = 1 so that vertices 1, 2
and 3 are tied for most important with two backlinks, while vertex 4 is the
least important with only one backlink. If we use the second approach, then
we can see from inspection of the graph and equation (1.3) that the resulting
linear system is

x1 = x2 + x3

x2 = x1 + x3

x3 = x1 + x4

x4 = x3.

Finally, if we use equation (1.4) for the third approach, the resulting system
is

x1 =
x2

1
+

x3

3
x2 =

x1

2
+

x3

3
x3 =

x1

2
+

x4

1
x4 =

x3

3
.

�

Note 1.1. In some of the exercises and projects in this text you will find
references to “technology tools.” This may be a scientific calculator that is
required for the course, a math computer program or a computer system for
which you are given an account. This includes both hardware and software,
which many authors commonly term a “computer algebra system” or “CAS”.
This textbook does not depend on any particular system, but certain exercises
require a suitable computational device. It will occasionally give a few details
about using ALAMA Calculator, a software program which was designed with
this text in mind.

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
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1.1 Exercises and Problems
Exercise 1. Solve the following systems algebraically.

(a) x + 2y = 1
3x − y = −4 (b)

x − y + 2z = 6
2x − z = 3
y + 2z = 0

(c)
x − y = 1
2x − y = 3
x + y = 3

Exercise 2. Solve the following systems algebraically.

(a) x − y = −3
x + y = 1 (b)

x − y + 2z = 0
x − z = −2

z = 0
(c)

x + 2y = 1
2x − y = 2
x + y = 2

Exercise 3. Determine whether each of the following systems of equations is
linear. If so, put it in standard form.

(a) x + 2 = y + z
3x − y = 4 (b) xy + 2 = 1

2x − 6 = y
(c)

x + 2y = −2y
2x = y
2 = x + y

Exercise 4. Determine whether each of the following systems of equations is
linear. If so, put it in standard format.

(a) x + 2 = 1
x + 3 = y2 (b) x + 2z = y

3x − y = y
(c) x + y = −3y

2x = xy

Exercise 5. Express the following systems of equations in the notation of the
definition of linear systems by specifying the numbers m, n, aij , and bi.

(a)
x1 − 2x2 + x3 = 2

x2 = 1
−x1 + x3 = 1

(b) x1 − 3x2 = 1
x2 = 5

Exercise 6. Express the following systems of equations in the notation of the
definition of linear systems by specifying the numbers m,n, aij , and bi.

(a)
x1 − x2 = 1
2x1 − x2 = 3
x2 + x1 = 3

(b) −2x1 + x3 = 1
x2 − x3 = 5

Exercise 7. Write out the linear system that results from Example 1.3 if we
take n = 4, y5 = 50 and f(x) = 3y(x).

Exercise 8. Write out the linear systems that result from Example 1.6 if we
remove vertex 4 and its connecting edges from Figure 1.4.

Exercise 9. Suppose that in the input–output model of Example 1.4 each sec-
tor charges a unit price for its commodity, say p1, p2, p3, and that the MPS
columns of the consumption matrix represent the fraction of each producer
commodity needed by the consumer to produce one unit of its own commod-
ity. Derive equations for prices that achieve equilibrium, that is, equations
that say that the price received for a unit item equals the cost of producing
it.
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Exercise 10. Suppose that in the input–output model of Example 1.5 each
producer charges a unit price for its commodity, say p1, p2, p3, p4 and that the
columns of the table represent fraction of each producer commodity needed by
the consumer to produce one unit of its own commodity. Derive equilibrium
equations for these prices.

Exercise 11. Solve the system that results from the second pass of Example 1.6
for page ranking.

Exercise 12. Solve the system that results from the third pass of Example 1.6
for page ranking given that x4 is assigned a value of 1.

Exercise 13. Construct a linear system that has x1 = 1, x2 = −1 as a solution
and right-hand side terms b1 = 1, b2 = −2, b3 = 3.

Exercise 14. Construct a linear system that has both x1 = 1, x2 = −1 and
x1 = 2, x2 = 2 as solutions and right-hand side terms b1 = 3, b2 = 1, b3 = 4.

Problem 15. Suppose that we construct a web of pages by removing vertex 4
and its connecting edges from Figure 1.4. Write out the system of equations
that results from the second and third passes of Example 1.6 for page ranking
and solve these systems.

Problem 16. Use ALAMA Calculator or other technology tool to solve the sys-
tems of Examples 1.4 and 1.5. Comment on your solutions. Are they sensible?

Problem 17. A polynomial y = a0 + a1x + a2x
2 is required to interpolate a

function f(x) at x = 1, 2, 3, where f(1) = 1, f(2) = 1, and f(3) = 2. Express
these three conditions as a linear system of three equations in the unknowns
a0, a1, a2. What kind of general system would result from interpolating f (x)
with a polynomial at points x = 1, 2, . . . , n where f (x) is known?

*Problem 18. The topology of a certain network is indicated by the digraph
(directed graph) pictured below, where five vertices represent locations of
hardware units that receive and transmit data along connection edges to other
units in the direction of the arrows. Suppose the system is in a steady state
and that the data flow along edge j is the nonnegative quantity xj . The single
law that these flows must obey is this: net flow in equals net flow out at each
of the five vertices (like Kirchhoff’s first law in electrical circuits). Write out
a system of linear equations satisfied by variables x1, x2, x3, x4, x5, x6, x7.
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Problem 19. Use ALAMA Calculator or other technology tool to solve the
system of Example 1.3 with conductivity K = 1 and internal heat source
f(x) = x and graph the approximate solution by connecting the points (xj , yj)
as in Figure 1.3.

1.2 Notation and a Review of Numbers

The Language of Sets

The language of sets pervades all of mathematics. It provides a convenient
shorthand for expressing mathematical statements. Loosely speaking, a set
can be defined as a collection of objects, called the members of the set. This
definition will suffice for us. We use some shorthand to indicate certain rela-
tionships between sets and elements. Usually, sets will be designated by upper-
case letters such as A, B, etc., and elements will be designated by lowercase
letters such as a, b, etc. As usual, set A is a subset of set B if every element of
A is an element of B, and a proper subset if it is a subset but not equal to B.
Two sets A and B are said to be equal if they have exactly the same elements.

Set Symbols
Some shorthand:

∅ denotes the empty set, i.e., the set with no members.
a ∈ A means “a is a member of the set A.”
A = B means “the set A is equal to the set B.”
A ⊆ B means “A is a subset of B.”
A ⊂ B means “A is a proper subset of B.”

There are two ways in which we may define a set: we may list its elements,
such as in the definition A = {0, 1, 2, 3}, or specify them by rule such as in
the definition A = {x | x is an integer and 0 ≤ x ≤ 3}. (Read this as “A is
the set of x such that x is an integer and 0 ≤ x ≤ 3.”) With this notation we
can give formal definitions of set intersections and unions:

Definition 1.3. Set Union, Intersection, Difference Let A and B be sets.
Then the intersection of A and B is defined to be the set A ∩ B =
{x | x ∈ A and x ∈ B}. The union of A and B is the set A ∪ B =
{x | x ∈ A or x ∈ B} (inclusive or, which means that x ∈ A or x ∈ B or
both). The difference of A and B is the set A − B = {x | x ∈ A and x 	∈ B}.

Example 1.7. Let A = {0, 1, 3} and B = {0, 1, 2, 4}. Then



1.2 Notation and a Review of Numbers 13

A ∪ ∅ = A,

A ∩ ∅ = ∅,

A ∪ B = {0, 1, 2, 3, 4},

A ∩ B = {0, 1},

A − B = {3}.

�

About Numbers

One could spend a whole course fully developing the properties of number sys-
tems. We won’t do that, but we will review some of the basic sets of numbers,
and assume that the reader is familiar with properties of numbers we have
not mentioned here. At the start of it all is the kind of numbers that everyone
knows something about: the natural or counting numbers. This is the set

Natural Numbers
N = {1, 2, . . .} .

One could view most subsequent expansions of the concept of number as
a matter of rising to the challenge of solving new equations. For example, we
cannot solve the equation

x + m = n, m, n ∈ N,

for the unknown x without introducing subtraction and extending the notion
of natural number that of integer. The set of integers is denoted by

Integers
Z = {0,±1,±2, . . .} .

Next, we cannot solve the equation

ax = b, 0 	= a, b ∈ Z,

for the unknown x without introducing division and extending the notion
of integer to that of rational number. The set of rationals is denoted by

Rational Numbers
Q = {a/b | a, b ∈ Z and b 	= 0} .

Rational-number arithmetic has some characteristics that distinguish it
from integer arithmetic. The main difference is that nonzero rational numbers
have multiplicative inverses: the multiplicative inverse of a/b is b/a. Such a

Field of Numbersnumber system is called a field of numbers. In a nut-
shell, a field of numbers is a system of objects, called numbers, together with
operations of addition, subtraction, multiplication, and division that satisfy
the usual arithmetic laws; in particular, it must be possible to subtract any
number from any other and divide any number by a nonzero number to obtain
another such number. The associative, commutative, identity, and inverse
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laws must hold for each of addition and multiplication; and the distributive
law must hold for multiplication over addition. The rationals form a field of
numbers; the integers don’t since division by nonzero integers does not always
yield an integer.

The jump from rational to real numbers cannot be entirely explained by
algebra, although algebra offers some insight as to why the number system
still needs to be extended. There is no rational number whose square is 2.
Thus the equation

x2 = 2

cannot be solved using rational numbers alone. (Story has it that this is lethal
knowledge, in that followers of a Pythagorean cult claim that the gods threw
overboard from a ship one of their followers, Hippasus of Metapontum, who
was unfortunate enough to discover that fact.) There is also the problem of
numbers like π and the mathematical constant e which do not satisfy any
polynomial equation. The heart of the problem is that if we consider only
rationals on a number line, there are many “holes” that are filled by numbers
like π and

√
2. Filling in these holes leads us to the set R of real numbers,

which are in one-to-one correspondence with the points on a number line.
We won’t give an exact definition of the set of real numbers. Recall that
every real number admits a (possibly infinite) decimal representation, such as
1/3 = 0.333 . . . or π = 3.14159 . . . . This provides us with a loose definition:
Real Numbers Real numbers are numbers that can be expressed by a

decimal representation, i.e., limits of finite decimal expansions. Equivalently,
real numbers can be thought of as points on the real number line. As usual,
the set of all real numbers is denoted by R. In addition, we employ the usual
interval notations for real numbers a, b such that a ≤ b:

[a, b] = {x ∈ R | a ≤ x ≤ b} ,

[a, b) = {x ∈ R | a ≤ x < b} ,

(a, b) = {x ∈ R | a < x < b} .

There is one more problem to overcome. How do we solve a system like

x2 + 1 = 0

over the reals? The answer is we can’t: if x is real, then x2 ≥ 0, so x2 +1 > 0.

Complex Numbers We need to extend our number system one more time,
and this leads to the set C of complex numbers. We

define i to be a quantity such that i2 = −1 and

C = {a + bi | a, b ∈ R } .

Standard Form We say that the form z = a + bi is the standard form of
z. In this case the real part of z is � (z) = a and the imaginary part is defined
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Fig. 1.5: Standard and polar coordinates in the complex plane.

as (z) = b. (Notice that the imaginary part of z is a real number: it is the
real coefficient of i.) Two complex numbers are equal precisely when they have
the same real part and the same imaginary part. All of this could be put on a
more formal basis by initially defining complex numbers to be ordered pairs
of real numbers. We will not do so, but the fact that complex numbers behave
like ordered pairs of real numbers leads to an important geometrical insight:
complex numbers can be identified with points in the plane.

Instead of an x- and y-axis, one lays out a real and an imaginary axis

Real and Imaginary Parts(which are still usually labeled with x and y)
and plots complex numbers a + bi as in
Figure 1.5. This results in the complex plane. Arithmetic in C is carried out
using the usual laws of arithmetic for R and the algebraic identity i2 = −1 to
reduce the result to standard form. In addition, there are several more useful
ideas about complex numbers that we will need.

The length, or absolute value, of a complex number in standard
Absolute Valueform, z = a + bi, is defined as the nonnegative real num-

ber |z| =
√

a2 + b2, which is the distance from the origin to z. The complex
conjugate of z is defined as z = a − bi (see Figure 1.5). Thus we have:
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Laws of Complex Arithmetic

(a + bi) + (c + di) = (a + c) + (b + d)i
(a + bi) · (c + di) = (ac − bd) + (ad + bc)i

a + bi = a − bi
|a + bi| =

√
a2 + b2

If meaning is clear, the product z1 · z2 is often abbreviated to z1z2.

Example 1.8. Let z1 = 2 + 4i and z2 = 1 − 3i. Compute z1 − 3z2 and z1z2.

Solution. We have that

z1 − 3z2 = (2 + 4i) − 3(1 − 3i) = 2 + 4i − 3 + 9i = −1 + 13i

and

z1z2 = (2+4i)(1−3i) = 2+4i−2 ·3i−4 ·3i2 = (2+12)+(4−6)i) = 14−2i. �

Here are some easily checked and very useful facts about absolute value
and complex conjugation:

Laws of Conjugation and Absolute Value

|z1z2| = |z1| |z2|
|z1 + z2| ≤ |z1| + |z2|

|z|2 = zz

z1 + z2 = z1 + z2

z1z2 = z1 z2

z1/z2 = z1z2/|z2|2

Example 1.9. Let z1 = 2 + 4i and z2 = 1 − 3i. Verify that |z1z2| = |z1| |z2|.

Solution. From Example 1.8, z1 z2 =14−2i, so that |z1 z2|=
√

142+(−2)2 =√
200, while |z1| =

√
22 + 42 =

√
20 and |z2| =

√
12 + (−3)2 =

√
10. Hence

|z1z2| =
√

10
√

20 = |z1| |z2|. �

Example 1.10. Verify that the conjugate of the product is the product of
conjugates.

Solution. This is just the fifth fact in the preceding list. Let z1 = x1 + iy1

and z2 = x2 +iy2 be in standard form, so that z1 = x1 − iy1 and z2 = x2 − iy2.
We calculate

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1),

so that
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z1z2 = (x1x2 − y1y2) − i(x1y2 + x2y1).

Also,

z1 z2 = (x1 − iy1)(x2 − iy2) = (x1x2 − y1y2) − i(x1y2 + x2y1) = z1z2. �

The complex number z = i solves the equation z2 + 1 = 0 (no surprise
here: it was invented expressly for that purpose). The big surprise is that
once we have the complex numbers in hand, we have a number system so
complete that we can solve any polynomial equation in it. We won’t offer a
proof of this fact; it’s very nontrivial. Suffice it to say that nineteenth-century
mathematicians considered this fact so fundamental that they dubbed it the
“Fundamental Theorem of Algebra,” a terminology we adopt.

Theorem 1.1. Fundamental Theorem of Algebra Let p(z) = anzn +
an−1z

n−1 + · · · + a1z + a0 be a nonconstant polynomial in the variable z
with complex coefficients a0, . . . , an. Then the polynomial equation p(z) = 0
has a solution in the field C of complex numbers.

Note that the fundamental theorem doesn’t tell us how to find a root of
a polynomial, only that it exists. There are numerical techniques for approx-
imating such roots. But for polynomials of degree greater than four, there
are no general algebraic expressions in terms of radicals (like the quadratic
formula) for their roots.

In vector space theory the numbers in use are called scalars, and
Scalarswe will use this term. Unless otherwise stated or suggested by the

presence of i, the field of scalars in which we do arithmetic is assumed to be the
field of real numbers. However, we shall see later, when we study eigensystems,
that even if we are interested only in real scalars, complex numbers have a
way of turning up quite naturally.

The following example shows how to “rationalize” a complex denominator.

Example 1.11. Solve the linear equation (1 − 2i) z = (2 + 4i) for the complex
variable z. Also compute the complex conjugate and absolute value of the
solution.

Solution. The solution requires that we put the complex number z =
(2+4i)/(1−2i) in standard form. Proceed as follows: multiply both numerator
and denominator by (1 − 2i) = 1 + 2i to obtain that

z =
2 + 4i
1 − 2i

=
(2 + 4i)(1 + 2i)
(1 − 2i)(1 + 2i)

=
2 − 8 + (4 + 4)i

1 + 4
=

−6
5

+
8
5
i.

Next we see that

z =
−6
5

+
8
5
i = −6

5
− 8

5
i

and

|z| =
∣∣∣∣
1
5
(−6 + 8i)

∣∣∣∣ =
1
5

|(−6 + 8i)| =
1
5

√
(−6)2 + 82 =

10
5

= 2. �
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Practical Complex Arithmetic

We conclude this section with a discussion of the more advanced aspects of
complex arithmetic. This material will not be needed until Chapter 4. Recall
from basic algebra the roots theorem: the linear polynomial z − a is a factor
of a polynomial f(z) = a0 + a1z + · · · + anzn if and only if a is a root of
the polynomial, i.e., f(a) = 0. If we team this fact up with the Fundamental
Theorem of Algebra, we see an interesting fact about factoring polynomials
over C: every polynomial can be completely factored into a constant times a
product of linear polynomials of the form z − a. The numbers a that occur
are exactly the roots of f(z). Of course, these roots could be repeated roots,
as in the case of f(z) = 3z2 − 6z + 3 = 3(z − 1)2. But how can we use the
Fundamental Theorem of Algebra in a practical way to find the roots of a
polynomial? Unfortunately, the usual proofs of the Fundamental Theorem of
Algebra don’t offer a clue, because they are nonconstructive, i.e., they prove
that solutions must exist, but do not show how to explicitly construct such a
solution. Usually, we have to resort to numerical methods to get approximate
solutions, such as the Newton’s method used in calculus. For now, we will
settle on a few ad hoc methods for solving some important special cases.

First-degree equations offer little difficulty: the solution to az = b is
z = b/a, as usual. There is one detail to attend to: what complex number
is represented by the expression b/a? We saw how to handle this by the trick
of “rationalizing” the denominator in Example 1.11.

Quadratic equations are also simple enough: use the quadratic formula,
which says that the solutions to az2 + bz + c = 0, where a 	= 0, are given by

Quadratic Formula

z =
−b ± √

b2 − 4ac

2a
.

One little catch: what does the square root of a complex number mean? For
nonnegative real numbers r the expression

√
r is called the principal square

root of r and its meaning is unambiguous. For complex numbers it is not.
What we are really asking is this: How do we solve the equation z2 = d for
z, where d is a complex number? Let’s try for a little more: How do we solve
zn = d for all possible solutions z, where d is a nonzero complex number? In
a few cases, such an equation is quite easy to solve. We know, for example,
that z = ±i are solutions to z2 = −1, so these are all the solutions. Similarly,
one can check by hand that ±1,±i are all solutions to z4 = 1. Consequently,
z4−1 = (z−1)(z+1)(z− i)(z+i). Roots of the equation zn = 1 are sometimes
called the nth roots of unity. Thus the 4th roots of unity are ±1 and ±i. But
what about something like z3 = 1 + i?

The key to answering this question is another form of a nonzero complex
number z = a+bi. In reference to Figure 1.5 we can write z = r(cos θ+i sin θ) =
reiθ, where θ is a real number, r is a positive real, and eiθ is defined by the
following expression, which is called Euler’s formula:

http://dx.doi.org/10.1007/978-3-319-74748-4_4
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Definition 1.4. Polar form eiθ = cos θ + i sin θ.

Notice that |eiθ| =
√

cos2 θ + sin2 θ = 1, so that |reiθ| = |r||eiθ| = r,
provided r is nonnegative. The expression reiθ with r = |z| and the angle
θ measured counterclockwise in radians is called the polar form of z. The
number θ is sometimes called an argument of z. It is important to notice that
θ is not unique. If the angle θ0 works for the nonzero complex number z, then
so does θ = θ0 + 2πk, for any integer k, since sin θ and cos θ are periodic of
period 2π. It follows that a complex number may have more than one polar
form. For example, i = eiπ/2 = ei5π/2 (here r = 1). In fact, the most general
polar expression for i is i = ei(π/2+2kπ), where k is an arbitrary integer.

Example 1.12. Find the possible polar forms of 1 + i.

Solution. Sketch a picture of 1 + i in the complex plane and we see that
the angle θ0 = π/4 works fine as a measure of the angle from the positive
x-axis to the radial line from the origin to z. Moreover, the absolute value of
z is

√
1 + 1 =

√
2. However, we can adjust the angle θ0 by any multiple of 2π,

a full rotation and get a polar form for z. So the most general form for z is
z =

√
2ei(π/4+2kπ), where k is any integer. �

As the notation suggests, polar forms obey the laws of exponents. A simple
application of the laws for the sine and cosine of a sum of angles shows that
for angles θ and ψ we have the identity

ei(θ+ψ) = eiθeiψ.

By using this formula n times, we obtain that einθ =
(
eiθ
)n, which can also

be expressed as de Moivre’s Formula:

(cos θ + i sin θ)n = cos nθ + i sin nθ.

Now for solving zn = d: First, find the general polar form of d, say d =
aei(θ0+2kπ), where θ0 is the principal angle for d, i.e., 0 ≤ θ0 < 2π, and a = |d|.
Next, write z = reiθ, so that the equation to be solved becomes

rneinθ = aei(θ0+2kπ).

Taking absolute values of both sides yields that rn = a, whence we obtain the
unique value of r = n

√
a = n

√|d|. What about θ? The most general form for
nθ is

nθ = θ0 + 2kπ.

Hence, we obtain that

θ =
θ0

n
+

2kπ

n
.

Notice that the values of ei2kπ/n start repeating themselves as k passes a
multiple of n, since ei2π = e0 = 1. Therefore, one gets exactly n distinct
values for eiθ, namely
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θ =
θ0

n
+

2kπ

n
, k = 0, . . . , n − 1.

These points are equally spaced around the unit circle in the complex plane,
starting with the point eiθ0 . Thus we have obtained n distinct solutions to the
equation zn = d, where d 	= 0, namely

General solution to zn = d

z = a1/nei(θ0/n+2kπ/n), k = 0, . . . , n − 1, where 0 	= d = aeiθ0

Example 1.13. Solve the equation z3 = 1 + i for the unknown z.

Solution. The solution goes as follows: We have seen that 1+i has a polar
form

1 + i =
√

2eiπ/4.

Then according to the previous formula, the three solutions to our cubic are

z = (
√

2)1/3ei(π/4+2kπ)/3 = 21/6ei(1+8k)π/12, k = 0, 1, 2.

See Figure 1.6 for a graph of these complex roots. �

–1

–1 1

21/6

21/6eiπ/12

y

x

21/6ei9π/12 1

21/6ei17π/12

21/2ei/4 = 1 + i

Fig. 1.6: Roots of z3 = 1 + i.

We conclude with a little practice with square roots and the quadratic
formula. In regard to square roots, as we have noted, the expression w =

√
d is

ambiguous when dealing with complex numbers. In view of this difference, we
will generally avoid using the radical sign with complex numbers (exceptions:
the quadratic formula and the case of

√−d with positive d, in which case the
interpretation is

√−d = i
√

d).

Example 1.14. Compute a square root of the numbers −4 and i.

Solution. Observe that −4 = 4 · (−1). It is reasonable to expect the laws
of exponents to continue to hold, so we should have (−4)1/2 = 41/2 · (−1)1/2.
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Now we know that i2 = −1, so we can take i = (−1)1/2 and obtain that√−4 = (−4)1/2 = 2i. Let’s check it: (2i)2 = 4i2 = −4.
We have to be a bit more careful with i. We’ll just borrow the idea of the

formula for solving zn = d. First, put i in polar form as i = 1 · eiπ/2. Now raise
each side to the 1/2 power to obtain

i1/2 = 11/2 · (eiπ/2)1/2

= 1 · eiπ/4 = cos(π/4) + i sin(π/4)

=
1√
2
(1 + i).

A quick check confirms that ((1 + i)/
√

2)2 = 2i/2 = i. �

Example 1.15. Solve the equation z2 + z + 1 = 0.

Solution. According to the quadratic formula, the answer is

z =
−1 ± √

12 − 4
2

= −1
2

± i
√

3
2

. �

Example 1.16. Solve z2+z+1+i = 0 and factor the polynomial z2+z+1+i.

Solution. This time we obtain from the quadratic formula that

z =
−1 ±√

1 − 4(1 + i)
2

=
−1 ±√−(3 + 4i)

2
.

What is interesting about this problem is that we don’t know the polar angle
θ for z = −(3 + 4i). Fortunately, we don’t have to. We know that sin θ =
−4/5 and cos θ = −3/5. We also have the standard half angle formulas from
trigonometry to help us:

cos2 θ/2 =
1 + cos θ

2
=

1
5

and sin2 θ/2 =
1 − cos θ

2
=

4
5
.

Since θ is in the third quadrant of the complex plane, θ/2 is in the second, so

cos θ/2 =
−1√

5
and sin θ/2 =

2√
5
.

Notice that | − (3 + 4i)| = 5. Hence, a square root of −(3 + 4i) is given by

w =
√

5
(−1√

5
+

2√
5
i
)

= −1 + 2i.

Check that w2 = −(3 + 4i), so the two roots to our quadratic equation are
given by
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z =
−1 ± (−1 + 2i)

2
= −1 + i, −i.

In particular, we see that z2 + z + 1 + i = (z + 1 − i)(z + i). �

1.2 Exercises and Problems
In the following exercises, z is a complex number, and answers should be
expressed in standard form if possible.

Exercise 1. Determine the following sets, given that A =
{
x |x ∈ R and x2 < 3

}

and B = {x |x ∈ Z and x > −1}:
(a) A ∩ B (b) B − A (c) Z − B (d) N ∪ B (e) R ∩ A

Exercise 2. Let C = {x |x ∈ Z and x2 > 4} and and determine the following
sets:
(a) C ∪ D (b) D − C (c) D ∩ ∅ (d) R ∪ D

Exercise 3. Put the following complex numbers into polar form and sketch
them in the complex plane:
(a) −i (b) 1 + i (c) −1 + i

√
3 (d) 1 (e) 2 − 2i (f) 2i (g) π

Exercise 4. Put the following complex numbers into polar form and sketch
them in the complex plane:
(a) 3 + i (b) i (c) 1 + i

√
3 (d) −1 (e) 3 − i (f) −π (g) eπ

Exercise 5. Calculate the following:

(a) (4 + 2i) − (3 − 6i) (b) (2 + 4i) (3 − i) (c)
2 + i
2 − i

(d)
1 − 2i
1 + 2i

(e) 7 (6 − i)

Exercise 6. Calculate the following:
(a) |2 + 4i| (b) −7i2 + 6i3 (c) (3 + 4i) (7 − 6i) (d) i (1 − i)

Exercise 7. Solve the following systems for the unknown z:

(a) (2 + i)z = 4 − 2i (b) z4 = −16 (c)
z + 1

z
= 2 (d) (z + 1)(z2 + 1) = 0

Exercise 8. Solve the equations for the unknown z:
(a) (2 + i)z = 1 (b) −iz = 2z + 5 (c) (z) = 2�(z) + 1 (d) z = z

Exercise 9. Find the polar and standard form of the complex numbers:

(a)
1

1 − i
(b) −2eiπ/3 (c) i

(
i +

√
3
)

(d) −i/2 (e) ieπ/4

Exercise 10. Find the polar and standard form of the complex numbers:
(a) (2 + 4i) (3 − i) (b) (2 + 4i) − (3 + 3i) (c) 1/i (d) −1 + i (e) ieiπ/4
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Exercise 11. Find all solutions to the following equations:
(a) z2 + z + 3 = 0 (b) z2 − 1 = iz (c) z2 − 2z + i = 0 (d) z2 + 4 = 0

Exercise 12. Find the solutions to the following equations:
(a) z3 = 1 (b) z3 = −8 (c) (z − 1)3 = −1 (d) z4 + z2 + 1 = 0

Exercise 13. Describe and sketch the set of complex numbers z such that
(a) |z| = 2 (b) |z + 1| = |z − 1| (c) |z − 2| < 1
Hint: It’s easier to work with absolute value squared.

Exercise 14. What is the set of complex numbers z such that
(a) |z + 1| = 2 (b) |z + 3| = |z − 1| (c) |z − 2| > 2

Sketch these sets in the complex plane.

Exercise 15. Let z1 = 2 + 4i and z2 = 1 − 3i. Verify for this z1 and z2 that
z1 + z2 = z1 + z2.

Exercise 16. Let z1 = 2 + 3i and z2 = 2 − 3i. Verify for this z1 and z2 that
z1z2 = z1 z2.

Exercise 17. Find the roots of the polynomial p(z) = z2 − 2z + 2 and use this
to factor the polynomial. Verify the factorization by expanding it.

Exercise 18. Show that 1 + i, 1 − i, and 2 are roots of the polynomial p(z) =
z3 − 4z2 + 6z − 4 and use this to factor the polynomial.

Exercise 19. Express the function f (z) of the complex variable z = x + iy
in standard form g(x, y) + ih (x, y), where g(x, y) and h (x, y) are real-valued
functions and
(a) f(z) = (z − 2)2 (b) f(z) = z3 − 2z + 1

Exercise 20. Express the function f (z) = ez2
of the complex variable z in

standard form g(x, y) + ih (x, y).

Problem 21. Write out the values of ik in standard form for integers k =
−1, 0, 1, 2, 3, 4 and deduce a formula for ik consistent with these values.

Problem 22. Verify that for any two complex numbers, the sum of the conju-
gates is the conjugate of the sum.

*Problem 23. Use the notation of Example 1.10 to show that |z1z2| = |z1| |z2|.
Problem 24. Use the definitions of exponentials along with the sum of angles
formulas for sin(θ+ψ) and cos(θ+ψ) to verify the law of addition of exponents:
ei(θ+ψ) = eiθeiψ.

Problem 25. Use a technology tool to find all roots to the polynomial equation
z5 + z +1 = 0. How many roots (counting multiplicities) should this equation
have? How many of these roots can you find with your system?

*Problem 26. Show that if w is a root of the polynomial p (z), that is, p (w) = 0,
where p (z) has real coefficients, then w is also a root of p (z).
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1.3 Gaussian Elimination: Basic Ideas

We return now to the main theme of this chapter, which is the systematic
solution of linear systems, as defined in equation (1.1) of Section 1.1. The
principal methodology is the method of Gaussian elimination and its variants,
which we introduce by way of a few simple examples. The idea of this process is
to reduce a system of equations by certain legitimate and reversible algebraic
operations (called “elementary operations”) to a form in which we can easily
see what the solutions to the system are, if there are any. Specifically, we
want to get the system in a form where the first equation involves all the
variables, the second equation involve all but the first, and so forth. Then
it will be simple to solve for each variable one at a time, starting with the
last equation, which will involve only the last variable. In a nutshell, this is
Gaussian elimination.

One more matter that will have an effect on our description of solutions
to a linear system is that of the number system in use. As we noted earlier, it
is customary in linear algebra to refer to numbers as “scalars.” The two basic
choices of scalar fields are the real number system and the complex number
system. Unless complex numbers occur explicitly in a linear system, we will
assume that the scalars to be used in finding a solution come from the field of
real numbers. Such will be the case for most of the problems in this chapter.

An Example and Some Shorthand

Example 1.17. Solve the simple system

2x − y = 1
4x + 4y = 20.

(1.5)

Solution. First, let’s switch the equations to obtain

4x + 4y = 20
2x − y = 1.

(1.6)

Next, multiply the first equation by 1/4 to obtain

x + y = 5
2x − y = 1.

(1.7)

Now, multiply a copy of the first equation by −2 and add it to the second. We
can do this easily if we take care to combine like terms as we go. In particular,
the resulting x term in the new second equation will be −2x + 2x = 0, the y
term will be −2y − y = −3y, and the constant term on the right-hand side
will be −2 · 5 + 1 = −9. Thus, we obtain

x + y = 5
0x − 3y = −9.

(1.8)
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This completes the first phase of Gaussian elimination, which is called “forward
solving.” Note that we have put the system in a form in which only the first
equation involves the first variable and only the first and second involve the
second variable. The second phase of Gaussian elimination is called “back
solving,” and it works like it sounds. Use the last equation to solve for the last
variable, then work backward, solving for the remaining variables in reverse
order. In our case, the second equation is used to solve for y simply by dividing
by −3 to obtain that

y =
−9
−3

= 3.

Finally, use our knowledge of y and the first equation to solve for x, to obtain

x = 5 − y = 5 − 3 = 2. �

The preceding example may seem like too much work for such a simple
system. We could easily scratch out the solution in much less space. But what
if the system is larger, say 4 equations in 4 unknowns, or more? How do we
proceed then? It pays to have a systematic strategy and notation. We also
had an ulterior motive in the way we solved this system. All of the operations
we will ever need to solve a linear system were illustrated in the preceding
example: switching equations, multiplying equations by nonzero scalars, and
adding a multiple of one equation to another.

Before proceeding to another example, let’s work on the notation a bit.
Take a closer look at the system of equations (1.5). As long as we write
numbers down systematically, there is no need to write out all the equal signs
or plus signs. Isn’t every bit of information that we require contained in the
following table of numbers? [

2 −1 1
4 4 20

]
.

Of course, we have to remember that each row of numbers represents an equa-
tion, the first two columns of numbers are coefficients of x and y, respectively,
and the third column consists of terms on right-hand side. So we could embel-
lish the table with a few reminders in an extra top row:

x y = r.h.s.[
2 −1 1
4 4 20

]

With a little practice, we will find that the reminders are usually unnecessary,
so we dispense with them. Rectangular tables of numbers are very useful in
representing a system of equations. Such a table is one of the basic objects
studied in this text. As such, it warrants a formal definition.
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Definition 1.5. Matrices and Vectors A matrix is a rectangular array of
numbers. If a matrix has m rows and n columns, then the size of the matrix
is said to be m × n. If the matrix is 1 × n or m × 1, it is called a vector. If
m = n, then it is called a square matrix of order n. Finally, the number that
occurs in the ith row and jth column is called the (i, j)th entry of the matrix.

The objects we have just defined are basic “quantities” of linear algebra
and matrix analysis, along with scalar quantities. Although every vector is
itself a matrix, we want to single vectors out when they are identified as such.
Therefore, we will follow a standard typographical convention: Matrices are
usually designated by capital letters, while vectors are usually designated by
boldface lowercase letters. In a few cases these conventions are not followed,
but the meaning of the symbols should be clear from context.

We shall need to refer to parts of a matrix. As indicated above, the location
of each entry of a matrix is determined by the index of the row and column
it occupies.

The statement “A = [aij ]” means that A is a matrix whose (i, j)th entry
is denoted by aij (or ai,j to separate indices). Generally, the size of A will be
clear from context. If we want to indicate that A is an m×n matrix, we write

A = [aij ]m,n .

Similarly, the statement “b = [bi]” means that b is a n-vector whose ith
entry is denoted by bi. In case the type of the vector (row or column) is
not clear from context, the default is a column vector. Many of the matri-
ces we encounter will be square, that is, n × n. In this case we say that

Order of Square Matrix n is the order of the matrix. Another term that
we will use frequently is the following:

Definition 1.6. Leading Entry The leading entry of a row vector is the first
nonzero element of that vector, counting from left to right. If all entries are
zero, the vector has no leading entry.

The equations of (1.5) have several matrices associated with them. First is
the full matrix that describes the system, which we call the augmented matrix
of the system. In our previous example, this is the 2 × 3 matrix

[
2 −1 1
4 4 20

]
.

Note, for example, that we would say that the (1, 1)th entry of this matrix is
2, which is also the leading entry of the first row, and the (2, 3)th entry is 20.
Next, there is the submatrix consisting of coefficients of the variables. This is
called the coefficient matrix of the system, in our case the 2 × 2 matrix
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[
2 −1
4 4

]
.

Finally, there is the single column matrix of right-hand-side constants, which
we call the right-hand-side vector. In our example, it is the 2 × 1 vector

[
1

20

]
.

How can we describe the matrices of the general linear system of equations
specified by (1.1)?

Coefficient MatrixFirst, there is the m × n coefficient matrix

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1j · · · a1n

a21 a22 · · · a2j · · · a2n

...
...

...
...

ai1 ai2 · · · aij · · · ain

...
...

...
...

am1 am2 · · · amj · · · amn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice that the way we subscripted entries of this matrix is really very descrip-
tive: the first index indicates the row position of the entry, and the second,
the column position of the entry.

Right-Hand-Side VectorNext, there is the m × 1 right-hand-side vector
of constants

b =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

...
bi

...
bm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Augmented MatrixFinally, stack this matrix and vector along side each
other (we use a vertical bar below to separate the two
symbols) to obtain the m × (n + 1) augmented matrix

Ã = [A | b] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1j · · · a1n b1

a21 a22 · · · a2j · · · a2n b2

...
...

...
...

...
ai1 ai2 · · · aij · · · ain bi

...
...

...
...

...
am1 am2 · · · amj · · · amn bm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Example 1.18. Describe the associated matrices for a linear system that
solves the problem of finding a polynomial that interpolates a specified set
of points.

Solution. Suppose that the points in question are (xi, yi), i = 0, 1, . . . , n,
with all abscissas xi distinct. Just as it takes two such points to uniquely
determine a linear function, three to determine a quadratic function, and so
forth, it is reasonable to expect that n+1 points will determine an nth degree
polynomial of the form

p (x) = c0 + c1x + · · · + cnxn.

The conditions of interpolation are simply that p (xi) = yi, i = 0, 1, · · · , n.
These conditions lead to the linear system

p (xi) = c0 + c1xi + · · · + cnxn
i , i = 0, 1, · · · , n

in the n + 1 unknowns c0, c1, . . . , cn. The coefficient matrix for this system is
the (n + 1) × (n + 1) matrix

A =

⎡

⎢⎢⎢⎣

1 x0 · · · xj
0 · · · xn

0

1 x1 · · · xj
1 · · · xn

1
...

...
...

...
1 xn · · · xj

n · · · x0
n

⎤

⎥⎥⎥⎦

and the augmented matrix for this system is

Ã = [A | b] =

⎡

⎢⎢⎢⎣

1 x0 · · · xj
0 · · · xn

0 y0

1 x1 · · · xj
1 · · · xn

1 y1

...
...

...
...

...
1 xn · · · xj

n · · · x0
n ym

⎤

⎥⎥⎥⎦ .

The system coefficient matrix A is called a Vandermonde matrix. �

The Elementary Row Operations

Here is more notation that we will find extremely handy in the sequel. This
notation is related to the operations that we performed on the preceding
example. Now that we have the matrix notation, we could just as well per-
form these operations on each row of the augmented matrix, since a row
corresponds to an equation in the original system. Three types of opera-
tions were used. We shall catalog these and give them names, so that we can
document our work in solving a system of equations in a concise way. Here
are the three elementary operations we shall use, described in terms of their
action on rows of a matrix; an entirely equivalent description applies to the
equations of the linear system whose augmented matrix is the matrix below.
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Notation for Elementary Operations

• Eij : This is shorthand for the elementary operation of switching the ith
and jth rows of the matrix. For instance, in Example 1.17 we moved from
equation (1.5) to equation (1.6) by using the elementary operation E12.

• Ei(c): This is shorthand for the elementary operation of multiplying the ith
row by the nonzero constant c. For instance, we moved from equation (1.6)
to equation (1.7) by using the elementary operation E1(1/4).

• Eij(d): This is shorthand for the elementary operation of adding d times
the jth row to the ith row. (Read the symbols from right to left to get
the correct order.) For instance, we moved from equation (1.7) to equa-
tion (1.8) by using the elementary operation E21(−2).

Now let’s put it all together. The whole forward-solving phase of Example 1.17
could be described concisely with the notation we have developed:

[
2 −1 1
4 4 20

]−−→
E12

[
4 4 20
2 −1 1

]−−−−−−→
E1(1/4)

[
1 1 5
2 −1 1

]−−−−−−→
E21(−2)

[
1 1 5
0 −3 −9

]
.

This is a big improvement over our first description of the solution. There is
still the job of back solving, which is the second phase of Gaussian elimination.
When doing hand calculations, we’re right back to writing out a bunch of extra
symbols again, which is exactly what we set out to avoid by using matrix
notation.

Gauss–Jordan Elimination

Here’s a better way to do the second phase by hand: Stick with the augmented
matrix. Starting with the last nonzero row, convert the leading entry (this
means the first nonzero entry in the row) to a 1 by an elementary operation,
and then use elementary operations to convert all entries above this 1 entry to
0’s. Now work backward, row by row, up to the first row. At this point we can
read off the solution to the system. Let’s see how it works with Example 1.17.
Here are the details using our shorthand for elementary operations:

[
1 1 5
0 −3 −9

]−−−−−−−→
E2(−1/3)

[
1 1 5
0 1 3

]−−−−−−→
E12(−1)

[
1 0 2
0 1 3

]
.

All we have to do is remember the function of each column in order to read off
the answer from this last matrix. The underlying system that is represented
is

1 · x + 0 · y = 2
0 · x + 1 · y = 3.

This is, of course, the answer we found earlier: x = 2, y = 3.
The method of combining forward and back solving into elementary oper-

ations on the augmented matrix has a name: It is called Gauss–Jordan elim-
ination, and it is the method of choice for solving many linear systems. Let’s
see how it works on an example.
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Example 1.19. Solve the following system by Gauss–Jordan elimination:

x + y + z = 4
2x + 2y + 4z = 11
4x + 6y + 8z = 24

Solution. First form the augmented matrix of the system, the 3×4 matrix
⎡

⎣
1 1 1 4
2 2 4 11
4 6 8 24

⎤

⎦ .

Now forward solve:
⎡

⎣
1 1 1 4
2 2 4 11
4 6 8 24

⎤

⎦ −−−−−−→
E21(−2)

⎡

⎣
1 1 1 4
0 0 2 3
4 6 8 24

⎤

⎦−−−−−−→
E31(−4)

⎡

⎣
1 1 1 4
0 0 2 3
0 2 4 8

⎤

⎦−−→
E23

⎡

⎣
1 1 1 4
0 2 4 8
0 0 2 3

⎤

⎦ .

Notice, by the way, that the row switch of the third step is essential. Otherwise,
we cannot use the second equation to solve for the second variable, y. Next
back solve:

⎡

⎣
1 1 1 4
0 2 4 8
0 0 2 3

⎤

⎦−−−−−→
E3(1/2)

⎡

⎣
1 1 1 4
0 2 4 8
0 0 1 3

2

⎤

⎦−−−−−→
E23(−4)

⎡

⎣
1 1 1 4
0 2 0 2
0 0 1 3

2

⎤

⎦

−−−−−→
E13(−1)

⎡

⎣
1 1 0 5

2
0 2 0 2
0 0 1 3

2

⎤

⎦−−−−−→
E2(1/2)

⎡

⎣
1 1 0 5

2
0 1 0 1
0 0 1 3

2

⎤

⎦−−−−−→
E12(−1)

⎡

⎣
1 0 0 3

2
0 1 0 1
0 0 1 3

2

⎤

⎦ .

At this point we read off the solution to the system: x = 3/2, y = 1, z = 3/2.
�

Systems with Non-unique Solutions

Next, we consider an example that will pose a new kind of difficulty, namely,
that of infinitely many solutions. Here is some handy terminology.
Pivots An entry of a matrix used to zero out entries above or below it by

means of elementary row operations is called a pivot.
The entries that we use in Gaussian or Gauss–Jordan elimination for piv-

ots are always leading entries in the row that they occupy. For the sake of
emphasis, in the next few examples we will put a circle around the pivot
entries as they occur.

Example 1.20. Solve for the variables x, y, and z in the system

z = 2
x+ y+ z = 2
2x+ 2y+ 4z = 8

.
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Solution. Here the augmented matrix of the system is
⎡

⎣
0 0 1 2
1 1 1 2
2 2 4 8

⎤

⎦ .

Now proceed to use Gaussian elimination on the matrix:
⎡

⎣
0 0 1 2
1 1 1 2
2 2 4 8

⎤

⎦−−→
E12

⎡

⎣
1 1 1 2
0 0 1 2
2 2 4 8

⎤

⎦−−−−−→
E31(−2)

⎡

⎣
1 1 1 2
0 0 2 4
0 0 1 2

⎤

⎦

What do we do next? Neither the second nor the third row corresponds to
equations that involve the variable y. Switching the second and third equations
won’t help, either. So here is the point of view that we adopt in applying
Gaussian elimination to this system: The first equation has already been “used
up” and is reserved for eventually solving for x. We now restrict our attention
to the “unused” second and third equations. Perform the following operations
to do Gauss–Jordan elimination on the system:

⎡

⎢⎣
1 1 1 2

0 0 2 4
0 0 1 2

⎤

⎥⎦
−−−−−−→
E2(1/2)

⎡

⎢⎣
1 1 1 2

0 0 1 2
0 0 1 2

⎤

⎥⎦

−−−−−−→
E32(−1)

⎡

⎢⎣
1 1 1 2

0 0 1 2
0 0 0 0

⎤

⎥⎦
−−−−−−→
E12(−1)

⎡

⎢⎣
1 1 0 0

0 0 1 2
0 0 0 0

⎤

⎥⎦ .

How do we interpret this result? We take the point of view that the first
row represents an equation to be used in solving for x since the leading
entry of the row is in the column of coefficients of x. Similarly, the sec-
ond row represents an equation to be used in solving for z, since the lead-
ing entry of that row is in the column of coefficients of z. What about y?
Notice that the third equation represented by this matrix is simply 0 = 0,
which carries no information. The point is that there is not enough informa-
tion in the system to solve for the variable y, even though we started with
three distinct equations. Somehow, they contained redundant information.

Free and Bound VariablesTherefore, we take the point of view that y is
not to be solved for; it is a free variable in the sense that we can assign it
any value whatsoever and obtain a legitimate solution to the system. On the
other hand, the variables x and z are bound in the sense that they will be
solved for in terms of constants and free variables. The equations represented
by the last matrix above are

x + y = 0
z = 2
0 = 0.
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Use the first equation to solve for x and the second to solve for z to obtain
the general form of a solution to the system:

x = −y

z = 2
y is free. �

In the preceding example y can take on any scalar value. For example,
x = 0, z = 2, y = 0 is a solution to the original system (check this). Likewise,
x = −5, z = 2, y = 5 is a solution to the system. Clearly, we have an infinite
number of solutions to the system, thanks to the appearance of free variables.
Up to this point, the linear systems we have considered had unique solutions,
so every variable was solved for, and hence bound. Another point to note,
incidentally, is that the scalar field we choose to work with has an effect on
our answer. The default is that y is allowed to take on any real value from R.
But if, for some reason, we choose to work with the complex numbers as our
scalars, then y would be allowed to take on any complex value from C. In this
case, another solution to the system would be given by x = −3 − i, z = 2,
y = 3 + i, for example.

To summarize, once we have completed Gauss–Jordan elimination on an
augmented matrix, we can immediately spot the free and bound variables of
the system: The column of a bound variable will have a pivot in it, while the
column of a free variable will not. Another example will illustrate the point.

Example 1.21. Suppose the augmented matrix of a linear system of three
equations involving variables x, y, z, w becomes, after applying suitable ele-
mentary row operations, ⎡

⎣
1 2 0 −1 2
0 0 1 3 0
0 0 0 0 0

⎤

⎦ .

Describe the general solution to the system.

Solution. We solve this problem by observing that the first and third
columns have pivots in them, which the second and fourth do not. The fifth
column represents the right-hand side. Put our little reminder labels in the
matrix, and we obtain ⎡

⎢⎢⎢⎣

x y z w rhs
1 2 0 −1 2

0 0 1 3 0
0 0 0 0 0

⎤

⎥⎥⎥⎦ .

Hence, x and z are bound variables, while y and w are free. The two nontrivial
equations that are represented by this matrix are

x + 2y − w = 2
z + 3w = 0.
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Use the first to solve for x and the second to solve for z to obtain the
general solution

x = 2 − 2y + w

z = −3w

y,w are free. �

We have seen so far that a linear system may have exactly one solution or
infinitely many. Actually, there is only one more possibility, which is illustrated
by the following example.

Example 1.22. Solve the linear system

x + y = 1
2x + y = 2

3x + 2y = 5.

Solution. We extract the augmented matrix and proceed with Gauss–
Jordan elimination. This time we’ll save a little space by writing more than
one elementary operation between matrices. It is understood that they are
done in order, starting with the top one. This is a very efficient way of doing
hand calculations and minimizing the amount of rewriting of matrices as we
go: ⎡

⎣
1 1 1
2 1 2
3 2 5

⎤

⎦
−−−−−−→
E21(−2)
E31(−3)

⎡

⎣
1 1 1
0 −1 0
0 −1 2

⎤

⎦−−−−−→
E32(−1)

⎡

⎣
1 1 1
0 −1 0
0 0 2

⎤

⎦ .

Stop everything! We aren’t done with Gauss–Jordan elimination yet, since
we’ve only done the forward-solving portion. But something strange is going
on here. Notice that the third row of the last matrix above stands for the
equation 0x+0y = 2, i.e., 0 = 2. This is impossible. What this matrix is telling
us is that the original system has no solution, i.e., it is inconsistent. A system
can be identified as inconsistent as soon as one encounters a leading entry in
the column of constant terms. For this always means that an equation of the
form 0 = nonzero constant has been formed from the system by legitimate
algebraic operations. Thus, one need proceed no further. The system has no
solutions. �

Definition 1.7. Consistent System A system of equations is consistent if it
has at least one solution. Otherwise it is called inconsistent.

Our last example is one involving complex numbers explicitly.

Example 1.23. Solve the following system of equations:

x + y = 4
(−1 + i)x + y = −1.
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Solution. The procedure is the same, no matter what the field of scalars
is. Of course, the arithmetic is a bit harder. Gauss–Jordan elimination yields

[
1 1 4

−1 + i 1 −1

]−−−−−−−→
E21(1 − i)

[
1 1 4
0 2 − i 3 − 4i

]

−−−−−−−−−→
E2(1/(2 − i))

[
1 1 4
0 1 2 − i

]−−−−−→
E12(−1)

[
1 0 2 + i
0 1 2 − i

]
.

Here we used the fact that

3 − 4i
2 − i

=
(3 − 4i)(2 + i)
(2 − i)(2 + i)

=
10 − 5i

5
= 2 − i.

Thus, we see that the system has the unique solution

x = 2 + i
y = 2 − i. �

1.3 Exercises and Problems

Exercise 1. For each of the following matrices identify the size and the (i, j)th
entry for all relevant indices i and j:

(a)
[

1 −1 2 1
−2 2 1 1

]
(b)

⎡

⎣
0 1
2 −1
0 2

⎤

⎦ (c)
[−2

3

]
(d) [1 + i]

Exercise 2. For each of the following matrices identify the size and the (i, j)th
entry for all relevant indices i and j:

(a)
[

1 −1 0
0 2 0

]
(b)

[
1 0
0 2

]
(c)

[
2 1 3

]
(d)

[
3
i

]

Exercise 3. Exhibit the augmented matrix of each system and give its size.
Then use Gaussian elimination and back solving to find the general solution
to the systems.

(a) 2x + 3y = 7 (b) 3x1 + 6x2 − x3 = −4 (c) x1 + x2 = −2
x + 2y = −2 −2x1 − 4x2 + x3 = 3 5x1 + 2x2 = 5

x3 = 1 x1 + 2x2 = −7

Exercise 4. Use Gaussian elimination and back solving to find the general solu-
tion to the systems.

(a) x + 3y = 7 (b) 2x1 + 6x2 = 2 (c) x1 + x2 = 1
x + 2y = 1 −2x1 + x2 = 1 5x1 + 2x2 = 5

x1 + 2x2 = −7
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Exercise 5. Use Gauss–Jordan elimination to find the general solution to the
systems. Show the elementary operations you use.

(a) x1 + x2 = 1 (b) x3 + x4 = 1 (c) x1 + x2 + 3x3 = 2
2x1 + 2x2 + x3 = 1 −2x1 − 4x2 + x3 = 0 2x1 + 5x2 + 9x3 = 1

2x1 + 2x2 = 2 3x1 + 6x2 + x4 = 0 x1 + 2x2 + 4x3 = 1

(d) x1 − x2 = i (e) x1 + x2 + x3 − x4 = 0
2x1 + x2 = 3 + i −2x1 − 4x2 + x3 = 0

x1 + 6x2 − x3 + x4 = 0

Exercise 6. Use Gauss–Jordan elimination to find the general solution to the
systems.

(a) x1 + x2 + x4 = 1 (b) x3 + x4 = 0 (c) x1 + x2 + 3x3 = 2
2x1 + 2x2 + x3 + x4 = 1 −2x1 − 4x2 + x3 = 0 2x1 + 5x2 + 9x3 = 1

2x1 + 2x2 + 2x4 = 2 −x3 + x4 = 0 x1 + 2x2 + 4x3 = 1

(d) 2x1 + x2 + 7x3 = −1
3x1 + 2x2 − 2x4 = 1

2x1 + 2x2 + 2x3 − 2x4 = 4

(e) x1 + x2 + x3 = 2
2x1 + x2 = i

2x1 + 2x2 + ix3 = 4

Exercise 7. Each of the following matrices results from applying Gauss–Jordan
elimination to the augmented matrix of a linear system. In each case, write
out the general solution to the system or indicate that it is inconsistent.

(a)

⎡

⎣
1 0 0 4
0 0 1 −2
0 0 0 0

⎤

⎦ (b)

⎡

⎣
1 0 0 1
0 1 0 2
0 0 1 2

⎤

⎦ (c)

⎡

⎣
1 0 0 1
0 1 0 2
0 0 0 1

⎤

⎦ (d)

⎡

⎣
1 0 0 1
0 0 0 0
0 0 0 0

⎤

⎦

Exercise 8. Write out the general solution to the system with the following
augmented matrix or indicate that it is inconsistent.

(a)

⎡

⎣
1 0 0 0
0 0 1 2
0 0 0 0

⎤

⎦ (b)

⎡

⎣
1 0 0 −1
0 0 0 0
0 0 1 2

⎤

⎦ (c)

⎡

⎣
1 0 0 1
0 1 0 −2
1 0 0 1

⎤

⎦ (d)

⎡

⎣
1 0 0 1
0 0 0 2
0 0 0 0

⎤

⎦

Exercise 9. Use Gauss–Jordan elimination to solve the system resulting from
the second approach to page ranking described in Example 1.6. Discuss the
result.

Exercise 10. Use Gauss–Jordan elimination to solve the system resulting from
the third approach to page ranking described in Example 1.6. Discuss the
result.

Exercise 11. Use any method to find the solution to each of the following sys-
tems. Here, b1, b2 are constants and x1, x2 are the unknowns.

(a) x1 − x2 = b1 (b) x1 − x2 = b1 (c) ix1 − x2 = b1

x1 + 2x2 = b2 2x1 − 2x2 = b2 2x1 + 2x2 = b2
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Exercise 12. Apply the operations used in Exercise 5 (a), (c) in the same order

to the right-hand-side vector b =

⎡

⎣
b1

b2

b3

⎤

⎦. What does this tell you about each

system’s consistency?

Exercise 13. Solve the three systems

(a) x1 − x2 = 1 (b) x1 − x2 = 0 (c) x1 − x2 = 2
x1 − 2x2 = 0 x1 − 2x2 = 1 x1 − 2x2 = 3

by using a single augmented matrix that has all three right-hand sides in it.

Exercise 14. Set up a single augmented matrix for the three systems

(a) x1 + x2 = 1 (b) x1 + x2 = 0 (c) x1 + x2 = 2
x2 + 2x3 = 0 x2 + 2x3 = 0 x2 + 2x3 = 3
2x2 + x3 = 0 2x2 + x3 = 0 2x2 + x3 = 3

and use it to solve the three systems simultaneously.

Exercise 15. Find the general solution to the linear system of Exercise 9 of
Section 1.1. Are there any meaningful solutions?

Exercise 16. Find the general solution to the linear system of Example 1.4 of
Section 1.1. Are there any meaningful solutions?

Exercise 17. Show that the following nonlinear systems become linear if we
view the unknowns as 1/x, 1/y, and 1/z rather than x, y, and z. Use this to
find the solution sets of the nonlinear systems. (You must also account for the
possibilities that one of x, y, z is zero.)

(a) 2x − y + 3xy = 0
4x + 2y − xy = 0

(b) yz + 3xz − xy = 0
yz + 2xy = 0

Exercise 18. Show that the following nonlinear systems become linear if we
make the right choice of unknowns from x, y, z, 1/x, 1/y, and 1/z rather
than x, y, and z. Use this to find the solution sets of these nonlinear systems.

(a) 3x − xy = 1
4x − xy = 2

(b) 2xy = 1
y + z − 3yz = 0

xz − 2z = −1

Exercise 19. Exhibit the coefficient and augmented matrix for the system that
finds a quadratic polynomial interpolating the points (0, 2), (1, 2) and (2, 4)
as in Example 1.18. Solve this system to determine the polynomial.

Exercise 20. There is no quadratic polynomial interpolating the points (0, 2),
(2, 2), (−1, 4) and (2, 3). Exhibit the coefficient and augmented matrix for
the interpolating system and show how this conclusion can be drawn from
inspection of the augmented matrix of this system.
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*Problem 21. Suppose that the input–output table of Example 1.5 of Sec-
tion 1.1 is modified so that all entries are nonnegative, but the sum of the
entries in each row is smaller than 1. Show that the only solution to the
corresponding system with nonnegative values is the solution with all variables
equal to zero.

Problem 22. Use a technology tool to solve the system of Example 1.3 with
f(x) = sin (πx) . Graph this approximation along with the true solution, which
is y (x) = sin (πx) /π2.

*Problem 23. Suppose the function f(x) is to be interpolated at three inter-
polating points x0, x1, x2 by a quadratic polynomial p(x) = a+ bx+ cx2, that
is, f(xi) = p(xi), i = 0, 1, 2. As in Exercise 17 of Section 1.1, this leads to a
system of three linear equations in the three unknowns a, b, c.
(a) Solve these equations in the case that f(x) = ex, 0 ≤ x ≤ 1, and
xj = 0, 1

2 , 1.
(b) Plot the error function f(x) − p(x) and estimate the largest value of the
error function (in absolute value).
(c) Use trial and error to find three points x1, x2, x3 on the interval 0 ≤ x ≤ 1
for which the resulting interpolating quadratic gives an error function with a
largest absolute error that is less than half of that found in part (b).

Problem 24. Solve the network system of Problem 18 of Section 1 and exhibit
all physically meaningful solutions.

Problem 25. Suppose one wants to solve the integral equation
∫ 1

0
estx(s)ds =

1 + t2 for the unknown function x(t). If we only want to approximate the
values of x(t) at x = 0, 1

2 , 1, derive and solve a system of equations for these
three values by evaluating the integral equation at t = 0, 1

2 , 1, and using
the trapezoidal method to approximate the integrals with the values of x(s),
s = 0, 1

2 , 1.

*Problem 26. Treat the network system of Problem 18 of Section 1.1 as a web
network of pages and apply the third approach to page ranking described on
page 9 of Section 1.1 to rank the importance of the hardware unit locations.

1.4 Gaussian Elimination: General Procedure

The preceding section introduced Gaussian elimination and Gauss–Jordan
elimination at a practical level. In this section we will see why these methods
work and what they really mean in matrix terms. Then we will find conditions
of a very general nature under which a linear system has either no, one, or
infinitely many solutions. A key idea that comes out of this section is the
notion of the rank of a matrix.
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Equivalent Systems

The first question to be considered is this: How is it that Gaussian elimination
or Gauss–Jordan elimination gives us every solution of the system we begin
with and only solutions to that system? To see that linear systems are special,
consider the following nonlinear system of equations.

Example 1.24. Solve for the real roots of the system

x + y = 2√
x = y.

Solution. Let’s follow the Gauss–Jordan elimination philosophy of using
one equation to solve for one unknown. The first equation enables us to solve
for y to get y = 2 − x. Substitute this into the second equation to obtain√

x = 2 − x. Then square both sides to obtain x = (2 − x)2, or

0 = x2 − 5x + 4 = (x − 1)(x − 4).

Now x = 1 leads to y = 1, a solution to the system. But x = 4 gives y = −2,
which is not a solution to the system since

√
x cannot be negative. �

What went wrong in this example is that the squaring step, which does
not correspond to any elementary operation, introduced extraneous solutions
to the system. Is Gaussian or Gauss–Jordan elimination safe from this kind
of difficulty? The answer lies in examining the kinds of operations we perform
with these methods. First, we need some terminology. Up to this point we
have always described a solution to a linear system in terms of a list of equa-
tions. For general problems this is a bit of a nuisance. Since we are using the
matrix/vector notation, we may as well go all the way and use it to concisely
describe solutions as well. We will use column vectors to define solutions as
follows.

Definition 1.8. Solution Vector A solution vector for the general linear
system of equation (1.1) is a vector

x =

⎡

⎢⎢⎢⎣

s1

s2

...
sn

⎤

⎥⎥⎥⎦

such that the resulting equations are satisfied for these choices of the variables.
The set of all such solutions is called the solution set of the linear system, and
two linear systems are said to be equivalent if they have the same solution
set.

We will want to make frequent reference to vectors without having to
display them in the text. Of course, for 1 × n row vectors this is no problem.
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To save space in referring to column vectors, we shall adopt the convention
that a column vector will also be denoted by a tuple with the same entries.

Tuple ConventionThe n-tuple (x1, x2, . . . , xn) is a shorthand for the n×1
column vector x with entries x1, x2, . . . , xn. For exam-

ple, we can write (1, 3, 2) in place of

⎡

⎣
1
3
2

⎤

⎦.

Example 1.25. Describe the solution sets of all the examples worked out in
the previous section.

Solution. Here is the solution set to Example 1.17. It is the singleton set

S =
{[

2
3

]}
= {(2, 3)} .

The solution set for Example 1.19 is S =
{(

3
2 , 1, 3

2

)}
; remember that we can

designate column vectors by tuples if we wish.
For Example 1.20 the solution set requires some fancier set notation, since

it is an infinite set. Here it is:

S =

⎧
⎨

⎩

⎡

⎣
−y

y
2

⎤

⎦ | y ∈ R

⎫
⎬

⎭ = {(−y, y, 2) | y ∈ R} .

Example 1.22 is an inconsistent system, so has no solutions. Hence, its solution
set is S = ∅. Finally, the solution set for Example 1.23 is the singleton set
S = {(2 + i, 2 − i)}. �

A key question about Gaussian elimination and equivalent systems: What
happens to a system if we change it by performing one elementary row opera-
tion? After all, Gaussian and Gauss–Jordan elimination amount to a sequence
of elementary row operations applied to the augmented matrix of a linear sys-
tem. Answer: Nothing happens to the solution set!

Theorem 1.2. Equivalent Systems Suppose a linear system has augmented
matrix Ã upon which an elementary row operation is applied to yield a new
augmented matrix B̃ corresponding to a new linear system. Then these two
linear systems are equivalent, i.e., have the same solution set.

Proof. If we replace the variables in the system corresponding to Ã by
the values of a solution, the resulting equations will be satisfied. Now perform
the elementary operation in question on this system of equations to obtain
that the equations for the system corresponding to the augmented matrix B̃
are also satisfied. Thus, every solution to the old system is also a solution to
the new system resulting from performing an elementary operation. For the
converse, it is sufficient for us to show that the old system can be obtained
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from the new one by another elementary operation. In other words, we need
to show that the effect of any elementary operation can be undone by another
elementary operation. This will show that every solution to the new system
is also a solution to the old system. If E represents an elementary operation,
then the operation that undoes it could reasonably be designated as E−1,
since the effect of the inverse operation is rather like canceling a number by
multiplying by its inverse. Let us examine each elementary operation in turn:
Inverse Elementary Operations

• Eij : The elementary operation of switching the ith and jth rows of the
matrix. Notice that the effect of this operation is undone by performing
the same operation, Eij , again. This switches the rows back. Symbolically
we write E−1

ij = Eij .
• Ei(c): The elementary operation of multiplying the ith row by the nonzero

constant c. This elementary operation is undone by performing the elemen-
tary operation Ei(1/c); in other words, by multiplying the ith row by the
nonzero constant 1/c. We write Ei(c)−1 = Ei(1/c).

• Eij(d): The elementary operation of adding d times the jth row to the ith
row. This operation is undone by adding −d times the jth row to the ith
row. We write Eij(d)−1 = Eij(−d).

Thus, in all cases the effects of an elementary operation can be undone by
applying another elementary operation of the same type, which is what we
wanted to show. �

The inverse notation we used here doesn’t do much for us yet. In Chapter
2 this notation will take on an entirely new and richer meaning.

The Reduced Row Echelon Form

Theorem 1.2 tells us that the methods of Gaussian and Gauss–Jordan elim-
ination do not alter the solution set we are interested in finding. Our next
objective is to describe the end result of these methods in a precise way. That
is, we want to give a careful definition of the form of the matrix that these
methods lead us to, starting with the augmented matrix of the original sys-
tem. Recall that the leading entry of a row is the first nonzero entry of that
row. (So a row of zeros has no leading entry.)

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Definition 1.9. Reduced Row (Echelon) Form A matrix R is said to be in
reduced row form if:

(1) The nonzero rows of R precede the zero rows.
(2) The column numbers of the leading entries of the nonzero rows, say rows

1, 2, . . . , r, form an increasing sequence of numbers c1 < c2 < · · · < cr.

The matrix R is said to be in reduced row echelon form if in addition to the
above:

(3) Each leading entry is a 1.
(4) Each leading entry has only zeros above it.

Example 1.26. Consider the following matrices (whose leading entries are
enclosed in a circle). Which are in reduced row form? Reduced row echelon
form?

(a)

[
1 2

0 3

]
(b)

[
1 2 0

0 0 3

]
(c)

[
0 0 0
1 0 0

]

(d)

⎡

⎢⎣
1 2 0

0 0 1
0 0 0

⎤

⎥⎦ (e)

⎡

⎢⎢⎣

1 0 0

0 0 1

0 1 0

⎤

⎥⎥⎦

Solution. Checking through (1)–(2), we see that (a), (b), and (d) fulfill the
conditions for reduced row matrices. But (c) fails, since a zero row precedes the
nonzero ones; matrix (e) fails to be in reduced row form because the column
numbers of the leading entries do not form an increasing sequence. Matrices
(a) and (b) don’t satisfy (3), so matrix (d) is the only one that satisfies (3)–(4).
Hence, it is the only matrix in the list in reduced row echelon form. �

We can now describe the goal of Gaussian elimination as follows: Use
elementary row operations to reduce the augmented matrix of a linear system
to reduced row form; then back solve the resulting system. On the other hand,
the goal of Gauss–Jordan elimination is to use elementary operations to reduce
the augmented matrix of a linear system to reduced row echelon form. From
this form one can read off the solution(s) to the system.

Is it always possible to reduce a matrix to a reduced row form or row
echelon form? If so, to how many such forms? These are important questions. If
we take the matrix in question to be the augmented matrix of a linear system,
what we are really asking becomes, how reliable is Gaussian elimination? Does
it always lead us to answers that have the same form? Certainly, matrices can
be transformed by elementary row operations to different reduced row forms,
as the following simple example shows:

A =
[

1 2 4
0 2 −1

]−−−−−→
E12(−1)

[
1 0 5
0 2 −1

]−−−−−→
E2(1/2)

[
1 0 5
0 1 − 1

2

]
.
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Every matrix of this example is already in reduced row form. The last matrix
is also in reduced row echelon form. Yet all three of these matrices can be
obtained from each other by elementary row operations. It is significant that
only one of the three matrices is in reduced row echelon form. As a matter
of fact, any matrix can be reduced by elementary row operations to one and
only one reduced row echelon form, which we can call the reduced row echelon
form of the matrix. The fact that at least one such form is always possible is
justified by an algorithm which starts with a matrix and terminates in a finite
number of steps with a reduced row echelon form for the matrix. Here is an
informal description of one such algorithm which could easily be programmed:

Algorithm RREF

Input: m × n matrix A = [aij ].
Output: reduced row echelon form matrix R = [rij ].
Procedure:
Set p = 1, q = 1, R = A.
While p ≤ m and q ≤ n:

Search for index i ≥ p such that riq 	= 0.
If none found

set q = q + 1
else

interchange rows i and p with Eip

convert (p, q)th entry to 1 with Ep

(
1

rpq

)

zero out entries above and below (p, q)th entry with suitable Ekp (−rkq)
set p = p + 1, q = j + 1.

end while

This algorithm must terminate in finitely many steps and replaces the
matrix A with a reduced row echelon form E. So A has at least one such
form. In fact it is the only one:

Theorem 1.3. Uniqueness of Reduced Row Echelon Form Every matrix
can be reduced by a sequence of elementary row operations to one and only
one reduced row echelon form.

Proof. Algorithm RREF yields one such form. Suppose that some matrix
could be reduced to two distinct reduced row echelon forms. Then there is such
an m × n matrix Ã with the fewest possible columns n; that is, the theorem
is true for every matrix with fewer columns. A single column matrix can be
reduced to only one reduced row echelon form, namely the 0 column if it is
a 0 column, or a column with first entry 1 and the other entries 0 otherwise.
Hence n > 1. The matrix Ã can be reduced to two different reduced row
echelon forms, say R1 and R2, with R1 	= R2. Write Ã = [A | b], so that
we can think of Ã as the augmented matrix of a linear system (1.1). Now for
i = 1, 2 write each Ri as Ri = [Li | bi], where bi is the last column of the
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m × n matrix Ri, and Li is the m × (n − 1) matrix formed from the first
n − 1 columns of Ri. Each Li satisfies the definition of reduced row echelon
form, since each Ri is in reduced row echelon form. Also, each Li results from
performing elementary row operations on the matrix A, which has only n − 1
columns. By the minimum columns hypothesis, we have that L1 = L2. There
are two possibilities to consider.

Case 1: The last column bi of either Ri has a leading entry in it. Then
the system of equations represented by Ã is inconsistent. It follows that both
columns bi have a leading entry in them, which must be a 1 in the first row
whose portion in Li consists of zeros, and the entries above and below this
leading entry must be 0. Since L1 = L2, it follows that b1 = b2, and thus
R1 = R2, a contradiction. So this case can’t occur.

Case 2: Each bi has no leading entry in it. Then the system of equations
represented by Ã is consistent. Both augmented matrices have the same basic
and free variables since L1 = L2. Hence, we obtain the same solution with
either augmented matrix by setting the free variables of the system equal to 0.
When we do so, the bound variables are uniquely determined: The first equa-
tion says that the first bound variable equals the first entry in the right-hand-
side vector since all other variables will either be zero or have zero coefficient
in the first equation of the system. Similarly, the second says that the second
bound variable equals the second entry in the right-hand-side vector, and so
forth. Therefore, b1 = b2 and thus R1 = R2, a contradiction again. Hence,
there can be no counterexample to the theorem, which completes the proof.
�

The following consequence of the preceding theorem is a fact that we will
find very useful in Chapter 2.

Corollary 1.1. Let the matrix B be obtained from the matrix A by perform-
ing a sequence of elementary row operations on A. Then B and A have the
same reduced row echelon form.

Proof. To see this, perform the elementary operations on B that undo
the ones originally performed on A to get B. The matrix A results from these
operations. Now perform whatever elementary row operations are needed to
reduce A to its reduced row echelon form. Since B can be reduced to one and
only one reduced row echelon form, the reduced row echelon forms of A and
B coincide. �

Rank and Nullity of a Matrix

Now that we have Theorem 1.3 in hand, we can introduce the notion of rank
of a matrix, for it uses the fact that A has exactly one reduced row echelon
form.

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Definition 1.10. Matrix Rank The rank of a matrix A is the number of
nonzero rows of the reduced row echelon form of A. This number is written
as rankA.

There are other ways to describe the rank of a matrix. For example, rank
can also be defined as the number of nonzero rows in any reduced row form
of a matrix. One has to check that any two reduced row forms have the same
number of nonzero rows (they do). Rank can also be defined as the number of
columns of the reduced row echelon form with leading entries in them, since
each entry of a reduced row echelon form occupies a unique column. The
number of remaining columns also has a name:

Definition 1.11. Matrix Nullity The nullity of a matrix A is the number of
columns of the reduced row echelon form of A that do not contain a leading
entry. This number is written as null A.

In the case that A is the coefficient matrix of a linear system, we can
interpret the rank of A as the number of bound variables of the system and
the nullity of A as the number of free variables of the system.

Example 1.27. Find the rank and nullity of the matrix A =

⎡

⎣
1 1 2
2 2 5
3 3 2

⎤

⎦.

Solution. Elementary row operations give
⎡

⎣
1 1 2
2 2 5
3 3 2

⎤

⎦−−−−−−→
E21(−2)

⎡

⎣
1 1 2
0 0 1
3 3 2

⎤

⎦−−−−−−→
E31(−3)

⎡

⎣
1 1 2
0 0 1
0 0 −4

⎤

⎦
−−−−−−→

E32(4)
E12(−2)

⎡

⎣
1 1 0
0 0 1
0 0 0

⎤

⎦ .

From the reduced row echelon form of A at the far right we see that the rank
of A is 2, that is, rankA = 2. Since only one column does not contain a pivot,
we see that the nullity of A is 1, that is, null A = 1. �

One point that the previous example makes is that one cannot determine
the rank of a matrix by counting nonzero rows of the original matrix.

Caution: Remember that the rank of A is the number of nonzero rows in one
of its reduced row forms, and not the number of nonzero rows of A itself.

The rank of a matrix is a nonnegative number, but it could be 0! This
happens if the matrix has only zero entries, so that it has no nonzero rows. In
this case, the nullity of the matrix is as large as possible, namely the number
of columns of the matrix. There are some simple limits on the size of rank A
and null A. First, we need a notation that occurs frequently throughout the
text.
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Definition 1.12. Min Max Given a list of real numbers a1, a2, . . . , am, the
smallest number in the list is min{a1, a2, . . . , am}, and max{a1, a2, . . . , am} is
the largest number in the list.

Theorem 1.4. Let A be an m × n matrix. Then

(1) 0 ≤ rank A ≤ min{m,n}.
(2) rank A + nullA = n.

Proof. By definition, rank A is the number of nonzero rows of the reduced
row echelon form of A, which is itself an m×n matrix. There can be no more
leading entries than rows; hence rank A ≤ m. Also, each leading entry of a
matrix in reduced row echelon form is the unique nonzero entry in its column.
So there can be no more leading entries than columns n. Since rankA is less
than or equal to both m and n, it is less than or equal to their minimum,
which is the first inequality. The number of pivot columns is rankA and the
number of non-pivot columns is null A. The sum of these numbers is n. �

In words, item (1) of Theorem 1.4 says that the rank of a matrix cannot
exceed the number of rows or columns of the matrix. If the rank of a matrix
equals its column number we say that the matrix has full column rank. Sim-
ilarly, a matrix has full row rank if its rank equals the row number of the
matrix. For example, matrix A of Example 1.27 is 3 × 3 of rank 2. Since this
rank is smaller than 3, A does not have full column or row rank. Here is an
application of the rank concept to systems.

Theorem 1.5. Consistency in Terms of Rank The general linear system
(1.1) with m×n coefficient matrix A, right-hand-side vector b, and augmented
matrix Ã = [A | b] is consistent if and only if rankA = rank Ã, in which case
either

(1) rank A = n, in which case the system has a unique solution, or
(2) rank A < n, in which case the system has infinitely many solutions.

Proof. We can reduce Ã to reduced row echelon form by first doing the
elementary operations that reduce the A part of the matrix to reduced row
echelon form, then attending to the last column. Hence, it is always the case
that rank A ≤ rank Ã. The only way to get strict inequality is to have a
leading entry in the last column, which means that some equation in the
equivalent system corresponding to the reduced augmented matrix is 0 = 1,
which implies that the system is inconsistent. On the other hand, we have
already seen (in the proof of Theorem 1.3, for example) that if the last column
does not contain a leading entry, then the system is consistent. This establishes
the first statement of the theorem.

Now suppose that rank A = rank Ã, so that the system is consistent. By
Theorem 1.4, rank A ≤ n, so that either rank A < n or rank A = n. The
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number of variables of the system is n. Also, the number of leading entries
(equivalently, pivots) of the reduced row form of Ã, which is rank A, is equal
to the number of bound variables; the remaining n− rank A variables are the
free variables of the system. Thus, to say that rank A = n is to say that no
variables are free; that is, solving the system leads to a unique solution. And
to say that rank A < n is to say that there is at least one free variable, in
which case the system has infinitely many solutions. �

Here is an example of how this theorem can be put to work. It confirms
our intuition that if a system does not have “enough” equations, then it can’t
have a unique solution:

Corollary 1.2. If a consistent linear system of equations has more unknowns
than equations, then the system has infinitely many solutions.

Proof. In the notation of the previous theorem, the hypothesis simply
means that m < n. But we know from Theorem 1.4 that rank A ≤ min{m,n}.
Thus, rank A < n and the part (2) of Theorem 1.5 yields the desired result. �

Of course, there is still the question of when a system is consistent. In
general, there isn’t an easy way to see when this is so outside of explicitly
solving the system. However, in some cases there are easy answers. One such
important special case is given by the following definition.

Definition 1.13. Homogeneous System The general linear system (1.1)
with m × n coefficient matrix A and right-hand-side vector b is said to be
homogeneous if the entries of b are all zero. Otherwise, the system is said to
be inhomogeneous.

The nice feature of homogeneous systems is that they are always consis-
tent! In fact, it is easy to exhibit a specific solution to the system, namely,
Trivial Solution take the value of all the variables to be zero. For obvi-

ous reasons this solution is called the trivial solution to the system. Thus,
the previous corollary implies that a homogeneous linear system with fewer
equations than unknowns must have infinitely many solutions. Of course, if
we want to find all the solutions, we will have to do the work of Gauss–Jordan
elimination. However, we acquire a small notational convenience in dealing
with homogeneous systems. Notice that the right-hand side of zeros is never
changed by an elementary row operation. So why bother writing out the aug-
mented matrix of such a system? It suffices to perform elementary operations
on the coefficient matrix alone. In the end, the right-hand side is still a column
of zeros.

Example 1.28. Solve and describe the solution set of the homogeneous sys-
tem

x1 + x2 + x4 = 0
x1 + x2 + 2x3 = 0

x1 + x2 = 0.
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Solution. Since row operations will not change the right-hand side, we
need only perform them on the coefficient matrix to obtain
⎡

⎣
1 1 0 1
1 1 2 0
1 1 0 0

⎤

⎦
−−−−−−→
E21(−1)
E31(−1)

⎡

⎣
1 1 0 1
0 0 2 −1
0 0 0 −1

⎤

⎦
−−−−−→
E2(1/2)
E3(−1)

⎡

⎣
1 1 0 1
0 0 1 − 1

2
0 0 0 1

⎤

⎦
−−−−−−→
E23(1/2)
E13(−1)

⎡

⎣
1 1 0 0
0 0 1 0
0 0 0 1

⎤

⎦ .

One has to be a little careful here: The leading entry in the fourth column
does not indicate that the system is inconsistent, since we deleted the right-
hand-side column of the system. Had we carried it along in the calculations
above, we would have obtained

⎡

⎣
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤

⎦ ,

which is the matrix of a consistent system. We see from the reduced row
echelon form of the coefficient matrix that x2 is free and the other variables
are bound. The general solution is

x1 = −x2

x3 = 0
x4 = 0
x2 is free.

Finally, the solution set S of this system can be described as

S = {(−x2, x2, 0, 0) | x2 ∈ R} . �

For many practical problems solution sets as described in the preceding
example require a more sophisticated solution description. For example, con-
sider this variation on the Leontief input-output model of Example 1.4 (highly
simplified, since economists might be interested in a much more complex
model involving hundreds of variables):

Example 1.29. We are given the following consumption matrix for the com-
modity output of three sectors M, P, S in a closed economy. Suppose that each
producer charges a unit price for its commodity, say p1, p2, p3, and that the
columns of the table represent fraction of each producer commodity needed
by the consumer to produce one unit of its own commodity. Find all pos-
sible equilibrium prices for these products, i.e., prices such that the cost of
production of an item is equal to its price.

Consumed by
M P S

M
Produced by P

S

0.0 0.5 0.5
0.4 0.2 0.4
0.6 0.2 0.2
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Solution. Sector M will charge a price of p1 for for a unit of output and this
must be balanced by its payments, 0.4p2 and 0.6p3. The same applies to the
other sectors, which yields the following system of equations:

p1 = 0.4p2 + 0.6p3

p2 = 0.5p1 + 0.2p2 + 0.2p3

p3 = 0.5p1 + 0.4p2 + 0.2p3.

Subtract terms on the right to end up with a homogeneous system. Row
operations do not change the right-hand side, so perform row operations on
the coefficient matrix (whose entries we convert to fractions for convenience)
to obtain
⎡

⎣
1 − 2

5 − 3
5− 1

2
4
5 − 1

5− 1
2 − 2

5
4
5

⎤

⎦
−−−−−→
E21( 1

2 )
E31( 1

2 )

⎡

⎣
1 − 2

5 − 3
5

0 3
5 − 1

2
0 − 3

5
1
2

⎤

⎦
−−−−−→
E32(1)
E12( 2

3 )

⎡

⎣
1 0 − 14

15
0 3

5 − 1
2

0 0 0

⎤

⎦
−−−−−→
E23( 5

3 )
⎡

⎣
1 0 − 14

15
0 1 − 5

6
0 0 0

⎤

⎦ .

Thus, p3 is free and hence the solution set of interest to economists is p1 =
14
15p3, p2 = 5

6p3 and p3 > 0. �

1.4 Exercises and Problems

Exercise 1. Circle leading entries and determine which of the following matrices
are in reduced row form or reduced row echelon form.

(a)

⎡

⎣
0 1
0 0
0 0

⎤

⎦ (b)

⎡

⎣
1 0 0 1
0 1 0 2
0 0 0 1

⎤

⎦ (c)
[

0 1 0 1
1 0 0 2

]
(d)

⎡

⎣
1 2 0
0 1 0
0 0 0

⎤

⎦

(e)
[

1 0 2
0 0 0

]
(f)

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ (g)

⎡

⎣
1 0 0 4
0 0 0 0
0 0 1 2

⎤

⎦ (h) [1 3]

Exercise 2. Circle leading entries and determine which of the following matri-
ces can be put into reduced row echelon form with at most one elementary
operation.

(a)

⎡

⎣
1 0 0 1
0 0 0 0
0 0 1 0

⎤

⎦ (b)

⎡

⎣
1 0 0 1
0 1 0 2
0 0 1 1

⎤

⎦ (c)
[

0 1 0 1
1 0 0 2

]

(d)
[

2 0 2
0 0 0

]
(e)

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ (f)

⎡

⎣
1
0
2

⎤

⎦

Exercise 3. The rank of the following matrices can be determined by inspec-
tion. Inspect these matrices and specify their rank.

(a)

⎡

⎣
1 −1 0
0 1 1
0 0 2

⎤

⎦ (b)

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦ (c)

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ (d)

⎡

⎣
3
1
1

⎤

⎦ (e)
[

1 0
1 0

]
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Exercise 4. Inspect these matrices and specify their rank without pencil and
paper calculation.

(a)

⎡

⎣
1 3 3
0 1 1
0 1 1

⎤

⎦ (b)

⎡

⎣
0 0 0
0 2 0
0 2 0

⎤

⎦ (c)

⎡

⎣
0 0 1 1
0 1 0 1
1 0 0 1

⎤

⎦ (d)

⎡

⎣
0
0
0

⎤

⎦

Exercise 5. Show that the elementary operations you use to find the reduced
row echelon form of the following matrices. Give the rank and nullity of each
matrix.

(a)

⎡

⎣
1 −1 2
1 3 4
2 2 6

⎤

⎦ (b)

⎡

⎣
3 1 9 2

−3 0 6 −5
0 0 1 2

⎤

⎦ (c)
[

0 1 0 1
2 0 0 2

]

(d)

⎡

⎣
2 4 2
4 9 3
2 3 3

⎤

⎦ (e)
[

2 2 5 6
1 1 −2 2

]
(f)

⎡

⎣
2 1 1
1 2 1
1 1 2

⎤

⎦

Exercise 6. Compute a reduced row form that can be reached in a minimum
number of steps and the reduced row echelon forms of the following matrices.
Given that the matrices are augmented matrices for a linear system, write out
the general solution to the system.

(a)
[

0 −1 2
0 3 4

]
(b)

⎡

⎣
3 0 0 2

−3 1 6 −5
3 0 1 1

⎤

⎦ (c)
[

0 0 0 1
2 0 0 2

]

(d)

⎡

⎣
2 4 2
2 1 1
1 1 3

⎤

⎦ (e)
[

2 2
3 3

]
(f)

⎡

⎣
2 2
1 2
1 1

⎤

⎦

Exercise 7. Find the rank of the augmented and coefficient matrix of the fol-
lowing linear systems and the solution sets to the following systems. Are these
systems equivalent?

(a) x1 + x2 + x3 − x4 = 2 (b) x3 + x4 = 0
2x1 + x2 − 2x4 = 1 −2x1 − 4x2 = 0

2x1 + 2x2 + 2x3 − 2x4 = 4 3x1 + 6x2 − x3 + x4 = 0

Exercise 8. Show that the following systems are equivalent and find a sequence
of elementary operations that transforms the augmented matrix of (a) into
that of (b).

(a) x1 + x2 + x3 − x4 = 2 (b) x1 + x2 + x3 − x4 = 2
2x1 + x2 − 2x4 = 1 4x1 + 3x2 + 2x3 − 4x4 = 5

2x1 + 2x2 + 2x3 − 2x4 = 4 7x1 + 6x2 + 5x3 − 7x4 = 11

Exercise 9. Find upper and lower bounds on the rank of the 4 × 3 matrix A,
given that some system with coefficient matrix A has infinitely many solutions.
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Exercise 10. Find upper and lower bounds on the rank of matrix A, where A
has four rows and some system of equations with coefficient matrix A has a
unique solution.

Exercise 11. For what values of c are the following systems inconsistent, with
unique solution or with infinitely many solutions?

(a) x2 + cx3 = 0 (b) x1 + 2x2 − x3 = c (c) cx1 + x2 + x3 = 2
x1 − cx2 = 1 x1 + 3x2 + x3 = 1 x1 + cx2 + x3 = 2

3x1 + 7x2 − x3 = 4 x1 + x2 + cx3 = 2

Exercise 12. Consider the system

ax + by = c

bx + cy = d

in the unknowns x, y, where a 	= 0. Use the reduced row echelon form to
determine conditions on the other constants such that the system has no,
one, or infinitely many solutions.

Exercise 13. Consider the system

x1 + 2x2 = a

x1 + x2 + x3 − x4 = b

2x3 + 2x4 = c

in the unknowns x1, x2, x3, x4. Solve this system by reducing the augmented
matrix to reduced row echelon form. This system will have solutions for any
right-hand side. Justify this fact in terms of rank.

Exercise 14. Give a rank condition for a linear homogeneous system that is
equivalent to the system having a unique solution. Justify your answer.

Exercise 15. Fill in the blanks:

(a) If A is a 3 × 7 matrix then the rank of A is at most .
(b) Equivalent systems have the same .
(c) The inverse of the elementary operation E23 (5) is .
(d) The rank of a nonzero 3 × 3matrixwith all entries equal is .

Exercise 16. Fill in the blanks:

(a) If A is a 4×8 matrix, then the nullity of A is larger than .
(b) The rank of a nonzero 4 × 3 matrix with constant entries in each column

is .
(c) An example of a matrix with nullity 1 and rank 2 is .
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(d) The size of the matrix
[

0 −1 2
0 3 4

]
is .

Exercise 17. Consider the system

x1 + 2x2 + x3 = 0
2x1 + x2 − x3 = a

x2 + x3 = b

in the unknowns x1, x2, x3. Find a reduced row form for the augmented matrix
of this system with the fewest elementary row operations possible. What can
you deduce from this about the solutions to the system?

Exercise 18. Consider the system

2x1 + x2 − x3 = 0
x1 + x2 + x3 = a

x2 + cx3 = b

in the unknowns x1, x2, x3. Find a reduced row form for the augmented matrix
of this system with the fewest elementary row operations possible. What can
you deduce from this about the solutions to the system?

*Problem 19. Answer True/False and explain your answers:

(a) If a linear system is inconsistent, then the rank of the augmented matrix
exceeds the number of unknowns.

(b) Any homogeneous linear system is consistent.
(c) A system of 3 linear equations in 4 unknowns has infinitely many solutions.
(d) Every matrix can be reduced to only one matrix in reduced row form.
(e) Any homogeneous linear system with more equations than unknowns has

a nontrivial solution.

Problem 20. Show that a system of linear equations has a unique solution if
and only if every column, except the last one, of the reduced row echelon form
of the augmented matrix has a pivot entry in it.

Problem 21. Prove or disprove by example: If two linear systems are equivalent,
then they must have the same size augmented matrix.

*Problem 22. Use Theorem 1.3 to show that any two reduced row forms for a
matrix A must have the same number of nonzero rows.

Problem 23. Suppose that the matrix C can be written in the augmented form
C = [A |B], where the matrix B may have more than one column. Prove that
rank C ≤ rank A + rank B.

Problem 24. Suppose that in Example 1.29 sector P no longer needs to con-
sume any of the commodity of sector S to produce its output. Reformulate
the consumption matrix for this example and determine equilibrium prices, if
any.
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1.5 *Applications and Computational Notes

Roundoff Errors

In many practical problems, calculations are not exact. There are several
reasons for this unfortunate fact. For one, the input data used to construct a
system matrix or coefficient may be inexact (the GIGO principle, garbage in,
garbage out, is at least marginally true in such cases). For another, scientific
calculators are by their very nature only finite-precision machines. That is,
only a fixed number of significant digits of the numbers we are calculating
may be used in any calculation. For instance, verify this simple arithmetic
fact on a (floating point, not symbolic) technology tool:

((
2
3

+ 100
)

− 100
)

− 2
3

= 0.

In many cases this calculation will not yield 0. The problem is that if, for
example, a calculator uses 6-digit accuracy, then 2

3 is calculated as 0.666667,
which is really incorrect. Even if arithmetic calculations were exact, the data
that form the basis of our calculations are often derived from scientific mea-
surements that themselves will almost certainly be in error. Starting with erro-
neous data and doing an exact calculation can be as bad as starting with exact
data and doing an inexact calculation. In fact, in a certain sense they are equiv-
alent to each other. Error resulting from truncating data for storage or finite-
precision arithmetic calculations is called roundoff error. Roundoff Error

We will not give an elaborate treatment of roundoff error. A thorough
analysis can be found in the Golub and Van Loan text [14] of the bibliography.
The subject of this book, numerical linear algebra, is a part of an entire field
of applied mathematics known as numerical analysis. The texts [25] and [9]
provide excellent treatments of this subject. Consider this question: Could
roundoff error be a significant problem in Gaussian elimination? It isn’t at all
clear that there is a problem. After all, even in the above example, the final
error is relatively small. Is it possible that with all the arithmetic performed in
Gaussian elimination the errors pile up and become large? The answer is yes.
With the advent of computers came a heightened interest in these questions.
In the early 1950s numerical analysts intensified efforts to determine whether
Gaussian elimination can reliably solve larger linear systems. In fact, we don’t
really have to look at complicated examples to realize that there are potential
difficulties. Consider the following example.

Example 1.30. Let ε be a number so small that our calculator yields 1+ε = 1.
This equation appears a bit odd, but from the calculator’s point of view it may
be perfectly correct; if, for example, our calculator performs 6-digit decimal
arithmetic, then ε = 10−6 will do nicely. Notice that with such a calculator,
1 + 1/ε = (ε + 1)/ε = 1/ε. Now solve the linear system

εx1 + x2 = 1
x1 − x2 = 0.

(1.9)
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Solution. Let’s solve this system by Gauss–Jordan elimination with our
calculator to obtain

[
ε 1 1

1 −1 0

]−−−−−−−→
E21

(
−1

ε

)[
ε 1 1

0 1
ε − 1

ε

]−−−→
E2(ε)

[
ε 1 1

0 1 1

]−−−−−→
E12(−1)

[
ε 0 0

0 1 1

]−−−−−→
E1

(
1

ε

)[
1 0 0

0 1 1

]
.

Thus, we obtain the calculated solution x1 = 0, x2 = 1. This answer is
spectacularly bad! If ε = 10−6 as above, then the correct answer is

x1 = x2 =
1

1 + ε
= 0.99999909999990 . . . .

Our calculated answer is not even good to one digit. So we see that there can
be serious problems with Gaussian or Gauss–Jordan elimination on finite-
precision machines. �

It turns out that information that would be significant

Partial Pivotingfor x1 in the first equation is lost in the truncated arith-
metic that says that 1 + 1/ε = 1/ε. There is a fix for
problems such as this, namely a technique called partial pivoting. The idea
is fairly simple: Do not choose the next available column entry for a pivot.
Rather, search down the column in question for the largest entry (in abso-
lute value). Then switch rows, if necessary, and use this entry as a pivot. For
instance, in the preceding example, we would not pivot off the ε entry of the
first column. Since the entry of the second row, first column, is larger in abso-
lute value, we would switch rows and then do the usual Gaussian elimination
step. Here is what we would get (remember that with our calculator 1+ε = 1):

[
ε 1 1
1 −1 0

]−−→
E21

[
1 −1 0
ε 1 1

]−−−−−→
E21(−ε)

[
1 −1 0
0 1 1

]−−−−→
E12(1)

[
1 0 1
0 1 1

]
.

Now we get the quite acceptable answer x1 = x2 = 1.
But partial pivoting is not a panacea for numerical problems. In fact, it

can be easily defeated. Multiply the second equation of equation (1.9) by ε2,
and we get a system for which partial pivoting still picks the wrong pivot.
Here the problem is a matter of scale. It can be cured by dividing each row
by the largest entry of the row before beginning the Gaussian elimination
process. This procedure is known as row scaling. The combination of row
scaling and partial pivoting overcomes many of the numerical problems of
Gaussian and Gauss–Jordan elimination (but not all!). There is a more drastic

Complete Pivotingprocedure, known as complete pivoting. In this pro-
cedure one searches all the unused rows (excluding
the right-hand sides) for the largest entry, then uses it as a pivot for Gaus-
sian elimination. The columns used in this procedure do not move in that
left-to-right fashion we are used to seeing in system solving. It can be shown
rigorously that the error of roundoff propagates in a predictable and controlled
fashion with complete pivoting; in contrast, we do not really have a satisfac-
tory explanation as to why row scaling and partial pivoting work well. Yet
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in most cases they do reasonably well. Since this combination involves much
less calculation than complete pivoting, it is the method of choice for many
problems.

There are deeper reasons for numerical problems in solving some systems
than the one the preceding example illustrates. One difficulty has to do with
the “sensitivity” of the coefficient matrix to small changes. That is, in some
systems, small changes in the coefficient matrix lead to dramatic changes in
the exact answer. The practical effect of roundoff error can be shown to be
equivalent to introducing small changes in the coefficient matrix and obtaining
an exact answer to the perturbed (changed) system. There is no cure for these
difficulties, short of computing in higher precision. A classical example of this
type of problem, the Hilbert matrix, is discussed in one of the projects below.
We will attempt to quantify this “sensitivity” in Chapter 5.

Computational Efficiency of Gaussian Elimination

How much work is it to solve a linear system and how does the amount of
work grow with the dimensions of the system? The first thing we need is
a unit of work. In computer science one of the principal units of work of

Flop Count numerical computation is a flop (floating point operation),
namely a single +,−,×, or ÷. For example, we say that the

amount of work in computing e + π or e × π is one flop, while the work in
calculating e+3×π is two flops. The cost of performing an operation is called
its flop count. The following example is extremely useful.

Example 1.31. How many flops does it cost to add a multiple of one row to
another, as in Gaussian elimination, if the rows have n elements?

Solution. Say that row a is to be multiplied by the scalar α, and added to
the row b. Designate the row a = [ai] and the row b = [bi]. We have n entries
to worry about. Consider a typical one, say the ith one. The ith entry of b,
namely bi, will be replaced by the quantity bi + αai. The amount of work in
this calculation is two flops. Since there are n entries to compute, the total
work is 2n flops. �

Our goal is to determine the expense of solving a system by Gauss–Jordan
elimination. For the sake of simplicity, let’s assume that the system under
consideration has n equations in n unknowns and the coefficient matrix has
rank n. This ensures that we will have a pivot in every row of the matrix. We
won’t count row exchanges either, since they don’t involve any flops. (This
may not be realistic on a fast computer, since memory fetches and stores may
not take significantly less time than a floating-point operation.) Now consider
the expense of clearing out the entries under the first pivot. A picture of the
augmented matrix looks something like this, where an × is an entry that may
not be 0 and an × is a nonzero pivot entry:

http://dx.doi.org/10.1007/978-3-319-74748-4_5
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⎡

⎢⎢⎢⎢⎣

× × · · · ×
× × · · · ×
...

...
...

...
× × · · · ×

⎤

⎥⎥⎥⎥⎦

−−−−−−→
n − 1

el. ops.

⎡

⎢⎢⎢⎢⎢⎣

× × · · · ×
0 × · · · ×
...

...
...

...
0 × · · · ×

⎤

⎥⎥⎥⎥⎥⎦
.

Each elementary operation will involve adding a multiple of the first row,
starting with the second entry, since we don’t need to do arithmetic in the
first column — we know what goes there — to the n− 1 subsequent rows. By
the preceding example, each of these elementary operations will cost 2(n − 1)
flops. Add 1 flop for the cost of determining the multiplier to obtain 2n − 1.
So the total cost of zeroing out the first column is (n − 1)(2n − 1) flops. Now
examine the lower unfinished block in the above figure. Notice that it’s as
though we were starting over with the row and column dimensions reduced
by 1. Therefore, the total cost of the next phase is (n − 2)(2(n − 1) + 1) flops.
Continue in this fashion, and we obtain a count of

0 +
n∑

j=2

(j − 1)(2j − 1) =
n∑

j=1

(j − 1)(2j − 1) =
n∑

j=1

2j2 − 3j + 1

flops. Recall the identities for sums of consecutive integers and their squares:
n∑

j=1

j =
n(n + 1)

2
and

n∑

j=1

j2 =
n(n + 1)(2n + 1)

6
.

Thus, we have a total flop count of
n∑

j=1

2j2 − 3j + 1 = 2
n(n + 1)(2n + 1)

6
− 3

n(n + 1)
2

+ n =
2n3

3
− n2

2
− n

6
.

This is the cost of forward solving. Now let’s simplify our answer a bit more.
For large n we have that n3 is much larger than n or n2 (e.g., for n = 10
compare 1000 to 10 or 100). Hence, we ignore the lower-degree terms and arrive
at a simple approximation to the number of flops required to forward solve a
linear system of n equations in nunknowns using Gauss–Jordan elimination.
There remains the matter of back solving. We leave as an exercise to show that
the total work of back solving is quadratic in n. Therefore, the “leading-order”
approximation that we found for forward solving remains unchanged. Hence,
we have the following estimate of the complexity of Gaussian elimination.

Theorem 1.6. Computational Efficiency The number of flops required to
solve a linear system of n equations in n unknowns using Gaussian or Gauss–
Jordan elimination without row exchanges is approximately 2n3/3.

Thus, for example, the work of forward solving a system of 21 equations
in 21 unknowns is approximately 2 · 213/3 = 6174 flops. Exact answer: 5950.
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Derivation of a Time Dependent form of the Diffusion Equation

The term “diffusion” refers to the spatial flow of a material in time from
higher to lower concentrations. The “material” could be a chemical, fluid,
electrical charge, heat or a population of organisms, to name but a few of
the materials to which the notion of diffusion could be applied. The study
of diffusion is a vast enterprise. We shall confine ourselves to a simplified
discrete one-dimensional version of the so-called reaction-diffusion equation
derived from Fick’s first law, which can be stated simply as

Fick’s First Law: Diffusive flux of a material is directly proportional to con-
centration gradient of the material.

Here we understand that flux means the amount of material that flows
across a surface per unit surface area per unit time, so that it has the units
of material/(area·time) and gradient means the change in concentration (den-
sity) per unit length, so that it has units of material/(volume·length). Hence,
the coefficient of proportion (diffusion coefficient) has units of area/time.
Fick’s law has many variants in science such as Fourier’s law in heat con-
duction, Ohm’s law in electrical current and Darcy’s law in groundwater flow,
among others.

Fig. 1.7: Rod centered along the x-axis on the interval [a, b] with circular
cross-section of radius r and area A = πr2.

The material movement we consider is one dimensional, say along the x-
axis on the interval [a, b]. For example, think of the material as moving along
a rod, say a wire or tube, of constant cross section with area A placed along
the interval [a, b]. We shall assume that the medium in which the material
is diffused is uniform in its properties. In particular, we assume a constant
diffusion coefficient across the rod. Let the density function be y(x, t), a func-
tion of position x and time t. Assume that y is specified at the endpoints:
y(x0, t) = yleft(t) and y(xn+1, t) = yright(t). Also assume that y is specified
at initial time t = 0: y(x, 0) = y0(x). Finally, we suppose that there is source
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of material (a reaction term) along the rod that could vary with position,
time and material density, namely a function f(x, t, y) measured in units of
material/volume.

As a practical matter we cannot measure the density continuously in either
space or time. Therefore, we “discretize” the problem as follows: Divide the
interval into a finite number of equal sized subintervals delimited by points
called nodes, namely a = x0, x1, . . . , xi−1, xi, xi+1, . . . , xn+1 = b. Assume that
the nodes are a distance h apart, so that for indices i = 0, 1, ..., n, xi+1 = xi+h.
Since spacing is equal, the relation between h and n is h = (b − a) / (n + 1).
Further suppose that we are interested in determining the material density
at each spatial node in discrete points in time which are uniformly spaced by
time difference k, yielding times t0 = 0, t1, t2, . . . , tj , .... Here tj+1 = tj + k for
all indices j.

Now we are in a position to develop approximate solutions to our diffusion
problem. We assume that h and k are sufficiently small that the material
density is well approximated over the space interval [xi, xi+1) at a specified
time. Denote our approximations to the material density y(xi, tj) by yi,j for
all indices i and j. Suppose that we have calculated values yi,j for a time index
j and all space indices i = 0, 1, ..., n + 1. How can we obtain values of yi,j+1,
i = 0, 1, ..., n + 1, from this information?

To answer this question, we examine a reference volume of the rod occupy-
ing the space between xi and xi+1 (see Figure 1.7). The volume of this region
(really a cylinder) is Ah. During the time interval [tj , tj+1] material flows by
diffusion across the left and right faces of the volume at xi and xi+1, respec-
tively. In addition, material is added by the source term f(xi, tj , yi,j ) = fi,j

in units of material per unit volume. In these terms, the density gradient over
the distance h is (ym − ym−1) /h for any m such that 1 ≤ m ≤ n. Thus, Fick’s
law says that the flow of material/(area·time) across the mth face is given by
−D (ym − ym−1) /h, where D is a positive constant called the diffusion coef-
ficient. The reason for the minus sign is that we regard flow to the right as
positive; a positive gradient would mandate a negative flow to the left (higher
to lower concentration), so the minus sign corrects for this. Hence, the total
influx of material into the reference volume in this time interval is

left inflow + right inflow + source =
(

−D
yi,j − yi−1,j

h
+ D

yi+1,j − yi,j

h

)
Ak

+ fi,jAhk

= Ahk

(
D

yi−1,j − 2yi,j + yi+1,j

h2
+ fi,j

)

However the influx of material over the time interval [tj , tj+1] is simply the
change in material over that interval, yi,j+1Ah − yi,jAh. Equating these two
terms and cancelling the common factor of volume Ah yields the equation
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yi,j+1 − yi,j = k

(
D

yi−1,j − 2yi,j + yi+1,j

h2
+ fi,j

)
,

that is,

Time Dependent Reaction-Diffusion

yi,j+1 = yi,j +
kD

h2
(yi−1,j − 2yi,j + yi+1,j) + kfi,j . (1.10)

This equation allows us to solve for values of yi+1,j given that we know all
values of yi,j at the previous time step. Such a method is commonly called a
marching method. It is termed explicit because it yields results at time level
k + 1 explicitly in terms of time level k. This particular method is sometimes
called the (explicit) Euler method.

One can reasonably expect that as we make h and k smaller, our approx-
imations should improve in accuracy. But as we let h, k → 0, how should
they relate to each other? It is beyond the scope of this discussion, but in the
discipline of numerical PDEs the number σ = kD/h2 is called the Courant
number of the problem, and the requirement for a stable convergence to the
solution to the problem is that σ ≤ 1/2, or equivalently,

k ≤ h2

2D
, as h, k → 0.

A simple plausibility argument follows from rewriting equation (1.10) in the
form

yi,j+1 = σyi−1,j + (1 − 2σ) yi,j + σyi+1,j + kfi,j . (1.11)

One can see from this that if σ > 1/2 then, independently of any source
or decay term, the net contribution of material to yi,j+1 from yi,j would be
negative. This is counter-intuitive since no matter how much of the material
in the ith reference volume at time step j were distributed to its neighbors,
one would expect a nonnegative amount to remain in it at the (j + 1)th time
step. The approximate equality k ≈ h2

2D is sometimes used as a rough estimate
of how much time k it takes for a material to diffuse over a distance h.

Derivation of the Diffusion Equation for Steady-State Heat Flow

The idea behind steady state diffusion is that over time, the diffusive process
has settled down to a point where material and source term densities do not
change with time. In terms of equation (1.10), this means that yi,j+1 ≈ yi,j for
all indices i and j. So subtract these terms from both sides of equation (1.10)
to obtain

0 =
kD

h2
(yi−1,j − 2yi,j + yi+1,j) + kfi,j .

Since yi,j and f(xi, tj , yi,j) do not vary with j, we may as well set yi,j = yi

and f(xi, tj , yi,j) = fi. Cancel the factor k from both sides (time is irrele-
vant here) and rearrange a bit to obtain the steady state diffusion equation
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Steady State Reaction-Diffusion
D

h2
(−yi−1 + 2yi − yi+1) = fi. (1.12)

With reference to Example 1.3, the relevant variant of Fick’s first law is
Fourier’s heat law. For a one-dimensional flow, it says that the flow of internal
heat per unit length from one point to another is proportional to the nega-
tive rate of change in temperature with respect to directed distance from the
one point to the other. The positive constant of proportionality α is known
as the thermal conductivity of the material. This law uses temperature as a
proxy for heat. So if one wants a time dependent equation for temperature
alone, one can use the fact that a change in heat is proportional to a change
in temperature with a constant of proportionality cpρ (called the volumetric
heat capacity), where cp is the specific heat and ρ is the mass density of the
conducting medium. If the heat density source is q (x, t), then the correspond-
ing temperature source is cpρq (x, t). In this case the time dependent heat
equation in terms of temperature y(xi, tj) ≈ yi,j becomes

cpρyi,j+1 = cpρyi,j +
kα

h2
(yi−1,j − 2yi,j + yi+1,j) + kq (xi, tj)

or
yi,j+1 = yi,j +

kK

h2
(yi−1,j − 2yi,j + yi+1,j) + kf (xi, tj) , (1.13)

where the so-called thermal diffusivity is K = α/ (cpρ) and the temperature
flux term is f(x, t) = q(x, t)/ (cpρ). If we are in a steady state of temperature,
then yi,j+1 = yi,j , so just as in the case of general steady state diffusion we
can cancel these terms, set yi,j+1 = yi,j , f(xi, tj) = f(xi) and rearrange a
bit to obtain the system of equations for temperature used in Example 1.3:

Steady-State Heat Flow

−yi−1 + 2yi − yi+1 =
h2

K
f (xi) , i = 1, 2, ..., n. (1.14)

Equivalently, one can use the heat source function in this equation since

h2

K
f (xi) =

h2

α/ (cpρ)
q (xi)
cpρ

=
h2

α
q (xi) . (1.15)

Although one does not need to have studied partial differential equations
to understand equations (1.10–1.14), what we have really developed here
amounts to numerical methods for solving several partial differential equations
(PDEs). There are many fine texts on the theory, applications and numerics of
partial differential equations. Readers with a calculus background who might
be interested in pursuing these important topics further can consult, e.g., [20]
for an introduction to applied PDEs, [23] for an advanced study of applied
PDEs and their theory, or [24] for an introduction to numerical PDEs.
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1.5 Exercises and Problems

Exercise 1. What is the flop count for calculating the value of the expression
x (x (ax + b) + c) + d as written?

Exercise 2. What is the flop count for calculating the value of the expression
ax3+bx2+cx+d as written and how does the value of the expression compare
to that of Exercise 1?

Exercise 3. Carry out the calculation ((2
3 +100)−100)− 2

3 on ALAMA Calcu-
lator or other technology tools that use floating point. Do you get the correct
answer?

Exercise 4. Use Gaussian elimination with partial pivoting and technology tool
to solve the system (1.9) with ε = 10−14. How many digits of accuracy does
your answer contain?

Problem 5. Let c be a positive constant with 0 < c < 1. Compute the RREF
of the following matrix by hand:

A =

⎡

⎣
1 c 1
0 c 1 − c
c c 1

⎤

⎦ .

Now use a floating point technology tool with a built-in RREF command (such
as ALAMA calculator) to find the RREF of A with c = 10−8 and c = 10−15.
Do the results confirm your calculation?

*Problem 6. Show that the flop count for back solving an n × n system is
quadratic in n.

Problem 7. Compare the strategy of Gauss–Jordan elimination by using each
pivot to zero out all entries above and below before proceeding to the next
pivot to the forward solve/back solve strategy. Which is computationally more
expensive? Illustrate both strategies with the matrix

A =

⎡

⎣
3 1 9 2

−3 0 6 −5
6 1 3 0

⎤

⎦ .

*Problem 8. Modify equation (1.10) by evaluating the gradient terms (coeffi-
cients of kD/h2) and source terms at time level k + 1 instead of level k. Such
an equation is called an implicit marching method (in this case the implicit
Euler method). Write out the resulting equation as a linear equation with
unknowns on the left and knowns on the right.

Problem 9. Obtain another implicit marching method by averaging the implicit
and explicit Euler methods for general diffusion. Write out the resulting linear
system as a linear system of equations with unknowns on the left and knowns
on the right.
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1.6 *Projects and Reports

In this section we give a few samples of project material (reports too – these
are just promoted projects). These projects provide an opportunity to explore
a subject in a greater depth than exercises permit. Your instructor will define
her/his own expectations for projects. Also, the technology tools used for the
projects will vary.

About writing project/reports: Here are a few suggestions.

• Know your audience. Usually, you may assume that your report will be
read by your supervisors, who are technical people such as yourself. There-
fore, you should write a brief statement of the problem and discussion of
methodology. In practice, reports assume physical laws and assumptions
without further justification, but in real life you might be expected to offer
some explanation of physical principles used in your model.

• Structure your paper. Stream of consciousness doesn’t work here. Have in
mind a target length for your paper. Don’t clutter your work with long lists
of numbers and try to keep the length at a minimum rather than maximum.
Generally, a discourse should have three parts: beginning, middle, and end.
Roughly, a beginning should consist of introductory material. In the middle
you develop the ideas described or theses proposed in the introduction, and
in the end you summarize your work and tie up loose ends.

• Pay attention to appearance and neatness, but don’t be overly concerned
about your writing style. Remember that “simpler is better.” Prefer short
and straightforward sentences to convoluted ones. Use a vocabulary with
which you are comfortable. Use a spell-checker if one is available.

• Pay attention to format. A project/report assignment may be supplied
with a report template by your instructor or carry explicit instructions
about format, intended audience, etc. Read and follow these instructions
carefully.

• Acknowledge your sources. Use every available resource, of course. In par-
ticular, we all know that the internet is a gold mine of information (and
disinformation!). Utilize it and other resources fully, but give appropriate
references and credits, just as you would with a textbook source.

Of course, rules about paper writing are not set in concrete. Also, a part can
be quite short; for example, an introduction might only be a paragraph or two.
Here is a sample skeleton for a report (perhaps rather more elaborate than
you need): 1. Introduction (title page, summary, and conclusions); 2. Main
sections (problem statement, assumptions, methodology, results, conclusions);
3. Appendices (such as mathematical analysis, graphs, possible extensions,
etc.), and References.

Project: The Accuracy of Gaussian Elimination
Problem Description: This project is concerned with determining the accuracy
of Gaussian elimination as applied to two linear systems, one of which is known
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to be difficult to solve numerically. Both of these systems will be square (equal
number of unknowns and equations) and have a unique solution. Also, both
of these systems are to be solved for various sizes, namely n = 4, 8, 12, 16, 24.
In order to get a handle on the error, our main interest, we shall start with
a known answer. The answer shall consist in setting all variables equal to 1.
So it is the solution vector (1, 1, . . . , 1). The coefficient matrix shall be one of
two types:

(1) A Hilbert matrix, i.e., an n×n matrix given by the formula Hn =
[

1
i+j−1

]
.

(2) An n×n matrix with random entries from a uniform distribution on [0, 1].

The right-hand-side vector b is uniquely determined by the coefficient matrix
and solution. In fact, the entries of b are easy to obtain: Simply add up all the
entries in the ith row of the coefficient matrix to obtain the ith entry of b.

The problem is to measure the error of Gaussian elimination. This is done
by finding the largest (in absolute value) difference between the computed
value of each variable and actual value, which in all cases is 1. Discuss your
results and draw conclusions from your experiments. Be sure that the technol-
ogy tools that you use employ floating point calculations and Gaussian elim-
ination as in RREF or LU factorization. (ALAMA calculator has an explicit
RREF command).

Implementation Notes: Consult your technology tool user guide for instruc-
tions on generating Hilbert matrices and generating random matrices. Finding
error vectors involves coordinate-wise subtraction of two vectors. Though not
necessary for this project, Chapter 2 examines the arithmetic of matrices and
vectors is the subject matter of Chapter 2.
Project: An Inverse Problem
Problem Description: You are given a long tube of still dry air in which there
are 7 sampling/insertion points equally spaced 1/6 meters apart from each
other. The position of each point is measured by setting the leftmost point at
0.0 meters and rightmost at 1.0 meters. Initially, a small amount of a certain
gas is inserted in the central insertion point. Subsequently, measurements of
the concentration of the gas at each sampling/insertion point are taken at
later times in seconds. The results of these measurements, which you may
assume are accurate to about 2-3 digits, are specified in Table 1.1. Based on
this information, your task is to determine the best estimate you can find for
the true value of the diffusion coefficient D of this gas in a motionless air
medium. Use this estimate and a marching method to calculate values of the
material density function on the interval [0, 1] at times t = 210 and t = 300
and at the given spatial nodes.

Procedure: You should use equation (1.10) or some variant to move back-
ward and forward in time. These will result in linear systems, which ALAMA
calculator or another technology tool can solve. One way to proceed is simply
to use trial and error until you think you’ve hit on a reasonable value of D,
that is, the one that gives the best approximation to t = 180 from the t = 360

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Sec \ Meter 0 1/6 1/3 1/2 2/3 5/6 1

t = 240 0.0 0.032 1.23 3.69 1.23 0.032 0.0

t = 270 0.0 0.051 1.21 3.48 1.21 0.051 0.0

Table 1.1: Concentration data measurements of a gaseous material.

values. Do not expect perfect matches – the data is relatively sparse. Then
march backwards in time once more to get the initial values at t = 0. Finally,
march forward in time to compute and plot the resulting approximate density
function.

Output: Discus your results and provide a graph of profiles of the material
density function at times in the data table along with your computed profiles.

Comments: This project introduces you to a very interesting area of mathe-
matics called “inverse theory.” The idea is, rather than proceeding from prob-
lem (the governing equations for concentration values) to solution (concen-
tration profiles), you are given the “solution,” namely the measured solution
values at various points, and are to determine from this information the “prob-
lem,” i.e., the diffusion coefficient needed to define the governing equations.
Report: Heat Flow
Problem Description: You are working for the firm Universal Dynamics on a
project that has a number of components. You have been assigned the analysis
of a component that is similar to a laterally insulated rod. The problem:
Part of the specs for the rod dictate that no point of the rod should stay at
temperatures above 10 degrees Celsius for a long period of time. You must
decide whether any of the materials listed below are acceptable for making
the rod and write a report on your findings. You may assume that the rod is
one meter in length. Suppose further that internal heat sources come from a
position-dependent function q(x) = 6600 sin(πx2), 0 ≤ x ≤ 1. Also suppose
that the left and right ends of the rod are held at 0 and 10 degrees Celsius,
respectively. (You may assume that these numbers are appropriate for the
unspecified SI units.) When sufficient time passes, the temperature of the
rod at each point will settle down to “steady-state” values, dependent only
on position x. These are the temperatures you are interested in. Refer to the
discussion in Section 1.5 for the details of the descriptive equations that result
from discretizing the problem into finitely many nodes.

The heat diffusivity constants for the materials under consideration for the
rod are contained in Table 1.2. Based on this data, which of these materials
(if any) are acceptable?

Procedure: For the solution of the problem, formulate a discrete approxi-
mation to the problem using equations (1.14) and (1.15). Choose an integer
n and divide the interval [0, 1] into n + 1 equal subintervals with endpoints
0 = x0, x1, . . . , xn+1 = 1. Then the width of each subinterval is h = 1/(n+1).
Next let yi be your approximation to y(xi) and proceed as in Example 1.3.
There results a linear system of n equations in the n unknowns y1, y2, . . . , yn.
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Metal Thermal Conductivity α

Aluminum 204
Copper 386

Iron 72.7
Silver 419

Table 1.2: Conductivity coefficients for selected metals.

For this problem take n = 4. Use the largest yi as an estimate of the highest
temperature at any point in the rod. Now double the number of subintervals
and see whether your values for y change appreciably at a value of x. If they
do, you may want to repeat this procedure until you obtain numbers that you
judge to be satisfactory.

Output: Return your methods, results and conclusions in the form of a
written report which should be intelligible to your fellow students. Steady
state temperature profiles for each of the metals are very informative. Data
presented in tabular or graphical (or both) formats would be a nice plus.
ALAMA calculator is capable of producing the desired data output, but your
instructors may have own requirements for technology tool usage.
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MATRIX ALGEBRA

In Chapter 1 we used matrices and vectors as simple storage devices. In this
chapter matrices and vectors take on a life of their own. We develop the arith-
metic of matrices and vectors. Much of what we do is motivated by a desire
to extend the ideas of ordinary arithmetic to matrices. Our notational style
of writing a matrix in the form A = [aij ] hints that a matrix could be treated
like a single number. What if we could manipulate equations with matrix and
vector quantities in the same way that we do equations with scalars? We shall
see that this powerful idea gives us now methods for formulating and solving
practical problems. In this chapter we use it to find effective methods for solv-
ing linear and nonlinear systems, solve problems of graph theory and analyze
an important modeling tool of applied mathematics called a Markov chain.

2.1 Matrix Addition and Scalar Multiplication

To begin our discussion of arithmetic we consider the matter of equality of
matrices. Suppose that A and B represent two matrices. When do we declare
them to be equal? The answer is, of course, if they represent the same matrix!
Thus, we expect that all the usual laws of equalities will hold (e.g., equals
may be substituted for equals) and in fact, they do. There are times, however,
when we need to prove that two symbolic matrices are equal. For this purpose,
we need something a little more precise. So we have the following definition,
which includes vectors as a special case of matrices.

Definition 2.1. Matrix Equality Two matrices A = [aij ] and B = [bij ] are
said to be equal if these matrices have the same size, and for each index pair
(i, j), aij = bij , that is, corresponding entries of A and B are equal.

Example 2.1. Which of the following matrices are equal, if any?

http://dx.doi.org/10.1007/978-3-319-74748-4_1
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(a)
[

0
0

]
(b)

[
0 0

]
(c)

[
0 1
0 2

]
(d)

[
0 1

1 − 1 1 + 1

]

Solution. The answer is that only (c) and (d) have any chance of being
equal, since they are the only matrices in the list with the same size (2 × 2).
As a matter of fact, an entry-by-entry check verifies that they really are equal.
�

Matrix Addition and Subtraction

How should we define addition or subtraction of matrices? We take a clue
from elementary two- and three-dimensional vectors, such as the type we
would encounter in geometry or calculus. There, in order to add two vectors,
one condition has to hold: the vectors have to be the same size. If they are
the same size, we simply add the vectors coordinate by coordinate to obtain
a new vector of the same size, which is what the following definition does.

Definition 2.2. Matrix Addition and Subtraction Let A = [aij ] and B =
[bij ] be m × n matrices. Then the sum of the matrices, denoted by A + B, is
the m × n matrix defined by the formula

A + B = [aij + bij ] .

The negative of the matrix A, denoted by −A, is defined by the formula

−A = [−aij ] .

Finally, the difference of A and B, denoted by A−B, is defined by the formula

A − B = [aij − bij ] .

Notice that matrices must be the same size before we attempt to add them.
We say that two such matrices or vectors are conformable for addition.

Example 2.2. Let

A =
[

3 1 0
−2 0 1

]
and B =

[−3 2 1
1 4 0

]
.

Find A + B, A − B, and −A.

Solution. Here we see that

A + B =
[

3 1 0
−2 0 1

]
+
[−3 2 1

1 4 0

]
=
[

3 − 3 1 + 2 0 + 1
−2 + 1 0 + 4 1 + 0

]
=
[

0 3 1
−1 4 1

]
.

Likewise,
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A − B =
[

3 1 0
−2 0 1

]
−
[−3 2 1

1 4 0

]
=
[

3 − −3 1 − 2 0 − 1
−2 − 1 0 − 4 1 − 0

]
=
[

6 −1 −1
−3 −4 1

]
.

The negative of A is even simpler:

−A =
[ −3 −1 −0

− − 2 −0 −1

]
=
[−3 −1 0

2 0 −1

]
. �

Scalar Multiplication

The next arithmetic concept we want to explore is that of scalar multiplica-
tion. Once again, we take a clue from the elementary vectors, where the idea
behind scalar multiplication is simply to “scale” a vector a certain amount
by multiplying each of its coordinates by that amount, which is what the
following definition says.

Definition 2.3. Scalar Multiplication Let A = [aij ] be an m×n matrix and
c a scalar. The product of the scalar c with the matrix A, denoted by cA, is
defined by the formula

cA = [caij ] .

Recall that the default scalars are real numbers, but they could also be
complex numbers.

Example 2.3. Let

A =
[

3 1 0
−2 0 1

]
and c = 3.

Find cA, 0A, and −1A.

Solution. Here we see that

cA = 3
[

3 1 0
−2 0 1

]
=
[

3 · 3 3 · 1 3 · 0
3 · −2 3 · 0 3 · 1

]
=
[

9 3 0
−6 0 3

]
,

while
0A = 0

[
3 1 0

−2 0 1

]
=
[

0 0 0
0 0 0

]

and
(−1) A = (−1)

[
3 1 0

−2 0 1

]
=
[−3 −1 0

2 0 −1

]
= −A. �

Linear Combinations

Now that we have a notion of scalar multiplication and addition, we can blend
these two ideas to yield a very fundamental notion in linear algebra, that of
a linear combination.
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Definition 2.4. Linear Combination A linear combination of the matrices
A1, A2, . . . , An is an expression of the form

c1A1 + c2A2 + · · · + cnAn

where c1, c2, . . . , cn are scalars and A1, A2, . . . , An are all of the same size.

Example 2.4. Given that

A1 =

⎡
⎣2

6
4

⎤
⎦ , A2 =

⎡
⎣2

4
2

⎤
⎦ , and A3 =

⎡
⎣ 1

0
−1

⎤
⎦ ,

compute the linear combination −2A1 + 3A2 − 2A3.

Solution. The solution is that

−2A1 + 3A2 − 2A3 = −2

⎡
⎣ 2

6
4

⎤
⎦+ 3

⎡
⎣ 2

4
2

⎤
⎦− 2

⎡
⎣ 1

0
−1

⎤
⎦

=

⎡
⎣ −2 · 2 + 3 · 2 − 2 · 1

−2 · 6 + 3 · 4 − 2 · 0
−2 · 4 + 3 · 2 − 2 · (−1)

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦ . �

It seems like too much work to write out objects such as the vector
(0, 0, 0) that occurred in the last equation; after all, we know that all
Zero Matrix the entries are all 0. So we make the following notational

convention. A zero matrix is a matrix whose every entry is 0. We shall denote
such matrices by the symbol 0.

Caution: This convention makes the symbol 0 ambiguous, but the meaning
of the symbol will be clear from context, and the convenience gained is worth
the potential ambiguity. For example, the equation of the preceding example
is stated very simply as −2A1 + 3A2 − 2A3 = 0, where we understand from
context that 0 has to mean the 3 × 1 column vector of zeros. If we use bold-
face for vectors, we will also then use boldface for the vector zero, so some
distinction is regained.

Example 2.5. Use the identity −2A1 +3A2 −2A3 = 0 of the preceding exam-
ple to express A1 in terms of A2 and A3.

Solution. To solve this problem, just forget that the quantities A1, A2, A3

are anything special and use ordinary algebra. First, add −3A2 +2A3 to both
sides to obtain

−2A1 + 3A2 − 2A3 − 3A2 + 2A3 = −3A2 + 2A3,
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so that
−2A1 = −3A2 + 2A3,

and multiply both sides by the scalar − 1
2 to obtain the identity

A1 =
−1
2

(−2A1) =
−1
2

(−3A2 + 2A3) =
3
2
A2 − A3. �

The linear combination idea has a really useful application to linear sys-
tems, namely, it gives us another way to express the solution set of a linear
system that clearly identifies the role of free variables. The following example
illustrates this point.

Example 2.6. Suppose that a linear system in the unknowns x1, x2, x3, x4

has general solution (x2 + 3x4, x2, 2x2 − x4, x4), where the variables x2, x4

are free. Describe the solution set of this linear system in terms of linear
combinations with free variables as coefficients.

Solution. The trick here is to use only the parts of the general solution
involving x2 for one vector and the parts involving x4 as the other vectors in
such a way that these vectors add up to the general solution. In our case

⎡
⎢⎢⎣

x2 + 3x4

x2

2x2 − x4

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x2

x2

2x2

0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

3x4

0
−x4

x4

⎤
⎥⎥⎦ = x2

⎡
⎢⎢⎣

1
1
2
0

⎤
⎥⎥⎦+ x4

⎡
⎢⎢⎣

3
0

−1
1

⎤
⎥⎥⎦ .

Now simply define vectors A1 = (1, 1, 2, 0), A2 = (3, 0,−1, 1), and we see that
since x2 and x4 are arbitrary, the solution set is

S = {x2A1 + x4A2 | x2, x4 ∈ R} .

In other words, the solution set to the system is the set of all possible linear
combinations of the vectors A1 and A2. �

The idea of solution sets as linear combinations is an important one that
we will return to in later chapters. You might notice that once we have the
general form of a solution vector we can see that there is an easier way to
determine the constant vectors A1 and A2. Simply set x2 = 1 and the other
free variable(s) equal to zero—in this case just x4—to get the solution vector
A1, and set x4 = 1 and x2 = 0 to get the solution vector A2.

Laws of Arithmetic

The last example brings up an important point: to what extent can we rely on
the ordinary laws of arithmetic and algebra in our calculations with matrices
and vectors? For matrix multiplication there are some surprises. On the other
hand, the laws for addition and scalar multiplication are pretty much what
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we would expect them to be. Here are the laws with their customary names.
These same names can apply to more than one operation. For instance, there
is a closure law for addition and one for scalar multiplication as well.

Laws of Matrix Addition and Scalar Multiplication Let A,B,C be
matrices of the same size m × n, 0 the m × n zero matrix, and c and d
scalars.

(1) (Closure Law) A + B is an m × n matrix.
(2) (Associative Law) (A + B) + C = A + (B + C)
(3) (Commutative Law) A + B = B + A
(4) (Identity Law) A + 0 = A
(5) (Inverse Law) A + (−A) = 0
(6) (Closure Law) cA is an m × n matrix.
(7) (Associative Law) c(dA) = (cd)A
(8) (Distributive Law) (c + d)A = cA + dA
(9) (Distributive Law) c(A + B) = cA + cB

(10) (Monoidal Law) 1A = A

It is fairly straightforward to prove from definitions that these laws are
valid. The verifications all follow a similar pattern, which we illustrate by
verifying the commutative law for addition: let A = [aij ] and B = [bij ] be
m × n matrices. Then we have that

A + B = [aij + bij ]
= [bij + aij ]
= B + A.

where the first and third equalities come from the definition of matrix addition,
and the second equality follows from the fact that for all indices i and j,
aij + bij = bij + aij by the commutative law for addition of scalars.

2.1 Exercises and Problems

Exercise 1. Calculate the following where possible.

(a)
[

1 2 −1
0 2 2

]
−
[

3 1 0
1 1 1

]
(b) 2

[
1
3

]
− 5

[
2
2

]
+ 3

[
4
1

]
(c) 2

[
1 4
0 0

]
+ 3

[
0 0
2 1

]

(d) a

[
1 1
1 1

]
+ b

[
1
1

]
(e)

⎡
⎣1 2 −1

0 0 2
0 2 −2

⎤
⎦+ 2

⎡
⎣ 3 1 0

5 2 1
1 1 1

⎤
⎦ (f) x

⎡
⎣1

3
0

⎤
⎦−

⎡
⎣2

2
1

⎤
⎦+ y

⎡
⎣4

1
0

⎤
⎦

Exercise 2. Calculate the following where possible.

(a) 8

⎡
⎣ 1 2 −1

1 0 0
2 −1 3

⎤
⎦ (b) −

[
2
3

]
+ 3

[
2

−1

]
(c)

[
1 4 2
1 0 3

]
+ (−4)

[
0 0 1
2 1 −2

]
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(d) 4

⎡
⎣ 0 1 −1

2 0 2
0 2 0

⎤
⎦− 2

⎡
⎣ 0 2 0

−3 0 1
1 −2 0

⎤
⎦ (e) 2

⎡
⎣ 2

0
1

⎤
⎦+ u

⎡
⎣−2

2
3

⎤
⎦+ v

⎡
⎣0

1
2

⎤
⎦

Exercise 3. Let A =
[

1 0 −1
1 1 2

]
, B =

[
2 2
1 −2

]
, C =

[
1 1 0
2 1 0

]
, and compute the

following, where possible.
(a) A + 3B (b) 2A − 3C (c) A − C (d) 6B + C (e) 2C − 3 (A − 2C)

Exercise 4. With A,B,C as in Exercise 3, solve for the unknown matrix X in
the equations

(a) X + 3A = C (b) A − 3X = 3C (c) 2X +
[

2 2
1 −2

]
= B.

Exercise 5. Write the following vectors as a linear combination of constant
vectors with scalar coefficients x, y, or z.

(a)
[

x + 2y
2x − z

]
(b)

[
x − y

2x + 3y

]
(c)

⎡
⎣ 3x + 2y

−z
x + y + 5z

⎤
⎦ (d)

⎡
⎣x − 3y

4x + z
2y − z

⎤
⎦

Exercise 6. Write the following vectors as a linear combination of constant
vectors with scalar coefficients x, y, z, or w.

(a)
[

3x + y
x + y + z

]
(b)

⎡
⎣3x + 2y − w

w − z
x + y − 2w

⎤
⎦ (c)

[
x + 3y
2y − x

]
(d)

⎡
⎣ x − 2y

4x + z
3w − z

⎤
⎦

Exercise 7. Find scalars a, b, c such that
[

c b
0 c

]
=
[

a − b c + 2
a + b a − b

]
.

Exercise 8. Find scalars a, b, c, d such that
[

d 2a
2d a

]
=
[

a − b b + c
a + b c − b + 1

]
.

Exercise 9. Express the matrix
[

a b
c d

]
as a linear combination of the four matri-

ces
[

1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
, and

[
0 0
0 1

]
.

