

Artificial Intelligence
Applications and Reconfigurable

Architectures

Scrivener Publishing
100 Cummings Center, Suite 541J

Beverly, MA 01915-6106

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)

Phillip Carmical (pcarmical@scrivenerpublishing.com)

Artificial Intelligence
Applications and Reconfigurable

Architectures

Edited by
Anuradha D. Thakare

Department of Computer Engineering, Pimpri Chinchwad College of Engineering,
Pune, India

and
Sheetal Umesh Bhandari

Department of Electronics and Telecommunication Engineering, Pimpri Chinchwad
College of Engineering, Pune, India

This edition first published 2023 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA
© 2023 Scrivener Publishing LLC
For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or other-
wise, except as permitted by law. Advice on how to obtain permission to reuse material from this title
is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley prod-
ucts visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty
While the publisher and authors have used their best efforts in preparing this work, they make no rep
resentations or warranties with respect to the accuracy or completeness of the contents of this work and
specifically disclaim all warranties, including without limitation any implied warranties of merchant-
ability or fitness for a particular purpose. No warranty may be created or extended by sales representa
tives, written sales materials, or promotional statements for this work. The fact that an organization,
website, or product is referred to in this work as a citation and/or potential source of further informa
tion does not mean that the publisher and authors endorse the information or services the organiza
tion, website, or product may provide or recommendations it may make. This work is sold with the
understanding that the publisher is not engaged in rendering professional services. The advice and
strategies contained herein may not be suitable for your situation. You should consult with a specialist
where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other damages.
Further, readers should be aware that websites listed in this work may have changed or disappeared
between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-85729-7

Cover image: Pixabay.Com
Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

v

Contents

Preface	 xiii

1	 Strategic Infrastructural Developments to Reinforce
Reconfigurable Computing for Indigenous AI Applications	 1
Deepti Khurge
1.1	 Introduction	 2
1.2	 Infrastructural Requirements for AI	 2
1.3	 Categories in AI Hardware	 4

1.3.1	 Comparing Hardware for Artificial Intelligence	 8
1.4	 Hardware AI Accelerators to Support RC	 9

1.4.1	 Computing Support for AI Application: Reconfigurable
Computing to Foster the Adaptation	 9

1.4.2	 Reconfiguration Computing Model	 10
1.4.3	 Reconfigurable Computing Model as an Accelerator	 11

1.5	 Architecture and Accelerator for AI-Based Applications	 15
1.5.1	 Advantages of Reconfigurable Computing

Accelerators 	 20
1.5.2	 Disadvantages of Reconfigurable Computing

Accelerators	 21
1.6	 Conclusion	 22
	 References	 22

2	 Review of Artificial Intelligence Applications and Architectures	 25
Rashmi Mahajan, Dipti Sakhare and Rohini Gadgil
2.1	 Introduction	 25
2.2	 Technological Platforms for AI Implementation—Graphics

Processing Unit	 27
2.3	 Technological Platforms for AI Implementation—Field

Programmable Gate Array (FPGA)	 28

vi  Contents

2.3.1	 Xilinx Zynq	 28
2.3.2	 Stratix 10 NX Architecture	 29

2.4	 Design Implementation Aspects	 30
2.5	 Conclusion	 32
	 References	 32

3	 An Organized Literature Review on Various Cubic Root
Algorithmic Practices for Developing Efficient VLSI
Computing System—Understanding Complexity	 35
Siba Kumar Panda, Konasagar Achyut, Swati K. Kulkarni,
Akshata A. Raut and Aayush Nayak
3.1	 Introduction	 36
3.2	 Motivation	 37
3.3	 Numerous Cubic Root Methods for Emergent VLSI

Computing System—Extraction	 45
3.4	 Performance Study and Discussion	 50
3.5	 Further Research	 50
3.6	 Conclusion	 59
	 References	 59

4	 An Overview of the Hierarchical Temporal
Memory Accelerators	 63
Abdullah M. Zyarah and Dhireesha Kudithipudi
4.1	 Introduction	 63
4.2	 An Overview of Hierarchical Temporal Memory	 65
4.3	 HTM on Edge	 67
4.4	 Digital Accelerators	 68

4.4.1	 PIM HTM	 68
4.4.2	 PEN HTM	 69
4.4.3	 Classic	 70

4.5	 Analog and Mixed-Signal Accelerators	 72
4.5.1	 RCN HTM	 72
4.5.2	 RBM HTM	 73
4.5.3	 Pyragrid	 74

4.6	 Discussion	 76
4.6.1	 On-Chip Learning	 76
4.6.2	 Data Movement	 77
4.6.3	 Memory Requirements	 79
4.6.4	 Scalability	 80

Contents  vii

4.6.5	 Network Lifespan	 82
4.6.6	 Network Latency	 83

4.6.6.1	 Parallelism	 84
4.6.6.2	 Pipelining	 85

4.6.7	 Power Consumption	 86
4.7	 Open Problems	 88
4.8	 Conclusion	 89
	 References	 90

5	 NLP-Based AI-Powered Sanskrit Voice Bot	 95
Vedika Srivastava, Arti Khaparde, Akshit Kothari
and Vaidehi Deshmukh
5.1	 Introduction	 96
5.2	 Literature Survey	 96
5.3	 Pipeline	 98

5.3.1	 Collect Data	 98
5.3.2	 Clean Data	 98
5.3.3	 Build Database	 98
5.3.4	 Install Required Libraries	 98
5.3.5	 Train and Validate	 98
5.3.6	 Test and Update	 98
5.3.7	 Combine All Models	 100
5.3.8	 Deploy the Bot	 100

5.4	 Methodology	 100
5.4.1	 Data Collection and Storage	 100

5.4.1.1	 Web Scrapping	 100
5.4.1.2	 Read Text from Image	 101
5.4.1.3	 MySQL Connectivity	 101
5.4.1.4	 Cleaning the Data	 101

5.4.2	 Various ML Models	 102
5.4.2.1	 Linear Regression and Logistic Regression	 102
5.4.2.2	 SVM – Support Vector Machine	 103
5.4.2.3	 PCA – Principal Component Analysis	 104

5.4.3	 Data Pre-Processing and NLP Pipeline	 105
5.5	 Results	 106

5.5.1	 Web Scrapping and MySQL Connectivity	 106
5.5.2	 Read Text from Image	 107
5.5.3	 Data Pre-Processing	 108

viii  Contents

5.5.4	 Linear Regression	 109
5.5.5	 Linear Regression Using TensorFlow	 109
5.5.6	 Bias and Variance for Linear Regression	 112
5.5.7	 Logistic Regression	 113
5.5.8	 Classification Using TensorFlow	 114
5.5.9	 Support Vector Machines (SVM)	 115
5.5.10	 Principal Component Analysis (PCA)	 116
5.5.11	 Anomaly Detection and Speech Recognition	 117
5.5.12	 Text Recognition	 119

5.6	 Further Discussion on Classification Algorithms	 119
5.6.1	 Using Maximum Likelihood Estimator	 119
5.6.2	 Using Gradient Descent	 122
5.6.3	 Using Naive Bayes’ Decision Theory	 123

5.7	 Conclusion	 123
	 Acknowledgment	 123
	 References	 123

6	 Automated Attendance Using Face Recognition	 125
Kapil Tajane, Vinit Hande, Rohan Nagapure, Rohan Patil
and Rushabh Porwal
6.1	 Introduction	 126
6.2	 All Modules Details	 127

6.2.1	 Face Detection Model	 127
6.2.2	 Image Preprocessing	 128
6.2.3	 Trainer Model	 130
6.2.4	 Recognizer	 130

6.3	 Algorithm	 131
6.4	 Proposed Architecture of System	 131

6.4.1	 Face Detection Model	 132
6.4.2	 Image Enhancement	 132
6.4.3	 Trainer Model	 132
6.4.4	 Face Recognition Model	 133

6.5	 Conclusion	 134
	 References	 134

Contents  ix

7	 A Smart System for Obstacle Detection to Assist Visually
Impaired in Navigating Autonomously Using Machine
Learning Approach	 137
Vijay Dabhade, Dnyaneshwar Dhawalshankh,
Anuradha Thakare, Maithili Kulkarni and Priyanka Ambekar
7.1	 Introduction	 138
7.2	 Related Research	 138
7.3	 Evaluation of Related Research	 141
7.4	 Proposed Smart System for Obstacle Detection to

Assist Visually Impaired in Navigating Autonomously
Using Machine Learning Approach	 141
7.4.1	 System Description	 141
7.4.2	 Algorithms for Proposed Work	 142
7.4.3	 Devices Required for the Proposed System	 146

7.5	 Conclusion and Future Scope	 148
	 References	 148

8	 Crop Disease Detection Accelerated by GPU	 151
Abhishek Chavan, Anuradha Thakare, Tulsi Chopade,
Jessica Fernandes and Omkar Gawari
8.1	 Introduction	 152
8.2	 Literature Review	 155
8.3	 Algorithmic Study	 161
8.4	 Proposed System	 162
8.5	 Dataset	 163
8.6	 Existing Techniques	 163
8.7	 Conclusion	 164
	 References	 164

9	 A Relative Study on Object and Lane Detection	 167
Rakshit Jha, Shruti Sonune, Mohammad Taha Shahid
and Santwana Gudadhe
9.1	 Introduction	 168
9.2	 Algorithmic Survey	 168

9.2.1	 Object Detection Using Color Masking	 169
9.2.1.1	 Color Masking	 169
9.2.1.2	 Modules/Libraries Used	 169
9.2.1.3	 Algorithm for Color Masking	 169

x  Contents

9.2.1.4	 Advantages and Disadvantages	 170
9.2.1.5	 Verdict	 170

9.2.2	 YOLO v3 Object Detection	 171
9.2.2.1	 YOLO v3	 171
9.2.2.2	 Algorithm Architecture	 171
9.2.2.3	 Advantages and Disadvantages	 172
9.2.2.4	 Verdict	 172

9.3	 YOLO v/s Other Algorithms	 173
9.3.1	 OverFeat	 173
9.3.2	 Region Convolutional Neural Networks	 173
9.3.3	 Very Deep Convolutional Networks for Large-Scale

Image Recognition	 173
9.3.4	 Deep Residual Learning for Image Recognition	 174
9.3.5	 Deep Neural Networks for Object Detection	 174

9.4	 YOLO and Its Version History	 174
9.4.1	 YOLO v1	 174
9.4.2	 Fast YOLO	 175
9.4.3	 YOLO v2	 176
9.4.4	 YOLO9000	 176
9.4.5	 YOLO v3	 176
9.4.6	 YOLO v4	 177
9.4.7	 YOLO v5	 178
9.4.8	 PP-YOLO	 178

9.5	 A Survey in Lane Detection Approaches	 179
9.5.1	 Lidar vs. Other Sensors	 182

9.6	 Conclusion	 182
	 References	 183

10	 FPGA-Based Automatic Speech Emotion Recognition
Using Deep Learning Algorithm	 187
Rupali Kawade, Triveni Dhamale and Dipali Dhake
10.1	 Introduction	 188
10.2	 Related Work	 189

10.2.1	 Machine Learning–Based SER	 189
10.2.2	 Deep Learning–Based SER	 193

10.3	 FPGA Implementation of Proposed SER	 195
10.4	 Implementation and Results	 199

Contents  xi

10.5	 Conclusion and Future Scope	 201
	 References	 202

11	 Hardware Implementation of RNN Using FPGA	 205
Nikhil Bhosale, Sayali Battuwar, Gunjan Agrawal
and S.D. Nagarale
11.1	 Introduction	 206

11.1.1	 Motivation	 206
11.1.2	 Background	 207
11.1.3	 Literature Survey	 207
11.1.4	 Project Specification	 209

11.2	 Proposed Design	 210
11.3	 Methodology	 210

11.3.1	 Block Diagram Explanation	 213
11.3.2	 Block Diagram for Recurrent Neural Network	 215
11.3.3	 Textual Input Data (One Hot Encoding)	 215

11.4	 PYNQ Architecture and Functions	 216
11.4.1	 Hardware Specifications	 216

11.5	 Result and Discussion	 216
11.6	 Conclusion	 217
	 References	 217

Index	 219

xiii

Preface

Artificial intelligence (AI) algorithms are gaining importance as the
backbone of different fields like computer vision, robotics, finance, bio-
technology, etc., which will radically change human life. However, the
computational complexity involved in AI algorithms continues to impose
a challenge to state-of-the-art computing systems, particularly when the
application demands low power, high throughput and low latency. At the
same time, the use of field programmable gate arrays (FPGAs) for compute-
intensive applications is increasingly prevalent due to the parallelism pro-
vided by thousands of configurable logic blocks (CLBs), on-chip processor
core, and other resources accessible for digital designing.

This book provides detailed insights into FPGA devices and their suit-
ability for AI applications. In addition to covering the features of modern
FPGA devices, design techniques and successful implementations pertain-
ing to AI applications, this book also describes various hardware options
available for AI applications, key advantages of FPGAs, and contemporary
FPGA ICs with software support. It focuses on exploiting the parallelism
offered by FPGA to meet heavy computation requirements of AI as com-
plete hardware implementation or customized hardware accelerators. It is
a comprehensive textbook on the subject, covering a broad array of top-
ics like technological platforms for implementation of AI, capabilities of
FPGA, suppliers’ software tools and hardware boards and discusses the
implementations done by researchers to encourage the AI community to
use and experiment with FPGA.

The primary goal of this book is to present the design, implementation
and performance issues of AI applications and the suitability of FPGA
platform. Researchers will gain clear insights into the challenges and
issues faced in designing AI applications in addition to research direc-
tions for the design and development of FPGA-based systems. With the
advent of technology, the reader will be able to provide high-performance

xiv  Preface

low-energy-consumption solutions with the variety of AI applications cov-
ered in this book.

Because of the hybrid nature of the application and implementation
discussed, this book makes a few assumptions about the background of
the reader and introduces relevant concepts as the need arises, with the
main focus on reconfigurable architecture of AI applications. This book
is intended for readers across the globe. It can be used for courses like
Reconfigurable Architectures for Machine Learning, FPGA for AI-ML
Applications, and Hardware Accelerators for DL taught at the undergrad-
uate and postgraduate levels. Also, the book will be useful for researchers
working in the AI and FPGA domain, and a large professional audience as
well, such as engineers, scientists, those involved in industrial research and
development, and academicians. The book is organized into 11 chapters,
which are briefly described below.

– �Chapter 1 presents the strategic infrastructural developments to sup-
port indigenous AI applications. It describes the ecosystem required
for AI applications, particularly the AI hardware used to accelerate the
performance of applications. It shows how accelerators can significantly
decrease the amount of time it takes to train and execute an AI model
that can be used to implement special AI-based tasks that cannot be
steered on a CPU. The chapter also talks about vendor and research lab-
oratories supporting AI infrastructure.

– �Chapter 2 reviews the latest implementation technologies of AI appli-
cations. In this investigation, implementation platforms like GPU and
FPGA are examined by the author. The chapter concludes with the com-
parative benefits of FPGA structures over GPU and suggests a few FPGAs
suitable for AI implementation.

– �Chapter 3 presents the state-of-the-art revision work carried out in devel-
oping high-performance VLSI computing system. This work will help in
understanding the computational complexity level with respect to sim-
ulation, synthesis, implementation, timing analysis and physical design
layout for developing algorithms consisting of different operations like
addition, multiplication, division, squaring, cubing, square root, cube
root, etc.

– �Chapter 4 provides a comprehensive survey of hierarchical tempo-
ral memory (HTM)-based neuromorphic computing systems. This
study covers features offered by HTM like system performance when

Preface  xv

processing spatial and temporal information, power dissipation, and
network latency. Furthermore, challenges associated with enabling real-
time processing, on-chip learning, system scalability, and reliability are
addressed. This study serves as a foundation for selecting proper HTM
network architecture and technological solutions for devices with pre-
defined computational capacity, power budget, and footprint area.

– �Chapter 5 discusses an AI-powered Sanskrit voice bot. The complexity
of the algorithm demands a hardware accelerator to further improve the
performance of the bot as suggested by the authors.

– �Chapter 6 presents a face recognition model developed for an attendance
system developed by OpenCV Python supported by Xilinx ML Suite for
FPGA implementation.

– �Chapter 7 presents a smart system for obstacle detection to assist the
visually impaired in autonomously navigating using a machine learning
approach. Machine learning algorithms work on the objects captured
through the cameras. The audio outputs are used to teach blind people
how to determine the location of items. Further various obstacle detec-
tion approaches are discussed that can create and develop an autono-
mous navigation system to assist the visually impaired.

– �Chapter 8 presents a crop disease detection system accelerated by GPU.
A major problem facing farmers is plants getting affected by diseases. To
prevent yield losses, it’s necessary to detect disease in the crop. Manually
monitoring crop diseases becomes very time-consuming and difficult
especially if the farm is large because of the greater workload for the
farmer, and therefore cannot always be done accurately. If the disease
is nonnative, many times farmers are not aware of it. Hence, this work
focuses on crop disease detection with the help of image processing
techniques and machine learning algorithms like SVM, ANN, and SAS
classifiers.

– �Chapter 9 presents a comparative study of object detection and lane
detection algorithms. This work provides a survey on lane detection
approaches based on performance analysis of existing lane detection
approaches like CNN, Hough transform, Gaussian filter and Canny edge
detection. The authors propose approaches on different datasets such as
curved roads, big datasets, rainy days, yellow-white strips, day and night
lights. A detailed direct comparison of the You Only Look Once (YOLO)
algorithm with object detection using color masking is presented.

xvi  Preface

– �Chapter 10 presents a case study on deep learning-based speech emotion
recognition using Python productivity for Zynq (PYNQ) open-source
framework that is further implemented on PYNQ-Z1 FPGA board.

– �Chapter 11 discusses the hardware implementation of recursive neural
network. It is done on PYNQZ2, which is a ZYNQ XC7Z020 FPGA-
based FPGA development board. The authors have concluded that the
implemented network is faster than other mobile platforms and will
likely evolve into an RNN coprocessor for future devices.

In closing, we, the editors, wish to acknowledge the valuable contribu-
tions of the reviewers in improving the quality, coherence, and content of
the chapters presented. We would also like to acknowledge the help of all
those involved in this book directly or indirectly and, more specifically, the
publishing team. Without their support, this book would not have become
a reality.

As always, the greatest debt one owes is to one’s colleagues, friends and
family. Therefore, we thank our friends who have been a constant source of
encouragement throughout this project and shared their technical exper-
tise and offered other kinds of support. Finally, we must thank our family
members as they are responsible for this book in even more ways than they
know. This book is dedicated to them.

We hope that this book will become part of an ever-evolving knowledge
repository. As such, there may be areas that need improvement and inad-
vertent errors that need correcting. Therefore, we sincerely request that
the readers feel free to email their suggestions and feedback on the book
to us. We will surely try to incorporate the relevant suggestions in the next
edition.

Dr. Anuradha D. Thakare
Department of Computer Engineering, Pimpri Chinchwad College of

Engineering, Pune, India
Dr. Sheetal Umesh Bhandari

Department of Electronics & Telecommunication Engineering,
Pimpri Chinchwad College of Engineering, Pune, India

1

Anuradha D. Thakare and Sheetal Umesh Bhandari. Artificial Intelligence Applications and Reconfigurable
Architectures, (1–24) © 2023 Scrivener Publishing LLC

1

Strategic Infrastructural Developments
to Reinforce Reconfigurable Computing

for Indigenous AI Applications
Deepti Khurge*

Pimpri Chinchwad College of Engineering, Pune, India

Abstract
Artificial intelligence (AI) methodologies have the potential to reform many
aspects of human life. The capabilities of AI are continuously evolving so as its
enterprise adoption. Globally governments and industries are actively conceiving
where and how to leverage AI. Machine learning (ML) and AI are evolving at a
faster rate than silicon can be developed. To take advantage of AI to its potential,
the appropriate AI infrastructure must be strategically planned. AI solutions will
require appropriate hardware, software, and scalable processing models. The eco-
system of AI business applications, hence, can be seen as a whole.

The need for enterprises to comprehend the correct technology and infra-
structure required to implement AI-powered solutions is growing by the day.
Significant AI infrastructures are AI networking infrastructure, workloads, data
preparation, data management and governance training, and Internet of Things
(IoT). If the potential in the labor force, academic institutions, and governance
standing is identified and leveraged effectively, commercial strategies can lead to
an AI breakthrough.

Keywords:  Artificial intelligence, reconfigurable computing, GPU, FPGA, ASIC,
hardware accelerator

*Email: dipti.khurge@pccoepune.org

mailto:dipti.khurge@pccoepune.org

2  AI Applications and Reconfigurable Architectures

1.1	 Introduction

Recently, reconfigurable computing has made significant advancements in
the acceleration of AI applications. Reconfigurable computing is a comput-
ing architecture that focuses on the high-performance flexibility of hard-
ware and software components. After production, they are reprogrammed
to specific applications based on their functionality requirements. It is a
significant research field in computer architectures and software systems.
By putting the computationally intensive parts of an algorithm onto recon-
figurable hardware, many algorithms may be considerably accelerated.
Artificial intelligence algorithms and application that has traditionally suf-
fered from lack of a clear methodology to implement. Researchers have
used reconfigurable computing as one means of accelerating computation-
ally intense and parallel algorithms. There is a need to explore the recent
improvements in the tools and methodologies used in reconfigurable com-
puting which strengthen its applicability towards accelerating AI method-
ologies [1].

Contemporary AI applications, such as finance, healthcare, military,
etc., are designed on the grounds of complex artificial neural networks
(ANN), having complex computation including huge data, constraints and
recurring layer to layer communication [12]. With AI technology growing
cutting-edge significantly, AI algorithms are still developing, and one ANN
algorithm can only acclimatize to one application. Hence, an ideal AI hard-
ware must be able to adapt to changing and developing algorithm, sup-
port diverse ANN based on necessities, and switch between ANN flexibly.
Microchips built on reconfigurable computing may be able to resourcefully
support user specific computational pattern, computing architecture, and
memory hierarchy by allowing runtime configuration in said areas by effi-
ciently supporting diverse NNs with high output computations and com-
munications [9, 12].

1.2	 Infrastructural Requirements for AI

As AI progresses from experimentation to adoption, it will necessitate a
huge investment in computer resources and infrastructure. Due to tech-
nological advancements, complex and resource-intensive, the system costs
will rise. As AI’s necessity for large volumes of data increase, so data has

Reconfigurable Computing for Indigenous AI Application  3

to be on cloud so, predominantly hybrid cloud solutions will be required,
to create concrete infrastructural foundation. These solutions will ensure
that the needs of businesses and workloads will be sufficed and provide
support to the increasing demands required to sustain AI, and ensure to be
at the appropriate cost. Organizations require adequate performance com-
puting resources, which including CPUs and GPUs, to effectively exploit
the opportunities posed by AI. Basic AI operations can be handled in a
CPU-based environment, but deep learning requires many big data sets
and the use of scalable machine learning algorithms. CPU-based process-
ing may not be adequate for this. Especially compared to regular CPUs,
GPUs can expedite AI and ML operations with great amounts. As per com-
puting capacity and density demand for high-performance networks and
storage will also expand. The following criteria are specially given attention
to setup an ecosystem for AL-based infrastructural development [4, 16].

a.  Storage capacity or volume
As the volume of data grows, it is important for any infrastructure to scale
storage. Many parameters influence how much storage an application uses,
including how much AI it will use and if it will need to make real-time
predictions. For example, a healthcare application that employs AI algo-
rithms to make real-time decisions on disease prediction may require all-
flash storage, VLSI applications may need faster but much larger storage
will suffice. system design must account for the volume of data generated
by AI applications. When AI applications are exposed to more data, they
make better predictions [4, 6, 7].
b.  Networking infrastructure
AI-based systems and algorithm implemented on devices or on cloud are
required to deal with huge data. Many of infrastructure with large com-
puter networks are responsible for real time data transmission. AI efforts
to satisfy these demands nut networking infrastructure will keep on rising
high. Such system needs high bandwidth and very low latency.
c.  Security
Application such as military, health care needs AI to manage sensitive data.
Such data may be a patient records, financial information, and personal
data, defence related data. Such data that get hampered will be dangerous
for any organization. Having data attacks or data breach can lead to pro-
nounced consequences in organizations. Comprehensive security strategy
should be adopted such AI infrastructure.

4  AI Applications and Reconfigurable Architectures

d.  Cost-effective solutions
As AI systems become more complicated, they become more expensive to
run, thus maximizing the performance of infrastructure. In such condi-
tions it is critical to keeping costs these system under control. Expecting
continued growth in the number of firms employing AI in the next years,
putting more strain on network, server, and storage infrastructures to sup-
port this technology cost effective solutions are desired
e.  High computing capacity
Organizations require sufficient performance computing resources, such
as CPUs and GPUs, to properly utilize the opportunities given by AI. Basic
AI workloads can be handled in a CPU-based environment, but deep
learning requires many big data sets and the use of scalable neural net-
work techniques. CPU-based computation may not be sufficient for this.
Demand for high-performance networks and storage will increase, as will
computing capacity and density [6, 7].

Hence, while delivering the high performance eco system for AI-based
systems the organizations should adopt the strategic developments meth-
ods to foster the needs of the infrastructure [3]. Gradually starting from
robust security areas, the large storage backups, high performing compu-
tational models and cost effective solutions to go hand in hand to develop
state of art technological solutions.

1.3	 Categories in AI Hardware

Next important developmental phase in adopting AI solutions is strong
hardware support. The hardware should be technologically accommoda-
tive to existing infrastructure as well as capable of establishing heuristic
methodologies in terms of adaption [5, 6].

The hardware used for AI today mainly consists of one or more of the
following:

•	 CPU — Central Processing Units
•	 GPU — Graphics Processing Units
•	 FPGA — Field Programmable Gate Arrays
•	 ASIC — Application Specific Integrated Circuits

Reconfigurable Computing for Indigenous AI Application  5

a.  CPU
The CPU is the standard processor used in many devices. Compared
to FPGAs and GPUs, the architecture of CPUs has a limited number of
cores optimized for sequential serial processing. Arm® processors can
be an exception to this because of their robust implementation of Single
Instruction Multiple Data (SIMD) architecture, which allows for simulta-
neous operation on multiple data points, but their performance is still not
comparable to GPUs or FPGAs.

The limited number of cores diminishes the effectiveness of a CPU pro-
cessor to process the large amounts of data in parallel needed to properly
run an AI algorithm. The architecture of FPGAs and GPUs is designed with
the intensive parallel processing capabilities required for handling multiple
tasks quickly and simultaneously. FPGA and GPU processors can execute
an AI algorithm much more quickly than a CPU. This means that an AI
application or neural network will learn and react several times faster on a
FPGA or GPU compared to a CPU.

CPUs do offer some initial pricing advantages. When training small
neural networks with a limited dataset, a CPU can be used, but the trade-
off will be time. The CPU-based system will run much more slowly than
an FPGA or GPU-based system. Another benefit of the CPU-based appli-
cation will be power consumption. Compared to a GPU configuration, the
CPU will deliver better energy efficiency.

b.  GPUs
Graphic processing units (GPUs) were originally developed for use in
generating computer graphics, virtual reality training environments and
video that rely on advanced computations and floating-point capabilities
for drawing geometric objects, lighting and color depth. In order for artifi-
cial intelligence to be successful, it needs a lot of data to analyze and learn
from. This requires substantial computing power to execute the AI algo-
rithms and shift large amounts of data. GPUs can perform these operations
because they are specifically designed to quickly process large amounts of
data used in rendering video and graphics. Their strong computational
abilities have helped to make them popular in machine learning and artifi-
cial intelligence applications. GPUs are good for parallel processing, which
is the computation of very large numbers of arithmetic operations in paral-
lel [4]. This delivers respectable acceleration in applications with repetitive

6  AI Applications and Reconfigurable Architectures

workloads that are performed repeatedly in rapid succession. Pricing on
GPUs can come in under competitive solutions, with the average graphics
card having a 5-year lifecycle [2, 4].

AI on GPUs does have its limitations. GPUs do not generally deliver
as much performance as ASIC designs where the microchip is specifically
designed for an AI application. GPUs deliver a lot of computational power
at the expense of energy efficiency and heat. Heat can create durability
issues for the application, impair performance and limit types of opera-
tional environments [2]. The ability to update AI algorithms and add new
capabilities is also not comparable to FPGA processors.

c.  FPGAs
FPGAs are types of integrated circuits with programmable hardware fab-
ric. This differs from GPUs and CPUs in that the function circuitry inside
an FPGA processor is not hard etched. This enables an FPGA processor
to be programmed and updated as needed. This also gives designers the
ability to build a neural network from scratch and structure the FPGA to
best meet their needs.

The reprogrammable, reconfigurable architecture of FPGAs delivers key
benefits to the ever-changing AI landscape, allowing designers to quickly
test new and updated algorithms quickly. This delivers strong competitive
advantages in speeding time to market and cost savings by not requiring
the development and release of new hardware [7, 15].

FPGAs deliver a combination of speed, programmability and flexibility
that translates into performance efficiencies by reducing the cost and com-
plexities inherent in the development of application-specific integrated cir-
cuits (ASICs) [8].

Key advantages FPGAs deliver include:

a.	 Excellent performance with reduced latency advantages:
FPGAs provide low latency as well as deterministic latency
(DL). DL as a model will continuously produce the same
output from an initial state or given starting condition. The
DL provides a known response time which is critical for
many applications with hard deadlines. This enables faster
execution of real-time applications like speech recognition,
video streaming and motion recognition [8, 15].

Reconfigurable Computing for Indigenous AI Application  7

b.	 Cost effectiveness: FPGAs can be reprogrammed after
manufacturing for different data types and capabilities, deli
vering real value over having to replace the application with
new hardware [8]. By integrating additional capabilities —
like an image processing pipeline — onto the same chip,
designers can reduce costs and save board space by using
the FPGA for more than just AI. The long product lifecy-
cle of FPGAs can deliver increased utility for an application
that can be measured in years or even decades. This char-
acteristic makes them ideal for use in industrial, aerospace,
defence, medical and transportation markets.

c.	 Energy efficiency: FPGAs give designers the ability to fine-
tune the hardware to the match application needs. The con-
ventional processors, such as CPUs, utilize a large amount
of energy and cannot be customized to suit any one tar-
geted application. GPUs are programmable but need higher
amount of energy. FPGAs offer a midway solution with high
programmability and energy efficiency with acceptable the
throughput for the application

Majorly the expectation from the hardware which will implement
AI-based solution needlessly should have following properties.

•	 Execution of huge number of calculations in simultane-
ously rather than sequentially. Performing calculations with
low-precision numbers so these AI algorithms are effectively
implemented by requiring a smaller number of transistors to
accomplish the task.

•	 Accommodating complete algorithm in a single AI chip
to address speed of memory access. Using good Hardware
description languages to efficiently convert AI computer
code into executable files on an AI chip [2, 14].

•	 Geometric flexibility initially to have handy hardware for a
variety of jobs.

Considering above constraints, it is evident that FPGAs can host mul-
tiple functions in parallel and can even assign parts of the chip for spe-
cific functions which greatly enhances operational and energy efficiency.

8  AI Applications and Reconfigurable Architectures

The unique architecture of FPGAs places small amounts of distributed
memory into the fabric, bringing it closer to the processing. This reduces
latency and, more importantly, can reduce power consumption compared
to a GPU design. AI chips normally enhance speed and efficiency by add-
ing a large number of reduced size transistors, which are faster and energy
efficient. But considering AI systems with complex algorithms, these fea-
tures prove insufficient to perform identical, predictable, and independent
calculations.

d.  ASICs
ASICs can be used for both training, which is initial construction and
refinement of algorithm, and inference, which if applying algorithm to real
world. GPUs are best suited for training and FPGAs for inference. ASIC
can provide a generous solution combining properties of GPU [4] and
FPGA. ASICs majorly can be customized as follows

•	 Vision processing units (VPUs), image and vision proces-
sors, and coprocessors;

•	 Tensor processing units (TPUs), such as the first
TPU developed by Google for its machine learning
framework, TensorFlow’

•	 Neural compute units (NCUs), including those from ARM.

1.3.1	 Comparing Hardware for Artificial Intelligence

AI frame work including ML and deep learning (DL) work by analyzing
huge amounts of data and identifying patterns that no human would be
able to predict. The ability to analyze the such voluminous data required
have been enabled by GPUs, which can process data streams in paral-
lel making them much more efficient at this than CPUs. There is a need
for a storage solution that can deliver the data to the GPUs with extreme
high-performance and ultra-low latency. GPU-based systems have revo-
lutionized what can be done with AI by parallelizing processing. FPGA-
based solution can help in this to achieve desired parallelism to get the
most out of your GPUs, organizations need a storage solution that delivers
high throughput and low latency. Comparing the offering given by these
hardware platforms the better inferences can be drawn for choosing a plat-
form for implementation as shown in Table 1.1 [6, 14].

Reconfigurable Computing for Indigenous AI Application  9

1.4	 Hardware AI Accelerators to Support RC

AI accelerator is a specialized hardware designed to accelerate AI appli-
cations. Accelerators can significantly decrease the amount of time taken
to train and execute an AI model. Most popular hardware AI accelerators
are GPU, Vision Processing Unit (VPU), FPGA, ASIC, Tensor Processing
Unit (TPU). Processing speed and scalability are major concerns from AI
applications, hence AI accelerators play a perilous role in delivering the
required results that make these applications valuable [5, 6, 13].

1.4.1	 Computing Support for AI Application: Reconfigurable
Computing to Foster the Adaptation

To implement complete AI models in diverse applications, efficient com-
puting on fully connected NN layers is essential. A flexible architecture has

Table 1.1  Comparison of hardware platforms for AI applications.

Parameter CPU GPU FPGA ASIC Description

Latency
comparison

Higher Higher Lower Lower No operating
system
available
for FPGA/
ASIC to cater
conflicting
needs.

Power
comparison

High High Medium Low Algorithm
running bare
metal takes
less time.

Flexibility Lowest Lower Highest One
time

FPGA allows
reconfigurable
architecture.

Parallel
computing

High Higher Highest High FPGA can
handle
parallel
connected
workstations

10  AI Applications and Reconfigurable Architectures

the benefit of being able to accommodate sophisticated networks, as well as
future AI model versions. The architecture of AI structures and algorithms
must evolve in conjunction with the advancement of Al models. Hence,
reconfigurable computing is essential for any application with a long-life
cycle and periodic upgrades, which is the most essential need for an edge
or embedded device. This approach is useful for model upgrades in the
field without having to worry about whether the underlying hardware can
handle it. Hence, instead of standalone hardware resources, AI processors
require reconfigurable computing units to support various layers and opti-
mize overall network performance [12].

1.4.2	 Reconfiguration Computing Model

Reconfigurable computing systems are classically based on reconfigurable
functional units (RFUs) acting as coprocessor and connected to a host sys-
tem like CPU/GPU, as shown in Figure 1.1. RPUs can be connected to
host systems in many ways, depending on the capacity and performance
by adopting incremental processor expansion [1]. This is helpful in adapt-
ing diverse possibilities of reconfigurable architectures. Reconfigurable
function unit communicates with programming elements (PE) inside pro-
grammable devices like FPGA which has a reconfigurable memory and
controller [14, 16].

A single control unit designed as FSM can perform many processes
optimally and is able to configure itself depending on the required mode
of operation. Hence, it is called a reconfigurable FSM. Based on the

CPU/GPU

RFU

Memory

Reconfigurable
memory

Reconfigurable
Controller

PE

PE

PE

PE

Figure 1.1  A typical reconfigurable computing model.

Reconfigurable Computing for Indigenous AI Application  11

application, a counter, timer, or any user-defined control signals control
the mode of operation reconfigurable FSMs as shown in Figure 1.2.

1.4.3	 Reconfigurable Computing Model as an Accelerator

a.  As a Functional Unit in CPU or GPU
Reconfigurable unit can be configured as a functional unit inside the
main processor. Any changes in instruction set as per application can be
uploaded by the main processor to this unit understanding the hardware

Reconfigurable Functional Unit

Control

Reconfigurable Memory
Controller

Reconfigurable Data Path and Registers

Clock
Reconfiguration

Context

State

Context

Input
Output

Reconfigurable FSM

Figure 1.2  A reconfigurable functional unit.

RFU

CPU/GPU

CPU/GPU

Reconfigurable
Memory Controller

Reconfigurable Functional Unit

Clock
Reconfigur

ation

Input

Reconfigurable Data Path and
Registers

Outp

Conte

Conte

Reconfigurable FSM

Figure 1.3  Reconfigurable unit in side CPU or GPU as functional unit.

12  AI Applications and Reconfigurable Architectures

configuration as shown in Figure 1.3. Data path for these functional units
can be hardwired with processor Datapath.
b.  As a Coprocessor with CPU/GPU
Reconfigurable functional unit (RFU) can be deployed as a coprocessor
with CPU/GPU as shown in Figure 1.4. RFU has the ability to adjust the
hardware to meet the demands of a specific application. For example, when
an image processing program is executing, the reconfigurable logic may
have to adjust hardware to data compression and decompression algo-
rithms. When a data interpretation, security logic is running, the recon-
figurable logic may change to hardware which related to some graphics
operations [15]. Computationally these operations may not provide as
much performance improvement as dedicated hardware as overheads in
reconfigurable logic will be included. This system can deliver performance
gains for larger applications because they are able to accelerate most appli-
cation running on system.

The reconfigurable array, as shown in Figure 1.5, consists of hardware
preferably FPGA designed to handle high-performance computations, is
the system’s main component. All RFU instructions is carried out in this
location. Reconfigurable array gets data directly from the host processor’s
register file. A Memory controller controls row in the reconfigurable array,
are placed next to the array and determine which of the instructions to be
performed.

c.  RFU as an Attached Processing Unit
Reconfigurable units are connected as attached processing unit in this
type as shown in Figure 1.6. In this type of workstation, higher bandwidth
communication allows for bulk data transfers. The communication stan-
dard used can be PCI, PCI-Express, or similar as shown in Figure 1.7.
Communication performed via function calls or computer nodes [16]. This

CPU/GPU RFU

Figure 1.4  Reconfigurable functional unit as a coprocessor.

Reconfigurable Computing for Indigenous AI Application  13

is most common implementation of Reconfigurable Computing. Memory
access, is very critical issue in AI acceleration. Reconfigurable architectures
as an attached processing unit uses specialized data paths to communi-
cate the composite data movements for diverse AI applications, which can
maximize data reuse and significantly improve overall Datapath flexibility.
Here RFU is implemented using FPGA accelerator as shown in Figure 1.7.

Instructtion
Register

Reconfigurable
context/Register file

Datapath
H

os
t P

ro
ce

ss
or

Memory
controller
and
Instruction
Decoder

Memory Bus

Re
co

nf
ig

ur
ab

le
 A

rr
ay

Fetching
Control

(Runtime
reconfi-
-guration
logic)

Figure 1.5  Reconfigurable functional unit as a coprocessor.

CPU/GPU Memory Cache

RFU

RFU

Figure 1.6  Reconfigurable functional unit as an attached processing unit.

14  AI Applications and Reconfigurable Architectures

d.  RFU as a standalone processing unit for highly connected NN
This Class of processing units that are external to the computer system
connected as a standalone processing unit as shown in Figure 1.8. These
are generally Very loosely coupled. Standalone processing units are usually
optimized for specific problems capable of handling complex and volumi-
nous data sets which usually involves large task size. In this type of accel-
erator processor intervention is minimal. Communication is performed
using existing mechanisms in the host processor like Ethernet, USB or
Serial. Parallely connected FPGA boards can be seen as an accelerator of
this type shown in Figure 1.9.

Few applications propose network architectures which are compact, this
helps to reduce the number of weights and computations in AI applications.
The intention behind doing this is to replace a large computational network
with a series of smaller network, which can be reconfigured at runtime.

PCI Expresses

Main Bus

Cache
Memory

DDR
Memory

FPGA
(RFU)

FPGA
Memory

FPGA +
Memory

DDR
memory

Computer
Nodes

CPU/GPU

Figure 1.7  Reconfigurable functional unit as an attached processing unit.

RFU RFU RFU

RFU RFU RFU

RFU RFU RFU

CPU/GPU Memory Cache

I/O Interface

Figure 1.8  As a standalone processing unit for highly connected NN.

Reconfigurable Computing for Indigenous AI Application  15

A compact reconfigurable computing architecture can be designed to sup-
port all kinds of compact networks instead of a network designed for cus-
tom application. If done so, such architecture can significantly reduce the
number of operations and network size. This can help in reducing losses
which occur at implementation level. The beauty of AI lies in the fact that
it can be used to understand how differently the design of reconfigurable
computing system can be designed, required for many applications. With
the increasing complexity of microchips, designers can use AI to better
build and accomplish complex reconfigurable systems.

1.5	 Architecture and Accelerator for AI-Based
Applications

a.  Neural Network Accelerators
With an increasing demand for accuracy, power consumption and com-
putation time, a growing number of scholars are keen on designing and
implementing accelerators suitable for neural networks. The extreme devel-
opment of big data applications is accelerating the development of ML,
it imposes the constraints in speed and storage on traditional computer
systems. AI accelerators are constructed with a numerous highly parallel
computing and storage units. The frequent switching of data between pro-
cessors and off-chip memory, lowers the system performance. These units
are normally arranged in a two-dimensional array to support matrix–vector

PLD

PLD

PLD

PLD

PE PE PE

PE PE PE

PE PE PE

PE PE PE

Board n

Board2
Board1

CPU/GPU Memory
Cache

I/O
Interface

Figure 1.9  A processing unit for highly connected NN.

16  AI Applications and Reconfigurable Architectures

multiplications in NNs. Designing a Network on chip high bandwidth
memory and data reuse can help to optimize the data volumes [9].

Typical Design of a Hardware Accelerator for NN
A hardware accelerator for NNs can be implemented on ASIC or FPGA
consists of an array of PEs for computation as shown in Figure 1.10. The
PEs are interconnected by a network present on chip particularly designed
to achieve the required data movement. The memory is divided as Register
Files (RFs) in the PEs. These RFs store data for data movements between
PEs. The Global Buffers present in the system stores values to configure the

Data from bus Data from neighbors

Register
File

Functional Unit

Custom
Logic

Local
Memory

reg

O
�

ch
ip

 M
em

or
y

G
lo

ba
l b

uf
fe

r

N
et

w
or

k
on

 c
hi

p

PE’s Array

Register file

Figure 1.10  Typical Design of a hardware accelerator and a programming element.

Reconfigurable Computing for Indigenous AI Application  17

PEs, and the off-chip memory, normally a DRAM. The operations in NNs
are mostly Multiply-and-Accumulate (MAC). These operations are sim-
ple but performed on larger set of data. Moreover, memory access for this
computation is very crucial. To have high latency and energy cost the data
movement across DRAM and its access can be reduced. The reuse of the
data stored in smaller, faster, and low-energy memories like global buffers
and RFs is more acceptable.

FPGAs are promising accelerators for these applications. They are pro-
grammable maintaining power-efficiency. In NN accelerator design, the
acceleration of some programs in general-purpose processing or for NN is
done. Because of this limitation of general-purpose processing units, it is
desirable to have specialized chips for AI and NN applications. This can be
achieved through the neural processing unit (NPU). This unit is designed
to accelerate a section of a program instead of running an entire section
of CPU. An NPU hardware is consists of Processing Units (PU) similar
to PEs, as shown in Figure 1.11. Each PE performs the computation simi-
lar to neuron typically multiplication, accumulation, and sigmoid. Hence,
in general NPU performs the computation of a multiple layer perceptron
(MLP) in NN. PE a runtime reconfigurable and capable of executing all the
operations required by modern NNs. This improves resource utilization
and power efficiency.

b.  Bioinformatics-Related Accelerators
Bioinformatics is an essential field of utilizing FPGA for acceleration.
Until now, the processing for bioinformatics applications is done in soft-
ware, which results in high processing time FPGA-based reconfigurable

External Memory

On chip Memory
Buffer 1 Buffer 2 Buffer 3

PU

PU

Input Buffer
Output buffer

Figure 1.11  A neural processing unit.

18  AI Applications and Reconfigurable Architectures

hardware platforms, can be a game changer in this. The principal advan-
tages of using FPGA, is the fast prototyping and ease of implementation.
FPGAs can use an existing hardware platform to map algorithms and their
software implementations. FPGAs can deliver a good speedup, and are able
to integrate a good number of PEs [9, 12].

Hence recent computational challenges in the field of computational biol-
ogy and bioinformatics can be catered by present day FPGA devices which
offer high flexibility and resources, including modules that implement
Floating Point arithmetic, leading to fast computational units for bioinfor-
matics applications [11]. These devices also have very fast serial interfaces.
Earlier there were no platforms to have interconnection between the FPGA
device and the data storage, but now FPGAs can serve as interface between
host and memory so improvement has happened in terms of the speed of
the physical FPGA-to-memory connections and data storage as well [13].

Bioinformatic application demand a complex level NN with weighted
interconnects.as shown in Figure 1.12. The nodes in that NN are computa-
tional memory units which are runtime reconfigurable. The backward and
forward propagation training network compute a weight and is connected
to high precision memory unit which feeds to reconfigurable controller. A
reconfigurable programming unit takes care of programming the elements
in memory as per application demands. This is also use to control error.

Forward Propagation xi-----xj Computational Memory Unit

Wji

yi---------yj

Backward propagation

I=Yj*xi

Vxi

Ij Vyi

Peripheral Circuits

Pe
rip

he
ra

l C
irc

ui
ts

Recon�gurable Programming Unit

xi

Wi*xi

Wi*yj

yj

High precision data unit

Forward Propagation

Backward Propagation

Compute weight W

Compute
P

Error Control

High precision memory

Reconfigurable Memory
Controller

+

–

∑

∑

∑

Figure 1.12  Fully connected reconfigurable NN.

Reconfigurable Computing for Indigenous AI Application  19

c.  Data Mining Accelerators
Increasing amounts of data pose enormous challenges to data mining tech-
nologies and computer systems that adapt to these technologies. To provide
flexibility, General-purpose CPUs and GPUs are not efficient at processing
such algorithms. By contrast, hardware accelerators can provide high effi-
ciency for some algorithms while satisfying their response time requirements.
Reconfigurable FPGA accelerator are the best candidates for these [13].

To obtain higher performance, a computing unit into a pipeline mode so
that each cycle could produce result. Modern large-scale FPGA resources are
enough to meet a layer’s network model as required by these complex opera-
tions, due to which anyone can schedule PEs by layer. On chip FPGA can be
employed along with a memory interface to reduce the overhead occurred
by data movements for these operations as shown in Figure 1.13.

d.  Graph and Database Accelerators
Computer memories store data using a variety of mechanisms. The most
common involve the use of relational databases or indexed file systems.
Although these formats provide efficient access and manipulation of struc-
tured data, they are less efficient for unstructured data sets, especially ones
in which connections between individual data are of first-class impor-
tance. Graph data structures are fundamentally designed to capture such
relationships efficiently [10].

GPUs are enormously parallel processors that feature a desirable number
of execution units and a specialized memory system designed to provide

Core Core
DRAM DRAM

Onchip cache Hierarchy

CPU Memory
Interface

Memory
Interface

Memory
Interface

Main Memory SSD

Interconnect

FPGA FPGA

Figure 1.13  FPGA-based accelerator for data mining.

