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Abstract

Recently, Belhenniche et al. proved common fixed point results for Ćirić general-

ized contractions in extended b-metric spaces. In this thesis a notion of generalized

Ćirić type α-F-contraction in setting of double controlled metric space has been

introduced. Our main result is about the existence of common fixed points of

generalized α-F-contraction mappings. Our results generalized the results of Bel-

henniche et al. Several existing results are special case of our results. The proposed

approach is illustrated by some examples. For application purpose existence and

uniqueness results of the solution of Bellman equations, Volterra integral equations

and fractional differential equation has been established.
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Chapter 1

Introduction

1.1 Background

Mathematics is an essential subject of scientific knowledge with the large range

of applications in all aspects of real life. It is regarded as the mother of sciences,

since, it deals with quantitative calculations, logical reasoning, and its evolution

in increasing degrees of idealization and abstraction of its subject matter. It is

further divided into numerous subdivisions, with functional analysis being one of

the most important branch of mathematics.

In functional analysis, one of the main part is fixed point (FP) theory, which

concern with the existence of solution or we can say that existence of fixed point

of certain problem. The fixed point theory has very large number of applications

in various fields of sciences such as, mathematical economics, optimization theory

and approximation theory. Fixed point theory has become one of the most rapidly

increasing research area of mathematics in last 5-7 decades.

Poincare [1], in 1886, initiated the metric fixed point theory. In 1906, Maurice

Frchet [2], a French mathematician, was the first who propose the notion of metric

space. After that, in 1912, Brouwer [3] examined the fixed point problem and

ingrained the fixed point theorem for solving the equation T (c) = c.

The Banach Contraction Principle (BCP) [4], is established by Stefan Banach in

1



Introduction 2

1922, is a major finding. The idea of BCP has grown to be a key component

of fixed point theory. Using this concept, one can guarantee the existence and

uniqueness of fixed points and also learn how to find the fixed point of a given

problem. Since then, many researchers have established the fixed points thoery

particularly in two main sides. Firstly, by stating the conditions on mapping T

and secondly taking the set ℵ as a more general structure. In 1961, Edelstein

[5] firstly generalized the concept of BCP by considering the globally contractive

mapping. In 1965, Presic S.B [6] generalized the BCP to operators defined on

product spaces. In 1968, Kannan [7] changes the BCP mapping from contraction

mapping to Kannan mapping and prove the fixed point results known as Banach-

Kannan contraction principle. In 1969, E. Keeler and A. Meir [8] generalized the

BCP which is stated as, let (ℵ,=) be a complete metric space and T : ℵ → ℵ be

an operator. Suppose that for every ε > 0, ∃ δ(ε) > 0 such that ∀ c1, c2 ∈ ℵ.

ε ≤ =(c1, c2) < ε+ δ(ε) ⇒ =(T c1, T c2) < ε.

Then, F has unique fixed point. Another extension of BCP is done by Nadler [9] ,

in which he has used set valued contraction mapping instead of single valued con-

traction mapping. Also, Wardowski [10], generalized the BCP as, “Suppose (ℵ,=)

be a complete metric space (cMS) and self mapping T be an F-contraction. Then,

T has unique fixed point (UFP)”. In 1972, Chatterjea [11] also generalized the

BCP where he used Chatterjea type contraction mapping instead of contraction

mapping to prove the fixed point results. In 1974, Ćirić [12] proved a theorem

for FP on cMS, which is generalized form of BCP. In [12], Ćirić presented a new

category of contractive mappings in the setting of MS. In general, a Ćirić type

mapping doesn’t need to be continuous, however, it must be continuous at the

fixed point. In 1975, BCP is further generalized by Dass and Gupta [13] as they

used rational contraction mapping to prove fixed point results.

Metric space is very large space as while slightly change in axioms of metric space

may result in, 2-metric spaces [14], cone metric space [15] and many more. In 1989,

Bakhtin [16], generalized the concept of MS and introduced the b-metric spaces

(bMS). Later on, in 1993, Czerwik [17], also work on b-metric space by considering
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the weak triangular inequality to prove fixed points results. Many scholars have

constructed numerous fixed point results using the b-metric. In 1994, Matthews

[18] introduced the partial metric spaces which have the property that self-distance

can’t be zero. In 2017, Kamran et al. [19] generalized the concept of bMS known

as extended b-metric space (EbMS) by further weakning the triangular inequality.

In 2018, Mlaiki et al. [20] gave us novel type of EbMS, that is controlled metric

space CMS and double controlled metric space DCMS [21].

Motivated from the work of Berinde [22, 23], in 2012, a new class of contractions

introduced by Wardowski [10] named as F-contraction. Samet et al. [24], intro-

duced the notion of α-admissible and α-F-contraction mapping, then they proved

some fixed point results for such mappings. Using their idea some authors gave

fixed points results for single and multivalued mappings [25]. Moreover, War-

dowski introduced the α-F-contraction which is weaker than F-contraction. In

2022, Batul et al. [26], used α-F-contraction for finding fuzzy fixed point results

in b-metric space. Also, Sagheer et al. [27], proved some fixed point results on

α-F-contraction multi-valued mappings with uniform spaces.

In this thesis generalized Ćirić type α-F-contraction in the framework of DCMS

has been introduced. Some significant results for this framework are established

and proved. In the continuation, an example and three applications are presented

to support the obtained results.

The rest of thesis is arranged as:

• Chapter-2 is based on some basic definitions and results which will be used

in subsequent chapters. Different generalizations of MS such as EbMS, CMS and

DCMS are presented and elaborated with examples.

• Chapter-3 gives a detailed review of Belhenniche et al. [28], where they used

Ćirić type contraction in EbMS to prove some fixed points results. To elaborate

our results, some interesting examples are given. Applications are also provided

for the validity of main result.

• Chapter-4 includes novel type of contraction known as generalized Ćirić type

α-F-contraction in the setting of DCMS. Some significant FP results are
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established by using this idea. To elaborate the obtained results some examples

and applications are given.

• Chapter-5 includes the conclusion of the thesis.



Chapter 2

Preliminaries

In this chapter, some fundamental definitions from the functional analysis are

presented that will be used in the subsequent chapters. We provide the concepts of

metric space, b-metric space, extended b-metric space, controlled metric space and

double controlled metric space with examples. Also, different type of contraction

mappings are introduced with suitable examples. In the end, we give some classical

fixed points results.

2.1 Metric Space

Metric is an extension of the Euclidean distance derived from the four well-known

features of the Euclidean distance in mathematics. Euclidean metric determines

the distance between two points on a straight line. However, distance other than

straight lines, such as taxicab distances, may exist.

In 1906, Frechet developed the idea of metric space.

Definition 2.1.1.

“A metric space is a pair (ℵ,=), where ℵ is a non-empty set and = is a metric

on ℵ(or distance function on ℵ), that is, a function define on ℵ × ℵ such that

∀ c1, c2, c3 ∈ ℵ we have:

(M1): = is real-valued, finite and non-negative,

5
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(M2): =(c1, c2) = 0 if and only if c1 = c2,

(M3): =(c1, c2) = =(c2, c1), (Symmetry)

(M4): =(c1, c3) ≤ =(c1, c2) + =(c2, c3). (Triangular inequality)”[2]

Example 2.1.2. Consider ℵ = R then the mapping = : ℵ × ℵ → R, defined

as:

=(c1, c2) = |c1 − c2| ∀ c1, c2 ∈ ℵ

is metric on R and (R,ℵ) is a MS.

Example 2.1.3. Consider a real number p ≥ 1 and define a set of real se-

quences as

lp = {ψ = {ψn} :| ψ1 |p + | ψ2 |p +... <∞} .

Define = : lp × lp → R as

=(φ, ϕ) =

(
∞∑
i=1

| φi − ϕi |p
) 1

p

, {φ}, {ϕ} ∈ lp

then, (lp,=) is a MS.

Example 2.1.4. Consider ℵ = R2 then the mapping = : R2×R2 → R defined

as:

=(c1, c2) =
√

(c11 − c21)2 + (c12 − c22)2

∀ c1 = (c1
1, c1

2), c2 = (c2
1, c2

2) ∈ ℵ, is metric on R2 and (R2,=) is a MS.

Definition 2.1.5.

“A mapping T : ℵ → S of a metric space ℵ = (ℵ,=) to S = (S,=1) is continuous

at a point c ∈ ℵ if and only if

cn → c0 implies T cn → T c0.”[2]

Definition 2.1.6.

“A sequence {cn} in a metric space ℵ = (ℵ,=) is said to converge or to be con-

vergent if there is a c ∈ ℵ such that

lim
n→∞

=(cn, c) = 0.
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c is called limit of {cn} and we write

lim
n→∞

cn = c or cn → c

We say that {cn} converges to c or has the limit c. If {cn} is not converges, it is

said to be divergent.”[2]

Example 2.1.7. Consider the set of real numbers R with metric =(c1, c2) =

|c1 − c2| then, the sequence {cn} = 1
n

in ℵ is a convergent sequence.

Definition 2.1.8.

“A sequence {cn} in a metric space ℵ = (ℵ,=) is said to be Cauchy (or funda-

mental) if for every ε > 0 there is an N = N(ε) such that,

=(cm, cn) < ε for every m,n > N.”[2]

Definition 2.1.9.

“A space ℵ is said to be complete if every Cauchy sequence in ℵ converges (that

is, has a limit which is an element of ℵ).[2]”

Example 2.1.10. With usual metric on R the closed interval [0, 1] is complete.

2.2 Some Generalizations of Metric Space

In 1989, Bakhtin [29] introduce the concept of bMS.

Definition 2.2.1.

“Let ℵ be a non-empty set and let b ≥ 1 be a given real number. A function

=b: ℵ × ℵ → [0,∞) is called a b-metric if for all c1, c2, c3 ∈ ℵ the following

conditions are satisfied,

(b1) : =b(c1, c2) = 0 ⇐⇒ c1 = c2,

(b2) : =b(c1, c2) = =b(c2, c1),

(b3) : =b(c1, c3) ≤ b[=b(c1, c2) + =b(c2, c3)].

The pair (ℵ,=b) is called a b-metric space.”
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Example 2.2.2. Consider ℵ = R, the mapping =b : R× R→ R defined by;

=b(c1, c2) = |c1 − c2|2

is a b-metric on R with b = 2.

Example 2.2.3. Let (ℵ,=) be a MS and;

=b(c1, c2) = (=(c1, c2))
p

∀ c1, c2 ∈ ℵ and p > 1 in R. Then,

(ℵ,=b) is bMS with b = 2p−1.

In 2017, Kamran et al. [19] generalized the concept of bMS known as EbMS.

Definition 2.2.4.

“Let ℵ be a non-empty set and Θ : ℵ × ℵ → [1,∞) be a mapping. A function

=Θ : ℵ × ℵ → [0,∞) is called an extended b-metric if ∀ c1,c2, c3 ∈ ℵ, it satisfies:

1): =Θ(c1, c2) ≥ 0,

2): =Θ(c1, c2) ⇐⇒ c1 = c2,

3): =Θ(c1, c2) = =Θ(c2, c1),

4): =Θ(c1, c3) ≤ Θ(c1, c3)[=Θ(c1, c2) + =Θ(c2, c3)].

The pair (ℵ,=Θ) is called an extended b-metric space.”

Remark:

(i): If Θ(c1, c3) = k for k ≥ 1 in Definition 2.2.4, then Definition 2.2.4 coincides

with b-metric space.

(ii): If Θ(c1, c3) = 1 in Definition 2.2.4, then Definition 2.2.4 becomes metric

space.

Example 2.2.5. Consider ℵ = {1, 2, 3, ...}. Define Θ : ℵ × ℵ → [1,∞) and

=Θ : ℵ × ℵ → R+ respectively as:

Θ(c1, c2) =

| c1 − c2 |,3 if c1 6= c2

1, c1 = c2
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and

=Θ = (c1 − c2)
4.

Then, (ℵ,=Θ) is an EbMS.

In 2018, Mlaiki et al. [20] gave us new type of EbMS.

Definition 2.2.6.

“Given κ : ℵ × ℵ → [1,∞), where ℵ is non-empty. Let = : ℵ × ℵ → [0,∞).

Suppose that

(=1) : =(c1, c2) = 0 ⇐⇒ c1 = c2,

(=2) : =(c1, c2) = =(c2, c1),

(=3) : =(c1, c3) ≤ κ(c1, c2)=(c1, c2) + κ(c2, c3)=(c2, c3).

For all c1, c2, c3 ∈ ℵ. Then = is called a CM and (ℵ,=) is called controlled metric

space.”

Remark: Every CMS is generalization of bMS.