Exercise 10. Express the matrix D =
[

3 3
1 −3

]
as a linear combination of the

matrices A =
[

1 1
1 0

]
, B =

[
0 1
1 1

]
, and C =

[
0 2
0 −1

]
.
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Exercise 11. Verify that the associative law and commutative laws for addition
hold for

A =
[−1 0 −1

0 1 2

]
, B =

[
1 2 −1
4 1 3

]
, C =

[−1 0 −1
1 −1 0

]
.

Exercise 12. Verify that both distributive laws for addition hold for c = 2,
d = −3, and A, B, and C as in Exercise 11.

Exercise 13. Given that a linear system in the unknowns x1, x2, x3, x4 has gen-
eral solution (x2 + 3x4 + 4, x2, 2 − x4, x4) for free variables x2, x4, find a min-
imal reduced row echelon for this system.

Exercise 14. Given that a linear system in the unknowns x1, x2, x3, x4 has gen-
eral solution (x2 + 3x4 + 4, x2, x4 − 2x2, x4) for arbitrary x2, x4, find a mini-
mal reduced row echelon for this system.

Problem 15. Show by examples that it is false that for arbitrary matrices A
and B, and constant c,
(a) rank (cA) = rankA (b) rank (A + B) ≥ rankA + rankB.

Problem 16. Prove that the associative law for addition of matrices holds.

Problem 17. Prove that both distributive laws hold.

*Problem 18. Prove that if A and B are matrices such that 2A − 4B = 0 and
A + 2B = I, then A = 1

2I.

Problem 19. Prove the following assertions for m × n matrices A and B by
using the laws of matrix addition and scalar multiplication. Clearly specify
each law that you use.
(a) If A = −A, then A = 0.
(b) If cA = 0 for some scalar c, then either c = 0 or A = 0.
(c) If B = cB for some scalar c �= 1, then B = 0.

2.2 Matrix Multiplication

Matrix multiplication is somewhat more subtle than matrix addition and
scalar multiplication. Of course, we could define matrix multiplication to be
a coordinatewise operation, just as addition is (there is such a thing, called
Hadamard multiplication). But our motivation is not merely to make defini-
tions, but rather to make useful definitions for basic problems.
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Definition of Multiplication
To motivate the definition, let us consider a single linear equation

2x − 3y + 4z = 5.

We will find it handy to think of the left-hand side of the equation as a “prod-
uct” of the coefficient matrix [2,−3, 4] and the column matrix of unknowns⎡
⎣x

y
z

⎤
⎦. Thus, we have that the product of this row and column is

[2,−3, 4]

⎡
⎣x

y
z

⎤
⎦ = [2x − 3y + 4z] .

Notice that we have made the result of the product into a 1 × 1 matrix. This
introduces us to a permanent abuse of notation that is almost always used in
linear algebra: we don’t distinguish between the scalar a and the 1× 1 matrix
[a], though technically perhaps we should. In the same spirit, we make the
following definition.

Definition 2.5. Row Column Product The product of the 1 × n row

[a1, a2, . . . , an] with the n × 1 column

⎡
⎣

b1
b2
...

bn

⎤
⎦ is defined to be the 1 × 1 matrix

[a1b1 + a2b2 + · · · + anbn].

It is this row-column product strategy that guides us to the general def-
inition. Notice how the column number of the first matrix had to match the
row number of the second, and that this number disappears in the size of the
resulting product. This is exactly what happens in general.

Definition 2.6. Matrix Product Let A = [aij ] be an m × p matrix and
B = [bij ] a p × n matrix. Then the product of the matrices A and B, denoted
by AB, is the m×n matrix whose (i, j)th entry, for 1 ≤ i ≤ m and 1 ≤ j ≤ n,
is the entry of the product of the ith row of A and the jth column of B; more
specifically, the (i, j)th entry of AB is

ai1b1j + ai2b2j + · · · + aipbpj .

Notice that, in contrast to the case of addition, two matrices may be of
different sizes when we can multiply them together. If A is m × p and B is
p×n, we say that A and B are conformable for multiplication. It is also worth
noticing that if A and B are square and of the same size, then the products
AB and BA are always defined.
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Some Illustrative Examples

Let’s check our understanding with a few examples.

Example 2.7. Compute, if possible, the products AB of the following pairs
of matrices A,B.

(a)
[

1 2 1
2 3 −1

]
,

⎡
⎣4 −2

0 1
2 1

⎤
⎦ (b)

[
1 2 3
2 3 −1

]
,

[
2
3

]
(c)

[
1 2

]
,

[
0
0

]

(d)
[

0
0

]
,
[
1 2

]
(e)

[
1 0
0 1

]
,

[
1 2 1
2 3 −1

]
(f)

[
1 1
1 1

]
,

[
1 1

−1 −1

]

Solution. First check conformability for multiplication. In part (a) A is
2 × 3 and B is 3 × 2. Stack these dimensions alongside each other and see
that the 3’s match; now “cancel” the matching middle 3’s to obtain that the
dimension of the product is 2× � 3 � 3 × 2 = 2 × 2. For example, multiply the
first row of A by the second column of B to obtain the (1, 2)th entry of the
product matrix:

[1, 2, 1]

⎡
⎣−2

1
1

⎤
⎦ = [1 · (−2) + 2 · 1 + 1 · 1] = [1] .

Similarly, the full product calculation looks like this:

[
1 2 1
2 3 −1

]⎡
⎣4 −2

0 1
2 1

⎤
⎦ =

[
1 · 4 + 2 · 0 + 1 · 2 1 · (−2) + 2 · 1 + 1 · 1

2 · 4 + 3 · 0 + (−1) · 2 2 · (−2) + 3 · 1 + (−1) · 1

]

=
[

6 1
6 −2

]
.

A size check of part (b) reveals a mismatch between the column number
of the first matrix (3) and the row number (2) of the second matrix. Thus,
these matrices are not conformable for multiplication in the specified order.
Hence, the product [

1 2 3
2 3 −1

] [
2
3

]

is undefined.
In part (c) a size check shows that the product has size 2× � 1 � 1×2 = 2×2.

The calculation gives
[

0
0

] [
1 2

]
=
[

0 · 1 0 · 2
0 · 1 0 · 2

]
=
[

0 0
0 0

]
.

For part (d) the size check shows gives 1× � 2 � 2 × 1 = 1 × 1. Hence, the
product exists and is 1 × 1. The calculation gives
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[
1 2

] [0
0

]
= [1 · 0 + 2 · 0] = [0] .

Matrix Multiplication Not Commutative or Cancellative
Something very interesting comes out of parts (c) and (d). Notice that AB
and BA are not the same matrices—never mind that their entries are all 0’s—
the important point is that these matrices are not even the same size! Thus, a
very familiar law of arithmetic, the commutativity of multiplication, has just
fallen by the wayside.

Things work well in (e), where the size check gives 2× � 2 � 2 × 3 = 2 × 3
as the size of the product. As a matter of fact, this is a rather interesting
calculation:[

1 0
0 1

] [
1 2 1
2 3 −1

]
=
[

1 · 1 + 0 · 2 1 · 2 + 0 · 3 1 · 1 + 0 · (−1)
0 · 1 + 1 · 2 0 · 2 + 1 · 3 0 · 1 + 1 · (−1)

]
=
[

1 2 1
2 3 −1

]
.

Notice that we end up with the second matrix in the product. This is similar
to the arithmetic fact that 1 ·x = x for a real number x. So the matrix on the
left acted like a multiplicative identity. We’ll see that this is no accident.

Finally, for the calculation in (f), notice that
[

1 1
1 1

] [
1 1

−1 −1

]
=
[

1 · 1 + 1 · −1 1 · 1 + 1 · −1
1 · 1 + 1 · −1 1 · 1 + 1 · −1

]
=
[

0 0
0 0

]
.

There’s something very curious here, too. Notice that two nonzero matrices
of the same size multiplied together to give a zero matrix. This kind of thing
never happens in ordinary arithmetic, where the cancellation law assures that
if a · b = 0 then a = 0 or b = 0. �

The calculation in (e) inspires some more notation. The left-hand matrix of
this product has a very important property. It acts like a “1” for matrix multi-
plication. So it deserves its own name. A matrix of the form

Identity Matrix

In =

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . 0
0 1 0 . . . 0
...

. . .
0 . . . 1 0
0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎦

= [δij ]

is called an n × n identity matrix.
The (i, j)th entry of In is designated by the Kronecker symbol

Kronecker Symbolδij , which is 1 if i = j and 0 otherwise. If n is clear
from context, we simply write I in place of In.

So we see in the previous example that the left-hand matrix of part (e) is
[

1 0
0 1

]
= I2.
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Linear Systems as a Matrix Product

Let’s have another look at a system we examined in Chapter 1. We’ll change
the names of the variables from x, y, z to x1, x2, x3 in anticipation of a notation
that will work with any number of variables.

Example 2.8. Express the following linear system as a matrix product:

x1 + x2 + x3 = 4
2x1 + 2x2 + 5x3 = 11
4x1 + 6x2 + 8x3 = 24

Solution. Recall how we defined multiplication of a row vector and column
vector at the beginning of this section. We use that as our inspiration. Define

x =

⎡
⎣x1

x2

x3

⎤
⎦ , b =

⎡
⎣ 4

11
24

⎤
⎦ , and A =

⎡
⎣1 1 1

2 2 5
4 6 8

⎤
⎦ .

Of course, A is just the coefficient matrix of the system and b is the right-
hand-side vector, which we have seen several times before. But now these take
on a new significance. Notice that if we take the first row of A and multiply
it by x we get the left-hand side of the first equation of our system. Likewise
for the second and third rows. Therefore, we may write in the language of
matrices that

Ax =

⎡
⎣1 1 1

2 2 5
4 6 8

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ 4

11
24

⎤
⎦ = b.

Thus, the system is represented very succinctly as Ax = b. �
Once we understand this example, it is easy to see that the general abstract

system that we examined in Section 1.1 can just as easily be abbreviated. Now
we have a new way of looking at a system of equations: it is just like a simple
first-degree equation in one variable. Of course, the catch is that the symbols
A,x,b now represent an m×n matrix, and n×1 and m×1 vectors, respectively.
In spite of this, the matrix multiplication idea is very appealing. For instance,
it might inspire us to ask whether we could somehow solve the system Ax = b
by multiplying both sides of the equation by some kind of matrix “1/A” so as
to cancel the A and get

(1/A)Ax = Ix = x = (1/A)b.

We’ll follow up on this idea in Section 2.5.
Here is another perspective on matrix–vector multiplication that gives a

powerful way of thinking about such multiplications.

Example 2.9. Interpret the matrix product of Example 2.8 as a linear com-
bination of column vectors.

http://dx.doi.org/10.1007/978-3-319-74748-4_1
http://dx.doi.org/10.1007/978-3-319-74748-4_1
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Solution. Examine the system of this example and we see that the col-
umn (1, 2, 4) appears to be multiplied by x1. Similarly, the column (1, 2, 6) is
multiplied by x2 and the column (1, 5, 8) by x3. Hence, if we use the same
right-hand-side column (4, 11, 24) as before, we obtain that this column can
be expressed as a linear combination of column vectors, namely

x1

⎡
⎣1

2
4

⎤
⎦+ x2

⎡
⎣1

2
6

⎤
⎦+ x3

⎡
⎣1

5
8

⎤
⎦ =

⎡
⎣ 4

11
24

⎤
⎦ . �

We could write the equation of the previous example very succinctly as fol-
lows: let A have columns a1,a2,a3, so that

Matrix-Vector MultiplicationA = [a1,a2,a3], and let x = (x1, x2, x3).
Then

Ax = x1a1 + x2a2 + x3a3.

This formula extends to general matrix–vector multiplication. It is extremely
useful in interpreting such products, so we will elevate its status to that of a
theorem worth remembering.

Theorem 2.1. Let A = [a1,a2, . . . ,an] be an m × n matrix with columns
a1,a2, . . . ,an ∈ R

m and let x = (x1, x2, . . . , xn). Then

Ax = x1a1 + x2a2 + · · · + xnan.

Example 2.10. Apply Theorem 2.1 to the following chemistry problem: Ben-
zoic acid (chemical formula C7H6O2) oxidizes to carbon dioxide and water.
The appropriate chemical equation is

C7H6O2 + O2 → CO2 + H2O.

Balance this equation.

Solution. Here the term “equation” refers to a description of the reactants
on the left and products on the right. To balance this equation we must
describe how many of each molecule is required on each side in order to make
the number of atoms of each element match on both sides. To this end, we
describe each molecule in the equation by the a vector in R

3 of the form
(c, o, h), where c is the number of carbon atoms, o the number of oxygen
atoms and h the number of hydrogen atoms in the molecule. Next let x1,
x2, x3, and x4 represent the number of molecules of benzoic acid, oxygen,
carbon dioxide and water, respectively, needed to balance the equation of this
reaction. Then the correct balance equation can be described as

x1

⎡
⎣7

2
6

⎤
⎦+ x2

⎡
⎣0

2
0

⎤
⎦ = x3

⎡
⎣1

2
0

⎤
⎦+ x4

⎡
⎣0

1
2

⎤
⎦ .
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If we transport the right-hand side terms to the left and use Theorem 2.1 with
x = (x1, x2, x3, x4), the resulting system becomes

Ax =

⎡
⎣7 0 −1 0

2 2 −2 −1
6 0 0 −2

⎤
⎦
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎣0

0
0

⎤
⎦ .

Row reduction of the coefficient matrix A yields

⎡
⎣7 0 −1 0

2 2 −2 −1
6 0 0 −2

⎤
⎦

−−−−−−→
E21(− 2

7 )
E31(− 6

7 )

⎡
⎣7 0 −1 0

0 2 − 12
7 −1

0 0 6
7 −2

⎤
⎦

−−−−→
E1( 1

7 )
E2( 1

2 )
E3( 7

6 )

⎡
⎣1 0 − 1

7 0
0 1 − 6

7 − 1
2

0 0 1 − 7
3

⎤
⎦

−−−−−→
E23( 6

7 )
E13( 1

7 )

⎡
⎣1 0 0 − 1

3
0 1 0 − 5

2
0 0 1 − 7

3

⎤
⎦

Thus, x4 is free, while x3 = 7
3x4, x2 = 5

2x4 and x1 = 1
3x4. However the solution

should consist of positive integers only. Therefore, the smallest choice for x4

is x4 = 6 in which case x3 = 14, x2 = 15 and x1 = 2. This results in the
balanced chemical equation

2C7H6O2 + 15O2 → 14CO2 + 2H2O.

�

Laws of Arithmetic

We have already seen that the laws of matrix arithmetic may not be quite the
same as the ordinary arithmetic laws that we are used to. Nonetheless, as long
as we don’t assume a cancellation law or a commutative law for multiplication,
things are pretty much what one might expect.

Laws of Matrix Multiplication
Let A,B,C be matrices of the appropriate sizes so that the following
multiplications make sense, I a suitably sized identity matrix, and c and
d scalars.

(1) (Closure Law) The product AB is a matrix.
(2) (Associative Law) (AB)C = A(BC)
(3) (Identity Law) AI = A and IB = B
(4) (Associative Law for Scalars) c(AB) = (cA)B = A(cB)
(5) (Distributive Law) (A + B)C = AC + BC
(6) (Distributive Law) A(B + C) = AB + AC

One can formally verify these laws by working through the definitions. For
example, to verify the first half of the identity law, let A = [aij ] be an m × n
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matrix, so that I = [δij ] has to be In in order for the product AI to make
sense. Now we see from the formal definition of matrix multiplication that

AI =

[
n∑

k=1

aikδkj

]
= [aij · 1] = A.

The middle equality follows from the fact that δkj is 0 unless k = j. Thus, the
sum collapses to a single term. A similar calculation verifies the other laws.

We end our discussion of matrix multiplication with a familiar-looking
notation that will prove to be extremely handy in the sequel. This nota-
tion applies only to square matrices. Let A be a square n × n matrix

Exponent Notationand k a nonnegative integer. Then we define the kth
power of A to be

Ak =

⎧⎪⎪⎨
⎪⎪⎩

In if k = 0,

A · A · · · A︸ ︷︷ ︸ if k > 0.

k times
As a simple consequence of this definition we have standard exponent laws.

Laws of Exponents
For nonnegative integers i, j and square matrix A:
(1) Ai+j = Ai · Aj

(2) Aij = (Ai)j

Notice that the law (AB)i = AiBi is missing. It won’t work with matrices.
(Why not?) The following example illustrates a useful application of exponent
notation.

Example 2.11. Let f (x) = 1 − 2x + 3x2 be a polynomial function. Use the
definition of matrix powers to derive a sensible interpretation of f (A), where
A is a square matrix. Evaluate f

([
2 −1
0 1

])
explicitly with this interpretation.

Solution. Let’s take a closer look at the polynomial expression

f (x) = 1 − 2x + 3x2 = 1x0 − 2x1 + 3x2.

Since A0 = I and A is square, the interpretation is easy:

f (A) = A0 − 2A1 + 3A2 = I − 2A + 3A2.

In particular, for a 2 × 2 matrix we take I = [ 1 0
0 1 ] and obtain

f

([
2 −1
0 1

])
= I − 2

[
2 −1
0 1

]
+ 3

[
2 −1
0 1

]2

=
[

1 0
0 1

]
− 2

[
2 −1
0 1

]
+ 3

[
2 −1
0 1

] [
2 −1
0 1

]

=
[

1 0
0 1

]
−
[

4 −2
0 2

]
+
[

12 −9
0 3

]
=
[

9 −7
0 2

]
. �
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2.2 Exercises and Problems

Exercise 1. Carry out these calculations or indicate they are impossible, given

that a =
[

2
1

]
, b =

[
3 4

]
, and C =

[
2 1 + i
0 −1

]
.

(a) bCa (b) ab (c) Cb (d) (aC)b (e) Ca (f) C (ab) (g) ba (h) C (a + b)

Exercise 2. For each pair of matrices A,B, calculate the product AB or indi-
cate that the product is undefined.

(a)
[

1 0
0 1

]
,

[
3 −2 0

−2 5 8

]
(b)

[
2 1 0
0 8 2

]
,

[
1 1
2 2

]
(c)

⎡
⎣3 1 2

1 0 0
4 3 2

⎤
⎦ ,

⎡
⎣−5 4 −2

−2 3 1
1 0 4

⎤
⎦

(d)

⎡
⎣3 1

1 0
4 3

⎤
⎦ ,

[−5 4 −2
−2 3 1

]
(e)

⎡
⎣3

1
4

⎤
⎦ ,

[−5 4
−2 3

]
(f)

[
2 0
2 3

]
,

[
3
1

]

Exercise 3. Express these systems of equations in the notation of matrix mul-
tiplication and as a linear combination of vectors as in Example 2.8.

(a) x1 − 2x2 + 4x3 = 3 (b) x − y − 3z = 3 (c) x − 3y + 1 = 0
x2 − x3 = 2 2x + 2y + 4z = 10 2y = 0

−x1 + 4x4 = 1 −x + z = 3 −x + 3y = 0

Exercise 4. Express these systems of equations in the notation of matrix mul-
tiplication and as a linear combination of vectors as in Example 2.8.

(a) x1 + x3 = −1 (b) x − y − 3z = 1 (c) x − 4y = 0
x2 + x3 = 0 z = 0 2y = 0
x1 + x3 = 1 −x + y = 3 −x + 3y = 0

Exercise 5. Let A =

⎡
⎣2 −1 1

2 3 −2
4 2 −2

⎤
⎦, b =

⎡
⎣ 2

−3
1

⎤
⎦, x =

⎡
⎣x

y
z

⎤
⎦, and X =

⎡
⎣x 0 0

0 y 0
0 0 z

⎤
⎦.

Find the coefficient matrix of the linear system XAb + Ax =

⎡
⎣3

1
2

⎤
⎦ in the

variables x, y, z.

Exercise 6. Let A =
[

1 −1
2 0

]
and X =

[
x y
z w

]
. Find the coefficient matrix of

the linear system AX − XA = I2 in the variables x, y, z, w.

Exercise 7. Let u = (1, 1, 0), v = (0, 1, 1), and w = (1, 3, 1). Write each of the
following expressions as single matrix product.
(a) 2u − 4v − 3w (b) w − v + 2iu (c) x1u − 3x2v + x3w
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Exercise 8. Express the following matrix products as linear combinations of
vectors.

(a)

⎡
⎣2 1

0 1
0 2

⎤
⎦
[

x
y

]
(b)

⎡
⎣1 1 1

0 0 0
1 2 2

⎤
⎦
⎡
⎣ 2

−5
1

⎤
⎦ (c)

[
1 1
1 1 + i

] [
x1

−x2

]

Exercise 9. Let A =
[

0 2
1 1

]
, f (x) = 1+x+x2, g (x) = 1−x, and h (x) = 1−x3.

Verify that f (A) g (A) = h (A).

Exercise 10. Let A =
[

1 2
−1 1

]
and B =

⎡
⎣ 0 1 0

0 0 1
5
2 − 3

2 0

⎤
⎦. Compute f(A) and f(B),

where f(x) = 2x3 + 3x − 5.

Exercise 11. Find all possible products of two matrices from among the follow-
ing:

A =
[

1 −2
1 3

]
B =

[
2 4

]
C =

[
1
5

]
D =

[
1 3 0

−1 2 1

]

Exercise 12. Find all possible products of three matrices from among the fol-
lowing:

A =
[−1 2

0 2

]
B =

⎡
⎣2 1

1 0
2 3

⎤
⎦ C =

[−3
2

]
D =

[
2 3 −1
1 2 1

]
E =

[−2 4
]

Exercise 13. A square matrix A is said to be nilpotent if there is a positive
integer k such that Ak = 0. Determine which of the following matrices are
nilpotent. (You may assume that if A is n × n nilpotent, then An = 0.)

(a)

⎡
⎣0 2 0

0 0 2
0 0 0

⎤
⎦ (b)

[
1 1
1 1

]
(c)

[
0 0
1 0

]
(d)

⎡
⎣ 2 2 −4

−1 0 2
1 1 −2

⎤
⎦ (e)

⎡
⎢⎢⎣

1 1 0 0
0 −1 1 0
0 0 1 1

−1 0 −2 −1

⎤
⎥⎥⎦

Exercise 14. A square matrix A is idempotent if A2 = A. Determine which of
the following matrices are idempotent.

(a)
[

1 2
0 1

]
(b)

[
1 0
0 1

]
(c)

[
0 0

−1 0

]
(d)

⎡
⎣0 0 2

1 1 −2
0 0 1

⎤
⎦ (e)

⎡
⎢⎢⎣

1 0 0 0
−1 0 0 0
0 0 1 0
0 0 −1 0

⎤
⎥⎥⎦

Exercise 15. Show by example that a sum of nilpotent matrices need not be
nilpotent.

Exercise 16. Show by example that a product of idempotent matrices need not
be idempotent.
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Exercise 17. Verify that the product uv, where u = (1, 0, 2) and v =
[−1 1 1

]
,

is a rank-one matrix.

Exercise 18. Verify that the product uv + wuT , where u = (1, 0, 2), v =[−1 1 1
]
, and w = (1, 0, 1), is a matrix of rank at most two.

Exercise 19. Given that A =
[

2 1
−1 1

]
and AB =

[
5 −2 3

−1 1 −6

]
for a suitable

matrix B, find the third column of B.

Exercise 20. Given that B =
[

4 −4
2 1

]
and AB =

[
10 −7
4 −4

]
for a suitable matrix

A, find the first row of A.

Exercise 21. Verify that both associative laws of multiplication hold for

c = 4, A =
[

2 0
−1 1

]
, B =

[
0 2
0 3

]
, C =

[
1 + i 1

1 2

]
.

Exercise 22. Verify that both distributive laws of multiplication hold for

A =
[

2 0
−1 1

]
, B =

[
0 2
0 3

]
, C =

[
1 + i 1

1 2

]
.

Problem 23. Use the technique of Example 2.10 to balance the following chem-
ical equation:

C8H18 + O2 → CO2 + H2O.

Problem 24. Find examples of 2 × 2 matrices A and B that fulfill each of the
following conditions.

(a) (AB)2 �= A2B2 (b) AB �= BA

Problem 25. Find examples of nonzero 2 × 2 matrices A, B, and C that fulfill
each of the following conditions.

(a) A2 = 0, B2 = 0 (b) (AB)2 �= 0

*Problem 26. Show that if A is a 2 × 2 matrix such that AB = BA for every
2 × 2 matrix B, then A is a multiple of I2.

Problem 27. Prove that the associative law for scalars is valid.

Problem 28. Prove that both distributive laws for matrix multiplication are
valid.

Problem 29. Show that if A is a square matrix such that Ak+1 = 0, then

(I − A)
(
I + A + A2 + · · · + Ak

)
= I.

*Problem 30. Show that if two matrices A and B of the same size have the
property that Ab = Bb for every column vector b of the correct size for
multiplication, then A = B.

Problem 31. Determine the flop count for multiplication of m× p matrix A by
p × n matrix B. (See page 54.)



2.3 Applications of Matrix Arithmetic 83

2.3 Applications of Matrix Arithmetic

We next examine a few more applications of the matrix multiplication idea
that should reinforce the importance of this idea and provide us with some
interpretations of matrix multiplication.

Matrix Multiplication as Function

The function idea is basic to mathematics. Recall that a function f is a rule of
correspondence that assigns to each argument x in a set called its domain, a
unique value y = f(x) from a set called its target. Each branch of mathematics
has its own special functions; for example, in calculus differentiable functions
f(x) are fundamental.

Linear algebra also has its special functions. Suppose that T (u)
Linear Functionsrepresents a function whose arguments u and values v =

T (u) are vectors. We say that the function T is linear if T preserves linear
combinations, that is, for all vectors u,v in the domain of T, and scalars c, d,
we have that cu + dv is in the domain of T and

T (cu + dv) = cT (u) + dT (v) .

Example 2.12. Show that the function T , whose domain is the set of 2 × 1
vectors and definition is

T

([
x
y

])
= x

is a linear function.

Solution. Let (x, y) and (z, w) be two elements in the domain of T and
c, d any two scalars. Now compute

T

(
c

[
x
y

]
+ d

[
z
w

])
= T

([
cx
cy

]
+
[

dz
dw

])
= T

([
cx + dz
cy + dw

])

= cx + dz = cT

([
x
y

])
+ dT

([
z
w

])
.

Thus, T satisfies the definition of linear function. �
One can check that the function T just defined can be expressed as a

matrix multiplication, namely,

T

([
x
y

])
=
[
1 0

] [x
y

]
.

This example gives yet another reason for defining matrix multiplication in
the way that we do. Here is a general definition for these kinds of functions
(also known as linear transformations or linear operators).
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Definition 2.7. Matrix Operator Let A be an m × n matrix. The function
TA that maps n × 1 vectors to m × 1 vectors according to the formula

TA(u) = Au

is called the linear function (operator or transformation) associated with the
matrix A or simply a matrix operator.

Let’s verify that this function T actually is linear. Use the definition of
TA along with the distributive law of multiplication and associative law for
scalars to obtain that

TA(cu + dv) = A(cu + dv) = A(cu) + A(dv)
= c(Au) + d(Av) = cTA(u) + dTA(v).

Thus, multiplication of vectors by a fixed matrix A is a linear function. Notice
that this result contains Example 2.12 as a special case.

Function Composition Notation Recall that the composition of functions
f and g is the function f ◦ g whose def-

inition is (f ◦ g) (x) = f (g (x)) for all x in the domain of g.

Example 2.13. Use the associative law of matrix multiplication to show that
the composition of matrix multiplication functions corresponds to the matrix
product.

Solution. For all vectors u and for suitably sized matrices A,B, we have
by the associative law that A(Bu) = (AB)u. In function terms, this means
that TA(TB(u)) = TAB(u). Since this is true for all arguments u, it follows
that TA ◦ TB = TAB , which is what we were to show. �

We will have more to say about linear functions in Chapters 3 and 6, where
they will go by the name of linear operators. Here is an example that gives
another slant on why the “linear” in “linear function.”

Example 2.14. Describe the action of the matrix operator TA on the x-axis

and y-axis, where A =
[

2 1
4 2

]
.

Solution. A typical element of the x-axis has the form v = (x, 0). Thus,
we have that T (v) = T ((x, 0)). Now calculate

T (v) = TA ((x, 0)) = Av =
[

2 1
4 2

] [
x
0

]
=
[

2x
4x

]
= x

[
2
4

]
.

Thus, the x-axis is mapped to all multiples of the vector (2, 4). Set t = 2x,
and we see that x (2, 4) = (t, 2t). Hence, these are simply points on the line
x = t, y = 2t. Equivalently, this is the line y = 2x. Similarly, one checks that
the y-axis is mapped to the line y = 2x as well. �

http://dx.doi.org/10.1007/978-3-319-74748-4_3
http://dx.doi.org/10.1007/978-3-319-74748-4_6
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Example 2.15. Let L be set of points (x, y) defined by the equation y = x+1

and let TA(L) = {T (((x, y)) | (x, y) ∈ L}, where A =
[

2 1
4 2

]
. Describe and

sketch these sets in the plane.

Solution. Of course, the set L is just the straight line defined by the linear
equation y = x + 1. To see what TA(L) looks like, write a typical element of
L in the form (x, x + 1). Now calculate

TA((x, x + 1)) =
[

2 1
4 2

] [
x

x + 1

]
=
[

3x + 1
6x + 2

]
.

Next make the substitution t = 3x + 1, and we see that a typical element of
TA(L) has the form (t, 2t), where t is any real number. We recognize these
points as exactly the points on the line y = 2x. Thus, the function TA maps
the line y = x + 1 to the line y = 2x. Figure 2.1 illustrates this mapping as
well as the fact that TA maps the line segment from

(−1
3 , 2

3

)
to

(
1
6 , 7

6

)
on L

to the line segment from (0, 0) to
(

3
2 , 3

)
on TA (L). �

(0, 0)

L

3
3

2

1

1 2 3
x

y

2 , 3

TA (L)

−1
3 , 2

3

1
6 ,

7
6

Fig. 2.1: Action of TA on line L given by y = x + 1, points on L, and the
segment between them

Graphics specialists and game programmers have a special interest in real-
time rendering, the discipline concerned with algorithms

Real-Time Renderingthat create synthetic images fast enough that the
viewer can interact with a virtual environment. For
a comprehensive treatment of this subject, consult the text [2]. A number of
fundamental matrix-defined operators are used in real-time rendering, where
they are called transforms. Here are a few examples of such operators. A
scaling operator is effected by multiplying each coordinate of a point by a
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fixed (positive) scale factor. A shearing operator is effected by adding a con-
stant shear factor times one coordinate to another coordinate of the point.
A rotation operator is effected by rotating each point a fixed angle θ in the
counterclockwise direction about the origin.

Example 2.16. Let the scaling operator S on points in two dimensions have
scale factors of 3

2 in the x-direction and 1
2 in the y-direction. Let the shearing

operator H on these points have a shear factor of 1
2 by the y-coordinate on

the x-coordinate. Express these operators as matrix operators and graph their
action on four unit squares situated diagonally from the origin.

Solution. First consider the scaling operator. The point (x, y) will be
transformed into the point

(
3
2x, 1

2y
)
. Observe that

S ((x, y)) =
[

3
2x
1
2y

]
=
[

3
2 0
0 1

2

] [
x
y

]
= TA ((x, y)) ,

where A =
[

3
2 0
0 1

2

]
. Similarly, the shearing operator transforms the point (x, y)

into the point
(
x + 1

2y, y
)
. Thus, we have

H ((x, y)) =
[

x + 1
2y

y

]
=
[

1 1
2

0 1

] [
x
y

]
= TB ((x, y)) ,

where B =
[

1 1
2

0 1

]
. The action of these operators on four unit squares is illus-

trated in Figure 2.2. �

(a) Scaling in x-direction
by 3

2 , y-direction by 1
2 .

(b) Shearing in x-
direction by y with shear
factor 1

2 .

(c) Concatenation of operators
S and H .

Fig. 2.2: Action of scaling operator, shearing operator, and concatenation.

Example 2.17. Express the concatenation S ◦ H of the scaling operator S
and shearing operator H of Example 2.16 as a matrix operator and graph its
action on four unit squares situated diagonally from the origin.

Solution. From Example 2.16 we have that S = TA, where A =
[ 3

2 0

0 1
2

]
,

and H = TB , where B =
[

1 1
2

0 1

]
. From Example 2.13 we know that function

composition corresponds to matrix multiplication, that is,
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S ◦ H ((x, y)) = TA ◦ TB ((x, y)) = TAB ((x, y))

=
[

3
2 0
0 1

2

] [
1 1

2
0 1

] [
x
y

]
=
[

3
2

3
4

0 1
2

] [
x
y

]
= TC ((x, y)) ,

where
C = AB =

[
3
2

3
4

0 1
2

]
.

The action of S ◦ H is illustrated in Figure 2.2. �

Example 2.18. Describe the plane rotation (about the origin) operator.

Solution. Consult Figure 2.3. Observe that if the point (x, y) is given
by (r cos φ, r sin φ) in polar coordinates, then the rotated point (x′, y′) has
coordinates (r cos (θ + φ) , r sin (θ + φ)). Now use the double-angle formula for
angles and obtain that

[
x′

y′

]
=
[

r cos (θ + φ)
r sin (θ + φ)

]
=
[

r cos θ cos φ − r sin θ sin φ
r sin θ cos φ + r cos θ sin φ

]

=
[

cos θ − sin θ
sin θ cos θ

] [
r cos φ
r sin φ

]
=
[

cos θ − sin θ
sin θ cos θ

] [
x
y

]
.

Rotation MatrixNow define the rotation matrix R (θ) by

R (θ) =
[

cos θ − sin θ
sin θ cos θ

]
.

It follows that (x′, y′) = TR(θ) ((x, y)). �

θ
θ

w

φ

φ

y

x

v

R(θ)w
R(θ)v

Fig. 2.3: Action of rotation matrix R (θ) on vectors v and w

Discrete Dynamical Systems

Discrete linear dynamical systems are an extremely useful modeling tool in a
wide variety of disciplines. Here is the definition of such a system.



88 2 MATRIX ALGEBRA

Definition 2.8. Discrete Dynamical System A discrete linear dynamical
system is a sequence of vectors x(k), k = 0, 1, . . ., called states, which is defined
by an initial vector x(0) and by the rule

x(k+1) = Ax(k) + bk, k = 0, 1, . . . ,

where A is a fixed square matrix, called the transition matrix of the system
and the vectors bk, k = 0, 1, . . . are called the input vectors of the system.

If input vectors are not explicitly specified, we shall assume that bk = 0
for all k. In this case we call the system a homogeneous dynamical system.

Homogeneous Dynamical System A particularly important question
about these systems is whether or not

they are stable in the sense that the states x(k) tend towards a constant state
x. In the case of a homogeneous dynamical system such a state should have
the property that if it is the initial state, then it equals all subsequent states.
This observation motivates the following definition:

Definition 2.9. Stationary Vector A vector x satisfying x = Ax, for a
square matrix A, is called a stationary vector for A.

In the case that A is the transition matrix for a homogeneous discrete
dynamical system, we also call such a vector a stationary state. For Markov
chains (defined below) we add the condition that the vector be a distribution
vector.

Example 2.19. Suppose two toothpaste companies compete for customers
in a fixed market in which each customer uses either Brand A or Brand B.
Suppose also that a market analysis shows that the buying habits of the
customers fit the following pattern in the quarters that were analyzed: each
quarter (three-month period), 30% of A users will switch to B, while the rest
stay with A. Moreover, 40% of B users will switch to A in a given quarter, while
the remaining B users will stay with B. If we assume that this pattern does not
vary from quarter to quarter, we have an example of what is called a Markov
chain model. Express the data of this model in matrix–vector language.

Solution. Notice that if a0 and b0 are the fractions of the customers using
A and B, respectively, in a given quarter, a1 and b1 the fractions of customers
using A and B in the next quarter, then our hypotheses say that

a1 = 0.7a0 + 0.4b0

b1 = 0.3a0 + 0.6b0.

We could figure out what happens in the quarter after this by replacing the
indices 1 and 0 by 2 and 1, respectively, in the preceding formula. In general,
we replace the indices 1, 0 by k + 1, k to obtain
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ak+1 = 0.7ak + 0.4bk

bk+1 = 0.3ak + 0.6bk.

We express this system in matrix form as follows: let

x(k) =
[

ak

bk

]
and A =

[
0.7 0.4
0.3 0.6

]
.

Then the system may be expressed in the matrix form

x(k+1) = Ax(k). �

In light of our interpretation of a linear system as a matrix product, we see
that the two equations of Example 2.19 can be written simply as x(1) = Ax(0).
A little more calculation shows that

x(2) = Ax(1) = A · (Ax(0)) = A2x(0)

and in general,

x(k) = Ax(k−1) = A2x(k−2) = · · · = Akx(0).

This is true of any discrete dynamical system and we record this as a key fact:

Computing DDS States
For any positive integer k and discrete dynamical system with transition
matrix A and initial state x(0), the k-th state is given by

x(k) = Akx(0).

The state vectors x(k) of the preceding example have the following
Distribution Vector and Stochastic Matrixproperty: they are column

vectors with nonnegative coordinates that sum to 1. Such a vector is called
a distribution (stochastic or probability distribution) vector. Also, the matrix
A has the property that each of its columns is a distribution vector. Such
a square matrix is called a stochastic matrix. In these terms we now give a
precise definition of a Markov chain. (This is really only a special case of what
statisticians term a Markov chain, namely a discrete-time finite-state Markov
chain.)

Definition 2.10. Markov Chain A Markov chain is a discrete dynamical
system whose initial state x(0) is a distribution vector and whose transition
matrix A is stochastic, i.e., each column of A is a distribution vector.

In the preceding example, we can think of using either Brand A or Brand
B as the events of the system. A key assumption of Markov chains is that its
events are mutually exclusive.
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Note that in general the entries of a stochastic matrix P = [pij ] have a
simple interpretation when viewed as transition matrix of a Markov chain:
Let ej be the distribution vector with 1 in the jth entry and 0 in all others.
Then as a state vector the meaning of ej is that the system has selected jth
event exclusively. The next state is pj = Pej , that is, the jth column of P .
This implies that the entry pij is the probability that the ith event will occur,
given that the jth event has just occurred. Since events are mutually exclusive
and some subsequent event must occur, the sum of these probabilities is 1.

How do subsequent states beyond the first relate to probability distribu-
tions in a Markov chain? This is an important question whose answer can be
Matrix 1-Norm given in a larger context. Suppose we measure the size of

a vector by the sum of the absolute values of its coordinates (in Chapter 6
this notion is studied as the 1-norm of the vector and denoted by ‖x‖1). For
example, ‖(1,−2, 3)‖1 = |1| + |−2| + |3| = 6. Then we have the following key
fact:

Stochastic Matrix Inequality For any stochastic matrix P and compatible
vector x, ‖Px‖1 ≤ ‖x‖1, with equality if the coordinates of x are all nonneg-
ative.

This is easily checked. Let P = [pij ]n,n be stochastic, x = [xj ]n and use
the facts that the entries of P are nonnegative and its columns sum to one to
calculate that

n∑
i=1

∣∣∣∣∣∣
n∑

j=1

pijxj

∣∣∣∣∣∣ ≤
n∑

i=1

n∑
j=1

pij |xj | =
n∑

j=1

|xj |
n∑

i=1

pij =
n∑

j=1

|xj | · 1 =
n∑

j=1

|xj | .

In particular, if x has all nonnegative coordinates, then we can drop the
absolute value signs and the inequality becomes an equality. (Note that if
some entry of x were negative, it is possible for the inequality to be strict.)
This shows that all subsequent states in a Markov chain are themselves
Markov Chain State distribution vectors. Now we really have a very good

handle on the Markov chain problem. Consider the following instance of our
example.

Example 2.20. In the notation of Example 2.19 suppose that initially Brand
A has all the customers (i.e., Brand B is just entering the market). What are
the market shares 2 quarters later? 20 quarters? Answer the same questions
if initially Brand B has all the customers.

Solution. To say that initially Brand A has all the customers is to say
that the initial state vector is x(0) = (1, 0). Now do the arithmetic to find
x(2):

http://dx.doi.org/10.1007/978-3-319-74748-4_6
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[
a2

b2

]
= x(2) = A2x(0) =

[
0.7 0.4
0.3 0.6

]([
0.7 0.4
0.3 0.6

] [
1
0

])

=
[

0.7 0.4
0.3 0.6

] [
0.7
0.3

]
=
[

.61

.39

]
.

Thus, Brand A will have 61% of the market and Brand B will have 39% of
the market in the second quarter. We did not try to do the next calculation
by hand, but rather used a technology tool to get the approximate answer:

x(20) =
[

0.7 0.4
0.3 0.6

]20 [1
0

]
=
[

.57143

.42857

]
.

Thus, after 20 quarters, Brand A’s share will have fallen to about 57% of
the market and Brand B’s share will have risen to about 43%. Now consider
what happens if the initial scenario is completely different, i.e., x(0) = (0, 1).
We compute by hand to find that

x(2) =
[

0.7 0.4
0.3 0.6

]([
0.7 0.4
0.3 0.6

] [
0
1

])
=
[

0.7 0.4
0.3 0.6

] [
0.4
0.6

] [
.52
.48

]
.

Then we use a technology tool to find that

x(20) =
[

0.7 0.4
0.3 0.6

]20 [0
1

]
=
[

.57143

.42857

]
.

Surprise! For k = 20 we get the same answer as we did with a completely
different initial condition. There appears to be a unique stationary state which
is a steady state for this system. Coincidence? We will return to this example
again in Chapters 3 and 5, where concepts introduced therein will cast new
light on this model (no, it isn’t a coincidence). �

Another important type of model is a so-called structured population
model. In such a model a population of organisms is divided into

Structured Population Modela finite number of disjoint states, such as
age by year or weight by pound, so that
the entire population is described by a state vector that represents the pop-
ulation at discrete times that occur at a constant period such as every day
or year. A comprehensive development of this concept can be found in Hal
Caswell’s text [6]. Here is an example.

Example 2.21. A certain insect has three life stages: egg, juvenile, and adult.
A population is observed in a certain environment to have the following prop-
erties in a two-day time steps: 20% of the eggs will not survive, and 60% will
move to the juvenile stage. In the same time-span 10% of the juveniles will
not survive, and 60% will move to the adult stage, while 80% of the adults will
survive. Also, in the same time-span adults will product about 0.25 eggs per
adult. Assume that initially, there are 10, 8, and 6 eggs, juveniles, and adults
(measured in thousands), respectively. Model this population as a discrete
dynamical system and compute populations total in 2, 10, and 100 days.

http://dx.doi.org/10.1007/978-3-319-74748-4_3
http://dx.doi.org/10.1007/978-3-319-74748-4_5
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Solution. We start time at day 0 and the kth stage is day 2k. Here the
time period is two days and a state vector has the form x(k) = (ak, bk, ck),
where ak is the number of eggs, bk the number of juveniles, and ck the number
of adults (all in thousands) on day 2k. We are given that x(0) = (10, 8, 6) on
day 0. Furthermore, the transition matrix has the form

A =

⎡
⎣0.2 0 0.25

0.6 0.3 0
0 0.6 0.8

⎤
⎦ .

The first column says that 20% of the eggs will remain eggs over one time
period, 60% will progress to juveniles, and the rest do not survive. The second
column says that juveniles produce no offspring, 30% will remain juveniles,
60% will become adults, and the rest do not survive. The third column says
that .25 eggs results from one adult, no adult becomes a juvenile, and 80%
survive. Now do the arithmetic to find the state x(1) on day 1:

x(1) =

⎡
⎣a1

b1

c1

⎤
⎦ = A1x(0) =

⎡
⎣0.2 0 0.25

0.6 0.3 0
0 0.6 0.8

⎤
⎦
⎡
⎣10

8
6

⎤
⎦ =

⎡
⎣3.5

8.4
9.6

⎤
⎦ .

For the remaining calculations we use a computer (you should check these
results with your own calculator or computer) to obtain approximate answers
(we use ≈ for approximate equality)

x(10) =

⎡
⎣a10

b10

c10

⎤
⎦ = A10x(0) ≈

⎡
⎣3.33

2.97
10.3

⎤
⎦ ,

x(100) =

⎡
⎣a100

b100

c100

⎤
⎦ = A100x(0) ≈

⎡
⎣0.284

0.253
0.877

⎤
⎦ .

It appears that the population is declining with time. �
The next example constitutes a nonhomogeneous dynamical equation. This

important example of difference equations has already made its appearance
in Section 1.5 of Chapter 1.

Example 2.22. Consider the equations

yi,j+1 = σyi−1,j+(1 − 2σ) yi,j+σyi+1,j+kfi,j , i = 1, 2, 3, 4 and j = 0, 1, 2, . . . .

Here the variables y0,j and y5,j are known for all j, as are the constants k and
fi,j . Express this system of equations as a dynamical system in matrix-vector
form.

http://dx.doi.org/10.1007/978-3-319-74748-4_1
http://dx.doi.org/10.1007/978-3-319-74748-4_1
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Solution. What we are given is a system of four equations in the unknowns
yi,j , i = 1, 2, 3, 4, namely

y1,,j+1 = (1 − 2σ) y1,j + σy2,j + kf1,j + σy0,j

y2,,j+1 = σy1,j + (1 − 2σ) y2,j + σy3,j + kf2,j

y3,,j+1 = σy2,j + (1 − 2σ) y3,j + σy4,j + kf3,j

y4,,j+1 = σy3,j + (1 − 2σ) y4,j + kf4,j + σy5,j

The variables yi,j , i = 1, 2, 3, 4, play the part of the state vector, while the
index j plays the part of a state index. Therefore, we define the state and
input vectors to be

y(j) =

⎡
⎢⎢⎣

y1,j

y2,j

y3,j

y4,j

⎤
⎥⎥⎦ and b(j) =

⎡
⎢⎢⎣

kf1,j + σy0,j

kf2,j

kf3,j

kf4,j + σy5,j

⎤
⎥⎥⎦ .

Next we define the transition matrix for this system to be

A =

⎡
⎢⎢⎣

(1 − 2σ) σ 0 0
σ (1 − 2σ) σ 0
0 σ (1 − 2σ) σ
0 0 σ (1 − 2σ)

⎤
⎥⎥⎦ .

Thus, the dynamical system becomes

y(j+1) = Ay(j) + b(j), j = 0, 1, 2, . . . .

As in the preceding examples, in order to actually solve this system we would
also need to know the initial state vector y(0). �

Graphs and Digraphs

We are going to introduce some concepts from graph theory that are useful
modeling tools for many practical problems and will accordingly will make
their appearance in numerous applications presented in this text.

Definition 2.11. Graph and Digraph A graph is a set V , whose elements
are called vertices ( or nodes), together with a set or list (to allow for repeated
edges) E of unordered pairs with coordinates in V , called edges. If the edges
are considered to be ordered pairs, the pair V,E is called a directed graph
(digraph for short) whose edges are called directed edges.

Another useful idea is the following: a walk in the graph G is a sequence
of graph edges {v0, v1}, {v1, v2}, . . . , {vm−1, vm} that goes from vertex v0

to vertex vm. The length of the walk is m. In the case of a
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1

2

6

3

5

4

Fig. 2.4: A communications network graph

(Directed) Walk digraph a (directed) walk is a sequence of directed edges
(v0, v1), (v1, v2), . . . , (vm−1, vm).

Note 2.1. About notation: In subsequent discussion the term “graph” may
refer to both directed and undirected graphs. Should we wish to refer specifi-
cally to directed graphs, we employ the term “digraph”. Otherwise the mean-
ing will be clear from context. For example, specification of the edge set will
indicate whether we are referencing a directed or undirected graph.

Example 2.23. Figure 2.4 is a visual representation of a graph in which ver-
tices are exhibited as circled numbers and edges as line segments connecting
these vertices. Describe the vertex set V, edge set E and a walk of length five
in this graph.

Solution. The figure suggests a graph with vertex set V and edge set E,
where

V = {1, 2, 3, 4, 5, 6}
E = {{1, 2}, {2, 3}, {3, 5}, {5, 6}, {6, 4}, {4, 1}, {1, 6}, {6, 2}} .

The sequence of edges {1, 2}, {2, 6}, {6, 5}, {5, 3}, {3, 2} or, in terms of the edge
indices, 1, 8, 4, 3, 2, represents one walk of length five. N.B.: The set {6, 5} is
the same as the set {5, 6}. Were these directed edges, the ordered pair (6, 5)
would not be the same as the ordered pair (5, 6). �

Example 2.24. You have incomplete data about six teams who have played
each other in matches. Each match produces a winner and a loser, with no
score attached. Identify the teams by labels 1, 2, 3, 4, 5, 6. We could describe
a match by a pair of numbers (i, j), where team i played and defeated team
j (no ties allowed). Here are the data:

{(1, 2), (2, 3), (3, 4), (4, 2), (1, 4), (3, 1), (3, 6), (4, 5), (5, 6)} .

Give a reasonable graphical representation of these data.
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1 2 4

3

6

5

Fig. 2.5: Graph of data from Example 2.24

Solution. The data suggests a digraph with vertices {1, 2, 3, 4, 5, 6} and
the data as edges, where direction of the arrow along an edge points from
winner to loser in a match. We can visually represent all the data by drawing
a diagram of this digraph as in Figure 2.5. �

Next, consider the following question relating to Example 2.24. Given this
incomplete data, how could we determine a ranking of each team in some sen-
sible way? In order to answer this question, we introduce a notion of “power”

Vertex Powerthat has proved to be useful in many situations. The power
of a vertex in a digraph is the number of directed walks of length 1 or 2
originating at the vertex. In Figure 2.5, the power of vertex 1 is 5. Why only
walks of length 1 or 2? One good reason is that walks of length 3 introduce
the possibility of loops, i.e., walks that “loop around” to the same point. It
isn’t very definitive to find out that team 1 beat team 2 beat team 3 beat
team 1.

The digraph of Example 2.24 has no edges from a vertex to itself (called
self-loops), and for a pair of distinct vertices, at most one edge connecting the
two vertices. In other words, a team doesn’t play itself and plays another
team at most once. Such a digraph is called a dominance-directed graph.

Dominance Directed GraphAlthough the notion of power of a point is
defined for any digraph, it makes the most
sense for dominance-directed graphs, like that of Figure 2.5.

Example 2.25. Find the power of each vertex in the digraph of Example 2.24
and use this information to rank the teams.

Solution. In this example we could find the power of all points by inspec-
tion of Figure 2.5. Let’s do it: careful counting gives that the power of vertex
1 is 5, vertex 2 is 4, vertex 3 is 7, vertex 4 is 4, vertex 5 is 1, and the power
of vertex 6 is 0. Consequently, team 3 is ranked first, team 1 is second, teams
2 and 4 are tied for third, team 5 is fourth and team 6 is last. �

One can imagine situations (like describing the structure of the commu-
nications network pictured in Figure 2.4) in which the edges shouldn’t really
have a direction, since connections are bidirectional. For such situations the
graph concept is a more natural tool.

A practical question: how could we write a computer program to compute
powers? More generally, how can we compute the total number of walks of a
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certain length? Here is a key tool for the answer: all the information about
our graph (or digraph) can be stored in its adjacency matrix :

Definition 2.12. Adjacency Matrix The adjacency matrix of a graph is
defined to be a square matrix whose rows and columns are indexed by the
vertices of the graph and whose (i, j)th entry is the number of edges going
from vertex i to vertex j (this entry is 0 if there are none).

Note that in this definition it is understand that a directed edge (vi, vj)
of a digraph must start at vi and end at vj , while no such restriction applies
to the edges of a graph. Thus, an edge {vi, vj} in a graph is counted twice,
namely as going both from vertex vi to vj and from vertex vj to vi. However,
in a digraph an edge (vi, vj) is only counted once in the direction from vertex
vi to vj .

If we designate the adjacency matrix of the digraph of Figure 2.5 by A
and the adjacency matrix of the graph of Figure 2.4 by B, then

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0
0 0 1 0 0 0
1 0 0 1 0 1
0 1 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1
1 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 0 1
0 0 1 0 0 1
1 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Notice that we could reconstruct the entire digraph or graph from these matri-
ces alone. Thus, all the information about the graph or digraph is, in principle,
encapsulated in these matrices.

As an example, consider the problem of counting the number of paths of
a given length in a graph. If the graph is very large, it might be quite difficult
to track all possible such paths from a picture of the graph. However, it would
be much easier to construct an adjacency matrix from such a picture. For a
general graph with n vertices and adjacency matrix A = [aij ], we can use
this matrix to compute powers of vertices. To count up the walks of length
1 emanating from vertex i, simply add up the elements of the ith row of A.
Now what about the paths of length 2? Observe that there is an edge from
i to k and then from k to j precisely when the product aikakj is equal to 1.
Otherwise, one of the factors will be 0 and therefore the product is 0. So the
number of paths of length 2 from vertex i to vertex j is the familiar sum

ai1a1j + ai2a2j + · · · + ainanj .

This is just the (i, j)th entry of the matrix A2. A similar argument shows the
following fact:

Theorem 2.2. If A is the adjacency matrix of the graph G, then the (i, j)th
entry of Ar gives the number of (directed) walks of length r starting at vertex
i and ending at vertex j.
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Since the power of vertex i is the number of all paths of length 1 or 2
emanating from vertex i, we have the following key fact:

Corollary 2.1. Vertex Power If A is the adjacency matrix of the digraph G,
then the power of the ith vertex is the sum of all entries in the ith row of the
matrix A + A2.

Example 2.26. Use the preceding facts to calculate the powers of all the
vertices in the digraph of Example 2.24.

Solution. Using the matrix A above we calculate that

A + A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0
0 0 1 0 0 0
1 0 0 1 0 1
0 1 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0
0 0 1 0 0 0
1 0 0 1 0 1
0 1 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0
0 0 1 0 0 0
1 0 0 1 0 1
0 1 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 2 1 1 1 0
1 0 1 1 0 1
1 2 0 2 1 1
0 1 1 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

An easy way to sum each row with matrix arithmetic is to multiply A+A2 on
the right by a column of 1’s, but in this case we see immediately that the power
of the vertices are consistent with what we observed earlier by inspection of
the graph (row 1 sums to 5, 2 to 4, 3 to 7, 4 to 4, 5 to 1 and 6 to 0). �

Difference Equations

The idea of a difference equation has numerous applications in mathematics
and computer science. In the latter field, these equations often go by the
name of “recurrence relations.” They can be used for a variety of applications
ranging from population modeling to analysis of complexity of algorithms. We
will introduce them by way of a simple financial model.

Example 2.27. Suppose that you invest in a contractual fund where you must
invest in the funds for three years before you can receive any return on your
investment (with a positive first-year investment). Thereafter, you are vested
in the fund and may remove your money at any time. While you are vested in
the fund, annual returns are calculated as follows: money that was in the fund
one year ago earns nothing, while money that was in the fund two years ago
earns 6% of its value and money that was in the fund three years ago earns
12% of its value. Find an equation that describes your investment’s growth.

Solution. Let yk be the amount of your investment in the kth year. The
numbers y0, y1, y2 represent your investments for the first three years (we’re
counting from 0). Consider the third year amount y3. According to your con-
tract, your total funds in the third year will be

y3 = y2 + 0.06y1 + 0.12y0.
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Similarly, a general formula for yk+3 in terms of the preceding three terms is

yk+3 = yk+2 + 0.06yk+1 + 0.12yk, k = 0, 1, 2, . . . . (2.1)

�

Definition 2.13. Linear Difference Equations A linear difference equation
(or recurrence relation) of order m in the variables y0, y1, . . . is an equation
of the form

amyk+m + am−1yk+m−1 + · · · + a1yk+1 + a0yk = bk, k = 0, 1, 2, . . . , (2.2)

where a0, a1, . . . , am and bk, k = 0, 1, 2, . . . , are coefficients with a0 �= 0, am �=
0 and y0, y1, . . . , ym−1 are initial values. If the coefficients are independent of
k, the difference equation is said to have constant coefficients. If bk = 0,
k = 0, 1, 2 . . ., the difference equation is said to be homogeneous, otherwise
nonhomogeneous.

Notice that such an equation cannot determine the numbers y0, y1, . . . ,
ym−1. These values have to be initially specified, just as in our fund example.
Notice that in our fund example, we have to bring all terms of equation (2.1)
to the left-hand side to obtain the (constant coefficient homogeneous) third
order difference equation form

yk+3 − yk+2 − 0.06yk+1 − 0.12yk = 0.

Now we see that a3 = 1, a2 = −1, a1 = −0.06, and a0 = −0.12.
There are many ways to solve difference equations. We are not going to

give a complete solution to this problem at this point; we postpone this issue
to Chapters 3 and 5, where we introduce vector spaces, eigenvalues and eigen-
vectors. However, we can now show how to turn a difference equation as given
above into a matrix equation. Consider our fund example. The secret is to
identify the right vector variables. To this end, define an indexed vector xk

by the formula

xk =

⎡
⎣ yk

yk+1

yk+2

⎤
⎦ , k = 0, 1, 2, . . .

from which it is easy to check that since ak+3 = ak+2 +0.06ak+1 +0.12ak, we
have

xk+1 =

⎡
⎣ yk+1

yk+2

yk+3

⎤
⎦ =

⎡
⎣ 0 1 0

0 0 1
0.12 0.06 1

⎤
⎦xk = Axk.

This is the matrix form we seek. It appears to have a lot in common with
the Markov chains examined earlier in this section, in that we pass from one
“state vector” to another by multiplication by a fixed “transition matrix” A.

http://dx.doi.org/10.1007/978-3-319-74748-4_3
http://dx.doi.org/10.1007/978-3-319-74748-4_5
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There is a fairly straightforward way to generate nonzero solutions to some
homogeneous difference equations: Given equation (2.2) of order m with bk = 0
and all coefficients constant, substitute the values yj = rj with r �= 0 to obtain
the polynomial equation

amrk+m + am−1r
k+m−1 + · · · + a1r

k+1 + a0r
k = 0.

Cancel the common factor of rk from both sides to obtain the characteristic
polynomial p (r) and characteristic polynomial p (r) = 0 of the difference
equation:

Characteristic Polynomial

p (r) = amrm + am−1r
m−1 + · · · + a1r + a0 = 0.

It follows that any root of this polynomial i.e., solution of the polynomial
equation, gives us a solution to the difference equation, namely yk = rk, k =
0, 1, . . .. Note however that this also assigns specific values to y0, y1, . . . ym−1;
in fact, this kind of particular solution is simply a geometric sequence. We
leave it as an exercise to show that if yk, k = 0, 1, 2, . . ., is a solution to a
homogeneous difference equation, any constant multiple ayk, k = 0, 1, 2, . . .,
is also solution to the difference equation.

Example 2.28. Express the linear difference equation 2yk+2−3yk+1−2yk = 0
in matrix form and find particular solutions to this to this equation.

Solution. For the matrix form, solve for yk+2 to obtain yk+2 = 3
2yk+1+yk,

so set xk = (yk, yk+1) to obtain

xk+1 =
[

yk+1

yk+2

]
=
[

0 1
1 3

2

] [
yk

yk+1

]
= Axk

The polynomial equation that results from this difference equation is

0 = 2x2 − 3x − 2 = 2
(

x2 − 3
2
x − 1

)
= 2 (x − 2)

(
x +

1
2

)
.

Thus, we obtain two particular solutions to this difference equation, namely
yk = 2k and yk =

(− 1
2

)k, k = 0, 1, 2, . . .. �

2.3 Exercises and Problems

Exercise 1. Determine the effect of the matrix operator TA on the x-axis, y-
axis, and the points (±1,±1), where A is one of the following.

(a)
[

1 0
0 −1

]
(b) 1

5

[−3 −4
−4 3

]
(c)

[
0 −1

−1 0

]
(d)

[
1 −1
0 1

]
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Exercise 2. Determine the effect of the matrix operator TA on the x-axis, y-
axis, and the points (±1,±1), where A is one of the following. Plot the images
of the squares with corners (±1,±1).

(a)
[

1 0
0 0

]
(b)

[
1 −1

−1 1

]
(c)

[
1 0
1 1

]
(d)

[
2 3
3 1

]

Exercise 3. Express the following functions, if linear, as matrix operators.
(a) T ((x1, x2)) = (x1 + x2, 2x1, 4x2 − x1) (b) T ((x1, x2)) = (x1 + x2, 2x1x2)
(c) T ((x1, x2, x3)) = (2x3,−x1) (d) T ((x1, x2, x3)) = (x2 − x1, x3, x2 + x3)

Exercise 4. Express the following functions, if linear, as matrix operators.
(a) T ((x1, x2, x3)) = x1 − x3 + 2x2 (b) T ((x1, x2)) = (|x1| , 2x2, x1 + 3x2)
(c) T ((x1, x2)) = (x1, 2x1,−x1) (d) T ((x1, x2, x3)) = (−x3, x1, 4x2)

Exercise 5. A linear operator on R
2 is defined by first applying a scaling oper-

ator with scale factors of 2 in the x-direction and 4 in the y-direction, followed
by a counterclockwise rotation about the origin of π/6 radians. Express this
operator and the operator that results from reversing the order of the scaling
and rotation as matrix operators.

Exercise 6. A linear operator on R
2 is defined by first applying a shear in the

x-direction with a shear factor of 3 followed by a clockwise rotation about
the origin of π/4 radians. Express this operator and the operator that results
from reversing the order of the shear and rotation as matrix operators.

Exercise 7. Find a scaling operator S and shearing operator H such that the
concatenation S ◦ H maps the points (1, 0) to (2, 0) and (0, 1) to (4, 3).

Exercise 8. Find a scaling operator S and shearing operator H such that the
concatenation S ◦H maps the points (1, 0) to (2, 8), (0, 1) to (0, 4) and (−1, 2)
to (−2, 0).

Exercise 9. A fixed-point of a linear operator TA is a vector x such that
TA (x) = x. Find all fixed points, if any, of the linear operators in Exercise 3.

Exercise 10. Find all fixed points, if any, of the linear operators in Exercise 4.

Exercise 11. Given transition matrices for discrete dynamical systems

(a)

⎡
⎣ .1 .3 0

0 .4 1
.9 .3 0

⎤
⎦ (b)

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦ (c)

⎡
⎣ .5 .3 0

0 .4 0
.5 .3 1

⎤
⎦ (d)

⎡
⎣ 0 0 0.9

0.5 0 0
0 0.5 0.1

⎤
⎦

and initial state vector x(0) = 1
2 (1, 1, 0), calculate the first and second state

vector for each system and determine whether it is a Markov chain.
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Exercise 12. For each of the dynamical systems of Exercise 11, determine by
calculation whether the system tends to a limiting steady-state vector. If so,
what is it?

Exercise 13. A population is modeled with two states, immature and mature,

and the resulting structured population model transition matrix is
[

1
2 1
1
2 0

]
.

(a) Explain what this matrix says about the two states.
(b) Starting with a population of (30, 100), does the population stabilize,
increase or decrease over time? If it stabilizes, to what distribution?

Exercise 14. A population is modeled with three larva, pupa and adult, and

the resulting structured population model transition matrix is

⎡
⎣ 0 0 0.6

0.5 0 0
0 0.9 0.8

⎤
⎦.

(a) Explain what this matrix says about the three states.
(b) Starting with a population of (0, 30, 100), does the population stabilize,
increase or decrease over time? If it stabilizes, to what distribution?

Exercise 15. A digraph G has vertex set V = {1, 2, 3, 4, 5} and edge set E =
{(2, 1), (1, 5), (2, 5), (5, 4), (4, 2), (4, 3), (3, 2)}. Sketch a picture of the graph G
and find its adjacency matrix. Use this to find the power of each vertex of the
graph and determine whether this graph is dominance-directed.

Exercise 16. A digraph has adjacency matrix
⎡
⎢⎢⎢⎢⎣

1 0 0 1 0
0 0 0 1 1
0 1 0 0 1
0 1 1 1 0
1 1 0 1 0

⎤
⎥⎥⎥⎥⎦ .

Sketch a picture of this digraph and find the total number of directed walks
of length at most 3.

Exercise 17. Convert these difference equations into matrix–vector form.
(a) 2yk+3 + 3yk+2 − 4yk+1 + 5yk = 0 (b) yk+2 − yk+1 + 2yk = 1

Exercise 18. Convert these difference equations into matrix–vector form.
(a) 2yk+3 + 2yk+1 − 3yk = 0 (b) yk+2 + yk+1 − 2yk = 3

Exercise 19. Consider the linear difference yk+2 − yk+1 − yk = 0.
(a) Express this difference in matrix form.
(b) Find the first ten terms of the solution to this difference given the

initial conditions y0 = 0, y1 = 1. (This is the well-known Fibonacci sequence.)
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Exercise 20. Find two geometric solutions yk = rk to the difference yk+2 −
yk+1 − yk = 0 and show that the difference of these two solutions is also a
solution to the difference.

*Problem 21. Show that if A =
[

a b
c d

]
is a real 2 × 2 matrix, then the matrix

multiplication function maps a line through the origin onto a line through the
origin or a point.

Problem 22. Show how the transition matrix
[

a b
c d

]
for a Markov chain can

be described using only two variables.

*Problem 23. Use the definition of matrix multiplication function to show that
if TA = TB, then A = B.

Problem 24. Suppose that in Example 2.27 you invest $1,000 initially (the
zeroth year) and no further amounts. Make a table of the value of your invest-
ment for years 0 to 12. Also include a column that calculates the annual
interest rate that your investment is earning each year, based on the current
and previous year’s values. What conclusions do you draw? You will need a
technology tool for this exercise.

Problem 25. Show that if the state vector x(k) = (ak, bk, ck) in a Markov chain
is a probability distribution vector, then so is x(k+1).

*Problem 26. Show if A and B are n × n stochastic matrices and 0 ≤ α ≤ 1,
then the matrix αA + (1 − α)B is also stochastic.

Problem 27. Suppose that the difference (2.2) is nonhomogeneous, the values
yk, k = 0, 1, . . ., tend to a constant value y∗ and the values bk tend to the
constant value b∗ �= 0. Find a formula for y∗ in terms of the coefficients of
(2.2).

Problem 28. Supposethatyou invest inthecontractual fundofExample(2.27) as
follows: In the first year you invest $2,000 and in the next two years you invest
$1,000 each. How many years after the third will you have to wait before you
break even on your investment?

Problem 29. Show that if {yj}∞
j=0 is a solution to a homogeneous difference

equation, then so is {ayj}∞
j=0 for any constant a.
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2.4 Special Matrices and Transposes

There are certain types of matrices that are so important that they have
acquired names of their own. We introduce some of these in this section, as
well as one more matrix operation that has proved to be a very practical tool
in matrix analysis, namely the operation of transposing a matrix.

Elementary Matrices and Gaussian Elimination

We are going to show a new way to execute the elementary row operations
used in Gaussian elimination. Recall the shorthand we used:

• Eij : The elementary operation of switching the ith and jth rows of the
matrix.

• Ei(c): The elementary operation of multiplying the ith row by the nonzero
constant c.

• Eij(d): The elementary operation of adding d times the jth row to the ith
row.

From now on we will use the very same symbols to represent matrices. The
size of the matrix will depend on the context of our discussion, so the notation
is ambiguous, but it is still very useful.

Elementary MatrixAn elementary matrix of size n is obtained by per-
forming the corresponding elementary row operation
on the identity matrix In. We denote the resulting matrix by the same symbol
as the corresponding row operation.

Example 2.29. Describe the following elementary matrices of size n = 3:
(a) E13(−4) (b) E21(3) (c) E23 (d) E1( 1

2 )

Solution. We start with I3 =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦.

For part (a) we add −4 times the 3rd row of I3 to its first row to obtain

E13(−4) =

⎡
⎣1 0 −4

0 1 0
0 0 1

⎤
⎦ .

For part (b) add 3 times the first row of I3 to its second row to obtain

E21(3) =

⎡
⎣1 0 0

3 1 0
0 0 1

⎤
⎦ .

For part (c) interchange the second and third rows of I3 to obtain that
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E23 =

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦ .

Finally, for part (d) we multiply the first row of I3 by 1
2 to obtain

E1

(
1
2

)
=

⎡
⎣

1
2 0 0
0 1 0
0 0 1

⎤
⎦ . �

What good are these matrices? One sees that that following fact is true:

Theorem 2.3. Let C = BA be a product of two matrices and perform
an elementary row operation on C. Then the same result is obtained if one
performs the same elementary operation on the matrix B and multiplies the
result by A on the right.

We won’t give a formal proof of this statement, but it isn’t hard to see
why it is true. For example, suppose one interchanges two rows, say the ith
and jth, of C = BA to obtain a new matrix D. How do we get the ith or
jth row of C? Answer: multiply the corresponding row of B by the matrix A.
Therefore, we would obtain D by interchanging the ith and jth rows of B and
multiplying the result by the matrix A, which is exactly what the theorem
says. Similar arguments apply to the other elementary operations.

Now take B = I, and we see from the definition of elementary matrix and
Theorem 2.3 that the following is true.

Corollary 2.2. If an elementary row operation is performed on a matrix A
to obtain a matrix A′, then A′ = EA, where E is the elementary matrix
corresponding to the elementary row operation performed.

The meaning of this corollary is that we accomplish an elementary

Elementary Operations as Matrix Multiplication row operation by mul-
tiplying by the corre-

sponding elementary matrix on the left. Of course, we don’t need elementary
matrices to accomplish row operations; but they give us another perspective
on row operations.

Example 2.30. Express these calculations of Example 1.17 in matrix product
form: [

2 −1 1
4 4 20

]−−→
E12

[
4 4 20
2 −1 1

]−−−−−→
E1 (1/4)

[
1 1 5
2 −1 1

]

−−−−−−→
E21 (−2)

[
1 1 5
0 −3 −9

]−−−−−−−→
E2 (−1/3)

[
1 1 5
0 1 3

]−−−−−−→
E12 (−1)

[
1 0 2
0 1 3

]
.

http://dx.doi.org/10.1007/978-3-319-74748-4_1
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Solution. One point to observe: the order of elementary operations. We
compose the elementary matrices on the left in the same order that the oper-
ations are done. Thus, we may state the above calculations in the concise
form [

1 0 2
0 1 3

]
= E12 (−1) E2 (−1/3) E21 (−2) E1 (1/4) E12

[
2 −1 1
4 4 20

]
. �

It is important to read the preceding line carefully and understand how it
follows from the long form above. This conversion of row operations to matrix
multiplication will prove to be very useful in the next section.

Some Matrices with Simple Structure

Certain types of matrices have already been named in our discussions. For
example, the identity and zero matrices are particularly useful. Another exam-
ple is the reduced row echelon form. What’s next? Let us classify some simple
matrices and attach names to them. For square matrices, we have the following
definitions, in ascending order of complexity.

Definition 2.14. Simple Structure Matrices Let A = [aij ] be a square n×n
matrix. Then A is

• Scalar if aij = 0 and aii = ajj for all i �= j. (Equivalently: A = cIn for
some scalar c, which explains the term “scalar.”)

• Diagonal if aij = 0 for all i �= j. (Equivalently: Off-diagonal entries of A
are 0.)

• (Upper) triangular if aij = 0 for all i > j. (Equivalently: Subdiagonal
entries of A are 0.)

• (Lower) triangular if aij = 0 for all i < j. (Equivalently: Superdiagonal
entries of A are 0.)

• Triangular if the matrix is upper or lower triangular.
• Strictly triangular if it is triangular and the diagonal entries are also zero.
• Tridiagonal if aij = 0 when j > i + 1 or j < i − 1. (Equivalently: Entries

off the main diagonal, first subdiagonal, and first superdiagonal are zero.)

i < j

i > j

i = j

Fig. 2.6: Matrix regions

The index conditions that we use above have
simple interpretations. For example, the entry aij

with i > j is located further down than over, since
the row number is larger than the column num-
ber. Hence, it resides in the “lower triangle” of the
matrix. Similarly, the entry aij with i < j resides
in the “upper triangle.” Entries aij with i = j
reside along the main diagonal of the matrix. See
Figure 2.6 for a picture of these triangular regions
of the matrix.
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Example 2.31. Classify the following matrices (elementary matrices are
understood to be 3 × 3) in the terminology of Definition 2.14.

(a)

⎡
⎣1 0 0

0 1 0
0 0 −1

⎤
⎦ (b)

⎡
⎣2 0 0

0 2 0
0 0 2

⎤
⎦ (c)

⎡
⎣1 1 2

0 1 4
0 0 2

⎤
⎦ (d)

⎡
⎣ 0 0 0

1 −1 0
3 2 2

⎤
⎦

(e)

⎡
⎣0 2 3

0 0 4
0 0 0

⎤
⎦ (f) E21 (3) (g) E2 (−3) (h)

⎡
⎢⎢⎢⎢⎣

2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎤
⎥⎥⎥⎥⎦

Solution. Notice that (a) is not scalar, since diagonal entries differ from
each other, but it is a diagonal matrix, since the off-diagonal entries are all
0. On the other hand, the matrix of (b) is really just 2I3, so this matrix is a
scalar matrix. Matrix (c) has all terms below the main diagonal equal to 0, so
this matrix is triangular and, specifically, upper triangular. Similarly, matrix
(d) is lower triangular. Matrix (e) is clearly upper triangular, but it is also
strictly upper triangular since the diagonal terms themselves are 0. Next, we
have

E21(3) =

⎡
⎣1 0 0

3 1 0
0 0 1

⎤
⎦ and E2(−3) =

⎡
⎣1 0 0

0 −3 0
0 0 1

⎤
⎦ ,

so that E21(3) is (lower) triangular and E2(−3) is a diagonal matrix. Matrix
(h) comes from Example 1.3, where we saw that an approximation to a certain
diffusion problem led to matrices of that form. This matrix is clearly tridiag-
onal. In fact, note that the matrices of (a), (b), (f), and (g) also can also be
classified as tridiagonal. �

Block Matrices

Another type of matrix that occurs frequently enough to be discussed is a
block matrix. Actually, we already used the idea of blocks when we described
the augmented matrix of the system Ax = b as the matrix Ã = [A |b].
The blocks of Ã in partitioned form [A,b] are A and b. There is no reason
we couldn’t partition by inserting more vertical lines or horizontal lines as
well, and this partitioning leads to the blocks. The main point to bear in
mind when using the block notation is that the blocks must be correctly
Block Notation sized so that the resulting matrix makes sense. One virtue

of the block form that results from partitioning is that for purposes of matrix
addition or multiplication, we can treat the blocks rather like scalars, provided
the addition or multiplication that results makes sense. We will use this idea
from time to time without fanfare. One could go through a formal description
of partitioning and proofs; we won’t. Rather, we’ll show how this idea can be
used by example.

http://dx.doi.org/10.1007/978-3-319-74748-4_1
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Example 2.32. Use block multiplication to simplify this multiplication:

⎡
⎣1 2 0 0

3 4 0 0
0 0 1 0

⎤
⎦
⎡
⎢⎢⎣

0 0 2 1
0 0 1 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

Solution. The blocking we want to use makes the column numbers of the
blocks on the left match the row numbers of the blocks on the right and looks
like this: ⎡

⎢⎢⎣
1 2
3 4

0 0
0 0

0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 0
0 0

2 1
−1 1

0 0
0 0

1 0
0 1

⎤
⎥⎥⎥⎥⎦ .

We see that these submatrices are built from zero matrices and these
blocks:

A =
[

1 2
3 4

]
, B =

[
1 0

]
, C =

[
2 1
−1 1

]
, I2 =

[
1 0
0 1

]
.

Now we can work this product out by interpreting it as

[
A 0
0 B

] [
0 C
0 I2

]
=
[

A · 0 + 0 · 0 A · C + 0 · I2

0 · 0 + B · 0 0 · C + B · I2

]
=

⎡
⎣0 0 0 3

0 0 2 7
0 0 1 0

⎤
⎦ . �

For another (important!) example of block arithmetic, examine Exam-
ple 2.9 and the discussion following it. There we view a matrix as blocked into
its respective columns, and a column vector as blocked into its rows, to obtain

Ax = [a1,a2,a3]

⎡
⎣x1

x2

x3

⎤
⎦ = a1x1 + a2x2 + a3x3.

Transpose of a Matrix

Sometimes we prefer to work with a different form of a matrix that contains
the same information as the matrix. Transposes are operations that allow us
to do that. The idea is simple: Interchange rows and columns. It turns out that
for complex matrices, there is an analogue that is not quite the same thing as
transposing, though it yields the same result when applied to real matrices.
This analogue is called the conjugate (or Hermitian) transpose. Here are the
appropriate definitions.

Definition 2.15. Transpose and Conjugate Matrices Let A = [aij ] be an
m × n matrix with (possibly) complex entries. Then the transpose of A is the
n × m matrix AT obtained by interchanging the rows and columns of A, so
that the (i, j)th entry of AT is aji. The conjugate of A is the matrix A = [aij ] .
Finally, the conjugate (Hermitian) transpose of A is the matrix A∗ = A

T
.
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Notice that in the case of a real matrix (that is, a matrix with real entries)
A there is no difference between transpose and conjugate transpose, since in
this case A = A. Consider these examples.

Example 2.33. Compute the transpose and conjugate transpose of the fol-
lowing matrices:

(a)
[

1 0 2
0 1 1

]
, (b)

[
2 1
0 3

]
, (c)

[
1 1 + i
0 2i

]
.

Solution. For matrix (a) we have

[
1 0 2
0 1 1

]∗
=
[

1 0 2
0 1 1

]T

=

⎡
⎣1 0

0 1
2 1

⎤
⎦ .

Notice how the dimensions of a transpose get switched from the original.
For matrix (b) we have

[
2 1
0 3

]∗
=
[

2 1
0 3

]T

=
[

2 0
1 3

]
,

and for matrix (c) we have
[

1 1 + i
0 2i

]∗
=
[

1 0
1 − i −2i

]
,

[
1 1 + i
0 2i

]T

=
[

1 0
1 + i 2i

]
.

In this case, transpose and conjugate transpose are not the same. �
Even when dealing with vectors alone, the transpose notation is handy.

For example, there is a bit of terminology that comes from tensor analysis
(a branch of higher linear algebra used in many fields including differential
geometry, engineering mechanics, and relativity) that can be expressed very
concisely with transposes:

Definition 2.16. Inner and Outer Products Let u and v be column vectors
of the same size, say n × 1. Then the inner product of u and v is the scalar
quantity uT v, and the outer product of u and v is the n × n matrix uvT .

Example 2.34. Compute the inner and outer products of the vectors

u =

⎡
⎣ 2

−1
1

⎤
⎦ and v =

⎡
⎣3

4
1

⎤
⎦ .

Solution. Here we have the inner product

uT v = [2,−1, 1]

⎡
⎣ 3

4
1

⎤
⎦ = 2 · 3 + (−1)4 + 1 · 1 = 3,
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while the outer product is

uvT =

⎡
⎣ 2

−1
1

⎤
⎦ [3, 4, 1] =

⎡
⎣ 2 · 3 2 · 4 2 · 1

−1 · 3 −1 · 4 −1 · 1
1 · 3 1 · 4 1 · 1

⎤
⎦ =

⎡
⎣ 6 8 2

−3 −4 −1
3 4 1

⎤
⎦ . �

Here are a few basic laws relating transposes to other matrix arithmetic
that we have learned. These laws remain correct if transpose is replaced by
conjugate transpose, with one exception: (cA)∗ = cA∗.

Laws of Matrix Transpose
Let A and B be matrices of the appropriate sizes so that the following oper-
ations make sense, and c a scalar.

(1) (A + B)T = AT + BT

(2) (AB)T = BT AT

(3) (cA)T = cAT

(4) (AT )T = A

These laws are easily verified directly from definition. For example, if A =
[aij ] and B = [bij ] are m × n matrices, then we have that (A + B)T is the
n × m matrix

(A + B)T = [aij + bij ]
T = [aji + bji]

= [aji] + [bji] = AT + BT .

The other laws are proved similarly.

Transposes of Elementary MatricesWe will require explicit formu-
las for transposes of the elementary
matrices in some later calculations. Notice that the matrix Eij (c) is a matrix
with 1’s on the diagonal and 0’s elsewhere, except that the (i, j)th entry is c.
Therefore, transposing switches the entry c to the (j, i)th position and leaves
all other entries unchanged. Hence, Eij (c)T = Eji (c). With similar calcula-
tions we have these facts:

• ET
ij = Eij

• Ei (c)T = Ei (c)
• Eij (c)T = Eji (c)

These formulas have an interesting application. Up to this point

Elementary Column Operationswe have considered only elementary row
operations. However, there are situa-
tions in which elementary column operations on the columns of a matrix are
useful. If we want to use such operations, do we have to start over, reinvent
elementary column matrices, and so forth? The answer is no and the following
example gives an indication of why the transpose idea is useful. This exam-
ple shows how to do column operations in the language of matrix arithmetic.
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Here’s the basic idea: Suppose we want to do an elementary column operation
on a matrix A corresponding to elementary row operation E to get a new
matrix B from A. To do this, turn the columns of A into rows, do the row
operation, and then transpose the result back to get the matrix B that we
want. In algebraic terms

B =
(
EAT

)T
=
(
AT

)T
ET = AET .

So all we have to do to perform an elementary column operation is multiply
by the transpose of the corresponding elementary row matrix on the right.
Thus, we see that the transposes of elementary row matrices could reasonably
Elementary Column Matrix be called elementary column matrices.

Example 2.35. Let A be a matrix. Suppose that we wish to express the result
B of swapping the second and third columns of A, followed by adding −2 times
the first column to the second, as a product of matrices. How can this be done?
Illustrate the procedure with the matrix

A =
[

1 2 −1
1 −1 2

]
.

Solution. Apply the preceding remark twice to obtain that

B = AET
23E21 (−2)T = AE23E12 (−2) .

Thus, we have

B =
[

1 2 −1
1 −1 2

]⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦
⎡
⎣1 −2 0

0 1 0
0 0 1

⎤
⎦ =

[
1 −3 2
1 0 −1

]

as a matrix product. �

A very important type of special matrix is one that is invariant under the
operation of transposing. It turns out that these matrices are fundamental in
certain applications and they have some very remarkable properties that we
will study in Chapters 4, 5, and 6.

Definition 2.17. Symmetric and Hermitian Matrices The matrix A is said
to be symmetric if AT = A and Hermitian if A∗ = A. (Equivalently, aij = aji

and aij = aji, for all i, j, respectively.)

From the laws of transposing elementary matrices above we see right away
that Eij and Ei(c) supply us with examples of symmetric matrices. Also the
adjacency matrix of a graph is always symmetric, unlike those of digraphs.
Here are a few more examples.

http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_5
http://dx.doi.org/10.1007/978-3-319-74748-4_6
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Example 2.36. Are the following matrices symmetric or Hermitian?

(a)
[

1 1 + i
1 − i 2

]
, (b)

[
2 1
1 3

]
, (c)

[
1 1 + i

1 + i 2i

]

Solution. For matrix (a) we have

[
1 1 + i

1 − i 2

]∗
=
[

1 1 + i
1 − i 2

]T

=
[

1 1 + i
1 − i 2

]
.

Hence, this matrix is Hermitian. However, it is not symmetric since the (1, 2)th
and (2, 1)th entries differ. Matrix (b) is easily seen to be symmetric by inspec-
tion and Hermitian as well. Matrix (c) is symmetric since the (1, 2)th and
(2, 1)th entries agree, but it is not Hermitian since

[
1 1 + i

1 − i 2i

]∗
=
[

1 1 + i
1 − i 2i

]T

=
[

1 1 + i
1 − i −2i

]
,

and this last matrix is clearly not equal to matrix (c). �

Example 2.37. Consider the quadratic form (this means a homogeneous
second-degree polynomial in its variables)

Q(x, y, z) = x2 + 2y2 + z2 + 2xy + yz + 3xz.

Express this function in terms of matrix products and transposes.

Solution. Write the quadratic form as

x(x + 2y + 3z) + y(2y + z) + z2 =
[
x y z

]
⎡
⎣x + 2y + 3z

2y + z
z

⎤
⎦

=
[
x y z

]
⎡
⎣1 2 3

0 2 1
0 0 1

⎤
⎦
⎡
⎣x

y
z

⎤
⎦ = xT Ax,

where

x = (x, y, z) and A =

⎡
⎣1 2 3

0 2 1
0 0 1

⎤
⎦. �

Rank of the Matrix Transpose

A basic question is how the rank of a matrix transpose (or Hermitian trans-
pose) is connected to the rank of the matrix. There is a nice answer. We will
focus on transposes. First we need the following theorem.
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Theorem 2.4. Let A,B be matrices such that the product AB is defined.
Then

rankAB ≤ rankA.

Proof. Let E be a product of elementary matrices such that EA = R,
where R is the reduced row echelon form of A. If rankA = r, then the first r
rows of R have leading entries of 1, while the remaining rows are zero rows.
Also, we saw in Chapter 1 that elementary row operations do not change the
rank of a matrix, since according to Corollary 1.1 they do not change the
reduced row echelon form of a matrix. Therefore,

rankAB = rankE(AB) = rank(EA)B = rankRB.

Now the matrix RB has the same number of rows as R, and the first r of these
rows may or may not be nonzero, but the remaining rows must be zero rows,
since they result from multiplying columns of B by the zero rows of R. If we
perform elementary row operations to reduce RB to its reduced row echelon
form we will possibly introduce more zero rows than R has. Consequently,
rankRB ≤ r = rankA, which completes the proof. �

Theorem 2.5. Rank Invariant Under Transpose For any matrix A,

rankA = rankAT .

Proof. As in the previous theorem, let E be a product of elementary
matrices such that EA = R, where R is the reduced row echelon form of A. If
rankA = r, then the first r rows of R have leading entries of 1 whose column
numbers form an increasing sequence, while the remaining rows are zero rows.
Therefore, RT is a matrix whose columns have leading entries of 1 and whose
row numbers form an increasing sequence. Use elementary row operations to
clear out the nonzero entries below each column with a leading 1 to obtain a
matrix whose rank is equal to the number of such leading entries, i.e., equal
to r. Thus, rankRT = r.

From Theorem 2.4 we have that rankAT ET ≤ rankAT . It follows that

rankA = rankRT = rankAT ET ≤ rankAT .

Substitute the matrix AT for the matrix A in this inequality, to obtain that

rankAT ≤ rank(AT )T = rankA.

It follows from these two inequalities that rankA = rankAT . �

It is instructive to see how a specific example might work out in the pre-
ceding proof. For example, R might look like this, where an x designates an
arbitrary entry:

http://dx.doi.org/10.1007/978-3-319-74748-4_1
http://dx.doi.org/10.1007/978-3-319-74748-4_1
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R =

⎡
⎢⎢⎣

1 0 x 0 x
0 1 x 0 x
0 0 0 1 x
0 0 0 0 0

⎤
⎥⎥⎦ ,

so that RT is

RT =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
x x 0 0
0 0 1 0
x x x 0

⎤
⎥⎥⎥⎥⎦ .

Thus, if we use elementary row operations to zero out the entries below a
column pivot, all entries to the right and below this pivot are unaffected by
these operations. Now start with the leftmost column and proceed to the right,
zeroing out all entries under each column pivot. The result is a matrix that
looks like ⎡

⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

Now swap rows to move the zero rows to the bottom if necessary, and we see
that the reduced row echelon form of RT has exactly as many nonzero rows
as did R, that is, r nonzero rows.

A first application of this important fact is to give a fuller picture of the
rank of a product of matrices than that given by Theorem 2.4:

Corollary 2.3. Rank of Matrix Product If the product AB is defined, then

rankAB ≤ min{rankA, rank B}.

Proof. We know from Theorem 2.4 that

rankAB ≤ rankA and rankBT AT ≤ rankBT .

Since BT AT = (AB)T , Theorem 2.5 tells us that

rankBT AT = rankAB and rankBT = rankB.

Put all this together, and we have

rankAB = rankBT AT ≤ rankBT = rankB.

It follows that rankAB is at most the smaller of rankA and rankB, which is
what the corollary asserts. �
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Another useful application of this result sheds some light on certain kinds
of matrix inverses that are discussed in the next section.

Corollary 2.4. Let A be an m × n matrix. If there exists a matrix B such
that AB = Im, then m ≤ n and rankA = m; if there exists a matrix B such
that BA = In, then n ≤ m and rankA = n.

Proof. (Note that if A is m×n and AB = I, then a size check shows that
B is n × m and we must have I = Im.) From Corollary 2.3 we obtain that

rank Im = m = rankAB ≤ min {rankA, rankB} ≤ rankA ≤ min {m,n} ≤ n,

from which the first statement follows. For the second, note that if BA = I,
then (BA)T = AT BT = IT = I, and since rankA = rankAT by Theorem 2.5,
the result follows from the first statement by interchanging the roles of m and
n. �

2.4 Exercises and Problems

Exercise 1. Convert the following 3 × 3 elementary operations to matrix form
and convert matrices to elementary operation form.
(a) E23 (3) (b) E13 (c) E3 (2) (d) ET

23 (−1)

(e)

⎡
⎣1 3 0

0 1 0
0 0 1

⎤
⎦ (f)

⎡
⎣ 1 0 0

0 1 0
−a 0 1

⎤
⎦ (g)

⎡
⎣1 0 0

0 3 0
0 0 1

⎤
⎦ (h)

⎡
⎣1 0 0

0 1 0
2 0 1

⎤
⎦

Exercise 2. Convert the following 4 × 4 elementary operations to matrix form
and convert matrices to elementary operation form.
(a) ET

24 (b) E4 (−1) (c) ET
3 (2) (d) E14 (−1)

(e)

⎡
⎢⎢⎣

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤
⎥⎥⎦ (f)

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 4

⎤
⎥⎥⎦ (g)

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

−3 0 0 1

⎤
⎥⎥⎦

Exercise 3. Describe the effect of multiplying the 3×3 matrix A by each matrix
in Exercise 1 on the left.

Exercise 4. Describe the effect of multiplying the 4×4 matrix A by each matrix
in Exercise 2 on the right.

Exercise 5. Compute the reduced row echelon form of the following matrices
and express each form as a product of elementary matrices and the original
matrix.

(a)
[

1 2
1 3

]
(b)

⎡
⎣1 1 0

0 1 1
0 2 2

⎤
⎦ (c)

[
1 1 0
1 1 −2

]
(d)

[
0 1 + i i
1 0 −2

]
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Exercise 6. Compute the reduced row echelon form of the following matrices
and express each form as a product of elementary matrices and the original
matrix.

(a)

⎡
⎣2 1

0 1
0 2

⎤
⎦ (b)

⎡
⎣1 1 1

0 0 0
1 2 2

⎤
⎦ (c)

[
1 1
1 1 + i

]
(d)

[
2 2 0 2
1 1 −4 3

]

Exercise 7. Identify a complete but minimal list of simple structure descrip-
tions that apply to these matrices (e.g., if “upper triangular,” omit “triangu-
lar.”)

(a)

⎡
⎣0 0 0

0 0 3
0 0 0

⎤
⎦ (b)

⎡
⎢⎢⎣

2 1 4 2
0 2 1 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ (c) I3 (d)

[
1 0
0 −1

]
(e)

[
2 0
3 1

]

Exercise 8. Identify the minimal list of simple structure descriptions that apply
to these matrices.

(a)
[

2 1
3 2

]
(b)

⎡
⎢⎢⎣

2 0 0 0
1 2 0 0
0 0 1 0
1 0 1 1

⎤
⎥⎥⎦ (c)

⎡
⎣0 0 0

0 0 3
0 0 0

⎤
⎦ (d)

⎡
⎢⎢⎣

−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2

⎤
⎥⎥⎦

Exercise 9. Identify the appropriate blocking and calculate the matrix
product AB using block multiplication, where

A =

⎡
⎢⎢⎣

0 0 2 0 0
0 0 0 2 0
0 0 0 0 2
4 1 2 1 3

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

0 0 −1 0
0 0 0 −1
0 0 1 2
2 2 −1 1
1 1 3 2

⎤
⎥⎥⎥⎥⎦ ,

and as many submatrices that form scalar matrices or zero matrices are
blocked out as possible.

Exercise 10. Confirm that sizes are correct for block multiplication and calcu-
late the matrix product AB, where

A =
[

R 0
S T

]
, B =

[
U
V

]
, R =

[
1 1 0

]
, S =

[
1 1 1
1 2 1

]
, T =

[
1 −1
2 2

]
, U =⎡

⎣1 0
1 2
1 1

⎤
⎦, and V =

[
3 1
0 1

]
.

Exercise 11. Express the matrix

⎡
⎣1 2 1

0 0 0
2 4 2

⎤
⎦ as an outer product of two vectors.
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Exercise 12. Express the rank-two matrix

⎡
⎣1 −1 1

0 0 0
2 0 0

⎤
⎦ as the sum of two outer

products of vectors.

Exercise 13. Compute the transpose and conjugate transpose of the following
matrices and determine which are symmetric or Hermitian.

(a)
[
1 −3 2

]
(b)

⎡
⎣2 1

0 3
1 −4

⎤
⎦ (c)

[
1 i

−i 2

]
(d)

⎡
⎣1 1 3

1 0 0
3 0 2

⎤
⎦

Exercise 14. Determine which of the following matrices are symmetric or Her-
mitian.

(a)

⎡
⎣ 1 −3 2

−3 0 0
2 0 1

⎤
⎦ (b)

[
1 1 1
1 1 1

]
(c)

[
i 1

−1 i

]
(d)

⎡
⎣1 0 0

0 4 1
0 1 2

⎤
⎦

Exercise 15. Answer True/False.
(a) Eij (c)T = Eji (c).
(b) Every elementary matrix is symmetric.
(c) The rank of the matrix A may differ from the rank of AT .
(d) Every real diagonal matrix is Hermitian.
(e) For matrix A and scalar c, (cA)∗ = cA∗.

Exercise 16. Answer True/False and give reasons.
(a) For matrices A,B, (AB)T = BT AT .
(b) Every diagonal matrix is symmetric.
(c) rank (AB) = min {rankA, rank B}.
(d) Every diagonal matrix is Hermitian.
(e) Every tridiagonal matrix is symmetric.

Exercise 17. Express the quadratic form Q(x, y, z) = 2x2 + y2 + z2 + 2xy +
4yz − 6xz in the matrix form xT Ax, where A has as few nonzero entries as
possible.

Exercise 18. Express the quadratic form Q(x, y, z) = x2 + y2 − z2 + 4yz − 6xz
in the matrix form xT Ax, where A is a lower triangular matrix.

Exercise 19. Let A =
[−2 1 − 2i

0 3

]
and verify that both A∗A and AA∗ are

Hermitian.

Exercise 20. A square matrix A is called normal if A∗A = AA∗. Determine
which of the following matrices are normal.

(a)
[

2 i
1 2

]
(b)

⎡
⎣1 0 0

0 1 −1
0 −1 1

⎤
⎦ (c)

[
1 i
1 2 + i

]
(d)

[
1 −√

3√
3 1

]



2.4 Special Matrices and Transposes 117

Exercise 21. Let A be an m×p matrix and B = [b1,b2, . . . ,bn] a p×n matrix
with columns bj . Justify the block multiplication AB = [Ab1, Ab2, . . . , Abn]

and illustrate it in the case that A =
[

1 2 0
3 0 4

]
and B =

⎡
⎣2 1

0 3
1 −4

⎤
⎦.

Exercise 22. Let A = [b1,b2, . . . ,bn] be an m×n matrix and b = (b1, b2, . . . , bn)
an n×1 vector. Justify the block multiplication Ab = Ab1 + . . . Abn and illus-

trate it in the case that A =
[

1 2 0
3 0 4

]
and b = (1,−1, 2).

Problem 23. Show that a matrix is diagonal if it is both triangular and sym-
metric.

*Problem 24. Let A and C be square matrices and suppose that the matrix

M =
[

A B
0 C

]
is in block form. Show that for some matrix D, M2 =

[
A2 D
0 C2

]
.

Problem 25. Show that if C =
[

A 0
0 B

]
in block form, then rankC = rankA +

rankB.

Problem 26. Prove from the definition that (AT )T = A.

Problem 27. Let A be an m × n matrix. Show that both A∗A and AA∗ are
Hermitian.

Problem 28. Use Corollary 2.3 to prove that the outer product of any two
vectors is either a rank-one matrix or zero.

*Problem 29. Show that if P and Q are stochastic matrices of the same size,
then PQ is also stochastic.

Problem 30. Let A be a square real matrix. Show the following.
(a) The matrix B = 1

2

(
A + AT

)
is symmetric.

(b) The matrix C = 1
2

(
A − AT

)
is skew-symmetric (a matrix C is skew-

symmetric if CT = −C.)
(c) The matrix A can be expressed as the sum of a symmetric matrix and a
skew-symmetric matrix.
(d) With B and C as in parts (a) and (b), show that for any vector x of
conformable size, xT Ax = xT Bx.

(e) Express A =

⎡
⎣2 2 −6

0 1 4
0 0 1

⎤
⎦ as a sum of a symmetric and a skew-symmetric

matrix.
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Problem 31. Find all 2 × 2 idempotent upper triangular matrices A (idempo-
tent means A2 = A).

*Problem 32. Let D be a diagonal matrix with distinct entries on the diagonal
and B any other matrix of the same size. Show that DB = BD if and only if
B is diagonal.

Problem 33. Show that if U is an n × n strictly upper triangular matrix, then
Un = 0, so U is nilpotent. (It might help to see what happens in a 2 × 2 and
a 3 × 3 case first.)

Problem 34. Use Problem 30 to show that every quadratic form Q(x) = xT Ax
defined by matrix A can be defined by a symmetric matrix B = (A + AT )/2
as well. Apply this result to the matrix of Example 2.37.

*Problem 35. Suppose that A = B +C, where B is a symmetric matrix and C
is a skew-symmetric matrix. Show that B = 1

2 (A + AT ) and C = 1
2 (A − AT ).

*Problem 36. The digraph H that results from reversing all the arrows in a
digraph G is called reverse digraph of G. Show that if A is the adjacency
matrix for G then AT is the adjacency matrix for the reverse digraph H.

2.5 Matrix Inverses

Definitions

We have seen that if we could make sense of “1/A,” then we could write the
solution to the linear system Ax = b as simply x = (1/A)b. We are going
to tackle this problem now. First, we need a definition of the object that we
are trying to uncover. Notice that “inverses” could work only on one side. For
example, [

1 2
] [−1

1

]
= [1] =

[
2 3

] [−1
1

]
,

which suggests that both
[
1 2

]
and

[
2 3

]
should qualify as left inverses of

the matrix
[−1

1

]
, since multiplication on the left by them results in a 1 × 1

identity matrix. As a matter of fact, right and left inverses are studied and
do have applications. But they have some unusual properties such as non-
uniqueness. We are going to focus on a type of inverse that is closer to the
familiar inverses in fields of numbers, namely, two-sided inverses. These make
sense only for square matrices, so the non-square example above is ruled out.

Definition 2.18. Invertible Matrix Let A be a square matrix. Then a (two-
sided) inverse for A is a square matrix B of the same size as A such that
AB = I = BA. If such a B exists, then the matrix A is said to be invertible.

Of course, any nonsquare matrix is non-invertible. Square matrices are
classified as either “singular ” (non-invertible), or “nonsingular ” (invertible).
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Nonsingular MatrixSince we will mostly be concerned with two-sided
inverses, the unqualified term “inverse” will be under-
stood to mean a “two-sided inverse.” Notice that this definition is actually
symmetric in A and B. In other words, if B is an inverse for A, then A is an
inverse for B.

Examples of Inverses

Example 2.38. Show that B =
[

1 1
1 2

]
is an inverse for A =

[
2 −1

−1 1

]
.

Solution. All we have to do is check the definition. But remember that
there are two multiplications to confirm. (We’ll show later that this isn’t
necessary, but right now we are working strictly from the definition.) We have

AB =
[

2 −1
−1 1

] [
1 1
1 2

]
=
[

2 · 1 − 1 · 1 2 · 1 − 1 · 2
−1 · 1 + 1 · 1 −1 · 1 + 1 · 2

]
=
[

1 0
0 1

]
= I

and similarly

BA =
[

1 1
1 2

] [
2 −1

−1 1

]
=
[

1 · 2 + 1 · (−1) 1 · (−1) + 1 · 1
1 · 2 + 2 · (−1) 1 · (−1) + 2 · 1

]
=
[

1 0
0 1

]
= I.

Therefore, the definition for inverse is satisfied, so that A and B work as
inverses to each other. �

Of course not every square matrix is invertible: Consider, e.g., zero matri-
ces. However it is sometimes not entirely obvious why a matrix should not be
invertible.

Example 2.39. Show that the matrix A =
[

1 1
1 1

]
cannot have an inverse.

Solution. How do we get our hands on a “non-inverse”? We try an indirect
approach. If A had an inverse B, then we could always find a solution to the
linear system Ax = b by multiplying each side on the left by B to obtain that
BAx = Ix = x = Bb, no matter what right-hand-side vector b we used. Yet
it is easy to come up with right-hand-side vectors for which the system has no
solution, e.g., try b = (1, 2). Since the resulting system is clearly inconsistent,
there cannot be an inverse matrix B, which is what we wanted to show. �

One moral of this last example is that it is not enough for every entry of a
matrix to be nonzero for the matrix itself to be invertible. Our next example
produces a gold mine of invertible matrices, namely any elementary matrix
we can construct.

Example 2.40. Find formulas for inverses of all the elementary matrices.

Solution. Recall from Corollary 2.2 that left multiplication by an ele-
mentary matrix is the same as performing the corresponding elementary
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Elementary Matrix Inverses row operation. Furthermore, from the dis-
cussion following Theorem 1.2 we see the

following:

• Eij : The elementary operation of switching the ith and jth rows is undone
by applying Eij . Hence,

EijEij = EijEijI = I,

so that Eij works as its own inverse. (This is rather like −1, since (−1) ·
(−1) = 1.)

• Ei(c): The elementary operation of multiplying the ith row by the nonzero
constant c, is undone by applying Ei(1/c). Hence,

Ei(1/c)Ei(c) = Ei(1/c)Ei(c)I = I.

• Eij(d): The elementary operation of adding d times the jth row to the ith
row is undone by applying Eij(−d). Hence,

Eij(−d)Eij(d) = Eij(−d)Eij(d)I = I. �

Example 2.41. Show that if D is a diagonal matrix with nonzero diagonal
entries, then D is invertible.

Solution. Suppose that

D =

⎡
⎢⎢⎢⎣

d1 0 · · · 0
0 d2 0 0
... 0

. . .
...

0 0 · · · dn

⎤
⎥⎥⎥⎦ .

For a convenient shorthand, we write D = diag {d1, d2, . . . , dn} .

Diagonal Matrix Shorthand and Inverse It is easily checked that if E =
diag {e1, e2, . . . , en}, then

DE = diag {d1e1, d2e2, . . . , dnen} = diag {e1d1, e2d2, . . . , endn} = ED.

Therefore, if di �= 0, for i = 1, . . . , n, then

diag {d1, d2, . . . , dn} diag {1/d1, 1/d2, . . . , 1/dn} = diag {1, 1, . . . , 1} = In,

which shows that diag {1/d1, 1/d2, . . . , 1/dn} is an inverse of D. �

Laws of Inverses

Here are some of the basic laws of inverse calculations.

http://dx.doi.org/10.1007/978-3-319-74748-4_1
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Laws of Matrix Inverses
Let A,B,C be matrices of the appropriate sizes so that the following
multiplications make sense, I a suitably sized identity matrix, and c a nonzero
scalar. Then

(1) (Uniqueness) If the matrix A is invertible, then it has only one inverse,
which is denoted by A−1.

(2) (Double Inverse) If A is invertible, then
(
A−1

)−1 = A.
(3) (2/3 Rule) If any two of the three matrices A, B, and AB are invertible,

then so is the third, and moreover, (AB)−1 = B−1A−1.
(4) If A is invertible and c �= 0, then (cA)−1 = (1/c)A−1.
(5) (Inverse/Transpose) If A is invertible, then (AT )−1 = (A−1)T and

(A∗)−1 = (A−1)∗.
(6) (Cancellation) Suppose A is invertible. If AB = AC or BA = CA, then

B = C.
(7) (Rank) If A is invertible, then rankA = n and the reduced row echelon

form of A is In.

Note 2.2. Observe that the 2/3 Rule reverses order when taking the inverse of
a product. This should remind you of the operation of transposing a product.
A common mistake is to forget to reverse the order. Secondly, notice that the
cancellation law restores something that appeared to be lost when we first
discussed matrices. Yes, we can cancel a common factor from both sides of an
equation, but (1) the factor must be on the same side and (2) the factor must
be an invertible matrix.

Verification of Laws: Suppose that both B and C work as inverses to the
matrix A. We will show that these matrices must be identical. The associative
and identity laws of matrices yield

B = BI = B(AC) = (BA)C = IC = C.

Henceforth, we shall write A−1 for the unique (two-sided) inverse of the
Matrix Inverse Notationsquare matrix A, provided of course that there

is an inverse at all (remember that existence of inverses is not a sure thing).
The double inverse law is a matter of examining the definition of inverse:

AA−1 = I = A−1A

shows that A is an inverse matrix for A−1. Hence, (A−1)−1 = A.
Now suppose that A and B are both invertible and of the same size. Using

the laws of matrix arithmetic, we see that

AB(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and that
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(B−1A−1)AB = B−1(A−1A)B = B−1IB = B−1B = I.

In other words, the matrix B−1A−1 works as an inverse for the matrix AB,
which is what we wanted to show. We leave the remaining cases of the 2/3
Rule as an exercise.

Suppose that c is nonzero and perform the calculation

(cA)(1/c)A−1 = (c/c)AA−1 = 1 · I = I.

A similar calculation on the other side shows that (cA)−1 = (1/c)A−1.
Next, apply the transpose operator to the definition of inverse ((2.18)) and

use the law of transpose products to obtain that

(A−1)T AT = IT = I = AT (A−1)T .

This shows that the definition of inverse is satisfied for (A−1)T relative to AT ,
that is, that (AT )−1 = (A−1)T , which is the inverse/transpose law. The same
argument works with conjugate transpose in place of transpose.

Next, if A is invertible and AB = AC, then multiply both sides of this
equation on the left by A−1 to obtain that

A−1(AB) = (A−1A)B = B = A−1(AC) = (A−1A)C = C,

which is the cancellation that we want.
Finally, if A is n × n invertible with inverse B, then AB = In, so n =

rank In ≤ rankA ≤ n, with the first inequality due to Theorem 2.4 and the
second due to the size of A (Theorem 1.4). Hence, rankA = n; but the only
n × n full rank reduced row echelon form is In, so that must be the reduced
row echelon form of A. �

We can now extend the power notation to negative exponents. Let A be an
invertible matrix and k a positive integer. Then we write

Negative Matrix Power

A−k = A−1A−1 · · · A−1,

where the product is taken over k terms.
The laws of exponents that we saw earlier can now be expressed for arbi-

trary integers, provided that A is invertible. Here is an example of how we
can use the various laws of arithmetic and inverses to carry out an inverse
calculation.

Example 2.42. Let

A =

⎡
⎣1 2 0

0 1 1
0 0 1

⎤
⎦ .

Show that (I − A)3 = 0 and use this to find A−1.

http://dx.doi.org/10.1007/978-3-319-74748-4_1
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Solution. First we calculate that

(I − A) =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦−

⎡
⎣1 2 0

0 1 1
0 0 1

⎤
⎦ =

⎡
⎣0 −2 0

0 0 −1
0 0 0

⎤
⎦

and check that

(I − A)3 =

⎡
⎣0 −2 0

0 0 −1
0 0 0

⎤
⎦
⎡
⎣0 −2 0

0 0 −1
0 0 0

⎤
⎦
⎡
⎣0 −2 0

0 0 −1
0 0 0

⎤
⎦

=

⎡
⎣0 0 2

0 0 0
0 0 0

⎤
⎦
⎡
⎣0 −2 0

0 0 −1
0 0 0

⎤
⎦ =

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ .

Next we do some symbolic algebra, using the laws of matrix arithmetic:

0 = (I − A)3 = (I − A)(I2 − 2A + A2) = I − 3A + 3A2 − A3.

Subtract all terms involving A from both sides to obtain that

3A − 3A2 + A3 = A · 3I − 3A2 + A3 = A(3I − 3A + A2) = I.

Since A(3I − 3A + A2) = (3I − 3A + A2)A, we see from definition of inverse
that

A−1 = 3I − 3A + A2 =

⎡
⎣1 −2 2

0 1 −1
0 0 1

⎤
⎦ . �

Notice that in the preceding example we were careful not to leave a “3”
behind when we factored out A from 3A. The reason is that 3+3A+A2 makes
no sense as a sum, since one term is a scalar and the other two are matrices.

Rank and Inverse Calculation

Although we can calculate a few examples of inverses such as the last example,
we really need a general procedure. So let’s get right to the heart of the
matter. How can we find the inverse of a matrix, or decide that none exists?
Actually, we already have done all the hard work necessary to understand
computing inverses. The secret is in the notions of reduced row echelon form
and rank. (Remember, we use elementary row operations to reduce a matrix
to its reduced row echelon form. Once we have done so, the rank of the matrix
is simply the number of nonzero rows in the reduced row echelon form.) Let’s
recall the results of Example 2.30:

[
1 0 2
0 1 3

]
= E12(−1)E2(−1/3)E21(−2)E1(1/4)E12

[
2 −1 1
4 4 20

]
.
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Now remove the last column from each of the matrices at the right of each
side and we have this result:[

1 0
0 1

]
= E12(−1)E2(−1/3)E21(−2)E1(1/4)E12

[
2 −1
4 4

]
.

This suggests that if A =
[

2 −1
4 4

]
, then

A−1 = E12(−1)E2(−1/3)E21(−2)E1(1/4)E12.

To prove this, we argue in the general case as follows: Let A be an n×n matrix
and suppose that by a succession of elementary row operations E1, E2, . . . , Ek,
we reduce A to its reduced row echelon form R, which happens to be I. In
the language of matrix multiplication, what we have obtained is

I = EkEk−1 · · · E1A.

Now let B = EkEk−1 · · · E1. By repeated application of the 2/3 rule, we see
that a product of any number of invertible matrices is invertible. Since each
elementary matrix is invertible, it follows that B is. Multiply both sides of
the equation I = BA by B−1 to obtain that B−1I = B−1 = B−1BA = A.
Therefore, A is the inverse of the matrix B, hence is itself invertible.

A practical trick for storing this product of elementary matrices on the fly:

Superaugmented Matrix Form what we term the superaugmented matrix
[A | I]. If we perform the elementary operation

E on the superaugmented matrix, we have the same result as

E[A | I] = [EA | EI] = [EA | E].

So the matrix occupied by the I part of the superaugmented matrix is just the
product of the elementary matrices that we have used so far. Now continue
applying elementary row operations until the part of the matrix originally
occupied by A is reduced to the reduced row echelon form of A. We end up
with this schematic picture of our calculations:

[
A | I

]−−−−−−−−−−→
E1, E2, . . . , Ek

[
I | B

]
,

where B = EkEk−1 · · · E1 is the product of the various elementary matrices
we used, composed in the correct order of usage. We can summarize this
discussion with the following algorithm:

Inverse Algorithm
Given an n × n matrix A, to compute A−1:

(1) Form the superaugmented matrix Ã = [A | In].
(2) Reduce the first n columns of Ã to reduced row echelon form by per-

forming elementary operations on the matrix Ã resulting in the matrix
[R | B].

(3) If R = In then set A−1 = B; otherwise, A is singular and A−1 does not
exist.
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Example 2.43. Use the inverse algorithm to compute the inverse of Exam-
ple 2.8,

A =

⎡
⎣1 2 0

0 1 1
0 0 1

⎤
⎦ .

Solution. Notice that this matrix is already upper triangular. Therefore,
as in Gaussian elimination, it is a bit more efficient to start with the bottom
pivot and clear out entries above in reverse order. So we compute

[A | I3] =

⎡
⎣1 2 0 1 0 0

0 1 1 0 1 0
0 0 1 0 0 1

⎤
⎦−−−−−→

E23(−1)

⎡
⎣1 2 0 1 0 0

0 1 0 0 1 −1
0 0 1 0 0 1

⎤
⎦−−−−−−→

E1,2(−2)

⎡
⎣1 0 0 1 −2 2

0 1 0 0 1 −1
0 0 1 0 0 1

⎤
⎦ .

We conclude that A is indeed invertible and

A−1 =

⎡
⎣1 −2 2

0 1 −1
0 0 1

⎤
⎦ . �

There is a simple formula for the inverse of a 2×2 matrix A =
[

a b
c d

]
. Set

D = ad − bc. It is easy to verify that if D �= 0, then

Two by Two Inverse
A−1 =

1
D

[
d −b

−c a

]
.

Example 2.44. Use the 2×2 inverse formula to find the inverse of the matrix

A =
[

1 −1
1 2

]
, and verify that the same answer results if we use the inverse

algorithm.

Solution. First we apply the inverse algorithm:
[

1 −1 1 0
1 2 0 1

]−−−−−−→
E21(−1)

[
1 −1 1 0
0 3 −1 1

]−−−−−→
E3(1/3)

[
1 −1 1 0
0 1 −1/3 1/3

]

−−−−→
E12(1)

[
1 0 2/3 1/3
0 1 −1/3 1/3

]
.

Thus, we have found that[
1 −1
1 2

]−1

= 1
3

[
2 1

−1 1

]
.

To apply the inverse formula, calculate D = 1 ·2−1 · (−1) = 3. Swap diagonal
entries of A, negate the off-diagonal entries, and divide by D to get the same
result as in the preceding equation for the inverse. �

The formula of the preceding example is well worth memorizing, since we
will frequently need to find the inverse of a 2 × 2 matrix. Notice that in order
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for it to make sense, we have to have D nonzero. The number D is called the
determinant of the matrix A. We will have more to say about this number in
the next section. It is fairly easy to see why A must have D �= 0 in order for
its inverse to exist if we look ahead to the next theorem. Notice in the above
elementary operation calculations that if D = 0 then elementary operations
on A lead to a matrix with a row of zeros. Therefore, the rank of A will be
smaller than 2. Here is a summary of our current knowledge of the invertibility
of a square matrix.

Theorem 2.6. Conditions for Invertibility The following are equivalent con-
ditions on the square n × n matrix A:

(1) The matrix A is invertible.
(2) There is a square matrix B such that BA = I.
(3) The linear system Ax = b has a unique solution for every right-hand-side

vector b.
(4) The linear system Ax = b has a unique solution for some right-hand-side

vector b.
(5) The linear system Ax = 0 has only the trivial solution.
(6) rank A = n.
(7) The reduced row echelon form of A is In.
(8) The matrix A is a product of elementary matrices.
(9) There is a square matrix B such that AB = I.

Proof. The method of proof is to show that each of conditions (1)–(8)
implies the next, and that condition (9) implies (1). This connects (1)–(9) in
a circle, so that any one condition will imply any other and therefore all are
equivalent to each other. Here is our chain of reasoning:

(1) implies (2): Assume A is invertible. Then the choice B = A−1 satisfies
condition (2).

(2) implies (3): Assume (2) is true. We can multiply both sides of the
equation Ax = b on the left by B to get that Bb = BAx = Ix = x.
So there is only one solution, if any. On the other hand, if the system were
inconsistent then we would have rank A < n. By Corollary 2.3, rank BA < n,
contradicting the fact that rank In = n. Hence, there is a solution, which
proves (3).

(3) implies (4): This statement is obvious.
(4) implies (5): Assume (4) is true. Say the unique solution to Ax = b is

x0. If the system Ax = 0 had a nontrivial solution, say z, then we could add
z to x0 to obtain a different solution x0 + z of the system Ax = b (check:
A(z + x0) = Az + Ax0 = 0 + b = b). This is impossible since (4) is true, so
(5) follows.

(5) implies (6): Assume (5) is true. We know from Theorem 1.5 that the
consistent system Ax = 0 has a unique solution precisely when the rank of A
is n. Hence, (6) must be true.

http://dx.doi.org/10.1007/978-3-319-74748-4_1
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(6) implies (7): Assume (6) is true. The reduced row echelon form of A is
the same size as A, that is, n × n, and must have a row pivot entry 1 in every
row. Also, the pivot entry must be the only nonzero entry in its column. This
exactly describes the matrix In, so that (7) is true.

(7) implies (8): This is an immediate consequence of the Inverse Algorithm.
(8) implies (9): Assume (8) is true. Repeated application of the 2/3 Rule

shows that the product of any number of invertible matrices is itself invertible.
Since elementary matrices are invertible, so is A in which case the choice
B = A−1 yields (9).

(9) implies (1): Assume (9) is true. Then IT = I = (AB)T = BT AT , so
that AT satisfies (2) which implies (8). Therefore, the matrix AT is a product
of elementary matrices, say AT = E1E2 · · · Em. It follows from Law (4) and
repeated application of Law (2) of Matrix Transpose that

A =
(
AT

)T
= (E1E2 · · · Em)T = ET

mET
m−1 · · · ET

1 .

However, we already know that products of invertible matrices are invertible
by the 2/3 Rule and that transposes of elementary matrices are themselves
elementary, hence invertible. It follows that A is invertible, which is condition
(1). �

Notice that Theorem 2.6 relieves us of the responsibility of checking that a
square one-sided inverse of a square matrix is a two-sided inverse: This is now
automatic in view of conditions (2) and (9). Another interesting consequence
of this theorem that has been found to be useful is an either/or statement, so
it will always have something to say about any square linear system. This type
of statement is sometimes called a Fredholm alternative. Many theorems go by
this name, and we’ll state another one in Chapter 5. Notice that a matrix is not
invertible if and only if one of the conditions of the theorem fails. Certainly,
it is true that a square matrix is either invertible or not invertible. That’s all
the Fredholm alternative really says, but it uses the equivalent conditions (3)
and (5) of Theorem 2.6 to say it in a different way:

Corollary 2.5. Fredholm Alternative The square linear system Ax = b
either has a unique solution for every right-hand-side vector b or there is
a nonzero solution x = x0 to the homogeneous system Ax = 0.

The PageRank Problem

We now have sufficient machinery to provide a fuller description and analysis
of the PageRank technology which was introduced in Section 1.1 of Chapter 1.
We shall tackle the ranking problem from a perspective somewhat different
from the introduction to the PageRank in Chapter 1, page 8, though curiously,
we will end up with essentially the same system of equations. To illustrate, we
consider the page ranking problem of six web pages that are shown as vertices
of the digraph Figure 2.7 and linked accordingly.

http://dx.doi.org/10.1007/978-3-319-74748-4_5
http://dx.doi.org/10.1007/978-3-319-74748-4_1
http://dx.doi.org/10.1007/978-3-319-74748-4_1
http://dx.doi.org/10.1007/978-3-319-74748-4_1
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1

2

3 4 5 6

Fig. 2.7: A web with six pages as vertices and links as arrows

Example 2.45. Set up the system of page ranking for the digraph Figure 2.7
as in the third pass of Example 1.6 and express this system as a matrix
product.

Solution. Recall that each page obtains its importance from its weighted
backlinks. Let xi be the ranking of page i. Since each page divides its one unit
of influence among all pages to which it links we obtain this system:

x1 =
x3

3
x2 =

x1

2
+

x3

3
x3 =

x1

2
+

x2

1
x4 =

x3

3
x5 =

x6

1
x6 =

x5

1

Define the matrix Q and vector x by

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1
3 0 0 0

1
2 0 1

3 0 0 0
1
2 1 0 0 0 0
0 0 1

3 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, x = (x1,x2, x3, x4, x5)

so that the system can be expressed as

x = Qx. (2.3)

�
What the preceding example tells us is that the desired ranking vector x

is really a stationary vector for the transition matrix Q. Moreover, since the
third pass ranking for any web graph consists of a system of equations like

http://dx.doi.org/10.1007/978-3-319-74748-4_1
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those of the example, it is clear that such a ranking can always be expressed
in the form of equation (2.3) and hence completely defined by its transition
matrix Q.

One can also apply the PageRank idea to graphs by thinking of a graph
as a digraph in which every link from one node to another is matched a link
in the opposite direction. This follows immediately from the fact that the
adjacency matrix of a graph is symmetric, so that if we construe it to be the
adjacency matrix of a digraph then for every edge from vertex i to j there is
a corresponding edge from vertex j to i. The connection between adjacency
matrices and transition matrices for a page ranking can be rendered explicit
by the following theorem, whose proof is left as an exercise.

Theorem 2.7. Let A be the adjacency matrix of a graph or digraph and let
D be a diagonal matrix whose ith entry is either the inverse of the sum of all
entries in the ith row of A or zero if if this sum is zero. Then Q = AT D is
the transition matrix for the page ranking of this graph.

Next suppose that we think of web surfing as a random process with each
page as a state and the probabilities of moving from one state to another
given by a stochastic transition matrix P . Pages are then ranked in impor-
tance by the probabilities of visiting them in the long run. Perhaps the sim-
plest way to build such a matrix from a digraph is assume that the prob-
ability of transitioning from a vertex along any outgoing edge is equally
likely. If the resulting matrix is stochastic, we call it the surfing matrix

Surfing Matrixof this digraph. The transition matrix Q of the preceding
example is nearly a surfing matrix in that its entries are all
nonnegative with column sums 0 or 1. (Such a matrix is termed substochastic,
in the sense that it is a square matrix with nonnegative entries whose columns
sum to at most 1.) The 0 sums are the problem, so some repair is required
in order to transform Q into a surfing matrix. In the case of the graph in
Figure 2.7, the problem is only with vertex (or web page) 4: It is a dangling
node, that is, a vertex with no transitions to other vertices; hence, the fourth
column consists of zeros.

Example 2.46. Repair the dangling node problem for Example 2.45 and
exhibit the resulting stochastic surfing matrix.

Solution. This problem can be fixed easily enough: Introduce a correc-
tion probability distribution vector u and insert it into the fourth column.

Correction VectorA common choice in this situation is u = 1
ne where n

is the number of vertices of the graph and e is a vector of ones of length n. In
terms of the underlying graph this amounts to adding links from the dangling
node to every other node, which might be perfectly sensible in the absence
of other information about the dangling node. Another common choice is to
impose equally likely transitions to some particular related vertices, such as
connected ones. Effectively, any of these choices adds links to the original
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graph originating at the dangling node in some controlled fashion. In our
example we shall select only the vertices that connect by some directed path
to vertex 4, so the resulting correction vector is u = 1

3 (1, 1, 1, 0, 0, 0) and the
resulting transition matrix from one state to another is

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1
3

1
3 0 0

1
2 0 1

3
1
3 0 0

1
2 1 0 1

3 0 0
0 0 1

3 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

which is a (stochastic) surfing matrix suitable for a Markov chain. �
As we have noted, what the solution to the dangling node problem in the

preceding example really amounts to is to introduce additional connections
from the dangling node to other nodes in the original graph. For example,
application of Theorem 2.7 to the adjacency matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0
0 0 1 0 0 0
1 1 0 1 0 0
1 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

yields the matrices D and P of the preceding example. The graph represented
by this adjacency matrix is that of Figure 2.7 with additional outgoing edges
from vertex 4 to vertices 1, 2 and 3 itself. If instead we prefer to use the choice
u = 1

ne referenced above, the resulting adjacency matrix and surfing matrix
from application of Theorem 2.7 are

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0
0 0 1 0 0 0
1 1 0 1 0 0
1 1 1 1 1 1
0 0 0 0 0 1
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2 0 0 0 0 0
0 1 0 0 0 0
0 0 1

3 0 0 0
0 0 0 1

6 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

and P = AT D =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1
3

1
6 0 0

1
2 0 1

3
1
6 0 0

1
2 1 0 1

6 0 0
0 0 1

3
1
6 0 0

0 0 0 1
6 0 1

0 0 0 1
6 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

We now have a stochastic matrix, but there is another problem: There
may not be a unique steady state for a Markov chain with this transition
matrix, which means no unique ranking. Here is one possible solution: At
any vertex also give the surfer equal opportunity to randomly “teleport”
from one node to any other according to the probability distribution vector
v, called the teleportation vector. Next select a teleportation parameter α
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Teleportation Vector and Parameterwith 0 < α < 1 and let e =
(1, 1, . . . , 1) be a column vector of
ones the same size as v, so that the outer product veT is a stochastic matrix
whose columns are all equal to v.

Definition 2.19. PageRank Matrix Let P be a stochastic matrix, v a dis-
tribution vector of compatible size and α a teleportation parameter with
0 < α < 1. Then αP + (1 − α)veT is a PageRank matrix and the corre-
sponding PageRank problem is to find the stationary distribution vector x
that solves the equation

(
αP + (1 − α)veT

)
x = x. (2.4)

Notice that if x is a distribution vector, then eT x = 1 since eT x is just the
sum of the coordinates of x. Thus, equation (2.4) becomes αPx+(1−α)v = x
or, upon rearrangement of terms,

(I − αP )x = (1 − α)v. (2.5)

Note that the right-hand side of the identity
(
I + αP + · · · + αkP k

)
(I − αP ) = I − αk+1P k+1 (2.6)

consists of entries 1 − αk+1qii along the diagonal and −αk+1qij elsewhere,
with all qij positive and at most 1 since a product of stochastic matrices is
stochastic (see Problem 29 of Section 2.4). Since 0 < α < 1, passing to the
limit in each coordinate yields that

(
I + αP + · · · + αkP k + · · · ) (I − αP ) = I.

Hence, I − αP is invertible and equation (2.5) has unique solution

x = (1 − α)
(
I + αP + · · · + αkP k + · · · )v. (2.7)

Since all terms on the right-hand side are nonnegative, x has nonnegative
entries.

So let x be the unique solution to equation (2.5) and multiply both sides
of the equation on the left by eT . Note that eT P = eT since each column of
P is a distribution vector. We obtain

eT (I − αP )x = eT x − αeT x = (1 − α) eT x = (1 − α) eT v = (1 − α) · 1.

It follows that eT x = 1, that is, the coordinates of x sum to one. Therefore,
x is a distribution vector solving equation (2.5) and equation (2.4) as well,
since these equations are equivalent for such x.

We use these facts to obtain the key properties of the PageRank problem:
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Theorem 2.8. PageRank Theorem The PageRank matrix is stochastic and
the PageRank problem has a unique solution to which all Markov chains with
PageRank matrix as transition matrix converge.

Proof. Let B =
(
αP + (1 − α)veT

)
with P , v and α meeting the con-

ditions of a PageRank problem. The matrix veT is a square matrix whose
columns are all equal to the probability distribution vector v. Therefore, veT

is also stochastic by definition. It follows from Problem 26 of Section 2.3 that
B is also stochastic.

From the preceding discussion we know that equation (2.5) has a unique
solution x which is a distribution vector, so it also solves equation (2.4). So
consider a Markov chain

{
x(k)

}∞
k=0

with PageRank matrix B as transition
matrix. The stationary vector x satisfies

x =
(
αP + (1 − α)veT

)
x

and the Markov chain
{
x(k)

}∞
k=0

satisfies

x(k+1) =
(
αP + (1 − α)veT

)
x(k)

for all nonnegative integers k. Subtract the second equation from the first and
use the fact that eT x = eT x(k) = 1 to obtain

x − x(k+1) = αP
(
x − x(k)

)
.

Repeated application of this equation starting at k = 0 yields

x − x(k+1) = αkP k
(
x − x(0)

)
.

The matrix P k is itself stochastic (Problem 29 of Section 2.4). Hence, the
1-norm of P k

(
x − x(0)

)
is at most that of x − x(0) by the stochastic matrix

inequality (page 90). Therefore, the 1-norm of x − x(k+1) is at most αk times
a constant. Since α < 1, the numbers αk tend to zero, so that the coordinates
of x(k) tend to those of x, which completes the proof. �

Practical values of the parameter α typically lie in the range 0.5 ≤ α < 1
with α = 0.85 as a fairly common choice in practice. Intuitively, small values
of α would exaggerate the importance of the teleportation vector v. In the
case of a substochastic transition matrix, one possible choice for correction
vectors u accounting for dangling nodes is to set u = v for all such nodes.
This choice is called strongly preferential PageRank, while any other choice of
corrections is called a weakly preferential PageRank. (See the survey [13] by
David Gleich for a detailed discussion of these concepts.)

Next suppose that rather than identifying the most important pages as in
a web search for pages that are most pointed towards by backlinks, we are
interested in finding nodes in a digraph that are most influential as measured
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by outgoing links. One application of this notion of counting outgoing links
would be rankings of the power of vertices in a graph, analogous to the power
ratings discussed in Section 2.3. The PageRank idea is easily adapted to this

Reverse Page Ranksort of problem: Reverse the direction of each link
in the digraph. In terms of the edge set of a digraph
this simply means that the edge (j, k) of the digraph becomes the edge (k, j)
of the reverse graph, followed by an application of the PageRank methodology
to that reverse graph. In terms of the adjacency matrix A of the digraph, AT

is the adjacency matrix of the reverse digraph.

1

2

3

4

5

Fig. 2.8: An influence network with five influence nodes

Example 2.47. Sociologists have identified influence tendencies among five
groups of individuals according to the graph of Figure 2.8 in which an edge
(j, k) means that group j influences group k. Use this graph to rank the
influences of each group using reverse PageRank and compare it to the power
rating methodology of Section 2.3.

Solution. The first step is construct the adjacency matrix of this graph:

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
1 0 0 1 1
0 1 0 0 1
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦ .

From this we can calculate the power of each vertex from the sums of the
row entries of matrix A:

Sum
(
A + A2

)
= Sum

⎡
⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 1 1 1
1 2 1 1 2
0 1 2 0 1
1 0 1 1 1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

2
4
7
4
4

⎤
⎥⎥⎥⎥⎦ .

Thus, vertex 3 has the highest power rating of 7, vertices 2, 4 and 5 have a
power rating of 4 and vertex 1 has a power rating of 2.

Next we use the reverse PageRank to rank the influence of each group.
The adjacency matrix for the reverse graph is simply AT , which has no dan-
gling nodes. Therefore, the page ranking transition matrix for this graph is
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P =
(
AT

)T
D = AD, where D is the diagonal matrix with diagonal entries(

1, 1
2 , 1

2 , 1, 1
2

)
, i.e.,

P =

⎡
⎢⎢⎢⎢⎣

0 1
2 0 0 0

0 0 1
2 0 0

1 0 0 1 1
2

0 1
2 0 0 1

2
0 0 1

2 0 0

⎤
⎥⎥⎥⎥⎦ .

Next select a teleportation vector v =
(

1
5 , 1

5 , 1
5 , 1

5 , 1
5

)
and a teleportation

parameter α = 0.85. Solving the resulting PageRank system of equation (2.5)
with ALAMA calculator or other technology tool yields the (rounded) solution

x = (0.106, 0.180, 0.352, 0.183, 0.180) .

Thus, the reverse PageRank solution is a bit more refined than the power
ranking: Vertex 3 has the highest rank of 0.352, vertex 4 is second with rank
0.183, vertices 2 and 5 are tied for third with rank 0.180 and vertex 1 is last
with rank 0.106. Notice that the ordering 3, 4, 2, 5, 1 is consistent with an
ordering from the power ranking. �

*Solving Nonlinear Equations

We conclude this section with an application to the problem of solving sys-
tems of nonlinear equations. Although we focus on two equations in two
unknowns, the same ideas can be extended to any number of equations in
as many unknowns.

Recall from calculus that we could solve the one-variable equation f(x) = 0
for a solution point x1 at which f(x1) = 0 from a “nearby” point x0 by setting
dx = x1 − x0, and assuming that the change in f is

Δf = f(x1) − f(x0) = 0 − f(x0)
≈ df = f ′(x0) dx = f ′(x0)(x1 − x0).