20  AI Applications and Reconfigurable Architectures

immense data bandwidth. Long memory latencies are tolerated using con-
text switching on a large number of threads. The large number of threads
available on a GPU provide a good mapping for large graph analytics algo-
rithms due to the abundant parallelism inherent in processing the many
elements of the graph. Dataflow architectures are a distinct type of archi-
tecture in which there is no traditional program counter dictating the con-
trol flow of the program, which is present in standard control flow-based
architectures. The data flow model is well suited for parallel architectures,
because execution is inherently independent of the traditional sequential
program counter. Multiple tasks will execute simultaneously by default, or
in arbitrary order, due to the lack of dependency between those tasks.

Contemporary FPGAs offer a large amount of reconfigurable com-
pute resources, high-speed bidirectional interconnect busses, and on-chip
RAMs. These are best suitable for Graph and Database Accelerators

e.  Vendor and Research Laboratories Supporting AI Infrastructure
FPGA manufacturers are already working on implementing cloud-based
FPGAs for AI workload acceleration. Intel is driving the Alibaba Cloud
AaaS service called f1 instances. Microsoft also joins race with proj-
ect Brainwave which offers FPGA technology for accelerating deep neural
network inferencing. Another large FPGA manufacturer, Xilinx, also enters
with a bang. Xilinx has announced a new SDAccel integrated development
environment meant to make it easier for FPGA developers to work with differ-
ent cloud platforms. AI software start-up Mipsology is working with Xilinx to
enable FPGAs to replace GPUs in AI accelerator applications. Major research
labs are dedicating to do their breakthroughs in AI. Some Research labs are
The Alan Turing Institute, Laboratory of Imaging, Vision and AI (LIVIA), J.P.
Morgan AI Research Lab, Oxford Machine Learning Research Group, UTCS
AI-Lab – University of Texas, Berkeley AI Research Lab, IBM Research.

1.5.1	 Advantages of Reconfigurable Computing Accelerators

a.	 Low power consumption and high performance are the
two most obvious advantages of reconfigurable computing
accelerators.

b.	 Security: Data volume playing an increasingly important
role hence data architecture playing as a carrier of data, the
security of a these has become crucial. Software needs to be

Reconfigurable Computing for Indigenous AI Application  21

secured but it is only one of the elements and sometimes
unable to eliminate security risks. On the contrary security
when enhanced to the hardware architecture level, threats
are eliminated better.

c.	 Flexibility: A multifunction hardware accelerator can han-
dle frequent design changes. Reconstructing accelerators
with specific refactoring techniques could accommodate the
changing requirements of user’s application Hence, flexibility
is also a highlight of reconfigurable computing accelerators.

d.	 Parallelism: Practical experience has revealed that the pipe-
line can bring performance improvements and high par-
allelism could efficiently speed up the program execution.
However, as the pipeline depth increases, it would result in
complex structures, large hardware overheads, and higher
parallelism requirements for applications or programs
themselves. If we rashly execute each program in parallel,
a dramatic increase would be brought in system overhead
and lose more than gain. As an increasing number of appli-
cations could be processed in parallel, the demand for par-
allelism will surge. Therefore, the study of parallelism in
architecture enjoys a bright future.

e.	 Cost: As chip manufacturing is progressively approach-
ing nanotechnology, the superiority of FPGAs has become
more apparent. In particular, by reconstructing multiple
soft cores, multiple instruction set processors could be
implemented on a single chip. According to the division
of field computing tasks, different processor functions are
implemented instantly, realizing that multiple functions are
achieved by once chip design, thereby, drastically reducing
the nonrecurring expenses (NRE) of designing.

1.5.2	 Disadvantages of Reconfigurable Computing
Accelerators

a.	 Reconfigurable overhead: Significantly, in the process of
design and implementation of the reconfigurable comput-
ing accelerators, FPGAs generally demand to be configured,
which includes synthesis, placement, and routing. However,

22  AI Applications and Reconfigurable Architectures

depending on the accelerator complexity, these operations
could cost much more considering time requirements.

b.	 A higher programming complexity: However, reconfigu-
rable computing requires hardware programming, generally
using hardware programming Languages (Verilog, VHDL.)
that would cost programmers much time to master.

1.6	 Conclusion

With the rise of artificial intelligence and complex data analytics era in
recent years, data-intensive and compute-intensive applications have posed
considerable challenges to computer processing ability. However, the lack
of computer processing capacity restricts the development of these appli-
cations. Hence, GPUs having computationally strong architecture around
can be built up for of very large numbers of arithmetic operations to be
operated in parallel mode. Such architectures, particularly hardware accel-
erators, may deliver respectable acceleration in applications with repetitive
workloads that are performed repeatedly in rapid succession. The pro-
grammable architecture promises to be more suitable for the execution of
the most irregular or data massive applications. Reinforcement of reconfig-
urability in such accelerators can support user-specific computational pat-
tern, computing architecture, and memory hierarchy by allowing runtime
configuration in diverse applications.

References

	 1.	 Ciesielski, R., (Warsaw Univ. of Technology (Poland)), Accelerating artifi-
cial intelligence with reconfigurable computing, in: Photonics Applications in
Astronomy, Communications, Industry, and High-Energy Physics Experiments
2012. Proceedings of the SPIE, Volume 8454, p. article id. 84541L, 8, 2012.

	 2.	 Wei, S., Department of Microelectronics and Nanoelectronics, Tsinghua
University, Beijing 100084, China, Reconfigurable computing: A promising
microchip architecture for artificial intelligence. J. Semicond., 41, 2, Feb 2020.

	 3.	 Maayan, G.D., How to leverage high performance computing (HPC) for AI,
AI and HPC: How they work together and why they need each other. https://
keenethics.com/blog/high-performance-computing-for-ai

Reconfigurable Computing for Indigenous AI Application  23

	 4.	 Van Den Braak, G.J., R-GPU: A reconfigurable GPU architecture. ACM Trans.
Archit. Code Optim., 13, 1, Article no. 12, page 8, April 2016. https://doi.
org/10.11.45/2890506

	 5.	 Wang, C., Lou, W., Gong, L., Jin, L., Tan, L., Hu, Y., Li, X., Zhou, X.,
Reconfigurable hardware accelerators: Opportunities, trends, and chal-
lenges. arXiv preprint arXiv:1712.04771, 2017.

	 6.	 Reese, L., Editor-in-Chief, Embedded, IIEditor-in-Chief, Embedded Intel
Solutions ADLINK, Comparing hardware for artificial intelligence: FPGAS vs.
GPUS vs. ASICS, July 24th, 2018. http://lreese.dotsenkoweb.com/2019/03/30/
comparing-hardware-for-artificial-intelligence-fpgas-vs-gpus-vs-asics/

	 7.	 Tsai, Z., Director of Platform Product Center, Embedded
Platforms & Modules and Technology, ADLINK, Embedded hard-
ware for processing AI at the edge: GPU, VPU, FPGA, and ASIC
explained. https://blog.adlinktech.com/2021/02/19/embedded-hardware-
processing-ai-edge-gpu-vpu-fpga-asic/

	 8.	 Ahmed, R., Mostafa, H., Khalil, A.H., Design of a reconfigurable network-
on-chip for next generation FPGAs using Dynamic Partial Reconfiguration,
Microelectronics J., 108, 104964, February-2021.

	 9.	 Capra, M., Bussolino, B., Marchisio, A., Shafique, M., Masera, G., Martina,
M. An updated survey of efficient hardware architectures for a deep caon-
volutional neural networks. Future Internet, 12, 113, 2020. https://doi.
org/10.3390/fi12070113

	 10.	 Betkaoui, B., Wang, Y., Thomas, D.N., Luk, W., A reconfigurable computing
approach for efficient and scalable parallel graph exploration, in: 2012 IEEE
23rd International Conference on Application-Specific Systems, Architectures
and Processors, pp. 8–15, IEEE, 2012.

	 11.	 Chrysos, G., Sotiriades, E., Rousopoulos, C., Pramataris, K. et al.,
Reconfiguring the bioinformatics computational spectrum: Challenges and
opportunities of FPGA-Based bioinformatics acceleration platforms. IEEE
Des. Test, 2014.

	 12.	 Chen, Y., Xie, Y., Song, L., Chen, F., Tang, T., A survey of accelerator architec-
tures for deep neural networks. Engineering, 6, 3, 264–274, 2020.

	 13.	 Majumder, T., Pande, P.P., Kalyanaraman, A., Hardware accelerators in com-
putational biology: Application, potential, and challenges. IEEE Des. Test, 31,
1, 8–18, 2014.

	 14.	 Cardoso, J.M.P., Diniz, P.C., Weinhardt, M., Compiling for reconfigurable
computing. ACM Comput. Surv., 42, 4, 1–65, 2010.

	 15.	 Ahmed, R., Mostafa, H., Khalil, A.H., Design of a reconfigurable network-
on-chip for next generation FPGAs using dynamic partial reconfiguration.
Microelectronics J., 108, 104964, 2021.

https://doi.org/10.11.45/2890506
https://doi.org/10.11.45/2890506
http://lreese.dotsenkoweb.com/2019/03/30/comparing-hardware-for-artificial-intelligence-fpgas-vs-gpus-vs-asics/
http://lreese.dotsenkoweb.com/2019/03/30/comparing-hardware-for-artificial-intelligence-fpgas-vs-gpus-vs-asics/
https://doi.org/10.3390/fi12070113
https://doi.org/10.3390/fi12070113

24  AI Applications and Reconfigurable Architectures

	 16.	 Hauck, S., Fry, T.W., Hosler, M.M., Kao, J.P., The chimaera reconfigu-
rable functional unit. Proceedings. The 5th Annual IEEE Symposium on
FieldProgrammable Custom Computing Machines Cat. No.97TB100186),
1997.

25

Anuradha D. Thakare and Sheetal Umesh Bhandari. Artificial Intelligence Applications and Reconfigurable
Architectures, (25–34) © 2023 Scrivener Publishing LLC

2

Review of Artificial Intelligence
Applications and Architectures

Rashmi Mahajan1*, Dipti Sakhare1 and Rohini Gadgil2

1MIT Academy of Engineering, Alandi, Pune, Maharashtra, India
2Dr D Y Patil School of Engineering, Lohegaon, Pune, Maharashtra, India

Abstract
Advancements in artificial intelligence provide opportunities for smart sys-
tem development in various fields. This increases the need for corresponding
high-performance computing resources for the implementation. Simultaneous
development in semiconductor technologies is providing sustainable implement-
ing platforms. The aim of the present review is to give insight into the hardware
architectures for AI applications. Herein, the main contributors are Application
Specific Integrated Circuits (ASIC), Field Programmable Gate Array (FPGA), and
General Processing Technologies (GPU). In comparison, the FPGA and GPU
excel in flexibility for implementation. These technologies offer computation flex-
ibility for the application development. Hence, the chapter presents comparison
about the two flexible architectures.

The application area separates artificial intelligence with the subdomains
machine learning (ML) and deep learning (DL). In the chapter, hardware plat-
forms are analyzed with deep learning applications as well.

Keywords:  AI, deep learning, FPGA, GPU

2.1	 Introduction

Artificial intelligence (AI) is a versatile domain with various applications
in automation, image recognition, and data processing. Furthermore,

*Corresponding author: dr.rashmimahajan@gmail.com

mailto:dr.rashmimahajan@gmail.com

26  AI Applications and Reconfigurable Architectures

AI plays a significant role in biomedical applications as well. Development
in AI is predicted by the performance prediction model, which states that
model size and complexity increase approximately 10 times per year [1, 2].
Its wide application spectrum divides artificial intelligence into the subdo-
mains as machine learning (ML) and deep learning (DL). Recent advance-
ments in deep learning make improvements in its applications, such as
biological data processing, natural language processing (NLP), robotics,
etc. [3, 4]. This development has also become advantageous for commer-
cial deep learning processing.

In the application development process, the time-to-market issue with
technological adaptability is more challenging. This increases the need for
corresponding high-performance computing resources for the implemen-
tation. In view of that, in recent years, diverse platforms have evolved to
improve performance and give energy efficient solutions. FPGA, ASIC,
and GPU are few available resources. There is a need to discuss these avail-
able resources to find adaptable solution.

An ASIC provides an optimized solution for performing complex data
computations, but it is only one time programmable. Hence, flexibility to
implement another application cannot be achieved [5]. A performance
comparison between the 28-nm Xilinx Virtex 7 FPGA and the 28-nm
NVIDIA GPU is presented in Cong et al. [6]. When compared to the power
consumption of the GPU, the FPGA provides 28% more power efficient
performance. Even though the operating frequency of the FPGA is lower
than that of the GPU, the detailed analysis shows that the FPGA achieves a
higher number of operations per cycle [6].

Recently, autonomous driving has been one of the most revolution-
ary achievements in AI applications. Autonomous vehicles are a project of
the automobile sector wherein accurate detection of the situation is highly
demanded in view of human safety. Advancement in AI and the Internet of
Things (IoT) has enabled the development of various algorithms, particu-
larly pedestrian detection mechanisms [7, 8]. It is a part of automated vehi-
cle systems. However, data mining becomes challenging for the complex AI
algorithms being developed. A relatively insignificant amount of delay in the
IoT system may result in the inaccuracy of detection. In this case, FPGA pro-
vides a hardware platform for the implementation of Deep Neural Network
(DNN) algorithms, which meets the computational needs of data mining.
In view, Tao Li et al. [9] implemented the pedestrian detection algorithm on
FPGA, resulting in a reduction in overall system execution time.

Review of AI Applications and Architectures  27

Nowadays, a large number of AI applications are growing, and DL has
the proficiency to solve many AI applications. Deep neural networks, the
essence of the AI subset, have demonstrated impressive performance in a
variety of application domains over the last few decades, including image
processing, data analytics and control, advanced robotics, anomaly detec-
tion, and automated vehicles [10–14].

Increased data complexity needs the involvement of hardware acceler-
ators. As previously stated, FPGA can provide significant timing adapta-
tions and competent hardware resource consumption for the complex data
sets found in DNN. Applications built on advanced FPGA platforms, such
as Xilinx Zynq [15] and Xilinx Virtex 7, have demonstrated power, timing,
and speed efficiency [6, 16–18].

The proceeding section details the technical platform available for
AI implementation, wherein architectural details of the GPU are given.
Furthermore, the section states the architectural details of the Virtex-7,
Zinq, and Stratix 10 FPGA.

2.2	 Technological Platforms for AI Implementation—
Graphics Processing Unit

The GPU platform provides a simple programming and flexible environ-
ment for application development. It is advantageous in total floating-point
operations per second as compared to FPGA. A recent study of the GPU
shows specialized tensor cores are available in the streaming multiproces-
sor [SM] block, depicted in Figure 2.1 [19]. It enhances matrix operations,
resulting in a significant improvement in deep learning (DL) computa-
tions [19, 20]. SM has two datapaths, wherein one performs single preci-
sion floating point format (32FP) operations, while the other is limited to
integer operations. Performance of the GPU depends on utilization of the
tensor core unit. The GPU is optimized with the focus of parallel process-
ing operations using thousands of small cores. Herein, GPU performance
is enhanced with the use of third-generation tensor cores in the streaming
multiprocessor, it accelerates AI denoising.

In comparison with other implementation platforms, GPU offers a cost
efficient solution, requires less development effort, and provides more flex-
ibility. The main problems with the GPU can be its latency and interfaces.

28  AI Applications and Reconfigurable Architectures

GPU is limited to PCIe, additional electronics are required to custom
interface [21].

2.3	 Technological Platforms for AI Implementation—
Field Programmable Gate Array (FPGA)

FPGA is an alternative to the GPU processing platform, available for AI
applications. It takes full advantage of bit-wise operation and has massive
processing capabilities. provides interface flexibility to the users. A few
advanced FPGA architectures are stated in this section of the chapter.

2.3.1	 Xilinx Zynq

The Xilinx Zynq SoC family includes a Soft ARM core processor with
reconfigurable FPGA hardware. This enhances the AI-based application’s
performance along with design flexibility. The DPUCZDX8G architecture
is optimized for deep neural network related data processing. Applications
requiring huge computations can be implemented efficiently with the
optimized instruction set generated by the AI compiler. Details of the top
level block diagram are represented in Figure 2.2 and the corresponding

i-cache+Warp Schedular+Dispatch

Register file

FP32/INT
32

FP32 TENSOR
CORE 3rd

Gen

LD/ST LD/ST LD/ST LD/ST SFU

Figure 2.1  Streaming multiprocessor (SM) [20].

Review of AI Applications and Architectures  29

hardware architecture is presented in Figure 2.3. Data processing in DNN
applications can be achieved with a pipelined architecture along with fine-
grained mathematical building blocks in the processing elements.

2.3.2	 Stratix 10 NX Architecture

To develop applications dedicated to AI, Intel introduced a variant of
FPGA, dedicated hardware Stratix 10 NX Architecture. It includes an AI
tensor block. The presented tensor block is optimized for high density cal-
culations with lower precision arithmetic. The Stratix 10 NX architecture
preserves the FPGA architecture and gives the advantages of reconfigu-
rable devices. The Intel Stratix 10 NX has two devices. One device includes
8 Gb of high bandwidth memory and the other is advantageous with 16
Gb of high bandwidth memory [22]. This high bandwidth memory is an
important utility of the device for AI. Figure 2.4 depicts tensor block archi-
tecture, wherein three tensor columns are represented. The presented ten-
sor columns include an 8-bit integer multiplier. Further, the data are added,
and the result is saved in either floating point number or integer format.

APU

High
Performance

Scheduler

Instruction
Fetch Unit

RAM

High Speed Data Tube

Global Memory Pool

DPU

PE PE PE PE

Hybrid Computing Array

X22327-072219

Figure 2.2  DPUCZDX8G top-level block diagram [15].

30  AI Applications and Reconfigurable Architectures

The increased complexity of tensor blocks enhances the performance of
complex data set AI applications, particularly DNN data mining applica-
tions. Furthermore, the FPGA platform provides the advantage of an inte-
grated interface which can directly receive inputs from remote clients.

Jonny Shipton [23], used a Stratix 10 NX board with MAU, which is a
programmable processing engine dedicated for DNN. MAU cores can be
floor planned to achieve considerable level logic utilization. Application of
MAU for implementing convolution functionality is shown in Figure 2.5
[23].

2.4	 Design Implementation Aspects

A study shows that GPU provides a cost efficient solution, but FPGA pro-
vides benefits in power efficiency. FPGAs use a hardware programming
approach, while GPUs use parallel processing of FP operations. The FPGA

Off-Chip Memory

Processing System (PS)

CPU Memory Controller

Bus

In
st

ru
ct

io
n

Sc
he

du
le

r Fetcher

Decoder

Dispatcher

Data Mover

On-Chip BRAM

BRAM Reader/Writer

O
n-

Ch
ip

 B
uf

fe
r

Co
nt

ro
lle

r

Co
nv

En
gi

ne

M
is

c
En

gi
ne

Co
m

pu
tin

g
En

gi
ne

Programmable Logic (PL)

PE PE PE

X22332-022420

Figure 2.3  DPUCZDX8G hardware architecture [15].

Review of AI Applications and Architectures  31

data_in[96:81]

data_in[8:1][10:1]

shared_exponent[7:0]

dot

Col. 3

Col. 2

FXP
to

FP32

Col. 1

sum_shared_exponent[3]

sum_shared_exponent[2]

sum_shared_exponent[1]

zero_en

cascade_data_in[32:1][3]

cascade_data_in[32:1][2]

0

0

FP32_ALU

cascade_data_out[3:1][32:1]

acc_en
zero_en

zero_en

0

0

FP32_ALU

acc_en
zero_en

cascade_data_in[32:1][1]

zero_en

0

0

FP32_ALU

acc_en
zero_en

Data Out
[2:1][32:1]
[3:1][24:1]

∑

dot∑

dot∑ +

+

+

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

+ + +

FXP
to

FP32

FXP
to

FP32

Figure 2.4  AI tensor block architecture [22].

Control

MATRIX-VECTOR UNIT

Weight
Store

Activation
Store

AI Tensor
Block

BFP16

BFP16

BFP16

Long-Term
Activation

Store
HBM

HBM

Floating
Point

Converter

Bfloat16

Bfloat16

Bfloat16

Bfloat16

Bfloat16
Bfloat16

HOST
HOST

Network

Network

INPUT CIRCUIT

Input
Select

Accumulate/
Bias

POST COMPUTE

Post
Ops

Output
Split

Figure 2.5  The MAC core architecture on Intel Stratix 10 NX FPGA [23].

32  AI Applications and Reconfigurable Architectures

has considerable processing capabilities. It provides a power efficient sys-
tem with strong interfacing [21].

Although both the presented GPU and the Stratix 10 NX use tensor
cores, there is a difference in data processing [23]. Tensor cores present
in GPUs communicate via a memory system, which can generate latency.
However, FPGA AI tensor cores can be connected directly with each other.

An important part while dealing with the GPU is that it can be pro-
grammed via a software application interface. On the other hand, FPGA
offers multiple options, like RTL flow, FPGA developer flow. Due to this,
FPGA offers higher levels of abstraction and software programmability.

2.5	 Conclusion

This chapter reviewed the performance of reconfigurable architectures
used in various AI applications. While presenting the study, two main
implementation technologies are detailed, GPU and FPGA. Comparative
study of the technologies is presented along with the architectural details.
Analysis shows that cost-efficient solutions can be achieved with GPUs,
but interface flexibility can be achieved with FPGAs. FPGAs also become
advantageous in many applications due to latency determinations, lower
power consumption, and increased utilization efficiency.

References

	 1.	 Nurvitadhi, E. et al., Real performance of FPGAs tops GPUs in the race to
accelerate AI, Intel-White Paper, intel.com.

	 2.	 D’Souza, R. et al., Publishing AI boundaries with scalable computer focused
FPGAs, 2020, [Online]. Available: www.intel.com/scalable-compute-FPGA.

	 3.	 Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S., Applications of deep
learning and reinforcement learning to biological data. IEEE Trans. Neural
Netw. Learn. Syst., 29, 6, 2063–2079, June 2018.

	 4.	 Ghadirzadeh, A., Chen, X., Yin, W., Yi, Z., Björkman, M., Kragic, D., Human-
centered collaborative robots with deep reinforcement learning. IEEE Robot.
Autom. Lett., 6, 2, 566–571, April 2021.

	 5.	 Bhandari, S., An eco-system of reconfigurable architectures for machine
learning. Annual Technical Volume of Computer Engineering Division of the
Institution of Engineers (India), vol. 4, IEI, pp. 84–89, 2021.

Review of AI Applications and Architectures  33

	 6.	 Cong, J., Fang, Z., Lo, M., Wang, H., Xu, J., Zhang, S., Understanding perfor-
mance differences of FPGAs and GPUs. 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM),
pp. 93–96, 2018.

	 7.	 Li, B., Chen, Y., Wang, F., Pedestrian detection based on clustered poselet
models and hierarchical AND–OR grammar. IEEE Trans. Veh. Technol., 64,
4, 1435–1444, Apr. 2015.

	 8.	 Bertozzi, M., Broggi, A., Fascioli, A., Graf, T., Meinecke, M., Pedestrian
detection for driver assistance using multiresolution infrared vision. IEEE
Trans. Veh. Technol., 53, 6, 1666–1678, Nov. 2004.

	 9.	 Li, T., Ma, Y., Shen, H., Endoh, T., FPGA implementation of real-time pedes-
trian detection using normalization-based validation of adaptive features
clustering. IEEE Trans. Veh. Technol., 69, 9, 9330–9341, Sept. 2020.

	 10.	 Sun, Q., Chen, T., Miao, J., Yu, B., Power-driven DNN dataflow optimization
on FPGA. 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 1–7, 2019.

	 11.	 Shi, Y., Sun, Y., Jiang, J., He, G., Wang, Q., Jing, N., Fast FPGA-based emu-
lation for ReRAM-enabled deep neural network accelerator. 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1–5, 2021.

	 12.	 Liu, L., Luo, J., Deng, X., Li, S., FPGA-based acceleration of deep neural net-
works using high level method. 2015 10th International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 824–827, 2015.

	 13.	 Boutros, A. et al., Beyond peak performance: Comparing the real perfor-
mance of AI-optimized FPGAs and GPUs. 2020 International Conference on
Field-Programmable Technology (ICFPT), pp. 10–19, 2020.

	 14.	 Alawad, M. and Lin, M., Scalable FPGA accelerator for deep convolutional
neural networks with stochastic streaming. IEEE Trans. Multi-Scale Comput.
Syst., 4, 4, 888–899, Oct.-Dec. 1, 2018.

	 15.	 Xilinx, Zynq-7000 soc data sheet: Overview. DS190 (v1.11.1), July 2, 2018.
xilinx.com.

	 16.	 Seyoum, B., Pagani, M., Biondi, A., Balleri, S., Buttazzo, G., Spatio-temporal
optimization of deep neural networks for reconfigurable FPGA socs. IEEE
Trans. Comput., 70, 11, 1988–2000, Nov. 1, 2021.

	 17.	 Ajili, M.T. and Hara-Azumi, Y., Multimodal neural network acceleration on
a hybrid CPU-FPGA architecture: A case study. IEEE Access, 10, 9603–9617,
2022.

	 18.	 Belabed, T., Coutinho, M.G.F., Fernandes, M.A.C., Sakuyama, C.V., Souani,
C., User driven FPGA-based design automated framework of deep neural
networks for low-power low-cost edge computing. IEEE Access, 9, 89162–
89180, 2021.

34  AI Applications and Reconfigurable Architectures

	 19.	 D’Souza, R. et al., Publishing AI boundaries with scalable computer focused
FPGAs, 2020, [Online]. Available:www.intel.com/scalable-compute-FPGA.

	 20.	 Nvidia Corp., Nvidia AMPEREGA 102 GPU architecture, Second Generation
RTX White Paper.

	 21.	 BERTEN Digital Signal Processing, GPU vs FPGA Performance Comparison,
White Paper, BW001 v1.0.

	 22.	 Langhammer, M., Nurvitadhi, E., Pasca, B., Gribok, S., Stratix 10 NX archi-
tecture and applications. The 2021 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, Association for Computing Machinery,
New York, NY, USA, pp. 57–67, 2021.

	 23.	 Intel, Implementing wavenet using intel stratix 10 NX FPGA for real time
speech synthesis, White paper, FPGA Artificial Intelligence.

35

Anuradha D. Thakare and Sheetal Umesh Bhandari. Artificial Intelligence Applications and Reconfigurable
Architectures, (35–62) © 2023 Scrivener Publishing LLC

3

An Organized Literature Review on
Various Cubic Root Algorithmic Practices
for Developing Efficient VLSI Computing

System—Understanding Complexity

Siba Kumar Panda1*, Konasagar Achyut2, Swati K. Kulkarni3,
Akshata A. Raut4 and Aayush Nayak5

1Veer Surendra Sai University of Technology, Burla, India
2J.B. Institute of Engineering & Technology, Hyderabad, India

3Department of Applied Electronics Gulburga University,
Kalaburgi, Karnataka, India

4Department of Electronics & Telecommunication Engineering, Fr. C. Rodrigues
Institute of Technology, Navi Mumbai, India

5Shri Shankaracharya Institute of Professional Management and Technology,
Raipur, India

Abstract
The existence of computer arithmetic principles and performing different oper-
ations, like addition, multiplication, division, squaring, cubing, extractions of
square root, cube root, etc. are reinforcing technology nowadays. Computer sci-
ence community can work with the help of developing algorithm, whereas elec-
tronics community can focus on developing its equivalent chip using standard
VLSI technology. The digital signal processing applications, scientific operations,
and calculations typically involved in computing large number of arithmetic oper-
ations. Adhering to the cubic operation, it is a fundamental arithmetic operation in
a day-to-day life. From time to time several authors and researchers have worked
on different types of cubic algorithms for architecture level development. The pre-
sented work will help in understanding the computational complexity level with
respect to simulation, synthesis, implementation, timing analysis, and physical

*Corresponding author: panda.sibakumar08vssut@gmail.com

mailto:panda.sibakumar08vssut@gmail.com

36  AI Applications and Reconfigurable Architectures

design layout for developing a high-end VLSI computing system with respect to
optimization. More precisely, this chapter helps in explaining the state-of-the-art
impression of revision works. This work explains through a flow from introduc-
tion, motivation, various cubic root methods, performance study and discussion,
conclusion, further research, etc. Additionally, various performance studies are
illustrated in support of state-of-the-art techniques.

Keywords:  VLSI, register transfer level, static timing analysis, FPGA, Netlist,
ASIC, cubic algorithms

3.1	 Introduction

Cubic and cube root are common arithmetic operation which is used in
many diversified fields like mathematics, computer engineering and in
VLSI. The wide-ranging impression lying behind this generic operation is
to understand its wide applications, algorithmic development and imple-
mentation. Finding exact cube root of a number appears to be quite dif-
ficult and lengthy process too. Any digital signal processing system uses
the operation of squaring and cubing. We can say, square and cube are dis-
tinct suitcases of multiplication. A mathematician is fond of finding cube
root with use of sutras, computer engineering people are fond of devel-
oping appropriate algorithm for it, whereas a VLSI engineer thinks to
implement it in RTL level, in order to obtain its equivalent chip. CORDIC
algorithm-based model is used for nth root calculations. Vedic formulas are
also used to calculate the cube root of a number and can be implemented in
FPGA/ASIC level. Some method like HERON’s cube iteration formula was
tried to implement to find the cube root of odd order roots with the help
of some improved algorithm. Similarly, Aryabhatta’s methods are used for
both square and cube root actions. Sometimes, general method is used to
find the cube root of numbers and compared in order to improve the per-
formances. The task of calculating in floating point numbers are challeng-
ing. To eliminate modular reduction process in cube roots Suitable SPB are
provided. Generally, power consumption and area used in cubic and square
circuit are always less than the general multiplier circuit. The method for
extracting cube roots in terms of developing algorithms, RTL coding and
their simulations in terms of European mathematics is quite interesting.
To get optimum area and high-speed operation general multiplication and
Vedic multiplication circuit are widely used for the squaring-square root
and cubic-cube root operations. Formulas for cube roots are proposed for

Various Cubic Root Algorithms for VLSI System  37

irreducible trinomial. The algorithms like “Tonelli and Shanks” are used
to compare, which one is faster in operations. An algorithm was proposed
which can calculate the cube root in a ring zm when prime factorization of m
is unknown. A method to calculate the root of the RSA challenges number
in less than a second and to find the Nth root using Newton’s method are
very popular. A method is proposed by using Taylor’s series and π, Pade
approximation for computing the Nth root of any number. The algorithm
like Adlernan, Manders, Miller algorithm and Folklore algorithms are also
used to do operation in a good way. Understanding the genuine computa-
tional complexity level in this realm becomes more challenging. The adula-
tion in VLSI signal processing as well as computer arithmetic fields and the
rapid progress in publication of valued manuscripts helps in developing this
entire article. This chapter provides a complete and quick understanding
to various cubic root algorithms, hovering straight away toward the inten-
tion of the manuscript, with a belief that this work provides a checkpoint
for the researchers in high-performance VLSI computing system domain
in extracting new research artifacts. This chapter strives to be important by
listing most relatable references. The authors presented a plan by means of
exhaustive preparation and existing appropriate references into this. To the
superlative grasp of the authors, this review work plays the most complete &
circulated source of citations in order to grasp the complexity level in terms
of algorithm as well as implementation.

The manuscript structuring can be exposed as follows: section 3.2
describes the motivation. The high-end cubic root methods and their
extraction for emergent VLSI computing system are shown in section 3.3.
Study of performances and colloquy of various literatures are presented in
section 3.4. At the end, further research and conclusions can be found in
section 3.5 and section 3.6, respectively.

3.2	 Motivation

Finding square roots and cube roots is an essential part of any mathemat-
ical operation. However, different mathematicians have suggested very
different methods for this. An ancient Indian vedic mathematics is very
advanced and effective. In vedic mathematics, simple and easy formu-
las for extracting square root and cube root are suggested. However, like
the Indian vedic mathematics, Chinese and Arabic mathematicians and
researchers have made significant contributions to find out the cube roots

38  AI Applications and Reconfigurable Architectures

Table 3.1 Tabular summary on related works.

Ref. Description Technique used Contribution by authors Pro(s)/con(s)

[1] Architecture as Arch. (m, n)
for computing Nth root

CORDIC based
architecture

A general nth root
computation architecture

Improvement on convergence
range and latency

[2] N bit cubic implementation
circuit

YVDN and Anurupyena
sutra

Analysis on speed and
power consumption

Significant improvement
in speed and power
consumption

[3] Heron’s algorithm for cubic
root iteration

Heron’s general cubic root
iteration formula

Study on extraction of
different roots for real
numbers

Better performance in VLSI
trade-off parameters

[4] Computation of square root
and cube root

Aryabhatta’s method Improved algorithms using
Aryabhatta’s method

Claim on getting accurate
result for square root
and cube root using
Aryabhatta’ s method

[5] Long division method Expressing cube roots and
higher order roots

Implementation on
FPGA to verify the
performance parameters

Faster in calculations.

[7] Hardware algorithm
for calculation and its
efficient architecture

Optimized cube root
algorithm

Low-complexity
architecture for integer
cube root scheming at
FPGA level.

Reduction in computational
complexity

(Continued)

Various Cubic Root Algorithms for VLSI System  39

Table 3.1 Tabular summary on related works. (Continued)

Ref. Description Technique used Contribution by authors Pro(s)/con(s)

[8] Floating-point cube root
process

Newton-Raphson based
design, reciprocal and
Design of cube root units

FPGA single floating
point cube root
implementations

Obtaining accurate
approximation

[9] CORDIAC based
arithmetic unit

ROTATION and
VECTORING
operations

For solving trigonometric
relationships and
conversion from 2D to
3D coordinates

Widely used in many
computations like
trigonometric operations

[10] (N _ N) bit squarer
implementation

YVDN method and Duplex
method

Design based on formulae
of Vedic mathematics

High speed and low power
consumption

[11] Low power square and cube
style

Yavadunam Sutra based
strategy

Design of
square and cube

architectures

Power reduced due to
increase in bits

[12] 32-bit floating point
arithmetic unit design

Architecture design using
VHDL

All arithmetic operations
tested over Xilinx

Authors used simulink
model for their work.

[15] A variation based
polynomial algorithm

Shifted polynomial basis
(SPB)

To remove modular
reduction process in
cube root computation

Eradicates modular
reduction process in cube
root computation

(Continued)

40  AI Applications and Reconfigurable Architectures

Table 3.1 Tabular summary on related works. (Continued)

Ref. Description Technique used Contribution by authors Pro(s)/con(s)

[16] Various parameter
characterization of
multipliers

Baugh-Wooley algorithm-
based architecture

To perform square and
cube operation using
dedicated hardware

Reduction in power
consumption

[17] Novel quaternary algebra-
based design.

An innovative quaternary
algebra

Quaternary encoders
and decoder design of
unrestricted size

Reduced design complexity
in terms of gate counts

[18] A simple derivation of
Brahmagupta’s area
formula is derived for a
cyclic quadrilateral

Heron’s formula To give a simple derivation Simpler design

[19] Technique for coefficients
calculation, quantization

Direct -Horner architecture Polynomial interpolator
design & hardware
implementation

Author claimed that its best
implemented with by
Horner architecture

[20] Algorithms for the
extraction of cube roots
in use of memory

Arabic and European
mathematics-based
algorithms

Formulated by Luckey and
Chemla

-

[21] Comparative study for
implementation of
normal multiplication
and Vedic multiplication

Urdhva Triyagbhyam Sutra Array multiplier,
Vedic multiplier-based

design using 4-bit and
8-bit macros

Fully partitioned recursive
vedic multiplier is more
optimized

(Continued)

Various Cubic Root Algorithms for VLSI System  41

Table 3.1 Tabular summary on related works. (Continued)

Ref. Description Technique used Contribution by authors Pro(s)/con(s)

[22] Technique for assessing
the cube of an operand
having any length

Unsigned Cubing Units Cubing circuits
implemented with
several operand lengths

Faster method but utilization
of counters are more in
order to perform partial
product reduction

[23] Hamming weight of x 1/3
determination

Irreducible trinomials f
(x) = xm+ axk+ b and
Hamming weight of
(x1/3)

To find number of nonzero
coefficients in the
polynomial depiction
of x1/3

-

[26] Anurupya Sutra based
architecture

Square architecture-using
Duplex sutra, cube
architecture-using
Anurupya sutra

Presented novel parallel
square and cube
architectures based on
ancient Indian vedic
mathematics

The number of bits increases
the gate delay and area

[27] Two-level model is labeled
in behavioral style and
the area is explained with
F/F and LUTs

It is based on cascaded
model

A two-level model to for
estimating area

Proposed for fast area
estimation

(Continued)

42  AI Applications and Reconfigurable Architectures

Table 3.1 Tabular summary on related works. (Continued)

Ref. Description Technique used Contribution by authors Pro(s)/con(s)

[28] New design methodologies
for low power
compressor circuits

Compressor cells based
on CMOS process
technology

Compressor cells based
on CMOS process
technology

Design for high speed and
low-power multiplier

[29] Two and three-digit
multiplication operations
&implementation

Implementing Vedic
multiplication
in C language

Imposing on 8085 and 8086
microprocessors

Savings in processing time

[30] Comparative study of
algorithms based in
quadratic field extensions

The Algorithm of Tonelli
and Shanks

Existence of infinite
sequence of prime
numbers

-

[31] computing square roots and
cube root

Peralta method extension,
Tonelli-shanks method
extension

Author reported the
challenge in cube roots
modulo as an integer

Fast algorithm

[32] squaring and cubing units
having length of 54 bits

Parallel squaring and cubic
unit

The parallel cubic unit
realizing the cube in
faster mode

It lowers the latency as well
as reduces area

[33] square root of an arbitrarily
large number

Using Bino’s model of
Multiplication (BMM)

Long division method
implementation

-

(Continued)

Various Cubic Root Algorithms for VLSI System  43

Table 3.1 Tabular summary on related works. (Continued)

Ref. Description Technique used Contribution by authors Pro(s)/con(s)

[34] Finding the nth root of a
positive real number

Newton’s method for
square-root extraction,
double iteration process,
higher order methods

Higher-order methods are
explained here

-

[35] Ruffini-Horner method
for cube-root and it is
also extended to higher
degrees

Extraction of square and
cube roots

Aim is to provide enough
ground to elaborate a
definition of Ruffini-
Horner algorithms

-

[36] Significant developments of
mathematics in ancient
China- methods like
general and individuals

Explanation on unit
fractions and least
common multiple,
extraction of square
and cube roots, negative
numbers, Right-angled
triangles

Explanation on numeral
system that caused its
evolution

-

(Continued)

44  AI Applications and Reconfigurable Architectures

Table 3.1 Tabular summary on related works. (Continued)

Ref. Description Technique used Contribution by authors Pro(s)/con(s)

[37] To compute differentiable
function

Based on Pade
approximation to
Taylor’s series of the
function

It uses 3rd-degree
approximation of
continued fraction
expansion (CFE) to
Taylor’s series

The 4th-degree algorithm for
x’/N is better

[38] To find Square root Probabilistic polynomial-
time algorithm

The explains considerably
faster for values of
greater than 2

This algorithm gets faster as
grows

[39] To find cube root Finding cube root using
faster square root
method

Author intention is to
evaluate cube roots by
using fastest square root

-

[41] Explained over optimizing
folklore cube root
algorithm- an important
process to efficient
computation extent
of the Tate pairing on
supersingular elliptic
curves

Folklore cube
root algorithm
incharacteristic3, a
trinomial representation

- The complexity by proposed
technique is only O(m)
rather than O(m2)

Various Cubic Root Algorithms for VLSI System  45

for large prime numbers. We have tried to explain the different methods like
Aryabhatta’s method, YVDN, Anurupyena formulae and CORDIC based
architecture for computing Nth root. Newton-Raphson recurrence used for
extracting cube roots in terms of European mathematics, fully partitioned
recursive vedic multiplier is more optimized by Urdhva Tiryagbhyam
sutra of extracting the cube root with their merits and demerits as well as
square-root extraction. This article also discusses on various low power,
area efficient architectures for integer cube root calculations as well as
efficient implementation in FPGA (Table 3.1). The efficiency of design
depends on three important factors: speed, area, and power. These points
are also emphasized in each of the references mentioned here. The main
focus of this article is to highlight the importance of cube root algorithms
and its complexity level in developing high-performance VLSI computing
system. This chapter also discusses the study level and how the researchers
used FPGA architecture to extract cube roots. This stimulates us to do an
in-depth study on various researchers work and their intention level.

3.3	 Numerous Cubic Root Methods for Emergent
VLSI Computing System—Extraction

Recently, Luo et al. [1] implemented Nth root architecture using CORDIC
algorithm. Earlier researchers had taken the efforts into the computation of
general Nth root using the Newton-Raphson (NR) method. In 1959,
CORDIC by Volder is used for trigonometric calculations. This algorithm
gives high performance with low hardware cost to perform complex multi-
plication, Eigen value computation, matrix inversion, and many more.
Besides, it is also used to compute complex division, square root and, DFT
calculation. The authors have developed and verified Hyperbolic for Nth
root calculation using MATLAB tool. The design has been implemented
and verified on the TSMC 40-nm CMOS technology. The author appealed
that, design achieves a frequency up to 2.083 GHz with 3.725 times the area
than a vedic multiplier. Similarly, Kumar et al. [2] developed algorithm for
cubic computation so as to imply over VLSI. They used YVDN and
Anurupyena sutras to implement the proposed algorithm. This algorithm
improves the performance criterions by rescuing the propagation delays
and low switching power consumption with compact design. In the pro-
posed algorithm authors have integrated Vedic mathematics and Boolean

46  AI Applications and Reconfigurable Architectures

algebra to transform N-bit cubic circuitry into small cubic circuit to per-
form parallel computation which increases the speed of computations.
Padhan et al. [3] investigated and proved that Heron’s method is more suit-
able for any generalized odd-order roots. The authors observed that Heron’s
general cubic root plan is a particular case of the present study. The author
has provided direct proof of Heron’s general cubic root iteration formula for
any odd order roots. The authors have discussed many counter-examples to
support the work. The authors gave a generalized method to determine the
cube and higher-order roots of any real number. The proposed methodol-
ogy has better performance with respect to delay, area and power consump-
tion than the approach adopted by earlier researchers while implementing
on the FPGA. Singh [4] analyzed the innovation for extraction of square as
well as cube root using Aryabhatta’s methods. Aryabhatta is one such
admired mathematician who gifted excellent benefaction toward mathe-
matics and astronomy. He contributed efficient methods in order to find
square and cube root of a number. According to the authors, the algorithms
that have been designed by Aryabhatta have certain limitations in the sense
that the method gives incorrect results. Here the author has proposed an
improvised kind of the Aryabhatta’s algorithm. The modified algorithm
gives the correct results while computing square or cube root for any posi-
tive integer that can be processed by the computer. The algorithms extended
to find the square root or cube root of any arbitrarily large integers. Padhan
et al. [5] implemented the cube and higher-order roots of the real number.
They used long division method in design. The authors describe the tech-
nique to determine the cube and higher-order roots of any real numbers.
Finding the square root or cube root of a large number is a challenging job.
If the number is a nonperfect cube number, then finding the cube root of
such a number becomes difficult. Singh [6] proposed an algorithm to find
out cube root for positive numbers. The algorithm put forward has taken
the backbone of long division method like how we calculate manually. The
author has implemented this algorithm using Binos model of multiplica-
tion. Finding a cube root of any number is one of the fundamental arithme-
tic operations in DSP applications. Wicaksana Putra and Trio Adiono [7]
proposed a method to reduce the complexity of cube root operation and
also they have developed 32-bit integer cube root architecture for FPGA.
Guardia et al. [8] have implemented a single floating point cube root on
Virtex5 FPGA. They used popular methods to perform operations. They
achieved optimized hardware implementation with DSP resources. Volder

Various Cubic Root Algorithms for VLSI System  47

et al. [9] has proposed a unique processed methodology to solve the trigo-
nometric relationship between plane coordinate rotation and polar coordi-
nates. Bhattacharyya et al. [10] have developed A Vedic squarer design for
ASIC based on the ancient Vedic mathematics sutras. The design consists of
small squarer and an adder. They claimed that their design has less propa-
gation delay and less dynamic power consumption. Kunchigi et al. [11] pro-
posed an architecture based on Vedic mathematics for square and cube.
They also performed some comparative study and presented neatly. The
proposed architecture is better in terms of area, power, and delay. Authors
have performed simulation and synthesis of the architecture by targeting
Xilinx Spartan 3E board. Grover et al. [12] had developed VHDL code for
32-bit floating point arithmetic unit, and they have verified the design using
the Simulink model from the MATLAB tool. Taisbak [13] proposed an
algorithm that is based on the Heron method. The Heron’s method is one of
the prevalent methods to find out square roots of the number. In the pro-
posed chapter, the authors used sequences of difference to find an approxi-
mate value of the cube root of an integer with suitable mathematical proofs.
Manfrino et al. [14] wrote a complete book on the various topics in algebra
and analysis. Here, in chapter 4, they have explained in detail about qua-
dratic and cubic polynomials with suitable mathematical proof and deriva-
tions. Young et al. [15] derived formulas for cube roots using shifted
polynomials. Also, they explained that, shifted polynomial basis can reduce
Hamming weights. Deshpande and Draper [16] implemented squaring and
cubing units with multipliers on hardware. They performed a comparative
study of the area and power requirements for explicit widths. They dis-
cussed the trade-off for computing squares and cubes using dedicated hard-
ware units from a software point of view. Jahangir et al. [17] proposed novel
quaternary encoders and decoders. They stated a comparative study
between existing priority encoders and decoders with the suggested one
based on design complexity. They explained that they have their encoders
with arbitrary size and priority settings, which has never been presented in
the literature. Hess [18] proposed a simple derivation or acyclic quadrilat-
eral from Heron’s formula for the area of a triangle. Strollo et al. [19] have
implemented piecewise-polynomial interpolators on 90 nm CMOS hard-
ware. As per the suggested approach while implementing elementary func-
tions they tried to minimize stored coefficients. This helps to optimize the
hardware by reducing the requirement of a total number of look-up tables.
Johansson [20] performed a comparative study on Arabic and medieval

48  AI Applications and Reconfigurable Architectures

European mathematics used to find the cube roots. Mehta and Gawali [21]
have implemented normal multiplication and Vedic multiplication over
Xilinx FPGA device. They wrote VHDL code to develop 16×16 multiplica-
tions. They implemented various types of multipliers and compared them
based on optimum area and speed. Stine and Blank [22] proposed a novel
technique to find out cube root of any length. The authors have not only
implemented but also analyzed and compared their design with the exist-
ing. They found that the proposed design works faster than other methods
but this design require more counters. Stine and Blank [23] have proposed
a new method to get a cube of an operand having a length that is faster than
preceded ones. The authors implemented a proposed cubic method along
with cubic circuits to improve area consumption and latency. They used
AMI C5N 0.6 μm technology for their design. Fast Fourier Transform is a
fundamental component of the DSP system, which is used in synthetic
instruments. Most of the DSP systems are implemented on FPGA. The
incoming signal of FPGA may have low SNR and high data rate which
causes the overall signal bandwidth may get reduced, which affects the per-
formance of FFT. Lowdermilk and Harris [24] observed the derivation of
measurable noise in an FFT algorithm and also suggested the methods to
improve the SNR of FFT. Deschamps et al. [25] stated the synthesizable
arithmetic circuits with suitable algorithms and HDL code. The authors
explained all algebraic operations starting from addition, subtraction, mul-
tiplications, division, base conversion, logarithmic, exponential, trigono-
metric functions, floating-point Unit, and square roots in their work.
Thapliyal et al. [26] presented an architecture hinged over vedic mathemat-
ics through ancient India. Any number of parallel squares and cubes can be
determined using the proposed architecture Brandolese et al. [27] devel-
oped an FPGA-based design for a parametric area estimation using
SystemC. The proposed framework is intended for fast area estimation.
Chang et al. [28] present the various design of 4-2 and 5-2 compressors
work on low power and low voltage. The proposed low-power circuit has
good drivability for the complex logic module. It also used to cogenerate the
XOR–XNOR outputs. The proposed compressor architecture performs bet-
ter than other architectures. Digital signal processing is an important tech-
nology. Without convolution, discrete Fourier transforms, digital filters,
DSP is incomplete. These complex mathematical calculations can be made
easy using Vedic mathematics. Chidgupkar [29] proposed a multiplication
procedure based on Vedic algorithms. The author had designed and

Various Cubic Root Algorithms for VLSI System  49

developed vedic DSP chip using VLSI technology which can help in per-
forming various computations. Tornarıa [30] compared the most popular
square root algorithm Tonelli and Shanks with quadratic field extension.
The proposed comparison is carried out especially for prime numbers.
Various algorithms have already described the computation of the square
root of prime numbers but none of the algorithms has described how to
calculate cube roots modulo. Padre and Suez [31] proposed algorithms for
considering cube roots on a plane Z, for large p. The multiplier is a funda-
mental component of any squaring or cubing circuit. Parallel multiplication
is always faster than traditional multipliers. Liddicoat and Flynn [32] pro-
posed cubing design based on Newton-Raphson and Taylor series function.
The proposed method reduces the latency and area required for implemen-
tation for higher-order functions. A new algorithm for finding the square
root of a big positive number has been proposed by C.J. et al. [33]. The
procedure was based on the use of the long division method, commonly
known as the manual method, to calculate the square root of a number. The
application of this algorithm is used mainly used for cryptographic applica-
tions like RSA. Dubeau [34] proposed a method to find nth root of a positive
real number for numerical computation. In this chapter, the authors pre-
sented an analysis over two types of algorithms. The first is based on a dou-
ble iteration procedure, while the second type is a consequence of Newton’s
method. Plainly they used four fundamental arithmetic operations such as
addition, subtraction, multiplication and division. Chemla [35] presented a
review work based on finding the similarities between Chinese and Arabic
mathematical writings. In this chapter, ancient literature of mathematics is
considered which was used by a mathematician and astronomer. In the
study of Yong and Suanshu [36], our ancestors recount how they invented
the Hindu-Arab numeric system and how they came up with the numbers.
The author covered the fundamental operations of arithmetic, negative
numbers, matrix notation, relative distance and relative speed, and many
other topics in a total of nine chapters. Chen et al. [37] proposed new
method for estimating a differentiable function based on Pade approxima-
tion. The authors showed a proposed algorithm which is faster than Newton’s
method for x t/N. Peralta [38] proposed an algorithm for computing square
roots module of a prime number. The proposed algorithm is a less complex
and fast probabilistic algorithm compared to Adleman, Manders, and Miller
algorithm. Burr [39] proposed a new approach to finding out the fast cube
root using the fast square root method. Ahmad and al-Uqilidisi [40]

50  AI Applications and Reconfigurable Architectures

published a book on Hindu arithmetic contribution in Arabic mathematics.
The author explained the journey of mathematics and the contribution of
Hindu arithmetic. According to the author, the major two flashpoints that
the Indians gifted to Islam in arithmetic, were the motive of decimal place
value with an ample symbolic notation and the concept of an absolute com-
mon fraction. Roshdi Rashed [41] describes the cube root algorithm based
on an efficient folklore algorithm on a standard polynomial basis whereby
taking roots reduces to two multiplications by constant field elements.
Beechu Naresh Kumar Reddy [42] proposed faster-squared operations
based on Vedic Math-sutras. In the proposed method, the author has
divided large magnitude numbers into small magnitude for the sake of
operating. The author has simulated and implemented the architecture on
Kintex FPGA. Saidan [43] presented an article about an introduction of
how Hindu mathematics becomes a part of Arabic mathematics. This
chapter is mainly based on the book which was written by Ahmad and
al-Uqilidisi [40] by emphasizing on treatment of decimal fractions. The
paper published in 1819 is the oldest paper from our literature review. W.
Horner [44], proposed the eccentric theorem in derivations toward calculus
presenting under a new aspect of older days. The cognizance of the perfor-
mance characteristics, mainly frequency and delay as in Table 3.2 is exhib-
ited studiously in Figure 3.1.