Example 2.2.7. Consider ℵ = R, the metric = given as:

=(0, 0) = =(1, 1) = =(2, 2) = 0,

and

=(0, 1) = =(1, 0) = 1, =(0, 2) = =(2, 0) =
1

2
=(1, 2) = =(2, 1) =

2

5
.

Define κ : ℵ × ℵ → [1,∞) by;

κ(0, 0) = 1, κ(1, 1) = κ(2, 2) = 1, κ(0, 2) = 1, κ(1, 2) =
5

4
, κ(0, 1) =

11

10
.

Then, = is a CMS.

Definition 2.2.8.

“Given non-comparable functions κ, κ : ℵ × ℵ → [1,∞). If = : ℵ × ℵ → [0,∞)

satisfies:
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(=1) : =(c1, c2) = 0 ⇐⇒ c1 = c2,

(=2) : =(c1, c2) = =(c2, c1),

(=3) : =(c1, c3) ≤ κ(c1, c2)=(c1, c2) + κ(c2, c3)=(c2, c3),

for all c1, c2, c3 ∈ ℵ. Then = is called DCMS by κ and κ.”[21]

Example 2.2.9. Let ℵ = [0,∞). Define = by,

=(c1, c2) =



0, iff c1 = c2

1
c1
, if c1 ≥ 1 and c2 ∈ [0, 1)

1
c2
, if c2 ≥ 1 and c1 ∈ [0, 1)

1, if not.

Consider κ,κ : ℵ2 → [1,∞) as,

κ(c1, c2) =

c1, if c1, c2 ≥ 1

1 if not.

And

κ(c1, c2) =

1, if c1, c2 < 1

max{c1, c2}, if not.

The conditions (=1) and (=2) hold. Suppose that (=3) is satisfied.

(i): If c1 = c2 then (=3) is satisfied.

(ii): Now suppose c1 6= c2 then,

if c1 ≥ 1 and c2 ∈ [0, 1) or c2 ≥ 1 and c1 ∈ [0, 1), it is easy to see that (=3) hold.

Here we have;

Subcase-1: c1, c2 ≥ 1.

If c3 ≥ 1, (=3) holds, if c1 ∈ [0, 1) then

1 ≤ 1

c1

+ c2
1

c2

,

that is, (=3) is satisfied.

Subcase-2: c1, c2 < 1. If c3 ∈ [0, 1), (=3) holds, if c3 ≥ 1 then
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1 ≤ 1

c3

+ c3
1

c′3

that is, (=3) is satisfied.

In all above cases we deduce that = is double controlled metric.

Remark:

The class of DCMS is larger than the class of controlled metric space, further,

in turn, is larger than EbMS. Moreover, the class of EbMS is larger than class

of b-metric space and all above classes of metric spaces are larger than standard

metric space.

Obviously, every CMS is DCMS but converse is not true. And every EbMS is a

controlled metric and DCMS but converse not hold (Fig. 2.1).

Figure 2.1: Relation between different metric type spaces

2.3 Banach Contraction Principle (BCP) and Some

of it’s Generalizations

A contraction mapping result known as the BCP was first presented by Polish

mathematician Banach in 1922.

Definition 2.3.1.

“A fixed point of a mapping T : ℵ → ℵ of a set ℵ into itself is an c1 ∈ ℵ which is
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mapped onto itself (is “kept fixed” by T ), that is,

T c1 = c1,

the image T c1 coincides with c1.”[2]

In general a mapping may or may not have fixed points, and a fixed point may or

may not be unique.

Example 2.3.2. Let ℵ = R. Define the mapping T : R→ R by T c1 = c1
3.

⇒ c1 = 0,±1

are the fixed points of T . Figure (??) represents the graphical picture of this

mapping.

Graphical representation:

-2.5-2.5 -2-2 -1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5 22 2.52.5

-2.5-2.5

-2-2

-1.5-1.5

-1-1

-0.5-0.5

0.50.5

11

1.51.5

22

2.52.5

00

TT

ff

AA

BB

CC

(-1,-1)

(0,0)

(1,1)

Figure 2.2: Mapping having more than one fixed points

Example 2.3.3. Suppose ℵ = C[0, 1
2
] , the mapping T : R→ R, defined by;

T (c1) = c1
2 + c1 + 1, ∀ c1 ∈ R

has no fixed point.
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Following is graphical representation of functions having no fixed point of the

mapping, T (c1) = c1
2 + c1 + 1, ∀ c1 ∈ R

-1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5

-1.5-1.5

-1-1

-0.5-0.5

0.50.5

11

1.51.5

00

ff
gg

Figure 2.3: Mapping having no fixed point

Example 2.3.4. Let ℵ = R. Define the mapping T : R→ R by

T c1 =
c1

2
∀ c1 ∈ R

has a unique fixed point (Fig 2.4).

-8-8 -6-6 -4-4 -2-2 22 44 66 88

-8-8

-6-6

-4-4

-2-2

22

44

66

88

00

ff

gg

Figure 2.4: Mapping having unique fixed point
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Example 2.3.5. Consider the following trigonometric function

T c1 = tan(c1).

This function has infinitely many fixed points that are shown in graph given below:

Graphical representation

-15-15 -10-10 -5-5 55 1010 1515

-20-20

-15-15

-10-10

-5-5

55

1010

1515

2020

00
ff

gg

Figure 2.5: Mapping having infinitely many fixed point

Definition 2.3.6.

“Let (ℵ,=) be a complete metric space. A mapping T : ℵ → ℵ is a contraction

mapping, or contraction, if, ∃ v ∈ [0, 1) such that

=(T c1, T c2) ≤ v =(c1, c2) ∀ c1, c2 ∈ ℵ”[30]

Example 2.3.7. Let ℵ = C[0, 1
2
] with metric given by

= (c1(t), c2(t)) = max
t∈[o, 1

2
]
| c1(t)− c2(t) | .

Then T : ℵ → ℵ defined by;

T c1(t) = t(c1(t) + 1) ∀ c1 ∈ ℵ

is contraction mapping with contraction constant 1
2
.
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Definition 2.3.8. Banach Contraction Principle

“Consider the metric space ℵ = (ℵ,=), where ℵ 6= ∅. Suppose that ℵ is complete

and let T : ℵ → ℵ be a contraction mapping on ℵ. Then T has precisely one fixed

point.”[2]

Definition 2.3.9.

“A mapping T : ℵ → ℵ is said to be contractive if for c1 6= c2, we have,

=(T (c1), T (c2)) < =(c1, c2)

for all c1, c2 ∈ ℵ.”[31]

Example 2.3.10. Let ℵ = [1,∞) with usual metric. Define T : ℵ → ℵ by

T (c1) = c1 = 1
c1

,

since, lim
n→∞
|1− 1

c1c2
| = 1

then, T is a contractive mapping.

In [12], Ćirić presented a new category of contractive mappings in the setting of

MS. In general, a Ćirić type mapping doesn’t need to be continuous, however, it

must appear to be continuous at a fixed point.

Definition 2.3.11.
“A self-mapping T : ℵ → ℵ on a metric space (ℵ,=) is said to be a Ćirić mapping

if, for some Υ ∈ (0, 1), it satisfies the following inequality, for all c1, c2 ∈ ℵ,

=(T c1, T c2) ≤ Υ max

{
=(c1, c2),=(c1, T c1),=(c2, T c2),

1

2
(=(c1, T c2) + =(c2, T c1))

}
.”

A novel type of contraction, known as an F-contraction, was defined by Wasrdowski

in 2012.

Definition 2.3.12.

“Suppose, F : R+ → R be a function that satisfying the following:

(F-1): F is increasing, i.e., ∀c1, c2 ∈ R+ such that c1 < c2, =⇒ F(c1) < F(c2).

(F-2): For any sequence {cn}∞n=1 of positive real numbers,

lim
n→∞

cn = 0 ⇐⇒ lim
n→∞

F(cn) = −∞
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.

(F-3): There exist k ∈ (0, 1) such that lim
c→0+

(cn)kF(z) = 0.”[10]

Then, the collection of F satisfying above three properties said to be F-mappings.

Definition 2.3.13. “Let (ℵ,=) be a metric space. A mapping T : ℵ → ℵ is

said to be an F-contraction if there exists ζ > 0 such that,

=(T c1, T c2) > 0 =⇒ ζ + F (=(T c1, T c2)) ≤ F (=(c1, c1) ∀ c1, c2 ∈ ℵ and F ∈ F.”

A key result proved by Wardowski’s [10] generalized the BCP in this manner;

Theorem 2.3.14. Let (ℵ,=) be a cMS and T : ℵ → ℵ be an F-contraction.

Then, T has a UFP.

Example 2.3.15. A mapping F : R+ → R be an F-mapping for:

F (c1) = ln(c1) and c1 > 0 satisfies all conditions of F-mapping (2.3.12) and con-

traction condition takes the form:

=(T c1, T c2) ≤ e−τ=(c1, c2),

for all c1, c2 ∈ R and T c1 6= T c2.

Samet et al.[24] in 2012 introduced the notion of α-admissible mapping.

Definition 2.3.16.

“For a non-empty set ℵ, let F : ℵ → ℵ and α : ℵ×ℵ → [0,∞) be given mappings,

then we say that F is α-admissible if for all c1, c2 ∈ ℵ, we have

α(c1, c2) ≥ 1 =⇒ α(Fc1, Fc2) ≥ 1.”

Later in 2016, Aydi[32] generalized the term ”α-admissible” for the pair of mapping

in the manner described below:

Definition 2.3.17.

“For a non-empty set ℵ, let F1, F2 : ℵ → ℵ and α : ℵ × ℵ → [0,∞) be given
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mappings, then we say that (F1, F2) is generalized α-admissible if for all c1, c2 ∈ ℵ,

we have

α(c1, c2) ≥ 1 =⇒ α(F1c1, F2c2) ≥ 1 and α(F2c2, F1c1) ≥ 1.”

Definition 2.3.18.

“Let (ℵ,=) be a metric space and F1, F2 : ℵ → ℵ be self mappings. The pair

(F1, F2) is α-F-contraction if there exists ζ > 0 such that for all c1, c2 ∈ ℵ with

α(c1, c2) ≥ 1

=(F1c1, F2c2) > 0 =⇒ ζ + F (=(F1c1, F2c2)) ≤ F (M(c1, c2)

where,

M(c1, c2) = max

{
=(c1, c2),=(c1, F1c1),=(c2, F2c2),

1

2

[
=(c1, F2c2) + =(c2, F1c1)

]}
.”[10]

Theorem 2.3.19. “Let (ℵ,=) be a complete metric space and F1, F2 : ℵ → ℵ

be such that (F1, F2) is α-F-contraction. Suppose that

(i): (F1, F2) is a generalized α-admissible pair;

(ii): ∃ c0 ∈ ℵ such that α(c0, F1c0) ≥ 1 and α(F1c0, c0) ≥ 1;

(iii): F1 and F2 are continuous.

Then, F1 and F2 have a common fixed point.”[33]



Chapter 3

The Fixed-Point Technique to

Solve Dynamic Problems in

Extended b-Metric Spaces

3.1 Introduction

In this chapter a detailed review of Belhenniche et al. [12] is presented, which is

based on FP results for generalized Ćirić type contraction mappings in EbMS. By

using this contraction some FP results are established.

Lemma 3.1.1. ([34]) Every sequence {cn}n∈N consisting of elements from an

EbMS (ℵ,=Θ), satisfies,

=Θ(c0, ck) ≤
k−1∑
i=0

=Θ(ci, ci+1)
i∏

j=0

Θ(cj, ck)

for each k ∈ N.

Lemma 3.1.2. ([34]) Each sequence {cn}n∈N of elements from an EbMS (ℵ,=Θ),

satisfies the inequality,

=Θ(cn+1, cn) ≤ Υ=Θ(cn, cn−1) for every n ∈ N and Υ ∈ [0, 1),

18
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is a Cauchy sequence.

Theorem 3.1.3. Suppose (ℵ,=Θ) be a complete EbMS with (=Θ) a continu-

ous functional and let F1, F2 : ℵ → ℵ be two continuous self-operators satisfying,

=Θ(F1c1, F2c2) ≤ Υ max

{
=Θ(c1, c2),=Θ(c1, F1c1),=Θ(c2, F2c2),

1

2
[=Θ(c1, F2c2) + =Θ(c2, F1c1)]

}
(3.1)

∀c1, c2 ∈ ℵ, where Υ ∈ (0, 1) such that,

Υ lim
n,m→∞

Θ(cn, cm) < 1,

for any convergent sequence {cn}. Then, the operators F1, F2 have a unique CFP.