Now solve for x1 in the equation −f(x0) = f ′(x0)(x1−x0) and get the equation

x1 = x0 − f(x0)
f ′(x0)

.

Replace 1 by n + 1 and 0 by n to obtain the famous Newton formula

xn+1 = xn − f(xn)
f ′(xn)

. (2.8)

The idea is to start with x0,use the formula to get x1 and if f(x1) is not
close enough to 0, then repeat the calculation with x1 in place of x0, and so
forth until a satisfactory value of x = xn is reached. How does this relate
to a multi-variable problem? We illustrate the basic idea in two variables.
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Newton’s Method for Systems

Example 2.48. Describe concisely an algorithm analogous to Newton’s method
in one variable to solve the two-variable problem

x2 + sin (πxy) = 1
x + y2 + ex+y = 3.

Solution. Our problem can be written as a system of two (nonlinear)
equations in two unknowns, namely

f (x, y) = x2 + sin (πxy) − 1 = 0

g (x, y) = x + y2 + ex+y − 3 = 0.

Now we can pull the same trick with differentials as we did in the one-variable
problem by setting dx = x1 − x0, dy = y1 − y0, where f (x1, y1) = 0, approx-
imating the change in both f and g by total differentials, and recalling the
definition of these total differentials in terms of partial derivatives. This leads
to the system

df = fx (x0, y0) dx + fy (x0, y0) dy ≈ f (x1, y1) − f (x0, y0) = −f ((x0, y0))
dg = gx (x0, y0) dx + gy (x0, y0) dy ≈ f (x1, y1) − g (x0, y0) = −g (x0, y0) .

Next, write everything in vector style, say

F (x) =
[

f (x)
g (x)

]
, x(0) =

[
x0

y0

]
, x(1) =

[
x1

y1

]
.

Now we can write the vector differentials in the forms

dF =
[

df
dg

]
and dx =

[
dx
dy

]
=
[

x1 − x0

y1 − y0

]
= x(1) − x(0).

The original Newton equations now look like a matrix multiplication involving
dx, F, and a matrix of derivatives of F, namely the Jacobian matrix

JF (x0, y0) =
[

fx (x0, y0) fy (x0, y0)
gx (x0, y0) gy (x0, y0)

]
.

Specifically, we see from the definition of matrix multiplication that the New-
ton equations are equivalent to the vector equations

JF(x0) (x(1) − x(0)) = JF(x0) dx = −F
(
x(0)

)
.

Replace 1, 0 by n + 1, n, apply the inverse of the Jacobian and add x(n) to
both sides to obtain the famous Newton formula for systems:
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Newton’s Formula in Vector Form

x(n+1) = x(n) − JF

(
x(n)

)−1

F
(
x(n)

)
.

This beautiful analogy to the Newton formula of (2.8) needs the language and
algebra of vectors and matrices. One can now calculate the Jacobian for our
particular F ([ x

y ]) and apply this formula, which we leave as an exercise. �
Finally, recall from calculus that we could solve the one-variable problem

of finding the extrema (minimum or maximum values in a specified range) of
a function f (x) by observing geometrically that at such “hilltops” or “valley
bottoms” of the graph of f (x) the slope of the curve is flat, i.e., f ′ (x) = 0.
Of course there is a caution here: A critical point of f (x), i.e., a point x0

at which f
′
(x0) = 0, need not be an extremum: Consider the critical point

x = 0 of the function f (x) = x3. Now that we have a methodology for solving
systems of equations we can apply it to the problem of solving optimization
problems of finding the extrema of a function of more than one variable. We
illustrate this in the case of two two variables: The extrema (if any) of the
function f (x, y) must occur at points (x, y) where the system of equations

fx (x, y) = 0
fy (x, y) = 0

is satisfied.

Example 2.49. Use Newton’s method to show that any quadratic function
in two variables has at most one isolated extremum.

Solution. The general form of such a function is

f (x, y) = ax2 + bxy + cy2 + dx + ey + f,

where at least one of a, b, c is nonzero. Therefore, the system of equations to
be solved for critical points (x, y) is

fx (x, y) = 2ax + by + d = 0
fy (x, y) = bx + 2cy + e = 0.

This is a linear system of the form Ax = b, where

A =
[

2a b
b 2c

]
and b =

[−d
−e

]
.

We know from Example 2.44 that this matrix is invertible precisely if D =
4ac − b2 �= 0. In this case there is a unique critical point which may or may
not be an extremum. In the case that D = 0 the system may be inconsistent
or have infinitely many solutions. In the latter case one of the variables x, y
is free and may take on any value, so no critical point is isolated. �
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2.5 Exercises and Problems

Exercise 1. Find the inverse or show that it does not exist.

(a)

⎡
⎣ 1 −2 1

0 2 0
−1 0 1

⎤
⎦ (b)

[
1 i
0 4

]
(c)

⎡
⎣2 −2 1

0 2 0
2 0 1

⎤
⎦ (d)

⎡
⎢⎢⎣

2 1 0 0
0 1 −2 1
0 0 2 0
0 0 0 1

⎤
⎥⎥⎦ (e)

[
cos θ − sin θ
sin θ cos θ

]

Exercise 2. Find the inverse or show that it does not exist.

(a)

⎡
⎣1 3 0

0 4 10
9 3 0

⎤
⎦ (b)

⎡
⎣ 0 0 1

0 1 0
1 0 0

⎤
⎦ (c)

⎡
⎣ 1 1 1

0 1 1
−1 0 1

⎤
⎦ (d)

[
1 a
a 1

]
(e)

[
i + 1 0

1 i

]

Exercise 3. Express the following systems in matrix form and solve by inverting
the coefficient matrix of the system.

(a) 2x + 3y = 7 (b) 3x1 + 6x2 − x3 = −4 (c) x1 + x2 = −2
x + 2y = −2 −2x1 + x2 + x3 = 3 5x1 + 2x2 = 5

x3 = 1

Exercise 4. Solve the following systems by matrix inversion.

(a) 2x1 + 3x2 = 7 (b) x1 + 6x2 − x3 = 4 (c) x1 − x2 = 2
x2 + x3 = 1 x1 + x2 = 0 x1 + 2x2 = 11
x2 − x3 = 1 x2 = 1

Exercise 5. Express inverses of the following matrices as products of elementary
matrices using the notation of elementary matrices.

(a)

⎡
⎣1 0 0

3 1 0
0 0 1

⎤
⎦ (b)

[
1 0
0 −2

]
(c)

⎡
⎣0 0 1

1 1 0
1 0 0

⎤
⎦ (d)

⎡
⎣1 −1 0

0 1 −1
0 0 1

⎤
⎦ (e)

[−1 0
i 3

]

Exercise 6. Show that the following matrices are invertible by expressing them
as products of elementary matrices.

(a)
[

2 0
0 2

]
(b)

⎡
⎣1 0 2

0 1 1
0 0 1

⎤
⎦ (c)

⎡
⎣1 0 1

1 1 0
1 0 0

⎤
⎦ (d)

[−1 0
3 3

]
(e)

⎡
⎣1 0 0

1 1 0
1 1 1

⎤
⎦

Exercise 7. Find A−1C if A =

⎡
⎣1 2 −3

0 −1 1
2 5 −6

⎤
⎦ and C =

⎡
⎣1 0 0 2

0 −1 1 1
2 0 −6 0

⎤
⎦.

Exercise 8. Solve AX = B for X, where A =
[

1 2
2 5

]
and B =

[
1 1 0 −2
2 −1 1 1

]
.

Exercise 9. Determine if the following matrices have right inverses and if so,
exhibit one.

(a)

⎡
⎣1 0 2

0 1 1
1 1 3

⎤
⎦ (b)

[
1 1 −1
2 0 1

]
(c)

⎡
⎣ 1

−3
2

⎤
⎦
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Exercise 10. Determine if the following matrices have right, left or two-sided
inverses and if so, exhibit one.

(a)

⎡
⎣3 0

0 2
1 1

⎤
⎦ (b)

⎡
⎣1 0 2

0 0 1
1 1 3

⎤
⎦ (c)

[
1 1 −1

−1 −1 1

]

Exercise 11. Verify the matrix law
(
AT

)−1 =
(
A−1

)T with A =

⎡
⎣1 2 0

1 0 1
0 2 1

⎤
⎦.

Exercise 12. Verify the matrix law (A∗)−1 =
(
A−1

)∗ with A =
[

2 1 − 2i
0 i

]
.

Exercise 13. Verify the matrix law (AB)−1 = B−1A−1 in the case that A =⎡
⎣1 2 −3

1 0 1
2 4 −2

⎤
⎦ and B =

⎡
⎣1 0 2

0 −3 1
0 0 1

⎤
⎦ .

Exercise 14. Verify the matrix law (cA)−1 = (1/c) A−1 in the case that A =⎡
⎣1 2 − i 0

1 0 0
0 0 2

⎤
⎦ and c = 2 + i.

Exercise 15. Determine for what values of k the following matrices are invert-
ible and find the inverse in that case.

(a)
[

1 k
0 −1

]
(b)

⎡
⎣ 1 0 1

0 1 1
k 0 1

⎤
⎦ (c)

⎡
⎢⎢⎣

1 0 0 1
0 −1 0 0
0 0 −6 0
0 0 0 k

⎤
⎥⎥⎦

Exercise 16. Determine the inverses for the following matrices in terms of the
parameter c and conditions on c for which the matrix has an inverse.

(a)
[

1 2
c −1

]
(b)

⎡
⎣1 2 c + 1

0 1 1
0 0 c

⎤
⎦ (c)

⎡
⎣ 1 0 c + i

0 −1 0
0 c c

⎤
⎦

Exercise 17. Give a 2 × 2 example showing that the sum of invertible matrices
need not be invertible.

Exercise 18. Give a 2 × 2 example showing that the sum of singular matrices
need not be singular.

Exercise 19. Problem 29 of Section 2.2 yields a formula for the inverse of the
matrix I−N, where N is nilpotent, namely, (I − N)−1 = I+N+N2+· · ·+Nk.

Apply this formula to matrices (a)

⎡
⎣1 −1 2

0 1 1
0 0 1

⎤
⎦ and (b)

⎡
⎣1 0 0

0 1 0
1 0 1

⎤
⎦.
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Exercise 20. If a matrix can be written as A = D (I − N), where D is diagonal
with nonzero entries and N is nilpotent, then A−1 = (I − N)−1

D−1. Use this
fact and the formulas of Exercise 19 and Example 2.41 to find inverses of the

matrices (a)

⎡
⎣2 2 4

0 2 −2
0 0 3

⎤
⎦ and (b)

[
2 0
i 3

]
.

Exercise 21. Solve the PageRank problem with P as in Example 2.46, telepor-
tation vector v = 1

6e and teleportation parameter α = 0.8.

Exercise 22. Modify the surfing matrix P of Example 2.46 by using the correc-
tion vector 1

5 (1, 1, 1, 0, 1, 1) and solve the resulting PageRank problem with
teleportation vector v = 1

6e and teleportation parameter α = 0.8.

Exercise 23. Use the adjacency matrix of the digraph G of Exercise 15 of
Section 2.3 and Theorem 2.7 to find the surfing matrix of this digraph.

Exercise 24. Convert the digraph G of Exercise 15 of Section 2.3 to a graph
by making all the edges unordered. Use the adjacency matrix of the resulting
graph G and Theorem 2.7 to find the surfing matrix of this graph.

Exercise 25. Solve the nonlinear system of equations of Example 2.48 by using
nine iterations of the vector Newton formula (2.5), starting with the initial
guess x(0) = (0, 1). Evaluate F

(
x(9)

)
.

Exercise 26. Find the minimum value of the function F (x, y) =
(
x2 + y + 1

)2+
x4 + y4 by using the Newton method to find critical points of the function
F (x, y), i.e., points where f (x, y) = Fx (x, y) = 0 and g(x, y) = Fy(x, y) = 0.

Exercise 27. Use Example 2.49 to exhibit a quadratic function f (x, y) that has
no critical point.

Exercise 28. Use Example 2.49 to exhibit a quadratic function f (x, y) that has
infinitely many critical points.

Exercise 29. Show that there is more than one stationary state for the Markov
chain of Example 2.46.

Exercise 30. Repair the dangling node problem of the graph of Figure 2.7 by
using transition to all nodes as equally likely and find all stationary states for
the resulting Markov chain.

*Problem 31. Show from the definition that if a square matrix A satisfies the
equation A3 − 2A + 3I = 0, then the matrix A must be invertible.

Problem 32. Verify directly from the definition of inverse that the two by two
inverse formula gives the inverse of a 2 × 2 matrix.
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Problem 33. Assume that the product of invertible matrices is invertible and
deduce that if A and B are matrices of the same size and both B and AB are
invertible, then so is A.

*Problem 34. Let A be an invertible matrix. Show that if the product of matri-
ces AB is defined, then rank (AB) = rank (B), and if BA is defined, then
rank (BA) = rank (B).

Problem 35. Prove that if D = ABC, where A, C, and D are invertible matri-
ces, then B is invertible.

Problem 36. Given that C =
[

A 0
0 B

]
in block form with A and B square,

show that C is invertible if and only if A and B are, in which case C−1 =[
A−1 0
0 B−1

]
.

Problem 37. Let T be an upper triangular matrix, say T = D + U , where D
is diagonal and U is strictly upper triangular.
(a) Show that if D is invertible, then T = D(I − N), where N = −D−1U is
strictly upper triangular.
(b) Assume that D is invertible and use part (a), Problem 29 of Section 2.2
and Problem 33 to obtain a formula for T−1 involving D and N.

Problem 38. Show that if the product of matrices BA is defined and A is
invertible, then rank(BA) = rank(B).

*Problem 39. Given the matrix M =
[

A B
0 C

]
, where the blocks A and C are

invertible matrices, find a formula for M−1 in terms of A, B, and C.

Problem 40. Let A be the adjacency matrix for a digraph with no dangling
nodes. Show that the resulting Markov chain matrix for a surfing model is
P = AT D−1 where D is a diagonal matrix whose ith entry is the sum of the
entries in the ith row of A.

Problem 41. Apply PageRank directly to the graph of Figure 2.8. How does the
resulting ranking compare to power ranking of vertices and reverse PageRank
ranking of Example 2.47?
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2.6 Determinants

What Are They?

Many students have already had some experience with determinants and may
have used them to solve square systems of equations. Why have we waited
until now to introduce them? In fact, they are not really the best tool for
solving systems: Gaussian elimination is better. Were it not for the theoretical
usefulness of determinants they might be consigned to a footnote in introduc-
tory linear algebra texts as a historical artifact of linear algebra. Perhaps a
better question than “What are they?” is “Why are they?”.

To motivate determinants, consider Example 2.44. Something remarkable
happened in that example. Not only were we able to find a formula for the

inverse of a 2 × 2 matrix A =
[

a b
c d

]
, but we were able to compute a single

number D = ad − bc that told us whether A was invertible. The condition of
noninvertibility, namely that D = 0, has a very simple interpretation: This
happens exactly when one row of A is a multiple of the other, since the example
showed that this is when elementary operations use the first row to zero out
the second row. Can we extend this idea? Is there a single number that will
tell us whether or not the square matrix A is invertible? Yes, this is exactly
what determinants were invented for. The concept of determinant is subtle
and not intuitive, but a large body of experience led researchers to a “correct”
definition of it. There are alternative definitions, but the following, sometimes
referred to as “expansion down the first column”, will suit our purposes.

Definition 2.20. Determinant The determinant of a square n × n matrix
A = [aij ] is the scalar quantity det A defined recursively as follows: If n = 1
then det A = a11; otherwise, we suppose that determinants are defined for all
square matrices of size less than n and specify that

det A =
n∑

k=1

ak1(−1)k+1Mk1(A)

= a11M11(A) − a21M21(A) + · · · + (−1)n+1an1Mn1(A),

where Mij(A) is the determinant of the (n − 1) × (n − 1) matrix obtained
from A by deleting the ith row and jth column of A.

Caution: The determinant of a matrix A is viewed as a scalar number, not a
matrix.

Example 2.50. Describe the quantities M21(A) and M22 (A), where

A =

⎡
⎣2 1 0

1 1 −1
0 1 2

⎤
⎦ .
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Solution. Erase the second row and first column of A to obtain⎡
⎣ 1 0

1 2

⎤
⎦ .

Next collapse the remaining entries together to obtain the matrix
[

1 0
1 2

]
.

Similarly, erase the second row and column of A to obtain the matrix
⎡
⎣2 0

0 2

⎤
⎦ .

Thus, we obtain that

M21(A) = det
[

1 0
1 2

]
= 2 and M22(A) = det

[
2 0
0 2

]
= 4. �

Now how did we calculate these determinants? Part (b) of the next example
answers the question.

Example 2.51. Use the definition to compute the determinants of the follow-
ing matrices.

(a) [−4] (b)
[

a b
c d

]
(c)

⎡
⎣2 1 0

1 1 −1
0 1 2

⎤
⎦

Solution. (a) From the first part of the definition we have det[−4] = −4.

For (b) we set A =
[

a b
c d

]
=
[

a11 a12

a21 a22

]
and use the formula of the defini-

tion to obtain that

det
[

a b
c d

]
= a11M11 (A) − a21M21 (A) = adet [d] − cdet [b] = ad − cb.

This calculation gives a handy formula for the determinant of a 2 × 2 matrix.
For (c) use the definition to obtain that

det

⎡
⎣2 1 0

1 1 −1
0 1 2

⎤
⎦ = 2det

[
1 −1
1 2

]
− 1 det

[
1 0
1 2

]
+ 0det

[
1 0
1 −1

]

= 2(1 · 2 − 1 · (−1)) − 1(1 · 2 − 1 · 0) + 0(1 · (−1) − 1 · 0)
= 2 · 3 − 1 · 2 + 0 · (−1)
= 4.
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A point worth observing here is that we didn’t really have to calculate the
determinant of any matrix if it is multiplied by a zero. Hence, the more zeros
our matrix has, the easier we expect the determinant calculation to be! �

Another common symbol for det A is |A|, which is also written with respect
to the elements of A by suppressing matrix brackets:

det A = |A| =

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
.

This notation invites a certain oddity, if not abuse, of language: We some-
times refer to things like the “second row” or “(2, 3)th element” or the “size”
of the determinant. Yet the determinant is only a number and in that sense
doesn’t really have rows or entries or a size. Rather, it is the underlying matrix
whose determinant is being calculated that has these properties. So be careful
of this notation; we plan to use it frequently because it’s handy, but you should
bear in mind that determinants and matrices are not the same thing! Another
reason that this notation can be tricky is the case of a one-dimensional matrix,
say A = [a11]. Here it is definitely not a good idea to forget the brackets, since
we already understand |a11| to be the absolute value of the scalar a11, a non-
negative number. In the 1 × 1 case use |[a11]| for the determinant, which is
just the number a11 and may be positive or negative.

The number Mij (A) is called the (i, j)th minor of the matrix A.
Minors and CofactorsIf we collect the sign term in the definition of

determinant together with the minor we obtain the (i, j)th cofactor Aij =
(−1)i+j

Mij (A) of the matrix A. In the terminology of cofactors,

detA =
n∑

k=1

ak1Ak1.

Laws of Determinants

Our primary goal here is to show that determinants have the magical property
we promised: A matrix is singular exactly when its determinant is 0. Along
the way we will examine some useful properties of determinants. There is
a lot of clever algebra that can be done here; we will try to keep matters
straightforward (if that’s possible with determinants). In order to focus on
the main ideas, we place most of the verifications of key facts at the end of
the section, where we also give a concise summary of the basic determinantal
laws. Unless otherwise stated, we assume throughout this section that matrices
are square, and that A = [aij ] is an n × n matrix.



144 2 MATRIX ALGEBRA

For starters, let’s observe that it’s very easy to calculate the determinant
of upper triangular matrices. Let A be such a matrix. Then ak1 = 0 if k > 1,
so

det A =

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

0 a22 · · · a2n

...
...

...
0 0 · · · ann

∣∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣∣∣∣

a22 a23 · · · a2n

0 a33 · · · a3n

...
...

...
0 0 · · · ann

∣∣∣∣∣∣∣∣∣
= · · · = a11 · a22 · · · ann.

Hence, we have established our first determinantal law:
D1: If A is an upper triangular matrix, then the determinant of A is the

product of all the diagonal elements of A.

Example 2.52. Compute D =

∣∣∣∣∣∣∣∣

4 4 1 1
0 −1 2 3
0 0 2 3
0 0 0 2

∣∣∣∣∣∣∣∣
and |In| = det In.

Solution. By D1 we can do this at a glance: D = 4 · (−1) · 2 · 2 = −16.
Since In is diagonal, it is certainly upper triangular. Moreover, the entries
down the diagonal of this matrix are 1’s, so D1 implies that |In| = 1. �

Next, suppose that we notice a common factor of the scalar c in a row,
say for convenience, the first one. How does this affect the determinantal
calculation? In the case of a 1 × 1 determinant, we could simply factor it out
of the original determinant. The general situation is covered by this law:

D2: If B is obtained from A by multiplying one row of A by the scalar c,
then det B = c · det A.

Here is a simple illustration:

Example 2.53. Compute D =

∣∣∣∣∣∣
5 0 10
5 5 5
0 0 2

∣∣∣∣∣∣.

Solution. Put another way, D2 says that scalars may be factored out of
individual rows of a determinant. So use D2 on the first and second rows and
then use the definition of determinant to obtain∣∣∣∣∣∣
5 0 10
5 5 5
0 0 2

∣∣∣∣∣∣ = 5 ·
∣∣∣∣∣∣
1 0 2
5 5 5
0 0 2

∣∣∣∣∣∣ = 5 · 5 ·
∣∣∣∣∣∣
1 0 2
1 1 1
0 0 2

∣∣∣∣∣∣ = 25 ·
(

1 ·
∣∣∣∣ 1 1
0 2

∣∣∣∣− 1 ·
∣∣∣∣ 0 2
0 2

∣∣∣∣+ 0 ·
∣∣∣∣ 0 2
1 1

∣∣∣∣
)

= 50.

One can easily check that this is the same answer we get by working the
determinant directly from the definition. �

Next, suppose we interchange two rows of a determinant.
D3: If B is obtained from A by interchanging two rows of A , then det B =

−det A.
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Example 2.54. Use D3 to show the following handy fact: If a determinant
has a repeated row, then it must be 0.

Solution. Suppose that the ith and jth rows of the matrix A are identical,
and B is obtained by switching these two rows of A. Clearly B = A. Yet,
according to D3, det B = −det A. It follows that det A = −det A, i.e., if we
add det A to both sides, 2 · det A = 0, so that det A = 0, which is what we
wanted to show. �

What happens to a determinant if we add a multiple of one row to another?
D4: If B is obtained from A by adding a multiple of one row of A to

another row of A, then det B = det A.

Example 2.55. Compute D =

∣∣∣∣∣∣∣∣

1 4 1 1
1 −1 2 3
0 0 2 3
0 0 1 2

∣∣∣∣∣∣∣∣
.

Solution. What D4 really says is that any elementary row operation Eij(c)
can be applied to the matrix behind a determinant and the determinant will
be unchanged. So in this case, add −1 times the first row to the second and
− 1

2 times the third row to the fourth, then apply D1 to obtain
∣∣∣∣∣∣∣∣

1 4 1 1
1 −1 2 3
0 0 2 3
0 0 1 2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 4 1 1
0 −5 1 2
0 0 2 3
0 0 0 1/2

∣∣∣∣∣∣∣∣
= 1 · (−5) · 2 · 1

2
= −5. �

Example 2.56. Use D3 to show that a matrix with a row of zeros has zero
determinant.

Solution. Suppose A has a row of zeros. Add any other row of the matrix
A to this zero row to obtain a matrix B with repeated rows. �

We now have enough machinery to establish the most important property
of determinants. First of all, we can restate laws D2–D4 in the language of
elementary matrices as follows: Determinants of Elementary Matrices

• D2: det(Ei(c)A) = c ·det A (remember that for Ei(c) to be an elementary
matrix, c �= 0).

• D3: det(EijA) = −det A.
• D4: det(Eij(s)A) = det A.

Apply a sequence of elementary row operations on the n × n matrix A to
reduce it to its reduced row echelon form R, or equivalently, multiply A on
the left by elementary matrices E1, E2, . . . , Ek and obtain

R = E1E2 · · · EkA.

Take the determinant of both sides to obtain
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detR = det(E1E2 · · · EkA) = ±(nonzero constant) · det A.

Therefore, det A = 0 precisely when det R = 0. Now the reduced row echelon
form of A is upper triangular. In fact, it is guaranteed to have zeros on the
diagonal, and therefore have zero determinant by D1, unless rank A = n, in
which case R = In. According to Theorem 2.6 this happens precisely when A
is invertible. Thus:

D5: The matrix A is invertible if and only if detA �= 0.

Example 2.57. Determine whether the following matrices are invertible with-
out actually finding the inverse.

(a)

⎡
⎣2 1 0

1 1 −1
0 1 2

⎤
⎦ (b)

⎡
⎣2 1 0

1 1 −1
0 −1 2

⎤
⎦

Solution. Compute the determinants:
∣∣∣∣∣∣
2 1 0
1 1 −1
0 1 2

∣∣∣∣∣∣ = 2
∣∣∣∣ 1 −1
1 2

∣∣∣∣− 1
∣∣∣∣ 1 0
1 2

∣∣∣∣ = 2 · 3 − 2 = 4,

∣∣∣∣∣∣
2 1 0
1 1 −1
0 −1 2

∣∣∣∣∣∣ = 2
∣∣∣∣ 1 −1
−1 2

∣∣∣∣− 1
∣∣∣∣ 1 0
−1 2

∣∣∣∣ = 2 · 1 − 1 · 2 = 0.

Hence, by D5, matrix (a) is invertible and matrix (b) is not invertible. �
There are two more surprising properties of determinants that we now

discuss. Their proofs involve using determinantal properties of elementary
matrices (see the next section for details).

D6: Given matrices A,B of the same size,

det AB = det A det B.

Example 2.58. Verify D6 in the case that A =
[

1 0
1 1

]
and B =

[
2 1
0 1

]
. How

do det(A + B) and det A + det B compare in this case?

Solution. We have easily that det A = 1 and det B = 2. Therefore, det A+
det B = 1 + 2 = 3, while det A · det B = 1 · 2 = 2. On the other hand,

AB =
[

1 0
2 1

] [
2 1
0 1

]
=
[

2 1
4 3

]
,

A + B =
[

1 0
1 1

]
+
[

2 1
0 1

]
=
[

3 1
1 2

]
,
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so that det AB = 2 · 3 − 4 · 1 = 2 = det A · det B, as expected. On the other
hand, we have that det(A + B) = 3 · 2 − 1 · 1 = 5 �= det A + det B. �

This example raises a very important point.

Caution: In general, det A+det B �= det(A+B), though there are occasional
exceptions.

In other words, determinants do not distribute over sums. (It is true, how-
ever, that the determinant is additive in one row at a time. See the proof of
D4 for details.)

Finally, we ask how det AT compares to det A. Simple cases suggest that
there is no difference in determinant. This is exactly what happens in general:

D7: For all square matrices A, det AT = det A.

Example 2.59. Compute D =

∣∣∣∣∣∣∣∣

4 0 0 0
4 1 0 0
1 2 −2 0
1 0 1 2

∣∣∣∣∣∣∣∣
.

Solution. By D7 and D1 we see immediately that D = 4·1·(−2)·2 = −16.
�

D7 is a very useful fact. Let’s look at it from this point of view: Transposing
a matrix interchanges the rows and columns of the matrix. Therefore, every-
thing that we have said about rows of determinants applies equally well to the
columns, including the definition of determinant itself ! Therefore, we could
have given the definition of determinant in terms of expanding across the first
row instead of down the first column and gotten the same answers. Likewise,
we could perform elementary column operations instead of row operations and
get the same results as D2–D4. Furthermore, the determinant of a lower tri-
angular matrix is the product of its diagonal elements thanks to D7+D1. By
interchanging rows or columns then expanding by first row or column, we see
that the same effect is obtained by simply expanding the determinant down
any column or across any row. We have to alternate signs starting with the
sign (−1)i+j of the first term we use.

Now we can really put it all together and compute determinants to our
heart’s content with a good deal less effort than the original definition spec-
ified. We can use D1–D4 in particular to make a determinant calculation no
worse than Gaussian elimination in the amount of work we have to do. We
simply reduce a matrix to triangular form by elementary operations, then take
the product of the diagonal terms.

Example 2.60. Calculate D =

∣∣∣∣∣∣∣∣

3 0 6 6
1 0 2 1
2 0 0 1

−1 2 0 0

∣∣∣∣∣∣∣∣
.

Solution. We are going to do this calculation two ways. We may as well use
the same elementary operation notation that we have employed in Gaussian



148 2 MATRIX ALGEBRA

elimination. The only difference is that we have equality instead of arrows,
provided that we modify the value of the new determinant in accordance with
the laws D1–D3. So here is the straightforward method:

D = 3

∣∣∣∣∣∣∣∣

1 0 2 2
1 0 2 1
2 0 0 1

−1 2 0 0

∣∣∣∣∣∣∣∣
=

E21(−1)
E31(−2)
E41(1)

3

∣∣∣∣∣∣∣∣

1 0 2 2
0 0 0 −1
0 0 −4 −3
0 2 2 2

∣∣∣∣∣∣∣∣
=

E24

−3

∣∣∣∣∣∣∣∣

1 0 2 2
0 2 2 2
0 0 −4 −3
0 0 0 −1

∣∣∣∣∣∣∣∣
= −24.

Here is another approach: Let’s expand the determinant down the second
column, since it is mostly 0’s. Remember that the sign in front of the first
minor must be (−1)1+2 = −1. Also, the coefficients of the first three minors
are 0, so we need only write down the last one in the second column:

D = +2

∣∣∣∣∣∣
3 6 6
1 2 1
2 0 1

∣∣∣∣∣∣ .

Expand down the second column again:

D = 2
(

−6
∣∣∣∣ 1 1
2 1

∣∣∣∣+ 2
∣∣∣∣ 3 6
2 1

∣∣∣∣
)

= 2(−6 · (−1) + 2 · (−9)) = −24. �

An Inverse Formula

Let A = [aij ] be an n × n matrix. We have already seen that we can expand
the determinant of A down any column of A (see the discussion following
Example 2.59). These expansions lead to cofactor formulas for each column
number j:

det A =
n∑

k=1

akjAkj =
n∑

k=1

Akjakj .

This formula resembles a matrix multiplication formula. Consider the slightly
altered sum

n∑
k=1

Akiakj = A1ia1j + A2ia2j + · · · + Anianj .

The key to understanding this expression is to realize that it is exactly what
we would get if we replaced the ith column of the matrix Aby its jth
column and then computed the determinant of the resulting matrix by
expansion down the ith column. But such a matrix has two equal columns
and therefore has a zero determinant, which we can see by applying
Example 2.54 to the transpose of the matrix and using D7. So this sum
must be 0 if i �= j. We can combine these two sums by means of the
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Kronecker DeltaKronecker delta (δij = 1 if i = j and 0 otherwise) in the
formula

n∑
k=1

Akiakj = δij det A. (2.9)

In order to exploit this formula we make the following definitions:

Definition 2.21. Adjoint, Minor, and Cofactor Matrices The matrix of
minors of the n × n matrix A = [aij ] is the matrix M(A) = [Mij(A)] of the
same size. The matrix of cofactors of A is the matrix Acof = [Aij ] of the same
size. Finally, the adjoint matrix of A is the matrix adj A = AT

cof.

Example 2.61. Compute the determinant, minors, cofactors, and adjoint

matrices for A =

⎡
⎣1 2 0

0 0 −1
0 2 1

⎤
⎦ and compute A adj A.

Solution. The determinant is easily seen to be 2. Now for the matrix of
minors:

M(A) =

⎡
⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣ 0 −1
2 1

∣∣∣∣
∣∣∣∣ 0 −1
0 1

∣∣∣∣
∣∣∣∣ 0 0
0 2

∣∣∣∣∣∣∣∣ 2 0
2 1

∣∣∣∣
∣∣∣∣ 1 0
0 1

∣∣∣∣
∣∣∣∣ 1 2
0 2

∣∣∣∣∣∣∣∣ 2 0
0 −1

∣∣∣∣
∣∣∣∣ 1 0
0 −1

∣∣∣∣
∣∣∣∣ 1 2
0 0

∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣ 2 0 0

2 1 2
−2 −1 0

⎤
⎦ .

To get the matrix of cofactors, simply overlay M(A) with the following

“checkerboard” of +/−’s

⎡
⎣+ − +

− + −
+ − +

⎤
⎦ to obtain the matrix Acof =

⎡
⎣ 2 0 0

−2 1 −2
−2 1 0

⎤
⎦.

Now transpose Acof to obtain

adj A =

⎡
⎣2 −2 −2

0 1 1
0 −2 0

⎤
⎦ .

We check that

A adj A =

⎡
⎣1 2 0

0 0 −1
0 2 1

⎤
⎦
⎡
⎣2 −2 −2

0 1 1
0 −2 0

⎤
⎦ =

⎡
⎣2 0 0

0 2 0
0 0 2

⎤
⎦ = (det A)I3. �

Of course, the example simply confirms equation (2.9) since this formula gives
the (i, j)th entry of the product (adj A)A. If we were to do determinants by row
expansions, we would get a similar formula for the (i, j)th entry of A adj A. We
summarize this information in matrix notation as the following determinantal
property:
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Adjoint Formula

D8: For a square matrix A,

A adj A = (adj A)A = (det A)I.

What does this have to do with inverses? We already know that A is
invertible exactly when det A �= 0, so the answer is staring at us! Just
divide the terms in D8 by det A to obtain an explicit formula for A−1:

Inverse Formula
D9: For a square matrix A such that det A �= 0, .

A−1 =
1

det A
adj A.

Example 2.62. Compute the inverse of the matrix A of Example 2.61 by the
inverse formula.

Solution. We already computed the adjoint matrix of A, and the deter-
minant of A is just 2, so we have that

A−1 =
1

det A
adj A =

1
2

⎡
⎣2 −2 −2

0 1 1
0 −2 0

⎤
⎦ . �

Example 2.63. Interpret the inverse formula for the 2×2 matrix A =
[

a b
c d

]
.

Solution. We have M(A) =
[

d c
b a

]
, Acof =

[
d −c

−b a

]
and adj A =[

d −b
−c a

]
, so that the inverse formula becomes

A−1 =
1

det A

[
d −b

−c a

]
.

This is exactly the same as the formula we obtained in Example 2.44. �

Cramer’s Rule

Thanks to the inverse formula, we can now find an explicit formula for solving
linear systems with a nonsingular coefficient matrix. Here’s how we proceed.
To solve Ax = b we multiply both sides on the left by A−1 to obtain that
x = A−1b. Now use the inverse formula to obtain

x = A−1b =
1

det A
adj (A)b.



2.6 Determinants 151

The explicit formula for the ith coordinate of x that comes from this fact is

xi =
1

det A

n∑
j=1

Ajibj .

The summation term is exactly what we would obtain if we started with the
determinant of the matrix Bi obtained from A by replacing the ith column of
A by b and then expanding the determinant down the ith column. Therefore,
we have arrived at the following rule:

Theorem 2.9. Cramer’s Rule Let A be an invertible n×n matrix and b an
n × 1 column vector. Denote by Bi the matrix obtained from A by replacing
the ith column of A by b. Then the linear system Ax = b has unique solution
x = (x1, x2, . . . , xn), where

xi =
det Bi

det A
, i = 1, 2, . . . , n.

Example 2.64. Use Cramer’s rule to solve the system

2x1 − x2 = 1
4x1 + 4x2 = 20.

Solution. The coefficient matrix and right-hand-side vectors are

A =
[

2 −1
4 4

]
and b =

[
1

20

]
,

so that det A = 8 − (−4) = 12, and therefore,

x1 =

∣∣∣∣ 1 −1
20 4

∣∣∣∣∣∣∣∣ 2 −1
4 4

∣∣∣∣
=

24
12

= 2 and x2 =

∣∣∣∣ 2 1
4 20

∣∣∣∣∣∣∣∣ 2 −1
4 4

∣∣∣∣
=

36
12

= 3. �

Summary of Determinantal Laws

Here is a summary of the basic laws of determinants with laws D2–D4 stated
in terms of elementary operations as multiplication by elementary matrices:
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Laws of Determinants
Let A,B be n × n matrices.
D1: If A is upper triangular, det A is the product of all the diagonal elements

of A.
D2: det(Ei(c)A) = c · det A.
D3: det(EijA) = −det A.
D4: det(Eij(s)A) = det A.
D5: The matrix A is invertible if and only if det A �= 0.
D6: det AB = det Adet B.
D7: det AT = det A.
D8: A adj A = (adjA)A = (det A)I.

D9: If det A �= 0, then A−1 =
1

det A
adj A.

Determinants of Some Block Matrices

This section began with a discussion of the 2 × 2 matrix A =
[

a b
c d

]
and its

determinant D = ad − bc. This raises an interesting question: Suppose that a

matrix is blocked as M =
[

A B
C D

]
. Is there a formula for the determinant of

M analogous to that of a 2× 2 matrix? The answer is a qualified “yes”, as the
following theorem shows:

Theorem 2.10. Let M =
[

A B
C D

]
, where A is m×m, D is n×n, B is m×n

and C is n × m. Then

(1) If C = 0 or B = 0, then det M = det Adet D.
(2) If det A �= 0, then det M = det Adet

(
D − CA−1B

)
.

(3) If det D �= 0, then det M = det D det
(
A − BD−1C

)
.

Proof. To prove (1), assume first that C = 0. Block multiplication yields

M =
[

A B
0 D

]
=
[

I 0
0 D

] [
A B
0 I

]
=
[

I 0
0 D

] [
I B
0 I

] [
A 0
0 I

]
.

Note that expanding det
[

Im 0
0 D

]
down the first column yields 1·det

[
Im−1 0

0 D

]

since the only nonzero entry of the first column is the first one. Repeating this
argument m−1 times results in |D|. Similarly, expansion down the last column
yields

det
[

A 0
0 In

]
= (−1)n+n det

[
A 0
0 In−1

]
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and repeated application of this fact results in a value of det A. The matrix[
I B
0 I

]
is clearly upper triangular, so D1 applies to it. Apply D6 to the product

of matrices and we obtain

det
[

A B
0 D

]
= det

[
I 0
0 D

]
· det

[
I B
0 I

]
· det

[
A 0
0 I

]
= det A · 1 · det D.

The proof of the case B = 0 is similar and left as an exercise.
To prove (2) assume that |A| �= 0 so that the matrix A is invertible by D9.

Apply D6 and (1) to the factorization
[

A−1 0
−CA−1 I

] [
A B
C D

]
=
[

I A−1B
0 −CA−1B + D

]

to obtain

det A−1 det
[

A B
C D

]
= (det A)−1 detM

= det
[

I A−1B
0 −CA−1B + D

]

= det
(
D − CA−1B

)
,

which proves (2).
The proof of (3) is similar and left as an exercise. �

*Verification of Some Determinantal Laws

D2: If B is obtained from A by multiplying one row of A by the scalar c,
then det B = c · det A.

To keep the notation simple, assume that the first row is multiplied by c,
the proof being similar for other rows. Suppose we have established this for all
determinants of size less than n (this is really another “proof by induction,”
which is how most of the following determinantal properties are established).
For an n × n determinant we have

det B =

∣∣∣∣∣∣∣∣∣

c · a11 c · a12 · · · c · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣

= c · a11

∣∣∣∣∣∣∣∣∣

a22 a23 · · · a2n

a32 a33 · · · a3n

...
...

...
an2 an3 · · · ann

∣∣∣∣∣∣∣∣∣
+

n∑
k=2

ak1(−1)k+1Mk1(B).
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But the minors Mk1(B) all are smaller and have a common factor of c in the
first row. Pull this factor out of every remaining term and we get that

∣∣∣∣∣∣∣∣∣

c · a11 c · a12 · · · c · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
= c ·

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
.

Thus, we have shown that property D2 holds for all matrices.
D3: If B is obtained from A by interchanging two rows of A , then det B =

−det A.
To keep the notation simple, assume we switch the first and second rows. In

the case of a 2×2 determinant, we get the negative of the original determinant
(check this for yourself). Suppose we have established that the same is true
for all matrices of size less than n. For an n × n determinant we have

det B =

∣∣∣∣∣∣∣∣∣∣∣

a21 a22 · · · a2n

a11 a12 · · · a1n

a31 a32 · · · a3n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣
= a21M11(B) − a11M21(B) +

n∑
k=3

ak1(−1)k+1Mk1(B)

= a21M21(A) − a11M11(A) +
n∑

k=3

ak1(−1)k+1Mk1(B).

But all the determinants in the summation sign come from a submatrix of A
with the first and second rows interchanged. Since they are smaller than n,
each is just the negative of the corresponding minor of A. Notice that the first
two terms are just the first two terms in the determinantal expansion of A,
except that they are out of order and have an extra minus sign. Factor this
minus sign out of every term and we have obtained D3. �

D4: If B is obtained from A by adding a multiple of one row of A to
another row of A, then det B = det A.

Actually, it’s a little easier to answer a slightly more general question:
What happens if we replace a row of a determinant by that row plus some
other row vector r (not necessarily a row of the determinant)? Again, simply
for convenience of notation, we assume that the row in question is the first.
The same argument works for any other row. Some notation: Let B be the
matrix that we obtain from the n × n matrix A by adding the row vector
r = [r1, r2, . . . , rn] to the first row and C the matrix obtained from A by
replacing the first row by r. The answer turns out to be that |B| = |A| + |C|.
So we can say that the determinant function is “additive in each row.” Let’s
see what happens in the one dimensional case:
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|B| = |[a11 + r1]| = a11 + r1 = |[a11]| + |[r1]| = |A| + |C|.

Suppose we have established that the same is true for all matrices of size less
than n and let A be n × n. Then the minors Mk1(B), with k > 1, are smaller
than n, so the property holds for them. Hence, we have

det B =

∣∣∣∣∣∣∣∣∣

a11 + r1 a12 + r2 · · · a1n + rn

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
= (a11 + r1)M11(A) +

n∑
k=2

ak1(−1)k+1Mk1(B)

= (a11 + r1)M11(A) +
n∑

k=2

ak1(−1)k+1(Mk1(A) + Mk1(C))

=
n∑

k=1

ak1(−1)k+1Mk1(A) + r1M11(C) +
n∑

k=2

ak1(−1)k+1Mk1(C)

= det A + det C.

Now what about adding a multiple of one row to another in a determinant?
For notational convenience, suppose we add s times the second row to the first.
In the notation of the previous paragraph,

det B =

∣∣∣∣∣∣∣∣∣

a11 + s · a21 a12 + s · a22 · · · a1n + s · a2n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
and

det C =

∣∣∣∣∣∣∣∣∣

s · a21 s · a22 · · · s · a2n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
= s ·

∣∣∣∣∣∣∣∣∣

a21 a22 · · · a2n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
= 0,

where we applied D2 to pull the common factor s from the first row and the
result of Example 2.54 to get the determinant with repeated rows to be 0.
But |B| = |A| + |C|. Hence, we have shown D4. �

D6: If matrices A,B are of the same size, then det AB = det Adet B.
The key here is that we now know that determinant calculation is inti-

mately connected with elementary matrices, rank, and the reduced row ech-
elon form. First let’s reinterpret D2–D4 still one more time. First of all take
A = I in the discussion of the previous paragraph, and we see that
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• det Ei(c) = c
• det Eij = −1
• det Eij(s) = 1

Therefore, D2–D4 can be restated (yet again) as

• D2: det(Ei(c)A) = det Ei(c) · det A (here c �= 0.)
• D3: det(EijA) = det Eij · det A
• D4: det(Eij(s) = det Eij(s) · det A

In summary: For any elementary matrix E and arbitrary matrix A of the same
size, det(EA) = det(E) det(A).

Now let’s consider this question: How does det(AB) relate to det(A) and
det(B)? If A is not invertible, rank A < n by Theorem 2.6 and so rank AB < n
by Corollary 2.3. Therefore, det(AB) = 0 = det A · det B in this case. Next
suppose that A is invertible. Express it as a product of elementary matrices,
say A = E1E2 · · · Ek, and use our summary of D1–D3 to disassemble and
reassemble the elementary factors:

det(AB) = det(E1E2 · · · EkB) = (det E1 det E2 · · · det Ek) det B

= det(E1E2 · · · Ek) det B = det A · det B.

Thus, we have shown that D6 holds. �
D7: For all square matrices A, det AT = det A.
Recall these facts about elementary matrices:

• det ET
ij = det Eij

• det Ei(c)T = det Ei(c)
• det Eij(c)T = det Eji(c) = 1 = det Eij(c)

Therefore, transposing does not affect determinants of elementary matrices.
Now for the general case observe that since A and AT are transposes of each
other, one is invertible if and only if the other is by the Transpose/Inverse
law. In particular, if both are singular, then det AT = 0 = det A. On the
other hand, if both are nonsingular, then write A as a product of elementary
matrices, say A = E1E2 · · · Ek, and obtain from the product law for transposes
that AT = ET

k ET
k−1 . . . ET

1 , so by D6

det AT = det ET
k det ET

k−1 · · · det ET
1 = det Ek det Ek−1 · · · det E1

= det E1 det E2 · · · detEk = det A. �

2.6 Exercises and Problems

Exercise 1. Compute all cofactors for these matrices.

(a)
[

1 2
2 −1

]
(b)

[
1 3
0 1

]
(c)

⎡
⎣1 0 −1

0 0 0
0 0 4

⎤
⎦ (d)

[
1 1 − i
0 1

]
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Exercise 2. Compute all minors for these matrices.

(a)
[

2 2
2 2

]
(b)

⎡
⎣ 1 −3 0

−2 1 0
0 −2 0

⎤
⎦ (c)

[
1 i + 1
i 1

]
(d)

⎡
⎣3 1 −1

0 2 −2
0 0 1

⎤
⎦

Exercise 3. Compute these determinants. Which of the matrices represented
are invertible?

(a)
∣∣∣∣ 2 −1
1 1

∣∣∣∣ (b)

∣∣∣∣∣∣
1 −1 0
0 1 1
0 0 1 + i

∣∣∣∣∣∣ (c)

∣∣∣∣∣∣
1 1 0
1 0 1
2 1 1

∣∣∣∣∣∣ (d)

∣∣∣∣∣∣∣∣

1 −1 4 2
0 1 0 3
0 0 2 7

−2 3 4 6

∣∣∣∣∣∣∣∣
(e)

∣∣∣∣−1 −1
1 1 − 2i

∣∣∣∣

Exercise 4. Use determinants to determine which of these matrices are invert-
ible.

(a)

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
2 0 2 0

−2 3 4 6

⎤
⎥⎥⎦ (b)

⎡
⎣0 1 0

1 0 −1
0 1 1

⎤
⎦ (c)

⎡
⎢⎢⎣

1 1 0 1
1 2 1 1
0 0 1 3
1 1 2 7

⎤
⎥⎥⎦ (d)

⎡
⎣1 0 1

2 1 1
0 1 3

⎤
⎦ (e)

[
cos θ sin θ

− sin θ cos θ

]

Exercise 5. Verify by calculation that determinantal law D7 holds for the fol-
lowing choices of A.

(a)

⎡
⎣−2 1 0

1 2 1
0 0 1

⎤
⎦ (b)

⎡
⎣ 1 −1 1

1 2 0
−1 0 1

⎤
⎦ (c)

⎡
⎢⎢⎣

1 1 0 1
1 2 0 1
0 0 1 3
0 0 2 7

⎤
⎥⎥⎦ (d)

[
1 3
1 4

]

Exercise 6. Let A = B and verify by calculation that determinantal law D6
holds for the following choices of A.

(a)

⎡
⎣−2 1 0

1 2 1
0 0 1

⎤
⎦ (b)

⎡
⎣ 1 −1 1

1 2 0
−1 0 1

⎤
⎦ (c)

[
1 3

−1 2

]
(d)

⎡
⎢⎢⎣

1 1 0 1
1 2 0 1
0 0 1 3
0 0 2 7

⎤
⎥⎥⎦

Exercise 7. Use determinants to find conditions on the parameters in these
matrices under which the matrices are invertible.

(a)
[

a 1
ab 1

]
(b)

⎡
⎣1 1 −1

1 c 1
0 0 1

⎤
⎦ (c)

⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦

Exercise 8. Find conditions on the parameters in these matrices under which
the matrices are invertible.

(a)

⎡
⎢⎢⎣

a b 0 0
0 a 0 0
0 0 b a
0 0 −a b

⎤
⎥⎥⎦ (b)

⎡
⎣λ − 1 0 0

1 λ − 2 1
3 1 λ − 1

⎤
⎦ (c) λI2 −

[
0 1

−c0 −c1

]
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Exercise 9. For each of the following matrices calculate the adjoint matrix and
the product of the matrix and its adjoint.

(a)

⎡
⎣ 2 1 0

−1 1 2
1 2 2

⎤
⎦ (b)

⎡
⎣1 0 3

0 1 0
1 0 −1

⎤
⎦ (c)

[
1 3

−1 2

]
(d)

⎡
⎢⎢⎣

1 2 0 0
1 2 0 0
0 0 1 3
0 0 2 6

⎤
⎥⎥⎦

Exercise 10. For each of the following matrices calculate the adjoint matrix
and the product of the adjoint and the matrix.

(a)

⎡
⎣−1 1 1

0 0 2
0 0 2

⎤
⎦ (b)

⎡
⎣ 2 −1 0

−1 2 0
0 0 −1

⎤
⎦ (c)

[
1 1 + i

1 − i 2

]
(d)

⎡
⎢⎢⎣

1 1 0 3
0 2 0 0
0 0 1 1
0 0 0 −3

⎤
⎥⎥⎦

Exercise 11. Find the inverse of following matrices by adjoints.

(a)
[

1 1
3 4

]
(b)

⎡
⎣ 1 0 0

2 2 1
1 0 1

⎤
⎦ (c)

⎡
⎣ 1 −2 2

−1 2 −1
1 −3 1

⎤
⎦ (d)

[
1 i

−2i 1

]

Exercise 12. For each of the following matrices, find the inverse by superaug-
mented matrices and by adjoints.

(a)
[

1 0
2 2

]
(b)

⎡
⎣1 −1 3

2 2 −4
1 1 1

⎤
⎦ (c)

⎡
⎢⎣

1
2

√
3

2 0
−

√
3

2
1
2 0

0 0 1

⎤
⎥⎦ (d)

[
1 2
2 2

]

Exercise 13. Use Cramer’s Rule to solve the following systems.

(a) x − 3y = 2
2x + y = 11 (b) 2x1 + x2 = b1

2x1 − x2 = b2
(c)

3x1 + x3 = 2
2x1 + 2x2 = 1

x1 + x2 + x3 = 6

Exercise 14. Use Cramer’s Rule to solve the following systems.

(a)
x + y + z = 4

2x + 2y + 5z = 11
4x + 6y + 8z = 24

(b) x1 − 2x2 = 2
2x1 − x2 = 4 (c)

x1 + x2 + x3 = 2
x1 + 2x2 = 1
x1 − x3 = 2

Exercise 15. Use Theorem 2.10 to compute determinants of the following
matrices.

(a) M =

⎡
⎢⎢⎢⎢⎣

−1 1 1 −1 2
0 1 2 5 3
3 0 2 0 0
0 0 0 1 1 + i
0 0 0 1 − i −1

⎤
⎥⎥⎥⎥⎦ (b) M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 2 0 0 0 0
1 0 3 0 0 0
0 0 2 0 0 2
0 1 0 1 7 0

−1 0 0 3 2 −2

⎤
⎥⎥⎥⎥⎥⎥⎦
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Exercise 16. Use Theorem 2.10 to compute determinants of the following
matrices.

(a) M =

⎡
⎢⎢⎢⎢⎣

−1 1 1 −1 2
0 1 2 5 3
3 0 2 0 0
0 −2 0 1 3
2 0 0 2 6

⎤
⎥⎥⎥⎥⎦ (b) M =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 2 1 −1 2 1
−2 5 4 4 0 0

0 1 2 5 3 −5
2 0 2 0 0 1
0 0 0 1 2 4
0 6 0 −1 2 4

⎤
⎥⎥⎥⎥⎥⎥⎦

Problem 17. Verify from definition that

∣∣∣∣∣∣∣∣

a b 0 0
c d 0 0
0 0 e f
0 0 g h

∣∣∣∣∣∣∣∣
=
∣∣∣∣a b
c d

∣∣∣∣
∣∣∣∣ e f
g h

∣∣∣∣ .

Problem 18. Confirm that the determinant of the matrix A =

⎡
⎣1 0 2

2 1 1
1 0 1

⎤
⎦ is −1.

We can now assert without any further calculation that the inverse matrix of
A has integer coefficients. Explain why in terms of laws of determinants.

Problem 19. Let

V =

⎡
⎣1 x0 x2

0

1 x1 x2
1

1 x2 x2
2

⎤
⎦ .

(V is a Vandermonde matrix.) Express det V as a product of factors (xj −xk).

*Problem 20. Show that the determinant of the general Vandermonde matrix

Vn =

⎡
⎢⎢⎢⎣

1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1
...

...
...

1 xn x2
n · · · xn

n

⎤
⎥⎥⎥⎦ .

is a product of factors (xj − xk) with j > k.

Problem 21. Show by example that detA∗ �= det A and prove that in general
det A∗ = det A.

*Problem 22. Use a determinantal law to show that det (A) det
(
A−1

)
= 1 if

A is invertible.

Problem 23. Use the determinantal laws to show that any matrix with a row
of zeros has zero determinant.

*Problem 24. If A is a 5 × 5 matrix, then in terms of det(A), what can we say
about det(−2A)? Explain and express a law about a general matrix cA, c a
scalar, that contains your answer.
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Problem 25. Let A be a skew-symmetric matrix, that is, AT = −A. Show that
if A has odd order n, i.e., A is n × n, then A must be singular.

*Problem 26. Show that if
M =

[
A 0
C D

]

then det M = detA · det D.

Problem 27. Show that if det D �= 0 and

M =
[

A B
C D

]

then det = det D det
(
A − BD−1C

)
.

*Problem 28. Let Jn be the n×n counteridentity, that is, Jn is a square matrix
with ones along the counterdiagonal (the diagonal that starts in the lower left
corner and ends in the upper right corner), and zeros elsewhere. Find a formula
for det Jn.

Problem 29. Show that the companion matrix of the polynomial f(x) = c0 +
c1x + · · · + cn−1x

n−1 + xn, which is defined to be

C (f) =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1

−c0 −c1 · · · −cn−2 −cn−1

⎤
⎥⎥⎥⎥⎥⎦

,

is invertible if and only if c0 �= 0.

Problem 30. Prove that if real matrix A is invertible, then det(AT A)̇ > 0.

Problem 31. Suppose that the square matrix A is singular. Prove that if the
system Ax = b is consistent, then (adjA)b = 0.

Problem 32. Prove that if A is n × n, then det(−A) = (−1)n det A.

Problem 33. Let A and B be invertible matrices of the same size. Use deter-
minantal law D9 to prove that adj

(
A−1

)
= (adj (A))−1 and adj(AB) =

adj (A) · adj (B).

2.7 *Tensor Products

How do we solve a system of equations in which the unknowns can be organized
into a matrix X and the linear system in question is of the form

AX + XB = C, (2.10)
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Sylvester Equationwhere A,B,C are matrices? We call this equation the
Sylvester equation. Such systems occur in a number
of physical applications; for example, discretizing certain partial differential
equations in order to solve them numerically can lead to such a system. Of
course, we could simply expand each system laboriously. This direct approach
offers us little insight as to the nature of the resulting system.

We are going to develop a powerful “bookkeeping” method that will rear-
range the variables of Sylvester’s equation automatically. The first basic idea
needed here is that of the tensor product of two matrices, which is defined as
follows:

Definition 2.22. Tensor Product Let A = [aij ] be an m × p matrix and
B = [bij ] an n×q matrix. Then the tensor product of A and B is the mn×pq
matrix A ⊗ B that can be expressed in block form as

A ⊗ B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11B a12B · · · a1jB · · · a1pB
a21B a22B · · · a2jB · · · a2pB

...
...

...
...

ai1B ai2B · · · aijB · · · aipB
...

...
...

...
am1B am2B · · · amjB · · · ampB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note 2.3. Some authors refer to the tensor product of matrices as the Kro-
necker product and reserve the term “tensor” for analogous operations on more
abstract objects such as the vector spaces and linear operators discussed in
Chapter 3.

Example 2.65. Let A =
[

1 3
2 1

]
and B =

[
4

−1

]
. Exhibit A ⊗ B, B ⊗ A, and

I2 ⊗ A and conclude that A ⊗ B �= B ⊗ A.

Solution. From the definition,

A ⊗ B =
[

1B 3B
2B 1B

]
=

⎡
⎢⎢⎣

4 12
−1 −3

8 4
−2 −1

⎤
⎥⎥⎦ , B ⊗ A =

[
4A

−1A

]
=

⎡
⎢⎢⎣

4 12
8 4

−1 −3
−2 −1

⎤
⎥⎥⎦ ,

and I2 ⊗ A =
[

1A 0A
0A 1A

]
=

⎡
⎢⎢⎣

1 3 0 0
2 1 0 0
0 0 1 3
0 0 2 1

⎤
⎥⎥⎦ . �

The other ingredient that we need to solve equation (2.10) is an operator
that turns matrices into vectors. It is defined as follows.

http://dx.doi.org/10.1007/978-3-319-74748-4_3
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Definition 2.23. Vec Operator Let A be an m×n matrix. Then the mn×1
vector vec A is obtained from A by stacking successive columns of A vertically,
with the first column at the top and the last column of A at the bottom.

Example 2.66. Let A =
[

1 3 4
2 1 5

]
. Compute vec A.

Solution. Stack the three columns to obtain vec A = [1, 2, 3, 1, 4, 5]T . �
The vec operator is linear (vec (aA + bB) = a vec A + b vec B). We leave

the proof, along with proofs of the following simple tensor facts, to the reader.

Theorem 2.11. Laws of Tensor Products Let A,B,C,D be suitably sized
matrices. Then

(1) (A + B) ⊗ C = A ⊗ C + B ⊗ C
(2) A ⊗ (B + C) = A ⊗ B + A ⊗ C
(3) (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)
(4) (A ⊗ B)T = AT ⊗ BT

(5) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)
(6) (A ⊗ B)−1 = A−1 ⊗ B−1

The next theorem lays out the key bookkeeping relationship between ten-
sor products and the vec operator.

Theorem 2.12. Bookkeeping Theorem If A,X,B are matrices conformable
for multiplication, then

vec (AXB) =
(
BT ⊗ A

)
vec X.

Corollary 2.6. The following linear systems in the unknown X are equivalent.

(1) A1XB1 + A2XB2 = C
(2)

((
BT

1 ⊗ A1

)
+
(
BT

2 ⊗ A2

))
vec X = vec C

For Sylvester’s equation, note that AX + XB = AXI + IXB.
The following is a very basic application of the tensor product. Suppose

we wish to model a two-dimensional heat diffusion process on a flat plate
that occupies the unit square in the xy-plane. We proceed as we did in the
one-dimensional process described in Section 1.1. To fix ideas, we assume that
the heat source is described by a function f(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and
that the temperature is held at 0 at the boundary of the unit square. Also, the
conductivity coefficient is assumed to be the constant k. Cover the square with
a uniformly spaced set of grid points (xi, yj), 0 ≤ i, j ≤ n + 1, called nodes,
and assume that the spacing in each direction is a width h = 1/(n + 1). Also

http://dx.doi.org/10.1007/978-3-319-74748-4_1
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assume that the temperature function at the (i, j)th node is uij = u(xi, yj)
and that the source is fij = f(xi, yj). Notice that the values of u on boundary
grid points is set at 0. For example, u01 = u20 = 0. By balancing the heat
flow in the horizontal and vertical directions, one arrives at a system of linear
equations, one for each node, of the form

−ui−1,j − ui+1,j + 4uij − ui,j−1 − ui,j+1 =
h2

k
fij , i, j = 1, . . . , n. (2.11)

Observe that values of boundary nodes are zero, so these are not unknowns,
which is why the indexing of the equations starts at 1 instead of 0. There are
exactly as many equations as unknown grid point values. Each equation has a
“molecule” associated with it that is obtained by circling the nodes that occur
in the equation and connecting these circles. A picture of a few nodes is given
in Figure 2.9.

Fig. 2.9: Molecules for (1, 1)th and (3, 2)th grid points

Example 2.67. Set up and solve a system of equations for the two-dimensional
heat diffusion problem described above.

Solution. Equation (2.11) gives us a system of n2 equations in the n2

unknowns uij , i, j = 1, 2, . . . , n. Rewrite equation (2.11) in the form

(−ui−1,j + 2uij − ui+1,j) + (−ui,j−1 + 2uij − ui,j+1) =
h2

k
fij .

Now form the n × n matrices

Tn =

⎡
⎢⎢⎢⎢⎣

2 −1 0 0

−1 2
. . . 0

0
. . . . . . −1

0 0 −1 2

⎤
⎥⎥⎥⎥⎦ .

Set U = [uij ] and F = [fij ], and the system can be written in matrix form as

TnU + UTn = TnUIn + InUTn =
h2

k
F.
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However, we can’t as yet identify a coefficient matrix, which is where Corol-
lary 2.6 comes in handy. Note that both In and Tn are symmetric and apply
the corollary to obtain that the system has the form

(In ⊗ Tn + Tn ⊗ In) vec U = vec
h2

k
F.

Now we have a coefficient matrix, and what’s more, we have an automatic
ordering of the doubly indexed variables uij , namely

u1,1, u2,1, . . . , un,1, u1,2, u2,2, . . . , un,2, . . . , u1,n, u2,n, . . . , un,n.

This is sometimes called the “row ordering,” which refers to the rows of the
nodes in Figure 2.9, and not the rows of the matrix U. �

Here is one more example of a problem in which tensor notation is an
extremely helpful bookkeeper. This is a biological model that gives rise to an
inverse theory problem. (“Here’s the answer, what’s the question?”)

Example 2.68. Refer to Example 2.21, where a three-state insect (egg, juve-
nile, adult) is studied in stages spaced at intervals of two days. One might ask
how the entries of the matrix were derived. Clearly, observation plays a role.
Let us suppose that we have taken samples of the population at successive
stages and recorded our estimates of the population state. Suppose we have
estimates of states x(0) through x(4). How do we translate these observations
into transition matrix entries?

Solution. We postulate that the correct transition matrix has the form

A =

⎡
⎣ P1 0 F

G1 P2 0
0 G2 P3

⎤
⎦ .

Theoretically, we have the transition equation x(k+1) = Ax(k) for k = 0, 1, 2, 3.
Remember that this is an inverse problem, where the “answers,” population
states x(k), are given, and the question “What is the transition matrix A?”
is unknown. We could simply write out each transition equation and express
the results as linear equations in the unknown entries of A. However, this
is laborious and not practical for problems involving many states or larger
amounts of data.

Here is a better idea: Assemble all of the transition equations into a single
matrix equation by setting

M =
[
x(0),x(1),x(2),x(3)

]
= [mij ] and N =

[
x(1),x(2),x(3),x(4)

]
= [nij ] .

The entire ensemble of transition equations becomes AM = N with M and N
known matrices and A the unknown. Here A is 3×3 and both M,N are 3×4.
Next, write the transition equation as I3AM = N and invoke the bookkeeping
theorem to obtain the system
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vec (I3AM) =
(
MT ⊗ I3

)
vec A = vec N.

This is a system of 12 equations in 9 unknowns. We can simplify it a bit by
deleting the third, fourth, and eighth entries of vec A and the same columns
of the coefficient matrix, since we know that the variables a31, a12, and a23

are zero. We thus end up with a system of 12 equations in 6 unknowns, which
will determine the nonzero entries of A. �

2.7 Exercises and Problems

Exercise 1. Let A =

⎡
⎣1 0 0

2 2 1
1 0 1

⎤
⎦ and B =

[
2 −1
1 0

]
. Calculate the following.

(a) A ⊗ B (b)B ⊗ A (c)A−1 ⊗ B−1 (d)(A ⊗ B)−1

Exercise 2. Let A =
[

1 0 −1
1 2 1

]
and B =

[
3 −3
3 0

]
. Calculate the following.

(a) A ⊗ B (b)B ⊗ A (c)AT ⊗ BT (d)(A ⊗ B)T

Exercise 3. With A and B as in Exercise 1, C =

⎡
⎣2 −1

1 0
1 3

⎤
⎦, and X = [xij ] a

3 × 2 matrix of unknowns, use tensor products to determine the coefficient
matrix of the linear system AX + XB = C in matrix–vector form.

Exercise 4. Use the matrix A and methodology of Example 2.68 with x(0) =
(1, 2, 3), x(1) = (0.9, 1.2, 3.6), and x(2) = (1, 1.1, 3.4) to express the resulting
system of equations in the six unknown nonzero entries of A in matrix–vector
form.

*Problem 5. Verify parts (1) and (4) of Theorem 2.11.

Problem 6. Verify parts (5) and (6) of Theorem 2.11.

*Problem 7. Show that if A and B are square matrices of sizes m and n respec-
tively, and if one of A and B is singular, then |A ⊗ B| = 0.

Problem 8. Show that if A and B are square matrices of sizes m and n respec-
tively, then |A ⊗ B| = |A|n |B|m.

Problem 9. If heat is transported with a horizontal velocity v as well as diffused
in Example 2.67, a new equation results at each node in the form

−ui−1,j − ui+1,j + 4uij − ui,j−1 − ui,j+1 − vh

2k
(ui+1,j − ui−1,j) =

h2

k
fij

for i, j = 1, . . . , n. Vectorize the system and use tensor products to identify
the coefficient matrix of this linear system.

*Problem 10. Prove the Bookkeeping Theorem (Theorem 2.12).
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2.8 *Applications and Computational Notes

LU Factorization

Here is a problem: Suppose we want to solve a nonsingular linear system
Ax = b repeatedly, with different choices of b. A perfect example of this
kind of situation is the heat flow problem Example 1.3, where the right-hand
side is determined by the heat source term f(x). Suppose that we need to
experiment with different source terms. What happens if we use Gaussian or
Gauss–Jordan elimination? Each time we carry out a complete calculation on
the augmented matrix Ã = [A | b] we have to resolve the whole system. Yet, the
main part of our work is the same: putting the part of Ã corresponding to the
coefficient matrix A into reduced row echelon form. Changing the right-hand
side has no effect on this work. What we want here is a way to somehow record
our work on A, so that solving a new system involves very little additional
work. This is exactly what the LU factorization is all about.

Definition 2.24. LU Factorization Let A be an n × n matrix. An LU fac-
torization of A is a pair of n × n matrices L,U such that
(1) L is lower triangular.
(2) U is upper triangular.
(3) A = LU.

Even if we could find such beasts, what is so wonderful about them? The
answer is that triangular systems Ax = b are easy to solve. For example, if A
is upper triangular, we learned that the smart thing to do was to use the last
equation to solve for the last variable, then the next-to-last equation for the
next-to-last variable, etc. This is the secret of Gaussian elimination! But lower
triangular systems are just as simple: Use the first equation to solve for the
first variable, the second equation for the second variable, and so forth. Now
suppose we want to solve Ax = b and we know that A = LU. The original
system becomes LUx = b. Introduce an intermediate variable y = Ux. Now
perform these steps:

1. (Forward solve) Solve lower triangular system Ly = b for the variable y.
2. (Back solve) Solve upper triangular system Ux = y for the variable x.

This does it! Once we have the matrices L,U , we don’t have to worry about
right-hand sides, except for the small amount of work involved in solving two
triangular systems. Notice that since A is assumed nonsingular, we have that
if A = LU , then detA = det Ldet U �= 0. Therefore, neither triangular matrix
L or U can have zeros on its diagonal. Thus, the forward and back solve steps
can always be carried out to give a unique solution.

http://dx.doi.org/10.1007/978-3-319-74748-4_1
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Example 2.69. You are given that

A =

⎡
⎣ 2 1 0

−2 0 −1
2 3 −3

⎤
⎦ =

⎡
⎣ 1 0 0

−1 1 0
1 2 1

⎤
⎦
⎡
⎣2 1 0

0 1 −1
0 0 −1

⎤
⎦ .

Use this fact to solve Ax = b in the following cases:

(a) b = [1, 0, 1]T (b) b = [−1, 2, 1]T

Solution. Set x = [x1, x2, x3]T and y = [y1, y2,y3]T . For (a) forward solve⎡
⎣ 1 0 0

−1 1 0
1 2 1

⎤
⎦
⎡
⎣ y1

y2

y3

⎤
⎦ =

⎡
⎣1

0
1

⎤
⎦

to get y1 = 1, then y2 = 0 + 1y1 = 1, then y3 = 1 − 1y1 − 2y2 = −2. Then
back solve ⎡

⎣2 1 0
0 1 −1
0 0 −1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ 1

1
−2

⎤
⎦

to get x3 = −2/(−1) = 2, then x2 = 1 + x3 = 3, then x1 = (1 − 1x2)/2 = −1.
For (b) forward solve ⎡

⎣ 1 0 0
−1 1 0

1 2 1

⎤
⎦
⎡
⎣ y1

y2

y3

⎤
⎦ =

⎡
⎣−1

2
1

⎤
⎦

to get y1 = −1, then y2 = 0 + 1y1 = −1, then y3 = 1 − 1y1 − 2y2 = 4. Then
back solve ⎡

⎣2 1 0
0 1 −1
0 0 −1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣−1

−1
4

⎤
⎦

to get x3 = 4/(−1) = −4, then x2 = 1 + x3 = −3, then x1 = (1 − 1x2)/2 = 2.
�

Notice how simple the previous example was, if LU factorization is known.
So how do we find such a factorization? In general, a nonsingular matrix

may not have one. A good example is the matrix
[

0 1
1 0

]
. However, if

Gaussian elimination can be performed on the matrix A without row
exchanges, then such a factorization is really a by-product of Gaussian elim-
ination. In this case let [a(k)

ij ] be the matrix obtained from A after using
the kth pivot to clear out entries below it (thus, A = [a(0)

ij ]). Remem-
ber that in Gaussian elimination we need only two types of elementary
operations, namely row exchanges and adding a multiple of one row to
another. Furthermore, the only elementary operations of the latter type
that we use are of this form: Eij(−a

(k)
ij /a

(k)
jj ), where [a(k)

ij ] is the matrix
obtained from A from the various elementary operations up to this point.
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Multipliers The numbers mij = −a
(k)
ij /a

(k)
jj , where i > j, are sometimes

called multipliers. In the way of notation, let us call a trian-
gular matrix a unit triangular matrix if its diagonal entries are all 1’s.

Theorem 2.13. If Gaussian elimination is used without row exchanges on
the nonsingular matrix A, resulting in the upper triangular matrix U , and if
L is the unit lower triangular matrix whose entries below the diagonal are the
negatives of the multipliers mij , then A = LU.

Proof. The proof of this theorem amounts to noticing that the product
of all the elementary operations that reduces A to U is a unit lower triangular
matrix L̃ with the multipliers mij in the appropriate positions. Thus, L̃A = U.
To undo these operations, multiply by a matrix L with the negatives of the
multipliers in the appropriate positions. This results in

LL̃A = A = LU

as desired. �

The following example shows how one can write an efficient program to
implement LU factorization. The idea is this: As we do Gaussian elimination,
the U part of the factorization gradually appears in the upper parts of the
transformed matrices A(k). Below the diagonal we replace nonzero entries with
zeros, column by column. Instead of wasting this space, use it to store the
negative of the multipliers in place of the element it zeros out. Of course, this
storage part of the matrix should not be changed by subsequent elementary
row operations. When we are finished with elimination, the diagonal and upper
part of the resulting matrix is just U , and the strictly lower triangular part on
the unit lower triangular matrix L is stored in the lower part of the matrix.

Example 2.70. Use the shorthand of the preceding discussion to compute an
LU factorization for

A =

⎡
⎣ 2 1 0

−2 0 −1
2 3 −3

⎤
⎦ .

Solution. Proceed as in Gaussian elimination, but store negative multi-
pliers:

⎡
⎣ 2 1 0

−2 0 −1
2 3 −3

⎤
⎦

−−−−−−→
E21(1)

E31(−1)

⎡
⎣ 2 1 0

−1 1 −1
1 2 −3

⎤
⎦ −−−−−−→

E32(−2)

⎡
⎣ 2 1 0

−1 1 −1
1 2 −1

⎤
⎦ .

Now we read off the results from the last matrix:

L =

⎡
⎣ 1 0 0

1 1 0
−1 2 1

⎤
⎦ and U =

⎡
⎣2 1 0

0 1 −1
0 0 −1

⎤
⎦ . �
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What can be said if row exchanges are required (for example, we might
want to use a partial pivoting strategy)? Take the point of view that we could
see our way to the end of Gaussian elimination and store the product P of all

Permutation Matrixrow-exchanging elementary operations that we use
along the way. A product of such matrices is called a permutation matrix ;
such a matrix is invertible, since it is a product of invertible matrices. Thus,
if we apply the correct permutation matrix P to A we obtain a matrix for
which Gaussian elimination will succeed without further row exchanges. Con-
sequently, we have a theorem that applies to all nonsingular matrices. Notice
that it does not limit the usefulness of LU factorization since the linear system
Ax = b is equivalent to the system PAx = Pb. The following theorem could
be called the “PLU factorization theorem.”

Theorem 2.14. If A is a nonsingular matrix, then there exists a permutation
matrix P , upper triangular matrix U , and unit lower triangular matrix L such
that PA = LU.

There are many other useful factorizations of matrices that numerical ana-
lysts have studied, e.g., LDU and Cholesky. We will stop at LU, but there is
one last point we want to make. Recall that a “flop” in numerical linear algebra
is a single addition or subtraction, or multiplication or division. The amount
of work in finding the LU factorization is the same as Gaussian elimination
itself, which is approximately 2n3/3 flops (see Section 1.5). The additional
work of back and forward solving is about 2n2 flops. So the dominant amount
of work is done by computing the factorization rather than the back and
forward solving stages.

Efficiency of Determinants and Cramer’s Rule in Computation

The truth of the matter is that Cramer’s Rule and adjoints are good only for
small matrices and theoretical arguments. For if you evaluate determinants in
a straightforward way from the definition, the work in doing so is about n · n!
flops for an n×n system. (Recall that a “flop” in numerical linear algebra is a
single addition or subtraction, or multiplication or division.) For example, it is
not hard to show that the operation of adding a multiple of one row vector of
length n to another requires 2n flops. This number n·n! is vast when compared
to the number 2n3/3 flops required for Gaussian elimination, even with “small”
n, say n = 10. In this case we have 2 ·103/3 ≈ 667, while 10 ·10! = 36, 288, 000.

Computational Efficiency of Determinants
On the other hand, there

is a clever way to evaluate determinants that requires much less work than the
definition: Use elementary row operations together with D2, D6, and the ele-
mentary operations that correspond to these rules to reduce the determinant
to that of a triangular matrix. This requires about 2n3/3 flops. As a matter
of fact, it is tantamount to Gaussian elimination. But to use Cramer’s Rule,

http://dx.doi.org/10.1007/978-3-319-74748-4_1
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you will have to calculate n + 1 determinants. So why bother with Cramer’s
Rule on larger problems when it still will take about n times as much work as
Gaussian elimination? A similar remark applies to computing adjoints instead
of using Gauss–Jordan elimination on the superaugmented matrix of A.

Digital Signal Processing

As an introduction to the field of digital signal processing (DSP), let us recon-
sider the nonhomogeneous constant coefficient difference equation in a some-
what different format:

yk = a0xk + a1xk−1 + · · · + amxk−m, k = m,m + 1,m + 2, . . . , (2.12)

where a0 and am are nonzero. Rather than treating the xk’s as unknowns,
view them as inputs and the resulting values yk as outputs. More specif-
ically, we think of the sequence x0, x1, . . . as a sampling of a continu-
ous variable such as sound in a time domain or an image in a spatial
domain. In this setting we think of equation (2.12) as a linear digital filter

Digital Filter of length m and the resulting sequence of yk’s as the filtered
data.

Fig. 2.10: Graph of data from Example 2.71: Exact (—), noisy (—) and
filtered (—)

As a simple example, consider a continuous function y = f (t) over the
domain −1 ≤ t ≤1. Here the variable t could represent time or space. When
you see a visual representation of this function (a graph of it) what you are
really seeing is a discrete sampling of values of this continuous points at some
resolution – a dot-to-dot so to speak.
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Example 2.71. Consider the function f (t) = cos (πt), −1 ≤ t ≤ 1 which
defines the exact signal that we want to sample. Suppose that what we actu-
ally sample is this signal plus noise, namely the function g (t) = cos (πt) +
1
5 sin (24πt)+ 1

4 cos (30πt). Note that the signal f (t) is the low frequency por-
tion of g (t) and the noise is the high frequency portion of g (t). Suppose further
that sampling is at the equally spaced points tk = −1 + 2

64k, k = 0, 1, . . . , 64,
yielding data points xk = g (tk). We apply the following length two filter to
the data:

yk =
1
4
xk +

1
2
xk−1 +

1
4
xk−2, k = 2, 3, . . . , 64.

How effective is this filter in removing noise?

Solution. Rather than list the resulting numbers let’s calculate and graph
them. We shall interpret the number yk as the filtered value of the noisy
xk = g (tk), k = 2, 3, . . . 64 and therefore the approximation to f (tk) that
results from this filtering. A graph of the exact data, noisy data and filtered
data is given in Figure 2.10. Although it is somewhat crude (reliance on earlier
values causes a slight forward shift in the filtered values), it appears to do a
decent job of filtering out the noise in the sampled signal g (t). �

Fig. 2.11: Graph of data from Example 2.72: Exact (—), noisy (—) and
filtered (—)

The filter of Example 2.71 is both causal (filtered data at a specific time

Causal and Low
Pass Filter

only depends on samples from earlier times) and low-
pass (filters out high frequency data but preserves low
frequency data).

Example 2.72. Apply the following length two filter to the data of Exam-
ple 2.71:

yk = −1
4
xk +

1
2
xk−1 − 1

4
xk−2, k = 2, 3, . . . , 64.
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What is the effect of this filter?

Solution. As in Example 2.71 we calculate and graph the resulting num-
bers. A graph of the true data, noisy data and filtered data is given in
Figure 2.70. Evidently the effect of this filter is to filter out the low frequency
portion of the sampled function g (t), which is exactly the opposite of the
lowpass filter of Example 2.71. �

The filter of Example 2.72 is both causal (filtered data at a specific time

Causal and High
Pass Filter

only depends on samples from earlier times) and high-
pass (filters out low frequency data but preserves high
frequency data). We will examine both low and high

pass filters again in Chapters 4 and 6.

IsoRank

Consider this problem: Given two networks graphs, how can we compare
them? Do they have similar subgraphs? If we are able to map one graph per-
fectly in an edge preserving fashion onto a copy of it contained in the other, we
could say that we have perfect similarity between one graph and a subgraph
of the other. But what if we can only find imperfect mappings of one into
the other? How can we find a “best” match in some sense or other? This idea
has many important applications in chemistry, network analysis, biology and
bioinformatics among others. For example, one could compare certain gene
sequences or PPIs (protein-protein interactions) between species (see [13] and
[21] for more details.) Several different technologies have been developed to
explore these problems, e.g., GeneRank, ProteinRank and IsoRank. All of
these are ultimately special cases of PageRank. We shall introduce IsoRank
by way a fairly simple example.

Example 2.73. What similarities can be found between the two graphs of
Figure 2.12?

Solution. The two graphs are G1 and G2. Note that G1 is extremely
simple in structure and a visual inspection shows that G1 is a subgraph of
G2 in several ways: It can be identified with the vertices A,B,D in pretty
much any order, and similarly with the nodes B,C,D. However, the vertex E
should not be identified with any part of the graph G1. �

1

3

1

2

G G

CB

2

DA E

Fig. 2.12: Two graphs for comparison with IsoRank

http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_6
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The key question we want to answer here is: How can we design algorithms
that can “see” similarities between portions of graphs such as we have observed
in the previous example? To answer this question we shall use the following
definition, which can be applied to a pair of graphs:

Definition 2.25. Tensor Product of Graphs Let Gi be graphs with vertex
set Vi and edge set Ei, i = 1, 2. Then the tensor product of the two graphs is
the graph G = G1 × G2 with vertex set V and edge set E, where

V = {(u, v) | u ∈ V1 and v ∈ V2}
E = {{{u1, v1} , {u2, v2}} | {u1, u2} ∈ E1 and {v1, v2} ∈ E2} .

The idea behind this definition is that an edge between pairs of vertices in
the two graphs will exist only if the corresponding vertices in each graph are
themselves connected by an edge. Thus, it is a way of matching edges between
the two graphs.

Next, we will assume that we have a surfing matrix for each graph. How
do we construct a surfing matrix for their tensor product? In order to fix
ideas, we need the PageRank matrices from the graphs of Figure 2.12. Note
that there are no dangling nodes in any graph that is connected. Hence, there
is no need for a correction vector for this problem. We can construct surfing
matrices for each graph by inspection: Count the number of links nj out of
vertex vj and give each target vertex vi a probability 1/nj of being reached
from vj . In other words, the (i, j)th entry of the surfing matrix is 1/nj . What
results is that the surfing matrices P = [pij ] for G1 and Q = [qij ] for G2,
where

P =

⎡
⎣ 0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

⎤
⎦ and Q =

⎡
⎢⎢⎢⎢⎣

0 1
3 0 1

4 0
1
2 0 1

2
1
4 0

0 1
3 0 1

4 0
1
2

1
3

1
2 0 1

0 0 0 1
4 0

⎤
⎥⎥⎥⎥⎦ .

Here the ordering of vertices is 1, 2, 3, (also labeled as u1, u2, u3, resp.) for
G1. For G2 we use the ordering A,B,C,D,E (also labeled as v1, v2, v3, v4, v5,
resp.). The matter of ordering is significant because different orderings will
result in different surfing matrices.

So how should we order the vertices of G = G1 × G2 in our example? Two
natural choices are to treat the sequence much like a double sum: For each
vertex in the outer graph, cycle over the vertices in the inner graph. If we
treat G1 as inner and G2 as outer, the ordering looks like

(u1, v1), (u2, v1), (u3, v1), (u1, v2), (u2, v2), (u3, v2), (u1, v3), (u2, v3), (u3, v3),
(u1, v4), (u2, v4), (u3, v4), (u1, v5), (u2, v5), (u3, v5),

while if we treat G1 as outer and G2 as inner, the ordering looks like
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(u1, v1), (u1, v2), (u1, v3), (u1, v4), (u1, v5), (u2, v1), (u2, v2), (u2, v3), (u2, v4),
(u2, v5), (u3, v1), (u3, v2), (u3, v3), (u3, v4), (u3, v5).

A drawing of the graph G is too complicated to be helpful. Rather, we will
find the surfing matrix with one of the ordering of vertices specified above.
So the question to be answered is: Given a vertex (ui, vj) of G, what is the
probability of it transitioning to the vertex (uk, v�)? The answer is surprisingly
simple: In order for this to happen, ui must transition to uk and vj must
transition to v�. However, these events are entirely independent of each other,
so the probability of both happening is the product of probabilities of each
happening, that is, pikqj�.

Unfortunately, these indices alone are not sufficient to describe a surfing
matrix for G. What is required is a specific ordering of the vertices of G. So
let us consider the first ordering described above (G1 inner, G2 outer). The
result is the following matrix:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
6

1
6 0 0 0 0 1

8
1
8 0 0 0

0 0 0 1
6 0 1

6 0 0 0 1
8 0 1

8 0 0 0
0 0 0 1

6
1
6 0 0 0 0 1

8
1
8 0 0 0 0

0 1
4

1
4 0 0 0 0 1

4
1
4 0 1

8
1
8 0 0 0

1
4 0 1

4 0 0 0 1
4 0 1

4
1
8 0 1

8 0 0 0
1
4

1
4 0 0 0 0 1

4
1
4 0 1

8
1
8 0 0 0 0

0 0 0 0 1
6

1
6 0 0 0 0 1

8
1
8 0 0 0

0 0 0 1
6 0 1

6 0 0 0 1
8 0 1

8 0 0 0
0 0 0 1

6
1
6 0 0 0 0 1

8
1
8 0 0 0 0

0 1
4

1
4 0 1

6
1
6 0 1

4
1
4 0 0 0 0 1

2
1
2

1
4 0 1

4
1
6 0 1

6
1
4 0 1

4 0 0 0 1
2 0 1

2
1
4

1
4 0 1

6
1
6 0 1

4
1
4 0 0 0 0 1

2
1
2 0

0 0 0 0 0 0 0 0 0 0 1
8

1
8 0 0 0

0 0 0 0 0 0 0 0 0 1
8 0 1

8 0 0 0
0 0 0 0 0 0 0 0 0 1

8
1
8 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It would be impractical to construct all such surfing matrices on an ad
hoc basis, so let us examine the entry formula pikqj� more closely. Note that
our selected ordering of vertices of G occurs in successive blocks which means
that the (row, column) indices of the blocks in S are (k, l), k, 
 = 1, 2, 3, 4, 5.
Within each block the (row, column) indices are (i, j), i, j = 1, 2, 3 and qj� is
fixed while pij ranges over the entries of P . Thus, the matrix S takes the form

S =

⎡
⎢⎢⎢⎢⎣

q1,1P q1,2P q1,3P q1,4P q1,5P
q2,1P q2,2P q2,3P q2,4P q2,5P
q3,1P q3,2P q3,3P q3,4P q3,5P
q4,1P q4,2P q4,3P q4,4P q4,5P
q5,1P q5,2P q5,3P q5,4P q5,5P

⎤
⎥⎥⎥⎥⎦ = Q ⊗ P.

Had we chosen the second ordering (G1 outer, G2 inner) the resulting surfing
matrix would have been P ⊗Q. These arguments are easily abstracted to yield
the following theorem:
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Theorem 2.15. Let G1, G2 be graphs with stochastic surfing matrices P , Q,
resp. Then with a suitable block ordering of vertices, P ⊗ Q or Q ⊗ P is a
surfing matrix for the graph G1 × G2.

As an aside it is interesting to note that this implies that P ⊗Q and Q⊗P
are stochastic matrices. In fact this is true for any stochastic matrices P and
Q, whether they are connected to any graph or not. We leave the proof of this
as an exercise.

Returning to Example 2.73, we now have that Q ⊗ P is a surfing matrix
for the tensor product G = G1 × G2 so that we can apply the PageRank
methodology to this graph. Set e = (1, 1, . . . , 1) and define teleportation vector
v = e/15 and teleportation parameter α = 0.85. We can compute (with a
suitable technology tool such as ALAMA calculator) the unique stationary
vector x obtained by solving the system

(I − αQ ⊗ P )x = (1 − α)v.

The G1 inner, G2 outer ordering suggests a very convenient way of displaying
x, namely to assemble the blocks of three into a 3×5 matrix with rows indexed
by vertices of G1 and columns by vertices of G2. Here is the resulting matrix,
rounded to three decimal places:

A B C D E
1
2
3

⎡
⎣0.056 0.08 0.056 0.108 0.033

0.056 0.08 0.056 0.108 0.033
0.056 0.08 0.056 0.108 0.033

⎤
⎦

What this table tells us is that the most likely (and therefore best) matching
between vertices of G1 and G2 is to match any one of 1, 2, 3 of G1 with vertex
D of G2. This gives three possibilities. For example, let’s match 2 to C. What
remains in the table is

A B C E
1
3

[
0.056 0.08 0.056 0.033
0.056 0.08 0.056 0.033

]
.

This tells us that the best match for 1 or 3 is B, giving us a total of six
possibilities. Match 1 to B and what remains in the table is

A C E
3
[
0.056 0.056 0.033

] .

This tells us that the best match for 3 is A or C, which gives a total of 12
possibilities, namely, any permutation of B,D,A or of B,D,C. This is exactly
what visual examination of the two graphs shows us.

We have introduced IsoRank in the context of graphs, but it can also work
for digraphs with a few changes. First, for digraphs modify Definition 2.25 by



176 2 MATRIX ALGEBRA

changing edges from unordered pairs {u, v} to ordered pairs (u, v). Second, the
construction of a suitable surfing matrix for both digraphs must be constructed
from the adjacency matrices of these graphs via Theorem 2.7 and the use of
correction vectors to handle dangling nodes.

2.8 Exercises and Problems

Exercise 1. Show that L =

⎡
⎣1 0 0

1 1 0
2 1 1

⎤
⎦ and U =

⎡
⎣2 −1 1

0 4 −3
0 0 −1

⎤
⎦ is an LU factoriza-

tion of A =

⎡
⎣2 −1 1

2 3 −2
4 2 −2

⎤
⎦.

Exercise 2. Show that P =

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦, L =

⎡
⎣ 1 0 0

1
2 1 0
0 − 1

2 1

⎤
⎦ and U =

⎡
⎣4 2 −2

0 2 −1
0 0 1

2

⎤
⎦ is a

PLU factorization of A =

⎡
⎣0 −1 1

2 3 −2
4 2 −2

⎤
⎦.

Exercise 3. Use the LU factorization of Exercise 1 to solve Ax = b, where
(a) b = (6,−8,−4) (b) b = (2,−1, 2) (c) b = (1, 2, 4)) (d) b = (1, 1, 1).
Exercise 4. Use the PLU factorization of Exercise 2 to solve Ax = b, where
(a) b = (3, 1, 4) (b) b = (2,−1, 3) (c) b = (1, 2, 0)) (d) b = (1, 0, 0).

Exercise 5. Find an LU factorization of the matrix A =

⎡
⎣ 2 1 0

−4 −1 −1
2 3 −3

⎤
⎦.

Exercise 6. Find a PLU factorization of the matrix A =

⎡
⎣ 2 1 3

−4 −2 −1
2 3 −3

⎤
⎦.

*Problem 7. Show that if A is a nonsingular matrix with a zero (1, 1)th entry,
then A does not have an LU factorization.
*Problem 8. Repeat the IsoRank calculation for Example 2.73 with teleporta-
tion parameter α = 0.5. Do you obtain the same embeddings as with α = 0.85?
Problem 9. Apply the following digital filter to the noisy data of Example 2.71
and graph the results. Does it appear to be a low pass filter?

yk =
1
2
xk +

1
2
xk−1, k = 1, 2, . . . , 33

Problem 10. Apply the following digital filter to the noisy data of Example 2.71
and graph the results. Does it appear to be a high pass filter?

yk =
1
2
xk − 1

2
xk−1, k = 1, 2, . . . , 33

Problem 11. Show that the tensor product of any two stochastic matrices is
itself stochastic.
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2.9 *Projects and Reports

Project: LU Factorization
Write a program module that implements Theorem 2.14 using partial pivot-
ing and implicit row exchanges. This means that space is allocated for the
n × n matrix A = [a[i, j]] and an array of row indices, say indx[i]. Initially,
indx should consist of the integers 1, 2, . . . , n. Whenever two rows need to
be exchanged, say the first and third, then the indices indx[1] and indx[3]
are exchanged. References to array elements throughout the Gaussian elim-
ination process should be indirect: Refer to the (1, 4)th entry of A as the
element a [indx[1], 4]. This method of reference has the same effect as physi-
cally exchanging rows, but without the work. It also has the appealing feature
that we can design the algorithm as though no row exchanges have taken
place provided we replace the direct reference a[i, j] by the indirect reference
a[indx[i], j]. The module should return the lower/upper matrix in the format
of Example 2.70 as well as the permuted array indx[i]. Effectively, this index
array tells the user what the permutation matrix P is.

Use this module to implement an LU system solver module that uses the
LU factorization to solve a general linear system. Also write a module that
finds the inverse of an n × n matrix A by first using the LU factorization
module, then making repeated use of the LU system solver to solve Ax(i) = ei,
where ei is the ith column of the identity. Then we will have

A−1 = [x(1),x(2), . . . ,x(n)].

Be sure to document and test your code and report on the results.

Project: Markov Chains
Refer to Example 2.19 and Section 2.3 for background. Three automobile
insurance firms compete for a fixed market of customers. Annual premiums
are sold to these customers. Label the companies A, B, and C. You work for
Company A, and your team of market analysts has done a survey that draws
the following conclusions: In each of the past three years, the number of A
customers switching to B is 20%, and to C is 30%. The number of B customers
switching to A is 20%, and to C is 20%. The number of C customers switching
to A is 30%, and to B is 10%. Those who do not switch continue to use their
current company’s insurance for the next year. Model this market as a Markov
chain. Display the transition matrix for the model. Illustrate the workings of
the model by showing what it would predict as the market shares three years
from now if currently A, B, and C owned equal shares of the market.

The next part of your problem is as follows: Your team has tested two
advertising campaigns in some smaller test markets and are confident that
the first campaign will convince 20% of the B customers who would otherwise
stay with B in a given year to switch to A. The second advertising campaign
would convince 20% of the C customers who would otherwise stay with C
in a given year to switch to A. Both campaigns have about equal costs and
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would not change other customers’ habits. Make a recommendation, based on
your experiments with various possible initial state vectors for the market.
Will these campaigns actually improve your company’s market share? If so,
which one do you recommend? Write up your recommendation in the form of
a report, with supporting evidence. It’s a good idea to hedge on your bets a
little by pointing out limitations to your model and claims, so devote a few
sentences to those points.

It would be a plus to carry the analysis further (your manager might appre-
ciate that). For instance, you could turn the additional market share from,
say B customers, into a variable and plot the long-term gain for your company
against this variable. A manager could use this data to decide whether it was
worthwhile to attempt gaining more customers from B.
Project: Affine Transforms in Real-Time Rendering
Refer to the examples in Section 2.3 for background. Graphics specialists
find it important to distinguish between vector objects and point objects
in three-dimensional space. They simultaneously manipulate these two kinds
of objects with invertible linear operators, which they term transforms. To
this end, they use the following clever ruse: Identify three-dimensional vec-
tors and points in the usual way, that is, by their coordinates x1, x2, x3. To
distinguish between the two, embed them in the set of 4 × 1 vectors x =
(x1, x2, x3, x4), called homogeneous vectors, with the understanding that if

Homogeneous Vector x4 = 0, then x represents a three-dimensional vec-
tor object, and if x4 �= 0, then the vector represents

a three-dimensional point with coordinates x1
x4

, x2
x4

, x3
x4

.
Transforms (invertible linear operators) have the general form

TM (x) =

⎡
⎢⎢⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ .

If m44 = 1 and the remaining entries of the last row and column are zero, the
transform is called a homogeneous transform. If m44 = 1 and the remaining

Homogeneous and Affine Transforms entries of the last row are zero, the
transform is called affine. If the

transform matrix M takes the block form M =
[

I3 t
0 1

]
, the transform TM is

called a translation by the vector t. All other operators are called nonaffine.
In real-time rendering it is sometimes necessary to invert an affine trans-

form. Computational efficiency is paramount in these calculations (after all,
this is real time!). So your objective in this project is to design an algorithm
that accomplishes this inversion with a minimum number of flops. Preface
discussion of your algorithm with a description of affine transforms. Give a
geometrical explanation of what homogeneous and translation transforms do
to vectors and points. You might also find it helpful to show that every affine
transform is the composition of a homogeneous and a translation transform.



2.9 *Projects and Reports 179

Illustrate the algorithm with a few examples. Finally, discuss the stability of
your algorithm. Could it be a problem? If so, how would you remedy it? See
the discussion of roundoff error in Section 1.5.

Project: PageRank as Embedding Tool
Instructors: For simpler projects assign fewer of the tasks below.

A

E

C

B D

4 53

2

1

Fig. 2.13: Isomorphic relabeling of G1: 1, 2, 3, 4, 5 to G2: A,B,C,D,E

   1G

1

3

2 A

G 2

C D

EB

Fig. 2.14: Embedding examples

As we have seen, the notion of embedding one graph into another is a useful
idea for some scientific studies. In this report you will test the basic idea of
network embedding by using the variant IsoRank of the PageRank technique
on three relatively simple examples. This project requires a technology tool
for these calculations and the resulting output should be interpreted as in the
discussion of the IsoRank technique following Example 2.73 of Section 2.8.

By an isomorphism of graphs we mean a one-to-one edge preserving map
of vertices from one graph onto another. One can think of an isomorphism as
simply a relabeling of the vertices of a graph. The first test is to provide an
example of how well IsoRank can recognize isomorphisms. Consider the graph
of Figure 2.13. Let G1 be the graph with vertices 1, 2, 3, 4, 5 in that order and
G2 the same graph with vertices A,B,C,D,E in that order. Apply IsoRank
to these two graphs and discuss the validity of your results.

The next embedding test is to remove the edge connecting vertices B and
C in Figure 2.12 and use IsoRank with teleportation vector v = e/15 and
teleportation parameter α = 0.85 to find the best matchings of the graph G1

with the resulting graph G2. List all possible mappings that are calculated.
The last embedding test is to use IsoRank with teleportation vector v =

e/15 and teleportation parameter α = 0.85, along with correction vector
u = e/5 for G2, to find the best matchings of the digraph G1 with the digraph
G2 in Figure 2.14. List all possible mappings and discuss your calculations.

http://dx.doi.org/10.1007/978-3-319-74748-4_1
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Report: Team Ranking in Sports
Instructors: For simpler projects assign fewer of the tasks below. Also, you

could have students collect and use data from a sport of your choice.
Refer to Example 2.24 and Section 2.3 for background. As a sports analyst
you are given the following data about a league of seven teams numbered 1–7,
where the pair (j, k) represents a game in which team j defeated team k:

E = {(1, 2), (7, 3), (2, 4), (4, 5), (3, 2), (5, 1), (6, 1), (3, 1), (7, 2), (2, 6),
(3, 4), (7, 4), (5, 7), (6, 4), (3, 5), (5, 6), (7, 1), (5, 2), (7, 6), (1, 4), (6, 3)}.

Based on these data you are to rank the teams. To this end, begin with the
simplest method, ranking by win/loss record. Next, treat the data as defining
a digraph. Begin this analysis by constructing the adjacency matrix of this
digraph and drawing a picture of the digraph either by hand or using some
software. Then rank the teams by using the following methods: First use the
method of Example 2.26 to find a power ranking of each team. Then use the
reverse PageRank idea of Example 2.47 to rank the the teams.

Next, suppose you are given additional information, namely, the game
margins (winning score minus losing score) for each game. Following is a list
of these margins matching the order of matches in the definition of E:

M = {4, 8, 7, 3, 7, 7, 23, 15, 6, 18, 13, 14, 7, 13, 7, 18, 45, 10, 19, 14, 13} .

In order to utilize these data examine your picture of the digraph and label
each edge with the margin that matches it in M . You are now dealing with a
weighted graph and one can construct a different sort of “adjacency matrix”
by entering this margin in the (i, j)th entry according as team i defeated team
j by that margin. Use this approach to calculate “power ranking”.

As a last method of ranking, use PageRank on the reverse weighted digraph
just as it is used with the unweighted digraph. Discuss your results, compare
rankings and give reasons why you might prefer one over the other.
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VECTOR SPACES

It is hard to overstate the importance of the idea of a vector space, a concept
that has found application in mathematics, engineering, physics, chemistry,
biology, the social sciences, and other areas. What we encounter is an abstrac-
tion of the idea of vector space that we studied in calculus or high school
geometry. These “geometrical vectors” can easily be visualized. In this chapter,
abstraction will come in two waves. The first wave, which could properly be
called generalization, consists in generalizing the familiar ideas of geometrical
vectors of calculus to vectors of size greater than three.

The second wave, abstraction, consists in abstracting the vector idea to
entirely different kinds of objects. Abstraction can sometimes be difficult. For
some, the study of abstract ideas is its own reward. For others, the natu-
ral reaction is to expect some payoff for the extra effort required to master
abstraction. In the case of vector spaces we are happy to report that both
kinds of students will be satisfied: Vector space theory really is a thing of
beauty in itself and there is indeed a payoff for its study. It is a practical tool
that enables us to understand phenomena that would otherwise escape our
comprehension. Examples abound: The theory will be used in network analy-
sis, for “best” solutions to an inconsistent system (least squares), for studying
functions as systems of vectors, for establishing basic theory in linear pro-
gramming, and to obtain new perspectives on our old friend Ax = b.

3.1 Definitions and Basic Concepts

Generalization

We begin with the most concrete form of vector spaces, one that is closely
in tune with what we learned when we were first introduced to two- and
three-dimensional vectors using real numbers as scalars. However, we have
seen that the complex numbers are a perfectly legitimate and useful field of
numbers to work with. Therefore, our concept of a vector space must include
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the selection of a field of scalars. The requirements for such a field are that it
have binary operations of addition and multiplication that satisfy the usual
arithmetic laws: Both operations are closed, commutative, and associative;
have identities and satisfy distributive laws. And there exist additive inverses
for all elements and multiplicative inverses for nonzero elements. Although
other fields are possible, for our purposes the only fields of scalars are F = R

and F = C. Unless there is some indication to the contrary, the field of scalars
will be assumed to be the default, the real numbers R. However it should be
noted that there are other fields of importance such as Q, the field of rational
numbers, or the finite field Fq of integers modulo p, where p is a prime number.
The latter has significant applications in coding theory and cryptology.

A formal definition of vector space will come later. For now we describe
a “vector space” over a field of scalars F as a nonempty set V of vectors
of the same size, together with the binary operations of scalar multipli-
cation and vector addition, subject to the following laws: For all vectors
u,v ∈ V and scalars a ∈ F, (a) (Closure of vector addition) u + v ∈ V. (b)

Vector Negatives and Subtraction (Closure of scalar multiplication)
av ∈ V . For vectors u,v, we define

−u = (−1)u and u − v = u + (−v).
Very simple examples are R

2 and R
3, which we discuss below.

Another is any line through the origin in R
2, which takes the form V =

{c (x0, y0) | c ∈ R}.
Geometrical vector spaces. We may have already seen the

Geometrical Vectors vector idea in geometry or calculus. In those con-
texts, a vector was supposed to represent a direction and a magnitude in two-
or three-dimensional space, which is not the same thing as a point, that is,
location in space. At first, one had to deal with these intuitive definitions until
they could be turned into something more explicitly computational, namely
the displacements of a vector in coordinate directions. This led to the following
two vector spaces over the field of real numbers:

R
2 = {(x, y) |x, y ∈ R} ,

R
3 = {(x, y, z) |x, y, z ∈ R} .

The distinction between vector spaces and points becomes a little hazy here.
Once we have set up a coordinate system, we can identify each point in two-
or three-dimensional space with its coordinates, which we write in the form
of a tuple, i.e., a vector. The arithmetic of these two vector spaces is just the
standard coordinatewise vector addition and scalar multiplication. One can
visualize the direction represented by a vector (x, y) by drawing an arrow, i.e.,
directed line segment, from the origin of the coordinate system to the point
with coordinates (x, y). The magnitude of this vector is the length of the arrow,
which is just

√
x2 + y2. The arrows that we draw only represent the vector

we are thinking of. More than one arrow could represent the same vector
as in Figure 3.1. The definitions of vector arithmetic could be represented
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geometrically too. For example, to get the sum of vectors u and v, one places
a representative of vector u in the plane, then places a representative of v
whose tail is at the head of v, and the vector u + v is then represented by
the third leg of this triangle, with base at the base of u. To get a scalar
multiple of a vector w one scales w in accordance with the coefficient. See
Figure 3.1. Though instructive, this version of vector addition is not practical
for calculations.

u − v

v

w

u

uw
2w

v

u + v

32

1

2

3

1

y

O
4 5

P

Q

R

Fig. 3.1: Displacement vectors and graphical vector operations.

As a practical matter, it is also convenient to draw directed line segments
connecting points; such a vector is called a displacement vector. For exam-
ple, see Figure 3.1 for representatives of a displacement vector w =

−−→
PQ

Displacement and Position Vectorfrom the point P with coordinates
(1, 2) to the point Q with coordinates
(3, 3). One of the first nice outcomes of vector arithmetic is that this displace-
ment vector can be deduced from a simple calculation,

w = (3, 3) − (1, 2) = (3 − 1, 3 − 2) = (2, 1) .

A displacement vector of the form w =
−−→
OR, where O is the origin, is called a

position vector.
Geometrical vector spaces look a lot like the object we studied in Chapter 2

with the tuple notation as a shorthand for column vectors. The arithmetic of
R

2 and R
3 is the same as the standard arithmetic for column vectors. Now,

even though we can’t draw real geometrical pictures of vectors with four or
more coordinates, we have seen that larger vectors are useful in our search for
solutions of linear systems. So the question presents itself, why stop at three?
The answer is that we won’t! We will use the familiar pictures of R

2 and R
3

to guide our intuition about vectors in higher-dimensional spaces, which we
now define.

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Definition 3.1. Standard Real Vector Space The standard vector space of
dimension n, where n is a positive integer, over the reals is the set of vectors

R
n = {(x1, x2, . . . , xn) |x1, x2, . . . , xn ∈ R}

together with the standard vector addition and scalar multiplication. (Recall
that (x1, x2, . . . , xn) is shorthand for the column vector [x1, x2, . . . , xn]T .)

We see immediately from the definition that the required closure properties
of vector addition and scalar multiplication hold, so these really are vector
spaces in the sense defined above. The standard real vector spaces are often
called the real Euclidean vector spaces once the notion of a norm (a notion of
length covered in the next chapter) is attached to them.

Homogeneous vector spaces. Graphics specialists and others find it
important to distinguish between geometrical vectors and points (locations) in
three-dimensional space. They want to be able to simultaneously manipulate
these two kinds of objects, in particular, to do vector arithmetic and operator
manipulation that reduces to the ordinary vector arithmetic when applied to
geometrical vectors.

Here’s the idea that neatly does the trick: Set up a coordinate sys-
tem and identify geometrical vectors in the usual way, that is, by their
coordinates x1, x2, x3. Do the same with geometrical points. To distinguish
between the two, embed them as vectors x = (x1, x2, x3, x4) ∈ R

4 with
the understanding that if x4 = 0, then x represents a geometrical vec-
tor, and if x4 �= 0, then x represents a geometrical point. The vector x is
called a homogeneous vector and R

4 with the standard vector operations
is called homogeneous space. If x4 �= 0, then x represents a point whose

Homogeneous Vectors and Points coordinates are x1/x4, x2/x4, x3/x4,
and this point is said to be obtained

from the vector x by normalizing the vector. Notice that the line through the
origin that passes through the point P = (x1, x2, x3, 1) consists of vectors of
the form (tx1, tx2, tx3, t), where t is any real number. Conversely, any such
nonzero vector is normalized (tx1/t, tx2/t, tx3/t, t/t) = P . In this way, such
lines through the origin correspond to points. (Readers who have seen pro-
jective spaces before may recognize this correspondence as identifying finite
points in projective space with lines through the origin in R

4. The ideas of
homogeneous space actually originate in projective geometry.)

Now the standard vector arithmetic for R
4 allows us to do arithmetic on

geometrical vectors, for if x = (x1, x2, x3, 0) and y = (y1, y2, y3, 0) are such
vectors, then as elements of R

4 we have

x + y = (x1, x2, x3, 0) + (y1, y2, y3, 0) = (x1 + y1, x2 + y2, x3 + y3, 0) ,

cx = c (x1, x2, x3, 0) = (cx1, cx2, cx3, 0) ,

which result in geometrical vectors.
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Example 3.1. Interpret the result of adding a point and vector in homoge-
neous space.

Solution. Notice that we can’t add two points and obtain a point without
some extra normalization; however, addition of a point x = (x1, x2, x3, 1) and
vector y = (y1, y2, y3, 0) yields

x + y = (x1, x2, x3, 1) + (y1, y2, y3, 0) = (x1 + y1, x2 + y2, x3 + y3, 1) .

This has a rather elegant interpretation as the translation of the point x by
the vector y to another point x + y. It reinforces the idea that geometrical
vectors are simply displacements from one point to another. �

We can’t draw pictures of R
4, of course. But we can get an intuitive feeling

for how homogenization works by moving down one dimension. Regard R
3 as

homogeneous space for the plane that consists of points (x1, x2, 1). Figure 3.2
illustrates this idea.

x1

x2

x3

(0, 0, 0)

(0, 0, 1)

x + y = (x1 + y1, x2 + y2, 1)

x = (x1, x2, 1)

(tx1, tx2, t)

y = (y1, y2, 0)

Fig. 3.2: Homogeneous space for planar points and vectors.
As in Chapter 2, we don’t have to stop at the reals. For those situations in

which we want to use complex numbers, we have the following vector spaces:

Definition 3.2. Standard Complex Vector Space The standard vector space
of dimension n, where n is a positive integer, over the complex numbers is
the set of vectors

C
n = {(x1, x2, . . . , xn) |x1, x2, . . . , xn ∈ C}

together with the standard vector addition and scalar multiplication.

The standard complex vector spaces are also sometimes called Euclidean
spaces. It’s rather difficult to draw honest spatial pictures of complex vectors.
The space C

1 isn’t too bad: Complex numbers can be identified by points in

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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the complex plane. What about C
2? Where can we put (1 + 2i, 3 − i)? It seems

that we need four real coordinates, namely the real and imaginary parts of
two independent complex numbers, to keep track of the point. This is too big
to fit in real three-dimensional space, where we have only three independent
coordinates. We don’t let this technicality deter us. We can still draw fake
vector pictures of elements of C

2 to help our intuition, but do the algebra of
vectors exactly from the definition.

Example 3.2. Find the displacement vector from the point P with coordi-
nates (1 + 2i, 1 − 2i) to the point Q with coordinates (3 + i, 2i).

Solution. We compute

−−→
PQ = (3 + i, 2i) − (1 + 2i, 1 − 2i)

= (3 + i − (1 + 2i) , 2i − (1 − 2i))
= (2 − i,−1 + 4i) . �

Abstraction

We can see hints of a problem with the coordinate way of thinking about
geometrical vectors. Suppose the vector in question represents a force. In one
set of coordinates the force might have coordinates (1, 0, 1). In another, it
could have coordinates (0, 1, 1). Yet the the force doesn’t change, only its rep-
resentation. This suggests an idea: Why not think about geometrical vectors
as independent of any coordinate representation? From this perspective, geo-
metrical vectors are really more abstract than the row or column vectors we
have studied so far.

This line of thought leads us to consider an abstraction of our concept of
vector space. First we have to identify the essential vector space properties,
enough to make the resulting structure rich, but not so much that it is tied
down to an overly specific form. We saw in Chapter 2 that many laws hold for
the standard vector spaces. The essential laws were summarized in Section 2.1.
These laws become the basis for our definition of an abstract vector space.

About notation: Just as in matrix arithmetic, for vectors u,v, we under-
stand that u − v = u + (−v). We also suppress the dot (·) of scalar multipli-
cation and usually write au instead of a · u.

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Abstract Vector Space An (abstract) vector space is a nonempty set V of
elements called vectors, together with operations of vector addition (+) and
scalar multiplication ( · ), such that the following laws hold for all vectors
u,v,w ∈ V and scalars a, b ∈ F:

(1) (Closure of vector addition) u + v ∈ V.
(2) (Commutativity of addition) u + v = v + u.
(3) (Associativity of addition) u + (v + w) = (u + v) + w.
(4) (Additive identity) There exists an element 0 ∈ V such that u+0 = u =

0 + u.
(5) (Additive inverse) There exists an element −u ∈ V such that u+(−u) =

0 = (−u) + u.
(6) (Closure of scalar multiplication) a · u ∈ V.
(7) (Distributive law) a · (u + v) = a · u + a · v.
(8) (Distributive law) (a + b) · u = a · u + b · u.
(9) (Associative law) (ab) · u = a · (b · u) .

(10) (Monoidal law) 1 · u = u.

Examples of these abstract vector spaces are the standard spaces just
introduced, and these will be our main focus in this section. Yet, if we squint a
bit, we can see vector spaces everywhere. There are other, entirely nonstandard
examples, that make the abstraction worthwhile. Here are just a few such
examples. Our first example is closely related to the standard spaces, though
strictly speaking it is not one of them. It blurs the distinction between matrices
and vectors in Chapter 2, since it makes matrices into “vectors” in the abstract
sense of the preceding definition.

Example 3.3. Let R
m,n denote the set of all m×n matrices with real entries.

Show that this set, with the standard matrix addition and scalar multiplica-
tion, forms a vector space.

Solution. We know that any two matrices of the same size can be

Matrices as Vector Spaceadded to yield a matrix of that size. Likewise,
a scalar times a matrix yields a matrix of the
same size. Thus, the operations of matrix addition and scalar multiplication
are closed. Indeed, these laws and all the other vector space laws are sum-
marized in the laws of matrix addition and scalar multiplication of page 70.
�

The next example is important in many areas of higher mathematics and is
quite different from the standard vector spaces. Yet it is a perfectly legitimate
vector space. All the same, at first it seems odd to think of functions as
“vectors” even though this is meant in the abstract sense.

Example 3.4. Let C [0, 1] denote the set of all real-valued functions that are
continuous on the interval [0, 1] and use the standard function addition and
scalar multiplication for these functions. That is, for f (x) , g (x) ∈ C [0, 1] and
real number c, we define the functions f + g and cf by

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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(f + g) (x) = f (x) + g (x)
(cf) (x) = c (f (x)) .

Show that C [0, 1] with these operations is a vector space.

Solution. We set V = C[0, 1] and check the vector space axioms for this V.

Function Space For the rest of this example, we let f, g, h be arbitrary
elements of V. We know from calculus that the sum of

any two continuous functions is continuous and that any constant times a
continuous function is also continuous. Therefore, the closure of addition and
that of scalar multiplication hold. Now for all x such that 0 ≤ x ≤ 1, we have
from the definition and the commutative law of real number addition that

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x).

Since this holds for all x, we conclude that f + g = g + f, which is the
commutative law of vector addition. Similarly,

((f + g) + h)(x) = (f + g)(x) + h(x) = (f(x) + g(x)) + h(x)
= f(x) + (g(x) + h(x)) = (f + (g + h))(x).

Since this holds for all x, we conclude that (f + g) + h = f + (g + h), which
is the associative law for addition of vectors.

Next, if 0 denotes the constant function with value 0, then for any f ∈ V
we have that for all 0 ≤ x ≤ 1,

(f + 0)(x) = f(x) + 0 = f(x).

(We don’t write the zero element of this vector space in boldface because it’s
customary not to write functions in bold.) Since this is true for all x we have
that f + 0 = f , which establishes the additive identity law. Also, we define
(−f)(x) = −(f(x)) so that for all 0 ≤ x ≤ 1,

(f + (−f))(x) = f(x) − f(x) = 0,

from which we see that f + (−f) = 0. The additive inverse law follows. For
the distributive laws note that for real numbers a, b and continuous functions
f, g ∈ V , we have that for all 0 ≤ x ≤ 1,

a(f + g)(x) = a(f(x) + g(x)) = af(x) + ag(x) = (af + ag)(x),

which proves the first distributive law. For the second distributive law, note
that for all 0 ≤ x ≤ 1,

((a + b)g)(x) = (a + b)g(x) = ag(x) + bg(x) = (ag + bg)(x),

and the second distributive law follows. For the scalar associative law, observe
that for all 0 ≤ x ≤ 1,
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((ab)f)(x) = (ab)f(x) = a(bf(x)) = (a(bf))(x),

so that (ab)f = a(bf), as required. Finally, we see that

(1f)(x) = 1f(x) = f(x),

from which we have the monoidal law 1f = f. Thus, C [0, 1] with the pre-
scribed operations is a vector space. �

The preceding example could have just as well been C [a, b], the set of all
continuous functions on the interval a ≤ x ≤ b, where a < b. Indeed, most
of what we say about C [0, 1] is equally applicable to the more general space
C [a, b]. We usually stick to the interval 0 ≤ x ≤ 1 for simplicity. The next
example is also based on the “functions as vectors” idea.

Example 3.5. One of the two sets V = {f (x) ∈ C [0, 1] | f(1/2) = 0} and
W = {f (x) ∈ C [0, 1] | f(1/2) = 1}, with the operations of function addition
and scalar multiplication as in Example 3.4, forms a vector space over the
reals, while the other does not. Determine which.

Solution. Notice that we don’t have to check the commutativity of addi-
tion, associativity of addition, distributive laws, associative law, or monoidal
law. The reason is that we already know from the previous example that
these laws hold when the operations of the space C [0, 1] are applied to any
elements of C [0, 1], whether they belong to V or W or not. So the only laws
to be checked are the closure laws and the identity laws.

First let f(x), g(x) ∈ V and let c be a scalar. By definition of the set V
we have that f(1/2) = 0 and g(1/2) = 0. Add these equations together and
we obtain

(f + g)(1/2) = f(1/2) + g(1/2) = 0 + 0 = 0.

It follows that V is closed under addition with these operations. Furthermore,
if we multiply the identity f(1/2) = 0 by the real number c we obtain that

(cf)(1/2) = c · f(1/2) = c · 0 = 0.

It follows that V is closed under scalar multiplication. Now the zero function
definitely belongs to V , since this function has value 0 at any argument.
Therefore, V contains an additive identity element. Finally, we observe that
the negative of a function f(x) ∈ V is also an element of V , since

(−f)(1/2) = −1 · f(1/2) = −1 · 0 = 0.

Therefore, the set V with these operations satisfies all the vector space laws
and is an (abstract) vector space in its own right.

When we examine the set W in a similar fashion, we run into a roadblock
at the closure of addition law. If f(x), g(x) ∈ W , then by definition of the set
W we have that f(1/2) = 1 and g(1/2) = 1. Add these equations together
and we obtain
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(f + g)(1/2) = f(1/2) + g(1/2) = 1 + 1 = 2.

This means that f +g is not in W, so the closure of addition fails. We need go
no further. If only one of the vector space axioms fails, then we do not have
a vector space. Hence, W with these operations is not a vector space. �

There is a certain economy in this example. A number of laws did not
need to be checked by virtue of the fact that the sets in question were subsets
of existing vector spaces with the same vector operations. Here are two more
examples that utilize this economy.

Example 3.6. Show that the set P2 of all polynomial functions of degree at
most two with the standard function addition and scalar multiplication forms
a vector space.

Solution. Polynomial functions are continuous functions. As in the pre-
ceding example, we don’t have to check the commutativity of addition, asso-
ciativity of addition, distributive laws, associative law, or monoidal law since
we know that these laws hold for all continuous functions. Let f, g ∈ P2, say
f (x) = a1 + b1x+ c1x

2 and g (x) = a2 + b2x+ c2x
2. Let c be any scalar. Then

we have both

(f + g) (x) = f (x) + g (x) = (a1 + a2) + (b1 + b2) x + (c1 + c2) x2 ∈ P2

and

(cf) (x) = cf (x) = c
(
a1 + b1x + c1x

2
)

= ca1 + cb1x + cc1x
2 ∈ P2.

Hence, P2 is closed under the operations of function addition and scalar mul-
tiplication. Furthermore, the zero function is a constant, hence a polynomial
of degree at most two. Also, the negative of a polynomial of degree at most
two is also a polynomial of degree at most two. So all of the laws for a vector
space are satisfied and P2 is an (abstract) vector space. �

Example 3.7. Show that the set Sn of all n×n real symmetric matrices with
the standard matrix addition and scalar multiplication form a vector space.

Solution. Just as in the preceding example, we don’t have to check the
commutativity of addition, associativity of addition, distributive laws, associa-
tive law, or monoidal law since we know that these laws hold for any matrices,
symmetric or not. Now let A,B ∈ Sn. This means by definition that A = AT

and B = BT . Let c be any scalar. Then we have both

(A + B)T = AT + BT = A + B

and
(cA)T = cAT = cA.

It follows that the set Sn is closed under the operations of matrix addition and
scalar multiplication. Furthermore, the zero n×n matrix is clearly symmetric,



3.1 Definitions and Basic Concepts 191

so the set Sn has an additive identity element. Finally, (−A)T = −AT = −A,
so each element of Sn has an additive inverse as well. Therefore, all of the
laws for a vector space are satisfied, so Sn together with these operations is
an (abstract) vector space. �

One of the virtues of abstraction is that it allows us to cover many
cases with one statement. For example, there are many simple facts that are
deducible from the vector space laws alone. With the standard vector spaces,
these facts seem transparently clear. For abstract spaces, the situation is not
quite so obvious. Here are a few examples of what can be deduced from the
definition.

Example 3.8. Let v ∈ V, a vector space, and 0 the vector zero. Deduce from
the vector space properties alone that 0v = 0.

Solution. Multiply both sides of the scalar identity 0+0 = 0 on the right
by the vector v to obtain that

(0 + 0)v = 0v.

Now use the distributive law to obtain

0v + 0v = 0v.

Next add −(0v) to both sides (remember, we don’t know it’s 0 yet), use the
associative law of addition to regroup, and obtain that

0v + (0v + (−0v)) = 0v + (−0v).

Now use the additive inverse law to obtain that

0v + 0 = 0.

Finally, use the identity law to obtain

0v = 0,

which is what we wanted to show. �

Example 3.9. Show that the vector space V has only one zero element.

Solution. Suppose that both 0 and 0∗ act as zero elements in the vector
space. Use the additive identity property of 0 to obtain that 0∗ + 0 = 0∗,
while the additive identity property of 0∗ implies that 0 + 0∗ = 0. By the
commutative law of addition, 0∗ + 0 = 0+ 0∗. It follows that 0∗ = 0, whence
there can be only one zero element. �

There are several other such arithmetic facts that we want to identify,
along with the one of this example. In the case of standard vectors, these
facts are obvious, but for abstract vector spaces, they require a proof similar
to the one we have just given. We leave these as exercises.
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Laws of Vector Arithmetic
Let v be a vector in some vector space V and let c be any scalar. Then

(1) 0v = 0.
(2) c0 = 0.
(3) (−c)v = c(−v) = −(cv).
(4) If cv = 0, then v = 0 or c = 0.
(5) A vector space has only one zero element.
(6) Every vector has only one additive inverse.

Linear Operators

We were introduced in Section 2.3 to the idea of a linear function in the
context of standard vectors. Now that we have a notion of an abstract vector
space, we can examine linearity in this larger setting. We have seen that some
of our “vectors” can themselves be functions, as in the case of the vector space
C[0, 1] of continuous functions on the interval [0, 1]. In order to avoid confusion
in cases like this, we prefer to designate linear functions by the term linear
operator. Other common terms for this object are linear mapping and linear
transformation.

Before giving the definition of linear operator, let us recall some nota-
tion that is associated with functions in general. We identify a function f
with the notation f : D → T , where D and T are the domain and tar-
get of the function, respectively. This means that for each x in the domain
D, the value f(x) is a uniquely determined element in the target T.

Domain, Range and Target We want to emphasize at the outset that
there is a difference here between the tar-

get of a function and its range. The range of the function f is defined as the
subset of the target

range (f) = {y | y = f(x) for some x ∈ D} ,

which is just the set of all possible values of f(x).
A function is said to be one-to-one if, whenever f (x) = f (y),

One-to-One and Onto Functions then x = y. Also, a function is said
to be onto if the range of f equals its target. For example, we can define a
function f : R → R by the formula f(x) = x2. It follows from our specification
of f that the target of f is understood to be R, while the range of f is the set of
nonnegative real numbers. Therefore, f is not onto. Moreover, f (−1) = f (1)
and −1 �= 1, so f is not one-to-one either.

A function that maps elements of one vector space into another, say
f : V → W , is sometimes called an operator or transformation. One of the sim-
plest mappings of a vector space V is the identity function
idV : V → V given by idV (v) = v, for all v ∈ V . Here domain, range,

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Identity Functionand target all agree. Of course, matters can become
more complicated. For example, operator f : R

2 → R
3

might be given by the formula

f

([
x
y

])
=

⎡

⎣
x2

xy
y2

⎤

⎦ .

Notice in this example that the target of f is R
3, which is not the same as

the range of f, since elements in the range have nonnegative first and third
coordinates. From the point of view of linear algebra, this function lacks the
essential feature that makes it really interesting, namely linearity.

Definition 3.3. Linear Operator A function T : V → W from the vector
space V into the space W over the same field of scalars is called a linear
operator (mapping, transformation) if for all vectors u,v ∈ V and scalars
c, d, we have

T (cu + dv) = cT (u) + dT (v).

By taking c = d = 1 in the definition, we see that a linear function T
is additive, that is, T (u + v) = T (u) + T (v). Also, by taking d = 0 in the
definition, we see that a linear function is outative, that is, T (cu) = cT (u).

Additive and Outative OperatorAs a matter of fact, these two condi-
tions imply the linearity property, and
so are equivalent to it. We leave this fact as an exercise.

An important special case of a linear operator is that in which the range
of the operator is the field of scalars of the vector space. In this case,

Linear Functionalthe operator is called a linear functional.
By repeated application of the linearity definition, we can extend the lin-

earity property to any linear combination of vectors, not just two terms. This
means that for any scalars c1, c2, . . . , cn and vectors v1,v2, . . . ,vn, we have

T (c1v1 + c2v2 + · · · + cnvn) = c1T (v1) + c2T (v2) + · · · + cnT (vn).

Example 3.10. Determine whether T : R
2 → R

3 is a linear operator, where
T is given by the formulas

(a) T ((x, y)) = (x2, xy, y2) or (b) T ((x, y)) =
[

1 0
1 −1

] [
x
y

]
.

Solution. If T is given by (a) then we show by a simple example that T
fails to be linear. Let us calculate

T ((1, 0) + (0, 1)) = T ((1, 1)) = (1, 1, 1),

while
T ((1, 0)) + T ((0, 1)) = (1, 0, 0) + (0, 0, 1) = (1, 0, 1).

These two are not equal, so T fails to satisfy the linearity property.
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Next consider the operator T given as in (b). Write

A =
[

1 0
1 −1

]
and v =

[
x
y

]
,

and we see that the action of T is given by T (v) = Av. Now we have already
seen in Section 2.3 that the operation of multiplication by a fixed matrix is a
linear operator. �

Example 3.11. Let t = (t1, t2, t3), A = [aij ] a 3 × 3 matrix and M =
[

A t
0 1

]
.

Show that the linear operator TM : R
4 → R

4 mapping homogeneous space
into itself maps points to points and geometrical vectors to vectors.

Solution. Let x = (x1, x2, x3, x4) = (v, x4) with v = (x1, x2, x3) and use
block arithmetic to obtain that

TM (x) =
[

A t
0 1

] [
v
x4

]
=
[

Av + x4t
x4

]
.

Thus, if x is a vector, which means x4 = 0, then so is TM (x). Likewise, if x
is a point, which means x4 = 1, then so is TM (x). �

Recall that an operator f : V → W is said to be invertible if there is
an operator g : W → V such that the composition of functions satisfies
f ◦ g = idW and g ◦ f = idV . In other words, f (g (w)) = w and g (f (v)) = v

Invertible Operator for all w ∈ W and v ∈ V . We write g = f−1 and
call f−1 the inverse of f . One can show that for any

operator f , linear or not, being invertible is equivalent to being both one-to-
one and onto.

Example 3.12. Show that if f : V → W is an invertible linear operator on
vector spaces, then f−1 is also a linear operator.

Solution. We need to show that for u,v ∈ W , the linearity property
f−1 (cu + dv) = cf−1 (u) + df−1 (v) is valid. Let w = cf−1 (u) + df−1 (v).
Apply the function f to both sides and use the linearity of f to obtain that

f (w) = f
(
cf−1 (u) + df−1 (v)

)
= cf

(
f−1 (u)

)
+ df

(
f−1 (v)

)
= cu + dv.

Apply f−1 to obtain that w = f−1 (f (w)) = f−1 (cu + dv), which proves the
linearity property. �

In Chapter 2 the following useful fact was shown, which we now restate
for standard real vector spaces. It is also valid for standard complex spaces.

Theorem 3.1. Let A be an m × n matrix and define an operator TA : R
n →

R
m by the formula TA(v) = Av, for all v ∈ R

n. Then TA is a linear operator.

One can use this theorem and Example 3.12 to deduce the following fact,
whose proof we leave as an exercise.

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Corollary 3.1. Let A be an n×n matrix. The matrix operator TA is invertible
if and only if A is an invertible matrix.

Abstraction gives us a nice framework for certain key properties of math-
ematical objects, some of which we have seen before. For example, in calculus
we were taught that differentiation has the “linearity property.” Now we can
express this assertion in a larger context: Let V be the space of differentiable
functions and define an operator T on V by the rule T (f (x)) = f ′ (x). Then
T is a linear operator on the space V.

3.1 Exercises and Problems

In Exercises 1–2 the x-axis points east, y-axis north, and z-axis upward.

Exercise 1. Express the following geometric vectors as elements of R
3.

(a) The displacement vector from the origin to the point P with coordinates
−2, 3, 1.
(b) The displacement vector from the point P with coordinates 2, 1, 3 to a
location 3 units north, 4 units east, and 6 units upward.

Exercise 2. Express the following geometric points and vectors as elements of
homogeneous space R

4.
(a) The vectors of Exercise 1.
(b) The point situated 2 units upward, 4 units west, and −5 units north of
the point with coordinates 1, 2, 0.

In Exercises 3–10 determine whether the given set and operations define a
vector space. If not, indicate which laws fail. Unless otherwise stated, the field
of scalars is the default field R.

Exercise 3. V =
{[

a b
0 a + b

]
| a, b ∈ R

}
with the standard matrix addition and

scalar multiplication.

Exercise 4. V =
{[

a 0
0 1

]
| a ∈ R

}
with the standard matrix addition and

scalar multiplication.

Exercise 5. V = {[a, b, ā] | a, b ∈ C} with the standard matrix addition and
scalar multiplication. In this example the scalar field is C.

Exercise 6. V consists of all continuous functions f(x) on the interval [0, 1] such
that f(0) = 0 with the standard function addition and scalar multiplication
(see Example 3.4).

Exercise 7. V = C with the standard addition and scalar multiplication. In
this example the scalar field is R.
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Exercise 8. V =
{
z | z2 = 0, z ∈ C

}
with the standard addition and scalar mul-

tiplication. In this example the scalar field is C.

Exercise 9. V consists of all quadratic polynomial functions f(x) = ax2 + bx+
c, a �= 0 with the standard function addition and scalar multiplication.

Exercise 10. V consists of all continuous functions f(x) on the interval [0, 1]
such that f(0) = f(1) with the standard function addition and scalar multi-
plication.

Exercise 11. V is the set of complex vectors (z1, z2, z3, 0) in space C
4 with the

standard vector addition and scalar multiplication.

Exercise 12. V is the set of points (z1, z2, z3, 1), z1, z2, z3 ∈ C, with scalar
multiplication and vector addition given by c (x1, x2, x3, 1) = (cx1, cx2, cx3, 1)
and (x1, x2, x3, 1) + (y1, y2, y3, 1) = (x1 + y1, x2 + y2, x3 + y3, 1).

Exercise 13. Determine which of the these formulas for T : R
3 → R

2 is a linear
operator. If so, write the operator as a matrix multiplication and determine
whether the target of T equals its range. Here x = (x, y, z) and T (x) follows.
(a) (x, x + 2y − 4z) (b) (x + y, xy) (c) (y, y) (d) x (0, y) (e) (sin y, cos z)

Exercise 14. Repeat Exercise 13 for the following formulas for T : R
3 → R

3.
(a) (−y, z,−x) (b) (x, y, 1) (c) (y − x + z, 2x + z, 3x − y − z) (d)

(
x2, 0, z2

)

Exercise 15. Let V = C[0, 1] and define an operator T : V → V by the follow-
ing formulas for T (f) as a function of the variable x. Which of these operators
is linear? If so, is the target V of the operator equal to its range?
(a) f(1)x2 (b) f2 (x) (c) 2f(x) (d)

∫ x

0
f(s) ds

Exercise 16. Let V = R
2,2 and define an operator T with domain V by the

following formulas for T

([
a11 a12

a21 a22

])
. Which of these operators is linear?