3.4	 Performance Study and Discussion

To experience various cubic and squaring root algorithms it has brought
to vivid manifestation of methodology, algorithms, mathematical model
related to FPGA implementation views, etc. which are piled up in respec-
tive following tables allowing us to recognize the work of all papers in
terms of technical parameters along with the descriptions held along. The
various performance parameters are also compared with respect to state-
of-the-arts and presented them neatly in Table 3.3.

3.5	 Further Research

Limitations from the collective articles are disserted as the curve of
dictum which explains well about the analyzed judgment. It could be

Various Cubic Root Algorithms for VLSI System  51

Table 3.2 Performance comparison of various state-of-the-art design.

Ref. Objective/algorithm used Area Delay

Total on chip
power
(mW) PDP (J) EDP (J-s) LUT DSP48 Flip flop Optimization

[1] CORDIC 197421.00 µm2 109.748 - - - - - -

[2] 8-bit cubic circuitry 0.063 mm2 ~5.5 ns ~2.6 14*10-12 79*10-21 No - -

[3] Heron’s general cubic root
iteration

- - - - - No - -

[5] Cube roots and higher order
roots extraction

7 out of 12480 Slices 13.528 ns - - - 2320 out of 12288 4 - -

[7] Optimized integer cube root
algorithm

- 13.73 ns - - - 288 A - 121 registers Consumes small
area

[8]

Floating point
cube root based on Newton

Raphson method

230 Slices

127.3 ns

-

-

-

576

12 439

An accurate
approximation
of +/- 3 LSB

[10] Vedic squarer design in
ASIC level

~5:39 mm2 16.03 ns 0.3048611 108.84*
10-12

1744.77*10-
21

- - - ~12% speed
improvement
and ~22%
reduction in
power

[11] 8-bit squarer/8-bit cube 22 Slices/58 Slices 4 ns/7.72 ns 65/69 - - - - - Lowering power
consumption
by 45% and
area by 63%

(Continued)

52  AI Applications and Reconfigurable Architectures

Table 3.2  Performance comparison of various state-of-the-art design. (Continued)

Ref. Objective/algorithm used Area Delay

Total on chip
power
(mW) PDP (J) EDP (J-s) LUT DSP48 Flip flop Optimization

[15] Shifted polynomial basis
(SPB)

- - - - - - - - It eradicates
optimal
reduction
process in
cube roots
computation

[16] Signed squaring(8,16,32,64)
bitsunits based on
the Baugh-Wooley
algorithm

(209, 1049, 4997, 2160)
sq. units

(5,10,20,30) ns (46.36,52.95,
65.89,
120.24)
μW

- - - - - It does more than
50% power
savings

[16] Unsigned (USG) cubing
units(8,16,32,64) bits

(732,4958,37115, 295093)
sq. units

(5,10,20,30) ns (55.06,79.74,
122.74,507)
μW

 - - - - - -

[17] Novel quaternary algebra - - - - - - - - Reduced design
complexity in
terms of gate
counts

[19] Direct architecture[2nd-
order polynomial]-256
segments

112863 µm2 - Dynamic power
128.90 µW/
MHz

- - - - - Reducing the LUT
size from 30
to 50%

[19] Horner architecture[3rd
order] -512 segments

101340 µm2 - Dynamic power
90.27 µW/
MHz

 - - - - - -

(Continued)

Various Cubic Root Algorithms for VLSI System  53

Table 3.2 Performance comparison of various state-of-the-art design. (Continued)

Ref. Objective/algorithm used Area Delay

Total on chip
power
(mW) PDP (J) EDP (J-s) LUT DSP48 Flip flop Optimization

[21] Fully partitioned recursive
vedic

350 slices out of 3072 39.285 ns - - - 598 out of 6144 - - More optimized
for area and
speed

[22] Unsigned cubing Units (0.0148,0.0887,0.6493)
mm2

(1.08,4.65,9.18)
ns

- - - - - - Recollecting of
stages in the
reduction
phase

[26] Square architecture using
Duplex property (8,16
bits)

HMAP (8 bits) (3 input
XOR)= 0, FMAP=
90 HMAP (16 bits)
= 0,FMAP (4 input
XOR)= 348

28 ns/38 ns - - - - - - It has considerable
improvement
in area, speed
and power

[26] Cube architecture using
Anurupya Sutra (8,
16 bits)

8 bits HMAP =
0, FMAP= 364
16 bits HMAP = 0,
FMAP= 1336

41 ns - - - - - - -

[27] Design (TR/HI/ME/P/CRC/
DES)

- - - - - 104/189/213/1359/2799/5557 - 53/55/68/200/180/583 Fast area
assessment

[28] Use of novel XOR-XNOR
cells 4-2 compressor

22 µm * 17 µm 4-2_CPL= 6.28
ns/4-2_
DPL = 6.74
ns/5 del_
CPL=8.11
ns

0.16 µw/ 0.12
µW

0.79 fJ/
0.80 fJ

- - - - High speed,
low power
multipliers
operates at low
voltages

(Continued)

54  AI Applications and Reconfigurable Architectures

Table 3.2 Performance comparison of various state-of-the-art design. (Continued)

Ref. Objective/algorithm used Area Delay

Total on chip
power
(mW) PDP (J) EDP (J-s) LUT DSP48 Flip flop Optimization

 5-2 compressor - 5 del_DPL= 8.97
ns/0.480
ms/1.042
ms

0.22 µW/0.20
µW

1.76 fJ/
1.75 fJ

 - - - - -

[29] C based Vedic multiplier - - - - - - - Savings in
processing
time

[32] Design of parallel cubic unit - - - - - - - - Its 2530% faster
than the direct
multiply-unit

[37] Continued fraction
expansion to Taylor’s
series

- - - - - - - - Free from error
spread

[38] Probabilistic polynomial-
time algorithm

- - - - - - - - Simple and Fast
Probabilistic
Algorithm

[41] Duursma-Lee algorithm - - 4.328 ms/24.635
ms/31.062
ms/52.344
ms

- - - - - Advantages
of using
trinomial
representation
pairing time
decreases by
about 10%

Various Cubic Root Algorithms for VLSI System  55

Table 3.3 Design and verification status for the collected manuscripts.

Ref. No. of bits Simulation Synthesis Timing check
FPGA/ASIC

implementation
Design

verification Layout Frequency

[1] Different word
length setting for
each CORDIC
(HV, LV, HR)

ModelSim with MATLAB No No - yes yes 2.083 GHz

[2] 8- bit SPICE Spectra No No - - yes 250 MHz

[5] 32 bit Xilinx CAD tool Yes No Xilinx Virtex
5 FPGA
(XC4VLX15,
package SF363
and speed
grade-12)

- - 69.01
MHz

[7] 32-bit Modelsim Yes 13 Clock
cycles

Altera - - 72.81
MHz

 Stratix II FPGA

[8] 32-bit Modelsim Yes 19 clock cycles Virtex5 yes - 149 MHz

[9] - - No - - No No -

[10] 64 bit squarer spice spectre (T-Spice) No - ASIC - L-Edit
V-13

250 MHz

(Continued)

56  AI Applications and Reconfigurable Architectures

Table 3.3 Design and verification status for the collected manuscripts. (Continued)

Ref. No. of bits Simulation Synthesis Timing check
FPGA/ASIC

implementation
Design

verification Layout Frequency

[11] 8 bit squarer 8-bit
cube

Xilinx ISE Xilinx -
Project
Navigator

- Xilinx :FPGA
device with
Spartan 3E
family, Speed
Grade: 4

- - -

[12] 32 bit Simulink model in MAT
lab

- - Xilinx yes - -

[16] 8 bit/16bit/32 bit - Yes Design done
for clock
of 20 ns
and 30 ns
respectively

 - - -

[19] Direct architecture
(2nd-order
polynomial—256
segments)
Horner
architecture
(3rd-order—512
segments)

- Yes - - - - 345 MHz/
353
MHz

(Continued)

Various Cubic Root Algorithms for VLSI System  57

Table 3.3 Design and verification status for the collected manuscripts. (Continued)

Ref. No. of bits Simulation Synthesis Timing check
FPGA/ASIC

implementation
Design

verification Layout Frequency

[21] Fully partitioned
Recursive Vedic
multiplier

Xilinx ISE 8.1i Tool yes - Xilinx FPGA
device/Virtex
XCV 300
-6PQ240

- - -

[22] Unsigned cubing
units

- - - - - - -

[26] 8 bit and 16
bit square
architecture 8-bit
and 16 bit cube
architecture

Veriwell/simulator Yes, using
Synopsys
FPGA
Express

- Xilinx family
of devices,
SPARTAN/
S30VQ100,
Speed Grade : -4.

- - -

[27] - - yes - Xilinx VirtexII-Pro - - -

[28] compressor based
on the novel
XOR–XNOR cell

Nassda HSIM 2.0 tool
with the option
“HSIMSPEED”setto“0.”

- - - - yes -

[29] Multiplication
operations
(2-digit, 3-digit)

- - 1,440 T States
3128 T
States

- - - 3 MHz

58  AI Applications and Reconfigurable Architectures

observed well in the 3D graph below in Figure 3.1, where all the frac-
tional values display the minimum delay (in ns) used in the designs
from few of the research articles whereas the positive values explain
well about the clock/system frequency (in MHz) used in the design. A
total of 13 designs are observed to be displayed with minimum delay
and system frequency. As the technology is being advanced from yes-
teryears till this date, we can see that the delay is minimum to −57 ns
and the frequency being used is 2000 MHz or 2 GHz. As the frequency
is taking a sharp exponentially linear jump from 3 MHz to 2 GHz, it
can be said that the designs of complex squaring or cubing units are
exhaustively being built with several ancient mathematical algorithms
with compact approaches. In the next decade it can be expected that the
frequency curve taking the double of what the least article of this work
has worked with. Since there are limited articles analyzed in this work,
the frequency curve can still be seen taking a longer leap with several
other designs where researchers have worked with. In future the cubic
root designs can be well associated with the higher clock frequency and
very minimal delay for the arithmetic unit of any IC helping to perform
complex mathematical operations used in digital signal processing
applications. Therefore, multicenter studies with large input samples

1 2 3 4 5 6 7 8 9 10 11 12 13

-5.5E-06
-1.3528E-05

-1.3773E-05
-0.0001273

-1.603E-05
-7.72E-06

-3E-05
-3.9285E-05

-9.18E-06
-5.4E-05

-8.11E-06
-0.000001042

-57

250
69.0172.81149 250

129.533.3 88.78108.9 18.5 0.17
3

2000

delay(ms) freq(MHz)

Figure 3.1  Curve of dictum.

Various Cubic Root Algorithms for VLSI System  59

for squaring and cubing algorithms can be achieved with fascinating
ALU integrated chips in semiconductor industry.

3.6	 Conclusion

The presented work brings the result of systematic and analytical course
of actions taken over cubic root algorithms from several other arithmetic
algorithms introduced from the ancient till the current era of IC usage in
high-speed mathematical calculations utilized in diverse field of applica-
tions. The assorted tables in above sections helps us to realize the mini-
mal values used in the algorithm to optimize the technology. These make
it possible to minimize the relative errors to meet the market trends and
speed of operation because if we consider the current technology die being
fabricated, arithmetic units/design is taking over more and more complex
calculations that is from basic ALU unit toward the complex DFT, FFT,
image processing applications and DSP units or designs. This requires a
vivid way of optimizing the slices available in the target devices for the
end-to-end production of ICs. Cubic root algorithm is one such complex
arithmetic operational design carried over FPGAs, ASICs, etc. as uprooted
from the several ancient algorithms depicted in the above sections.

References

	 1.	 Luo, Y., Wang, Y., Sun, H., Zha, Y., Wang, Z., Pan, H., CORDIC-based
architecture for computing Nth root and its implementation. IEEE Trans.
Circuits Syst. I Regul. Pap., 65, 4183–4195, 2018. https://doi.org/10.1109/
TCSI.2018.2835822.

	 2.	 Kumar, D., Saha, P., Dandapat, A., Vedic algorithm for cubic computation
and VLSI implementation. Eng. Sci. Technol. An Int. J., 20, 1494–1499, 2017.
https://doi.org/10.1016/j.jestch.2017.10.001.

	 3.	 Padhan, S.K., Gadtia, S., Pattanaik, A.K., Remarks on Heron’s cubic root iter-
ation formula. Bol. da Soc. Parana. Mat., 35, 173–180, 2017.

	 4.	 Singh, Y.K., An analysis on extracting square and cube roots by Aryabhata’s
methods. ADBU J. Eng. Technol., 5, 4, 2016.

	 5.	 Kumar Padhan, S., Gadtia, S., Bhoi, B., FPGA based implementation for
extracting the roots of real number. Alex. Eng. J., 55, 2849–2854, 2016.

	 6.	 Singh, Y.K., Computing cube root of a positive number. ADBU J. Eng.
Technol., 4, 85–89, 2016.

https://doi.org/10.1109/TCSI.2018.2835822
https://doi.org/10.1109/TCSI.2018.2835822

60  AI Applications and Reconfigurable Architectures

	 7.	 Putra, R.V.W. and Adiono, T., Optimized hardware algorithm for integer
cube root calculation and its efficient architecture, in: 2015 International
Symposium on Intelligent Signal Processing and Communication Systems
(ISPACS), pp. 263–267, 2016, https://doi.org/10.1109/ISPACS.2015.7432777.

	 8.	 Guardia, C.M. and Boemo, E., FPGA implementation of a binary32 floating
point cube root. 2014 9th Southern Conference on Programmable Logic (SPL),
2015.

	 9.	 Volder, J.E., The CORDIC trigonometric computing technique, in: Computer
Arithmetic Vol. I, pp. 245–249, 2015, https://doi.org/10.1142/9789814651578.

	 10.	 Saha, P., Kumar, D., Bhattacharyya, P., Dandapat, A., Design of 64-bit squarer
based on vedic mathematics. J. Circuits Syst. Comput., 23, 1–19, 2014. https://
doi.org/10.1142/S0218126614500923.

	 11.	 Kunchigi, V., Kulkarni, L., Kulkarni, S., Low power square and cube archi-
tectures using vedic sutras. Proc.-2014 5th International Conference on Signal
and Image Processing (ICSIP), pp. 354–358, 2014, https://doi.org/10.1109/
ICSIP.2014.62.

	 12.	 Grover, N. and Soni, M.K., Design of FPGA based 32-bit floating point arith-
metic unit and verification of its VHDL code using MATLAB. Int. J. Inf. Eng.
Electronic Business, 1, 1–14, 2014.

	 13.	 Taisbak, C.M., Cube roots of integers. A conjecture about Heron’s method.
Hist. Math., 41, 103–106, 2014. https://doi.org/10.1016/j.hm.2013.10.003.

	 14.	 Manfrino, R.B., Ortega, J.A.G., Delgado, R.V., Quadratic and cubic polyno-
mials, in: Topics in Algebra and Analysis, Birkhäuser, Cham, 2015, https://doi.
org/10.1007/978-3-319-11946-5_4.

	 15.	 Cho, Y.I., Chang, N.S., Hong, S., Formulas for cube roots in F3m using
shifted polynomial basis. Inf. Process. Lett., 114, 331–337, 2014. https://doi.
org/10.1016/j.ipl.2014.01.001.

	 16.	 Deshpande, A. and Draper, J., Comparing squaring and cubing units with mul-
tipliers. International Midwest Symposium on Circuits and Systems (MWSCAS),
pp. 466–469, 2012, https://doi.org/10.1109/MWSCAS.2012.6292058.

	 17.	 Jahangir, I., Das, A., Hasan, M., Design of novel quaternary encoders and
decoders. 2012 International Conference on Informatics, Electroics & Vision
(ICIEV), pp. 1021–1026, 2012, https://doi.org/10.1109/ICIEV.2012.6317530.

	 18.	 Hess, A., A highway from heron to brahmagupta. Forum Geom., 12, 191–
192, 2012.

	 19.	 Strollo, A.G.M., De Caro, D., Petra, N., Elementary functions hardware imple-
mentation using constrained piecewise-polynomial approximations. IEEE
Trans. Comput., 60, 418–432, 2011. https://doi.org/10.1109/TC.2010.127.

	 20.	 Johansson, B.G., Cuberoot extraction in medieval mathematics. Hist. Math.,
38, 338–367, 2011. https://doi.org/10.1016/j.hm.2010.08.001.

https://doi.org/10.1109/ICSIP.2014.62
https://doi.org/10.1109/ICSIP.2014.62
https://doi.org/10.1007/978-3-319-11946-5_4
https://doi.org/10.1007/978-3-319-11946-5_4
https://doi.org/10.1016/j.ipl.2014.01.001
https://doi.org/10.1016/j.ipl.2014.01.001

Various Cubic Root Algorithms for VLSI System  61

	 21.	 Mehta, P. and Gawali, D., Conventional versus vedic mathematical method
for hardware implementation of a multiplier. International Conference
on Advances in Computing, Control and Telecommunication Technologies,
pp. 640–642, 2009.

	 22.	 Stine, J.E. and Blank, J.M., Partial product reduction for parallel cubing. IEEE
Computer Society Annual Symposium on VLSI, pp. 337–342, 2007.

	 23.	 Ahmadi, O., Hankerson, D., Menezes, A., Formulas for cube roots in
F3m. Discrete Appl. Math., 155, 260–270, 2007. https://doi.org/10.1016/j.
dam.2006.06.004.

	 24.	 Lowdermilk, W. and Harris, F., Finite arithmetic consderations for the FFT
implemented in FPGA-based embeded processors in synthetic instruments.
IEEE Autotestcon, Anahein, CA, USA, pp. 26–31, 2006.

	 25.	 Deschamps, J.P., Bioul, G.J.A., Sutter, G.D., Synthesis of Arithmetic Circuits:
FPGA, ASIC and Embedded Systems, John Wiley, New Jersey, 2006.

	 26.	 Thapliyal, H., Kotiyal, S., Srinivas, M.B., Design and analysis of a novel paral-
lel square and cube architecture based on ancient Indian vedic mathematics.
48th Midwest Symposium on Circuits and Systems, pp. 1462–1465, 2005.

	 27.	 Brandolese, C., Fornaciari, W., Salice, F., An area estimation methodology for
FPGA based designs at systemc-level. DAC, 2004.

	 28.	 Chang, C.H., Gu, J., Zhang, M., Ultra low-voltage low-power CMOS 4-2 and
5-2 compressors for fast arithmetic circuits. IEEE Trans. Circuits Syst., 51,
2004. https://doi.org/10.1109/TCSI.2004.835683.

	 29.	 Chidgupkar, P.D. and Karad, M.T., The implementation of vedic algorithms
in digital signal processing. Glob. J. Eng. Educ., 8, 2–7, 2004.

	 30.	 Tornaria, G., Square roots modulo p, in: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), pp. 430–434, Springer, Verlag, 2002, https://doi.
org/10.1007/3-540-45995-2_38.

	 31.	 Padró, C. and Saez, G., Taking cube roots in ℤm. Appl. Math. Lett., 15, 703–
708, 2002. https://doi.org/10.1016/S0893-9659(02)00031-9.

	 32.	 Liddicoat, A.A. and Flynn, M.J., Parallel square and cube computations.
Conf. Rec. Asilomar Conference on Signals, Systems and Computers, vol. 2,
pp. 1325–1329, 2000, https://doi.org/10.1109/acssc.2000.911207.

	 33.	 C.J., Kangshen, L.A.S., Singh, Y.K., Computing square root of a large positive
integer. ADBU J. Eng. Technol., 5, 0051602, 1999.

	 34.	 Dubeau, F., Nth root extraction: Double iteration process and Newton’s
method. J. Comput. Appl. Math., 91, 191–198, 1998. https://doi.org/10.1016/
S0377-0427(98)00033-8.

	 35.	 Chemla, K., Similarities between chinese and arabic mathematical writings:
(I) root extraction. Arab. Sci. Philos., 4, 207–266, 1994.

https://doi.org/10.1016/j.dam.2006.06.004
https://doi.org/10.1016/j.dam.2006.06.004
https://doi.org/10.1007/3-540-45995-2_38
https://doi.org/10.1007/3-540-45995-2_38
https://doi.org/10.1016/S0893-9659(02)00031-9
https://doi.org/10.1016/S0377-0427(98)00033-8
https://doi.org/10.1016/S0377-0427(98)00033-8

62  AI Applications and Reconfigurable Architectures

	 36.	 Yong, L.L., Jiu zhang suanshu[九章箅术] (nine chapters on the mathemati-
cal art): An overview. Arch. Hist. Exact Sci., 47, 1–51, 1994.

	 37.	 Chen, S.G. and Hsieh, P.Y., Fast computation of the nth root. Comput. Math.
Appl., 17, 1423–1427, 1989. https://doi.org/10.1016/0898-1221(89)90024-2.

	 38.	 Peralta, R.C., A simple and fast probabilistic algorithm for computing square
roots modulo a prime number. IEEE Trans. Inf. Theory, 32, 846–847, 1986.
https://doi.org/10.1109/TIT.1986.1057236.

	 39.	 Burr, S.A., Computing cube roots when a fast square root is available. Comput.
Math. Appl., 8, 181–183, 1982. https://doi.org/10.1016/0898-1221(82)90041-4.

	 40.	 Al-Hasan Ahmad, A. and Al-Uqlīdisī, I., The Arithmetic of Al-Uqlīdisī,
Springer, Netherlands, 1978.

	 41.	 Barreto, P., A note on efficient computation of cube roots in characteristic 3,
vol. 305, Cryptology ePrint Archive, 2004. https://eprint.iacr.org/2004/305

	 42.	 Reddy, B.N.K., Design and implementation of high performance and
area efficient square architecture using vedic mathematics. Analog Integr.
Circiuts Signal Process., 102, 501–506, 2020. https://doi.org/10.1007/
s10470-019-01496-w.

	 43.	 Saidan, A.S., The earliest extant arabic arithmetic: Kitab al-fusul fi al hisab
al-hindi of Abu al-Hasan, Ahmad ibn Ibrahim al-Uqlidisi, Isis. 57, 475–490,
1966. https://doi.org/10.1086/350163.

	 44.	 Horner, W., XXI. A new method of solving numerical equations of all orders,
by continuous approximation. Philos. Trans. R. Soc. Lond., 109, 308–355,
1819. https://doi.org/10.1098/rstl.1819.0023.

https://doi.org/10.1016/0898-1221(89)90024-2
https://doi.org/10.1016/0898-1221(82)90041-4
https://doi.org/10.1007/s10470-019-01496-w
https://doi.org/10.1007/s10470-019-01496-w

63

Anuradha D. Thakare and Sheetal Umesh Bhandari. Artificial Intelligence Applications and Reconfigurable
Architectures, (63–94) © 2023 Scrivener Publishing LLC

4

An Overview of the Hierarchical
Temporal Memory Accelerators

Abdullah M. Zyarah* and Dhireesha Kudithipudi

University of Texas at San Antonio, Texas, USA

Abstract
The soaring demand for resource-constraint edge devices exacerbates the inter-
est in neuromorphic systems that are based on biomimicking algorithms, such
as hierarchical temporal memory (HTM). HTM has the potential to unleash
near-sensors edge intelligence with the absence of cloud support. In this review,
we provide a comprehensive survey of HTM-based neuromorphic computing
systems. Unlike previous studies which shed light solely on the memristor-based
implementations, this study covers both pure CMOS and hybrid solutions. The
key features offered by each solution are presented including system performance
when processing spatial and temporal information, power dissipation, and net-
work latency. Furthermore, challenges associated with enabling real-time process-
ing, on-chip learning, system scalability, and reliability are addressed. This study
serves as a foundation to select proper HTM network architecture and techno-
logical solutions for edge devices with predefined computational capacity, power
budget, and footprint area.

Keywords:  Hierarchical temporal memory, cortical learning algorithm,
neuromorphic computing, spatial pooler, temporal memory

4.1	 Introduction

Hierarchical temporal memory (HTM) [17, 18] is a biologically inspired
algorithm that has demonstrated strong capabilities in processing spa-
tial and temporal information while learning models of the world. The

*Corresponding author: abdullah.zyarah@utsa.edu

mailto:abdullah.zyarah@utsa.edu

64  AI Applications and Reconfigurable Architectures

algorithm features continual learning [8], fault and noise tolerance
(Hawkins and Ahmad, 2016), and energy efficiency [50]. Owing to these
features, HTM finds its way in a myriad of real-world applications, such
as medical diagnosis [11], imaging sensors [12], stock market prediction,
and detecting performance anomalies in scientific workflows [40].

While HTM demonstrates reasonable performance in image classifi-
cation tasks and comparable or state-of-art performance in time-series
prediction and anomaly detection, running it on edge devices using von
Neumann architectures, such as CPUs and GPUs, is not highly recom-
mended [51]. CPUs and GPUs have failed to provide a satisfactory per-
formance when running HTM algorithm and seem to limit the network
size and also the feasibility of network use in practical scenarios [30, 39,
50]. This is because the network’s high-level parallelism requirement and
its unbalanced workload. As a result, several research groups resort to
develop customized accelerators†

1 to run the HTM algorithm efficiently
and affordably on edge devices. The timeline shown in Figure 4.1 sum-
marizes the digital, analog, and mixed-signal HTM accelerators that have
been developed over the last decade‡

2. Only the work proposed by Vyas
et al. [44] and Fan et al. [9] focus on the early version of the algorithm,
namely Zeta HTM, whereas the rest attempt at implementing the mem-
ory sequence HTM, which tends to be more biologically plausible. In
this review, we place emphasis on HTM sequence memory implemen-
tation. The current state-of-art HTM accelerators based on pure CMOS
and hybrid technologies are comprehensively studied. The key features
associated with each accelerator are presented including system archi-
tecture, network performance when processing spatial and temporal
information, power consumption, and network latency. The challenges
concerning real-timing processing, on-chip learning, network scalability
and reliability are also discussed. Open problems related to HTM net-
work performance, implementing it using hybrid technologies, and port-
ing it on edge devices with limited resources are also addressed.

†

1 �Over the last decade, several HTM accelerators have been developed. While the first wave
of accelerators focused on implementing the spatial aspect of the algorithm, the second
wave covered both the spatial and temporal sides (full implementation). In this chapter,
the review will be limited only to the full implementation of the algorithm.

‡

2 �Names are given to some accelerators based on their unique features. This is just to simply
the description and to avoid frequent citation of the same reference.

An Overview of the HTM Accelerators  65

4.2	 An Overview of Hierarchical Temporal Memory

HTM is a biomimetic algorithm inspired by the structure and the compu-
tational mechanisms of the human neocortex. Like the neocortex, HTM
is structured from hierarchical stacked cellular regions that enable the
network to learn and recall spatial and temporal information. Each region
is composed of computational units, called cells, which are arranged in
columnar organizations known as mini-columns (see Figure 4.2). A cell
in HTM is an abstract model of the biological pyramidal neurons. As

2015

PIM-1 HTM

2016

CLASSIC HTM

2018

RBM HTM

PEN-1 HTMRCN HTM

PIM-2 HTM

2020

PEN-2 HTM

Analog &
Mixed-Signal

Digital Design

Zeta HTM

2019

Pyragrid

2013

Vyas HTM

Figure 4.1  The state-of-the-art digital, analog, and mixed-signal HTM accelerators
proposed over the last decade.

Hippo

Molecular
layer

Layer of
small

pyramidal
cells

Layer of
Large

pyramidal
cells

Layer of
polymorphous

cells

Plexus of Exner

Band of Bechterew

Outer band of Bail-
larger, or band of
Gennari

Vertical fibers,

Internal band of
Baillarger

Deep tangential
fibers

White medullary
substance

Prefrontal
Cortex

Neocortex

Mini-
column

Proximal
connection

Level-2

Distal
connection

Pyramidal
neuron

Cell

Level-1

Region

Level

Cell

Figure 4.2  The biological neocortex structure including the regions [20] and the building
blocks (pyramidal neurons [36]), and their correspondence in the HTM network.

66  AI Applications and Reconfigurable Architectures

pyramidal neurons, each cell is endowed with hundreds of synaptic con-
nections grouped into integration zones (or segments): proximal, distal,
and apical [8, 16]. The synaptic connections which belong to the prox-
imal segment are dedicated to receiving feed-forward input either from
the immediate lower regions in the hierarchy or sensory encoder – sen-
sory encoder captures information from the surrounding environment
and transfers it into high-dimensional binary vectors called sparse dis-
tributed representations (SDRs). Enough activities detected by proximal
segment lead to a generation of neuronal action potential and thereby
changing the cell state to active. On the contrary, the cellular activities
detected by distal and apical segments lead to so-called NMDA spikes
[6], which slightly depolarize the cell without generating an action poten-
tial and this eventually changes the cell state to predictive. Typically, the
synaptic connections of the distal segments grow among the neighboring
cells of the same region and are assigned to observe contextual input,
whereas the apical connections observe feedback inputs originating from
the higher levels of the network.

Given an HTM region, there are two core operations taking place:
spatial pooling and temporal memory. During the spatial pooling, the
input spatial patterns are captured and transformed into SDR represen-
tation modeled by subsets of active mini-columns selected via a com-
bination of competitive learning rules [7]. The spatial pooling involves
three phases: initialization, overlap and inhibition, and learning. The
initialization phase occurs only once when we run the algorithm for
the first time and it includes forming the proximal synaptic connec-
tions and defining their growth or strength level, namely permanence.
After the initialization, the overlap and inhibition phase starts. Here, the
overlap score of individual mini-columns is first computed via count-
ing the number of active proximal synapses (have permanence value
more than a threshold) associated with active bits in the input space.
Then, based on the desired level of sparsity in the region, a subset of
mini-columns is chosen competitively to represent the input and this is
known as inhibition. For instance, if the desired sparsity is 2%, the top
2% mini-columns with the highest overlap scores are selected for input
representation. This phase is followed by Hebbian-based learning [10]
which is confined to the active mini-columns (also known as winning
mini-columns). It includes enforcing the connections associated with
active bits in the input space and weakening those connected to inactive
bits, such that in the future mini-columns will be more aggressive to be
active to represent previously seen patterns.

An Overview of the HTM Accelerators  67

During the temporal memory, the network learns the transitions
between sequences and recognizes patterns. This is done via a sequence
of three phases, the first of which involves evaluating the active mini-
columns to select cells that represent the input contextually. Within the
active mini-columns, a cell is set to be active and selected for input rep-
resentation if it was in the predictive state. Usually, the predictive state
of a cell is determined during the second phase of the temporal memory,
the prediction phase. This is achieved via observing the cellular activi-
ties detected by distal segments. A cell becomes predictive if the overlap
score of at least one of its distal segments is above the segment activation
threshold. Once the prediction phase ends, the learning phase starts by
forming/pruning distal connections between cells of the same region
and then changing the connections’ strength according to Hebbian’s
learning rule. It is important to mention here that the above description
is a brief overview of the HTM algorithm. More details regarding the
operation and the mathematical modeling is provided in our previous
work [51, 54].

4.3	 HTM on Edge

HTM-based neuromorphic systems which offer spatial and temporal
information processing capability have the potential to be a major driver
for resource-constraint edge devices as they are adaptive, compact, and
energy efficient. Following the naive approach of running HTM on edge
devices using CPUs and GPUs incurs several challenges. Firstly, HTM
demands high computational power that cannot be fulfilled by classic
von Neumann architectures. This is because the HTM innate architec-
ture, which is composed of thousands of neuronal circuits, requires a high
level of parallelism in information processing. Running HTM on plat-
forms with conventional architecture can lead to severe throughput drop
and high-power consumption [50]. For instance, running HTM (only
the spatial pooler) along with the SDR classifier on a macOS machine
with an Intel i7 processor clocked at 2.6GHz to classify hand-written
digits (MNIST dataset) [28] leads to a 325× drop in network through-
put as compared to an ASIC with co-localized memory and process-
ing units, and consumes 1.23W of DRAM power and 26.34W of CPU
power. Secondly, the HTM algorithm is memory-intensive due to the
sheer number of synaptic connections which are continuously adjusted
during the learning process. For instance, an HTM network with 2048

68  AI Applications and Reconfigurable Architectures

mini-columns and 4096 cells (distal segments = 64x128) can have ∼33
million synaptic connections. This requires ∼32MB of memory just to
store the permanences. When processing an input data stream, ∼47k
connections may be used for computations in each time step. This cost
30.14μJ of energy if a 45nm DRAM is used just to store the weights.

Thirdly, the limited memory bandwidth availability in von Neumann’s
architecture introduces undesired latency and degrades network perfor-
mance. For instance, in the aforementioned HTM network, the limited
access to the memory leads to ∼1.449msec time delay each time the net-
work processes an input (computed based on the DRAM read and write
latency of 40ns and 23ns, respectively [29]. The latency further increases
as the network size scale-up. Finally, the HTM algorithm is known to
have an unbalanced workload at the neuronal level and arbitrary memory
access due to the sparse neuronal activities. Thereby, mapping the algo-
rithm to von Neumann-based computational platforms that provide the
necessary parallelism, such as GPUs, seems to fail in providing satisfactory
performance [30]. Besides the unsatisfactory performance, GPUs usually
demand a large power budget as well.

4.4	 Digital Accelerators

In this section, an overview of the state-of-the-art HTM digital (based
solely on CMOS technology) accelerators that have been developed over
the course of the last decade will be presented. In each section, the archi-
tecture and system salient features will be highlighted.

4.4.1	 PIM HTM

PIM was one of the earliest full-scale implementations of the HTM algo-
rithm developed by Zyarah et al. in 2015 [52] and optimized later in 2018
[54]. It is built out of identical processing elements (PEs) clustered into
region slices that interact with each other and input space (encoder) via
a global router, see Figure 4.3. Each region has 100 PEs, each of which
encapsulates one mini-column and four cells, which are dedicated to
performing spatial and temporal tasks. The PEs are pipelined, arranged
into a 2D mesh network, and interfaced via a customized communi-
cation scheme inspired by the enhanced address event representation
(AER) [14].

An Overview of the HTM Accelerators  69

The system is characterized by high-level parallelism as the architec-
ture distributes the memory across the entire regions, and scalability which
can be limited in terms of mini-columns and cells count within the region
slice. Furthermore, it leverages the HTM sparse neuronal activities in
resource-sharing, i.e. rather than having a dedicated architecture for each
cell within a PE, a single cell architecture with memory blocks equal to the
number of cells that need to be replicated are used. This simplifies the over-
all system architecture and minimizes the power consumption and area.
The proposed architecture is synthesized in Synopsys using TSMC 65nm
technology node and also ported on Xilinx ZYNQ7 FPGA. The bench-
marking is done across various classification and sequence prediction tasks
using MNIST and EUNF datasets (see Table 4.1 for details). All learning
mechanisms, which involve changing the strength of the synaptic connec-
tions and their pathways, are performed on-chip in the presence of exter-
nal noise superimposed on the images.

4.4.2	 PEN HTM

There are two HTM digital accelerators proposed by Li et al. [30, 31]. In
this section, we will mainly focus on the recently proposed one (PEN-2)
[30]. In this accelerator, the authors compromise between serialization and
parallelism to speed up the HTM algorithm and to keep the resource usage
as minimum as possible. The accelerator consists of multiple processor
cores (PCs) connected using ring network topology. Each core can support
up to 2048 mini-columns with 40 active each time step.

The processor core comprises a central processor and an array of pro-
cessing engines (PENs), as shown in Figure 4.3. Each central processor is
equipped with a control module, customized units, interface module, and
memory bank. The control module is responsible for system configuration
and synchronization. The customized units are used to perform high-level
operations, such as global inhibition, whereas the interface module and the
memory bank are dedicated to enabling intercore data communication and
storing packages, respectively. Similarly, each PEN also has a local control-
ler to enable interlane communication, a memory bank to store local cells
information, and eight execution lanes to implements operations related to
spatial pooling or temporal memory.

The accelerator is characterized by distributed memory system to
enhance memory bandwidth, the capability to handle unbalanced
workload, and the use of customized hardware modules to boost the

70  AI Applications and Reconfigurable Architectures

performance of critical operations in HTM. Furthermore, it supports
on-chip learning and system scalability. The accelerator is implemented
using GF 65-nm technology node and verified for functionality using the
KTH database [42].

4.4.3	 Classic

The general architecture of CLASSIC [39] involves 16 homogeneous
columnar cores (CCs) arranged into 2D array. Each core has a router
and low-precision spatial and temporal logic units, such as comparators,
counter, and adders, to compute synaptic overlap scores and to perform
global inhibition. All cores are connected using a mesh network and the
interaction among them is made possible by using packet-switched net-
work. The packet-switched network handles four types of traffic: input
traffic originating from the encoder, inhibition traffic, cellular activities,
and output traffic (sending mini-columns status to the classifier). Typically,
CLASSIC is used with general-purpose processor. The general-purpose
processor is utilized to encode input features and to recognize the neural
activities generated by the HTM region.

The CLASSIC accelerator identifies nine stages in the HTM algorithm
to process each input sample. To optimize the algorithm and to maxi-
mize its throughput, the authors leverage the pipelining to cut down the
required number of stages to process each input from nine to three. When
it comes to addressing the challenges associated with network scalability,

PE
Cell-0

Cell-1

Cell-2

PC-0 PC-1

PC-2 PC3

Interface

Memory

EXE
Lanes

Control
Module

Memory
Bank

Custom
Units

Controller

PEN
Array

M

CU

Ro
ut

er

Region slice Ce
nt

ra
l P

ro
ce

ss
or

Figure 4.3  The high-level block diagram of the HTM accelerators proposed by: (Left)
Zyarah et al. [54], which comprises an array of processing elements (PEs) encapsulating
columns of cells (mini-columns), a MCU to enable mini-columns within a region
slice to communicate with each other and to generate the region slice final output,
and a router to bridge the region slices and other levels in HTM hierarchy including
the input space. (Right) Li et al. [30], and this accelerator has a set of processing cores
(PCs) connected via a ring network. Each PC is equipped with an array of processing
engines (PEN) to perform the essential operations in HTM, a memory bank to store the
parameters associated with synaptic connections, and an interfacing module to share
data with nearby PCs.

An Overview of the HTM Accelerators  71

the authors introduce the scale-out zones where each subset of CCs will be
placed in an isolated zone. Here the isolation refers to the fact the inhibi-
tion and distal synaptic formation are restricted solely to the mini-columns
and cells of the same zone. Regarding the challenges associated with the
formation of a massive number of synaptic connectivity, it is overcome via
the proposed packet-switched network. The proposed CLASSIC design is
verified using synthetic data, periodic series of 32-bit integer values gener-
ated using polynomial equations, and real-world data, Numenta anomaly
benchmark (NAB) [27].

It is important to highlight that CLASSIC is a design proposal for HTM
and has not been implemented, rather simulated using CortexSim [38].
All network timing results, and the estimated area and energy consump-
tion are obtained via DSENT [43] and CACTI [34]. More details about the
design specs are listed in Table 4.1.

Table 4.1  A comparison of the state-of-the-art HTM digital accelerators. One
may note that these implementations are on different substrates, thereby this table
offers a high-level reference template for HTM hardware rather than an absolute
comparison.

Algorithm PIM-2 HTM PEN-2 HTM Classic HTM

Task Classification &
Prediction

Classification Anomaly
Detection

Communication
Scheme

Synthetic Synapses - Packet Switched

Proximal Segm. Size 16 31 -

Distal Segm. × size 5×10 12×16 128×-

Mini-columns×Cells 100×3 2048×32 2025×32

Latency (μs) 5.7 6040 0.5

Benchmark MNIST & EUNF KTH NAB

Power
Consumption

417mW 4.1W ~500mW

Frequency 100MHz 100MHz 1GHz

Technology Node TSMC 65nm GF 65nm -

72  AI Applications and Reconfigurable Architectures

4.5	 Analog and Mixed-Signal Accelerators

The analog and mixed-signal state-of-the-art HTM accelerators imple-
mented using hybrid technology (CMOS and memristor devices) are
presented in this section. While few of these accelerators emulate the first
generation of HTM, zeta-HTM, the rest targets the latest generation, HTM
sequence memory.

4.5.1	 RCN HTM

The RCN-HTM accelerator proposed by Fan et al. [9] consists of a large
number of highly connected processing nodes arranged in a tree-like
hierarchical structure. The nodes are used as pattern matching modules,
where each module is in charge of identifying the correlation between
the presented input and previously stored ones during the spatial pool-
ing. During the temporal pooling (equivalent to temporal memory in the
recent version of the HTM algorithm), the group of spatial patterns which
likely occur close in time are determined. Here, each node is built using a
resistive crossbar network (RCN) and spin-neurons. The RCN comprises
Ag-Si nano-scale memristive devices integrated into a crossbar struc-
ture and is used to execute the most intensive mathematical operations
in HTM during the inference phase, dot-product (DP). To improve sys-
tem energy efficiency, the input to the crossbar, which is typically image
pixels, is converted from digital to analog via deep-triode current source
(DTCS) transistor-based DAC. The output of the crossbar, which results
from multiplying the analog input by the corresponding conductance of
the memristor devices, is sensed and converted back to digital using spin-
neuron-based successive approximation register (SAR-ADC). Once the
output in the first level is generated, it is relied to the next level in the
hierarchy and the same procedure will be replicated until the final out-
put is generated. During training, the nano-devices are programmed using
adjustable pulses generated by a closed-loop programming scheme. The
training is done in a sequential fashion, one device at a time, to reduce the
sneak paths of current and to avoid unintentional disturbing of the state of
unselected devices. However, this training approach is recommended by
the authors only if the training speed is not a major concern.

The proposed design is implemented using IBM 45nm technology node
and is applied to hand-written digit recognition using MNIST dataset and
to object recognition using COIL-20 dataset [35]. One should mention
that though this is one of the earliest mixed-signal implementations that

An Overview of the HTM Accelerators  73

is based on CMOS process and magnetometallic spin devices, it realizes
the first generation of the HTM algorithm, HTM-Zeta. Furthermore, the
network is trained offline and in a hybrid manner (supervised and unsu-
pervised). The supervised training is confined only to the top layer in the
hierarchical structure, whereas the lower layers, close to the input, are
trained in an unsupervised manner.

4.5.2	 RBM HTM

The work proposed by Olga et al. [26] takes advantage of CMOS-
Memristor analog circuits and systems to realize the core modules in
HTM, spatial pooler and temporal memory. Here, the spatial pooler tasks
are realized using a set of processing blocks linked to input space via
receptor blocks (see Figure 4.4). Each receptor block contains two sets
of memristor devices. The first set is dedicated to modeling the proximal
synaptic connections while the second compute the mean overlap score,
which represents the threshold for accepting meaningful features. The
processing blocks are also equipped with inhibition blocks to select the
population of active mini-columns that represent the input. The inhibi-
tion is carried out via a set of comparators that compare the mean overlap
score with the overlap score of the individual mini-columns and based on
the desired sparsity level, the active mini-columns are chosen. In the case
of the temporal memory, it is implemented using an analog memristive
memory array, comparator, summing amplifier, and thresholding circuit.
The memristor array consists of memory cells to store class templates

PE

Cell-m

M
CU

Ro
ut

er

Arbiter

Se
le

ct
or

Spatial
pooler

Temporal
Memory

Memristive
Patter Matcher

Receptor
Block

Receptor
Block

Receptor
Block

Comp.