Proof. Suppose c0 ∈ ℵ, and define a sequence {cn} as:

c2n+1 = F1c2n and c2n+2 = F2c2n+1, n = 0, 1, 2, 3, ... (3.2)

From (3.1) and (3.2),

=Θ(c2n+1, c2n+2) = =Θ(F1c2n, F2c2n+1)

≤ Υ max

{
=Θ(c2n, c2n+1),=Θ(c2n, F1c2n),=Θ(c2n+1, F2c2n+1),

1

2

[
=Θ(c2n, F2c2n+1) + =Θ(c2n+1, F1c2n)

]}
≤ Υ max

{
=Θ(c2n, c2n+1),=Θ(c2n, c2n+1),=Θ(c2n+1, c2n+2)

1

2

[
=Θ(c2n, c2n+2) + =Θ(c2n+1, c2n+1)

]}
= Υ max

{
=Θ(c2n, c2n+1),=Θ(c2n+1, c2n+2),

1

2
=Θ(c2n, c2n+2)

}
. (3.3)

Consider the following cases:

Case-1

If

max

{
=Θ(c2n, c2n+1),=Θ(c2n+1, c2n+2),

1

2
=Θ(c2n, c2n+2)

}
= =Θ(c2n+1, c2n+2),

then (3.3) ⇒
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=Θ(c2n+1, c2n+2) ≤ Υ=Θ(c2n+1, c2n+2),

which contradict the fact that Υ < 1.

Case-2

If

max

{
=Θ(c2n, c2n+1),=Θ(c2n+1, c2n+2),

1

2
=Θ(c2n, c2n+2)

}
= =Θ(c2n, c2n+1),

From (3.3)

=Θ(c2n+1, c2n+2) ≤ Υ=Θ(c2n, c2n+1). (3.4)

Now by (3.1)

=Θ(c2n+2, c2n+3) ≤ Υ max
{
=Θ(c2n+1, c2n+2)=Θ(c2n+2, c2n+3),

1

2
=Θ(c2n+1, c2n+3)

}
.

Then, we must take into account the following scenarios:

Case-2a

If

max

{
=Θ(c2n+1, c2n+2),=Θ(c2n+2, c2n+3),

1

2
=Θ(c2n+1, c2n+3)

}
= =Θ(c2n+2, c2n+3),

then

=Θ(c2n+2, c2n+3) ≤ Υ=Θ(c2n+2, c2n+3),

contradicting the fact that Υ < 1.

Case-2b

If

max

{
=Θ(c2n+1, c2n+2),=Θ(c2n+2, c2n+3),

1

2
=Θ(c2n+1, c2n+3)

}
= =Θ(c2n+1, c2n+2),

then,
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=Θ(c2n+2, c2n+3) ≤ Υ=Θ(c2n+1, c2n+2). (3.5)

Continuing in the same way

=Θ(cn+1, cn+2) ≤ Υ=Θ(cn, cn+1) ∀n.

Therefore, by Lemma 3.1.2, the above sequence is Cauchy.

Case-2c

If

max

{
=Θ(c2n+1, c2n+2),=Θ(c2n+2, c2n+3),

1

2
=Θ(c2n+1, c2n+3)

}
=

1

2
=Θ(c2n+1, c2n+3),

then,

=Θ(c2n+2, c2n+3) ≤ Υ
1

2
=Θ(c2n+1, c2n+3),

By triangular inequality

1

2
=Θ(c2n+1, c2n+3) ≤ 1

2
Θ(c2n+1, c2n+3)(=Θ(c2n+1, c2n+2)

+ =Θ(c2n+2, c2n+3)).

In this case, we obtain

=Θ(c2n+2, c2n+3) ≤ Υ
1

2
Θ(c2n+1, c2n+3)

(
(=Θ(c2n+1, c2n+2))

+ =Θ(c2n+2, c2n+3)

)
,

=⇒ =Θ(c2n+2, c2n+3)− 1

2
Θ(c2n+1, c2n+3)Υ(=Θ(c2n+2, c2n+3))

≤ 1

2
Θ(c2n+1, c2n+3)Υ(=Θ(c2n+1, c2n+2)),

and hence,

(
1− 1

2
ΥΘ(c2n+1, c2n+3)

)
=Θ(c2n+2, c2n+3)

≤ 1

2
ΥΘ(c2n+1, c2n+3)=Θ(c2n+1, c2n+2).
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Thus, we conclude that

=Θ(c2n+2, c2n+3) ≤ ΥΘ(c2n+1, c2n+3)

2−ΥΘ(c2n+1, c2n+3)
=Θ(c2n+1, c2n+2). (3.6)

Continuing in the same way, =Θ(cn+1, cn+2) ≤ ς=Θ(cn, cn+1) ∀ n ∈ N,

where ς := max
{ ΥΘ(cn,cn+2)

2−ΥΘ(cn,cn+2)
,Υ
}

. Now, we have to show that ∃ Nς ∈ N such that

ς = ς(Nς) ≤ 1 ∀ n ≥ Nς .

By assumption, Υ lim
n,m→∞

Θ(cn, cm) < 1, we have 2−Υ lim
n,m→∞

Θ(cn, cm > 1. From

this,

Υ lim
n,m→∞

Θ(cn, cm) ≤ 2−Υ lim
n,m→∞

Θ(cn, cm).

This implies ς ≤ 1. Hence, =Θ(cn+1, cn+2) ≤ ς=Θ(cn, cn+1) such that ς ∈ [0, 1].

Using Lemma 3.1.2, the sequence {cn}n∈N is Cauchy.

Case-3

If

max

{
=Θ(c2n, c2n+1),=Θ(c2n+1, c2n+2), 1

2
=Θ(c2n, c2n+2)

}
= 1

2
=Θ(c2n, c2n+2),

By (3.5)

=Θ(c2n+1, c2n+2) ≤ Υ
1

2
=Θ(c2n, c2n+2) (3.7)

Using triangular inequality

1

2
=Θ(c2n, c2n+2) ≤ 1

2
Θ(c2n, c2n+2)

(
=Θ(c2n, c2n+1) + =Θ(c2n+1, c2n+2)

)
,

in this case, we obtain

=Θ(c2n+1, c2n+2) ≤ Θ(c2n, c2n+2)Υ

2

(
=Θ(c2n, c2n+1) + =Θ(c2n+1, c2n+2)

)
.

=Θ(c2n+1, c2n+2)− Θ(c2n, c2n+2)Υ

2
=Θ(c2n+1, c2n+2) ≤ Θ(c2n, c2n+2)Υ

2

(
=Θ(c2n, c2n+1),

and hence,

(
1− Θ(c2n, c2n+2)Υ

2

)
=Θ(c2n+1, c2n+2) ≤ Θ(c2n, c2n+2)Υ

2
=Θ(c2n, c2n+1).
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Thus, we conclude that

=Θ(c2n+1, c2n+2) ≤ Θ(c2n, c2n+2)Υ

2−Θ(c2n, c2n+2)Υ
=Θ(c2n, c2n+1). (3.8)

Now, by using (3.1)

=Θ(c2n+2, c2n+3) ≤ Υ max

{
=Θ(c2n+1, c2n+2)=Θ(c2n+2, c2n+3),

1

2
=Θ(c2n+1, c2n+3)

}
.

Then, we have three cases:

Case-3a

If

max

{
=Θ(c2n+1, c2n+2),=Θ(c2n+2, c2n+3),

1

2
=Θ(c2n+1, c2n+3)

}
= =Θ(c2n+2, c2n+3),

then

=Θ(c2n+2, c2n+3) ≤ Υ=Θ(c2n+2, c2n+3),

which contradicts the fact that Υ < 1.

Case-3b

If

max

{
=Θ(c2n+1, c2n+2),=Θ(c2n+2, c2n+3),

1

2
=Θ(c2n+1, c2n+3)

}
= =Θ(c2n+1, c2n+2),

then

=Θ(c2n+2, c2n+3) ≤ Υ=Θ(c2n+1, c2n+2), (3.9)

hence by Lemma 3.1.2, above sequence is Cauchy.

Case-3c

If

max

{
=Θ(c2n+1, c2n+2),=Θ(c2n+2, c2n+3),

1

2
=Θ(c2n+1, c2n+3)

}
=

1

2
=Θ(c2n+1, c2n+3),
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then

=Θ(c2n+2, c2n+3) ≤ Υ
1

2
=Θ(c2n+1, c2n+3).

After calculation,

=Θ(c2n+2, c2n+3) ≤ Θ(c2n+1, c2n+3)Υ

2−Θ(c2n+1, c2n+3)Υ
=Θ(c2n+1, c2n+2). (3.10)

By proceeding similarly and using (3.8) and (3.10), it follows that

=Θ(cn+1, cn+2) ≤ ς=Θ(cn, cn+1) ∀ n ∈ N, where

0 < ς(n) :=
Θ(cn, cn+2)Υ

2−Θ(cn, cn+2)Υ
< 1.

Again by Lemma 3.1.2, the above sequence {cn} is Cauchy.

Moreover, in all above cases, the sequence {cn} is Cauchy. By completeness of ℵ,

∃ c1∗ ∈ ℵ such that =(cn, c1
∗)→ 0 as n→∞.

Then, it follows that =(c2n, c1
∗)→ 0 as n→∞.

From the continuity of F1, we have that c2n+1 = F1c2n as n → ∞ then, c1
∗ =

F1c1
∗.

At the same time, we have =(c2n+1, c1
∗)→ 0 as n→∞.

Using continuity of F2, we have c2n+1 = F2c2n as n→∞ then, c1
∗ = F2c1

∗.

Hence, c1
∗ is CFP of the pair (F1, F2).

Now, to check uniqueness of c1
∗. Suppose that c2

∗ ∈ ℵ is another CFP of pair

(F1, F2), then,

=Θ(c1
∗, c2

∗) ==Θ(F1c1
∗, F2c2

∗)

≤Υ max

{
=Θ(c1

∗, c2
∗),=Θ(c1

∗, F1c1
∗),=Θ(c2

∗, F2c2
∗),

1

2

[
=Θ(c1

∗, F2c2
∗) + =Θ(c2

∗, F1c1
∗)
]}

≤Υ max

{
=Θ(c1

∗, c2
∗),=Θ(c1

∗, c1
∗),=Θ(c2

∗, c2
∗),

1

2

[
=Θ(c1

∗, c2
∗) + =Θ(c2

∗, c1
∗)
]}

=Υ=Θ(c1
∗, c2

∗).

This implies that c1
∗ = c2

∗.

If we consider Θ(c1, c1) = b ≥ 1, then we have the following;
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Corollary 3.1.4. Suppose (ℵ,=Θ) be a complete bMS with (=Θ) a continuous

functional and let F1, F2 : ℵ → ℵ be two continuous self-operators satisfying,

=Θ(F1c1, F2c2) ≤ Υ max

{
=Θ(c1, c2),=Θ(c1, F1c1),=Θ(c2, F2c2),

1

2
[=Θ(c1, F2c2) + =Θ(c2, F1c1)]

}
(3.11)

∀c1, c2 ∈ ℵ, where Υ ∈ (0, 1) such that,

Υ b < 1,

for any convergent sequence {cn}. Then, the operators F1, F2 have a unique CFP.

Now, Theorem 3.1.3 can be proved by dropping the continuity of operators in the

following way:

Theorem 3.1.5. Suppose (ℵ,=Θ) be a complete EbMS where (=Θ) is contin-

uous and let F1, F2 : ℵ → ℵ be two self-operators satisfying,

=Θ(F1c1, F2c2) ≤ Υ max

{
=Θ(c1, c2),=Θ(c1, F1c1),=Θ(c2, F2c2),

1

2
[=Θ(c1, F2c2) + =Θ(c2, F1c1)]

}
(3.12)

∀c1, c2 ∈ ℵ, where Υ ∈ (0, 1) is such that,

Υ lim
n,m→∞

Θ(cn, cm) < 1,

for any convergent sequence {cn}. Then, the operators F1, F2 have a unique CFP.

Proof. Preceding as in Theorem 3.1.3 we can prove sequence {cn} converges to

c1
∗.

Since, the operators F1 and F2 are not continuous. Suppose, =Θ(c1
∗, F1c1

∗) =

h > 0. We have following:

h = =Θ(c1
∗, F1c1

∗)

≤ Θ(c1
∗, F1c1

∗)(=Θ(c1
∗, c2n+2) + =Θ(c2n+2, F1c1

∗))

≤ Θ(c1
∗, F1c1

∗)=Θ(c1
∗, c2n+2) + Θ(c1

∗, F1c1
∗)=Θ(F2c2n+1, F1c1

∗) (3.13)

As,

=Θ(F2c2n+1, F1c1
∗) ≤ Υ max

{
=Θ(c2n+1, c1

∗),=Θ(c2n+1, F2c2n+1),=Θ(c1
∗, F1c1

∗),
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[
=Θ(c2n+1, F1c1

∗) + =Θ(c1
∗, F2c2n+1)

]
2

}
≤ Υ max

{
=Θ(c2n+1, c1

∗),=Θ(c2n+1, c2n+2),=Θ(c1
∗, F1c1

∗),[
=Θ(c2n+1, F1c1

∗) + =Θ(c1
∗, c2n+2)

]
2

}
.