(a) a22 (b)
[

a22 −a12

−a21 a11

]
(c) det A (d) [a11a22, 0]

Exercise 17. Is the identity operator on a vector space V , idV : V → V linear?
Invertible? If so, specify its inverse.

Exercise 18. For arbitrary vector spaces U and V over the same scalars, is the
zero operator 0U,V : U → V given by 0U,V (v) = 0 linear? Invertible? If so,
specify its inverse.

Exercise 19. A transform of homogeneous space is given by

M =
[

I3 t
0 1

]
with t = (2,−1, 3). Calculate and describe in words the action

of TM on the point x = (x1, x2, x3, 1). Find the inverse of this transform.
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Exercise 20. A transform of homogeneous space is given by M =
[

A t
0 1

]
with

t = (2,−1, 3) and A =

⎡

⎣
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤

⎦. Calculate and describe in words

the action of TM on the point x = (x1, x2, x3, 1). Find the inverse of this
transform. (See Example 2.18 in Chapter 2.)

*Problem 21. Use the definition of vector space to prove the vector law of
arithmetic (2): c0 = 0.

Problem 22. Use the definition of vector space to prove the vector law of arith-
metic (3): (−c)v = c(−v) = −(cv).

Problem 23. Use the definition of vector space to prove the vector law of arith-
metic (4): If cv = 0, then v = 0 or c = 0.

Problem 24. Let u,v ∈ V, where V is a vector space. Use the vector space laws
to prove that the equation x + u = v has one and only one solution vector
x ∈ V, namely x = v − u.

Problem 25. Let U and V be vector spaces over the same field of scalars and
form the set U × V consisting of all ordered pairs (u,v) where u ∈ U and
v ∈ V . We can define an addition and scalar multiplication on these ordered
pairs as follows:

(u1,v1) + (u2,v2) = (u1 + u2,v1 + v2) ,

c · (u1,v1) = (cu1, cv1) .

Verify that with these operations U ×V becomes a vector space over the same
field of scalars as U and V .

Problem 26. Show that for any vector space V , the identity function idV :
V → V is a linear operator.

Problem 27. Let T : R
3 → P2 be given by T ((a, b, c)) = a + bx + cx2. Show

that T is a linear operator whose range is P2.

Problem 28. Prove the remark following Definition 3.3: If a function T : V →
W between vector spaces V and W is additive and outative, then it is linear.

*Problem 29. Prove Corollary 3.1.

*Problem 30. Transforms of homogeneous space are given by

M1 =
[

I3 t
0 1

]
, t = (t1, t2, t3) and M2 =

[
A 0
0 1

]
,

where A is an invertible 3 × 3 matrix. Show that the transform TM1 (called a
translation transform) and TM2 ( called a homogeneous transform) commute
with each other, that is, TM1 ◦ TM2 = TM2 ◦ TM1 .

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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3.2 Subspaces

We now turn our attention to the concept of a subspace, which is a rich source
for examples of vector spaces. It frequently happens that a certain vector space
of interest is a subset of a larger, and possibly better understood, vector space,
and that the vector operations are the same for both spaces. An example of
this situation is given by the vector space V of Example 3.5, which is a subset
of the larger vector space C[0, 1] with both spaces sharing the same definitions
of vector addition and scalar multiplication. Here is a precise formulation of
the subspace idea.

Definition 3.4. Subspace A subspace of the vector space V is a subset W
of V such that W , together with the binary operations it inherits from V ,
forms a vector space (over the same field of scalars as V ) in its own right.

If W is a subset of the vector space V , we can apply the definition of vector
space directly to the subset W to obtain the following very useful test.

Theorem 3.2. Subspace Test Let W be a subset of the vector space V.
Then W is a subspace of V if and only if

(1) W contains the zero element of V.
(2) (Closure of addition) For all u,v ∈ W, u + v ∈ W.
(3) (Closure of scalar multiplication) For all u ∈ W and scalars c, cu ∈ W.

Proof. Let W be a subspace of the vector space V. Then the closure of
addition and scalar multiplication are automatically satisfied by the definition
of vector space. For condition (1), we note that W must contain a zero element
by definition of vector space. Let 0∗ be this element, so that 0∗ + 0∗ = 0∗.
Add the negative of 0∗ (as an element of V ) to both sides, cancel terms and
we see that 0∗ = 0, the zero of V . This shows that W satisfies condition (1).

Conversely, suppose that W is a subset of V satisfying the three condi-
tions. Since the operations of W are those of the vector space V , and V is
a vector space, most of the laws for W are automatic. Specifically, the laws
of commutativity, associativity, distributivity, and the monoidal law hold for
elements of W. The additive identity law follows from condition (1).

The only law that needs any work is the additive inverse law. Let w ∈ W.
By closure of scalar multiplication, (−1)w is in W. By the laws of vector
arithmetic in the preceding section, this vector is simply −w. This proves
that every element of W has an additive inverse in W, which shows that W
is a subspace of V. �

One notable point that comes out of the subspace test is that every sub-
space of V contains the zero vector. This is obviously not true of arbitrary
subsets of V and serves to remind us that although every subspace is a subset
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of V, not every subset is a subspace. Confusing the two is a common mistake,
so much so that we issue the following caution:

Caution: Every subspace of a vector space is a subset, but not every subset
is a subspace.

Example 3.13. Which of the following subsets of the standard vector space
V = R

3 are subspaces of V ?

(a) W1 = {(x, y, z) |x − 2y + z = 0} (b) W2 = {(x, y, z) |x, y, z are positive}
(c) W3 = {(0, 0, 0)} (d) W4 =

{
(x, y, z) |x2 − y = 0

}

Solution. (a) Take w = (0, 0, 0) and obtain that 0 − 2 · 0 + 0 = 0, so that
w ∈ W1. Next, check closure of W1 under addition. Let’s name two general
elements from W1, say u = (x1, y1, z1) and v = (x2, y2, z2). Then we know
from the definition of W1 that

x1 − 2y1 + z1 = 0
x2 − 2y2 + z2 = 0.

We want to show that u + v = (x1 + x2, y1 + y2, z1 + z2) ∈ W1. So add the
two equations above and group terms to obtain

(x1 + x2) − 2(y1 + y2) + (z1 + z2) = 0.

This equation shows that the coordinates of u + v fit the requirement for
being an element of W1, i.e., u + v ∈ W1. Similarly, if c is a scalar then we
can multiply the equation that says u ∈ W1, i.e., x1 − 2y1 + z1 = 0, by c to
obtain

(cx1) − 2(cy1) + (cz1) = c0 = 0.

This shows that the coordinates of cv fit the requirement for being in W1,
i.e., cu ∈ W1. It follows that W1 is closed under both addition and scalar
multiplication, so it is a subspace of R

3.
(b) This one is easy. Any subspace must contain the zero vector (0, 0, 0).

Clearly W2 does not. Hence, it cannot be a subspace. Another way to see
it is to notice that closure under scalar multiplication fails (try multiplying
(1, 1, 1) by −1).

(c) The only possible choice for arbitrary elements u,v, in this space is
u = v = (0, 0, 0). But then we see that W3 obviously contains the zero vector
and for any scalar c,

(0, 0, 0) + (0, 0, 0) = (0, 0, 0),
c(0, 0, 0) = (0, 0, 0).

Therefore, W3 is a subspace of V by the subspace test.
(d) First of all, 02 − 0 = 0, which means that (0, 0, 0) ∈ W4. Likewise we

see that (1, 1, 0) ∈ W4 as well. But (1, 1, 0) + (1, 1, 0) = (2, 2, 0), which is not
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an element of W4 since 22 − 2 �= 0. Therefore, closure of addition fails and W4

is not a subspace of V by the subspace test. �
Part (c) of this example highlights part of a simple fact about vector

spaces. Every vector space V must have at least two subspaces, namely, {0},

Trivial Subspaces where 0 is the zero vector in V , and V itself. These are
not terribly surprising subspaces, so they are commonly

called the trivial subspaces.

Example 3.14. Show that the subset P [0, 1] of C[0, 1] consisting of all poly-
nomial functions on the interval [0, 1] is a subspace of C[0, 1] and that the
subset Pn [0, 1] consisting of all polynomials of degree at most n is a subspace
of P [0, 1].

Solution. Certainly, P [0, 1] is a subset of C[0, 1], since every polynomial
is continuous on the interval [0, 1] and P [0, 1] contains the zero constant func-
tion, which is a polynomial function. Let f and g be two polynomial functions
on the interval [0, 1], say

f(x) = a0 + a1x + · · · + anxn,

g(x) = b0 + b1x + · · · + bnxn,

where n is an integer equal to the maximum of the degrees of f(x) and g(x).
Let c be any real number, and we see that

(f + g)(x) = (a0 + b0) + (a1 + b1)x + · · · + (an + bn)xn,

(cf)(x) = ca0 + ca1x + · · · + canxn,

which shows that P [0, 1] is closed under function addition and scalar multi-
plication. By the subspace test, P [0, 1] is a subspace of C[0, 1]. The equations
above also show that the subset Pn [0, 1] passes the subspace test, so it is a
subspace of P [0, 1]. �

Example 3.15. Show that the set of all upper triangular matrices (see
page 105) in the vector space V = R

n,n of n × n real matrices is a subspace
of V.

Solution. Since the zero matrix is upper triangular, the subset W of all
upper triangular matrices contains the zero element of V. Let A = [ai,j ] and
B = [bi,j ] be any two matrices in W and let c be any scalar. By the definition
of upper triangular, we must have ai,j = 0 and bi,j = 0 if i > j. However,

A + B = [ai,j + bi,j ] ,
cA = [cai,j ] ,

and for i > j we have ai,j + bi,j = 0+0 = 0 and cai,j = c0 = 0, so that A+B
and cA are also upper triangular. It follows that W is a subspace of V by the
subspace test. �
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Linear Combinations There is an extremely useful type of subspace that
requires the notion of a linear combination of the vectors v1,v2, . . . ,vn in the
vector space V : an expression of the form

c1v1 + c2v2 + · · · + cnvn,

where c1, c2, . . . , cn are scalars. We can consider the set of all possible linear
combinations of a list of vectors, which is what our next definition does.

Definition 3.5. Vector Span Let v1,v2, . . . ,vn be vectors in the vector
space V. The span of these vectors, denoted by span {v1,v2, . . . ,vn}, is the
subset of V consisting of all possible linear combinations of these vectors, i.e.,

span {v1,v2, . . . ,vn} = {c1v1 + c2v2 + · · · + cnvn | c1, c2, . . . , cn are scalars}

Caution: The scalars we are using really make a difference. For example, if
v1 = (1, 0) and v2 = (0, 1) are viewed as elements of the real vector space R

2,
then

span {v1,v2} = {c1(1, 0) + c2(0, 1) | c1, c2 ∈ R}
= {(c1, c2) | c1, c2 ∈ R}
= R

2.

Similarly, if we view v1 and v2 as elements of the complex vector space C
2,

then we see that span {v1,v2} = C
2. Now R

2 consists of those elements of
C

2 whose coordinates have zero imaginary parts, so R
2 is a subset of C

2; but
these are definitely not equal sets. By the way, R

2 is definitely not a subspace
of C

2 either, since the subset R
2 is not closed under multiplication by complex

scalars.
We should take note here that the definition of span would work perfectly

well with infinite sets, as long as we understand that linear combinations in the
definition would be finite and therefore not involve all the vectors in the span.
A case in point is as follows: Consider the space P of all polynomial functions
with the standard addition and scalar multiplication. It makes perfectly good
sense to write

P = span
{
1, x, x2, x3, . . . , xn, . . .

}
,

since every polynomial is a finite linear combination of various monomials xk.

Example 3.16. Interpret the following linear spans in R
3 geometrically:

W1 = span

⎧
⎨

⎩

⎡

⎣
1
2
1

⎤

⎦

⎫
⎬

⎭
, W2 = span

⎧
⎨

⎩

⎡

⎣
1
2
1

⎤

⎦ ,

⎡

⎣
2
0
0

⎤

⎦

⎫
⎬

⎭
.

Solution. Elements of W1 are simply scalar multiples of the single vector
(1, 2, 1). The set of all such multiples gives us a line through the origin (0, 0, 0) .
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On the other hand, elements of W2 give all possible linear combinations of two
vectors (1, 2, 1) and (2, 0, 0). The locus of points generated by these combina-
tions is a plane in R

3 containing the origin, so it is determined by the points
with coordinates (0, 0, 0), (1, 2, 1), and (2, 0, 0). See Figure 3.3 for a picture of
a portion of these spans. �

1

1

2

21

2

span{(1, 2, 1)}

(2, 0, 0)

(1, 2, 1)

x

z

y

span{(2, 0, 0), (1, 2, 1)}

Fig. 3.3: Shaded portion of span {(2, 0, 0) , (1, 2, 1)} and dashed span {(1, 2, 1)}.
Spans are the premier examples of subspaces. In a certain sense, it can

be said that every subspace is the span of some of its vectors. The following
important fact is a very nice application of the subspace test.

Theorem 3.3. Let v1,v2, . . . ,vn be vectors in the vector space V. Then W =
span {v1,v2, . . . ,vn} is a subspace of V .

Proof. First, we observe that the zero vector can be expressed as the
linear combination 0v1 + 0v2 + · · · + 0vn, which is an element of W. Next, let
ci, di be any scalars and form general elements u,v ∈ W , say

u = c1v1 + c2v2 + · · · + cnvn,

v = d1v1 + d2v2 + · · · + dnvn.

Add these vectors and collect like terms to obtain

u + v = (c1 + d1)v1 + (c2 + d2)v2 + · · · + (cn + dn)vn.

Thus, u+v is also a linear combination of v1,v2, . . . ,vn, so W is closed under
vector addition. Finally, form the product cu to obtain

cu = (cc1)v1 + (cc2)v2 + · · · + (ccn)vn,

which is again a linear combination of v1,v2, . . . ,vn, so W is closed under
scalar multiplication. By the subspace test, W is a subspace of V . �
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If W = span {v1,v2, . . . ,vn}, we say that {v1,v2, . . . ,vn} is a spanning
set for the vector space W , and that W is spanned by the Spanning Set
vectors v,v2, . . . ,vn. There are a number of simple properties of spans that
we will need from time to time. One of the most useful is this basic fact.

Theorem 3.4. Let v1,v2, . . . ,vn be vectors in the vector space V and let
w1,w2, . . . ,wk be vectors in span {v1,v2, . . . ,vn}. Then

span {w1,w2, . . . ,wk} ⊆ span {v1,v2, . . . ,vn} .

Proof. Suppose that for each index j = 1, 2, . . . k,

wj = c1jv1 + c2jv2 + · · · + cnjvn.

Write a linear combination of the wj ’s by regrouping the coefficients of each
vk as

d1w1 + d2w2 + · · · + dkwk = d1(c11v1 + c21v2 + · · · + cn1vn)

+d2(c12v1 + c22v2 + · · · + cn2vn) + · · · + dk(c1kv1 + c2kv2 + · · · + cnkvn)

=

⎛

⎝
k∑

j=1

djc1j

⎞

⎠v1+

⎛

⎝
k∑

j=1

djc2j

⎞

⎠v2+ · · ·+
⎛

⎝
k∑

j=1

djcnj

⎞

⎠vn.

It follows that each element of span {w1,w2, . . . ,wk} belongs to the vector
space span {v1,v2, . . . ,vn}, as desired. �

Here is a simple application of this theorem: If vi1 ,vi2 , . . . ,vik
is a subset

of v1,v2, . . . ,vn, then

span {vi1 ,vi2 , . . . ,vik
} ⊆ span {v1,v2, . . . ,vn} .

The reason is that for j = 1, 2, . . . , k,

wj = vij
= 0v1 + 0v2 + · · · + 1vij

+ · · · + 0vn,

so that the theorem applies to these vectors. Put another way, if we enlarge
the list of spanning vectors, we enlarge the spanning set. However, we may
not obtain a strictly larger spanning set, as the following example shows.

Example 3.17. Show that

span
{[

1
0

]
,

[
1
1

]}
= span

{[
1
0

]
,

[
1
1

]
,

[
1
2

]}
.

Why might one prefer the first spanning set?
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Solution. Label vectors v1 =
[

1
0

]
, v2 =

[
1
1

]
, and v3 =

[
1
2

]
. Every

element of span {v1,v2} belongs to span {v1,v2,v3}, since we can write
c1v1 + c2v2 = c1v1 + c2v2 + 0v3. So we clearly have that span {v1,v2} ⊆
span {v1,v2,v3}. However, a little fiddling with numbers reveals this fact:

[
1
2

]
= (−1)

[
1
0

]
+ 2

[
1
1

]
.

In other words v3 = −v1+2v2. Therefore, any linear combination of v1,v2,v3

can be written as

c1v1 + c2v2 + c3v3 = c1v1 + c2v2 + c3(−v1 + 2v2)
= (c1 − c3)v1 + (c2 + 2c3)v2.

Thus, any element of span {v1,v2,v3} belongs to span {v1,v2}, so the two
spans are equal. This is an algebraic representation of the geometric fact that
the three vectors v1,v2,v3 belong to the same plane in R

2 that is spanned by
the two vectors v1,v2. It seems reasonable that we should prefer the spanning
set v1,v2 to the set v1,v2,v3, since the former is smaller yet carries just as
much information as the latter. As a matter of fact, we would get the same
span if we used v1,v3 or v2,v3. The spanning set v1,v2,v3 has “redundant”
vectors in it. �

As another application of vector spans, let’s consider the problem of deter-
mining all subspaces of the vector space R

2, the plane, from a geometrical
perspective. First, we have the trivial subspaces {(0, 0)} and R

2. Next, con-
sider the subspace V = span {v}, where v �= 0. It’s easy to see that the set
of all multiples of v constitutes a straight line through the origin. Finally,
consider the subspace V = span {v,w}, where w /∈ span {v}. We can see that
any point in the plane can be a corner of a parallelogram with edges that are
multiples of v and w. Hence, V = R

2. Consequently, the only subspaces of
R

2 are {(0, 0)}, R
2, and lines through the origin. In a similar fashion, you can

convince yourself that the only subspaces of R
3 are {(0, 0, 0)}, lines through

the origin, planes through the origin, and R
3.

3.2 Exercises and Problems

In Exercises 1–10, determine whether the subset W is a subspace of the vector
space V.

Exercise 1. V = R
3 and W = {(a, b, a − b + 1) | a, b ∈ R}.

Exercise 2. V = R
3 and W = {(a, 0, a − b) | a, b ∈ R}.

Exercise 3. V = R
3 and W = {(a, b, c) | 2a − b + c = 0}.

Exercise 4. V = R
2,3 and W =

{[
a b 0
b a 0

]
| a, b ∈ R

}
.



3.2 Subspaces 205

Exercise 5. V = C[0, 1] and W = {f(x) ∈ C[0, 1] | f(1) + f(1/2) = 0}.

Exercise 6. V = C[0, 1] and W = {f(x) ∈ C[0, 1] | f(1) ≤ 0}.

Exercise 7. V = R
n,n and W is the set of all invertible matrices in V.

Exercise 8. V = R
2,2 and W is the set of all matrices A =

[
a b

−b c

]
, for some

scalars a, b, c. (Such matrices are called skew-symmetric since AT = −A.)

Exercise 9. V is the subset of geometrical vectors (x1, x2, x3, 0) in homogeneous
space W = R

4 with the standard vector addition and scalar multiplication.

Exercise 10. V is the subset of geometrical points (x1, x2, x3, 1) in homoge-
neous space W = R

4 with vector addition and scalar multiplication defined
by (x1, x2, x3, 1) + (y1, y2, y3, 1) = (x1 + y1, x2 + y2, x3 + y3, 1) and
c (x1, x2, x3, 1) = (cx1, cx2, cx3, 1).

Exercise 11. Show that span
{[

1
0

]
,

[
0
1

]}
= span

{[
1
0

]
,

[−2
1

]}
.

Exercise 12. Show that span

⎧
⎨

⎩

⎡

⎣
1
0
0

⎤

⎦ ,

⎡

⎣
0
1
1

⎤

⎦ ,

⎡

⎣
1
1
1

⎤

⎦

⎫
⎬

⎭
= span

⎧
⎨

⎩

⎡

⎣
0

−1
−1

⎤

⎦ ,

⎡

⎣
1
2
2

⎤

⎦

⎫
⎬

⎭
.

Exercise 13. Which of the following spans equal the space P2 of polynomial
functions of degree at most 2? Justify your answers.
(a) span

{
1, 1 + x, x2

}
(b) span

{
x, 4x − 2x2, x2

}

(c) span
{
1 + x + x2, 1 + x, 3

}
(d) span

{
1 − x2, 1

}

Exercise 14. Which of the following spans equal the space R
2? Justify your

answers.
(a) span {(1, 0) , (−1,−1)} (b) span {(1, 2) , (2, 4)}
(c) span {(1, 0) , (0, 0) , (0,−1)} (d) span {(−1,−2) , (−1,−1)}

Exercise 15. Expand the following subsets of vector spaces into spanning sets
of the space with the fewest possible additional elements. Justify your answer.
(a) {(1, 2) , (−2,−4)} ⊆ R

2 (b)
{
x3 + 1, x − 1, x2 − 1, x

} ⊆ P3

Exercise 16. Expand the following subsets of vector spaces into spanning sets
of the space with the fewest possible additional elements. Justify your answer.

(a) {(1, 0, 1, 0) , (2, 0, 2, 1) , (0, 1, 0, 1)} ⊆ R
4 (b)

{[
2 1
0 1

]
,

[
2 0
1 1

]}
⊆ R

2,2

Exercise 17. Let u = (2,−1, 1), v = (0, 1, 1), and w = (2, 1, 3) . Show that
span {u + w,v − w} ⊆ span {u,v,w} and determine whether or not these
spans are actually equal.
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Exercise 18. Find two vectors v,w ∈ R
3 such that if u = (1,−1, 1), then

R
3 = span {u,v,w}.

*Problem 19. Let U and V be subspaces of W . Use the subspace test to prove
the following.

(a) The set intersection U ∩ V is a subspace of W.
(b) The sum of the spaces, U + V = {u + v |u ∈ U and v ∈ V }, is a

subspace of W.
(c) The set union U ∪ V is not a subspace of W unless one of U or V is

contained in the other.

Problem 20. Let V and W be subspaces of R
3 given by

V = {(x, y, z) |x = y = z ∈ R} and W = {(x, y, 0) |x, y ∈ R} .

Show that V + W = R
3 and V ∩ W = {0}.

*Problem 21. Prove that if V = R
n,n, then the set of all diagonal matrices is

a subspace of V.

*Problem 22. Let V be the space of 2 × 2 matrices and associate with each
A ∈ V the vector vec(A) ∈ R

4 obtained from A by stacking the columns of

A underneath each other. (For example, vec
([

1 2
−1 1

])
= (1,−1, 2, 1).) Show

the following.
(a) The vec operator establishes a one-to-one correspondence between

matrices in V and vectors in R
4.

(b) The vec operator, vec : R
2,2 → R

4, is a linear operator.

Problem 23. You will need a technology tool for this exercise. Use the matrix

A =

⎡

⎣
1 0 2
1 −1 0
1 0 1

⎤

⎦

and the vec operator of the preceding exercise to turn powers of A into vectors.
Then use your technology tool to find a spanning set (or basis, which is a spe-
cial spanning set) for subspaces Vk = span

{
A0, A1, . . . , Ak

}
, k = 1, 2, 3, 4, 5, 6.

Based on this evidence, how many matrices will be required for a span of Vk?
(Remember that A0 = I.)

Problem 24. Show that the set C1 [0, 1] of continuous functions that have a
continuous derivative on the interval [0, 1] is a subspace of the vector space
C [0, 1].

3.3 Linear Combinations

We have seen in Section 3.2 that linear combinations give us a rich source
of subspaces for a vector space. In this section we will take a closer look
at linear combinations. But first let’s clarify the difference between list
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Lists and Setsand sets: Lists involve an ordering of elements (they can
just as well be called finite sequences), while sets don’t really imply any order-
ing of elements. Thus, every list of vectors, e.g., v1,v2,v3, gives rise to a unique
set of vectors {v1,v2,v3}. A different list v1,v3,v2 may define the same set
{v1,v3,v2} = {v1,v2,v3}. Lists can have repeats in them, while sets don’t.
For instance, the list v1,v2,v1 defines the set {v1,v2}. The default meaning
of the terminology “the vectors v1,v2,v3” is “the list of vectors v1,v2,v3,”
although occasionally it means a set or even both. For example, the defini-
tions below work perfectly well for either sets or lists.

Linear Dependence

Let’s make precise the idea of redundant vectors encountered in Example 3.17.

Definition 3.6. Redundant Vector The vector vi is redundant in the vec-
tors v1,v2, . . . ,vn if the linear span span{v1,v2, . . . ,vn} does not change
when vi is removed.

An easy example of a redundant vector is the zero vector, which is clearly
redundant in any set or list containing it.

Example 3.18. Which vectors are redundant in the set consisting of v1 =[
1
0

]
, v2 =

[
1
1

]
, v3 =

[
1
2

]
?

Solution. As in Example 3.17, we notice that v3 = (−1)v1 + 2v2. Thus,
any linear combination involving v3 can be expressed in terms of v1 and v2.
Therefore, v3 is redundant in the list v1,v2,v3. But there is more going on
here. Let’s write the equation above in a form that doesn’t single out any one
vector:

0 = (−1)v1 + 2v2 + (−1)v3.

Now we see that we could solve for any of v1,v2,v3 in terms of the remaining
two vectors. Therefore, each of these vectors is redundant in the set. However,
this doesn’t mean that we can discard all three and get the same linear span.
This is obviously false. What we can do is discard any one of them, then start
over and examine the remaining set for redundant vectors. �

This example shows that what really counts for redundancy is that the
vector in question occurs with a nonzero coefficient in a linear combination
that equals 0. This situation warrants a name:

Definition 3.7. Linearly Dependent or Independent Vectors The vec-
tors v1,v2, . . . ,vn are said to be linearly dependent if there exist scalars
c1, c2, . . . , cn, not all zero, such that

c1v1 + c2v2 + · · · + cnvn = 0. (3.1)

Otherwise, the vectors are called linearly independent.
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This fact inspires some notation: We will call a linear combination triv-
ial if every coefficient is zero; otherwise it is nontrivial. We say that a lin-
ear combination has value zero if it sums to zero. Thus, linear dependence
Trivial and Nontrivial Linear Combination is equivalent to the existence

of a nontrivial linear combination with value zero. Just as with redundancy,
linear dependence or independence is a property of the list or set in ques-
tion, not of the individual vectors. Here is the key connection between linear
dependence and redundancy.

Theorem 3.5. Redundancy Test The list of vectors v1,v2, . . . ,vn of a vec-
tor space has redundant vectors if and only if it is linearly dependent, in which
case the redundant vectors are those that occur with nonzero coefficient in
some linear combination with value zero.

Proof. Observe that if (3.1) holds and some scalar, say c1, is nonzero,
then we can use the equation to solve for v1 as a linear combination of the
remaining vectors to obtain

v1 =
−1
c1

(c2v2 + c3v3 + · · · + cnvn) .

Thus, we see that any linear combination involving v1,v2, . . . ,vn can be
expressed using only v2,v3, . . . ,vn. It follows that

span{v2,v3, . . . ,vn} = span{v1,v2, . . . ,vn}.

Conversely, if these spans are equal then v1 belongs to the left-hand side, so
there are scalars d2, d3, . . . , dn such that

v1 = d2v2 + d3v3 + · · · + dnvn.

Now bring all terms to the right-hand side and obtain the nontrivial linear
combination

−v1 + d2v2 + d3v3 + · · · + dnvn = 0.

All of this works equally well for any index other than 1, so the theorem is
proved. �

It is instructive to examine the simple case of two vectors v1,v2. What
does it mean to say that these vectors are linearly dependent? Simply that one
of the vectors can be expressed in terms of the other, in other words, that each
vector is a scalar multiple of the other. However, matters are more complex
when we proceed to three or more vectors, a point that is often overlooked.
So we issue a warning here.

Caution: If we know that v1,v2, . . . ,vn is linearly dependent, it does not
necessarily imply that one of these vectors is a multiple of one of the others
unless n = 2. In general, all we can say is that one of these vectors is a linear
combination of the others.
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Example 3.19. Which of the following lists of vectors have redundant vectors,
i.e., are linearly dependent?

(a)

⎡

⎣
1
1
0

⎤

⎦ ,

⎡

⎣
0
1
1

⎤

⎦ ,

⎡

⎣
1

−1
−2

⎤

⎦ (b)

⎡

⎣
0
1
0

⎤

⎦ ,

⎡

⎣
1
1
0

⎤

⎦ ,

⎡

⎣
0
1
1

⎤

⎦ (c)

⎡

⎣
1
1
0

⎤

⎦ ,

⎡

⎣
2
1
0

⎤

⎦ ,

⎡

⎣
1
1
0

⎤

⎦

Solution. Let’s try to see the big picture. Consider the vectors in each
list to be designated as v1,v2,v3. Define matrix A = [v1,v2,v3] and vector
c = (c1, c2, c3). Then the general linear combination can be written as

c1v1 + c2v2 + c3v3 = [v1,v2,v3]

⎡

⎣
c1

c2

c3

⎤

⎦ = A c.

This is the key idea of “linear combination as matrix–vector multiplication”
that we saw in Theorem 2.1. Now we see that a nontrivial linear combination
with value zero amounts to a nontrivial solution to the homogeneous equation
Ac = 0. We know how to find these! In case (a) we have that

⎡

⎣
1 0 1
1 1 −1
0 1 −2

⎤

⎦
−−−−−−→
E21(−1)

⎡

⎣
1 0 1
0 1 −2
0 1 −2

⎤

⎦
−−−−−−→
E32(−1)

⎡

⎣
1 0 1
0 1 −2
0 0 0

⎤

⎦ ,

so that the solutions to the homogeneous system are c = (−c3, 2c3, c3) =
c3(−1, 2, 1). Take c3 = 1 and we have that

−1v1 + 2v2 + 1v3 = 0,

which shows that v1,v2,v3 is a linearly dependent list of vectors.
We’ll solve (b) by a different method, which can be applied to any set of

n vectors in R
n or C

n. Notice that

Determinant Test
for Linear Independence

det

⎡

⎣
0 1 0
1 1 1
0 0 1

⎤

⎦ = −1 det
[

1 0
0 1

]
= −1.

It follows that A is nonsingular, so the only solution to the system Ac = 0 is
c = 0. Since every linear combination of the columns of A takes the form Ac,
the vectors v1,v2,v3 must be linearly independent.

Finally, we see by inspection in (c) that since v3 is a repeat of v1, we have
that

v1 + 0v2 − v3 = 0.

Thus, this list of vectors is linearly dependent. Notice, by the way, that not
every coefficient ci has to be nonzero. �

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Example 3.20. Show that any list of vectors that contains the zero vector is
linearly dependent.

Solution. Let v1,v2, . . . ,vn be such a list and suppose that for some index
j, vj = 0. Examine the following linear combination:

0v1 + 0v2 + · · · + 1vj + · · · + 0vn = 0.

This linear combination of value zero is nontrivial because the coefficient of
the vector vj is 1. Therefore, this list is linearly dependent by the definition
of dependence. �

The Basis Idea

We are now ready for one of the big ideas of vector space theory, the notion
of a basis. We already know what a spanning set for a vector space V is.
This is a set of vectors v1,v2, . . . ,vn such that V = span{v1,v2, . . . ,vn}.
However, we saw back in Example 3.17 that some spanning sets are better
than others because they are more economical. We know that a set of vectors
has no redundant vectors in it if and only if it is linearly independent. This
observation is the inspiration for the following definition.

Definition 3.8. Basis of Vector Space A basis for the vector space V is a
spanning set of vectors v1,v2, . . . ,vn that is a linearly independent set.

We should take note here that we could have just as well defined a

Basis As Minimal
Spanning Set

basis as a minimal spanning set, by which we mean
a spanning set such that any proper subset is not a
spanning set. The proof that this is equivalent to our

definition of basis is left as an exercise.
Usually we think of a basis as a set of vectors and the order in which

we list them is convenient but not important. Occasionally, ordering is
Ordered Basis important. In such a situation we speak of an ordered basis

of v, by which we mean a spanning list of vectors v1,v2, . . . ,vn that is a
linearly independent list.

Example 3.21. Which subsets of {v1,v2,v3} =
{[

1
0

]
,

[
1
1

]
,

[
1
2

]}
yield

bases of the vector space R
2?

Solution. These are just the vectors of Example 3.17 and Example 3.18.
Referring back to that example, we saw that

−v1 + 2v2 − v3 = 0,

which told us that we could remove any one of these vectors and get the same
span. Moreover, we saw that these three vectors span R

2, so the same is true
of any two of them. Clearly, a single vector cannot span R

2, since the span
of a single vector is a line through the origin. Therefore, the subsets {v1,v2},
{v2,v3}, and {v1,v3} are all bases of R

2. �
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Example 3.22. Which subsets of
{
1 + x, x + x2, 1, x

}
yield bases of the vec-

tor space P2 of all polynomials of degree at most two?

Solution. Any linear combination of 1 + x, 1, and x yields a linear poly-
nomial, so cannot equal x2. Hence, x + x2 must be in the basis. On the other
hand, any element of the set {x, 1 + x, 1} can be expressed as a combination
of the other two, so is redundant in the set. Discard redundant vectors from
this set and we obtain three candidates for bases of P2:

{
x + x2, 1 + x, 1

}
,{

x + x2, x, 1
}
, and

{
x + x2, x, 1 + x

}
. It’s easy to see that the span of any

one of these sets contains 1, x, and x2, so is a spanning set for P2. We leave
it to the reader to check that each set contains no redundant vectors, hence
is linearly independent. Therefore, each of these sets forms a basis of P2. �

An extremely important generic type of basis is provided by the columns
of the identity matrix. For future reference, we establish this notation.

Standard BasisThe standard basis of R
n or C

n is the set {e1, e2, . . . , en},
where ej is the jth column of the identity matrix In.

Example 3.23. Let V be the standard vector space R
n or C

n. Verify that the
standard basis really is a basis of this vector space.

Solution. Let v = (c1, c2, . . . , cn) be a vector from V so that c1, c2, . . . , cn

are scalars of the appropriate type. Now we have

v =

⎡

⎢
⎢⎢
⎣

c1

c2

...
cn

⎤

⎥
⎥⎥
⎦

= c1

⎡

⎢
⎢⎢
⎣

1
0
...
0

⎤

⎥
⎥⎥
⎦

+ c2

⎡

⎢
⎢⎢
⎣

0
1
...
0

⎤

⎥
⎥⎥
⎦

+ · · · + cn

⎡

⎢
⎢⎢
⎣

0
...
0
1

⎤

⎥
⎥⎥
⎦

= c1e1 + c2e2 + · · · + cnen.

This equation tells us two things: First, every vector in V is a linear combi-
nation of the ej ’s, so V = span {e1, e2, . . . , en}. Second, if some linear combi-
nation of vectors has value zero, then each scalar coefficient of the combina-
tion is 0. Therefore, these vectors are linearly independent. Therefore, the set
{e1, e2, . . . , en} is a basis of V. �

Coordinates

In the case of the standard basis e1, e2, , e3 of R
3 we know that it is very easy

to write out any other vector v = (c1, c2, c3) in terms of the standard basis:

v =

⎡

⎣
c1

c2

c3

⎤

⎦ = c1e1 + c2e2 + c3e3.

We call the scalars c1, c2, c3 the coordinates of the vector v. Up to this point,
this is the only sense in which we have used the term “coordinates.” We can
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see that these coordinates are strongly tied to the standard basis. Yet R
3 has

many bases. Is there a corresponding notion of “coordinates” relative to other
bases? The answer is a definite yes, thanks to the following fact.

Theorem 3.6. Uniqueness of Coordinates Let v1,v2, . . . ,vn be a basis of
the vector space V . Then every v ∈ V can be expressed uniquely as a linear
combination of v1,v2, . . . ,vn, up to order of terms.

Proof. To see this, note first that since V = span {v1,v2, . . . ,vn}, there
exist scalars c1, c2, . . . , cn such that

v = c1v1 + c2v2 + · · · + cnvn.

Suppose that we could also write

v = d1v1 + d2v2 + · · · + dnvn.

Subtract these two equations and obtain

0 = (c1 − d1)v1 + (c2 − d2)v2 + · · · + (cn − dn)vn.

However, a basis is a linearly independent set, so it follows that each coefficient
of this equation is zero, whence cj = dj , for j = 1, 2, . . . , n. �

In view of this fact, we may speak of coordinates of a vector relative to a
basis. Here is the notation that we employ:

Definition 3.9. Vector Coordinates and Coordinate Vector If v1,v2, . . . ,vn

is a basis B of the vector space V and v ∈ V with v = c1v1+c2v2+· · ·+cnvn,
then the scalars c1, c2, . . . , cn are called the coordinates of v with respect
to the basis v1,v2, . . . ,vn. The coordinate vector of v with respect to B
is [v]B = (c1, c2, . . . , cn).

As we have noted, coordinates of a vector with respect to the stan-
dard basis are what we have referred to as “coordinates” so far in this
Standard Coordinates text. Perhaps we should call these the standard

coordinates of a vector, but we will usually stick to the convention that an
unqualified reference to a vector’s coordinates assumes that we mean stan-
dard coordinates unless otherwise stated. Normally, vectors in R

n are given
explicitly in terms of their standard coordinates, so these are trivial to iden-
tify. Coordinates with respect to other bases are fairly easy to calculate if we
have enough information about the structure of the vector space.

Example 3.24. The following vectors form a basis of P2: B=
{
x+x2, 1+x, 1

}

(see Example 3.22). Find the coordinate vector of p (x) = 2 − 2x − x2 with
respect to this basis.
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Solution. The coordinates are c1, c2, c3, where

2 − 2x − x2 = c1

(
x + x2

)
+ c2 (1 + x) + c3 · 1 = (c2 + c3) + (c1 + c2) x + c1x2.

We note here that the order in which we list the basis elements matters for the
coordinates. Now we simply equate coefficients of like powers of x to obtain
that c2 +c3 = 2, c1 +c2 = −2, and c1 = −1. It follows that c2 = −2−c1 = −1
and that c3 = 2 − c2 = 3. Thus, [p (x)]B = (−1,−1, 3). Incidentally, we
note here that the order in which we list the basis elements matters for the
coordinates. �

Example 3.25. The following vectors form a basis B of R
3: v1 = (1, 1, 0),

v2 = (0, 2, 2), and v3 = (1, 0, 1). Find the coordinate vector of v = (2, 1, 5)
with respect to this basis.

Solution. Notice that the basis v1,v2,v3 was given in terms of standard
coordinates. Begin by writing

v =

⎡

⎣
2
1
5

⎤

⎦ = c1v1 + c2v2 + c3v3

= [v1,v2,v3]

⎡

⎣
c1

c2

c3

⎤

⎦ =

⎡

⎣
1 0 1
1 2 0
0 2 1

⎤

⎦

⎡

⎣
c1

c2

c3

⎤

⎦ ,

where the coordinates c1, c2, c3 of v relative to the basis v1,v2,v3 are to
be determined. This is a straightforward system of equations with coefficient
matrix A = [v1,v2,v3] and right-hand side v. It follows that the solution we
want is given by

⎡

⎣
c1

c2

c3

⎤

⎦ =

⎡

⎣
1 0 1
1 2 0
0 2 1

⎤

⎦

−1 ⎡

⎣
2
1
5

⎤

⎦ =

⎡

⎣
1
2

1
2 − 1

2− 1
4

1
4

1
4

1
2 − 1

2
1
2

⎤

⎦

⎡

⎣
2
1
5

⎤

⎦ =

⎡

⎣
−1

1
3

⎤

⎦ .

This shows us that

v = −1

⎡

⎣
1
1
0

⎤

⎦+ 1

⎡

⎣
0
2
2

⎤

⎦+ 3

⎡

⎣
1
0
1

⎤

⎦ .

It does not prove that v = (−1, 1, 3), which is plainly false. Only in the case
of the standard basis can we expect that a vector actually equals its vector
of coordinates with respect to the basis. What we have is that the coordinate
vector of v with respect to basis B is [v]B = (−1, 1, 3). �

In general, vectors v1,v2, . . . ,vn ∈ R
n are linearly independent if and only

if the system Ac = 0 has only the trivial solution, where A = [v1,v2, . . . ,vn].
This in turn is equivalent to the matrix A being of full column rank n.
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(See Theorem 2.6, where we see that these are equivalent conditions for
a matrix to be invertible). We can see how this idea can be extended,
and doing so tells us something remarkable. Let v1,v2, . . . ,vk be a basis
of V = R

n and form the n × k matrix A = [v1,v2, . . . ,vk]. By the
same reasoning as in the example, for any b ∈ V there is a unique solu-
tion to the system Ax = b. In view of Theorem 1.5 we see that A has
full column rank k. Therefore, k ≤ n. On the other hand, we can take
b to be any one of the standard basis vectors ej , j = 1, 2, . . . , n, solve
the resulting systems, and stack the solution vectors together to obtain a
solution to the system AX = In. From our rank inequalities, we see that

Dimension Theorem for R
n

n = rank In = rankAX ≤ rankA = k.

What this shows is that k = n, that is, every basis of R
n has exactly n

elements in it, which would justify calling n the dimension of the space R
n.

Amazing! Does this idea extend to abstract vector spaces? Indeed it does,
and we shall return to this issue in Section 3.5. Among other things, we have
shown the following handy fact, which gives us yet one more characterization
of invertible matrices to add to Theorem 2.6.

Theorem 3.7. An n × n real matrix A is invertible if and only if its columns
are linearly independent, in which case they form a basis of R

n.

Here is a problem that comes to us straight from analytical geometry
(classification of conics) and shows how the matrix and coordinate tools we
have developed can shed light on geometrical problems.

Example 3.26. Suppose we want to understand the character of the graph
of the curve x2 − xy + y2 − 6 = 0. It is suggested to us that if we execute a
change of variables by rotating the xy-axis by π/4 to get a new x′y′-axis, the
graph will become more intelligible. OK, we do it. The algebraic connection
between the coordinate pairs x, y and x′, y′ representing the same point in
the plane and resulting from a rotation of θ can be worked out using a bit of
trigonometry (which we omit) to yield

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ.

Use matrix methods to formulate these equations and execute the change of
variables.

Solution. First, we write the change of variable equations in matrix form

as Givens and
Rotation Matrix

x′ =
[

x′

y′

]
=
[

cos θ sin θ
− sin θ cos θ

] [
x
y

]
= G (θ)x.

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_1
http://dx.doi.org/10.1007/978-3-319-74748-4_2
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(Such a matrix G (θ) is often referred to as a Givens matrix.) This matrix
isn’t exactly what we need for substitution into our curve equation. Rather,
we need x, y explicitly. That’s easy enough. Simply invert G(θ) to obtain the
rotation matrix R(θ) as

G(θ)−1 = R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
.

Therefore, x = G(θ)−1x′ = R(θ)x′. Now observe that the original equation
can be put in the form (as in Example 2.37)

x2 − xy + y2 − 6 = xT

[
1 − 1

2− 1
2 1

]
x − 6

= (x′)T R(θ)T

[
1 − 1

2− 1
2 1

]
R(θ)x′ − 6.

We leave it as an exercise to check that with θ = π/4, so that cos θ = 1/
√

2 =
sin θ, the equation reduces to 1

2 (x′2 + 3y′2) − 6 = 0 or equivalently

x′2

12
+

y′2

4
= 1.

This curve is an ellipse with semimajor axis of length 2
√

3 and semiminor axis
of length 2. With respect to the x′y′-axes, this ellipse is in standard form. For
a graph of the ellipse, see Figure 3.4. �

v2

θ
e1

e2

x

y

xy

θ

v1

2 4

4

2

2

4

Fig. 3.4: Change of variables and the curve x2 − xy + y2 − 6 = 0.
The change of variables we have just seen can be interpreted as a change of

coordinates in the following sense: The variables x and y are just the standard
coordinates (with respect to the standard basis B = {e1, e2}) of a general
vector

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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x =
[

x
y

]
= x

[
1
0

]
+ y

[
0
1

]
= xe1 + ye2.

The meaning of the variables x′ and y′ becomes clear when we set x′ = (x′, y′)
and write the matrix equation x = R(θ)x′ out in detail as a linear combination
of the columns of R(θ):

x = R(θ)x′ = x′
[

cos θ
sin θ

]
+ y′

[− sin θ
cos θ

]
= x′v1 + y′v2.

Thus, the numbers x′ and y′ are just the coordinates of the vector x with
respect to a new basis C = {v1,v2} of R

2. This basis consists of unit vectors
in the direction of the x′ and y′ axes. See Figure 3.4 for a picture of the two
bases. For these reasons, the matrix R(θ) is sometimes called a change of
coordinates matrix.

The matrix R(θ) is also called a change of basis matrix, due to the fact
that the coordinate equation above is equivalent to [x]B = R (θ) [x]C . Thus,
R(θ) shows us how to change from the basis C = {v1,v2} to the standard
basis B = {e1, e2}. What makes a change of basis desirable is that sometimes
a problem looks a lot easier if we look at it using a basis other than the
standard one, such as in our example.

From a change of coordinates perspective, the vectors x and x′ simply
represent different coordinates for the same point and are connected by way
of the formula x = R(θ)x′. This is to be contrasted with the use of the
rotation matrix R (θ) in Example 2.18. In that example we have only one
coordinate system — the standard one — and we move a vector x by way
of a rotation of θ in the counterclockwise direction to a new vector y. This
defined a linear operator, and the connection between the two vectors is that
y = R(θ)x = TR(θ) (x).

Change of Basis Matrix In general, a change of basis matrix from
basis C to basis B of vector space V is a matrix

P such that for any vector v ∈ V , [v]B = P [v]C . These matrices are treated
in more detail in Section 3.7. However, we will record this simple fact about
change of basis matrices.

Theorem 3.8. Change of Basis Formula If V = R
n, B is the standard

basis, and C = {v1,v2, . . . ,vn} any other basis, then the change of basis
matrix from basis C to B is P = [v1,v2, . . . ,vn].

Proof. To see this, note first that for any v ∈ V , we have v = [v]B since
B is the standard basis. Let

v = c1v1 + c2v2 + · · · + cnvn,

so that c1, c2, . . . , cn are the coordinates of v relative to C, i.e., Then

v = [v]B = [v1,v2, . . . ,vn] [c1, c2, . . . , cn]T = P [v]C ,

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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which shows that P is the change of basis matrix from B to C. �

3.3 Exercises and Problems

Exercise 1. Find the redundant vectors, if any, in the following lists.
(a) (1, 0, 1), (1,−1, 1) (b) (1, 2, 1), (2, 1, 1), (3, 3, 2), (2, 0, 1)
(c) (1, 0,−1), (1, 1, 0), (1,−1,−2) (d) (0, 1,−1), (1, 0, 0), (−1, 1, 3)

Exercise 2. Find the redundant vectors, if any, in the following lists.
(a) x, 5x (b) 2, 2 − x, x2, 1 + x2

(c) 1 + x, 1 + x2, 1 + x + x2 (d) x − 1, x2 − 1, x + 1

Exercise 3. Which of the following sets are linearly independent in V = P3? If
not linearly independent, which vectors are redundant in the lists?
(a) 1, x, x2, x3 (b) 1 + x, 1 + x2, 1 + x3

(c) 1 − x2, 1 + x, 1 − x − 2x2 (d) x2 − x3, x,−x + x2 + 3x3

Exercise 4. Which of the following sets are linearly independent in V = R
4? If

not linearly independent, which vectors are redundant in the lists?
(a) (1,−1, 0, 1) , (−2, 2, 1, 1)(b) (1, 1, 0, 0) , (1, 0, 1, 0) , (1, 0, 0, 1) , (−1, 1,−2, 0)
(c) (0, 1,−1, 2) , (0, 1, 3, 4) , (0, 2, 2, 6) (d) (1, 1, 1, 1) , (0, 2, 0, 0) , (0, 2, 1, 1)

Exercise 5. Find the coordinates of v with respect to the following bases:
(a) v = (−1, 1), basis (2, 1), (2,−1) of R

2.

(b) v =2 + x2, basis 1 + x, x + x2, 1 − x of P2.

(c) v =
[

a b
b c

]
, basis

[
0 1
1 0

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
of the space of real symmetric

2 × 2 matrices.
(d) v = (1, 2), basis (2 + i, 1), (−1, i) of C

2.

Exercise 6. Find the coordinate vector of v with respect to the following bases:
(a) v = (0, 1, 2), basis (2, 0, 1), (−1, 1, 0), (0, 1, 1) of R

3.

(b)v =
[

1 2
0 1

]
, basis

[
0 1
0 0

]
,

[
1 0
0 1

]
,

[
0 0
0 1

]
of the space of upper triangular

2 × 2 matrices.
(c) v = (1, i, i), basis (1, 1, 0), (0, 1, 1), (0, 0, i) of C

3.

(d) v =4, basis 1 + 2x, 1 − x of P1.

Exercise 7. Let u1 = (1, 0, 1) and u2 = (1,−1, 1).
(a) Determine whether v = (2, 1, 2) belongs to the space span {u1,u2}.
(b) Find a basis of R

3 that contains u1 and u2.

Exercise 8. Let u1 = 1 − x + x2 and u2 = x + 2x2.

(a) Determine whether v = 4 − 7x − x2 belongs to the space span {u1,u2}.
(b) Find a basis of P2 that contains u1 and u2.
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Exercise 9. If v2 + 2v3 = 0, find all subsets of the vectors {v1,v2,v3} that
could form a minimal spanning set of span {v1,v2,v3}.

Exercise 10. If 2v1 + v3 + v4 = 0 and v2 + v3 = 0, find all subsets
of the vectors {v1,v2,v3,v4} that could form a minimal spanning set of
span {v1,v2,v3,v4}.

Exercise 11. For what values of the parameter c is the set of vectors (1, 1, c),
(2, c, 4), (3c + 1, 3,−4) in R

3 linearly independent?

Exercise 12. For what values of the parameter λ is the set of vectors
(
1, λ2, 1, 2

)
,

(2, λ, 4, 8), (0, 0, 1, 2) in R
4 linearly dependent?

Exercise 13. Let eij be a matrix with a one in the (i, j)th entry and zeros
elsewhere. Which 2 × 2 matrices eij can be added to the set below to form a
basis of R

2,2?
A =

[
0 1
1 1

]
, B =

[
0 1
1 0

]
, C =

[
0 0
1 1

]

Exercise 14. Which 2 × 2 matrices eij can be added to the set below to form
a basis of R

2,2?

A =
[

1 1
0 1

]
, B =

[
0 1
1 0

]
, C =

[
1 1
1 1

]

Exercise 15. The Wronskian of smooth functions f(x), g(x), h(x) is defined as

W (f, g, h)(x) = det

⎡

⎣
f(x) g(x) h(x)
f ′(x) g′(x) h′(x)
f ′′(x) g′′(x) h′′(x)

⎤

⎦ .

(A similar definition can be made for any number of functions.) Calculate the
Wronskians of the polynomial functions of Exercise 2 (c) and (d). What does
Problem 25 tell you about these calculations?

Exercise 16. Show that the functions ex, x3, and sin(x) are linearly indepen-
dent in C[0, 1] in two ways:
(a) Use Problem 25.
(b) Assume that a linear combination with value zero exists and evaluate it
at various points to obtain conditions on the coefficients.

Exercise 17. Let R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
and A =

[
1 −1

2−1
2 1

]
. Calculate

R(θ)T AR(θ) in the case that θ = π/4.

Exercise 18. Use matrix methods as in Example 3.26 to express the equation
of the curve 11x2 + 10

√
3xy + y2 − 16 = 0 in new variables x′, y′ obtained by

rotating the xy-axis by an angle of π/6.
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Problem 19. Show that for m × n matrix A and vector b ∈ R
m, if the vectors

uj ∈ R
n, j = 1, 2, . . . , N , solve the equation Ax = b, then so does the linear

convex combination w =
∑N

j=1 αjuj , where all αj ≥ 0 and
∑N

j=1 αj = 1.

Problem 20. Let V = R
n,n be the vector space of real n × n matrices and let

A,B ∈ R
n,n be such that both are nonzero matrices, A is nilpotent (some

power of A is zero), and B is idempotent (B2 = B). Show that the subspace
W = span{A,B} cannot be spanned by a single element of W.

Problem 21. Show that a basis is a minimal spanning set and conversely.

Problem 22. Let V be a vector space whose only subspaces are {0} and V.
Show that V is the span of a single vector.

*Problem 23. Prove that a list of vectors v1,v2, . . . ,vn with repeated vectors
in it is linearly dependent.

Problem 24. Suppose that v1,v2, . . . ,vk are linearly independent elements of
R

n and A = [v1,v2, . . . ,vk]. Show that rank A = k.

*Problem 25. Show that smooth functions f(x), g(x), h(x) are linearly depen-
dent if and only if for all x, W (f, g, h)(x) = 0.

Problem 26. Show that a linear operator T : V → W maps a linearly depen-
dent set v1,v2, . . . ,vn to linearly dependent set T (v1), T (v2), . . . , T (vn), but
if v1,v2, . . . ,vn are linearly independent, T (v1), T (v2), . . . , T (vn) need not
be linearly independent (give a specific counterexample).

*Problem 27. Suppose that a linear change of variables from old coordinates
x′

1, x
′
2 to new coordinates x1, x2 is given by the equations

x1 = p11x
′
1 + p12x

′
2,

x2 = p21x
′
1 + p22x

′
2,

where the 2 × 2 change of basis matrix P = [pij ] is invertible. Show that if a
linear matrix multiplication function TA : R

2 → R
2 is given in new coordinates

by

y =
[

y1

y2

]
= TA

([
x1

x2

])
= TA(x) =Ax,

where A = [aij ] is any 2 × 2 matrix, then it is given by y′=P−1APx′ =
TP −1AP (x′) in old coordinates.



220 3 VECTOR SPACES

3.4 Subspaces Associated with Matrices and Operators

Certain subspaces are a rich source of information about the behavior of a
matrix or a linear operator. We define and explore the properties of these
subspaces in this section.

Subspaces Defined by Matrices

There are three very useful subspaces that can be associated with a matrix A.
Understanding these subspaces is a great aid in vector space calculations that
might have nothing to do with matrices per se, such as the determination of
a minimal spanning set for a vector space. Each definition below is followed
by an illustration using the following example matrix:

A =
[

1 1 1 −1
0 1 2 1

]
. (3.2)

We make the default assumption that the scalars are the real numbers, but the
definitions we will give can be stated just as easily for the complex numbers.

Caution: Do not confuse any of the spaces defined below with the matrix
A itself. They are objects that are derived from the matrix, but do not even
uniquely determine the matrix A.

Definition 3.10. Column Space The column space of the m × n matrix A
is the subspace C(A) of R

m spanned by the columns of A.

Example 3.27. Describe the column space of the matrix A in equation (3.2).

Solution. Here we have that C(A) ⊆ R
2. Also

C(A) = span
{[

1
0

]
,

[
1
1

]
,

[
1
2

]
,

[−1
1

]}
.

Technically, this describes the column space in question, but we can do better.

We saw in Example 3.17 that the vector
[

1
2

]
was really redundant since it is

a linear combination of the first two vectors. We also see that
[−1

1

]
= −2

[
1
0

]
+ 1

[
1
1

]
,

so that Theorem 3.4 shows us that

C(A) = span
{[

1
0

]
,

[
1
1

]}
.



3.4 Subspaces Associated with Matrices and Operators 221

This description is much better, in that it exhibits a basis of C(A). It also
shows that not all the columns of the matrix A are really needed to span the
entire subspace C(A). �

Definition 3.11. Row Space The row space of the m × n matrix A is the
subspace R(A) of R

n spanned by the transposes of the rows of A.

The “transpose” part of the preceding definition seems a bit odd. Why
would we want rows to look like columns? It’s a technicality, but later it will
be convenient for us to have the row spaces live inside a R

n instead of an
(Rn)T . Remember, we had to make a choice about R

n consisting of rows or
columns. Just to make the elements of a row space look like rows, we can
always adhere to the tuple notation instead of matrix notation. We gain one
convenience: R(A) = C(AT ), so that whatever we understand about column
spaces can be applied to row spaces.

Example 3.28. Describe the row space of A in equation (3.2).

Solution. We have from the definition that

R(A) = span {(1, 1, 1,−1), (0, 1, 2, 1)} ⊆ R
4.

Now it’s easy to see that neither one of these vectors can be expressed as a
multiple of the other (if we had c(1, 1, 1,−1) = (0, 1, 2, 1), then read the first
coordinates and obtain c = 0), so that span is given as economically as we
can do, that is, the two vectors listed constitute a basis of R(A). �

Definition 3.12. Null Space The null space of the m × n matrix A is the
subset N (A) of R

n defined to be

N (A) = {x ∈ R
n |Ax = 0} .

Observe that N (A) is the solution set to the homogeneous linear system
Ax = 0. This means that null spaces are really very familiar. We were comput-
ing these solution sets way back in Chapter 1. We didn’t call them subspaces
at the time. Here is an application of this concept. Let A be a square matrix.
We know that A is invertible exactly when the system Ax = 0 has only the
trivial solution (see Theorem 2.6). Now we can add one more equivalent con-
dition to the long list of equivalences for invertibility: A is invertible exactly
if N (A) = {0}. We next justify the subspace property implied by the term
“null space.”

Example 3.29. Use the subspace test to verify that N (A) is a subspace of
R

n.

Solution. Since A0 = 0, the zero vector is in N (A). Now let c be a scalar
and u,v ∈ R

n arbitrary elements of N (A). By definition, Au = 0 and Av = 0.
Add these two equations to obtain that

http://dx.doi.org/10.1007/978-3-319-74748-4_1
http://dx.doi.org/10.1007/978-3-319-74748-4_2
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0 = 0 + 0 = Au + Av = A(u + v).

Therefore, u + v ∈ N (A). Next multiply the equation Au = 0 by the scalar
c to obtain

0 = c0 = c(Au) = A(cu).

Thus, we see from that definition that cu ∈ N (A). The subspace test implies
that N (A) is a subspace of R

n. �

Example 3.30. Describe the null space of the matrix A of equation (3.2).

Solution. Proceed as in Section 1.4. We find the reduced row echelon form
of A, identify the free variables, and solve for the bound variables using the
implied zero right-hand side and solution vector x = [x1, x2, x3, x4]T :

[
1 1 1 −1
0 1 2 1

] −−−−−−→
E12(−1)

[
1 0 −1 −2
0 1 2 1

]
.

Pivots are in the first and second columns, so it follows that x3 and x4 are
free, x1 and x2 are bound, and

x1 = x3 + 2x4

x2 = −2x3 − x4.

Let’s write out the form of a general solution in terms of the free variables as
a combination of x3 times some vector plus x4 times another vector:

⎡

⎢⎢
⎣

x1

x2

x3

x4

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

x3 + 2x4

−2x3 − x4

x3

x4

⎤

⎥⎥
⎦ = x3

⎡

⎢⎢
⎣

1
−2

1
0

⎤

⎥⎥
⎦+ x4

⎡

⎢⎢
⎣

2
−1

0
1

⎤

⎥⎥
⎦ .

We have seen this clever trick before in Example 2.6. Remember that free
variables can take on arbitrary values, so we see that the general solution to
the homogeneous system has the form of an arbitrary linear combination of
the two vectors on the right. In other words,

N (A) = span

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

1
−2

1
0

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

2
−1

0
1

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
⊆ R

4.

Neither of these vectors is a multiple of the other, so this is as economical an
expression for N (A) as we can hope for. In other words, we have exhibited a
minimal spanning set, that is, a basis of N (A). �

The following example relates null spaces to the idea of a limiting state
for a Markov chain as discussed in Example 2.20. Recall that in that exam-
ple we observed that the sequence of state vectors x(k), k = 0, 1, 2, . . .,
appeared to converge to a steady-state vector x, no matter what the ini-
tial (probability distribution) state vector x(0). We will call a stochastic

http://dx.doi.org/10.1007/978-3-319-74748-4_1
http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Stable Stochastic Matrixmatrix (Markov chain transition matrix) A
that has this property stable. Null spaces can tell us something about such
matrices. In Chapter 5 we will apply this concept to general discrete dynamical
systems.

Example 3.31. Suppose that a Markov chain has an stable transition matrix

A =
[

0.7 0.4
0.3 0.6

]
. Determine the steady-state vector for the Markov chain

x(k+1) = Ax(k).

Solution. We reason as follows: Since the limit of the state vectors x(k) is
x, and the state vectors are related by the formula

x(k+1) = Ax(k),

we can take the limits of both sides of this matrix equation and obtain that
x = Ax. Therefore,

0 = x − Ax = Ix − Ax = (I − A)x.

It follows that x ∈ N (I − A). Now

I − A =
[

1 0
0 1

]
−
[

0.7 0.4
0.3 0.6

]
=
[

0.3 −0.4
−0.3 0.4

]
.

Calculate the null space by Gauss–Jordan elimination:

[
0.3 −0.4

−0.3 0.4

]−−−−−−−→
E21(1)

E1(1/0.3)

[
1 −4/3
0 0

]
.

Therefore, the null space of I − A is spanned by the single vector (4/3, 1). In
particular, any multiple of this vector qualifies as a possible limiting vector. If
we want a limiting vector whose entries are nonnegative and sum to 1 (which
is required for states in a Markov chain), then the only choice is the vector
resulting from dividing (4/3, 1) by the sum of its coordinates to obtain

(3/7)(4/3, 1) = (4/7, 3/7) ≈ (0.57143, 0.42857) .

Interestingly enough, this is the vector that was calculated on page 91. �
Caution: We have no guarantee that the transition matrix A of the preceding
example is actually stable. We have only experimental evidence so far. We will
prove stability using eigenvalue ideas in Chapter 5.

Here is a way of thinking about C(A). The key is the “linear com-
bination as matrix–vector multiplication” idea that was first introduced

http://dx.doi.org/10.1007/978-3-319-74748-4_5
http://dx.doi.org/10.1007/978-3-319-74748-4_5
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Column Space as Matrix Products in Example 2.9 and formalized in
Theorem 2.1. Recall that it asserts

that if matrix A has columns a1, . . . ,an, i.e., A = [a1,a2, . . . ,an], and if
x = [x1, x2, ..., xn]T , then

Ax = x1a1 + x2a2 + · · · + xnan. (3.3)

This equation shows that the column space of the matrix A can be thought
of as the set of all possible matrix products Ax, i.e.,

C(A) = {Ax |x ∈ R
n} .

An insight that follows from these observations: The linear combination of
columns of A with coefficients from the vector x is zero exactly when x ∈
N (A). Thus, we can use null space calculations to identify redundant vectors
in a set of column vectors, as in the next example.

Example 3.32. Find all possible linear combinations with value zero of the
columns of matrix A of equation (3.2) and use this information to find a basis
of C(A).

Solution. As in Example 3.30 we find the reduced row echelon form of A,
identify the free variables, and solve for the bound variables using the implied
zero right-hand side. The result is a solution vector x = (x1, x2, x3, x4) =
(x3 + 2x4,−2x3 − x4, x3, x4). Write A = [a1,a2,a3,a4], and we see that the
linear combinations of A are just

0 = x1a1 +x2a2 +x3a3 +x4a4 = (x3 + 2x4)a1 − (2x3 + x4)a2 +x3a3 +x4a4.

Here we think of x3 and x4 as free variables. Take x3 = 1 and x4 = 0,
and we obtain 0 = a1 − 2a2 + a3, so that a3 is a linear combination of
a1 and a2. Similarly, take x3 = 0 and x4 = 1, and we obtain 0 = 2a1 −
a2 + a4, so that a4 is a linear combination of a1 and a2. Hence, C(A) =

span {a1,a2} = span
{[

1
0

]
,

[
1
1

]}
, the same conclusion we reached by trial

and error in Example 3.27. �

Subspaces Defined by a Linear Operator

Suppose we are given a linear operator T : V → W. We immediately have
three spaces we can associate with the operator, namely, the domain V, target
W , and range T (V ) = {y |y = T (x) for some x ∈ V } of the operator. The
domain and range are vector spaces by definition of linear operator. That the
range is a vector space is a nice application of the subspace test.

Example 3.33. Show that if T : V → W is a linear operator, then range(T )
is a subspace of W.

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Solution. Apply the subspace test. First, we observe that range(T ) con-
tains T (0). We leave it as an exercise for the reader to check that T (0) is
the zero element of W. Next let y and z be in range(T ), say y = T (u) and
z = T (v). We show closure of range(T ) under addition: by the linearity prop-
erty of T ,

y + z = T (u) + T (v) = T (u + v) ∈ range(T ),

where the latter term belongs to range(T ) by the definition of image. Finally,
we show closure under scalar multiplication: Let c be a scalar, and we obtain
from the linearity property of T that

cy = cT (u) = T (cu) ∈ range(T ),

where the latter term belongs to range(T ) by the definition of range. Thus,
the subspace test shows that range(T ) is a subspace of W. �

Here is another space that has proven to be very useful in understanding
the nature of a linear operator.

Definition 3.13. Kernel of Operator The kernel of the linear operator T :
V → W is the subspace of V defined by

ker(T ) = {x ∈ V |T (x) = 0}.

The definition claims that the kernel is a subspace and not merely a subset
of the domain. This is true, and a proof of this fact is left to the exercises. In
fact, we have been computing kernels since the beginning of the text. To see
this, suppose that the linear transformation T : R

n → R
m is given by matrix

multiplication, that is, T (x) = TA (x) = Ax, for all x ∈ R
n. Then

ker (T ) = {x ∈ R
n |TA(x) = 0} = {x ∈ R

n |Ax = 0} = N (A) .

In other words, for matrix operators kernels are the same thing as null spaces.
Here is one very nice application of kernels. Suppose we are interested in

knowing whether an operator T : V → W is one-to-one, i.e., whether the
equation T (u) = T (v) always implies that u = v. For general functions this
is a nontrivial question. If, for example, V = W = R, then we could graph
the function T and try to determine whether a horizontal line cut the graph
twice. But for linear operators, the answer is very simple:

Theorem 3.9. The linear operator T : V → W is one-to-one if and only if
ker(T ) = {0}.

Proof. If T is one-to-one, then only one element can map to 0 under T.
Thus, ker(T ) can consist of only one element. However, ker(T ) contains the
zero vector since it is a subspace of the domain of T. Therefore, ker(T ) = {0}.

Conversely, suppose that ker(T ) = {0}. If u and v are such that T (u) =
T (v), then subtract terms and use the linearity of T to obtain that
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0 = T (u) − T (v) = T (u) + (−1)T (v) = T (u − v).

It follows that u − v ∈ ker(T ) = {0}. Therefore, u − v = 0 and so u = v. �

Before we leave the topic of one-to-one linear mappings, let’s digest its
significance in a very concrete case. The space P2 = span{1, x, x2} of poly-
nomials of degree at most 2 has a basis of three elements, like R

3, and it
seems very reasonable to think that P2 is “just like” R

3 in that a polyno-
mial p(x) = a + bx + cx2 is uniquely described by its vector of coefficients
(a, b, c) ∈ R

3, and corresponding polynomials and vectors add and scalar mul-
tiply in a corresponding way. Here is the precise version of these musings:
Define an operator T : P2 → R

3 by the formula T (a + bx + cx2) = (a, b, c).
One can check that T is linear, the range of T is its target, R

3, and ker(T ) = 0.
By Theorem 3.9 the function T is one-to-one. Hence, it describes a one-to-one
correspondence between elements of P2 and elements of R

3 such that sums and
scalar products in one space correspond to the corresponding sums and scalar
products in the other. In plain words, this means we can get one of the vec-
tor spaces from the other simply by relabeling elements of one of the spaces.
So, in a very real sense, they are “the same thing.” More generally, when-
ever there is a one-to-one linear mapping of one vector space onto another,

Isomorphism and
Isomorphic Vector Spaces

we say that the two vector spaces are isomor-
phic, which is a fancy way of saying that they
are the same, up to a relabeling of elements.

The mapping T itself is called an isomorphism. Actually, we have already
encountered isomorphisms in the form of invertible linear operators. The fol-
lowing theorem, whose proof we leave as an exercise, explains the connection
between these ideas.

Theorem 3.10. The linear operator T : V → W is an isomorphism if and
only if T is an invertible linear operator.

In summary, there are four important subspaces associated with a linear
operator T : V → W , the domain, target, kernel, and range. In symbols:

domain(T ) = V

target(T ) = W

ker(T ) = {v ∈ V |T (v) = 0}
range(T ) = {T (v) |v ∈ V } .

There are important connections between these subspaces and those asso-
ciated with a matrix. Let A be an m × n matrix and TA : R

n → R
m the

corresponding matrix operator defined by multiplication by A. We have

domain(TA) = R
n

target(TA) = R
m

ker(TA) = N (A)
range(TA) = C(A).
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The proofs of these are left to the exercises. One last example of subspaces
associated with a linear operator T : V → W is really a whole family of
subspaces. Suppose that U is a subspace of the domain V. Then we define the
image of U under T to be the set

T (U) = {T (u) |u ∈ U} .

One can show that T (U) is always a subspace of range (T ). We leave the
proof of this fact as an exercise. What this says is that a linear operator maps
subspaces of its domain into subspaces of its range.

3.4 Exercises and Problems

Exercise 1. Find bases for null spaces of the following matrices.

(a)
[

2 −1 0 3
4 −2 1 3

]
(b)

[
1 4

−1 −4

]
(c)

⎡

⎣
1 1 2

−2 −1 −5
1 2 1

⎤

⎦ (d)

⎡

⎣
2 −1 0
4 −2 1
1 1 −1

⎤

⎦

Exercise 2. Find bases for null spaces of the following matrices.

(a)
[

1 −1
2 −1

]
(b)

⎡

⎣
2 4

−1 −2
0 1

⎤

⎦ (c)

⎡

⎣
3 1 1
0 0 0
6 2 2

⎤

⎦ (d)
[

2 −1 i
2 −2 2 − i

]

Exercise 3. Find bases for the column spaces of the matrices in Exercise 1.

Exercise 4. Find bases for the column spaces of the matrices in Exercise 2.

Exercise 5. Find bases for the row spaces of the matrices in Exercise 1.

Exercise 6. Find bases for the row spaces of the matrices in Exercise 2.

Exercise 7. For the following matrices find the null space of I − A and find
state vectors with nonnegative entries that sum to 1 in the null space, if any.
Are these matrices stable (yes/no)?

(a) A =

⎡

⎣
0.5 0 1
0.5 0.5 0

0 0.5 0

⎤

⎦ (b) A =
[

0 1
1 0

]

Exercise 8. Find the null space of I − A and find state vectors (nonnegative

entries that sum to 1) in the null space, if any, for the matrix A =

⎡

⎣
1 0 1/3
0 1 1/3
0 0 1/3

⎤

⎦.

Is this matrix stable? Explain your answer.
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Exercise 9. For each of the following linear operators, find the kernel and range
of the operator. Is the operator one-to-one? onto?

(a) T : R
3 → R

3 and T ((x1, x2, x3)) =

⎡

⎣
x1 − 2x2 + x3

x1 + x2 + x3

2x1 − x2 + 2x3

⎤

⎦

(b) T : P2 → R and T (p (x)) = p (1)

Exercise 10. For each of the following linear operators, find the kernel and
range of the operator. Is the operator one-to-one? onto?
(a) T : P2 → P3 and T

(
a + bx + cx2

)
= ax + bx2/2 + cx3/3.

(b) T : R
3 → R

2 and T ((x1, x2, x3)) =
[

2x2

3x3

]

Exercise 11. The linear operator T : V → R
2 is such that T (v1) = (−1, 1),

T (v2) = (1, 1), and T (v3) = (2, 0), where v1,v2,v3 is a basis of V . Compute
ker T and range T . Is T one-to-one? onto? an isomorphism? (Hint: For the
kernel calculation use Theorem 3.6 and find conditions on coefficients such
that T (c1v1 + c2v2 + c3v3) = 0.)

Exercise 12. Let v1,v2,v3 be a basis of the vector space V and let the linear
operator T : V → R

3 be such that T (v1) = (0, 1, 1), T (v2) = (1, 1, 0), and
T (v3) = (−1, 0, 1). Compute ker T and range T . Is T one-to-one? onto? an
isomorphism?

Problem 13. Let TA : R
n → R

m be the matrix multiplication operator given
by the m × n matrix A. Show that ker TA = N (A) and range TA = C(A).

Problem 14. Prove that if T is a linear operator, then for all u,v in the domain
of T and scalars c and d, we have T (cu − dv) = cT (u) − dT (v).

*Problem 15. Show that if T : V → W is a linear operator, then T (0) = 0.

Problem 16. Show that if T : V → W is a linear operator, then the kernel of
T is a subspace of V.

*Problem 17. Let the function T : R
3 → P2 be given by

T ([c1, c2, c3]
T ) = c1x + c2(x − 1) + c3x

2.

Show that T is an isomorphism of vector spaces.

Problem 18. Let T : V → W be a linear operator and U a subspace of V .
Show that the image of U, T (U) = {T (v) |v ∈ U}, is a subspace of W .

*Problem 19. Prove that if A is a nilpotent matrix then N (A) �= {0} and
N (I − A) = {0}.
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Problem 20. Let V be a vector space over the reals with basis v1,v2, . . . ,vn.
Show that the linear operator T : R

n → V given by

T ((c1, c2, . . . , cn)) = c1v1 + c2v2 + · · · + cnvn

is an isomorphism of vector spaces.

Problem 21. Let A be an m×n matrix with m ≤ n. Show that every subset of
m columns of A is linearly independent if and only if every m × m submatrix
B of A satisfies det B �= 0.

*Problem 22. Given A ∈ R
m,n and b ∈ R

m, show that bT A is a linear combi-
nation of the rows of A.

3.5 Bases and Dimension

We have used the word “dimension” many times already, without really making
the word precise. Intuitively, it makes sense when we say that R

2 is “two-
dimensional” or that R

3 is “three-dimensional,” for we reason that it takes
two coordinate numbers to determine a vector in R

2 and three for a vector
in R

3. What can we say about general vector spaces? Is there some number
that is a measure of the size of the vector space? We answer these questions
in this section. In the familiar cases of geometrical vector spaces, the answers
will confirm our intuition.

The Basis Theorem

We know that the standard vector spaces always have a basis: The standard
basis. What about subspaces of a standard space? Or, for that matter, abstract
vector spaces? It turns out that the answer in all cases is yes, but we will be
satisfied to answer the question for a special class of abstract vector spaces.
The following concept turns out to be helpful.

Definition 3.14. Finite-Dimensional Vector Space The vector space V is
called finite-dimensional if V has a finite spanning set.

Examples of finite-dimensional vector spaces are the standard spaces R
n

and C
n. As a matter of fact, we will see shortly that every subspace of a

finite-dimensional vector space is finite-dimensional, and this includes most
of the vector spaces we have studied so far. However, some very important
vector spaces are not finite-dimensional, and accordingly, we call them infinite-
dimensional spaces. Here is an example.
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Example 3.34. Show that the space of all polynomial functions P is not a
finite-dimensional space, while the subspaces Pn are finite-dimensional.

Solution. If P were a finite-dimensional space, then there would be a
finite spanning set of polynomials p1(x), p2(x), . . . , pm(x) for P. This means
that any other polynomial could be expressed as a linear combination of these
polynomials. Let m be the maximum of all the degrees of the polynomials
pj(x). Notice that any linear combination of polynomials of degree at most m
must itself be a polynomial of degree at most m. (Remember that polynomial
multiplication plays no part here, only addition and scalar multiplication.)
Therefore, it is not possible to express the polynomial q(x) = xm+1 as a
linear combination of these polynomials, which means that they cannot be a
basis. Hence, the space P has no finite spanning set.

On the other hand, it is obvious that the polynomial

p(x) = a0 + a1x + · · · + anxn

is a linear combination of the monomials 1, x, . . . , xn from which it follows
that Pn is a finite-dimensional space. �

Here is the first basic result about these spaces. It is simply a formalization
of what we have already done with preceding examples.

Theorem 3.11. Basis Theorem Every finite-dimensional vector space has
a basis.

Proof. To see this, suppose that V is a finite-dimensional vector space
with

V = span {v1,v2, . . . ,vn} .

Now if the set {v1,v2, . . . ,vn} has a redundant vector in it, discard it and
obtain a smaller spanning set of V. Continue discarding vectors until you
reach a spanning set for V that has no redundant vectors in it. (Since you
start with a finite set, this can’t go on indefinitely.) By the redundancy test,
this spanning set must be linearly independent. Hence, it is a basis of V. �

The Dimension Theorem

No doubt you have already noticed that every basis of the vector space R
2 must

have exactly two elements in it. Similarly, one can reason geometrically that
any basis of R

3 must consist of exactly three elements. These numbers some-
how measure the “size” of the space in terms of the degrees of freedom (number
of coordinates) one needs to describe a general vector in the space. The dimen-
sion theorem asserts that this number can be unambiguously defined. As a
matter of fact, the discussion on Page 214 shows that every basis of R

n has
exactly n elements. Our next stop: arbitrary finite-dimensional vector spaces.
Along the way, we need a very handy theorem that is sometimes called the
Steinitz substitution principle. This principle is a mouthful to swallow, so we
will precede its statement with an example that illustrates its basic idea.
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Example 3.35. Let w1 = (1,−1, 0), w2 = (0,−1, 1), v1 = (0, 1, 0), v2 =
(1, 1, 0), and v3 = (0, 1, 1). Then w1,w2 form a linearly independent set and
v1,v2,v3 form a basis of V = R

3 (assume this). Show how to substitute both
w1 and w2 into the set v1,v2,v3 while substituting out some of the vj ’s and
at the same time retaining the basis property of the set.

Solution. Since R
3 = span{v1,v2,v3}, we can express w1 as a linear

combination of these vectors. We have a formal procedure for finding such
combinations, but in this case we don’t have to work too hard. A little trial
and error shows that

w1 =

⎡

⎣
1

−1
0

⎤

⎦ = −2

⎡

⎣
0
1
0

⎤

⎦+ 1

⎡

⎣
1
1
0

⎤

⎦ = −2v1 + 1v2 + 0v3,

so that 1w1 +2v1 −v2 − 0v3 = 0. It follows that v1 or v2 is redundant in the
set w1,v1,v2,v3. So discard, say, v2, and obtain a spanning set w1,v1,v3.
In fact, it is actually a basis of V since two vectors can span only a plane.
Now start over: Express w2 as a linear combination of this new basis. Again,
a little trial and error shows that

w2 =

⎡

⎣
0

−1
1

⎤

⎦ = −2

⎡

⎣
0
1
0

⎤

⎦+

⎡

⎣
0
1
1

⎤

⎦ = 0w1 − 2v1 + 1v3.

Therefore, v1 or v3 is redundant in the set w1,w2,v1,v3. So discard, say, v3,
and obtain a spanning set w1,w2,v1. Again, this set is actually a basis of V
since two vectors can span only a plane; and this is the kind of set we were
looking for. �

Theorem 3.12. Steinitz Substitution Principle Let w1,w2, . . . ,wr be a lin-
early independent set in the space V and let v1,v2, . . . ,vn be a basis of V.
Then r ≤ n and we may substitute all of the wi’s for r of the vj ’s in such a
way that the resulting set of vectors is still a basis of V.

Proof. Let’s do the substituting one step at a time. Start at k = 0. Now
suppose that k < r and that we have relabeled the remaining vi’s so that

V = span {w1,w2, . . . ,wk,v1,v2, . . . ,vs}

with k + s = n and w1,w2, . . . ,wk,v1,v2, . . . ,vs is a basis of V.
We show how to substitute the next vector wk+1 into the basis and remove

exactly one vj . We know that wk+1 is expressible uniquely as a linear combi-
nation of elements of the basis w1,w2, . . . ,wk,v1,v2, . . . ,vs by Theorem 3.6.
Also, there have to be some vi’s left in such a combination if k < r, for oth-
erwise the set of vectors w1,w2, . . . ,wr would not be linearly independent.
Relabel the vj again so that bs �= 0 in the unique expression
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wk+1 = a1w1 + a2w2 + · · · + akwk + b1v1 + b2v2 · · · + bsvs

for wk+1. Thus, we can solve this equation to express vs uniquely in terms
of w1,w2, . . . ,wk+1,v1,v2, . . . ,vs−1; otherwise the expression for wk+1 is
not unique. It follows that w1,w2, . . . ,wk+1,v1,v2, . . . ,vs−1 are also linearly
independent, else the expression for vs is not unique. From these expressions
we see that

span {w1, . . . ,wk,v1, . . . ,vs} = span {w1, . . . ,wk+1,v1, . . . ,vs−1} .

Hence, we have accomplished the substitution of wk+1 into the basis by
removal of a single vj and preserved the equality n = k+s = (k + 1)+(s − 1).
Continue this process until k = r and we obtain the desired basis of V . �

Here is an important application of the Steinitz substitution principle.

Corollary 3.2. Every linearly independent set in a finite-dimensional vector
space can be expanded to a basis of the space.

Proof. Suppose that w1,w2, . . . ,wr is a linearly independent set in V
and v1,v2, . . . ,vn is a basis of V. Apply the Steinitz substitution principle to
this linearly independent set and basis to obtain a basis of V that includes
w1,w2, . . . ,wr. �

Next, the dimension theorem is an easy consequence of Steinitz substitu-
tion, which has done the hard work for us.

Theorem 3.13. Dimension Theorem Let V be a finite-dimensional vector
space. Then any two bases of V have the same number of elements, which is
called the dimension of the vector space and denoted by dim V .

Proof. Let w1,w2, . . . ,wr and v1,v2, . . . ,vn be two bases of V. Apply the
Steinitz substitution principle to the linearly independent set w1,w2, . . . ,wr

and the basis v1,v2, . . . ,vn to obtain that r ≤ n. Now reverse the roles of
these two sets in the substitution principle to obtain the reverse inequality
n ≤ r. We conclude that r = n, as desired. �

Remember that a vector space always carries a field of scalars with it. If
we are concerned about that field we could specify it explicitly as part of the
dimension notation. For instance, we could write

dim R
n = dimR R

n or dim C
n = dimC C

n.

Usually, the field of scalars is clear from context and we don’t need the sub-
script notation.

As a first application of the dimension theorem, let’s dispose of the stan-
dard spaces. We already know from Example 3.23 that these vector spaces
have a basis consisting of n elements, namely the standard basis e1, e2, . . . , en.
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According to the dimension theorem, this is all we need to specify the
dimension of these spaces.

Corollary 3.3. The standard spaces satisfy dim R
n = n and dim C

n = n.

There is one more question we want to answer. How do dimensions of
a finite-dimensional vector space V and a subspace W of V relate to each
other? At the outset, we don’t even know whether W is finite-dimensional.
Our intuition tells us that subspaces should have smaller dimension. Sure
enough, our intuition is right this time!

Corollary 3.4. If W is a subspace of the finite-dimensional vector space V ,
then W is also finite-dimensional and dim W ≤ dim V with equality if and
only if V = W .

Proof. Let w1,w2, . . . ,wr be a linearly independent set in W and sup-
pose that dim V = n. According to the Steinitz substitution principle, r ≤ n.
Now if the span of w1,w2, . . . ,wr were smaller than W , then we could
find a vector wr+1 in W but not in span{w1,w2, . . . ,wr}. The new set
w1,w2, . . . ,wr,wr+1 would also be linearly independent (we leave this fact
as an exercise) and r +1 ≤ n. Since we cannot continue adding vectors indefi-
nitely, we have to conclude that at some point we obtain a basis w1,w2, . . . ,ws

for W. So W is finite-dimensional and furthermore, s ≤ n, so we conclude that
dim W ≤ dim V . Finally, if we had equality, then a basis of W would be the
same size as a basis of V. However, Steinitz substitution ensures that any lin-
early independent set can be expanded to a basis of V . It follows that this
basis for W is also a basis for V , whence W = V. �

If U and V are subspaces of the vector space W , then the sum of these
subspaces, U+V = {u + v |u ∈ U and v ∈ V }, is also a subspace of W . These
corollaries can be used to show how to calculate the dimension of U + V .

Corollary 3.5. If U and V are subspaces of the finite-dimensional vector
space W , then dim(U + V ) = dimU + dim V − dim U ∩ V .

Proof. Corollary 3.4 shows that U , V , and U∩V are all finite-dimensional,
say dim U = m and dim V = n. Since U ∩ V is also a subspace of
both U and V , U ∩ V has a basis, say w1,w2, . . . ,wr, with r ≤ m and
r ≤ n. Apply Corollary 3.2 to this basis to expand this basis to bases
w1,w2, . . . ,wr,u1,u2, . . . ,us of U and w1,w2, . . . ,wr,v1,v2, . . . ,vt of V .
Then r + s = m and r + t = n. We leave it as a exercise to verify that
w1,w2, . . . ,wr,u1,u2, . . . ,us,v1,v2, . . . ,vt is a basis of U + V . Thus

dim (U + V ) = r + s + t = m + n − r = dim U + dim V − dim U ∩ V. �

A particularly nice special case of subspace sums is the case in which
U ∩ V = {0}, which implies that dim (U + V ) = dim U + dim V :
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Definition 3.15. Direct Sum and Summands If U and V are subspaces of
the vector space W such that U ∩V = {0}, then the subspace U +V is called
a direct sum of subspaces and denoted by U ⊕ V . In this case U and V are
called summands of U ⊕ V .

Note 3.1. Direct sums as defined above could be called internal direct sums
to distinguish them from what is called an external direct sum of two vector
spaces: This direct sum is really the direct product U × V of two spaces with
coordinate-wise arithmetic on elements of the product.

In the special case that W = U ⊕ V we say that V is a complement of
U in W . Given a subspace U of W , a complement V of U in W is easy to
manufacture thanks to Corollary 3.4:

Corollary 3.6. Complementary Subspace If U is a subspace of the finite-
dimensional vector space W , then U has a complement V in W .

Proof. If dim W = n, then dim U = r ≤ n by Corollary 3.4. Furthermore,
a basis w1,w2, . . . ,wr of U can be expanded to a basis w1,w2, . . . ,wn of
W by the Steinitz substitution principle. Let V = span{wr+1,w2, . . . ,wn}.
Then W = U + V . If 0 �= v ∈ U ∩ V , then v could be expressed as a
nontrivial linear combination of both w1,w2, . . . ,wr and wr+1,w2, . . . ,wn.
These combinations would be equal, so bringing all terms to one side of the
equation would yield a nontrivial combination of w1,w2, . . . ,wn that sums to
0. This contradicts linear independence of this basis. Hence, W = U ⊕ V . �

For a linear operator T : V → V , where V is an n-dimensional vector space,
two important subspaces associated with T are ker(T ) = {v ∈ V |T (v) = 0}
and range(T ) = {T (v) |v ∈ V } . These subspaces have a special quality: They

Invariant Subspace are T -invariant, i.e., T maps them into themselves.
We will see in the next section that in the case of a

matrix operator the sum of the dimensions of these subspaces is n. Does this
mean that V is the direct sum of these subspaces? Exercise 13 of this section
shows us that this is not the case. However, something can be salvaged:

Theorem 3.14. If T : V → V , where V is an n-dimensional vector space
and T a linear operator, then V = ker(Tn) ⊕ range(Tn) and both of these
summands are T -invariant.

Proof. Define Uj = ker(T j) and Wj = range(T j), j = 0, 1, 2, . . .. We
leave it as an exercise to show that for all j, Uj ⊆ Uj+1 and Wj ⊇ Wj+1. If
at any point Wj = Wj+1, then since Wj+1 = T (Wj) , all subsequent Wk are
equal to Wj . Now every strict containment Wj ⊃ Wj+1 decreases dimension
by at least 1 and W0 = V has dimension n; it follows that Wm = Wn for all
m > n. Thus, T (Wn) = Wn and Wn is T -invariant. Likewise, if we have only
strict inclusions Uj ⊂ Uj+1 for for j < n, then each containment increases
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dimension by at least 1, so we would have Un = V = Um for all m > n. On
the other hand, if Uj = Uj+1 for some j < n, then T j+1 (v) = 0 implies that
T j (v) = 0. Therefore, , if T j+2 (v) = T j+1 (T (v)) = 0, then T j (T (v)) = 0,
i.e., T j+1 (v) = 0 and hence Uj+1 = Uj+2. Continuing in this fashion we see
that Uj+k = Uj for all k > 0. So in all cases Un = Un+k for all k > 0. From
definition we see that T (Un) ⊆ Un−1, so Un is also T -invariant.

Suppose that v ∈ ker(Tn) ∩ range(Tn) = Un ∩ Wn. To show that v must
be 0, first note that T (Wn) = Wn+1 = Wn. We leave it as an exercise to
show that any linear operator that maps a finite dimensional space onto itself
must be an isomorphism. It follows that the operator T restricted to the space
Wn is an isomorphism. In particular, if 0 �= v ∈ Un ∩ Wn, then T (v) �= 0
and this argument can be applied repeatedly to show that T k (v) �= 0 for
any k. Yet v ∈ ker(Tn), so we must have Tn (v) = 0, a contradiction. Hence,
Un ∩ Wn = {0}.

Next, let v be any element of V . Certainly, Tn (v) ∈ Wn. Note that since
T restricted to Wn is an isomorphism, so is any power of T . Thus, there exists
w ∈ Wn such that Tn (v) = T 2n (w), so that

Tn (v − Tn (w)) = Tn (v) − T 2n (w) = Tn (v) − Tn (v) = 0.

Therefore, v − Tn (w) = u ∈ Un and Tn (w) ∈ Wn, so v = u + Tn (w) ∈
Un + Vn, which proves the theorem. �

As another application of the dimension theory developed in this section,
consider the problem of determining all solutions to the homogeneous differ-
ence equation

amyk+m + am−1yk+m−1 + · · · + a1yk+1 + a0yk = 0, k = 0, 1, 2, . . . , (3.4)

where a0, a1, . . . , am are constant real coefficients with a0 �= 0, am �= 0 and
y0, y1, . . . , ym−1 are real initial values. Let S be the set of all solutions {yk}∞

k=0

of (3.4). We leave it as an exercise to show that S is a vector space over R with
the obvious operations of addition and scalar multiplication: {yk} + {zk} =
{yk + zk} and c {yk} = {cyk}.

Example 3.36. Determine the dimension of S, the space of all solutions to
equation (3.4).

Solution. Determining the dimension of this space is accomplished by con-
sidering the linear map T : S → R

m defined by T ({yk}) = (y0, y1, . . . , ym−1).
This mapping is onto and one-to-one. It is therefore an isomorphism of vector
spaces, so these spaces have the same dimension, namely m. �

Example 3.37. Find a formula for all solutions to the linear difference equa-
tion 2yk+2 − 3yk+1 − 2yk = 0.

Solution. We see from the preceding example that the dimension of this
solution space is 2. Moreover, by finding the roots the characteristic polyno-
mial equation 2x2 − 3x − 2 = 0 of this difference equation we saw in Exam-
ple 2.28 (page 99) that two particular solutions to this difference equation are

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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yk = 2k and yk =
(− 1

2

)k, k = 0, 1, 2, . . .. These solutions are linearly inde-
pendent since one is not a multiple of the other. Therefore, they form a basis
for the solution space and hence a general formula for all solutions {yk}∞

k=0

to the difference equation is given by

yk = c12k + c2

(
−1

2

)k

, k = 0, 1, 2, . . . ,

where c1 and c2 are arbitrary constants. �

3.5 Exercises and Problems

Exercise 1. Find all possible subsets of the following sets of vectors that form
a basis of R

3.

(a) (1, 0, 1) , (1,−1, 1) (b) (1, 2, 1) , (2, 1, 1) , (3, 4, 1) , (2, 0, 1)
(c) (2,−3, 1) , (4,−2,−3) , (0,−4, 5) , (1, 0, 0) , (0, 0, 0)

Exercise 2. Find all possible subsets of the following sets of vectors that form
a basis of R

2,2.

(a)
[

1 0
1 −1

]
,

[
1 1
0 −1

]
,

[
1 0
0 −1

]
,

[
0 1
1 −1

]
(b)

[
1 0
1 −1

]
,

[
1 0
1 −1

]
,

[
1 0
1 −1

]

(c)
[

1 1
0 0

]
,

[
0 0
1 1

]
,

[
1 2
0 0

]
,

[
1 0
1 −1

]
,

[
1 0
1 0

]
,

[
1 0
1 −1

]

Exercise 3. Let V = R
3 and w1 = (2, 1, 0), v1 = (1, 3, 1), v2 = (4, 2, 0). The set

v1,v2 is linearly independent in V . Determine which vj ’s could be replaced
by w1 while retaining the linear independence of the resulting set.

Exercise 4. Let V = R
3 and w1 = (0, 1, 0), w2 = (1, 1, 1), v1 = (1, 3, 1),

v2 = (2,−1, 1), v3 = (1, 0, 1). The set v1,v2,v3 is a basis of V . Determine
which vj ’s could be replaced by w1, and which vj ’s could be replaced by both
w1 and w2, while retaining the basis property.

Exercise 5. Let V = C [0, 1] and w1 = sin2 x, w2 = cos x, v1 = sinx, v2 =
cos2 x, v3 = 1. The set v1,v2,v3 is linearly independent in V . Determine
which vj ’s could be replaced by w1, and which vj ’s could be replaced by both
w1 and w2, while retaining the linear independence of the resulting set.

Exercise 6. Let V = P2 and w1 = x, w2 = x2, v1 = 1 − x, v2 = 2 + x,
v3 = 1 + x2. The set v1,v2,v3 is a basis of V . Determine which vj ’s could be
replaced by w1, and which vj ’s could be replaced by both w1 and w2, while
retaining the basis property.

Exercise 7. Let w1 = (0, 1, 1). Expand {w1} to a basis of R
3.

Exercise 8. Let w1 = x + 1. Expand {w1} to a basis of P2.
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Exercise 9. Find two complements of the subspace spanned by w = (1, 1, 1) in
R

3.

Exercise 10. Find two complements of the subspace spanned by w = x2 + 1 in
P2.

Exercise 11. Assume that S = {v1,v2, . . . ,vk} ⊆ V , where V is a vector space
of dimension n. Answer True/False to the following:
(a) If S is a basis of V then k = n.
(b) If S spans V then k ≤ n.
(c) If S is linearly independent then k ≤ n.
(d) If S is linearly independent and k = n then S spans V .
(e) If S spans V and k = n then S is a basis for V .
(f) If A is a 5 by 5 matrix and det A = 2, then the first 4 columns of A span
a 4 dimensional subspace of R

5.

Exercise 12. Assume that V is a vector space of dimension n and S =
{v1,v2, . . . ,vk} ⊆ V . Answer True/False to the following:
(a) S is either a basis or contains redundant vectors.
(b) A linearly independent set contains no redundant vectors.
(c) If V = span{v2,v3} and dim V = 2, then {v1,v2,v3} is a linearly depen-
dent set.
(d) A set of vectors containing the zero vector is a linearly independent set.
(e) Every vector space is finite-dimensional.
(f) The set of vectors [i, 0]T, [0, i]T, [1, i]T in C

2 contains redundant vectors.

Exercise 13. Let A =

⎡

⎣
0 1 2
0 0 1
0 0 0

⎤

⎦. Determine if ker TA + range TA is direct and

confirm Theorem 3.14 for the operator T = TA and space V = R
3.

Exercise 14. Repeat Exercise 13 with A =

⎡

⎣
2 0 0
1 1 0
2 1 0

⎤

⎦.

Problem 15. Show that the set S of Example 3.36 is a vector space.

*Problem 16. Show that the mapping T of Example 3.36 is a linear operator.

Problem 17. Let V = {0}, a vector space with a single element. Explain why
the element 0 is not a basis of V and the dimension of V must be 0.

*Problem 18. Let w1,w2, . . . ,wr be linearly independent vectors in the vec-
tor space W . Show that if w ∈ W and w �∈ span {w1,w2, . . . ,wr} , then
w1,w2, . . . ,wr,w is a linearly independent set.
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*Problem 19. Let ei,j be the m×n matrix with a unit in the (i, j)th entry and
zeros elsewhere. Show that {ei,j | i = 1, . . . , m, j = 1, . . . , n} is a basis of the
vector space R

m,n.

*Problem 20. Complete the proof of Corollary 3.5.

Problem 21. Let u1,u2, . . . ,um and v1,v2, . . . ,vn be bases of U and V , respec-
tively, where U and V are subspaces of the vector space W. Show by example
that if U ∩ V �= {0}, then their union need not be a basis if U + V .

*Problem 22. Determine the dimension of the subspace of R
3,3 consisting of

all symmetric matrices by exhibiting a basis.

Problem 23. Let U be the subspace of W = R
3,3 consisting of all symmetric

matrices and V the subspace of all skew-symmetric matrices.
(a) Show that U + V = U ⊕ V.

(b) Use Problems 19, 22 and Corollary 3.5 to calculate dim V .

Problem 24. Show that the functions 1, x, x2, . . . , xn form a basis for the space
Pn of polynomials of degree at most n.

Problem 25. Show that C[0, 1] is an infinite-dimensional space.

Problem 26. Let T : V → W be a linear operator such that range T = W and
ker T = {0}. Let v1,v2, . . . ,vn be a basis of V. Show that the image of these
vectors, T (v1) , T (v2) , . . . , T (vn), is a basis of W .

*Problem 27. Let p(x) = c0+c1x+ · · ·+cmxm be a polynomial and A an n×n
matrix. Use the result of Problem 19 to show that there exists a polynomial
p(x) of degree at most n2 for which p(A) = 0. (Aside: This estimate is actually
much too pessimistic. The Cayley–Hamilton theorem in Chapter 5 shows that
n works in place of n2.)

Problem 28. Show that a set of vectors v1,v2, . . . ,vn in the vector space V is
a basis if and only if it has no redundant vectors and dim V ≤ n.

Problem 29. Let T : V → W be a linear operator where V is a finite-
dimensional space and U is a subspace of V. Show that dim T (U) ≤ dim U.

Problem 30. Show that if v1,v2, . . . ,vn is a spanning set for the vector space
V and the subset vi1 ,vi2 , . . . ,vik

is linearly independent, then this set can be
expanded to a basis of V using only elements of v1,v2, . . . ,vn.

Problem 31. Let T : V → V be a linear operator and define Uj = ker(T j) and
Wj = range(T j), j = 1, 2, . . .. Show that for all j, Uj ⊆ Uj+1 and Wj ⊇ Wj+1.

Problem 32. Show that if T : V → V is a linear operator such that T (V ) = V
and V is finite dimensional, then T is an isomorphism.

*Problem 33. Verify Theorem 3.14 for the linear operator T : P2 → P2 given
by

T
(
c0 + c1x + c2x

2
)

= 2c0 − c2 + 3c3 + (2c0 − 3c1 + 4c2) x2.

http://dx.doi.org/10.1007/978-3-319-74748-4_5
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3.6 Linear Systems Revisited

We now have some very powerful tools for understanding the nature of solution
sets of the standard linear system Ax = b. This understanding will help us
design practical computational methods for finding dimension and bases for
vector spaces and other problems as well.

The first business at hand is to describe solution sets of inhomogeneous
systems. Recall that every homogeneous system is consistent since it has the
trivial solution. Inhomogeneous systems are another matter. We already have
one criterion, namely that the rank of augmented matrix and coefficient matrix
of the system must agree. Here is one more way to view the consistency of
such a system in the language of vector spaces.

Theorem 3.15. Consistency in Terms of Column Space The linear system
Ax = b of m equations in n unknowns is consistent if and only if b ∈ C(A).

Proof. The key to this fact is Theorem 2.1, which says that the vector
Ax is a linear combination of the columns of A with the entries of x as scalar
coefficients. Therefore, to say that Ax = b has a solution is simply to say that
some linear combination of columns of A adds up to b, i.e., b ∈ C(A). �

The next example shows how to to determine whether a

Inclusion in a Spanvector belongs to a subspace specified by a spanning
set of standard vectors.

Example 3.38. One of the following vectors belongs to the space V spanned
by v1 = (1, 1, 3, 3), v2 = (0, 2, 2, 4), and v3 = (1, 0, 2, 1). The vectors in
question are u = (2, 1, 5, 4) and w = (1, 0, 0, 0). Which and why?

Solution. Theorem 3.15 tells us that if A = [v1,v2,v3], then we need
only determine whether the systems Ax = u and Ax = w are consistent.
In the interests of efficiency, we may as well do both at once by forming the
augmented matrix for both right-hand sides at once as

[A |u |w] =

⎡

⎢⎢
⎣

1 0 1 2 1
1 2 0 1 0
3 2 2 5 0
3 4 1 4 0

⎤

⎥⎥
⎦ with reduced row echelon form

⎡

⎢⎢
⎣

1 0 1 2 0
0 1 − 1

2 − 1
2 0

0 0 0 0 1
0 0 0 0 0

⎤

⎥⎥
⎦ .

Observe that there is a pivot in the fifth column but not in the fourth column.
This tells us that the system with augmented matrix [A |u] is consistent,
but the system with augmented matrix [A |w] is not consistent. Therefore,
u ∈ span{v1,v2,v3}, but w /∈ span{v1,v2,v3}. As a matter of fact, the
reduced row echelon form of [A |u] tells us what linear combinations will
work, namely

u = (2 − c3)v1 +
1
2
(c3 − 1)v2 + c3v3,

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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where c3 is an arbitrary scalar. The reason for nonuniqueness of the coordi-
nates of u is that the vectors v1,v2,v3 are not linearly independent. �

The next item of business is a description of the solution space itself, given
that it is not empty. We already have a pretty good conceptual model for the
solution of a homogeneous system Ax = 0. Remember that this is just the
null space, N (A), of the matrix A. In fact, the definition of N (A) is the set of
vectors x such that Ax = 0. The important point here is that we proved that
N (A) really is a subspace of the appropriate n-dimensional standard space
R

n or C
n. As such we can really picture it when n is 2 or 3: N (A) is either

the origin, a line through the origin, a plane through the origin, or in the case
A = 0, all of R

3. What can we say about an inhomogeneous system? Here is
a handy way of understanding these solution sets.

Theorem 3.16. Form of General Solution Suppose the system Ax = b is
consistent with a particular solution x∗. Then the general solution x to this
system can be described by the equation

x = x∗ + z,

where z runs over all elements of N (A).

Proof. On the one hand, suppose we are given a vector of the form x =
x∗ + z, where Ax∗ = b and z ∈ N (A). Then

Ax = A(x∗ + z) = Ax∗ + Az = b + 0 = b.

Thus, x is a solution to the system. Conversely, suppose we are given any
solution x to the system and that x∗ is a particular solution to the system.
Then

A(x − x∗) = Ax − Ax∗ = b − b = 0.

Thus, x − x∗ = z ∈ N (A), so that x has the required form x∗ + z. �

This is really a pretty fact, so let’s be clear about what it is telling us. It
says that the solution space to a consistent system, as a set, can be described
as the set of all translates of elements in the null space of A by some fixed
vector. Such a set is sometimes called an affine set or a flat. When n is 2 or
3 this says that the solution set is either a single point, a line or a plane—not
necessarily through the origin!

Example 3.39. Describe geometrically the solution sets to the system

x + 2y = 3
x + y + z = 3.

Solution. First solve the system, which has augmented matrix
[

1 2 0 3
1 1 1 3

]−−−−−→
E21(−1)

[
1 2 0 3
0 −1 1 0

]−−−−−→
E12(2)
E2(−1)

[
1 0 2 3
0 1 −1 0

]
.
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The general solution to the system is given in terms of the free variable z,
which we will relabel as z = t to obtain

x = 3 − 2t

y = t

z = t.

We may recognize this from calculus as a parametric representation of a line
in three-dimensional space R

3. This this line does not pass through the origin
since z = 0 forces x = 3. So the solution set is not a subspace of R

3. �
Now we turn to another computational matter. How do we find bases of

vector spaces that are prescribed by a spanning set? How do we find the
linear dependencies in a spanning set or implement the Steinitz substitution
principle in a practical way? We have all the tools we need now to solve these
problems. Let’s begin with the question of finding a basis. We are going to
solve this problem in two ways. Each has its own merits. First we examine
the row space approach. We require two simple facts.

Theorem 3.17. Let A be any matrix and E an elementary matrix. Then

R (A) = R (EA) .

Proof. Suppose the rows of A are the vectors r1, r2, . . . , rn, so that we
have R(A) = span

{
rT
1 , rT

2 , . . . , rT
n

}
. If E = Eij , then the effect of multipli-

cation by E is to switch the ith and jth rows, so the rows of EA are simply
the rows of A in a different order. Hence, R(A) = R(EA) in this case. If
E = Ei(a), with a a nonzero scalar, then the effect of multiplication by E
is to replace the ith row by a nonzero multiple of itself. Clearly, this doesn’t
change the span of the rows either. To simplify notation, consider the case
E = E12(a). Then the first row r1 is replaced by r1 + ar2, so that any com-
bination of the rows of EA is expressible as a linear combination of the rows
of A. Conversely, since r1 = r1 + ar2 − ar2, we see that any combination of
r1, r2, . . . , rn can be expressed in terms of the rows of EA. This proves the
theorem. �

Theorem 3.18. If the matrix R is in a reduced row form, then the transposes
of the nonzero rows of R form a basis of R(R).

Proof. Suppose the rows of R are r1, r2, . . . , rn, so that we have R(R) =
span

{
rT
1 , rT

2 , . . . , rT
k

}
, where the first k rows of R are nonzero and the remain-

ing rows are zero rows. Then the nonzero rows span R(R). In order for these
vectors to form a basis, they must also be a linearly independent set. If some
linear combination of these vectors has value zero, say

0 = c1r1 + · · · + ckrk,

we examine the first coordinate of this linear combination, corresponding to
the column in which the first pivot appears. In that column r1 has a nonzero
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coordinate value and all other rj have a value of zero. Therefore, the linear
combination above yields that c1 = 0. Repeat this argument for each index
and we obtain that all ci = 0. Hence, the nonzero rows must be linearly
independent. Therefore, transposes of these vectors form a basis of R(R). �

These theorems are the foundations for the following algorithm for finding
a basis for a vector space.

Row Space Algorithm
Given V = span{v1,v2, . . . ,vm} ⊆ R

n or C
n.

(1) Form the m × n matrix A whose rows are vT
1 ,vT

2 , . . . ,vT
m.

(2) Find a reduced row form R of A.
(3) List the nonzero rows of R. Their transposes form a basis of V.

Example 3.40. Let the vector space V be spanned by vectors v1 = (1, 1, 3, 3),
v2 = (0, 2, 2, 4), v3 = (1, 0, 2, 1), and v4 = (2, 1, 5, 4). Find a basis of V by the
row space algorithm.

Solution. Form the matrix whose rows are the vj ’s and find its reduced
row echelon form:

A =

⎡

⎢⎢
⎣

1 1 3 3
0 2 2 4
1 0 2 1
2 1 5 4

⎤

⎥⎥
⎦

−−−−−−→
E31(−1)
E41(−2)
E2(1/2)

⎡

⎢⎢
⎣

1 1 3 3
0 1 1 2
0 −1 −1 −2
0 −1 −1 −2

⎤

⎥⎥
⎦

−−−−−−→
E32(1)
E42(1)

E12(−1)

⎡

⎢⎢
⎣

1 0 2 1
0 1 1 2
0 0 0 0
0 0 0 0

⎤

⎥⎥
⎦ .

From this we see that the vectors (1, 0, 2, 1) and (0, 1, 1, 2) form a basis for
the row space of A. �

This algorithm for computing a basis does more than find a basis: It for-
malizes an idea we encountered in Section 3.4 that determines when linear
combinations have value zero.

Theorem 3.19. Let A be a matrix with columns a1,a2, . . . ,an. Suppose the
indices of the nonpivot columns in the reduced row echelon form of A are
i1, i2, . . . , ik. Then every linear combination of value zero,

0 = c1a1 + c2a2 + · · · + cnan,

of the columns of A is uniquely determined by the values of ci1 , ci2 , . . . , cik
.

In particular, if these coefficients are 0, then all the other coefficients must
be 0.

Proof. Express the linear combination in the form

0 = c1a1 + c2a2 + · · · + cnan = [a1,a2, . . . ,an]c = Ac,

where c = (c1, c2, . . . , cn) and A = [a1,a2, . . . ,an]. In other words, the column
c of coefficients is in the null space of A. Every solution c to this system is
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uniquely specified as follows: Assign arbitrary values to the free variables, then
use the rows of the reduced row echelon form of A to solve for each bound
variable. This is exactly what we wanted to show. �

Corollary 3.7. If A is a matrix with columns a1,a2, . . . ,an and j1, j2, . . . , jr

the indices of the pivot columns of the reduced row echelon form of A, then
the columns aj1 ,aj2 , . . . ,ajr

form a basis of C(A).

Proof. Theorem 3.19 implies that the columns of A corresponding to
pivot columns in the reduced row echelon form of A must be themselves a
linearly independent set. Moreover the proof shows that we can express any
column corresponding to a nonpivot column in terms of columns correspond-
ing to pivot columns by setting the free variable corresponding to the nonpivot
column to 1, and all other free variables to 0. Therefore, the columns of A
corresponding to pivot columns form a basis of C(A). �

This corollary justifies the following algorithm for finding a basis for a
vector space.

Column Space Algorithm
Given V = span{v1,v2, . . . ,vn} ⊆ R

m or C
m :

(1) Form the m × n matrix A whose columns are v1,v2, . . . ,vn.
(2) Find a reduced row form R of A.
(3) List the columns of A that correspond to pivot columns of R.

These form a basis of V.

Caution: It is not the columns (or the rows) of the reduced row echelon form
matrix R that yield the basis vectors for V. In fact, if E is an elementary
matrix, in general we have C(A) �= C(EA).

Example 3.41. Let the vector space V be spanned by vectors v1 = (1, 1, 3, 3),
v2 = (0, 2, 2, 4), v3 = (1, 0, 2, 1), and v4 = (2, 1, 5, 4). Find a basis of V by the
column space algorithm.

Solution. Form the matrix A whose columns are these vectors and reduce
the matrix to its reduced row echelon form:

⎡

⎢⎢
⎣

1 0 1 2
1 2 0 1
3 2 2 5
3 4 1 4

⎤

⎥⎥
⎦

−−−−−−→
E21(−1)
E31(−3)
E41(−3)

⎡

⎢⎢
⎣

1 0 1 2
0 2 −1 −1
0 2 −1 −1
0 4 −2 −2

⎤

⎥⎥
⎦

−−−−−−→
E32(−1)
E42(−2)
E2(1/2)

⎡

⎢⎢
⎣

1 0 1 2
0 1 −1/2 −1/2
0 0 0 0
0 0 0 0

⎤

⎥⎥
⎦ .

We can see from this calculation that the first and second columns will be
pivot columns, while the third and fourth will not be. According to the column
space algorithm, C(A) is a two-dimensional space with the first two columns
v1 = (1, 1, 3, 3) and v2 = (0, 2, 2, 4) of A for a basis. �
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Note 3.2. While any reduced row form suffices, what is gained by the reduced
row echelon form is the ability to use Theorem 3.19 to determine linear com-
binations of value zero easily.

Consider Example 3.41. From the first two rows of the reduced row echelon
form of A we see that if c = (c1, c2, c3, c4) and Ac = 0, then

c1 = − (c3 + 2c4) ,

c2 =
1
2

(c3 + c4) ,

and c3, c4 are free. Hence, the general linear combination with value zero is

− (c3 + 2c4)v1 +
1
2

(c3 + c4)v2 + c3v3 + c4v4 = 0.

For example, take c3 = 0 and c4 = 1 to obtain

−2v1 +
1
2
v2 + 0v3 + 1v4 = 0,

so that v4 = 2v1 − 1
2v2. A similar calculation with c3 = 1 and c4 = 0 shows

that v3 = v1 − 1
2v2.

Finally, we consider the problem of finding a basis for a null space. Actually,
we have already dealt with this problem in an earlier example (Example 3.30),
but now we will justify what we did there.

Theorem 3.20. Let A be an m × n matrix such that rankA = r. Sup-
pose the general solution to the homogeneous equation Ax = 0 with x =
(x1, x2, . . . , xn) is written in the form

x = xi1w1 + xi2w2 + · · · + xin−r
wn−r,

where xi1 , xi2 , . . . , xin−r
are the free variables. Then w1,w2, . . . ,wn−r form

a basis of N (A).

Proof. The vector x = 0 occurs precisely when all the free variables
are set equal to 0, for the bound variables are linear combinations of the
free variables. This means that the only linear combinations with value
zero of the vectors w1,w2, . . . ,wn−r are those for which all the coefficients
xi1 , xi2 , . . . , xin−r

are 0. Hence, these vectors are linearly independent. They
span N (A) since every element x ∈ N (A) is a linear combination of them.
Therefore, w1,w2, . . . ,wn−r form a basis of N (A). �

The formula in Theorem 3.20 shows that each of the vectors w1,w2, . . . ,
wn−r is recovered from the general solution by setting one free variable to one
and the others to zero. It also shows that the following algorithm is valid.
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Null Space Algorithm
Given an m × n matrix A.

(1) Compute the reduced row echelon form R of A.
(2) Use R to find the general solution to the homogeneous system Ax = 0.
(3) Write the general solution x = (x1, x2, . . . , xn) to the homogeneous

system in the form

x = xi1w1 + xi2w2 + · · · + xin−r
wn−r,

where xi1 , xi2 , . . . , xin−r
are the free variables.

(4) List the vectors w1,w2, . . . ,wn−r. These form a basis of N (A).

Example 3.42. Find a basis for the null space of the matrix A in Exam-
ple 3.41 by the null space algorithm.

Solution. From the Example the reduced row echelon form of A is

R =

⎡

⎢⎢
⎣

1 0 1 2
0 1 −1/2 −1/2
0 0 0 0
0 0 0 0

⎤

⎥⎥
⎦ .

The variables x3 and x4 are free, while x1 and x2 are bound. Hence, the
general solution of Ax = 0 can be written as

x1 = −x3 − 2x4,

x2 =
1
2
x3 +

1
2
x4,

x3 = x3,

x4 = x4,

which becomes, in vector notation,
⎡

⎢⎢
⎣

x1

x2

x3

x4

⎤

⎥⎥
⎦ = x3

⎡

⎢⎢
⎣

−1
1/2

1
0

⎤

⎥⎥
⎦+ x4

⎡

⎢⎢
⎣

−2
1/2

0
1

⎤

⎥⎥
⎦ .

Hence, w1 = (−1, 1/2, 1, 0) and w1 = (−2, 1/2, 0, 1) form a basis of N (A). �
A summary of key dimensional facts that we have learned in this section:

Theorem 3.21. Rank Theorem Let A be an m × n matrix such that
rankA = r. Then

(1) dim C(A) = r
(2) dim R(A) = r
(3) dim N (A) = n − r
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The following example offers insight into the nature of rank-one matrices.
Example 3.43. Show that every rank-one matrix can be expressed as an outer
product of vectors.

Solution. Let A be an m × n rank-one matrix. Let the rows of A
be r1, r2, . . . , rm. Since dim R(A) = 1, the row space of A is spanned
Rank-One Matrix as Outer Product by a single row of A, say the kth

one. Hence, there are constants c1, c2, . . . , cm such that rj = cj rk, k =
1, . . . , m. Let c = [c1, c2, . . . , cm]T and d = rT

k , and it follows that A and
the outer product of c and d, cdT , have the same rows, hence are equal. �

3.6 Exercises and Problems

Exercise 1. Use the fact that B is a reduced row form of A to find bases for
the row and column spaces of A with no calculations, and null space with

minimum calculations, where A =

⎡

⎣
3 5 −1 5 1
1 2 −1 2 0
2 3 0 3 1

⎤

⎦ and B =

⎡

⎣
1 0 3 0 2
0 1 −2 1 −1
0 0 0 0 0

⎤

⎦.

Exercise 2. Let A =

⎡

⎢⎢
⎣

3 1 −2 0 1 2 1
1 1 0 −1 1 2 2
3 2 −1 1 1 8 9
0 2 2 −1 1 6 8

⎤

⎥⎥
⎦, B =

⎡

⎢⎢
⎣

2 0 −2 0 0 −4 −6
0 2 2 0 0 4 6
0 0 0 −2 2 4 4
0 0 0 0 1 6 7

⎤

⎥⎥
⎦, and

repeat Exercise 1.

Exercise 3. Find two bases for the space spanned by each of the following sets
of vectors by using the row space algorithm and column space algorithm with
the reduced row echelon form.
(a) (0,−1, 1), (2, 1, 1) in R

3.
(b) (2,−1, 1), (2, 0, 1), (−4, 2,−2) in R

3.
(c) (1,−1), (2, 2), (−1, 2), (2, 0) in R

2.
(d) 1+x2, −2−x+3x2, 5+x, 4+4x2 in P2. (Hint: See the discussion following
Theorem 3.9 of Section 3.4 for a way of thinking of polynomials as vectors.)

Exercise 4. Find two bases for each of the following sets of vectors by using
the row space algorithm and the column space algorithm.
(a) (1,−1), (1, 1), (2, 0) in R

2.
(b) (2, 2,−4), (−4,−4, 8) in R

3.
(c) (1, 0, 0), (1 + i, 2, 2 − i), (−1, 0, i) in C

3.
(d) 1 + 2x + 2x3, −2 − 5x + 5x2 + 6x3, −x + 5x2 + 6x3, x − 5x2 + 4x3 in P3.

Exercise 5. Find bases for the row, column, and null space of each of the fol-
lowing matrices.

(a) [2, 0,−1] (b)

⎡

⎣
1 2 0 0 1
1 2 1 1 1
3 6 2 2 3

⎤

⎦ (c)

⎡

⎢⎢
⎣

1 2 0 4 0
1 3 5 2 1
2 3 −5 10 0
2 4 0 8 1

⎤

⎥⎥
⎦ (d)

⎡

⎣
2 −3 −1
0 2 0
2 4 1

⎤

⎦
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Exercise 6. Find bases for the row, column, and null space of the following.

(a)

⎡

⎣
1 2 −1 0 −1
0 0 0 1 1
2 4 1 1 1

⎤

⎦ (b)

⎡

⎢⎢
⎣

2 4 0 −4 0 −2
2 4 1 0 0 0
1 2 1 2 1 5
1 2 0 −2 0 −1

⎤

⎥⎥
⎦ (c)

[
1 i 0
1 2 1

]
(d)

[
1 2 0 0
3 6 2 2

]

Exercise 7. Find all possible linear combinations with value zero of the follow-
ing sets of vectors and the dimension of the space spanned by them.
(a) (0, 1, 1), (2, 0, 1), (2, 2, 3), (0, 2, 2) in R

3.
(b) x, x2 + x, x2 − x in P2.
(c) (1, 1, 2, 2), (0, 2, 0, 2), (1, 0, 2, 1), (2, 1, 4, 4) in R

4.

Exercise 8. Repeat Exercise 7 for the following sets of vectors.
(a) (1, 1, 3, 3), (0, 2, 2, 4), (1, 0, 2, 1), (2, 1, 5, 4) in R

4.
(b) 1 + x, 1 + x − x2, 1 + x + x2, x − x2, 1 + 2x in P2.
(c) cos (2x), sin2 x, cos2 x, 2 in C [0, 1].

Exercise 9. Let A =

⎡

⎣
5 2 −1
3 1 0

−1 0 −1

⎤

⎦, B =

⎡

⎣
4 −3

−2 3
1 −2

⎤

⎦, U = C(A), and V = C(B).

(a) Compute dim U and dim V .
(b) Use the column algorithm on the matrix [A,B] to compute dim (U + V ).
(c) Use Corollary 3.5 of Section 3.5 to determine dim U ∩ V .

Exercise 10. Repeat Exercise 9 with A =

⎡

⎣
4 3 5
5 4 3
2 1 9

⎤

⎦, B =

⎡

⎣
1 1 3

−2 −1 −4
7 5 17

⎤

⎦.

Exercise 11. Find a basis of U ∩ V in Exercise 9. (Hint: Solve the system
[
A B

] [x
y

]
= 0 and use the fact that any nonzero solution will give an

element in the intersection, namely Ax or By. Now just look for the right
number of linearly independent elements in the intersection.)

Exercise 12. Find a basis of U ∩ V in Exercise 10.

Exercise 13. Let A =

⎡

⎣
0 1 0 1 2
1 0 2 1 2
2 2 4 4 8

⎤

⎦. Use the column space algorithm on the

matrix [A I] to find a basis B of C (A) and to expand it to a basis of R
3.

Exercise 14. Use the isomorphism T : P3 → R
4 given by T

(
a + bx + cx2 +

dx3
)

= (a, b, c, d) to find a basis B of

V = span
{

1 − x + 2x2 + 2x3, 2x + 3x3, 2 − 2x + 4x2 + 4x3, 2 − 6x + 4x2 − 2x3
}

and expand it to a basis of P3 using the method of Exercise 13.
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*Problem 15. Suppose that the linear system Ax = b is a consistent system
of equations, where A is an m × n matrix and x = [x1, . . . , xn]T . Prove that
if the set of columns of A has redundant vectors in it, then the system has
more than one solution.

Problem 16. Use Theorem 3.17 and properties of invertible matrices to show
that if P and Q are invertible and PAQ is defined, then rankPAQ = rankA.

*Problem 17. Let A be an m × n matrix of rank r. Suppose that there exists
a vector b ∈ Rm such that the system Ax = b is inconsistent. Use the consis-
tency and rank theorems of this section to deduce that the system AT y = 0
must have nontrivial solutions.

Problem 18. Use the rank theorem and Problem 16 to prove that if P and Q
are invertible and PAQ is defined, then dim N (PAQ) = dim N (A).

3.7 *Change of Basis and Linear Operators

How much information do we need to uniquely identify an operator? For a gen-
eral operator the answer is a lot! Specifically, we don’t really know everything
about it until we know how to find its value at every possible argument. This
is an infinite amount of information. Yet we know that in some circumstances
we can do better. For example, to know a polynomial function completely, we
need only a finite amount of data, namely the coefficients of the polynomial.
We have already seen that linear operators are special. Are they described by
a finite amount of data? The answer is a resounding yes in the situation in
which the domain and target are finite-dimensional.

Let’s begin with some notation. We will indicate that T : V → W is a
linear operator, B is a basis of V , and C is a basis of W with the notation

T : VB → WC or VB
T→ WC .

Now let v ∈ V , B = {v1,v2, . . . ,vn} and C = {w1,w2, . . . ,wm}. We know
that there exists a unique set of scalars, the coordinates c1, c2, . . . , cn of v
with respect to this basis, such that

v = c1v1 + c2v2 + · · · + cnvn.

Thus, by linearity of T we see that

T (v) = T (c1v1 + c2v2 + · · · + cnvn) = c1T (v1) + c2T (v2) + · · · + cnT (vn).

It follows that we know everything about the linear operator T if we know
the vectors T (v1), T (v2), . . . , T (vn).
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Now go a step further. Each vector T (vj) can be expressed uniquely as a
linear combination of w1,w2, . . . ,wm, namely

T (vj) = a1,jw1 + a2,jw2 + · · · + am,jwm. (3.5)

In other words, the scalars a1,j , a2,j , . . . , am,j are the coordinates of T (vj)
with respect to the basis w1,w2, . . . ,wm. Stack these in columns and we now
have the m×n matrix A = [ai,j ], which contains everything we need to know
in order to compute T (v). In fact, with the above terminology, we have

T (v) = c1T (v1) + c2T (v2) + · · · + cnT (vn)
= c1 (a1,1w1 + a2,1w2 + · · · + am,1wm) +

· · · + cn(a1,nw1 + a2,nw2 + · · · + am,nwm)
= (a1,1c1 + a1,2c2 + · · · + a1,ncn)w1+

· · · + (am,1c1 + am,2c2 + · · · + am,ncn)wm.

Look closely and we see that the coefficients of these vectors are themselves
coordinates of a matrix product, namely the matrix A times the column vector
of coordinates of v with respect to the chosen basis of V. The result of this
matrix multiplication is a column vector whose entries are the coordinates of
T (v) relative to the chosen basis of W. So in a certain sense, computing the
value of a linear operator amounts to no more than multiplying a (coordinate)
vector by the matrix A. Thus, we make the following definition.

Definition 3.16. Matrix of Linear Operator The matrix of the linear oper-
ator T : VB → WC relative to the bases B and C is the matrix [T ]C,B = [ai,j ]
whose entries are specified by equation (3.5). In the case that B = C, we
simply write [T ]B.

Recall that we denote the coordinate vector of a vector v with respect to a
basis B by [v]B . Then the above calculation of T (v) can be stated succinctly
in matrix/vector terms as

[T (v)]C = [T ]C,B [v]B . (3.6)

Standard Matrix of Linear OperatorThis equation has a very inter-
esting application to the standard
spaces. Recall that a matrix operator is a linear operator TA : R

n → R
m

defined by the formula TA (x) = Ax, where A is an m×n matrix. It turns out
that every linear operator on the standard vector spaces is a matrix operator.
The matrix A for which T = TA is called the standard matrix of T .

Theorem 3.22. Linear Operator on Standard Spaces Is Matrix Operator If
T : R

n → R
m is a linear operator, B and C the standard bases for R

n and
R

m, respectively, and A = [T ]C,B , then T = TA.
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Proof. The proof is straightforward: For vectors x, y = T (x) in standard
spaces with standard bases B, C, we have x = [x]B and y = [y]C . Therefore,

T (x) = y = [y]C = [T (x)]C = [T ]C,B [x]B = [T ]C,B x = Ax,

which proves the theorem. �
Even in the case of an operator as simple as the identity function idV (v) =

v, the matrix of a linear operator can be useful and interesting.

Definition 3.17. Change of Basis Matrix Let idV : VB → VC be the iden-
tity function of V. Then the matrix [idV ]C,B is called the change of basis
matrix from the basis B to the basis C.

This definition and equation (3.6) show us that for any vector v ∈ V ,

[v]C = [idV (v)]C = [idV ]C,B [v]B . (3.7)

This allows us to change an expression from one involving basis C to one
involving basis B by replacing terms [v]C by [idV ]B,C [v]B (which is how we
used change of basis in Example 3.26.) Also note that if C is a standard basis,
to obtain the change of basis matrix from B to C one simply forms the matrix
that has the vectors of basis B listed as its columns.
Example 3.44. Let V = R

2. What is the change of basis matrix from the

basis B =
{
v1 =

[
1
2

]
,v2 =

[−1
1

]}
to the standard basis C = {e1, e2}?

Solution. We see that

idV (v1) = v1 = 1 e1 + 2 e2

idV (v2) = v2 = −1 e1 + 1 e2.

Compare these equations to (3.5) and we see that the change of basis matrix
is

[idV ]C,B =
[

1 −1
2 1

]
.

As predicted, we only have to form the matrix that has the vectors of B listed
as its columns. Compare this to the discussion following Example 3.26. �

Next, suppose that S : U → V and T : V → W are linear operators. Can
we relate the matrices of S, T and the function composition of these operators,
T ◦ S? The answer to this question is a very fundamental fact.

Theorem 3.23. Matrix of Operator Composition If UB
S→ VC

T→ WD, then
[T ◦ S]D,B = [T ]D,C [S]C,B .

Proof. Let u ∈ U and set v = S (u). With the notation of equation (3.6)
we have that [(T ◦ S) (u)]D = [T ◦ S]D,B [u]B and by definition of function
composition that (T ◦ S) (u) = T (S (u)) = T (v). Therefore,
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[T ◦ S]D,B [u]B = [(T ◦ S) (u)]D = [T (S (u))]D = [T (v)]D .

On the other hand, equation (3.6) also implies that [T (v)]D = [T ]D,C [v]C
and [S (u)]C = [S] C,B [u]B . Hence, we deduce that

[T ◦ S]D,B [u]B = [T ]D,C [v]C = [T ]D,C [S] C,B [u]B . (3.8)

If we choose u such that ej = [u]B , where ej is the jth standard vector, then
we obtain from equation (3.8) that the jth columns of left- and right-hand
side agree for all j. Hence, the matrices themselves agree, which is what we
wanted to show. �

Corollary 3.8. If the finite-dimensional vector space V has bases B and C
and T : VB → VC is an invertible linear operator, then [T ]−1

C,B =
[
T−1

]
B,C

.

Proof. Apply Theorem 4.11 to the composition T−1 ◦ T = idV , where
T : VB → VC and T−1 : VC → VB and deduce that

[
T−1

]
B,C

[T ]C,B = I from

which we obtain
[
T−1

]
B,C

= [T ]−1
C,B . �

We can now also see exactly what happens when we make a change
of basis in the domain and target of a linear operator and recalculate
the matrix of the operator. Specifically, suppose that T : V → W and
that B,B′ are bases of V and C,C ′ are bases of W. Let P and Q be
the change of basis matrices from B to B′ and C to C ′, respectively.

Operator Matrix Under Change of BasesFrom Corollary 3.8 we obtain
that P−1 is the change of
basis matrix from B′ to B. Identify a matrix with its operator action by
multiplication, and we have a chain of operators

VB′
idV→ VB

T→ WC
idW→ WC′ .

Application of Theorem 3.23 shows that

[T ]C′,B′ = [idW ]C′,C [T ]C,B [idV ]B,B′ = Q[T ]C,BP−1.

We have just obtained a very important insight into the matrix of a linear
transformation. Here is the form it takes for the standard spaces.

Corollary 3.9. Change of Basis for Matrix Operator Let T : R
n → R

m be
a linear operator, B a basis of R

n, and C a basis of R
m. Let P and Q be

the change of basis matrices from the bases B and C to the standard bases,
respectively. If A is the matrix of T with respect to the standard bases and
M = [T ]C,B the matrix of T with respect to the bases B and C, then

A = QMP−1.
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Example 3.45. Given the linear operator T : R
4 → R

2 by the rule

T (x1, x2, x3, x4) =
[

x1 + 3x2 − x3

2x1 + x2 − x4

]
,

find the standard matrix of T.

Solution. We see that
T (e1) =

[
1
2

]
, T (e2) =

[
3
1

]
, T (e3) =

[−1
0

]
, T (e4) =

[
0

−1

]
.

Since the standard coordinate vector of a standard vector is itself, we have

[T ] =
[

1 3 −1 0
2 1 0 −1

]
. �

Example 3.46. With T as in the previous example, find the matrix of T with
respect to the domain basis B = {(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}
and range basis C = {(1, 2), (−1, 1)}

Solution. Let A be the matrix of the previous example, so it represents
the standard matrix of T. Let B′ and C ′ be the standard bases for the domain
and target of T. Then we have

A = [T ] = [T ]C′,B′ .

Further, we have only to stack columns of B and C to obtain change of basis
matrices from these bases to the standard bases B′ and C ′:

P = [idR4 ]B′,B =

⎡

⎢⎢
⎣

1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ and Q = [idR2 ]C′,C =

[
1 −1
2 1

]
.