Mem.
Cell

Mem.
Cell

Mem.
Cell

Region slice

Cell-0

Figure 4.4  (Left) Pyragrid high-level architecture with multiple HTM region slices.
Each region slice comprises 31×31 mini-columns with 4 cells each, selector, arbiter, and
main control units. (Right) The block diagram of the HTM accelerator proposed by
Krestinskaya et al. [26]. The system has receptor blocks, threshold calculation unit, and a
set of comparators to perform the spatial pooling. The temporal memory is accomplished
as class matching task using an array of memristive memory cells.

74  AI Applications and Reconfigurable Architectures

(images), whereas other circuits are exploited to estimate the amount of
change in memristor conductivity levels that may enhance network per-
formance. During the training phase, the novel inputs to the network
after being spatially processed are level-shifted using the comparator.
Then, they are summed up with the the class template stored in mem-
ory array using the summing amplifier and the memristor conductance
levels are adjusted accordingly. In the inference, the class-map concept
is applied. The class-map attempts to match the stored patterns with the
novel inputs (test set). This approach of temporal memory implementa-
tion makes the work proposed by Olga et al. deviates from that presented
in the HTM sequence memory algorithm.

Unlike the aforementioned accelerators, in the RBM-HTM accelera-
tor all analog inputs are processed immediately without any intermediate
storage or analog-digital-converter (ADC). A new approach for comput-
ing the overlap score, which is based on mean overlap calculation, is pre-
sented. Furthermore, separate memristors are used when computing the
overlap scores, thereby faster training is also achieved. The accelerator is
implemented in TSMC 180nm and verified for face and speech recognition
problems using AR, ORL [1], Yalefaces [13], and TIMIT [48] benchmarks
(see Table 4.2 for more details).

4.5.3	 Pyragrid

Pyragrid is a custom hybrid (CMOS/Memristor) accelerator equipped with
analog computational modules and a stochastic digital communication
scheme. The high-level architecture, shown in Figure 4.4, comprises region
slices and a global router. The region slices are responsible for acquiring
knowledge and retrieving the previously learned information, whereas the
global router ensures regular communication between the slices if needed.
The region slices encompass a 2D array of identical mixed-signal process-
ing elements (MPEs), main control unit (MCU), arbiter, and selector. The
MPEs serve mini-columns and their associated cells. The MCU is in charge
of controlling data flow and system synchronization, while the arbiter and
selectors are responsible for regulating data communications among the
MPEs within the same region slice.

When sensory information is present to Pyragrid, it gets encoded into
SDR vectors. Here, the encoding is done by thresholding the input pixels
when dealing with visual information and by using linear feedback shift
registers (LFSRs) when encoding streaming data. The SDR representations
are forwarded in form of packets to the MCU and then HTM region, where

An Overview of the HTM Accelerators  75

the spatial and temporal knowledge are acquired. Unlike previous designs,
here the interaction among mini-columns and cells is done probabilisti-
cally using synthetic synapses representation (SSR). This results in a signif-
icant reduction in memory usage and physical interconnects. Furthermore,
the system takes advantage of data reuse, in-memory computing, and
event-driven sparse local computation to minimize data movement and
to improve system power efficiency. When it comes to learning capability,
Pyragrid supports all the essential plasticity mechanisms, including mod-
ulating the synaptic connection growth level, forming/pruning synaptic

Table 4.2  A comparison of the state-of-the-art analog and mixed-signal
HTM accelerators. One may note that these implementations are on different
substrates, thereby this table offers a high-level reference template for HTM
hardware rather than an absolute comparison.

Algorithm RCN HTM RBM HTM Pyragrid

Task Classification Classification Class & Prediction

Communication
Scheme

- - Synthetic Synapses
Representation

Proximal Segm. Size 16 9 31

Distal Segm. × size - - Shared 256

Mini-columns×cells - 25×Xb 961×4

Power Consumption - 13.34mWa 29.38mW

Latency (μs) - - 11.6

Benchmark MNIST &
COIL-20

AR, TIMIT,
Yalefaces, &
ORL

MNISTc &
Hot-Gym

Frequency - - Dual 8-128 MHz

Technology Node IBM 45nm TSMC 180nm IBM 65nm
a In this work, the temporal memory power is reported for single pixel processing. This
value is multiplied by the total number of mini-columns to estimate a total power of an
HTM region with 25 mini-columns with one cell each.
b X denotes unknown number of cells.
c Further details about MNIST results are provided in Zyarah & Kudithipudi [53].

76  AI Applications and Reconfigurable Architectures

pathways, and replacing non-functional neurons, locally on chip. This
endows the system with additional degree of freedom to learn and evolve
during its lifetime. The proposed accelerator is implemented in IBM 65nm
technology node and benchmarked for image classification and time-series
prediction using MNITS and Hot-Gym datasets. Furthermore, it is verified
for elasticity (network lifespan), robustness to noise, and device failure.

4.6	 Discussion

In this section, the following design aspects associated with the HTM
state-of-the-art accelerators will be covered, including system learning
capability, data movement, memory and compute requirements, system
scalability and reliability, network latency, and power consumption.

4.6.1	 On-Chip Learning

HTM, as the biological brain, features a high degree of plasticity and learns
continuously throughout its lifetime [6]. Incorporating various levels of
plasticity mechanisms, such as neuroplasticity (structural plasticity and
homeostatic intrinsic plasticity) and synaptic plasticity, through the design
abstractions locally on-chip is essential for network evolution and contin-
ual learning. Meanwhile, it is a daunting task due to the sheer number
of neurons and dynamic interconnects that are continuously updated.
Therefore, most of today’s available HTM-based neuromorphic systems
only take advantage of synaptic plasticity which is sometimes implemented
off-chip on a host computer or cloud (referred to as off-device or off-chip
training) [9, 26]. This results in systems that have limited learning capabil-
ity and limited applicability to real-world scenarios, where new informa-
tion has to be learned on the fly.

Starting with the structural plasticity, which is related to physical
changes of system primitives, it involves either forming or removing
dendritic connections (synaptogenesis), or replacing the non-functional
neurons with new ones (neurogenesis). Synaptogenesis is incorporated in
most of the HTM digital accelerators [30, 31, 39, 49, 54] and it is made
possible either by packet-switched network or customized communication
schemes inspired by the enhanced addressed event representation (AER).
The enhanced AER uses look-up tables (LUTs) to describe the synap-
tic connectivity between two sets of neuronal arrays [14]. However, this

An Overview of the HTM Accelerators  77

approach constrains the speed of operation of the neuronal circuit and
demands a prohibitive amount of memory (more than 72MB of memory
for an HTM network with 4k neurons) to store neuronal connections. In
the case of analog and mixed-signal accelerators, no support for synapto-
genesis or any other types of plasticity is observed in the work proposed by
Fan et al. [9]; Krestinskaya, Ibrayev et al. [26]. In Zyarah et al. [51] a novel
communication scheme, namely synthetic synapses representation (SSR),
is presented to enable probabilistic formation/pruning of synaptic con-
nections. The SSR uses linear feedback shift registers (LFSRs) rather than
conventional memory to virtually formulate/prune synaptic connections,
which results in considerable savings in chip area and power consump-
tion. When it comes to neurogenesis, in the short-term, it may enhance
the computational capabilities of the HTM network. Particularly, when
there is a clear absence of statistical uniformity of data distribution in the
input space [53]. In the long run, neurogenesis and homeostatic intrinsic
plasticity are essential features to have as they contribute to extending the
lifespan of the network, especially the networks that heavily rely on mem-
ristor devices.

Regarding the synaptic plasticity, which implies modifying the strength
of the synaptic connections based on neurons’ activities, it exists in all
accelerators offering on-chip learning [30, 31, 39, 49, 51, 54]. However, in
digital accelerators, it is done via changing the permanence values associ-
ated with proximal and distal connections, which are typically stored as
decimal numbers in conventional memory. The process involves a set of
read/write and add/subtract operations which occur in a sequential fashion
(at the mini-column or cell level) due to the memory limited bandwidth.
Unlike digital, the synaptic plasticity in analog and mixed-signal accelera-
tors implies modulating the conductance level of memristor devices inte-
grated into the crossbar structure. At the mini-column and cell levels, this
process is executed concurrently using customized writing schemes [2, 15,
51, 53, 55].

4.6.2	 Data Movement

Data movement in neuromorphic systems is known to be more costly
than computation in terms of energy consumption [4]. Therefore, mit-
igating the cost of data movement between the processing core units,
logic, and on-chip/off-chip memory enhances energy efficiency and also
system throughput. In hierarchical designs, reducing the cost of data

78  AI Applications and Reconfigurable Architectures

movement is usually achieved via exploiting the low-level units, such as
PENs, CCs, and MPEs, to perform the core operations and to limit the
access to high-level units such as PCs in Li [30] and MCU in Zyarah and
Kudithipudi [54]. However, these restrictions cannot always be fulfilled
because some of the core operations in HTM take place at the full stack
of the network hierarchy. For instance, the global inhibition occurs at the
region level as mini-columns of the same region need to communicate to
decide the set of winners that represent the current input. Also, there is
a local inhibition for the cells within the winning mini-columns to rep-
resent the input contextually. Reducing the data movement during the
inhibition process in digital accelerators is done via various approaches.
Among them is network folding, in which the tasks associated with mul-
tiple mini-columns and cells are assigned to a single processing engine
(as CC or PEN in Puente and Gregorio [39]; Li [30]). While this approach
reduces the data movement but at the expense of decreasing network
throughput. Another approach is using a heterogeneous communication
network as in Zyarah & Kudithipudi [54], where the PEs are pipelined
and also connected via an H-Tree network. This approach facilitates
PEs interaction, particularly when there is a broadcast in the network.
However, this approach limits the number of PEs that can be assigned
to region slices to 256. Figure 4.5 summarizes the estimated data move-
ment of inhibition and other core operations in HTM digital accelera-
tors. It can be observed that the inhibition in PEN-2 [30] requires high
data movement because of the large packet movement (32-bit) between
the processing elements and the central processor. The same is observed
when broadcasting the winners. For prediction and learning operations,

106

105

104

103

102

101

100

D
at

a
M

ov
em

en
t [

By
te

s]

Inhibition Winners Prediction Learning
HTM Operation

PIM
PE1

PE2
CLASSIC

Figure 4.5  Estimated data movement in the previously proposed HTM digital
accelerators when performing inhibition and selecting winning mini-columns, prediction,
and learning.

An Overview of the HTM Accelerators  79

the accelerators, in which every single processing unit serves multiple
mini-columns and their associated cells, turns to offer lower data move-
ment since part of the core operations happen locally, as in Puente and
Gregorio [39]; Li [30]. Other accelerators use leading-status bit with each
synapse to reduce memory access and take advantage of the H-Tree net-
work to reduce data movement as in Zyarah and Kudithipudi [54].

When it comes to analog and mixed-signal accelerators, significant
reduction in data movement is witnessed. This is due to the co-location of
the storage and compute units, thanks to memristor devices. For the oper-
ations that we alluded to earlier, such as the inhibition, it occurs simultane-
ously via WTA circuit [26, 51, 53]. Regarding the prediction and learning
which involve broadcasting the active cells at time t and t−1, the authors in
Zyarah et al. [51] take advantage of data reuse and in-memory computing.
Thus, when compared to the digital counterpart in Zyarah and Kudithipudi
[54], ∼44× reduction in data movement is observed.

4.6.3	 Memory Requirements

HTM is known to be a memory-intensive algorithm as it requires stor-
age units not only to store the synapses’ growth levels (permanences), but
also to save the addresses of the synaptic pathways, and mini-columns and
cells associated parameters. However, the low precision requirement in
HTM [39] comes as advantageous to reduce memory usage and to enable
the use of emerging devices such as memristors§

3 especially in analog and
mixed-signal accelerators.

The memory requirement across various accelerators is tightly coupled
with the number of proximal and distal connections provided to each
mini-column and its associated cells. Typically, a large-scale HTM net-
work has a sheer number of dynamic synaptic connections that cannot be
implemented unless off-chip storage is used, and this eventually leads to a
prohibitive amount of energy consumption. For instance, off-chip access
of DRAM implemented in 45nm process consumes 640pJ of energy, which
is approximately two orders of magnitude more than on-chip SRAM [19].
One may reduce the memory requirement via leveraging the subsampling
when forming the proximal and distal synaptic connections as in Zyarah
et al. [51]. Another approach may involve real-time processing of input
sensory information without temporary storage as proposed in Kerner
and Tammemäe [23]; Zyarah and Kudithipudi [54]; Zyarah et al. [51].

§

3 Most memristor devices have ∼16 distinct states or more.

80  AI Applications and Reconfigurable Architectures

In Pyragrid [51], the authors reduce memory usage via using SSR. SSR
leverages the probabilistic formation/pruning of the synaptic pathways
such that the addresses associated with the synaptic pathways are gener-
ated rather than being stored in conventional storage units.

It is important to shed light on the fact that accelerators with conven-
tional memory suffer from limited memory bandwidth. Although such
limitation can be alleviated via using distributed memory system, it does
not go beyond the mini-column or cell level. In the case of accelerators
that utilize memristor devices integrated into crossbar structure, such lim-
itation does not reveal and in-memory computing for the most intensive
operation in HTM (multiply-accumulate) can be carried out concurrently
while consuming a small amount of power as compared to DRAMs and
even SRAMs. While the memristive crossbar offers attractive features
(non-volatility and compactness [3, 33, 37]), it is still not reliable to store
critical information such as the addresses of the synaptic pathways. Thus, it
is recommended to use heterogeneous memory systems to take advantage
of the reliability of SRAMs and the high bandwidth and energy efficiency
of memristive memory as in Zyarah et al. [51].

4.6.4	 Scalability

Endowing HTM-based accelerators with the scalability feature is a necessity
to overcome system size limitations and restrictions to practical applica-
tions. Here, the scalability can touch various levels in the design hierar-
chy: regions, mini-columns, and cells. Given the current limited advances
of the algorithm from the hierarchical perspective, most of the explored
scaling is limited to increasing the number of cells and mini-columns. The
former is not very common, because even a small number of cells can give

wn
mn ways to represent an input, where nW represents the number of active

mini-columns (winners) at any given point in time and nm indicates the
number of cells per mini-column. For instance, an HTM region with 40
active mini-columns and 4 cells each can represent an input in 1.2 × 1024
ways. This massive capacity points to the fact that a small number of cells is
sufficient to handle complex real-world tasks. However, if network scaling
in terms of cell count is still desirable, the cells’ resources can be repli-
cated. The critical scalability challenge one may face here is maintaining
low power consumption within the edge device budget¶

4.

¶

4 The cells in HTM network are far more complex than mini-columns. Thus, replicating
the cells is always accompanied by a significant increase in resource usage and power
consumption.

An Overview of the HTM Accelerators  81

When it comes to network scaling in terms of mini-column count, it
is favorable because it enhances system learning capability, storage [39],
and robustness to noise [51]. Although this scaling is preferable, it is done
using planar technology, which brings challenges dominated by commu-
nication [22], particularly signal integrity. Maintaining signal integrity is
a well-studied design challenge not only in the HTM-based architectures
but in most of today’s neural network-based architectures. However, in
HTM one can leverage the inherent features of the network architecture
to scale it up without transferring signals to arbitrarily long distances.
One may benefit from the local inhibition property (as in Li and Franzon
[31]) and cells preferable formation of the synaptic connections with the
nearby cells so that neighboring mini-columns are grouped into separated
regions that can lightly interact through local and global routers. This
approach is called slicing (see Figure 4.6) and it is suggested by Zyarah
[49]; Zyarah and Kudithipudi [54]. A similar approach is also proposed
by Puente and Gregorio [39], where the HTM region is split into so-called
scale-out zones. Unlike slicing, communication and forming the synaptic
connections among the scale-out zones are prohibited. In Li [30] different
approach is followed to enable network scaling and it involves using mul-
tiple processor cores connected using a unidirectional ring network. This
reduces the number of ports in each core 4× and 8× as compared to mesh
and butterfly networks, respectively.

R

Processing
element

Mini-
column

R Router Central
processor

Scale-
out zone

Slice

(a) (b) (c) (d)

Figure 4.6  HTM network scaling topologies used by the state-of-the-art accelerators:
(a) scale-out zones, (b) conventional mesh network, (c) slicing, and (d) ring network.

82  AI Applications and Reconfigurable Architectures

4.6.5	 Network Lifespan

The online learning in the HTM algorithm translates into continual network
adaptation and evolution as it learns models of the world. As aforemen-
tioned, network learning involves modulating the strength of the synaptic
connections in addition to structural changes in the network architecture.
While the latter is considered as a major change to the network and may
softly impact its lifespan, it is not the case with the former, especially in the
analog and mixed-signal accelerators. The analog and mixed-signal accel-
erators are known to use memristor devices for emulating the strength of
the synaptic connections. During learning, the conductance of the mem-
ristor devices is updated in response to network input and neuronal activ-
ities. Due to the fact that memristor devices have limited endurance**

5, they
can be overwritten only limited number of times. This eventually defines
the network sustainability for learning.

According to literature [24, 47], crossing the endurance limit of the
memristor devices reduces the switching window. Besides, the switching
window reduction, there is a settle for the device resistance to a minimum
level (i.e. stuck-at low-resistance state). For instance, the authors in Yang
et al. [47] observed a reduction in the metal-oxide memristor (Pt/TaOx/
Ta) resistance ratio once the switching cycles surpass 6 × 109. The authors
also noticed that when the device switching window collapses, it gets stuck
at the reset resistance rather than being shorted. Since most of the neural
networks’ architectures leverage the memristive crossbar array to perform
vector-matrix multiplication, having stuck-at memristor devices may give
rise to unpredictable network failure. Thus, designers may adopt various
approaches to improve network lifespan. Among them: i) ensuring write
uniformity to memristor devices via enforcing uniform neuronal activities.
This can be done via adopting the homeostatic intrinsic plasticity mecha-
nism; ii) using more than one memristor device to model each synaptic
connection. The memristors should be connected in differential configura-
tion and trained in alternating manner. This may not only improve the net-
work lifespan, but it also enhances the dynamic range of the permanence
value; iii) using a unique modulation technique and this can involve one
of the followings:

•	 Limiting the voltage drop across memristor devices during
the forming process and conventional switching. Reducing

**

5 The oxide-based memristor devices have a typical endurance range between 106 − 1012
[5].

An Overview of the HTM Accelerators  83

the voltage drop can either be achieved by explicitly integrat-
ing the memristor to a proper resistor [24] or inherently in
1T1M configuration. Integrating the memristor devices into
a crossbar structure is also expected to extend the device
endurance due to the wire parasitic resistance [41].

•	 Using unequal programming voltages during SET and
RESET operations. According to Lu et al. [32], using reduced
SET voltage and increased RESET voltage can subside the
possibility of oxygen vacancy accumulation along with
depletion of oxide ion in TiN/HfOx/TiOx based memristors,
and thereby prevents the degradation in endurance limit.
The same can be achieved when increasing the rise and fall
time of programming voltages as it provides longer time for
oxide ion recombination.

•	 Using hybrid writing to modulate the memristor conduc-
tance as in Wang et al. [45]. The authors show that current
sweep in the SET process and voltage sweep in the RESET
process results in gradual change in resistance, which is
beneficial for memristor lifetime. With that, the authors
increase the endurance of Ti/HfOx/Pt based memristor from
103 cycles to > 106 cycles.

It is important to highlight that estimating the lifespan of the
memristor-based network is not a trivial task as it is impacted by several
factors, such as memristor endurance variability, changing input statis-
tics, network convergence time, etc. However, in literature, the study
and consideration of lifespan metrics are provided only in Pyragrid
[51]. The authors ensure a better lifespan for Pyragrid via leveraging
the network innate sparse neuronal activities and network scalability
feature.

4.6.6	 Network Latency

Enabling online learning and real-time processing in HTM-based accel-
erators is critical to process temporal information. In an endeavour to ful-
fill this requirement, parallelism and sometimes pipelining techniques are
commonly used, especially in digital accelerators. In the following subsec-
tion, both these features will be discussed in detail.

84  AI Applications and Reconfigurable Architectures

4.6.6.1	 Parallelism

The feasibility of parallelism in the HTM accelerators that have been
observed in the previous digital designs becomes possible via leveraging
HTM innate features and using an array of identical processing engines
or elements with distributed memory system [31, 39, 49, 54]. However, it
turns out that such parallelism touches solely the high-level modules in
the algorithm, such as regions, mini-columns, and cells, and does not go
beyond to reach the low-level modules. The low-level modules encapsu-
lated within the mini-columns and cells are in charge of performing low-
level computations, and this demands continuous memory access which
has to be done sequentially due to the limited bandwidth. For instance,
computing the overlap score of a mini-column and performing learning
requires sequential memory access defined by the number of proximal
and distal connections. This is to evaluate the connectivity strength of
the synaptic connection and modulating them when needed. One may
improve the memory bandwidth within the low-level modules by using
dual-port memory blocks, but this can improve the speed of the low-level
computations by 2× only [52]. There are also other operations in digi-
tal accelerators that are hard to parallelize because the data movement
is heavily involved. An example is the global inhibition process where
mini-columns need to talk to each other to determine the set of winners
that represent the input. Thus, in few accelerators, the authors preferred
to use local inhibition because the data movement will be limited and
the process of selecting winning mini-columns to represent the input is
much faster [31].

Unlike the digital implementations, the analog and mixed-signal acceler-
ators have addressed most of the aforementioned challenges via leveraging
memristor devices integrated into crossbar structure and analog computa-
tional modules. For instance, the overlap process can be easily parallelized
because all the computations are carried out locally in-memory. In the case
of inhibition, it is addressed via using a winner-take-all (WTA) circuit.
While the WTA circuit allows the mini-columns to compete and select
the winners instantaneously, the circuit used in Krestinskaya, Ibrayev et
al. [26]; James et al. [21] suffers from the fact the number of winners that
can be selected is limited to one [25]. Such limitation can be overcome via
using a WTA circuit with adjustable output as in Zyarah and Kudithipudi
[53]; Zyarah et al. [51]. It is important to mention here that the parallel-
ism of the low-level computational modules makes the latency in analog
and mixed-signal accelerators less impacted by the network low-level

An Overview of the HTM Accelerators  85

parameters, such as the number of proximal and distal synaptic connec-
tions, as has been proven in Zyarah et al. [51].

4.6.6.2	 Pipelining

Minimizing the computational load via executing HTM operations in a
time-sliced fashion using pipelining is an attractive approach to reduce
the overall network latency. In literature, two digital accelerators leveraged
the pipelining technique: PIM-HTM and CLASSIC. In PIM-HTM, the
authors take advantage of pipelining to speed up the inhibition process.
Additionally, both the spatial pooling and temporal memory are pipelined
and this results in 2× improvement in computational speed [49, 54]. In
CLASSIC, with pipelining, the number of computational stages is reduced
from nine to three every time an input sample is processed [39]. Although
the pipelining in CLASSIC has resulted in ∼5× reduction in the number
of clock cycles required to process an input sample, it leads to an increase
in the network traffic congestion. This is attributed to the use of the pack-
et-switched network for data communication. However, the authors cir-
cumvent this issue by using coalescent injection queues. In contrast to the
digital accelerator, the pipelining in the analog and mixed-signal design
is challenging, yet has almost negligible impact. This is because most of
the compute-intensive operations, such as computing the overlap scores,
adjusting the strength of the synaptic connections, and even the global
inhibition take place concurrently, thanks to the crossbar structure and
the analog WTA circuit. However, in the high-level modules, e.g., regions
in a hierarchical design, one can still apply the pipelining technique to
speed up the algorithm.

Figure 4.7 summarizes the normalized latency of the HTM algorithm
realized on various computational platforms with respect to Pyragrid††

6. It
can be noticed that CPUs and GPUs are failed to provide satisfactory per-
formance when running HTM algorithm implemented in NuPIC‡‡

7 as com-
pared to other ASIC designs. Knowing that, CPUs and GPUs are clocked
orders of magnitude higher. One also can see that PEN-1 offers less latency
than other digital and mixed-signal designs. This is attributed to the fact
that PEN-1 uses small number of synaptic connection and so-called point-
to-point connection, where each mini-column has only one proximal

††

6 For the purpose of comparison, all HTM networks are linearly scaled to have the same
number of mini-columns and cells.

‡‡

7 NuPIC, which stands for Numenta platform for intelligent computing, is a computational
platform used to implement HTM algorithm. It is developed by Numenta Inc.

86  AI Applications and Reconfigurable Architectures

connection to present the feed-forward input to the network. While such
approach reduces the latency but makes the network more susceptible to
noise effect.

4.6.7	 Power Consumption

The possibility of deploying HTM accelerators on edge devices is highly
dependent on the available resources and the power budget. Therefore,
managing the distribution of the power budget in an optimal manner is a
real necessity not only to extend the device’s battery life but also to enable
using large-scale network. The early implementations of the HTM, partic-
ularly the digital accelerators, have demonstrated large power consump-
tion mostly directed toward the storage units. One may reduce the storage
requirements via leveraging the inner features of HTM, such as fault resil-
ience as proposed in Zyarah and Kudithipudi [52]; Puente and Gregorio
[39], but it is not sufficient to compete with analog and mixed-signal solu-
tions. While the analog and mixed-signal solutions are sometimes not any
better when it comes to memory usage, but they use memristor devices
densely integrated into crossbar structures. This enables in-memory com-
puting with high parallelism and reduces data movement, which eventu-
ally results in a significant reduction in power consumption.

Performing relative comparisons of the state-of-the-art HTM accelera-
tors in terms of power consumption is a cumbersome process due to the
lack of similarity in network designs, process node, operating frequency,
etc. Thus, we hypothesize that all networks can be brought up to the same
size by linearly scaling the core units in the HTM region, mini-columns
and cells. The same is also applied to their power consumption, which is

104

1592.78x
470.0x

3.45x

37.75x

0.5x
1.0x

Reference

103

102

101

N
or

m
al

iz
ed

 la
te

nc
y

100

Core-i7
CPU 14nm

NuPIC 2.6GHz

Tesla
K40c 28nm

GPU 745MHz

PIM-2
65nm

ASIC 100MHz

PEN-1
45nm

ASIC 100MHz
Platform

PEN-2
65nm

ASIC 100MHz

Pyragrid
65nm

ASIC 8-100MHz

Figure 4.7  Normalized latency of the conventional computing platforms (CPU and GPU)
and HTM state-of-art accelerators with respect to Pyragrid.

An Overview of the HTM Accelerators  87

normalized with respect to the most power-efficient accelerator in litera-
ture, Pyragrid. Starting with the analog implementation by Krestinskaya
et al., ∼17× improvement in power consumption is observed. This is
achieved after scaling up only the number of mini-columns and the pro-
cessing elements (total = 961x1) due to the lack of information about the
distal segments. In the case of digital implementations, ∼31× and ∼22×
improvement is achieved when compared to PEN-2 and PEN-1, respec-
tively, and ∼77× when compared to PIM-2. Although PEN-1 and PIM-2
adopted the same architecture, where each processing unit serves only one
mini-column and its associated cells, a huge difference in improvement
can be noticed. This is attributed to the fact that PEN-1 power consump-
tion does not take into account the registers and memory units, which are
the most power-hungry components in the design. Regarding the mixed-
signal designs, high-power efficiency is observed in Pyragrid, which attri-
butes to several reasons: (i) the use of a clock-gating technique which
results in 2× less power; (ii) changing the algorithm to limit the prediction
to solely active mini-columns. This is done via merging the evaluation and
prediction phases, which leads to a reduction in the activities that are hap-
pening in more than 4000 cells to 160. This eventually cutoff the power
consumption by 24×.

It is important to highlight that the comparison and the scaling process
alluded to earlier does not take into account the overall networks’ synaptic
connections as there is no clear approach to estimate the power consump-
tion for the individual synaptic primitives. One may also notice that in
Figure 4.8, for reference, a comparison with the conventional computing
paradigm, such as CPUs and GPUs, is made and orders of magnitude in

103

102

101

N
or

m
al

iz
ed

 p
ow

er

100

Tesla K40c
GPU 28nm

Core-i7
CPU 14nm

PIM-2
ASIC 65nm

PEN-1
ASIC 45nm

Platform

1298x
654x

161x

31x 22x 17x

1x

Reference

PEN-2
ASIC 65nm

RBM
ASIC 180nm

Pyragrid
ASIC 65nm

Figure 4.8  Normalized power consumption of the GPU [30], CPU, state-of-the-arts
digital custom designs (purple bars), and memristor-based analog and mixed-signal
designs (pink bar) with respect to Pyragrid.

88  AI Applications and Reconfigurable Architectures

power efficiency is observed. Another observation is that CLASSIC and
RCN are excluded from the comparison. While the former is excluded
because it is an implementation of the first generation of the HTM algo-
rithm (zeta version is totally abandoned by Numenta), the latter is unim-
plemented design. Nonetheless, when compared with Pyragrid, 2.2×
improvement is achieved.

4.7	 Open Problems

The ongoing research to develop neuromorphic systems with core algo-
rithm modeled by the HTM algorithm points to numerous open problems
that may not only improve the algorithm performance, but also its appli-
cability to a broader spectrum of real-world applications. While some of
these problems are related to the hardware aspect, others are associated
with the algorithm itself. In digital accelerators, requirements associated
with memory bandwidth and precision are essential to fulfill to speed
up the algorithm and to achieve performance equivalent to the software
simulations. However, this always comes at the expense of high-power
consumption, especially when computing the overlap scores and adjust-
ing the strength of the synaptic connections. Thus, minimizing the power
consumption via reducing memory access, data movement, and devel-
oping event-driven circuits should be further investigated. In analog and
mixed-signal accelerators, there are several problems relevant to the syn-
aptic connection emulation using memristor devices and neuron circuit.
Firstly, in large-scale networks, there is a need to use large-size crossbars
even beyond the recommended physical size (more than 256x256). Using
a large crossbar means more sneak paths of current, more wire resistance,
less precision, and even more energy consumption when modulating the
synaptic connections [46]. Although most of these problems can be over-
come via using the tiling approach, it comes at the expense of increasing
the resource usage. Secondly, there are problems related to the memristor
itself as it may not manifest properties (e.g. high switching speed and high
conductance range) or capture the behavior of HTM synapse. Sometimes
memristors feature limited endurance, unsymmetrical characteristics, and
high variability which impact the network sustainability for learning and
its convergence time. Thirdly, the need to use analog primitives which suf-
fer from high static power consumption (e.g. operational amplifier) and
lower signal amplification especially when using advanced technology
nodes.

An Overview of the HTM Accelerators  89

When it comes to the algorithm, HTM as the biological systems, is sup-
posed to be application independent algorithm, i.e. the network’s hyper-
parameters do not change from one application to another. However,
selecting the optimal hyperparameters for such network is still an open
problem and needs to be further explored. Besides setting the optimal
hyperparameters, there are several problems related to exploring network
hierarchy and improving its learning capability. Hence, future directions
may involve observing the hierarchical structure of the HTM regions and
studying various approaches of incorporating hybrid learning (supervised
and unsupervised) mechanisms. Including the hierarchy and hybrid learn-
ing attributes may speed up the learning process, facilitate handling more
complex tasks, and enable bi-directional data flow. The bi-directional data
flow is essential to enable hybrid learning where the supervised aspect of
the learning is driven by information regarding “success,” “reward,” “pun-
ishment,” and “novelty”. Another direction may focus on the synaptic
complexity, for instance using a more complex synapse model rather than
binary synapses. This may address challenges associated with catastrophic
forgetting (spatial information) in the HTM.

4.8	 Conclusion

In this chapter, an overview of the state-of-the-art HTM accelerators is
introduced. Extensive comparison and analysis are presented based on
evaluation metrics like data movement, memory and compute require-
ments, scalability, network latency, and power consumption and distribu-
tion. It is found that although the digital accelerators accurately model the
algorithm, and feature parallelism (limited) and dynamic structure, they
suffer from high-power consumption (range: hundreds of milli-Watts to
several Watts) and unstable throughput (throughput ∝ network size). In
contrast, the analog accelerators seem to offer better parallelism, but the
modeling accuracy, dynamic feature, on-chip learning, and scalability are
always a matter of concern. In the case of the mixed-signal accelerators,
they aggregate the crucial features of both digital and analog accelerators
in a unified computational platform. They exploit the analog primitives
to efficiently compute and parallelize low-level operations. Furthermore,
they use digital communication schemes to facilitate data movement and
network scalability. In the future, one may tackle expanding the process-
ing regions, incorporating the hierarchical aspect, and embedding hybrid
learning mechanisms to speed up the learning process and to handle more
complex tasks natively on the edge.

90  AI Applications and Reconfigurable Architectures

References

	 1.	 Ahdid, R., Safi, S., Manaut, B., Approach of facial surfaces by contour, in: 2014
International Conference on Multimedia Computing and Systems (ICMCS),
pp. 465–468, 2014.

	 2.	 Alibart, F., Zamanidoost, E., Strukov, D.B., Pattern classification by memris-
tive crossbar circuits using ex situ and in situ training. Nat. Commun., 4, 1,
1–7, 2013.

	 3.	 Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.,
Memristive’switches enable ‘stateful’ logic operations via material implica-
tion. Nature, 464, 7290, 873–876, 2010.

	 4.	 Chen, Y.-H., Krishna, T., Emer, J.S., Sze, V., Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks. IEEE J.
Solid-State Circuits, 52, 1, 127–138, 2016.

	 5.	 Coll, M., Fontcuberta, J., Althammer, M., Bibes, M., Boschker, H., Calleja, A.,
Cheng, G., Cuoco, M., Dittmann, R., Dkhil, B. et al., Towards oxide electron-
ics: A roadmap. Appl. Surf. Sci., 482, 1–93, 2019.

	 6.	 Cui, Y., Ahmad, S., Hawkins, J., Continuous online sequence learning with
an unsupervised neural network model. Neural Comput., 28, 11, 2474–2504,
2016.

	 7.	 Cui, Y., Ahmad, S., Hawkins, J., The HTM spatial pooler—A neocortical
algorithm for online sparse distributed coding. Front. Comput. Neurosci., 11,
111, 2017.

	 8.	 Cui, Y., Surpur, C., Ahmad, S., Hawkins, J., A comparative study of HTM and
other neural network models for online sequence learning with streaming
data, in: 2016 International Joint Conference on Neural Networks (IJCNN),
pp. 1530–1538, 2016.

	 9.	 Fan, D., Sharad, M., Sengupta, A., Roy, K., Hierarchical temporal memory
based on spin-neurons and resistive memory for energy-efficient brain-in-
spired computing. IEEE Trans. Neural Networks Learn. Syst., 27, 9, 1907–
1919, 2015.

	 10.	 Földiak, P., Forming sparse representations by local anti-hebbian learning.
Biol. Cybern., 64, 2, 165–170, 1990.

	 11.	 El-Ganainy, N.O., Balasingham, I., Halvorsen, P.S., Rosseland, L.A., On
the performance of hierarchical temporal memory predictions of medi-
cal streams in real time, in: 2019 13th International Symposium on Medical
Information and Communication Technology (ISMICT), pp. 1–6, 2019.

	 12.	 Ganguly, S., Gu, Y., Stan, M.R., Ghosh, A.W., Hardware based spatio-tempo-
ral neural processing backend for imaging sensors: Towards a smart camera,

An Overview of the HTM Accelerators  91

in: Image Sensing Technologies: Materials, Devices, Systems, and Applications
V, vol. 10656, p. 106560Z, 2018.

	 13.	 Georghiades, A., Belhumeur, P., Kriegman, D., Yale face database, vol. 2, p. 6,
Center for computational Vision and Control at Yale University, 1997.

	 14.	 Goldberg, D.H., Cauwenberghs, G., Andreou, A.G., Probabilistic synaptic
weighting in a reconfigurable network of VLSI integrate-and-fire neurons.
Neural Networks, 14, 6-7, 781–793, 2001.

	 15.	 Hasan, MdR, Memristor based low power high throughput circuits and systems
design, University of Dayton. (Doctoral dissertation), US, 2016.

	 16.	 Hawkins, J. and Ahmad, S., Why neurons have thousands of synapses, a the-
ory of sequence memory in neocortex. Front. Neural Circuits, 10, 23, 2016.

	 17.	 Hawkins, J. and Blakeslee, S., On intelligence: How a new understanding of
the brain will lead to the creation of truly intelligent machines, Macmillan, St.
Martin's Press - Macmillan, US, 2005.

	 18.	 Hawkins, J., George, D., Niemasik, J., Sequence memory for prediction, infer-
ence and behaviour. Philos. Trans. R. Soc. B: Biol. Sci., 364, 1521, 1203–1209,
2009.

	 19.	 Horowitz, M., 1.1 Computing’s energy problem (and what we can do about
it), in: 2014 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), pp. 10–14, 2014.

	 20.	 Horton, J.C. and Adams, D.L., The cortical column: a structure without a
function. Philos. Trans. R. Soc. B: Biol. Sci., 360, 1456, 837–862, 2005.

	 21.	 James, A.P., Fedorova, I., Ibrayev, T., Kudithipudi, D., HTM spatial pooler
with memristor crossbar circuits for sparse biometric recognition. IEEE
Trans. Biomed. Circuits Syst., 11, 3, 640–651, 2017.

	 22.	 Jump, L.B., A novel architecture for modular implementation of neural net-
works, in: [Proceedings] 1988 IEEE Workshop on Languages for Automation@
M_- Symbiotic and Intelligent Robotics, pp. 25–29, 1988.

	 23.	 Kerner, M. and Tammemäe, K., Hierarchical temporal memory implemen-
tation on FPGA using LFSR based spatial pooler address space generator,
in: 2017 IEEE 20th International Symposium on Design and Diagnostics of
Electronic Circuits & Systems (DDECS), pp. 92–95, 2017.

	 24.	 Kim, K.M., Yang, J.J., Strachan, J.P., Grafals, E.M., Ge, N., Melendez, N.D., Li,
Z., Williams, R.S., Voltage divider effect for the improvement of variability
and endurance of TaOx memristor. Sci. Rep., 6, 1, 1–6, 2016.

	 25.	 Krestinskaya, O., Dolzhikova, I., James, A.P., Hierarchical temporal memory
using memristor networks: A survey. IEEE Trans. Emerging Top. Comput.
Intell., 2, 5, 380–395, 2018.

	 26.	 Krestinskaya, O., Ibrayev, T., James, A.P., Hierarchical temporal memory
features with memristor logic circuits for pattern recognition. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., 37, 6, 1143–1156, 2018.

92  AI Applications and Reconfigurable Architectures

	 27.	 Lavin, A. and Ahmad, S., Evaluating real-time anomaly detection algo-
rithms–the numenta anomaly benchmark, in: 2015 IEEE 14th International
Conference on Machine Learning and Applications (ICMLA), pp. 38–44, 2015.

	 28.	 LeCun, Y., Cortes, C., Burges, C.J., Mnist handwritten digit database, AT&T
Labs, 2010.

	 29.	 Lee, D., Kim, Y., Pekhimenko, G., Khan, S., Se-shadri, V., Chang, K., Mutlu,
O., Adaptive-latency dram: Optimizing dram timing for the common-case,
in: 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), pp. 489–501, 2015.

	 30.	 Li, W., Design of hardware accelerators for hierarchical temporal memory and
convolutional neural network, North Carolina State University. (Doctoral dis-
sertation), US, 2019.

	 31.	 Li, W. and Franzon, P., Hardware implementation of hierarchical tempo-
ral memory algorithm, in: 2016 29th IEEE International System-on-Chip
Conference (SOCC), pp. 133–138, 2016.

	 32.	 Lu, Y., Chen, B., Gao, B., Fang, Z., Fu, Y.H., Yang, J.Q., Liu, L.F., Liu, X.Y.,
Yu, H.Y., Kang, J.F., Improvement of endurance degradation for oxide based
resistive switching memory devices correlated with oxygen vacancy accu-
mulation effect, in: 2012 IEEE International Reliability Physics Symposium
(IRPS), pp. MY–4, 2012.

	 33.	 Merkel, C., Current-mode memristor crossbars for neuromorphic comput-
ing, in: Proceedings of the 7th Annual Neuro-Inspired Computational Elements
Workshop, pp. 1–6, 2019.

	 34.	 Muralimanohar, N., Balasubramonian, R., Jouppi, N., Optimizing nuca
organizations and wiring alternatives for large caches with cacti 6.0, in: 40th
Annual IEEE/ACM International Symposium on Microarchitecture (Micro
2007), pp. 3–14, 2007.

	 35.	 Nene, S.A., Nayar, S.K., Murase, H., Columbia object image library (COIL-
20). Technical Report CUCS-005-96, 1996.

	 36.	 Neville, K.R. and Haberly, L.B., Olfactory cortex, in: The Synaptic Organization
of the Brain, vol. 5, pp. 415–454, 2004.

	 37.	 Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., Adam, G.C., Likharev, K.K.,
Strukov, D.B., Training and operation of an integrated neuromorphic net-
work based on metal-oxide memristors. Nature, 521, 7550, 61–64, 2015.

	 38.	 Puente, V., Cortexim, 2016, Available: https://github.com/cortexsim.
	 39.	 Puente, V. and Gregorio, JÁ, Classic: A cortex-inspired hardware accelerator.

J. Parallel Distrib. Comput., 134, 140–152, 2019.

An Overview of the HTM Accelerators  93

	 40.	 Rodriguez, M.A., Kotagiri, R., Buyya, R., Detecting performance anomalies
in scientific workflows using hierarchical temporal memory. Future Gener.
Comput. Syst., 88, 624–635, 2018.

	 41.	 Salahuddin, S., Ni, K., Datta, S., The era of hyper-scaling in electronics. Nat.
Electron., 1, 8, 442–450, 2018.

	 42.	 Schuldt, C., Laptev, I., Caputo, B., Recognizing human actions: A local SVM
approach, in: Proceedings of the 17th International Conference On Pattern
Recognition, 2004. ICPR 2004, vol. 3, pp. 32–36, 2004.

	 43.	 Sun, C., Chen, C.-H.O., Kurian, G., Wei, L., Miller, J., Agarwal, A., Peh, L.-S.,
Stojanovic, V., DSENT-a tool connecting emerging photonics with electron-
ics for opto-electronic networks-on-chip modeling, in: 2012 IEEE/ACM
Sixth International Symposium on Networks-on-Chip, pp. 201–210, 2012.

	 44.	 Vyas, P. and Zaveri, M., Verilog implementation of a node of hierarchical
temporal memory. Asian J. Comput. Sci. Inf. Technol., 3, 7, 103–108, 2013.

	 45.	 Wang, G., Long, S., Yu, Z., Zhang, M., Li, Y., Xu, D., Lv, H., Liu, Q., Yan, X.,
Wang, M. et al., Impact of program/erase operation on the performances of
oxide-based resistive switching memory. Nanoscale Res. Lett., 10, 1, 39, 2015.

	 46.	 Yakopcic, C., Memristor device modeling and circuit design for read out inte-
grated circuits, memory architectures, and neuromorphic systems, University
of Dayton. (Doctoral dissertation), US, 2014.

	 47.	 Yang, J.J., Zhang, M.-X., Strachan, J.P., Miao, F., Pickett, M.D., Kelley, R.D.,
Medeiros-Ribeiro, G., Williams, R.S., High switching endurance in TaOx
memristive devices. Appl. Phys. Lett., 97, 23, 232102, 2010.

	 48.	 Zue, V., Seneff, S., Glass, J., Speech database development at mit: timit and
beyond. Speech Commun., 9, 4, 351–356, 1990.

	 49.	 Zyarah, A.M., Design and analysis of a reconfigurable hierarchical temporal
memory architecture, Rochester Institute of Technology, US, 2015.

	 50.	 Zyarah, A.M., Energy efficient neocortex-inspired systems with on-device
learning, Rochester Institute of Technology, US, 2020.

	 51.	 Zyarah, A.M., Gomez, K., Kudithipudi, D., Neuromorphic system for spatial
and temporal information processing. IEEE Trans. Comput., 69, 8, 1099–
1112, 2020.

	 52.	 Zyarah, A.M. and Kudithipudi, D., Reconfigurable hardware architecture
of the spatial pooler for hierarchical temporal memory, in: 2015 28th IEEE
International System-on-Chip Conference (SOCC), pp. 143–153, 2015.

	 53.	 Zyarah, A.M. and Kudithipudi, D., Neuromemrisitive architecture of HTM
with on-device learning and neurogenesis. ACM J. Emerging Technol.
Comput. Syst. (JETC), 15, 3, 1–24, 2019a.

94  AI Applications and Reconfigurable Architectures

	 54.	 Zyarah, A.M. and Kudithipudi, D., Neuromorphic architecture for the hier-
archical temporal memory. IEEE Trans. Emerging Top. Comput. Intell., 3, 1,
4–14, 2019b.

	 55.	 Zyarah, A.M., Soures, N., Hays, L., Jacobs-Gedrim, R.B., Agarwal, S.,
Marinella, M., Kudithipudi, D., Ziksa: On-chip learning accelerator
with memristor crossbars for multilevel neural networks, in: 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1–4, 2017.

95

Anuradha D. Thakare and Sheetal Umesh Bhandari. Artificial Intelligence Applications and Reconfigurable
Architectures, (95–124) © 2023 Scrivener Publishing LLC

5

NLP-Based AI-Powered Sanskrit Voice Bot
Vedika Srivastava1, Arti Khaparde1, Akshit Kothari2* and Vaidehi Deshmukh1

1School of Electronics and Communication Engineering,
MIT World Peace University, Pune, India
2Tech Mahindra Maker’s Lab, Pune, India

Abstract
The rapid evolution of human beings as a species can be credited to their ability
to commune with one another and efficiently drive ideas, messages and intent
past each other. One of the antediluvian and well-structured languages, Sanskrit,
is being relegated only to use in scriptures during modern times. Our intent is to
build a virtual assistant (voice/chat) which communicates through Sanskrit ensur-
ing this language becomes the linchpin of understanding machines and relaying
information and knowledge not only for an extensive heterogeneity of vernacu-
lar population but for the world. Studying various Machine Learning and Neural
Network models, understanding their scope, underlying principles and applica-
tion hence facilitating deep understanding of the scope of AI Assistants and aid in
building a Sanskrit Voice Bot. Various algorithm explore include linear regression
and logistic regression, whose reach is limited to linearly related/separable data,
which was test by deploying gradient descent algorithm. Support Vector Machine
kernels resolve this problem by providing linear as well as polynomial decision
boundary. Principal Component Analysis finds its major application in dimen-
sionality reduction and Anomaly Detection would be used to detect any out of the
bound data input. Furthermore, Sequence Models would play a major role in all
the required Natural Language Processing.