Using this in (3.13) and taking limit n→∞

=Θ(c1
∗, F1c1

∗) ≤ Θ(c1
∗, F1c1

∗)=Θ(c1
∗, c2n+2) + ΥΘ(c1

∗, F1c1
∗)=Θ(c1

∗, F1c1
∗)

≤ Θ(c1
∗, F1c1

∗)=Θ(c1
∗, c2n+2) + Θ(c1

∗, F1c1
∗)Υh.

From the last inequality, we obtain

h ≤ Θ(c1
∗, F1c1

∗)=Θ(c1
∗, c2n+2) + Θ(c1

∗, F1c1
∗)Υh.

Consider Θ(c1
∗, F1c1

∗) = 1 and since lim
n→∞

=Θ(c1
∗, c2n+2) = 0, we have

h ≤ Υh

it follows that Υ ≥ 1 and, hence, a contraction. Therefore c1
∗ = F1c1

∗.

In the same way, we obtain c1
∗ = F2c1

∗.

Hence, c1
∗ is common fixed point for the pair (F1, F2).

Uniqueness can be proved in the same way as in Theorem 3.1.3.

If we consider Θ(c1, c1) = b ≥ 1, then we have the following;

Corollary 3.1.6. Suppose (ℵ,=Θ) be a complete bMS where (=Θ) is contin-

uous and let F1, F2 : ℵ → ℵ be two self-operators satisfying,

=Θ(F1c1, F2c2) ≤ Υ max

{
=Θ(c1, c2),=Θ(c1, F1c1),=Θ(c2, F2c2),

1

2
[=Θ(c1, F2c2) + =Θ(c2, F1c1)]

}
(3.14)

∀ c1, c2 ∈ ℵ, where Υ ∈ (0, 1) is such that,

Υ b < 1,

for any convergent sequence {cn}. Then, the operators F1, F2 have a unique CFP.
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Now, by considering F1 = F2 = F , a generalization of Ćirić type contraction is

established in EbMS.

Theorem 3.1.7. Suppose (ℵ,=Θ) be a complete EbMS such that (=Θ) is con-

tinuous and let F : ℵ → ℵ is continuous mapping such that:

=Θ(Fc1, Fc2) ≤ Υ max

{
=Θ(c1, c2),=Θ(c1, Fc1),=Θ(c2, Fc2),

1

2
[=Θ(c1, Fc2) + =Θ(c2, Fc1)]

}
(3.15)

∀ c1, c2 ∈ ℵ, where Υ ∈ (0, 1), and, for each c0 ∈ ℵ, Υ lim
n,m→∞

Θ(cn, cm) < 1.

Then, F has a UFP.

Proof. Can be followed by taking F1 = F2 = F in Theorem 3.1.3.

If we consider Θ(c1, c1) = b ≥ 1, then we have the following;

Corollary 3.1.8. Suppose (ℵ,=Θ) be a complete bMS such that (=Θ) is con-

tinuous and let F : ℵ → ℵ is continuous mapping such that:

=Θ(Fc1, Fc2) ≤ Υ max

{
=Θ(c1, c2),=Θ(c1, Fc1),=Θ(c2, Fc2),

1

2
[=Θ(c1, Fc2) + =Θ(c2, Fc1)]

}
(3.16)

∀ c1, c2 ∈ ℵ, where Υ ∈ (0, 1), and, for each c0 ∈ ℵ,

Υb < 1.

Then, F has a UFP.

Example 3.1.9. Suppose ℵ = [0,∞), and define =Θ : ℵ × ℵ → R, and

Θ : ℵ × ℵ → [1,∞) by:

=Θ(c1, c2) := (c1 − c2)
2, Θ(c1, c2) := c1 + c2 + 1,

then, (ℵ,=Θ) is a complete (EbMS).

Define F1 and F2 : ℵ → ℵ by F1c1 = c1
2

, F2c1 = c1
4

respectively.

Now =Θ(F1c1, F2c2) = =Θ

(c1
2
,
c2

4

)2
=

c1
2

4
+

c2
2

16
− c1c2

4
.

Also, M(c1, c2) = max

{
=Θ(c1, c2),=Θ(c1, F1c1),=Θ(c2, F2c2),
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1

2

[
=Θ(c1, F2c2) + =Θ(c2, F1c1)

]}
= =Θ(c1, c2).

Since, 1
2

[
=Θ(c1, F2c2) + =Θ(c2, F1c1)

]
= 5c12

8
+ 17c22

32
− 3c1c2

4
, we may write

=Θ(F1c1, F2c2) =
c1

2

4
+

c2
2

16
− c1c2

4
=

1

2

(
c1

2

2
+

c2
2

8
− c1c2

2

)

≤ 1
2

(
1
2
(=Θ(c1, F2c2) + =Θ(c2, F1c1))

)
≤ 1

2
M(c1, c2).

Therefore, all axioms of Theorem 3.1.3 are satisfied, hence 0 is CFP of F1 and F2.

3.2 Applications

Current section include some applications of above theorem to show the fixed

point existence and uniqueness of Volterra-type integral equation, system of non-

linear fractional differential equation (FDE) and dynamic programming Bellman’s

equation.

3.2.1 The Existence of a Solution for Integral Equations

of the Volterra type

The concept of integral equations is very essential in applied mathematics. At the

end of 19th century Vito Volterra proposed the concept of integral equation of

Volterra type, later on, Traian Lalescu, worked on it in 1912 [35].

Integral equations of Volterra type are used in many physical areas, including

demography, actuarial studeis, radiative equilibrium [36, 37]. Recently, numerous

intriguing approaches for solving Volterra integral equations, such as the power-

series approach [38], homotopy perturbation approach, block by block approach,

and method of expansion [39], have been developed.

Consider the integral equation of Volterra type:
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c1(q) =

∫ q

0

J(q, s, c1(s))ds+ w(q), q ∈ [0, 1]. (3.17)

Define the operator L : C([0, 1],Rn)→ C([0, 1],Rn),

Lc1(q) =

∫ q

o

J(q, s, c1(s))ds+ w(q), q ∈ [0, 1].

Theorem 3.2.1. Suppose the Equation (3.17) meets the conditions, given

below:

(i): J : [0, 1]× [0, 1]× Rn → Rn and w : [0, 1]→ Rn are continuous;

(ii): J(q, s, .) : Rn → Rn, is increasing for each q ∈ [0, 1]and

0 ≤ s ≤ 1;

(iii): ∀ q, and s ∈ [0, 1], ∃ 0 < Υ < 1;

|J(q, s, c1)− J(q, s, c2)| ≤ ΥM(c1, c2),

such that, M(c1, c2) = max

{
‖c1 − c2‖, ‖c1 − Lc1‖, ‖c2 − Lc2‖, 1

2

(
‖c1 − Lc2‖ +

‖c2 − Lc1‖
)}

for q, s ∈ [0, 1].

Then, (3.17) has a unique solution.

Proof. Suppose ℵ = C([0, 1],Rn) is equipped with extended b-metric =(c1, c2) =

‖c1 − c2‖C = sup
q∈[0,1]

|c1(q)− c2(q)|2, where Θ : ℵ × ℵ → [1,∞) defined as;

Θ(c1, c2) = 2‖c1(q)‖+ 3‖c2(q)‖+ 1.

Assume that Υ limn,m→∞Θ(cn, cm) < 1

From (c1 − c2)
2 ≥ 0, we obtain;

1

4
(c1

2 + c2
2) ≥ 1

2
c1c2. (3.18)

Now

|Lc1(q)− Lc2(q)|2 ≤
∫ q

0

|J(q, s, c1(s))− J(q, s, c2(s))|2ds
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≤ Υ2

∫ q

0

max

{
|c1(s)− c2(s)|2, |c1(s)− Lc1(s)|2, |c2(s)− Lc2(s)|2,

1

4

[
|c1(s)− Lc2(s)|+ |c2(s)− Lc1(s)|

]2}
ds

|Lc1(q)− Lc2(q)|2 ≤ Υ2

∫ q

0

max

{
|c1(s)− c2(s)|2, |c1(s)− Lc1(s)|2, |c2(s)− Lc2(s)|2,

1

4

(
c1(s)− c2(s)

)2
+

1

2

(
(c1(s)− Lc2(s))(c2(s)− Lc1(s))+

1

4

(
c2(s)− Lc1(s)

)2}
ds

≤ Υ2

∫ t

0

max

{
|c1(s)− c2(s)|2, |c1(s)− Lc2(s)|2, |c2(s)− Lc2(s)|2,

1

2

[
|c1(s)− Lc2(s)|2 + |c2(s)− Lc1(s)|2

]}
ds.

Since, ‖c1‖C = sup
q∈[0,1]

{|c1(q)|2}, taking sup
q∈[0,1]

in above inequality,

sup
q∈[0,1]

|Lc1(q)− Lc2(q)|2 ≤ Υ2

∫ q

0

max sup
q∈[0,1]

{
|c1 − c2|2, |c1 − Lc1|2, |c2 − Lc2|2,

1

2

[
|c1 − Lc2|2 + |c2 − Lc1|2

]}
ds

‖Lc1(q)− Lc2(q)‖C ≤ Υ2

∫ q

0

max

{
‖c1 − c2‖C , ‖c1 − Lc1‖C , ‖c2 − Lc2‖C ,

1

2

[
‖c1 − Lc2‖C + ‖c2 − Lc1‖C

]}
ds

=Θ(Lc1, Lc2) ≤ Υ2 max

{
=(c1, c2),=(c1, Lc1),=(c2, Lc2),

1

2

(
=(c1, Lc2) + =(c2, Lc1)

)}
=Θ(Lc1, Lc2) ≤ Υ2M(c1, c2)

Now 0 < α = Υ2 < 1, therefore

=Θ(Lc1, Lc2) ≤ αM(c1, c2)

for each c1, c2 ∈ ℵ. Conclusion follows from Theorem 3.1.3.
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3.2.2 The Occurrence of a Common Solution to a Set of

Nonlinear Fractional Differential Equation

Because of the demands of many real-world applications, fractional calculus of

FDE is a powerful instrument in the domain of mathematics.

In current application, we use Theorem 3.1.3 to show the existence of solution

for a nonlinear FDE system of the Caputo type derivative.

Let y : [0,∞) → R be a continuous function. The Caputo derivative of order

Ψ > 0 of the function y is:

cDΨ(y(q)) :=
1

Γ(k −Ψ)

∫ q

o

(q− s)k−Ψ−1g(k)(s)ds (k − 1 < Ψ < k, k = [Ψ] + 1),

(3.19)

where [Ψ], Γ denote the integer component of R+, and the Gamma function re-

spectively ([40]).

In current section, we demonstrate how Theorem 3.1.3 can be used to demon-

strate the presence of one common solution for all nonlinear FDE system,
cDΨ(c1(q)) + p1(q, c1(q)) = 0

cDΨ(c2(q)) + p2(q, c2(q)) = 0

(3.20)

for q ∈ [0, 1],Ψ < 1, with the conditions at boundary:

c1(0) = 0 = c1(1),

c2(0) = 0 = c2(1),

(3.21)

where c1 ∈ C([0, 1],R), p1, p2 : [0, 1]× R → R are continuous functions, and cDΨ

is the Caputo derivative of order Ψ. Also, Green function of (3.20) is given in [41]

as:

G(q, s) =


(q(1−s))γ−1−(q−s)γ−1

Γ(γ)
, if 0 ≤ s ≤ q ≤ 1,

(q(1−s))γ−1

Γ(γ)
, if 0 ≤ q ≤ s ≤ 1.

Theorem 3.2.2. Given a system of nonlinear FDE (3.20), which satisfies:

(i): F1, F2 : C([0, 1],R)→ C([0, 1],R)
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are defined as follows:

F1c1 =
∫ 1

0
G(q, s)p1(s, c1(s))ds,

F2c2 =
∫ 1

0
G(q, s)p2(s, c2(s))ds;

(3.22)

(ii): |p(q, c1)− p(q, c2)| ≤ 1
Ω
M(c1, c2) ∀ q ∈ [0, 1],Ω > 1, c1, c2 ∈ R

where,

M(c1, c2) ≤ Υ max

{
=(c1, c2),=(c1, F1c1),=(c2, F2c2),

1

2
(=(c1, F2c2) + =(c2, F1c1))

}
.