Now apply Corollary 3.9 to obtain that

[T ]C,B = Q−1 [T ]C′,B′ P = Q−1AP

=
1
3

[
1 1

−2 1

] [
1 3 −1 0
2 1 0 −1

]
⎡

⎢
⎢
⎣

1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

=
1
3

[
3 7 2 2
0 −5 2 −1

]
.

�
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3.7 Exercises and Problems

Exercise 1. Find the standard matrix, kernel, and range of the linear operator
T : R

3 → R
3 given by T ((x, y, z)) = (x + 2y, x − y, y + z).

Exercise 2. Find the standard matrix, kernel, and range of the linear operator
T : R

4 → R
2 given by T ((x1, x2, x3, x4)) = (x2 − x4 + 3x3, 3x2 − x4 + x3).

Exercise 3. Bases B = {(1, 1) , (1,−1)} = {u1,u2} and B′ = {(2, 0) , (3, 1)} =
{u′

1,u
′
2} of R

2 are given.
(a) Find the change of basis to the standard basis from each of these bases.
(b) Use (a) to compute the change of basis matrix from B to B′ by applying
Corollary 3.9 to T = idR2 .
(c) Suppose that w = 3u1 + 4u2 and use (b) to express w as a linear combi-
nation of u′

1 and u′
2.

Exercise 4. Given bases B = {(0, 1, 1) , (1, 0, 1) , (1, 0,−1)} = {u1,u2,u3} and
B′ = {(0, 0,−1) , (0, 3, 1) , (2, 0, 0)} = {u′

1,u
′
2,u

′
3} of R

3, find the change of
basis matrix from B to B′ and use it to express w′ = 2u′

1 +u′
2 −2u′

3 in terms
of u1,u2,u3.

Exercise 5. Find the matrix of the operator TA : R
3 → R

2, where A =[
2 0 −1
1 1 0

]
, with respect to the bases B = {(1, 0, 1) , (1,−1, 0)) , (0, 0, 2)} and

C = {(3, 4) , (4,−3)}.

Exercise 6. Find the matrix of the operator T : P3 → P2, where T is given
by T

(
a + bx + cx2 + dx3

)
= b + 2cx + 3dx2, with respect to the bases B ={

1, x, x2, x3
}

and C =
{
1, x, 2x2 − 1

}
.

Problem 7. Two n × n matrices A and B are called similar if there exists
an invertible matrix P such that B = P−1AP . Use Corollary 3.9 to show
that similar matrices A and B are both matrices of the same linear operator,
namely TA, with respect to different bases.

Problem 8. Show that a change of basis matrix from one orthonormal basis
to another is an orthogonal matrix. Use this to simplify the change of basis
formula of Corollary 3.9 in the case that C is an orthonormal basis.

*Problem 9. Define the determinant of a linear operator T : V → V to be
the determinant of [T ]B , where B is any basis of the finite-dimensional vector
space V. Show that this definition is independent of the basis B.

Problem 10. Let λ be a scalar and A,B similar n × n matrices, i.e., for
some invertible matrix P , B = P−1AP . Show that dim N (λI − A) =
dim N (λI − B) .
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3.8 *Introduction to Linear Programming

Basic Ideas

The term “linear programming” does not refer to programming in the com-
puter sense but rather the more general idea of a program as a plan. As math-
ematics goes, linear programming is a relatively recent development: Early full
formulations of the problem were given in the late 1930s by mathematician
Leonid Kantorovich, Dutch American mathematician and economist T. C.
Koopmans, and economist Wassily Leontief. However, it was George Danzig’s
development in 1947 of the simplex method for solving linear programming
problems that turned linear programming into a practical tool for all sorts of
industrial and operations research problems.

In this section we will utilize some useful notation regarding real
vectors and matrices. If A and B are matrices or vectors of the same
size, we interpret the statement A ≤ B to mean that entries from cor-
responding coordinates in A and B satisfy the same inequality. This also

Matrix Vector Inequalities applies to the symbols <, ≥, > and so forth.
Thus, we can make statements like

“ [1, 0, 3] ≤ [2, 1, 3]” and “
[

4 1
−2 2

]
>

[
2 0

−3 0

]
”.

Fig. 3.5: Feasible set and profit lines for Example 3.47.

In industrial and economic practice, optimization (finding either minimum
or maximum possible value of a quantity subject to certain constraints) is an
important process that could involve hundreds or even thousands of variables.
Linear programming is designed to handle certain types of optimization prob-
lems. To illustrate some of the ideas behind linear programming, we consider
the following (highly simplified) examples of manufacturing and diet problems.
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Objective FunctionThe first version of optimizing is to maximize a quan-
tity which is described by a linear function called the
objective function.

Example 3.47. Suppose that a company produces two vacuum cleaners,
upright (V1) and canister (V2), for which it makes 30 and 40 dollars of profit
per item, respectively. Production requires time on each of three assembly
lines, A1, A2, and A3. Currently, the number of available hours that could be
spent in the production of these items by each assembly line is given in the
table below, along with product rates for products by units:

Hours/product
V1 V2 Available

A1

Lines A2

A3

2 1 80
1 3 130
2 2 100

Describe the problem of maximizing profit from utilization of the available
times from these assembly lines in terms of ordinary and matrix/vector
inequalities.

Solution. Let xj be the total number of product Vj produced, j = 1, 2.
The objective function of this problem is the profit function which can be
written as P = 30x1 + 40x2. Given these numbers of products, the problem
is to maximize P subject to the time constraints on the three assembly lines
and products:

2x1 + x2 ≤ 80
x1 + 3x2 ≤ 130

2x1 + 2x2 ≤ 100
xj ≥ 0, j = 1, 2.

In terms of matrices and vectors, set

x =
[

x1

x2

]
, c =

[
30
40

]
, b =

⎡

⎣
80
130
100

⎤

⎦, A =

⎡

⎣
2 1
1 3
2 2

⎤

⎦

and we can express the problem concisely as this linear program:

Maximize P = cT x subject to the constraints Ax ≤ b and x ≥ 0. �
Max Linear Program

In the max linear program think of the objective
function P = cT x as a function of the variable x. The next version of opti-
mizing is to minimize a quantity.

Example 3.48. Suppose that a food service must provide a diet that satisfies
certain nutritional requirements. In particular, suppose that a combination
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Fig. 3.6: Feasible set for Example 3.48 is above planes in the first octant.

from three different food items, F1, F2 and F3, must supply certain minimum
number of milligrams of vitamins C (V1) and B complex (V2). The unit costs
of the food items, amounts of each vitamin contained in each food item and
minimum requirements are given in this table:

Minimum
F1 F2 F3 Requirement

Nutrients V1

V2

Unit cost

2 1 2 30
1 3 2 40
80 130 100

Describe the problem of minimizing cost of this diet while satisfying the min-
imum nutritional requirements in terms of ordinary and matrix/vector in-
equalities.

Solution. Let xj be the number of units of food source Fj required in the
diet, j = 1, 2, 3. The objective function here is the cost function which can
be written as C = 80x1 + 130x2 + 100x3. Given these units of food items,
the problem is to minimize C subject to the constraints on the minimum
requirements of the two vitamins:

2x1 + x2 + 2x3 ≥ 30
x1 + 3x2 + 2x3 ≥ 40

xj ≥ 0, j = 1, 2, 3.

In terms of matrices and vectors, set

x =

⎡

⎣
x1

x2

x3

⎤

⎦, c =

⎡

⎣
80
130
100

⎤

⎦, b =
[

30
40

]
, A =

[
2 1 2
1 3 2

]

and we can express the problem concisely as this linear program:



3.8 *Introduction to Linear Programming 257

Minimize C = cT x subject to the constraints Ax ≥ b and x ≥ 0. �
Min Linear Program

Notice that minimizing C = cT x is equivalent
to maximizing P = −cT x and that the constraints Ax ≥ b are the same as
constraints −Ax ≤ −b. Hence, every min linear program can be converted to
a max linear program (and vice versa.)

So how do we solve these problems? Before describing a general proce-
dure we shall attack the problem of Example 3.47 with a geometrical
approach. First, some terminology: A vector x satisfying all the constraints
of a linear programming problem is called a feasible solution, and the

Feasible Solution and Setset of all such vectors is the feasible set for the
problem. Figure 3.5 illustrates the feasible set for the following example.

Example 3.49. Find the solution to the linear program of Example 3.47 using
a geometric method.

Solution. First we identify the lines bounding the inequalities of the prob-
lem as (1): 2x1+x2 = 80, (2): x1+3x2 = 130 and (3): 2x1+2x2 = 100. Examine
Figure 3.5 where we see that the point (0, 130/3) is at the intersection of the
positive x2 axis with line (2), point (10, 40) at the intersection of line (2) and
line (3), point (30, 20) is at the intersection of lines (3) and (1), and (40, 0) at
the intersection of line (1) and the x1-axis. The feasible set for this problem
lies under these lines, above the x1-axis and to the right of the x2-axis.

To visualize the solution, think of P as controlling the placement of the
lines of constant slope P = 30x1 + 45x2. At P = 2300 and P = 2100 these
lines lie outside the feasible set. But as we steadily decrease P , it is clear that
first contact with the feasible set will be at an upper corner of this polyhedron.
Visual inspection shows that the first point of contact is at (10, 40). Hence,
with the given constraints the largest possible value of the profit P is P =
30·10+40·40 = 1900, and it occurs with production of x1 = 10 upright vacuum
cleaners and x2 = 40 canister vacuum cleaners. To confirm our answer, check
that P = 1733.33 at the corner (0, 130/3), P = 0 at (0, 0), P = 1700 at
(30, 20) and P = 1200 at (40, 0). So P = 1900 is optimal and x = (10, 40) is
an optimal solution to the problem. �

Example 3.50. Find the solution to the linear program of Example 3.48 using
a geometric method.

Solution. Matters are a bit more difficult to visualize in Example 3.48.
The feasible set lies in the first octant, bounded by the coordinate planes
xj = 0, j = 1, 2, 3, and lies above the planes 2x1 + x2 + 2x3 = 30 and
x1 + 3x2 + 2x3 = 40. Visual inspection for the lowest point of contact of a
plane of the form C = 80x1 + 130x2 + 100x3 with a corner of the feasible
set is a bit difficult here. We see from Figure 3.6 and calculating intersections
with one or two coordinate values set to zero that this set has four corners:
(0, 0, 20),

(
0, 5, 25

2

)
, (10, 10, 0) and (40, 0, 0). We could try to visualize the

planes C = 80x1+130x2+100x3 moving towards the feasible set as C increases
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from zero, but it’s simpler to check the values of C at each corner: C = 2000
at (0, 0, 20), C = 1900 at

(
0, 5, 25

2

)
, C = 2100 at (10, 10, 0) and C = 3200 at

(40, 0, 0). Hence, the optimal minimum value of the cost is C = 1900 and this
occurs with a diet using 0 units of F1, 5 units of F2 and 12.5 units of F3. So(
0, 5, 25

2

)
is an optimal solution to this problem. �

Although the geometrical methods which we used here give us an intuitive
understanding of solutions to linear programming problems, they are imprac-
tical for higher dimensional problems. What is needed is a systematic algebraic
approach to solutions, a system that deals with linear equations rather than
complicated inequalities. The first step that we shall take is the observation
that the inequalities of our examples can be turned into equalities – if we are
willing to accept more nonnegative variables.

Example 3.51. Convert the constraints of Examples 3.47 and 3.48 into linear
equations by introducing additional nonnegative variables.

Solution. Any inequality of the form a ≤ b can be converted to an equality
by introducing a new variable x ≥ 0 taking up the slack on the left side
Slack Variable by satisfying a + x = b. Thus, in the case of Example 3.47

we need three new slack variables x3, x4, x5 satisfying the linear system

2x1 + x2 + x3 = 80
x1 + 3x2 + x4 = 130

2x1 + 2x2 + x5 = 100
xj ≥ 0, j = 1, 2, 3, 4, 5.

Similarly any inequality of the form a ≥ b can be converted to an equality
by introducing a new variable x ≥ 0 removing the surplus on the left side by

Surplus Variable satisfying a − x = b. Thus, in the case of Example 3.47
we need two new surplus variables x4, x5 satisfying the

linear system

2x1 + x2 + 2x3 − x4 = 30
x1 + 3x2 + 2x3 − x5 = 40

xj ≥ 0, j = 1, 2, 3, 4, 5.

�
The previous example reveals a key idea: The max and min linear programs

of Examples 3.47 and 3.48 can be expressed in a common format provided
we make a minor adjustment to the objective function: Expand it with zero
coefficients for all new variables introduced into the problem. This will not
affect the optimal value of the objective function since artificial variables make
zero contribution to it. In the following, the term “optimize” is understood to
mean either “maximize” or “minimize”. This is the common format, which we
will call a linear program in standard form:

Given an m × p matrix B of rank m, vectors d ∈ R
m and c ∈ R

p,
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Standard Formoptimize the objective function cT x for some x ∈ R
p

subject to the constraints

Bx = d

x ≥ 0 (3.9)

Any x ∈ R
p that solves this problem is called an optimal solution.

Optimal SolutionThe standard form of a linear program has some sub-
stantial advantages over the min or max linear program
form. For one it can accommodate mixed inequalities in a single problem. It
can even allow for incorporating equalities into a linear programming problem.

Example 3.52. Express the linear programming problems of Examples 3.47
and 3.48 in standard form.

Solution. We use the formats of Example 3.51. In the case of Example 3.47
set

x =
(
x1 x2 x3 x4 x5

)
, c = (30, 40, 0, 0, 0), d = (80, 130, 100) and

B =

⎡

⎣
2 1 1 0 0
1 3 0 1 0
2 2 0 0 1

⎤

⎦.

For Example 3.48 set
x =

(
x1 x2 x3 x4 x5

)
, c = (80, 130, 100, 0, 0), d = (30, 40) and

B =
[

2 1 2 −1 0
1 3 2 0 −1

]
. �

A key idea in linear programming is the notion of a basic solution to a
linear program in standard form.

Definition 3.18. Basic Solution and Variables Given a linear system Bx =
d where B = [b1,b2, . . . ,bp] is m × p of rank m ≤ p and a set of m linearly
independent columns of A, say bi1 ,bi2 , . . . ,bim

, the basic solution defined by
this set is the vector x ∈ R

p such that the coordinates of x corresponding to
these columns satisfy the equation [bi1 ,bi2 , . . . ,bim

] [xi1 , xi2 , . . . , xim
]T = d

and all other coordinates of x are zero. The coordinates xi1 , xi2 , . . . , xim
are

called the basic variables of this basic solution.

Note that a set m of linearly independent columns of B is actually a
basis of C(B) since this space has dimension m. Moreover, the m × m matrix
C = [bi1 ,bi2 , . . . ,bim

] is invertible since its rank is m. Therefore, the basic
solution x of this definition is uniquely defined. However, in the context of a
linear program in the standard form (3.9), a basic solution x will not be useful
unless it is also feasible, i.e., x ≥ 0. Such solutions turn out to be key tools
in the simplex method of solving linear programming problems which we will
discuss shortly. Indeed, finding an initial basic feasible solution is crucial for
the simplex method.

Example 3.53. Find basic feasible solutions to the standard forms of Exam-
ples 3.47 and 3.48.
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Solution. We use the standard forms of Example 3.52. In the case of
Example 3.47 the relevant system is

Bx =

⎡

⎣
2 1 1 0 0
1 3 0 1 0
2 2 0 0 1

⎤

⎦

⎡

⎢⎢⎢
⎢
⎣

x1

x2

x3

x4

x5

⎤

⎥⎥⎥
⎥
⎦

=

⎡

⎣
80
130
100

⎤

⎦ = d.

Here a basic feasible solution is obvious: Use the last three columns of A as
the basis and we obtain that x = (0, 0, 80, 130, 100) is a basic feasible solution.
This example also highlights the advantage of having the columns of a basic
feasible solution be the columns of an identity matrix in some order: We can
read off the value of this coordinate of the basic variable from the entries of
the right-hand side vector b.

In the case of Example 3.48 the relevant system is

Bx =
[

2 1 2 −1 0
1 3 2 0 −1

]

⎡

⎢⎢
⎢⎢
⎣

x1

x2

x3

x4

x5

⎤

⎥⎥
⎥⎥
⎦

=
[

30
40

]
= d.

Here the choice of the last two columns of B will not do the job. It does supply
a basic solution, namely x = (0, 0, 0,−30,−40), but this solution is clearly not
feasible. One could easily find a basic feasible solution by trial and error (or
consulting Figure 3.6), but we want a more systematic algebraic approach
that works or more general problems. What we will do is introduce two
Artificial Variables new artificial variables, x6 and x7, which we require to

be nonnegative. The revised system has this enlarged coefficient matrix Be =[
2 1 2 −1 0 1 0
1 3 2 0 −1 0 1

]
and augmented matrix [Be |d] =

[
2 1 2 −1 0 1 0 30
1 3 2 0 −1 0 1 40

]

with basic variables x6 = 30 and x7 = 40, all others nonbasic. Next we will
perform row operations on the system so as to replace x6 or x7 by x1, x2, or
x3 as basic, but we must proceed carefully. If we decide to make x3 basic, we
must choose a pivot in the third column to solve for the value of x3 by way of
row operations. Looking ahead, we see that using the (2, 3)th entry as a pivot
would be a bad idea, since it would cause x6 to have a negative value of −10
and hence our basic solution would no longer be feasible. So use the (1, 3)th
entry as pivot as follows:

[Be |d] =

[
2 1 2 −1 0 1 0 30
1 3 2 0 −1 0 1 40

]−−−−−−→
E1

(
1
2

)

E21 (−2)

[
1 1

2 1 − 1
2 0 1

2 0 15
−1 2 0 1 −1 −1 1 10

]
.

Now x3 and x7 are basic. If we decide to make x2 basic, looking ahead shows
us that the (1, 2)th entry of the second column is a bad choice since it will
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lead to the other basic variable x7 having a negative value of −50. So use the
(2, 2)th entry for pivot as follows:

[
1 1

2 1 − 1
2 0 1

2 0 15
−1 2 0 1 −1 −1 1 10

]−−−−−−−→
E2

(
1
2

)

E12

(− 1
2

)
[

5
4 0 1 − 3

4
1
4

3
4 − 1

4
25
2− 1

2 1 0 1
2 − 1

2 − 1
2

1
2 5

]
.

At this point we can discard the non-basic artificial variables x6 and x7

since they have value zero and contribute zero to the objective function.
We have found a basic feasible solution to the original problem, namely
x =

(
0, 5, 25

2 , 0, 0
)
. Notice that the point

(
0, 5, 25

2

)
appears as a corner point

to the feasible set in Figure 3.6. �
There are many other difficulties besides that of the previous example that

one can encounter in solving a linear program. For example, the problem may
have no solution because the feasible set is too large (e.g., maximize P = 2x1

subject to constraint x1 ≥ 3) or may be empty (minimize P = 2x1 subject
to constraints x1 ≥ 2 and x1 ≤ 1) or may have multiple solutions (maximize
P = x1 + x2 subject to constraints x1 + x2 = 2, x1, x2 ≥ 0). Or the search
for an optimal solution may lead to cycling, i.e., going around in a loop of
successive feasible solutions with no change in objective function. There are
other difficulties as well, but the following key theorem assures us that a search
for basic feasible variables will not fail to yield results, if there is a solution
at all.

Theorem 3.24. Fundamental Theorem of Linear Programming If a linear
program in standard form has a feasible solution, then it has a basic feasible
solution, and if it has an optimal feasible solution, then it has an optimal
basic feasible solution.

Proof. We are given that B = [b1,b2, . . . ,bp] is m × p of rank m ≤
p. We may assume that the columns are all nonzero since any zero column
contributes nothing to the problem and can be deleted. Suppose first that the
linear program has a feasible solution x = (x1, x2, . . . , xp). Relabel the column
indices so that nonzero coefficients come first, say xj > 0 for 1 ≤ j ≤ q ≤ p
and xj = 0 for q < j ≤ p. What results is that

Bx = x1b1 + x2b2 + · · · + xqbq = d. (3.10)

Next, suppose that b1,b2, . . . ,bq are linearly dependent, say

y1b1 + y2b2 + · · · + yqbq = 0. (3.11)

Multiply (3.11) by −α and add it to (3.10) to obtain the equation

(x1 − αy1)b1 + (x2 − αy2)b2 + · · · + (xq − αyq)bq = d. (3.12)

For |α| sufficiently small all of the coefficients zj = xj −αyj are clearly positive
since all the xj ’s are. Since at least one yj �= 0, as we increase |α| we will reach a
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point where one or more of the xj ’s vanishes while the others are still positive,
say at α = α0. Discard the corresponding columns and what results is a new
linear combination of fewer than p columns of A with all positive coefficients
and summing to b.

Next, suppose that x = (x1, x2, . . . , xp) is an optimal feasible solution.
Again, relabel the column indices so that nonzero coefficients come first, say
xj > 0 for 1 ≤ j ≤ q ≤ p and xj = 0 for q < j ≤ p. With the notation of
equation (3.12) set y = (y1, y2, . . . , yp) where yj = 0 for q < j ≤ p. Then we
have

P = cT (x − αy) = cT x − αcT y.

As we have noted, for all α with |α| sufficiently small, x − αy is a feasible
solution to the problem. If cT y were nonzero, then a suitable choice of small
positive or negative α would increase or decrease the value of the objective
function P , so it cannot be optimal maximal or minimal. Therefore, cT y = 0.
So choosing y as in the first paragraph will not affect the optimal value of P .

In summary, what we have shown is that if the columns b1,b2, . . . ,bq of
(3.10) are linearly dependent, then they can be replaced by a smaller set of
columns for which d is a linear combination of them with positive coefficients.
Moreover, the vector formed by using these positive coefficients along with and
zero coefficients for columns of A outside this set is a feasible vector which
is optimal if the feasible solution x is optimal. Hence, we can remove vectors
from (3.10) one at a time until we have reached a linearly independent set of
q ≤ p columns of A which yield an equation of the form

zi1bi1 + zi2bi2 + · · · + ziq
biq

= d, (3.13)

where all coefficients zj > 0. Since the columns of A are a spanning
set for the m dimensional vector space V = C(B), the linearly indepen-
dent set bi1 ,bi2 , . . . ,biq

can be expanded to a basis bi1 ,bi2 , . . . ,bim
of

V using only additional columns of B (see Exercise 30 of Section 3.5).
Set zk = 0 for for any index k other than ij , 1 ≤ j ≤ q, so that
[bi1 ,bi2 , . . . ,bim

] [zi1 , zi2 , . . . , zim
]T = d. Then the resulting solution z =

(z1, z2, . . . , zn) to the linear program is basic feasible. Moreover, if the original
solution x is optimal, so is z. �

The Simplex Method

We’ve already seen some basic steps of the simplex method in Example 3.53.
In general, the simplex method for a problem in standard form consists of
applying elementary row operations to a matrix which we call the stan-
dard augmented matrix: If the problem is to optimize cT x subject to the
constraints Bx = d and x ≥ 0, then the standard augmented matrix is

Standard Augmented Matrix B̃ =
[

B d
−cT 0

]
. The simplex method uses

the last row to guide us to an optimal value



3.8 *Introduction to Linear Programming 263

of the objective function that will appear in the lower right corner of the
standard augmented matrix. The goal is to find an optimal basic feasible
solution since Theorem 3.24 tells us that if there is an optimal feasible solution
then there is an optimal basic feasible solution.

We think of the last row as representing the equation P − cT x = u, where
the values of P and u are defined by the current basic feasible solution. The
variable P does not warrant an extra column because it does not appear
in any earlier equation and will not be affected by subsequent operations
on this augmented matrix. The only admissible elementary row operations

Admissible Operationsare any elementary operations on the first m rows
of B̃ and the elementary operations of adding a
multiple of one of the first m rows to the last row. We use these operations
to solve for the values of the basic variables by converting the columns cor-
responding to these variables to the columns of the identity matrix in some
order. Thus, we can read off the value of basic variables as entries of the last
column of B̃ (nonbasic variables are always set to zero). A key result is that
these operations essentially do not change the outcome in the sense that they
give us a new optimization problem with exactly the same solutions as the
original:

Theorem 3.25. If admissible elementary operations are applied to a standard

augmented matrix of the form
[

B d
−cT u

]
, where B is m × p of rank m ≤ p,

then the resulting matrix is a standard augmented matrix for an equivalent
problem.

Proof. We leave it as an exercise to show that all possible admissible
transformations of the system are accounted for by a matrix of the form[

E 0
vT 1

]
, where E is an m × m product of elementary row operations and

v ∈ R
p. Such operations result in a new standard form, namely

B̃t =
[

E 0
vT 1

] [
B d

−cT u

]
=
[

EB Ed
vT B − cT vT d + u

]
.

So the problem of optimizing cT x + u subject to Bx = d is transformed into
the problem of optimizing

(
cT − vT B

)
x + vT d + u subject to EBx = Ed.

However the constraints are equivalent to Bx = d since E is invertible, and
the new objective function is

(
cT − vT B

)
x + vT d + u = cT x − vT Bx + vT d + u = cT x + u

since Bx = d. Thus, the problem is unchanged by these elementary operations
and we can think of B̃t as the augmented standard matrix of a new problem
that is completely equivalent to the original problem. �
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Corollary 3.10. Suppose that admissible elementary operations are applied

to the standard augmented matrix
[

B d
−cT u

]
of a maximization problem to

yield the matrix B̃f =
[

Bf df

−cT
f uf

]
, where Bf is m × p of rank m ≤ p, and

cf ≤ 0. If x∗ is a basic feasible solution for B̃f such that the columns of B̃f

corresponding to the basic variables of x∗ are columns of Im+1, then x∗ is an
optimal feasible solution for the problem and cT

f x∗ + uf is the optimal value
of the objective function of the problem.

Proof. By Theorem 3.25 we may as well assume that the problem in
question is defined by B̃f . In this case the objective function is cT

f x + uf ,
where coefficients of the objective function corresponding to basic variables
of x∗ are zero and all others are nonpositive. Any other feasible solution x
may differ from x∗ in a basic coordinate, which does not change the value
of the objective function, or in a nonbasic coordinate which will produce no
improvement in the objective function since the corresponding coordinate of
cf is nonpositive. Hence, no improvement in the value of the objective function
is possible and x∗ is an optimal feasible solution to the problem. �

Here is a general description of how this applies to a linear program in
standard form: First, we must be able to find an initial basic feasible solution.
In the case of a max linear program with system of inequalities Ax ≤ b, x ≥ 0
and b ≥ 0, convert the constraints Ax ≤ b to equalities by adding nonnegative
slack variables so that the new system has coefficient matrix B =

[
A Im

]
,

vector of unknowns xe = (x1, . . . , xn, xn+1, . . . , xn+m), objective vector ce =[
cT ,0T

m

]
and standard augmented matrix

B̃ =
[

B d
−cT

e u

]
=
[

A I b
−cT 0T 0

]
.

Thus, we have an immediate basic feasible solution xe = (0, . . . , 0,b1, . . . ,bm).
In other cases we have to use different approaches, as in the second part of
Example 3.53, but in all cases we should begin with a basic feasible solution to
an optimization problem with standard augmented matrix. Of course if none
exists then the problem has no feasible solution by Theorem 3.24.

Once we have put our problem into standard form and found an initial
basic feasible solution, our goal in the simplex method for maximization is

to end up with a standard augmented matrix of the form B̃ =
[

B d
−cT u

]

with cT ≤ 0 so that no further improvement in the objective function is
possible by way of basic feasible solutions. To this end we use the last row to
find a nonbasic variable xj to trade into the current basic solution because
it would improve the value of the objective function, and we use elementary
operations to convert its corresponding column to a unit column, i.e., a column
of the identity matrix. We leave it as an exercise to verify that if such a state
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is achieved, the current basic feasible solution is indeed an optimal feasible
solution. The following examples illustrates the simplex procedure.

Example 3.54. Solve the max linear program of Example 3.47 using the sim-
plex method.

Solution. In this case the standard augmented system looks like

Ãe =
[

A I b
−cT 0T 0

]
=

⎡

⎢
⎢
⎣

2 1 1 0 0 80
1 3 0 1 0 130
2 2 0 0 1 100

−30 −40 0 0 0 0

⎤

⎥
⎥
⎦ .

Use the last three columns of A as a basis of C(A) and we have that x =
(0, 0, 80, 130, 100) is the initial basic feasible solution. The last row indicates
that if x1 were to become basic by trading it for a current basic variable,
the increment in P would be 30x1, while using x2 would give an increment
of 40x2. We choose the greatest increase in P , so x2 will become basic. To
decide which entry in the second column should be a pivot, divide each entry
in the last column (other than the last row) by its corresponding (nonzero)
entry in the second column to obtain the numbers 80/1 = 80, 130/3 = 461

3
and 100/2 = 50. These are the numbers that would result from making that
entry a pivot. The second row has the smallest positive entry, so using the
(2, 2)th entry as pivot will not cause any basic variable to become negative.
Now perform admissible elementary row operations to obtain

⎡

⎢⎢
⎣

2 1 1 0 0 80
1 3 0 1 0 130
2 2 0 0 1 100

−30 −40 0 0 0 0

⎤

⎥⎥
⎦

−−−−−−→
E2

(
1
3

)

E12 (−1)
E32 (−2)
E24 (40)

⎡

⎢⎢
⎣

5
3 0 1 − 1

3 0 110
3

1
3 1 0 1

3 0 130
3

4
3 0 0 − 2

3 1 40
3− 50

3 0 0 40
3 0 5200

3

⎤

⎥⎥
⎦ .

We see from this matrix that in terms of the current values of the basic
variable, the last row says that P − 50

3 x1 + 40
3 x4 = 5200

3 with the value con-
tributed by the current values of the basic variables in the lower right cor-
ner. So improvement in the objective function could be made by making x1

basic. Again, to find which entry in the first column to use as a pivot, divide
each entry in the last column (other than the last row) by its corresponding
(nonzero) entry in column one to obtain the numbers 110/5 = 22, 130 and
40/4 = 10. Using the smallest positive ratio selects the (3, 1)th entry as pivot
and we obtain

⎡

⎢⎢⎢
⎣

5
3 0 1 − 1

3 0 110
3

1
3 1 0 1

3 0 130
3

4
3 0 0 − 2

3 1 40
3

− 50
3 0 0 40

3 0 5200
3

⎤

⎥⎥⎥
⎦

−−−−−−−→
E3

(
3
4

)

E34

(
50
3

)

E23

(− 1
3

)

E13

(− 5
3

)

⎡

⎢⎢
⎣

0 0 1 1
2 − 5

4 20
0 1 0 1

2 − 1
4 40

1 0 0 − 1
2

3
4 10

0 0 0 5 25
2 1900

⎤

⎥⎥
⎦ . (3.14)

From this matrix we can read off the solution to our problem: Basic feasible
solution x = (10, 40, 20, 0, 0) yields an optimal value of P . Read the last row
of this augmented matrix as
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P − 0 · x1 − 0 · x2 − 0 · x3 + 5 · x4 +
25
2

x5 = 1900.

Since x4 = x5 = 0, we obtain P = 1900. Of course we are mainly interested
in the values of x1 and x2 since they are the only variables that contribute to
the equivalent original form of the objective function, namely

P = 30x1 + 40x2 + 0 · x3 + 0 · x4 + 0 · x5 = 30 · 10 + 40 · 40 = 1900.

�
The simplex solution to Example 3.47 agrees with the geometrical solution

that we found in Example 3.49. Notice that at each step we were able to
increase the current value of the objective function by a positive amount. If one
of the basic variables had a value of zero then a new basic variable replacing
it would also have zero value and we might cycle through the basic variables
without increasing the objective function and worse, return to a basic variable
we had already traded out. This situation mandates a name: A basic feasible
solution for which one or more of the basic variables has a value of zero is

Nondegenerate Solution called a degenerate basic feasible solution, oth-
erwise it is called a nondegenerate basic feasible

solution. More generally, we have the following definition:

Definition 3.19. Nondegenerate Problem A linear programming problem
in standard form Bx = d with m×p system matrix B is nondegenerate if any
subset of m columns of the augmented matrix

[
B d

]
is linearly independent.

We leave it as an exercise to prove that if a linear program in standard
form is nondegenerate, then every basic feasible solution to it is nondegenerate.
Thus, cycling cannot occur. It should be noted that degeneracy is relatively
rare, but the simplex methods (with suitable modifications) and results of
this section can be applied without the assumption of nondegeneracy. There is
another roadblock to the pivot selection procedure for a maximization problem
outlined in the previous example:

Caution: If there are no positive entries in the column corresponding to the
variable that we wish to trade into the current basic feasible solution due to
negative last row entry in that column, then P can be made arbitrarily large
and there is no solution to the original linear program.

For let’s suppose that we have re-indexed the variables so that the basic
variables are last, the column of the variable we wish to make basic is first
and that we have converted to columns corresponding to the basic variables
to unit columns. Then with a suitable reordering of the basic variables we

can express the current augmented system matrix in the form
[

A I d
−cT 0T u

]
.

Here d ≥ 0 since the current solution is basic feasible and c1 > 0 since
we expect it to improve the objective function by making x1 positive. Also
A = [ai,j ] = [a1,a2 . . . ,an] with a1 ≤ 0 and I = [e1, e2 . . . , em], so the system
of constraint equations is
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x1a1 + · · · + xnan + xn+1e1 + · · · + xn+mem = d

with objective function as

P = c1x1 + · · · + cnxn + 0 · xn+1 + · · · 0 · xn+m + u.

Keep xj = 0, 2 ≤ j ≤ n but allow for x1 to be possibly positive and the
system becomes

(xn+1 + x1a1,1) e1 + · · · + (xn+m + x1am,1) em = d.

Thus, x1 can be made arbitrarily large as long as the equations xn+j+x1aj,1 =
dj , j = 1, . . . , m. are maintained. The new values of xn+j = dj − x1aj,1 are
always nonnegative since aj,1 ≤ 0, so

(
x1, 0, . . . , 0, xn+1 + x1a1,1, . . . , xn+m +

x1am,1

)
is a feasible solution for which the value of the objective function is

P = c1x1 + u. Hence, P can be made arbitrarily large in the feasible set.
Next we consider how the simplex method works on the min linear program

of Example 3.48.

Example 3.55. Solve the min linear program of Example 3.48 using the sim-
plex method.

Solution. First recast the optimization problem of minimizing C = 80x1+
130x2 + 100x3 to the equivalent problem of maximizing P = −C = −80x1 −
130x2 − 100x3. Next, follow the lead of Example 3.53 in introducing two
additional artificial variables to account for the absence of an obvious choice
for initial basic variables. We use the outcome of this calculation, which was
to identify first admissible pivot in the (1, 3)th position and second admissible
pivot in the (2, 1)th position. So append the row corresponding to the value
of the objective function and complete the appropriate row operations:

⎡

⎣
2 1 2 −1 0 30
1 3 2 0 −1 40
80 130 100 0 0 0

⎤

⎦

−−−−−−−−→
E1

(
1
2

)

E21 (−2)
E31 (−100)

⎡

⎣
1 1

2 1 − 1
2 0 15

−1 2 0 1 −1 10
−20 80 0 50 0 −1500

⎤

⎦

⎡

⎣
1 1

2 1 − 1
2 0 15

−1 2 0 1 −1 10
−20 80 0 50 0 −1500

⎤

⎦

−−−−−−−→
E2

(
1
2

)

E12

(− 1
2

)

E32 (−80)

⎡

⎣
5
4 0 1 − 3

4
1
4

25
2− 1

2 1 0 1
2 − 1

2 5
20 0 0 10 40 −1900

⎤

⎦ . (3.15)

Thus, we have found a minimum of C = −P = 1900 at the basic feasible
solution

(
0, 5, 25

2 , 0, 0
)

which yields the solution x =
(
0, 5, 25

2

)
to the origi-

nal problem. This is the same solution found by the geometrical method of
Example 3.50. �

If we look carefully at the last row of the final matrix in (3.15) we see
something very curious, namely that the solution to the max linear program
of Example 3.48 is sitting in that row under the surplus variable columns:
x = (10, 40). Similarly, the last row of the final matrix in (3.14) contains the
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solution x =
(
0, 5, 25

2

)
to the min linear program of Example 3.48 under the

surplus variable columns. What is the connection? These two problems have
a very close connection which is codified in the following definition.

Definition 3.20. Primal and Dual Problems The dual problem for the pri-
mal problem of maximizing P = cT x subject to the constraints Ax ≤ b and
x ≥ 0 is the problem of minimizing P = bT y subject to the constraints
AT y ≥ c and y ≥ 0.

There is a symmetry here: If the dual problem is converted to a max linear
program, then we leave it as an exercise to show that the dual of the dual
is the primal. Another basic theorem of linear programming is the following
connection between a primal linear program and its dual.

Theorem 3.26. Equivalence of Primal and Dual Suppose that the primal
problem of maximizing P = cT x subject to the constraints Ax ≤ b and x ≥ 0
and its dual are nondegenerate. If the primal has a feasible solution x and the
dual has a feasible solution y, then cT x ≤ bT y, both have optimal solutions
x∗ and y∗ and cT x∗ = bT y∗.

Proof. Suppose first that the primal has feasible solution x and the dual
has feasible solution y. We leave it as an exercise to show that multiplying
by nonnegative vectors preserves vector inequalities. Since y ≥ 0, we have
that yT Ax ≤ yT b and likewise, since x ≥ 0 and yT A ≥ cT , we have that
yT Ax ≥ cT x. Put these together and we conclude that cT x ≤ bT y. This
implies that there is an upper bound to values of the primal problem and a
lower bound to values of its dual.

Next, notice that there are only a finite number of basic feasible solutions to
this problem: Nondegeneracy implies that any m columns of the augmented
system matrix

[
Ae b

]
are linearly independent so a linear combination of

them that equals b has uniquely determined coefficients. It follows that there
is only a finite number of positive improvements in the objective function
achieved by replacing one basic feasible solution by another. Hence, there is a
smallest positive improvement, say α. Since the primal is nondegenerate, we
see that replacing any basic feasible solution by another that whose column
has a negative last entry and ensuring that the this column is a unit column
by admissible elementary operations ensures that the right-hand side consists
of values of the basic variables, hence has positive entries. Therefore, any such
change improves the solution by a positive amount greater than or equal to
α. Since the objective function is bounded above, it follows that after a finite
number of simplex steps must terminate with basic feasible solution xe

∗ and
there can be no further improvement via basic feasible solutions. Thus, the

objective function of the last standard matrix B̃ =
[

B d
−cT

e u

]
has ce ≤ 0. It

follows from Corollary 3.10 that cT
e xe

∗ + u is the optimal value of the original
objective function and xe

∗ is an optimal feasible solution to the initial problem
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with standard matrix
[

A I b
−cT 0T 0

]
. Thus, the optimal value cT xe

∗ + 0 for the

primal problem is achieved by the feasible solution x∗ ∈ R
m defined as the

first m coordinates of xe
∗.

Finally, let
[

E 0
yT

∗ 1

]
be the composition of all elementary operations used

to reach the final matrix and we see that
[

E 0
yT

∗ 1

] [
A I b

−cT 0T 0

]
=
[

EA EI Eb
yT

∗ A − cT yT
∗ yT

∗ b

]

where yT
∗ A − cT ≥ 0, yT

∗ ≥ 0 and u = yT
∗ b is the maximum value of the

objective function cT x. It follows from definition of the dual that y∗ is a
feasible solution to the dual. From the first paragraph above we see that if y
is any other feasible solution to the dual, then

yT
∗ b = u = cT x∗ ≤ yT b = bT y.

Hence, u must also be the minimum value of the objective function bT y for
the dual problem and this minimum is achieved by the vector y∗. �

The last paragraph of the preceding proof shows why the solution to Exam-
ple 3.48 appeared in the final form of the augmented matrix for Example 3.47.
In our last example we put the simplex method to work on a slightly nonstan-
dard max linear program.

Example 3.56. Use the simplex method to solve the following linear program:

Maximize P = x1 + 4x2 subject to constraints:

x1 + 3x2 ≤ 45
2x1 + x2 ≤ 40
x1 + x2 ≥ 18

xj ≥ 0, j = 1, 2.

Solution. First we follow the lead of Example 3.53: Correct the lack of a
basic feasible variable in third equation by appending an artificial variable x6

to obtain the system

x1 + 3x2 + x3 = 45
2x1 + x2 + x4 = 40

x1 + x2 − x5 + x6 = 18
xj ≥ 0, j = 1, 2, . . . , 6.

Next construct the augmented standard matrix and use admissible elementary
operations to bring the simplex method to conclusion on this problem. We
leave the calculations as an exercise. The result from beginning to end is as
follows:
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⎡

⎢⎢
⎣

1 3 1 0 0 0 45
2 1 0 1 0 0 40
1 1 0 0 −1 1 18

−1 −4 0 0 0 0 0

⎤

⎥⎥
⎦

−−−−−→· · ·

⎡

⎢⎢
⎣

1
3 1 1

3 0 0 0 15
5
3 0 − 1

3 1 0 0 25
2
3 0 − 1

3 0 −1 1 3
1
3 0 4

3 0 0 0 60

⎤

⎥⎥
⎦ . (3.16)

So the optimal solution appears to be x2 = 15, x4 = 25, x6 = 3 and x1 = x3 =
x5 = 0. But there’s a problem: This is not a solution to the original problem
since it yields that x1 + x2 = 15 < 18. So what went wrong? Is Theorem 3.25
contradicted? The answer lies in understanding the difference between slack
and surplus versus artificial variables. The former yield equations entirely
equivalent to the original inequalities. The latter does not. In other words, the
system equalities that we created are not equivalent to the original problem.

One solution is to follow the lead of Example 3.53 and make the variable x6

nonbasic by substituting it with another variable. In more complex cases this
may not be a good strategy. We shall work around this difficulty with a more
general procedure as follows: First try to minimize the artificial variable x6 to
a value of zero, using only admissible row operations that remain admissible
for the original problem. Then delete its column from the problem. To this
end, we want to minimize x6 to a value of zero, i.e., maximize −x6 to zero. So
use this as a temporary objective function and add the additional row to our
augmented system matrix. The first step is to make the column for x6 equal
to an identity column. Then we follow the usual simplex procedure for this
objective function while also updating the original objective function, details
of which are left as an exercise. The result is

⎡

⎢⎢
⎢⎢
⎣

1 3 1 0 0 0 45
2 1 0 1 0 0 40
1 1 0 0 −1 1 18

−1 −4 0 0 0 0 0
0 0 0 0 0 1 0

⎤

⎥⎥
⎥⎥
⎦

−−−−−−→
E53 (−1)

· · ·

⎡

⎢⎢
⎢⎢
⎣

0 1 1
2 0 1

2 − 1
2

27
2

0 0 1
2 1 5

2 − 5
2

35
2

1 0 − 1
2 0 − 3

2
3
2

9
2

0 0 3
2 0 1

2 − 1
2

117
2

0 0 0 0 0 1 0

⎤

⎥⎥
⎥⎥
⎦

. (3.17)

Variable x6 is no longer basic, so delete it and the temporary objective
function of the last row to obtain an augmented system matrix equivalent to
the original problem, namely,

⎡

⎢⎢
⎣

0 1 1
2 0 1

2
27
2

0 0 1
2 1 5

2
35
2

1 0 − 1
2 0 − 3

2
9
2

0 0 3
2 0 1

2
117
2

⎤

⎥⎥
⎦ .

As it turns out, there is no additional work to be done, so we read off the
solution to the problem: x1 = 9

2 , x2 = 27
2 , x4 = 35

2 and x3 = x5 = 0 with
an optimal value of P = 0 · x3 + 117

2 = 117
2 . We leave it as an exercise to

verify that this is the same as the geometrical solution x1 = 9
2 , x2 = 27

2 ,
P = x1 + 4x2 = 9

2 + 4 · 27
2 = 117

2 of this problem. �
We have only scratched the surface of the extensive topic of linear program-

ming and there are many excellent textbooks, e.g., Hillier and Lieberman [16],
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Bertsimas and Tsitsiklis [4] and others, that cover all aspects of this subject
in great detail.

3.8 Exercises and Problems

Exercise 1. Express the following problem in standard form: Minimize C =
x1 + 2x1 + x3 subject to the constraints x1 + x2 ≥ 4, x1 + x3 ≤ 6, x1 ≥ 1,
x2, x3 ≥ 0.

Exercise 2. Express the following problem in standard form: Maximize P =
x1 − x2 + x3 subject to the constraints x1 − 2x2 + x3 ≤ 3, x1 + x3 ≤ 4,
x1, x2, x3 ≥ 0.

Exercise 3. Solve the following problem using both geometric and simplex
methods: Maximize P = x1 + 2x2 subject to constraints x1 + x2 ≤ 6,
−x1 + x2 ≤ 2, x1 ≤ 5, x1, x2 ≥ 0.

Exercise 4. Solve the following problem using the simplex method: Maximize
P = 4x1 − x2 + 3x3 subject to constraints x1 + x2 − x3 ≤ 2, x1 + x2 + x3 ≤ 6,
x1, x2, x3 ≥ 0.

Exercise 5. Solve the problem of Example 3.56 by the geometric method.

Exercise 6. Solve the problem of Exercise 4 by the geometric method.

Exercise 7. Use the simplex method to show that the problem of maximizing
P = 3x1 + x2 subject to the constraints −x1 + x2 ≤ 4, −x1 + 2x2 ≤ 10,
x1, x2 ≥ 0, has unbounded objective function and show that the dual problem
has no feasible solution.

Exercise 8. Use the simplex method to show that the problem of maximizing
P = x1+x2+x3 subject to the constraints −x1+x2 ≤ 20, −x1−x2+2x3 ≤ 10,
x1, x2, x3 ≥ 0, has unbounded objective function and show that the dual
problem has no feasible solution.

Exercise 9. A company produces four different tool kits, K1,K2,K3,K4, parts
of which are created at site S1, then finished and assembled into kits at site
S2. The hours required for these kits at each site, as well as the profit per kit
and maximum currently available hours at each site are detailed in this table:

Available
K1 K2 K3 K4 Hours

Sites S1

S2

Profit per kit

2 1 3 2 900
3 2 2 2 1200
35 20 40 25

Express the problem of maximizing profit subject to these constraints as a
linear programming problem in standard form and solve it.
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Exercise 10. The firm Grain Associates manages two granaries G1 and G2

which currently have available 9 and 15 tons of grain, resp. The firm has
contracted with three flour mills M1,M2 and M3 to supply 8, 12 and 4 tons
of grain, resp., so that supply balances demand. Total costs of transport in
hundreds of dollars per ton are given in this table.

Destination
M1 M2 M3

Source G1

G2

2 1 3
3 2 2

Express the problem of minimizing transport costs subject to these constraints
as a linear programming problem in standard form and solve it. (Note: The
standard form is not full row rank, so one equation can be eliminated.)

Exercise 11. Use the simplex method to solve the problem of minimizing C =
6x1 + x2 + 4x3 subject to the constraints x1 + x2 + 2x3 ≤ 40, x1 + x2 ≥ 10,
x1, x2, x3 ≥ 0.

Exercise 12. Use graphical and simplex method to solve the problem of mini-
mizing C = 10x1 + 4x2 subject to the constraints x1 + 2x2 ≤ 8, x1 + x2 ≤ 13,
2x1 − x2 ≥ 11, 2x1 + x2 ≥ 13, x1, x2 ≥ 0. (Hint: Try minimizing the sum of
the two artificial variables.)

Exercise 13. Use graphical method, then duality and the simplex method to
solve the problem of minimizing C = 3x1 + 2x2 subject to constraints 3x1 +
x2 ≥ 6, x1 + 2x2 ≥ 6, x1, x2 ≥ 0.

Exercise 14. Use graphical method on the dual, then duality and the simplex
method to solve the problem of minimizing C = 2x1 +3x2 +6x3 +5x4 subject
to constraints −x1 + x3 + x4 ≥ 1, x1 + x2 + x3 ≥ 2 and xj ≥ 0, j = 1, 2, 3, 4.

Problem 15. Show that if u,v,w ∈ R
n with u ≤ v and w ≥ 0, then wT u ≤

wT v.

*Problem 16. Show that if B is m×p, d ∈ R
m, B̃ =

[
B d

−cT u

]
and a sequence

of arbitrary elementary operations on the first m rows of B̃ is applied, along
with elementary operations of adding multiples of the first m rows to the last
row, then the sequence of operations on B̃ is accomplished by a matrix of the

form
[

E 0
vT 1

]
, where E is an m × m product of elementary row operations

and v ∈ R
p.

Problem 17. Given the problem of optimizing cT x subject to the constraints
Bx = d and x ≥ 0, and feasible solutions x and y such that cT x < cT y, show
that for any convex combination of the form z = (1 − α)x + αy, 0 ≤ α ≤ 1,
z is feasible and cT x ≤ cT z ≤ cT y with strict inequality if 0 < α < 1.
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*Problem 18. Show that if the problem of optimizing cT x subject to the con-
straints Bx = d and x ≥ 0 has two optimal feasible solutions then it has
infinitely many such solutions.

Problem 19. Show that if a linear program in standard form is nondegenerate,
then every basic feasible solution to it is nondegenerate.

Problem 20. Convert the dual of the primal problem of maximizing cT x sub-
ject to x ≥ 0 and Ax ≤ b to a max linear program and use this to show that
the dual of the dual is the primal problem.

Problem 21. Use Theorem 3.26 to show that if a primal problem has unbounded
objective function then the dual has no feasible solution.

3.9 *Applications and Computational Notes

Spaces Associated with a Directed Graph

There are significant practical applications of vector space theory to modeling
with digraphs. In addition to the adjacency matrix of Section 2.3, lurking
in the background is another matrix that describes all the data necessary to
construct a digraph or graph.

Definition 3.21. The incidence matrix of a graph or digraph has rows
indexed by its vertices and columns by its edges in some specific order. If
the edge (i, j) is in the digraph, then the column corresponding to this edge
has −1 in its ith row and +1 in its jth row. In the case of a graph, if the edge
{i, j} is in the graph, then column corresponding to this edge has +1 in its
ith and jth rows. All other entries are 0.

For example, the incidence matrices A of the graph of Figure 2.4 and B
of the digraph of Figure 2.5 are given by

A =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

1 1 1 0 0 0 0 0
1 0 0 1 1 0 0 0
0 0 0 1 0 1 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1
0 0 1 0 1 0 0 1

⎤

⎥⎥⎥⎥⎥
⎥
⎦

and B =

⎡

⎢⎢
⎣

−1 −1 1 0 0
1 0 0 −1 1
0 0 −1 1 0
0 1 0 0 −1

⎤

⎥⎥
⎦ .

Definition 3.22. Loops A loop in a digraph is a directed walk that starts
and ends at the same node.

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
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For example, the sequence (1, 2), (2, 3), (3, 1) is a loop L in the digraph of
Figure 2.5. So is (1, 2), (2, 3), (3, 1), (1, 2), (2, 3), (3, 1), which could reasonably
the thought of as 2L.

Each column of the incidence matrix defines an edge. Thus, linear combina-
tions of these columns with integer coefficients, say v = c1v1+· · ·+c8v8 = Ac,
represent a listing of edges, possibly with repeats. When will such a combi-
nation represent a directed loop? Consider such a linear combination with
defining vector of coefficients c = (c1, . . . , c8). Here’s the key idea: Examine
this combination locally, that is, at each vertex. There we expect the total
number of “in-arrows” (−1’s) to be exactly canceled by the total number of
“out-arrows” (+1’s). In other words, each coordinate of v should be 0 and so
c ∈ N (A). Thus, the description of all possible loops amounts to the descrip-
tion of a subspace of R

8. Of course, one has to distinguish between “algebraic”
loops (any ci’s) and directed loops (all ci ≥ 0).

3.10 *Projects and Reports

Projects: Modeling with Directed Graphs
Instructors: Formulate projects by selecting one or more from the following

items. These items are listed roughly in order of difficulty.
Project Descriptions: These projects introduce more applications of digraphs
as mathematical modeling tools. You are given that the digraph G has vertex
set V = {1, 2, 3, 4, 5, 6} and edge set

E = {(1, 2), (2, 3), (3, 4), (4, 2), (1, 4), (3, 1), (3, 6), (6, 3), (4, 5), (5, 6)} .

Address the following points regarding G.
1. (a) Draw a picture of this digraph. You may leave space in your report

and draw this by hand, or if you prefer, you may use the computer drawing
applications available to you on your system.

(b) Exhibit the incidence matrix A of this digraph and find a basis for
N (A) using its reduced row echelon form. Some of the basis elements may be
algebraic but not directed loops. Use this basis to find a basis of directed loops
(e.g., non-directed basis element c1 might be replaced by directed c1 + c2).

2. Think of the digraph as representing an electrical circuit where an edge
represents some electrical object like a resistor or capacitor. Each node repre-
sents the circuit space between these objects. and we can attach a potential
value to each node, say the potentials are x1, . . . , x6. The potential difference
across an edge is the potential value of head minus tail. Kirchhoff’s second
law of electrical circuits says that the sum of potential differences around a
circuit loop must be zero. Assume and use the fact (p. 422) that Ax = b
implies that for all y ∈ N (AT ), yT b = 0 to find conditions that a vector b
must satisfy in order for it to be a vector of potential differences for some
potential distribution on the vertices.

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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3. Assume that across each edge of a circuit a current flows. Thus, we can
assign to each edge a “weight,” namely the current flow along the edge. This
is an example of a weighted digraph. However, not just any set of current
weights will do, since Kirchhoff’s first law of circuits says that the total flow
of current in and out of any node should be 0. Use this law to find a matrix
condition that must be satisfied by the currents and solve it to exhibit some
current flows.

4. Think of the digraph as representing a directed communications net-
work. Here loops determine which nodes have bidirectional communication
since any two nodes of a loop can only communicate with each other by way
of a loop. By examining only a basis of directed loops how could you determine
which nodes in the network can communicate with each other?

5. Think of vertices of the digraph as representing airports and edges
representing flight connections between airports for Gamma Airlines. Suppose
further that for each connection there is a maximum number of daily flights
that will be allowed by the destination airport from an origin airport and that,
in the order that the edges in E are listed above, these limits are

M = {4, 3, 8, 7, 2, 6, 7, 10, 5, 8} .

Now suppose that Gamma wants to maximize the flow of flights into airport
1 and out of airport 6. Count inflows into an airport as positive and outflows
as negative. Assume that the net in/outflow of Gamma flights at each airport
1 to 5 is zero, while the net inflow of such flights into airport 1 matches the
net outflow from 6.

(a) Describe the problem of maximizing this inflow to airport 1 as a linear
programming problem and express it in a standard form (block matrices are
helpful.) Note that the appropriate variables are all outflows from one airport
to another, i.e., along edges, together with the net inflow into airport 1.

(b) Solve the problem of part (a). Also solve the reverse problem: Max-
imize inflow into airport 6 and matching outflow from 1. Explain and justify
your answers.

6. With the same limits on allowable flights into airports as in item 5,
suppose that Gamma Airlines wants to determine an allocation of planes that
will maximize their profits, given the following constraints: (1) Airports 1 and
6 have repair facilities for their planes, so no limit is placed on the inflow
or outflow of their planes other than the airport limits. (2) Flights through
airports 2-5 of Gamma planes are pass through, i.e., inflow and outflow must
match. (3) Gamma has 32 planes available for this network of airports. (4)
The profits per flight in thousands are, in the order that the edges in E are
listed above,

P = {5, 6, 7, 9, 10, 8, 9, 5, 6, 10} .

(a) Set this problem up as a linear programming problem in standard
form. Clearly identify the variables and explain how the constraints follow.
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(b) Solve this problem explicitly and specify the operations taken to
do so. Example 3.56 is instructive for this problem, so be aware of it. Use
a technology tool that allows you to use elementary operations (ALAMA
calculator has this capability).



4

GEOMETRICAL ASPECTS OF STANDARD
SPACES

The standard vector spaces have many important extra features that we have
largely ignored up to this point. These extra features made it possible to do
sophisticated calculations in the spaces and enhance our insight into vector
spaces by appealing to geometry. For example, in the geometrical spaces R

2

and R
3 that were studied in algebra and calculus, it was possible to compute

the length of a vector and angles between vectors. These are visual concepts
that feel very comfortable to us. In this chapter we generalize these ideas to
standard vector spaces and their subspaces. We will abstract these ideas to
general vector spaces in Chapter 6.

4.1 Standard Norm and Inner Product

The Norm Idea

Consider this problem. How do we formulate precisely the idea of a sequence
of vectors ui converging to a limit vector u, i.e.,

lim
n→∞ un = u,

in standard spaces? A reasonable answer is to mean that the distance between
the vectors should tend to 0 as n → ∞. By distance we mean the length of
the difference. So what we need is some idea about the length, i.e., norm, of a
vector. We have seen such an idea in the geometrical spaces R

2 and R
3. There

are different ways to measure length. We shall begin with the most standard
method. It is one of the outcomes of geometry and the Pythagorean theorem.
As with standard spaces, there is no compelling reason to stop at geometrical
dimensions of two or three, so here is the general definition.

c

http://dx.doi.org/10.1007/978-3-319-74748-4_6
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Definition 4.1. Standard Real Vector Norm Let u = (u1, u2, . . . , un) ∈ R
n.

The (standard) norm of u is the nonnegative real number

‖u‖ =
√

u2
1 + u2

2 + · · · + u2
n.

Example 4.1. Compute the norms of the vectors u = (1,−1, 3) and v =
[2,−1, 0, 4, 2]T .

Solution. From the definition,

‖u‖ =
√

12 + (−1)2 + 32 =
√

11 ≈ 3.3166,

and
‖v‖ =

√
22 + (−1)2 + 02 + 42 + 22 =

√
25 = 5. �

Even though we can’t really “see” the five-dimensional vector v of this
example, it is interesting to note that calculating its length is just as rou-
tine as calculating the length of the three-dimensional vector u. What about
complex vectors? Shouldn’t there be an analogous definition for such objects?
The answer is yes, but we have to be a little careful. We can’t use the same
definition that we did for real vectors. Consider the vector x = (1, 1 + i). The
sum of the squares of the coordinates is just

12 + (1 + i)2 = 1 + 1 + 2i − 1 = 1 + 2i.

This isn’t good. We don’t want “length” to be measured in complex numbers.
The fix is very simple. We already have a way of measuring the length of a
complex number z, namely the absolute value |z|, so length squared is |z|2.
That is the inspiration for the following definition, which is entirely consistent
with our first definition when applied to real vectors:

Definition 4.2. Standard Complex Vector Norm Let u = (u1, u2, . . . , un) ∈
C

n. The (standard) norm of u is the nonnegative real number

‖u‖ =
√

|u1|2 + |u2|2 + · · · + |uz|2.

Notice that |z|2 = zz. (Remember that if z = a + bi, then z = a − bi and
zz = a2 + b2 = |z|2.) Therefore,

‖u‖ =
√

u1u1 + u2u2 + · · · + unun.

Example 4.2. Compute the norms of the vectors u = (1, 1 + i) and v =
(2,−1, i, 3 − 2i).
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Solution. From the definition,

‖u‖ =
√

12 + (1 − i) (1 + i) =
√

1 + 1 + 1 ≈ 1.7321

and

‖v‖ =
√

22 + (−1)2 + (−i)i + (3 + 2i)(3 − 2i)

=
√

4 + 1 + 1 + 9 + 4 =
√

19 ≈ 4.3589.

�
Here are the essential properties of the norm concept:

Basic Norm Laws
Let c be a scalar and u,v ∈ V where the vector space V has the standard
norm ‖ ‖. Then the following hold.

(1) ‖u ‖ ≥ 0 with ‖u ‖ = 0 if and only if u = 0.
(2) ‖ cu ‖ = | c | ‖u ‖.
(3) ‖u + v ‖ ≤ ‖u ‖ + ‖v ‖. (Triangle Inequality)

That (1) is true is immediate from the definition of ‖u‖ as a sum
of the lengths squared of the coordinates of u. This sum is zero exactly
when each term is zero. Condition (2) is fairly straightforward too. Suppose
u = (z1, z2, . . . , zn), so that

‖cu‖ =
√

(cu1)cu1 + (cu2)cu2 + · · · + (cun)cun

=
√

(cc)(u1u1 + u2u2 + · · · + unun)

=
√

|c|2√u1u1 + u2u2 + · · · + unun

= |c| · ‖u‖.

The triangle inequality (which gets its name from the triangle with repre-
sentatives of the vectors u,v,u + v as its sides) can be proved easily in two-
or three-dimensional geometrical space by appealing to the fact that the sum
of lengths of any two sides of a triangle is greater that the length of the third
side. A justification for higher dimensions is a nontrivial bit of algebra that
we postpone until after the introduction of inner products below.

First we consider a few applications of the norm concept. We say that
two vectors determine the same direction if one is a positive multiple of
the other and determine opposite directions ifone is a negative multiple
of the other. The first application is the idea of “normalizing” a vector.

Unit VectorsThis means finding a unit vector, which means a vector of
length 1, that has the same direction as the vector. This process is sometimes
called “normalization.”The following simple fact shows us how to do it.
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Theorem 4.1. Let u be a nonzero vector. Then the vector

w =
1

‖u‖u

is a unit vector in the same direction as u.

Proof. Since ‖u‖ is positive, we see immediately that w and u determine
the same direction. Now check the length of w by using the basic norm law 2
to obtain that

‖w‖ =
∥∥∥∥

1
‖u‖u

∥∥∥∥ =
∣∣∣∣

1
‖u‖

∣∣∣∣ ‖u‖ =
‖u‖
‖u‖ = 1.

Hence, w is a unit vector, as desired. �

Example 4.3. Use the normalization procedure to find unit vectors in the
directions of vectors u = (2,−1, 0, 4) and v = (−4, 2, 0,−8). Conclude that
these vectors determine opposite directions.

Solution. Let us find a unit vector in the same direction of each vector.
We have norms

‖u‖ =
√

22 + (−1)2 + 02 + 42 =
√

21

and
‖v‖ =

√
−42 + (2)2 + +02 + (−8)2 =

√
84 = 2

√
21.

It follows that unit vectors in the directions of u and v, respectively, are

w1 = (2,−1, 0, 4)/
√

21,

w2 = (−4, 2, 0,−8)/(2
√

21) = −(2,−1, 0, 4)/
√

21 = −w1.

Therefore, u and v determine opposite directions. �

Example 4.4. Find a unit vector in the direction of the vector v = (2 + i, 3).

Solution. We have

‖u‖ =
√

22 + 12 + 32 =
√

14.

It follows that a unit vector in the direction of v is

w =
1√
14

(2 + i, 3). �

In order to work the next example we must express the idea of vector
convergence of a sequence u1,u2, . . . to the vector u in a sensible way. The
norm idea makes this straightforward: to say that the un’s approach the vector
u should mean that the distance between u and un goes to 0 as n → ∞. But
norm measures distance. Therefore, the correct definition is as follows:
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Definition 4.3. Convergence of Vectors Let u1,u2, . . . be a sequence of
vectors in the vector space V and u also a vector in V. We say that the
sequence converges to u and write

lim
n→∞ un = u

if the sequence of real numbers ‖un − u‖ converges to 0, i.e.,

lim
n→∞ ‖un − u‖ = 0.

Example 4.5. Use the norm concept to justify the statement that

lim
n→∞ un = u,

where un =
(
1 + 1/n2, 1/(n2 + 1), sin n/n

)
and u = (1, 0, 0).

Solution. In our case we have

un − u =

⎡
⎣

1 + 1/n2

1/(n2 + 1)
sin n/n

⎤
⎦ −

⎡
⎣

1
0
0

⎤
⎦ =

⎡
⎣

1/n2

1/(n2 + 1)
sin n/n

⎤
⎦ ,

so

‖un − u‖ =

√(
1
n2

)2

+
(

1
(n2 + 1)

)2

+
(

sin n

n

)2

→
n→∞

√
0 + 0 + 0 = 0,

which is what we wanted to show. �

The Inner Product Idea

In addition to the norm concept we have another fundamental tool in
our arsenal when we tackle two- and three-dimensional geometrical vec-
tors. This tool is the so-called dot product (or inner product) of two vec-
tors. It has many handy applications, but the most powerful of these is
the ability to determine the angle between two vectors. In fact, some au-
thors use this idea to define dot products as follows: let θ be the angle
between representatives of the vectors u and v (see Figure 4.1.) The dot
product of u and v is defined to be the quantity ‖u‖ ‖v‖ cos θ. The law of
cosines, with this definition and the notation of Figure 4.1, can be stated as

Law of Cosines‖v − u‖2 = ‖u‖2 + ‖v‖2 − ‖u‖ ‖v‖ cos θ

With a bit of algebra one can use the law of cosines and this definition of dot
product to derive a very convenient form for inner products; for example, if
u = (u1, u2, u3) and v = (v1, v2, v3), then
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u · v = u1v1 + u2v2 + u3v3. (4.1)

This makes the calculation of dot products vastly easier since we don’t have
to use any trigonometry to compute it. A particularly nice application is that
we can determine cos θ quite easily from the dot product, namely

cos θ =
u · v

‖u‖ ‖v‖ . (4.2)

It is useful to try to extend these geometrical ideas to higher dimensions even
if we can’t literally use trigonometry and the like. So what we do is reverse
the sequence of ideas we’ve discussed and take equation (4.1) as the prototype
for our next definition. As with norms, we are going to have to distinguish
carefully between the cases of real and complex scalars. First we focus on the
more common case of real coefficients.

u

v − uv
θ

Fig. 4.1: Angle θ between vectors u and v.

Definition 4.4. Real Dot Product Let u = (u1, u2, . . . , un) and v =
(v1, v2, . . . , vn) be vectors in R

n. The (standard) inner product, also called
the dot product of u and v, is the real number

u · v = uT v = u1v1 + u2v2 + · · · + unvn.

We can see from the first form of this definition where the term “inner
product” came from. Recall from Section 2.4 that the matrix product uT v is
called the inner product of these two vectors.

Example 4.6. Compute the dot product of the vectors u = (1,−1, 3, 2) and
v = (2,−1, 0, 4) in R

4.

Solution. From the definition,

u · v = 1 · 2 + (−1) · (−1) + 3 · 0 + 2 · 4 = 11. �

There is a wonderful connection between the standard inner product and
the standard norm for vectors that is immediately evident from the definitions.
Here it is:

‖u‖ =
√

u · u. (4.3)

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Thus, computing norms amounts to an inner product calculation followed by a
square root. Actually, we can even avoid the square root and put the equation
in the form

‖u‖2 = u · u.

We say that the standard norm is induced by the standard inner product.
We would like this property to carry over to complex vectors. Now we have
to be a bit careful. In general, the quantity uT u may not even be a real
number, or may be negative. This means that

√
uT u could be complex, which

doesn’t seem like a good idea for measuring “length.” So how can we avoid
this problem? Recall that when we introduced transposes, we also introduced
conjugate transposes and remarked that for complex vectors, this is a more
natural tool than the transpose. Now we can back up that remark! Recall the
definition for complex norm: for u = (u1, u2, . . . , un) ∈ C

n, the norm of u is
the nonnegative real number

‖u‖ =
√

u1u1 + u2u2 + · · · + unun =
√

u∗u.

Therefore, in our definition of complex “dot products” we had better replace
transposes by conjugate transposes. This inspires the following definition:

Definition 4.5. Complex Dot Product Let u = (u1, u2, . . . , un) and v =
(v1, v2, . . . , vn) be vectors in C

n. The (standard) inner product, also called the
dot product of u and v, is the complex number

u · v = u1v1 + u2v2 + · · · + unvn = u∗v.

(Be aware that some authors prefer to put the conjugate sign on the second
term in this definition.) With this definition we still have the close connection
given above in equation (4.3) between norm and standard inner product of
complex vectors.

Example 4.7. Compute the dot product of the vectors u = (1 + 2i, i, 1) and
v = (i,−1 − i, 0) in C

3.

Solution. Simply apply the definition:

u · v = (1 + 2i)i + ī(−1 − i) + 1 · 0 = (1 − 2i)i − i(−1 − i) = 1 + 2i. �

What are the essential defining properties of these standard inner prod-
ucts? It turns out that we can answer the question for both real and complex
inner products at once. However, we should bear in mind that in most cases we
will be dealing with real dot products, and in such cases all the dot products
in question are real numbers, so that any reference to a complex conjugate
can be omitted.
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Basic Inner Product Laws
Let c be a scalar and u,v,w ∈ V , where V is a vector space with the standard
inner product. Then the following hold:

(1) u · u ≥ 0 with u · u = 0 if and only if u = 0.
(2) u · v = v · u.
(3) u · (v + w) = u · v + u · w.
(4) u · (cv) = c(u · v).

That (1) is true is immediate from the fact that u · u = u∗u is a sum of
the lengths squared of the coordinates of u. This sum is zero exactly when
each term is zero. Condition (2) follows from this line of calculation:

v · u = v∗u =
(
v∗u

)T = (v∗u)∗ = u∗v = u · v.

One point that stands out in this calculation is the following:

Caution: A key difference between real and complex inner products is in the
commutative law u ·v = v ·u, which holds for real vectors but not for complex
vectors, where instead u · v = v · u.

Conditions (3) and (4) are similarly verified and left to the exercises. We
can also use (4) to prove this fact for real vectors:

(cu) · v = v · (cu) = c(v · u) = c(u · v).
If we are dealing with complex dot products, matters are a bit trickier. One
can show then that

(cu) · v = c(u · v),
so we don’t quite have the symmetry that we have for real products.

The Cross Product Idea

We complete this discussion of vector arithmetic with a tool that can be used
only in three dimensions, the cross product of vectors. It has more sophis-
ticated relatives, called wedge products, that operate in higher-dimensional
spaces; this is an advanced topic in multilinear algebra that we shall not pur-
sue. Unlike the dot product, cross products transform vectors into vectors.

In the traditional style of three-dimensional vector analysis, we use the
symbols i, j, and k to represent the standard basis e1, e2, e3 of R

3. Here is the
definition of cross product along with a handy determinant mnemonic.

Definition 4.6. Cross Product of Vectors Let u = u1i + u2j + u3k and
v = v1i+ v2j+ v3k be vectors in R

3. The cross product u×v of these vectors
is defined to be the vector in R

3 given by

u × v = (u2v3 − u3v2) i + (u3v1 − u1v3) j + (u1v2 − u2v1)k =

∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
.
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Strictly speaking, the “determinant” of this definition is not a determinant
in the usual sense. However, formal calculations with it are perfectly valid and
provide us with useful insights. For example:

(1) Vectors u and v are parallel if and only if u × v = 0, since a determinant
with one row a multiple of another is zero. In particular, u × u = 0.

(2) w · u × v =

∣∣∣∣∣∣
w1 w2 w3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
, since the result of dotting w = u1i + u2j + u3k

with u × v using the first form of the definition of cross product is equal
to this determinant. (Note: parentheses are not needed since the only
interpretation of w · u × v that makes sense is w · (u × v).)

(3) u · u × v = 0 and v · u × v = 0, since a determinant with repeated rows
is zero.

(4) u × v = −v × u, since interchanging two rows of a determinant changes
its sign.

(5) i × j = k, j × k = i, k × i = j, as a direct calculation with the definition
shows. Thus, the products follow a circular pattern, with the product of
any successive two yielding the next vector in the loop i → j → k → i.

Example 4.8. Confirm by direct calculation that u·u×v = 0 and v·u×v = 0
if u = (2,−1, 3) and v = (1, 1, 0).

Solution. We calculate that

u × v =

∣∣∣∣∣∣
i j k
2 −1 3
1 1 0

∣∣∣∣∣∣
= (−1 · 0 − 1 · 3) i − (2 · 0 − 3 · 1) j + (2 · 1 − (−1) 1)k

= −3i + 3j + 3k.

Thus
u · u × v = (2i − 1j + 3k) · (−3i + 3j + 3k) = −6 − 3 + 9 = 0
v · u × v = (i + j) · (−3i + 3j + 3k) = −3 + 3 = 0.

�
Here is a summary of some of the basic laws of cross products:

Basic Cross Product Laws
Let u,v,w ∈ R

3 and c ∈ R. Then

(1) u × v = −v × u.
(2) (cu) × v = c (u × v) = u × (cv).
(3) u × (v + w) = u × v + u × w.
(4) (u + v) × w = u × w + v × w.
(5) (Scalar triple product) u · v × w = u × v · w.
(6) (Vector triple product) u × (v × w) = (u · w)v − (u · v)w.
(7) ‖u × v‖2 = ‖u‖2 ‖v‖2 − (u · v)2.
(8) ‖u × v‖ = ‖u‖ ‖v‖ |sin θ|, where θ is the angle between u and v.



286 4 GEOMETRICAL ASPECTS OF STANDARD SPACES

Items (1)–(7) can be verified directly from the definition of cross product and
properties of the dot product, while item (8) follows from (7), equation (4.2)
and the definition of dot product. Note that (8) has an interesting geometrical
interpretation for vectors u,v ∈ R

3, namely that ‖u × v‖ is the area of the
parallelogram with adjacent sides represented by the vectors u and v.

4.1 Exercises and Problems

Exercise 1. For the following pairs of vectors, calculate u · v, ‖u‖, and ‖v‖.
(a) (3,−5), (2, 4) (b) (1, 1, 2), (2,−1, 3) (c) (2, 1,−2,−1), (3, 0, 1,−4)
(d) (1 + 2i, 2 + i), (4 + 3i, 1) (e) (3, 1, 2,−4), (2, 0, 1, 1) (f) (2, 2,−2), (2, 1, 5)

Exercise 2. For the following pairs of vectors, calculate u · v and unit vectors
in the direction of u and v.
(a) (4,−2, 2), (1, 3, 2) (b) (1, 1), (2,−2) (c) (4, 0, 1, 2 − 3i), (1, 1 − 2i, 1, i)
(d) (i,−i), (3i, 1) (e) (1,−1, 1,−1), (2, 2, 1, 1) (f) (4, 1, 2), (1, 0, 0)

Exercise 3. Let θ be the angle between the following pairs of real vectors and
compute cos θ using dot products.
(a) (2,−5), (4, 2) (b) (3, 4), (4,−3) (c) (1, 1, 2), (2,−1, 3) (d) j + k, 2i + k

Exercise 4. Compute an angle θ between the following pairs of real vectors.
(a) (4, 5), (−4, 4) (b) i − 5j, i + k (c) (4, 0, 2), (1, 1, 1)

Exercise 5. Compute the cross product of the vector pairs in Exercise 4. (Ex-
press two-dimensional vectors in terms of i and j first.)

Exercise 6. Compute sin θ, where θ is the angle between the following pairs of
real vectors, using cross products.
(a) 3i − 5j, 2i + 4j (b) 3i − 5j + 2k, 2i − 4k (c) (−4, 2, 4), (4, 1,−5)

Exercise 7. Let c = 3, u = (4,−1, 2, 3), and v = (−2, 2,−2, 2). Verify that the
four basic norm laws hold for these vectors and scalars.

Exercise 8. Let c = 2, u = (−3, 2, 1), v = (4, 2,−3), and w = (1,−2, 1). Verify
the four basic inner product laws for these vectors and scalars.

Exercise 9. Let c = −2, u = (0, 2, 1), v = (4, 0,−3), and w = (1,−2, 1). Verify
cross product laws (1)–(4) for these vectors and scalars.

Exercise 10. Let u = (1, 2, 2), v = (0, 2,−3), and w = (1, 0, 1). Verify cross
product laws (5)–(7) for these vectors and scalars.
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Exercise 11. Let u,v ∈ C
3 be given by u = (i, 2, 1 − i) and v = (2 + 3i, 2,−1).

Verify the parallelogram equality

2 ‖u‖2 + 2 ‖v‖2 = ‖u + v‖2 + ‖u − v‖2

with these vectors.

Exercise 12. Let u,v ∈ R
3 be given by u = (1, 2, 1) and v = (−1, 2,−3). Com-

pute ‖u‖2, ‖v‖2 and ‖u + v‖2. What does this tell you about these vectors?

Exercise 13. Verify that un = [2/n, (1 + n2)/(2n2 + 3n + 5)]T , n = 1, 2, . . .,
converges to a limit vector u by using the norm definition of vector limit.

Exercise 14. Let un = [i,
(
n2i + 1

)
/

(
(ni)2 + n

)
], n = 1, 2, . . ., and verify that

un converges to a limit vector u.

*Problem 15. Show that for real vectors u, v and real number c one has

(cu) · v = v · (cu) = c(v · u) = c(u · v).

Problem 16. Prove this basic norm law: ‖u‖ ≥ 0 with equality if and only if
u = 0.

*Problem 17. Let A = uuT with u ∈ R
n. Derive a formula for Am, m a

positive integer, in terms of u.

Problem 18. Show that if u,v,w ∈ R
n (or C

n) and c is a scalar, then
(a) u · (v + w) = u · v + u · w (b) u·(cv) = c(u · v)

Problem 19. Show from the definition that if limn→∞ un = u, where un =
(xn, yn) ∈ R

2 and u = (x, y), then limn→∞ xn = x and limn→∞ yn = y.

*Problem 20. Prove that if v is a vector and c is a positive real, then normaliz-
ing v and normalizing cv yield the same unit vector. How are the normalized
vectors related if c is negative?

Problem 21. Show that if A is a real n × n matrix and u,v are vectors in R
n,

then
(
AT u

) · v = u · (Av).

*Problem 22. Show that | ‖u‖ − ‖v‖ | ≤ ‖u‖ for any two vectors u,v in the
same space.

Problem 23. Verify the scalar triple product law u · v × w = u × v · w.

*Problem 24. Let u,v ∈ R
3. Use the law of cosines for the triangle determined

by u and v in terms of the coordinates of of u and v to verify equation (4.2).

Problem 25. Verify the parallelogram equality (see Exercise 11) for vectors
u,v ∈ C

n.

Problem 26. Verify item (7) of the Basic Cross Product Laws.

*Problem 27. Use item (7) of the Basic Cross Product Laws to verify item (8).



288 4 GEOMETRICAL ASPECTS OF STANDARD SPACES

4.2 Applications of Norms and Vector Products

Projections and Angles

Now that we have dot products under our belts we can tackle geometrical
issues such as angles between vectors in higher dimensions. For the matter of
angles, we will stick to real vector spaces, though we could do it for complex
vector spaces with a little extra work. What we would like to do is take
equation (4.2) as the definition of the angle between two vectors. There’s one
slight problem: how do we know that it will give a quantity that could be a
cosine? After all, cosines take on only values between −1 and 1. We could use
some help and the Cauchy–Bunyakovsky–Schwarz inequality (CBS for short)
is just what we need:

Theorem 4.2. CBS Inequality For vectors u,v ∈ R
n,

|u · v| ≤ ‖u‖ ‖v‖ .

Proof. Let c be an arbitrary real number and compute the nonnegative
quantity

f(c) = ‖u + cv‖2

= (u + cv) · (u + cv)
= u · u + u · (cv) + (cv) · u + (cv) · (cv)

= ‖u‖2 + 2c(u · v) + c2 ‖v‖2

=

(
‖u‖2 −

(
(u · v)
‖v‖

)2
)

+
(

(u · v)
‖v‖ + ‖v‖ c

)2

.

The function f (c) is a quadratic in the variable c with nonnegative values,
whose low point occurs where the squared term is zero, i.e.,

c =
−(u · v)

‖v‖2 .

Evaluate f at this point to get that

0 ≤ ‖u‖2 − (u · v)2

‖v‖2 .

Now add (u · v)2/ ‖v‖2 to both sides of the inequality and multiply by ‖v‖2

to obtain that
(u · v)2 ≤ ‖u‖2 ‖v‖2

.

Take square roots, use the fact that |x| =
√

x2 for real numbers x, and the
desired inequality follows. �
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This inequality has a number of useful applications. Because of it we can
articulate a definition of angle between vectors. Note that there is a certain
ambiguity in discussing the angle between vectors, since more than one angle
works. It is the cosine of these angles that is actually unique.

Definition 4.7. Angle Between Vectors For nonzero vectors u,v ∈ R
n we

define the angle between u and v to be any angle θ satisfying

cos θ =
u · v

‖u‖ ‖v‖ .

Thanks to the CBS inequality, we know that |u · v| /(‖u‖ ‖v‖) ≤ 1, so that
this formula for cos θ makes sense.

Example 4.9. Find the angle between the vectors u = (1, 1, 0, 1) and v =
(1, 1, 1, 1) in R

4.

Solution. We have that

cos θ =
(1, 1, 0, 1) · (1, 1, 1, 1)

‖(1, 1, 0, 1)‖ ‖(1, 1, 1, 1)‖ =
3

2
√

3
=

√
3

2
.

Hence, we can take θ = π/6. �

Example 4.10. Use the laws of inner products and the CBS inequality to ver-
ify the triangle inequality for vectors u and v. What happens to this inequality
if we also know that u · v = 0?

Solution. Here the trick is to avoid square roots. Square both sides of
equation (4.3) to obtain that

‖u + v‖2 = (u + v) · (u + v)
= u · u + u · v + v · u + v · v
= ‖u‖2 + 2(u · v) + ‖v‖2

≤ ‖u‖2 + 2 |u · v| + ‖v‖2

≤ ‖u‖2 + 2 ‖u‖ ‖v‖ + ‖v‖2

= (‖u‖ + ‖v‖)2 ,

where the last inequality follows from the CBS inequality. If u · v = 0, then
the third equality yields the Pythagorean theorem. �

We have just seen a very important case of angles between vectors that
warrants its own name. Recall from geometry that two vectors are perpen-
dicular or orthogonal if the angle between them is π/2. Since cos π/2 = 0,
we see that this amounts to the equation u · v = 0. Now we can extend the
perpendicularity idea to arbitrary vectors, including complex vectors.
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Definition 4.8. Orthogonal Vectors Two vectors u and v in an inner prod-
uct space are orthogonal if u · v = 0. In this case we write u ⊥ v.

In the case that one of the vectors is the zero vector, we have the lit-
tle oddity that the zero vector is orthogonal to every other vector, since
the dot product is always 0 in this case. Some authors require that u
and v be nonzero as part of the definition. It’s a minor point and we
won’t worry about it. When u and v are orthogonal, i.e., u · v = 0,

Pythagorean Theorem we see from the third equality in the derivation of
CBS above that

‖u + v‖2 = ‖u‖2 + ‖v‖2
,

which is really the Pythagorean theorem for vectors in R
n.

Example 4.11. Determine whether the following pairs of vectors are orthog-
onal.

(a) u = (2,−1, 3, 1) and v = (1, 2, 1,−2)
(b) u = (1 + i, 2) and v = (−2i, 1 + i).

Solution. For (a) we calculate

u · v = 2 · 1 + (−1)2 + 3 · 1 + 1(−2) = 1,

so that u is not orthogonal to v. For (b) we calculate

u · v = (1 − i)(−2i) + 2(1 + i) = −2i − 2 + 2 + 2i = 0,

so that u is orthogonal to v in this case. �
The next example illustrates a handy little trick well worth remembering.

Example 4.12. Find a vector orthogonal to the vector (a, b) in R
2 or C

2.
Solution. Simply interchange coordinates, conjugate them (this does

nothing if the entries are real), and insert a minus sign in front of one of
the coordinates, say the first. We obtain (−b, a). Now check that

(a, b) · (−b, a) = a(−b) + ba = 0. �

By parallel vectors we mean two vectors that are nonzero scalar
Parallel Vectors multiples of each other. Notice that parallel vectors may

determine the same or opposite directions. Our next application of the dot
product relates back to a fact that we learned in geometry: given two nonzero
vectors in the plane, it is always possible to resolve one of them into a sum
of a vector parallel to the other and a vector orthogonal to the other (see
Figure 4.2). The parallel component is called the projection of one vector
along the other. This idea is useful, for example, in physics problems where
we want to resolve a force into orthogonal components. As a matter of fact,
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θu

p

v

u − p

Fig. 4.2: Angle between vectors u and v, projection p of u along v and
(u − p) ⊥v.

we can develop this same idea in arbitrary standard vector spaces. That is the
content of the following useful fact.

Theorem 4.3. Projection Formula for Vectors Let u and v be vectors in a
vector space with v �= 0. Let

p =
v · u
v · vv and q = u − p.

Then p is parallel to v, q is orthogonal to v, and u = p + q.

Proof. Let p = cv, an arbitrary multiple of v. Then p is automatically
parallel to v. Impose the constraint that q = u − p be orthogonal to v. This
means, by definition, that

0 = v · q = v · (u − p) = v · u − v · (cv).

Add v · (cv) to both sides and pull the scalar c outside the dot product to
obtain that

c(v · v) = v · u
and therefore

c =
v · u
v · v .

So for this choice of c, q is orthogonal to p. Clearly, u = p + u − p, so the
proof is complete. �

It is customary to call the vector p of this theorem the

Projection Vector(parallel) projection of u along v. As above, we write

projv u =
v · u
v · vv.

The projection of one vector along another is itself a vector quantity.
A scalar quantity that is frequently associated with these calculations is

the component of u along v. It is defined as
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Component of Vector

compv u =
v · u
‖v‖ .

The connection between these two quantities is that

projv u =
compv u

‖v‖ v.

Notice that v/ ‖v‖ is a unit vector in the same direction as v. Therefore,
compv u is the signed magnitude of the projection of u along v and will be
negative if the angle between u and v exceeds π/2.

The vector q of Theorem 4.3 that is orthogonal to v also has a name: the

Orthogonal Projection orthogonal projection of u to v. We write

orthv u = u − projv u.

Note, however, that the default meaning of “projection” is “parallel projection.”

Example 4.13. Calculate the projection and component of u = (1,−1, 1, 1)
along v = (0, 1,−2,−1) and verify that u − p ⊥ v.

Solution. We have that

v · u = 0 · 1 + 1(−1) + (−2)1 + (−1)1 = −4,

v · v = 02 + 12 + (−2)2 + (−1)2 = 6,

so that
p = projv u =

−4
6

(0, 1,−2,−1) =
1
3
(0,−2, 4, 2).

It follows that
u − p =

1
3
(3,−1,−1, 1)

and
(u − p) · v =

1
3
(3 · 0 + 1(−1) + (−1)(−2) + 1(−1)) = 0.

Also, the component of u along v is

compv u =
v · u
‖v‖ =

−4√
6
. �

A hyperplane is a basic geometrical object on which inner product tools
can shed light. Here is the definition.

Definition 4.9. Hyperplane in R
n A hyperplane in R

n is the set of all x ∈ R
n

such that a · x = b, where the nonzero vector a ∈ R
n and scalar b are given.

These are familiar objects. For example, a hyperplane in R
3 is the set of

points (x, y, z) that satisfy an equation ax + by + cz = d, which is simply a
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plane in three dimensions. A hyperplane in R
2 is the set of points (x, y) that

satisfy an equation ax+by = c, which is just a line in two dimensions. (Notice
that in the absence of homogeneous space, a tuple like (x, y, z) has a dual
interpretation as point or vector.) Here is a general geometrical interpretation
of hyperplanes.

Theorem 4.4. Geometry of Hyperplanes Let H be the hyperplane in R
n

defined by the equation a · x = b and let x∗ ∈ H. Then

(1) a⊥ = {y ∈ R
n |a · y = 0} is a subspace of R

n of dimension n − 1.
(2) H = x∗ + a⊥ =

{
x∗ + y |y ∈ a⊥}

.

Proof. For (1), observe that a⊥ = N (
aT

)
, which is a subspace of R

n.
According to the projection formula for vectors, any element of R

n can be
expressed as a sum of a multiple of a and a vector orthogonal to a. Therefore,
R

n is spanned by a basis of a⊥ and a. Since dim R
n = n, a basis of a⊥

must have at least n − 1 elements. If it had n elements, then we would have
a⊥ = R

n, which would imply that a · a = 0 and therefore a = 0, which is
false. Therefore, dima⊥ = n− 1. Part (2) follows from Theorem 3.16 since x∗
is a particular solution to the linear system aT x = 0. �

Notice that the vector a can be read off immediately from the defining
equation. For example, we see by inspection that a vector orthogonal to the
plane given by 2x−3y + z = 4 is a = (2,−3, 1). Finding the defining equation
is a bit more work.

Example 4.14. Find an equation that defines the plane containing the three
(noncollinear) points P , Q, and R with coordinates (1, 0, 2), (2, 1, 0), and
(3, 1, 1), respectively.

Solution. First calculate displacement vectors

−−→
PQ = (2, 1, 0) − (1, 0, 2) = (1, 1,−2)
−→
PR = (3, 1, 1) − (1, 0, 2) = (2, 1,−1) .

These vectors are parallel to the plane. Therefore, their cross product, which
is orthogonal to each vector, will be orthogonal to the plane. We calculate

u × v =

∣∣∣∣∣∣
i j k
1 1 −2
2 1 −1

∣∣∣∣∣∣
= i − 3j − k.

Hence, the equation of the plane is x − 3y − z = b. To determine b, plug in
the coordinates of P and obtain that 1 · 1 − 3 · 0 − 2 · 1 = −1 = b. Hence, an
equation of the plane is x − 3y − z = −1. �

http://dx.doi.org/10.1007/978-3-319-74748-4_3
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Least Squares

Example 4.15. You are using a pound scale to measure weights for produce
sales when you notice that your scale is broken. The vendor at the next stall is
leaving and lends you another scale as she departs. You then realize that the
new scale is in units you don’t recognize. You happen to have some known
weights that are approximately 2, 5, and 7 pounds respectively. When you
weigh these items on the new scale you get the numbers 0.7, 2.4, and 3.2.
You get your calculator out and hypothesize that the unit of weight should
be some constant multiple of pounds. Model this information as a system of
equations. Is it clear from this system what the units of the scale are?

Solution. Express the relationship between the weight p in pounds and
the weight w in unknown units as w · c = p, where c is an unknown constant
of proportionality. Your data show that we have

0.7c = 2
2.4c = 5
3.4c = 7.

As a system of three equations in one unknown you see immediately that
this overdetermined system(too many equations) is inconsistent. After all,
the pound weights were only approximate and there is always some error
in measurement. What to do? You could just average the three inconsistent
values of c, thereby obtaining

c = (2/0.7 + 5/2.4 + 7/3.4)/3 = 2.3331.

You get a number, but it isn’t at all clear that this is a good strategy. �
There really is a better way, and it will lead to a slightly different es-

timate of the number c. This method, called the method of least squares,

Method of Least Squares was invented by C. F. Gauss to handle uncer-
tainties in orbital calculations in astronomy.

Here is the basic problem: suppose we have data that leads to a system of
equations for unknowns that we want to solve for, but the data has errors in
it and consequently leads to an inconsistent linear system

Ax = b.

How do we find the “best” approximate solution? One could answer this in
many ways. One of the most commonly accepted ideas is one that Gauss pro-
posed: the residual r = b − Ax should be 0, so its departure
Residual Vector from 0 is a measure of our error. Thus, we should try

to find a value of the unknown x that minimizes the norm of the residual
squared, i.e., a “solution” x such that

‖b − Ax‖2
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is minimized. Such a solution is called a “least squares” solution to the system.
This technique is termed “linear regression” by statisticians,who use it in sit-
uations in which one has many estimates for unknown parameters that taken
together are not perfectly consistent. It can be shown that if A is known, er-
rors in b are normally distributed and the least squares solution unique, then
it is an unbiased estimator of the true solution in the statistical sense.

Let’s try to get a fix on this problem. Even the one-variable case is instruc-
tive, so let’s use the preceding example. In this case the coefficient matrix A
is the column vector a = [0.7, 2.4, 3.4]T , and the right-hand-side vector is
b = [2, 5, 7]T . What we are really trying to find is a value of the scalar x = c
such that b−Ax = b−xa is a minimum. Here is a geometrical interpretation:
we want to find the multiple of the vector a that is closest to b. Geometry
suggests that this minimum occurs when b − xa is orthogonal to a, in other
words, when xa is the projection of b along a. Inspection of the projection
formula shows us that we must have

x =
a · b
a · a =

0.7 · 2 + 2.4 · 5 + 3.4 · 7
0.7 · 0.7 + 2.4 · 2.4 + 3.4 · 3.4

≈ 2.0887.

Notice that this value doesn’t solve any of the original equations exactly, but it
is, in a certain sense, the best approximate solution to all three equations taken
together. Also, this solution is not the same as the average of the solutions to
the three equations, which we computed to be approximately 2.3331.

V

b

a2

a1

b − Ax

x1a1 + x2a2 = Ax

Fig. 4.3: The vector in the subspace C(A) nearest to b.
Now how do we tackle the more general system Ax = b? Since Ax is just

a linear combination of the columns, what we should find is the vector of this
form that is closest to the vector b. See Figure 4.3 for a picture of the situa-
tion with n = 2. Our experience with the 1-dimensional case suggests that we
should require that the residual be orthogonal to each column of A, that is,
ai · (b − Ax) = aT

i (b − Ax) = 0, for all columns ai of A. Each column gives
rise to one equation. We can write all these equations at once in the form of
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the normal equations:

Normal Equations
AT Ax = AT b.

In fact, this is the same set of equations we get if we apply calculus to the
scalar function of variables x1, x2, . . . , xn given as f(x) = ‖b − Ax‖2 and
search for a local minimum by setting all partials equal to 0. Any solution to
this system will minimize the norm of b − Ax as x ranges over all elements
of R

n.

Positive Semidefinite
or Definite Matrix

The coefficient matrix B = AT A of the normal
system has some pleasant properties. For one, it is
a symmetric matrix. For another, it is a positive

semidefinite matrix , by which we mean that B is a square n × n matrix such
that xT Bx ≥ 0 for all vectors x ∈ R

n. In fact, in some cases B is even better
behaved because it is a positive definite matrix , by which we mean that B is a
square n × n matrix such that xT Bx > 0 for all nonzero vectors x ∈ R

n. (For
complex matrices, the condition is x∗Bx > 0 for all nonzero vectors x ∈ C

n.)
Does there exist a solution to the normal equations? The answer is yes. In

general, any solution to the normal equations minimizes the

Least Squares Solution
and Genuine Solution

residual norm and is called a least squares solu-
tion to the problem Ax = b. Since we now have
two versions of “solution” for the system Ax = b,

we should distinguish between them in situations that may refer to either. If
the vector x actually satisfies the equation Ax = b, we call x a genuine solu-
tion to the system to contrast it with a least squares solution. Certainly, every
genuine solution is a least squares solution, but the converse will not be true
if the original system is inconsistent. We leave the verifications as exercises.

The normal equations are guaranteed to be consistent—a nontrivial fact—
and will have infinitely many solutions if AT A is a singular matrix. Consider
the most common case, namely that in which A is a rank-n matrix. Recall that
in this case we say that A has full column rank. We can show that the n × n
matrix AT A is also of rank n. This means that it is an invertible matrix and
therefore the solution to the normal equations is unique. Here is the necessary
fact.

Theorem 4.5. Suppose that the real m × n matrix A has full column rank
n. Then the n × n matrix AT A also has rank n and is invertible.

Proof. Assume that A has rank n. Now suppose that for some vector x
we have

0 = AT Ax.

Multiply on the left by xT to obtain that

0 = xT 0 = xT AT Ax = (Ax)T (Ax) = ‖Ax‖2
,
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so that Ax = 0. However, we know by Theorem 1.5 that the homogeneous
system with A as its coefficient matrix must have a unique solution. Of course,
this solution is the zero vector. Therefore, x = 0. It follows that the square
matrix AT A has rank n and is also invertible by Theorem 2.6. �

Example 4.16. Two parameters, x1 and x2, are linearly related. Three sam-
ples are taken that lead to the system of equations

2x1 + x2 = 0
x1 + x2 = 0

2x1 + x2 = 2.

Show that this system is inconsistent, and find the least squares solution for
x = (x1, x2). What is the minimum norm of the residual b − Ax in this case?

Solution. In this case it is obvious that the system is inconsistent: the
first and third equations have the same quantity, 2x1 + x2, equal to different
values 0 and 2. Of course, we could have set up the augmented matrix of the
system and found a pivot in the right-hand-side column as well. We see that
the (rank 2) coefficient matrix A and right-hand side b are

A =

⎡
⎣

2 1
1 1
2 1

⎤
⎦ , and b =

⎡
⎣

0
0
2

⎤
⎦ .

Thus,

AT A =
[

2 1 2
1 1 1

] ⎡
⎣

2 1
1 1
2 1

⎤
⎦ =

[
9 5
5 3

]

and

AT b =
[

2 1 2
1 1 1

] ⎡
⎣

0
0
2

⎤
⎦ =

[
4
2

]
.

As predicted by the preceding theorem, AT A is invertible, and we use the
2 × 2 formula for the inverse:

(AT A)−1 =
[

9 5
5 3

]−1

=
1
2

[
3 −5

−5 9

]
,

so that the unique least squares solution is

x = (AT A)−1AT b =
1
2

[
3 −5

−5 9

] [
4
2

]
=

[
1

−1

]
.

The minimum value for the residual b − Ax occurs when x is a least squares
solution, so we get

http://dx.doi.org/10.1007/978-3-319-74748-4_1
http://dx.doi.org/10.1007/978-3-319-74748-4_2
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b − Ax =

⎡
⎣

0
0
2

⎤
⎦ −

⎡
⎣

2 1
1 1
2 1

⎤
⎦

[
1

−1

]
=

⎡
⎣

0
0
2

⎤
⎦ −

⎡
⎣

1
0
1

⎤
⎦ =

⎡
⎣

−1
0
1

⎤
⎦ ,

and therefore
‖b − Ax‖ =

√
2 ≈ 1.414.

This isn’t terribly small, but it’s the best we can do with this system. This
number tells us that the system is badly inconsistent. �

Computer Graphics

Cross products have important applications in computer graphics. Consider,
e.g., the problem of rendering the reflective properties of a surface: such ob-
jects are typically stored in a computer as a mesh of adjacent triangles with
the vertices of each triangle oriented in counterclockwise direction relative to
a viewer on the outside of the mesh. (Some graphics systems such as Mi-
crosoft’s Direct3D use a left-handed coordinate system and orient triangles in
the clockwise direction.)

Fig. 4.4: Tetrahedron with labeled vertices A, B, C, D.

Example 4.17. Compute unit outward normals for two of the faces of the
tetrahedron in Figure 4.4.

Solution. Consider the face of (correctly oriented) triangle DAC. Use the
edges of this triangle in the correct order to obtain the vectors the vectors
v =

−−→
DA and w =

−→
AC. Next compute the cross product of these vectors to

obtain the outward orthogonal vector
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v×w =

∣∣∣∣∣∣
i j k

−4 0 0
2 3 0

∣∣∣∣∣∣
= (0 · 0 − 0 · 3) i−(−4 · 0 − 0 · 2) j+(−4 · 3 − 2 · 0)k=−12k.

Thus, a unit vector in the same direction as v × w is u = −k. This is what
inspection of the tetrahedron tells us since triangle DAC lies in the xy-plane
and the outward direction points in the negative direction of the z-axis.

Next consider the face of triangle ABC. The edges yield vectors v =
−−→
AB

and w =
−−→
BC. Compute the cross product of these vectors to obtain the

outward orthogonal vector

v × w =

∣∣∣∣∣∣
i j k
2 1 4
0 2 −4

∣∣∣∣∣∣
= (−4 · 1 − 2 · 4) i − (−4 · 2 − 4 · 0) j + (2 · 2 − 0 · 1)k

= −12i + 8j + 4k. �

4.2 Exercises and Problems
In the following exercises, all vectors are real unless otherwise indicated.

Exercise 1. Find the angle θ in radians between the following pairs of vectors.
(a) (2,−5), (3, 4) (b) (4, 5,−3, 4), (2,−4, 1, 3) (c) (1,−2, 3, 4, 1), (2, 3, 1, 5, 5)

Exercise 2. Find the angle θ between the following pairs of vectors.
(a) (1, 0, 1, 0, 2), (2, 1,−3, 2, 4) (b) (7,−3, 1, 1, 2,−2), (2, 3,−4,−3, 2, 2)

Exercise 3. Find the projection and component of u along v, where the pair
u,v are
(a) (−4, 3), (2, 1) (b) (3, 0, 4), (2, 2, 1) (c) (1, 0,−5, 2) , (1, 1, 1, 1)

Exercise 4. Find the orthogonal projection of u to v, where the pair u,v are
(a) (1,−√

3), (2, 1) (b) (2, 1, 3), (8, 2,−4) (c) (3, 2, 1, 1, 1) , (1, 1, 1, 0, 1)

Exercise 5. Verify the CBS inequality for the vectors u and v, where the pair
u,v are
(a) i − 2j, i + j − k (b) (3,−2, 3), (1,−5, 2) (c) (3,−2), (−6, 4)

Exercise 6. Determine whether the following pairs of vectors u, v are orthog-
onal, and if so, verify that the Pythagorean theorem holds for the pair.
(a) (−2, 1, 3), (1, 2, 0) (b) (1, 1, 0,−1), (1,−1, 3, 0) (c) (i, 2), (2, i)

Exercise 7. For the following orthogonal pairs u,v and matrix M =

⎡
⎣

1 0 −1
0 1 0
0 0 1

⎤
⎦,

determine whether Mu and Mv are orthogonal.
(a) (2, 1, 1), (1, 0,−2) (b) (0, 1, 1), (1,−1, 1) (c) (3, 1,−2), (1, 3, 3)
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Exercise 8. For each of the pairs of Exercise 7, determine whether Mu and(
M−1

)T
v are orthogonal.

Exercise 9. Find equations for the following planes in R
3.

(a) The plane containing the points (1, 1, 2), (−1, 3, 2), (2, 4, 3).
(b) The plane containing the points (−2, 1, 1) and (0, 1, 2) and orthogonal to
the plane 2x − y + z = 3.

Exercise 10. Find equations for the following hyperplanes in R
4.

(a) The plane parallel to the plane 2x1 + x2 − 3x3 + x4 = 2 and containing
the point (2, 1, 1, 3).
(b) The plane through the origin and orthogonal to the vector (1, 0, 2, 1).

Exercise 11. For each pair A, b, solve the normal equations for the system
Ax = b and find the residual vector and its norm. Are there any genuine
solutions to the system?

(a)
[

1 3
1 0

]
,
[

1
3

]
(b)

⎡
⎣

2 −2
1 1
3 1

⎤
⎦,

⎡
⎣

2
−1

1

⎤
⎦ (c)

⎡
⎢⎢⎣

0 2 2
1 1 0

−1 1 2
1 −2 −3

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

3
1
0
0

⎤
⎥⎥⎦

Exercise 12. For each pair A, b, solve the normal equations for the system
Ax = b and find the residual vector and its norm. (Note: normal equations
may not have unique solutions.)

(a)

⎡
⎣

−1
1
3

⎤
⎦,

⎡
⎣

1
−1
−2

⎤
⎦ (b)

⎡
⎣

1 −1 0
1 1 2
1 2 3

⎤
⎦,

⎡
⎣

1
1
3

⎤
⎦ (c)

⎡
⎣

1 2 0
1 0 2
1 2 3

⎤
⎦,

⎡
⎣

1
1
3

⎤
⎦

Exercise 13. (Linear regression) You have collected data points (xk, yk) that
are theoretically linearly related by a line of the form y = ax + b. Each
data point gives an equation for a and b. The collected data points are
(0, .3), (1, 1.1), (2, 2), (3, 3.5), and (3.5, 3.6). Write out the resulting system of
5 equations, solve the normal equations to find the line that best fits this data,
and calculate the residual norm. A technology tool might be helpful.

Exercise 14. (Text retrieval) You are given the following term-by-document
matrix, that is, a matrix whose (i, j)th entry is the number of times term
ti occurs in document Dj . Columns of this matrix are document vectors, as
are queries. We measure the quality of a match between query and document
by the cosine of the angle θ between the two vectors, larger cosine being bet-
ter. Which of the following nine documents Di matches the query (0, 1, 0, 1, 1)
above the threshold value cos θ ≥ 0.5? Which is the best match to the query?

D1 D2 D3 D4 D5 D6 D7 D8 D9

t1 1 1 2 0 1 0 1 0 1

t2 0 1 0 1 0 1 1 0 0

t3 0 2 0 2 0 1 0 1 1

t4 1 0 1 0 1 0 2 1 0

t5 1 2 1 0 0 1 0 0 1
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Exercise 15. Compute unit outward normals for all the faces of the tetrahedron
of Example 4.17.

Exercise 16. Compute outward normals for all the faces of a tetrahedron
ABCD, where coordinates of A, B, C, D are (0, 0, 0), (1, 0, 3), (3, 3,−2) and
(4, 0, 2), respectively.

*Problem 17. Show that if two vectors u and v satisfy the equation ‖u + v‖2 =
‖u‖2 + ‖v‖2, then u and v must be orthogonal.

Problem 18. Show that the CBS inequality is valid for complex vectors u and
v by evaluating the nonnegative expression ‖u + cv‖2 with the complex dot
product and evaluating it at c = ‖u‖2

/ (u · v) in the case u · v �= 0.

Problem 19. Let A be an m×n real matrix and B = AT A. Show the following:
(a) The matrix B is symmetric and positive semidefinite.
(b) If A has full column rank, then B is positive definite.

Problem 20. Show that if A is a real matrix and AT A is positive definite then
A has full column rank.

Problem 21. In Example 4.15 two values of c are calculated: The average value
and the least squares value. Calculate each resulting residual and its norm.

Problem 22. Let u and v be vectors of the same length. Show that u − v is
orthogonal to u + v. Sketch a picture in the plane and interpret it geometri-
cally.

*Problem 23. Show that if A is a rank-one real matrix, then the normal equa-
tions with coefficient matrix A are consistent.

Problem 24. Show that if A is a complex matrix, then A∗A is Hermitian and
positive semidefinite.

*Problem 25. Show that Theorem 4.3 is valid for complex vectors.

Problem 26. It is hypothesized that sales of a certain product are linearly
related to three factors. The sales output is quantified as z and the three
factors as x1, x2, and x3. Six samples are taken of the sales and the factor
data. Results are contained in the following table. Does the hypothesis of a
linear relationship seem reasonable? Explain your answer.

z x1 x2 x3

527 13 5 6

711 6 17 7

1291 12 16 23

625 11 13 4

1301 12 27 14

1350 5 14 31

Problem 27. Show that the volume of the parallelepiped with adjacent edges
represented by vectors u, v, and w in R

3 is |u × v · w|, the absolute value of
the scalar triple product.
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4.3 Orthogonal and Unitary Matrices

Orthogonal Sets of Vectors

In our discussion of bases in Section 3.3, we saw that linear independence of
a set of vectors was a key idea for understanding the nature of vector spaces.
One of our examples of a linearly independent set was the standard basis
e1, e2, . . . , en of R

n. Here ei is the vector with a 1 in the ith coordinate and
zeros elsewhere. In the case of geometrical vectors and n = 3, these are just
the familiar vectors i, j,k. These vectors have some particularly nice properties
that go beyond linear independence. For one, each is a unit vector with respect
to the standard norm. Furthermore, these vectors are mutually orthogonal to
each other. These properties are so desirable that we elevate them to the
status of a definition.

Definition 4.10. Orthogonal and Orthonormal Set of Vectors The set of
vectors v1,v2, . . . ,vn in a standard vector space is said to be an orthogonal
set if vi · vj = 0 whenever i �= j. If, in addition, each vector has unit length,
i.e., vi · vi = 1, then the set of vectors is said to be an orthonormal set of
vectors.

Example 4.18. Which of the following sets of vectors are orthogonal?
Orthonormal? Use the standard inner product in each case.

(a){(3/5, 4/5), (−4/5, 3/5)} (b) {(1,−1, 0), (1, 1, 0), (0, 0, 1)} (c) {(1, i) , (i, 1)}
Solution. For (a) let v1 = (3/5, 4/5), v2 = (−4/5, 3/5) to obtain that

v1 · v2 =
−12
25

+
12
25

= 0 and v1 · v1 =
9
25

+
16
25

= 1 = v2 · v2.

It follows that the first set of vectors is an orthonormal set.
For (b) let v1 = (1,−1, 0),v2 = (1, 1, 0),v3 = (0, 0, 1) and check that

v1 · v2 = 1 · 1 − 1 · 1 + 0 · 0 = 0 and v1 · v3 = 1 · 0 − 1 · 0 + 0 · 1 = 0 = v2 · v3.

Hence, this set of vectors is orthogonal, but v1 ·v1 = 1 ·1+(−1) ·(−1)+0 = 2,
which is sufficient to show that the vectors do not form an orthonormal set.

For (c) let v1 = (1, i), v2 = (i, 1) to obtain that

v1 · v2 = 1̄i + i1 = i − i = 0 and v1 · v1 = 1 + 1 = 2 = v2 · v2.

It follows that this set is orthogonal, but not orthonormal. �
One of the principal reasons that orthogonal sets are so desirable is the

following key fact, which we call the orthogonal coordinates theorem.

http://dx.doi.org/10.1007/978-3-319-74748-4_3
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Theorem 4.6. Orthogonal Coordinates Theorem Let v1,v2, . . . ,vn be an
orthogonal set of nonzero vectors and suppose that v ∈ span {v1,v2, . . . ,vn}.
Then v can be expressed uniquely (up to order) as a linear combination of
v1,v2, . . . ,vn, namely

v =
v1 · v
v1 · v1

v1 +
v2 · v
v2 · v2

v2 + · · · +
vn · v
vn · vn

vn.

Proof. Since v ∈ span {v1,v2, . . . ,vn}, we know that v is expressible as
some linear combination of the vi’s, say

v = c1v1 + c2v2 + · · · + cnvn.

Now we carry out a simple but wonderful trick that is used frequently with
orthogonal sets, namely, take the inner product of both sides with the vector
vk. Since vk · vj = 0 if j �= k, we obtain

vk · v = vk · (c1v1 + c2v2 + . . . · · · + cnvn)
= c1vk · v1 + c2vk · v2 + · · · + cnvk · vn = ckvk · vk.

Since vk �= 0, we have ‖vk‖2 = vk · vk �= 0, so solve for ck to obtain that

ck =
vk · v
vk · vk

.

This proves that the coefficients ck are unique and establishes the formula of
the theorem. �

The vector
vk · v
vk · vk

vk should look familiar. In fact, it is the projection of

the vector v along the vector vk. Thus, Theorem 4.6 says that any linear com-
bination of an orthogonal set of nonzero vectors is the sum of its projections
in the direction of each vector in the set.

The coefficients ck of Theorem 4.6 are also familiar: they are the
coordinates of v relative to the basis B = {v1,v2, . . . ,vn}, so that [v]B =
(c1, c2, . . . , cn). This terminology was introduced in Section 3.3. Theorem 4.6
shows us that coordinates are rather easy to calculate with respect to an
orthogonal basis. Contrast this with Example 3.25.

Corollary 4.1. Orthogonal Implies Linearly Independent Every orthogonal
set of nonzero vectors is linearly independent.

Proof. Consider a linear combination of the vectors v1,v2, . . . ,vn. If some
linear combination were to have value zero, say

0 = c1v1 + c2v2 + · · · + cnvn,

it would follow from the preceding theorem that

http://dx.doi.org/10.1007/978-3-319-74748-4_3
http://dx.doi.org/10.1007/978-3-319-74748-4_3
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ck =
vk · 0
vk · vk

= 0.

It follows from the definition of linear independence that vectors v1,v2, . . . ,vn

are linearly independent. �

Caution: The converse of the corollary is false, that is, not every linearly
independent set of vectors is orthogonal.

For an example, consider the linearly independent vectors v1 = (1, 0),
v2 = (1, 1) in V = R

2.
Given an orthogonal set of nonzero vectors, it is easy to manufacture an

orthonormal set of vectors from them. Simply replace every vector in the
original set by the vector divided by its length. The formula of Theorem 4.6
simplifies very nicely if the vectors v1,v2, . . . ,vn form an orthonormal set
(which automatically consists of nonzero vectors!), namely

v = (v1 · v) v1 + (v2 · v) v2 + · · · + (vn · v) vn.

The following theorem gives us a nice analogue to the fact that every
linearly independent set of vectors can be expanded to a basis.

Theorem 4.7. Every orthogonal set of nonzero vectors in a standard vector
space can be expanded to an orthogonal basis of the space.

Proof. Suppose that we have expanded our original orthogonal set in R
n

to the orthogonal set of nonzero vectors v1,v2, . . . ,vk, where k < n. We
show how to add one more element. This is sufficient, because by repeating
this step we eventually fill up R

n. Let A = [v1,v2, . . . ,vk]T and let vk+1 be
any nonzero solution to Ax = 0, which exists since k < n. This vector is
orthogonal to v1,v2, . . . ,vk. �

Orthogonal and Unitary Matrices

In general, if we want to determine the coordinates of a vector b with respect
to a certain basis of vectors in R

n or C
n, we stack the basis vectors together to

form a matrix A, then solve the system Ax = b for the vector of coordinates
x of b with respect to this basis. In fact, x = A−1b. Now we have seen
that if the basis vectors happen to form an orthonormal set, the situation
is much simpler and we definitely don’t have to find A−1. Is this simplicity
reflected in properties of the matrix A? The answer is yes and we can see
this as follows: suppose that u1,u2, . . . ,un is an orthonormal basis of R

n and
let A = [u1,u2, . . . ,un]. Orthonormality says that uT

i uj = δij , where δij is
the Kronecker delta. This means that the matrix AT A, whose (i, j)th entry
is uT

nun, is simply [δij ] = I, that is, AT A = I. Now recall that Theorem 2.4
shows that a square one-sided inverse of a square matrix is really the two-sided
inverse. Hence, A−1 = AT . A similar argument works if u1,u2, . . . ,un is an

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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orthonormal basis of C
n except that we use conjugate transpose instead of

transpose. Matrices with these properties are important enough to be named.

Definition 4.11. Orthogonal and Unitary Matrix A square real matrix Q
is called orthogonal if QT = Q−1. A square matrix U is called unitary if
U∗ = U−1.

One could allow orthogonal matrices to be complex as well, but these
are not particularly useful for us, so in this text we will always assume that
orthogonal matrices have real entries. For real matrices Q, we have Q∗ = QT .
Hence, we see from the definition that orthogonal matrices are exactly the real
unitary matrices. The naming of orthogonal matrices is traditional in matrix
theory, but a bit unfortunate because it can be a source of confusion.

Caution: Do not confuse “orthogonal vectors” and “orthogonal matrix.” The
objects and meanings are different.

By orthogonal vectors we mean a set of vectors with a certain relationship
to each other, while an orthogonal matrix is a real matrix whose inverse
is its transpose. To make matters more confusing, there actually is a close
connection between the two terms, because a square matrix is orthogonal
exactly when its columns form an orthonormal set.

Example 4.19. Show that the matrix U = 1√
2

[
1 i
i 1

]
is unitary and that for

any angle θ, the matrix R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
is orthogonal.

Solution. It is sufficient to check that U∗U = I and R(θ)T R(θ) = I. So
we calculate

U∗U =
(

1√
2

[
1 i
i 1

])∗ 1√
2

[
1 i
i 1

]
=

1√
2

[
1 −i

−i 1

]
1√
2

[
1 i
i 1

]

=
1
2

[
1 − i2 i − i
−i + i 1 − i2

]
=

[
1 0
0 1

]
,

which shows that U is unitary. For the real matrix R(θ) we have

R(θ)T R(θ) =
([

cos θ − sin θ
sin θ cos θ

])T [
cos θ − sin θ
sin θ cos θ

]

=
[

cos θ sin θ
− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]

=
[

cos2 θ + sin2 θ cos θ sin θ − sin θ cos θ
− cos θ sin θ + sin θ cos θ sin2 θ + cos2 θ

]
=

[
1 0
0 1

]
,

which shows that R(θ) is orthogonal. �
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Orthogonal and unitary matrices have a certain “rigidity” quality about
them that is nicely illustrated by the rotation matrix R(θ). We first saw this
matrix in Example 2.18 of Chapter 2. The effect of multiplying a vector x ∈ R

2

by R(θ) is to rotate the vector counterclockwise through an angle of θ. This is
illustrated in Figure 2.3 of Chapter 2. In particular, angles between vectors and
lengths of vectors are preserved by such a multiplication. This is no accident
of R(θ), but rather a property of orthogonal and unitary matrices in general.
Here is a statement of these properties for orthogonal matrices. An analogous
fact holds for complex unitary matrices with vectors in C

n.

Theorem 4.8. Let Q be an orthogonal n × n matrix and x,y ∈ R
n with the

standard inner (dot) product. Then

‖Qx‖ = ‖x‖ and Qx · Qy = x · y.

Proof. We calculate the norm of Qx:

‖Qx‖2 = Qx · Qx = (Qx)T
Qx = xT QT Qx = xT x = ‖x‖2

,

which proves the first assertion, while similarly

Qx · Qy = (Qx)T
Qy = xT QT Qy = xT y = x · y. �

Here is another kind of orthogonal matrix that has turned out to be very
useful in numerical calculations and has a very nice geometrical interpreta-
tion as well. As with rotation matrices, it gives us a simple way of forming
orthogonal matrices directly without explicitly constructing an orthonormal
basis. The proof that Hv is orthogonal and symmetric is left as an exercise.

Definition 4.12. Householder Matrix A matrix of the form

Hv = I − 2
(
vvT

)
/

(
vT v

)
,

where 0 �= v ∈ R
n, is called a Householder matrix.

Example 4.20. Let v = (3, 0, 4) and compute the Householder matrix Hv.
What is the effect of multiplying it by the vector v?

Solution. We calculate Hv to be

I − 2
vT v

vvT =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ − 2

32 + 42

⎡
⎣

3
0
4

⎤
⎦ [

3 0 4
]

=

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ − 2

25

⎡
⎣

9 0 12
0 0 0
12 0 16

⎤
⎦ =

1
25

⎡
⎣

7 0 −24
0 25 0

−24 0 −7

⎤
⎦ .

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Therefore, multiplying Hv by v gives

Hvv =
1
25

⎡
⎣

7 0 −24
0 25 0

−24 0 −7

⎤
⎦

⎡
⎣

3
0
4

⎤
⎦ =

1
25

⎡
⎣

−75
0

−100

⎤
⎦ = −

⎡
⎣

3
0
4

⎤
⎦ = −v. �

Multiplication by a Householder matrix can be thought of as a geometrical
reflection that reflects the vector v to −v and leaves any vector orthogonal to
v unchanged. This is implied by the following theorem. For a picture of this
geometrical interpretation, see Figure 4.5. Notice that in this figure V is the
plane perpendicular to v and the reflections are across this plane.

wp

v

−p

V = v⊥

Hvw

u

Fig. 4.5: Action of Hv on w as a reflection across the plane V perpendicular
to v.

Theorem 4.9. Let Hv be the Householder matrix defined by v ∈ R
n and let

w ∈ R
n be written as w = u+p, where p is the projection of w along v and

u = w − p. Then
Hvw = u − p.

Proof. With notation as in the statement of the theorem, we have

p =
vT w
vT v

v, w = p + u and v ⊥ u by Theorem 4.3. So we calculate that

Hvw =
(

I − 2
vT v

vvT

)
(p + u) = p + u − 2

vT w

(vT v)2
vvT v − 2

vT w
vT v

vvT u

= p + u − 2
vT w
vT v

v − 0 = p + u − 2p = u − p. �

Corollary 4.2. Letw,q ∈ R
n with‖w‖ = ‖q‖andv = q−w.ThenHvw = q.
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Proof. We have that

(q + w)·v = (q + w)·(q − w) = qT q−qT w+wT q−wT w = ‖w‖2−‖q‖2 = 0

and
w =

1
2

(q + w) − 1
2

(q − w) .

It follows therefore that (q + w) ⊥ v and that p = − 1
2 (q − w) = 1

2v is the
projection of w along v. With notation as in Theorem 4.9, we set u = w−p =
w + 1

2 (q − w) = 1
2 (q + w) and obtain w = p + u. Thus, the theorem yields

Hvw = −p + u =
1
2

(q − w) +
1
2

(q + w) = q. �

Corollary 4.2 enables us to map a nonzero vector to any other vector of
the same length by way of an orthogonal transformation, as in the following
example.

Example 4.21. Find an orthogonal matrix that maps the vector w = (3, 0, 4)
to a multiple of (0, 1, 0) and confirm that it works.

Solution. We have ‖w‖2 = 32 + 42 = 25 = 52, so set q = (0, 5, 0) and
apply Corollary 4.2 with v = q − w = (−3, 5,−4). We calculate Hv to be

I − 2
vT v

vvT =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ − 2

(−3)2 + 52 + (−4)2

⎡
⎣

−3
5

−4

⎤
⎦ [−3 5 −4

]

=

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ − 1

25

⎡
⎣

9 −15 12
−15 25 −20
12 −20 16

⎤
⎦ =

1
25

⎡
⎣

16 15 −12
15 0 20

−12 20 9

⎤
⎦ .

Therefore, multiplying Hv by w gives

Hvw =
1
25

⎡
⎣

16 15 −12
15 0 20

−12 20 9

⎤
⎦

⎡
⎣

3
0
4

⎤
⎦ =

1
25

⎡
⎣

0
125

0

⎤
⎦ =

⎡
⎣

0
5
0

⎤
⎦ . �

Example 4.22. Let v = (3, 0, 4) and Hv the corresponding Householder ma-
trix (as in Example 4.20). The columns of this matrix form an orthonormal
basis for the space R

3. Find the coordinates of the vector w = (2, 1,−4)
relative to this basis.

Solution. We have already calculated Hv = [u1,u2,u3] in Example 4.20.
The vector c = (c1, c2, c3) of coordinates of w must satisfy the equations

w = c1u1 + c2u2 + c3u3 = Hvc.

Since Hv is orthogonal, it follows that
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c = H−1
v w = HT

v w = Hvw =
1
25

⎡
⎣

7 0 −24
0 25 0

−24 0 −7

⎤
⎦

⎡
⎣

2
1

−4

⎤
⎦ =

⎡
⎣

4.4
1.0

−0.8

⎤
⎦ . �

Usually we work with real Householder matrices. Occasionally, complex
numbers are a necessary part of the scenery. In such situations we can define
the complex Householder matrix by the formula Hv = I −2(vv∗)/(v∗v). The
projection formula (Theorem 4.3) remains valid for complex vectors, so that
the proof of Theorem 4.9 carries over to complex vectors provided that we
replace all transposes by conjugate transposes. Also, Hv = H∗

v = H−1
v is

unitary.
Our next example is to generate orthogonal matrices with specified

columns.

Example 4.23. Find orthogonal matrices with these orthonormal vectors as
columns: (a) 1√

3
(1, 1, 1) (b) 1

3 (1, 2, 2, 0), 1
3 (−2, 1, 0, 2)

Solution. For (a), set u1 = 1√
3

(1, 1, 1), and we see by inspection that a
second orthonormal vector is u2 = 1√

2
(1,−1, 0). To obtain a third, take the

cross product u3 = u1 × u2 = 1√
6

(1, 1,−2). This vector is orthogonal to u1

and u2 and has unit length. Hence, the desired matrix is

P = [u1,u2,u3] =
1√
6

⎡
⎣

√
2

√
3 1√

2 −√
3 1√

2 0 −2

⎤
⎦ .

To keep the arithmetic simple in (b), form the system Ax = 0 where the
rows of A are (1, 2, 2, 0) and (−2, 1, 0, 2). These are nonzero orthogonal vectors.
Solve the system to get a general solution (the reader should check this) x =(− 2

5x3 + 4
5x4,− 4

5x3 − 2
5x4, x3, x4

)
. So take x3 = 5, x4 = 0 and get a particular

solution (−2,−4, 5, 0). Take x3 = 0, x4 = 5 and get a particular solution
(4,−2, 0, 5). Normalize all four vectors to obtain the desired orthogonal matrix

P = [u1,u2,u3,u4] =
1

3
√

5

⎡
⎢⎢⎣

√
5 −2

√
5 −2 4

2
√

5
√

5 −4 −2
2
√

5 0 5 0
0 2

√
5 0 5

⎤
⎥⎥⎦ . �

Orthogonal bases have some very pleasant properties, such as easy
coordinate calculations. So given a linearly independent set w1,w2, . . . ,wn

of vectors, we would like a straightforward algorithm to turn this into an
orthogonal basis. The tool we need is the Gram–Schmidt algorithm.
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Theorem 4.10. Gram–Schmidt Algorithm Let w1,w2, . . . ,wn be linearly
independent vectors in a standard space. Define vectors v1,v2, . . . ,vn recur-
sively by the formula

vk = wk − v1 · wk

v1 · v1
v1 − v2 · wk

v2 · v2
v2 − · · · − vk−1 · wk

vk−1 · vk−1
vk−1, k = 1, . . . , n.

Then

(1) The vectors v1,v2, . . . ,vk form an orthogonal set.
(2) For each index k = 1, . . . , n,

span {w1,w2, . . . ,wk} = span {v1,v2, . . . ,vk} .

Proof. In the case k = 1, we have that the single vector v1 = w1 is an
orthogonal set and so span {w1} = span {v1}. Now suppose that for some
index k > 1 we have shown that v1,v2, . . . ,vk−1 is an orthogonal set such
that span {w1,w2, . . . ,wk−1} = span {v1,v2, . . . ,vk−1}. Then it is true that
vr ·vs = 0 for any distinct indices r, s both less than k. Take the inner product
of vk, as given by the formula above, with the vector vj , where j < k, and
we obtain

vj · vk = vj ·
(
wk − v1 · wk

v1 · v1
v1 − v2 · wk

v2 · v2
v2 − · · · − vk−1 · wk

vk−1 · vk−1
vk−1

)

= vj · wk − vj · v1
vj · wk

v1 · v1
− · · · − vj · vk−1

vk−1 · wk

vk−1 · vk−1

= vj · wk − vj · vj
vj · wk

vj , ·vj
= 0.

It follows that v1,v2, . . . ,vk is an orthogonal set. The Gram–Schmidt formula
show us that one of vk or wk can be expressed as a linear combination of the
other and v1,v2, . . . ,vk−1. Therefore,

span {w1,w2, . . . ,wk−1,wk} = span {v1,v2, . . . ,vk−1,wk}
= span {v1,v2, . . . ,vk−1,vk} ,

which is the second part of the theorem. Repeat this argument for each index
k = 2, . . . , n to complete the proof of the theorem. �

The Gram–Schmidt formula is easy to remember: subtract from the vector
wk all of the projections of wk along the directions v1,v2, . . . ,vk−1 to obtain
the vector vk.

Example 4.24. Let V = C(A) with the standard inner product and compute
an orthonormal basis of V , where

A =

⎡
⎢⎢⎣

1 2 0 −1
1 −1 3 2
1 −1 3 2

−1 1 −3 1

⎤
⎥⎥⎦ .
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Solution. We know that V is spanned by the four columns of A. However,
the Gram–Schmidt algorithm requests a basis of V and we don’t know that
the columns are linearly independent. We leave it to the reader to check that
the reduced row echelon form of A is the matrix

R =

⎡
⎢⎢⎣

1 0 2 0
0 1 −1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ .

It follows from the column space algorithm that columns 1, 2, and 4 of the
matrix A yield a basis of V . So let w1 = (1, 1, 1,−1), w2 = (2,−1,−1, 1),
w3 = (−1, 2, 2, 1), and apply the Gram–Schmidt algorithm to obtain

v1 = w1 = (1, 1, 1,−1),

v2 = w2 − v1 · w2

v1 · v1
v1

= (2,−1,−1, 1) − −1
4

(1, 1, 1,−1) =
1
4
(9,−3,−3, 3),

v3 = w3 − v1 · w3

v1 · v1
v1 − v2 · w3

v2 · v2
v2

= (−1, 2, 2, 1) − 2
4
(1, 1, 1,−1) − −18

108
(9,−3,−3, 3)

=
1
4
(−4, 8, 8, 4) − 1

4
(2, 2, 2,−2) +

1
4
(6,−2,−2, 2) = (0, 1, 1, 2) .

Finally, normalize each vector to obtain the orthonormal basis

u1 =
v1

‖v1‖ =
1
2
(1, 1, 1,−1),

u2 =
v2

‖v2‖ =
1√
108

(9,−3,−3, 3) =
1

2
√

3
(3,−1,−1, 1),

u3 =
v3

‖v3‖ =
1√
6
(0, 1, 1, 2). �

For hand calculations these observations are useful:

• If one encounters an inconvenient fraction, such as the 1
4 in v2, replace the

calculated v2 by 4v2, thereby eliminating the fraction, and yet achieving
the same results in subsequent calculations. The idea here is that for any
nonzero scalar c,

v2 · w
v2, ·v v2 =

cv2 · w
cv2 · cv2

cv2.

So we could have replaced 1
4 (9,−3,−3, 3) by (3,−1,−1, 1) and achieved

the same results.
• The same remark applies to the normalizing process, since in general,

v2

‖v2‖ =
cv2

‖cv2‖ .
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The Gram–Schmidt algorithm is capable of handling linearly dependent span-
ning sets gracefully, provided that all zero vectors are discarded. We illustrate
this fact with the following example:

Example 4.25. Suppose we had used all the columns of A in Example 4.24
instead of linearly independent ones, labeling them w1,w2,w3,w4. How would
the Gram–Schmidt calculation work out?

Solution. Everything would have proceeded as above until we reached the
calculation of v3, which would then yield

v3 = w3 − v1 · w3

v1 · v1
v1 − v2 · w3

v2 · v2
v2

= (0, 3, 3,−3) − 9
4
(1, 1, 1,−1) +

1
4
(9,−3,−3, 3) = (0, 0, 0, 0).

This tells us that w3 is a linear combination of v1 and v2, which mirrors
the fact that w3 is a linear combination of w1 and w2. Now discard v3 and
continue the calculations to get that

v4 = w4 − v1 · w4

v1, ·v v1 − v2 · w4

v2 · v2
v2

= (−1, 2, 2, 1) − 2
4
(1, 1, 1,−1) − −18

108
(9,−3,−3, 3) = (0, 1, 1, 2) . �

Interestingly enough, this calculation yields the same third vector that we
obtained in Example 4.24. The upshot is that Gram–Schmidt can be applied
to any spanning set, provided that any zero vectors that result from this
calculation are discarded. The net result is still an orthogonal basis.

4.3 Exercises and Problems

Exercise 1. Determine whether the following sets of vectors are orthogonal,
orthonormal, or linearly independent.
(a) (1,−1, 2), (2, 2, 0) (b) (3,−1, 1), (1, 2,−1), (2,−1, 0) (c) 1

5 (3, 4), 1
5 (4,−3)

Exercise 2. Determine whether these sets are orthogonal or orthonormal. If
orthogonal but not orthonormal, normalize the set to form an orthonormal
set.
(a) (2,−3, 2, 1), (2, 1,−1, 1) (b)1

3 (2, 2, 1), 1√
5

(1, 0,−2)(c)(1 + i,−1), (1, 1 − i)

Exercise 3. Let v1 = (1, 1, 0), v2 = (−1, 1, 1), and v3 = 1
2 (1,−1, 2). Show that

this set is an orthogonal basis of R
3 and find the coordinates of the follow-

ing vectors v with respect to this basis by using the orthogonal coordinates
theorem.
(a) (1, 2,−2) (b) (1, 0, 0) (c) (4,−3, 2)
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Exercise 4. Let v1 = (−1, 1, 1) and v2 = (1,−1, 2). Determine whether each
of the following vectors v is in span {v1,v2} by testing the orthogonal
coordinates theorem (if v ∈ span {v1,v2} then Theorem 4.6 should yield
an equality).
(a) (1,−1, 8) (b) (−2, 1, 3) (c) (−4, 4, 1)

Exercise 5. Determine whether the following matrices are orthogonal or uni-
tary and if so, find their inverse.