Keywords:  Natural language processing, artificial intelligence, machine learning
and data mining

*Corresponding author: akshit527@gmail.com

96  AI Applications and Reconfigurable Architectures

5.1	 Introduction

A virtual assistant, alternatively known as AI assistant or digital assistant,
is a software that can understand user commands, voice or text, and com-
plete corresponding job for the end user accordingly [1]. Commonly these
chores, historically brought about by a personal assistant or secretary, com-
prise of taking dictation, reading text or email messages aloud, looking up
phone numbers, scheduling, connecting them to other people over phone
calls and reminding the end user about appointments. While digitization
steps have moved the needle towards realization, a large population in
India seems to be unaffected by this change. The new age smart virtual
assistants like Siri, Cortana and the Alexa, have successfully encapsulated
majority of the global market by their yet limited natural language capabil-
ities and building enormous datasets of languages in their cloud platforms,
however approximately 85% of Indian population seems to be unaffected
by this change. The reason is the language used “English” [2].

While we proceed towards the mid of the 21st century, it is imperative
that at least 1/8th of the world population can converse with the virtual
assistants and other bots in the way the rest of the world convention-
ally does, in its own dialect and in its own way, and this is the reason for
researching upon one of the very first communicational languages spo-
ken by man, “Sanskrit”. Owing to no availability of relevant datasets, web
scrapping was relied on to gather training set for the model being built
and stored in MySQL database using Python-MySQL connectivity due to
encoding issues while saving in csv file format. An alternative method can
be storing data in JSON file format. With the help of advance Machine
Learning algorithms, like Principal Component Analysis and Sequence
models, and some basic text manipulation data pre-processing was done
to clean data. While prebuilt libraries were used for building the prototype,
with extensive work in the field dedicated APIs can be built.

5.2	 Literature Survey

Virtual assistants are a luxury for everyone in this advancing era of 21st
century. It has paved way for marvellous new technology which enables
us to ask questions to a machine and allows us to interact with Intelligent

NLP-Based AI-Powered Sanskrit Voice Bot  97

Virtual Assistants (IVAs) almost as easily as people do with one another.
This new technology has charmed the whole world in numerous ways sim-
ilar to smart phones, laptops, computers, et cetera. A couple of significant
VPs are Siri, Google Assistant, Cortana, and Alexa. However bewitch-
ing, voice recognition, contextual understanding and human interaction
are some of the issues which are not solved yet in these IVAs [3]. In the
Modern Era of fast-moving technology, we can do things which we never
thought we could do before but, in order to accomplish these impressions,
there is a need for a platform which can automate all our tasks with ease
and comfort.

Consequently, there is a need to develop a a virtual bot or assistant hav-
ing extraordinary powers of deduction and the ability to interact with the
surroundings just by the aid of one of the materialistic forms of human
interaction i.e., HUMAN VOICE [4]. Natural Language Interfaces allow
human-computer interaction through the translation of human intention
into devices’ control commands by analysing the user’s speech or gestures.
This novel interaction mode arises from advancements in various domains
of artificial intelligence, expert systems, speech recognition, semantic web,
dialog systems, and natural language processing, hence bringing the con-
cept of Intelligent Personal Assistant (IPA) into light. Currently there is
extensive literature available on this subject [5].

Owing to many benefits of Sanskrit language, we aim at building a
virtual assistant which communicates in Sanskrit. What makes Sanskrit
truly unique language is the set of rules that it formulates from and the
grammar that was formulated a long time before the language became
widely accepted and spoken in the Indian sub-continent. Like other assis-
tants available in the market, this assistant would be able to perform all
the tasks performed by other assistants. Voice bots are software powered
by Artificial Intelligence (AI) that allow a user to navigate an Interactive
Voice Response (IVR) system with their voice, conventionally using nat-
ural language processing. They are voice-powered user interfaces that can
understand natural language and use it to converse with people. Usually
activated by voice command, voice bots can also be used to give com-
mands to perform actions like sending mails, setting alarms, calling and
much more. Simply put, they are computers that can converse like people.
There are two major parts to the project, building a voice bot and a chat
bot. Apart from the two major models there are many small aspects to be

98  AI Applications and Reconfigurable Architectures

worked on. The final task would be to merge the all the models along with
the two main models into one and deploy the bot.

5.3	 Pipeline

Flowchart 5.1 illustrates the block diagram of overall methodology of
implementation of Sanskrit Bot, which basically includes following steps.

5.3.1	 Collect Data

Preparing an apt data set is very crucial for the project. We need audio and
text data for training the models. Sanskrit Letters data set to build charac-
ter wise models.

5.3.2	 Clean Data

This step involves removing all the corrupted data and relevant data, if any,
from the data set.

5.3.3	 Build Database

Maintaining database helps us manage and access all the large data that we
are using for the project.

5.3.4	 Install Required Libraries

We need some additional open-source libraries for doing data pre-process-
ing and building complex machine learning models. Just mentioned here
what all the soft wares you have used.

5.3.5	 Train and Validate

After coding for the various models we need to fit and evaluate then with
our previously collected data.

5.3.6	 Test and Update

After training the model is tested and necessary advancements were made
if needed. Some progressive changes include training the model with a

NLP-Based AI-Powered Sanskrit Voice Bot  99

Collect Data

Build Database

Clean Data and
update Database

Study various ML
models

Do necesssary pre-
processing and data

formating

Build model for
assistant

Train, Validate,
Test and Update

Deploy

Flowchart 5.1  Generic.

100  AI Applications and Reconfigurable Architectures

more rigid dataset by consulting a Sanskrit specialist and resolve failed test
cases if any.

5.3.7	 Combine All Models

Merging all the models for making a fully functional bot. Like the pres-
ently commercially available virtual assistants, the functionality of this bot
should also extent to understanding, iterating, and responding to the user
by the means of Sanskrit language. Hence it is very important for all the
sub-models like trigger system, speech to text model and text to speech
model to work in synchronization.

5.3.8	 Deploy the Bot

Deploying the bot refers to making the bot commercially available to users
as an application, chatbot, voice bot or assistant. With some additional
processing the Bot Framework SDK for Python can be used for this pur-
pose and be modified as an application with the help of app development.

5.4	 Methodology

5.4.1	 Data Collection and Storage

5.4.1.1	 Web Scrapping

Web scraping is the process of using software algorithms to extract under-
lying HTML code from a website and, with it, store required data in a data-
base (refer to Flowchart 5.2). The bs4 library function Beautiful Soup helps
in parsing the site for its contents. A HTML Parser can be used to extract
data from most websites. The goal while scrapping the site is to download
the audio file in the target directory and scrape the text data which is the
subscript of the audio file.

import libraries get url content
using parser

create soup access contents
from soup

Flowchart 5.2  Step related to web scrapping.

NLP-Based AI-Powered Sanskrit Voice Bot  101

5.4.1.2	 Read Text from Image

Python-tesseract, commonly known as PyTesseract, is an optical character
recognition (OCR) tool for Python. OCR is a tool that helps in “recogniz-
ing” and “reading” text embedded in images. Python-tesseract is a wrapper
for Google’s Tesseract-OCR Engine. Once installed and imported, target
language and image path are passed to the OCR which returns the detected
text from image. For complete process refer to Flowchart 5.3.

5.4.1.3	 MySQL Connectivity

MySQL is a relational database that uses SQL (Structured Query Language)
to query a database. It is an excellent choice for creating database and
storing data in an organized fashion. Python-MQL connector offers easy
connection to Python IDE from where MQL commands like connect(),
cursor(), execute() and commit() can be used to access the target database
and tables. For complete process refer to Flowchart 5.4.

5.4.1.4	 Cleaning the Data

For any program or application a dataset plays the most important role.
Cleaning the dataset involves removing missing fields, redundant data,
unwanted data, corrupted files, unwanted characters, or spaces in the text,
et cetera. This can be achieved by the means of simple text manipulation
or using library functions from derivative python libraries like Pandas,
NumPy and SciPy.

import pytesseract
OCR

specify image path
to the imported ocr

libarary function

use library function
image_to_string to

read text

specify language
with reading text

Flowchart 5.3  Steps for reading text from an image.

import mql connector
library

connect to target
database

create cursor
use mycursor.execute()
to execute SQL queries

Flowchart 5.4  Steps for connecting MySQL.

102  AI Applications and Reconfigurable Architectures

5.4.2	 Various ML Models

5.4.2.1	 Linear Regression and Logistic Regression

Both the regression models can be used only for linearly related/separable
data respectively. Gradient descent algorithm is used to minimize the cost
function (also known as the error function) for obtaining suitable weight
(theta) parameters. Table 5.1 gives the equations that are used for the
present work and Flowchart 5.5 gives the complete process implemented.
Appropriate learning rate (α) and number of iterations is to be chosen and
cost should be observed over the iteration to make sure that the algorithm
is not stuck on a local minimum. If so, it can be corrected using appropriate
measures like adjusting bias, variance, and regularization by evaluation the
learning curve.

The dataset used for studying this model needed some pre-processing
like extracting features and target data as array, removing null values, and
padding ones in the feature matrix.

Table 5.1  Equations used for regression analysis.

Linear regression Logistic regression

Hypothesis
function
is defined
as,

hθ(x) = θ0 + θ1x =
+

θ θ−
h x() 1

1 e xT

(Sigmoid function)

Cost
function
is defined
as,

∑θ θ = −θ

=

J
m

h x y(,) 1
2

()i i

i

m

0 1
2

1
∑θ = −

+ − −

θ

θ

=

J
m

y h x

y h x

() 1 (log(())

(1)log(1 ()))
i

m

1

Weight
vectors/
theta are
updated
as,

∑θ
θ θ= ∂

∂
= −θ

=
J

m
h x yFor j 0, (,) 1 ()i i

i

m

0
0 1

1

∑θ
θ θ= ∂

∂
= −θ

=
J

m
h x y xFor j n, (,) 1 ().

n
n i i i

i

m

0
1

perform needed data
pre-processing

use suitable
hypothesis and cost
function according

to algorithm

minimize theta
values using
appropriate

hyperparameters

use hypothesis
fucntion to plot reg

line/decision
boundary

Flowchart 5.5  Steps for regression.

NLP-Based AI-Powered Sanskrit Voice Bot  103

5.4.2.2	 SVM – Support Vector Machine

Support vectors machine can be expressed as an extension of classification
(refer to Flowchart 5.6). As said earlier, logistic regression (classification)
only when the data is linearly separable. This issue is addressed by SVM
kernels. Commonly used SVM kernel is the Gaussian kernel (available as
rbf (radial basis function) kernel in python). Kernels work on the principle
of similarity functions. For normal distribution (Gaussian kernel), similar-
ity function is given as

	 σ
= −



f x lexp || ||

2

2

2
	

(5.1)

where l = landmark point. The said function returns 0 or 1 depending on
the similarity i.e., distance between the two points, hence classifying the
point. SVM should always satisfy Mercer’s theorem. Cost function of SVM
is defined as,

∑ ∑θ θ θ θ= + − +
= =

J C y cost x y cost x() [() (1) ()] 1
2i

T
i i

T

i

m

j
j

m

1 0 1
1

2

1 		
		 (5.2)

where C = 1/λ.
Spam classifer is an application of SVM (refer to Flowchart 5.7). For clas-

sifing an email as spam, we first need to get the contents of the email and
strip off all the underised text like html tags and punctations. Th re (regualar
expressions) library is used to accomplish this job. Next task would be
lemetizing the words so that they can be checked against the vocabulary and

perform needed data
pre-processing

build gaussion kernal
or import 'rbf'kernel
from sklearn.svm

apply kernal on dataset plot decision boundary

Flowchart 5.6  Steps for SVM.

get vocalulary
list

pre-processing
of received

mail

extract feature
vector

train model
using linear
kerner svm

predict

Flowchart 5.7  Spam classifier.

104  AI Applications and Reconfigurable Architectures

mails can be classified using Linear SVM Kernel as spam according to the
pre-defined data of spam words. Futher predictions can be made using this
model. The complete process is explained in Figure 5.6 and Figure 5.7.

5.4.2.3	 PCA – Principal Component Analysis

It is the process of computing the principal components, which can be
achieved by eigen vectors and eigen values and using them to perform a
change of basis on the data, traditionally using only the first few princi-
pal components and ignoring the rest. PCA is a dimensionality-reduction
method that is often used to reduce the dimensionality of substantial data
sets, by transforming the large set of variables into a smaller one that still
contains most of the information from the large set. PCA is a most widely
deployed in exploratory data analysis and in machine learning for predic-
tive models (refer to Flowchart 5.8).

Anomaly detection: Anomaly detection means to detect unusual data
with reference to the pre-existing dataset, a common example is detect-
ing a brute force attack (refer to Flowchart 5.9). PCA can detect traffic
anomalies by projecting measured traffic data onto a normal and anoma-
lous subspace. Although PCA is a powerful technique for detecting traffic
anomalies, excessively large anomalies may contaminate the normal sub-
space and deteriorate the performance of the detector. Gaussian distribu-
tion is defined as

	 πσ
µ

σ
= − −



P x x() 1

2
exp ()

2

2

2
	

(5.3)

normalize the features in X run pca using svd function
in np.linalg

compute the reduced data
representation

recover an approximation
of the original data when
using the projected data

Flowchart 5.8  PCA.

load data
estimate the

parameters of a
Gaussian distribution

compute pdf of
multivariate gussian
distribution function

caculate F score set threshold using
F score

Flowchart 5.9  Steps for anomaly detection.

NLP-Based AI-Powered Sanskrit Voice Bot  105

Hence anomaly data can be detected as,

	

<
≥





y
P x anomaly
P x normal

1 ; () ()
0 ; () ()


 	

(5.4)

where ϵ is the threshold. F score is used for threshold and is calculated as

	
= ∗

+
F score precision recall

precision recall
 2()

() 	
(5.5)

5.4.3	 Data Pre-Processing and NLP Pipeline

Segmentation is the process of breaking huge lump of text either based on
words or based on sentences. Choosing between word segmentation and
sentence segmentation depends on the application, and sometimes it might
be needed to replace one with another for accuracy. Segmentation is fol-
lowed by tokenization which involves breaking the segments into tokens,
words or even sentences, while parsing the corpus for further processing.
The traditional NLP pipeline, stemming, lemmatizing and part of speech
tagging are done after tokenization. The steps in the NLP pipeline are per-
formed as per the need of application. For example, in this application,
lemmatizing wasn’t done because breaking the words into their roots words
is not what we need for audio pronunciation. The exact word is needed for
the algorithm to derive meaning results. Tokenization is needed to create
a vocabulary that would be used as class labels for model training. The
encoder and decoder functions play a very important role. These functions
facilitate the role of appropriately structuring input from the user so that
it can be processed by the core function to provide corresponding results.
Likewise, the output produced needs to be represented in a way compre-
hendible by the user. The complete process is explained in Flowchart 5.10.

sentence
segmentation

word
tokenization

creating
vocabulary

defining encoder,
decoder and core logic

functions

Flowchart 5.10  NLP pipeline.

106  AI Applications and Reconfigurable Architectures

5.5	 Results

5.5.1	 Web Scrapping and MySQL Connectivity

Mentioned in Figure 5.1 is the one of the sites from which data was
scrapped followed by the text data available on it and the names of the
audio files correcponding to the texts.

After successfully establishing connection with MySQL, the list of data-
bases contained in it are displayed using SQL query SHOW DATABASES.
Beneath which list of tables stored in the target database, here set1, are dis-
played using SQL query SHOW TABLES (refer to Figure 5.2). The MySQL
window view in Figure 5.3 shows the list of tables stored in the database,
particularly showing few entries of required text data and corresponding
audio file name.

Figure 5.1  Web scrapping.

NLP-Based AI-Powered Sanskrit Voice Bot  107

5.5.2	 Read Text from Image

Retrieving text from images is another valuable source of gathering rel-
evant data. Figure 5.4 shows one of the images from where text had to
be extracted in the exact same script and format. The Detected tect from

Figure 5.2  MySQL connectivity.

Figure 5.3  MySQL window.

108  AI Applications and Reconfigurable Architectures

the input image, Figure 5.4, can be seen in Figure 5.5. It can be seen that
some extra numbers, speculated to be due to encoding, have been read
too. Further text manipulation would be required to remove all the extra
characters.

5.5.3	 Data Pre-Processing

A vocabulary, Figure 5.6, that is set of unique words from the text data set is
build using simple text manipulation split() with an appropriate delimiter.

Tokenization, as discussed earlier, is a way of separating a piece of
text into smaller units called tokens. It can also be interpreted as break-
ing words into their form. Tokenization plays an important role in NLP
activities. Output of Tokenized words is shown in Figure 5.7. The words in
the vocabulary have already been tokenized, similarly text sentences from
the text data also have been tokenized (refer to Figure 5.8). This is then
converted into One-hot vector, which is basically mapping words with the
position vectors at which they are present in the vocabulary.

Figure 5.4  Image input.

Figure 5.5  Read text.

NLP-Based AI-Powered Sanskrit Voice Bot  109

5.5.4	 Linear Regression

With reference to Table 5.2, alpha is the learning rate used while training
the model. J is the minimum cost obtained after training the model while
theta0 and theta1 are the weights obtained after model training to find the
best fit line.

Here shown in Figure 5.9 is a 2D contour representation of the global
minima of the cost function obtained over multiple locations. The point
is the weight vector (-3.709689, 1.1743387). The best fit regression line is
drawn for predictive analysis, refer Figure 5.10. The scattered points are
the visual representation of the data set and the line passing through them
represents the regression line.

5.5.5	 Linear Regression Using TensorFlow

The accuracy using linear regression was found out to be 76.14%. Other
parameters can be studied in Table 5.3. The prediction can be interpreted as

Figure 5.6  Vocabulary.

110  AI Applications and Reconfigurable Architectures

Figure 5.7  Tokenized vocabulary.

Figure 5.8  Tokenized text.

NLP-Based AI-Powered Sanskrit Voice Bot  111

1

-1

3

4

0

2

2.50.0 10.07.55.0-2.5-10.0 -7.5 -5.0

Figure 5.9  Contour.

Table 5.2  Linear reg
hyperparameters.

alpha 0.01

J 32.07733877

theta0 -3.709689

theta1 1.1743387

25

5

15

20

10

0

5.0 10.0 15.0 20.07.5 12.5 17.5 22.5

Figure 5.10  Linear regression line.

112  AI Applications and Reconfigurable Architectures

the probability that the first sample in the dataset (at 0th position) is close
to 0 or 1, here representing the two classes. The predicted probability of the
passenger, seen in Figure 5.11, surviving is 0.04, that is approximately close
to 0. Therefore, it can be said that the passenger did not survive.

5.5.6	 Bias and Variance for Linear Regression

According to The Curse of Dimensionality, the error produced by a model
increases after a certain point with the expansion of the dataset or the
number of features. Hence bias and variance trade off must be made mak-
ing analysis of training error and cross-validation error essential. Figure
5.12 shows the training error and cross-validation error over first twelve
iterations.

Table 5.3  Evaluation result.

Accuracy 76.14%

accuracy_baseline 0.625

Auc 0.83859813

auc_precision_recall 0.78006196

average_loss 0.470759

label/mean 0.375

Loss 0.4589531

Precision 0.6875

prediction/mean 0.36271894

Recall 0.6666667

global_step 380

Figure 5.11  Reg prediction.

NLP-Based AI-Powered Sanskrit Voice Bot  113

The Learning Curve, plot of training error and cross-validation error
essential, as seen in Figure 5.13 shows that at 0, it implicates that when
the training data is small, the error on the training set is small, and
thus the model is in an over-fitting state. As the training information
expands, the error on the training information (Jtrain) ends up larger and
larger, while the error on the validation set (Jcv) winds being up smaller
and smaller; Jtrain and Jcv draw nearer and closer always maintain Jcv > Jtrain.

5.5.7	 Logistic Regression

Figure 5.14 shows the best fit classification line. The best fit line divides all
or majority of the samples into their correct classes. The first fit line is the

Figure 5.12  Errors (high light errors).

4 62 8 10 12

200

150

50

0

Er
ro

r

Learning curve for linear regression

Train
Cross Validation

Number of training examples

100

Figure 5.13  Learning curve.

114  AI Applications and Reconfigurable Architectures

classification line obtained after first iteration while the worst fit line is the
classification line that fails to classify majority of the samples correctly. The
best fit line is the desired however it needs to be adjusted to avoid bias and
variance problem. This is achieved by regularization. An extra bias term is
added to the classification line (Table 5.4).

5.5.8	 Classification Using TensorFlow

After the CNN model has been successfully trained, test parameters are
entered. As shown in Figure 5.15 all parameters related with the test data
are display while the class label and probability are clearly shown namely –
Virginica with a probability of 99.99%. Other evaluation results are shown
in Table 5.5.

100

90

80

70

60

50

40

30

10090807060504030

Ex
am

 2
 S

co
re

Exam 1 Score

Figure 5.14  Classified data using logistic regression.

Table 5.4  Logistic regression.

alpha 0.01

J 0.203498

theta0 -25.1613

theta1 0.2062

theta2 0.2015

accuracy 89%

NLP-Based AI-Powered Sanskrit Voice Bot  115

5.5.9	 Support Vector Machines (SVM)

Linear kernel with default parameters, as shown in Figure 5.16, used to
classify linearly separable two class data.

 Figure 5.17 shows Gaussian kernel with default parameters (C=1,
gamma = auto) used to classify as two class data. As we can see the data is
linearly separable, even a linear kernel would have suited in this case.

Table 5.5  Classification evaluation
result.

accuracy 76.14%

accuracy_baseline 0.625

auc 0.83859813

auc_precision_recall 0.78006196

Figure 5.15  Classifier predicted output.

1

3

3

4

4

5

5

2

1 2

0

0

1

Figure 5.16  Linear Kernel SVM.

116  AI Applications and Reconfigurable Architectures

5.5.10	 Principal Component Analysis (PCA)

In Table 5.6, “U” contains the principal components and “S” will contain
the diagonal matrix and Figure 5.18 shows visualization of the computed
eigen vectors from the dataset.

-1.5

-1.5

1.5

1.0

1.0

-1.0

-1.0

0.5

0.5

-0.5

-0.5

0.0

0.0

0
1

Figure 5.17  Gaussian Kernel SVM.

Table 5.6  PCA hyperparameters.

U [[-0.70710678 -0.70710678]
[-0.70710678 0.70710678]]

S [1.70081977 0.25918023]

1

3

3

4

4

5

5

6

6

7

2

Figure 5.18  Visualization of Eigen vector and values.

NLP-Based AI-Powered Sanskrit Voice Bot  117

In Figure 5.19, projection and approximate reconstruction show how
the projection affects the data. The original data points are indicated with
the blue circles, while the projected data points are indicated with the
orange circles. The projection effectively only retains the information in
the direction given by U.

5.5.11	 Anomaly Detection and Speech Recognition

According to the F score the threshold is decided, in Figure 5.20, it is
depicted by the yellow, any point lying outside the circle’s bounds is con-
sidered as an anomaly data. Table 5.7 gives the threshold parameters.

-2.5 -2.0 -1.5 1.51.0

-2

-1.0 0.5

-1

-0.5 0.0

2

1

0

Figure 5.19  Visualization of principal components.

35

25

15

5

30

0

10

20

3525155 300 10 20
Latency (ms)

Th
ro

ug
hp

ut
 (m

b/
s)

Figure 5.20  Anomaly data detected.

118  AI Applications and Reconfigurable Architectures

This gives us the clean data. The next step is to process data as per the
requirements of models which are text to speech converter. A vocabulary
that is set of unique words from the text data set. Tokenization is a way of
separating a piece of text into smaller units called tokens. Tokenization
plays a very significant role in NLP activities. The words in the vocabulary
have already been tokenized, similarly text sentences from the text data
also have been tokenized. One-hot vector is basically mapping words with
the position vectors at which they are present in the vocabulary. The array
here is a representation of text data in form of vectors which will be used
to train an LTSM model for more complex models. Figure 5.21 and Figure
5.22 shows the output of speech recognition. The accuracy was found out
to 88.9% using simple NN.

The google speech recognition library offers excellent functionality in
detecting speech. The library does not offer direct support for Sanskrit lan-
guage and hence the parameters need to be adjusted for detecting words

Table 5.7  Threshold parameters.

Best epsilon found
using CV

8.990852779269495e-05

Best F1 on CV 0.8750000000000001

Figure 5.21  Detected text in English.

Figure 5.22  Detected text in Sanskrit.

NLP-Based AI-Powered Sanskrit Voice Bot  119

spoken in Sanskrit appropriately. Another challenge posed here is the
ascent of the user which can cause ambiguity in detection of spoken words.

5.5.12	 Text Recognition

Model showing text to speech conversion using GTTS library. The language
is specified as Hindi although target language is Sanskrit to check the effi-
ciency of the model. Another drack back is that it directly saves the audio file
instead of detecting and playing in the IDE as shown in Figure 5.23.

5.6	 Further Discussion on Classification Algorithms

A fragment of the Iris dataset (Figure 5.24), also known as Fisher dataset,
is used for the study. The already sorted dataset comprises of 3 classes of
50 instances each, where each class refers to a variety/breed of Iris plant
namely – Setosa, Versicolour and Virgina stored in a 150x4 NumPy array.
These classes correspond to numeric labels 0, 1 and 2 respectively. The rows
store the samples, and the columns are – Sepal Length, Sepal Width, Petal
Length and Petal Width, all measured in cm. A 100x2 subset of the original
dataset is used for studying the classification model. The actual dataset can
be described as having 100 samples of classes 0 and 1 that are Iris-setosa
and Iris-versicolor respectively. The features considered for evaluation are
sepal length and sepal width. The dataset used is linearly separable.

The following Figure 5.25 shows 2D visualization of the dataset used for
model evaluation.

5.6.1	 Using Maximum Likelihood Estimator

The P values as seen in Figure 5.26 are 1 and coefficient (-289.9836) is also
not in the expected range (-2.53e+06 to 2.53e+06). The results suggest that

Figure 5.23  Text to speech.

120  AI Applications and Reconfigurable Architectures

there is no relation between the explanatory and response variable which is
not the case. The algorithm has failed in giving accurate results. The P val-
ues, as seen in Figure 5.27, are also close to 1 and the coefficient (-49.7803)
too isn’t in range (-4139.802 to 4040.241) proving the model isn’t fit prop-
erly and is giving inaccurate results.

It can be observed that the model is failing to give accurate results due
to complete separation (Figure 5.28). For experimentation’s sake, even if
the model is trained using all features, it encounters complete separation

Figure 5.24  Dataset.

4.5

4.0

5.0 6.0 7.0

3.0

2.5

4.5 5.5 6.5

3.5

2.0

Figure 5.25  Visualization of dataset.

NLP-Based AI-Powered Sanskrit Voice Bot  121

Figure 5.26  Model results on sepal parameters.

Figure 5.27  Model results on petal parameters.

122  AI Applications and Reconfigurable Architectures

for binary classification. By definition “A complete separation, also known
as perfect prediction, occurs when the outcome variable separates a pre-
dictor variable or a combination of predictor variables completely.” This
problem can be resolved by using penalization methods. Another fix to
this problem is to make sure that the response or outcome variable is not a
dichotomous version of the model.

5.6.2	 Using Gradient Descent

The output figure shows the classification line obtained by adjusting weight
parameters using gradient descent algorithm. As the figure shows, there is
no miss classification of data. The confusion matrix confirms that there is
no misclassification of data (refer Figure 5.29).

4.5

3.5

1.5

2.5

4.0

4.54.0

3.0

2.0

5.5 6.56.0 7.05.0

Figure 5.28  Classification line.

Figure 5.29  Confusion matrix - gradient descent.

Figure 5.30  Confusion matrix - Naive Bayes.

NLP-Based AI-Powered Sanskrit Voice Bot  123

5.6.3	 Using Naive Bayes’ Decision Theory

Two samples from the class ‘0’ that is Iris-setosa have been wrongly clas-
sified as class ‘1’ that is Iris-versicolor (refer to Figure 5.30).

5.7	 Conclusion

Initial data preparation and its pre-processing required for chat bot and
voice bot is presented in this chapter. It underlines the importance of hav-
ing an appropriate data, appropriate data formatting and data management
for any project. One of the main challenges is acquiring data in the Sanskrit
for there as very few sources available and even less for conversational data
in Sanskrit as needed for a voice or text assistant to functional in a proper
dialogue flow. As the data is speech or text used by humans while inter-
acting, it is not readily available anywhere. So, the data is obtained using
web scrapping. Storing the data is also difficult as the conventionally used
way of storing data csv data is not supported while ingesting data through
python. The data is manipulated using some NLP practices like stemming,
lemmatizing, tokenizing, WD, etc. and then used as an input training data
for neural network which facilitates speech to text or text to speech conver-
sion in the bot. Thus, main part of the assistant, that is, converting speech
to text or vice versa is successfully implemented. The future scope includes
improving the performance of the assistant in terms of understanding,
iterating, and responding to the user by the means of Sanskrit language
and its deployment.

Acknowledgment

This work was carried out in Maker’s Lab, Tech Mahindra, Pune, India.

References

	 1.	 Botelho, B., Virtual assistant (AI assistant), Tech Target, 2017, https://
searchcustomerexperience.techtarget.com/definition/virtual-assistant-
AI-assistant.

124  AI Applications and Reconfigurable Architectures

	 2.	 Malhotra, N., Towards an improved man and machine connect using
Sanskrit. Medium, 2019. https://medium.com/@nickmalhotra/towards-an-
improved-man-and-machine-connect-using-sanskrit-dd6878e20655.

	 3.	 Tulshan, A.S. and Dhage, S.N., Survey on virtual assistant: Google assis-
tant, siri, cortana, alexa, in: SIRS Communications in Computer and
Information Science, Thmpi, S., Marques, O., Krishnan, S., Li, K.C., Ciuonzo,
D., Kolekar, M. (eds.), vol 968, Springer, Singapore, 2018, https://doi.
org/10.1007/978-981-13-5758-9_17.

	 4.	 Dekate, A., Kulkarni, C., Killedar, R., Study of voice controlled personal
assistant device. Int. J. Comput. Trends Technol., 42, 1, 42–46, 2016. www.
ijcttjournal.org. Published by Seventh Sense Research Group.

	 5.	 de Barcelos Silva, A., Gomes, M.M., da Costa, C.A., da Rosa Righi, R.,
Barbosa, J.L.V., Pessin, G., De Doncker, G., Federizzi, G., Intelligent per-
sonal assistants: A systematic literature review. Expert Syst. Appl., 147, 2020.
https://doi.org/10.1016/j.eswa.2020.113193.

https://doi.org/10.1007/978-981-13-5758-9_17
https://doi.org/10.1007/978-981-13-5758-9_17

125

Anuradha D. Thakare and Sheetal Umesh Bhandari. Artificial Intelligence Applications and Reconfigurable
Architectures, (125–136) © 2023 Scrivener Publishing LLC

6

Automated Attendance Using
Face Recognition

Kapil Tajane*, Vinit Hande†, Rohan Nagapure‡, Rohan Patil§
and Rushabh Porwal¶

Department of Computer Engineering, Pimpri Chinchwad College of Engineering
Pune, India

Abstract
The term automation describes the use of a wide range of technology that is used
in the creation of technologies to provide efficient, reliable and fast output without
the intervention of human or human activities.

Attendance management is one of such traditional processes which we propose
to automate with this face recognition system. Thus, a Face Recognition based
Attendance Monitoring System based on In-Out timestamps of a person is pro-
posed. This face recognition system works at four major layers. First, images cap-
tured by cameras are passed through Haar-cascade based different classifiers like
face, eyes, mouth classifier to detect facial regions in the image. Second, the facial
features are enhanced using contrast adjustment, filtering images, and removing
unnecessary features. This step increases the efficiency of the model. Third, these
images are trained with a FaceNet model for face recognition. Then, this trained
model is used to identify faces. Fourth, in-out timestamps of the identified person
are noted. And, at the end, attendance is marked based on in-out timing of the
person. Using the FaceNet model gives up an accuracy of 99.38%.

And preprocessing of images improves features to be extracted. Overall, it
gives automated, easy-to-use, high accuracy face recognition-based Attendance
Monitoring System.

*Coresponding author: kapiltajane@gmail.com
†Coresponding author: vinithande4@gmail.com
‡Coresponding author: rohannagpure@gmail.com
§Coresponding author: 29rohanpatil2000@gmail.com
¶Coresponding author: rushabhporwal29@gmail.com

mailto:kapiltajane@gmail.com
mailto:vinithande4@gmail.com
mailto:rohannagpure@gmail.com
mailto:29rohanpatil2000@gmail.com
mailto:ushabhporwal29@gmail.com

126  AI Applications and Reconfigurable Architectures

Keywords:  Face recognition, attendance system, face detection, Haar-cascade
classifiers, image enhancement, FaceNet

6.1	 Introduction

The term automation portrays a wide scope of innovation that is used to min-
imize human intervention with the help of technologies to produce efficient
products. Attendance is one of the key features in the development of stu-
dents and their skills. Attendance management becomes an important task
for any Professor/teacher. In a classroom consisting of 70 to 80+ students,
taking attendance is one of the most challenging tasks for every teacher. The
manual attendance system or the traditional management system involves
calling out the names of each student and then marking attendance individ-
ually. This process consumes a lot of valuable time as attendance has to be
marked for every lecture. This process consumes a lot of time and also there
are possibilities of more human errors and fake attendances.

As discussed by Arjun Raj et al. [2], the alternative possible solutions
are scanning ID cards or fingerprint-based attendance management sys-
tems. These methods have their own advantages and disadvantages. Both
these methods are time consuming and involve physical contact or special
devices. The best alternative solution to this problem is a “Face recogni-
tion based smart attendance system”. This method involves initial creating
datasets for the students, these images are then passed through the pro-
cess of pre-processing, where all the unwanted features and noise from the
image are removed, then these images are passed through a face recogni-
tion module and then face detection can be done [4].

As we know, the human face structure is very difficult to understand as
it consists of various features about an individual, which includes, individ-
ual’s feelings, face features, emotions etc. Effectively analysing these fea-
tures and extracting only necessary features is an important process that
requires a lot of time and effort. Also, lightning conditions, background
color, etc is one of the major challenges for implementing any face detec-
tion and recognition automated systems [1].

We have studied a human face detection approach by using a group of
Haar cascade classifiers [6], which contains some additional weak classifi-
ers with a human face detection classifier. These weak classifiers are based
on the detection of eyes and mouth on the face [7]. Using OpenCV, the test

Automated Attendance Using Face Recognition  127

results obtained on images of people taken under various lights and taken
from different directions, in both test and training sets were compelling
with greater performance [1].

Also, we can see that a lot of research is done on the topic of face recog-
nition as it will play a major role in the modern era but still we are not able
to reach human-level accuracy, as there are major issues related with those
algorithms that should be considered. The ultimate aim of a face recogni-
tion based attendance management system is to get accurate results with
no chances of errors. For these purposes, selection of suitable algorithms/
proposed modules is the most important task. We have studied different
algorithms/modules like linear binary pattern (LBP), Face recognition
using CNN, i.e., Lenet 5, FaceNet etc.

The CNN (Lenet 5) consists of seven layers, excluding the input layer,
while every other has training parameters, and these layers contain a num-
ber of Feature Maps by which we will get the mapping features with the
help of the convolution kernel. The drawback of this method is its com-
plexity and a large number of images of each class is required, so it is space
consuming [9].

The FaceNet module incorporates the utilization of a deep convolutional
network which is trained using the triplet loss function. It is indeed prepared
to straightforwardly enhance the embedding, rather than the previous deep
learning models. The main disadvantage of this module was that it showed
inaccurate results while detecting dark skin faces or dark shades [7].

We have selected linear binary pattern histogram (LBPH) for our work.
LBPH is a face recognition algorithm that can be implemented easily [3].
It can represent some common features in the images of faces. It is possible
to get good results with less computational power. It is available in python
by the OpenCV library.

6.2	 All Modules Details

6.2.1	 Face Detection Model

Face detection is a technology used in a variety of systems that identi-
fies human faces in an image. This is the initial step in any face identi-
fication and authentication system. For this, we used the Haar Cascade
Classifier proposed by Viola et al. in their paper about object detection
using some boosted classifiers [6]. This method is computationally better

128  AI Applications and Reconfigurable Architectures

and more optimal than most other Face detection approaches [8]. We use
this proposed system [6] for face detection. But this Face Detection Haar
Cascade Classifier gives higher false-positive results [7]. So, to compensate
for this we append some weaker classifiers to the original face detection
classifier [7]. For this, we use the eyes and mouth detection classifier cas-
cade, as shown in Figure 6.1. This additional weaker classifier combined
with the original Human Face Haar Cascade Classifier increases accuracy
significantly.

6.2.2	 Image Preprocessing

After detecting faces, these images need to be processed before training
them on the model. For this, we are using contrast adjustment and image
filtering.

i. Contrast Adjustment:

Figure 6.1  Results of Haar cascade classifier.

Original A=1.5,B=0

A=2,B=3 A=3,B=2

Figure 6.2  Contrast adjustment.

Automated Attendance Using Face Recognition  129

We say an image is having good contrast when we can differentiate
between any of the two colours. In the case of a facial image, if we have an
image with good contrast it results in improved accuracy of an algorithm
with more accurate results. So we tested images with different values of
contrast and obtained results. With values of a = 1.5 and b = 0.0, the overall
accuracy of the algorithm was improved. Figure 6.2 shows an example of
contrast adjustment.

	 f(p,q) = a * f(p,q) + b	

ii. Image Filtering:
It is the process of modifying an image by changing its shades or the colour
of the pixel. It is also used to increase brightness and contrast. We obtained
the results using three filters: Gaussian Blur filter, Bilateral filter and
median filter and their effects on accuracy. The results proved that using
a bilateral filter(which can reduce unwanted noise very well while keeping
edges sharp) accuracy of the model was improved. Figure 6.3 shows effect
of different filters on the face.

Images from the above two processes will be saved in a database with
an ID for unique identification. Figure 6.4 shows the results of using these
image enhancement techniques on face.

Median Bilaterial

GaussianOriginal

Figure 6.3  Comparison of different filters.

130  AI Applications and Reconfigurable Architectures

6.2.3	 Trainer Model

We are using a FaceNet model for training and recognizing the human
face. In a FaceNet system, we extract the features with higher quality
from the faces also known as Face Embedding which can be used to train
the model for face identification [5]. It is a deep convolutional neural
network that is trained using a triplet loss function. This encourages faces
with similarity to be closer on vector plane and different faces at a greater
distance than the similar ones. The face embedding created are used to
train the classifier on a standard face dataset. Upon training, we get a
model which can recognize the face based on their nearest faces on the
vector plane. The trained model is stored in a separate file that recognizes
a particular group of people. So, in this, we create a different model for a
small group of people (a small class) instead of predicting on a complete
dataset.

6.2.4	 Recognizer

Faces are then compared with all the faces fitted to the particular model
and accordingly, the person is recognized.

A=1.5,B=0

Bilaterial

Figure 6.4  Final results of image enhancement.

Automated Attendance Using Face Recognition  131

6.3	 Algorithm

Figure 6.5 shows the proposed algorithm for automated attendance system.

a.	 Start
b.	 Create database
c.	 Capture images with the help of a camera.
d.	 Use Haar Cascade Classifiers for face detection
e.	 Image Preprocessing:
i.  Contrast Adjustment
ii.  Image Filtering
f.	 Face Recognition Model
i.  Training model
ii.  Face Recognition using FaceNet.
g.	 Storing Attendance in Attendance System.

6.4	 Proposed Architecture of System

The main intention of our architecture is to remove all loopholes in the
existing systems of the attendance system using face recognition.

The main crux of our model is that we will be using two cameras, one fac-
ing the entry of the door and the other at the backside of the door. So the

Train Model

Face
Recognition
Algorithm

Attendance
System

Input Face
Image

Face Detection
Algorithm

Image
Enhancement

Figure 6.5  Proposed algorithm.

132  AI Applications and Reconfigurable Architectures

attendance will only be marked if the time difference between the timestamps
of the entry which will be detected in the first camera and the exit that is going
to be detected in the second camera will be equal to the duration of the lectures.

We have divided our system architecture into 4 parts:

•	 Face Detection Model
•	 Image Enhancement
•	 Trainer Model
•	 Face Recognizer Model.

6.4.1	 Face Detection Model

Initially while creating a data set of students, first the live images of stu-
dents are captured using Haar Cascade Classifiers [7]. We capture 50 to
60 images of each student will be captured with all postures The image is
captured only when it detects all three features of the face i.e. face, eyes and
mouth.

6.4.2	 Image Enhancement

The image captured through this process will contain only the face of
the student and all the unnecessary features are removed like unwanted
background images etc. These captured images are then passed to mainly
pre-processing techniques. The first one is contrast adjustment, the con-
trast of the image is adjusted to get a clear image in terms of illumination
[1]. The second one is using filters, filters are used in order to make the
image smooth or make pixel colors uniform [1].

6.4.3	 Trainer Model

We are using a FaceNet model for training and recognizing the human face.
In a FaceNet system, we extract the features with higher quality from the
faces also known as Face Embedding which can be used to train the model
for face identification. It is a Deep Convolutional Neural Network that is
trained using a triplet loss function. This encourages faces with similarity
to be closer on the vector plane and different faces at a greater distance
than the similar ones. The face embeddings created are used to train the
classifier on a standard face dataset. Upon training, we get a model which

Automated Attendance Using Face Recognition  133

can recognize the face based on their nearest faces on the vector plane. The
trained model is stored in a separate file that recognizes a particular group
of people. So, in this, we create a different model for a small group of peo-
ple (a small class) instead of predicting on a complete dataset.

6.4.4	 Face Recognition Model

When the lecture starts, the trainer file of the required class will be taken
by the recognition model. This will identify students entering and leaving
the class. When students enter class his/her face will get identified by the
recognizer module and his/her attendance will get marked. If students
leave before class, his face will be detected in the camera and his/her
attendance will get demarked. Every student has to be detected in both
the cameras and the duration gap between entering the class and leav-
ing should be equal to the duration of the lecture, then only students’
attendance will be marked. Attendance reports will be auto-generated
and respective authorities can access the attendance report according to
their requirements.

All these modules can be seen in the Proposed Architecture diagram in
Figure 6.6.

id = 1id = 1

datasetdataset

id = 2 Steve

1. Face Detection

2. Image Enhancement 3. Trainer Model

4. Recognizer

Mary id = 1

5. Store Attendance

Attendance Report

Year / Division / SubjectCSV

id = 1id = 1

id = 2id = 2

TrainerTrainer

Mary id = 1 id = 2 Steve

Figure 6.6  Proposed architecture.

134  AI Applications and Reconfigurable Architectures

6.5	 Conclusion

So, we have proposed one approach which will remove loopholes in the
current attendance management system. We have divided our proposed
system into four steps: Face Detection, Image Enhancement, Trainer, and
Recognizer. We have made use of different image preprocessing tech-
niques, i.e., Haar cascade classifiers, contrast adjustment, and filter imple-
mentation. This preprocessing is used to enhance the features of faces.
We have used the FaceNet face recognition model which is available
through Keras. This model recognizes the Face of the students entering
and leaving the class. After monitoring the in-out timing of students,
finally, the attendance is marked into the system. Respected authorities
can download the attendance report based on their requirements. After
researching various models, we finally concluded that the FaceNet clas-
sifier is quite easy to implement and understand and also we got good
results with this model.

References

	 1.	 Bah, S.M. and Ming, F., An improved face recognition algorithm and its
application in attendance management system. Array, 5, 100014, March
2020.

	 2.	 Raj, A., Shoeb, M., Arvind, K., Face recognition Based Smart attendance
management system. IEEE 2020 International Conference on Intelligent
Engineering and Management (ICIEM), IEEE, Aug. 11, 2020.

	 3.	 Subban, D.R. and Soundararajan, S., Human face recognition using facial
feature detection techniques. IEEE 2015 International Conference on
Green Computing and Internet of Things (ICGCloT), IEEE, Oct. 8-10, 2015,
15703565.

	 4.	 Han, X. and Du, Q., Research on face recognition based on deep learning.
2018 Sixth International Conference on Digital Information, Networking, and
Wireless Communications (DINWC), vol. 978, IEEE, 2018.

	 5.	 Schroff, F., Kalenichenko, D., Philbin, J., FaceNet: A unified embedding for
face recognition and clustering. 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), vol. 978, IEEE, pp. 4773–6964, Oct. 2015.

	 6.	 Viola, P. and Jones, M.J., Rapid object detection using a boosted cascade of
simple features. Proceedings of the 2001 IEEE Computer Society Conference on

Automated Attendance Using Face Recognition  135

Computer Vision and Pattern Recognition (ICCVPR 2001), Kauai, USA, vol.
1, pp. I–511-I-518, Dec. 8-14, 2001.

	 7.	 Cuimei, L., Zhiliang, Q., Nan, J., Jianhua, W., Human face detection via Haar
cascade classifier combined with three additional classifier. 2017 IEEE 13th
International Conference on Electronic Measurement & Instruments (ICEMI
2017), China, 2017, pp. 483–487.

	 8.	 Chauhan, M. and Sakle, M., Study & analysis of different face detection tech-
niques. Int. J. Comput. Sci. Inf. Technol., 5, 2, 1615–1618, 2014, India.

	 9.	 Wang, J. and Li, Z., Face recognition based on CNN. 2nd International
Symposium on Resource Exploration and Environmental Science.

137

Anuradha D. Thakare and Sheetal Umesh Bhandari. Artificial Intelligence Applications and Reconfigurable
Architectures, (137–150) © 2023 Scrivener Publishing LLC

7

A Smart System for Obstacle
Detection to Assist Visually Impaired

in Navigating Autonomously Using
Machine Learning Approach

Vijay Dabhade*, Dnyaneshwar Dhawalshankh†, Anuradha Thakare‡,
Maithili Kulkarni§ and Priyanka Ambekar¶

Department of Computer Engineering Pimpri Chinchwad College of Engineering,
Pune, India

Abstract
Obstacle detection is a popular approach for detecting barriers in the region of
a subject. Visual impairment affects a large number of people around the world.
Visually impaired or blind people encounter numerous challenges in their daily
lives; the white cane is still the most widely used instrument for obstacle detec-
tion; in an unfamiliar environment, they rely entirely on other people to reach
their desired goal. This will allow blind people to navigate independently without
the use of any aids by utilizing object detection systems that detect objects over a
period of time.

The proposed system in this article uses machine learning algorithms to see
objects through the camera and then uses audio output to teach blind people
about the item and its location. Obstacle detection approaches are discussed that
can create and develop a system which will assist visually impaired people in nav-
igating autonomously.

Keywords:  Image processing, machine learning, obstacle detection, IoT

*Corresponding author: vijayrajdabhade@gmail.com
†Corresponding author: dnyana121297@gmail.com
‡Corresponding author: anuradha.thakare@pccoepune.orgma
§Corresponding author: ithilikulkarni2000@gmail.com
¶Corresponding author: piyaambekar1610@gmail.com

mailto:vijayrajdabhade@gmail.com
mailto:dnyana121297@gmail.com
mailto:anuradha.thakare@pccoepune.orgma
mailto:ithilikulkarni2000@gmail.com
mailto:piyaambekar1610@gmail.com

138  AI Applications and Reconfigurable Architectures

7.1	 Introduction

According to the World Health Organization’s tenth edition, at least 2.2
billion individuals suffer from near or distance visual impairment. Vision
impairment may have been avoided or managed in at least 1 billion — or
nearly half — of these cases [1]. It’s critical to recognize that visual impair-
ment encompasses both blindness and low vision. Blindness and poor
vision are conditions in which people’s ability to study and visualize the
skin world is impaired. This lowers the quality and productivity with which
they complete their regular responsibilities. Blind people usually rely on
useful sticks or other people to help them walk and avoid obstacles in their
path. They are unable to recall quick changes in their surroundings, mak-
ing it difficult to react to an immediate situation. It’s extremely difficult to
grasp any visual aspect of an item, such as depth, color, or orientation. This
study focuses on two important aspects: obstacle detection (identifying the
obstruction in front of the blind person from the surroundings) and obsta-
cle notification (using sound signals via earphone). Some of the simple
systems available to blind persons of all ages will be explored. A system that
is very affordable can be created, so that low-income people can purchase
it and use it for mobility in both enclosed and open spaces. The goal of this
project was to create an easy-to-use navigation system for those who are
blind. Blind people continue to rely on canes for navigation to this day. It
has a number of restrictions, including a limited range of cane length (typ-
ically one step ahead of the user), issues policing overhanging barriers, and
difficulties storage in public locations.