Then, the Equation (3.20) has unique solution.

Proof. Suppose ℵ = C([0, 1],R) with the Bielecki norm

=Θ(c1, c2) = ‖c1‖ = sup
q∈[0,1]

{
|c1(q)|e−Ωq

}
with Ω > 1

and Θ : ℵ×ℵ → [1,∞) is given by Θ(c1, c2) = |c1(q)|+ 2|c2(q)|+ 1. Assume that

Υ lim
n,m→∞

Θ(cn, cm) < 1.

It is easy to conclude that (ℵ,=Θ) is complete EbMS.

It is obvious that c1
∗ ∈ ℵ is a common solution for Caputo derivative (3.20) iff

c1
∗ ∈ ℵ is a common solution for the (3.22), ∀ q ∈ [0, 1]. Then, (3.20) can be

solved to find an element c1
∗ ∈ ℵ, such that c1

∗ is a CFP for the operators F1 and

F2.

By (i) and (ii);

|F1c1(q)− F2c1(q)|2 =
∣∣∫ 1

0

G [p1(q, c1(q))− p2(q, c2(q)]=q
∣∣2

≤
(∫ 1

0

G(q, s)=q
)2 ∫ 1

0

|p1(q, c1(q))− p2(q, c2(q))|2=q

≤ 1

Ω2
|M(c1, c2)e

−Ωq|2e2Ωq

(∫ 1

0

G(q, s)=q
)2

.

Now

|[F1c1(q)− F2c1(q)]e−Ωq|2 ≤ 1

Ω2
|M(c1, c2)e

−Ωq|2
(∫ 1

0

G(q, s)=s
)2

. (3.23)
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By taking sup
q∈[0,1]

in above inequality, we get

| sup
q∈[0,1]

{(F1c1(q)− F2c1(q))eΩq}|2 ≤ 1

Ω2
sup

q∈[0,1]

|M(c1, c2))e
Ωq|2 sup

q∈[0,1]

{(∫ 1

0

G(q, s)=s
)2
}

≤ 1

Ω2
sup

q∈[0,1]

|M(c1, c2))e
Ωq|2.

Then,

‖F1c1 − F2c2‖ ≤
1

Ω
‖M(c1, c2)‖. (3.24)

For 0 < Υ = 1
Ω
< 1, using Theorem 3.1.3, there exist c1

∗ ∈ ℵ as a CFP of the

operators F1 and F2.

3.2.3 An Existence of Solution to the Dynamic Program-

ming Equation

Suppose that ℵ is a state space and set of control values U(c1) ⊂ U. Let M be

the set of all functions % : ℵ → U with %(c1) ∈ U(c1) ∀ c1 ∈ ℵ, and M is said to

be “stationary policy”. Suppose B(ℵ) be the set of real-valued bounded functions

S : ℵ → R and Θ : ℵ × ℵ → [1,∞). For each policy % ∈ M, assume that the

mapping F% : B(ℵ)→ B(ℵ) defined as:

F%S(c1) = H(c1, %(c1), S) for all c1 ∈ ℵ.

Where H : ℵ × U×B(ℵ)→ R.

We also suppose mapping F : B(ℵ)→ B(ℵ) defined as:

FS(c1) = inf
u∈U(c1)

{H(c1, u, S)} = min
%∈M

F%S(c1) for all c1 ∈ ℵ.

Now, the pair (B(ℵ), ‖.‖Θ), such that

‖S‖Θ = sup
c1∈ℵ
|S(c1)|2, S ∈ B(ℵ) (3.25)

is complete EbMS.
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We find the optimal cost of the function J∗ ∈ B(ℵ) as,

S(c1) = inf
u∈U(c1)

{H(c1, u, S)} ∀c1 ∈ ℵ. (3.26)

This is known as the Bellman equation [42]. Our goal of this section is to apply

Theorem (3.1.3) to determine the UFP of F within B(ℵ). The following supposi-

tions are required:

A1): (Well posedness). ∀ S ∈ B(ℵ), and for all % ∈ M, we have that F%S ∈ B(ℵ)

and FS ∈ B(ℵ).

A2): (Monotonicity). If S, S′ ∈ B(ℵ), and S ≤ S′, then

H(c1, u, S) ≤ H(c1, u, S
′) ∀ c1 ∈ ℵ, u ∈ U

A3): (Attainability). ∀ S ∈ B(ℵ), ∃ % ∈ M, such that F%S = FS.

Theorem 3.2.3. Suppose that the Bellman equation meets the following cri-

teria:

(i):F% and F are monotone;

(ii):F% : B(ℵ)→ B(ℵ) is a Ćirić type contraction mapping.

Then, there is just one solution to the Bellman equation in (B(ℵ),=).

Proof. Suppose B(ℵ) be an EbMS with ‖J‖ = sup
c1∈ℵ
{|S(c1)|2} and

Θ : ℵ×ℵ → [1,∞) defined by Θ(S, S′) := 2|S(c1)|+ 3|S′(c1)|+ 1 with the assump-

tion that Υ lim
n,m→∞

Θ(Sn, S
′
m) < 1.

Suppose the operator F : B(ℵ)→ B(ℵ) defined as:

FS(c1) = inf
%∈U(c1)

{H(c1, u, S)} ∀ c1 ∈ ℵ.

As, (a− b)2 ≥ 0, we can write,

1

4
(a2 + b2) ≥ 1

2
ab. (3.27)

Now, for operator F;

|FS(c1)− FS′(c1)|2 ≤ |H(c1, u,S)− H(c1, u,S
′)|2
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≤ Υ2

∣∣∣∣max

{
|S(c1)− S′(c1)|, |S(c1)− F%S(c1)|, |S′(c1)− F%S′(c1)|,

1

2

(
|S(c1)− F%S′(c1)|+ |S′(c1)− F%S(c1)|

)}∣∣∣∣2
≤ Υ2 max

{
|S(c1)− S′(c1)|2, |S(c1)− F%S(c1)|2, |S′(c1)− F%S′(c1)|2,

|1
2

(
|S(c1)− F%S′(c1)|+ |S′(c1)− F%S(c1)|

)
|2
}

≤ Υ2 max

{
|S(c1)− S′(c1)|2, |S(c1)− F%S(c1)|2, |S′(c1)− F%S′(c1)|2,

1

4

[
(S(c1)− F%S′(c1))2 + (S′(c1)− F%S(c1))

2

+ 2
(
(S(c1)− F%S′(c1))(S′(c1)− F%S(c1))

)]}
|FS(c1)− FS′(c1)|2 ≤ Υ2 max

{
|S(c1)− S′(c1)|2, |S(c1)− F%S(c1)|2, |S′(c1)− F%S′(c1)|2,

1

4

[
(S(c1)− F%S′(c1))2 + (S′(c1)− F%S(c1))

2
]

+
1

2

[(
(S(c1)− F%S′(c1))(S′(c1)− F%S(c1))

)]}
.

Moreover, from the above, by using F%S(c1) ≥ FS(c1), and (3.27), we obtain

|FS(c1)− FS′(c1)|2 ≤ Υ2 max

{
|S(c1)− S′(c1)|2, |S(c1)− F%S(c1)|2, |S′(c1)− F%S′(c1)|2,

+
1

2

[
|S(c1)− F%S′(c1)|2 + |S′(c1)− F%S(c1)|2

]}
≤ Υ2 max

{
‖S− S′‖Θ, ‖S− F%S‖Θ, ‖S′ − F%S′‖Θ,

+
1

2

[
‖S− F%S′‖Θ + ‖S′ − F%S‖Θ

]}
≤ Υ2 max

{
‖S− S′‖Θ, ‖S− FS‖Θ, ‖S′ − FS′‖Θ,

+
1

2

[
‖S− FS′‖Θ + ‖S′ − FS‖κ

]}
≤ Υ2 max

{
‖S− S′‖Θ, ‖S− FS‖Θ, ‖S′ − FS′‖Θ,

+
1

2

[
‖S− FS′‖Θ + ‖S′ − FS‖Θ

]}
|FS(c1)− FS′(c1)|2 ≤ Υ2M(S,S′),

for any c1 ∈ ℵ. For α such that 0 < α = Υ2 < 1,

‖FS− FS′‖ ≤ αM(S, S′)

=(FS, FS′) ≤ αM(S, S′)
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∀ S, S′ ∈ B(ℵ).

Conclusion follows from Theorem 3.1.3.



Chapter 4

The Fixed Point Result for

Generalized α-F-Contractions in

Double Controlled Metric Spaces

4.1 Preliminaries

Current chapter includes FP results in DCMS via generalized α-F-contraction

mappings. An example is provided to validate the main result. Also some appli-

cations are provided for implementation of the main result.

Definition 4.1.1.

Given a non-empty set ℵ, let

F1, F2 : ℵ → ℵ and α : ℵ × ℵ → [0,∞) be given mappings, then we say that

(F1, F2) is generalized α-admissible if ∀ c1, c2 ∈ ℵ,

α(c1, c2) ≥ 1 =⇒ α(F1c1, F2c2) ≥ 1 and α(F2c2, F1c1) ≥ 1. (4.1)

Definition 4.1.2.

Suppose that (ℵ,=) be a DCMS. A pair of self mapping F1, F2 : ℵ → ℵ is called

generalized Ćirić type α-F -contraction if ∃ ζ > 0 such that ∀ c1, c2 ∈ ℵ,

37
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=(F1c1, F2c2) > 0 =⇒ ζ + F (α(c1, c2)=(F1c1, F2c2))

≤ F(M(c1, c2)) (4.2)

where

M(c1, c2) = max

{
=(c1, c2),=(c1, F1c1),=(c2, F2c2),

1

2

[
=(c1, F2c2)+=(c2, F1c1)

]}
,

and F ∈ F.

Theorem 4.1.3. Suppose that (ℵ,=) be a complete DCMS such that = is

continuous and F1, F2 : ℵ → ℵ be two self-operators satisfying:

(i): The pair (F1, F2) is generalized Ćirić type α-F-contraction,

(ii): ∃ c0 ∈ ℵ such that α(c0, F1c0) ≥ 1 and α(F1c0, c0) ≥ 1,

(iii): F1 and F2 are continuous,

(iv): for any convergent sequence {cn},

sup
l≥1

lim
i→∞

κ(ci+1, ci+2)κ(ci+1, c2n+l)

κ(ci, ci+1)
< 1. (4.3)

Also, suppose

lim
n,m→∞

κ(cn, cm) ≤ 1 and lim
n,m→∞

κ(cn, cm) ≤ 1.

Then, F1 and F2 have a unique CFP.

Proof. Consider c0 ∈ ℵ such that α(c0, Fc0) ≥ 1 and α(Fc0, c0) ≥ 1. Take

c1 = F1c0 and c2 = F2c1. By the induction, construct the sequence {cn}, defined

as follows:

c2n+1 = F1c2n and c2n+2 = F2c2n+1 ∀ n = 0, 1, 2, 3, .... (4.4)

Suppose that zn = =(cn, cn+1) for n ≥ 0.

Now, divide the proof into three parts:
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Part-1

To prove α(cn, cn+1) ≥ 1 and α(cn+1, cn) ≥ 1 ∀ n ≥ 0.

Since α(c0, c1) ≥ 1 and α(c1, c0) ≥ 1 and (F1, F2) is a generalized α-admissible

pair of mapping. So

α(c1, c2) = α(F1c0, F2c1) ≥ 1 and α(c2, c1) = α(F2c1, F1c0) ≥ 1.

Also,

α(c3, c2) = α(F1c2, F2c1) ≥ 1 and α(c2, c3) = α(F2c1, F1c2) ≥ 1.

Proceeding in this way

α(cn, cn+1) ≥ 1 and α(cn+1, cn) ≥ 1 ∀ n = 0, 1, 2, ...

Part-2

We have to prove that

lim
n→∞

zn = 0 ∀ n ∈ ℵ.

If =(c2n+1, c2n+2) = 0 for some n, then we have to prove that =(c2n+2, c2n+3) = 0.

Argue by the contradiction that,

=(c2n+2, c2n+3) = =(F2c2n+1, F1c2n+2) > 0.

Since, α(c2n+1, c2n+2) ≥ 1,

from contraction condition (4.2)

ζ + F(=(c2n+2, c2n+3)) = ζ + F(=(F2c2n+1, F1c2n+2))

≤ ζ + F(α(c2n+1, c2n+2)=(F2c2n+1, F1c2n+2))

≤ F(M(c2n+1, c2n+2)). (4.5)

Now M(c2n+1, c2n+2) = max{=(c2n+1, c2n+2),=(c2n+1, F2c2n+1),=(c2n+2, F1c2n+2),
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1

2
[=(c2n+1, F1c2n+2) + =(c2n+2, F2c2n+1)]}

M(c2n+1, c2n+2) = max{=(c2n+1, c2n+2),=(c2n+1, c2n+2),=(c2n+2, c2n+3),

1

2
[=(c2n+1, c2n+3) + =(c2n+2, c2n+2)]}

M(c2n+1, c2n+2) = max{0, 0,=(c2n+2, c2n+3),
1

2
[=(c2n+1, c2n+3) + 0]}

==(c2n+2, c2n+3).