(a) 1
5

[
3 4
4 −3

]
(b) 1√

2

⎡
⎣

1 0 −1
0

√
2 0

−1 0 1

⎤
⎦ (c)

⎡
⎣

1 0 0
0 1 −1
0 1 1

⎤
⎦

(d) 1
2

⎡
⎢⎢⎣

1 1 −1 1
1 −1 1 1

−1 1 −1 1
−1 −1 1 1

⎤
⎥⎥⎦ (e) 1√

2

⎡
⎣

1 0 1
0

√
2i 0

i 0 −i

⎤
⎦ (f) 1√

3

[
1 + i i

i 1 − i

]

Exercise 6. Find the coordinates of the following vectors with respect to the
basis of column vectors of the corresponding matrices of Exercise 5.
(a) (2, 4) (b) (3, 1, 1) (c) (4,−3, 1)
(d) (3,−2, 4, 1) (e) (i,−2, 1) (f) (1, 2)

Exercise 7. Let u = (1, 2,−2), w = (3, 0, 0), and v = u − w. Construct the
Householder matrix Hv and calculate Hvu and Hvw.

Exercise 8. Find a matrix reflecting vectors in R
3 across the plane x+y+z = 0.

Exercise 9. Find orthogonal or unitary matrices that include the following or-
thonormal vectors in their columns.
(a) 1√

6
(1, 2,−1), 1√

3
(−1, 1, 1) (b) 1

5 (−4, 3) (c) (0, i)

Exercise 10. Repeat Exercise 9 for these vectors.
(a) 1

3 (1, 2,−2) (b) 1
2 (1, 1,−1,−1), 1

2 (1,−1, 1,−1) (c) 1
2 (1 + i, 1 − i)

Exercise 11. Let P = 1
2

⎡
⎣

1 0 −1
0 0 0

−1 0 1

⎤
⎦ . Verify that P is a projection matrix ,

that is, PT = P and P 2 = P . Also verify that that R = I − 2P is a reflection
matrix, that is, R is a symmetric orthogonal matrix.

Exercise 12. Let R =

⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦ and P = 1

2 (I−R). Verify that R is a reflection

matrix and P is a projection matrix.
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Exercise 13. Apply the Gram–Schmidt algorithm to the columns of the follow-
ing matrices in left-to-right order.

(a)

⎡
⎣

1 −1 1
1 2 3

−1 2 1

⎤
⎦ (b)

⎡
⎣

1 2 1
0 0 4
1 2 0

⎤
⎦ (c)

[
1 1
1 2

]

Exercise 14. Apply the Gram–Schmidt algorithm to the following vectors:
(a) (1,−2, 0), (0, 1, 1), (1, 0, 2).
(b) (1, 0, 0), (1, 1, 0), (1, 1, 1).
(c) (1, 1,−1,−1), (0, 1, 1, 0), (2, 2, 1, 0), (1, 2, 3, 1).

Problem 15. Show that if the real n × n matrix M is invertible and u,v ∈ R
n

are orthogonal, then so are Mu and
(
MT

)−1
v. What does this imply for

orthogonal matrices?

*Problem 16. Show that if P is an orthogonal matrix, then eiθP is a unitary
matrix for any real θ.

Problem 17. Let P be a real projection matrix and R = I − 2P. Prove that R
is a reflection matrix. (See Exercise 11 for definitions.)

Problem 18. Let R be a reflection matrix. Prove that P = 1
2 (I − R) is a

projection matrix.

Problem 19. Prove that every Householder matrix is a reflection matrix.

Problem 20. Show that the product of orthogonal matrices is orthogonal, and
by example that the sum need not be orthogonal.

Problem 21. Let the quadratic function f : R
n → R be defined by the formula

y = f(x) = xT Ax, where A is a real matrix. Suppose that an orthogonal
change of variablesis made in the domain, say x = Qx′, where Q is orthogonal.
Show that in the new coordinates y = x′T (QT AQ)x′.

4.4 *Applications and Computational Notes

The QR Factorization

We are going to use orthogonality ideas to develop one more way of solving
the linear system Ax = b, where the m × n real matrix A has full column
rank. In fact, if the system is inconsistent, then this method will find the
unique least squares solution to the system. Here is the basic idea: express the
matrix A in the form A = QR, where the columns of the m × n matrix Q are
orthonormal vectors and the n×n matrix R is upper triangular with nonzero
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diagonal entries. Such a factorization of A is called a QR factorization of A.
It follows that the product QT Q is equal to In. Now multiply both sides of
the linear system on the left by QT to obtain that

QT Ax = QT QRx = IRx = Rx = QT b.

The net result is a simple square system with a triangular matrix, which we
can solve by back solving. That is, we use the last equation to solve for xn,
then the next to the last to solve for xn−1, and so forth. This is the back
solving phase of Gaussian elimination as we first learned it in Chapter 1,
before we were introduced to Gauss–Jordan elimination.

One has to wonder why we have any interest in such a factorization, since
we already have Gauss–Jordan elimination for system solving. Furthermore, it
can be shown that finding a QR factorization is harder by a factor of about 2,
that is, requires about twice as many floating-point operations to accomplish.
So why bother? There are many answers. For one, it can be shown that using
the QR factorization has an advantage of higher accuracy than Gauss–Jordan
elimination in certain situations. For another, QR factorization gives us a
method for solving least squares problems. We’ll see an example of this method
at the end of this section.

Where can we find such a factorization? As a matter of fact, we already
have the necessary tools, compliments of the Gram–Schmidt algorithm. To
explain matters, let’s suppose that we have a matrix A = [w1,w2,w3] with
linearly independent columns. Application of the Gram–Schmidt algorithm
leads to orthogonal vectors v1,v2,v3 by the following formulas:

v1 = w1

v2 = w2 − v1 · w2

v1 · v1
v1

v3 = w3 − v1 · w3

v1 · v1
v1 − v2 · w3

v2 · v2
v2.

Next, solve for w1,w2,w3 in the above equations to obtain

w1 = v1

w2 =
v1 · w2

v1 · v1
v1 + v2

w3 =
v1 · w3

v1 · v1
v1 +

v2 · w3

v2 · v2
v2 + v3.

In matrix form, these equations become

A = [w1,w2,w3] = [v1,v2,v3]

⎡
⎣

1 v1·w2
v1·v1

v1·w3
v1·v1

0 1 v2·w3
v2·v2

0 0 1

⎤
⎦ .

Now normalize the vj ’s by setting qj = vj/ ‖vj‖ and observe that

http://dx.doi.org/10.1007/978-3-319-74748-4_1
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A = [q1,q2,q3]

⎡
⎣

‖v1‖ 0 0
0 ‖v2‖ 0
0 0 ‖v3‖

⎤
⎦

⎡
⎣

1 v1·w2
v1·v1

v1·w3
v1·v1

0 1 v2·w3
v2,v2

0 0 1

⎤
⎦

= [q1,q2,q3]

⎡
⎣

‖v1‖ v1·w2
‖v1‖

v1·w3
‖v1‖

0 ‖v2‖ v2·w3
‖v2‖

0 0 ‖v3‖

⎤
⎦ .

This gives our QR factorization, which can be alternatively written as

A = [w1,w2,w3] = [q1,q2,q3]

⎡
⎣

‖v1‖ q1 · w2 q1 · w3

0 ‖v2‖ q2 · w3

0 0 ‖v3‖

⎤
⎦ = QR.

In general, the columns of A are linearly independent exactly when A has full
column rank. It is easy to see that the argument we have given extends to any
such matrix, so we have the following theorem.

Theorem 4.11. QR Factorization If A is an m×n full-column-rank matrix,
then A = QR, where the columns of the m × n matrix Q are orthonormal
vectors and the n × n matrix R is upper triangular with nonzero diagonal
entries.

Example 4.26. Let the full-column-rank matrix A be given as

A =

⎡
⎢⎢⎣

1 2 −1
1 −1 2
1 −1 2

−1 1 1

⎤
⎥⎥⎦ .

Find a QR factorization of A and use this to find the least squares solution to
the problem Ax = b, where b = (1, 1, 1, 1). What is the norm of the residual
r = b − Ax in this problem?

Solution. Notice that the columns of A are just the vectors w1,w2,w3 of
Example 4.24. Furthermore, the vectors u1,u2,u3 calculated in that example
are just the q1,q2,q3 that we require. Thus, we have from those calculations
that

‖v1‖ = ‖(1, 1, 1,−1)‖ = 2 and q1 =
1
2
(1, 1, 1,−1),

‖v2‖ =
∥∥∥∥

1
4
(9,−3,−3, 3)

∥∥∥∥ =
3
2

√
3 and q2 =

1
2
√

3
(3,−1,−1, 1),

‖v3‖ = ‖(0, 1, 1, 2)‖ =
√

6 and q3 =
1√
6
(0, 1, 1, 2).

Now we calculate
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〈q1,w2〉 =
1
2
(1, 1, 1,−1) · (2,−1,−1, 1) = −1

2

〈q1,w3〉 =
1
2
(1, 1, 1,−1) · (−1, 2, 2, 1) = 1

〈q2,w3〉 =
1

2
√

3
(3,−1,−1, 1) · (−1, 2, 2, 1) = −

√
3.

It follows that

A =

⎡
⎢⎢⎣

1/2 3/(2
√

3) 0
1/2 −1/(2

√
3) 1/

√
6

1/2 −1/(2
√

3) 1/
√

6
−1/2 1/(2

√
3) 2/

√
6

⎤
⎥⎥⎦

⎡
⎣

2 −1/2 1
0 3

2

√
3 −√

3
0 0

√
6

⎤
⎦ = QR.

Solving the system Rx = QT b, where b = (1, 1, 1, 1), by hand is rather tedious
even though the system is a simple triangular one. We leave the detailed
calculations to the reader. Better yet, use a technology tool to obtain the
solution x =

(
1
3 , 2

3 , 2
3

)
. Thus,

r = b − Ax =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

1 2 −1
1 −1 2
1 −1 2

−1 1 1

⎤
⎥⎥⎦

⎡
⎣

1/3
2/3
2/3

⎤
⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .

It follows that the system Ax = b is actually consistent, since the least squares
solution turns out to be a genuine solution to the problem. �

Does this method really solve least squares problems? It does, and to see
why, observe that with the above notation we have AT = (QR)T = RT QT ,
so that the normal equations for the system Ax = b, given by AT Ax = AT b,

QR as Least Squares Solverbecome

AT Ax = RT QT QRx = RT IRx = RT Rx = AT b = RT QT b.

But the triangular matrix R is invertible because its diagonal entries are
nonzero; cancel it and obtain that the normal equations are equivalent to
Rx = QT b, which is exactly what the method we have described solves.

A Practical Algorithm for the QR Factorization

In the preceding section we saw that the QR factorization can be used to solve
systems including least squares. We also saw the factorization as a consequence
of the Gram–Schmidt algorithm. However, the classical Gram–Schmidt algo-
rithm that we have presented has certain numerical stability problems when
used in practice. There is another approach to QR factorization that uses the
Householder matrices we introduced in Section 4.3. It is more efficient and
stable than Gram–Schmidt. If you use a technology tool to findthe QR fac-
torization of a matrix, it is likely that this is the method used by the system.
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The basic idea behind this Householder QR is to use a succession of House-
holder matrices to zero out the lower triangle of a matrix, one column at a
time. The key fact about Householder matrices is Corollary 4.2, which says
that any two vectors of the same length can be reflected to each other by
way of a Householder matrix. Thus, we have a tool for massively zeroing out
entries in a vector of the form x = (x1, x2, . . . , xn). Set y = (±‖x‖ , 0, . . . , 0)
and v = y−x to construct Householder H such that Hvx = y. It is standard
to choose the ± to be the negative of the sign of x1. In this way, the first term
will not cause any loss of accuracy to subtractive cancellation. We can extend
this idea to zeroing out lower parts of x only, say

x =
[

z
w

]
=

⎡
⎢⎢⎣

z
×
×
×

⎤
⎥⎥⎦ by using y =

⎡
⎢⎢⎣

z
±‖w‖

0
0

⎤
⎥⎥⎦ so v =

⎡
⎢⎢⎣

0
×
×
×

⎤
⎥⎥⎦ and Hvx =

⎡
⎢⎢⎣

z
×
0
0

⎤
⎥⎥⎦ .

Note that the work of computing Hvx is reduced as the size of z increases. The
details are left as an exercise. We can apply this idea to systematically zero
out subdiagonal entries by successive multiplication by Householder (hence
orthogonal) matrices; schematically we have this representation of a full-rank
m × n matrix A:

A =

⎡
⎢⎢⎣

× × ×
× × ×
× × ×
× × ×

⎤
⎥⎥⎦

−−−−→
H1

⎡
⎢⎢⎣

× × ×
0 × ×
0 × ×
0 × ×

⎤
⎥⎥⎦

−−−−→
H2

⎡
⎢⎢⎣

× × ×
0 × ×
0 0 ×
0 0 ×

⎤
⎥⎥⎦

−−−−→
H3

⎡
⎢⎢⎣

× × ×
0 × ×
0 0 ×
0 0 0

⎤
⎥⎥⎦ = R,

so that H3H2H1A = R. Now we can check easily from the definition of
a Householder matrix H that HT = H = H−1. Thus, if we set Q =
H−1

1 H−1
2 H−1

3 = H1H2H3, it follows that A = QR. Notice that we don’t
actually have to carry out the multiplications to compute Q unless they are
needed, and the vectors needed to define these Householder matrices are them-
selves easily stored in a single matrix. What we have here is just a bit different
from the QR factorization discussed in the last section. Here the matrix Q
is a full m × m matrix and R is the same size as A. Even if A is not of full
column rank, this procedure will work, provided we simply skip construction
of H in the case that there are no nonzero elements to zero out in some col-
umn. Consequently, we have essentially proved the following theorem, which
is sometimes called a full QR factorization, in contrast to the reduced QR
factorization of Theorem 4.11.

Theorem 4.12. Full QR Factorization Let A be a real m×n matrix. Then
there exist an m×m orthogonal matrix Q and m×n upper triangular matrix
R such that A = QR.

All of the results we have discussed regarding QR factorization work for
complex matrices, provided we use unitary matrices and conjugate transpose.
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Data Compression and the Haar Wavelet Transform

Our goal here is to illustrate a compression method for graphics images. Data
compression is a fundamental tool in the efficient transmission of informa-
tion. For example, such methodologies lie behind graphics formats such as
the widely used JPEG standard. Moreover, it turn out that these tools can be
used for other problems such as edge detection in images as well. This is a very
large area of current activity and a full treatment requires delving into topics
such as Fourier series and transforms. We shall only consider a fairly simple
version of these tools, and our treatment of them is an compacted variation
on the very full development of this subject in the textbook Discrete Wavelet
Transformations [10] by Patrick van Fleet.

Let’s return to the ideas of DSP introduced in Section 2.8 of Chapter 2. We
begin with what could be considered the simplest possible smoothing digital
filter of the bi-infinite data sequence {xk}∞

k=−∞, namely, averaging terms:

yk =
1
2

(xk + xk−1) , k ∈ Z. (4.4)

Suppose we restrict ourselves to a finite sequence of N data points {xk}N
k=1 and

apply the filter to it. If we pad the sequence with x0 = x1 for equation (4.4),
the output consists of as many points as we input. Yet we have actually lost
some information in the sense that we cannot recover the original signal from
the smoothed output {yk}N

k=1. There is a simple solution to this problem: In
parallel, apply the unsmoothing filter

zk =
1
2

(xk − xk−1) , k = 1, . . . , N. (4.5)

Now we can fully recover the data because yk + zk = xk, k = 1, ..., N . To
visualize the action of these filters, consider the following example.

Example 4.27. Sample the curve g (t) = 3
2 +cos

(
π
4 t

)− 1
4 cos

(
7π
4 t

)
, 0 ≤ t ≤ 8

at times tk = k/5, k = 0, 1, . . . , 40, to obtain data points xk = g (tk) and plot
(in dot-to-dot format) the data xk along with the yk and zk obtained by the
filters of equations (4.4) and (4.5).

Solution. See Figure 4.6 for the results of these calculations. Notice that
the graph of the zk’s is positive where the yk’s are below the xk’s and negative
where the yk’s are above the xk’s, which confirms that xk = yk + zk. �

There is a curious inefficiency about the actions of the two filters in equa-
tions (4.4) and (4.5): In order to keep full information on the filtered data
xk, k = 1, 2, . . . , N , we must keep 2N bits of data yk, zk, k = 1, 2, . . . , N ,
which doubles the amount of storage the original data required. However,
there is a clever way around this issue. Notice that we only used the fact
that xk = yk + zk, but there is another bit of arithmetic that we have ne-
glected to mention: xk−1 = yk − zk. Thus, complete information about two

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Fig. 4.6: Graph of data from Example 4.27: xk (—), yk (—) and zk (—),
k = 0, 1, . . . , 40.

successive data bits xk−1, xk is contained in a single pass of the two filters. So
why not downsample our collection of data to half as many repetitions of the
filters in (4.4) and (4.5)? Of course, this requires the number of input data
points N = 2M to be even and that we organize it in groups of two: xk, xk−1,
k = 2, 4, . . . , N . The entire procedure can be expressed in matrix form, as the
following example illustrates.

Example 4.28. Apply filters of equations (4.4) and (4.5) to a sample of N =
6 samples with downsampling and display this process as a single matrix
multiplication.

Solution. The equations in question in this case are (in increasing data
index):

1
2

(x1 + x2) = y2
1
2 (x3 + x4) = y4

1
2

(x5 + x6) = y6

1
2

(−x1 + x2) = z2
1
2 (−x3 + x4) = z4

1
2

(−x5 + x6) = z6

All of this can be expressed as the single matrix product

A6x ≡ 1
2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

−1 1 0 0 0 0
0 0 −1 1 0 0
0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

y2

y4

y6

z2

z4

z6

⎤
⎥⎥⎥⎥⎥⎥⎦

. �
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A note of caution: No claim of efficiency is made for this matrix form of
the transformation; however it allows for an important conceptualization of
the process, which is made clear by this simple calculation:

A6A
T
6 =

1
4

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

−1 1 0 0 0 0
0 0 −1 1 0 0
0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 0
1 0 0 1 0 0
0 1 0 0 −1 0
0 1 0 0 1 0
0 0 1 0 0 −1
0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

=
1
2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

=
1
2
I6.

In general, given an even number N = 2M , the N × N matrix AN is defined
as

AN =
1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 . . . 0 0
0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
· · · · · · · · · · · · · · · · · · · · ·
−1 1 0 0 . . . 0 0

0 0 −1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1
2

⎡
⎣

U
· · ·
L

⎤
⎦ (4.6)

where U and L are M × N matrices representing upper and lower halves of
2AN . A calculation similar to the above for A6 shows that ANAT

N = 1
2IN .

Thus, the matrix AN is nearly orthogonal.
A slight adjustment in the filters that led to the matrix AN yields formulas

that lead to an orthogonal matrix:

Definition 4.13. Haar Filters The Haar filter and Haar wavelet filter for
the data sequence {xk}∞

k=−∞ are defined respectively as

yk =
√

2
2

(xk + xk−1) , k ∈ Z. (4.7)

and

zk =
√

2
2

(xk − xk−1) , k ∈ Z. (4.8)

If we repeat the construction of matrices like AN with the above filters,
we obtain the following:
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Definition 4.14. Haar Wavelet Transform Matrix Given an even number
N, the N × N Haar wavelet transform (HWT) matrix is defined as

WN =
√

2
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 . . . 0 0
0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
· · · · · · · · · · · · · · · · · · · · ·
−1 1 0 0 . . . 0 0

0 0 −1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
√

2
2

⎡
⎣

U
· · ·
L

⎤
⎦ . (4.9)

A calculation like that of Example 4.28, which is left as an exercise, shows
the following key fact:

Theorem 4.13. The Haar wavelet transform matrix WN is orthogonal.

What is preserved by using the Haar matrix on a signal vector x is its
magnitude, i.e., ‖WNx‖ = ‖x‖. If we view that magnitude as a measure of
the “energy” of the signal, then rather than reduce that energy by transforming
it via AN , the Haar transform WN redistributes it among coordinates of x.

An intriguing possibility for the filter matrices that we have introduced is
the application of these filters to an entire image which is itself written out
as a matrix with each entry representing a pixel of the image. We consider
only the simplest kind of image: A grayscale image in which each pixel is
determined by a number representing a shade between black and white. The
simplest values for pixels are integer values between 0 (black) and 255 (white),
since such a value can be stored in a computer as a single byte.

Let such a graphic be represented by an m×n matrix A of integers between
0 and 255, where m and n are even. Now apply the Haar wavelet transform
to each column of A resulting in the new m × n matrix WmA. This results
in a somewhat flattened new image (low frequency data) in the top half of
WmA created by applying the Haar filter (equation 4.7) to the columns of A,
and a crude picture of edges (high frequency data) in the lower half of WmA
created by applying the Haar wavelet filter (equation 4.8) to the columns of
A. A similar argument could be applied to the rows of A which are simply
the columns of AT . Notice that

(
WnAT

)T = AWT
n . Thus, we can apply both

operations simultaneously and obtain the equation

WmAWT
n = 2

[
B V
H D

]
. (4.10)
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(a) Digital image of 512 × 344 matrix A (b)  Digital image of matrix 1
2
W512AW T

344

Fig. 4.7: Image and resulting image via an application of the HWT. (Master
of the Castello Nativity, Portrait of a Woman, ca. 1450s. The Metropolitan
Museum of Art; The Jules Bache Collection, 1949.)

The matrix WmAWT
n is called the Haar wavelet transform of A. Each of

Haar Wavelet Transformthe blocks in this matrix are m
2 × n

2 and we
interpret them as follows: B represents the blurred image of A, while V , H
and D represent edges of the image A along vertical, horizontal and diagonal
directions, respectively. See Figure 4.7 for images defined by a 512×344 matrix
A and transformed matrix 1

2W512AWT
344. But there is an obvious question

here: Why the factor of 2 in equation (4.10)? This is best explained by the
following calculation:

Example 4.29. Use block arithmetic to determine the range of possible values
of a matrix obtained by the Haar wavelet transform applied to the m×n matrix
A (m and n even), given that the range of possible values of the entries of A
are in the interval [0,M ].

Solution. Use the notation UN , LN for the N
2 ×N upper and lower blocks

of equation (4.9). From this equation and block arithmetic we see that

WmAWT
n =

√
2

2

[
Um

Lm

]
A

√
2

2

[
Un

Ln

]T

=
2
4

[
UmA
LmA

] [
UT

n LT
n

]
=

1
2

[
UmAUT

n UmALT
n

LmAUT
n LmALT

n

]
. (4.11)
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(a) Enlarged blur (b) Edge image

Fig. 4.8: Enlarged blur and edge image obtained from Figure 4.7(b). (Master
of the Castello Nativity, Portrait of a Woman, ca. 1450s. The Metropolitan
Museum of Art; The Jules Bache Collection, 1949.)

Observe that multiplication on either side of a matrix by a UN or UT
N results

in adding pairs of elements of the matrix. Thus, elements of UmA and AUT
n

are in the range of [0, 2M ] and elements of UmAUT
n are in the range of [0, 4M ].

On the other hand multiplication on either side by an LN or LT
N results in

subtraction of elements of the matrix. Thus, elements of LmA are in the range
of [−M,M ], elements of LmALT

n are in the range of [−2M, 2M ] and elements
of LmAUT

n and UmALT
n are in the range of [−2M, 2M ]. �

This example indicates that the correct scaling of a transformed matrix
should be 1

2 since the block matrix on the right-hand side of equation (4.11)
already has a factor of 1

2 in front of it. This brings the positive elements
into the range of [0,M ] and the negative elements into the range of

[−M
2 , 0

]
.

No positive scaling by itself can bring the negative numbers into a positive
range, so these have to be dealt with separately. One option is to zero out the
negative numbers. Another is to replace them by their absolute values, which
is what we did in Figures 4.7(b) and 4.8(b).

If we did not want to sacrifice any information, we could use the trans-
formed matrix C = 1

2WmAWT
n instead of A for storage. Because WN is

orthogonal, A is easily recovered from this matrix since A = 2WT
mCWn. More-

over, because the number of different bytes required to represent the data of
V , H and D is much lower than those required for B, the transformed matrix is
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Lossless Compressionmore amenable to data compression techniques
than B. This type of compression is termed lossless
compression since no information is lost by using it.

If, on the other hand, we are willing to sacrifice image accuracy for
improved storage, we could simply store the blur B in place of the full matrix
A and reduce our storage requirements from mn to mn/4. We could store
the information of B with no modification or compress it by merging the
least significant (in terms of frequency of occurrence) bits of data to zero.

Lossy CompressionIn either case we lose information contained in the
original image, so this is termed lossy compression.
And what is lost? Consider the blur B of Figure 4.7(a) shown in Figure 4.7(b):
It requires one fourth the storage requirements of the original and is enlarged
in Figure 4.8(a) for comparison to Figure 4.7(a). Note the differences are
visually slight. This idea can be pushed even further by a repeat application
of the HWT to the smoothed image B resulting in a new smoothed image
that reduces storage requirements from mn/4 to mn/16.

Finally, there is another important graphics application that comes from
application of the HWT, namely edge detection. We can obtain an
image of edges exclusively if we eliminate the blur B from consideration.

Edge DetectionTo achieve this, we first form the transformed matrix
WmAWT

n as in Equation (4.10). Next we zero out the B
portion of the matrix and perform the inverse transformation to obtain a new
image with the same dimensions as the original A:

Ae = 2WT
m

[
0 V
H D

]
Wn.

This image reassembles the edge data from matrices V , H and D. For an
example of what this procedure produces, see Figure 4.8(b).

Once again we have just scratched the surface of an important application
of linear algebra. For a detailed in-depth discussion of topics introduced here
the reader should consult Chapter 6 of the text [10].

4.4 Exercises and Problems

Exercise 1. Use Gram–Schmidt to find QR factorizations for these matrices
and use them to compute the least squares solutions of Ax = b with these
pairs A,b.

(a)

⎡
⎣

3 2
0 1
4 1

⎤
⎦,

⎡
⎣

0
−2

5

⎤
⎦ (b)

⎡
⎣

1 2 2
0 1 2

−2 1 6

⎤
⎦,

⎡
⎣

1
2
8

⎤
⎦ (c)

⎡
⎢⎢⎣

1 0 2
1 1 2

−1 1 1
−1 0 0

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

−4
1
3
1

⎤
⎥⎥⎦

Exercise 2. Let A =
[

3 2
0 1
4 1

]
and use Householder matrices to find a full QR

factorization of A. Use this result to find the least squares solution to the
system Ax = b, where b = (1, 2, 3), and resulting residual.

http://dx.doi.org/10.1007/978-3-319-74748-4_6
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Exercise 3. Calculate the B, V,H,D blocks for a grayscale image with this
matrix form:

A =

⎡
⎢⎢⎣

12 0 100 0 0 0
0 120 0 120 16 0

140 20 0 12 120 0
0 80 100 140 80 100

⎤
⎥⎥⎦

Exercise 4. Calculate the B, V,H,D blocks for a grayscale image with this
matrix form and repeat the calculation on the blur B:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 100 20 0 0 100
20 12 0 120 0 0 140 0
0 0 0 0 80 100 0 0
40 0 120 0 0 0 0 20
0 100 0 140 0 0 0 0
0 80 0 0 100 0 20 12

120 0 24 0 80 0 24 0
100 0 0 0 60 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Problem 5. Calculate a full QR factorization of

⎡
⎣

1 10 20
10 100 201

1000 10001 20001

⎤
⎦ with a

technology tool. Inspect the R matrix and estimate the rank of A. Use QR to
find the least squares solution to Ax = b, where b = (1, 2, 3), and resulting
residual.

Problem 6. The following is a simplified description of the QR algorithm
(which is separate from the QR factorization, but involves it) for a real n × n
matrix A :

T0 = A, Q0 = In

for k = 0, 1, . . .
Tk = Qk+1Rk+1 (QR factorization of Tk)
Tk+1 = Rk+1Qk+1

end
Apply this algorithm to the following two matrices and, based on your results,
speculate about what it is supposed to compute. You will need a technology
tool for this exercise and you will stop in a finite number of steps, but expect
to take more than a few.

(a) A =

⎡
⎣

1 2 0
2 1 −2
0 −2 1

⎤
⎦ (b) A =

⎡
⎣

−8 −5 8
6 3 −8

−3 1 9

⎤
⎦

*Problem 7. The flop count for a matrix-vector multiplication Ax, where A is
n×n is of order n2. Prove this. However, if A = Hv, a Householder matrix, the
calculation is of order n. Exhibit an algorithm that proves this and determine
its flop count.
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Problem 8. Prove that the Haar wavelet transform matrix WN is orthogonal.

Problem 9. Confirm that the extremes of the interval ranges of Example 4.29

do occur by applying the Haar wavelet transform to the matrix A =
[

x y
z w

]

and making suitable choices of x, y, z, w ∈ [0,M ].

Problem 10. Apply the Haar filter and wavelet filter to the data of Exam-
ple 4.27 and plot a dot-to-dot of the the data and the output as in Figure 4.6.

4.5 *Projects and Reports

Project: Rotations in Computer Graphics I
Problem Description: the objective of this project is to implement a counter-
clockwise rotation of θ radians about an axis specified by the nonzero three-
dimensional vector v using matrix multiplication. Assume that you are given
this vector. Show how to calculate the appropriate matrix Rv and offer some
justification (proofs aren’t required). Illustrate the method with examples.

Implementation Notes: in principle, the desired matrix can be constructed
in three steps: (1) Construct an orthonormal set of vectors v1,v2,v3 such that
v1 × v2 = v3 = v/ ‖v‖. (2) Construct the orthogonal matrix P that maps
v1,v2,v3 to e1, e2, e3. (3) To construct Rv, apply P , do a rotation θ of the
xy-plane about the z-axis via R (θ), then apply P−1. Your job is to elaborate
on the details of these steps and illustrate the result with examples.

Project: Rotations in Computer Graphics II
Problem Description: the objective of this project is to implement a counter-
clockwise rotation of θ radians about an axis specified by the nonzero three-
dimensional vector v using quaternions. Assume that you are given this vector.
Show how to calculate the appropriate quaternion qv. Illustrate the method
(and your mastery of quaternion arithmetic) with examples.

Background: Quaternions have a long and storied history in mathematics

Quaternionsdating back to 1843, when they were discovered by Sir
William Rowan Hamilton as a generalization of complex
numbers. Three-dimensional vector dot and cross products originated as aids
to quaternion arithmetic. In 1985 Ken Shoemake [22] showed that quaternions
were well suited for certain transforms in computer graphics, namely rotations
about an axis in three-dimensional space. A quaternion that does the job re-
quires only four numbers, in contrast to the nine needed for an orthogonal
transform.
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Implementation Notes: A quick google of “quaternions” will give you more
than enough information. A brief précis: quaternion objects are simply ele-
ments of H = R

4,homogeneous space (see Section 3.1.) As such, H immediately
has a vector space structure, standard inner product, and norm. Standard
basis elements are denoted by i = e1, j = e2, k = e3, and h = e4. Hence,
quaternions can be written as q = qxi + qyj + qzk + qwh = qv + qwh.
The vector qv is called the “imaginary” part of q, and qwh the “real” part.
Inspired by complex numbers, we define the conjugate quaternion q∗ = qw−qv.
Unlike homogeneous space, H carries a multiplicative structure. Multiplica-
tion is indicated by juxtaposition. We only need to know how to multiply
basis elements, since the rest follows from using distributive and associative
laws, which we assume to hold for quaternions (of course, everything can be
proved formally). Here are the fundamental rules:

i2 = j2 = k2 = ijk = −h = −h2.

It is a customary abuse of language to identify h with 1 and write q = qv+qw.
From these laws we can deduce that ij = k, jk = i, ki = j, ik = −j, kj =
−i and ji = −k, which is everything we need to know to do arithmetic.
A remarkable property of quaternions is that every nonzero element has a
multiplicative inverse, namely

q−1 =
1

‖q‖2 q∗.

Finally, the connection to rotations can be spelled out as follows: let p,q ∈
H, with q a unit quaternion, i.e., ‖q‖ = 1, and p a quaternion that represents
a geometrical point or vector in homogeneous space. Then (1) we can write
q = cos φ + sin φqv for some angle φ and unit vector qv and (2) qpq−1 is the
result of rotating p counterclockwise about the axis qv through an angle of
2φ. Your job is elaborate on the details of this calculation and illustrate the
result with examples. As an exercise in manipulation, prove item (1) (it isn’t
hard), but assume everything else.

Report: Image Compression and Edge Detection
Problem Description: In this report you will test some limits of data com-
pression by experimenting with an interesting image of your own choos-
ing. It could be a photograph you have taken or some reasonably complex
image from the internet that piqued your interest. You are to transform the
image into suitable format and then see how much you can can compress that
data storage requirements for that image while losing an acceptable amount
of detail.

Implementation Notes: First, you must convert the image to a grayscale
format without layers with pixels stored as unsigned eight bit integers. (We
are not going to deal with the additional details of color images.) For this you
will need an image manipulation program such as the GNU program Gimp or

http://dx.doi.org/10.1007/978-3-319-74748-4_3
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commercial software such as Adobe Photoshop. Figure 4.7(a) is an example
of the sort of file you with which you will start experimenting. Secondly, you
will need a technology tool capable of importing standard flattened image
grayscale images (such as .png, etc.) into matrices and vice versa. The freely
available R programming language and Octave, as well as commercial Matlab
and others are perfectly capable of these tasks. For the record, Figure 4.7
and its relatives in this chapter were converted from .pdf into grayscale .png
images via Gimp and read, manipulated and written as matrices via Octave.

Next, you must apply the Haar wavelet transform repeatedly to your initial
image until you reach a blur that is unacceptably far from the initial image.
These computations will require a mild bit of programming on your part with
the technology tool of your choice. Each application of the transform will
reduce storage requirements by a factor of four. How much are you able to
save? Of course, “unacceptably far” is in the eye of the beholder, but here’s a
pretty reasonable case: Start with a some text and compress it until you can
no longer read the text.

A picture is worth a thousand words, so be lavish with them in your
write-up. Consider the amount of savings if, in addition to saving the blurs in
all their detail, you were to to save a very good approximation to the edges
portion of the transformed picture. For example, consider what you might
achieve by first applying some thresholding condition to edge portions of the
picture that sets all pixels below a certain level to zero, then accounting for
the large number of resulting zeros by some compression technique. You might
even suggest a format for such a compression format.

Report: Least Squares
Note to the Instructor: the data below comes from a hypothetical conference.
This project works better when adapted to your local environment. Pick a
sport in season at your institution or locale. Have students collect the data
themselves, make out a data table as below, and predict the spread for some
(as yet) unplayed games of local interest. It can be very interesting to make
it an ongoing project, where for a number of weeks the students collect the
previous week’s data and make predictions for the following week based on
all data collected to date.

The Big Eight needs your help! Below is a table of scores from the games
played thus far: The (i, j)th entry is team i’s score in the game with team j.
Your assignment is twofold. First, write a notebook (or script) in a technology
tool available to you that obtains team ratings and predicted point spreads
based on the least squares and graph theory ideas you have seen. Include
instructions for the illiterate on how to plug in data. Second, you are to write
a brief report on your project that describes the problem, your solution to it,
its limitations, and the ideas behind it.
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CU IS KS KU MU NU OS OU
CU 24 21 45 21 14
IS 12 42 21 16 7
KS 12 21 3 27 24
KU 9 14 30 10 14
MU 8 3 52 18 21
NU 51 48 63 26 63
OS 41 45 49 42 28
OU 17 35 70 63 31

Implementation Notes: You will need to set up a suitable system of equa-
tions, form the normal equations, and have a technology tool solve the prob-
lem. The equations in question are formed by letting the variables be a vector
x of “potentials” x (i) , one for each team i, so that the “potential differences”
best approximate the actual score differences (i.e., point spreads) of the games.
To find the vector x of potentials you solve the system Ax = b, where b is the
vector of observed potential differences. N.B: the matrix A is not the table
given above. You will get one equation for each game played. For example, by
checking the (1, 2)th and (2, 1)th entries, we see that CU beat IS by a score of
24 to 12. So the resulting equation for this game is x (1)−x(2) = 24−12 = 12.
Ideally, the resulting potentials would give numbers that would enable you to
predict the point spread of an as yet unplayed game: all you would have to
do to determine the spread for team i versus team j is calculate the differ-
ence x (j) − x (i). Of course, it doesn’t really work out this way, but this is a
reasonable use of the known data. When you set up this system, you obtain
an inconsistent system. This is where least squares enter the picture. You will
need to set up and solve the normal equations, one way or another. You might
notice that the null space of the resulting coefficient matrix is nontrivial, so
this matrix does not have full column rank. This makes sense: potentials are
unique only up to a constant. To fix this, you could arbitrarily fix the value
of one team’s potential, that is, set the weakest team’s potential value to zero
by adding one additional equation to the system of the form x(i) = 0.
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THE EIGENVALUE PROBLEM

The first major problem of linear algebra is to understand how to solve the
basis linear system Ax = b and what the solution means. We have explored
this system from three points of view: In Chapter 1 we approached the problem
from an operational point of view and learned the mechanics of computing
solutions. In Chapter 2, we took a more sophisticated look at the system from
the perspective of matrix theory. Finally, in Chapter 3, we viewed the problem
from the vantage of vector space theory.

Now we begin a study of the second major problem of linear algebra,
namely the eigenvalue problem. We had to tackle linear systems first because
the eigenvalue problem is more sophisticated and will require most of the tools
that we have thus far developed. This subject has many important applica-
tions, such as the analysis of discrete dynamical systems that we have seen in
earlier chapters.

5.1 Definitions and Basic Properties

What Are They?

Good question. Let’s get right to the point.

Definition 5.1. Eigenvector, Eigenvalue, Eigenpair Let A be a square n×n
matrix. An eigenvector of A is a nonzero vector x in R

n (or C
n, if we are

working over complex numbers) such that for some scalar λ, we have

Ax = λx.

The scalar λ is called an eigenvalue of the matrix A, and we say that the
vector x is an eigenvector belonging to the eigenvalue λ. The pair {λ,x} is
called an eigenpair for the matrix A.

http://dx.doi.org/10.1007/978-3-319-74748-4_1
http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_3


332 5 THE EIGENVALUE PROBLEM

Eigenvalues and eigenvectors are also known as characteristic values and
characteristic vectors. In fact, the word “eigen” means (among other things)
“characteristic” in German.

Eigenvectors of A, as defined above, are also called right eigenvectors of A.

Right and Left Eigenvectors Notice that if AT x = λx, then

λxT = (λx)T =
(
AT x

)T
= xT A.

For this reason, eigenvectors of AT are called left eigenvectors of A.
The only kinds of matrices for which these objects are defined are square

matrices, so unless otherwise stated, we’ll assume throughout this chapter
that we are dealing with such matrices.

Caution: Be aware that the eigenvalue λ is allowed to be the 0 scalar,

Zero Not Eigenvector but an eigenvector x is, by definition, never the 0
vector.

As a matter of fact, it is quite informative to have an eigenvalue 0. This
says that the system Ax = 0x = 0 has a nontrivial solution x. Therefore, A
is not invertible by Theorem 2.6. There are other reasons for the usefulness of
the eigenvector/value concept that we will develop later, but we already see
that knowledge of eigenvalues tells us about invertibility of a matrix.

Here are a few simple examples of eigenvalues and eigenvectors. Let A =[
7 4
3 6

]
, x = (−1, 1), and y = (4, 3). One checks that Ax = (−3, 3) = 3x and

Ay = (40, 30) = 10y. It follows that x and y are eigenvectors corresponding
to eigenvalues 3 and 10, respectively.

Why should we have any interest in these quantities? A general answer
goes something like this: knowledge of eigenvectors and eigenvalues gives us
deep insights into the structure of the matrix A. Here is just one example:
suppose that we would like to have a better understanding of the effect of
multiplication of a vector x by powers of the matrix A, that is, of Akx. Let’s
start with the first power, Ax. If we knew that x were an eigenvector of A,
then we would have that for some scalar λ,

Ax = λx

A2x = A(Ax) = Aλx = λAx = λ2x
...

Akx = A(Ak−1x) = · · · = λkx.

This is very nice, because it reduces the more complicated matrix–vector
multiplication to a simpler scalar–vector multiplication.

We need some handles on these quantities. Let’s ask how we could figure
out what they are for specific matrices. Here are some of the basic points
about eigenvalues and eigenvectors.

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Theorem 5.1. Let A be a square n × n matrix. Then

(1) The eigenvalues of A are all the scalars λ that are solutions to the nth-
degree polynomial equation

det(λI − A) = 0.

(2) For eigenvalue λ, the eigenvectors of the matrix A belonging to that eigen-
value are all the nonzero elements of N (λI − A).

Proof. Note that λx = λIx. Thus, we have the following chain of thought:
A has eigenvalue λ if and only if Ax = λx, for some nonzero vector x, which
is true if and only if

0 = λx − Ax = λIx − Ax = (λI − A)x

for some nonzero vector x. This last statement is equivalent to the assertion
that 0 �= x ∈ N (λI − A). The matrix λI − A is square, so it has a nontrivial
null space precisely when it is singular (Theorem 2.6). This occurs only when
det(λI − A) = 0. If we expand this determinant down the first column, we
see that the highest-order term involving λ that occurs is the product of the
diagonal terms (λ − aii), so that the degree of the expression det(λI − A) as
a polynomial in λ is n. This proves (1).

We have seen that if λ is an eigenvalue of A, then the eigenvectors belonging
to that eigenvalue are precisely the nonzero vectors x such that (λI−A)x = 0,
that is, the nonzero elements of N (λI − A), which is what (2) asserts. �

Here is some terminology that we will use throughout this chapter. We call

Monic Polynomiala polynomial monic if the leading coefficient is 1. For
example, λ2 +2λ+3 is a monic polynomial in λ while
2λ2 + λ + 1 is not.

Definition 5.2. Characteristic Equation and Polynomial If A is a square
n × n matrix, the equation det(λI − A) = 0 is called the characteristic equation
of A, and the nth-degree monic polynomial p(λ) = det(λI − A) is called the
characteristic polynomial of A.

Suppose we already know the eigenvalues of A and want to find the eigen-
values of something like 3A + 4I. Do we have to start over to find them? The
next calculation is really a useful tool for answering such questions.

Theorem 5.2. If B = cA + dI for scalars d and c �= 0, then the eigenvalues
of B are of the form μ = cλ + d, where λ runs over the eigenvalues of A, and
the eigenvectors of A and B are identical.

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Proof. Let x be an eigenvector of A corresponding to the eigenvalue λ.
Then by definition, x �= 0 and Ax = λx. Also, we have that dIx = dx. Now
multiply the first equation by the scalar c and add these two equations to
obtain

(cA + dI)x = Bx = (cλ + d)x.

It follows that every eigenvector of A belonging to λ is also an eigenvector of
B belonging to the eigenvalue cλ + d. Conversely, if y is an eigenvector of B
belonging to μ, then

By = μy = (cA + dI)y.

Now solve for Ay to obtain that

Ay =
1
c
(μ − d)y,

so that λ = (μ − d)/c is an eigenvalue of A with corresponding eigenvector y.
It follows that A and B have the same eigenvectors, and their eigenvalues are
related by the formula μ = cλ + d. �

Example 5.1. Let A =
[

7 4
3 6

]
, x = (−1, 1), and y = (4, 3), so that

Ax = (−3, 3) = 3x and Ay = (40, 30) = 10y. Find the eigenvalues and
corresponding eigenvectors for the matrix B = 3A + 4I.

Solution. From the calculations given to us, we observe that x and y are
eigenvectors corresponding to the eigenvalues 3 and 10, respectively, for A.
These are all the eigenvalues of A, since the characteristic polynomial of A is
of degree 2, so has only two roots. According to Theorem 5.2, the eigenvalues of
3A+4I must be μ1 = 3·3+4 = 13 with corresponding eigenvector x = (−1, 1),
and μ2 = 3 · 10 + 4 = 34 with corresponding eigenvector y = (4, 3). �

Definition 5.3. Eigenspace The eigenspace corresponding to eigenvalue λ
is the subspace N (λI − A) of R

n (or C
n). We write Eλ(A) = N (λI − A).

Definition 5.4. Eigensystem By an eigensystem of the matrix A, we mean a
list of all the eigenvalues of A and, for each eigenvalue λ, a complete description
of the eigenspace corresponding to λ.

The usual way to give a complete description of an eigenspace is to list
a basis for the space. Remember that there is one vector in the eigenspace
N (λI−A) that is not an eigenvector, namely 0. In any case, the computational
route is now clear. To call the following formula an algorithm is bit of an
exaggeration, since we don’t specify a complete computational description of
the eigenvalue phase (1), but here it is:
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Eigensystem Algorithm

Given n × n matrix A, to find an eigensystem for A:

(1) Find the eigenvalues of A.
(2) For each scalar λ in (1), use the null space algorithm to find a basis of

the eigenspace N (λI − A).

For a deeper look at numerical methods for finding eigenvalues, the reader
is encouraged to consult Section 5.7. Here we confine ourselves to relatively
simple cases where we can solve the characteristic equation by explicit means.
As a matter of convenience, it is sometimes a little easier to work with A−λI
when calculating eigenspaces (because there are fewer extra minus signs to
worry about). This is perfectly OK, since N (A−λI) = N (λI −A). It doesn’t
affect the eigenvalues either, since det(λI − A) = ±det(A − λI). Here is our
first eigensystem calculation.

Example 5.2. Find an eigensystem for the matrix A =
[

7 4
3 6

]
.

Solution. First solve the characteristic equation

0 = det(λI − A) = det
[

λ − 7 −4
−3 λ − 6

]

= (λ − 7)(λ − 6) − (−3)(−4)

= λ2 − 13λ + 42 − 12

= λ2 − 13λ + 30
= (λ − 3)(λ − 10).

Hence, the eigenvalues are λ = 3, 10. Next, for each eigenvector calculate the
corresponding eigenspace.

λ = 3: Then A − 3I =
[

7 − 3 4
3 6 − 3

]
=
[

4 4
3 3

]
and row reduction gives

[
4 4
3 3

]−−−−−−−−→
E21(−3/4)
E1(1/4)

[
1 1
0 0

]
,

so the general solution is
[

x1

x2

]
=
[−x2

x2

]
= x2

[−1
1

]
.

Therefore, a basis of E3(A) is {(−1, 1)}.

λ = 10: Then A − 10I =
[

7 − 10 4
3 6 − 10

]
=
[−3 4

3 −4

]
and row reduction

gives
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[−3 4
3 −4

]−−−−−−−→
E21(1)

E1(−1/3)

[
1 −4/3
0 0

]
,

so the general solution is
[

x1

x2

]
=
[

(4/3)x2

x2

]
= x2

[
4/3

1

]
.

Therefore, a basis of E10(A) is {(4/3, 1)}. �
Concerning this example, there are several observations worth noting:

• Since the 2 × 2 matrix A − λI is singular for the eigenvalue λ, one row
should always be a multiple of the other. Knowing this, we didn’t have
to do even the little row reduction we did above. However, it’s a good
idea to check; it helps you avoid mistakes. Remember: any time that row
reduction of A − λI leads to full rank (only trivial solutions), you have
either made an arithmetic error or you do not have an eigenvalue.

• This matrix is familiar. In fact, B = 1
10A is the Markov chain transition

matrix from Example 2.19. Therefore, the eigenvalues of B are 0.3 and 1,
by Example 5.2 and Theorem 5.2 with c = 0.1 and d = 0. The eigenvector
belonging to λ = 1 is just a solution to the equation Bx = x, which was
discussed in Example 3.31.

• The vector
x =

[
4/7
3/7

]
=

3
7

[
4/3

1

]

is an eigenvector of A belonging to the eigenvalue λ = 10 of A, so that
from Ax = 10x we see that Bx = 1x. Hence, x ∈ E1(B).

Example 5.3. How do we find eigenvalues of a triangular matrix? Illustrate

the method with A =

⎡

⎣
2 1 1
0 1 1
0 0 −1

⎤

⎦ .

Solution. Eigenvalues are just the roots of the characteristic equation
det(λI − A) = 0. Notice that −A is triangular if A is. Also, the only entries
in λI − A that are any different from the entries of −A are the diagonal
entries, which change from −aii to λ − aii. Therefore, λI − A is triangular if
A is. We already know that the determinant of a triangular matrix is easy to
compute: just form the product of the diagonal entries. Therefore, the roots
of the characteristic equation are the solutions to

0 = det(λI − A) = (λ − a11)(λ − a22) · · · (λ − ann),

that is, λ = a11, a22, . . . , ann. In other words, for a triangular matrix the
eigenvalues are simply the diagonal elements! Thus, for the example A given
above, we see with no calculations that the eigenvalues are λ = 2, 1,−1. �

Notice, by the way, that we don’t quite get off the hook in the preceding
example if we are required to find the eigenvectors. It will still be some work

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_3
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to compute each of the relevant null spaces, but much less than for a general
matrix.

Example 5.3 can be used to illustrate another very important point. The
reduced row echelon form of the matrix of that example is clearly the identity
matrix I3. This matrix has eigenvalues 1, 1, 1, which are not the same as the
eigenvalues of A (would that eigenvalue calculations were so easy!). In fact, a
single elementary row operation on a matrix can change the eigenvalues. For
example, simply multiply the first row of A above by 1

2 . This point warrants
a warning, since it is the source of a fairly common mistake.

Caution: The eigenvalues of a matrix A and the matrix EA, where E is an
elementary matrix, need not be the same.

Example 5.4. Find an eigensystem for the matrix A =
[

1 −1
1 1

]
.

Solution. For eigenvalues, compute the roots of the equation

0 = det(A − λI) = det
[

1 − λ −1
1 1 − λ

]

= (1 − λ)2 − (−1) = λ2 − 2λ + 2.

Now we have a little problem. Do we allow complex numbers? If not, we are
stuck because the roots of this equation are

λ =
−(−2) ±√(−2)2 − 4 · 2

2
= 1 ± i.

In other words, if we did not enlarge our field of scalars to the complex num-
bers, we would have to conclude that there are no eigenvalues or eigenvec-
tors! Somehow, this doesn’t seem like a good idea. It is throwing information
away. Perhaps it comes as no surprise that complex numbers would eventually
figure into the eigenvalue story. After all, finding eigenvalues is all about solv-
ing polynomial equations, and complex numbers were invented to overcome
the inability of real numbers to provide solutions to all polynomial equations.
Let’s allow complex numbers as the scalars. Now our eigenspace calculations
are really going on in the complex space C

2 instead of R
2.

λ = 1 + i: Then A − (1 + i)I =
[

1 − (1 + i) −1
1 1 − (1 + i)

]
=
[−i −1

1 −i

]
and

row reduction gives (recall that 1/i = −i)

[−i −1
1 −i

]−−−−−−−−→
E21(−i)

E1(1/(−i))

[
1 −i
0 0

]
,

so the general solution is
[

z1

z2

]
=
[

iz2

z2

]
= z2

[
i
1

]
.
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Therefore, a basis of E1+i(A) is {(i, 1)}.

λ = 1 − i: Then A − (1 − i)I =
[

1 − (1 − i) −1
1 1 − (1 − i)

]
=
[

i −1
1 i

]
and

row reduction gives
[

i −1
1 i

]−−−−−→
E21(i)
E1(1/i)

[
1 i
0 0

]
,

so the general solution is
[

z1

z2

]
=
[−iz2

z2

]
= z2

[−i
1

]
.

Therefore, a basis of E1−i(A) is {(−i, 1)}. �
In view of the previous example, we are going to adopt the following prac-

tice: if the eigenvalue calculation leads us to complex numbers, we take the
point of view that the field of scalars should be enlarged to include the complex
numbers and the eigenvalues in question. One small consolation for having to
deal with complex eigenvalues is that in some cases our work may be cut in
half.

Example 5.5. Show that if {λ,x} is an eigenpair for real matrix A, then so
is
{
λ,x

}
.

Solution. By hypothesis, Ax = λx. Apply complex conjugation to both
sides and use the fact that A is real to obtain

Ax = Ax = Ax = λx = λx.

Thus,
{
λ,x

}
is also an eigenpair for A. �

In view of this fact, we could have stopped with the calculation of eigenpair
{1 + i, (i, 1)} in Example 5.4, since we automatically have that {1 − i, (−i, 1)}
is also an eigenpair.

Multiplicity of Eigenvalues

The following example presents yet another curiosity about eigenvalues and
eigenvectors.

Example 5.6. Find an eigensystem for the matrix A =
[

2 1
0 2

]
.

Solution. Here the eigenvalues are easy. This matrix is triangular, so they
are λ = 2, 2. Next we calculate eigenvectors.

λ = 2: Then A − 2I =
[

2 − 2 1
0 2 − 2

]
=
[

0 1
0 0

]
and row reduction is not

necessary here. Notice that the variable x1 is free here, while x2 is bound. The
general solution is
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[
x1

x2

]
=
[

x1

0

]
= x1

[
1
0

]
.

Therefore, a basis of E2(A) is {(1, 0)}. �
The manner in which we list the eigenvalues in this example is intentional.

The number 2 occurs twice on the diagonal, suggesting that it should be
counted twice. As a matter of fact, λ = 2 is a root of the characteristic
equation (λ − 2)2 = 0 of multiplicity 2. Yet there is a curious mismatch here.
In all of our examples to this point, we have been able to come up with as many
eigenvectors as eigenvalues, namely the size of the matrix if we allow complex
numbers. In this case there is a deficiency in the number of eigenvectors, since
there is only one eigenspace and it is one-dimensional. Does this failing always
occur with multiple eigenvalues? The answer is no. The situation is a bit more
complicated, as the following example shows.

Example 5.7. Discuss the eigenspace corresponding to the eigenvalue λ = 2
for these two matrices:

(a)

⎡

⎣
2 1 2
0 1 −2
0 0 2

⎤

⎦ (b)

⎡

⎣
2 1 1
0 1 1
0 0 2

⎤

⎦

Solution. Notice that each of these matrices has eigenvalues λ = 1, 2, 2.
Now for the eigenspace E2(A).

(a) For this eigenspace calculation we have

A − 2I =

⎡

⎣
2 − 2 1 2

0 1 − 2 −2
0 0 2 − 2

⎤

⎦ =

⎡

⎣
0 1 2
0 −1 −2
0 0 0

⎤

⎦ ,

and row reduction gives
⎡

⎣
0 1 2
0 −1 −2
0 0 0

⎤

⎦
−−−−→
E21(1)

⎡

⎣
0 1 2
0 0 0
0 0 0

⎤

⎦ ,

so that free variables are x1, x3 and the general solution is
⎡

⎣
x1

x2

x3

⎤

⎦ =

⎡

⎣
x1

−2x3

x3

⎤

⎦ = x1

⎡

⎣
1
0
0

⎤

⎦+ x3

⎡

⎣
0

−2
1

⎤

⎦ .

Thus, a basis for E2(A) is {(1, 0, 0), (0,−2, 1)}. Notice that in this case we get
as many independent eigenvectors as the number of times that the eigenvalue
λ = 2 occurs.

(b) For this eigenspace calculation we have

A − 2I =

⎡

⎣
2 − 2 1 1

0 1 − 2 1
0 0 2 − 2

⎤

⎦ =

⎡

⎣
0 1 1
0 −1 1
0 0 0

⎤

⎦
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and row reduction gives
⎡

⎣
0 1 1
0 −1 1
0 0 0

⎤

⎦
−−−−→
E21(1)

⎡

⎣
0 1 1
0 0 2
0 0 0

⎤

⎦
−−−−−−→
E2(1/2)
E12(−1)

⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦ ,

so that the only free variable is x1 and the general solution is
⎡

⎣
x1

x2

x3

⎤

⎦ =

⎡

⎣
x1

0
0

⎤

⎦ = x1

⎡

⎣
1
0
0

⎤

⎦ .

Thus, a basis for E2(A) is {(1, 0, 0)}. Notice that in this case we don’t get as
many independent eigenvectors as the number of times that the eigenvalue
λ = 2 occurs. �

This example shows that there are two kinds of “multiplicities” of an eigen-
vector. On the one hand there is the number of times that the eigenvalue
occurs as a root of the characteristic equation. On the other hand there is
the dimension of the corresponding eigenspace. One of these is algebraic in
nature, the other is geometric. Here are the appropriate definitions.

Definition 5.5. Algebraic and Geometric Multiplicity Let λ be a root of
the characteristic equation det(λI − A) = 0. The algebraic multiplicity of λ
is the multiplicity of λ as a root of the characteristic equation. The geometric
multiplicity of λ is the dimension of the space Eλ(A) = N (λI − A).

We categorize eigenvalues as simple or repeated, according to the following
definition.

Definition 5.6. Simple Eigenvalue The eigenvalue λ of A is said to be simple
if its algebraic multiplicity is 1, that is, the number of times it occurs as a
root of the characteristic equation is 1. Otherwise, the eigenvalue is said to
be repeated.

In Example 5.7 we saw that the repeated eigenvalue λ = 2 has algebraic
multiplicity 2 in both (a) and (b), but geometric multiplicity 2 in (a) and 1
in (b). What can be said in general? The following theorem summarizes the
facts. In particular, (2) says that algebraic multiplicity is always greater than
or equal to geometric multiplicity. Item (1) is immediate since a polynomial
of degree n has n roots, counting complex roots and multiplicities. We defer
the proof of (2) to Section 5.3.
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Theorem 5.3. Let A be an n × n matrix with characteristic polynomial
p(λ) = det(λI − A). Then:

(1) The number of eigenvalues of A, counting algebraic multiplicities and
complex numbers, is n.

(2) For each eigenvalue λ of A, if m(λ) is the algebraic multiplicity of λ, then

1 ≤ dim Eλ(A) ≤ m(λ).

Now when we wrote that each of the matrices of Example 5.7 has eigen-
values λ = 1, 2, 2, what we intended to indicate was a complete listing of
the eigenvalues of the matrix, counting algebraic multiplicities. In particular,
λ = 1 is a simple eigenvalue of the matrices, while λ = 2 is not. The geometric
multiplicities of (a) are identical to the algebraic multiplicities in (a) but not
those in (b). The latter kind of matrix is harder to deal with than the former.
Following a time-honored custom of mathematicians, we call the more difficult
matrix by a less than flattering name, namely, “defective.”

Definition 5.7. Defective Matrix A matrix is defective if one of its eigenval-
ues has geometric multiplicity less than its algebraic multiplicity.

Notice that the sum of the algebraic multiplicities of an n×n matrix is the
size n of the matrix. This is due to the fact that the characteristic polynomial
of the matrix has degree n, hence exactly n roots, counting multiplicities.
Therefore, the sum of the geometric multiplicities of a defective matrix will
be less than n.

5.1 Exercises and Problems

Exercise 1. Exhibit all eigenvalues of these matrices.

(a)
[

7 −10
5 −8

]
(b)

⎡

⎣
−1 0 0

1 −1 0
0 1 −1

⎤

⎦ (c)

⎡

⎣
2 1 1
0 3 1
0 0 2

⎤

⎦ (d)
[

0 2
2 0

]
(e)
[

0 −2
2 0

]

Exercise 2. Compute the eigenvalues of these matrices.

(a)

⎡

⎣
2 0 1
0 0 0
1 0 2

⎤

⎦ (b)

⎡

⎣
2 0 0
0 3 1
0 6 2

⎤

⎦ (c)
[

1 + i 3
0 i

]
(d)

⎡

⎣
1 −2 1

−2 4 −2
0 0 1

⎤

⎦ (e)

⎡

⎢
⎢
⎣

2 1 −1 −2
0 1 −1 −2
0 0 0 1
0 0 1 0

⎤

⎥
⎥
⎦

Exercise 3. Find eigensystems for the matrices of Exercise 1. Specify the alge-
braic and geometric multiplicity of each eigenvalue.

Exercise 4. Find eigensystems for the matrices of Exercise 2 and identify any
defective matrices.



342 5 THE EIGENVALUE PROBLEM

Exercise 5. You are given that the matrix A =
[

0 1
1 0

]
has eigenvalues 1,−1

and respective eigenvectors (1, 1), (1,−1). Use Theorem 5.2 to determine an

eigensystem for B =
[

3 −5
−5 3

]
without further eigensystem calculations.

Exercise 6. You are given that A =

⎡

⎣
2 −2 0
1 0 1
0 0 2

⎤

⎦ and that {2, (−1, 0, 1)} and

{1 + i, (2, 1 − i, 0)} are eigenpairs of A. Determine an eigensystem of A without
further eigensystem calculations.

Exercise 7. The trace of a matrix A is the sum of all the diagonal entries of
the matrix and is denoted by trA. Find the trace of each matrix in Exercise 1
and verify that it is the sum of the eigenvalues of the matrix.

Exercise 8. For each of the matrices in Exercise 2 show that the product of all
eigenvalues is the determinant of the matrix.

Exercise 9. Show that for each matrix A of Exercise 1, A and AT have the
same eigenvalues.

Exercise 10. Find all left eigenvectors of each matrix in Exercise 1. Are right
and left eigenspaces for each eigenvalue the same?

Exercise 11. For each matrix A of Exercise 1 determine whether AT A and A2

have the same eigenvalues. (Hint: test eigenvalues of one matrix on the other.)

Exercise 12. For each matrix A of Exercise 2 show that the matrix B = A∗A
has nonnegative eigenvalues.

Exercise 13. Let A =
[

1 1
0 2

]
, B =

[
1 1
1 2

]
, and let α be an eigenvalue of A,

β an eigenvalue of B. Confirm or deny the hypotheses that (a) α + β is an
eigenvalue of A + B, and (b) αβ is an eigenvalue of AB.

Exercise 14. Let A =
[

1 1
0 2

]
and B =

[
1 1
1 2

]
. Confirm or deny the hypothesis

that eigenvalues of AB and BA are the same.

Problem 15. Show that if A is Hermitian, then right and left eigenvalues and
eigenvectors coincide.

Problem 16. Show from the definition of eigenvector that if x is an eigenvector
for the matrix A belonging to the eigenvalue λ, then so is cx for any scalar
c �= 0.
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*Problem 17. Prove that if A is invertible and λ is an eigenvalue of A, then
1/λ is an eigenvalue of A−1.

Problem 18. Show that if λ is an eigenvalue of an orthogonal matrix P, then
|λ| = 1.

*Problem 19. Let A be a matrix whose eigenvalues are all less than 1 in abso-
lute value. Show that every eigenvalue of I − A is nonzero and deduce that
I − A is invertible.

*Problem 20. Show that A and AT have the same eigenvalues.

Problem 21. Let A be a real matrix and {λ,x} an eigenpair for A. Show that{
λ,x

}
is also an eigenpair for A.

Problem 22. Let A be a square matrix and f (x) an arbitrary polynomial. Show
that if λ is an eigenvalue A, then f (λ) is an eigenvalue of f (A).

*Problem 23. Show that if A and B are the same size, then AB and BA have the
same eigenvalues.

Problem 24. Let Tk be the k × k tridiagonal matrix whose diagonal entries are
2 and off-diagonal nonzero entries are −1. Use a technology tool to build an
array y of length 30 whose kth entry is the minimum of the absolute value of
the eigenvalues of Tk+1. Plot this array. Use the graph as a guide and try to
approximate y (k) as a simple function of k.

5.2 Similarity and Diagonalization

Diagonalization and Matrix Powers

Eigenvalues: Why are they important? This is a good question and has
many answers. We will try to demonstrate their importance by focusing
on one special class of problems, namely, discrete linear dynamical systems,

Discrete Linear Dynamical Systemwhich were defined in Section 2.3.
We have seen examples of this kind
of system before, namely in Markov chains and difference equations. Here is
the sort of question that we would like to answer: when is it the case that
there is a limiting vector x for this sequence of vectors, and if so, how does
one compute this vector? The answer to this question will explain the behavior
of the Markov chain that was introduced in Example 2.19.

If there is such a limiting vector x for a Markov chain, we saw in Exam-
ple 3.31 how to proceed: find the null space of the matrix I − A, that is, the
set of all solutions to the system (I −A)x = 0. However, the question whether

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_3
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all initial states x(0) lead to this limiting vector is a more subtle issue, which
requires the insights of the next section. We’ve already done some work on
this problem. We saw in Section 2.3 that the entire sequence of vectors is
uniquely determined by the initial vector and the transition matrix A in the
explicit formula

x(k) = Akx(0).

Before proceeding further, let’s consider another example that will indicate
why we would be interested in limiting vectors.

Example 5.8. By some unfortunate accident a new species of frog has been
introduced into an area where it has too few natural predators. In an attempt
to restore the ecological balance, a team of scientists is considering introduc-
ing a species of bird that feeds on this frog. Experimental data suggests that
the population of frogs and birds from one year to the next can be modeled
by linear relationships. Specifically, it has been found that if the quantities Fk

and Bk represent the populations of the frogs and birds in the kth year, then

Bk+1 = 0.6Bk + 0.4Fk,

Fk+1 = −rBk + 1.4Fk,

is a system that models their joint behavior reasonably well. Here the positive
number r is a kill rate that measures the consumption of frogs by birds. It
varies with the environment, depending on factors such as the availability of
other food for the birds. Experimental data suggests that in the environment
where the birds are to be introduced, r = 0.35. The question is this: in the
long run, will the introduction of the birds reduce or eliminate growth of the
frog population?

Solution. The discrete dynamical system concept introduced in the pre-
ceding discussion fits this situation very nicely. Let the population vector in
the kth year be x(k) = (Bk, Fk). Then the linear relationship above becomes

[
Bk+1

Fk+1

]
=
[

0.6 0.4
−0.35 1.4

] [
Bk

Fk

]
,

which is a discrete linear dynamical system. Notice that this is different from
the Markov chains we studied earlier, since one of the entries of the coefficient
matrix is negative. Before we can finish solving this example we need to have
a better understanding of discrete dynamical systems and the relevance of
eigenvalues. �

Let’s try to understand how state vectors change in the general discrete
dynamical system. We have x(k) = Akx(0). So what we really need to know
is how the powers of the transition matrix A behave. In general, this is very
hard!

Here is an easy case we can handle: what if A = [aij ] is diagonal? Since
we’ll make extensive use of diagonal matrices, let’s recall a notation that was

http://dx.doi.org/10.1007/978-3-319-74748-4_2


5.2 Similarity and Diagonalization 345

introduced in Chapter 2. The matrix diag {λ1, λ2, . . . , λn} is the n×n diagonal
matrix with entries λ1, λ2, . . . , λn down the diagonal. For example,

diag {λ1, λ2, λ3} =

⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦ .

By matching up the ith row and jth column of A we see that the only
time we could have a nonzero entry in A2 is when i = j, and in that case the
entry is a2

ii. A similar argument applies to any power of A. In summary, we
have this handy fact.

Theorem 5.4. If D = diag {λ1, λ2, . . . , λn}, then for all positive integers k,
Dk = diag

{
λk

1 , λk
2 , . . . , λk

n

}
.

Just as an aside, this theorem has a very interesting consequence. We have
seen in some exercises that if f(x) = a0 +a1x+ · · ·+anxn is a polynomial, we
can evaluate f(x) at the square matrix A as long as we understand that the
constant term a0 is evaluated as a0I. In the case of a diagonal A, the following
fact reduces evaluation of f(A) to scalar calculations.

Corollary 5.1. If D = diag {λ1, λ2, . . . , λn} and f (x) is a polynomial, then

f (D) = diag {f (λ1) , f (λ2) , . . . , f (λn)} .

Proof. Observe that if f(x) = a0 + a1x + · · · + anxn, then f(D) = a0I +
a1D + · · · + anDn. Now apply the preceding theorem to each monomial Dk

and add up the resulting terms in f(D). �

Now for the powers of a more general A. For ease of notation, let’s consider
a 3×3 matrix A. What if we could find three linearly independent eigenvectors
v1,v2,v3? We would have Av1 = λ1v1, Av2 = λ2v2, and Av3 = λ3v3. In
matrix form,

A[v1,v2,v3] = [v1,v2,v3]

⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦ = [v1,v2,v3] diag {λ1, λ2, λ3} .

Now set P = [v1,v2,v3] and D = diag {λ1, λ2, λ3}. Then P is invertible
since the columns of P are linearly independent. (Remember that any nonzero
solution to Ax = 0 would give rise to a nontrivial linear combination of the
column of A that sums to 0.) So the equation AP = PD, if multiplied on the
left by P−1, gives the equation

P−1AP = D.

This is a beautiful equation, because it makes the powers of A simple to
understand. The procedure we just went through is reversible as well. In other

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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words, if P is an invertible matrix such that P−1AP = D, then we deduce
that AP = PD, identify the columns of P by the equation P = [v1,v2,v3],
and conclude that the columns of P are linearly independent eigenvectors
of A. We make the following definition and follow it with a simple but key
theorem relating similar matrices.

Definition 5.8. Similar Matrices A matrix A is said to be similar to matrix
B if there exists an invertible matrix P such that

P−1AP = B.

The matrix P is called a similarity transformation matrix.

Similarity has an interesting interpretation from the perspective of ma-
trix operators. Recall some facts about coordinates from Section 3.3: If
B = {e1, . . . en} is the standard basis of R

n or C
n and C = {v1,v2, . . . ,vn} is

any other basis, then the change of basis matrix is P = [v1,v2, . . . ,vn]. The
value of this matrix is that if a vector v is expressed in standard coordinates
v = (v1, . . . , vn) = [v]B or coordinates with respect to C, [v]C = (c1, . . . , cn)
meaning v = c1v1 + · · · + cnvn, then [v]B = P [v]C (Theorem 3.8). Now
suppose that the linear operator T = TA maps R

n or C
n into itself and is

expressed in standard coordinates: w = T (v) means that [w]B = A [v]B .
To see how do we express this in terms of C coordinates, simply plug in the
change of coordinates formula to obtain P [w]C = AP [v]C , from which it fol-
lows that [w]C = P−1AP [v]C . Consequently the operator T acts like matrix
multiplication by the matrix P−1AP on the C coordinates of a vector.

A simple size check shows that similar matrices have to be square and of
the same size. Furthermore, if A is similar to B, then B is similar to A. To
see this, suppose that P−1AP = B and multiply by P on the left and P−1

on the right to obtain that

A = PP−1APP−1 = PBP−1 = (P−1)−1BP−1.

Similar matrices have much in common. For example, suppose that B =
P−1AP and λ is an eigenvalue of A, say Ax = λx. One calculates

λP−1x = P−1Ax = P−1AP
(
P−1x

)
,

from which it follows that λ is an eigenvalue of B. Here is a slightly stronger
statement.

http://dx.doi.org/10.1007/978-3-319-74748-4_3
http://dx.doi.org/10.1007/978-3-319-74748-4_3
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Theorem 5.5. Suppose that A is similar to M , say P−1AP = M. Then:

(1) For every polynomial q (x),

q (M) = P−1q (A) P.

(2) The matrices A and M have the same characteristic polynomial, hence
the same eigenvalues.

(3) If P is a change of basis matrix from basis C to the standard basis B,
then the matrix of the linear operator TA with respect to the basis C is
P−1AP .

Proof. We see that successive terms P−1P cancel out in the k-fold product

Mk = (P−1AP )(P−1AP ) · · · (P−1AP )

to give that
Mk = P−1AkP.

It follows easily that

a0I + a1M + · · · + amMm = P−1 (a0I + a1A + · · · + amAm) P,

which proves (1). For (2), remember that the determinant distributes over
products, so that we can pull this clever little trick:

det(λI − M) = det(λP−1IP − P−1AP ) = det(P−1(λI − A)P )

= det(P−1) det(λI − A) det(P )

= det(λI − A) det(P−1P ) = det(λI − A).

This proves (2). Item (3) was proved in the discussion preceding this theorem.
�

Now we can see the significance of the equation P−1AP = D, where D is
diagonal: For any positive integer k, we have P−1AkP = Dk, so multiplying
on the left by P and on the right by P−1 yields

Ak = PDkP−1. (5.1)

As we have seen, the term PDkP−1 is easily computed. This gives us a way
of constructing a formula for Ak.

We can also use this identity to extend part (1) to transcendental functions
Functions of Matriceslike sin x, cos x, and ex, which can be defined in

terms of an infinite series (a limit of polynomials functions). One can show
that for such functions f (x), if f (D) is defined, then f (A) = Pf (D) P−1

uniquely defines f (A). In particular, if D = diag {λ1, λ2, . . . , λn}, then we
have f (D) = diag {f (λ1) , f (λ2) , . . . , f (λn)}. Thus, we can define f (A) for
any matrix A similar to a diagonal matrix provided that f (x) is defined for
all scalars x.
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Example 5.9. Illustrate the preceding discussion with the matrix in part (a)
of Example 5.7 and f (x) = sin

(
π
2 x
)
.

Solution. The eigenvalues of this problem are λ = 1, 2, 2. We already
found the eigenspace for λ = 2. Denote the two basis vectors by v1 = (1, 0, 0)
and v2 = (0,−2, 1). For λ = 1, apply Gauss–Jordan elimination to the matrix

A − 1I =

⎡

⎣
2 − 1 1 2

0 1 − 1 −2
0 0 2 − 1

⎤

⎦ =

⎡

⎣
1 1 2
0 0 −2
0 0 1

⎤

⎦

−−−−−−→
E23(2)

E13(−2)
E23

⎡

⎣
1 1 0
0 0 1
0 0 0

⎤

⎦ ,

which gives a general eigenvector of the form
⎡

⎣
x1

x2

x3

⎤

⎦ =

⎡

⎣
−x2

x2

0

⎤

⎦ = x2

⎡

⎣
−1

1
0

⎤

⎦ .

Hence, the eigenspace E1(A) has basis {(−1, 1, 0)}. Now set v3 = (−1, 1, 0).
Form the matrix

P = [v1,v2,v3] =

⎡

⎣
1 0 −1
0 −2 1
0 1 0

⎤

⎦ .

This matrix is nonsingular since det P = −1, and a calculation, which we
leave to the reader, shows that

P−1 =

⎡

⎣
1 1 2
0 0 1
0 1 2

⎤

⎦ .

The discussion of the first part of this section shows us that P is a similarity
transformation matrix that diagonalizes A, that is,

P−1AP =

⎡

⎣
2 0 0
0 2 0
0 0 1

⎤

⎦ = D.

As we have seen, this means that for any positive integer k, we have

Ak = PDkP−1 =

⎡

⎣
1 0 −1
0 −2 1
0 1 0

⎤

⎦

⎡

⎣
2k 0 0
0 2k 0
0 0 1k

⎤

⎦

⎡

⎣
1 1 2
0 0 1
0 1 2

⎤

⎦

=

⎡

⎣
2k 2k − 1 2k+1 − 2
0 1 −2k+1 + 2
0 0 2k

⎤

⎦ .

This is the formula we were looking for. It’s much easier than calculating Ak

directly!
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For sin
(

π
2 A
)
, we have π

2 A = P π
2 DP−1 , so that f

(
π
2 A
)

= Pf
(

π
2 D
)
P−1.

Thus,

sin
(π

2
A
)

=

⎡

⎣
1 0 −1
0 −2 1
0 1 0

⎤

⎦

⎡

⎣
sin
(
2π

2

)
0 0

0 sin
(
2π

2

)
0

0 0 sin
(
1π

2

)

⎤

⎦

⎡

⎣
1 1 2
0 0 1
0 1 2

⎤

⎦ =

⎡

⎣
0 −1 −2
0 1 2
0 0 0

⎤

⎦ .

Similarly, we could evaluate this matrix A at any other transcendental function
that is defined at the eigenvalues of A. �

This example showcases some very nice calculations. When can we pull
off the same sort of calculation for a general matrix A? First, let’s give the
favorable case a name.

Definition 5.9. Diagonalizable Matrix The matrix A is diagonalizable if it
is similar to a diagonal matrix, that is, there is an invertible matrix P and
diagonal matrix D such that P−1AP = D. In this case we say that P is a
diagonalizing matrix for A or that P diagonalizes A.

Can we be more specific about when a matrix is diagonalizable? We can.
As a first step, notice that the calculations that we began the section with
can easily be written in terms of an n × n matrix instead of a 3 × 3 matrix.
What these calculations prove is the following basic fact.

Theorem 5.6. Diagonalization Theorem The n × n matrix A is diagonal-
izable if and only if there exists a linearly independent set of eigenvectors
v1,v2, . . . ,vn of A, in which case P = [v1,v2, . . . ,vn] is a diagonalizing ma-
trix for A.

Can we be more specific about when a linearly independent set of eigen-
vectors exists? Actually, we can. Clues about what is really going on can be
gleaned from a reexamination of Example 5.7.

Example 5.10. Apply the results of the preceding discussion to the matrix
in part (b) of Example 5.7 or explain why they fail to apply.

Solution. The eigenvalues of this problem are λ = 1, 2, 2. We already
found the eigenspace for λ = 2. Denote the single basis vector of E2(A) by
v1 = (1, 0, 0). For λ = 1, apply Gauss–Jordan elimination to the matrix

A − 1I =

⎡

⎣
2 − 1 1 1

0 1 − 1 1
0 0 2 − 1

⎤

⎦ =

⎡

⎣
1 1 1
0 0 1
0 0 1

⎤

⎦
−−−−−−→
E32(−1)
E21(−1)

⎡

⎣
1 1 0
0 0 1
0 0 0

⎤

⎦ ,

which gives a general eigenvector of the form
⎡

⎣
x1

x2

x3

⎤

⎦ =

⎡

⎣
−x2

x2

0

⎤

⎦ = x2

⎡

⎣
−1

1
0

⎤

⎦ .
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Hence, the eigenspace E1(A) has basis {(−1, 1, 0)}. All we could come up with
here is two eigenvectors. As a matter of fact, they are linearly independent
since one is not a multiple of the other. But they aren’t enough and there is
no way to find a third eigenvector, since we have found them all! Therefore,
we have no hope of diagonalizing this matrix according to the diagonalization
theorem. The problem is that A is defective, since the algebraic multiplicity
of λ = 2 exceeds the geometric multiplicity of this eigenvalue. �

It would be very handy to have some working criterion for when we can
manufacture linearly independent sets of eigenvectors. The next theorem gives
us such a criterion.

Theorem 5.7. Let v1,v2, . . . ,vk be a set of eigenvectors of the matrix A
such that corresponding eigenvalues are all distinct. Then the set of vectors
v1,v2, . . . ,vk is linearly independent.

Proof. Suppose the set is linearly dependent. Then there is some nontrivial
linear combination with the fewest terms of the form

c1v1 + c2v2 + · · · + cmvm = 0 (5.2)

with each cj �= 0 and vj belonging to the eigenvalue λj , where the vi are
relabelled, if necessary. Multiply (5.2) by λ1 to obtain the equation

c1λ1v1 + c2λ1v2 + · · · + cmλ1vm = 0. (5.3)

Next multiply (5.2) on the left by A to obtain

0 = A(c1v1 + c2v2 + · · · + cmvm) = c1Av1 + c2Av2 + · · · + cmAvm,

that is,
c1λ1v1 + c2λ2v2 + · · · + ckλmvm = 0. (5.4)

Now subtract (5.4) from (5.3) to obtain

0v1 + c2(λ1 − λ2)v2 + · · · + ck(λ1 − λm)vm = 0.

This is a new nontrivial linear combination (since c2(λ1 − λ2) �= 0) of fewer
terms, that contradicts our choice of v1,v2, . . . ,vk. It follows that the original
set of vectors must be linearly independent. �

Actually, a little bit more is true: if v1,v2, . . . ,vk is such that for any
eigenvalue λ of A, the subset of all these vectors belonging to λ is linearly
independent, then the conclusion of the theorem is valid. We leave this as an
exercise. Here’s an application of the theorem that is useful for many problems.

Corollary 5.2. If the n × n matrix A has n distinct eigenvalues, then A is
diagonalizable.
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Proof. We can always find one nonzero eigenvector vi for each eigenvalue
λi of A. By the preceding theorem, the set v1,v2, . . . ,vn is linearly indepen-
dent. Thus, A is diagonalizable by the diagonalization theorem. �

Caution: Just because the n × n matrix A has fewer than n distinct eigen-
values, you may not conclude that it is not diagonalizable.

A simple example is the identity matrix, which is certainly diagonalizable
(it’s already diagonal!) but has only 1 as an eigenvalue.

5.2 Exercises and Problems

Exercise 1. Are the following matrices diagonalizable?

(a)

⎡

⎣
2 0 1
0 0 0
0 0 1

⎤

⎦ (b)

⎡

⎣
1 3 0
0 2 1
0 1 1

⎤

⎦ (c)
[

2 1
0 3

]
(d)

⎡

⎣
1 0 0

−2 1 0
1 0 1

⎤

⎦ (e)
[

2 1
−1 2

]

Exercise 2. Use eigensystems to determine whether the following matrices are
diagonalizable.

(a)

⎡

⎣
2 0 1
0 1 0
0 0 1

⎤

⎦ (b)

⎡

⎣
2 1 1
0 1 1
0 1 1

⎤

⎦ (c)
[

2 0
3 2

]
(d)

⎡

⎢
⎢
⎣

2 1 −1 −1
0 1 0 2
0 0 1 1
0 0 0 2

⎤

⎥
⎥
⎦

Exercise 3. Find a matrix P such that P−1AP is diagonal.

(a)

⎡

⎣
2 0 1
0 1 0
0 0 3

⎤

⎦ (b)

⎡

⎣
1 2 2
0 0 0
0 2 2

⎤

⎦ (c)
[

1 2
3 2

]
(d)

[
0 2
2 0

]
(e)

⎡

⎢
⎢
⎣

2 1 0 0
0 0 −1 0
0 0 3 1
0 0 0 1

⎤

⎥
⎥
⎦

Exercise 4. For each matrix A in Exercise 3 use the matrix P to find a formula
for Ak, k a positive integer.

Exercise 5. Given a matrix A, let q (x) be the product of linear factors x − λ,
where λ runs over each eigenvalue of A exactly once. For each of the following
matrices, confirm or deny the hypothesis that q (A) = 0 if and only if A is
diagonalizable.

(a)
[

2 0
3 3

]
(b)

[
2 0
3 2

]
(c)

⎡

⎣
2 1 1
0 1 0
0 0 1

⎤

⎦ (d)

⎡

⎣
2 0 1
0 1 1
0 0 1

⎤

⎦

Exercise 6. Given a matrix A, let p (x) be the characteristic polynomial of A. For
each of the matrices of Exercise 5, confirm or deny the hypothesis that if
p (A) = 0, then A is diagonalizable.
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Exercise 7. Show that the matrix J2(λ) =
[

λ 1
0 λ

]
is not diagonalizable for any

scalar λ and calculate the second, third, and fourth powers of the matrix.
What is a formula for J2 (λ)k, k a positive integer, based on these calculations?

Exercise 8. Show that the matrix J3 (λ) =

⎡

⎣
λ 1 0
0 λ 1
0 0 λ

⎤

⎦ is not diagonalizable and

calculate the third, fourth, and fifth powers of the matrix. What is a formula
for J3 (λ)k, k > 2, based on these calculations?

Exercise 9. Show that the matrices A =
[

0 2
2 0

]
and B =

[
2 6
0 −2

]
are similar

as follows: find diagonalizing matrices P,Q for A,B, respectively, that yield
identical diagonal matrices, set S = PQ−1, and confirm that S−1AS = B.

Exercise 10. Repeat Exercise 9 for the pair A =

⎡

⎣
2 1 1
0 3 0
0 0 3

⎤

⎦ and B =

⎡

⎣
3 2 2
0 3 0
0 −1 2

⎤

⎦.

Exercise 11. Compute sin
(

π
6 A
)

and cos
(

π
6 A
)
, where A =

[
2 4
0 −3

]
.

Exercise 12. Compute exp (A) and arctan (A), where A =

⎡

⎣
1 1 1
0 − 1

2 0
0 0 1

2

⎤

⎦.

*Problem 13. Show by example that a non-diagonal matrix A can be diago-
nalized by more than one matrix P .

*Problem 14. Show that any upper triangular matrix with identical diagonal
entries is diagonalizable if and only if it is already diagonal.

Problem 15. Suppose that A is an invertible matrix that is diagonalized by the
matrix P, that is, P−1AP = D is a diagonal matrix. Use this information to
find a diagonalization for A−1.

*Problem 16. Show that if A has no repeated eigenvalues, then the only matri-
ces that commute with A are matrices with the same eigenvectors as A.

Problem 17. Show that if A is diagonalizable, then so is A∗.

*Problem 18. Prove the Cayley–Hamilton theorem for diagonalizable matrices:
If p(x) is the characteristic polynomial of the diagonalizable matrix A, then
A satisfies its characteristic equation, that is, p(A) = 0.
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Problem 19. Adapt the proof of Theorem 5.7 to prove that if eigenvectors
v1,v2, . . . ,vk are such that for any eigenvalue λ of A, the subset of all these
vectors belonging to λ is linearly independent, then the vectors v1,v2, . . . ,vk

are linearly independent.

*Problem 20. The thirteenth-century mathematician Leonardo Fibonacci dis-
covered the sequence of integers 1, 1, 2, 3, 5, 8, . . . called the Fibonacci sequence.
These numbers have a way of turning up in many applications. They can be
specified by the formulas

f0 = 1
f1 = 1

fk+2 = fk+1 + fk, k = 0, 1, . . . .

(a) Let x(k) = (fk+1, fk) and show that these equations are equivalent to
the matrix equations x(0) = (1, 1) and x(k+1) = Ax(k), n = 0, 1, . . . , where

A =
[

1 1
1 0

]
.

(b) Use part (a) and the diagonalization theorem to find an explicit formula
for the kth Fibonacci number.

Problem 21. Suppose that the kill rate r of Example 5.8 is viewed as a variable
positive parameter. There is a value of the number r for which the eigenvalues
of the corresponding matrix are equal.

(a) Find this value of r and the corresponding eigenvalues by examining
the characteristic polynomial of the matrix.

(b) Use a technology tool to determine experimentally the long-term
behavior of populations for the value of r found in (a). Your choices of initial
states should include (100, 1000).

*Problem 22. Let A and B be matrices of the same size and suppose that A
has no repeated eigenvalues. Show that AB = BA if and only if A and B are
simultaneously diagonalizable, that is, a single matrix P diagonalizes both A
and B.

Problem 23. Prove or disprove: If n × n matrices A,B are similar to C,D,
respectively, then AB is similar to CD.

Problem 24. Show that if S−1AS = B and λ is an eigenvalue of A with cor-
responding eigenvector x, then λ is an eigenvalue of B with corresponding
eigenvector S−1x.

Problem 25. Show that similar matrices have the same rank.
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5.3 Applications to Discrete Dynamical Systems

Now we have enough machinery to come to a fairly complete understanding
of the discrete dynamical system

x(k+1) = Ax(k).

Diagonalizable Transition Matrix

Let us first examine the case that A is diagonalizable. So we assume that the
n×n matrix A is diagonalizable and that v1,v2, . . . ,vn is a complete linearly
independent set of eigenvectors of A belonging to the eigenvalues λ1, λ2, . . . , λn

of A. Let us further suppose that these eigenvalues are ordered so that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn| .

The eigenvectors v1,v2, . . . ,vn form a basis of R
n or C

n, whichever is
appropriate. In particular, we may write x(0) as a linear combination of these
vectors by solving the system [v1,v2, . . . ,vn] c = x(0) to obtain the coefficients
c1, c2, . . . , cn of the equation

x(0) = c1v1 + c2v2 + · · · + cnvn. (5.5)

Now we can see what the effect of multiplication by A is:

Ax(0) = A(c1v1 + c2v2 + · · · + cnvn)
= c1(Av1) + c2(Av2) + · · · + cn(Avn)
= c1λ1v1 + c2λ2v2 + · · · + cnλnvn.

Now apply A on the left repeatedly. Since x(k) = Akx(0), we see that

x(k) = c1λ
k
1v1 + c2λ

k
2v2 + · · · + cnλk

nvn. (5.6)

Equation (5.6) is the key to understanding how the state vector changes
in a discrete dynamical system. Now we can see clearly that it is the size of
the eigenvalues that governs the growth of successive states. Because of this
fact, a handy quantity that can be associated with a matrix A (whether it is
diagonalizable or not) is the following.

Definition 5.10. Spectral Radius and Dominant Eigenvalue The spectral
radius ρ (A) of a matrix A with eigenvalues λ1, λ2, . . . , λn is defined to be
the number

ρ(A) = max {|λ1| , |λ2| , . . . , |λn|} .

If |λk| = ρ (A) and λk is the only eigenvalue with this property, then λk is the
dominant eigenvalue of A.
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Thus, ρ(A) is the largest absolute value of the eigenvalues of A. We sum-
marize a few of the conclusions about a matrix that can be drawn from the
spectral radius.

Theorem 5.8. Let the transitionmatrix for a discrete dynamical systembe the
n × n diagonalizable matrix A. Let x(0) be an initial state vector given as in
equation (5.5). Then the following are true:

(1) If ρ(A) < 1, then limk→∞ x(k) = 0.
(2) If ρ(A) = 1, then the sequence of norms

{∥∥x(k)
∥
∥}∞

k=0
is bounded.

(3) If ρ(A) = 1 and λ = 1 is the dominant eigenvalue of A, then limk→∞ x(k)

is an element of E1(A), hence either an eigenvector or 0.
(4) If ρ(A) > 1, then for some choices of x(0) we have limk→∞ ‖x‖ = ∞.

Proof. We may assume that the eigenvalues and eigenvectors of A are
organized as in the discussion preceding this theorem. Suppose that ρ(A) < 1.
Then for all i, λk

i → 0 as k → ∞, so we see from equation (5.6) that x(k) → 0
as k → ∞, which is what (1) says. Next suppose that ρ(A) = 1. Then take
norms of equation (5.6) to obtain that, since each |λi| ≤ 1,

∥
∥
∥x(k)

∥
∥
∥ =

∥
∥c1λ

k
1v1 + c2λ

k
2v2 + · · · + cnλk

nvn

∥
∥

≤ |λ1|k ‖c1v1‖ + |λ2|k ‖c2v2‖ + · · · + |λn|k ‖cnvn‖
≤ ‖c1v1‖ + ‖c2v2‖ + · · · + ‖cnvn‖ .

Therefore, the sequence of norms
∥
∥x(k)

∥
∥ is bounded by a constant that de-

pends only on
∥
∥x(0)

∥
∥, which proves (2). The proof of (3) follows from inspec-

tion of equation (5.6): observe that the eigenvalue powers λk
j are equal to 1

if λ = 1, and otherwise the powers tend to zero, since all other eigenvalues
are less than 1 in absolute value. Hence, if any coefficient cj of an eigenvec-
tor vj corresponding to 1 is not zero, the limiting vector is an eigenvector
corresponding to λ = 1. Otherwise, the coefficients all tend to 0 and the lim-
iting vector is 0. Finally, if ρ(A) > 1, then for x(0) = c1v1, we have that
x(k) = c1λ

k
1v1. However, |λ1| > 1, so that

∣
∣λk

1

∣
∣ → ∞, as k → ∞, from which

(4) follows. �

We should note that the cases of the preceding theorem are not quite
exhaustive. One possibility that is not covered is the case that ρ(A) = 1
and A has other eigenvalues of absolute value 1. In this case the sequence of
vectors x(k) is bounded in norm, i.e.,

∥
∥x(k)

∥
∥ ≤ K for some constant K and

indices k = 0, 1, . . ., but need not converge to anything. An example of this
phenomenon is given in Example 5.13.

Example 5.11. Apply the preceding theory to the population of Example 5.8.

Solution. We saw in this example that the transition matrix is



356 5 THE EIGENVALUE PROBLEM

A =
[

0.6 0.4
−0.35 1.4

]
.

The characteristic equation of this matrix is

det
[

0.6 − λ 0.4
−0.35 1.4 − λ

]
= (0.6 − λ)(1.4 − λ) + 0.35 · 0.4

= λ2 − 2λ + 0.84 + 0.14

= λ2 − 2λ + 0.98,

whence we see that the eigenvalues of A are

λ = 1.0 ± √
4 − 3.92/2 ≈ 1.1414, 0.85858.

A calculation that we leave to the reader also shows that the eigenvectors of
A corresponding to these eigenvalues are approximately v1 = (1.684, 2.2794)
and v2 = (.8398, .54289), respectively. Since ρ(A) ≈ 1.1414 > 1, it follows
from (1) of Theorem 5.8 that for every initial state except a multiple of v2,
the limiting state will grow without bound. Now if we imagine an initial state
to be a random choice of values for the coefficients c1 and c2, we see that
the probability of selecting c1 = 0 is for all practical purposes 0. Therefore,
with probability 1, we will make a selection with c1 �= 0, from which it follows
that the subsequent states will tend to arbitrarily large multiples of the vector
v1 = (1.684, 2.2794).

Finally, we can offer some advice to the scientists who are thinking of
introducing a predator bird to control the frog population of this example:
Don’t do it! Almost any initial distribution of birds and frogs will result in a
population of birds and frogs that grows without bound. Therefore, we will
be stuck with both non-indigenous frogs and birds. To drive the point home,
start with a population of 10,000 frogs and 100 birds. In 20 years we will have
a population state of

[
0.6 0.4

−0.35 1.4

]20 [ 100
10,000

]
≈
[

197,320
267,550

]
.

In view of our eigensystem analysis, we know that these numbers are no fluke.
Almost any initial population will grow similarly. The conclusion is that we
should try another strategy or leave well enough alone in this ecology. �

Example 5.12. Apply the preceding theory to the Markov chain Exam-
ple 2.19.

Solution. Recall that this example led to a Markov chain whose transition
matrix is

A =
[

0.7 0.4
0.3 0.6

]
.

Conveniently, we have already computed the eigenvalues and vectors of 10A
in Example 5.2. There we found eigenvalues λ = 10, 3, with corresponding

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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eigenvectors v2 = (1,−1) and v1 = (4/3, 1), respectively. It follows that the
eigenvalues of A are λ = 1, 0.3, with the same eigenvectors. Therefore, 1 is the
dominant eigenvalue. Any initial state will necessarily involve v1 nontrivially,
since multiples of v2 are not probability distribution vectors (the entries are
of opposite signs). Thus, we may apply part 3 of Theorem 5.8 to conclude
that for any initial state, the only possible nonzero limiting state vector is
some multiple of v1. Which multiple? Since the sum of the entries of each
state vector x(k) sum to 1, the same must be true of the initial vector. Since

x(0) = c1v1 + c2v2 = c1

[
4/3
1

]
+ c2

[
1

−1

]
=
[

c1 (4/3) + c21
c11 + c2 (−1)

]
,

we see that

1 = c1 (4/3) + c21 + c11 + c2 (−1) = c1(7/3),

so that c1 = 3/7. Now use the facts that λ1 = 1, λ2 = 0.3, and equation (5.6)
with n = 2 to see that the limiting state vector is

lim
k→∞

c11kv1 + c2 (0.3)k v2 = c1v1 =
[

4/7
3/7

]
≈
[

.57143

.42857

]
.

Compare this with the calculations in Example 2.20. �
When do complex eigenvalues occur and what do they mean? In general,

all we can say is that the characteristic polynomial of a matrix, even if it
is real, may have complex roots. This is an unavoidable fact, but it can be
instructive. To see how this is so, consider the following example.

Example 5.13. Suppose that a discrete dynamical system has transition ma-

trix A =
[

0 a
−a 0

]
, where a is a positive real number. What can be said about

the states x(k), k = 1, 2, . . ., if the initial state x(0) is an arbitrary nonzero
vector?

Solution. The eigenvalues of A are ±ai. Since the eigenvalues of A are
distinct, there is an invertible matrix P such that

P−1AP = D =
[

ai 0
0 −ai

]
.

So we see from equation (5.1) that

Ak = PDkP−1 = P

[
(ai)k 0

0 (−ai)k

]
P−1.

The columns of P are eigenvectors of A, hence complex. We may take real
parts of the matrix Dk to get a better idea of what the powers of A do. Now
i = ei

π
2 , so we may use de Moivre’s formula to get

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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�((ai)k ) = ak cos(k
π

2
) = (−1)k/2ak if k is even.

We know that x(k) = Akx(0). In view of the above equation, we see that the
states x(k) will oscillate around the origin. If a < 1, the values tend to 0. In
the case that a = 1 we expect the states to remain bounded, but if a > 1, we
expect the values to become unbounded. In all cases the values oscillate in sign.
This oscillation is fairly typical of what happens when complex eigenvalues
are present, though it need not be as rapid as in this example. �

Nondiagonalizable Transition Matrix

How can a matrix be nondiagonalizable? All the examples we have considered
so far suggest that nondiagonalizability is the same as being defective. Put
another way, diagonalizable equals nondefective. This is exactly right, as the
following shows.

Theorem 5.9. The matrix A is diagonalizable if and only if the geometric
multiplicity of every eigenvalue equals its algebraic multiplicity.

Proof. Suppose that the n × n matrix A is diagonalizable. According to
the diagonalization theorem, there exists a complete linearly independent set
of eigenvectors v1,v2, . . . ,vn of the matrix A. The number of these vectors
belonging to an eigenvalue λ of A is a number d(λ) at most the geometric
multiplicity of λ, since they form a basis of the eigenspace Eλ(A). Hence,
their number is at most the algebraic multiplicity m(λ) of λ by Theorem 5.3.
Since the sum of all the numbers d (λ) is n, as is the sum of all the algebraic
multiplicities m(λ), it follows that the sum of the geometric multiplicities
must also be n. The only way for this to happen is that for each eigenvalue
λ, we have that geometric multiplicity equals algebraic multiplicity. Thus, A
is nondefective.

Conversely, if geometric multiplicity equals algebraic multiplicity, we can
produce m(λ) linearly independent eigenvectors belonging to each eigenvalue
λ. Assemble all of these vectors and we have n eigenvectors such that for any
eigenvalue λ of A, the subset of all these vectors belonging to λ is linearly
independent. Therefore, the entire set of eigenvectors is linearly independent
by the remark following Theorem 5.7. Now apply the diagonalization theorem
to obtain that A is diagonalizable. �

The last item of business in our examination of diagonalization is to prove
part 2 of Theorem 5.3, which asserts: for each eigenvalue μ of A, if m(μ) is
the algebraic multiplicity of μ, then

1 ≤ dim Eμ(A) ≤ m(μ).

To see why this is true, suppose the eigenvalue μ has geometric multiplicity
k and that v1,v2, . . . ,vk is a basis for the eigenspace Eμ(A). We know from
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the Steinitz substitution theorem that this set can be expanded to a basis
of the vector space R

n (or C
n), say v1,v2, . . . ,vk,vk+1, . . . ,vn. Form the

nonsingular matrix S = [v1,v2, . . . ,vn] and let

B = [S−1Avk+1, S
−1Avk+2, . . . , S

−1Avn] =
[

F
G

]
,

where F consists of the first k rows of B and G the remaining rows. Thus, we
obtain that

AS = [Av1, Av2, . . . , Avn]
= [μv1, μv2, . . . , μvk, Avk+1, . . . , Avn]

= S

[
μIk F
0 G

]
.

Now multiply both sides on the left by S−1, and we have

C = S−1AS =
[

μIk F
0 G

]
.

We see that the block upper triangular matrix C is similar to A. By part 2 of
Theorem 5.5 we see that A and C have the same characteristic polynomial.
However, the characteristic polynomial of C is

p(λ) = det
(

λIn −
[

μIk F
0 G

])

= det
([

(λ − μ)Ik F
0 G − λIn−k

])

= det(λ − μ)Ik · det (G − λIn−k)

= (λ − μ)k det (G − λIn−k) .

The product term above results from Exercise 26 of Section 2.6. It follows
that the algebraic multiplicity of μ as a root of p(λ) is at least as large as k,
which is what we wanted to prove. �

Our newfound insight into nondiagonalizable matrices is somewhat of a
negative nature: they are defective. Unfortunately, this isn’t much help in
determining the behavior of discrete dynamical systems with a nondiagonal-
izable transition matrix. If matrices are not diagonalizable, what simple kind
of matrix are they reducible to? There is a very nice answer to this question;

Jordan Blockthis answer requires the notion of a Jordan block, which
can be defined as a d × d matrix of the form

Jd(λ) =

⎡

⎢
⎢
⎢
⎢
⎣

λ 1

λ
. . .
. . . 1

λ

⎤

⎥
⎥
⎥
⎥
⎦

,

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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where the entries off the main diagonal and first superdiagonal are understood
to be zeros. This matrix is very close to being a diagonal matrix. Its true
value comes from the following classical theorem, whose proof we defer to
Section 5.7. We refer the reader to [17] and [19] of the bibliography for other
applications of this important theorem. These texts are excellent references
for higher-level linear algebra and matrix theory.

Theorem 5.10. Jordan Canonical Form Every matrix A is similar to a block
diagonal matrix that consists of Jordan blocks down the diagonal. Moreover,
these blocks are uniquely determined by A up to order.

In particular, if J = S−1AS, where J consists of Jordan blocks down
the diagonal, we call J “the” Jordan canonical form of the matrix A, which
suggests there is only one. This is a slight abuse of language, since the order
of occurrence of the Jordan blocks of J could vary. To fix ideas, let’s consider
an example.

Example 5.14. Find all possible Jordan canonical forms for a 3 × 3 matrix
A whose eigenvalues are −2, 3, 3.

Solution. Notice that each Jordan block Jd(λ) contributes d eigenvalues
λ to the matrix. Therefore, there can be only one 1 × 1 Jordan block for the
eigenvalue −2 and either two 1 × 1 Jordan blocks for the eigenvalue 3 or one
2×2 block for the eigenvalue 3. Thus, the possible Jordan canonical forms for
A (up to order of blocks) are

⎡

⎣
−2 0 0

0 3 0
0 0 3

⎤

⎦ and

⎡

⎣
−2 0 0

0 3 1
0 0 3

⎤

⎦ . �

Notice that if all Jordan blocks are 1×1, then the Jordan canonical form of
a matrix is simply a diagonal matrix. Thus, another way to say that a matrix
is diagonalizable is to say that its Jordan blocks are 1 × 1. In reference to the
previous example, we see that if the matrix has the first Jordan canonical form,
then it is diagonalizable, while if it has the second, it is nondiagonalizable.

Now suppose that the matrix A is a transition matrix for a discrete dyna-
mical system and A is not diagonalizable. What can one say? For one thing,
the Jordan canonical form can be used to recover part (1) of Theorem 5.8.
Part (4) remains valid as well; the proof we gave does not depend on A being
diagonalizable. Unfortunately, things are a bit more complicated as regards
parts (2) and (3). In fact, they fail to be true, as the following example shows.

Example 5.15. Show that the following matrices have spectral radius 1 and
determine if conclusions of parts (2) and (3) of Theorem 5.8 fail to be true in
each case.

(a) A = J2(1) (b) A = I2 (c) A =
[

0 1
−1 0

]
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Solution. (a) The eigenvalues of A are 1, 1, so ρ (A) = 1. We check that
for x(0) = (0, 1)

A2 =
[

1 1
0 1

] [
1 1
0 1

]
=
[

1 2
0 1

]
, A3 =

[
1 1
0 1

] [
1 2
0 1

]
=
[

1 3
0 1

]
,

and in general,

Ak =
[

1 k
0 1

]
.

Now take x(0) = (0, 1), and we see that

x(k) = Akx(0) =
[

1 k
0 1

] [
0
1

]
=
[

k
1

]
.

It follows that the norms
∥
∥x(k)

∥
∥ =

√
k2 + 1 are not a bounded sequence, so

that part (2) of the theorem fails to be true. Also, the conclusion of (3) fails.
(b) The eigenvalues of A are 1, 1, so so ρ (A) = 1. Also, x(k) = A(k)x(0) =

x(0), so part (2) holds but the conclusion of (3) fails (λ = 1 is not dominant.)
(c) The eigenvalues of A are i,−i, so again ρ (A) = 1, but one calculates

that if x(0) =
[

a
b

]
then x(1) =

[
b

−a

]
, x(2) =

[−a
−b

]
, x(3) =

[−b
a

]
, and

x(4) =
[

a
b

]
= x(0). So again (2) holds but the conclusion of (3) fails. �

A helpful tool for analysis of these transition matrices is the following
result, whose proof is left as an exercise.

Theorem 5.11. Jordan Block Powers If J = Jd (λ) is a Jordan block of size
d > 1, then one of the following hold:

(1) |λ| < 1, in which case Jk −→k→∞ 0, i.e., each entry of Jk tends to 0
as k → ∞.

(2) |λ| ≥ 1, in which case the magnitude of entries of J above the diagonal
tends to ∞.

In spite of Example 5.15, the news is not all negative. The problem with
the preceding examples is that each matrix does not have 1 as the dominant
eigenvalue. We show by way of the Jordan canonical form that parts (2) and
(3) do hold in general provided that 1 is the dominant eigenvalue.

In Chapter 3 we defined an stable stochastic matrix to be a stochastic ma-
trix with the property that all states of a Markov chain with such a transition
matrix converge to a steady state, independent of the initial state. With a
general discrete dynamical system we cannot hope for such a result since, for
any initial state x(0) and scalar c, if x(0) converges to x∗, then by linearity the
initial state cx(0) converges to cx∗ Hence, the following theorem is the best
we can do for general discrete dynamical systems:

http://dx.doi.org/10.1007/978-3-319-74748-4_3
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Theorem 5.12. Stability Theorem The following are equivalent for a dis-
crete dynamical system with transition matrix A:

(1) The matrix A has λ = 1 as the dominant eigenvalue of A.
(2) There is a vector x∗ such that limk→∞ x(k) = cx∗, where the scalar c

is uniquely determined by the initial state x(0).

Proof. Assume (1). According to Theorem 5.10 there is an invertible
matrix S such that

S−1AS =

⎡

⎢
⎢
⎢
⎣

J1 (1) 0 · · · 0
0 Jd2 (λ2) · · · 0

0 0
. . . 0

0 0 · · · Jdm
(λm)

⎤

⎥
⎥
⎥
⎦

≡ J (5.7)

where λ1 = 1, λ2, . . . , λm are eigenvalues of A and the zeros are suitably sized
zero matrices. Since 1 is the dominant eigenvalue of A, its Jordan block is
the 1 × 1 matrix [1] and we may assume that |λj | < 1 for j = 2, . . . , m.
Clearly e1 = (1, 0, . . . , 0) is an eigenvector of J for the eigenvalue λ = 1. Set
x∗ = Se1. Given an initial vector x(0) for a discrete dynamical system with
transition matrix A, let c be the first coordinate of S−1x(0) and we calculate
using Theorem 5.11:

x(k) = Akx(0) = S

⎡

⎢
⎢
⎢
⎢
⎣

J1 (1)k 0 · · · 0
0 Jd2 (λ2)

k · · · 0

0 0
. . . 0

0 0 · · · Jdm
(λm)k

⎤

⎥
⎥
⎥
⎥
⎦

S−1x(0)

−−−−→
k→∞

cSe1 = cx∗,

which proves (2).
Conversely, assume (2). Let ej, j = 1, . . . , n, be the jth column of the

identity. Since an arbitrary vector v = x(0) ∈ C
n can be expressed as v =

v1e1 + · · ·+vnen and each ej as an initial vector leads to a discrete dynamical
system that converges to cjx∗ for some scalars cj , j = 1, ...n, and d we have
that

x(m) = Amx(0) =
n∑

j=1

vjA
mej −−−−→

m→∞

n∑

j=1

vjcjx∗

=

⎛

⎝
n∑

j=1

vjcj

⎞

⎠x∗ = dx∗.

In particular, if x(0)
j = ej leads to a dynamical system converging to djx∗,

then
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Am = Am
[
x(0)

1 ,x(0)
2 , . . . ,x(0)

n

]
=
[
x(m)

1 ,x(m)
2 , . . . ,x(m)

n

]

−−−−→
m→∞ [d1x∗, d2x∗, . . . , dnx∗] .

This limiting matrix is clearly rank one. Rank does not increase with multipli-
cation on either side by an invertible matrix, so the limiting matrix of powers
of the Jordan canonical form J as in equation (5.7) should also be rank one.
According to Theorem 5.11 this cannot happen unless |λj | < 1, j = 2, . . . , n.
Therefore, condition (1) holds. �

This theorem inspires the following definition:

Definition 5.11. Stable Matrix and DDS A stable discrete dynamical sys-
tem is one whose transition matrix A has λ = 1 as its dominant eigenvalue,
in which case the matrix A is also called stable.

This line of thought brings us back to Markov chains and PageRank once
more. Recall that Theorem 2.8 asserts that transition matrix Q = αP + (1 −
α)veT , where P is stochastic, v is a distribution vector and 0 < α < 1, the
equation Qx = x has a unique distribution solution vector x to which all
Markov chains with transition matrix Q converge. So Q is a stable stochastic
matrix. This raises the question of whether or not stable stochastic matrices
are stable in the sense of the previous definition. The answer follows from
Theorem 5.12:

Corollary 5.3. If a stochastic matrix Q has a unique stationary distribution
vector to which all Markov chains with transition matrix Q converge, then
λ = 1 is the dominant eigenvalue of Q.

Proof. Let Q be n × n with stationary vector x∗ and let ej, j = 1, . . . , n,
be the jth column of the identity. Since an arbitrary vector v = x(0) ∈ C

n

can be expressed as v = v1e1 + · · ·+ vnen and each ej is a distribution vector
we have that

x(m) = Qmx(0) =
n∑

j=1

vjQ
mej −−−−→

m→∞

n∑

j=1

vjx∗ =

⎛

⎝
n∑

j=1

vj

⎞

⎠x∗.

It follows from Theorem 5.12 that λ = 1 is the dominant eigenvalue of Q. �

It is not sufficient in Corollary 5.3 to have a stationary distribution vector:
It must be unique. We leave it as an exercise to show that every stochastic
matrix has λ = 1 as an eigenvalue. (In fact, it can be shown with a bit more
work that every stochastic matrix Q has a stationary distribution vector.) But
this does not imply uniqueness, since I2 is an obvious counterexample.

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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5.3 Exercises and Problems

Exercise 1. Find the spectral radius of each of the following matrices and
determine whether there is a dominant eigenvalue.

(a)
[

2 0
1 1

]
(b)

[
2 4

−1 −2

]
(c)

⎡

⎣
3 4 −1

−2 −2 2
1 1 −1

⎤

⎦ (d) 1
2

⎡

⎣
1 0 0
0 −4 3
0 −2 1

⎤

⎦ (e)
[

0 1
0 − 1

2

]

Exercise 2. Find the spectral radius and dominant eigenvalue, if any.

(a)
[−7 −6

9 8

]
(b) 1

3

[
1 3
2 0

]
(c)

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦ (d) 1
2

⎡

⎣
1 0 1
1 0 0
0 2 1

⎤

⎦ (e)
[

1 1
−1 −1

]

Exercise 3. For initial state x(0)and transition matrix A below find an eigen-
system of A and use this to produce a formula for the kth state x(k) in the
form of equation (5.6).

(a)
[

1
0

]
, 1

2

[
3 2

−4 −3

]
(b)

⎡

⎣
1
2
1

⎤

⎦,

⎡

⎣
2 0 0
0 3 1
0 0 2

⎤

⎦ (c)
[

3
2

]
,
[

0 −2
3 5

]

Exercise 4. Repeat Exercise 3 for these pairs x(0), A.

(a)
[

0
2

]
, 1

2

[
3 0
8 −1

]
(b)

⎡

⎣
1
3
2

⎤

⎦,

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ (c)

⎡

⎣
1
0
1

⎤

⎦,

⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦

Exercise 5. If the matrices of Exercise 1 are transition matrices, for which do
all x(k) approach 0 as k → ∞? Does the stability theorem apply to any of
these?

Exercise 6. If the matrices of Exercise 2 are transition matrices, for which do
all x(k) remain bounded as k → ∞? Are any of these matrices stable?

Exercise 7. Youaregiventhata5×5matrixhaseigenvalues2, 2, 3, 3, 3.What are
the possible Jordan canonical forms for this matrix?

Exercise 8. What are the possible Jordan canonical forms for a 6 × 6 matrix
with eigenvalues −1,−1,−1, 4, 4, 4?

Exercise 9. Let A = J3(2), a Jordan block. Show that the Cayley–Hamilton
theorem is valid for A, that is, p (A) = 0, where p (x) is the characteristic
polynomial of A.

Exercise 10. Let A =
[

J2 (1) 0
0 J2 (1)

]
. Verify that p (A) = 0, where p (x) is the

characteristic polynomial of A, and find a polynomial q (x) of degree less than
4 such that q (A) = 0.
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Exercise 11. The three-stage insect model of Example 2.21 yields a transition
matrix

A =

⎡

⎣
0.2 0 0.25
0.6 0.3 0
0 0.6 0.8

⎤

⎦.

Use a technology tool to calculate the eigenvalues of this matrix. Deduce that
A is diagonalizable and determine the approximate growth rate from one state
to the next, given a random initial vector.

Exercise 12. The financial model of Example 2.27 gives rise to a discrete
dynamical system x(k+1) = Ax(k), where the transition matrix is

A =

⎡

⎣
1 0.06 0.12
1 0 0
0 1 0

⎤

⎦.

Use a technology tool to calculate the eigenvalues of this matrix. Deduce
that A is diagonalizable and determine the approximate growth rate from one
state to the next, given a random initial vector. Compare the growth rate to
a constant interest rate that closely matches the model.

Exercise 13. A (two) age structured population model results in a transition

matrix A =
[

0 f2

s1 0

]
with positive per-capita reproductive rate f2 and survival

rate s1. There exists a positive eigenpair (λ,p) for A. Assume this and use
the equation Ap = λp to express p = (p1, p2) in terms of p1, and to find a
polynomial equation in terms of birth and survival rates that λ satisfies.

Exercise 14. Repeat Exercise 13 for the (three) age structured model with tran-

sition matrix A =

⎡

⎣
0 f2 f3

s1 0 0
0 s2 0

⎤

⎦ where f2, f3, s1, s2 are all positive.

*Problem 15. Let A be a 2 × 2 transition matrix of a Markov chain where A
is not the identity matrix.

(a) Show that A can be written in the form A =
[

1 − a b
a 1 − b

]
for suitable

real numbers 0 ≤ a, b ≤ 1.
(b) Show that (b, a) and (1,−1) are eigenvectors for A.
(c) Find a formula for the kth state x(k) in the form of equation (5.6).

Problem 16. Let A =
[

a −b
b a

]
be a transition matrix for a discrete dynamical

system. Show that A is not stable for any choice of a, b ∈ R with b �= 0.

*Problem 17. Show that 1 is an eigenvalue for all stochastic matrices.

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Problem 18. Part (3) of Theorem 5.8 suggests that two possible limiting values
are possible. Use your technology tool to carry out this experiment: compute
a random 2 × 1 vector and normalize it by dividing by its length. Let the
resulting initial vector be x(0) = (x1, x2) and compute the state vector x(20)

using the transition matrix A of Example 5.12. Do this for a large number of
times (say 500) and keep count of the number of times x(20) is close to 0, say
‖x(20)‖ < 0.1. Conclusions?

Problem 19. Use a technology tool to construct a 3 × 10 table whose jth column

is Ajx, where x = (1, 1, 1) and A =

⎡

⎣
10 17 8
−8 −13 −6

4 7 4

⎤

⎦. What can you deduce

about the eigenvalues of A based on inspection of this table? Give reasons.
Check your claims by finding the eigenvalues of A.

Problem 20. A species of bird can be divided into three age groups: age less
than 2 years for group 1, age between 2 and 4 years for group 2, and age
between 4 and 6 years for the third group. Assume that these birds have at
most a 6-year life span. It is estimated that the survival rates for birds in
groups 1 and 2 are 50% and 75%, respectively. Also, birds in groups 1, 2, and
3 produce 0, 1, and 3 offspring on average in any biennium (period of 2 years).
Model this bird population as a discrete dynamical system and analyze the
long-term change in the population. If the survival rates are unknown, but
the population is known to be stable, assume that survival rates for groups 2
and 3 are equal and estimate this number.

Problem 21. Show that if U = Jd (0), then for k ≥ d, Uk = 0 and for k < d,
Uk is a matrix of all zeros except the kth superdiagonal, which consists of
ones.

*Problem 22. Show that if A = λI + U , where U = Jd (0), then entries below
the main diagonal of Am are zero and the (j, k)th entry on or above the main

diagonal is
(

m
�

)
λm−�, for k − j = � < d < m.

Problem 23. Use Problem 22 to prove Theorem 5.11. (The exponential form
of powers, ax = ex ln a is helpful.)

*Problem 24. Use the Jordan Canonical Form theorem to prove the Cayley-
Hamilton theorem: If p (λ) = det (λI − A) = 0 is the characteristic equation
of square matrix A, then p (A) = 0.

5.4 Orthogonal Diagonalization

We are going to explore some very remarkable facts about Hermitian and real
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Unitarily and Orthogonally
Diagonalizable Matrices

symmetric matrices. These matrices are
diagonalizable, and moreover, diagonalization
can be accomplished by a unitary (orthogo-
nal if A is real) matrix. This means that P−1AP = P ∗AP is diagonal. In this
situation we say that the matrix A is unitarily (orthogonally) diagonalizable.
Unitary and orthogonal matrices are particularly attractive since the inverse
calculation is essentially free and error-free as well: P−1 = P ∗.

Eigenvalue of Hermitian Matrices

As a first step, we need to observe a curious property of Hermitian matrices.
It turns out that their eigenvalues are guaranteed to be real, even if the matrix
itself is complex. This is one reason that one might prefer to work with these
matrices.

Theorem 5.13. If A is Hermitian, then the eigenvalues of A are real.

Proof. Let λ be an eigenvalue of A with corresponding nonzero eigenvector
x, so that Ax = λx. Form the scalar c = x∗Ax. We have that

c = c∗ = (x∗Ax)∗ = x∗A∗(x∗)∗ = x∗Ax = c.

It follows that c is a real number. However, we also have that

c = x∗λx = λx∗x = λ ‖x‖2

so that λ = c/ ‖x‖2 is also real. �

Example 5.16. Show that Theorem 5.13 is applicable if A =
[

1 1 − i
1 + i 0

]

and verify the conclusion of the theorem.

Solution. First notice that

A∗ =
[

1 1 − i
1 + i 0

]∗
=
[

1 1 + i
1 − i 0

]T

=
[

1 1 − i
1 + i 0

]
= A.

It follows that A is Hermitian and the preceding theorem is applicable. Now
we compute the eigenvalues of A by solving the characteristic equation

0 = det(A − λI) = det
[

1 − λ 1 − i
1 + i −λ

]

= (1 − λ)(−λ) − (1 + i) (1 − i)

= λ2 − λ − 2 = (λ + 1)(λ − 2).

Hence, the eigenvalues of A are λ = −1, 2, which are real. �
Caution: Although the eigenvalues of a Hermitian matrix are guaranteed to
be real, the eigenvectors may not be real unless the matrix in question is real.
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The Principal Axes Theorem

A key fact about Hermitian matrices is the so-called principal axes theorem; its
proof is a simple consequence of the Schur triangularization theorem which is
proved in Section 5.5. We will content ourselves here with stating the theorem
and supplying a proof for the case that the eigenvalues of A are distinct. This
proof also shows us one way to carry out the diagonalization process.

Theorem 5.14. Principal Axes Theorem Every Hermitian matrix is unitar-
ily diagonalizable, and every real symmetric matrix is orthogonally diagonal-
izable.

Proof. Let us assume that the eigenvalues of the n × n matrix A are
distinct. We saw in Theorem 5.13 that the eigenvalues of A are real. Let these
eigenvalues be λ1, λ2, . . . , λn. Now find an eigenvector vk for each eigenvalue
λk. We can assume that each vk is of unit length by replacing it by the vector
divided by its length if necessary. We now have a diagonalizing matrix, as
prescribed by Theorem 5.6 (the diagonalization theorem), namely the matrix
P = [v1,v2, . . . ,vn].

Recalling that Avj = λjvj , Avk = λkvk, and that A∗ = A, we see that

λkv∗
jvk = v∗

j λkvk = v∗
j Avk = (Avj)∗vk = (λjvj)∗vk = λjv∗

jvk.

Now bring both terms to one side of the equation and factor out the term
v∗

jvk to obtain
(λk − λj)v∗

jvk = 0.

Thus, if λk �= λj , it follows that vj · vk = v∗
jvk = 0. In other words the

eigenvectors v1,v2, . . . ,vn form an orthonormal set. Therefore, the matrix
P is unitary. If A is real, then so are the vectors v1,v2, . . . ,vn and P is
orthogonal in this case. �

The proof we have just given suggests a practical procedure for diagonal-
izing a Hermitian or real symmetric matrix. The only additional information
that we need for the complete procedure is advice on what to do if the eigen-
value λ is repeated. This is a sticky point. What we need to do in this case is
find an orthogonal basis of the eigenspace Eλ(A) = N (A−λI). It is always pos-
sible to find such a basis using the Gram–Schmidt algorithm (Theorem 4.10).
For the hand calculations that we do in this chapter, the worst situation that
we will encounter is that the eigenspace Eλ is two-dimensional, say with a
basis v1,v2. In this case replace v2 by ṽ2 = v2 − projv1

v2. We know that ṽ2

is orthogonal to v1 (see Theorem 6.4), so that v1, ṽ2 is an orthogonal basis of
Eλ(A). We illustrate the procedure with a few examples.

Example 5.17. Find an eigensystem for the matrix A =

⎡

⎣
1 2 0
2 4 0
0 0 5

⎤

⎦ and use

this to orthogonally diagonalize A.

http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_6
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Solution. Notice that A is real symmetric, so diagonalizable by the prin-
cipal axes theorem. First calculate the characteristic polynomial of A as

|A − λI| =

∣
∣
∣
∣
∣
∣

1 − λ 2 0
2 4 − λ 0
0 0 5 − λ

∣
∣
∣
∣
∣
∣

= ((1 − λ)(4 − λ) − 2 · 2) (5 − λ)

= −λ(λ − 5)2,

so that the eigenvalues of A are λ = 0, 5, 5.
Next find eigenspaces for each eigenvalue. For λ = 0, we find the null space

by row reduction,

A − 0I =

⎡

⎣
1 2 0
2 4 0
0 0 5

⎤

⎦
−−−−−−→
E21(−2)

⎡

⎣
1 2 0
0 0 0
0 0 5

⎤

⎦
−−−−→
E23

E2( 1
5 )

⎡

⎣
1 2 0
0 0 1
0 0 0

⎤

⎦ ,

so that the null space is spanned by the vector (−2, 1, 0). Normalize this vector
to obtain v1 = (−2, 1, 0)/

√
5. Next compute the eigenspace for λ = 5 via row

reductions,

A − 5I =

⎡

⎣
−4 2 0

2 −1 0
0 0 0

⎤

⎦
−−−−−−→
E21(1/2)

⎡

⎣
−4 2 0

0 0 0
0 0 0

⎤

⎦
−−−−−−−→
E1(−1/4)

⎡

⎣
1 −1/2 0
0 0 0
0 0 0

⎤

⎦ ,

which gives two eigenvectors, (1/2, 1, 0) and (0, 0, 1). Normalize these to get
v2 = (1, 2, 0)/

√
5 and v3 = (0, 0, 1). In this case v2 and v3 are already

orthogonal, so the diagonalizing matrix can be written as

P = [v1,v2,v3] =
1√
5

⎡

⎣
−2 1 0

1 2 0
0 0

√
5

⎤

⎦ .

We leave it to the reader to check that PT AP =

⎡

⎣
0 0 0
0 5 0
0 0 5

⎤

⎦. �

Example 5.18. Let A =
[

1 1 − i
1 + i 0

]
as in Example 5.16. Unitarily diago-

nalize this matrix.

Solution. In Example 5.16 we computed the eigenvalues to be λ = −1, 2.
Next find eigenspaces for each eigenvalue. For λ = −1, we find the null space
by row reduction,

A + I =
[

2 1 − i
1 + i 1

]−−−−−−−−−−−−→
E21(−(1 + i)/2)

[
2 1 − i
0 0

] −−−−−→
E1(1/2)

[
1 (1 − i)/2
0 0

]
,
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so that the null space is spanned by the vector ((−1 + i) /2, 1). A similar
calculation shows that a basis of eigenvectors for λ = 2 consists of the vector
((−1 − i) /2, 1). Normalize these vectors to obtain u1 = ((−1 + i) /2, 1) /

√
3/2

and u2 = (−1, (−1 − i) /2) /
√

3/2. So set

U =

√
2
3

[ −1+i
2 −1
1 −1−i

2

]

and obtain that (the reader should check this)

U−1AU = U∗AU =
[−1 0

0 2

]
. �

5.4 Exercises and Problems

Exercise 1. Show that the following matrices are real symmetric and find
orthogonal matrices that diagonalize these matrices.

(a)
[−2 2

2 1

]
(b)

[
2 36

36 23

]
(c)

⎡

⎣
1 2 0
2 1 0
0 0 1

⎤

⎦ (d)

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦

Exercise 2. Show that the following matrices are Hermitian and find unitary
matrices that diagonalize these matrices.

(a)
[

1 1 + i
1 − i 2

]
(b)

[
3 i

−i 0

]
(c)

⎡

⎣
0 1 0
1 0 i
0 −i 0

⎤

⎦ (d)

⎡

⎣
1 1 + i 0

1 − i 0 0
0 0 2

⎤

⎦

Exercise 3. Show that these matrices are orthogonal and compute their eigen-
values. Determine whether it is possible to orthogonally or unitarily diagonal-
ize these matrices. (Hint: look for orthogonal sets of eigenvectors.)

(a)

⎡

⎣
0 1 0

−1 0 0
0 0 −1

⎤

⎦ (b) 1√
2

[
1 1

−1 1

]
(c)

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦

Exercise 4. Show that these matrices are unitary and compute their eigenval-
ues. Unitarily diagonalize these matrices.

(a) 1√
5

[
2 −1
1 2

]
(b)

⎡

⎣
0 i 0

−1 0 0
0 0 −i

⎤

⎦ (c) 1
5
√

2

[
5 −3 + 4i

3 + 4i 5

]

Exercise 5. A square matrix A is called normal if AA∗ = A∗A. Which of the
matrices in Exercises 3 and 1 are normal?

Exercise 6. Which of the matrices in Exercise 4 are normal or Hermitian?



5.4 Orthogonal Diagonalization 371

Exercise 7. Use orthogonal diagonalization to find a formula for the kth power of

A =

⎡

⎣
1 1 1
1 0 0
1 0 0

⎤

⎦.

Exercise 8. Use unitary diagonalization to find a formula for the kth power of

A =
[

3 i
−i 3

]
.

Exercise 9. Let A =

⎡

⎣
2 1 0
1 3 −1
0 −1 2

⎤

⎦. The eigenvalues of A are 1, 2, and 4. Find

an orthogonal matrix P that diagonalizes A to D = diag {1, 2, 4}, calculate
B = P diag

{
1,

√
2, 2
}

PT , and show that B is a symmetric positive definite
square root of A, that is, B2 = A and B is symmetric positive definite.

Exercise 10. Let A =

⎡

⎣
1 −1 0

−1 2 −i
0 i 1

⎤

⎦. The eigenvalues of A are 0, 1, and 3. Find

a unitary matrix P that diagonalizes A to D = diag {0, 1, 3} and confirm that
B = P diag

{
0, 1,

√
3
}

P ∗ is a Hermitian square root of A.

Problem 11. Show that if A is orthogonally diagonalizable, then so is AT .

*Problem 12. Let B be a Hermitian matrix. Show that the eigenvalues of B
are positive if and only if B is a positive definite matrix.

Problem 13. Show that if the real matrix A is orthogonally diagonalizable,
then A is symmetric.

Problem 14. Show that if the real matrix A is skew-symmetric (AT = −A),
then iA is Hermitian.

Problem 15. Suppose that A is symmetric and orthogonal. Prove that the only
possible eigenvalues of A are ±1.

*Problem 16. Let A be real symmetric positive definite matrix. Show that A
has a real symmetric positive definite square root, that is, there is a symmetric
positive definite matrix S such that S2 = A.

*Problem 17. LetAbe any realmatrix and show that the eigenvalues of AT A are
all nonnegative.

Problem 18. Let 0 �= u ∈ C
n and A = uu∗. Show that A is Hermitian and

exhibit the single nonzero eigenvalue and corresponding eigenvector. How could
you describe an eigensystem for this matrix?
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5.5 *Schur Form and Applications

Recall that matrices A and B are similar if there is an invertible matrix S such
that B = S−1AS; if the transformation matrix S is unitary, then S−1 = S∗.
The main object of this section is to prove a famous theorem in linear algebra
that provides a nice answer to the following question: If we wish to use only
orthogonal (or unitary) matrices as similarity transformation matrices, what
is the simplest form to which a matrix A can be transformed? It would be nice
if we could say something like “diagonal” or “Jordan canonical form.” Unfor-
tunately, neither is possible. However, upper triangular matrices are very nice
special forms of matrices. In particular, we can see the eigenvalues of an upper
triangular matrix at a glance. That makes the following theorem extremely
attractive. Its proof is also very interesting, in that it actually suggests an
algorithm for computing the so-called Schur triangular form.

Theorem 5.15. Schur Triangularization Let A be an arbitrary square
matrix. Then there exists a unitary matrix U such that U∗AU is an upper
triangular matrix. If A and its eigenvalues are real, then U can be chosen to be
orthogonal.

Proof. To get started, take k = 0 and V0 = I. Suppose we have reached
the kth stage where we have a unitary matrix Vk such that

V ∗
k AVk =

⎡

⎢
⎢
⎢
⎣

λ1 ∗ · · · ∗
...

. . . ∗ ...
0 · · · λk ∗
0 · · · 0 B

⎤

⎥
⎥
⎥
⎦

=
[

Rk C
0 B

]

with the submatrix Rk upper triangular. Compute an eigenvalue λk+1 of B
and a corresponding eigenvector w of unit length in the standard norm of B.
If the first coordinate of w is not real, replace w by e−iθw where θ is a polar
argument of the first coordinate of w. This does not affect the length of w,
and any multiple of w is still an eigenvector of A. Now let v = w − e1, where
e1 = (1, 0, . . . , 0). Form the (possibly complex) Householder matrix Hv. Since
w ·e1 is real, w ·e1 = e1 ·w and hence v∗ (w + e1) = 0. Thus, Hv (w + e1) =
w + e1. Use the facts that Hvv = −v and w = 1

2 {v + (w + e1)} to deduce
that Hvw = e1. Recall that Householder matrices are unitary and Hermitian,
so that H∗

v = Hv = H−1
v . Hence

H∗
vBHve1 = HvBH−1

v e1 = HvBw = Hvλ1w = λ1e1.

Therefore, the entries under the first row and in the first column of H∗
vBHv

are zero. Form the unitary matrix

Vk+1 =
[

Ik 0
0 Hv

]
Vk
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and obtain that

V ∗
k+1AVk+1 =

[
Ik 0
0 Hv

]
V ∗

k AVk

[
Ik 0
0 Hv

]

=
[

Ik 0
0 Hv

] [
Rk C
0 B

] [
Ik 0
0 Hv

]
=
[

Rk CHv

0 H∗
vBHv

]
.

This new matrix is upper triangular in the first k + 1 columns, so we can
continue in this fashion until we reach the last column, at which point we set
U = Vn to obtain that U∗AU is upper triangular.

Finally, notice that if the eigenvalues and eigenvectors that we calculate
are real, which would be the case if A and the eigenvalues of A were real, then
the Householder matrices used in the proof are all real, so that the matrix U
is orthogonal. �

Of course, the upper triangular matrix T and triangularizing matrix U are
not unique. Nonetheless, this is a very powerful theorem. Consider what it
says in the case that A is Hermitian: the principal axes theorem is a simple
special case of it.