7.2	 Related Research

A real-time obstacle detection and categorization system [2] uses a smart-
phone to help visually impaired persons travel safely in both indoor and
outdoor contexts. They begin by choosing a set of interest points from an
image grid and tracking them with the multiscale Lucas-Kanade algo-
rithm. The camera and backdrop motion are then estimated using a set of
homographic transforms. An agglomerative clustering technique is used
to identify other types of movements. Obstacles are classified as urgent or
normal depending on their proximity to the subject and the motion vector
orientation associated with them. The HOG descriptor is integrated into

Obstacle Detection to Assist Visually Impaired  139

the Bag of Visual Words (BoVW) retrieval framework, and they demon-
strated how this combination may be utilized to classify obstacles in video
streams. The results show that their method works well in image sequences
with a lot of camera motion and produces excellent accuracy rates while
being highly scalable.

The discovered barriers are then fed into and submitted to an object
classifier. An obstacle detection and distance sensing algorithm for visu-
ally impaired persons was proposed [3] that discuss, Object detection and
distance sensing could be major challenges for visually impaired persons.
Earlier navigation systems are much costly and slow for usage in daily life.
Their proposed system uses the ultrasonic sensors, which work on the
principle of reflected sound waves. When an obstacle is sensed within the
ultrasonic sensor range within the spectacles of an individual, the cam-
era captures the image. The image captured is compared with the pictures
using a convolution neural network model can be used to detect the obsta-
cles. This work proposes at designing an economical and easy to use navi-
gation system for blind persons.

IoT-Based Smart Walking Cane for Typhlotic with Voice Assistance [4]
uses ultrasonic sensor. The sensors are placed at five different heights to
detect impediments in various situations. To communicate the obstacle
information, a specially developed text to speech converter was used. For
the movement of the vehicle use a Motion Sensor. Motion Sensors are kept
in 3 directions to tell the user. The GPS module used to locate the present
location and therefore the Wi-Fi module to Update the present location
status on the cloud.

Object Recognition for Blind people Using Portable Camera [5] was
developed. System uses a camera to capture images from the front of the
user. The various features are extracted from the image and object are rec-
ognized comparing by features with database objects. Prior to applying the
SIFT algorithm to the image, the image is preprocessed. To apply filtering
to an image, RGB information is retrieved from the image. Median filter-
ing is used to eliminate noise. The output image is match with database
image with shift algorithm. If image is match then system produced speech
signal for recognized object. If image is not match then the displays or says
unknown object.

CPU primarily based YOLO: A true Time Object Detection algorith-
mic program [6] was projected. This work describes a computer hard-
ware-based YOLO true-time object detection model for use on non-GPU

140  AI Applications and Reconfigurable Architectures

computers, which will benefit users of low-configuration computers.
YOLO could be a Deep Neural Network algorithmic software for object
recognition that is faster and more accurate than most others. A tendency
to optimize YOLO using OpenCV in this paper model so that real-time
object detection is typically possible on computer hardware primarily
based computers. On numerous non-GPU systems, this model sight object
from video in 10.12 – 16.29 independent agency and with 80-99 percent
confidence. YOLO, which is mostly focused on computer hardware, has
reached number 31. 5% of the map.

R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Object Detection
Algorithm [7] was proposed. YOLO is an object detection algorithm. A
single convolutional network speculates the bounding boxes and class
probabilities for these boxes in this technique. YOLO works by taking a
picture and splitting it into a SxS grid, then taking bounding boxes inside
each grid. The output of the network, a class chance, and offset values it
for each of the bounding boxes. The bounding boxes with a portal value
greater than one are chosen and utilized to put the object. This approach
is 45 frames per second faster than other object detecting algorithms. The
YOLO approach is limited because it encounters little items in the image;
for example, it may have difficulty detecting a swarm of birds. This is due
to the algorithm’s semantic criteria.

Faster R-CNN: It was proposed in Towards Real-Time Object Detection
using Region Proposal Network [8]. The RPN model is created using the
Faster R-CNN object detection system, which consists of two modules. The
first module is a fully deep convolutional network that displays regions,
and the second is the Fast R-CNN technique that employs the regions pro-
posed. The object detecting system is a single, unified system. The RPN
module advises the Fast R-CNN module where to seek in neural networks
language used with ‘attention’ processes. The RPNs are used to generate
convenient and specialized area proposals. The region proposal phase
is practically cost-free because convolutional characteristics are shared
with the downstream detection network. This technology enables a deep-
learning-based integrated object identification system to operate at near-
real-time frame rates. The taught RPN also improves the quality of region
proposals and, as a result, the overall object detection accuracy.

An Improved Faster-RCNN algorithmic program for Object Detection in
Remote Sensing Images [9] was planned. The two-stage technique is dom-
inated by region primarily based convolutional neural network (RCNN).

Obstacle Detection to Assist Visually Impaired  141

It 1st generates an outsized range of region proposals, then utilizes con-
volutional neural networks to put off the characteristics of each proposal,
it classifies every region and places the bounding box. When RCNN was
introduced, its numerous algorithms were planned later, like Fast-RCNN
and Faster-RCNN. The disadvantages of this algorithmic program have to
be compelled to be taken into thought as an example, slow coaching speed
and high computing resources. Thus they’re not appropriate for period of
time applications.

7.3	 Evaluation of Related Research

This research led to study of several existing systems for obstacle detec-
tion. Every system has its own characteristics and drawbacks. the following
existing system consists techniques like image annotation, activity recog-
nition, face recognition, video object co-segmentation, Etc. Some of the
systems are utilized efficiently while other have various limitations. Some
systems are unable to detect the distance between the subject and obstacle.
In this research, we found that there is no system which informs the user
the right direction to avoid the obstacles in their path all systems have their
own latest frameworks with object detection, we are going to use some
features of them with some enhancements to design our system.

7.4	 Proposed Smart System for Obstacle Detection
to Assist Visually Impaired in Navigating
Autonomously Using Machine Learning
Approach

7.4.1	 System Description

The Proposed system will be based on designing a smart device which will
assist visually impaired for a self- determining movement and navigation
in different circumstances. Here we are using Image processing methods
and some obstacle detection techniques to measure the distance between
the obstacle and the blind person. We will be designing the system using
some machine learning algorithm for obstacle detection. In addition to
that we will be using Raspberry Pi, Pi camera module and ultrasonic sen-
sors, etc. Figure 7.1 represents the Architecture of proposed system.

142  AI Applications and Reconfigurable Architectures

7.4.2	 Algorithms for Proposed Work

1.	 Histogram of Oriented Gradients (HOG)
In 2005, Navneet Dalal and Bill Triggs introduced the HOG (Histogram
of Oriented Gradients) characteristics [10]. The Histogram of Oriented
Gradients (HOG) algorithm is a feature descriptor algorithm that is
used in image processing and object detection. A feature descriptor is
an image patch that extracts relevant information from an image to sim-
plify it. This patch is in ratio of 1:2, for example, it will be 150px in x
direction and 300px in y direction. We resized it into 64 × 128 size.
This patch of image will divide into 8 × 16 grid. Each box in this grid is
8 × 8 pixel. If we have to find gradient magnitude and direction for this
60-pixel position. For this we need 4 pixel values in × direction = |100-
50| = 0 and y direction=|100-50|=50, to find out gradient magnitude it
will square 50+50, it will give me value as 70.7 and gradient direction
is = tan-1(50/50) = 45°, similarly we can find all gradient magnitude and
gradient direction for every pixel position. We will see some of them, if
you will see gradient direction all angles are between 0 and 180/9, it will
divide into nine bins.

In this case, its 2,0 so we will see its corresponding gradient magnitude,
so in the 20 bin, we will put value as 60. Next 40 and corresponding gradi-
ent magnitude 60, so I will write it in 40 bin and so on. After that, do sum

Input

Device/Sensors

Camera

Ultrasonic
sensor

Voice
recognition

Processing
unit

Image

Pre-processing
of image

Extract object
and identify

object

Calculating
distance

 Audio output

Output

Generate
audio signal

Identified
Object

Figure 7.1  Architecture of proposed system.

Obstacle Detection to Assist Visually Impaired  143

of each values of each values of each bins. Feature vector is an addition
array is an addition of all bins. Vector of size 9. This histogram we can also
represents in feature vector. For 0 the length of arrow will be 50, for 20
length will be 135, and so on.

We will move this window 1 row right and so on, till the end of the row.
Figure 7.2 represents steps for object detection in Histogram. Figure 7.3
represents computing Gradient Using Histogram of Oriented Gradients.

We can calculate the Gradient magnitude for Q in x and y direction as
follows:

	 Gx = 100 – 50 = 50

	 Gy = 120 – 70 = 50

We can get the magnitude of the gradient as:

	 = + =G G G() () 70.7x y
2 2

	

Input Image

Pre-Processing

Calculate
Gradients

Calculate
Histogram of

Gradients

Block
Normalisation

Create Hog
Description

vectors

Classifiers(SVM)

Result

Figure 7.2  Steps for object detection in histogram.

144  AI Applications and Reconfigurable Architectures

And the direction of the gradient as:

	
θ = 




=arctant

G
G

45y

x

o

	

Object detection workflow with HOG: Now that we understand the fun-
damentals of the Histogram of Oriented Gradients, we’ll look at how we
calculate the histograms and how the feature vectors obtained from the
HOG descriptor are used by a classifier like an SVM to detect the target
object.
2.	 Single Shot Detector
The Single Shot MultiBox Detector (SSD) is a variation of the VGG16
architecture for object detection. We are feeding an image into the VGG-
16 network as an input. At first, the SSD network uses VGG16 to extract
feature maps. We may use datasets like PascalVOC and COCO to produce
multiple predictions for each class.

Figure 7.4 shows the architecture of single shot detector these six layers
are convolutional layers, which will perform classification object detection
task in SSD, SSD makes 8732 predictions for every single object that mean
for every object SSD will predict 8732 bounding boxes. SSD will check
confidence score of each box and will pick top 200 predictions per image.

Training of SSD includes whenever you want to give input to SSD, you
should have ground truth boxes for each image and then we are having
convolutional layer, the task of those layers is to check boxes of different
aspect ratios at each location with different scales. Basically, convolutional
layer will check boxes of different sizes and aspect ratios, multiple boxes
8732 boxes for every object. We have 8732 boxes and SSD will use so many
boxes for better coverage of images this process will help in findings over-
lap the ground truth box with the help of intersection of union we are

100

120

50

70 Q

Figure 7.3  Computing gradient using HOG.

Obstacle Detection to Assist Visually Impaired  145

finding box which is having highest overlap. We will be finding these as a
output of 8732 boxes.

MultiBox’s loss approach incorporated two key elements:
1. � Confidence Loss: This metric indicates how confident the

network is in the computed bounding box’s objectness.
This loss is calculated using categorical cross-entropy.

2. � Location Loss: This metric determines how far the net-
work’s predicted bounding boxes differ from the train-
ing set’s ground truth bounding boxes. Here, L2-Norm is
employed.

	 multibox_loss = confidence_loss + alpha * location_loss	

3.  Yolo Algorithm
The YOLO method, which is particularly efficient for real-
time detecting systems, is used. It differs from other algo-
rithms in how it functions. The YOLO algorithm processes
the full image (frame) in a single operation. The aspect that
distinguishes YOLO from other algorithms is its fastest pro-
cessing speed of 45 frames per second. It takes a completely
unique approach. YOLO is a real-time object identification
convolutional neural network (CNN) with intelligence. The
method applies a single neural network to the entire image,
separates it into regions, and forecasts bounding boxes and
prospects for each. The projected probabilities are used to
weight these bounding boxes. YOLO is preferred since it
delivers great accuracy in real time as well. It is lightning fast.
During training and testing, it catches the complete image,
so it implicitly stores contextual information about classes

VGG-16
through Conv5_3 layer

Classifier : Conv: 3x3x(4x(Classes+4))

Classifier : Conv: 3x3x(6x(Classes+4))

Conv: 3x3x(4x(Classes+4))

Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x256
Conv: 3x3x512-s2

Conv: 1x1x128
Conv: 3x3x256-s2

Conv: 1x1x128
Conv: 3x3x256-s1

Conv: 1x1x128
Conv: 3x3x256-s1

Extra Feature Layers

SS
D

D
et

ec
tio

ns
:8

73
2

pe
r C

la
ss

N
on

-M
ax

im
um

 S
up

pr
es

si
on

74.3mAP
59FPS

300

300

Image

3

38

38

Conv4_3

Conv8_2
Conv9_2

Conv10_2 Conv11_2

Conv6
(FC6)

Conv7
(FC7)

512

19 19

10

101919

1024 1024 512 256 256 256

5

5
3

3
1

Figure 7.4  Architecture of SSD [11].

146  AI Applications and Reconfigurable Architectures

as well as their appearance. This algorithm has a number of
advantages over other algorithms, including increased speed
and accuracy.

4.  Faster R-CNN
Two networks make up the faster R-CNN architecture. The
CNN architecture is shared by both the Region Proposal
Network (RPN) and the Object Detection system. Faster
R-CNN uses an object detection network that is quite sim-
ilar to Fast R-CNN. Faster RCNN is the same as regional
proposal network and Fast RCNN. Objects are identified
in a single path using a single neural network; this is a net-
work system that is used to train many modules and tasks.
Following RPN losses, a faster RCNN can be trained end
to end as one network: i) RPN classification and ii) RPN
regression

Because each RPN uses various convolutional layers, this
algorithm can detect objects simultaneously from small to
large.

R-CNN and Fast R-CNN are both slower than Fast
R-CNN. In addition, the Faster R-CNN has a superior map
than the prior two. RCNN and FastRCNN, for example.

7.4.3	 Devices Required for the Proposed System

1.	 Raspberry Pi
Raspberry Pi is small single board device. It is embedded device with
image processing. It acts as the heart of the system because it act as
processing unit. It collects needed information using camera, and dis-
tance calculation are performed by the ultrasonic sensor. It has built in
Wi-Fi module to connect the internet and update the current location.
Accordingly, audio signal will sent to alert the user about obstacle and its
distance.
2.	 HC-SR04 Ultrasonic Sensor
The HC-SR04 Ultrasonic (US) sensor is a distance sensor it is majorly used
to calculate distance. The sensor provide non-contact measurement func-
tionality. It has four pins like Vcc, Trigger, Echo, and Ground. The ultra-
sonic sensor have transmitter, receiver, and control circuit. Transmitter
transmits an ultrasonic wave on the object or obstacle and the wave is

Obstacle Detection to Assist Visually Impaired  147

reflected back to the receiver. The sensor works with following formula
that,

	 Distance = Speed × Time	

Now, to calculate the distance we should know the speed and time. Since
we are using above formulae for calculations. We all know the universal
speed of ultrasonic wave at room conditions is 330 m/s. The device has
inbuilt module to calculate time for ultrasonic wave to return back and
activates the echo pin high for some particular amount of time, this way,
we will also know the what amount time to travel to particular distance.
Now simply calculate the distance using a Raspberry Pi.
3.	 Webcam (Pi Camera)
The Pi camera module may be a light weight and portable camera that
supports Raspberry Pi. It uses MIPI camera serial interface protocol to
communicate with Raspberry Pi. It is mostly used in image processing,
machine learning projects. It captures high resolutions pictures. Pi camera
supports 720p, 480p pictures quality. Pi camera can use normal USB web-
cams that are used alongside computer.
4.	 Servo Motor
A servo motor is kind of motor with positional feedback. It is used in
closed-loop motion control systems that allow for more precise con-
trol of angular position, speed, and torque. Through control wire pulse
width modulation or variable-width electrical pulse are send to control
servo motor. To run servo motor it need electrical pulse after every 20
milliseconds. A servo move in direction of 90° either move in direction
of 180° for total movement. If we used DC power supply to start motor
is called as Dc servo motor and we use AC power supply to power is
called as AC servo Motor. There are many other sorts of servo motors
supported the kind of gear arrangement and operating characteristics.
The servo motor provides high performance, smooth running, and high
efficiency. It is small in size and light weight. Because of various advan-
tages and they are used in many applications like toy car, robotics and
planes, etc.
5.	 GPS
A GPS module is small electrical circuit that used to connect with
Raspberry Pi to get current position. GPS plays important role in present
day to guide the user to their destination. GPS modules reading latitude

148  AI Applications and Reconfigurable Architectures

and longitude to get current position as well as navigate the user to desired
pathways using preloaded maps.
6.	 Buzzer
A buzzer is small component that add sound features in project. The
simple buzzer is powered is produced continuous beep. They created the
sound using an internal oscillating circuit. Buzzers are mostly use in alarm
devices, timers, and confirmation of user input like a click.

7.5	 Conclusion and Future Scope

This chapter discusses work in progress of research on design and devel-
opment of a smart system for obstacle detection to assist visually impaired
in navigating autonomously using machine learning approach. Various
alternative systems and techniques are explored that uses sensors to detect
object for the person to avoid accidents or it help the person to travel one
place to another without anyone help. Smart devices like camera capture
images to send data to machine learning algorithm for object detection
algorithm make system effective. A proposed system is designed and dis-
cussed in detail. Further, it will be implemented using various machine
learning techniques.

The future scope points to identify numerous objects in a view
with improved accuracy and a reduced amount of detection time. The
designed system can be modified for the specific needs of the end user
and guarantees harmless navigation. Additionally, the system can be
trained to store the info about the people closely related to the user,
which will be beneficial for the user in identifying the peers and other
people.

References

	 1.	 https://www.who.int/news-room/fact-sheets/detail/blindness-and-
visual-impairment

	 2.	 Tapu, R., Mocanu, B., Bursuc, A., Zaharia, T., A Smartphone-Based Obstacle
Detection and Classification System for Assisting Visually Impaired People.

	 3.	 Suba Nachiar, T., Arunachalam, D.M., Hemalatha, P.R., Aghila, D.R.,
Subhalakshmi, R.T., An obstacle detection and distance sensing algorithm
for visually impaired persons. Int. J. Sci. Technol. Res., 8, 10, October 2019.

Obstacle Detection to Assist Visually Impaired  149

	 4.	 SathyaNarayanan, E., Gokul Deepan, D., Nithin, B.P., Vidhyasagar, P., IoT
based smart walking cane for typhlotic with voice assistance. 2016 Online
International Conference on Green Engineering and Technologies (IC-GET).

	 5.	 Mohane, V. and Gode, P.C., Object recognition for blind people using por-
table camera. 2016 World Conference on Futuristic Trends in Research and
Innovation for Social Welfare (WCFTR’16).

	 6.	 Ullah, M.B., CPU based YOLO: A real time object detection algorithm. 2020
IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, June 5-7, 2020.

	 7.	 https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-
detection-algorithms-36d53571365e?gi=73d2971542ff

	 8.	 Ren, S., He, K., Girshick, R., Sun, J., Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks, 2015.

	 9.	 Liu, R., Yu, Z., Mo, D., Cai, Y., An improved faster-RCNN algorithm for
object detection in remote sensing images. Proceedings of the 39th Chinese
Control Conference, Shenyang, China, July 27-29, 2020.

	 10.	 https://iq.opengenus.org/object-detection-with-histogram-of-oriented-
gradients-hog/

	 11.	 Liu, C., Tao, Y., Chen, J., Object detection based on YOLO network. 2018
IEEE 4th Information Technology and Mechatronics Engineering Conference
(ITOEC 2018).

151

Anuradha D. Thakare and Sheetal Umesh Bhandari. Artificial Intelligence Applications and Reconfigurable
Architectures, (151–166) © 2023 Scrivener Publishing LLC

8

Crop Disease Detection
Accelerated by GPU

Abhishek Chavan*, Anuradha Thakare, Tulsi Chopade, Jessica Fernandes
and Omkar Gawari

Department of Computer Engineering, Pimpri Chinchwad College of Engineering,
Pune, India

Abstract
Agriculture is one of the vital occupations in the world. A major problem that a
farmer is facing is the plants getting affected by diseases. For preventing the loss in
the yield, it is very much important to detect the disease in the crop. Monitoring
the diseased crop manually becomes very time-consuming and difficult because
if the farm is large the workload for the farmer becomes more and sometimes it
cannot be accurate as it is done manually. If the disease is nonnative, many times
farmers are not aware of it. Hence, with the help of technologies like image pro-
cessing, crop disease can be detected manually. Here, the chapter deals with the
same to detect crop disease. It consists of image acquisition in which data collec-
tion is done, then the image is preprocessed, segmentation of the image is done,
then features are extracted after this the disease is classified with the help of some
classifier. In image preprocessing the RGB photo which is captured by the camera
is converted into a grayscale image for accuracy of the result. Image Segmentation
the image is partitioned into a range of pixels with admiration to their depth lev-
els. In feature extraction, we can use different techniques, such as gray level co-
occurrence matrix, local binary pattern, color space, etc. Classification is used to
differentiate between different diseases, it mainly uses SVM, ANN, and SAS clas-
sifiers. This chapter presents a study and comparison of robotic applications for
agriculture which mainly focuses on AI-based solutions for crop disease detection.

Keywords: Image acquisition, image preprocessing, image segmentation, feature
extraction, machine learning, classification, ANN, SVM

*Corresponding author: abhishek.chavan19@pccoepune.org

mailto:abhishek.chavan19@pccoepune.org

152  AI Applications and Reconfigurable Architectures

8.1	 Introduction

India is well known for agriculture and about 60% of the population depends
on agriculture. It is a major contributor to India’s economy. In this situa-
tion, crop yield and its quality must be good which leads to good income in
agriculture. Plant diseases can affect plant growth and appearance leading
to a decline in crop yield. In the case of large farms, a lot of human labor
is required to monitor the health of plants. Plant diseases are often seen in
leaves, flowers, and stems. Crop diseases affect both quality and quantity.

In the past, the detection of plant diseases was carried out mostly by
experts using visual observation or laboratory instruments to confirm the
result. These methods are costly and time-consuming. It is, therefore, pro-
posed by some researchers to use image processing technologies to help
farmers with early detection. Nowadays, machine learning technologies
are also being applied for plant image detection. From this, we can analyze
the image and extract the image with the help of different algorithms and
methodology included in machine learning.

Here the chapter deals with the following steps.

•	 Image Acquisition: In this, the images are clicked with the
help of a high-resolution camera and saved in .jpg format
(Figure 8.1).

Figure 8.1  Image acquisition.

Crop Disease Detection Accelerated by GPU  153

•	 Image preprocessing: It is the process of turning the digi-
tal image into a more accurate image so that the results are
more perfect for display or further image analysis. Usually, it
includes sharpening the image, removing background noise,
and unnecessary distortion (Figure 8.2).

•	 Image segmentation: Segmentation is used to label the
pixels of an image to cluster its characteristics for feature
extraction purposes. The edge detection segmentation tech-
nique is used for crop disease detection. Under this tech-
nique, it will calculate the gradient of image intensities at
every pixel (Figure 8.3).

•	 Feature extraction: feature of the image like mainly color,
texture, and shape are extracted here in this process. It is
mainly used for picture extraction and object detection
(Figure 8.4).

•	 Classification: Classification is used to differentiate between
different diseases, it mainly uses SVM, ANN, and SAS clas-
sifiers. In Image processing, the image is transformed into
digital form to take out the required information from the
image (Figures 8.5–8.6).

SegmentedGrayscaleOriginal

Figure 8.2  Image preprocessing.

Figure 8.3  Image segmentation.

.

154  AI Applications and Reconfigurable Architectures

Original Image Feature Extracted Image

Figure 8.4  Feature extraction.

Figure 8.5  Farm aid.

Figure 8.6  Disease detecting robot.

Crop Disease Detection Accelerated by GPU  155

•	 Why is there a need for a GPU?
A graphics processing unit (GPU) is an electronic circuit.
It is designed to alter and control memory to speed up the
creation of pictures in a frame buffer for intended output
to a display device. GPUs’ highly parallel structure makes
controlling image processing more efficient than general.
When doing image processing, we need fast access to pixel
values. GPU makes matrix multiplication faster because of
larger memory bandwidth, parallelization, and fast memory
access. Block matrix multiplication can be computed using
the same shared data and that data should be fit in shared
memory. So, it is used in neural networks. So, GPUs can be
used with the help of PyTorch which can be directly accessi-
ble by programmers.

8.2	 Literature Review

In Sai Krishna et al. [1], the robot is created with the help of an Arduino
UNO controller which automatically moves in the farm and captures the
images through a digital camera. Secondly, it will perform image processing
steps which include data collection, preprocessing, image segmentation,
feature extraction, and image classification. It uses SVM for classification.

In More and Bhosale [2], a robot is created in which the system is divided
into stages. Image preprocessing, feature extraction, and classification for
identification of the leaves are done in the first stage. The classification
depends on the ANN training model. In the second stage, segmentation of
the infected area by K-means segmentation is done, which is followed by
classification based on the ANN model. It also includes the monitoring of
the diseased plants.

In Yang and Guo [3] review paper different machine learning algo-
rithms for plant disease detection are pointed out. The algorithms studied
are SVM, Naive Bayes, Markov Clustering, SVM with the kernel, ANN.

In Singh and Mishra [4], the review paper discusses the different image
segmentation algorithms which are used for detection. After that classi-
fication is performed. Genetic algorithms are used for the segmentation
of images. In Kumar and Vani [5], the robot is made with the help of a
Lattepanda advanced processor. This Lattepanda processor is deployed

156  AI Applications and Reconfigurable Architectures

with machine learning algorithms for the classification of a disease. The
mean shift clustering algorithm is used for image segmentation and the
SVM classifier is used for classification. An Android application is devel-
oped for managing the robot. Also, the current field situation is sent
through an SMS via mobile.

In the Kumar and Vani [6] paper, image processing and classification
are used. Specifically, a cotton plant is selected for detecting disease. Otsu’s
global thresholding technique is used for image segmentation. The Color-
co-occurrence technique is used for extracting features like color and tex-
ture. Classification is done by the SVM classifier.

[7] is a review paper that presents different image processing and classi-
fication techniques. Color space, color histogram, gray level co-occurrence
matrix (CCM), Gabor filter, Canny, and Sobel edge detector are the feature
extraction techniques that are discussed in this chapter. Various classifi-
cation algorithms are mentioned in this chapter such as Support Vector
Machine (SVM), Artificial Neural Network (ANN), Backpropagation (BPI)
Network, Probabilistic Neural Network (PNN), Radial Basis Function
(RBF) Neural Network.

This [8] presents a review of different image processing and classifica-
tion techniques. It includes various steps such as image acquisition, image
pre-processing, image segmentation, feature extraction, and classification.

In the Arivazhagan et al. [9] paper, they have proposed the method for
identification of unhealthy regions of plant leaves and their classification
using texture analysis. Primarily, the images of different leaves are captured
with the help of a digital camera. Then RGB images are converted to HSI.
Then, masking and removal of pixels are done. The color co-occurrence
texture analysis method is performed for image segmentation. The last
step is Classification in which a Support Vector Machine (SVM) is used
for classification.

In Jaware et al. [10], initially, RGB images are picked up. Then, feature
extraction is performed by color space transformation. Image segmenta-
tion is done by using the K-means clustering technique. Masking of green
pixels is done as it represents a healthy area in the leaves. The infected
part was then converted from RGB format to HSI format. From the SGDM
matrices, the texture statistics for each image were generated. For classifi-
cation use the SAS statistical classifier.

In Khirade and Patil [11], they have discussed Image Acquisition, Image
Segmentation, Extraction of features, and image classification. Feature

Crop Disease Detection Accelerated by GPU  157

extraction is done based on color, edge, and texture features. GLCM tech-
nique is used for the classification which is a statistical method.

In Das et al. [12], plant leaf disease is detected by classifying the image
with the help of SVM. In the first step, the images of the leaf are cap-
tured. Then, in image pre-processing, the image is improved by remov-
ing noise and unwanted objects. After that improves the image by using
Fuzzy Histogram Equalization (FHE). The image has many characteristics
such as texture, color, and shape. Finally, classification is done by using a
Support Vector Machine (SVM).

In Khirade and Patil [13], for detection of crop disease, image process-
ing techniques are used. First, images of the plant leaf are taken through
a digital camera. The image captured is in RGB form. Then, various pre-
processing techniques are performed to reduce noise in the image and
other objects. Then, there is a clipping of images. By using a smoothing
filter, image smoothing is done. To increase the contrast, enhancement of
an image is done. Otsu method, k-means The clustering method is used for
image segmentation. The color co-occurrence method is used for feature
extraction. Classification is done by ANN or SVM.

In Dhaygude and Kumbhar [14], plant leaf disease is detected by texture
analysis of leaves. The first step is to capture the RGB image. Then the RGB
image is converted to HSV scale. Because Hue-Saturation-Value is a good
descriptor. Then, masking and with pre-computed threshold level, there
is the removal of green pixels. Then in the segmentation texture analysis
is done. Texture analysis is done with the help of these segments by color
co-occurrence matrix.

In Sharma and Malhotra [15], they have proposed an algorithm that can
detect leaf boundaries accurately. The target image is imported to Matlab and
separates the image layers to form three different images after denoising. For
all the layers they extract the effective segmented pixels with the gray converted
image and map the LDA on the mask of the image. They merge the segmented
image with contour mapping and derive the obtained image into secondary fil-
tering, based on block processing, and find the area of the leaf. They reduce the
Independent LDA features to details of the image using descriptor Frequencies.
They do this for each image of a modified RGB image and store coefficients of
the image blocks in the dataset. The last step is to select the image for testing
and match the features with stored features. Indicates its high quality after the
segmentation and classification process is performed. Table 8.1 summarizes
the literature review discussed in this chapter.

158  AI Applications and Reconfigurable Architectures

Table 8.1 Summary of literature review.

Sr. no. Paper title Segmentation Feature extraction Classifier

1 Automatic detection of the diseased plants
using robotics and image processing

k-Nearest Neighbor
Class

SVM

2 Agrobot—A Robot for Leaf Diseases
Detection

K-means clustering Color, size, and edges ANN

3 Machine learning in plant disease
research

- Color, texture SVM and artificial
neural network
(ANN)

4 Detection of plant leaf diseases using
image segmentation and soft
computing techniques

K-clustering
algorithm

Green-colored pixels SVM

5 Agricultural Robot: Leaf Disease
Detection and Monitoring the Field
Condition Using Machine Learning
and Image Processing

Mean shift clustering
Algorithm

Color, texture and shape Support Vector
Machine (SVM)

6 Cotton Leaf Disease Detection &
Classification using Multi SVM.

Otsu’s global
thresholding
method

Gray level
co-occurrence matrix
(GLCM) technique

Support Vector
Machine (SVM)

7 Disease Detection and Diagnosis on Plant
using Image Processing—A Review

K-mean clustering,
edge detection
algorithm

Gray level
co-occurrence matrix
(GLCM) technique

Artificial Neural
Network and
Support Vector
Machine

(Continued)

Crop Disease Detection Accelerated by GPU  159

Table 8.1 Summary of literature review. (Continued)

Sr. no. Paper title Segmentation Feature extraction Classifier

8 Plant Leaf Disease Detection and
Classification using Image Processing

K-mean clustering Local Binary Pattern
(LBP)

Support Vector
Machine (SVM)

9 Detection of the unhealthy region of
plant leaves and classification of plant
leaf diseases using texture feature

Masking green pixels Color co-occurrence
methodology

Support Vector
Machine (SVM)

10 Crop disease detection using image
segmentation

k-mean clustering,
masking
green-pixels

Color co-occurrence
methodology

SAS classifier

11 Plant Disease Detection using Image
Processing

k-mean clustering Gray level
co-occurrence matrix
(GLCM) technique

Support Vector
Machine (SVM)

12 Plant Leaf Disease Detection Using
Support Vector Machine

Fuzzy Histogram
Equalization

Gray level
co-occurrence
matrix (GLCM) tec

Support Vector
Machine (SVM)

13 Agricultural plant Leaf Disease Detection
Using Image Processing

K-mean clustering GLCM SVM classifier

14 LDA Based Tea Leaf Classification on the
Basis of Shape, Color and Texture

- Color, texture, and
shape

SVM classifier

(Continued)

160  AI Applications and Reconfigurable Architectures

Table 8.1 Summary of literature review. (Continued)

Sr. no. Paper title Segmentation Feature extraction Classifier

15 Automatic Detection and Classification
of Plant Disease through Image
Processing

Backpropagation Local binary pattern Neural networks

16 Paddy Leaf Disease Detection Using
Image Processing and Machine Learning

Otsu’s segmentation
method

Color co-occurrence
methodology

SVM classifier

17 Detection and Classification Technique
of Yellow Vein Mosaic Virus Disease
in Okra Leaf Images using Leaf
Vein Extraction and Naive Bayesian
Classifier

K-mean clustering Color co-occurrence
methodology

Naive Bayesian
classifier

18 Image Processing Techniques for
Detecting and Classification of Plant
Disease: A Review

K-means clustering
and Otsu methods

Color, shape, and
textures features

SVM

19 Deep Learning application for plant
diseases detection

Color and textures
features

SVM, KNN

20 A Machine Learning Approach for
Detection Plant Disease: Taking
Orchid as Example

K-cluster Shape, color, and size SVM and neural
networks

Crop Disease Detection Accelerated by GPU  161

In Landge et al. [16], they have used image processing techniques and
developed software that gives quick and accurate solutions to the farmer
with the help of a message. For the classification of diseases color trans-
formation and neural networks, applications are used. They followed the
next steps: 1) Color Transformation Structure 2) Masking green pixels
3) Removing the masked cells 4) Matrix Generation 5) Neural Network.

In Mangla et al. [17], in this, they have used Pady leaves for disease
detection. The process involves image pre-processing, segmentation, clas-
sification, extraction. In vegetation segmentation, they find the threshold
value by Otsu’s segmentation method. Then that threshold value is set to
mean pixel intensity. The image analysis deals with shape feature extraction
and color-based segmentation. SVM algorithm is used for classification.

In Hungilo et al. [18], this review paper presents the importance of
image processing and classification for detecting the leaves or fruit diseases
to other researchers working in that respective area.

In Jakjoud et al. [19], they are presenting a CNN model based on
VGGnet16 architecture for the recognition of sick and healthy leaves,
Several optimizers are tested to examine accuracy and model stability, the
best results are obtained with Adadelta and SGD optimizer. Those models
are tested on a computer and a Raspberry pi model B.

In Li et al. [20], histogram is used for the analysis of color and edge
features extraction. The ANN is used to learn the image patterns of orchid
leaves. The proposed method is then applied to identify the orchid leaves
and to determine whether the orchid is healthy or sick. With this pro-
posed model, the training score is 100%, and the testing score is 90%. This
research enables flower farmers to recognize the orchid disease and can
prevent the disease at an early stage.

8.3	 Algorithmic Study

1. Image Segmentation:
•	 Mean Shift Clustering: Given a set of data points, the algo-

rithm repetitively assigns each data point towards the closest
cluster center. The direction to the closest cluster centroid
is found out by where most of the points nearby are at. So
at each iteration, the data points will move closer to where
most points are, which will further lead to the cluster center.

162  AI Applications and Reconfigurable Architectures

When the algorithm stops, each point will be assigned to a
cluster.

•	 K-means Clustering: K-means algorithm is an iterative
algorithm. It tries to divide the dataset into K pre-defined,
distinct, non-overlapping subgroups (clusters), where each
data point belongs to only one group.

2. Classification:
•	 Support Vector Machine (SVM): In this, each data item is

plotted as a point in m-dimensional space (where m is the
number of features) such that the value of each feature is
the value of a particular coordinate. Then, classification is
performed by finding the hyper-plane that differentiates
between the two classes very well.

•	 Artificial Neural Network (ANN): This method works by
creating multiple varying classification models. It is done by
taking different samples of the data set and then combining
them together with their outputs.

8.4	 Proposed System

As shown in the proposed system, the first step is the data collection which
will be the input for the GPU. GPU performs its conversion i.e. RGB to
HSV, processing, feature extraction, and classification (Figure 8.7).

•	 Input image: Snapshots are accumulated by digital cameras.
Then store it in relevant format (jpeg, png, etc.)

•	 Conversion: This step includes formatting of the image
before being used to train the model. These are used to

Input Image GPU

Conversion

Processing

Feature
Extraction

Classification

Figure 8.7  Proposed system.

Crop Disease Detection Accelerated by GPU  163

eliminate the historical past noise. Thus, RGB images are
converted to grayscale images.

•	 Processing: This step includes differentiating images into
different parts according to their properties and features. All
the important features are taken out from the image in order
to classify it efficiently.

•	 Feature extraction: The process of extracting the matching
records from the picture and then transferring the given
information into a set of elements along with their labels is
feature extraction. Here, elements like color, size, shape, tex-
ture features are extracted.

•	 Classification: It is the process of labeling vectors or pixels in
the image for differentiating them so that it will be easy to
classify them immediately. Different classifiers like Artificial
Neural Network, decision trees, convolutional neural net-
work, support vector machine, K-nearest neighbor, etc are
used for classification

8.5	 Dataset

The plant village dataset is the dataset for plant disease detection. The
data set conservator created an automated system using GoogleNet and
AlexNet for disease detection, with 99.35% accuracy.

The data set records to have 54,309 images. It contains 14 crop species:
Blueberry, Apple, Cherry, Grape, Orange, Corn, Peach, Potato, Bell Pepper,
Raspberry, Soybean, Strawberry, Squash, Tomato. It contains 17 fungal
diseases, 2 molds (oomycete) diseases, 4 bacterial diseases, 2 viral diseases,
and 1 disease caused by a mite. 12 crop species also have images of healthy
leaves that are not visibly affected by a disease.

8.6	 Existing Techniques

1)	 Data collection: snapshots are accumulated. Then, store it in jpeg
format.

2)	 Preprocessing: preprocessing technique is used to remove the dis-
tortion present in the image. This RGB image is converted to a
grayscale image. While using an RGB image, one extra column

164  AI Applications and Reconfigurable Architectures

needs to be defined as an RGB value in the particular matrix. Thus,
by converting that image to grayscale it will reduce the matrix cal-
culation to some extent. That is why preprocessing is needed to
convert that RGB image to grayscale.

3)	 Image segmentation: Segmentation is used to label the pixels of an
image to cluster its characteristics for feature extraction purposes.
The edge detection segmentation technique is used for crop dis-
ease detection. Under this technique, it will calculate the gradient
of image intensities at every pixel.

4)	 Feature extraction: the technique of gaining the clustered records
from the image and transferring that information into a CSV file
with labels is feature extraction. The color, shape, size, texture, etc
features are extracted. The histogram of oriented gradients (HOG)
is one of the feature extraction techniques.

5)	 Classification: Classification is the processing of identifying a particu-
lar image. In this, user-defined labels are assigned to the image which
we are going to identify. It involves many machine learning and deep
learning algorithms. Among this SVM is mainly used as a machine
learning algorithm, while CNN is mostly used deep learning tech-
niques. Machine learning algorithms need separate image processing
which can be avoided in deep learning as that particular deep learn-
ing model performs image processing in it using its layered structure.

8.7	 Conclusion

Plant diseases are the most common problems of economic loss in the agricul-
tural industry, therefore, how to handle the plant disease and how to perform
a speedy inspection for plant disease are important issues for this industry.
The above survey has proposed a method for extracting crop images and for
enhancing the disease area of crop images. Therefore, an agricultural robot that
is capable of detecting diseases and monitoring the field condition is to be built.

References

	 1.	 Sai Krishna, P.M., Sahana, J., Savitha, V., Sharan, B.U., Suresh, A., Automatic
detection Of diseased plant using robotics and image processing. Int. J. Creat.
Res. Thoughts, 6, 2, 205–209, April 2018.

Crop Disease Detection Accelerated by GPU  165

	 2.	 More, R.B. and Bhosale, P.D.S., Agrobot-a robot for leaf diseases detection.
IJESC, 6, 7352–7355, 2016.

	 3.	 Yang, X. and Guo, T., Machine learning in plant disease research. European
Journal of BioMedical, 3, 6–9, March 31, 2017.

	 4.	 Vijai Singh, A.K., Mishra, Detection of plant leaf diseases using image seg-
mentation and soft computing techniques. Inf. Process. Agric., 4, 41–49, 2017.

	 5.	 Vijay Kumar, V. and Vani, K.S., Agricultural robot: Leaf disease detection
and monitoring the field condition using machine learning and image pro-
cessing. Int. J. Comput. Intell. Res., 14, 7, 551–561, 2018.

	 6.	 Patki, S.S. and Sable, D.G.S., Cotton leaf disease detection & classification
using multi SVM. Int. J. Adv. Res. Comput. Commun. Eng., ISO 3297:2007
Certified, 5, 10, 165–168, October 2016.

	 7.	 Khairnar, K. and Dagade, R., Disease detection and diagnosis on plant using
image processing–a review. Int. J. Comput. Appl., 0975–8887), 108, 13, 36–38,
December 2014.

	 8.	 Supian, M.B.A., Madzin, H., Albahari, E., Plant disease detection and classi-
fication using image processing techniques: A review. 2019 2nd International
Conference on Applied Engineering (ICAE), October 13, 2020.

	 9.	 Arivazhagan, S., Newlin Shebiah, R., Ananthi, S., Vishnu Varthini, S.,
Detection of the unhealthy region of plant leaves and classification of plant
leaf diseases using texture features. Agric. Eng. Int.: CIGR E-J., 15, 1, 211–217,
January 2013.

	 10.	 Jaware, T.H., Badgujar, R.D., Patil, P.G., Crop disease detection using image
segmentation. World J. Sci. Technol., 2, 4, 190-194, 2012.

	 11.	 Khirade, S.D. and Patil, A.B., Plant disease detection using image processing.
2015 International Conference on Computing Communication Control and
Automation, July 25, 2015.

	 12.	 Das, D., Singh, M., Mohanty, S.S., Chakravarty, S., Plant leaf disease detec-
tion using support vector machine. 2020 International Conference on
Communication and Signal Processing (ICCSP), Sept. 1, 2020.

	 13.	 Khirade, S.D. and Patil, A.B., Plant disease detection using image processing.
2015 International Conference on Computing Communication Control and
Automation, July 16, 2015.

	 14.	 Dhaygude, P.S.B. and Kumbhar, M.N.P., Agricultural plant leaf disease detec-
tion using image processing. Int. J. Adv. Res. Electr., Electron. Instrum. Eng., 2,
1, 599–602, January 2013.

	 15.	 Sharma, A. and Malhotra, P., LDA based tea leaf classification based on
shape, color and texture. Int. J. Comput. Eng. Res. Trends, 4, 12, 543–546,
2017.

	 16.	 Landge, M.P.S., Patil, S.A., Khot, D.S., Otari, O.D., Malavkar, U.G., Automatic
detection and classification of plant disease through image processing. Int. J.
Adv. Res. Comput. Sci. Software Eng., 3, 7, 798–801, July 2013.

166  AI Applications and Reconfigurable Architectures

	 17.	 Mangla, D.N., Raj, P.B., Hegde, S.G., Pooja, R., Paddy leaf disease detec-
tion using image processing and machine learning. Int. J. Innov. Res. Electr.
Electron. Instrum. Control Eng., 7, 2, 97–99, February 2019.

	 18.	 Hungilo, G.G., Emmanuel, G., Emanuel, A.W.R., Image processing tech-
niques for detecting and classification of plant disease–a review. IMIP 19:
Proceedings of the 2019 International Conference on Intelligent Medicine and
Image Processing, April 2019.

	 19.	 Jakjoud, F., Hatim, A., Bouaaddi, A., Deep learning application for plant dis-
eases detection. Proceedings of the 4th International Conference on Big Data
and Internet of Things, October 2019.

	 20.	 Li, L.-H., Chu, Y.-S., Chu, J.-Y., Guo, S.-H., A machine learning approach
for detection plant disease–taking orchid as example. Proceedings of the 3rd
International Conference on Vision, Image and Signal Processing, August
2019.

167

Anuradha D. Thakare and Sheetal Umesh Bhandari. Artificial Intelligence Applications and Reconfigurable
Architectures, (167–186) © 2023 Scrivener Publishing LLC

9

A Relative Study on Object
and Lane Detection

Rakshit Jha*, Shruti Sonune, Mohammad Taha Shahid and Santwana Gudadhe

Department of Computer Engineering, Pimpri Chinchwad College of Engineering,
Pune, India

Abstract
A self-driving car is a vehicle that can sense its surroundings and navigate with-
out the need for human intervention. It detects environments using a plethora of
techniques like radar, LIDAR, GPS, and computer vision. Lane detection is one of
the key features of self-driving cars. It is detecting the white/yellow color markings
on a surface to ensure that the automobile is within lane constraints. The chapter
provides a survey on lane detection approaches, based on “Performance analysis
of existing lane detection like CNN based, Hough Transform, Gaussian filter, and
canny edge detection and the proposed approaches on different datasets, such as
curved roads, big datasets, rainy days, yellow-white strips, day and night lights.
The chapter also presents a detailed direct comparison of the You Only Look
Once [YOLO] algorithm with Object detection using color masking and provides
insight on YOLO algorithms’ predecessors. YOLO is a simple and straightforward
algorithm that has a plethora of categories to detect objects live in real-time using
a camera, by an input video provided to it and, also in an image given to it as an
input. YOLO v3 is a very fast algorithm and was an incremental leap in the domain
of object detection. The most noticeable feature in YOLO v3 is its ability to make
detections at three completely different scales. YOLO v3 is one of the most prom-
inent classifiers, which is incrementally faster.

Keywords: YOLO, you only look once, lane detection, self-driving car, object
detection, SegNet, convolutional neutral network, lidar

*Corresponding author: rakshit.jha18@pccoepune.org

mailto:rakshit.jha18@pccoepune.org

168  AI Applications and Reconfigurable Architectures

9.1	 Introduction

Computers face rudimentary challenges that humans have never faced
while detecting objects. Humans recognize diverse objects, such as lap-
tops, cars, and headphones, whereas computers struggle to do the same
task. The reason behind this is that a computer sees frames and videos
as a set of pixels rather than as complete things. This is crucial as it is
the primary hurdle to overcome to make autonomous cars real. The first
task is to detect and stay within lane constraints. Identifying lanes is a
common task undertaken by all human drivers to maintain their vehicles
inside lane confines while driving. Lane detection is essential to reduce
the risk of collisions with other automobiles and to ensure that traffic
flows smoothly since it is a key duty for autonomous vehicles to do. We
can overcome the computer’s challenge to detect lanes using available
methods like Noise Reduction, Hough Transform, Gaussian filter, Region
of Interest (ROI), Convolutional Neural Network (CNN), etc. This chap-
ter also presents YOLO, a unified pipeline of Convolutional Neural
Networks developed in 2015 by Joseph Redmon and Ali Farhadi from
the University of Washington to detect objects whilst the vehicle is pres-
ent on the road. Before YOLO v1 object detection Convolutional Neural
Network’s (CNN), such as R-CNN’s used Region Proposed Networks
(RPNs) to predict and outline a bounding box on the input image.
R-CNNs were very difficult to optimize and very slow, and YOLO solved
this problem by being fast while simultaneously being capable of real
time applications. YOLO is a mono stage CNN that can be trained end
to end, is easy to optimize, and works in real time. The chapter presents
the YOLO version’s history and compares it with other available object
detection methods like Color Masking, OverFeat, Region Convolutional
Neural Networks (R-CNNs), Very Deep Convolutional Networks, Deep
Residual Learning for Image Recognition, Deep Neural Networks for
Object Detection.