Then, from (4.5)

ζ + F(=(c2n+2, c2n+3)) ≤ F(=(c2n+2, c2n+3)),

which leads to contradiction, so =(c2n+2, c2n+3) = 0.

Finally, we have,

c2n+1 = c2n+2 = F2c2n+1 and c2n+1 = c2n+3 = F1c2n+2 = F1c2n+1.

Hence, c2n+1 is a CFP of F1 and F2.

Similarly, if =(c2n+2, c2n+3) = 0, then c2n+2 is CFP of F1 and F2 and this complete

the proof.

Now, let =(c2n+1, c2n+2) > 0

Since, α(c2n, c2n+1) ≥ 1 and =(c2n+1, c2n+2) = =(F1c2n, F2c2n+1)) > 0.

(4.2) =⇒

ζ + F(=(c2n+1, c2n+2)) = ζ + F(=(F1c2n, F2c2n+1))

≤ ζ + F(α(c2n, c2n+1)=(F1c2n, F2c2n+1))

≤ F(M(c2n, c2n+1)). (4.6)

Now

M(c2n, c2n+1) = max
{
=(c2n, c2n+1),=(c2n, F1c2n),=(c2n+1, F2c2n+1),

{=(c2n, F2c2n+1) + =(c2n+1, F1c2n)}
2

}
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M(c2n, c2n+1) = max
{
=(c2n, c2n+1),=(c2n, c2n+1),=(c2n+1, c2n+2),

{=(c2n, c2n+2) + =(c2n+1, c2n+1)}
2

}
= max{=(c2n, c2n+1),=(c2n+1, c2n+2)}.

If M(c2n, c2n+1) = =(c2n+1, c2n+2) then, (4.6) leads to contradiction.

If M(c2n, c2n+1) = =(c2n, c2n+1) then, from (4.6)

ζ + F(=(c2n+1, c2n+2)) ≤ F(=(c2n, c2n+1)). (4.7)

Now, suppose that =(c2n+2, c2n+3) > 0

Since, =(c2n+2, c2n+3) = =(F2c2n+1, F1c2n+2)) > 0.

Using contraction condition (4.2)

ζ + F(=(c2n+2, c2n+3)) = ζ + F(=(F2c2n+1, F1c2n+2))

≤ ζ + F(α(c2n+1, c2n+2)=(F2c2n+1, F1c2n+2))

≤ F(M(c2n+1, c2n+2)). (4.8)

Now

M(c2n+1, c2n+2) = max

{
=(c2n+1, c2n+2),=(c2n+1, F2c2n+1),=(c2n+2, F1c2n+2),

=(c2n+1, F1c2n+2) + =(c2n+2, F2c2n+1)

2

}
M(c2n+1, c2n+2) = max

{
=(c2n+1, c2n+2),=(c2n+1, c2n+2),=(c2n+2, c2n+3),

=(c2n+1, c2n+3) + =(c2n+2, c2n+2)

2

}
= max{=(c2n+1, c2n+2),=(c2n+2, c2n+3)}.

If M(c2n+1, c2n+2) = =(c2n+2, c2n+3) then, (4.8) leads to contradiction.

If M(c2n+1, c2n+2) = =(c2n+1, c2n+2) then, from (4.8)

ζ + F(=(c2n+2, c2n+3)) ≤ F(=(c2n+1, c2n+2)). (4.9)
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Combining (4.7) and (4.9),

F(zn) ≤ F(zn−1)− ζ for all n ≥ 1.

Continuing in this way,

F(zn) ≤ F(zn−1)− ζ ≤ F(zn−2)− 2ζ ≤ ... ≤ F(z0)− nζ ∀ n ≥ 1 (4.10)

By taking lim
n→∞

in above, we obtain lim
n→∞

F(zn) = −∞.

Using (F-2) from Definition (2.3.12),

lim
n→∞

(zn) = 0. (4.11)

Part-3

Now, we shall prove that {zn} is a Cauchy sequence.

By (F-3) from Definition (2.3.12) and (4.11), ∃ k ∈ (0, 1) such that

lim
n→∞

(zn)kF(zn) = 0. (4.12)

By (4.10) ∀ n = 1, 2, 3, ...

(zn)kF(zn) ≤ (zn)kF(z0)− (zn)knζ

(zn)kF(zn)− (zn)kF(z0) ≤ (zn)knζ ≤ 0. (4.13)

Taking limit as n→∞

lim
n→∞

(zn)kn = 0

∃ n0 ∈ N such that, ∀ n ≥ n0

(zn)kn ≤ 1

=⇒ zn ≤
1

n
1
k

∀ n ≥ n0. (4.14)

In order to demonstrate {zn} is a Cauchy sequence, suppose l ∈ N is such that

l ≥ n0.
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By triangular inequality and taking l ≥ 2,

=(c2n+1, c2n+l) ≤ κ(c2n+1, c2n+2)=(c2n+1, c2n+2)+

κ(c2n+2, c2n+l)=(c2n+2, c2n+l)

≤ κ(c2n+1, c2n+2)=(c2n+1, c2n+2)+

κ(c2n+2, c2n+l)κ(c2n+2, c2n+3)=(c2n+2, c2n+3)

+ κ(c2n+2, c2n+l)κ(c2n+3, c2n+l)=(c2n+3, c2n+l)

≤ κ(c2n+1, c2n+2)=(c2n+1, c2n+2)+

κ(c2n+2, c2n+l)κ(c2n+2, c2n+3)=(c2n+2, c2n+3)

+ κ(c2n+2, c2n+l)κ(c2n+3, c2n+l)

κ(c2n+3, c2n+4)=(c2n+3, c2n+4)

+ κ(c2n+2, c2n+l)κ(c2n+3, c2n+l)

κ(c2n+4, c2n+l)=(c2n+4, c2n+l)

...

≤ κ(c2n+1, c2n+2)=(c2n+1, c2n+2)+

2n+l−2∑
i=2n+2

( i∏
j=2n+2

κ(cj, c2n+l)

)
κ(ci, ci+1)=(ci, ci+1)+

(2n+l−1∏
j=2n+2

κ(cj, c2n+l)

)
=(c2n+l−1, c2n+l)

≤ κ(c2n+1, c2n+2)=(c2n+1, c2n+2)+

2n+l−2∑
i=2n+2

( i∏
j=2n+2

κ(cj, c2n+l)

)
κ(ci, ci+1)=(ci, ci+1)+

(2n+l−1∏
j=2n+2

κ(cj, c2n+l)

)
κ(c2n+l−1, c2n+l)=(c2n+l−1, c2n+l).

This implies that,

=(c2n+1, c2n+l) ≤ κ(c2n+1, c2n+2)=(c2n+1, c2n+2)

+
2n+l−1∑
i=2n+2

( i∏
j=2n+2

κ(cj, c2n+l)

)
κ(ci, ci+1)=(ci, ci+1)
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Using (4.14), above can be written as

=(c2n+1, c2n+l) ≤ κ(c2n+1, c2n+2)=(c2n+1, c2n+2)+

2n+l−1∑
i=2n+2

( i∏
j=2n+2

κ(cj, c2n+l)

)
κ(ci, ci+1)

1

i
1
k

≤ κ(c2n+1, c2n+2)=(c2n+1, c2n+2)+

2n+l−1∑
i=2n+2

( i∏
j=0

κ(cj, c2n+l)

)
κ(ci, ci+1)

1

i
1
k

. (4.15)

Let Sp =

p∑
i=0

( i∏
j=0

κ(cj, c2n+l)

)
κ(ci, ci+1)

1

i
1
k

,

then applying ratio test, we have

an =

( i∏
j=0

κ(cj, c2n+l)

)
κ(ci, ci+1)

1

i
1
k

an+1

an
=
κ(ci+1, ci+2)κ(ci+1, c2n+l)

κ(ci, ci+1)

( i

i+ 1

) 1
k

Since lim
n,m→∞

κ(cn, cm) < 1 and 1
k
< 1. Therefore under condition (4.3) series∑

n an converges. Therefore, lim
p→∞

Sp exists. So the real sequence Sp is Cauchy.

Thus we obtained the following inequality

=(c2n+1, c2n+l) ≤ κ(c2n+1, c2n+2)=(c2n+1, c2n+2) + [S2n+l−1 − S2n+1]. (4.16)

By applying limit n→∞ in (4.16), then lim
n→∞

=(c2n+1, c2n+l) = 0. Then sequence

{cn} is Cauchy.

Since ℵ is complete, ∃ c1∗ ∈ ℵ such that

lim
n→∞

cn = c1
∗.

Then, it follows that =(c2n, c1
∗)→ 0 as n→∞.

Now, c2n+1 = F1c2n, taking n→∞ and by continuity of F1, c1
∗ = F1c1

∗.

At the same time, =(c2n+1, c1
∗)→ 0 as n→∞.

Similarly c2n+2 = F2c2n+1, taking n→∞ and by continuity of F2,
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c1
∗ = F2c1

∗.

Hence c1
∗ is CFP of (F1, F2).

Now to show uniqueness of c1
∗, suppose that c2

∗ ∈ ℵ is another CFP of pair

(F1, F2), then,

ζ + F(=(c1
∗, c2

∗) = ζ + F(=(F1c1
∗, F2c2

∗))

≤ ζ + F(α(c1
∗, c2

∗)=(F1c1
∗, F2c2

∗))

≤ F(M(c1
∗, c2

∗)) (4.17)

where,

M(c1
∗, c2

∗) = max

{
=(c1

∗, c2
∗),=(c1

∗, F1c1
∗),=(c2

∗, F2c2
∗),

1

2
[=(c1

∗, F2c2
∗) + =(c2

∗, F1c1
∗)]

}
M(c1

∗, c2
∗) = max

{
=(c1

∗, c2
∗),=(c1

∗, c1
∗),=(c2

∗, c2
∗),

1

2
[=(c1

∗, c2
∗) + =(c2

∗, c1
∗)]

}
M(c1

∗, c2
∗) = max

{
=(c1

∗, c2
∗), 0, 0,

1

2
[=(c1

∗, c2
∗) + =(c2

∗, c1
∗)]

}
M(c1

∗, c2
∗) = max

{
=(c1

∗, c2
∗), 0, 0,

1

2
[2=(c1

∗, c2
∗)]

}
M(c1

∗, c2
∗) = max

{
=(c1

∗, c2
∗), 0, 0,=(c1

∗, c2
∗)

}
M(c1

∗, c2
∗) = =(c1

∗, c2
∗).

so, (4.17) become,

ζ + F(=(c1
∗, c2

∗) ≤ F(=(c1
∗, c2

∗))

This implies that c1
∗ = c2

∗.

If κ(c1, c2) = κ(c1, c2) = Θ(c1, c2) = b ≥ 1, then we have the following;

Corollary 4.1.4. Suppose that (ℵ,=) be a complete bMS such that = is

continuous and F1, F2 : ℵ → ℵ be two self-operators satisfying:

(i): The pair (F1, F2) is generalized Ćirić type α-F-contraction,

(ii): ∃ c0 ∈ ℵ such that α(c0, F1c0) ≥ 1 and α(F1c0, c0) ≥ 1,

(iii): F1 and F2 are continuous,

Then, F1 and F2 have a unique CFP.
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Theorem 4.1.5. Suppose that (ℵ,=) be a complete DCMS such that = is

continuous and F1, F2 : ℵ → ℵ be two self-operators satisfying:

(i): The pair (F1, F2) is generalized Ćirić type α-F-contraction,

(ii): ∃ c0 ∈ ℵ such that α(c0, F1c0) ≥ 1 and α(F1c0, c0) ≥ 1,

(iii): for any convergent sequence {cn},

sup
l≥1

lim
i→∞

κ(ci+1, ci+2)κ(ci+1, c2n+l)

κ(ci, ci+1)
< 1. (4.18)

Also assume

lim
n,m→∞

κ(cn, cm) ≤ 1 and lim
n,m→∞

κ(cn, cm) ≤ 1.

Then, F1 and F2 have a unique CFP.

Proof. Adopting the same procedure as in Theorem 4.1.3. We can prove that

cn → c1
∗.

Since the operators F1 and F2 are discontinuous. Suppose,

=Θ(c1
∗, F1c1

∗) = h > 0.