Corollary 5.4. Principal Axes Theorem Every Hermitian matrix is unitarily
(orthogonally, if the matrix is real) diagonalizable.

Proof. Let A be Hermitian. According to the Schur triangularization the-
orem there is a unitary matrix U such that U∗AU = R is upper triangular.
We check that

R∗ = (U∗AU)∗ = U∗A∗ (U∗)∗ = U∗AU = R.

Therefore, R is both upper and lower triangular. This makes R a diagonal
matrix. If A is real symmetric, then A and its eigenvalues are real. By the
triangularization theorem U can be chosen orthogonal. �

Another application of the Schur triangularization theorem is that we can
show the real significance of normal matrices. This term has

Normal Matrixappeared in several exercises. Recall that a matrix A is
normal if A∗A = AA∗. Clearly, every Hermitian matrix is normal, as is every
unitary matrix.

Theorem 5.16. A matrix is unitarily diagonalizable if and only if it is nor-
mal.

Proof. We leave it as an exercise to show that a unitarily diagonalizable
matrix is normal. Conversely, let A be normal. According to the Schur tri-
angularization theorem there is a unitary matrix U such that U∗AU = R is
upper triangular. But then we have that R∗ = U∗A∗U, so that

R∗R = U∗A∗UU∗AU = U∗A∗AU = U∗AA∗U = U∗AUU∗A∗U = RR∗.
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Therefore, R commutes with R∗, which means that R is diagonal by Prob-
lem 11 at the end of this section. This completes the proof. �

Our last application extends Theorem 5.2 to rational functions.

Corollary 5.5. Let f(x) and g(x) be polynomials and A a square matrix such
that g(A) is invertible. Then the eigenvalues of the matrix f(A)g(A)−1 are of
the form f(λ)/g(λ), where λ runs over the eigenvalues of A.

Proof. We sketch the proof. As a first step, we make two observations
about upper triangular matrices S and T with diagonal terms λ1, λ2, . . . , λn,
and μ1, μ2, . . . , μn, respectively. First, ST is upper triangular with diagonal
terms λ1μ1, λ2μ2, . . . , λnμn. Next, if S is invertible, then S−1 is also an upper
triangular matrix, whose diagonal terms are 1/λ1, 1/λ2, . . . , 1/λn.

Now, we have seen in Theorem 5.5 that for any invertible P of the
right size, P−1f (A) P = f

(
P−1AP

)
. Similarly, if we multiply the identity

g(A)g(A)−1 = I by P−1 and P, we see that P−1g(A)−1P = g(P−1AP )−1.
Thus, if P is a matrix that unitarily triangularizes A, then

P−1f (A) g (A)−1
P = f

(
P−1AP

)
g
(
P−1AP

)−1
,

so that by our first observations, this matrix is upper triangular with diagonal
entries of the required form. Since similar matrices have the same eigenvalues,
it follows that the eigenvalues of f(A)g(A)−1 are of the required form. �

5.5 Exercises and Problems

You may use a technology tool for the following exercises.

Exercise 1. Apply one step of Schur triangularization to the following specified
eigenvalues.

(a) λ = −3, A =

⎡

⎣
−1 2 2

2 −1 2
2 2 −1

⎤

⎦ (b) λ =
√

2, A =

⎡

⎣
0 1 0
1 0 i
0 −i 0

⎤

⎦

Exercise 2. Apply Schur triangularization to the following matrices.

(a)

⎡

⎣
4 4 1

−1 0 0
0 0 2

⎤

⎦ (b)

⎡

⎣
i 0 2
0 0 −1
0 1 0

⎤

⎦ (c) =
[

0 1
2 1

]

Exercise 3. Use Schur triangularization to find eigenvalues of the following
matrices.

(a)

⎡

⎣
5 6 18

11 6 24
−4 −2 −8

⎤

⎦ (b)

⎡

⎣
3 8 20
3 14 32

−1 −5 −11

⎤

⎦ (c)

⎡

⎢
⎢
⎣

4 20 42 12
8 32 72 15

−3 −14 −31 −6
−1 −6 −12 −4

⎤

⎥
⎥
⎦
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Exercise 4. Find a unitary matrix that upper triangularizes the following
matrices.

(a)

⎡

⎣
3 6 2
1 4 2
4 2 1

⎤

⎦ (b)

⎡

⎣
4 8 10
3 14 0

−1 5 1

⎤

⎦ (c)

⎡

⎢
⎢
⎣

1 2 0 0
−2 2 0 0
0 −2 2 2
0 0 −2 1

⎤

⎥
⎥
⎦

Exercise 5. Verify Corollary 5.5 in the case that A =
[

22 10
−50 −23

]
, f (x) =

x2 − 1, and g (x) = x2 + 1 by calculating the eigenvalues f (A) /g (A) directly
and comparing them to f (λ) /g (λ), where λ runs over the eigenvalues of A.

Exercise 6. Verify that Corollary 5.5 fails in the case that A =
[

22 10
−50 −23

]
,

f (x) = x − 1, and g (x) = x2 + 4x + 3 and explain why.

Problem 7. Show that every unitary matrix is normal. Give an example of a
unitary matrix that is not Hermitian.

*Problem 8. Let A be an invertible matrix. Use Schur triangularization to
reduce the problem Ax = b to a problem with triangular coefficient matrix.

Problem 9. A square matrix A is skew-Hermitian if A∗ = −A. Show that every
skew-Hermitian matrix is normal.

Problem 10. Use Corollary 5.4 to show that the eigenvalues of a Hermitian
matrix must be real.

*Problem 11. Prove that if an upper triangular matrix commutes with its Her-
mitian transpose, then the matrix must be diagonal.

*Problem 12. Suppose that A is an n × n matrix whose only eigenvalue is 1
and whose Schur triangularization yields U∗AU = R. Find a formula for A−1

that involves only I, U , U∗, R and no explicit inverses.

5.6 *The Singular Value Decomposition

The object of this section is to develop yet one more factorization of a matrix
that provides valuable information about the matrix. For simplicity, we stick
with the case of a real matrix A and orthogonal matrices. However, the fac-
torization we are going to discuss can be done with complex A and unitary
matrices. This factorization is called the singular value decomposition (SVD
for short). It has a long history in matrix theory, but was popularized in the
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1960s as a powerful computational tool. We saw in Section 4.4 that multipli-
cation on one side by an orthogonal matrix can produce an upper triangular
matrix. This is called the QR factorization. Here is the basic question that
the SVD answers: if multiplication on one side by an orthogonal matrix can
produce an upper triangular matrix, how simple a matrix can be produced by
multiplying on each side by a (possibly different) orthogonal matrix? The an-
swer, as you might guess, is a matrix that is both upper and lower triangular,
that is, diagonal. However, verification of this fact is much more subtle than
that of the one-sided QR factorization of Section 4.4. Here is the key result:

Theorem 5.17. Singular Value Decomposition Let A be an m × n real
matrix. Then there exist an m × m orthogonal matrix U , an n × n
orthogonal matrix V , and an m × n diagonal matrix Σ with diagonal entries
σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, with p = min {m,n}, such that UT AV = Σ.
Moreover, the numbers σ1, σ2, . . . , σp are uniquely determined by A.

Proof. There is no loss of generality in assuming that n ≤ m. For if this
is not the case, we can prove the theorem for AT , and by transposing the
resulting SVD for AT , obtain a factorization for A. Form the n × n matrix
B = AT A. This matrix is symmetric and its eigenvalues are nonnegative
(we leave these facts as exercises). Because they are nonnegative, we can
write the eigenvalues of B in decreasing order of magnitude as the squares of
nonnegative real numbers, say as σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

n. Now we know from the
principal axes theorem that we can find an orthonormal set of eigenvectors
corresponding to these eigenvalues, say Bvk = σ2

kvk, k = 1, 2, . . . , n. Let
V = [v1,v2, . . . ,vn]. Then V is an orthogonal n × n matrix. We may assume
for some index r that σr+1, σr+2, . . . , σn are zero, while σr �= 0.

Next set uj = 1
σj

Avj , j = 1, 2, . . . , r. These are orthonormal vectors in
R

m since

uT
j uk =

1
σjσk

vT
j AT Avk =

1
σjσk

vT
j Bvk =

σ2
k

σjσk
vT

j vk =
{

0, if j �= k,
1, if j = k.

Now expand this set to an orthonormal basis u1,u2, . . . ,um of R
m. This is

possible by Theorem 4.7 in Section 4.3. Set U = [u1,u2, . . . ,um]. This matrix
is orthogonal. We calculate that if k > r, then uT

j Avk = 0 since Avk = 0,
and if k < r, then

uT
j Avk = σkuT

j uk =
{

0, if j �= k,
σk, if j = k.

It follows that UT AV = [uT
j Avk] = Σ, which is the desired SVD.

Finally, if U, V are orthogonal matrices such that UT AV = Σ, then A =
UΣV T and therefore

B = AT A = V ΣT UT UΣV T = V ΣT ΣV T ,

http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_4
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so that the squares of the diagonal entries of Σ are the eigenvalues of B. It
follows that the numbers σ1, σ2, . . . , σn are uniquely determined by A. �

A similar theorem holds for complex matrices, with “orthogonal”
replaced by “unitary”. The nonnegative numbers σ1, σ2, . . . , σp are called the
singular values of the matrix A, the columns of U are the left singular

Singular Values and Vectorsvectors of A, and the columns of V are the
right singular vectors of A.

There is an interesting geometrical interpretation of this theorem from
the perspective of linear transformations and change of basis as developed in
Section 3.7. It can be stated as follows.

Corollary 5.6. Let T : R
n → R

m be a linear transformation with matrix
A with respect to the standard bases. Then there exist orthonormal bases
u1,u2, . . . ,um and v1,v2, . . . ,vn of R

m and R
n, respectively, such that the

matrix of T with these bases is diagonal with nonnegative entries down the
diagonal.

Proof. First observe that if U = [u1,u2, . . . ,um] and V = [v1,v2, . . . ,vn],
then U and V are the change of basis matrices from the bases u1,u2, . . . ,um

and v1,v2, . . . ,vn of R
m and R

n, respectively, to the standard bases. Also,
U−1 = UT . Now apply Corollary 3.9 of Section 3.7, and the result follows. �

Corollary 5.7. Let UT AV = Σ be the SVD of A and suppose that σr �= 0
and σr+1 = 0. Then

(1) rankA = r.
(2) A = [u1,u2, . . . ,ur] diag {σ1, σ2, . . . , σr} [v1,v2, . . . ,vr]

T .
(3) N (A) = span {vr+1,vr+2, . . . ,vn}.
(4) C (A) = span {u1,u2, . . . ,ur}.
(5) If A† is given by

A† = [v1,v2, . . . ,vr] diag {1/σ1, 1/σ2, . . . , 1/σr} [u1,u2, . . . ,ur]
T

,

then x = A†b is a least squares solution to Ax = b.
(6) A = σ1u1vT

1 + σ2u2vT
2 + · · · + σrurvT

r .

Proof. Multiplication by invertible matrices does not change rank, and
the rank of Σ is clearly r, so (1) follows. For (2), multiply the SVD equation
by U on the left and V T on the right to obtain

A = UΣV T = [σ1u1, σ2u2, . . . , σrur,0, . . . ,0] [v1,v2, . . . ,vn]T

=
r∑

k=1

σkukvT
k = [u1,u2, . . . ,ur] diag {σ1, σ2, . . . , σr} [v1,v2, . . . ,vr]

T
.

This also proves item (6). The remaining items are left as exercises. �

Item (2) is called the compact SVD form for A. The matrix A† of (5)

http://dx.doi.org/10.1007/978-3-319-74748-4_3
http://dx.doi.org/10.1007/978-3-319-74748-4_3
http://dx.doi.org/10.1007/978-3-319-74748-4_3


378 5 THE EIGENVALUE PROBLEM

Compact SVD and Pseudoinverse is called the pseudoinverse of A and
behaves in many ways like an inverse

for matrices that need not be invertible or even square. Item (5) presents
an important application of the pseudoinverse. We have only scratched the
surface of the many facets of the SVD. Like most good ideas, it is rich in
applications. We mention one more. It is based on item (6), which says that
a matrix A of rank r can be written as a sum of r rank-one matrices. In fact,
it can be shown that this representation is the most economical in the sense
that the partial sums

σ1u1vT
1 + σ2u2vT

2 + · · · + σkukvT
k , k = 1, 2, . . . , r,

give the rank-k approximation to A that is closest among all rank-k approxi-
mations to A. This suggests an intriguing way to compress data in a lossy way
(i.e., with some loss of data). For example, suppose A is a matrix of floating-
point numbers representing a picture. We might get a reasonably good ap-
proximation to the picture using only the σk larger than a certain threshold.
Thus, with a 1,000×1,000 matrix A that has a very small σ21, we could get by
with the data σk,uk,vk, k = 1, 2, . . . , 20. Consequently, we would store only
these quantities, which add up to 1,000×40+20 = 40,020 numbers. Contrast
this with storing the full matrix of 1,000 × 1,000 = 1,000,000 entries, and you
can see the gain in economy.

Here is a simple example of an SVD calculation. Interestingly enough,
the method of calculation is to simply follow the details of the proof of
Theorem 5.17.

Example 5.19. Find a singular value decomposition for A =

⎡

⎣
2 1
1 −2
1 −1

⎤

⎦.

Solution. First form the matrix B = AT A =
[

6 −1
−1 6

]
. Next, find the

eigenvalues of B via the characteristic equation 0 = (λ − 6)2 − 1 = λ2 −
12λ + 35 = (λ − 5) (λ − 7). Thus, the singular values are σ1 =

√
7 and σ2 =

√
5. Here B − 7I =

[−1 −1
−1 −1

]
, so unit eigenvector v1 = 1√

2
(1,−1) solves

(B − 7I)v = 0. Similarly, B − 5I =
[

1 −1
−1 1

]
, so unit eigenvector v2 =

1√
2

(1, 1) solves (B − 5I)v = 0. Next we calculate u1 = 1√
7
Av1 = 1√

14
(1, 3, 2),

u2 = 1√
5
Av2 = 1√

10
(3,−1, 0). Finally, we note that e3 is outside the span of

u1 and u2, so an orthogonal vector to these two vectors is

w = e3 − (u1 · e3)u1 − (u1 · e3)u2 =
1
7

(−1,−3, 5) .

Let u3 = w/ ‖w‖ = 1√
35

(−1,−3, 5). Then we assemble

U =

⎡

⎣
1/

√
14 3/

√
10 −1/

√
35

3/
√

14 −1/
√

10 −3/
√

35
2/

√
14 0 5/

√
35

⎤

⎦ , V =
1√
2

[
1 1

−1 1

]
, and Σ =

⎡

⎣

√
7 0

0
√

5
0 0

⎤

⎦ ,

to obtain the SVD decomposition UT AV = Σ. �
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5.6 Exercises and Problems

Exercise 1. Exhibit a singular value decomposition for the following matrices.

(a)
[

3 0 0
0 −1 0

]
(b)

⎡

⎣
−2 0

0 1
0 −1

⎤

⎦ (c)

⎡

⎣
1 0 0
0 0 0
0 −1 2

⎤

⎦ (d)
[

0 −2 0
2 0 0

]

Exercise 2. Calculate a singular value decomposition for the following matrices.

(a)
[

1 1 0
0 −1 0

]
(b)

⎡

⎣
1 1
0 0

−1 1

⎤

⎦ (c)

⎡

⎣
1 0 1
0 0 0
0 0 2

⎤

⎦

Exercise 3. Use a technology tool to compute an orthonormal basis for the
null space and column space of the following matrices with the SVD and
Corollary 5.7. You will have to decide which nearly-zero terms are really zero.

(a)

⎡

⎢
⎢
⎣

1 1 3
0 −1 0
1 −2 2
3 0 2

⎤

⎥
⎥
⎦ (b)

⎡

⎣
3 1 2
4 0 1

−1 1 1

⎤

⎦ (c)

⎡

⎢
⎢
⎣

1 0 1 0 −3
1 2 1 −5 2
0 1 0 −3 1
0 2 −3 1 4

⎤

⎥
⎥
⎦

Exercise 4. Use the pseudoinverse to find a least squares solution Ax = b,
where A is a matrix from Exercise 3 with corresponding right-hand side below.
(a) (2, 2, 6, 5) (b) (2, 3, 1) (c) (4, 1, 2, 3)

*Problem 5. Prove (3) and (4) of Corollary 5.7.

Problem 6. Show that if A is invertible, then A−1 is the pseudoinverse of A.

*Problem 7. Prove (5) of Corollary 5.7.

5.7 *Applications and Computational Notes

Jordan Canonical Form Theorem

Although the Jordan Canonical Form theorem is not used often in practical
computations due to numerical complexity and stability issues, this theorem
is a fundamental theoretical tool in matrix analysis. It warrants a proof, and
at this point we have sufficient machinery to provide it:

Theorem 5.18. Jordan Canonical Form Every matrix A is similar to a block
diagonal matrix that consists of Jordan blocks down the diagonal. Moreover,
these blocks are uniquely determined by A up to order.
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Proof. Assume that A is n × n possibly complex matrix and define the
matrix multiplication linear operator T = TA : C

n → C
n. We use the notation

of Theorem 3.14: Uj = ker(T j) and Wj = range(T j), j = 1, 2, . . ., so that for
all j, Uj ⊆ Uj+1 and Wj ⊇ Wj+1; Also, Un = Uk and Wn = Wk for k > n.
Let m ≤ n be the first index such that Um = Um+1, so that, as we saw in the
proof of Theorem 3.14, all other inclusions Uj ⊆ Uj+1 are strict for j < m
and equality for j ≥ m, so that Um = Un. Since Um−1 ⊂ Um we can expand
a basis of Um−1 to a basis of Um. Let Cm be the set of additional vectors and
Vm = spanCm; so we can write Um = Um−1 ⊕ Vm.

Let’s carry this one step further. First note that if the operator T is
restricted to Vm, then for nonzero v ∈ Vm we have T (v) �= 0 for other-
wise we would have v ∈ Um−1. Thus, the restricted map has kernel {0}, so
is one-to-one by Theorem 3.9. Moreover, T (v) �∈ Um−2 else v ∈ Um−1. Thus,
T (Cm) is a linearly independent set whose span is contained in Um−1 but
whose intersection with Um−2 is {0}. So we can expand T (Cm) to a set of lin-
early independent vectors Cm−1 such that if we set Vm−1 = span Cm−1, then
Um−1 = Um−2 ⊕ Vm−1. Now continue this process until we reach U1. Expand
T (C2) to a basis C1 of U1 = ker T , so that V1 = span C1 = U1. Observe that

Um = Um−1 ⊕ Vm = Um−2 ⊕ Vm−1 ⊕ Vm = . . . = V1 ⊕ V2 ⊕ · · · ⊕ Vm.

Thus, a basis of Um consists of sets of vectors of the form
{
v, T (v) , . . . T j (v)

}
,

where T j+1 (v) = 0. So we can construct an ordered basis C of C
n which lists

all these sets of vectors in order (that gives us a basis of Un) followed by some
basis of Wn = range(Tn), say of size d. Then the coordinates of elements of
Wn with respect to C are 0, except for the last d coordinates. So the matrix
of T with respect to this basis takes the form

[
J (0) 0

0 Q

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Jd1 (0) 0 · · · 0 0
0 Jd2 (0) · · · 0 0

0 0
. . . 0 0

0 0 · · · Jdm
(0) 0

0 0 0 0 Q

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (5.8)

where Q is a matrix the size of dim Wn and the dj ’s are the length of the
sequences

{
v, T (v) , . . . T j (v)

}
. Also, the restriction of T , T : Wn → Wn has

kernel zero since Wn ∩ Um = {0} and its matrix with respect to C is just
Q. It should be noted here that although the order of these Jordan blocks
is arbitrary, the number of each of size d is just the dimension of Vd, which
is uniquely determined by A, and Vd is where the starting terms of such
sequences are found.

Here is how we relate this construction to nonzero eigenvalues: We find an
eigenvalue λ of A. Next, we apply the construction of the preceding paragraph
to the matrix A − λI. If P is the change of basis matrix from the standard
basis B to our new basis C, then we know by Theorem 5.5

http://dx.doi.org/10.1007/978-3-319-74748-4_3
http://dx.doi.org/10.1007/978-3-319-74748-4_3
http://dx.doi.org/10.1007/978-3-319-74748-4_3
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[
J (0) 0

0 Q

]
= P−1 (A − λI)P = P−1AP − P−1λIP = P−1AP − λI.

Hence, we have P−1AP =
[

J (λ) 0
0 Q + λI

]
. The matrix Q + λI will not have

λ as an eigenvalue (else Q is singular, which implies that T : Wn → Wn has
nonzero kernel.) But similar matrices have the same characteristic polynomi-
als, so the remaining eigenvalues of A are also eigenvalues of Q + λI of the
same multiplicity. Repeat this construction on Q − μI, where μ is an eigen-
value of Q + λI to obtain that Q + λI satisfies an equation like (5.8) so that

P−1
1 QP1 =

[
J (μ) 0

0 Q1 + μI

]
. But then the matrix

[
I 0
0 P1

]
transforms A to

a matrix with Jordan blocks corresponding to λ and μ on the diagonal. We
can continue this process until all eigenvalues of A are accounted for, at which
point A is similar to a Jordan canonical form. Ordering of these blocks is not
unique, but the number of each size is, as we have noted above. This completes
the proof. �

Computation of Eigensystems

Nowadays, one can use a technology tool to find a complete eigensystem for,
say a 100×100 matrix, in a fraction of a second. That’s pretty remarkable and,
to some extent, a tribute to the fast cheap hardware commonly available to the
public. But hardware is only part of the story. Bad computational algorithms
can bring the fastest computer to its knees. The rest of the story concerns the
remarkable developments in numerical linear algebra over the past sixty years
that have given us fast reliable algorithms for eigensystem calculation. We can
only scratch the surface of these developments in this brief discussion. At the
outset, we rule out the methods developed in this chapter as embodied in the
eigensystem algorithm (page 10). These are for simple hand calculations and
theoretical purposes. In a few special cases we can derive general formulas for
eigenvectors and eigenvalues. One such example is a Toeplitz matrix (a matrix
with constant entries down each diagonal) that is also tridiagonal. We outline
the approach in a problem at the end of this section, but these complete
solution formulas are the exception, not the rule.

We are going to examine some iterative methods for selectively finding
eigenpairs of a real matrix whose eigenvalues are real and distinct. Hence,
the matrix A is diagonalizable. The hypothesis of diagonalizability may seem
too constraining, but there is this curious aphorism that “numerically every
matrix is diagonalizable.” The reason is as follows: once you store and per-
form numerical calculations on the entries of A, you perturb them a small
essentially random amount. This has the effect of perturbing the eigenvalues
of the calculated A a small random amount. Thus, the probability that any
two eigenvalues of A are numerically equal is quite small. To focus matters,
consider the test matrix
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A =

⎡

⎣
−8 −5 8

6 3 −8
−3 1 9

⎤

⎦ .

Just for the record, the actual eigenvalues of A are 1, −2 and 5. Now we ask
three questions about A:

1. How can we get a ballpark estimate of the location of the eigenvalues of
A?

2. How can we estimate the dominant eigenpair (λ,x) of A? (Recall that
“dominant” means that λ is larger in absolute value than any other eigen-
value of A.)

3. Given a good estimate of any eigenvalue λ of A, how can we improve the
estimate and compute a corresponding eigenvector?

An answer to question (1) is the following theorem, which predates modern
numerical analysis, but has proved to be quite useful. Because it helps locate
eigenvalues, it is called a “localization theorem.”

Theorem 5.19. Gershgorin Circle Theorem Let A = [aij ] be an n×n matrix
and define disks Dj in the complex plane by
rj =

∑n
k=1
k �=j

|ajk| and Dj = {z | |z − ajj | ≤ rj}. Then

(1) Every eigenvalue of A is contained in some disk Dj .
(2) If k of the disks are disjoint from the others, then exactly k eigenvalues

are contained in the union of these disks.

Proof. To prove (1), let λ be an eigenvalue of A and x = (x1, x2, . . . , xn)
an eigenvector corresponding to λ. Suppose that xj is the largest coordinate
of x in absolute value. Divide x by this entry to obtain an eigenvector whose
largest coordinate is xj = 1. Without loss of generality, this vector is x.
Consider the jth entry of the zero vector λx − Ax, which is

(λ − ajj)1 +
n∑

k=1
k �=j

ajkxk = 0.

Bring the sum to the right-hand side and take absolute values to obtain

|λ − ajj | = |
n∑

k=1
k �=j

ajkxk | ≤
n∑

k=1
k �=j

| ajk | |xk | ≤ rj ,

since |xk| ≤ 1 for each xk. This shows that λ ∈ Dj , which proves (1). We
will not prove (2), since it requires some complex analysis (see the Horn and
Johnson text [17], page 344, for a proof.)

Example 5.20. Apply the Gershgorin circle theorem to the test matrix A and
sketch the resulting Gershgorin disks.
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Solution. The disks are easily seen to be

D1 = { z | |z + 8| ≤ 13} ,

D2 = { z | |z − 3| ≤ 14} ,

D3 = { z | |z − 9| ≤ 4} .

A sketch of them is provided in Figure 5.1. �

- 8 93

13 14

4
x

y

Fig. 5.1: Gershgorin disks for A.

Now we turn to question (2). One answer to it is contained in the following
algorithm, known as the power method.

Power Method To compute an approximate eigenpair (λ,x) of A with
‖x‖ = 1 and λ the dominant eigenvalue:

(1) Input an initial guess x0 for x
(2) For k = 0, 1, . . . until convergence of λ(k)’s:

(a) y = Axk,
(b) xk+1 =

y
‖y‖ ,

(c) λ(k+1) = xT
k+1Axk+1.

That’s all there is to it! Why should this algorithm converge? The secret
to this algorithm lies in a formula we saw earlier in our study of discrete
dynamical systems, namely equation (5.6) which we reproduce here:

x(k) = Akx(0) = c1λ
k
1v1 + c2λ

k
2v2 + · · · + cnλk

nvn.

Here it is understood that v1,v2, . . . ,vn is a basis of eigenvectors correspond-
ing to eigenvalues λ1λ2, . . . , λn, which, with no loss of generality, we can as-
sume to be unit-length vectors. Notice that at each stage of the power method
we divided the computed iterate y by its length to get the next xk+1, and this
division causes no directional change. Thus, we would get exactly the same
vector if we simply set xk+1 = x(k+1)/

∥
∥x(k+1)

∥
∥. Now for large k the ratios
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(λj/λ1)k can be made as small as we please, so we can rewrite the above
equation as

x(k) = Akx(0) = λk
1

{

c1v1 + c2

(
λ2

λ1

)k

v2 + · · · + cn

(
λn

λ1

)k

vn

}

≈ λk
1c1v1.

Assuming that c1 �= 0, which is likely if x0 is randomly chosen, we see that

xk+1 =
Ax(k)

∥
∥Ax(k)

∥
∥ ≈ λk

1c1λ1v1∣
∣λk

1c1λ1

∣
∣ = ±v1,

λ(k+1) = xT
k+1Axk+1 ≈ (±v1)T A(±v1) = λ1.

Thus, we see that the sequence of λ(k)’s converges to λ1 and the sequence of
xk’s converges to ±v1, provided that λ1 is a dominant eigenvalue and A has
a basis of eigenvectors, i.e., is diagonalizable. The argument (it isn’t rigorous
enough to be called a proof) we have just given shows that the oscillation in
sign in the entries of xk occurs in the case λ < 0. This argument doesn’t require
the initial guess to be real. Complex numbers are permitted if transpose is
replaced by conjugate transpose in the algorithm.

If we apply the power method to our test problem with an initial guess of
x0 = (1, 1, 1), we get every third value as follows:

k λ(k) xk

0 (1, 1, 1)

3 5.7311 (0.54707, −0.57451, 0.60881)

6 4.9625 (0.57890, −0.57733, 0.57581)

9 5.0025 (0.57725, −0.57735, 0.57745)

12 4.9998 (0.57736, −0.57735, 0.57734)

Notice that the eigenvector looks a lot like a multiple of (1,−1, 1), and the
eigenvalue looks a lot like 5, which is the dominant eigenvalue of our test
matrix. This is an exact eigenpair, as one can check.

Finally, we turn to question (3). One answer to it is contained in the
following algorithm, known as the inverse iteration method.

Inverse Iteration Method To compute an approximate eigenpair (λ,x) of A
with ‖x‖ = 1 and λ an eigenvalue:

(1) Input an initial guess x0 for x and a close approximation μ = λ0 to λ.
(2) For k = 0, 1, . . . until convergence of the λ(k)’s:

(a) y = (A − μI)−1xk,
(b) xk+1 =

y
‖y‖ ,

(c) λ(k+1) = xT
k+1Axk+1.
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Notice that the inverse iteration method is simply the power method
applied to the matrix (A − μI)−1. In fact, it is sometimes called the inverse
power method. The scalar μ is called a shift. Here is the secret of success for
this method: we assume that μ is closer to a definite eigenvalue λ of A than to
any other eigenvalue. But we don’t want too much accuracy! We need μ �= λ.
Theorem 5.2 in Section 1 of this chapter shows that the eigenvalues of the
matrix A − μI are of the form σ − μ, where σ runs over the eigenvalues of
A. Thus, the matrix A − μI is nonsingular since no eigenvalue is zero, and
Exercise 17 of Section 5.1 shows us that the eigenvalues of (A − μI)−1 are of
the form 1/(σ−μ), where σ runs over the eigenvalues of A. Since μ is closer to
λ than to any other eigenvalue of A, the eigenvalue 1/(λ−μ) is the dominant
eigenvalue of (A − μI)−1, which is exactly what we need to make the power
method work on (A − μI)−1. Indeed, if μ is very close (but not equal!) to λ,
convergence should be very rapid.

In a general situation, we could now have the Gershgorin circle theorem
team up with inverse iteration. Gershgorin would put us in the right ballpark
for values of μ, and inverse iteration would finish the job. Let’s try this with
our test matrix and choices of μ in the interval suggested by Gershgorin. Let’s
try μ = 0. Here are the results in tabular form:

k λ(k) xk with μ = 0.0

0 0.0 (1, 1, 1)

3 0.77344 (−0.67759, 0.65817, −0.32815)

6 1.0288 (−0.66521, 0.66784, −0.33391)

9 0.99642 (−0.66685, 0.66652, −0.33326)

12 1.0004 (−0.66664, 0.66668, −0.33334)

It appears that inverse iteration is converging to λ = 1 and the eigenvector
looks suspiciously like a multiple of (−2, 2,−1), which is an exact eigenpair of
A.

There is much more to modern eigenvalue algorithms than we have in-
dicated here. Central topics include deflation, the QR algorithm, numerical
stability analysis, and many other issues. The interested reader might consult
more advanced texts such as references [8], [9], [14] and [25], to name a few. As
with the power method, complex numbers are permitted in these algorithms
if transpose is replaced by conjugate transpose.

5.7 Exercises and Problems

Exercise 1. The matrix of (c) below may have complex eigenvalues. Use the
Gershgorin circle theorem to locate eigenvalues and the iteration methods of
this section to compute an approximate eigensystem.
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(a)

⎡

⎢
⎢
⎣

4 −1 0 2
0 5 0 −1

−1 −2 2 0
0 0 2 10

⎤

⎥
⎥
⎦ (b)

⎡

⎣
3 1 2
2 0 1

−1 1 1

⎤

⎦ (c)

⎡

⎢
⎢
⎣

1 −2 0 0
2 4 −2 0
0 2 4 −2
0 0 2 1

⎤

⎥
⎥
⎦

Exercise 2. Use the Gershgorin circle theorem to locate eigenvalues and the
iteration methods of this section to compute an approximate eigensystem.

(a)

⎡

⎢
⎢
⎣

3 1 0 0
1 5 1 0
0 1 7 1
0 0 1 9

⎤

⎥
⎥
⎦ (b)

⎡

⎣
3 1 −2
1 1 1
0 1 1

⎤

⎦ (c)

⎡

⎢
⎢
⎣

1 −2 −2 0
6 −7 21 −18
4 −8 22 −18
2 −4 13 −13

⎤

⎥
⎥
⎦

*Problem 3. A square matrix is strictly diagonally dominant if in each row the
sum of the absolute values of the off-diagonal entries is strictly less than the
absolute value of the diagonal entry. Show that a strictly diagonally dominant
matrix is invertible.

Problem 4. Let A be an n × n tridiagonal matrix with possibly complex
entries a, b, c down the first subdiagonal, main diagonal, and first superdiag-
onal, respectively, where a, c �= 0. Let v = (v1, . . . , vn) satisfy Av = λv.

(a) Show that v satisfies the difference equation avj−1+(b − λ) vj+cvj+1 =
0, j = 1, . . . , n, with v0 = 0 = vn+1.

(b) Show that vj = Arj
1 + Brj

2, where r1, r2 are (distinct) solutions to
the auxiliary equation a + (b − λ) r + cr2 = 0, is a solution to the difference
equation in (a).

(c) Determine that r1r2 = a/c, r1+r2 = (λ − b) /c, and (r1/r2)
n+1 = e2iπs,

s = 1, . . . , n.
(d) Use (c) to find all r1, r2, and λ. (It helps to use the conditions v0 =

0 = vn+1 and examine the cases j = 0 and j = n + 1.)
(e) Conclude that a complete set of eigenpairs of A is specified by

λj = b + 2c
(a

c

)1/2

cos
jπ

n + 1
and vj =

((a

c

)j/2

sin
sjπ

n + 1

)n

s=1

, j = 1, . . . , n.

Problem 5. Determine the flop count for a single iteration of the power method
applied to an n × n matrix A.

5.8 *Project Topics

Project: Finding a Jordan Canonical Form
A challenge: Use a technology tool to find the Jordan canonical form of the
10 × 10 matrix A, which is given exactly as follows.
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 −2 1 −1 2 −2 4 −3
−1 2 3 −4 2 −2 4 −4 8 −6
−1 0 5 −5 3 −3 6 −6 12 −9
−1 0 3 −4 4 −4 8 −8 16 −12
−1 0 3 −6 5 −4 10 −10 20 −15
−1 0 3 −6 2 −2 12 −12 24 −18
−1 0 3 −6 2 −5 15 −13 28 −21
−1 0 3 −6 2 −5 15 −11 32 −24
−1 0 3 −6 2 −5 15 −14 37 −26
−1 0 3 −6 2 −5 15 −14 36 −25

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Your main task is to devise a strategy for identifying the Jordan canonical
form matrix J . Do not expect to find the invertible matrix S for which J =
S−1AS. However, a key fact to keep in mind is that if A and B are similar
matrices, i.e., A = S−1BS for some invertible S, then rankA = rankB. Prove
this rank fact for A and B. In particular, if S is a matrix that puts A into
Jordan canonical form, then J = S−1AS. Of course, this rank fact will also
apply to A − cI and its powers as well, for any scalar. Now you have the
necessary machinery for determining numerically the Jordan canonical form.

As a first step, one can find the eigenvalues of A. Of course, these will
only be approximate, so one has to decide how many eigenvalues are really
repeated. Next, one has to determine the number of Jordan blocks of a given
type. Suppose λ is an eigenvalue and find the rank of various powers of A −
λI. It would help in understanding how all this counts blocks if you first
experiment with a matrix already in Jordan canonical form with different
Jordan blocks.

Project: Solving Polynomial Equations
In homework problems we solve for the roots of the characteristic polyno-
mial in order to get eigenvalues. To this end we can use algebra methods or
even Newton’s method for numerical approximations to the roots. This is the
conventional wisdom usually proposed in introductory linear algebra. But for
larger problems this method can be too slow and inaccurate. In fact, numerical
methods hiding under the hood in a technology tool for finding eigenvalues
are so efficient that it is better to turn this whole procedure on its head.
Rather than find roots to solve linear algebra (eigenvalue) problems, we can
use (numerical) linear algebra to find roots of polynomials. In this project we
discuss this methodology and document it in a fairly nontrivial example.

Given a polynomial f(x) = c0 + c1x + · · · + cn−1x
n−1 + xn, form the

companion matrix of f(x),

C (f) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1

−c0 −c1 · · · −cn−2 −cn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.
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It is a key fact that the eigenvalues of C (f) are precisely the roots of the
equation f(x) = 0. Experiment with n = 2, 3, 4 by expansion across the
bottom row of det(A − λI) to confirm that this result is true. Then use a
technology tool to illustrate this method by finding approximate roots of three
polynomials: a cubic and quartic of your choice and then the polynomial

f(x) = 5 + 11x + 4x2 + 6x3 + x4 − 15x5 + 5x6 − 3x7 − 2x8 + 8x9 − 5x10 + x11.

In each case use Newton’s method to improve the values of some of the roots (it
works with complex numbers as well as reals, provided one starts close enough
to a root). Check your answers to this problem by evaluating the polynomial.
Use your results to write the polynomial as a product of the linear factors
x − λ, where λ is a root and check the correctness of this factorization.

Project: Classification of Quadric Forms
In order to classify quadratic equations in x and y one goes through roughly
three steps. First, perform a rotation transformation of coordinates to get rid
of mixed terms such as 2xy in the quadratic equation x2+2xy−y2+x−3y = 4.
Second, do a translation of coordinates to put the equation in a “standard
form.” Third, identify the curve by your knowledge of the shape of a curve
in that standard form. Standard forms are equations like x2/4 + y2/2 = 1,
an ellipse with its axes along the x- and y-axes. It is the second-degree terms
(x2, 2xy, and y2) alone that determine the nature of a quadratic.

Now you’re ready for the rest of the story. Just as with curves in x and
y, the basic shape of the surface of a quadric equation in x, y, and z is
determined by the second-degree terms. So we will focus on an example with
no first-degree terms, namely,

Q (x, y, z) = 2x2 + 4y2 + 6z2 − 4xy − 2xz + 2yz = 1.

The problem is this: find a change of coordinates that will make it clear
what standard forms is represented by this surface. (You will need to google
around a bit to find names of standard quadric forms.) First you must
express the so-called quadratic form Q (x, y, z) in matrix form as Q (x, y, z) =
[x, y, z]A[x, y, z]T . It is easy to find such matrices A. But not any such A
will do. Next, replace A by the equivalent matrix (A + AT )/2. (Check that
if A specifies the quadratic form Q, then so will (A + AT )/2.) The ad-
vantage of this latter matrix is that it is symmetric, so that there is an
orthogonal matrix P such that PT AP is diagonal. Next, make the linear
change of variables [x, y, z]T = P [x′, y′, z′]T and deduce that Q (x, y, z) =
[x′, y′, z′]PT AP [x′, y′, z′]T . If PT AP is diagonal, we end up with squares of
x′, y′ and z′, and no mixed terms.

Find a symmetric A for this problem and use a technology tool to cal-
culate the eigenvalues of this A. Also find unit-length eigenvectors for each
eigenvalue. Put these together to form the desired orthogonal matrix P that
eliminates mixed terms. From this data alone you should be able to classify
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the surface represented by the above equation. An outstanding reference on
this topic and many others relating to matrix analysis is the recently repub-
lished textbook [3] by Richard Bellman, widely considered to be a classic in
the field.

Project: Image Compression
The object of this project is to illustrate the space savings capabilities of
the SVD as applied to an image of your own choosing. Digitize a picture
into a matrix of grayscale pixels. Each dimension of this matrix should be
at least 400. Compute the SVD of this image matrix and display various
reconstructions of the image using 20, 40, and 60 of the singular values and
vector pairs. Do any of these give a good visual approximation to the picture?
Find a minimal number that works. Compare the amount of storage required
for these singular values and vectors to storage requirements of the full image.

Implementation Notes: First, you must convert the image to a grayscale
format without layers. For this you will need an image manipulation program
such as the GNU program Gimp or commercial software such as Adobe Pho-
toshop. You will also need a technology tool capable of calculating an SVD
and importing standard flattened image grayscale images (such as .png, etc.)
into matrices and vice versa. The freely available R programming language
and Octave, as well as commercial Matlab and others are perfectly capable of
these tasks. In order to save storage space use single precision floating point
arithmetic.

Report: Management of Sheep Populations
Description of the problem: You are working for the New Zealand Department
of Agriculture on a project for sheep farmers. The species of sheep that these
shepherds raise have a life span of 12 years. Of course, some live longer, but
they are sufficiently few in number and their reproductive rate is so low that
they may be ignored in your population study. Accordingly, you divide sheep
into 12 age classes, namely those in the first year of life, etc. An extensive
survey of the demographics of this species of sheep results in the following
approximations for the demographic parameters fi and si, where fi is the per-
capita reproductive rate for sheep in the ith age class and si is the survival
rate for sheep in that age class, i.e., the fraction of sheep in that age class that
survive to the (i + 1)th class. (As a matter of fact, this table is related to real
data. The interested reader might consult the article [7] in the bibliography.)

i 1 2 3 4 5 6 7 8 9 10 11 12
fi .000 .023 .145 .236 .242 .273 .271 .251 .234 .229 .216 .210
si .845 .975 .965 .950 .926 .895 .850 .786 .691 .561 .370 -

The problem is as follows: in order to maintain a constant population of
sheep, shepherds will harvest a certain number of sheep each year. Harvesting
need not mean slaughter; it simply means removing sheep from the population
(e.g., selling animals to other shepherds). Denote the fraction of sheep that
are removed from the ith age group at the end of each growth period
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(a year in our case) by hi. If these numbers are constant from year to year, they
constitute a harvesting policy. If, moreover, the yield of each harvest, i.e., total
number of animals harvested each year, is a constant and the age distribu-
tion of the remaining populace is essentially constant after each harvest, then
the harvesting policy is called sustainable. If all the hi’s are the same, say h,
then the harvesting policy is called uniform. Uniform policies are simple to
implement: One selects the sheep to be harvested at random.

Your problem: Find a uniform sustainable harvesting policy to recom-
mend to shepherds, and find the resulting distribution of sheep that they can
expect with this policy. Shepherds who raise sheep for sale to markets are
also interested in a sustainable policy that gives a maximum yield. If you can
find such a policy that has a larger annual yield than the uniform policy, then
recommend it. On the other hand, shepherds who raise sheep for their wool
may prefer to minimize the annual yield. If you can find a sustainable policy
whose yield is smaller than that of the uniform policy, make a recommenda-
tion accordingly. In each case find the expected distribution of your harvesting
policies. Do you think that there might be other economic factors that should
be taken into account in this model? Organize your results for a report to be
read by your supervisor and an informed public.

Procedure: Express this problem as a discrete linear dynamical system
x(k+1) = Lx(k), where L is a so-called Leslie matrix of the form

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f1 f2 f3 · · · fn−1 fn

s1 0 0 · · · 0 0
0 s2 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · sn−1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

It is understood that 0 < si ≤ 1, 0 ≤ fi, and at least one fi is nonzero.
In regard to harvesting, let H be a diagonal matrix with the harvest

fractions hi down the diagonal. (Here 0 ≤ hi ≤ 1.) Then the popula-
tion that results from this harvesting at the end of each period is given by
xk+1 = Lxk − HLxk = (I − H)Lxk. There are other theoretical tools, but all
you need to do is to find a matrix H such that 1 is the dominant eigenvalue of
(I − H)L. You can do this by trial and error, a method that is applicable to
any harvesting policy, uniform or not. However, in the case of uniform poli-
cies it’s simpler to note that (I − H)L = (1 − h)L, where h is the diagonal
entry of H. Find an eigenvector corresponding to this eigenvalue and scale this
vector by dividing it by the sum of its components to obtains a probability
distribution vector that could be used for any population.
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GEOMETRICAL ASPECTS OF ABSTRACT
SPACES

Two basic ideas that we learn in geometry are those of length of a line segment
and angle between lines. We have already seen how to extend these ideas to
the standard vector spaces. The objective of this chapter is to extend these
powerful ideas to general linear spaces. A surprising number of concepts and
techniques that we learned in a standard setting can be carried over, almost
word for word, to more general vector spaces. Once this is accomplished,
we will be able to use our geometrical intuition in entirely new ways. For
example, we will be able to have notions of size (length) and perpendicularity
for nonstandard vectors such as functions in a function space. We will be able
to give a sensible meaning to the size of the error incurred in solving a linear
system with finite-precision arithmetic. We shall see that there are many more
applications of this abstraction.

6.1 Normed Spaces

Definitions and Examples

The basic function of a norm is to measure length and distance, independent of
any other considerations, such as angles or orthogonality. There are different
ways to accomplish such a measurement. One method of measuring length
might be more natural for a given problem, or easier to calculate than another.
For these reasons, we would like to have the option of using different methods
of length measurement. You may recognize the properties listed below from
earlier in the text; they are the basic norm laws given in Section 4.1 for the
standard norm. We are going to abstract the norm idea to arbitrary vector
spaces.

http://dx.doi.org/10.1007/978-3-319-74748-4_4
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Definition 6.1. Abstract Norm A norm on the vector space V is a function
‖·‖ that assigns to each vector v ∈ V a real number ‖v‖ such that for c a
scalar and u,v ∈ V the following hold:

(1) ‖u‖ ≥ 0 with equality if and only if u = 0.
(2) ‖cu‖ = |c| ‖u‖.
(3) (Triangle Inequality) ‖u + v‖ ≤ ‖u‖ + ‖v‖.

Definition 6.2. Normed Space and Distance Function A vector space V ,
together with a norm ‖·‖ on the space V , is called a normed space. If u,v ∈ V ,
the distance between u and v is defined to be d (u,v) = ‖u − v‖.

Notice that if V is a normed space and W is any subspace of V , then
W automatically becomes a normed space if we simply use the norm of V
on elements of W. Obviously all the norm laws still hold, since they hold for
elements of the bigger space V.

Of course, we have already studied some very important examples of
Standard Norms normed spaces, namely the standard vector spaces R

n

and C
n, or any subspace thereof, together with the standard norms given by

‖(z1, z2, . . . , zn)‖ =
√

z1z1 + z2z2 + · · · + znzn

=
(
|z1|2 + |z2|2 + · · · + |zn|2

)1/2

.

If the vectors are real then we can drop the conjugate bars. This norm is
actually one of a family of norms that are commonly used.

Definition 6.3. p-norm Let V be one of the standard spaces R
n or C

n and
p ≥ 1 a real number. The p-norm of a vector in V is defined by the formula

‖(z1, z2, . . . , zn)‖p = (|z1|p + |z2|p + · · · + |zn|p)1/p
.

Notice that when p = 2 we have the familiar example of the standard
norm. Another important case is that in which p = 1. The last important
instance of a p-norm is one that isn’t so obvious: p = ∞. It turns out that the
value of this norm is the limit of p-norms as p → ∞. To keep matters simple,
we’ll supply a separate definition for this norm.

Definition 6.4. ∞-norm Let V be one of the standard spaces R
n or C

n. The
∞-norm of a vector in V is defined by the formula

‖(z1, z2, . . . , zn)‖∞ = max {|z1| , |z2| , . . . , |zn|} .

That norm laws (1) and (2) hold for all p-norms is easy to see. The triangle
inequality is more subtle. We verified it for p = 2 in Section 4.2, will verify
it for p = ∞ in Example 6.3 and leave the case p = 1 as an exercise. For the

http://dx.doi.org/10.1007/978-3-319-74748-4_4
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other values of p, a fact called the Minkowski inequality is required, and the
interested reader can consult [18] for details.

Example 6.1. Calculate ‖v‖p, where p = 1, 2, or ∞ and v = (1,−3, 2,−1) ∈
R

4.

Solution. We calculate:

‖(1,−3, 2,−1)‖1 = |1| + |−3| + |2| + |−1| = 7

‖(1,−3, 2,−1)‖2 =
√

|1|2 + |−3|2 + |2|2 + |−1|2 =
√

15

‖(1,−3, 2,−1))‖∞ = max {|1| , |−3| , |2| , |−1|} = 3. �

It may seem a bit odd at first to speak of the same vector as having
different lengths. You should take the point of view that choosing a norm is
a bit like choosing a measuring stick. If you choose a yard stick, you won’t
measure the same number as you would by using a meter stick on an object.

Example 6.2. Calculate ‖v‖p, where p = 1, 2, or ∞ and v = (2 − 3i, 1 + i) ∈
C

2.

Solution. We calculate:

‖(2 − 3i, 1 + i)‖1 = |2 − 3i| + |1 + i| =
√

13 +
√

2

‖(2 − 3i, 1 + i)‖2 =
√

|2 − 3i|2 + |1 + i|2 =
√

(2)2 + (−3)2 + 12 + 12 =
√

15

‖(2 − 3i, 1 + i)‖∞ = max {|2 − 3i| , |1 + i|} = max
{√

13,
√

2
}

=
√

13. �

Example 6.3. Verify that the norm properties are satisfied for the p-norm in
the case that p = ∞.

Solution. Let c be a scalar, and let u = (z1, z2, . . . , zn), and v =
(w1, w2, . . . , wn) be two vectors. Any absolute value is nonnegative, and any
vector whose largest component in absolute value is zero must have all com-
ponents equal to zero. Property (1) follows. Next, we have that

‖cu‖∞ = ‖(cz1, cz2, . . . , czn)‖∞ = max {|cz1| , |cz2| , . . . , |czn|}
= |c| max {|z1| , |z2| , . . . , |zn|} = |c| ‖u‖∞ ,

which proves (2). For (3) we observe that

‖u + v‖∞ = max {|z1| + |w1| , |z2| + |w2| , . . . , |zn| + |wn|}
≤ max {|z1| , |z2| , . . . , |zn|} + max {|w1| , |w2| , . . . , |wn|}
≤ ‖u‖∞ + ‖v‖∞ . �

Unit Vectors

Sometimes it is convenient to deal with vectors whose length is one. Such a
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Unit Vector vector is called a unit vector. We saw in Chapter 3 that it is
easy to concoct a unit vector u in the same direction as a nonzero vector v
when using the standard norm, namely take

u =
v

‖v‖ . (6.1)

The same formula holds for all norms because of norm property (2).

Example 6.4. Construct a unit vector in the direction of v = (1,−3, 2,−1),
where the 1-norm, 2-norm, and ∞-norms are used to measure length.

Solution. We already calculated each of the norms of v in Example 6.1.
Use these numbers in equation (6.1) to obtain unit-length vectors

u1 =
1
7
(1,−3, 2,−1)

u2 =
1√
15

(1,−3, 2,−1)

u∞ =
1
3
(1,−3, 2,−1). �

From a geometric point of view there are certain sets of vectors in the
vector space V that tell us a lot about distances. These are the so-called balls
about a vector (or point) v0 of radius r, whose definition is as follows:

Br(v0) = {v ∈ V | ‖v − v0‖ ≤ r} .

Ball in Normed Space Sometimes these are called closed balls, as
opposed to open balls, which are defined using

strict inequality. Here is a situation in which these balls are very helpful:
imagine trying to find the distance from a vector v0 to a closed (this means
it contains all points on itsboundary) set S of vectors that need not be a sub-
space. One way to accomplish this is to start with a ball centered at v0 such
that the ball avoids S. Then expand this ball by increasing its radius until
you have found the least upper bound R of radii r such that the ball Br(v0)
has empty intersection with S. Then the distance from v0 to this set is this
number R. Actually, this is a reasonable definition of the distance from v0 to
the set S. One expects these balls, for a particular norm, to have the same
shape, so it is sufficient to look at the unit balls, that is, the case r = 1.

Example 6.5. Sketch the unit balls centered at the origin for the 1-norm,
2-norm, and ∞-norms in the space V = R

2.

Solution. In each case it’s easiest to determine the boundary of the ball
B1(0), i.e., the set of vectors v = (x, y) such that ‖v‖ = 1. These bound-
aries are sketched in Figure 6.1, and the ball consists of the boundaries plus

http://dx.doi.org/10.1007/978-3-319-74748-4_3


6.1 Normed Spaces 395

the interior of each boundary. Let’s start with the familiar 2-norm. Here the
boundary consists of points (x, y) such that

1 = ‖(x, y)‖2 =
√

x2 + y2,

which is the familiar circle of radius 1 centered at the origin. Next, consider
the 1-norm, in which case

1 = ‖(x, y)‖1 = |x| + |y| .
It’s easier to examine this formula in each quadrant, where it becomes one of
the four possibilities

±x ± y = 1.

For example, in the first quadrant we get x+y = 1. These equations give lines
that connect to form a square whose sides are diagonal lines. Finally, for the
∞-norm we have

1 = |(x, y)|∞ = max {|x| , |y|} ,

which gives four horizontal and vertical lines x = ±1 and y = ±1. These
intersect to form another square. Thus, we see that the unit “balls” for the 1-
and ∞-norms have corners, unlike the 2-norm. See Figure 6.1 for a picture of
these balls. �

Fig. 6.1: Boundaries of unit balls in various norms.
Recall from Section 4.1 that one of the important applications of the

norm concept is that it enables us to make sense out of the idea of lim-
its and convergence of vectors. In a nutshell, limn→∞ vn = v was taken to
mean that limn→∞ ‖vn − v‖ = 0. In this case we said that the
sequence v1,v2, . . . converges to v. Will we have to have a different notion

Equivalent Normsof limits for different norms? For finite-dimensional
spaces, the somewhat surprising answer is no. The rea-
son is that given any two norms ‖·‖a and ‖·‖b on a finite-dimensional vector

http://dx.doi.org/10.1007/978-3-319-74748-4_4
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space, it is always possible to find positive real constants c and d such that
for any vector v,

‖v‖a ≤ c · ‖v‖b and ‖v‖b ≤ d ‖v‖a .

Hence, if ‖vn − v‖ tends to 0 in one norm, it will tend to 0 in the other
norm. For this reason, any two norms satisfying these inequalities are called
equivalent. It can be shown that all norms on a finite-dimensional vector space
are equivalent (see Section 6.5). Indeed, it can be shown that the condition
that ‖vn − v‖ tends to 0 in any one norm is equivalent to the condition that
each coordinate of vn converges to the corresponding coordinate of v. We will
verify the limit fact in the following example.

Example 6.6. Verify that limn→∞ vn exists and is the same with respect to
both the 1-norm and 2-norm, where

vn =
[

(1 − n)/n
e−n + 1

]
.

Which norm is easier to work with?

Solution. First we have to know what the limit will be. Let’s examine the
limit in each coordinate. We have

lim
n→∞

1 − n

n
= lim

n→∞
1
n

− 1 = 0 − 1 = −1 and lim
n→∞ e−n + 1 = 0 + 1 = 1.

So we try to use v = (−1, 1) as the limiting vector. Now calculate

v − vn =
[−1

1

]
−
[

1−n
n

e−n + 1

]
=
[ − 1

n−e−n

]
,

so that
‖v − vn‖1 =

∣∣∣∣−
1
n

∣∣∣∣+
∣∣−e−n

∣∣ −→
n→∞ 0

and

‖v − vn‖ =

√(
1
n

)2

+ (e−n)2 −→
n→∞ 0,

which shows that the limits are the same in either norm. In this case the
1-norm appears to be easier to work with, since no squaring and square roots
are involved. In fact, if we are dealing only with nonnegative vectors such
as distribution vectors computing 1-norms amounts to adding up the coordi-
nates. This explains why it appeared in the analysis of PageRank matrices in
Section 2.5 of Chapter 2. �

Here are two examples of norms defined on nonstandard vector spaces:

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Definition 6.5. Frobenius Norm Let V = R
m,n (or C

m,n). The Frobenius
norm of an m × n matrix A = [aij ] is defined by the formula

‖A‖F =

⎛
⎝

m∑
i=1

n∑
j=1

|aij |2
⎞
⎠

1/2

.

We leave verification of the norm laws as an exercise.

Definition 6.6. Uniform (Infinity) Norm on Function Space The uniform
(or infinity) norm on C[a, b] is defined by ‖f‖∞ = maxa≤x≤b |f(x)|.

This norm is well defined by the extreme value theorem, which guarantees
that the maximum value of a continuous function on a closed interval exists.
We leave verification of the norm laws as an exercise.

6.1 Exercises and Problems

Exercise 1. Find the 1-, 2-, and ∞-norms of each of the following real vectors
and the distance between these pairs in each norm.
(a) (2, 1, 3), (−3, 1,−1) (b) (1,−2, 0, 1, 3), (2, 2,−1,−1,−2)

Exercise 2. Find the 1-, 2-, and ∞-norms of each of the following complex
vectors and the distance between these pairs in each norm.
(a) (1 + i,−1, 0, 1), (1, 1, 2,−4) (b) (i, 0, 3 − 2i), (i, 1 + i, 0)

Exercise 3. Find unit vectors in the direction of each of the following vectors
with respect to the 1-, 2-, and ∞-norms.
(a) (1,−3,−1) (b) (3, 1,−1, 2) (c) (2, 1, 3 + i)

Exercise 4. Find a unit vector in the direction of f (x) ∈ C [0, 1] with respect
to the uniform norm, where f (x) is one of the following.
(a) sin (πx) (b) x (x − 1) (c) ex

Exercise 5. Verify the norm laws for the 1-norm in the case that c = −2,
u = (0, 2, 3, 1), and v = (1,−3, 2,−1) in V = R

4.

Exercise 6. Verify the norm laws for the Frobenius norm in the case that c =

−4, u =
[

1 0 −1
1 2 0

]
and v =

[−2 0 2
1 0 −3

]
in V = R

2,3.

Exercise 7. Find the distance from the point
(−1,− 1

2

)
to the line x + y = 2

using the ∞-norm by sketching a picture of the ball centered at that point
that touches the line.
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Exercise 8. Find the constant function that is nearest the function f (x) =
4x (1 − x) ∈ V = C [0, 1] with the infinity norm. (Hint: examine a graph of
f (x) and a constant function.)

Exercise 9. Describe in words the unit ball B1

(
[1, 1, 1]T

)
in the normed space

V = R
3 with the infinity norm.

Exercise 10. Describe in words the unit ball B1 (g (x)) in the normed space
V = C [0, 1] with the uniform norm and g (x) = 2.

Exercise 11. Verify that limn→∞ vn exists and is the same with respect to both
the 1- and 2-norms in V = R

2, where vn = ((1 − n) /n, e−n + 1).

Exercise 12. Calculate limn→∞ fn using the uniform norm on V = C [0, 1],
where fn (x) = (x/2)n + 1.

*Problem 13. Given the matrix
[

a b
c d

]
, find the largest possible value of

||Ax||∞, where x ranges over the vectors whose ∞-norm is 1.

*Problem 14. Verify that the 1-norm satisfies the definition of a norm.

*Problem 15. Show that the Frobenius norm satisfies the norm properties.

Problem 16. Show that the infinity norm on C[0, 1] satisfies the norm proper-
ties.

Problem 17. Show that if A is a nonsingular n×n matrix and ‖·‖ is a norm on
one of the standard spaces R

n or C
n, then the formula ‖x‖A = ‖Ax‖ defines

another norm ‖·‖A on that space.

Problem 18. Determine whether or not the formula for f (x) ∈ C[0, 1] given
by ‖f‖max = max0≤x≤1 f (x)2 defines a norm on the vector space C[0, 1].

6.2 Inner Product Spaces

Definitions and Examples

We saw in Section 4.2 that the notion of a dot product of two vectors had
many handy applications, including the determination of the angle between
two vectors. This dot product amounted to the “standard” inner product of
the two standard vectors. We now extend this idea to a setting that allows for
abstract vector spaces.

http://dx.doi.org/10.1007/978-3-319-74748-4_4
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Definition 6.7. Abstract Inner Product and Inner Product Space An (ab-
stract) inner product on the vector space V is a function 〈·, ·〉 that assigns
to each pair of vectors u,v ∈ V a scalar 〈u,v〉 such that for c a scalar and
u,v,w ∈ V the following hold:

(1) 〈u,u〉 ≥ 0 with 〈u,u〉 = 0 if and only if u = 0.
(2) 〈u,v〉 = 〈v,u〉
(3) 〈u,v + w〉 = 〈u,v〉 + 〈u,w〉
(4) 〈u, cv〉 = c 〈u,v〉
A vector space V , together with an inner product 〈·, ·〉 on the space V , is
called an inner product space.

Notice that in the case of the more common vector spaces over real scalars,
property (2) becomes a commutative law: 〈u,v〉 = 〈v,u〉 . Also observe that if
V is an inner product space and W is any subspace of V , then W automatically
becomes an inner product space if we simply use the inner product of V on
elements of W. For all the inner product laws still hold, since they hold for
elements of the larger space V.

Of course, we have the standard examples of inner products, namely the
Nonstandard Inner Productsdot products on R

n and C
n. Here is an ex-

ample of a nonstandard inner product on a standard space that is useful in
certain engineering problems.

Example 6.7. For vectors u = (u1, u2) and v = (v1, v2) in V = R
2, define an

inner product by the formula

〈u,v〉 = 2u1v1 + 3u2v2.

Show that this formula satisfies the inner product laws.

Solution. First we see that

〈u,u〉 = 2u2
1 + 3u2

2,

so the only way for this sum to be 0 is for u1 = u2 = 0. Hence, (1) holds. For
(2) calculate

〈u,v〉 = 2u1v1 + 3u2v2 = 2v1u1 + 3v2u2 = 〈v,u〉 = 〈v,u〉,
since all scalars in question are real. For (3) let w = (w1, w2) and calculate

〈u,v + w〉 = 2u1 (v1 + w1) + 3u2 (v2 + w2)
= 2u1v1 + 3u2v2 + 2u1w1 + 3u2 = 〈u,v〉 + 〈u,w〉 .

For the last property, check that for a scalar c,

〈u, cv〉 = 2u1cv1 + 3u2cv2 = c (2u1v1 + 3u2v2) = c 〈u,v〉 . �
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It follows that this “weighted” inner product is indeed an inner product
according to our definition. In fact, we can do a whole lot more with even less
effort. Consider this example, of which the preceding is a special case.

Example 6.8. Let A be an n × n Hermitian matrix (A = A∗) and define the
product 〈u,v〉 = u∗Av for all u,v ∈V , where V is R

n or C
n. Show that this

product satisfies inner product laws (2), (3), and (4) and that if, in addition,
A is positive definite, then the product satisfies (1) and is an inner product.

Solution. As usual, let u,v,w ∈ V and let c be a scalar. For (2), remember
that for a 1 × 1 scalar quantity q, q∗ = q, so we calculate

〈v,u〉 = v∗Au = (u∗Av)∗ = 〈u,v〉∗ = 〈u,v〉.

For (3), we calculate

〈u,v + w〉 = u∗A(v + w) = u∗Av + u∗Aw = 〈u,v〉 + 〈u,w〉 .

For (4), we have that

〈u, cv〉 = u∗Acv = cu∗Av = c 〈u,v〉 .

Finally, if we suppose that A is also positive definite, then by definition,

〈u,u〉 = u∗Au > 0, for u �= 0,

which shows that inner product property (1) holds. Hence, this product defines
an inner product. �

We leave it to the reader to check that if we take A =
[

2 0
0 3

]
, then the

inner product defined by this matrix is exactly the inner product of Example
6.7.

The previous example demonstrates that a vector space may have more
than one inner product on it. In particular, V = R

2 could have the standard
inner product, i.e., dot product or something else like the previous example.
The space V , together with each one of these inner products, provides us with
two separate inner product spaces.

Here is a rather more exotic example of an inner product involving a
nonstandard vector space.

Example 6.9. Let V = C [a, b], the space of continuous functions on the
interval [a, b] with the usual function addition and scalar multiplication. Show
that the formula

〈f, g〉 =
∫ b

a

f(x)g(x) dx

defines an inner product on the space V .
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Solution. Certainly, 〈f, g〉 is a real number. Now if f(x) is a continu-
ous function then f (x)2 is nonnegative on [a, b] and therefore

∫ b

a
f(x)2dx =

〈f, f〉 ≥ 0. Furthermore, if f(x) is nonzero, then the area under the curve
y = f (x)2 must also be positive since f (x) will be positive and bounded
away from 0 on some subinterval of [a, b]. This establishes property (1) of
inner products.

Now let f(x), g(x), h(x) ∈ V . For property (2), notice that

〈f, g〉 =
∫ b

a

f(x)g(x)dx =
∫ b

a

g(x)f(x)dx = 〈g, f〉 .

Also,

〈f, g + h〉 =
∫ b

a

f(x)(g(x) + h(x))dx

=
∫ b

a

f(x)g(x)dx +
∫ b

a

f(x)h(x)dx = 〈f, g〉 + 〈f, h〉 ,

which establishes property (3). Finally, we see that for a scalar c,

〈f, cg〉 =
∫ b

a

f(x)cg(x) dx = c

∫ b

a

f(x)g(x) dx = c 〈f, g〉 ,

which shows that property (4) holds. �
We shall refer to this inner product on a function space as the standard

Function Space
Standard Inner Product

inner product on the function space C [a, b].
(Most of our examples and exercises involving
function spaces will deal with polynomials, so we
remind the reader of the integration formula

∫ b

a
xm dx = 1

m+1

(
bm+1 − am+1

)

and special case
∫ 1

0
xm dx = 1

m+1 for m ≥ 0.)
Following are a few simple facts about inner products that we will use

frequently. The proofs are left to the exercises.

Theorem 6.1. Let V be an inner product space with inner product 〈·, ·〉 .
Then we have that for all u,v,w ∈ V and scalars a,

(1) 〈u,0〉 = 0 = 〈0,u〉,
(2) 〈u + v,w〉 = 〈u,w〉 + 〈v,w〉,
(3) 〈au,v〉 = a〈u,v〉

Induced Norms and the CBS Inequality

It is a striking fact that we can accomplish all the goals we set for the standard
inner product using general inner products: we can introduce the ideas of
angles, orthogonality, projections, and so forth. We have already seen much
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of the work that has to be done, though it was stated in the context of the
standard inner products. As a first step, we want to point out that every inner
product has a “natural” norm associated with it.

Definition 6.8. Induced Norm Let V be an inner product space. For vectors
u ∈ V , the norm defined by the equation

‖u‖ =
√

〈u,u〉

is called the norm induced by the inner product 〈·, ·〉 on V .

As a matter of fact, this idea is not really new. Recall that we introduced
the standard inner product on V = R

n or C
n with an eye toward the standard

norm. At the time it seemed like a nice convenience that the norm could be
expressed in terms of the inner product. It is, and so much so that we have
turned this cozy relationship into a definition. Just calling the induced norm
a norm doesn’t make it so. Is the induced norm really a norm? We have some
work to do. The first norm property is easy to verify for the induced norm:
from property (1) of inner products we see that 〈u,u〉 ≥ 0, with equality if
and only if u = 0. This confirms norm property (1). Norm property (2) isn’t
too hard either: let c be a scalar and check that

‖cu‖ =
√

〈cu, cu〉 =
√

cc 〈u,u〉 =
√

|c|2
√

〈u,u〉 = |c| ‖u‖ .

Norm property (3), the triangle inequality, remains. This one isn’t easy to
verify from first principles. We need a tool that we have seen before, the
Cauchy–Bunyakovsky–Schwarz (CBS) inequality. We restate it below as the
next theorem. Indeed, the very same proof that is given in Theorem 4.2 carries
over word for word to general inner products over real vector spaces. We need
only replace dot products u · v by abstract inner products 〈u,v〉. We can
also replace dot products by inner products in Problem 18 of Chapter 4,
which establishes CBS for complex inner products. Similarly, the proof of the
triangle inequality as given in Example 4.10 of Section 4.2, carries over to
establish the triangle inequality for abstract inner products. Hence, property
(3) of norms holds for any induced norm.

Theorem 6.2. CBS Inequality Let V be an inner product space. For u,v ∈
V , if we use the inner product of V and its induced norm, then

|〈u,v〉| ≤ ‖u‖ ‖v‖ .

Henceforth, when the norm sign ‖·‖ is used in connection with an inner
product, it is understood that this norm is the induced norm of this inner
product, unless otherwise stated.

Just as with the standard dot products, we can formulate the following
definition thanks to the CBS inequality.

http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_4
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Definition 6.9. Angle Between Vectors For vectors u,v ∈ V, a real inner
product space, we define the angle between u and v to be any angle θ satisfying

cos θ =
〈u,v〉

‖u‖ ‖v‖ .

We know that |〈u,v〉| / (‖u‖ ‖v‖) ≤ 1, so that this formula for cos θ makes
sense.

Example 6.10. Let u = (1,−1) and v = (1, 1) be vectors in R
2. Compute

an angle between these two vectors using the inner product of Example 6.7.
Compare this to the angle found when one uses the standard inner product
in R

2.

Solution. According to 6.7 and the definition of angle, we have

cos θ =
〈u,v〉

‖u‖ ‖v‖ =
2 · 1 · 1 + 3 · (−1) · 1√

2 · 12 + 3 · (−1)2
√

2 · 12 + 3 · 12
=

−1
5

.

Hence, the angle in radians is

θ = arccos
(−1

5

)
≈ 1.7722.

On the other hand, if we use the standard norm, then

〈u,v〉 = 1 · 1 + (−1) · 1 = 0,

from which it follows that u and v are orthogonal and θ = π/2 ≈ 1.5708. �
In the previous example, it shouldn’t be too surprising that we can arrive at

two different values for the “angle” between two vectors. Using different inner
products to measure angle is somewhat like measuring length with different
norms. Next, we extend the perpendicularity idea to arbitrary inner product
spaces.

Definition 6.10. Orthogonal Vectors Two vectors u and v in the same
inner product space are orthogonal if 〈u,v〉 = 0.

Note that if 〈u,v〉 = 0, then 〈v,u〉 = 〈u,v〉 = 0. Also, this definition
makes the zero vector orthogonal to every other vector. It also allows us to
speak of things like “orthogonal functions.” One has to be careful with new
ideas like this. Orthogonality in a function space is not something that can
be as easily visualized as orthogonality of geometrical vectors. Inspecting the
graphs of two functions may not be quite enough. If, however, graphical data
is tempered with a little understanding of the particular inner product in use,
orthogonality can be detected.
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Example 6.11. Show that f(x) = x and g(x) = x − 2
3 are orthogonal ele-

ments of C [0, 1] with the inner product of Example 6.9 and provide graphical
evidence of this fact.

Solution. According to the definition of inner product in this space,

〈f, g〉 =
∫ 1

0

f(x)g(x)dx =
∫ 1

0

x

(
x − 2

3

)
dx =

(
x3

3
− x2

3

)∣∣∣∣
1

0

= 0.

It follows that f and g are orthogonal to each other. For graphical evidence,
sketch f(x), g(x), and f(x)g(x) on the interval [0, 1] as in Figure 6.2. The
graphs of f and g are not especially enlightening; but we can see in the graph
that the area below f · g and above the x-axis to the right of (2/3, 0) seems
to be about equal to the area to the left of (2/3, 0) above f · g and below the
x-axis. Therefore, the integral of the product on the interval [0, 1] might be
expected to be zero, which is indeed the case. �

1

1

y

−1

x

g(x) = x − 2
3

f(x) = x

2
3

f(x) · g(x)

Fig. 6.2: Graphs of f , g, and f · g on the interval [0, 1].
Some of the basic ideas from geometry that fuel our visual intuition extend

very elegantly to the inner product space setting. One such example is the
famous Pythagorean theorem, which takes the following form in an inner
product space.

Theorem 6.3. Pythagorean Theorem Let u,v be orthogonal vectors in an
inner product space V. Then ‖u‖2 + ‖v‖2 = ‖u + v‖2.

Proof. Compute

‖u + v‖2 = 〈u + v,u + v〉
= 〈u,u〉 + 〈u,v〉 + 〈v,u〉 + 〈v,v〉
= 〈u,u〉 + 〈v,v〉 = ‖u‖2 + ‖v‖2

. �

Here is an example of another standard geometrical fact that fits well in
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Parallelogram Equalitythe abstract setting. This is equivalent to the par-
allelogram equality, which says that the sum of
the squares of the diagonals of a parallelogram is equal to the sum of the
squares of all four sides.

Example 6.12. Use properties of inner products to show that if we use the
induced norm, then

‖u + v‖2 + ‖u − v‖2 = 2
(
‖u‖2 + ‖v‖2

)
.

Solution. The key to proving this fact is to relate induced norm to inner
product. Specifically,

‖u + v‖2 = 〈u + v,u + v〉 = 〈u,u〉 + 〈u,v〉 + 〈v,u〉 + 〈v,v〉 ,

while

‖u − v‖2 = 〈u − v,u − v〉 = 〈u,u〉 − 〈u,v〉 − 〈v,u〉 + 〈v,v〉 .

Now add these two equations and obtain by using the definition of induced
norm again that

‖u + v‖2 + ‖u − v‖2 = 2 〈u,u〉 + 2 〈v,v〉 = 2
(
‖u‖2 + ‖v‖2

)
,

which is what was to be shown. �
It would be nice to think that every norm on a vector space is induced from

some inner product. Unfortunately, this is not true, as the following example
shows.

Example 6.13. Use the result of Example 6.12 to show that the infinity norm
on V = R

2 is not induced by any inner product on V .

Solution. Suppose the infinity norm were induced by some inner product
on V. Let u = (1, 0) and v = (0, 1/2). Then we have

‖u + v‖2
∞ + ‖u − v‖2

∞ = ‖(1, 1/2)‖2
∞ + ‖(1,−1/2)‖2

∞ = 2,

while
2
(
‖u‖2 + ‖v‖2

)
= 2 (1 + 1/4) = 5/2.

This contradicts the parallelogram equality of Example 6.12, so that the
infinity norm cannot be induced from an inner product. �

One last example of a geometrical idea that generalizes to inner product
spaces is the notion of projections of one vector along another. The projec-
tion formula for vectors in Section 4.2 works perfectly well for general inner
products. Since the proof of this fact amounts to replacing dot products by
inner products in the original formulation of the theorem (see Theorem 4.3),
we omit it and simply state the result.

http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_4
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Theorem 6.4. Projection Formula for Vectors Let u and v be vectors in
an inner product space with v �= 0. Define the projection of u along v as

projv u =
〈v,u〉
〈v,v〉v

and let p = projv u, q = u − p. Then p is parallel to v, q is orthogonal to v,
and u = p + q.

As with the standard inner product, it is customary to call the vector
projv u of this theorem the (parallel) projection of u along v. In summary,
we have the two vector and one scalar quantities:

Projection

projv u =
〈v,u〉
〈v,v〉v,

Orthogonal Projection

orthv u = u − projv u,

Component

compv u =
〈v,u〉
‖v‖ .

Orthogonal Sets of Vectors

We have already seen the development of the ideas of orthogonal sets of vectors
and bases in Chapter 4. Much of this development can be abstracted easily
to general inner product spaces, simply by replacing dot products by inner
products. Accordingly, we can make the following definition.

Definition 6.11. Orthogonal and Orthonormal Set of Vectors The set of
vectors v1,v2, . . . ,vn in an inner product space is said to be an orthogonal
set if 〈vi,vj〉 = 0 whenever i �= j. If, in addition, each vector has unit length,
i.e., 〈vi,vi〉 = 1 for all i, then the set of vectors is said to be an orthonormal
set of vectors.

The proof of the following key fact and its corollary are the same as those
of Theorem 4.6 in Section 4.3. All we have to do is replace dot products by
inner products. The observations that followed the proof of this theorem are
valid for general inner products as well. Again we omit the proofs and refer
the reader to Chapter 4.

http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_4
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Theorem 6.5. Orthogonal Coordinates Formula Let v1,v2, . . . ,vn be an
orthogonal set of nonzero vectors and suppose that v ∈ span {v1,v2, . . . ,vn}.
Then v can be expressed uniquely (up to order) as a linear combination of
v1,v2, . . . ,vn, namely

v =
〈v1,v〉
〈v1,v1〉v1 +

〈v2,v〉
〈v2,v2〉v2 + · · · +

〈vn,v〉
〈vn,vn〉vn.

Some useful corollaries, whose proofs are left as exercises:

Corollary 6.1. Every orthogonal set of nonzero vectors is linearly indepen-
dent.

Corollary 6.2. If v1,v2, . . . ,vn is an orthogonal set of vectors and v = c1v1+
c2v2 + · · · + cnvn, then

‖v‖2 = c2
1 ‖v1‖2 + c2

2 ‖v2‖2 + · · · + c2
n ‖vn‖2

.

Example 6.14. Find an orthogonal basis of V = R
2 with respect to the inner

product of Example 6.7 that includes v1 = (1,−1). Calculate the coordinates
of v = (1, 1) with respect to this basis and verify the formula of Corollary 6.2.

Solution. Recall that the inner product is given by 〈u,v〉 = 2u1v1+3u2v2.
Use the induced norm for ‖·‖. Let w be a nonzero solution to the equation

0 = 〈v1,w〉 = 2 · 1 · w1 + 3 · (−1) w2,

say w = (3, 2). Then v1 and v2 = w are orthogonal, hence linearly indepen-
dent and a basis of the two-dimensional space V . Now ‖v1‖2 = 2 · 12 + 3 ·
(−1)2 = 5 and ‖v2‖2 = 2 · 32 + 3 · 22 = 30. The coordinates of v are easily
calculated:

c1 =
〈v1,v〉
〈v1,v1〉 =

1
5

(2 · 1 · 1 + 3(−1) · 1) =
−1
5

c2 =
〈v2,v〉
〈v2,v2〉 =

1
30

(2 · 3 · 1 + 3 · 2 · 1) =
2
5
.

From the definition we have that ‖v‖2 = 2 · 12 + 3 · 12 = 5. Similarly, we
calculate that

c2
1 ‖v1‖2 + c2

2 ‖v2‖2 =
(−1

5

)2

5 +
(

2
5

)2

30 = 5 = ‖v‖2
. �

Note 6.1. In all exercises of this chapter except those of Section 6.6, use
the standard inner products and induced norms for R

n and C [a, b] unless
otherwise specified.
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6.2 Exercises and Problems

Exercise 1. Verify the Cauchy–Bunyakovsky–Schwarz inequality and calculate
the angle between the vectors for the following pairs of vectors u, v and
specified inner product.
(a) u = (2, 3), v = (−1, 2), inner product 〈(x, y) , (w, z)〉 = 4xw + 9yz on R

2.
(b) u = x, v = x3, inner product of Example 6.9 on C [0, 1].

Exercise 2. Verify the CBS inequality and calculate the inner product and
angle between the vectors for the following pairs of vectors u,v.
(a) (1,−1, 1), (−1, 2, 3), inner product 〈(x, y, z) , (u, v, w)〉 = xu + 2yv + zw.
(b) (2, 3), (−1, 2), inner product 〈(x, y) , (w, z)〉 = 2xw + xz + yw + yz.

Exercise 3. For each of the pairs u,v of vectors in Exercise 1, calculate the
projection, component, and orthogonal projection of u to v using the specified
inner product.

Exercise 4. For each of the pairs u,v of vectors in Exercise 2, calculate the
projection, component, and orthogonal projection of u to v using the specified
inner product.

Exercise 5. Find an equation for the hyperplane defined by 〈a,x〉 = 2 in R
3

with inner product of Exercise 2(a) and a = (4,−1, 2).

Exercise 6. Find an equation for the hyperplane defined by 〈f, g〉 = 2 in P3

with the standard inner product of C [0, 1], f (x) = x + 3, and g (x) = c0 +
c1x + c2x

2 + c3x
3.

Exercise 7. The formula
〈
[x1, x2]T , [y1, y2]T

〉
= 3x1y1 −2x2y2 fails to define an

inner product on R
2. What laws fail?

Exercise 8. Do any inner product laws fail for the formula 〈(x1, x2), (y1, y2)〉 =

x1y1 − x1y2 − x2y1 + 2x2y2 on R
2. (Hint:

[
1 0

−1 1

] [
1 −1
0 1

]
=
[

1 −1
−1 2

]
.)

Exercise 9. Which of the following are orthogonal or orthonormal sets?
(a) (2,−1, 2), (2, 2, 0) in R

3 with the inner product of Exercise 2(a).
(b) 1, x, x2 as vectors in C [−1, 1] with the standard inner product.
(c) 1

5 (−2, 1), 1
30 (9, 8) in R

2 with the inner product of Exercise 1(a).

Exercise 10. Determine whether the following sets of vectors are linearly inde-
pendent, orthogonal, or orthonormal.
(a) 1

10 (3, 4), 1
10 (4,−3) in R

2 with inner product 〈(x, y) , (w, z)〉 = 4xw + 4yz.
(b) 1, cos(x), sin(x) in C [−π, π] with the standard inner product.

(c) (2, 4), (1, 0) in R
2 with inner product 〈x,y〉 = xT

[
2 −1

−1 2

]
y.
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Exercise 11. Let v1 = (1, 3, 2) and v2 = (−4, 1,−1). Show that v1 and v2 are
orthogonal with respect to the inner product of Exercise 2(a) and use this to
determine whether the following vectors v belong to V = span {v1,v2} by
checking whether Theorem 6.5 is satisfied.
(a) (11, 7, 8) (b) (5, 1, 3) (c) (5, 2, 3)

Exercise 12. Confirm that p1 (x) = x and p2 (x) = 3x2 − 1 are orthogonal
elements of C [−1, 1] with the standard inner product and determine whether
the following polynomials belong to span {p1 (x) , p2 (x)} using Theorem 6.5.
(a) x2 (b) 1 + x − 3x2 (c) 1 + 3x − 3x2

Exercise 13. Let v1 = (1, 0, 0), v2 = (−1, 2, 0), v3 = (1,−2, 3). Let V =
R

3 with inner product defined by the formula 〈x,y〉 = xT Ay, where A =⎡
⎣

2 1 0
1 2 1
0 1 2

⎤
⎦. Verify that v1, v2, v3 form an orthogonal basis of V and find the

coordinates of the following vectors with respect to this basis.
(a) (3, 1, 1) (b) (0, 0, 1) (c) (0, 2, 0)

Exercise 14. Let v1 = (1, 3, 2), v2 = (−4, 1,−1), and v3 = (10, 7,−26). Verify
that v1, v2, v3 form an orthogonal basis of R

3 with the inner product of Exer-
cise 2(a). Convert this basis to an orthonormal basis and find the coordinates
of the following vectors with respect to this orthonormal basis.
(a) (1, 1, 0) (b) (2, 1, 1) (c) (0, 2, 2) (d) (0, 0,−1)

Exercise 15. Let x = (a, b) and y = (c, d). Let V = R
2 with inner product

defined by the formula 〈x,y〉 = xT Ay, where A =
[

1 1
2

1
2

1
3

]
. Calculate a formula

for 〈x,y〉 in terms of coordinates a, b, c, d.

Exercise 16. Let f (x) = a + bx and g (x) = c + dx. Let V = P1, the space of
linear polynomials, with the standard function space inner product in C [0, 1].
Calculate a formula for 〈f, g〉 in terms of coordinates a, b, c, d. Compare with
Exercise 15. Conclusions?

*Problem 17. Show that any inner product on R
2 can be expressed as 〈u,v〉 =

uT Av for some symmetric positive definite matrix A.

*Problem 18. Show that ‖·‖1 is not an induced norm on R
2.

*Problem 19. Let V = R
n or C

n and let u,v ∈ V. Let A be a fixed n × n
nonsingular matrix. Show that the matrix A defines an inner product by the
formula 〈u,v〉 = (Au)∗

Av.

*Problem 20. Prove Theorem 6.1.

Problem 21. Prove Corollary 6.2.
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*Problem 22. Let V be a real inner product space with inner product 〈·, ·〉 and
induced norm ‖·‖ . Prove the polarization identity, which recovers the inner
product from its induced norm:

〈u,v〉 =
1
4

{
‖u + v‖2 − ‖u − v‖2

}
.

*Problem 23. Let V = C1 [0, 1], the space of continuous functions with a con-
tinuous derivative on the interval [0, 1] (see Exercise 24 of Section 3.2). Show
that the formula

〈f, g〉 =
∫ 1

0

f ′(x)g′(x)dx +
∫ 1

0

f(x)g(x)dx

defines an inner product on V (called the Sobolev inner product).

Problem 24. Let V = C [0, 1], the space of continuous functions on the interval
[0, 1], and define a candidate for inner product on V by this formula: For
f, g ∈ V 〈f, g〉 = max0≤x≤1 f (x) g (x). Does this define an inner product on
V ? If so, prove it and if not, show which parts of the inner product definition
fail.

6.3 Orthogonal Vectors and Projection

We have seen that orthogonal bases have some very pleasant properties,
such as easy coordinate calculations. In this section we generalize the Gram–
Schmidt algorithm to arbitrary inner product spaces. In fact the proof of this
version of the Gram–Schmidt algorithm is exactly the same as the one given
in Theorem 4.10: simply replace any occurrence of v · w with 〈v,w〉.

Description of the Algorithm

Theorem 6.6. Gram–Schmidt Algorithm Let w1,w2, . . . ,wn be linearly
independent vectors in the inner product space V. Define vectors v1,v2, . . . ,vn

recursively by the formula

vk = wk − 〈v1,wk〉
〈v1,v1〉 v1 − 〈v2,wk〉

〈v2,v2〉 v2 −· · ·− 〈vk−1,wk〉
〈vk−1,vk−1〉vk−1, k = 1, . . . , n.

Then

(1) The vectors v1,v2, . . . ,vk form an orthogonal set.
(2) For each index k = 1, . . . , n,

span {w1,w2, . . . ,wk} = span {v1,v2, . . . ,vk} .

http://dx.doi.org/10.1007/978-3-319-74748-4_3
http://dx.doi.org/10.1007/978-3-319-74748-4_3
http://dx.doi.org/10.1007/978-3-319-74748-4_4
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The Gram–Schmidt formula is conceptually simple: subtract from the vec-
tor wk all of the projections of wk along the directions v1,v2, . . . ,vk−1 to
obtain the vector vk.

Example 6.15. Let C[0, 1] be the space of continuous functions on the
interval [0, 1] with the usual function addition and scalar multiplication, and
(standard) inner product given by

〈f, g〉 =
∫ 1

0

f(x)g(x)dx

as in Example 6.9. Let V = P2 = span{1, x, x2} and apply the Gram–Schmidt
algorithm to the basis 1, x, x2 to obtain an orthogonal basis for the space of
quadratic polynomials.

Solution. Set w1 = 1, w2 = x, w3 = x2 and calculate the Gram–Schmidt
formulas:

v1 = w1 = 1,

v2 = w2 − 〈v1,w2〉
〈v1,v1〉 v1 = x − 1/2

1
1 = x − 1

2
,

v3 = w3 − 〈v1,w3〉
〈v1,v1〉 v1 − 〈v2,w3〉

〈v2,v2〉 v2

= x2 − 1/3
1

1 − 1/12
1/12

(x − 1
2
) = x2 − x +

1
6
. �

Had we used C[−1, 1] and “normalized” the resulting polynomials by
requiring that they have value 1 at x = 1, the same calculations would have

Legendre Polynomialsgiven us the first of three well-known functions
called Legendre polynomials: P0(x) = 1, P1 (x) =
x, P2 (x) = 1

2

(
3x2 − 1

)
. These polynomials are used extensively in approxi-

mation theory and applied mathematics.
As usual, if we prefer to have an orthonormal basis rather than an orthog-

onal basis, then, as a final step in the orthogonalizing process, simply replace
each vector vk by the normalized vector uk = vk/ ‖vk‖.

Application to Projections

We can use the machinery of orthogonal vectors to give a nice solution to
a very practical and important question that can be phrased as follows (see
Figure 6.3 for a graphical interpretation of it):

The Projection Problem: Given a finite-dimensional subspace V of a real
inner product space W , together with a vector b ∈ W , to find the vector
v ∈ V which is closest to b in the sense that ‖b − v‖2 is minimized.
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Observe that the quantity ‖b − v‖2 will be minimized exactly when
‖b − v‖ is minimized, since the latter is always nonnegative. The squared term
has the virtue of avoiding square roots that computing sometimes ‖b − v‖ re-
quires.

The projection problem looks vaguely familiar. It reminds us of the least
squares problem of Chapter 4, which was to minimize the quantity ‖b − Ax‖2,
where A is an m × n real matrix and b,x are standard vectors. Recall that
v = Ax is a typical element in the column space of A. Therefore, the quantity
to be minimized is

‖b − Ax‖2 = ‖b − v‖2
,

where on the left-hand side x runs over all standard n-vectors and on the
right-hand side v runs over all vectors in the space V = C(A). The difference
between least squares and the projection problem is this: In the least squares
problem we want to know the vector x of coefficients of v as a linear combi-
nation of columns of A, whereas in the projection problem we are interested
only in v. Knowing v doesn’t tell us what x is, but knowing x easily gives v
since v = Ax.

V
v

c1v1

c2v2

projV b = v

b − v b

Fig. 6.3: Projection v of b into the subspace V spanned by the orthogonal
vectors v1,v2.

To solve the projection problem we need the following key concept.

Definition 6.12. Projection Formula for Subspaces Let v1,v2, . . . ,vn be an
orthogonal basis for the subspace V of the inner product space W. For any
b ∈ W, the (parallel) projection of b into the subspace V is the vector

projV b =
〈v1,b〉
〈v1,v1〉v1 +

〈v2,b〉
〈v2,v2〉v2 + · · · +

〈vn,b〉
〈vn,vn〉vn.

Notice that in the case of n = 1 the definition amounts to a familiar friend,
the projection of b along the vector v1.

It appears that the definition of projV b depends on the basis vectors
v1,v2, . . . ,vn, but we see from the next theorem that this is not the case.

http://dx.doi.org/10.1007/978-3-319-74748-4_4
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Theorem 6.7. Projection Theorem Let v1,v2, . . . ,vn be an orthogonal ba-
sis for the subspace V of the inner product space W. For any b ∈ W, the
vector v = projV b is the unique vector in V that minimizes ‖b − v‖2.

Proof. Let v be a solution to the projection problem and p the projection
of b − v to any vector in V . Use the Pythagorean theorem to obtain that

‖b − v‖2 = ‖b − v − p‖2 + ‖p‖2
.

However, v + p ∈ V , so that ‖b − v‖ cannot be the minimum distance from
b to a vector in V unless ‖p‖ = 0. It follows that b − v is orthogonal to any
vector in V . Now let v1,v2, . . . ,vn be an orthogonal basis of V and express
the vector v in the form

v = c1v1 + c2v2 + · · · + cnvn.

Then for each vk we must have

0 = 〈vk,b − v〉 = 〈vk,b − c1v1 − c2v2 − · · · − cnvn〉
= 〈vk,b〉 − c1 〈vk,v1〉 − c2 〈vk,v2〉 − · · · cn 〈vk,vn〉
= 〈vk,b〉 − ck 〈vk,vk〉 ,

from which we deduce that ck = 〈vk,b〉 / 〈vk,vk〉. It follows that

v =
〈v1,b〉
〈v1,v1〉v1 +

〈v2,b〉
〈v2,v2〉v2 + · · · +

〈vn,b〉
〈vn,vn〉vn = projV b.

This proves that there can be only one solution to the projection problem,
namely the one given by the projection formula above. To finish the proof one
has to show that projV b actually solves the projection problem. This is left
to the exercises. �

The projection has the same nice properties that we observed in the case
of standard inner products, namely, p = projV b ∈ V and b−p is orthogonal
to every v ∈ V . For the latter assertion, notice that for any j,

〈vj ,b − p〉 = 〈vj ,b〉 −
n∑

k=1

〈
vj ,

〈vk,b〉
〈vk,vk〉vk

〉
= 〈vj ,b〉 − 〈vj ,vj〉

〈vj ,vj〉 〈vj ,b〉 = 0.

One checks that the same is true if vj is replaced by a v ∈ V . In analogy with
the standard inner products, we define the orthogonal projection of b to V

Orthogonal Projectionby the formula
orthV b = b − projV b.

Let’s specialize to standard real vectors and inner products and take
a closer look at the formula for the projection operator in the case that
v1,v2, . . . ,vn is an orthonormal set. We then have 〈vj ,vj〉 = 1, so
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projV b = 〈v1,b〉v1 + 〈v2,b〉v2 + · · · + 〈vn,b〉vn

=
(
vT

1 b
)
v1 +

(
vT

2 b
)
v2 + · · · +

(
vT

nb
)
vn

= v1vT
1 b + v2vT

2 b + · · · + vnvT
nb

=
(
v1vT

1 + v2vT
2 + · · · + vnvT

n

)
b = Pb,

where the matrix P is defined as

Projection Matrix Formula

P = v1vT
1 + v2vT

2 + · · · + vnvT
n .

The significance of this expression for projections in standard spaces over
the reals with the standard inner product is as follows: computing the projec-
tion of a vector into a subspace amounts to multiplying the vector by a matrix
P that can be computed from V . Even in the one-dimensional case this gives
us a new slant on projections:

projV u = (vvT )u = Pu.

Similarly, we see that the orthogonal projection has a matrix representation

orthV u = u − Pu = (I − P )u.

The general projection matrix P has some interesting properties. It is sym-
metric, i.e., PT = P, and idempotent, i.e., P 2 = P. Therefore, this notation is
compatible with the definition of projection matrix introduced in earlier ex-
ercises (see Exercise 11 of Section 4.3). Symmetry follows from the fact that(
vkvT

k

)T = vkvT
k . For idempotence, notice that
(
vjvT

j

) (
vkvT

k

)
=
(
vT

j vk

) (
vkvT

j

)
= δj,kvkvT

j .

It follows that P 2 = P . One can show that the converse is true: if P is real
symmetric and idempotent, then it is the projection matrix for the subspace
C(P ) (see Problem 14 at the end of this section.)

Example 6.16. Find the projection matrix for the subspace of R
3 (with

the standard inner product) spanned by the orthonormal vectors v1 =
(1/

√
2)[1,−1, 0]T and v2 = (1/

√
3)[1, 1, 1]T and use it to solve the projec-

tion problem with V = span {v1,v2} and b = [2, 1,−3]T .

Solution. Use the formula developed above for the projection matrix

P = v1vT
1 + v2vT

2 =
1
2

⎡
⎣

1
−1

0

⎤
⎦ [ 1 −1 0 ] +

1
3

⎡
⎣

1
1
1

⎤
⎦ [ 1 1 1 ] =

1
6

⎡
⎣

5 −1 2
−1 5 2
2 2 2

⎤
⎦ .

http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_4
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Thus, the solution to the projection problem for b is

v = Pb =
1
6

⎡
⎣

5 −1 2
−1 5 2
2 2 2

⎤
⎦
⎡
⎣

2
1

−3

⎤
⎦ =

⎡
⎣

1
2− 1
2

0

⎤
⎦ . �

The projection problem is closely related to another problem that we
have seen before, namely the least squares problem of Section 4.2 in Chapter 4.
Recall that the least squares problem amounted to minimizing
the function f(x) = ‖b − Ax‖2, which in turn led to the normal equations.
Here A is an m × n real matrix. Now consider the projection problem
for the subspace V = C(A) of R

m, where b ∈ R
m. We know that el-

ements of C(A) can be written in the form v = Ax, where x ∈ R
n.

Therefore, ‖b − Ax‖2 = ‖b − v‖2, where v ranges over elements of V .

Least Squares as Projection ProblemIt follows that when we solve a
least squares problem, we are re-
ally solving a projection problem as well in the sense that the vector Ax is
the element of C(A) closest to the right-hand-side vector b.

The normal equations give us another way to generate projection matrices
in the case of standard vectors and inner products. As above, let V = C(A) ⊆
R

m, b ∈ R
m and P the projection matrix for V . Assume that the columns of

A are linearly independent, i.e., that A has full column rank. Then, as we have
seen in Theorem 4.5, the matrix AT A is invertible and the normal equations
AT Ax = AT b have the unique solution

x = (AT A)−1AT b.

Consequently, the solution to the projection problem is

v = Ax = A(AT A)−1AT b = Pb.

Since this holds for all vectors b, it follows that the projection matrix for this

Column Space Projection Formulasubspace is given by the formula

P = A(AT A)−1AT .

Example 6.17. Findtheprojectionmatrix for thesubspaceV = span {w1,w2}
of R

3 with w1 = (1,−1, 0) and w2 = (2, 0, 1).

Solution. Let A = [w1,w2], so that AT A =
[

1 −1 0
2 0 1

]⎡
⎣

1 2
−1 0

0 1

⎤
⎦ =

[
2 2
2 5

]
.

Thus

P = A(AT A)−1AT =

⎡
⎣

1 2
−1 0

0 1

⎤
⎦ 1

6

[
5 −2

−2 2

] [
1 −1 0
2 0 1

]
=

1
6

⎡
⎣

5 −1 2
−1 5 2
2 2 2

⎤
⎦ . �

http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_4
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Curiously, this is exactly the same matrix as the projection matrix found
in the preceding example. What is the explanation? Notice that w1 =

√
2v1

and w2 =
√

2v1 +
√

3v2, so that V = span {w1,w2} = span {v1,v2}. Hence,
the subspaces of both examples, though specified by different bases, are the
same subspace and we should expect the projection operators to be the same.

6.3 Exercises and Problems

Exercise 1. Find the projection matrix for the column space of each of the
following matrices using the projection matrix formula (you will need an
orthonormal basis).

(a)
[

1 −2
−1 2

]
(b)

⎡
⎣

2 1 1
0 2 4

−1 2 0

⎤
⎦ (c)

⎡
⎢⎢⎣

3 0 1
0 2 0
0 1 1
1 0 1

⎤
⎥⎥⎦ (d)

⎡
⎣

1 2 1
0 0 2
1 2 0

⎤
⎦

Exercise 2. Redo Exercise 1 using the column space projection formula (re-
member to use a matrix of full column rank for this formula, so you may have
to discard columns).

Exercise 3. Let V = span {(1,−1, 1), (1, 1, 0)}⊆ R
3. Compute projV w and

orthV w for the following w.
(a) (4,−1, 2) (b) (1, 1, 1) (c) (0, 0, 1)

Exercise 4. Repeat Exercise 3 using the inner product 〈(x, y, z), (u, v, w)〉 =
2xu − xv − yu + 3yv + zw.

Exercise 5. Find the projection of the polynomial f (x) = x3 into the subspace
V = span {1, x} of C [0, 1] with the standard inner product and calculate
‖f − projV f‖.

Exercise 6. Repeat Exercise 5 using the Sobolev inner product of Problem 23,
Section 6.2.

Exercise 7. Use the Gram–Schmidt algorithm to expand the orthogonal vectors
w1 = (−1, 1, 1,−1) and w2 = (1, 1, 1, 1) to an orthogonal basis of R

4 (you will
need to supply additional vectors).

Exercise 8. Apply the Gram–Schmidt algorithm to the following vectors using
the specified inner product:
(a) (1,−2, 0), (0, 1, 1), (1, 0, 2), inner product of Exercise 4.
(b) (1, 0, 0), (1, 1, 0), (1, 1, 1), inner product of Exercise 13, Section 6.2.

Exercise 9. Show that the matrices A =

⎡
⎣

1 3 4
1 4 2
1 1 8

⎤
⎦ and B =

⎡
⎣

4 3 1
5 7 0
2 −5 3

⎤
⎦ have the

same column space by computing the projection matrices into these column
spaces.



6.3 Orthogonal Vectors and Projection 417

Exercise 10. Use projection matrices to determine whether the row spaces of

the matrices A =

⎡
⎣

3 −4 7 2
0 5 −5 −1
1 0 0 1

⎤
⎦ and B =

⎡
⎣

1 2 −1 0
1 −3 4 1
3 1 2 1

⎤
⎦ are equal; if not,

exhibit vectors in one space but not the other, if possible.

Problem 11. Show that if P is a projection matrix, then so is I − P .

*Problem 12. Show that if u1,u2,u3 is an orthonormal basis of R
3, then

u1uT
1 + u2uT

2 + u3uT
3 = I3.

Problem 13. Assume A has full column rank. Verify directly that if P =
A(AT A)−1AT , then P is symmetric and idempotent.

*Problem 14. Show that if P is an n × n projection matrix, then for every
v ∈ R

n, Pv ∈ C(P ) and v − Pv is orthogonal to every element of C(P ).

Problem 15. Write out a proof of the Gram–Schmidt algorithm (Theorem 6.6)
in the case that n = 3.

*Problem 16. Complete the proof of the Projection theorem (Theorem 6.7) by
showing that projV b solves the projection problem.

Problem 17. How does the projection matrix formula on page 414 have to be
changed if the vectors in question are complex? Illustrate your answer with
the orthonormal vectors v1 = ((1 + i)/2, 0, (1 + i)/2), v2 = (0, 1, 0) in C

2.

*Problem 18. Let u1,u2, . . . ,un be an orthonormal basis for the subspace V
of the inner product space W , and b ∈ W and p = projV b. Show that

‖b‖2 = |〈u1,b〉|2 + |〈u2,b〉|2 + · · · + |〈un,b〉|2 + ‖b − p‖2

Problem 19. Let W = C [−1, 1] with the standard function space inner prod-
uct. Suppose V is the subspace of linear polynomials and b = ex.

(a) Find an orthogonal basis for V .
(b) Find the projection p of b into V .
(c) Compute the “mean error of approximation” ‖b − p‖, and compare it to
the mean error of approximation ‖b − q‖, where q is the first-degree Taylor
series of b centered at 0.
(d) Use a technology tool to plot b − p and b − q.
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6.4 Linear Systems Revisited

Once again we revisit our old friend, Ax = b, where A is an m × n matrix.
The notions of orthogonality can shed still more light on the nature of this
system of equations, especially in the case of a homogeneous system Ax = 0.
The kth entry of the column vector Ax is simply the kth row of A multiplied
by the column vector x. Designate this row by rT

k , and we see that

rk · x = 0, k = 1, . . . , n.

In other words, Ax = 0, that is, x ∈ N (A), precisely when x is orthog-
onal (with the standard inner product) to every row of A. We will see in
Theorem 6.10 below that this means that x will be orthogonal to any linear
combination of the rows of A. Thus, we could say

N (A) = {x ∈ R
n | r · x = 0 for every r ∈ R(A)} . (6.2)

We are going to digress and put this equation in a more general context. Then
we will return to linear systems with a new perspective on their meaning.

Orthogonal Complements and Homogeneous Systems

Definition 6.13. Orthogonal Complement Let V be a subspace of an inner
product space W. Then the orthogonal complement of V in W is the set

V ⊥ = {w ∈ W | 〈v,w〉 = 0 for all v ∈ V } .

We can see from the subspace test that V ⊥ is a subspace of W. Recall that
if U and V are two subspaces of the vector space W , then two other subspaces
that we can construct are the intersection and sum of these subspaces. The
former is just the set intersection of the two subspaces, and the latter is the
set of elements of the form u + v, where u ∈ U and v ∈ V . One can use the
subspace test to verify that these are indeed subspaces of W (see Problem 19 of
Section 3.2). In fact, it isn’t too hard to see that U + V is the smallest space
containing all elements of both U and V. Basic facts about the orthogonal
complement of V are summarized as follows.

Theorem 6.8. Let V be a subspace of the finite-dimensional inner product
space W. Then the following are true:

(1) V ⊥ is a subspace of W .
(2) V ∩ V ⊥ = {0}.
(3) V + V ⊥ = W .
(4) dim V + dim V ⊥ = dim W .
(5)

(
V ⊥)⊥ = V .

http://dx.doi.org/10.1007/978-3-319-74748-4_3
http://dx.doi.org/10.1007/978-3-319-74748-4_3
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Proof. We leave (1) and (2) as exercises. To prove (3), we notice that
V + V ⊥ ⊆ W since W is closed under sums. Now suppose that w ∈ W . Let
v = projV w. We know that v ∈ V and w − v is orthogonal to every element
of V. It follows that w − v ∈ V ⊥. Therefore, every element of W can be
expressed as a sum of an element in V and an element in V ⊥. This shows that
W ⊆ V + V ⊥, from which it follows that V + V ⊥ = W .

To prove (4), let v1,v2, . . . ,vr be a basis of V and w1,w2, . . . ,ws a basis
of V ⊥. Certainly, the union of the two sets spans V because of (3). Now if there
were an equation of linear dependence, we could gather all terms involving
v1,v2, . . . ,vr on one side of the equation, those involving w1,w2, . . . ,ws on
the other side, and deduce that each is equal to zero separately, in view of
(2). It follows that the union of these two bases must be an independent set.
Therefore, it forms a basis of W. It follows that dim W = r + s = dim V +
dim V ⊥.

Finally, apply (4) to V ⊥ in place of V and obtain that dim
(
V ⊥)⊥ =

dim W − dim V ⊥. But (4) implies directly that dim V = dim W − dim V ⊥, so
that dim

(
V ⊥)⊥ = dimV . Now if v ∈ V , then 〈w,v〉 = 0 for all w ∈ V ⊥.

Hence, V ⊆ (
V ⊥)⊥. Since these two spaces have the same dimension, they

must be equal, which proves (5). �
Using the notation of Definition 3.15 we can summarize (1)–(3) as follows:

W = V ⊕ V ⊥. Orthogonal complements of the sum and intersections of two
subspaces have an interesting relationship to each other, whose proofs we leave
as exercises.

Theorem 6.9. Let U and V be subspaces of the inner product space W. Then

(1) (U ∩ V )⊥ = U⊥ + V ⊥.
(2) (U + V )⊥ = U⊥ ∩ V ⊥.

The following fact greatly simplifies the calculation of an orthogonal com-
plement. It says that a vector is orthogonal to every element of a vector space
if and only if it is orthogonal to every element of a spanning set of the space.

Theorem 6.10. Let V = span {v1,v2, . . . ,vn} be a subspace of the inner
product space W. Then

V ⊥ = {w ∈ W | 〈w,vj〉 = 0, j = 1, 2, . . . , n} .

Proof. Let v ∈ V, so that for some scalars c1, c2, . . . , cn,

v = c1v1 + c2v2 + · · · + cnvn.

Take the inner product of both sides with a vector w. We see by the linearity
of inner products that

〈w,v〉 = c1〈w,v1〉 + c2〈w,v2〉 + · · · + cn〈w,vn〉,

http://dx.doi.org/10.1007/978-3-319-74748-4_3
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so that if 〈w,vj〉 = 0 for each j then 〈w,v〉 = 0. Conversely, if 〈w,vj〉 = 0,
for j = 1, 2, . . . , n, then clearly 〈w,vj〉 = 0, which proves the theorem. �

Example 6.18. Compute V ⊥, where

V = span {(1, 1, 1, 1), (1, 2, 1, 0)} ⊆ R
4

with the standard inner product on R
4.

Solution. Form the matrix A with the two spanning vectors of V as rows.
According to Theorem 6.10, V ⊥ is the null space of this matrix. We have

A =
[

1 1 1 1
1 2 1 0

]−−−−−−→
E21(−1)

[
1 1 1 1
0 1 0 −1

]−−−−−−→
E12(−1)

[
1 0 1 2
0 1 0 −1

]
,

from which it follows that the null space of A consists of vectors of the form
⎡
⎢⎢⎣

−x3 − 2x4

x4

x3

x4

⎤
⎥⎥⎦ = x3

⎡
⎢⎢⎣

−1
0
1
0

⎤
⎥⎥⎦+ x4

⎡
⎢⎢⎣

−2
1
0
1

⎤
⎥⎥⎦ .

Therefore, V ⊥ = span {(−1, 0, 1, 0) , (−2, 1, 0, 1)}. �
Nothing prevents us from considering more exotic inner products as well.

The arithmetic may be a bit more complicated, but the underlying principles
are the same. Here is such an example.

Example 6.19. Let V = span {1, x} ⊂ P2 [0, 1] = W , where the space P2 [0, 1]
of polynomial functions of degree at most 2 on the interval [0, 1] has the
standard inner product of C [0, 1]. Compute V ⊥ and use this to verify that
dim V + dim V ⊥ = dimW .

Solution. According to Theorem 6.10, V ⊥ consists of those polynomials
p(x) = c0 + c1x + c2x

2 for which

0 = 〈p, 1〉 =
∫ 1

0

(
c0 + c1x + c2x

2
)
1 dx = c0

∫ 1

0

1 dx+c1

∫ 1

0

x dx+c2

∫ 1

0

x2 dx,

0 = 〈p, x〉 =

∫ 1

0

(
c0 + c1x + c2x

2) x dx = c0

∫ 1

0

x dx + c1

∫ 1

0

x2 dx + c2

∫ 1

0

x3 dx.

Integrate, and we obtain the system of equations

c0 +
1
2
c1 +

1
3
c2 = 0,

1
2
c0 +

1
3
c1 +

1
4
c2 = 0.

Solve this system to obtain c0 = 1
6c2, c1 = −c2, and c2 is free. Therefore, V ⊥

consists of polynomials of the form
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p(x) =
1
6
c2 − c2x + c2x

2 = c2

(
1
6

− x + x2

)
.

It follows that V ⊥ = span
{

1
6 − x + x2

}
and dim V ⊥ = 1. Since {1, x} is a

basis of V , dim V = 2. Therefore, dim V + dimV ⊥ = dimW . �
Finally, we return to solutions to the homogeneous system Ax = 0. We

have seen that the null space of A consists of elements that are orthogonal
to the rows of A. One could turn things around and ask what we can say
about a vector that is orthogonal to every element of the null space of A.
This question has a surprisingly simple answer. In fact, there is a fascinating
interplay between row spaces, column spaces, and null spaces that can be
summarized in the following theorem:

Theorem 6.11. Orthogonal Complements Theorem For a matrix A,

(1) R(A)⊥ = N (A).
(2) N (A)⊥ = R(A).
(3) N (AT )⊥ = C(A).

Proof. We have already seen item (1) in the discussion at the beginning
of this section, where it was stated in equation (6.2). For item (2) we take
orthogonal complements of both sides of (1) and use part (5) of Theorem 6.8
to obtain

N (A)⊥ =
(R(A)⊥)⊥

= R(A),

which proves (2). Finally, for (3) we observe that R(AT ) = C(A). Apply (2)
with AT in place of A and the result follows. �

The connections spelled out by this theorem are powerful ideas. Here is one
example of how they can be used. Consider the following problem: suppose we
are given subspaces U and V of the standard space R

n with the standard inner
product (the dot product) in some concrete form, and we want to compute
a basis for the subspace U ∩ V . How do we proceed? One answer is to use
part (1) of Theorem 6.9 to see that (U ∩ V )⊥ = U⊥ + V ⊥. Now use part (5)
of Theorem 6.8 to obtain that

U ∩ V = (U ∩ V )⊥⊥ = (U⊥ + V ⊥)⊥.

The strategy that this equation suggests is this: Express U and V as row
spaces of matrices and compute bases for the null spaces of each. Put these
bases together to obtain a spanning set for U⊥ + V ⊥. Use this spanning set
as the rows of a matrix B. Then the complement of this space is, on the one
hand, U ∩ V , but by part (1) of the orthogonal complements theorem, it is
also N (B). Therefore, U ∩V = N (B), so all we have to do is calculate a basis
for N (B), which we know how to do.

Example 6.20. Find a basis for U ∩V, where these subspaces of R
4 are given

as follows:
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U = span {(1, 2, 1, 2), (0, 1, 0, 1)}
V = span {(1, 1, 1, 1), (1, 2, 1, 0)} .

Solution. We have already determined in Example 6.18 that V ⊥ has a
basis (−1, 0, 1, 0) and (−2, 1, 0, 1). Form the matrix A with the two spanning
vectors of U as rows. By Theorem 6.10, U⊥ = N (A). We have

A =
[

1 2 1 2
0 1 0 1

]−−−−−−→
E12(−2)

[
1 0 1 0
0 1 0 1

]
,

from which it follows that the null space of A consists of vectors of the form
⎡
⎢⎢⎣

−x3

−x4

x3

x4

⎤
⎥⎥⎦ = x3

⎡
⎢⎢⎣

−1
0
1
0

⎤
⎥⎥⎦+ x4

⎡
⎢⎢⎣

0
−1

0
1

⎤
⎥⎥⎦ .

Therefore, U⊥ has basis (−1, 0, 1, 0) and (0,−1, 0, 1). The vector (−1, 0, 1, 0)
of this basis is repeated in the basis of V ⊥, so we only to need list it once.
Form the matrix B whose rows are (−1, 0, 1, 0), (−2, 1, 0, 1), and (0,−1, 0, 1),
then calculate the reduced row echelon form of B:

B =

⎡
⎣

−1 0 1 0
−2 1 0 1

0 −1 0 1

⎤
⎦

−−−−−−→
E21(−2)
E1(−1)

⎡
⎣

1 0 −1 0
0 1 −2 1
0 −1 0 1

⎤
⎦

−−−−→
E32(1)

⎡
⎣

1 0 −1 0
0 1 −2 1
0 0 −2 2

⎤
⎦

−−−−−−−→
E3(−1/2)

E23(2)
E13(1)

⎡
⎣

1 0 0 −1
0 1 0 −1
0 0 1 −1

⎤
⎦ .

It follows that N (B) consists of vectors of the form
⎡
⎢⎢⎣

x4

x4

x4

x4

⎤
⎥⎥⎦ = x4

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ .

Therefore, U ∩ V = N (B) is a one-dimensional space spanned by the vector
(1, 1, 1, 1). �

Our last application of the orthogonal complements theorem is another
Fredholm alternative theorem (compare this to Corollary 2.5.)

Corollary 6.3. Fredholm Alternative If Ax = b is a real linear system with
b �= 0, then either the system is consistent or there is a solution y to the
homogeneous system AT y = 0 such that yT b �= 0.

Proof. Let V = C(A). By (3) of Theorem 6.8, R
n = V +V ⊥, where R

n has
the standard inner product. From (3) of the orthogonal complements theorem,

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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C(A) = N (AT )⊥. Take complements again and use (5) of Theorem 6.8 to
deduce that V ⊥ = N (AT ). Now the system either has a solution or does not.
If the system has no solution, then by Theorem 3.15, b does not belong to
V = C(A). Since b �∈ V, we can write b = v + y, where y �= 0, y ∈ V ⊥ and
v ∈ V. It follows that

〈y,b〉 = y · b = y · (v + y) = 0 + y · y �= 0.

On the other hand, if the system has a solution x, then for any vector y ∈
N (A) we have yT Ax = yT b. It follows that if yT A = 0, then yT b = 0. This
completes the proof. �

6.4 Exercises and Problems

Exercise 1. Let V = span {(1,−1, 2, 0) , (2, 0,−1, 1)} ⊂ R
4 = W . Compute V ⊥

and use it to verify that V + V ⊥ = R
4.

Exercise 2. Let V = span {(1,−1, 2)} ⊂ R
3 = W . Compute V ⊥ and use it to

verify that V ∩ V ⊥ = {0}.

Exercise 3. Let V = span
{
1 + x, x2

} ⊂ W = P2, where the space P2 of poly-
nomials of degree at most 2 has the standard inner product of C[0, 1]. Compute
V ⊥.

Exercise 4. Let V = span
{
1 + x + x3

} ⊂ W = P3, where P3 has the standard
inner product of C[0, 1] and compute V ⊥.

Exercise 5. Let V = span {(1, 0, 2), (0, 2, 1)} ⊂ R
3 = W . Compute V ⊥and

verify that
(
V ⊥)⊥ = V .

Exercise 6. Let V = span {(4, 1,−2)} ⊂ R
3 = W , where W has the weighted

inner product 〈(x, y, z), (u, v, w)〉 = 2xu + 3yv + zw. Compute V ⊥ and verify
that

(
V ⊥)⊥ = V .

Exercise 7. Carry out the method of computing U ∩ V discussed on page 421
with U = span {(1, 2, 1), (2, 1, 0)}, V = span {(1, 1, 1), (1, 1, 3)} and W = R

3.

Exercise 8. Repeat Exercise7with U= span {(1, 2, 1, 1) , (2, 7, 5, 3) , (1, 2, 2, 3))},
V = span {(1,−3, 2, 4) , (1, 4,−4,−5) , (0,−1, 2, 2)} and W = R

4.

Problem 9. Show that if V is a subspace of the inner product space W , then
so is V ⊥.

Problem 10. Show that if V is a subspace of the inner product space W , then
V ∩ V ⊥ = {0}.

*Problem 11. Let U and V be subspaces of the inner product space W . Prove
the following.
(a) (U ∩ V )⊥ = U⊥ + V ⊥ (b) (U + V )⊥ = U⊥ ∩ V ⊥

*Problem 12. Use the Fredholm alternative of this section to prove that the
normal equations AT Ax = AT b are consistent for any matrix A.

http://dx.doi.org/10.1007/978-3-319-74748-4_3


424 6 GEOMETRICAL ASPECTS OF ABSTRACT SPACES

6.5 *Operator Norms

The object of this section is to develop a useful notion of the norm of a matrix.
For simplicity, we stick with real matrices, but all of the results in this section
carry over to complex matrices. In Chapters 4 and 5 we studied the concept
of a vector norm, which gave us a way of thinking about the “size” of a vector.
We could easily extend this to matrices, just by thinking of a matrix as a
vector that had been chopped into segments of equal length and re-stacked as
a matrix. Thus, every vector norm on the space R

mn of vectors of length mn
gives rise to a vector norm on the space R

m,n of m × n matrices. Experience
has shown that this is not the best way to look for norms of matrices because it
may not connect well to the operation of matrix multiplication. One exception
is the standard norm, from which follows the Frobenius norm, It would be too
much to expect norms to distribute over products. The following definition
takes a middle ground that has proved to be useful for many applications.

Definition 6.14. Matrix Norm A vector norm ‖·‖ that is defined on the
vector space R

m,n of m × n matrices, for all pairs m,n, is said to be a matrix
norm if for all pairs of matrices A,B that are conformable for multiplication,

‖AB‖ ≤ ‖A‖ ‖B‖ .

Our first example of such a norm is the Frobenius norm; it is the one
exception that we mentioned above.

Theorem 6.12. The Frobenius norm is a matrix norm.

Proof. Let A and B be matrices conformable for multiplication and sup-
pose that the rows of A are aT

1 ,aT
2 , . . . ,aT

m, while the columns of B are
b1,b2, . . . ,bn. Then we have that AB =

[
aT

i bj

]
, so that by applying the

definition and the CBS inequality, we obtain that

‖AB‖F =

⎛
⎝

m∑
i=1

n∑
j=1

∣∣aT
i bj

∣∣2
⎞
⎠

1/2

≤
⎛
⎝

m∑
i=1

n∑
j=1

‖ai‖2 ‖bj‖2

⎞
⎠

1/2

≤
(
‖A‖2

F ‖B‖2
F

)1/2

= ‖A‖F ‖B‖F . �

The most common multiplicative norms come from a rather general notion.
Just as every inner product “induces” a norm in a natural way, every norm on
the standard spaces induces a norm on matrices in a natural way. First recall
that an upper bound for a set of real numbers is a number greater than or equal

Supremum to any number in the set, and the supremum of a set of reals is
the least (smallest) upper bound. We abbreviate this to “sup.”

For example, the sup of the open interval (0, 1) is 1.

http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_5
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Definition 6.15. Operator Norm The operator norm induced on matrices
by a norm on the standard spaces is defined by the formula

‖A‖ = sup
x�=0

‖Ax‖
‖x‖ .

A useful fact about these norms is the following equivalence:

‖A‖ = sup
x�=0

‖Ax‖
‖x‖ = sup

x�=0

∥∥∥∥A
x

‖x‖
∥∥∥∥ = sup

‖v‖=1

‖Av‖ .

We can see from this that the intuitive content of the operator norm of matrix
A is that it is a measure of the largest expansion of a unit “sphere” caused by
multiplication by A.

The reason for the term “operator” in the preceding definition is that the
matrix A is being measured by its operator action on vectors. We could just as
well have used the preceding definition to define the norm ‖TA‖ of the operator
TA. The notion of norm of a general linear operator is studied extensively in
a branch of mathematical analysis known as functional analysis.

Operator norms are also are special cases of matrix norms.

Theorem 6.13. Every operator norm is a matrix norm.

Proof. For a matrix A, clearly ‖A‖ ≥ 0 with equality if and only if Ax = 0
for all vectors x, which is equivalent to A = 0. The remaining two norm proper-
ties are left as exercises. Finally, if A and B are conformable for multiplication,
then Bx = 0 implies ‖ABx‖ = 0, so we have

‖AB‖ = sup
x�=0

‖ABx‖
‖x‖ = sup

Bx�=0

‖ABx‖
‖x‖ = sup

Bx�=0

‖ABx‖
‖Bx‖ · ‖Bx‖

‖x‖ ≤ ‖A‖·‖B‖ . �

Incidentally, one difference between the Frobenius norm and operator
norms is how the identity In is handled. Notice that ‖In‖F =

√
n, while

with any operator norm ‖·‖ we have from the definition that ‖In‖ = 1.
How do we compute these norms? Here are three common cases:

Theorem 6.14. If A = [aij ]m,n, then

(1) ‖A‖∞ = max1≤i≤m

{∑n
j=1 |aij |

}

(2) ‖A‖1 = max1≤j≤n {∑m
i=1 |aij |}

(3) ‖A‖2 = ρ(AT A)1/2

Proof. Items (2) and (3) are left as exercises. For the proof of (1), use
the fact that ‖A‖∞ = sup‖v‖∞=1 ‖Av‖∞ . Now a vector has infinity norm 1
if and only if the largest absolute value of its coordinates is 1. Notice that we
can make the ith entry of Av as large as possible simply by choosing v so
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that the jth coordinate of v is ±1 and agrees with the sign of aij . Thus, the
infinity norm of Av is the maximum of the row sums of the absolute values
of the entries of A. �

One of the more important applications of the idea of a matrix norm is
the famous Banach lemma. Essentially, it amounts to a matrix version of the
familiar geometric series.

Theorem 6.15. Banach Lemma If M is a square matrix such that ‖M‖ < 1
for some operator norm ‖·‖, then I − M is invertible. Moreover,∥∥∥(I − M)−1

∥∥∥ ≤ 1/(1 − ‖M‖) and

(I − M)−1 = I + M + M2 + · · · + Mk + · · · .

Proof. We have seen this trick before: Form the telescoping series

(I − M)
(
I + M + M2 + · · · + Mk

)
= I − Mk+1,

so that
I − (I − M)

(
I + M + M2 + · · · + Mk

)
= Mk+1.

Now by the multiplicative property of matrix norms and fact that ‖M‖ < 1,
∥∥Mk+1

∥∥ ≤ ‖M‖k+1 → 0, as k → ∞.

It follows that the matrix limk→∞
(
I + M + M2 + · · · + Mk

)
= B exists and

that I − (I − M)B = 0, from which it follows that B = (I − M)−1. Finally,
note that

∥∥I + M + M2 + · · · + Mk
∥∥ ≤ ‖I‖ + ‖M‖ +

∥∥M2
∥∥+ · · · +

∥∥Mk
∥∥

≤ 1 + ‖M‖ + ‖M‖2 + · · · + ‖M‖k

≤ 1
1 − ‖M‖ .

Now take the limit as k → ∞ to obtain the desired result. �

A fundamental idea in numerical linear algebra is the notion of the
Condition Number condition number of a matrix A. Roughly speaking,

the condition number measures the degree to which changes in A lead to
changes in solutions of systems Ax = b. A large condition number means
that small changes in A or b may lead to large changes in x. In the case of
an invertible matrix A, the condition number of A is defined to be

cond(A) = ‖A‖∥∥A−1
∥∥ .

Of course this quantity is norm dependent. In the case of a p-norm, the condi-
tion number is denoted by condp(A). For an operator norm ‖·‖ on R

m,n, the
Banach lemma has a nice application, whose proof is left as an exercise.
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Corollary 6.4. If A = I + N, where ‖N‖ < 1, then

cond(A) ≤ 1 + ‖N‖
1 − ‖N‖ .

We conclude with a very fundamental result for numerical linear algebra.
Here is the scenario: we desire to solve the linear system Ax = b, where A is
invertible. Due to arithmetic error or possibly input data error, we end up with
a value x+δx that solves exactly a “nearby” system (A+δA)(x+δx) = b+δb.
(It can be shown using an idea called “backward error analysis” that this is
really what happens when many algorithms are used to solve a linear system.)
The question is, what is the size of the relative error ‖δx‖ / ‖x‖? As long as the
perturbation matrix ‖δA‖ is reasonably small, there is a very elegant answer.

Theorem 6.16. Perturbation Theorem Suppose that A is invertible, b �=0,
Ax = b, (A + δA)(x + δx) = b + δb, and

∥∥A−1δA
∥∥ = c < 1 with respect to

some operator norm. Then A + δA is invertible and

‖δx‖
‖x‖ ≤ cond (A)

1 − c

{‖δA‖
‖A‖ +

‖δb‖
‖b‖

}
.

Proof. That the matrix I + A−1δA is invertible follows from hypothesis
and the Banach lemma. Since A is invertible by hypothesis, A

(
I + A−1δA

)
=

A + δA is also invertible. Expand the perturbed equation to obtain

(A + δA)(x + δx) = Ax + δAx + Aδx + δA δx = b + δb.

Now subtract the terms Ax = b from each side and solve for δx to obtain

(A + δA)δx = A(I + A−1δA)δx = −δAx + δb,

so that
δx = (I + A−1δA)−1A−1 (−δA · x + δb) .

Take norms, use the additive and multiplicative properties of matrix norms
and also the Banach lemma to obtain

‖δx‖ ≤
∥∥A−1

∥∥
1 − c

{‖δA‖ ‖x‖ + ‖δb‖} .

Next divide both sides by ‖x‖ to obtain

‖δx‖
‖x‖ ≤

∥∥A−1
∥∥

1 − c

{
‖δA‖ +

‖δb‖
‖x‖

}
.

Finally, notice that ‖b‖ ≤ ‖A‖ ‖x‖. Therefore, 1/ ‖x‖ ≤ ‖A‖ / ‖b‖. Replace
1/ ‖x‖ in the right hand side by ‖A‖ / ‖b‖ and factor out ‖A‖ to obtain
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‖δx‖
‖x‖ ≤ ‖A‖∥∥A−1

∥∥
1 − c

{‖δA‖
‖A‖ +

‖δb‖
‖b‖

}
,

which completes the proof, since by definition, cond A = ‖A‖∥∥A−1
∥∥. �

If we believe that the inequality in the perturbation theorem can be sharp
(it can!), then it becomes clear how the condition number of the matrix A
is a direct factor in how relative error in the solution vector is amplified by
perturbations in the coefficient matrix.

Example 6.21. Suppose we wish to solve the nonsingular system Ax = b

exactly, where the coefficient matrix A =
[

1 10
10 101

]
is known, but the right-

hand-side vector b is determined from measured data whose error of measure-
ment is such that the ratio of the largest error in any coordinate of b to the
largest coordinate of b (this ratio is called the relative error) is no more than
0.01 in absolute value. Estimate the size of the relative error in the solution.

Solution. Let the correct value of the right-hand side be b and the mea-
sured value of the right-hand side be b̃, so that the error of measurement is
the vector δb = b̃ − b. Rather than solving the system Ax = b, we end up
solving the system Ax̃ = b̃ = b + δb, where x̃ = x + δx. The relative error
in data is the quantity ‖δb‖∞ / ‖b‖∞ ≤ 0.01, while the relative error in the
computed solution is ‖δx‖∞ / ‖x‖∞. We have cond∞ (A) = 12321 (left as an
exercise), so the relative error in the solution satisfies the inequality

‖δx‖∞
‖x‖∞

≤ cond∞(A)
1 − 0

· ‖δb‖∞
‖b‖∞

= 12321 · 0.01 = 123.21.

In other words, the relative error in our computed solution could be as large
as 12321% which, of course, would make it quite worthless. �

Here is one more useful observation about operator norms that can be
couched in very general terms.

Definition 6.16. Equivalent Norms Two norms ‖·‖ and ‖|·|‖ on the vector
space V are said to be equivalent if there exist positive constants C,D such
that for all x ∈ V ,

C ‖x‖ ≤ ‖|x|‖ ≤ D ‖x‖ .

It is easily seen that this relation is symmetric, for we deduce from the
definition that

1
D

‖|x|‖ ≤ ‖x‖ ≤ 1
C

‖|x|‖ .

Similarly, one checks that equivalence is a transitive relation, that is, if norm
‖·‖a is equivalent to ‖·‖b and ‖·‖b is equivalent to ‖·‖c, then ‖·‖a is equivalent
to ‖·‖c. Roughly speaking, the definition says that equivalent norms yield
the same value up to fixed upper and lower scale factors. The significance of
equivalence of norms is that convergence of a sequence of vectors in one norm
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implies convergence in the other equivalent norm. In general, a vector space
can have inequivalent norms. However, in order to do so, the space must be
infinite-dimensional. The following theorem applies to all finite-dimensional
vector spaces, so it certainly applies to the space of n × n matrices R

n,n with
an operator norm. Thus, all operator norms are equivalent in the above sense.

Theorem 6.17. All norms on a finite-dimensional space are equivalent.

We sketch a proof. Let V be a finite-dimensional vector space. We know
that there is an arithmetic preserving one-to-one correspondence between
elements x of V and their coordinate vectors with respect to some basis
of V , so that elements of V are identified with some R

n. Without loss of
generality V = R

n. Now let ‖·‖ be any norm on V . First, one establishes
that‖·‖ : V → R is a continuous function by proving that for all x, y ∈ V ,
|‖x‖ − ‖y‖| ≤ ‖x − y‖. The proof of Problem 22, Section 4.1, shows this
inequality.

Next, one observes that the boundary of unit ball B1(0) in the infinity
norm in V is a closed and bounded set that does not contain the origin. By
the extreme value theorem of analysis, the function ‖·‖ assumes its maximum
and minimum values on the ball, and these must be positive, say C,D. Thus,
for all nonzero vectors x we have

C ≤
∥∥∥∥

x
‖x‖∞

∥∥∥∥ ≤ D.

Multiply through by ‖x‖∞, and we see that C ‖x‖∞ ≤ ‖x‖ ≤ D ‖x‖∞, which
proves the equivalence of the given norm to the infinity norm. It follows from
transitivity of the equivalence property that all norms are equivalent to each
other. �

6.5 Exercises and Problems

Exercise 1. Compute the Frobenius, 1-, and ∞-norms of the following matrices.

(a)
[

3 2
0 1

]
(b)

⎡
⎣

−1 2 2
2 −1 2
2 2 −1

⎤
⎦ (c)

⎡
⎢⎢⎣

1 2 2 0
1 −3 0 −1
1 1 −2 0

−2 1 6 1

⎤
⎥⎥⎦

Exercise 2. Compute the condition number of each matrix in Exercise 1 using
the infinity norm.

Exercise 3. Let A =
[

2 7
3 10

]
, b = [5.7, 8.2]T and solve the system Ax = b for

x with a technology tool. Next, let δb = [0.096,−0.025]T and x + δx be the
solution to A (x + δx) = (b + δb). Compute ‖δx‖∞ / ‖x‖∞ and compare it
to cond∞ (A) ‖δb‖∞ / ‖b‖∞.

http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_4
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Exercise 4. Repeat Exercise 3 using the ∞-norm with A =
[

1 10
10 101

]
, b =

[0.985, 9.95]T , and δb = [−0.0995, 0.00985]T . How good is the solution if this
error is introduced into the right-hand side?

Exercise 5. Verify that the perturbation theorem is valid for A =

⎡
⎣

1 2 0
0 1 −2
0 −2 1

⎤
⎦,

b = [−5, 1,−3]T , δA = 0.05A, and δb = 0.5b. Use the 2-norm.

Exercise 6. Verify the inequality of Corollary 6.4 using the infinity norm and

N = 1
3

[
1 1

−1 0

]
.

Problem 7. Show that if A is a stochastic matrix, then ‖A‖1 = 1.

*Problem 8. Prove Corollary 6.4.