9.2	 Algorithmic Survey

The chapter presents the algorithmic survey of object detection algorithms,
i.e., Color Masking and YOLO v3 Object Detection with its available librar-
ies and advantages and disadvantages.

A Relative Study on Object and Lane Detection  169

9.2.1	 Object Detection Using Color Masking

9.2.1.1	 Color Masking

Color masking is a simple technique that provides the programmer with
fine control of updating pixel values on screen [11]. It is an important part
of YOLO in color masking, by restricting the color channels, each channel
can be used to store a completely different image. Color masking can be
used for object detection by setting the algorithm to detect a particular
color channel and using it to localize the object in the input grid.

9.2.1.2	 Modules/Libraries Used

The chapter presents the module/libraries and steps with installation that
are used in the program.

The library used in the program is cv2. Open-CV (cv2) of python bind-
ings, is designed to solve problems based solely on computer vision. To
install and import Open-CV into the program use: [13] Installation:

�sudo apt-get install python3-opencv #-Ubuntu pip install opencv-
python #-Windows
Building from source: Click here
Importing: import cv2

9.2.1.3	 Algorithm for Color Masking

This chapter will mainly be detecting Blue and Red colors [10]

•	 Define lower and upper bounds of the Mask that will be
detected later

•	 Prepare text for the Label that will be displayed when an
object is detected

•	 Define a loop, set its value to True
•	 Capture frame using open cv library
•	 Convert frames to HSV format
•	 Implement the mask with found colors to HSV Image
•	 Find and Assign Contours by selecting the appropriate ver-

sion of Open-CV
•	 Find the largest Contour

https://docs.opencv.org/master/d5/de5/tutorial_py_setup_in_windows.html

170  AI Applications and Reconfigurable Architectures

•	 Figure 9.1 discusses about the architecture of YOLO CNNs
•	 Draw a bounding box on the current BGR Frame
•	 Put the text with label on the Frame
•	 Show BGR Frame with detected Object
•	 Name the opened window
•	 Break the loop if “q” is pressed
•	 Close all windows.

9.2.1.4	 Advantages and Disadvantages

If humans are provided with an object that is homogeneous in color and
provided that the conditions are just right, the object can be localized and
detected with good accuracy. The algorithm is very fast but comes with a
few restrictions. A disadvantage of this algorithm is that it struggles under
various light conditions. If the background is the same color as the object,
there is a high chance that the background will be detected as an object.
The algorithm also works best if the object and the background are station-
ary, i.e., there is no relative motion of the camera concerning the object.

9.2.1.5	 Verdict

The algorithm of Object Detection with Color Masking is good but is
bound by a lot of factors for it to detect objects. It is very snappy but there
is a greater chance of a miss than that of a hit due to its inconsistency in
differentiating the object and the background.

448

448

7

7

112

112

3 192

3
3 3

3
3
3 3

3
3
3

56

56

256 512 1024 1024 1024

28

28

14

14

7

7

7

7

7

7
4096 30

Conv. Layer
7x7x64-s-2

Maxpool Layer
2x2-s-2

Conv. Layer
3x3x192

Maxpool Layer
2x2-s-2

Conv. Layers
1x1x128
3x3x256
1x1x256
3x3x512

Maxpool Layer
2x2-s-2

Conv. Layers
1x1x256
3x3x512
1x1x512

3x3x1024
Maxpool Layer

2x2-s-2

Conv. Layers
1x1x512

3x3x1024
3x3x1024

3x3x1024-s-2

Conv. Layer Conv. LayerConv. Layers
3x3x1024
3x3x1024

x4 x2} }

Figure 9.1  Architecture diagram of you only look once (YOLO) convolutional neural
network (CNN) [26].

A Relative Study on Object and Lane Detection  171

9.2.2	 YOLO v3 Object Detection

YOLO v3 was a drastic improvement in the field of object detection. Taking
inputs at 320 × 320 it runs at 22 ms at 28.2 mAP, which is three times faster
than SSD but equally accurate [10].

9.2.2.1	 YOLO v3

YOLO v3 has an interesting way of predicting bounding boxes around a
detected object. It uses dimension clusters as anchor boxes. It predicts four
corner points for each box tx, ty, tw, th. While training the model, the error
function used is the sum of squared error loss and the objectness score is
predicted using logistic regression. For multiclass predictions, independent
logistic classifiers are used instead of a softmax layer since softmax was
unnecessary, and for class predictions, a binary cross entropy loss was used
[9, 10]. The Libraries used in YOLO v3 are numpy, open-cv and, time. To
install and import these libraries, including the following code: Installing
libraries For Windows, pip install numpy pip install python-opencv For
Ubuntu, sudo apt install numpy sudo apt install python-opencv.

Importing numpy, cv2, and time as required libraries.

9.2.2.2	 Algorithm Architecture

Read the video stream from the camera and prepare variables for the spa-
tial dimension of every frame.

•	 Load the COCO labels
•	 Load the trained YOLO object Detection file
•	 Get names as a list of all layers from the network
•	 Get the output layers from YOLO v3
•	 Set minimum probability and threshold for bounding boxes
•	 Generate different colors for every different object detected
•	 Define a loop to accept frames from the camera
•	 Implement a forward pass using blob
•	 Prepare a list for bounding boxes that are detected
•	 If the confidence value is larger than minimum probability

only then object is detected
•	 Prepare labels and confidence for bounding boxes
•	 Show results in real time
•	 Close all windows.

172  AI Applications and Reconfigurable Architectures

9.2.2.3	 Advantages and Disadvantages

A few downsides to the algorithm can be noticed by an mAP score between
0.5 and 0.95 IOU as shown in Figure 9.2, which can escalate by the algo-
rithms’ successors. The average accuracy for medium and enormous
objects can be improved as they are a minimum of 5% behind the best of
algorithms. A few upsides to the algorithm is that there is a newer archi-
tecture that boasts of upsampling, residual skip connections, and makes
predictions at three scales, which are precisely given by downsampling
the dimensions of the input image. It is very capable of detecting smaller
objects when compared to its predecessors or other algorithms. YOLO v3
predicts a larger count of bounding boxes than its predecessors for an input
image of equivalent size. Overall, it is a fantastic algorithm to use.

9.2.2.4	 Verdict

It is a very fast algorithm and has an on par accuracy with the best in
class 2-stage detectors, which makes it a very powerful object detection
algorithm. YOLO v3 can be applied in numerous domains some of which
contain sensitive environments which require high accuracy and a low
latency model, i.e., autonomous driving, security, etc., scenarios. It can
also be used in product monitoring where a little dip inaccuracy can be

G

F

D

E

B C

CO
CO

 m
A

P-
50

58

48

56

54

52

50

50 100 150 250200
inference time (ms)

YOLOv3

RetinaNet-101
RetinaNet-50

Method mAP-50 time
[B] SSD321
[C] DSSD321
[D] R-FCN
[E] SSD513
[F] DSSD513
[G] FPN FRCN
RetinaNet-50-500
RetinaNet-101-500
RetinaNet-101-800
YOLOv3-320
YOLOv3-416
YOLOv3-608

45.4
46.1
51.9
50.4
53.3
59.1
50.9
53.1
57.5
51.5
55.3
57.9

61
85
85
125
156
172
73
90
198
22
29
51

Figure 9.2  The graph displays the speed/accuracy trade off on the mAP at 0.5 IOU
metric. You can tell YOLOv3 is superior because it has a very high value and is placed to
the far left [7, 15].

A Relative Study on Object and Lane Detection  173

tolerated for a higher speed, but since this algorithm is very fast and very
accurate, it makes up a fantastic algorithm for most use cases. YOLO v3
is one of the best object detection algorithms that has been developed so
far.

9.3	 YOLO v/s Other Algorithms

Before YOLO, several algorithms held the mantle for very good object
detection algorithms. Some of them are listed below.

9.3.1	 OverFeat

OverFeat: [1] was also counted amongst the top algorithms. It classified
localized and detected objects. OverFeat proposed a novel DLL approach
that approached localization by predicting the boundaries of the object.
OverFeat won the ILSVRC2013. OverFeat uses a single ConvNet to per-
form object detection.

9.3.2	 Region Convolutional Neural Networks

R-CNNs enhanced the mean Average Precision (mAP) by more than 30%
when it was initially released. It combined two methods:

•	 Applying high quality CNNs to bottom up region proposals
for localization and segmentation

•	 When low training data was provided, supervised pretrain-
ing following domain specific fine tuning yields significantly
better results.

9.3.3	 Very Deep Convolutional Networks for Large-Scale
Image Recognition

Very deep CNs have one primary focus. They have high depth architecture
with small (3 × 3) convolutional filters. Deep layers had a drastic improve-
ment on prior configurations by pushing the depths to 16-19 weight layers
[2]. This method has a high depth configuration and generalizes well to
other datasets, achieving accurate results.

174  AI Applications and Reconfigurable Architectures

9.3.4	 Deep Residual Learning for Image Recognition

Conventional DNNs is tough to train and hence ResNets [14] are designed
in a residual framework that is significantly deeper than the ones used ear-
lier. Instead of learning unreferenced functions, the layer inputs learn with
rewritten residual functions. Due to a substantial increase in the depth of
the model, it performs with higher accuracy at greater depths and is easier
to optimize as shown in Figure 9.3.

9.3.5	 Deep Neural Networks for Object Detection

DNNs have an outstanding performance on image classification tasks
[12]. Using DNNs for object detection enhances the ability of DNNs since
the objects in the image can not only be classified but also be localized
within a frame by using bounding box masks. DNNs do not require a hand
designed model but instead build themselves up by finding patterns in the
data provided to it. This level of simplicity and flexibility has easier applica-
tion to a wide variety of various class categories and it also outputs a better
detection performance across a wider range of objects rigid and deform-
able ones.

9.4	 YOLO and Its Version History

9.4.1	 YOLO v1

The first version of YOLO accepted the input image in an NxN grid [10],
where N can be any number but YOLO v1 preferred N=7. If the object
were to be present in the preferred grid, the algorithm was programmed

Real-Time Detectors Train mAP FPS
100Hz DPM 2007

2007
2007+2012

2007+2012
2007+2012
2007+2012
2007+2012

2007+2012

16.0
26.1
52.7
63.4

155

100
30

2007 30.4

70.0
73.2
62.1
66.4

0.5

15

18
21

2007 53.5 6

7

45

30Hz DPM
Fast YOLO
YOLO
Less Than Real-Time
Fastest DPM

Fast R-CNN

Faster R-CNN ZF
YOLO VGG-16

Faster R-CNN VGG-16

R-CNN Minus R

Fast R-CNN YOLO
Background: 13.6% Background: 4.75%

Other: 19%
Other: 4.0%

Sim: 4.3%

Sim: 6.75%

Loc: 8.6% Loc: 19.0%

Correct: 71.6% Correct: 65.5%

Figure 9.3  Real time systems on PASCAL VOC 2007. Notice that YOLO v1 when
compared to Faster R-CNN struggles to localize objects correctly [5, 10].

A Relative Study on Object and Lane Detection  175

to detect it. The grid is assigned based on the center of the object axis as
oberved in Figure 9.4. This was an infant stage in object detection and
could detect at maximum NxN number of objects present in the grid. Due
to this, if a single frame consisted of more than a single object, only one
object would be detected at a time. Among the NxN grid, all of the grid
cells were detected simultaneously which made YOLO a very fast algo-
rithm in comparison. For each of the bounding boxes inside the NxN grid,
the model outputs a confidence score about the prediction of the object.
YOLO v1 was trained to detect 20 different class objects. GoogleNet model
[4] inspired the single ConvNetwork for image classification.

9.4.2	 Fast YOLO

The name is self-defining and lives up to its name. The model uses a
nine-layer convolutional network instead of a 24-layer. This reduction in
the count of layers speeds up the model significantly but also creates an
alternative side effect of a lower mean Average Precision. YOLO VGG-16
utilizes VGG-16 as its main component in place of the original YOLO net-
work. It does provide a higher accuracy but takes a toll by being slower
than in real time.

Bounding boxes + confidence

S x S grid on input

Class probability map

Final detections

Figure 9.4  YOLO v1 object detection (Source: You only look once: Unified, real time
object detection) [5, 10].

176  AI Applications and Reconfigurable Architectures

9.4.3	 YOLO v2

YOLO v1 consisted of a major drawback of localization errors and having
a low recall. Hence the second version was built based on improving the
localization and recall metrics [10]. To achieve a higher performing model
a few new implementations were experimented with. The methods are
(1) BatchNormalization- This has an additional 2% enhancement in mAP.
(2) High-resolution classifier. The resolution was increased to 448 × 448
from the initial value of 224 × 224 for detection. (3) Convolutional with
Anchor Boxes—this idea added a major functionality update to the model,
it could now detect multiple objects in the same grid. YOLO v2 was com-
paratively faster than a variety of detection systems.

9.4.4	 YOLO9000

This model was solely built to identify a higher number of classes than the
original YOLO model. YOLO9000 could detect and classify 9000 different
categories of classes [6].

9.4.5	 YOLO v3

YOLO v3 was bigger than the previous models but provided accurate
results as output. YOLO v3 was very similar to YOLO9000 in terms of

Faster R-CNN SSD512

Faster

Resnet

R-CNN

Fast R-CNN

R-CNN

YOLO

M
ea

n
Av

er
ag

e
Pr

ec
is

io
n

YOLOv2

80

70

60
5030 1000

SSD300

Frames Per Second

Accuracy and speed on VOC 2007.

Figure 9.5  Test detection results on PASCAL VOC2012:YOLOv2 acts equivalent to
detectors like SSD512 and Faster R-CNN with ResNet and is 2-10×quicker [6].

A Relative Study on Object and Lane Detection  177

predicting the boundary boxes with coordinates (tx, ty, tw, th) around the
detected object [9, 10]. By using logistic regression, each bounding box
predicted a confidence score of what the detected object was. Since the
Softmax layer could only assign one class per object, this was a potential
drawback and was eliminated from this model as seen in Figure 9.5. This
model uses independent Logistic Classifiers for any class. YOLO v1 and
v2 struggled to detect tiny objects in the frame and hence v3 used short-
cut connections to get better results. On a medium and larger size object,
YOLO v3 performed worse than the previous models. YOLO v3 showed
numerous and significant benefits over other detection systems as seen in
Figure 9.6.

9.4.6	 YOLO v4

YOLO v4 runs two times faster than the EfficientDet with a similar per-
formance output. This version improved the YOLO v3’s AP and Frame
Rate by 10% and 12%. YOLO v4 used multiple data improved technol-
ogies, such as geometric distortion, illumination distortion, etc. [8, 10],
creatively use Image Occlusion Random Erase-Cutout-Hide and SeekGrid
Mask MixUp technologies as well, and multiple images augmented models
were also trained by using augmentation types, such as MixUp, CutMix,
Crop, Rotate, Mosaic, Blur, etc. Also, the Self-Adversarial Training is used
for better outputs.

G

F

D
E

B C

CO
CO

 A
P

38

28

36

34

32

30

50 100 150 250200
inference time (ms)

YOLOv3

RetinaNet-101
RetinaNet-50

Method mAP time
[B] SSD321
[C] DSSD321
[D] R-FCN
[E] SSD513
[F] DSSD513
[G] FPN FRCN
RetinaNet-50-500
RetinaNet-101-500
RetinaNet-101-800
YOLOv3-320
YOLOv3-416
YOLOv3-608

61
85
85
125
156
172
73
90
198
22
29
51

28.0
28.0
29.9
31.2
33.2
36.2
32.5
34.4
37.8
28.2
31.0
33.0

Figure 9.6  YOLO version 3 conceptual design (Source: YOLO v3 plotting against
RetinaNet) [7].

178  AI Applications and Reconfigurable Architectures

9.4.7	 YOLO v5

YOLO v5 has not been published. The pipeline hence can only be
understood from a code perspective [5]. YOLO v5 is potentially to be
a huge performance upgrade over YOLO v4 due to a huge increase in
the Mosaic data. Mosaic data has the potential to solve the most trou-
blesome “small object problem” during model training. Figure 9.7 dis-
cusses the MS COCO Object detection dataset that aids in training the
YOLO Model.

9.4.8	 PP-YOLO

PP-YOLO is the acronym for PaddlePaddle YOLO [9]. This model cre-
ates an active balance between the efficiency of the model (72.9FPS) and
its effectiveness (45.2 mAP), passing the state-of-the-art YOLO v4 model
and the EfficientDet model. To view the source code Click Here. It works
on the principle of a detection net followed by a detection head for clas-
sification and localization in the input image. When comparing YOLO v4
to YOLO v5, a significant improvement in object detection is observed
as in Figure 9.8.

MS COCO Object Detection
50

48

46

44

42

40

38

36

34

32

30
30 50 70 9010 110 130

EfficientDet (D0-D4) real-time

YOLOv4 (ours)

YOLOv3

YOLOv4 (ours)
YOLOv3 [63]

ASFF*

EfficientDet [77]
ATSS [94]

ASFF* [48]
CenterMask* [40]

FPS (V100)

A
P

Figure 9.7   MS COCO object detection graph [8].

A Relative Study on Object and Lane Detection  179

9.5	 A Survey in Lane Detection Approaches

In primitive computer vision techniques, it is often challenging to detect
the lane positions based on road conditions, shadows, distortion on the
day or night lights, heights of the cameras, etc., there are also several lane
markings, such as solid, double, single, and broken markings, each with
a distinct number or color. To overcome this problem, a “convolutional
neural network” [16] approach is presented. It calculated the lane loca-
tion’s marker in the input image concerning the picture’s baseline, where
the picture was captured from the vehicle’s downward facing camera. The
proposed method is not reliant on preprocessing, postprocessing, or cus-
tom features. In 99% of situations, the system estimated the lane location
with fewer than five pixels of inaccuracy in real time using an embedded
vehicle platform.

To locate the lanes, the device uses a camera installed on the automobile
to capture the front view, then uses a pair of hyperbolas connected to the
lane’s sidewalls. The Hough transform is then used to extract the lanes. The
proposed lane recognition method is used on both colored and uncolored
roads, including curvy and straightforward roads, in a variety of circum-
stances of weather. Although the scheme was quick enough for real time
needs, the proposed system was unable to identify steep curves in the front
of the image, as well as precise lane recognition in heavy rain. Additionally,
the acquired frames were not very reliable due to vehicle movement [18].

The standard methodology divides the work into many elements, such as
route planning, lane identification, and logic of control, which are generally

CO
CO

 A
P

va
l

50

55

45

40

40
30

35

30 5010 20

YOLOv5m6

YOLOv516 YOLOv5x6

YOLOv5m6

YOLOv5s6
YOLOv516
YOLOv5x6

YOLOv5s6

EfficientDet

Faster GPU Speed (ms/img)

Better

0

D0

D1
D2

D3
D4

D5

Figure 9.8   Source: YOLO v5 vs its other versions.

180  AI Applications and Reconfigurable Architectures

explored independently. Errors might also accrue from one phase to the
next, resulting in the erroneous final output. To overcome this problem
Convolutional neural networks are used to adopt learning from the start
to the finish by using the raw picture as an input to automatically output
the signal of command (CNNs) [19]. The results of the testing indicate that
the model is capable of producing very precise vehicle steering. The dataset
comma.ao was utilized. Even though they look to be highly realistic due to
the cutting edge gaming engine, the information and variations they offer
are insufficient to match real world realities. Because of the dataset neither
the original sized pictures nor the adjusting of the camera settings with the
simulation and enhancement of data was added in the study.

The automobile should be able to discern between various elements on
the road and recognize components of interest, such as other cars, pedes-
trian crossings, stop lights, and so on. To develop the capacity to navigate
safely between road lanes while complying with traffic laws. A system was
proposed in which a Yolo method was used on a single neural network
on the entire picture to partition the picture into parts and forecast the
bounding boxes and probability in each field [25]. By using regression
techniques to identify the best possible match of the road segment identi-
fication by obtaining points on the right and left, the lane layout’s approxi-
mation functions were constructed. The finalized device sensed traffic and
traversed the highways by maintaining a watch on both sides of the road.
The single network assessment is 1000× quicker than RCNN and 100 times
quicker than Fast R-CNN. The car’s fault tolerance and capacity to adapt
to diverse environmental situations are both limited. To make the automo-
bile overtake or bypass other cars, several cameras were not employed for
different views.

For detecting curves a novel model was suggested that uses a Gaussian
filter and the Hough transform to recognize lanes in a variety of environ-
ments [22]. A new approach for recognizing road lanes that combine MSER
and Hough and delivers good results in constant driving in reliable lane
detection scenarios which use DNN [23]. CNN- and RNN-based meth-
odologies are presented for detecting road border lanes [21]. Gabor et al.
[24] presented that the LIDAR can detect the surroundings and offered an
automatic lane shifting strategy for automobiles.

Reviews of the literature on lane detection algorithms, integration
approaches, and assessment techniques were provided and also offered an
overview of previous lane detection systems from lane detection techniques

A Relative Study on Object and Lane Detection  181

based on the vision which has been advanced, integrated assessments, as
well as views on concurrent vision based on ACP, were provided [17]. The
Table 9.1 discusses about the performance review of various methods in
Lane Detection. Because a significant handful of previous research does not
provide adequate details about the mixing approaches of detecting lanes,
sensors, and different technologies, there is a need for more research. The
chapter proposed a mixing approach and divided them into three catego-
ries: sensor, system, and algorithm level integration. A new lane detection
was developed where the ACP is used to develop a lane detecting system
framework, parallel theory for more efficient lane detection model training

Table 9.1  Performance overview of the proposed lane
detecting methods [20].

Methodology Accuracy

Gaussian Filter + Hough Transform 89%

MSER + Hough 92%

HSV-ROI + Hough 95%

CNN Based 96%

Improved LD + Hough 96%

Lanenet 97%

Table 9.2  Summary of data collection [20].

Image type Total images Training (80%) Testing (20%)

Day Time 1400 1120 280

Low Light 1200 960 240

Night Time 1400 1120 280

Read and Decode
video file into

frames

Grayscale
Conversion of

image

Reduce noise by
applying filter

Detecting edges

Mask the canny
image

Find coordinates
or road lanes

Fit the coordinates
into the canny

image

Edge detection is
done

Figure 9.9  Flow diagram of algorithm for lane detection [3].

182  AI Applications and Reconfigurable Architectures

and assessment. “Artificial society, Computational experiments, and paral-
lel execution are the three major components of parallel systems” [17]. The
goal of the ACP based concurrent lane detecting system is to produce par-
allel virtualization situations to train models and improve the real world
system. Table 9.2 discusses about the data collection summary of various
images collected.

The methods use a convolutional neural network to get the character-
istics of the edge, which comes after the normalization step to achieve the
best results. The most widely used methods for detecting road lanes were
used including Hough Transform, Detection of Canny edge using Hough,
HSV-ROI and Convolutional Neural Network (CNN, or ConvNet) based
[20]. The Figure 9.9 shows the flow diagram of algorithm for the lane
detection that can be used in real-time.

9.5.1	 Lidar vs. Other Sensors

Vehicles must be able to detect their environment with the help of sen-
sors like cameras, lidar, and radar before being able to drive autonomously.
Lidar sensors are used by self-driving car businesses, such as Alphabet’s
Waymo and General Motors’ Cruise. Apple has chosen to outsource por-
tions of its self-driving technology, such as lidar sensors, to third parties.
Tesla has filed to use a replacement kind of “millimeter-wave radar sensor”
for forward facing radar, which is hidden at the front of the car. In unfavor-
able conditions that LIDAR is not able to see. As a result, autonomous cars
employing LIDAR must still use radar to drive in such inclement weather,
increasing the cost of autonomous vehicles, and in favorable conditions,
cameras can already estimate distance and see very well.

9.6	 Conclusion

In this literature survey, a summary of lane detection using different
approaches, algorithms, and datasets is given. The survey will be very useful
for those who are building a lane detection algorithm for autonomous cars.
In the survey, the paper came to conclude that the most commonly used
methodologies to implement the lane detection systems are Convolutional
Neural Network (CNN), Hough Transform, Gaussian filter, and canny
edge detection based and very little amount of research has been done on
unmarked roads using some of the most commonly utilized lane detection

A Relative Study on Object and Lane Detection  183

steps, i.e., noise reduction, edge detection, and Hough transform. There are
a lot of methodologies for lane detection. However, the basic steps involved
altogether in the methodologies are similar. This chapter will help to increase
the accuracy of existing or upcoming models related to lane detection.

This chapter also talks about YOLO, which makes up for an excellent
algorithm for object detection as it is highly optimized to detect objects
under all circumstances whether it be stationary or moving. The agility
of the YOLO algorithm makes it suitable for all scenarios. The above sur-
vey compared YOLO with all state-of-the-art algorithms and YOLO came
out to be the best and the most optimized algorithm of all. The chapter
also compared YOLO to its predecessor versions, and every new version of
YOLO had an incremental improvement turning into the state-of-the-art
algorithm it is today.

References

	 1.	 Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.,
OverFeat: Integrated recognition, localization and detection using con-
volutional networks, Paper presented at 2nd International Conference on
Learning Representations, ICLR 2014, Banff, Canada, 2014, arXiv preprint
arXiv:1312.6229v4, (last accessed on 20/01/22).

	 2.	 Simonyan, K. and Zisserman, A., Very deep convolutional networks for
large-scale image recognition, CoRR abs/1409.1556, p. 2, 2015, arXiv pre-
print arXiv:1409.1556v6, (last accessed on 20/01/22).

	 3.	 Vaishnav, D., Open CV—Real time road lane detection, Dec. 2019, Accessed
on: April. 29, 2021. [Online]. Available: https://www.geeksforgeeks.org/
opencv-real-time-road-lane-detection/, (last accessed on 20/01/22).

	 4.	 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A., Going deeper with convolutions, in: 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1–9, 2015. arXivpreprint arXiv:1409.4842v1, (last accessed on 20/01/22).

	 5.	 Redmon, J., Divvala, S., Girshick, R., Farhadi, A., You only look once:
Unified, real-time object detection, in: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 779–788, 2016. arXiv preprint
arXiv:1506.02640v5, (last accessed on 18/01/22).

	 6.	 Redmon, J. and Farhadi, A., YOLO 9000: Better, faster, stronger, in: 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 6517–6525, 2017. doi: 10.1109/CVPR.2017.690. arXiv preprint arX-
iv:1612.08242v1, (last accessed on 12/01/22).

https://www.geeksforgeeks.org/opencv-real-time-road-lane-detection/
https://www.geeksforgeeks.org/opencv-real-time-road-lane-detection/

184  AI Applications and Reconfigurable Architectures

	 7.	 Redmon, J. and Farhadi, A., YOLOv3: An incremental improvement, 2018.
arXiv preprint arXiv:1804.02767v1, (last accessed on 2/01/22).

	 8.	 Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y., YOLOv4: Optimal speed and
accuracy of object detection, 2020, arXiv preprint arXiv:2004.10934v1, (last
accessed on 2/01/22).

	 9.	 Long, X., Deng, K., Wang, G., Zhang, Y., Dang, Q., Gao, Y., Shen, H., Ren,
J., Han, S.H., Ding, E., Wen, S., PP-YOLO: An effective and efficient imple-
mentation of object detector, 2014, arXiv preprint arXiv:2007.12099v3, (last
accessed on 13/01/22).

	 10.	 Redmon, J., Divvala, S., Girshick, R., Farhadi, A., You only look once:
Unified, real-time object detection, 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 779–788, 2016. arXiv preprint
arXiv:1506.02640v4, (last accessed on 13/01/22).

	 11.	 Jamil, K., Maneuvering color mask into object detection, Aug. 2020. Accessed
on: Aug. 28, 2020. [Online]. Available: https://medium.com/globant/
maneuvering-color-mask-into-objectdetection-fce61bf891d1, (last accessed
on 20/01/22).

	 12.	 Szegedy, C., Toshev, A., Erhan, D., Deep Neural Networks for Object
Detection, https://storage.googleapis.com/pub-tools-public-publicationdata/
pdf/41457.pdf, (last accessed on 20/01/22).

	 13.	 Install open CV-python in windows, May 27, 2021. Accessed on: May. 27,
2021. [Online]. Available: https: {{docs.opencv.org{master{d5{de5{tutorial-
pysetupinwindows.html, (last accessed on 19/01/22).

	 14.	 He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image recogni-
tion, 2015, arXiv: 1512.03385, (last accessed on 19/01/22).

	 15.	 Shah, M. and Kapdi, R., Object detection using deep neural networks, in:
2017 International Conference on Intelligent Computing and Control Systems
(ICICCS), pp. 787–790, 2017. A., Koduri, T., Bailur, S.V., Carey, K.J., Murali,
V.N., (last accessed on 2/01/22).

	 16.	 Assidiq, A.A., Khalifa, O.O., Islam, M.R., Khan, S., Real time lane detection
for autonomous vehicles, in: 2008 International Conference on Computer and
Communication Engineering, Kuala Lumpur, pp. 82–88, 2008, (last accessed
on 2/01/22).

	 17.	 Chen, Z. and Huang, X., End-to-end learning for lane keeping of self-driving
cars, in: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1856–1860, 2017,
(last accessed on 13/01/22).

	 18.	 Satti, S.K., Suganya Devi, K., Dhar, P., Srinivasan, P., A machine learning
approach for detecting and tracking road boundary lanes. ICT Express, 7, 1,
99–103, ISSN 2405-9595, 2021, (last accessed on 2/01/22).

	 19.	 Gurghian, A., Koduri, T., Bailur, S.V., Carey, K.J., Murali, V.N., DeepLanes:
End-to-end lane position estimation using deep neural networks. 2016

https://storage.googleapis.com/pub-tools-public-publicationdata/pdf/41457.pdf
https://storage.googleapis.com/pub-tools-public-publicationdata/pdf/41457.pdf

A Relative Study on Object and Lane Detection  185

IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Las Vegas, NV, USA, pp. 38–45, 2016.

	 20.	 Xing, Y., Lv, C., Chen, L., Wang, H., Wang, H., Cao, D., Velenis, E., Wang,
F.-Y., Advances in vision-based lane detection: Algorithms, integration,
assessment, and perspectives on ACP based parallel vision. IEEE/CAA J.
Autom. Sin., 5, 3, 645–661, Mar. 2018.

	 21.	 Zou, Q., et al., Robust lane detection from continuous driving scenes using
deep neural networks. IEEE Trans. Veh. Technol., 69, 1, 2019, https://doi.
org/10.48550/arXiv.1903.02193, (last accessed on 08/01/22).

	 22.	 Dubey, A. and Bhurchandi, K.M., Robust and real time detection of curvy
lanes (curves) with desired slopes for driving assistance and autonomous
vehicles, 2015, arXiv preprint arXiv:1501.03124, (last accessed on 08/01/22).

	 23.	 Mammeri, A., Boukerche, A., Lu, G., Lane detection and tracking system
based on the MSER algorithm, hough transform and kalman filter, in:
Proceedings of the 17th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, p. 266, 2014, (last accessed on
11/01/22).

	 24.	 Peter, G., Kiss, B., Tihanyi, V., Vision and odometry based autonomous
vehicle lane changing. ICT Express, 5, 4, 219–226, 2019, (last accessed on
12/01/22).

	 25.	 Dubey, A. and Bhurchandi, K.M., Robust and real time detection of curvy
lanes (curves) with desired slopes for driving assistance and autonomous
vehicles. Journal of Computer Science & Information Technology (IJCSIT),
2015, arXiv preprint arXiv:1501.03124, (last accessed on 12/01/22).

	 26.	 Artamonov, N. and Yakimov, P., Towards real-time traffic sign recognition
via YOLO on a mobile GPU. J. Phys. Conf. Ser., 1096, 012086, 2018. Available:
https://www.researchgate.net/figure/Architecture-of-YOLO-CNN_fig3_
329564805, (last accessed on 30/01/22).

https://doi.org/10.48550/arXiv.1903.02193
https://doi.org/10.48550/arXiv.1903.02193
https://www.researchgate.net/figure/Architecture-of-YOLO-CNN_fig3_329564805
https://www.researchgate.net/figure/Architecture-of-YOLO-CNN_fig3_329564805

187

Anuradha D. Thakare and Sheetal Umesh Bhandari. Artificial Intelligence Applications and Reconfigurable
Architectures, (187–204) © 2023 Scrivener Publishing LLC

10

FPGA-Based Automatic Speech
Emotion Recognition Using

Deep Learning Algorithm
Rupali Kawade*, Triveni Dhamale and Dipali Dhake*

PCET’s Pimpri Chinchwad College of Engineering & Reseach, Ravet, Pune, India

Abstract
There is increasing research in the field of speech emotion recognition (SER) due
to its applicability in human computer interfaces (HCI). The literature reviewed in
this area proposed different systems to recognize the emotional status of person
through speech, and their studies focuses on use of appropriate databases, selec-
tion of suitable features and classifications techniques to improve the recognition
accuracy. Researchers have been recently demonstrated deep learning techniques
as an alternative to traditional SER techniques that reduces the need of identifying
the handcrafted features. The high-dimensional features of proposed deep learn-
ing algorithm limit its implementations on the standalone processing boards. This
article presents the implementation of deep learning–based SER on multicore pro-
grammable PYNQ-ZQ board that gives adaptability to the multidimensional deep
features of speech signals. The proposed SER system is successfully implemented
on the PYNQ-ZQ FPGA board and it results in an accuracy of 85.33%. It is noted
that the FPGA implementation minimizes the delay for the SER compared with
conventional central processing unit.

Keywords:  Speech emotion recognition, human computer interface, deep
learning

*Corresponding author: rupali.kawade@pccoer.in

mailto:rupali.kawade@pccoer.in

188  AI Applications and Reconfigurable Architectures

10.1	 Introduction

To interact among humans speech is found to be the easiest, most effec-
tive, and preferred form of communication as it contains different forms
of information. Basically, speech signal holds the message to be conveyed
to others and in addition to that speech also exhibits the secondary in for-
mation like gender, speaker identity and emotions. There is a constantly
increasing necessity to make the human-machine interaction more realis-
tic due to the advancement in technologies [1]. For that to build the inter-
action process smoother, identifying and classifying the emotions from
utterance becomes a significant task of HCI. Besides, SER is not only lim-
ited to HCIs [2].

Emotion recognition is useful in many areas to gain the knowledge
about the mental health and response of the speaker. For audio sur-
veillance, intelligent robots, E-learning, clinical studies, call centers,
computer games the SER systems plays significant role [3]. In case of
E-learning, teaching quality can be enhanced by collecting information
of emotional state of students. Therefore, SER have strained meticulous
attention amid the researchers worldwide [4]. The increased number of
publication papers in each year from 2010 to 2019 is shown in Figure
10.1.

The emotion recognition is a multi-disciplinary research field which
involves various types of inputs for identifying emotions [5]. Many
researchers focus on facial expressions and acoustic, prosodic speech
features. Now a day’s emotion recognition using electroencephalograph
(EEG) also gaining interest. However, SER from facial expressions is com-
plex also it needs good quality cameras to capture face images. The com-
plexity of the realization using this technique is also high [6]. EEG method

Speech Processing

Classification
Recognized

Emotion

Feature
Extraction

Feature
Selection Speech

Signal

Database

Figure 10.1  Typical SER system.

FPGA-Based Automatic SER Using Deep Learning  189

gives more accurate results but the data cannot be easily captured using
EEG. It needs special devices to get the data to classify emotion. Most of
the SER systems the speech has signals are captured by either microphones
or smart phones [7].

A simplified block diagram used in SER is demonstrated in Figure
10.1. The initial stage is speech signal processing in which speech signal
enhancement is to be done to remove noisy components. In second stage,
there are two subparts, i.e., feature extraction and selection. The essential
features are extracted from pre-processed speech and from those features,
feature set is selected for further process. This feature extraction and selec-
tion is carried out by analyzing the speech in time domain and frequency
domain. At the last stage, different classifiers are employed for classifica-
tion of selected features in different classes. Classifiers use the labeled data
from the databases for training and testing. Based on classification, emo-
tions are identified [2].

This article presents the FPGA implementation deep learning–based
SER on PYNQ board. The proposed deep learning–based SER uses eight
emotions, such as happy, calm, neutral, sad, disgust, boredom, surprise,
and anger from the RAVDESS dataset. It evaluates the feasibility of imple-
mentation of proposed complex deep learning algorithms on the FPGA
platform.

Further article is arranged as follows: section 10.2 provides the literature
survey of various intelligent techniques employed for the SER. Section 10.3
provides the elaborated overview of the proposed algorithm for SER. The
simulation results and implementation details of the proposed architecture
on the PYNQ board is explained in Section 10.4. Section 10.5 summarizes
the different challenges and future direction of SER implementation on
FPGA platform.

10.2	 Related Work

10.2.1	 Machine Learning–Based SER

In machine learning–based SER, feature extraction plays an import-
ant role. Basically, speech signal consist of various information, such
as data, gender, speaker, language and emotions. The accuracy of SER
can be enhanced by extracting the features that can be used to catego-
rize a particular emotion. Hence, the feature extraction methods play

190  AI Applications and Reconfigurable Architectures

significant role in refining the recognition performance. Many research-
ers have proposed different methods to compare the computational
cost and the number of speech features used in feature extraction. The
assortment of the reliable features is crucial in defining the effective-
ness of SER systems. Accuracy of the SER system can be improved by
combining more features together. However, using numerous features
can also sluggish down the process of recognition and more complex
operations are required for processing. As the speech signal is a non-
stationary in nature, it is more obvious to apply nonstationary and non-
linear signal processing techniques. Due to the intricacy , variability, and
delicate changes of nonlinear features of speech emotion, the difficul-
ties of SER systems remains challenging [8]. To overcome this difficulty
many researchers have proposed different methods of feature extraction
and selection. Figure 10.2 shows the distribution of different emotions
within the space defined by valence and arousal axes [2, 9]. Arousal is
the limit to which a stimulus is calming or exciting, while valence is the
limit for positive or negative stimulus. The speech features are classified
in four different categories, which are continuous features, spectral fea-
tures, qualitative features, and Teager-energy-operator (TEO)-based fea-
tures as shown in Figure 10.3. Apart from this, some of researchers has
also classified features and focused on the low-level descriptors (LLDs).

High

Low

Negative
Valence

Positive
valence

Neutral

Happiness
Fear

Anger

Sadness

Boredom

Figure 10.2  Emotional space of arousal and valence.

FPGA-Based Automatic SER Using Deep Learning  191

This includes temporal descriptors, such as energy, zero crossing rate
etc., spectral descriptors, such as spectral centroid, spectral asymmetry,
spectral width, and spectral flatness, etc., and cepstral descriptors, such
as perceptual descriptors (loudness), mel-frequency cepstral coefficient
(MFCC), etc. [7].

Ramakrishnan et al. evaluated the performance of features is analyzed
in terms of various evaluation metricson Berlin database and Danish data-
base. The existing work have shown that features such as energy, pitch,
duration, LPCCs, PLPs, MFCCs, and combinations of these features are
significant for SER [10].

Emotional information is present in spectral and prosodic features.
Therefore, Maheshwari et al. [11] has classified the emotions based on
these features using SVM classifier with accuracy of 89%. They have also
shown that radial basis function network is more useful than the back
propagation network to recognize the emotions accurately.

Leila et al. [8] suggested a novel approach using empirical mode decom-
position (EMD) in which they have extracted a novel features, such as
modulation spectral (MS), modulation frequency (MF) features and com-
bined them with spectral features. The chosen features were classified using
SVM and recurrent neural network (RNN) with improved accuracies over
state-of-the-art approach.

Turgut et al. [12] proposed an improved feature selection method which
is based on emotional differences for study of SER. This method is com-
pared with SVM, multi-layer perceptron (MLP) and K-nearest neighbor

TEO-based
Features

Spectral
Features

Qualitative
Features

Continuous
Features

Human Speech

Pitch
Energy

Formats

Voice Quality:
Harsh, tense,

breathy

LPC
LFPC
MFCC

TEO-FM-Var
TEO-Env

TEO-CB-Auto-Env

Figure 10.3  Categories of speech features.

192  AI Applications and Reconfigurable Architectures

(KNN) classifiers on four different databases. This method also shows the
reduced workload of classifiers by reducing feature size.

Bhavan et al. [29] suggested a bagged ensemble which consist of SVM
with a Gaussian kernel and shows superiority with state-of-the-art in terms
of recognition rate. They have experimented this method on three different
databases and got the promising performance.

Koduru et al. [14] proposed the five different algorithms of feature
extraction to improve the accuracy and recognition rate of SER system.
They have used pitch, energy, dynamic time warping (DWT), zero cross-
ing rate (ZCR), and Mel Frequency Ceptrum Coefficients (MFCC) features
and classified using support vector machine (SVM), linear discriminant
analysis (LDA), and decision trees (DT). The results show that decision
trees can give better accuracy for above selected features and reduce the
processing time required compared to existing methods.

Kunxia et al. [15] proposed a new features known as wavelet packet
coefficients and shown that these wavelet packet coefficient (WPC) fea-
tures with sequential forward feature selection (SFFS) feature selection
method improves the accuracy and recognition rate on two different
databases as compared to MFCC. The SVM classifier was used to classify
the emotions.

Yuantao et al. [16] demonstrated audio fingerprinting algorithm incor-
porated in emotion recognition task. Singular value entropy and sample
entropy are used as feature vector with lifting wavelet packet approach for
emotion recognition.

Many researchers have focused on acoustic features. There can be pos-
sibility to experiment combination of linguistic features with acoustic fea-
tures to advance performance and help to achieve novel insights of SER.
Similarly, it can be the challenge to check whether semantic features help to
find out the emotions present in their SER system. Recently, deep learning
techniques have been initiated which is able to discover the features in the
system itself as a substitute of using the hand-crafted features. But there is
uncertainty whether these features perform well compared with existing
features [13, 17].

However, it is challenging to prove any of traditional as more reliable
classifier for SER. This is because each of ML-based classifier has their own
advantages and limitations. Also, ML-based classifiers use different feature
set on different databases. This limits the efficiency of particular feature or
classifier on a particular database [14, 18]. The Gaussian mixture models

FPGA-Based Automatic SER Using Deep Learning  193

(GMMs) are mainly used for acoustic features of speech signal. These
shows the effective modelling of multi-modal distributions. The training
and testing specifications of GMM are very less as compared to Hidden
Markov Model (HMM). Hence, GMMs are very much useful for SER with
global feature extraction because the prosodic features are processed at a
frame level.

HMMs are mainly used for temporal variations of speech signals. In
this, a particular emotion is represented by a single state HMM, which
classifier maximizing the separation margin between different emotions
later trains. The loss function is used to scale this minimum separation
margin. In HMMs, states of first order Markov chain are hidden.

SVMs have been used by many researchers and got promising results
for different kind of features. It has significant advantages as compared to
GMM and HMM. The training algorithm of SVM is globally optimal and
generalization bounds of SVM are excellent and data dependent. Lalitha
et al. [19] demonstrated the comparison of GMM, HMM, KNN, SVM,
artificial neural network (ANN) based on the extraction of features such
as pitch, energy LPCC and MFCC. Feature selection is carried out by for-
ward selection algorithm. They concluded that to extract the global fea-
tures GMM is most suitable with accuracy of 78.77%. Spectral features
are useful with HMM with accuracy of 76.12%. ANN finds the nonlinear
boundaries which separates the emotions with accuracy of 51.19%. KNN
shows recognition rate of 64%.Apart from this SVM has shown the better
performance in comparison with other classifiers with accuracy of 77%.
The researchers have not considered noisy signals as real time speech is
affected by noisy signals.

Since a decade, the deep learning methods have been emerged with
their use in various fields of research like image processing, speaker iden-
tification, speech recognition etc. The use of these techniques in SER and
existing work in this field is briefly explained in next section.

10.2.2	 Deep Learning–Based SER

Deep learning has progressed as one of the most effective learning skill
for various applications from SER to the driverless cars. They have pow-
erful ability to learn the feature on their own. It does not need to develop
hand-crafted features [20]. Deep neural network (DNN), convolutional
neural network (CNN), recurrent neural network (RNN), auto encoders,

194  AI Applications and Reconfigurable Architectures

attention networks are the example of deep learning algorithms utilized for
SER in recent years. Out of these, DNNs and DCNNs were the two most
primitive deep learning methods which has more depth than CNN.DNNs
were studied initially in SER. Andre et al has introduced a DNN which was
used to classify acoustic features [21], a neural network has been used to
learn high level acoustic features using general discriminant analysis. This
had limitation of decreasing gain of GerDA. However, past research in this
field did not consider the feature extraction that much which has not given
improved results.

The first study proposed in Han et al. [22] was the turning point in this.
The authors have constructed utterance level features from speech seg-
ments and applied to DNN model to recognize the emotions, which con-
cluded that neural networks can be used to boost the performance of SER
systems. Qirong et al. [23] demonstrated feature learning method using
CNNs.

Mayank et al. [24] illustrated that DNNs were able to extract mel-filter
bank features in training without need of any predefined information,
which proved that intermediate representations learned by DNN are sim-
ilar to handcrafted features. Sainath et al. [25] has demonstrated a combi-
nation of convolutional LSTM and DNN. They have shown that temporal
and contextual representation of speech are better modeled by systems
as compared to log Mel-filter bank energy. Trigeorgis et al. proposed an
end-to-end network with a two layers of CNN and LSTM network stacked
on the top of CNN. The above studies motivate the use of an end-to-end
DNN models and features obtained through CNN and LSTMs are used for
dependency of context to set a base for comparison with other emerging
architectures.

Till now, many techniques have focused on extracting informative set
of features and then feeding it to reliable classifier. Variation in emotional
features across time was not studied deeply. Kim et al. [27] has presented
EmNet which uses good feature set and applies it to CNN. The CNN
extracts the local dependencies and uses a global convolution layer to
model higher-level features. In last stage, output of this layer is given to
LSTM network to acquire a standard feature set.

All of these above architectures concentrate on 1-D time or frequency
convolutions [23], instead of 2-D or 3-D convolutions which was used
in DCNN networks. They utilized couple of layers of CNN, while the
DCNN frameworks are deeper layer-wise. Afterward research shown that

FPGA-Based Automatic SER Using Deep Learning  195

multi-level deep networks which consist of convolutional and pooling
layer resulted in much superior than the CNNs with less number of layers
in the field of machine vision [25–27]. The intention behind this observa-
tion proved that the DCNNs can conserve the emotion contents hierarchi-
cal nature.

With this motivation, effectiveness of deep learning frameworks started
increasing to build up an efficient system for emotion recognition [28]. This
work used log Mel-spectrograms captured from the 1-D speech signals.
Yenigalla et al. [29] presented a feature amalgamation of optimal LP-norm
pooling and temporal pyramid matching for acquiring utterance-level fea-
tures from segment-level attributes.