Now,

h = =(c1
∗, F1c1

∗)

≤ κ(c1
∗, c2n+2)=(c1

∗, c2n+2) + κ(c2n+2, F1c1
∗)=(c2n+2, F1c1

∗)

≤ κ(c1
∗, c2n+2)=(c1

∗, c2n+2) + κ(c2n+2, F1c1
∗)=(F2c2n+1, F1c1

∗) (4.19)

Now,

F(=(F2c2n+1, F1c1
∗)) ≤

[
F
(
max

{
=Θ(c2n+1, c1

∗),=(c2n+1, F2c2n+1),

=(c1
∗, F1c1

∗),

[
=(c2n+1, F1c1

∗) + =(c1
∗, F2c2n+1)

]
2

})
−ζ
]

F(=(F2c2n+1, F1c1
∗)) ≤

[
F
(
max

{
=(c2n+1, c1

∗),=(c2n+1, c2n+2),

=(c1
∗, F1c1

∗),

[
=(c2n+1, F1c1

∗) + =(c1
∗, c2n+2)

]
2

})
−ζ
]
.

(4.20)
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Using (4.20) in (4.19) to obtain

h ≤ κ(c1
∗, c2n+2)=(c1

∗, c2n+2) + κ(c2n+2, F1c1
∗)
[
F
(
=(c1

∗, F1c1
∗)
)
−ζ
]
.

Taking limit n→∞

h ≤ lim
n→∞

κ(c1
∗, c2n+2)0 + lim

n→∞
κ(c2n+2, F1c1

∗)
[
F
(
h
)
−ζ
]

Since, F is non-decreasing,

h ≤ lim
n→∞

κ(c1
∗, F1c1

∗)[h− ζ].

Since lim
n→∞

κ(c1
∗, F1c1

∗) = 1 and lim
n→∞

=(c1
∗, c2n+2) = 0 =⇒ c1

∗ = F1c1
∗.

In the same way, we obtain c1
∗ = F2c1

∗. Hence, c1
∗ is CFP for pair (F1, F2).

Uniqueness can be proved similarly as in Theorem 4.1.3.

If κ(c1, c2) = κ(c1, c2) = Θ(c1, c2) = b ≥ 1, then we have the following;

Corollary 4.1.6. Suppose that (ℵ,=) be a complete bMS such that = is

continuous and F1, F2 : ℵ → ℵ be two self-operators satisfying:

(i): The pair (F1, F2) is generalized Ćirić type α-F-contraction,

(ii): ∃ c0 ∈ ℵ such that α(c0, F1c0) ≥ 1 and α(F1c0, c0) ≥ 1,

Then, F1 and F2 have a unique CFP.

Now by considering F1 = F2 = F , a generalization of generalized Ćirić type α-F-

contraction is established in DCMS.

Theorem 4.1.7. Suppose that (ℵ,=) be a complete DCMS, = is continuous

and F : ℵ → ℵ be a self-operators satisfying:

(i): F is generalized Ćirić type α-F-contraction,

(ii): ∃ c0 ∈ ℵ such that α(c0, Fc0) ≥ 1 and α(Fc0, c0) ≥ 1,

(iii): F is continuous,

(iv): for any convergent sequence {cn},

sup
l≥1

lim
i→∞

κ(ci+1, ci+2)κ(ci+1, c2n+l)

κ(ci, ci+1)
< 1.
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Also, suppose

lim
n,m→∞

κ(cn, cm) ≤ 1 and lim
n,m→∞

κ(cn, cm) ≤ 1.

Then, F has UFP.

Remark: If κ(c1, c2) = κ(c1, c2) = Θ(c1, c2), then the results of Belhenniche et

al. is the special case of our main result with F(c) = ln(c) and α(c1, c2) = 1.

Example 4.1.8.

Suppose ℵ = [0, 1], define =Θ : ℵ × ℵ → R, and κ,κ : ℵ × ℵ → [1,∞) by:

=(c1, c2) := (c1 − c2)
2,

κ(c1, c2) := 2c1 + c2 + 3 and κ(c1, c2) := 3c1 + c2 + 2.

Then, (ℵ,=) is a complete DCMS.

Define F1 and F2 : ℵ → ℵ by F1c1 = c1
2

, F2c1 = c1
4

.

Define the mapping α : ℵ × ℵ → [0,∞) by

α(c1, c2) =

2 + cos(c1
2 + c2), if c1, c2 ∈ [0, 1]

0, otherwise.

Suppose c1, c2 ∈ ℵ such that α(c1, c2) ≥ 1.

Since, α(F1c1, F2c2) = α(c1
2
, c2

4
) = 2 + cos(c1

2

4
, c2

4
) ≥ 1 and 2 + cos(c2

2

16
, c1

2
) ≥ 1.

Then (F1, F2) is generalized α-admissible pair.

Now

=(F1c1, F2c2) = =
(c1

2
,
c2

4

)2
=

c1
2

4
+

c2
2

16
− c1c2

4
.

Now, M(c1, c2) = max

{
=(c1, c2),=(c1, F1c1),=(c2, F2c2),

1
2

[
=(c1, F2c2)+=(c2, F1c1)

]}
.

Since, 1
2

[
=(c1, F2c2) + =(c2, F1c1)

]
= 5c12

8
+ 17c22

32
− 3c1c2

4
, we may write

=(F1c1, F2c2) =
c1

2

4
+

c2
2

16
− c1c2

4
=

1

2

(
c1

2

2
+

c2
2

8
− c1c2

2

)
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≤ 1
2

(
1
2
(=Θ(c1, F2c2) + =(c2, F1c1))

)
≤ 1

2
M(c1, c2).

By contraction condition (4.2), the above inequality,

ζ + F
(
=(F1c1, F2c2)

)
≤ F

(1

2
M(c1, c2)

)
.

But M(c1, c2) = =(c1, c2). Where ζ ∈
(

0, M(c1,c2)
2=(F1c1,F2c2)

)
. So all the axioms of

Theorem 4.1.3 are satisfied. Hence, 0 is CFP of F1 and F2.

4.2 Application

In this section, we give some application of our results to prove the existence

and uniqueness of solution of Volterra-type integral equation, nonlinear fractional

differential equation and dynamic programming equation (Bellman’s equation).

4.2.1 The Existence of a Solution for Integral Equations

of the Volterra type

Vito Volterra, at the end of 19th century, introduced a new type of integral equa-

tion named as integral equation of Volterra type, in which upper limit of integral

sign is unknown and lower limit is fixed.

Later on, Traian Lalescu, worked on it in 1912 [35]. Volterra integral equations

have many applications in different domains of sciences such as potential theory,

Dirichlet problem, actuarial sciences, mathematical problems and radiative heat

transfer problems.

Consider the integral equation of Volterra type:

c1(q) =

∫ q

0

J(q, s, c1(s))ds+ w(q), q ∈ [0, 1]. (4.21)

In current section we use Theorem 4.1.3 to show the presence of a solution of the

above equation.
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Define the operator L : C([0, 1],Rn)→ C([0, 1],Rn) as,

Lc1(q) =

∫ q

o

J(q, s, c1(s))ds+ w(q), q ∈ [0, 1].

Theorem 4.2.1. Suppose that Equation (4.21) fulfills the properties given

below:

(i) : J : [0, 1]× [0, 1]× Rn → Rn and w : [0, 1]→ Rn are continuous;

(ii) : J(q, s, .) : Rn → Rn is increasing for each q and s ∈ [0, 1];

(iii) : ∃ ζ > 0 and α : ℵ × ℵ → [0,∞) such that

|J(q, s, c1)− J(q, s, c2)| ≤
e−

ζ
2

(α(c1, c2))
1
2

(M(c1, c2)), ∀ c1, c2 ∈ ℵ, q and s ∈ [0, 1]

where,

M(c1, c2) = max

{
=(c1, c2),=(c1, Lc1),=(c2, Lc2),

1
2

(
=(c1, Lc2) + =(c2, Lc1)

)}
.

Then the integral Equation (4.21) has a unique solution.

Proof. Suppose ℵ = C([0, 1],Rn) equipped with double controlled metric

=(c1, c2) = ‖c1 − c2‖C = sup
q∈[0,1]

|c1(q)− c2(q)|2 and κ,κ : ℵ × ℵ → [1,∞) defined

as;

κ = 2‖c1‖+ 3‖c2‖+ 2 and κ = 2‖c1‖+ 1

with

sup
l≥1

lim
i→∞

κ(ci+1, ci+2)κ(ci+1, c2n+l)

κ(ci, ci+1)
< 1.

From, (c1 − c2)2 ≥ 0 we have;

1

4
(c1

2 + c2
2) ≥ 1

2
c1c2. (4.22)

Now,

|Lc1(q)− Lc2(q)|2 =

∫ q

0

|J(q, s, (c1(s)))− J(q, s, (c2(s)))|2ds

≤
( e−

ζ
2

(α(c1, c2))
1
2

)2∫ q

0

max

{
|c1(s)− c2(s)|2, |c1(s)− Lc1(s)|2, |c2(s)− Lc2(s)|2,

1

4

[
|c1(s)− Lc2(s)|+ |c2(s)− Lc1(s)|

]2}
ds
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|Lc1(q)− Lc2(q)|2 ≤ e−ζ

α(c1, c2)

∫ q

0

max

{
|c1(s)− c2(s)|2, |c1(s)− Lc1(s)|2, |c2(s)− Lc2(s)|2,

1

4

(
c1(s)− c2(s)

)2
+

1

2

(
(c1(s)− Lc2(s))(c2(s)− Lc1(s))+

1

4

(
c2(s)− Lc1(s)

)2}
ds

≤ e−ζ

α(c1, c2)

∫ q

0

max

{
|c1(s)− c2(s)|2, |c1(s)− Lc2(s)|2, |c2(s)− Lc2(s)|2,

1

2

[
|c1(s)− Lc2(s)|2 + |c2(s)− Lc1(s)|2

]}
ds.

Then,

sup
q∈[0,1]

|Lc1(q)− Lc2(q)|2 ≤ e−ζ

α(c1, c2)
sup

q∈[0,1]

∫ q

0

max

{
|c1(s)− c2(s)|2, |c1(s)− Lc2(s)|2,

|c2(s)− Lc2(s)|2,
1

2

[
|c1(s)− Lc2(s)|2 + |c2(s)− Lc1(s)|2

]}
ds.

Since, ‖c1‖C = sup
q∈[0,1]

{|c1(q)|2}, then above inequality become,

‖Lc1(q)− Lc2(q)‖C ≤
e−ζ

α(c1, c2)

∫ q

0

max

{
‖c1 − c2‖C , ‖c1 − Lc2‖C , ‖c2 − Lc2‖C ,

1

2

[
‖c1 − Lc2‖C + ‖c2 − Lc1‖C

]}
ds

=⇒ =(Lc1, Lc2) ≤
e−ζ

α(c1, c2)
max

{
=(c1, c2),=(c1, Lc1),=(c2, Lc2),

1

2

(
=(c1, Lc2) + =(c2, Lc1)

)}
≤ e−ζ

α(c1, c2)
M(c1, c2)

α(c1, c2)=(Lc1, Lc2) ≤ e−ζM(c1, c2).

Taking natural log on both sides,

ln(α(c1, c2)=(Lc1, Lc2)) ≤ ln(e−ζM(c1, c2))

ln(α(c1, c2)=(Lc1, Lc2)) ≤ ln(e−ζ) + ln(M(c1, c2))

ln(α(c1, c2)=(Lc1, Lc2)) ≤ −ζ + ln(M(c1, c2)).

Therefore

ζ + F
(
α(c1, c2)=(Lc1, Lc2)

)
≤ F(M(c1, c2)),
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where, F(c1) = ln(c1) and ζ > 0.

Hence conclusion follows from Theorem 4.1.3.

4.2.2 Application Regarding System of Nonlinear Frac-

tional Differential Equations

In the last century, fractional calculus helped in many challenges application in

control, modeling and optimization in wide range of domains. At the same time,

the FP theory is also used for to show the existence of solution of these fractional

differential equations.

In current application, we use Theorem 4.1.3 to show the presence and distinct

theorems for a nonlinear FDE system of the Caputo type derivative.

Let y : [0,∞) → R be a continuous function. The Caputo derivative of order

Ψ > 0 of the function y is:

cDΨ(y(q)) :=
1

Γ(k −Ψ)

∫ q

o

(q−s)k−Ψ−1g(k)(s)=(s) (n−1 < Ψ < n, n = [Ψ]+1),

(4.23)

such that [Ψ], is integer part of R+ and Γ is the Gamma function.