*Problem 9. Show that if A is invertible and ‖A−1δA‖ < 1, then so is A+ δA.

Problem 10. Prove that ‖A‖1 = max1≤j≤n {∑m
i=1 |aij |}.

Problem 11. Prove that ‖A‖2 = ρ(AT A)1/2.

Problem 12. Suppose we want to approximately solve a system of the form
Ax = b, where A = I − M and ‖M‖ < 1 for some operator norm. Use
the Banach lemma to devise such a scheme involving only a finite number of
matrix additions and multiplications.

*Problem 13. Show that for any any operator norm ‖ · ‖, ρ(A) ≤ ‖A‖.

*Problem 14. Show that a square matrix A is power bounded, that is, ‖Am‖2 ≤
C for all positive m and some constant C independent of m, if every eigenvalue
of A is either strictly less than 1 in absolute value or of absolute value equal
to 1 and simple.

Problem 15. Does it follow from Problem 14 and the equivalence of operator
norms that power bounded in one operator norm implies power bounded in
any other? Justify your answer.

*Problem 16. Let A be a real matrix and U, V orthogonal matrices.

(a) Show from the definition that
∥∥UT AV

∥∥
2

= ‖A‖2.
(b) Determine ‖Σ‖2 if Σ is a diagonal matrix with nonnegative entries.
(c) Use (a) and (b) to express ‖A‖2 in terms of the singular values of A.

*Problem 17. Show that if A is a real invertible n × n matrix, then using ‖·‖2

yields cond (A) = σ1/σn, the ratio of largest to smallest singular values of A.

Problem 18. Example 6.21 gives an upper bound on the error propagated to
the solution of a system due to right-hand-side error. How pessimistic is it?
Experiment with various random different erroneous right-hand-sides with
your choice of error tolerance and compare actual error with estimated error.
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6.6 *Applications and Computational Notes

Introduction to Fourier Analysis

In the early 1800’s Joseph Fourier, in his historic monograph “Théorie analy-
tique de la chaleur” (The Analytical Theory of Heat), introduced the idea that
solutions to heat problems that he introduced and, for that matter, any “arbi-
trary function” could be expressed as a infinite sum of trigonometric functions.
As it turns out, this was not exactly correct. It was the lack of precision in the
definition of “arbitrary function” that generated early criticisms of Fourier’s
ideas. Nonetheless his extraordinary insight has reverberated throughout the
mathematical and scientific world for the past 200 years. The resulting Fourier
analysis has had deep applications in diverse areas such as applied mathemat-
ics, electrical engineering, physics, quantum theory, signal analysis and many
other fields.

So let’s set the stage for our study of Fourier analysis. First, we will extend

Complex-valued Functionour notion of function to include complex val-
ues. Henceforth, we redefine C [a, b] to be the
set of all continuous complex-valued functions f (t), a ≤ t ≤ b. Such functions
can be described as f (t) = fR (t) + ifI (t), where fR and fI are real-valued
continuous functions. We’ve seen such things before, e.g., the trigonometric
function f (t) = eit = cos t + i sin t. As such, derivatives, integrals and limits
are perfectly straightforward:

f ′(t) = f ′
R (t) + if ′

I (t)∫ b

a

f (t) dt =
∫ b

a

fR (t) dt + i
∫ b

a

fI (t) dt

lim
h→0

f (t + h) = lim
h→0

fR (t + h) + i lim
h→0

fI (t + h)

In the same way that we showed in Example 3.4 of Chapter 3 that C [0, 1] is
a vector space, so is our new version of C [a, b]. Moreover, there is an inner
product that we can attach to this space:

〈f, g〉 =
∫ b

a

g (t) f (t) dt (6.3)

Be aware that most analysis texts use 〈f, g〉 =
∫ b

a
f (t) g (t) dt. We conjugate

the first term so that condition (4) of Definition 6.7 is satisfied. We leave it
as an exercise to show that the inner product laws are satisfied.

Next, we will expand our universe of functions, but first a bit of reminder
from calculus: Recall that if a function f (t) is defined on an open interval with

One-sided Limitsthe point t0 in the interval or on the boundary,
then we have one-sided limits f

(
t+0
)

= limh→0+ f (t0 + h) or f
(
t−0
)

=
limh→0− f (t0 + h) which may or may not exist. (Recall that the expression
h → 0+ means that h is allowed to approach 0 from the right side, i.e.,

http://dx.doi.org/10.1007/978-3-319-74748-4_3
http://dx.doi.org/10.1007/978-3-319-74748-4_3
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h > 0 and similarly h → 0− means we only allow h < 0. As usual, the
expression h → 0 means that there is no restriction on the sign of h.) We
have already made implicit use of these ideas early on in calculus: A func-
tion is continuous on the closed interval [a, b] if at every interior point t0,
the two-sided limit satisfies f (t0) = limh→0 f (t0 + h) and at the boundaries
f (a) = limh→0+ f (a + h) and f (b) = limh→0− f (b + h).

Definition 6.17. PWC Function A function f (t) defined on the interval
[a, b] is piecewise continuous (PWC) on the interval [a, b] if it has at most a
finite number of discontinuities and at each such point, as well as the end-
points of the interval, one-sided limits exist and are finite. The set of all such
functions is denoted by CPW [a, b].

We need one more refinement of function spaces, a subspace of CPW [a, b]:

Definition 6.18. PWS Function A function f (t) defined on the interval
[a, b] is piecewise smooth (PWS) on the interval [a, b] if both f (t) and f ′ (t)
are piecewise continuous on [a, b]. The set of all such functions is denoted by
C1

PW [a, b].

Clearly sums and products of functions of piecewise smooth functions are
themselves piecewise smooth. Also we integrate functions f, g ∈ CPW [a, b] or
C1

PW [a, b] as well as their sums and products over the interval

Integration of PWC Function [a, b] by adding up all the integrals over
successive subintervals of [a, b] on which

the function is continuous and using one-sided limits to define the boundaries
of integration on each subinterval.

Theorem 6.18. CPW [a, b] with the usual pointwise addition and multiplica-
tion is an inner product space with inner product given by equation (6.3).

Note that as a subspace of CPW [a, b], the space C1
PW [a, b] is also an inner

product space with the inherited inner product.
As we have learned, any inner product space is automatically also a normed

linear space with the norm induced from the inner product. Thus, in the case
of f ∈ CPW [a, b] or f ∈ C1

PW [a, b] the norm of this function is given by

‖f‖2 =

√∫ b

a

f (t) f (t) dt =

√∫ b

a

|f (t)|2 dt.

In anticipation of our exploration of DSP, we will search for a basis of the
inner product space C1

PW [0, T ] , T > 0. That search will lead us into Fourier
analysis. Certainly, this space is not finite dimensional since it contains the
space of all polynomial functions on the interval [0, T ] (see Example 2.8 of
Chapter 3.) In fact, matters are even worse than that: Unlike the space of
polynomials, which has a basis that can be listed, namely

{
1, t, t2, . . . , tn, . . .

}
,

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_3
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the space of piecewise smooth functions on [0, T ] has no such basis. Fourier’s
key discovery was that it does have such a basis in a looser sense. Enter the
trigonometric functions:

Theorem 6.19. Trigonometric Polynomials Let ω = 2π/T and define
en (t) = eiωnt, n ∈ Z. Then

(1) en (t) ∈ C1
PW [0, T ].

(2) e′
n (t) = iωnen (t).

(3) {en (t)}∞
n=−∞ is an orthogonal set of functions in C1

PW [0, T ].
(4) The best approximation xN (t) to x (t) ∈ C1

PW [0, T ] from the subspace
spanned by {en (t)}N

n=−N (in the sense of minimizing ‖xN − x‖2) is

xN (t) =
N∑

n=−N

cnen (t) , cn =
1
T

∫ T

0

x (t) e−inωt dt, −N ≤ n ≤ N.

Proof. For (1) note that en (t) = einωt = cos (nωt) + i sin (nωt), so en (t)
has continuous derivatives of all orders. Hence, en (t) ∈ C1

PW [0, T ]. For (2)
calculate

e′
n (t) = (cos (nωt) + i sin (nωt))′ = nω (− sin (nωt) + i cos (nωt))

= inω (i sin (nωt) + cos (nωt)) = inωeinω = inωen (t)

To prove (3), use (2) and the fact that for m �= n, eiω(n−m)L = ei2π(n−m) = 1,
to calculate

〈em, en〉 =
∫ T

0

eiωnteiωmt dt =
∫ T

0

eiω(n−m)t dt =
eiω(n−m)t

iω (n − m)

∣∣∣∣∣
T

t=0

= 0.

For m = n, 〈en, en〉 =
∫ T

0
eiω0t dt =

∫ T

0
1 dt = T . Hence, the en (t)’s form an

orthogonal set. Finally, according to the projection theorem (Theorem 6.7) the
best approximation to x (t) from the subspace spanned by {en (t)}N

n=−N is the

Partial Fourier Sumpartial sum

xN (t) =
N∑

n=−N

cnen (t) , with cn =
〈en, x〉
〈en, en〉 =

1
T

∫ T

0

x (t) e−inωt dt.

�
In light of this theorem it is tempting to use limits and conclude that

Fourier Series
x (t) = lim

N→∞

N∑
n=N

cneinωt =
∞∑

n=−∞
cneinωt, (6.4)

where cn = 1
T

∫ T

0
x (t) e−inωt dt, n ∈ Z. This is what Fourier did with a some-

what vague definition of “function.” In other words, even though the trigono-
metric polynomials did not form a basis for a function space in the usual sense



434 6 GEOMETRICAL ASPECTS OF ABSTRACT SPACES

of basis, they were somehow sufficiently “dense” in the function space to be
a basis for all in some limiting sense. The unanswered question was “What
function space?” and generations of mathematicians have worked to make
Fourier’s powerful insight precise. The trigonometric series above is called the
Fourier series of x (t) in his honor. The interested reader can pursue these
developments in detail in the text [11] by C. Gasquet and P. Witomski. For
our purposes the following theorem, which is really a special case of Dirichlet’s
Theorem, is sufficient (see [11, p. 43] for a full description and proof):

Theorem 6.20. Dirichlet Theorem Let x (t) ∈ C1
PW [0, T ]. Then the Fourier

series F (x (t)) =
∑∞

n=−∞ cneinωt is convergent for t ∈ [0, T ] with values as
follows:

(1) If t is a point of continuity of x (t), then F (x (t)) = x (t).
(2) If t is a point of discontinuity of x (t), then

F (x (t)) = 1
2 (x (t−) + x (t+)).

For the record, note that the mapping F : C1
PW [0, T ] → C1

PW [0, T ] given
by F (x (t)) =

∑∞
n=−∞ cneinωt is a linear operator from this vector space

into itself by Theorem 6.20. Were we to require that at every point t0 of
discontinuity of x (t) ∈ C1

PW [0, T ], x (t0) = 1
2

(
x
(
t−0
)

+ x
(
t+0
))

(a reasonable
requirement), then F would actually be the identity mapping!

Also note that that choice of interval [0, T ] is simply a matter of conve-
nience. In the case of a function x (t) ∈ CPW [a, b] we can extend the definition
of x (t) to a periodic function of period T = b − a over all of R. The restric-
tion of this extended function to the interval [0, T ] is a member of C1

PW [0, T ].
Moreover, periodicity implies that its integral over any interval of length T
yields the same result. Thus, the Fourier series for x (t) on the real line can
be written as

F (x (t)) =
∞∑

n=−∞
cneinωt, cn =

1
T

∫ b

a

x (t) e−inωt dt.

The case of a real-valued function deserves special consideration. In fact,
the original thesis of Fourier was that an “arbitrary function” of real values
Real Fourier Series on a finite interval could be represented as an infi-

nite sum of sine and cosine functions. Given a real-valued function x (t) ∈
C1

PW [0, T ], we can express its Fourier series in the following form:

F (x (t)) =
∞∑

n=−∞
cneinωt =

a0

2
+

∞∑
n=1

(an cos (nωt) + bn sin (nωt)) (6.5)

where for n ≥ 0,

an =
2
T

∫ T

0

x (t) cos (nωt) dt and bn =
2
T

∫ T

0

x (t) sin (nωt) dt. (6.6)
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We leave the details of these formulas as an exercise.
For the following examples, it is helpful to recall that a function f (t) is

Even and Odd Functionseven if f (−t) = f (t) and odd if f (−t) =
−f (t). If f (t) is odd, it follows that the integral

∫M

−M
f (t) dt =∫M

0
(f (t) + f (−t)) dt = 0. Likewise, if If f (t) is even, then

∫M

−M
f (t) dt =∫M

0
(f (t) + f (−t)) dt = 2

∫M

0
f (t) dt.

Fig. 6.4: Graph of x (t) (—), Fourier sums N = 3 (—), N = 7 (—) and
N = 11 (—) from Example 6.22.

Example 6.22. Find the Fourier series of the function x (t) ∈ C1
PW [0, 2π]

defined by x (t) = 1 for 0 < t < π, x (t) = −1 for π < t < 2π and x (0) =
x (π) = x (2π) = 0, so that x (t) can be viewed as a periodic function of period
2π defined on R. Graph this function along with the partial Fourier sums for
N = 3, 7, 11.

Solution. Here T = 2π and ω = 1. Clearly x (t) is an odd function and
cos (nt) is even, so their product is odd. By periodicity

∫ 2π

0
x (t) cos (nωt) dt =∫ π

−π
x (t) cos (nωt) dt. So this integral is 0. Hence, for all n, an = 0. On

the other hand sin (nt) is odd, so its product with x (t) is even and thus∫ 2π

0
x (t) sin (nωt) dt =

∫ π

−π
x (t) sin (nωt) dt = 2

∫ π

0
x (t) sin (nωt) dt. We cal-

culate with n ≥ 1 that

bn =
2
2π

· 2
∫ π

0

1 · sin (nt) dt =
2
π

· − cos (nt)
n

∣∣∣∣∣
π

0

=
2

nπ
(1 − (−1)n) .

Thus, the Fourier series for x (t) is
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4
π

{
sin (t) +

sin (3t)
3

+
sin (5t)

5
+

sin (7t)
7

+ · · ·
}

=
4
π

∞∑
n=1

sin ((2n − 1) t)
2n − 1

.

See Figure 6.4 for a graph of x (t) and partial Fourier sums with N = 3, 7 and
11 which correspond to upper limits 2, 4 and 6 in the above series. �

Fig. 6.5: Graph of x (t) (—), Fourier sumsN = 3 (—), N = 7 (—) and
N = 11 (—) from Example 6.23.

Example 6.23. Find the Fourier series of the function x (t) ∈ C1
PW [0, 2π]

defined by x (t) = t for 0 ≤ t < π, x (t) = 2π − t for π < t ≤ 2π. Graph this
function along with the partial Fourier sums for N = 3, 7, 11.

Solution. Here again T = 2π and ω = 1. Clearly x (t) is an even function
and sin (nt) is odd, so theirproduct is odd.Byperiodicity

∫ 2π

0
x (t) sin (nωt) dt =∫ π

−π
x (t) sin (nωt) dt. So this integral is 0. Hence, for all n, bn = 0.

On the other hand cos (nt) is even, so its product with x (t) is even and thus∫ 2π

0
x (t) cos (nωt) dt =

∫ π

−π
x (t) cos (nωt) dt = 2

∫ π

0
x (t) cos (nωt) dt. We cal-

culate with n ≥ 1 and integration by parts that

an =
2
2π

· 2
∫ π

0

t · cos (nt) dt

=
2
π

·
(

t
sin (nt)

n

∣∣∣∣∣
π

0

−
∫ π

0

sin (nt)
n

dt

)
=

2
n2π

((−1)n − 1) .

The case n = 0 yields a0 = 2
π

π2

2 = π. Thus, the Fourier series for x (t) is

π

2
− 4

π

{
cos (t)

1
+

cos (3t)
9

+
cos (5t)

25
+ · · ·

}
=

π

2
− 4

π

∞∑
n=1

cos ((2n − 1) t)
(2n − 1)2

.
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See Figure 6.5 for a graph of x (t) and partial Fourier sums with N = 3, 7, 11
which correspond to upper limits 2, 4 and 6 in the above series. �

Digital Signal Processing and Fourier Series

We are only going to examine signal sampling of finite length, and therefore
sampled function x (t) ∈ C1

PW [0, T ] of finite duration (who’s going to sample
a signal infinitely many times in the real world?). So let’s say the duration
interval of time (or space) t is the interval [0, T ]. As a matter of convenience
we can extend the definition of the signal over all t ∈ R and think of the
sampling function x (t) as defined over all t but periodic of period T . So
the function has frequency f = 1/T and angular frequency ω = 2π/T . We
restrict our sampling functions to the inner product space C1

PW [0, T ], so that
Theorem 6.20 applies.

First there is the matter of a filter in general:

Definition 6.19. Discrete Filter A discrete filter is a sequence of complex
numbers h = {hn}∞

n=−∞ .

We can associate a Fourier series with each discrete filter (N.B.: we make
no claims of convergence here):

Definition 6.20. DTFT If h = {hn}∞
n=−∞ is a discrete filter, then the dis-

crete time Fourier transform (DTFT) of h is the Fourier series X (h) (ζ) =∑∞
n=−∞ hneiζ , ζ ∈ R.

We are particularly interested in this type of filter:

Definition 6.21. FIR Filter The filter h = {hn}∞
n=−∞ is a finite impulse

response (FIR) filter if there exists a positive integer L such that h0 and hL

are nonzero and hn = 0 for n > L or n < 0. In this case we say h has length
L and express it in the form h = {hn}L

n=0.

Now suppose we are given an FIR filter h = {hn}L
n=0 and we sample the

signal x (t) in sampling periods Ts, i.e., at tn = nTs, yielding the discrete
signal xn = x (tn), n ∈ Z. Suppose we use the filter to transform the signal
via the difference equation formula as we did in Sections 2.8 and 4.4:

yn = h0xn + h1xn−1 + · · · + hLxn−L, n ∈ Z

Rather than use this formula globally let’s use the facts that x (t) is a Fourier
series by Theorem 6.20 and that the signal transformation is linear. Thus, it
is sufficient to examine the filter’s effect on a Fourier mode of x (t) with a
possible phase shift φ of the form xm (t) = cmeim(ωt+φ) which yields sampling
signals xm,n = cmeimω(nTs+φ), n ∈ Z. Thus, for fixed m and arbitrary n ∈ Z

we have

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_4
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ym,n = h0cmeimω(nTs+φ) + h1cmeimω((n−1)Ts+φ) + · · · + hLcmeimω((n−L)Ts+φ)

=
(
h0 · 1 + h1e

−imωTs + · · · + hLe−iLmωTs
)
cmeimω(nTs+φ)

= H (−mωTs) xm,n.

Here H (ζ) = h0 + h1e
iζ + · · · + hLeiLζ , ζ ∈ R is the DTFT of h.

It follows that |ym,n| ≤ |H (−mωTs)| |xm,n|, which is why the we define
Gain and Phase Rotation the gain or attenuation of this transformation

as G (ζ) = |H (ζ)| and phase rotation as Θ (ζ) = θ, where H (ζ) = |H (ζ)| eiθ.
So G (ζ) measures how the amplitude of this mode of the signal x (t) is changed
by the filter and Θ (ζ) measures how the argument of this mode is shifted.
Note that H (ζ) is periodic of period 2π and and if the filter h is real, then
|H (−ζ)| =

∣∣∣H (ζ)
∣∣∣ = |H (ζ)|.

Fig. 6.6: Gain function G (ζ) = (1 + cos ζ) /2, −4 ≤ ζ ≤ 4, for filter of Exam-
ple 2.71.

OK, now let’s take a closer look at an example in light of earlier discussion.
We will illustrate these ideas as applied to Example 2.71 of Section 2.8. That
example computed as output a weighted average of samples by using what we
can now describe as the FIR filter h =

{
1
4 , 1

2 , 1
4

}
.

Example 6.24. The function f (t) = cos (πt), −1 ≤ t ≤ 1 defines the exact
signal that we want to sample, but we actually sample this signal plus noise,
namely the function g (t) = cos (πt) + 1

5 sin (24πt) + 1
4 cos (30πt). Assume

that sampling is at the equally spaced points tk = −1 + 2
64k, k = 0, 1, . . . , 64,

yielding data points xk = g (tk). How effective is the length two FIR filter h ={
1
4 , 1

2 , 1
4

}
in removing noise? Compute the DTFT of the filter of Example 2.71

and use it to explain the behavior displayed in Figure 2.10 (page 170).

Solution. We saw from the graph of the exact data, noisy data and filtered
data in Figure 2.10 that, although it is somewhat crude, it appears to do a
decent job of filtering out the noise in the sampled signal g (t). Specialize the
general argument above to cmeimωt with xm,n = cmeimωnTs , so that T = 2,
ω = 2π/2 = π, Ts = 2/64 = 1/32 and ζ = mωTs = mπ/32. Use the fact that
cos ζ = 2 cos2

(
ζ
2

)
− 1 to obtain that the DTFT of this filter is

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
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H (ζ) =
1
4

+
1
2
eiζ +

1
4
ei2ζ =

(
1
2
(
1 + eiζ

))2

=
(

eiζ/2

(
e−iζ/2 + eiζ/2

2

))2

= eiζ cos2 (ζ/2)

=eiζ (1 + cos ζ)
2

.

If follows from this that the gain or attenuation of this transformation is
G (ζ) = |H (ζ)| = (1 + cos ζ) /2 and phase rotation as Θ (ζ) = ζ. See
Figure 6.6 for a plot of G (ζ). We use these functions to describe the effects
of this filter on our sampled data: One calculates that G (π/32) .= 0.9976,
G (24π/32) .= 0.1464, and G (30π/32) .= 0.0096. Thus, the amplitude of the
low frequency component of the signal generated by g (t) is not changed by
much, while the amplitudes of the high frequency components of this signal
are considerably damped. In addition, the phase rotation of Θ (π/32) .= 0.098
explains the slight forward shift of filtered low frequency values observed in
Figure 2.10. �

This discussion inspires a first attempt at a formal definition of lowpass
and highpass FIR filters:

Definition 6.22. The FIR filter h = {hk}L
k=0 with discrete time Fourier

transform H (ζ) is a lowpass filter if |H (0)| = 1 and |H (π)| = 0; h is a
highpass filter if |H (0)| = 0 and |H (π)| = 1.

The idea behind this definition is that a lowpass filter will not modify the
amplitude of sinusoidal components of low frequency (ζ near 0) modes by
much, whereas it will significantly dampen the amplitude of high frequency
(ζ near π) modes. Likewise, highpass filters tend to do the opposite. However,
things are a bit tricky here: High frequency modes don’t have to be near π. In
fact, they can be too high, e.g., near 2π, in which case they will not be damped
out since H (2π) = H (0) = 1. Thus, we’re confronted with an important
issue: How high is “too high”? There is a beautiful answer to this question,
known as the Nyquist-Shannon sampling theorem, that asserts roughly in our
situation that if a function x (t) contains no frequencies higher than F then
it can be completely determined by any sampling frequency fs > 2F . The

Nyquist Ratefrequency 2F is called the Nyquist sampling rate. If this
condition fails, then the corresponding signal will contain
imperfections such as aliasing, in which a high frequency mode is misinter-
preted as a lower frequency mode.

Example 6.25. Explain what the Nyquist-Shannon sampling theorem says
about Example 6.24.

Solution. The frequencies of the three modes in the noisy signal g (t) from
low to high are 1/2, 12 and 15. So we can take F = 15. On the other hand,
the sampling rate that we used had a sampling period of Ts = 1/32, hence

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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sampling frequency fs = 1/Ts = 32. Since 2F = 30 < 32 = fs, the sampling
rate is sufficient to recover the noisy signal, so we can be confident that the
source of errors in the filtered signal is not due to aliasing. �

Fig. 6.7: Graph of data from Example 6.26: Exact (—), noisy (—), filtered
(—) with Ts = 1 and filtered (—) with Ts = 1

3 .

Our last example is one in which the phenomenon of aliasing is an issue
that leads to a curious result.

Example 6.26. Repeat the calculations of Example 2.71 with exact signal
f (t) = cos

(
π
4 t
)
, 0 ≤ t ≤ 10, noisy signal g (t) = cos

(
π
4 t
) − 1

3 cos
(

7π
4 t
)
,

sampling at the equally spaced points tk = k, k = 0, 1, . . . , 10 and also at
sampling points tk = k

3 , k = 0, 1, . . . , 30. Interpret the results.

Solution. A graph of the exact data, noisy data and the two filtered
datasets is given in Figure 6.7. That the graph with with Ts = 1 is much
less accurate than that with Ts = 1

3 is no surprise. What is curious about
the graph of the coarser sampling Ts = 1 is that it is rather smooth and has
a shape similar to that of the exact signal if it were dampened and shifted
slightly to the right, while the finer sampling is more accurate but has the
oscillations one would expect from an imperfect attempt to filter out high
frequencies.

The reason for this curiosity becomes clear upon examination of the low
and high frequency curves in Figure 6.8. Notice that at the coarse sampling
points with Ts = 1, the graphs of f (t) = cos

(
π
4 t
)

and h (t) = cos
(

7π
4 t
)

intersect. Thus, they cannot be distinguished with this sampling, which is
exactly the aliasing phenomenon alluded to earlier. This explains the apparent
smoothness the filtered data of the coarser sampling exhibits. These results
are consistent with the Nyquist-Shannon theorem, since the noisy data has

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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maximum frequency F = 7
8 while the sampling frequency fs = 1

Ts
= 1 yields

fs < 7
4 = 2F . On the other hand, the sampling period of Ts = 1

3 yields a
sampling frequency of 3 > 7

4 = 2F , so the error in that filtered data is not
due to aliasing. �

Fig. 6.8: Graphs of f (t) = cos
(

π
4 t
)

(—) and h (t) = cos
(

7π
4 t
)

(—).

In addition to [10] another excellent source for further study of the con-
nections between Fourier analysis and digital filtering is the text [11] by C.
Gasquet and P. Witomski.

6.6 Exercises and Problems

Exercise 1. Compute the DTFT for the FIR filter h =
{

1
2 , 1

2

}
and confirm that

h is a lowpass filter.

Exercise 2. Compute the DTFT for the FIR filter h =
{− 1

2 , 1
2

}
and confirm

that h is a highpass filter.

Exercise 3. Compute the Fourier series for x (t) ∈ C1
PW [−π, π], where x (t) =

t2/π, −π ≤ t ≤ π and graph x (t) and the partial Fourier sums with N = 3, 6.

Exercise 4. Compute the Fourier series for x (t) ∈ C1
PW [0, 2π], where x (t) =

t3/6 − 1, 0 ≤ t < 2π, and x (2π) = −1 and graph results as in Exercise 3.

Exercise 5. Apply the filter of Exercise 1 to the sampling problem of Exam-
ple 6.24 and graph the results as in Figure 2.10. Is the filter effective?

Exercise 6. Apply the filter of Exercise 2 to the sampling problem of Exam-
ple 6.24 and graph the results as in Figure 2.11. Is the filter effective?

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Exercise 7. Apply the filter of Example 6.25 to the sampling problem of that
example with sampling rates of Ts = 15, 30, 45 and compute the infinity norm
of the vector of differences between exact and filtered noisy values in each
case.

Exercise 8. Apply the filter of Example 6.25 to the sampling problem of Exam-
ple 6.26 with sampling rates of Ts = 3/7, 8/7, 10/7 and compute the infinity
norm of the vector of differences between exact and filtered noisy values in
each case.

Problem 9. Verify Theorem 6.18.

*Problem 10. Deduce the form of the Fourier series of a real-valued function
x (t) ∈ C1

PW [0, T ] in equation (6.5) from the general form of equation (6.4).

Problem 11. Let x (t) ∈ CPW [0, T ] have Fourier series
∑∞

n=−∞ cneinωt. Use
Corollary 6.2 and Problem 18 of Section 6.3 to prove the following:

(Bessel’s inequality) For any integer N > 0,
∑N

n=−N |cn|2 ≤ 1
T

∫ T

0
|x (t)|2 dt.

Problem 12. Let x (t) ∈ C1
PW [0, T ] have Fourier series

∑∞
n=−∞ cneinωt. Use

Corollary 6.2, Problem 18 of Section 6.3 and Dirichlet’s theorem to prove the
following:

(Parseval’s equality)
∑∞

n=−∞ |cn|2 = 1
T

∫ T

0
|x (t)|2 dt.

6.7 *Projects and Reports

Project: Testing Least Squares Solvers
The object of this project is to test the quality of the solutions of three different
methods for solving least squares problems Ax = b using a technology tool:

1. Solution by solving the normal equations by Gaussian elimination.
2. Solution by reduced QR factorization obtained by Gram–Schmidt.
3. Solution by full QR factorization by Householder matrices.

Here is the test problem: suppose we want to approximate the curve f(x) =
esin(6x), 0 ≤ x ≤ 1, by a tenth-degree polynomial. The input data will be
the sampled values of f(x) at equally spaced nodes xk = kh, k = 0, 1, . . . , 20,
h = 0.05. This gives 21 equations f(xk) = c0 + c1xk + · · · + c10x

10
k for the 11

unknown coefficients ck, k = 0, 1, . . . , 20. The coefficient matrix that results
from this problem is called a Vandermonde matrix.

Procedure: First set up the system matrix A and right-hand-side vector
b. The built-in procedure for computing a QR factorization will very likely
be Householder matrices, which will take care of (3). You will need to check
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the documentation to verify this. The Gram–Schmidt method of finding QR
factorization may have to be programmed by you.

Once you have solved the system by these three methods, make out a
table that has the computed coefficients for each of the three methods. Then
make plots of the difference between the function f(x) and the computed
polynomial for each method. Relate these results to the condition numbers of
the matrices constructed. Discuss your results.

There are a number of good texts that discuss numerical methods for least
squares; see, e.g., references [8], [9], [14]. More advanced treatments can be
found in references [1] and [15]. Or you can read from the master himself in
[12] (Gauss’s original text conveniently translated from the Latin with a very
enlightening supplement by G. W. Stewart).

Report: Approximation Theory
Suppose you work for a manufacturer of calculators, and are involved in the
design of a new calculator. The problem is this: As one of the “features” of
this calculator, the designers decided that it would be nice to have a key that
calculated a transcendental function, namely, f(x) = sin(x). Your job is to
come up with an adequate way of calculating f(x), say with an error no worse
than 0.0001.

Polynomials are a natural idea for approximating functions. From a
designer’s point of view they are particularly attractive because they are so
easy to implement. Given the coefficients of a polynomial, it is easy to design a
very efficient and compact algorithm for calculating values of the polynomial.
Such an algorithm would fit nicely into a small ROM for the calculator, or
could even be microcoded into the chip.

Your task is to find a low-degree polynomial that approximates sin(x) to
within the specified accuracy on a suitable interval. Beyond that interval you
may use properties of the sin function to finish the job. For comparison, find
a Taylor polynomial of lowest degree for sin x that gives sufficient accuracy.
Next, use the projection problem idea to project the function sin x, which is
viewed as a member of a suitable function space with the standard inner prod-
uct, into the subspace Pn of polynomials functions on that interval of degree at
most n. Is it of lower degree than the best Taylor polynomial approximation?

Use a technology tool to do the computations and graphics. Then report
on your findings. Include graphs that will be helpful in interpreting your con-
clusions. Also, give suggestions on how to compute this polynomial efficiently.

Report: Fourier Analysis
In the first part of this report you will write a brief introduction to Fourier
analysis in which you exhibit formulas for the Fourier coefficients of a real-
valued function f(t) and explain the form and meaning of the projection
formula in this setting.

In the second part you will explore the quality of these approximations for
the following test functions. The functions are specified on the interval (−π, π),
given common values at the endpoints, and then each graph is replicated on
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adjacent intervals of length 2π, yielding periodic functions:

(1) h (t) =
t2

π
, (2) g(t) =

et

π
, (3) f (t) = t3/6 − 1.

Notice that the second and third functions are discontinuous periodic func-
tions.

For each test function you should compute explicit formulas for the Fourier
series of the function, if possible. Then prepare a graph that includes the test
function and at least two of its partial Fourier sums. You will need a technology
tool to carry out some of the calculations and the graphs. Discuss the quality
of the approximations and report on any conclusions that you can draw from
this data. In particular, note the curious behavior of these partial Fourier
sums near a discontinuity. There is a name for this phenomenon, the “Gibbs
phenomenon”. Research this topic and confirm it with your graphs. Finally,
consider adding a few comments about the curious connection between Fourier
series and the epicycles of Ptolomy as a cultural footnote to your report.



Symbol Meaning Reference
∅ Empty set Page 12
∈ Member symbol Page 12
⊆ Subset symbol Page 12
⊂ Proper subset symbol Page 12
∩ Intersection symbol Page 12
∪ Union symbol Page 12
⊗ Tensor symbol Page 161
⊕ Direct sum symbol Page 234
≈ Approximate equality sign Page 92−−→
PQ Displacement vector Page 183
| z | Absolute value of complex z Page 15
| A | determinant of matrix A Page 141
||u || Norm of vector u Page 278
||u ||p p-norm of vector u Page 392
u · v Standard inner product Page 282
〈u,v〉 Inner product Page 399
Acof Cofactor matrix of A Page 149
adj A Adjoint of matrix A Page 149
A∗ Conjugate (Hermitian) transpose of matrix A Page 107
AT Transpose of matrix A Page 107
C(A) Column space of matrix A Page 220
cond(A) Condition number of matrix A Page 426
C[a, b] Function space Page 187
C Complex numbers a + bi Page 14
Cn Standard complex vector space Page 185
compvu Component Page 291
z Complex conjugate of z Page 16
δij Kronecker delta Page 75
dim V Dimension of space V Page 232
det A Determinant of A Page 141
domain(T ) Domain of operator T Page 226
diag{λ1, λ2, . . . , λn} Diagonal matrix with λ1, λ2, . . . , λn along diagonal Page 120
Eij Elementary operation switch ith and jth rows Page 29
Ei(c) Elementary operation multiply ith row by c Page 29
Eij(d) Elementary operation add d times jth row to ith row Page 29

Symbols
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Eλ(A) Eigenspace Page 334
Hv Householder matrix Page 306
I, In Identity matrix, n × n identity Page 75
idV Identity function for V Page 192
�(z) Imaginary part of z Page 14
ker(T ) Kernel of operator T Page 225
Mij(A) Minor of A Page 143
M(A) Matrix of minors of A Page 149
max{a1, a2, . . . , am} Maximum value Page 45
min{a1, a2, . . . , am} Minimum value Page 45
N (A) Null space of matrix A Page 221
N Natural numbers 1, 2, . . . Page 13
nullA Nullity of matrix A Page 44
P Space of polynomials of any degree Page 200
Pn Space of polynomials of degree ≤ n Page 200
projvu Projection vector along a vector Page 291
projV u Projection vector into subspace Page 412
Q Rational numbers a/b Page 13
�(z) Real part of z Page 14
R(A) Row space of matrix A Page 221
R(θ) Rotation matrix Page 215
R Real numbers Page 14
Rn Standard real vector space Page 184
Rm,n Space of m × n real matrices Page 187
TA Matrix operator associated with A Page 83
range(T ) Range of operator T Page 226
rankA Rank of matrix A Page 44
ρ(A) Spectral radius of A Page 354
span{S} Span of vectors in S Page 201
sup{E} Supremum of set E of reals Page 424
target(T ) Target of operator T Page 226
[T ]B,C Matrix of operator T Page 249
V ⊥ Orthogonal complement of V Page 418
Z Integers 0, ±1, ±2, . . . Page 13



Solutions to Selected Exercises

Section 1.1, Page 10

1 (a) x = −1, y = 1 (b) x = 2, y = −2,
z = 1 (c) x = 2, y = 1

3 (a) linear, x − y − z = −2, 3x − y = 4
(b) nonlinear (c) linear, x + 4y = 0,
2x − y = 0, x + y = 2

5 (a) m = 3, n = 3, a11 = 1, a12 = −2,
a13 = 1, b1 = 2, a21 = 0, a22 = 1,
a23 = 0, b2 = 1, a31 = −1, a32 = 0,
a33 = 1, b3 = 1 (b) m = 2, n = 2,
a11 = 1, a12 = −3, b1 = 1, a21 = 0,
a22 = 1, b2 = 5

7 47
25

y1 − y2 = 0, −y1 + 47
25

y2 − y3 = 0,
−y2 + 47

25
y3 − y4 = 0, −y3 + 47

25
y4 = 50

9 p1 = 0.2p1+0.1p2+0.4p3, p2 = 0.3p1+
0.3p2 + 0.2p3, p3 = 0.1p1 + 0.2p2 + 0.1p3

11 x1 = x2 = x3 = x4 = 0

13 One solution is x1 = 1, 2x2 = −2,
3x1 = 3.

18 Counting inflow as positive, the equa-
tion for vertex v1 is x1 − x4 − x5 = 0.

Section 1.2, Page 22

1 (a) {0, 1} (b) {x | x ∈ Z and x > 1}
(c) {x | x ∈ Z and x ≤ −1} (d)
{0, 1, 2, . . .} (e) A

3 (a) e3πi/2 (b)
√

2eπi/4 (c) 2e2πi/3 (d)
E0ior 1 (e) 2

√
2e7πi/4 (f) 2eπi/2 (g) πe0i

5 (a) 1 + 8i (b) 10 + 10i (c) 3
5

+ 4
5
i (d)

− 3
5

− 4
5
i (e) 42 + 7i

7 (a) 6
5

− 8
5
i, (b) ±√

2 ± i
√

2, (c) z = 1
(d) z = −1, ±i

9 (a) 1
2

+ 1
2
i = 1

2

√
2eπi/4 (b) −1 − i

√
3 =

2e4πi/3 (c) −1+ i
√

3 = 2e2πi/3 (d) − 1
2
i =

1
2
e3πi/2 (e) ieπ/4 = eπ/4eπi/2

11 (a) z = −1
2

±
√

11
2

i, (b) z = ±
√

3
2

+ 1
2
i

(c) z = 1 ± (
−
√

2
√

2+2

2
−

√
2
√

2−2

2
i) (d)

±2i

13 (a) Circle of radius 2, center at ori-
gin (b) � (z) = 0, the imaginary axis
(c) Interior of circle of radius 1, center
at z = 2.

15 2 + 4i+1 − 3i = 2−4i+1+3i = 3− i
and (2 + 4i) + (1 − 3i) = 3 + i = 3 − i

17 z = 1 ± i, (z − (1 + i)) (z − (1 − i)) =
z2 − 2z + 2

c



448 Solutions to Selected Exercises

19 (a) g(x, y) = (x − 2)2 − y2, h(x, y) =
2(x−2)y, (b) g(x, y) = x3−3xy2−2x+1,
h(x, y) = 3x2y − y3 − 2y

23 Use |z|2 = zz̄ and z1z2 = z1 z2.

26 Write p (w) = a0+a1w+· · ·+anwn =
0 and conjugate both sides.

Section 1.3, Page 34

1 (a) Size 2×4, a11 = a14 = a23 = a24 =
1, a12 = −1, a21 = −2, a13 = a22 = 2
(b) Size 3 × 2, a11 = 0, a12 = 1, a21 = 2,
a22 = −1, a31 = 0, a32 = 2 (c) Size
2 × 1 , a11 = −2, a21 = 3 (d) Size 1 × 1,
a11 = 1 + i

3 (a) 2×3 augmented matrix
[

2 3 7
1 2 −2

]
,

x = 20, y = −11 (b) 3 × 4 augmented

matrix

⎡
⎣ 3 6 −1 −4

−2 −4 1 3
0 0 1 1

⎤
⎦, x1 = −1−2x2,

x2 free, x3 = 1, (c) 3 × 3 augmented

matrix

⎡
⎣ 1 1 −2

5 2 5
1 2 −7

⎤
⎦, x1 = 3, x2 = −5

5 (a) x1 = 1 − x2, x3 = −1, x2 free
(b) x1 = −1 − 2x2, x3 = −2, x4 = 3,
x2 free (c) x1 = 3 − 2x3, x2 = −1 − x3,
x3 free (d) x1 = 1 + 2

3
i, x2 = 1 − 1

3
i

(e) x1 = 7
11

x4, x2 = −2
11

x4, x3 = 6
11

x4,
x4 free

7 (a) x1 = 4, x3 = −2, x2 free (b) x1 = 1,
x2 = 2, x3 = 2 (c) Inconsistent system
(d) x1 = 1, x2 and x3 free

9 Augmented matrix is

⎡
⎢⎢⎣

1 −1 −1 0 0

−1 1 −1 0 0

−1 0 1 −1 0

0 0 −1 1 0

⎤
⎥⎥⎦

with RREF

⎡
⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤
⎥⎥⎦. Hence the only

solution is the trivial solution, which
ranks all pages as equal in importance
(not likely a useful ranking).

11 (a) x1 = 2
3
b1 + 1

3
b2, x2 = −1

3
b1 + 1

3
b2

(b) Inconsistent if b2 �= 2b1, otherwise

solution is x1 = b1 + x2 and x2 arbi-
trary. (c) x1 = 1

4
(2b1 + b2) (1 − i), x2 =

1
4

(ib2 − 2b1) (1 − i)

13 Augmented matrix with three right-

hand sides reduces to
[

1 0 2 −1 1
0 1 1 −1 −1

]

given solutions (a) x1 = 2, x2 = 1 (b)
x1 = −1, x2 = −1 (c) x1 = 1, x2 = −1.

15 The only solution is the trivial solu-
tion p1 = 0, p2 = 0, and p3 = 0, which is
not meaningful since entries are not pos-
itive.

17 (a) x = 0, y = 0 or divide by xy
and get y = −8/5, x = 4/7 (b) Either
two of x, y, z are zero and the other arbi-
trary or all are nonzero, divide by xyz
and obtain x = −2z, y = z, and z is
arbitrary nonzero.

19 With polynomial p (x) = x1 + x2x +

x3x
2 coefficient matrix is

⎡
⎣ 1 0 0

1 1 1
1 2 4

⎤
⎦, aug-

mented matrix is

⎡
⎣ 1 0 0 2

1 1 1 2
1 2 4 4

⎤
⎦, solution

polynomial is p (x) = 2 − x + x2.

21 Suppose not and consider such a solu-
tion (x, y, z, w). At least one variable is
positive and largest. Now examine the
equation corresponding to that variable.

23 (a) Equation for x2 = 1/2 is a + b ·
1/2 + c · (1/2)2 = e1/2.

26 Let xi be the importance of location
i, i = 1, 2, 3, 4, 5 and the result of solving
the system is that x5 is free, so take it
to be 1 and deduce that x1 = 2/3 and
x2 = x3 = x4 = 4/3.
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Section 1.4, Page 48

1 (a), (e), (f), and (h) are in reduced row
echelon form, (b) and (d) are in reduced
row form. Leading entries (a) (1, 2)
(b) (1, 1), (2, 2), (3, 4) (c) (1, 2), (2, 1)
(d) (1, 1), (2, 2) (e) (1, 1) (f) (1, 1), (2, 2),
(3, 3) (g) (1, 1), (3, 3) (h) (1, 1).

3 (a) 3 (b) 0 (c) 3, (d) 1 (e) 1

5 (a) E21 (−1), E31 (−2), E32 (−1),

E2

(
1
4

)
, E12 (1),

⎡
⎣ 1 0 5

2

0 1 1
2

0 0 0

⎤
⎦, rank 2, nul-

lity 1 (b) E21 (1), E23 (−15), E13 (−9),

E12 (−1), E1

(
1
3

)
,

⎡
⎣ 1 0 0 17

3

0 1 0 −33
0 0 1 2

⎤
⎦, rank

3, nullity 1 (c) E12, E1

(
1
2

)
,

[
1 0 0 1
0 1 0 1

]
,

rank 2, nullity 2 (d) E1

(
1
2

)
, E21 (−4),

E31 (−2), E32 (1), E12 (−2),

⎡
⎣ 1 0 3

0 1 −1
0 0 0

⎤
⎦,

rank 2, nullity 1 (e) E12, E21 (−2),

E2

(
1
9

)
, E12 (2)

[
1 1 0 22

9

0 0 1 2
9

]
, rank 2,

nullity 2 (f) E12, E21 (−2), E31 (−1),
E23, E2 (−1), E32 (3), E3

(−1
4

)
, E23 (1),

E13 (−1), E12 (−2),

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦, rank 3,

nullity 0

7 Systems are not equivalent since
(b) has trivial solution, (a) does not.
(a) rank

(
Ã

)
= 2, rank (A) = 2,

{
(−1 + x3 + x4, 3 − 2x2, x3, x4) | x3,

x4 ∈ R
}

(b) rank
(
Ã

)
= 3, rank (A) = 3,

{(−2x2, x2, 0, 0) | x2 ∈ R}

9 0 ≤ rank (A) < 3

11 (a) Infinitely many solutions for all
c (b) Inconsistent for all c (c) Inconsis-
tent if c = −2, infinitely many solutions
if c = 1, unique solution otherwise.

13 Rank of augmented matrix equals
rank of coefficient matrix independently
of right-hand side, so system is always
consistent. Solution is x1 = −a+2b−c+
4x4, x2 = −b+a+ 1

2
c−2x4, x3 = 1

2
c−x4,

x4 free.

15 (a) 3 (b) solution set (c) E23 (−5)
(d) 0 or 1

17 Two elementary row ops yield

reduced row form

⎡
⎣ 1 2 1 0

0 −3 −3 0
0 0 0 b + a

3

⎤
⎦. If

b = −a
3
, there are infinitely many solu-

tions, otherwise there are no solutions.

19 (a) false, 0x = 1 (b) true, has triv-
ial solution (c) false, could be inconsis-
tent (d) false, [1, 0] and [2, 0] (e) false,[

1
2

]
x =

[
0
0

]
.

22 Consider what you need to do to go
from reduced row form to reduced row
echelon form.

Section 1.5, Page 59

1 Flop count is 6.

3 Answer will depend on your calcula-
tor. Octave and ALAMA calculator yield
4.7740e−15, which is close to, but not
equal to the answer 0.

6 Work of jth stage: 2 + 2(n − j). Add
them up.

8 Implicit Euler as linear equa-
tion: −σyi−1,j+1 + (1 + 2σ) yi,j+1 −
σyi+1,j+1 = yi,j + kf (xi, tj+1).
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Section 2.1, Page 70

1 (a)
[ −2 1 −1

−1 1 1

]
(b)

[
4

−1

]
(c)

[
2 8
6 3

]

(d) not possible (e)

⎡
⎣ 7 4 −1

10 4 4
2 4 0

⎤
⎦

(f)

⎡
⎣x − 2 + 4y

3x − 2 + y
−1

⎤
⎦

3 (a) not possible (b)
[ −1 −3 −2

−4 −1 4

]

(c)
[

0 −1 −1
−1 0 2

]
(d) not possible

(e)
[

5 8 3
13 5 −6

]

5 (a) x

[
1
2

]
+ y

[
2
0

]
+ z

[
0

−1

]

(b) x

[
1
2

]
+y

[ −1
3

]
(c) x

⎡
⎣ 3

0
1

⎤
⎦+y

⎡
⎣ 2

0
1

⎤
⎦+

z

⎡
⎣ 0

−1
5

⎤
⎦ (d) x

⎡
⎣ 1

4
0

⎤
⎦+y

⎡
⎣ −3

0
2

⎤
⎦+z

⎡
⎣ 0

1
−1

⎤
⎦

7 a = −2
3

, b = 2
3
, c = −4

3

9
[

a b
c d

]
= a

[
1 0
0 0

]
+b

[
0 1
0 0

]
+c

[
0 0
1 0

]
+

d

[
0 0
0 1

]

11 A + (B + C) =

[ −1 2 −3
5 1 5

]
=

(A + B)+C, A+B =

[
0 2 −2
4 2 5

]
= B+A

13 R =

[
1 −1 0 −3 4
0 0 1 1 2

]

18 Solve for A in terms of B with the
first equation and deduce B = 1

4
I.

Section 2.2, Page 80

1 (a) [11 + 3i], (b)
[

6 8
3 4

]
, (c) impossi-

ble (d) impossible (e)
[

15 + 3i 20 + 4i
−3 −4

]

(f) impossible (g) [10] (h) impossible

3 (a)

⎡
⎣ 1 −2 4 0

0 1 −1 0
−1 0 0 4

⎤
⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎣ 3

2
1

⎤
⎦

(b)

⎡
⎣ 1 −1 −3

2 2 4
−1 0 1

⎤
⎦

⎡
⎣ x

y
z

⎤
⎦ =

⎡
⎣ 3

10
3

⎤
⎦

(c)

⎡
⎣ 1 −3

0 2
−1 3

⎤
⎦ [

x
y

]
=

⎡
⎣ −1

0
0

⎤
⎦

5

⎡
⎣ 10 −1 1

2 −4 −2
4 2 −2

⎤
⎦

⎡
⎣ x

y
z

⎤
⎦ =

⎡
⎣ 3

1
2

⎤
⎦

7 (a)

⎡
⎣ 1 0 1

1 1 3
0 1 1

⎤
⎦

⎡
⎣ 2

−4
−3

⎤
⎦ (b)

⎡
⎣ 1 0 1

3 1 1
1 1 0

⎤
⎦

⎡
⎣ 1

−1
2i

⎤
⎦

(c)

⎡
⎣ 1 0 1

1 1 3
0 1 1

⎤
⎦

⎡
⎣ x1

−3x2

x3

⎤
⎦ or

⎡
⎣ 1 0 1

1 −3 3
0 −3 1

⎤
⎦

⎡
⎣ x1

x2

x3

⎤
⎦

9 f (A) =

[
3 4
2 5

]
, g (A) =

[
1 −2

−1 0

]
,

h (A) =

[ −1 −6
−3 −4

]

11 A2 =

[ −1 −8
4 7

]
, BA =

[
6 8

]
, AC =[ −9

16

]
, AD =

[
3 −1 −2

−2 9 3

]
, BC = [22],

CB =

[
2 4

10 20

]
, BD =

[ −2 14 4
]

13 (b) is not nilpotent, the others are.
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15 A =

[
0 1
0 0

]
and B =

[
0 0
1 0

]
are nilpo-

tent, A + B =

[
0 1
1 0

]
is not nilpotent.

17 uv =

⎡
⎣

−1 1 1
0 0 0

−2 2 2

⎤
⎦

−−−−−−−→
E1(−1)
E31(−2)

⎡
⎣

1 −1 −1
0 0 0
0 0 0

⎤
⎦,

so rankuv = 1

19 B must be a 2 × 3 matrix by size

check, and third column is
[

3
−3

]

21 A (BC) =

[
4 8
1 2

]
= (AB) C,

c (AB) =

[
0 16
0 4

]
= (cA) B = A (cB)

26 Let A =

[
a b
c d

]
and try simple B like[

1 0
0 0

]
.

30 Let Am×n = [aij ] and Bm×n = [bij ].

If b = [1, 0, . . . , 0]T ,

⎡
⎢⎣

a11 0 · · · 0
...

...
am1 0 · · · 0

⎤
⎥⎦ =

⎡
⎢⎣

b11 0 · · · 0
...

...
bm1 0 · · · 0

⎤
⎥⎦ so a11 = b11, etc. By simi-

lar computations, you can show that for
each i, j, aij = bij .

Section 2.3, Page 99

1 x-axis, y-axis, and points (±1, ±1)
map to (a) x-axis, −y-axis, (±1, ∓1)
(b) y = 4

3
x, y = − 3

4
x, ± (

7
5
, 1

5

)
,

± (−1
5

, 7
5

)
(c) −y-axis, −x-axis, ± (1, 1),

± (1, −1) (d) x-axis, y = −x, ± (2, −1),
± (0, 1)

3 TA: (a) A =

⎡
⎣ 1 1

2 0
4 −1

⎤
⎦ (b) nonlinear

(c) A =

[
0 0 2

−1 0 0

]
(d) A =

⎡
⎣ −1 1 0

0 0 1
0 1 1

⎤
⎦

5 TA, A =

[ √
3 −2

1 2
√

3

]
, reverse TB ,

B =

[ √
3 −1

2 2
√

3

]
.

7 S =

[
2 0
0 3

]
and H =

[
1 2
0 1

]
.

9 (d) is the only candidate and the only
fixed point is (0, 0, 0).

11 (a), (b) and (c) are Markov. First
and second states are (a) (0.2, 0.2, 0.6),
(0.08, 0.68, 0.24) (b) 1

2
(0, 1, 1), 1

2
(1, 1, 0)

(c) (0.4, 0.3, 0.4), (0.26, 0.08, 0.66)
(d) (0, 0.25, 0.25), (0.225, 0, 0.15)

13 (a) The first column says that 50% of
the immature become mature and 50%
of the immature remain immature in one
time period. The second column says
that none of the mature survive, but each
mature individual produces one imma-
ture in one time period. (b) The total
populations after 0, 3, 6, 9, 18 time peri-
ods is a constant 130, and populations
tend to approximately (86.667, 43.333).

15 Powers of vertices 1–5 are 2, 4,
3, 5, 3, respectively. Graph is dom-
inance directed, adjacency matrix is⎡
⎢⎢⎢⎢⎣

0 0 0 0 1
1 0 0 0 1
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦ and picture:
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17 (a)

⎡
⎣ yk+1

yk+2

yk+3

⎤
⎦ =

⎡
⎣ 0 1 0

0 0 1
− 5

2
2 − 3

2

⎤
⎦

⎡
⎣ yk

yk+1

yk+2

⎤
⎦

(b)
[

yk+1

yk+2

]
=

[
0 1

−2 1

] [
yk

yk+1

]
+

[
0
1

]

19 (a)
[

yk+1

yk+2

]
=

[
0 1
1 1

] [
yk

yk+1

]

(b) The first ten terms are
0, 1, 1, 2, 3, 5, 8, 13, 21, 34.

21 Points on a non-vertical line through
the origin have the form (x, mx).

23 Use Exercise 30 of Section 2 and the
definition of matrix operator.

26 The jth column of αA + (1 − α)B is
the sum of the jth column of αA, which
sums to α and the jth column of (1−α)B,
which sums to 1 − α.

Section 2.4, Page 114

1 (a)

⎡
⎣ 1 0 0

0 1 3
0 0 1

⎤
⎦ (b)

⎡
⎣ 0 0 1

0 1 0
1 0 0

⎤
⎦ (c)

⎡
⎣ 1 0 0

0 1 0
0 0 2

⎤
⎦

(d)

⎡
⎣ 1 0 0

0 1 0
0 −1 1

⎤
⎦(e) E12 (3) (f) E31 (−a)

(g) E2 (3) (h) E31 (2)

3 (a) add 3 times third row to second
(b) switch first and third rows (c) mul-
tiply third row by 2 (d) add −1 times
second row to third (e) add 3 times sec-
ond row to first (f) add −a times first
row to third (g) multiply second row by
3 (h) add 2 times first row to third

5 (a) I2 = E12(−2)E21(−1)

[
1 2
1 3

]
(b)⎡

⎣ 1 0 −1
0 1 1
0 0 0

⎤
⎦ = E12 (−1) E32 (−2)

⎡
⎣ 1 1 0

0 1 1
0 2 2

⎤
⎦

(c)
[

1 1 0

0 0 1

]
= E2

(−1
2

)
E21 (−1)

[
1 1 0

1 1 −2

]

(d)
[

1 0 −2
0 1 1+i

2

]
= E2

(
1

1+i

)
E12

[
0 1 + i i
1 0 −2

]

7 (a) strictly upper triangular, tridiago-
nal (b) upper triangular (c) upper and
lower triangular, scalar (d) upper and
lower triangular, diagonal (e) lower tri-
angular, tridiagonal.

9 A =

[
0 2I3

C D

]
with C = [4, 1],

D = [2, 1, 3], B =

[
0 −I2

E F

]
with

E =

⎡
⎣ 0 0

2 2
1 1

⎤
⎦ and F =

⎡
⎣ 1 2

−1 1
3 2

⎤
⎦,

AB =

[
0 + 2I3E 0 (−I2) + 2I3F
C 0 + DE C (−I2) + DF

]
=

[
2E 2F
DE −C + DF

]
=

⎡
⎢⎢⎣

0 0 2 4
4 4 −2 2
2 2 6 4
5 5 6 10

⎤
⎥⎥⎦

11
[
1 0 2

]T [
1 2 1

]
13 (a) (1, −3, 2), (1, −3, 2), not sym-

metric or Hermitian (b)
[

2 0 1
1 3 −4

]
,[

2 0 1
1 3 −4

]
, not symmetric or Hermi-

tian (c)
[

1 −i
i 2

]
,
[

1 i
−i 2

]
, Hermitian, not

symmetric (d)

⎡
⎣ 1 1 3

1 0 0
3 0 2

⎤
⎦,

⎡
⎣ 1 1 3

1 0 0
3 0 2

⎤
⎦, sym-

metric and Hermitian

15 (a) true (b) false (c) false (d) true
(e) false

17 Q(x, y, z) = xT Ax with x = [x, y, z]T

and A =

⎡
⎣ 2 2 −6

0 1 4
0 0 1

⎤
⎦

19 A∗A =

[
4 −2 + 4i

−2 − 4i 14

]
=

(A∗A)∗ and AA∗ =

[
9 3 − 6i

3 + 6i 9

]
=

(AA∗)∗
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21 Since A is m×p and each bj is p×1,
Abj is defined and this blocking is cor-
rect for multiplication. In particular, we
have that

AB =

[
1 2 0
3 0 4

] ⎡
⎣ 2 1

0 3
1 −4

⎤
⎦ =

⎡
⎣

[
1 2 0
3 0 4

] ⎡
⎣ 2

0
1

⎤
⎦ ,

[
1 2 0
3 0 4

] ⎡
⎣ 1

3
−4

⎤
⎦

⎤
⎦ =

[[
2

10

]
,

[
7

−13

]]
=

[
2 7

10 −13

]
.

24 Since A and C are square, you can
confirm that block multiplication applies
and use it to square M .

29 Block Q into its columns and com-
pute the product PQ.

32 Compare (i, j)th entries of each side.

35 Substitute the expressions for A into
the right-hand sides and simplify them.

36 In terms of the edge set E =
{((v1, w1), (v2, w2), . . . , (vm, wm))} of
the digraph G, the edge set of its reverse
digraph H is

F = {((w1, v1), (w2, v2), . . . , (wm, vm))}

which means that whenever the edge
(vk, wk) contributes 1 to the (i, j)th
entry of the adjacency matrix A of G, the
edge (wk, vk) contributes 1 to the (j, i)th
entry of the adjacency matrix B of H.
Hence B = AT .

Section 2.5, Page 136

1 (a)

⎡
⎣

1
2

1
2

− 1
2

0 1
2

0
1
2

1
2

1
2

⎤
⎦ (b)

[
1 −i

4

0 1
4

]
(c) does

not exist (DNE) (d)

⎡
⎢⎢⎣

1
2

− 1
2

− 1
2

1
2

0 1 1 −1
0 0 1

2
0

0 0 0 1

⎤
⎥⎥⎦

(e)
[

cos θ sin θ
− sin θ cos θ

]

3 (a)
[

2 3
1 2

]
,

[
2 −3

−1 2

]
,

[
20
−11

]

(b)

⎡
⎣ 3 6 −1

−2 1 1
0 0 1

⎤
⎦, 1

15

⎡
⎣ 1 −6 7

2 3 −1
0 0 15

⎤
⎦,

⎡
⎣ −1

0
1

⎤
⎦

(c)
[

1 1
5 2

]
, 1

3

[ −2 1
5 −1

]
,
[

3
−5

]

5 (a) E21 (−3) (b) E2(−1/2)
(c) E21 (−1) E13 (d) E12 (1) E23 (1)
(e) E2

(
1
3

)
E1 (−1) E21 (i)

7

⎡
⎣ 1 −3 −3 1

0 0 −6 −4
0 −1 −5 −3

⎤
⎦

9 (a) No two-sided inverse, so no right
or left inverse, (b) no left or two-sided

inverse,

⎡
⎣ 0 1

2

1 − 1
2

0 0

⎤
⎦ is a right inverse, (c)

no right or two-sided inverse, [1, 0, 0] is a
left inverse.

11 Both sides give 1
4

⎡
⎣ 2 1 −2

2 −1 2
−2 1 2

⎤
⎦.

13 Both sides give 1
12

⎡
⎣ 18 12 −9

0 2 −1
−6 0 3

⎤
⎦.

15 (a) any k,
[ −1 −k

0 1

]

(b) k �= 1, 1
k−1

⎡
⎣ −1 0 1

−k k − 1 1
k 0 −1

⎤
⎦

(c) k �= 0,

⎡
⎢⎢⎣

1 0 0 −1
k

0 −1 0 0
0 0 −1

6
0

0 0 0 1
k

⎤
⎥⎥⎦
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17 Let A =

[
1 0
0 1

]
, B =

[ −1 0
0 −1

]
, so

both invertible, but A + B =

[
0 0
0 0

]
, not

invertible.

19 (a) N =

⎡
⎣ 0 1 −2

0 0 −1
0 0 0

⎤
⎦, I + N + N2 +

N3 =

⎡
⎣ 1 1 −3

0 1 −1
0 0 1

⎤
⎦ (b) N =

⎡
⎣ 0 0 0

0 0 0
−1 0 0

⎤
⎦,

I + N =

⎡
⎣ 1 0 0

0 1 0
−1 0 1

⎤
⎦

21 Solution vector is x =
(95, 133, 189, 75, 123, 123) /738 exactly,
x= (0.129, 0.180, 0.256, 0.102, 0.167, 0.167)
approximately.

23 Surfing matrix for this digraph is⎡
⎢⎢⎢⎢⎣

0 1
2

0 0 0
0 0 1 1

2
0

0 0 0 1
2

0
0 0 0 0 1
1 1

2
0 0 0

⎤
⎥⎥⎥⎥⎦ .

25 x = (x, y), x(9) ≈
[

1.00001
−0.99999

]
,

F
(
x(9)

)
≈ 10−6

[ −1.3422
2.0226

]
, F (x) =[

x2 + sin (πxy) − 1
x + y2 + ex+y − 3

]
, JF (x) =[

2x + cos (πxy) , πy cos (πxy) πx
1 + ex+y, 2y + ex+y

]

27 The quadratic function f (x, y) =
x2 + y results in the second equation of
the example being 1 = 0, so f (x, y) has
no critical points.

29 Stationary states are x =
1
29

(8, 8, 9, 4, 0, 0) and x = 1
2

(0, 0, 0, 0, 1, 1).

31 Move constant term to right-hand
side and factor A on left.

34 Multiplication by elementary matri-
ces does not change rank.

39 Assume M−1 has the same form as
M and solve for the blocks in M using
MM−1 = I.

Section 2.6, Page 156

1 (a) A11 = −1, A12 = −2, A21 = −2,
A22 = 1 (b) A11 = 1, A12 = 0, A21 = −3,
A22 = 1 (c) A22 = 4, all others are 0
(d)A11 = 1, A12 = 0, A21 = −1 + i,
A22 = 1

3 All except (c) are invertible. (a) 3, (b)
1 + i, (c) 0, (d) −70, (e) 2i

5 Determinants of A and AT are (a) −5
(b) 5 (c) 1 (d) 1

7 (a) a �= 0 and b �= 1(b) c �= 1 (c) any θ

9 (a)

⎡
⎣ −2 −2 2

4 4 −4
−3 −3 3

⎤
⎦, 03,3 (b)

⎡
⎣ −1 0 −3

0 −4 0
−1 0 1

⎤
⎦, −4I3 (c)

[
2 −3
1 1

]
, 5I2

(d) 04,4, 04,4

11 (a)
[

4 −1
−3 1

]
(b)

⎡
⎣ 1 0 0

− 1
2

1
2

− 1
2

−1 0 1

⎤
⎦

(c)

⎡
⎣ −1 −4 −2

0 −1 −1
1 1 0

⎤
⎦ (d)

[ −1 i
−2i −1

]

13 (a) x = 5, y = 1 (b) x1 = 1
4

(b1 + b2),
x2 = 1

2
(b1 − b2) (c) x1 = −7

6
, x2 = 5

3
,

x3 = 11
2

15 (a) det M = det A · det D =∣∣∣∣∣∣
−1 1 1

0 1 2
3 0 2

∣∣∣∣∣∣
∣∣∣∣ 1 1 + i
1 − i −1

∣∣∣∣ = 1 · (−1 − 2) =

−3.
(b) det M = det A · det D =∣∣∣∣∣∣

1 0 0
0 2 0
1 0 3

∣∣∣∣∣∣

∣∣∣∣∣∣
0 0 2
1 7 0
3 2 −2

∣∣∣∣∣∣ = 6 ·2 ·(2−21) = −228.
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20 Proceed by induction on n. Use ele-
mentary row, then column operations to
clear out the first column, then the first
row of Vn to reduce the problem to one
of a Vandermonde matrix of size n−1 by
factoring common terms out of rows.

22 Take determinants of both sides of
the identity AA−1 = I.

24 Factor a term of −2 out of each row.
What remains?

26 Use the fact that
[

A 0
C D

]T

=[
AT CT

0 DT

]
and part (1) of Theorem 2.10

28 Write Jn as a product of row
exchanges to get J2

n = In and deduce
from J2

n = In that (det Jn)2 = 1.

Section 2.7, Page 165

1

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0 0
1 0 0 0 0 0
4 −2 4 −2 2 −1
2 0 2 0 1 0
2 −1 0 0 2 −1
1 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 0 −1 0 0
4 4 2 −2 −2 −1
2 0 2 −1 0 −1
1 0 0 0 0 0
2 2 1 0 0 0
1 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and 1
2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 2 0 0 0 0
−2 4 0 0 0 0

0 −1 0 1 0 −1
1 −2 −1 2 1 −2
0 −2 0 0 0 2
2 −4 0 0 −2 4

⎤
⎥⎥⎥⎥⎥⎥⎦

for (a),

(b), (c), with (d) same as (c)

3

⎡
⎢⎢⎢⎢⎢⎢⎣

3 0 0 1 0 0
2 4 1 0 1 0
1 0 3 0 0 1

−1 0 0 1 0 0
0 −1 0 2 2 1
0 0 −1 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x11

x21

x31

x12

x22

x32

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

2
1
1

−1
0
3

⎤
⎥⎥⎥⎥⎥⎥⎦

5 For (1) note that (A + B) ⊗ C has
(aij + bij) C as its (i, j)th block. For (4)
note that (A ⊗ B)T has ajiB

T as its
(i, j)th block.

7 If B is singular, then there is a
nonzero vector x such that Bx = 0
by Theorem 2.6. Let 1m be a vec-
tor of m ones and form the product
(A ⊗ B) (1m ⊗ x) = A1m⊗Bx = A1m⊗
0 = 0.

10 For matrices M, N , block arith-
metic gives MN = [Mn1, . . . , Mnn].
Use this to show that vec (MN) =
(I ⊗ M) vec (N). Also, Mnj = n1jm1 +
· · · + npjmp. Use this to show that
vec (MN) =

(
NT ⊗ I

)
vec (M). Then

apply these to AXB = A (XB).

Section 2.8, Page 176

1 Calculate LU to obtain

⎡
⎣ 2 −1 1

2 3 −2
4 2 −2

⎤
⎦.

3 (a) x = (1, −2, 2) (b) x = 1
4

(3, −6, −4)
(c) x = 1

4
(3, −2, −4) (d) x = 1

8
(3, 6, 8)

5 L =

⎡
⎣ 1 0 0

−2 1 0
1 2 1

⎤
⎦ and U =

⎡
⎣ 2 1 0

0 1 −1
0 0 −1

⎤
⎦.

7 Suppose A = LU is nonsingular and
check the value of a11.

8 G1 inner, G2 outer ordering matrix,
rounded to three decimal places:

A B C D E
1
2
3

⎡
⎣ 0.058 0.075 0.058 0.098 0.046

0.058 0.075 0.058 0.098 0.046
0.058 0.075 0.058 0.098 0.046

⎤
⎦ .

Matchings are same as the example.

http://dx.doi.org/10.1007/978-3-319-74748-4_2
http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Section 3.1, Page 195

1 (a)(−2, 3, 1) (b) (6, 4, 9)

3 V is a vector space.

5 V is not a vector space because it is
not closed under scalar multiplication.

7 V is a vector space.

9 V is not a vector space because it is
not closed under vector addition or scalar
multiplication.

11 V is a vector space.

13 (a) T = TA, A =

[
1 0 0
1 2 −4

]
, linear

with range C (A) = R
2, equal to target

(b) not linear (c) T = TA, A =

[
0 1 0
0 1 0

]
,

linear with range C (A) = span {(1, 1)},
not equal to target (d) not linear (e) not
linear

15 (a) linear, range not V (b) not linear,
(c) linear, range is V (d) linear, range not
V

17 (a) identity operator is linear and
invertible, (idV )−1 = idV

19 Mx = (x1 + 2, x2 − 1, x3 + 3, 1), so
action of M is to translate the point
in direction of vector (2, −1, 3). M−1 =[

I3 −t
0 1

]
(think inverse action)

21 Write c0 = c (0 + 0) = c0 + c0
by identity and distributive laws. Add
− (c0) to both sides.

29 Use the fact that TA ◦ TB = TAB and
TI = id

30 Use the fact that TA ◦ TB = TAB and
do matrix arithmetic.

Section 3.2, Page 204

1 W is not a subspace of V because W
is not closed under addition and scalar
multiplication.

3 W is a subspace.

5 W is a subspace.

7 Not a subspace, since W doesn’t con-
tain the zero element.

9 W is a subspace of V.

11 span {(1, 0) , (0, 1)} = R
2 and[

1 −2
0 1

]
x = b always has solution

since coefficient matrix is invertible. So
span {(1, 0) , (−2, 1)} = R

2 and spans
agree.

13 Write ax2 + bx + c = c1 + c2x + c3x
2

as matrix system Ac = (a, b, c) by equat-
ing coefficients and see whether A is
invertible, or use an ad hoc argument.
(a) Spans P2. (b) Does not span P2

(can’t get 1). (c) Spans P2. (d) Does not
span P2 (can’t get x).

15 (a) Add the vector (1, 0) to
get (0, 1) = 1

2
((1, 2) − (1, 0)) and

{(1, 0) , (0, 1)} span R
2. (b) No addi-

tions needed since 1 = x − (x − 1)
x3 =

(
x3 + 1

)−1 and x2 =
(
x2 − 1

)
+1.

17 u + w = (4, 0, 4) and v − w =
(−2, 0, −2) so span {u + w,v − w} =
span {(1, 0, 1)} ⊂ span {u,v,w}, since
u + v,v − w ∈ span {u,v,w}. u is not
a multiple of (1, 0, 1), so spans are not
equal.

19 The zero vector is in all three sub-
sets. (a) If x,y ∈ U and x,y ∈ V ,
x,y ∈ U ∩ V . Then cx ∈ U and cx ∈ V
so cx ∈ U ∩ V , and x + y ∈ U and
x + y ∈ V so x + y ∈ U ∩ V . (b) Let
u1 +v1,u2 +v2 ∈ U +V , where u1,u2 ∈
U and v1,v2 ∈ V . Then cu1 ∈ U and
cv1 ∈ V so c(u1 + v1) = cu1 + cv1 ∈
U + V , and similarly for sums.

21 Let A and B be n×n diagonal matri-
ces. Then cA is diagonal matrix and
A + B is diagonal matrix so the set of
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diagonal matrices is closed under matrix
addition and scalar multiplication.

22 (a) If A = [aij ], vec(A) =
(a11, a21, a12, a22) so for A there
exists only one vec(A). If vec(A) =

(a11, a21, a12, a22), A = [aij ] so for
vec(A) there exists only one A. Thus
vec operation establishes a one-to-one
correspondence between matrices in V
and vectors in R

4.

Section 3.3, Page 217

1 (a) none (b) (1, 2, 1), (2, 1, 1), (3, 3, 2)
(c) every vector redundant (d) none

3 (a) linearly independent (b) linearly
independent, (c) every vector redundant
(d) linearly independent

5 (a)
(

1
4
, −3

4

)
(b)

(
1
2
, 1, 3

2

)
(c) (b, a, c)

(d)
(

1
2

− i, 1 − 3
2
i
)

7 (a) v = 3u1 − u2 ∈ span {u1,u2},
(b) u1, u2, (1, 0, −1)

9 With the given information, {v1,v2}
and {v1,v3} are possible minimal span-
ning sets.

11 All values except c = 0, 2 or − 7
3

13 e11

15 (c) W = −2, polynomials are linearly
independent (d) W = 4, polynomials are
linearly independent

17
[

1
2

0
0 3

2

]

23 Assume vi = vj . Then there exists
ci = −cj �= 0 such that c1v1 + c2v2 +
· · · + civi + · · · + cjvj + · · · + cnvn = 0.

25 Start with a nontrivial linear combi-
nation of the functions that sums to 0
and differentiate it.

27 Domain and range elements x and y
are given in terms of old coordinates.
Express them in terms of new coordi-
nates x′, y′ (x = Px′ and y = Py′.)

Section 3.4, Page 227

1 (a)
{(− 3

2
, 0, 3, 1

)
,
(

1
2
, 1, 0, 0

)}
(b) {(−4, 1)} (c) {(−3, 1, 1)} (d) { }
3 (a) {(2, 4) , (0, 1)} (b) {(1, −1)}
(c) {(1, −2, 1) , (1, −1, 2)}
(d) {(2, 4, 1) , (−1, −2, 1) , (0, 1, −1)}
5 (a) {(2, −1, 0, 3) , (4, −2, 1, 3)}
(b) {(1, 4)} (c) {(1, 1, 2) , (2, 1, 5)}
(d) {(2, −1, 0) , (4, −2, 1) , (1, 1, −1)}
7 (a) span {(2, 2, 1)},

(
2
5
, 2

5
, 1

5

)
, yes

(b) span {(1, 1)},
(

1
2
, 1

2

)
, no

9 (a) kernel span {(1, 0, −1)}, range
span {(1, 1, 2) , (−2, 1, −1)}, not
onto or one-to-one (b) kernel{
a + bx + cx2 | a + b + c = 0

}
, range R

onto but not one-to-one

11 ker T = span {v1 − v2 + v3},
range T = R

2, T is onto but not one-
to-one, hence not an isomorphism.

15 Calculate T (0) = T (0 + 0) using lin-
earity.

17 Use definition of isomorphism, Theo-
rem 3.9 and for onto, solve c1x + c2(x −
1) + c3x

2 = a + bx + cx2 for ci’s.

19 Since A is nilpotent, there exists
m such that Am = 0 so det(Am) =
(det A)m = 0 and det A = 0. Also
since A is nilpotent, by Exercise 19 of
Section 2.4, (I−A)−1 = I+A+A2+· · ·+
Am−1.

22 Turn rows into columns by using the
transpose operator.

http://dx.doi.org/10.1007/978-3-319-74748-4_3
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Section 3.5, Page 236

1 (a) None (b) Any subset of
three vectors (c) Any two of
{(2, −3, 1) , (4, −2, −3) , (0, −4, 5)} and
(1, 0, 0)

3 w1 could replace v2.

5 w1 could replace v2 or v3, w2 could
replace any of v1,v2,v3 and w1,w2

could replace any two of v1,v2,v3.

7 (0, 1, 1), (1, 0, 0), (0, 1, 0) is one choice
among many.

9 V1 = span{(1, 0, 0), (0, 1, 0)} and V2 =
span{(0, 0, 1), (0, 1, 0)} are two comple-
ments and V1 ∩ V2 = span{(0, 1, 0)}, so
they are distinct.

11 (a) true (b) false (c) true (d) true
(e) true (f) true

13 Here ker TA = span {e1} and
range TA = span {e1, e2} so sum is not
direct. Also, A3 = 03,3, so range(T 3

A) =
{0}, ker(T 3

A) = R
3 and R

3 = R
3 ⊕ {0}.

16 Suffices to note that according to def-
inition

T (c1 {yk} + c2 {zk}) = T ({c1yk + c2zk})
= (c1y0 + c2z0, . . . , c1ym−1 + c2zm−1)
= c1 (y0, . . . , ym−1) + c2 (z0, . . . , zm−1)
= c1T ({yk}) + c2T ({zk}) .

18 Suppose not and form a nontrivial
linear combination of w1,w2, . . . ,wr,w.
Could the coefficient of w be nonzero?

19 If c1,1e1,1+· · ·+cn,nen,n = 0, ca,b = 0
for each a, b because ea,b is the only
matrix with a nonzero entry in the
(a, b)th position.

20 The union of bases for U and V will
work. The fact that if u + v = 0, u ∈ U ,
v ∈ V , then u = v = 0, helps.

22 Dimension of the space is n(n+1)/2.

27
{

I, A, A2, . . . , An2
}

must be linearly

dependent since dim(Rn,n) = n2. Exam-
ine a nontrivial linear combination sum-
ming to zero.

33 Use the isomorphism between P2 and
R

3 to turn T into a matrix operator TA.

Section 3.6, Page 246

1 Bases for row, column, and null
spaces: {(1, 0, 3, 0, 2) , (0, 1, −2, 1, −1)},
{(3, 1, 2) , (5, 2, 3)}, {(−3, 2, 1, 0, 0) ,
(0, −1, 0, 1, 0) , (−2, 1, 0, 0, 1)}

3 Bases by row and column algo-
rithms: (a) {(1, 0, 1) , (0, 1, −1)},
{(0, −1, 1) , (2, 1, 1)}
(b)

{(
1, 0, 1

2

)
, (0, 1, 0)

}
,

{(2, −1, 1) , (2, 0, 1)} (c) {(1, 0) , (0, 1)},
{(1, −1) , (2, 2)} (d)

{
1 + x2, x − 5x2

}
,{

1 + x2, −2 − x + 3x2
}

5 Bases for row, column, and null spaces:
(a) {(2, 0, −1)}, {1},

{(
1
2
, 0, 1

)
, (0, 1, 0)

}
(b) {(1, 2, 0, 0, 1) , (0, 0, 1, 1, 0)},
{(1, 1, 3), (0, 1, 2)}, {(−2, 1, 0, 0, 0) ,
(0, 0, −1, 1, 0) , (−1, 0, 0, 0, 1)}

(c) {(1, 0, −10, 8, 0) , (0, 1, 5, −2, 0) ,
(0, 0, 0, 0, 1)},
{(1, 1, 2, 2) , (2, 3, 3, 4) , (0, 1, 0, 1)},
{(10, −5, 1, 0, 0) , (−8, 2, 0, 1, 0)}
(d) {e1, e2, e3}, {e1, e2, e3}, { }

7 (a) c1v1+c2v2+c3v3+c4v4 = 0, where
c1 = −2c3 − 2c4, c2 = −c3, and c3, c4

are free, dim span {v1,v2,v3,v4} = 2
(b) c1x + c2

(
x2 + x

)
+ c3

(
x2 − x

)
= 0

where c1 = 2c3, c2 = −c3, and c3

is free, dim span
{
x, x2 + x, x2 − x

}
= 2

(c) c1v1 + c2v2 + c3v3 + c4v4 = 0, where
c1 = −c3, c2 = 1

2
c3, c4 = 0 and c3 is free,

dim span {v1,v2,v3,v4} = 3
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9 (a) dim C(A) = 2, dim C(B) = 2
(b) dim C ([

A B
])

= 3 (c) dim C(A) ∩
C(B) = 2 + 2 − 3 = 1

11 C(A) ∩ C(B) = span {(1, 1, −1)}

13 [A I] has RREF

⎡
⎣ 1 0 2 1 2 0 1 0

0 1 0 1 2 0 −1 1
2

0 0 0 0 0 1 1 − 1
2

⎤
⎦,

so a basis of C (A) is B =
{(0, 1, 2) , (1, 0, 2)} and can be expanded

to the basis {(0, 1, 2) , (1, 0, 2) , (1, 0, 0)}
of R

3 according to the column space
algorithm.

15 Since Ax = b is consistent, b ∈ C(A).
If {ai}, the set of columns of A, has
redundant vectors in it, c1a1 + c2a2 +
· · · + cnan = 0 for some nontrivial c.

17 What does b /∈ C(A) tell you about r
and m?

Section 3.7, Page 253

1

⎡
⎣ 1 2 0

1 −1 0
0 1 1

⎤
⎦, range (T ) =

span {(1, 1, 0), (2, −1, 1), (0, 0, 1)},
ker(T ) = {0}

3 (a) P =

[
1 1
1 −1

]
, Q =

[
2 3
0 1

]

(b) [id]B′,B = Q−1I2P =

[ −1 2
1 −1

]

(c) [w]B′ = [id]B′,B

[
3
4

]
=

[
5

−1

]

5 1
25

[
7 6 −6
1 8 −8

]

9 Let B′ be any other basis and use the
chain of operators VB′

idV→ VB
T→ VB

idV→
VB′ .

Section 3.8, Page 254

1 Minimize C = cT x subject to the con-
straints Bx = d, x ≥ 0, where c =
(1, 2, 1, 0, 0, 0) x = (x1, x2, x3, x4, x5, x6),

B =

⎡
⎣ 1 1 0 −1 0 0

1 0 1 0 1 0
1 0 0 0 0 −1

⎤
⎦ and d = (4, 6, 1).

3 Geometric method yields corners
(0, 0), (0, 2), (2, 4), (5, 1) and (5, 0) with
objective values 0, 4, 10, 7 and 5, resp.
Simplex method yields initial augmented

standard matrix

⎡
⎢⎢⎣

1 1 1 0 0 6
−1 1 0 1 0 2
1 0 0 0 1 5

−1 −2 0 0 0 0

⎤
⎥⎥⎦

and final augmented standard matrix⎡
⎢⎢⎣

1 0 1
2

− 1
2

0 2
0 1 1

2
1
2

0 4
0 0 − 1

2
1
2

1 3
0 0 3

2
1
2

0 10

⎤
⎥⎥⎦. Both yield solu-

tion x1 = 2, x2 = 4 and maximum
P = x1 + 2x2 = 10.

5 Feasible set is the quadrilateral
bounded by the points (15, 10), (20, 0),
(18, 0) and

(
9
2
, 27

2

)
with values of the

objective function P as 65, 20, 18
and 117

2
. Hence the maximum value is

P = 117
2

at the point x1 = 9
2
, x2 = 27

2
.

7 The initial augmented standard
matrix for this problem is B =⎡
⎣−1 1 1 0 4

−1 2 0 1 10
−3 −1 0 0 0

⎤
⎦. According to the Cau-

tion on Page 266 the objective function
P = 3x1 + x2 is unbounded in the feasi-
ble set. The dual problem of minimizing
C = 4x1+10x2 has constraints x1, x2 ≥0,
−x1 − x2 ≥ 3 and x1 + 2x2 ≥ 1. But the
second is equivalent to x1 + x2 ≤ −3, so
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there is no feasible solution to this prob-
lem.

9 Standard form is to maximize objec-
tive cT x where c = (35, 20, 40, 25, 0, 0)
and x = (x1, x2, x3, x4, x5, x6), subject
to constraints Bx = d, x ≥ 0 with B =[

2 1 3 2 1 0
3 2 2 2 0 1

]
and d = (900, 1200). Ini-

tial augmented matrix for this problem

is

⎡
⎣ 2 1 3 2 1 0 900

3 2 2 2 0 1 1200
−35 −20 −40 −25 0 0 0

⎤
⎦ and

final form is

⎡
⎣ 0 − 1

5
1 2

5
3
5

− 2
5

60
1 4

5
0 2

5
− 2

5
3
5

360
0 0 0 5 10 5 15000

⎤
⎦ .

Hence the solution is to set production
levels of K1, K2, K3, K4 at 360, 0, 60, 0,
respectively, for a profit of 35 · 360 +
40 · 60 = 15000.

11 The initial augmented standard
matrix with problem converted to max-
imization with artificial variable x6

is

⎡
⎢⎢⎣

1 1 2 1 0 0 40
1 1 0 0 −1 1 10
6 1 4 0 0 0 0
0 0 0 0 0 1 0

⎤
⎥⎥⎦ which results in

matrix (after deleting last row and sixth

column is

⎡
⎣ 0 0 2 1 1 30

1 1 0 0 −1 10
5 0 4 0 1 −10

⎤
⎦, so the

minimum value is C = −P = 10 at
x1 = 0, x2 = 10 and x3 = 0.

13 The initial augmented matrix for the

dual max problem is

⎡
⎣ 3 1 1 0 3

1 2 0 1 2
−6 −6 0 0 0

⎤
⎦

which leads to final augmented standard

matrix

⎡
⎣ 1 0 2

5
− 1

5
4
5

0 1 − 1
5

3
5

3
5

0 0 6
5

12
5

42
5

⎤
⎦. Thus x1 = 6

5
,

x2 = 12
5

yields a minimum value for the
min problem of C = 42

5
.

16 Any elementary operation on the first
m rows of B̃ can be expressed in the form

A =

[
F 0
0 1

]
, where F is an elementary

operation of B, whereas any elementary
operation of adding the c times the jth of
one of the first m rows to the last has the

form B =

[
Im 0
vT 1

]
with v a vector of size

m, c as its jth entry and zeros elsewhere.
Now check that the product of any two

matrices of the form
[

E 0
vT 1

]
is another

matrix of the same form.

18 Let y ≥ 0 and z ≥ 0 be two such
solutions. Then optimal value Q satisfies
Q = cT y = cT z. Now show that any
convex combination wα = αy+(1 − α) z
with 0 ≤ α ≤ 1 is also optimal feasible.
Hence there are infinitely many.

Section 4.1, Page 286

1 (a) −14,
√

34, 2
√

5 (b) 7,
√

6,
√

14
(c) 8,

√
10,

√
26 (d) 12 − 6i,

√
10,

√
26

(e) 4,
√

30,
√

6 (f) −4, 2
√

3,
√

30

3 (a) −√
145/145 (b) 0 (c)

√
21/6

(d)
√

10/10

5 (a) 36k (b) −5i− j+5k (c) (−2, −2, 4)

7 ‖u‖ =
√

30, ‖cu‖ = 3
√

30,‖v‖ =
4,‖u + v‖ =

√
30, ‖u + v‖ ≤ ‖u‖ +

‖v‖ = 4 +
√

30

9 u×v = (−6, 4, −8), v×u = (6, −4, 8),
(cu) × v = c (u × v) = u × (cv) =
(12, −8, 16), u×w = (4, 1, −2), v ×w =
− (6, 7, 8) u × (v + w) = (−2, 5, −10),
(u + v) × w = − (2, 6, 10)

11 We have ‖u‖2 = 7, ‖v‖2 = 18,
‖u + v‖2 = 37. and ‖u − v‖2 = 13, so
it checks out: 50 = 50.

13 un =

(
2
n
,

1
n2 +1

2+ 3
n

+ 5
n2

)
→ (

0, 1
2

)
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15 Let u = (u1, . . . , un) ∈ R
n, v =

(v1, . . . , vn) ∈ R
n, and c ∈ R. Then

(cu) · v =(cu1)v1 + · · · + (cun)vn and
v · (cu) = v1(cu1) + · · · + vn(cun) so
(cu) · v = v · (cu). Similarly, show (cu) ·
v = v · (cu) = c(v · u) = c(u · v).

17 Compute A2, A3 in terms of u and
the general formula will be clear.

20 ‖cv‖ = |c| ‖v‖ by basic norm law (2).
Since c ∈ R and c > 0, ‖cv‖ = c ‖v‖.
So a unit vector in direction of cv is
cv/c ‖v‖ = v/ ‖v‖.

22 Apply the triangle inequality to
u + (v − u) and v + (u − v).

24 Let u = (u1, u2, u3) and v =
(v1, v2, v3). Then the Law of Cosines is
‖u − v‖2 = ‖u‖2+‖v‖2−2 ‖u‖ ‖v‖ cos θ
where θ is the angle between u and v.
Expand terms and show

2 ‖u‖ ‖v‖ cos θ =

2u1v1 + 2u2v2 + 2u3v3,

from which the result follows.

27 Use (7) and equation 4.2 to obtain

‖u × v‖2 = ‖u‖2 ‖v‖2 − (u · v)2

= ‖u‖2 ‖v‖2 − ‖u‖2 ‖v‖2 cos2 θ

= ‖u‖2 ‖v‖2 (
1 − cos2 θ

)
= ‖u‖2 ‖v‖2 sin2 θ.

Section 4.2, Page 299

1 (a) 2.1176 (b) 1.6383 (c) 1.0018

3 (a) (−2, −1), −√
5 (b) 10

9
(2, 2, 1), 10

3

(c) −1
2

(1, 1, 1, 1), −1

5 (a) |u · v| = 1 ≤ ‖u‖ ‖v‖ =
√

15
(b) |u · v| = 19 ≤ ‖u‖ ‖v‖ = 2

√
165

(c) |u · v| = 26 ≤ ‖u‖ ‖v‖ = 26

7 (a) (Mu) · (Mv) = 1, no (b) (Mu) ·
(Mv) = 0, yes (c) (Mu) · (Mv) = −13,
no

9 (a) x + y − 4z = −6 (b) x − 2z = −4

11 (a) x =
(
3, − 2

3

)
, b − Ax =

0, ‖b − Ax‖ = 0, yes (b) x =
1
21

(9, −14), b − Ax = 1
21

(−4, −16, 8),
‖b − Ax‖ =

√
336
21

, no (c) x =(
x3 + 12

13
, −x3 + 23

26
, x3

)
where x3 is free,

b−Ax = 1
26

(32, −21, 1, 22), ‖b − Ax‖ =√
1950
26

, no

13 b = 0.3, a + b = 1.1, 2a + b = 2,
3a+ b = 3.5, 3.5a+ b = 3.6, least squares

solution a ≈ 1.00610, b ≈ 0.18841, resid-
ual norm is ‖b − Ax‖ ≈ 0.39962

15 For triangle ADC an outward nor-
mal is −4k, so unit normal is −k. For
triangle ABC, an outward normal is
−12i + 8j + 4k, so a unit normal is√

14
14

(−3i + 2j + k). For triangle BDC,
an outward normal is

−−→
BD × −−→

DC =
12i + 8j + 4k, so a unit normal is√

14
14

(3i + 2j + k). For triangle DBA, an
outward normal is

−−→
DB×−→

BA = −16j+4k,
so a unit normal is

√
17

17
(−4j + k).

17 Express each norm in terms of dot
products, expand and cancel the terms
u · u and v · v from both sides.

23 Use Example 3.43.

25 Examine the proof of Theorem 4.3
for points where real and complex dots
might differ.

http://dx.doi.org/10.1007/978-3-319-74748-4_4
http://dx.doi.org/10.1007/978-3-319-74748-4_3
http://dx.doi.org/10.1007/978-3-319-74748-4_4
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Section 4.3, Page 312

1 (a) orthogonal, linearly independent
(b) linearly independent (c) orthonor-
mal, orthogonal, linearly independent

3 v1 · v2 = 0, v1 · v3 = 0, and v2 ·
v3 = 0 so {v1,v2,v3} is an orthogo-
nal basis. v1 · v1 = 2, v2 · v2 = 3, and
v3 · v3 = 3

2
. Coordinates with respect

to {v1,v2,v3} are (a)
(

3
2
, −1

3
, −5

3

)
(b)

(
1
2
, −1

3
, 1

3

)
(c)

(
1
2
, −5

3
, 11

3

)

5 (a) orthogonal, 1
5

[
3 4
4 −3

]
(b) not or-

thogonal (c) not orthogonal (d) not or-

thogonal (e) unitary, 1√
2

⎡
⎣ 1 0 −i

0 −√
2i 0

1 0 i

⎤
⎦

(f) unitary, 1√
3

[
1 − i −i

−i 1 + i

]

7 Hv = 1
3

⎡
⎣ 1 2 −2

2 1 2
−2 2 1

⎤
⎦, Hvu = (3, 0, 0),

Hvw = (1, 2, −2)

9 (a)

⎡
⎢⎣

√
6

6
−

√
3

3

√
2

2√
6

3

√
3

3
0

−
√

6
6

√
3

3

√
2

2

⎤
⎥⎦ (b) 1

5

[
3 −4
4 3

]

(c)
[

1 0
0 i

]

11 Calculate both sides of each equa-
tion defining projection matrix and
check that (I − 2P )T = I − 2P and
(I − 2P )T (I − 2P ) = I.

13 (a) (1, 1, −1), 1
3

(−2, 7, 5),
1
13

(8, −2, 6) (b) (1, 0, 1), 1
2

(1, 8, −1)
(c) (1, 1), 1

2
(−1, 1)

16 Let u,v be columns of P , calculate∣∣eiθu
∣∣ and

(
eiθu

) · (
eiθv

)
.

Section 4.4, Page 325

1 Q, R, x : (a)

⎡
⎢⎣

3
5

4

5
√

2

0 1√
2

4
5

−3

5
√

2

⎤
⎥⎦,

[
5 2

0
√

2

]
,

[
9
5−5

2

]
(b) Caution: this

matrix is rank deficient.

⎡
⎢⎣

1√
5

2√
6

0 1√
6−2√

5

1√
6

⎤
⎥⎦,

[ √
5 0 −10√

5

0
√

6 12√
6

]
,

⎡
⎣ 2x3 − 3

−2x3 + 2
x3

⎤
⎦, x3 free

(c) 1
2

⎡
⎢⎢⎣

1 0 5
3

1
√

2 −1
3

−1
√

2 1
3

−1 0 1

⎤
⎥⎥⎦,

⎡
⎣ 2 0 3

2

0
√

2 3
2

√
2

0 0 3
2

⎤
⎦,

⎡
⎣

−1
2
9
2−5

3

⎤
⎦

3 1
2
WmAW T

n =

⎡
⎢⎢⎣

33 55 4 27 5 −4

60 63 75 −10 13 −25

27 5 4 33 55 −4

−20 57 15 50 7 35

⎤
⎥⎥⎦,

so B =

[
33 55 4
60 63 75

]
, V =[

27 5 −4
−10 13 −25

]
, H =

[
27 5 4

−20 57 15

]
, D =[

33 55 −4
50 7 35

]
.

7 If A is n×n then xmust be n×1 and the
calculation of Ax amounts to the inner
product of x with each row of A, hence
2n ·n = 2n2 flops, counting addition and
multiplications. Write Hvx = x− 2vT x

vT v
v,

and calculate total flops of this to be
order n.
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Section 5.1, Page 341

1 (a) −3, 2 (b) −1, −1, −1 (c) 2, 2, 3
(d) −2, 2 (e) −2i, 2i

3 Eigenvalue, algebraic multiplicity, geo-
metric multiplicity, basis: (a) λ = −3,
1, 1, {(2, 1)}, λ = 2, 1, 1, {(1, 1)}
(b) λ = −1, 3, 1, {(0, 0, 1)}, (c) λ = 2,
2, 2, {(1, 0, 0) , (0, −1, 1)}, λ = 3, 1, 1,
{(1, 1, 0)} (d) λ = −2, 1, 1, {(−1, 1)},
λ = 2, 1, 1, {(1, 1)} (e) λ = −2i, 1, 1,
{(i, −1)}, λ = 2i, 1, 1, {(i, 1)}
5 B = 3I − 5A, so eigensystem for B
consists of eigenpairs {−2, (1, 1)} and
{8, (1, −1)}.

7 (a) trA = 7 − 8 = −1 = −3 + 2,
(b) trA = −1−1−1 = −3, (c) trA = 7 =
2 + 2 + 3 (d) trA = 0 + 0 = 0 = −1 + 1
(e) trA = 0 + 0 = 0 = −2i + 2i

9 Eigenvalues of AT same as Exercise 1.

11 (a) No (b) No (c) No (d) Yes (e) No

13 Eigenvalues of A are 1, 2. Eigenval-
ues of B are 1

2

(
3 ± √

5
)
. Eigenvalues of

A+B are 3±√
3. Eigenvalues of AB are

3 ± √
7. (a) Deny – 3 +

√
3 not sum of 1

or 2 plus 1
2

(
3 ± √

5
)
. (b) Deny – 3 +

√
7

not product of 1 or 2 times 1
2

(
3 ± √

5
)
.

17 If A is invertible, λ �= 0, then
A−1Av = A−1λv.

19 For λ eigenvalue of A with eigenvec-
tor v, (I − A)v = Iv − Av = v − λv =
(1 − λ)v. Since |λ| < 1, 1 − λ > 0.

20 Use part (1) of Theorem 5.1.

23 Deal with the 0 eigenvalue separately.
If λ is an eigenvalue of AB, multiply the
equation ABx = λx on the left by B.

Section 5.2, Page 351

1 All except (d) have distinct eigenval-
ues, so are diagonalizable. For λ = 1 (d)
has eigenspace of dimension two, so is not
diagonalizable.

3 (a)

⎡
⎣ 0 1 1

1 0 0
0 0 1

⎤
⎦ (b)

⎡
⎣ 0 1 2

−1 0 0
1 0 1

⎤
⎦

(c)
[ −1 2

1 3

]
(d)

[ −1 1
1 1

]
(e)

⎡
⎢⎢⎣

1 −1 1 −1
−2 1 0 −1
0 −1 0 3
0 2 0 0

⎤
⎥⎥⎦

5 True in every case. (a) and (c) satisfy
q (A) = 0 and are diagonalizable, (b) and
(d) do not satisfy q (A) = 0 and are not
diagonalizable.

7 Eλ (J2 (λ)) = span {(1, 0)}, so J2 (λ)
is not diagonalizable (not enough eigen-

vectors). J2 (λ)2 =

[
λ2 2λ
0 λ2

]
, J2 (λ)3 =[

λ3 3λ2

0 λ3

]
, J2 (λ)4 =

[
λ4 4λ3

0 λ4

]
, which

suggests J2 (λ)k =

[
λk kλk−1

0 λk

]
.

9 P =

[ −1 1
1 1

]
, Q =

[ −3 1
2 0

]
, S =[

1 1
1 2

]
, S−1 =

[
2 −1

−1 1

]

11 sin
(

π
6
A

)
=

[
1
2

√
3 4

5
+ 2

5

√
3

0 −1

]
,

cos
(

π
6
A

)
=

[
1
2

2
5

0 0

]

13 Use the fact that if x is an eigenvec-
tor, then so is cx for any nonzero c.

14 Let A = λI + U be such and recall
that similar matrices have the same
eigenvalues.

16 Examine DB = BD, with D diagonal
and no repeated diagonal entries.

18 You will find Corollary 5.1 helpful.

20 (a) Use fk+2 = fk+1 + fk, fk+1 =

fk+1 (b) fn =
(

1+
√

5
2

)n (
5+

√
5

10

)
+(

1−√
5

2

)n (
5−√

5
10

)
.

http://dx.doi.org/10.1007/978-3-319-74748-4_5
http://dx.doi.org/10.1007/978-3-319-74748-4_5
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22 In one direction use the fact that
diagonal matrices commute. In the other
direction, prove it for a diagonal A first,

then use the diagonalization theorem to
prove it for general A.

Section 5.3, Page 363

1 (a) 2, dominant eigenvalue 2 (b) 0, no
dominant eigenvalue (c) 0, no dominant
eigenvalue (d) 1, dominant eigenvalue −1
(e) 1

2
, dominant eigenvalue −1

2

3 (a) x(k) =

[
2

(
1
2

)k − (−1
2

)k

−2
(

1
2

)k
+ 2

(−1
2

)k

]

(b) x(k) =

⎡
⎣ 2k

3k+1 − 2k

2k

⎤
⎦ (c) x(k) =

[
13 · 2k − 10 · 3k

−13 · 2k + 15 · 3k

]

5 (b), (c), and (e) give matrices for which
all x(k) → 0 as k → ∞. Stability theo-
rem only applies to (d).

7 diag {A, B}, where possibilities
for A are diag {J1 (2) , J1 (1)},
J2 (2) and possibilities for B are
diag {J1 (3) , J1 (3) , J1 (3)},
diag {J1 (3) , J2 (3)}, diag {J3 (3)}
9 Characteristic polynomial for J3 (2)
is (λ − 2)3 and (J3 (2) − 2I3)

3 =⎡
⎣ 0 1 0

0 0 1
0 0 0

⎤
⎦

3

= 0.

11 Eigenvalues are λ ≈ 0.1636 ±
0.3393i, 0.973 with absolute values
0.3766 and 0.973. So population will
decline at rate of approximately 2.7%
per time period.

13 λ2 = s1f2 , p = p1

(
1,

√
s1/f2

)

15 (a) Sum of each column is 1. (c)
Since a and b are nonnegative, (a, b) and
(1, −1) are linearly independent eigen-
vectors. Use diagonalization theorem.

17 Show that (1, 1, . . . , 1) is a left eigen-
vector.

22 Note that λI commutes with all
matrices of the same size, so one
can apply the binomial formula to
(λI + U)m.

24 Similar matrices have the same char-
acteristic equation, so A has the same
characteristic equation as its Jordan
canonical form. Use block arithmetic and
apply p (λ) to each block.

Section 5.4, Page 370

1 A is real and A = AT

in each case. (a) 1√
5

[
2 1

−1 2

]

(b) 1
5

[ −4 3
3 4

]
(c) 1√

2

⎡
⎣−1 0 1

1 0 1

0
√

2 0

⎤
⎦

(d)

⎡
⎢⎣

−
√

2
2

√
6

6

√
3

3√
2

2

√
6

6

√
3

3

0 −
√

6
3

√
3

3

⎤
⎥⎦

3 P T P = I in each case. (a) Unitar-

ily diagonalizable by 1√
2

⎡
⎣ 0 −i i

0 1 1√
2 0 −1

⎤
⎦

(b) Unitarily diagonalizable by
1√
2

[ −i i
1 1

]
(c) Orthogonally diagonal-

izable by 1√
2

⎡
⎣−1 0 1

1 0 1

0
√

2 0

⎤
⎦

5 All of these matrices are normal.
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7 Orthogonalize by

⎡
⎢⎣

−
√

3
3

√
6

3
0√

3
3

√
6

6
−

√
2

2√
3

3

√
6

6

√
2

2

⎤
⎥⎦,

let a = (−1)k + 2k+1, b = (−1)k−1 + 2k,

c = (−1)k + 2k−1 and Ak = 1
3

⎡
⎣ a b b

b c c
b c c

⎤
⎦

9 P =

⎡
⎢⎣

−
√

3
3

√
2

2
−√

6
6√

3
3

0 −√
6

3√
3

3

√
2

2

√
6

6

⎤
⎥⎦,

B = Pdiag
{
1,

√
2, 2

}
P T

=

⎡
⎢⎣

2
3

+
√

2
2

1
3

−2
3

+
√

2
2

1
3

5
3

−1
3

−2
3

+
√

2
2

−1
3

2
3

+
√

2
2

⎤
⎥⎦, which is

symmetric positive definite and B2 = A.

12 Use orthogonal diagonalization and
change of variable x = Py for a gen-
eral B to reduce the problem to one of a
diagonal matrix.

16 First show it for a diagonal matrix
with positive diagonal entries. Then use
Problem 12 and the principal axes theo-
rem.

17 AT A is symmetric and square. Now
calculate ‖Ax‖2 for an eigenvector x of
AT A.

Section 5.5, Page 374

1 (a)

⎡
⎣−3 0 0

0 −2.5764 −1.5370
0 −1.5370 2.5764

⎤
⎦

(b)

⎡
⎣ 1.41421 0 0

0 −1.25708 0.44444i
0 −0.44444i −0.15713

⎤
⎦

3 (a) −2, 3, 2 (b) 3, 1, 2 (c) 2, −1, ±√
2

5 Eigenvalues of A are 2, −3 and eigen-
values of f (A) /g (A) are 0.6, 0.8.

8 Do a change of variables x = Py,
where P upper triangularizes A.

11 Equate (1, 1)th coefficients of the
equation R∗R = RR∗ and see what can
be gained from it. Proceed to the (2, 2)th
coefficient, etc.

12 Use Problem 37 of Section 2.5.

Section 5.6, Page 379

1 (a) U = E2(−1), Σ =

[
3 0 0
0 1 0

]
,

V = I3 (b) U =

⎡
⎢⎣

−1 0 0

0
√

2
2

−√
2

2

0
√

2
2

√
2

2

⎤
⎥⎦,

⎡
⎣ 2 0

0
√

2
0 0

⎤
⎦, V = I2 (c) U = E12E13,

Σ =

⎡
⎣

√
5 0 0
0 1 0
0 0 0

⎤
⎦, V =

⎡
⎢⎣

0 1 0

−
√

5
5

0 2
√

5
5

2
√

5
5

0
√

5
5

⎤
⎥⎦

(d) U = E12E2 (−1),
[

2 0 0
0 2 0

]
, V = I3

3 Calculate U , Σ, V ; null space, column
space bases: (a) First three columns of
U , { } (b) First two columns of U , third
column of V (c) First four columns of U ,
fifth column of V

5 For (3), use a change of variables x =
V y.

7 Use a change of variables x =
V y and check that ‖b − Ax‖ =∥∥UT (b − Ax)

∥∥ =
∥∥UT b − UT AV y

∥∥.

http://dx.doi.org/10.1007/978-3-319-74748-4_2
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Section 5.7, Page 385

1 Eigenvalues (a) 10.0083, 4.8368,
4.1950, 1.9599 (b) −0.48119, 3.17009,
1.3111 (c) 3.3123 ± 2.8466i, 1.6877 ±
0.8466i

3 Use Gershgorin to show that 0 is not
an eigenvalue of the matrix.

Section 6.1, Page 397

1 (a) 1-norms 6, 5, 2-norms
√

14,
√

11,
∞-norms 3, 3, distance (‖(−5, 0, −4)‖)
in each norm 9,

√
41, 5 (b) 1-norms 7,

8, 2-norms
√

15,
√

14, ∞-norms 3, 2, dis-
tance (‖(1, 4, −1, −2, −5)‖) in each norm
13,

√
47, 5

3 (a) 1
5

(1, −3, −1), 1√
11

(1, −3, −1),
1
3

(1, −3, −1) (b) 1
7

(3, 1, −1, 2),
1√
15

(3, 1, −1, 2), 1
3

(3, 1, −1, 2)

(c) 1

3+
√

10
(2, 1, 3 + i), 1√

15
(2, 1, 3 + i),

1√
10

(2, 1, 3 + i)

5 ‖u‖1 = 6, ‖v‖1 = 7, (1)
‖u‖1 > 0, ‖v‖1 > 0 (2)
‖−2 (0, 2, 3, 1)‖1 = 12 = |−2| 6 (3)
‖(0, 2, 3, 1) + (1, −3, 2, −1)‖1 = 7 ≤ 6+7

7 Ball of radius 7/4 touches line, so dis-
tance from point to line in ∞-norm is
7/4.

9 Unit ball B1 ((1, 1, 1)) in R
3 with infin-

ity norm is set of points (x, y, z) which
are between the pairs of planes (1) x = 0,
x = 2, (2) y = 0, y = 2 and (3) z = 0,
z = 2.

11 Set v = (−1, 1), v−vn =
(−1

n
, −e−n

)
so ‖v − vn‖1 =

(
1
n

+ e−n
)

−−−−−→n−→∞0 and

‖v − vn‖2 =
√

( 1
n
)2 + (e−n)2 → 0, as

n → ∞. So limn→∞ vn is the same in
both norms.

13 Answer: max {|a| + |b| , |c| + |d|}.
Note that a vector of length one has one
coordinate equal to ±1 and the other at
most 1 in absolute value.

14 Let u = (u1, . . . , un), v =
(v1, . . . , vn), so |u1|+ · · ·+ |un| ≥ 0. Also
|cu1|+ · · ·+ |cun| = |c| |u1|+ · · ·+ |c| |un|
and |u1 + v1| + · · · + |un + vn| ≤ |u1| +
· · · + |un| + |v1| + · · · + |vn|.

15 Observation that ‖A‖F = ‖vec (A)‖2

enables you to use known properties of
the 2-norm.

Section 6.2, Page 408

1 (a) |〈u,v〉| = 46, ‖u‖ =
√

97, ‖v‖ =√
40 and 46 ≤ √

97
√

40 ≈ 62.29
(b) |〈u,v〉| = 1

5
, ‖u‖ = 1√

3
, ‖v‖ = 1√

7

and 1
5

= 0.2 ≤ 1√
3

1√
7

≈ 0.2182

3 projvu, compvu, orthvu: (a)
(−23

20
, 23

10

)
,

46√
40

,
(

63
20

, 7
10

)
(b) 7

5
x3,

√
7

5
, x − 7

5
x3

5 If x = (x, y, z), equation is 4x − 2y +
2z = 2.
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7 Only (1), since if, e.g., x = (0, 1), then
〈x,x〉 = −2 < 0.

9 (a) orthogonal (b) not orthogonal or
orthonormal (c) orthonormal

11 1(−4) + 2 · 3 · 1 + 2 (−1) =

0. For each v calculate 〈v1,v〉
〈v1,v1〉v1 +

〈v2,v〉
〈v2,v2〉v2. (a) (11, 7, 8), (11, 7, 8) ∈
V (b)

(
2255
437

, 486
437

, 1129
437

)
, (5, 1, 3) /∈ V

(c) (5, 2, 3), (5, 2, 3) ∈ V

13 vT
i Avj = 0 for i �= j. Coordi-

nate vectors: (a)
(

7
2
, 5

6
, 1

3

)
(b)

(
0, 1

3
, 1

3

)
(c) (1, 1, 0)

15 ac + 1
2

(ad + bc) + 1
3
bd

17 Express u and v in terms of the stan-
dard basis e1, e2 and calculate 〈u,v〉.

18 Use the same technique as in Exam-
ple 6.13 with a suitable choice of specific
u and v.

19 Follow Example 6.8 and use the fact
that ‖Au‖2 = (Au)∗ Au.

20 (1) Calculate 〈u,0 + 0〉. (2) Use
norm law (2), (3) and (2) on 〈u + v,w〉.

22 Express ‖u + v‖2 and ‖u − v‖2 in
terms of inner products and add.

23 Imitate the steps of Example 6.9.

Section 6.3, Page 408

1 (a) 1
2

[
1 −1

−1 1

]
(b)

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

(c) 1
15

⎡
⎢⎢⎣

14 1 −2 3

1 14 2 −3

−2 2 11 6

3 −3 6 6

⎤
⎥⎥⎦ (d) 1

9

⎡
⎣ 5 2 4

2 8 −2

4 −2 5

⎤
⎦

3 projV w, orthV w: (a) 1
6

(23, −5, 14),
1
6

(1, −1, −2) (b) 1
3

(4, 2, 1), 1
3

(−1, 1, 2)
(c) 1

3
(1, −1, 1), 1

3
(−1, 1, 2)

5 projV x3 = 1
10

(9x − 2),∥∥x3 − 1
10

(9x − 2)
∥∥ = 3

10
√

7

7 Use Gram–Schmidt algorithm on w1 =
(−1, 1, 1, −1), w2 = (1, 1, 1, 1), w3 =
(1, 0, 0, 0), w4 = (0, 0, 1, 0) to obtain
orthogonal basis v1 = (−1, 1, 1, −1),
v2 = (1, 1, 1, 1), v3 =

(
1
2
, 0, 0, −1

2

)
, v4 =(

0, −1
2

, 1
2
, 0

)
.

9 Use Gram–Schmidt on columns of
A and normalize to obtain orthonor-

mal 1√
3

(1, 1, 1) and 1√
42

(1, 2, −5),

then projection matrix 1
14

⎡
⎣ 5 6 3

6 10 −2
3 −2 13

⎤
⎦.

Use Gram–Schmidt on columns of B
and normalize to obtain orthonormal

1

3
√

5
(4, 5, 2), 1

3
√

70
(−1, 10, −23), then

obtain same projection matrix.

12 If a vector x ∈ R
3 is projected into

R
3, the result is x.

14 Use matrix arithmetic to calculate
〈Pu,v − Pv〉.

16 For any v ∈ V , write b − v =
(b − p) + (p − v), note that b − p is
orthogonal to p − v, which belongs to
V , and take norms.

18 Use the Pythagorean theorem and
projection formula.

Section 6.4, Page 423

1 V ⊥ = span
{(

1
2
, 5

2
, 1, 0

)
,
(−1

2
, −1

2
, 0, 1

)}
and if A consists of the columns(

1
2
, 5

2
, 1, 0

)
,

(−1
2

, −1
2

, 0, 1
)
, (1, −1, 2, 0),

(2, 0, −1, 1), then det A = 18 which

shows that the columns of A are linearly
independent, hence a basis of R

4.

3 V ⊥ = span
{

3
14

− 38
35

x + x2
}

http://dx.doi.org/10.1007/978-3-319-74748-4_6
http://dx.doi.org/10.1007/978-3-319-74748-4_6
http://dx.doi.org/10.1007/978-3-319-74748-4_6


468 Solutions to Selected Exercises

5 V ⊥ = span
{(−2, −1

2
, 1

)}
and(

V ⊥)⊥
= span

{(
1
2
, 0, 1

)
,
(−1

4
, 1, 0

)}
which is V since (1, 0, 2) = 2

(
1
2
, 0, 1

)
and (0, 2, 1) =

(
1
2
, 0, 1

)
+ 2

(−1
4

, 1, 0
)
.

7 U⊥ = span {(1, −2, 3)}, V ⊥ =
span {(−1, 1, 0)} and U ∩ V = (U⊥ +
V ⊥)⊥ = span {(3, 3, 1)}.

11 (a) Inclusion U⊥ + V ⊥ ⊂ (U ∩
V )⊥follows from the definition and inclu-
sion U ∩ V ⊂ U + V . For the converse,
show that (v − projUv) is orthogonal to
all u ∈ U . (b) Use (a) on U⊥, V ⊥.

12 Show that if AT Ay = 0, then Ay =
0.

Section 6.5, Page 429

1 Frobenius, 1-, and ∞-norms:
(a)

√
14, 3, 5 (b) 3

√
3, 5, 5 (c) 2

√
17,

10, 10

3 x = (0.4, 0.7), ‖δx‖∞ / ‖x‖∞ =
1.6214, cond (A) ‖δb‖∞ / ‖b‖∞ = 2.5873

5 Calculate c =
∥∥A−1δA

∥∥ = 0.05 ‖I3‖ =

0.05 < 1, ‖δA‖
‖A‖ = 0.05, ‖δb‖

‖b‖ = 0.5,

cond (A) ≈ 6.7807. Hence, ‖δx‖
‖x‖ ≈

0.42857 < cond(A)
1−c

[
‖δA‖
‖A‖ + ‖δb‖

‖b‖

]
≈

1.7844.

8 Use the triangle inequality on A and
and Banach lemma on A−1.

9 Factor out A and use Banach lemma.

13 Examine ‖Ax‖ with x an eigenvector
belonging to λ with ρ (A) = |λ| and use
definition of matrix norm.

14 If eigenvalue λ satisfies |λ| > 1,
consider ‖Amx‖ with x an eigenvector
belonging to λ. For the rest, use the Jor-
dan canonical form theorem.

16 (a) Make change of variables x = V y
and note

∥∥UT AV x
∥∥

2
= ‖Ay‖2, ‖x‖ =

‖V y‖. (c) Use SVD of A.

17 Use the fact that if UT AV = Σ, then
A = UΣV T and A−1 = V Σ−1UT .

Section 6.6, Page 441

1 H (ζ) = eiζ/2 cos (ζ/2), so |H (0)| = 1
and |H (π)| = 0.

3 a0 = π2/3, and for n > 0, bn = 0 and
an = 4 (−1)n /n2.
Graph of x (t) (—), Fourier sums N =
2 (—) and N = 6 (—)

5 From the graph, filter is fairly effective.
Graph of data: Exact (—), noisy (—)
and filtered (—).

7 For sampling rates of Ts = 15, 30, 45,
differences are ≈ 0.6312, 0.5413, 0.2136,
resp.

10 Assume f (t) is real and deduce
that cn = 1

2
(an − ibn) and c−n =

1
2

(an + ibn) for n �= 0. Next, group
terms and write the Fourier series as
c0 +

∑∞
j=1

(
cneinωt + c−ne−inωt

)
. Sim-

plify this expression to get the result.
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Index

A
Abstract vector space, 187
Adjacency matrix, 95, 96
Adjoint

formula, 150
matrix, 149

Admissible operations, 263
Affine set, 240
Algorithm

column space, 243
eigensystem, 334
Gram–Schmidt, 309, 410
inverse, 124
inverse iteration method, 384
Newton, 135
null space, 244
power method, 383
QR, 317
row space, 242

Angle, 289, 403
Argument, 19
Augmented matrix, 27

B
Ball, 394

closed, 394
open, 394

Banach lemma, 426
Basic solution, 259
Basis, 210

coordinates relative to, 212
ordered, 210

Basis theorem, 230
Block matrix, 106, 115, 140
Bound variable, 31

C
Cayley–Hamilton theorem, 238, 352,

364
CBS inequality, 288, 402
Change of basis, 216, 219, 248, 250
Change of basis matrix, 216, 250
Change of coordinates, 215, 219, 314
Change of variables, 214, 215, 314
Characteristic

equation, 333
polynomial, 333
value, 332
vector, 332

Characteristic polynomial, 99
Closed economy, 6
Coefficient matrix, 27
Cofactors, 143
Column space, 220

algorithm, 243
Companion matrix, 160, 387
Complement, 234
Complex number, 14

argument, 19
Euler’s formula, 18
imaginary part, 15
Polar form, 19
real part, 15

Complex plane, 15
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Component, 291, 406
Condition number, 426
Conditions for matrix inverse, 126
Conductivity

thermal, 59
Conformable matrices, 73
Conjugate symmetric, 110
Consistency, 33

in terms of column space, 239
in terms of rank, 45

Consumption matrix, 6
Convex combination, 219
Coordinate change, 215
Coordinates, 212

orthogonal, 303, 407
standard, 212
vector, 212

Correction vector, 129
Counteridentity, 160
Cramer’s rule, 151
Cross product, 284

D
Dangling node, 129
Data compression, 325
de Moivre’s Formula, 19
Determinant, 141

computational efficiency, 169
proofs of laws, 153

Diagonal, 105
Diagonalizable

matrix, 349
orthogonally, 367
unitarily, 367, 373

Diagonalization theorem, 349
Diagonalizing matrix, 349
Difference equation

constant coefficient, 98
homogeneous, 98
linear, 98

Diffusion
steady state, 5, 58
time dependent, 57

Diffusion process, 4, 162
Digital filter, 170
Digital signal processing, 437
Digraph, 93

adjacency matrix, 95
directed walk, 93

dominance-directed, 95
loop, 273
reverse, 118
walk, 93
weighted, 275

Dimension, 214
definition, 232
theorem, 232

Direct sum, 234
external, 234

Directed walk, 93
Direction, 279
Dirichlet theorem, 434
Discrete dynamical system, 88

states, 89
Stationary state, 88

Displacement vector, 183
Distribution vector, 89
Domain, 192, 226
Dominant eigenvalue, 382
Dot product, 283

E
Edge, 93
Eigenpair, 331
Eigenspace, 334
Eigensystem, 334

algorithm, 334
tridiagonal matrix, 386

Eigenvalue, 331
dominant, 354, 382
repeated, 340
simple, 340

Eigenvector, 331
left, 332
right, 332

Elementary
admissible operations, 263
column operations, 110
inverse operations, 40
matrices, 103
row operations, 28
transposes of matrix, 109

Elementary matrix
determinant, 145

Equation
linear, 3
Sylvester, 161

Equivalent linear system, 38, 39



Index 473

Equivalent norms, 428
Error

roundoff, 52
Euler method

explicit, 58
implicit, 60

Euler’s formula, 18

F
Factorization

full QR, 318
LU, 166
QR, 315, 316

Feasible
set, 257
vector, 257

Fibonacci numbers, 353
Fick’s law, 56
Field of scalars, 182
Filter

causal, 171
discrete, 437
finite impulse response (FIR), 437
Haar, 321
high pass, 172, 439
low pass, 171, 439

Finite-dimensional, 229
Fixed-point, 100
Flat, 240
Flop, 54
flop

count, 54
Fourier

analysis, 431
discrete time transform, 437
partial sum, 433
real series, 434
series, 433

Fourier heat law, 59
Fredholm alternative, 127, 422
Free variable, 31
Frobenius norm, 397
Full column rank, 45
Full row rank, 45
Function, 83

continuous, 187, 192, 195, 196
domain, 83
even, 435
linear, 83

odd, 435
piecewise continuous, 432
piecewise smooth, 432
target, 83
trigonometric, 433

Functional analysis, 425
Fundamental Theorem of Algebra, 17

G
Gain, 438
Gaussian elimination, 24, 37

complexity, 55
Gauss–Jordan elimination, 29, 37
Gershgorin circle theorem, 382
Givens matrix, 215
Gram–Schmidt algorithm, 310, 410
Graph, 93, 94, 180

adjacency matrix, 95
dominance-directed, 94
edge, 93
isomorphism, 179
node, 93
vertex, 93
walk, 93

H
Haar filter, 321
Haar wavelet transform, 322
Hadamard multiplication, 72
Heat

volumetric capacity, 59
Heat flow, 4, 59, 62, 63
Hermitian matrix, 110
Householder matrix, 306, 313, 314, 317
Hyperplane, 292

I
Idempotent matrix, 81, 118, 414
Identity, 196
Identity function, 192
Identity matrix, 75
Image, 227
Imaginary part, 15
Induced norm, 402
Inner product, 108, 283

abstract, 399
Sobolev, 410
space, 399
standard, 282, 401
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weighted, 400
Input–output

matrix, 7
model, 6, 10, 11

Integers, 13
Interpolation, 11
Intersection, 206, 418

set, 12
Invariant subspace, 234
Inverse, 118, 150

algorithm, 124
Inverse iteration method, 384
Inverse power method, 385
Inverse theory, 63, 164
Isomorphic vector spaces, 226
Isomorphism, 226

graph, 179

J
Jordan block, 359
Jordan canonical form, 359, 360, 379,

386

K
Kernel, 225, 226
Kirchhoff

first law, 11, 275
second law, 274

Kronecker delta, 149
Kronecker product, 161
Kronecker symbol, 75

L
Leading entry, 26
Least squares, 295, 415

solution, 296
solver, 317, 442

Left eigenvector, 332
Legendre polynomial, 411
Leontief input–output model, 6
Leslie matrix, 390
Limit, 431

one-sided, 431
Limit vector, 101, 223, 281, 287
Linear

mapping, 192, 193
operator, 84, 192, 193
regression, 295
standard form, 4

system, 4
transformation, 192, 193

Linear combination, 68, 201
convex, 219
nontrivial, 208
trivial, 208, 224
zero value, 208

Linear dependence, 207
Linear function, 83
Linear independence, 207
Linear programming, 254

feasible set, 257
max linear program, 255
min linear program, 257
objective function, 255
standard form, 258

Linear system
coefficient matrix, 27
equivalent, 38, 39
form of general solution, 240
right-hand-side vector, 27

List, 206, 207
Loop, 95, 273
LU factorization, 166

M
Marching method

Euler, 58
explicit, 58

Markov chain, 88, 89
event, 89
state, 90
states, 90

Matrix
1-norm, 90
adjacency, 96
adjoint, 149
block, 106
change of basis, 216, 250
cofactors, 149
companion, 387
complex Householder, 309
condition number, 426
conjugate symmetric, 110
consumption, 6
defective, 341
definition, 26
diagonal, 105
diagonalizable, 349
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diagonalizing, 349
difference, 66
elementary, 103, 110
entry, 26
equality, 65
exponent, 79
full column rank, 45
full row rank, 45
Givens, 215
Haar wavelet transform (HWT), 322
Hermitian, 110
Hilbert, 62
Householder, 306, 313, 314
idempotent, 81, 414, 417
identity, 75
inequality, 254
inverse, 150
invertible, 118
leading entry, 26
minors, 149
multiplication, 73
negative, 66
nilpotent, 81, 118
nonsingular, 118
normal, 116, 370, 373
of a linear operator, 249
operator, 84
order, 26
orthogonal, 305
permutation, 169
pivot, 30
positive definite, 296
positive semidefinite, 296
power bounded, 430
productive, 6
projection, 313, 414
pseudoinverse, 378
reflection, 313
rotation, 87, 215
scalar, 105
scalar multiplication, 67
similar, 253, 346
similarity transformation, 346
singular, 118
size, 26
skew-symmetric, 117, 205
square, 26
square root, 371
standard, 250

stochastic, 89, 135
strictly diagonally dominant, 386
substochastic, 129
sum, 66
superaugmented, 124
surfing, 129
symmetric, 110, 417
Toeplitz, 381
trace, 342
transformation, 84
transition, 88
triangular, 105
tridiagonal, 105
unitary, 305
Vandermonde, 28, 159
vectorizing, 162
zero, 68

Matrix norm, 424
Matrix, strictly triangular, 105
Max, 45
Min, 45
Minors, 143
Model

structured population, 91
Monic polynomial, 333
Multiplicity

algebraic, 340
geometric, 340

Multipliers, 168

N
Natural number, 13
Network, 11
Newton

formula, 136
method, 135

Nilpotent matrix, 81, 118, 138, 228
Node, 93
Nonsingular matrix, 118
Norm

complex, 278
equivalent, 396, 428
Frobenius, 397, 424
general, 392
induced, 402
infinity, 392, 397
matrix, 424
operator, 425
p-norm, 392
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standard, 278
uniform, 397

Normal equations, 296
Normal matrix, 116, 370, 373
Normalization, 279, 287
Normed space, 392
Notation

for elementary matrices, 29
Null space, 221

algorithm, 244
Nullity, 44
Number

complex, 14
integer, 13
natural, 13
rational, 13
real, 14

Numerical linear algebra, 52
Nyquist sampling rate, 439
Nyquist-Shannon theorem, 439

O
One-to-one, 225

function, 192, 194
Onto function, 192, 194
Operator, 192

additive, 193
domain, 226
fixed-point, 100
identity, 196
image, 227
invertible, 194
kernel, 225, 226
linear, 84, 193
one-to-one, 192, 194, 225
onto, 192, 194
outative, 193
range, 226
rotation, 86
scaling, 85, 86
standard matrix, 249, 250
target, 226
vec, 162, 206
zero, 196

Order, 26
Order of matrix, 26
Orthogonal

complement, 418
complements theorem, 421

coordinates theorem, 303, 407
matrix, 304
projection formula, 414
set, 302, 406
vectors, 290, 403

Orthogonal coordinates theorem, 302
Orthogonal projection, 292, 413
Orthonormal set, 302, 406
Outer product, 108

P
PageRank, 127

matrix, 131
problem, 131
reverse, 133
Tool, 8

Parallel vectors, 290
Parallelogram equality, 405
Partial pivoting, 53
Perturbation theorem, 427
Phase rotation, 438
Pivot, 30

strategy, 53
Pivoting

complete, 53
Polar form, 19
Polarization identity, 410
Polynomial, 18

characteristic, 99, 333
companion matrix, 160
Legendre, 411
monic, 333

Positive definite matrix, 296, 301, 371,
400

Positive semidefinite matrix, 296, 301
Power

matrix, 79
vertex, 95

Power bounded matrix, 430
Power method, 383
Preferential

strongly, 132
weakly, 132

Principal axes theorem, 368, 373
Product

inner, 108
Kronecker, 161
outer, 108

Productive matrix, 6
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Projection, 291, 406, 411, 412
column space formula, 415
formula, 291, 406
formula for subspaces, 411, 412
matrix, 414
orthogonal, 292, 413
parallel, 291, 406
problem, 411
theorem, 413

Projection formula, 291, 406
Projection matrix, 313
Pythagorean theorem, 299, 404

Q
QR algorithm, 326
QR factorization, 315, 316

full, 318
Quadratic form, 111, 116, 118, 388
Quadratic formula, 18
Quadric form, 388
Quaternions, 327

R
Range, 226
Rank, 44

full column, 296
of matrix product, 113
theorem, 245

Rational number, 13
Real numbers, 14
Real part, 15
Real-time rendering, 85, 178
Reduced row echelon form, 41
Reduced row form, 41
Redundancy test, 208
Redundant vector, 207
Reflection matrix, 313
Regression, 295
Residual, 294
Reverse digraph, 118
Right eigenvector, 332
Roots, 18

of unity, 18
theorem, 18

Rotation, 86
Rotation matrix, 215, 306
Roundoff error, 52
Row operations, 28
Row scaling, 53

Row space, 221
algorithm, 242

S
Scalar, 24, 105, 182
Scalars, 17
Scaling, 85
Schur triangularization theorem, 372
Set, 12, 207

closed, 394
difference, 12
empty, 12
equal, 12
intersection, 12, 206
prescribe, 12
proper, 12
subset, 12
union, 12

Shearing, 86
Similar matrices, 253, 346
Singular

values, 377
vectors, 377

Singular matrix, 118
Singular Value Decomposition, 376
Skew-symmetric, 205
Skew-symmetric matrix, 117, 160
Slack variable, 258
Solution

basic, 259
feasible, 257
general form, 32
genuine, 296
least squares, 296
non-unique, 30
optimal, 259
optimal basic feasible, 261
set, 38
to linear system, 2, 24
to zn = d, 20
trivial, 46
vector, 38

Space
inner product, 399
normed, 392

Span, 201
Spanning set, 203
Spectral radius, 354
Square matrix, 26
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Stable
matrix, 361
stochastic matrix, 223
theorem, 361

Standard
basis, 211
coordinates, 212
form, 14
inner product, 282
norm, 278
vector space, 185

Standard form, 258
State, 88
Stationary vector, 88
Steinitz substitution, 231
Stochastic

stable matrix, 223
Stochastic matrix, 135
Strictly diagonally dominant, 386
Subspace

complement, 234
definition, 198
intersection, 206
invariant, 234
projection, 411, 412
sum, 206, 233
test, 198
trivial, 200

Substochastic matrix, 129
Sum of subspaces, 206, 418
Superaugmented matrix, 124
Supremum, 424
Surfing matrix, 129
Surplus variable, 258
SVD, 376
Symmetric matrix, 110
System

consistent, 33
equivalent, 38
homogeneous, 46
inconsistent, 33
inhomogeneous, 46
linear, 4

standard form, 4
overdetermined, 294

T
Target, 192, 226
Technology tool, 9

Teleportation
parameter, 131
vector, 131

Tensor product
graph, 173
matrix, 161

Toeplitz matrix, 381
Trace, 342
Transform, 85

affine, 178
homogeneous, 197
translation, 197

Transformation, 192
Transition matrix, 88
Transpose, 107

rank, 111
Triangular, 105

lower, 105
strictly, 105, 118
unit, 168
upper, 105, 144, 352, 375

Tridiagonal matrix, 105, 343
eigenvalues, 386

Trivial solution, 46
Tuple

convention, 39
notation, 39

U
Unbiased estimator, 295
Unique reduced row echelon form, 42
Unit vector, 279
Unitary matrix, 304
Upper bound, 424

V
Vandermonde matrix, 28, 159, 442
Variable

bound, 31
free, 31
slack, 258
surplus, 258

Vec operator, 162, 206
Vector

angle between, 289, 403
convergence, 281
coordinates, 212
correction, 129
cross product, 284
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definition, 26, 187
direction, 279
displacement, 186
homogeneous, 178
inequality, 254
limit, 101, 223, 281, 287
linearly dependent, 207
linearly independent, 207
opposite directions, 279
orthogonal, 290, 403
parallel, 290, 291
product, 73
quaternion, 328
redundant, 207
residual, 294
solution, 38
stationary, 88
subtraction, 182

unit, 279
Vector space

abstract, 187
finite-dimensional, 229
geometrical, 182
homogeneous, 184
infinite-dimensional, 229
inner product, 399
laws, 187
normed, 391
of functions, 187
of polynomials, 190, 200
standard, 184

Vertex, 93

W
Walk, 93
Wronskian, 218
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