Consider a system of non-linear FDE of Caputo type, this section is about the

existence and uniqueness of solution of;
cDΨ(c1(q)) + p1(q, c1(q)) = 0,

cDΨ(c2(q)) + p2(q, c2(q)) = 0,

(4.24)

for q ∈ [0, 1],Ψ < 1, with the boundary condition,

c1(0) = 0 = c1(1),

c2(0) = 0 = c2(1),

(4.25)

where, c1 ∈ C([0, 1],R), p1, p2 : [0, 1]× R → R are continuous functions and cDΨ

is the Caputo derivative of order Ψ. Also, Green function associated with (4.24)

is given in [41] as follows:
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G(q, s) =


(q(1−s))γ−1−(q−s)γ−1

Γ(γ)
if 0 ≤ s ≤ q ≤ 1,

(q(1−s))γ−1

Γ(γ)
if 0 ≤ s ≤ q ≤ 1.

Theorem 4.2.2. Given the nonlinear FDE with the given below properties:

(i): F1, F2 : C([0, 1],R)→ C([0, 1],R) are defined as:

F1c1 =
∫ 1

0
G(t, s)p1(s, c1(s))ds,

F2c2 =
∫ 1

0
G(q, s)p2(s, c2(s))ds;

(4.26)

(ii): ∃ ζ > 0 and α : ℵ × ℵ → [0,∞)

|p1(q, c1)− p2(q, c2)| ≤
e

−ζ
2

(α(c1, c2))
1
2

M(c1, c2), ∀ q ∈ [0, 1],Ω > 1, c1, c2 ∈ R

where,

M(c1, c2) ≤ max

{
=(c1, c2),=(c1, F1c1),=(c2, F2c2),

1

2
(=(c1, F2c2) + =(c2, F1c1))

}
.

Then, the (4.24) has unique solution.

Proof. Suppose ℵ = C([0, 1],R) and Bielecki norm,

=Θ(c1, c2) = ‖c1 − c2‖ = | sup
q∈[0,1]

{
|c1(q)|e−Ωq

}
|2 with Ω > 1

and κ,κ : ℵ × ℵ → [1,∞) is given by κ(c1, c2) = |c1(q)| + 2|c2(q)| + 1 and

κ(c1, c2) = |2c1(q)|+ 3|c2(q)|+ 1, with

sup
l≥1

lim
i→∞

κ(ci+1, ci+2)κ(ci+1, c2n+l)

κ(ci, ci+1)
< 1.

Then (ℵ,=Θ) is DCMS.

Obvious c1
∗ ∈ ℵ is solution for the (4.24) iff c1

∗ ∈ ℵ is a common solution for the

Equation (4.25), ∀ q ∈ [0, 1]. Then, the (4.24) can be reduced to find an element

c1
∗ ∈ ℵ which is a CFP for the operators F1 and F2.

Suppose c1, c2 ∈ ℵ such that %(c1(q), c2(q)) ≥ 0 ∀ q ∈ [0, 1]. By (i) and (ii),
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|F1c1(q)− F2c1(q)|2 = |
∫ 1

0

G [p1(q, c1(s))− p2(q, r(s)] ds|2

≤
(∫ 1

0

G(q, s)ds

)2 ∫ 1

0

|p1(q, c1(s))− p2(q, c2(s)|2ds

≤
(

e
−ζ
2

(α(c1, c2))
1
2

)2

|M(c1, c2)e
−Ωq|2e2Ωq

(∫ 1

0

G(q, s)ds

)2

.

Then,

|[F1c1(q)− F2c1(q)]e−Ωq|2 ≤ e−ζ

α(c1, c2)
|M(c1, c2)e

−Ωq|2
(∫ 1

0

G(q, s)ds

)2

. (4.27)

Taking sup
q∈[0,1]

in above inequality,

| sup
q∈[0,1]

{(F1c1(t)− F2c1(q))e−Ωq}|2 ≤ e−ζ

α(c1, c2)
sup

q∈[0,1]

|M(c1, c2))e
−Ωq|2 sup

q∈[0,1]

{(∫ q

0

G(q, s)ds

)2
}

≤ e−ζ

α(c1, c2)
sup

q∈[0,1]

|M(c1, c2))e
−Ωq|2.

Since =Θ(c1, c2) = ‖c1 − c2‖ = | sup
q∈[0,1]

{
|c1(q)|e−Ωq

}
|2, then above become

=(F1c1, F2c2) ≤
e−ζ

α(c1, c2)
M(c1, c2)

α(c1, c2)=(F1c1, F2c2) ≤ e−ζM(c1, c2).

Taking natural log then,

ln(α(c1, c2)=(F1c1, F2c2)) ≤ ln(e−ζM(c1, c2)))

ln(α(c1, c2)=(F1c1, F2c2)) ≤ ln(e−ζ) + ln(M(c1, c2))

ln(α(c1, c2)=(F1c1, F2c2)) ≤ − ζ + ln(M(c1, c2)).

Therefore

ζ + F(α(c1, c2)=(F1c1, F2c2)) ≤ F(M(c1, c2)),
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where F(c1) = ln(c1) and ζ > 0.

Theorem 4.1.3 yields the existence of c∗ ∈ ℵ as a CFP of F1 and F2.

4.2.3 An Existence of Solution to the Dynamic Program-

ming Equation

Suppose that the state space is ℵ and set of control values U(c1) ⊂ U. Let M be

the set of all functions % : ℵ → U with %(c1) ∈ U(c1) ∀ c1 ∈ ℵ, and M is said to

be “stationary policy”. Suppose B(ℵ) be the set of real-valued bounded functions

S : ℵ → R. For each policy % ∈ M, assume that the mapping F% : B(ℵ) → B(ℵ)

defined as:

F%S(c1) = H(c1, %(c1), S) for all c1 ∈ ℵ.

Where H : ℵ × U×B(ℵ)→ R.

We also suppose mapping F : B(ℵ)→ B(ℵ) defined as:

FS(c1) = inf
u∈U(c1)

{H(c1, u, S)} = min
%∈M

F%S(c1) for all c1 ∈ ℵ.

Now, the pair (B(ℵ), ‖.‖Θ), such that

‖S‖Θ = sup
c1∈ℵ
|S(c1)|2, S ∈ B(ℵ) (4.28)

is complete DCMS.

We find the optimal cost of the function J∗ ∈ B(ℵ) as,

S(c1) = inf
u∈U(c1)

{H(c1, u, S)} ∀c1 ∈ ℵ. (4.29)

This is known as the Bellman equation with given below properties:

A1): (Well posedness). ∀ S ∈ B(ℵ), and ∀ % ∈M, we have that F%S ∈ B(ℵ)

and FS ∈ B(ℵ).

A2): (Monotonicity). If S, S′ ∈ B(c1), and S ≤ S′, then

H(c1, u, S) ≤ H(c1, u, S
′) ∀ c1 ∈ ℵ, u ∈ U.
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A3): (Attainability). ∀ S ∈ B(ℵ), ∃ % ∈M, such that F%S = FS.

Theorem 4.2.3. Suppose that the Bellman equation meets the following:

(i):F% and F are monotone;

(ii):F% : B(ℵ)→ B(ℵ) is generalized Ćirić type α-F-contraction.

(iii): ∃ ζ > 0 such that

|H(c1, u, S)−H(c1, u, S
′)| ≤ e

−ζ
2 M(S, S′).

Then, (4.29) has a unique solution.

Proof. Let B(ℵ) denote the set of all bounded real-valued function with

‖S‖ = sup
c1∈ℵ
{|S(c1)

2|}. Then B(ℵ) is DCMS and κ : ℵ × ℵ → [1,∞) and κ :

ℵ × ℵ → [1,∞) defined as, κ(S, S′) := 2|S(c1)| + 3|S′(c1)| + 2 and κ(S, S′) :=

2|S(c1)|+ |S′(c1)|+ 1.

With assumption

sup
l≥1

lim
i→∞

κ(Si+1, S
′
i+2)κ(Si+1, S

′
2n+l)

κ(Si, S ′i+1)
< 1.

Consider F : B(ℵ)→ B(ℵ) as;

FS(c1) = inf
u∈U(c1)

{H(c1, u, S)}. ∀ c1 ∈ ℵ

Also consider ζ > 0 and (a− b)2 ≥ 0, then following holds,

1

4
(a2 + b2) ≥ 1

2
(ab), (4.30)

We will show that F meets all the requirements of Theorem 4.1.3.

Now

α(S,S′)|FS(c1)− FS′(c1)|2 = α(S,S′)|H(c1, u,S)−H(c1, u,S
′)|2

≤
∣∣∣∣e−ζ

2 max

{
|S(c1)− S′(c1)|, |S(c1)− F%S(c1)|, |S′(c1)− F%S′(c1)|,

1

4

(
|S(c1)− F%S′(c1)|+ |S′(c1)− F%S(c1)|

)}∣∣∣∣2
≤ e−ζ max

{
|S(c1)− S′(c1)|2, |S(c1)− F%S(c1)|2, |S′(c1)− F%S′(c1)|2,
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|1
2

(
|S(c1)− F%S′(c1)|+ |S′(c1)− F%S(c1)|

)
|2
}

≤ e−ζ max

{
|S(c1)− S′(c1)|2, |S(c1)− F%S(c1)|2, |S′(c1)− F%S′(c1)|2,

1

4

[
(S(c1)− F%S′(c1))2 + (S′(c1)− F%S(c1))

2

+ 2
(
(S(c1)− F%S′(c1))(S′(c1)− F%S(c1))

)]}
α(S,S′)|FS(c1)− FS′(c1)|2 ≤ e−ζ max

{
|S(c1)− S′(c1)|2, |S(c1)− F%S(c1)|2, |S′(c1)− F%S′(c1)|2,

1

4

[
(S(c1)− F%S′(c1))2 + (S′(c1)− F%S(c1))

2
]

+
1

2

[(
(S(c1)− F%S′(c1))(S′(c1)− F%S(c1))

)]}
.

Moreover, by using F%S(c1) ≥ FS(c1) and (4.30),

α(S,S′)|FS(c1)− FS′(c1)|2 ≤ e−ζ max

{
|S(c1)− S′(c1)|2, |S(c1)− F%S(c1)|2, |S′(c1)− F%S′(c1)|2,

+
1

2

[
|S(c1)− F%S′(c1)|2 + |S′(c1)− F%S(c1)|2

]}
α(S,S′)‖FS− FS′‖ ≤ e−ζ max

{
‖S− S′‖, ‖S− F%S‖, ‖S′ − F%S′‖,

+
1

2

[
‖S− F%S′‖+ ‖S′ − F%S‖

]}
≤ e−ζ max

{
‖S− S′‖, ‖S− FS‖, ‖S′ − FS′‖,

+
1

2

[
‖S− FS′‖+ ‖S′ − FS‖

]}
≤ e−ζ max

{
‖S− S′‖, ‖S− FS‖, ‖S′ − FS′‖,

+
1

2

[
‖S− FS′‖+ ‖S′ − FS‖

]}
α(S,S′)‖FS− FS′‖ ≤ e−ζM(S,S′).

Taking natural log

ln(α(S, S′)‖FS− FS′‖) ≤ ln(e−ζM(S, S′))

ln(α(S, S′)‖FS− FS′‖) ≤ ln(e−ζ) + ln(M(S, S′))

ln(α(S, S′)‖FS− FS′‖) ≤ −ζ + ln(M(S, S′)).

Therefore,

∀ S, S′ ∈ B(ℵ)
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ζ + F(‖FS− FS′‖) ≤ F(βM(S, S′)),

ζ + F(=(FS, FS′) ≤ F(βM(S, S′)), ∀ S, S′ ∈ B(ℵ)

for any c1 ∈ ℵ and by considering ln(c1) = F(c1). Conclusion follows from

Theorem 4.1.3.



Chapter 5

Conclusion

• A detailed review of Belhenniche et al. [28] on “Solving nonlinear and dynamic

programming equations on EbMS with the fixed point technique” is given and

elaborated.

• Existence and uniqueness of solution for Volterra integral equations, system of

non-linear fractional differential equations and dynamic programming equations

like Bellman’s equation, has been established by using Ćirić contraction mapping

in the setting of EbMS.

•Motivated by the above work, the notion of generalized Ćirić type α-F-contraction

in setting of DCMS has been introduced. Some fixed point results are established

for generalized Ćirić type α-F-contraction in the framework of DCMS. An example

is provided to elaborate our main result.

• For application purpose:

(i): We prove the existence and uniqueness of a solution for the Volterra type

integral equation by using the proven result (main results) in the framework

of DCMS.

(ii): The existence and uniqueness of solution of system of FDE involving Caputo

derivative has been given using Theorem (4.1.3).

59
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(iii): We used our main result to show the uniqueness and existence of the dynamic

programming Bellman’s equation.
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