10.3	 FPGA Implementation of Proposed SER

Machine learning (ML) is one of the hot technologies today as it is
being used to solve complex problems that would otherwise be very
hard or costly to solve with traditional methods. Speech and image
recognition, as well as many other complex decision-making problems
such as self-driving vehicles are successfully solved with ML and deep
learning (DL).

The success of ML is being driven by the current available hardware
which can provide the required demands in terms of storage and compute
capacity. But obviously, as problems scale, so do the demands and thus
special hardware is being developed to address these needs. In addition,
the use of commodity hardware is not the most effective and efficient way
to address this problem, so research is looking at solution that can satisfy
the required demands but at lower cost and energy consumption so that it
is possible to have mobile devices supporting ML. Also, the constant devel-
opments in the ML methods require the design of more flexible hardware
accelerators. Therefore, FPGAs are a natural solution for implementing
ML accelerators that can change if algorithms are changed. In addition,
as the hardware is designed specifically for the task, it is possible to have
the most efficient use of hardware in the case that for example we use dif-
ferent width in the computations (8-16-32-64 bit) which can be effectively
exploited for ML algorithms. Nevertheless, FPGA implementations tend to
involve a complex tools and process. Recent developments have been done
to make this process easier and more accessible with the help of the Python

196  AI Applications and Reconfigurable Architectures

programming language and Jupyter notebooks as the development envi-
ronment for FPGAs. One such example is PYNQ which we will explore in
this work.

A.  Dataset
The Ryerson Audio-Visual Database of Emotional Speech
and Song (RAVDESS) database used for the implementation
includes 7356 speech emotion samples of 12 male and 12
female professional actors. The speech samples are recorded
in neutral North American Accent that consists of eight emo-
tions such as neutral, calm, happy, sad, angry, fearful, surprise,
and disgust expressions. The speech samples are recorded at
the sampling rate of 48 KHz, 16-bit and .wav file format.

B.  Feature Extraction
The proposed method uses the MFCC features and croma
features obtained using Librosa library. The process of the
MFCC consist of preemphasis for speech signal denois-
ing, framing, windowing, Fast Fourier Transformation, Mel
Frequency Conversion, Discrete cosine transformation and
log energy cepstrum.

C.  Proposed Deep Learning–Based SER
It uses sequential deep neural model that consists of seven
layers in cascade. The stack of convolution layer forms the
dense layer where the input is convolved with the features
obtained from the input speech signal. The feature vector
consists of total 175 features which consists of 40 MFCC fea-
tures and 135 croma features obtained from the 1024 point
short time Fourier Transform (FT). The architecture of pro-
posed algorithm is shown in Figure 10.4.

The proposed architecture is organized as follow: The first layer consist
of dense layer with 256 unit layers followed by ReLU activation function
such as {Dense1 (units = 256, initializer = uniform) → ReLU1}. The output
of first layer is provided to the second layer that includes {Dense2 (units =
128, initializer = uniform) → ReLU2 → dropout = 0.2}. Afterward, output
of second layer is provided to convolutional dense layer that encompasses
Dense2 (units = 256, initializer = uniform) → ReLU2 → dropout = 0.2}.
The output of third layer is provided to fourth dense layer that includes

FPGA-Based Automatic SER Using Deep Learning  197

Dense2 (units = 128, initializer = uniform) → ReLU2 → dropout = 0.2}.
The fifth layer consists of Dense2 (units = 256, initializer = uniform) →
ReLU2 → dropout = 0.2} whose output is provided to the next dense layer
that encompasses Dense2 (units = 128, initializer = uniform) → ReLU2 →
dropout = 0.2}. The final layer contain Dense2 (units = 8, initializer = uni-
form) → ReLU2 → dropout = 0.2} whose output is provided to the Softmax
classifier. The last layer consists of eight layers that represent eight output
classes. The Softmax classifier is simple classifier that generates the proba-
bility of each output class. The output class with the maximum probability
is selected as output class label. The Softmax classifier requires less timing
for recognition and provides less complexity in implementation.

Dense(256)+ReLU

Librosa Features [1×175)

Input Speech Signal

Dense(128) + ReLU + Dropout

Dense(256) + ReLU + Dropout)

Dense(128) + ReLU + Dropout

Dense(256) + ReLU + Dropout

Dense(128) + ReLU + Dropout

Dense(8)+ ReLU

Softmax Layer

Calm Sad Neutral Disgust Fear Surprise BoredomHappy

Figure 10.4  Flow diagram of the proposed scheme.

198  AI Applications and Reconfigurable Architectures

The convolution operation of feature vector f(n) and filter kernel k(n)
is given by equation 10.1 and 10.2. The rectified linear unit minimizes the
linearity by replacing the negative values with zero as given in equation
10.3.

	 y(n) = f(n) * k(n)	 (10.1)

	
∑= −

=

−

y n f m k n m() (). ()
m

i

0

1

	
(10.2)

	 R(n) = max(y (n), 0)	 (10.3)

where
y (n) stands for convolution layer output
f (n) represents the feature vector
k (n) is convolution filter kernel
R (n) stands for ReLU layer output

The probability function for the Softmax classifier is represented by
equations 10.4 and 10.5 those provide the probability computation of the
each classes in the network. The class label is decided on the basis of maxi-
mum probability of the particular class as given in equation 10.6.

	
∑=z h wi j ji

j 	
(10.4)

	
∑

=

=

p z

z

exp()

exp()
i

i

j
j

n

1 	

(10.5)

	
=y arg max

i
pˆ i

	
(10.6)

where
zi stands for the output of the last dense layer
hj represents the inputs of hidden layers of last dense layer

FPGA-Based Automatic SER Using Deep Learning  199

wji is weights of the last dense layer
pi depicts the probability of the output class
ŷ represents output class

10.4	 Implementation and Results

A.  FPGA Platform- PYNQ-Z2 Board
PYNQ-Z2 board supports the Python Jupiter code deployment on the
FPGA platform. The board provides better interface of the mic, speaker,
and code deployment on the FPGA. PYNQ is system on chip (SoC) device
that is developed using Xilinx Zynq XC7Z020. It supports the deployment
of the embedded applications like ARM processors. The board view is
shown in Figure 10.5. The specifications of PYNQ-Z2 board are given in
Table 10.1.

The proposed algorithm is simulated on the Jupiter python compiler
and the python code is loaded on the PYNQ board for the SER in real time
scenario. The system is tested on the sample testing data and performance
is validated on the SER accuracy.

Figure 10.5  View of the PYNQ board.

200  AI Applications and Reconfigurable Architectures

Table 10.1  Specifications of the PYNQ board.

Parameter Specification

Processor Arm Cortex-A9 Dual-core (650 MHz)

Programmable slices 13,300 slices with 6 input LUT

Memory (Internal) 512 MB DDR3

Memory (External) MicroSD slot

Power supply 7V – 15V

Switches 2x slide switches

Push Buttons 4x push buttons

Indicators 4x LEDs, 2x RGB LEDs

Audio and Video 2x HDMI input and output, Line-in
with 3.5mm jack, 24-bit I2S DAC
with 3.5mm TRRS jack

USB Micro USB-UART bridge

Ethernet Gigabit Ethernet PHY

Expansion Connectors Raspberry Pi connector, 2x Pmod ports

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

A
cc

u
ra

cy
 (%

)

Epoch

Figure 10.6  Performance of proposed SER system.

FPGA-Based Automatic SER Using Deep Learning  201

B.  Results and Discussions
The proposed sequential deep learning–based SER algorithm is deployed
on the PYNQ board and performance of the system is validated for the var-
ious emotions by providing the dataset samples. The training and testing
data is split into 70:30 respectively. The effectiveness of proposed algorithm
is estimated using average accuracy. It achieved 85.33% accuracy for the
RAVDESS dataset [30] as given in Figure 10.6.

The implementation hardware costs and board utilization of the pro-
posed Ser based on FPGA PYNQ board is given in Table 10.2.

10.5	 Conclusion and Future Scope

Thus, this article presents implementation of deep learning–based SER
on multicore PYNQ board. The proposed implementation provides the
successful implementation of the sequential deep convolutional network
on the PYNQ FPGA board. The performance of proposed system is vali-
dated on RAVDESS dataset on the basis of accuracy. It is noticed that the
proposed system is successfully implemented on PYNQ board and pro-
vides 85.33% accuracy. The parallel processing capability and lower power
consumption of the FPGA-based implementation of SER shows better
effectiveness of the real time implementation of the SER compare with
the general purpose processors. The proposed system results in minimum
delay and requires lesser hardware utilization on the hardware board. It
has given possibility of implementation of more deeper architecture on the
FPGA boards. It is observed that the proposed implementation provides
100-ms delay for single emotion recognition compared with conventional
central processing unit (170 ms). In the future, deeper algorithms can be
implemented on the FPGA platforms for the larger dataset for the SER
applications. The minimization of the chip area is still a major challenge in
front of FPGA-based SER system implementations.

Table 10.2  Hardware cost of proposed SER.

Parameter Results

Latency 100 ms

Number of Flip Flops 18%

Number of look up tables (LUT) 30%

202  AI Applications and Reconfigurable Architectures

References

	 1.	 Corive, R. et al., Emotion recognition in human-computer interaction. IEEE
Signal Process. Mag., 18, 1, 32–80, 2001.

	 2.	 Khalil, R.A., Jones, E., Babar, M., II, Jan, T., Zafar, M.H., Alhussain, T., SER
using deep learning techniques: A review. IEEE Access, 7, 117327–117345,
2019.

	 3.	 Kerkeni, L., Serrestou, Y., Mbarki, M., Raoof, K., Mahjoub, M. A., Cleder, C.,
Automatic speech emotion recognition using machine learning, in: Social
Media and Machine Learning, IntechOpen, 2019.

	 4.	 Bhangale, K.B. and Mohanaprasad, K., A review on speech processing
using machine learning paradigm. Int. J. Speech Technol., 24, 2, 367–388,
2021.

	 5.	 Sonawane, A., Inamdar, M.U., Bhangale, K.B., Sound based human emotion
recognition using MFCC & multiple SVM, in: 2017 International Conference
on Information, Communication, Instrumentation and Control (ICICIC),
IEEE, pp. 1–4, 2017.

	 6.	 Ramakrishnan, S. and El Emary, I.M.M., SER approaches in human com-
puter interaction. Telecommun. Syst., 52, 3, 1467–1478, 2013.

	 7.	 Begum, M., Mansoor, M., Don, Z.M., Malekzadeh, M., SER research: An
analysis of research focus. Int. J. Speech Technol., 21, 1, 137–156, 2018.

	 8.	 Bhangale, K.B., Titare, P., Pawar, R., Bhavsar, S., Synthetic speech spoofing
detection using MFCC and radial basis function SVM. IOSR J. Eng., 8, 6,
55–62, 2018.

	 9.	 Agarwal, B. and Nayak, R., Deep Learning-Based Approaches for Sentiment
Analysis, Springer, US, 2018.

	 10.	 El Ayadi, M., Kamel, M.S., Karray, F., Survey on speech emotion recogni-
tion: Features, classification schemes, and databases. Pattern Recognit., 44, 3,
572–587, 2011.

	 11.	 Selvaraj, M., Bhuvana, R., Padmaja, S., Human speech emotion recognition.
Int. J. Eng. Technol., 8, 1, 311–323, 2016.

	 12.	 Özseven, T., A novel feature selection method for speech emotion recog-
nition. Appl. Acoust., 146, 320–326, 2019.

	 13.	 Bhavan, A., Chauhan, P., Hitkul, Shah, R.R., Bagged support vector machines
for emotion recognition from speech. Knowl.-Based Syst., 184, 104886, 2019.

	 14.	 Koduru, A., Bindu, H., Anil, V., Budati, K., Feature extraction algorithms to
improve the SER rate. Int. J. Speech Technol., 23, 1, 45–55 2020.

	 15.	 Wang, K., Su, G., Liu, L., Wang, S., Wavelet packet analysis for speaker-
independent emotion recognition. Neurocomputing, 398, 257–264, 2020.

FPGA-Based Automatic SER Using Deep Learning  203

	 16.	 Jiang, Y., Deng, K., Wu, C., Speech emotion feature analysis based on emo-
tion fingerprints. IOP Conf. Ser.: Mater. Sci. Eng., 435, 1, 012050, 2018.

	 17.	 Akcay, M.B. and Oguz, K., Speech emotion recognition: Emotional models,
databases, features, preprocessing methods, supporting modalities, and clas-
sifiers. Speech Commun., 116, 56–76, 2020.

	 18.	 Anagnostopoulos, C.N., Iliou, T., Giannoukos, I., Features and classifiers for
emotion recognition from speech: A survey from 2000 to 2011. Artif. Intell.
Rev., 43, 2, 155–177, 2012.

	 19.	 Lalitha, S., Madhavan, A., Bhushan, B., Saketh, S., Speech emotion recog-
nition. 2014 Int. Conf. Adv. Electron. Comput. Commun. ICAECC 2014, pp.
235–238, 2015.

	 20.	 Bhangale, K., Ingle, P., Kanase, R., Desale, D., Multi-view multi-pose robust
face recognition based on VGGNet, in: International Conference on Image
Processing and Capsule Networks, Springer, Cham, pp. 414–421, 2021.

	 21.	 Stuhlsatz, A., Meyer, C., Eyben, F., Zielke, T., Meier, G., Schuller, B., Deep
neural networks for acoustic emotion recognition: Raising the benchmarks,
in: ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing-Proceedings, pp. 5688–5691, 2011.

	 22.	 Han, K., Yu, D., Tashev, I., SER using deep neural network and extreme learn-
ing machine, in: Proceedings of the Annual Conference of the International
Speech Communication Association, INTERSPEECH, pp. 223–227, September
2014.

	 23.	 Mao, Q., Dong, M., Huang, Z., Zhan, Y., Learning salient features for
SERusing convolutional neural networks. IEEE Trans. Multimed., 16, 8,
2203–2213, 2014.

	 24.	 Bhargava, M. and Rose, R., Architectures for deep neural network based
acoustic models defined over windowed speech waveforms, in: Proceedings
of the Annual Conference of the International Speech Communication
Association, INTERSPEECH, September 6–10, 2015, January 2015.

	 25.	 Sainath, T.N., Weiss, R.J., Senior, A., Wilson, K.W., Vinyals, O., Learning
the speech front-end with raw waveform CLDNNs, in: Proceedings of the
Annual Conference of the International Speech Communication Association,
INTERSPEECH, pp. 1–5, January 2015.

	 26.	 Trigeorgis, G. et al., Adieu features? End-to-end SERusing a deep convolu-
tional recurrent network, in: ICASSP, 2016 IEEE International Conference
on Acoustics, Speech and Signal Processin -Proceedings, May 2016, pp. 5200–
5204, October 2017.

	 27.	 Bhangale, K. and Mohanaprasad, K., Speech emotion recognition using
mel frequency log spectrogram and deep convolutional neural network, in:
Futuristic Communication and Network Technologies, pp. 241–250, Springer,
Singapore, 2022.

204  AI Applications and Reconfigurable Architectures

	 28.	 Zhang, S., Zhang, S., Huang, T., Gao, W., SER using deep convolutional
neural network and discriminant temporal pyramid matching. IEEE Trans.
Multimed., 20, 6, 1576–1590, 2018.

	 29.	 Yenigalla, P., Kumar, A., Tripathi, S., Singh, C., Kar, S., Vepa, J., SER using
spectrogram & phoneme embedding, in: Proceedings of the Annual Conference
of the International Speech Communication Association, INTERSPEECH,
September 2018, pp. 3688–3692, 2018.

	 30.	 Livingstone, S.R. and Russo, F.A., The ryerson audio-visual database of emo-
tional speech and song (RAVDESS): A dynamic, multimodal set of facial
and vocal expressions in North American english. PloS One, 13, 5, e0196391,
2018.

205

Anuradha D. Thakare and Sheetal Umesh Bhandari. Artificial Intelligence Applications and Reconfigurable
Architectures, (205–218) © 2023 Scrivener Publishing LLC

11

Hardware Implementation
of RNN Using FPGA

Nikhil Bhosale*, Sayali Battuwar, Gunjan Agrawal and S.D. Nagarale

Department of Electronics and Telecommunication, Pimpri Chinchwad College
of Engineering, Pune, India

Abstract
Today, recurrent neural network (RNN) is an important machine learning tech-
nology, which is widely used in various applications, because the development field
of RNN is often used in sequence-related applications, and long-term and short-
term memory (LSTM) enhance the recurrent neural network. It contains complex
arithmetic logic. In order to achieve high accuracy, researchers are always building
large LSTM networks that consume a lot of time and energy. Data sequences can be
learned and stored by recurrent neural networks (RNNs) [4]. Since RNNs are repet-
itive, it can sometimes be difficult to parallelize all calculations on general-purpose
hardware. The processor currently does not provide much parallelism, and due to
the sequential components of the RNN model, the parallelism provided by the GPU
is limited. We used Python to demonstrate the hardware implementation of a long-
and short-term memory (LSTM) repetitive network in Xilinx FPGAs [6, 7]. This
article describes an FPGA platform survey to investigate FPGA applications within
the scope of this project. In this project, we designed a repetitive neural network
(RNN) and implemented a hardware interface on the PYNQ board equipped with
XILINX PYNQZ2 [5]. In addition to rich programmable logic resources [2], PYNQ
also has a flexible embedded operating system, making it suitable for natural lan-
guage processing applications. We use Python to develop the RNN language model,
train the model on the CPU platform and recommend implementing the model on
the PYNQ board to use Jupiter notebook for model verification.

*Corresponding author: nbhosale879@gmail.com

mailto:nbhosale879@gmail.com

206  AI Applications and Reconfigurable Architectures

Keywords:  Machine learning, RNN, dataset, FPGA, LSTM, PYNQZ2, one hot
encoding, gradient decent

11.1	 Introduction

Globally, immense amounts of knowledge are being created and distributed
thanks to the digital era. Deep neural networks (DNN) are a technique that
allows laptops to make sense of this mass of data. This opens up a new set of
opportunities for computer vision, speech recognition, linguistic communi-
cation processes, and more. Recurrent neural networks (RNNs) are getting
increasingly well liked as they can learn sequences of data, and they have
shown success in numerous applications, similar to speech recognition,
artificial intelligence [3] and scene analysis. Convolutional neural networks
(CNN) and recurrent neural networks (RNN) can be combined to pro-
duce intriguing results for creating image caption. Usually, putting all RNN
computations on standard hardware is exhausting due to their perennial
nature. A general-purpose CPU does not presently provide a lot parallel-
ism, and a small RNN model cannot benefit from GPUs fully. As a conse-
quence, embedded systems with associate degree optimized hardware are
essential for capital punishment RNNs. A long-short run memory (LSTM),
which implements a learned memory controller for preventing vanishing
or exploding gradients, may be recognized as an RNN architecture. For
many years, recurrent neural networks (RNNs) have been the answer to
most issues addressing successive knowledge and natural language process-
ing (NLP) issues, and its variants admiring the LSTM are widely utilized in
various progressive models to this very day. We will look at how RNNs work
and implement a GNU PyTorch model to get text using RNNs [8].

11.1.1	 Motivation

The purpose of this project is to provide a concrete understanding of
perennial neural network and its applications in computer vision and
linguistic communication research. The project starts with a building
of little neural network. We will study all well-liked building blocks of
neural networks, as well as absolutely connected layers, recurrent layers.

Hardware Implementation of RNN Using FPGA  207

We will use these building blocks to outline complicated modern designs
in PyTorch frameworks [8]. Within the project we will implement deep
neural network and perennial neural network for the task to see potency
and architecture of neural network and perennial neural network on
FPGA kit victimization Python language so as to use it during a substan-
tive and helpful way.

11.1.2	 Background

An important characteristic of RNNs is that they learn from past infor-
mation. However, the question is in what way a model should remember,
and what information it must retain. In popular RNNs, recent past infor-
mation can be stored and retrieved. Unfortunately, it is unable to learn
semi-permanent dependences. Because of vanishing or exploding gradi-
ents, vanilla RNNs are difficult to coach. LSTMS are often used in such
situations. In an LSTM, memory controllers are introduced to make the
brain remember, forget, and output information once. By modifying the
coaching procedure, the model can learn long-term dependency and make
the coaching process more stable.

11.1.3	 Literature Survey

Sr. no. Title of paper Year Publisher Conclusion
01 Recurrent Neural

Networks
Hardware
Implementation
on FPGA

04/03/2016 Andre Xian Ming
Chang, Bering
Martini,
Eugenio
Calorically

To train small
network, so that it
can be useful for
some application

02 Recurrent Neural
Networks
Hardware
Implementation
on FPGA

01/01/2016 International
Journal of
Advanced
Research in
Electrical
&Electronics

The main future work
is to optimize
the design to
allow parallel
computation of the
gates.

(Continued)

208  AI Applications and Reconfigurable Architectures

(Continued)
Sr. no. Title of paper Year Publisher Conclusion
03 An overview and

comparative
analysis of RNN
for Short term
load forecasting

08/11/2017 Fillippo Maria
Bianchi,Enrico
Maiorino,
Antonello
Rizzi, Robert
Jenseen

It provides a general
overview of the
most important
architectures and
define guidelines
for configuring the
recurrent networks
to predict real
valued time series

04 Fundamentals
of Recurrent
Neural Network
(RNN) and
Long Short-
Term Memory
(LSTM)
Network

10/03/2020 Alex Sherstinsky The fundamentals of
the RNN network
using a principled
approach and
differential
equations
encountered in
many branches.

05 The implementation
of a Deep
Recurrent
Neural Network
Language Model
on a Xilinx
FPGA

01/01/2016 Yufeng Hao,
Steven
Quigley Dept.
of Electronic,
Electrical
and Systems
Engineering

The paper implements
a RNN language
model with Python
and deploys the
trained model on
PYNQ through
Jupyter notebook,
and designs an
RNN hardware
accelerator using
an overlay.

06 Implementation
of Neural
Network on
Parameterized
FPGA

01/01/2016 Alexander
Gomperts,
Student,
Technical
University of
Eindhoven,
The
Netherlands

In this paper we have
presented the
development and
implementation of
a parameterized
FPGA based
architecture for
backpropagation
MLPs. Architecture
makes design space
exploration in
hardware possible.

Hardware Implementation of RNN Using FPGA  209

11.1.4	 Project Specification

☐☐ Developing an RNN from scratch is the major goal of this
project.

☐☐ To check efficiency and architecture of neural network and
Recurrent Neural network on FPGA kit.

☐☐ The program will help you grasp how neural networks
work, and here we are implementing an RNN with its own
complexity.

☐☐ Using Python language in order to use it in a meaningful and
useful way.

Languages

1.	 Python
Python is a general-purpose programming language, it can
be used for many purposes. Python is used for web develop-
ment, artificial intelligence [3], machine learning, operating
systems, mobile app development, and video games.

Hardware

1.	 PYNQZ2 Board:
It has been developed with the support of ZYNQ XC7Z020
FPGA, and a new open-source framework called Pynq [5],
which permits embedded programmers to explore the pos-
sibilities of Xilinx ZYNQ SoCs without requiring them to
design logic circuits [2].

Software

1.	 Anaconda-Navigator
Anaconda Navigator is a desktop GUI included with
Anaconda Individual Edition. The application makes it easy
to launch applications and manage packages and environ-
ments without using command-line tools.

210  AI Applications and Reconfigurable Architectures

11.2	 Proposed Design

The proposed design consists of a two-layer recurrent neural network [3],
one of the most widely used architectures in pattern recognition, where
each layer is fully connected to its neighbors. Each layer contains a num-
ber of neurons that represent the processing element, the RNN, and thus
the activation function, which is the most important arithmetic operation
needed for recurrent neural networks [1]. Proposed idea to implement an
RNN model with Python and to provide the model trained in PYNQ via
the Jupyter notebook and to design RNN hardware.

11.3	 Methodology

Figure 11.1 shows the flowchart of neural network. Figure 11.2 shows
the OR gate truth table. Figure 11.3 shows the flowchart of prediction
model. Figure 11.4 shows the flow of RNN model. Figure 11.5 shows

Bias=1

Take Input

Assign Weight

Run the Main
Code

Check Output

Calculate Error
in Prediction

Update the
weight value

No

Make
Prediction

Model is ready
for prediction

Yes

Is Error
Acceptable?

Figure 11.1  Flowchart of neural network.

Hardware Implementation of RNN Using FPGA  211

the architecture of RNN model. Figure 11.6 shows the architecture with
example. Figure 11.7 shows the One-Hot-Encoding. Figure 11.8 shows the
PYNQ-Z2 board. Figure 11.9 shows the accuracy graph.

TruthTableSymbol

2-input OR Gate

B A Q

0 0 0

0 1 1

1 0 1

1 1 1

BooleanExpressionQ=A+B ReadasAORB gives Q

A

B
Q≥ 1

Figure 11.2  OR gate truth table.

MODEL Calculation Error
in Prediction

No

Yes

Is Error
Acceptable?

Model Ready for
Prediction

Update the
Weight

Figure 11.3  Flowchart of prediction model.

212  AI Applications and Reconfigurable Architectures

Creating
Vocabulary
Dictionaries

Padding and
splitting into
input/labels

One-Hot
Encoding

Evaluating the
Model

Training the
Model

Defining the
Model

Figure 11.4  Flow of RNN model.

RNN
Cell

RNN
Cell

RNN
Cell

Input 1 Input 2 Input x

Output xOutput 2Output 1

Hidden
State

Hidden
State

Hidden
State

Figure 11.5  Architecture of RNN model.

RNN
Cell

RNN
Cell

RNN
Cell

RNN
Cell

RNN
Cell

Hidden
State

Hidden
State

Hidden
State

Hidden
State

Hidden
State

“Comment” “allez-vous”

“How” “are” “you”

Figure 11.6  Architecture with example.

0.2 0.1 0.8 0.3 0.7 0.7-0.1 -0.1 -0.1 Prediction
Class Scores

RNN
Cell

RNN
Cell

RNN
Cell

RNN
CellH H H

0 0 0 0 0 0 0 01 1 1 1

“G” “O”“O” “D”

Figure 11.7  One hot encoding.

Hardware Implementation of RNN Using FPGA  213

11.3.1	 Block Diagram Explanation

So, this is the flow chant of the code & functioning.
1st diagram is overall flow chant of process of program and me of core

operation flow chow of Program.

Headphone + MIC
USB
Host HDMI Out Raspberry Pi

Line In

Ethernet
(RJ45)

JTAG/UART
(Micro USB)

Power Switch

DC Power In
(7V-15V)

RGB LEDs
(User Defined)

4 LEDs
(User Defined)

2 Slide Switches
(User Defined)

Jumper for Power
Source Selection

Buttons for Programming
and System Reset

SD Card
(On the Back Side)

HDMI In

Jumper for Boot
Mode Selection

Pmod A

Arduino

Pmod B

4 Buttons
(User Defined)

Figure 11.8  PYNQ Z2 board.

<seaborn.axisgrid.PairGrid at 0x2043e7b7f70>

Lo
ss

Ep
oc

h

Loss Epoch

0.0366

0.0364

0.0362

0.0360

0.0358

100

80

60

40

20

25 7550 1000.036000.036250.03650

data . describe ()

Out[12]:

Loss Epoch

count

mean

std

min

max

25%

50%

75%

10.000000 10.000000

10.000000

55.000000

55.000000

30.276504

32.500000

77.500000

100.000000

0.036190

0.000260

0.035800

0.036025

0.036150

0.036375

0.036600

Figure 11.9  Accuracy graph.

214  AI Applications and Reconfigurable Architectures

In step (1) →
we will give input values:
for our program we have given OR Gate I/p Values.

In step (2) →
�we assign weights to each Input & also add bias value with weight value.
→ In order to minimize error, we add bias value, which allows us to shift
the activation function by adding constant.

In step (3) →
The core main code of program will run.
�which is consist of formulae’s, with algorithms, which we had men-
tioned before.

In step (4) →
after compilation of main code OR Step (3),
It will give off values to check with practical & theoretical values. Now,

In step (5) →
now we come to the below dig
so, after get model value i.e., output of step (4)
In this step, we calculate the error while prediction in model output.

In step (6) →
there is one decision box → It will take decision that,
Error is acceptable or not & with the help of learning rate (LR)
�If not acceptable then it will update the weight values & again. Check the
error value accept the value.

Step (7) →
after accepting value, with max accuracy, model will ready for prediction.
what is perceptron: →
�In simple language, it is neural network [3] without hidden layer → It has
only Input & Output layer.

Here X & X2 is an i/p & X0 = 1 is bias Value. for Input values & bias
value. value is assigned. Weight as, w0, w1, w2 Apply DOT Product between
weight & Input Values & added bias value. In this project we worked on
this is OR Gate NN. perception for OR Gate, as we seen in flow chart 1st 2
stage. Are which this perception. of their calculations.

Hardware Implementation of RNN Using FPGA  215

11.3.2	 Block Diagram for Recurrent Neural Network

In case you best need one output from the entire manner, getting that out-
put may be quite simple as you may easily get the output generated from
the final RNN cellular within the collection. This very last end result has
already been calculated in all preceding cells, so the context of all previous
input statistics has been captured, which means that the final result will
truly depend on all preceding calculations and inputs [9].

For instance, in the second case, if you need information from an inter-
mediate time step, you can ask for it by looking at the hidden state con-
structed at each step, as exemplified in the figure. If needed, results can
also be returned to the model in the following step. RNN models can give
you many different kinds of inferences, and these are just two of them. One
method is to convert sequences to sequences.

Here the output is merely generated from the sequence in spite of every-
thing inputs are skipped. The diagram below shows what it might look like.

11.3.3	 Textual Input Data (One Hot Encoding)

When it comes to processing text data, neural networks [3] do not perform
as well as humans. For this reason, text data is typically converted into a
series of numbers during natural language processing (NLP) tasks, such as
embeddings, one-time encodings, etc., in order to help the network ana-
lyze the data more efficiently.

Data preprocessing often accounts for a significant proportion of the
project time spent on machine learning or deep learning programs. In our
example, we will indicate one-shot character-level encoding by preprocess-
ing the text data.

In this encoding format, each character in a text is assigned a unique
vector. As an example, if the text only contains the word “GOOD,” the dic-
tionary will be only three characters long since there are only three unique
characters. Every unique character should be assigned a vector. Unless one
element is at index, all elements are 0. Used to represent this character. In
our model, each element is represented this way. Similarly, we may also see
a similar output. Here, we can accept the most significant number from the
vector as the predicted character.

216  AI Applications and Reconfigurable Architectures

11.4	 PYNQ Architecture and Functions

The PYNQZ2 is a ZYNQ XC7Z020 FPGA-based FPGA development board
dedicated to supporting PYNQ, an opensource environment for exploring
the capabilities of Xilinx ZYNQ SoCs without designing programming
logic circuits [2].

With the new PYNQ platform, users can create high-performance embed-
ded applications using parallel hardware execution, high frame-rate video
processing, hardware acceleration algorithms, real-time signal processing,
and low-latency control through high-bandwidth I/O. The Pynq kit combines
ZYNQ and Python [5]. Widely used in machine learning research, FPGA
prototyping is more difficult than using a Raspberry Pi, Microbit, or other
boards. However, it is possible to use a Zynq based chip with an FPGA. An
architecture created by Xilinx, called Zynq, combines ARM processors and
FPGAs in one chip [6]. ARM processing units are referred to as “processing
systems” while FPGAs are referred to as “programmable logic units” [2].

11.4.1	 Hardware Specifications

•	 XC7Z020-1CLG400C from ZYNQ
•	 Dual-core Cortex-A9 processor, 650MHz
•	 8 DMA channels on the DDR3 memory controller
•	 Four AXI3 slave ports for high performance
•	 I/O controllers with high bandwidth: 1G Ethernet,
•	 SDIO and USB 2.0
•	 Controllers with low bandwidth:
•	 SPI, UART, CAN, I2C, etc.

11.5	 Result and Discussion

The developed RNN model includes two hidden layers. Two-layer RNN
cell with tanh function layer, weighted and biased input layer. We have
implemented 2-layer RNN, and it has been tested using next word predic-
tion model. Here, we present an analysis comparing the epoch and loss of
RNN model.

We used tanh activation, sigmoid activation, and nonlinear activation
functions successfully in the RNN model, and we would be implementing

Hardware Implementation of RNN Using FPGA  217

both nonlinear activation Sigmoid and Tanh exponential function on an
FPGA. The RNN FPGA accelerator allows for efficient evaluation of the
developed design. It speeds up the entire network by back-propagation,
which reduces the number of arithmetic operations, memory access, and
processing time.

11.6	 Conclusion

In this study, we plan to build a network with few hardware resources,
which provide high classification rate without loss of information and
deployed it on an FPGA. The popularity of recurrent neural networks in
recent years has been tied to the success of long-term short-term mem-
ory architectures in various applications, including speech recognition,
machine translation, image captioning, and scene analysis. Furthermore,
the implemented equipment proved to be much faster than other mobile
platforms. It is likely that this will evolve into an RNN coprocessor for
future devices, but it will still require additional work. The design of the
gates should be optimized to allow parallel computation of the gates, which
is a major task in the future.

As we implement the RNN model on PYNQZ2 FPGA boar we are likely
to get results as number of hardware resources, power consumption, speed,
and accuracy required for FPGA implementation. As a result, we decided to
explore more the RNN model using the database and various applications
to discover its advantages and disadvantages as part of our future work.

References

	 1.	 Stein, R.B., A theoretical analysis of neuronal variability. Biophys. J., 5, 2, 173–
94, (March 1965). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1367716

	 2.	 Peirce, C. S., Letter, Peirce to https://en.wikipedia.org/wiki/Allan_Marquand,
A. Marquand, dated 1886, https://en.wikipedia.org/wiki/Charles_Sanders_
Peirce_bibliography#W"Writings of Charles S. Peirce, v. 5, 1993, pp. 421–
23. See https://en.wikipedia.org/wiki/Arthur_W._Burks Burks, Arthur W.,
Review: Charles S. Peirce, The new elements of mathematics, Bull. Am. Math.
Soc., 84, 5, pp. 913–18, see 917, 1978.

	 3.	 Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., Extreme learning machine: theory and
applications. Neurocomputing, 70, 1, 489–501, 2006.

218  AI Applications and Reconfigurable Architectures

	 4.	 Kriesel, D., A brief introduction to neural network, 2009, [Online] Available:
http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-
dkrieselcom.pdf. Sutskever, I., Training recurrent neural networks, 2013,
[Online] Available: http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_
thesis.pdf.

	 5.	 Narendra, K.S., Parthasaraty, K. Identification and control of dynamical
systems using neural network, IEEE Transactions on Neural Network, 1, 1,
pp. 4–27, 1990, doi: 10.1109/72.80202.

	 6.	 Omondi, A. and Rajapakse, J., Neural networks in FPGAs, In: Neural
Information Processing, 2002. ICONIP ’02. Proceedings of the 9th International
Conference on, 2, 954–959, 2002.

	 7.	 Chang, A.X.M., Martini, B. Culurciello, E., Recurrent neural network hard-
ware implementation on FPGA, 2015, arXiv preprint arXiv:1511.05552.

	 8.	 Lavin, A. and Gray, S., Fast algorithms for convolutional neural networks.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4013–4021, 2016.

	 9.	 Umuroglu, Y., Fraser, N.J., Gambardella, G., FINN: A framework for fast
scalable binarized neural network interface. 25th International Symposium
on Field Programmable Gate Arrays, 2017.

Code link: https://colab.research.google.com/drive/1Agt3GUCu6fH3Y_5NuYb-
6GN7n8ZXQtVu8#scrollTo=365_zdmHfuNv

http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf

219

Index

Accelerator, 62–70, 72–87
Action potential, 66
Address event representation, 68
Advantages of reconfigurable

computing accelerators, 20
AI assistant, 96
Alexa, 96, 97
Algorithm, 131
Algorithmic study, 161
Algorithmic survey,

object detection using color
masking, 168
advantages and disadvantages, 170
algorithm for color masking, 169,

170
color masking, 168, 169
modules/libraries used, 169
verdict, 170

survey in lane detection approaches,
lidar vs. other sensors, 182
survey in lane detection

approaches, 179–182
YOLO and its version history,

fast YOLO, 175
PP-YOLO, 178
YOLO v1, 174, 175
YOLO v2, 176
YOLO v3, 176, 177
YOLO v4, 177
YOLO v5, 178
YOLO9000, 176

YOLO v/s other algorithms,
deep neural networks for object

detection, 174

deep residual learning for image
recognition, 174

OverFeat, 173
region convolutional neural

networks, 173
very deep convolutional

networks for large-scale image
recognition, 173

YOLO v3 object detection,
advantages and disadvantages, 172
algorithm architecture, 171
verdict, 172, 173
YOLO v3, 171

All modules details,
face detection model, 127, 128
image processing, 128–130
recognizer, 130, 131
trainer model, 130

Anaconda navigator, 209
Analog-digital-converter, 74
Anomaly, 64, 71
Anomaly detection, 104–105, 117–119
Anurupyena, 45
Arbiter, 73, 74
Architecture and accelerator for

AI-based applications, 15
bioinformatics-related accelerators,

17
data mining accelerators, 19
graph and database accelerators,

19
neural network accelerators, 15

Artificial intelligence (AI), 97
ASIC, 36, 77, 85–87

220  Index

Baugh-Wooley, 40
Beautiful soup, 100
Benchmark, 71, 74, 75
Bias, for linear regression, 112–113
Bi-directional, 89
Bots, Sanskrit voice. see Sanskrit voice

bot, NLP-based AI-powered
Brahmagupta, 40
Broadcast, 78, 79
Bs4 library function, 100

CACTI, 71
Catastrophic, 89
Categories in AI hardware, 4
Cell, 65–71, 73–75, 77–79, 84–87
Chat bot, 97
Classification, 69, 71, 75, 76
Classification algorithms, 119–123

using gradient descent, 122
using maximum likelihood

estimator, 119, 120–122
using Naive Bayes’ decision theory,

122, 123
Cleaning data, 98, 101
Clock, 85
Clock-gating, 87
CMOS, 63, 64, 68, 72–74
Comparing hardware for artificial

intelligence, 8
Confusion matrix, 122
Convolutional neural networks,

(CNNs), 206
CORDIC, 36
Core, 66, 69, 70, 73, 77–79, 81, 86,

88
Cortana, 96, 97
Cortex, 65
Cortical, 63
Cost function, 102

of SVM, 103
Crossbar, 72, 77, 80, 82–86, 88
Csv file format, 96
Cube, 36

DAC, 72
Data, implementation of Sanskrit Bot,

build database, 98
cleaning, 98, 101
collection, 98, 100–101
pre-processing, 105, 108, 109, 110
storage, 100–101

Data movement, 75–79, 84, 86, 88,
89

Data pre-processing, 215
Dataset, 163
Deep learning–based SER, 193–195
Deep neural networks (DNNs), 206
Deep-triode, 62
Deploying bot, 100
Design implementation aspects, 30
Digital, 36
Digital assistant, 96
Disadvantages of reconfigurable

computing accelerators, 21
Distal, 65–68, 71, 75, 77, 79, 84, 85, 87
Dot-product, 62

Edge, 63, 64, 67, 80, 86, 89
Eigen, 45
Encoder, 66, 68, 70
Endurance, 82, 83, 88
Error function, 102, 103
Evaluation of related research, 141
Event-driven, 75, 88
Existing techniques, 163

Fault, 64, 86
Feed-forward, 66, 86
Fisher dataset, 119
Folklore, 37
FPGA, see also Hardware

implementation of RNN using
FPGA, 36, 69, 205

kit, RNN on, 207, 209
prototyping, 216
sigmoid and tanh exponential

function on, 217

Index  221

Xilinx, 205
ZYNQ XC7Z020, 209, 216

FPGA implementation of proposed
SER, 195–199

implementation and results,
199–201

Gaussian distribution, defined, 104
Gaussian kernel, 103

SVM, 115, 116
Global inhibition, 70, 78, 84, 85
GNU PyTorch model, 206
Google assistant, 97
GPU, 64, 67, 68, 85–87
Gradient descent algorithm, 122

Hamming, 41
Hardware AI accelerators to support

RC, 9
reconfigurable computing model as

an accelerator, 11
reconfiguration computing model,

10
Hardware implementation of RNN

using FPGA,
background, 207
hardware, 209
languages, 209
literature survey, 207–208
methodology, 210–215

accuracy graph, 213
block diagram explanation,

213–214
block diagram for RNNs, 215
one hot encoding, 212
OR gate truth table, 210, 211
prediction model, flowchart of,

210, 211
PYNQ Z2 board, 213
textual input data (one hot

encoding), 215
motivation, 206–207
overview, 206–209
project specification, 209

proposed design, 210
PYNQ architecture and functions, 216
result and discussion, 216–217
software, 209

Hebbian, 67
Heron, 38
Hierarchical temporal memory, 63, 65
Homeostatic, 76, 77, 82
Homogeneous, 70
Horner, 40
HTM, 62–88
HTML Parser, 100
HTM-Zeta, 73
H-Tree, 78, 79
Hyperbolic, 45

Image, read text from, 101, 107–108
Infrastructural requirements for AI, 2
In-memory, 75, 79, 80, 86
Integer, 47
Intelligent personal assistant (IPA), 97
Intelligent virtual assistants (IVAs),

96–97
Interactive voice response (IVR)

system, 97
Interconnects, 75, 76
Iris dataset, 119

Jupyter notebook, 210

Languages, hardware implementation
of RNN using FPGA, 209

Learning curve, 113
LFSR, 74, 77
Linear kernel SVM, 115
Linear regression, 102, 109

bias and variance for, 112–113
contour representation, 109, 111
evaluation result, 112
hyperparameters, 109, 111
learning curve, 113
line, 109, 111
prediction, 112
using TensorFlow, 109, 112

222  Index

Literature survey, 155–161
Local inhibition, 78, 81, 84
Logistic regression, 102, 113–114

classified data using, 114
Long and short-term memory

(LSTM), 205, 207

Machine learning, 209, 215, 216
Machine learning–based SER, 189–193
Magnetometallic, 73
Matrix, 49
Maximum likelihood estimator, 109,

120–122
Memory, 63–70, 72–77, 79, 80, 84–88
Memristor, 63, 72–74, 77, 79, 80,

82–84, 86–88
Mercer’s theorem, 103
Microbit, 216
Mini-column, 64–71, 73–75, 77–81,

84–87
Mixed-signal, 64, 65, 72, 74, 75, 77, 79,

82, 84–89
MySQL connectivity, 101, 106–107

Naive Bayes’ decision theory, 122,
123

Natural language,
interfaces, 97
processing, 97

Natural language processing (NLP),
issues, 206
tasks, 215

Neocortex, 65
Neural network,

architecture of, 207
CNNs, 206
DNNs, 206
flowchart of, 210
perennial, 207
RNNs. see recurrent neural

networks (RNNs)
Neurogenesis, 76, 77
Neuromorphic, 63, 67, 76, 77, 88
Neuroplasticity, 76

Newton-Raphson, 49
NLP pipeline, 105
Nonlinear activation functions, 216
NumPy, 101

Off-chip, 76, 77, 79
On-chip learning, 64, 70, 76, 89
One hot encoding, 212, 215
Optical character recognition (OCR)

tool, 101
OR gate truth table, 210, 211
Overlap, 66, 67, 70, 73, 74, 84, 85,

88
Overlap score, 66, 67, 70, 73, 74, 84,

85

Packet-switched, 70, 71, 76
Pandas, 101
PCA (principal component analysis),

104–105, 116–117
Plasticity, 75–77, 82
Pooling, 66, 69, 72, 73, 85
Power budget, 68, 86
Prediction model, flowchart of, 210,

211
Principal component analysis (PCA),

104–105, 116–117
Processing element, 68, 70, 74, 78,

87
Processing engine, 69, 70, 78, 84
Processing systems, defined, 216
Programmable logic units, defined,

216
Proposed architecture of system,

face detection model, 132
face recognition model, 133
image enhancement, 132
trainer model, 132, 133

Proposed system, 162
algorithm for proposed work,

142–146
devices required for the proposed

system, 146–148
system description, 141

Index  223

Proximal, 65, 66, 71, 73, 75, 77, 79, 84,
85

Proximal segment, 66
PYNQ,

architecture and functions, 216
defined, 209

PYNQ Z2 board, 209, 213
Pyragrid, 65, 73–75, 80, 83, 85–88
Pyramidal neuron, 65, 66
PyTesseract (Python-tesseract), 101
Python, 209, 216
Python-MySQL connectivity, 96
Python-tesseract (PyTesseract), 101
PyTorch frameworks, 207

Quaternery, 47

Raspberry Pi, 216
RBM, 65, 73–75, 87
RCN, 65, 62, 75, 76
Read text from image, 101, 107–108
Reccurent neural networks (RNNs),

205. see also hardware
implementation of RNN using
FPGA

architecture of, 212
block diagram for, 215
flow of, 212
FPGA accelerator, 217
important characteristics of, 207
two-layer, 210, 216

Review of artificial intelligence
applications and architectures, 27

RNNs. see recurrent neural networks
(RNNs)

Sanskrit voice bot, NLP-based
AI-powered,

classification algorithms, 119–123
using gradient descent, 122
using maximum likelihood

estimator, 119, 120–122
using Naive Bayes’ decision

theory, 122, 123

implementation of, 98–100
build database, 98
clean data, 98
deploying bot, 100
install required libraries, 98
merging all models, 100
training and validating, 98

literature survey, 96–98
methodology, 100–105

cleaning data, 101
data collection ans storage,

100–101
linear regression and logistic

regression, 102
MySQL connectivity, 101
principal component analysis,

104–105
read text from image, 101
support vectors machine,

103–104
various ML models, 102–105
web scrapping, 100

overview, 96
results, 106–119

anomaly detection and speech
recognition, 117–119

classification using TensorFlow,
114–115

data pre-processing, 108, 109,
110

linear regression, 109, 111,
112–113

logistic regression, 113–114
principal component analysis

(PCA), 116–117
read text from image, 107–108
support vector machines (SVM),

226, 116
text recognition, 119
web scrapping and MySQL

connectivity, 106–107
SAR-DAC, 72
SciPy, 101
SDR, 66, 67, 74

224  Index

Segmentation, word and sentence, 105
Sequence memory, 64, 72, 74
Setosa, 119
Sigmoid activation functions, 216, 217
Siri, 96, 97
Software, hardware implementation of

RNN using FPGA, 209
Spam classifier, 103–104
Sparse, 66, 68, 69, 75, 83
Spatial, 63–70, 72, 73, 75, 85, 89
Spatial and temporal, 63–65, 67, 68,

70, 75
Spatial pooler, 63, 67, 73
Speech recognition, 117–119
SQL (structured query language), 101,

106
Squarer, 47
SRAM, 79, 80
SSR, 75, 77, 80
State-of-the-art, 65, 68, 71, 72, 75, 76,

81, 86, 87, 89
Structured query language (SQL), 101,

106
Structural plasticity, 76
Support vectors machine (SVM),

103–104, 115, 116
SVM (support vector machine),

103–104, 115, 116
Synapse, 66, 71, 75, 77, 79, 88, 89
Synaptogenesis, 76
Synthetic synapses, 71, 75, 77

Tanh activation functions, 216, 217
Technological platforms for

AI implementation-field
programmable gate array
(FPGA),

Stratix 10 NX architecture, 29
Xilinx Zynq, 28

Temporal memory, 63–70, 72–75, 83,
85

TensorFlow,
classification using, 114–115
linear regression using, 109, 112

Text recognition, 119
Textual input data (one hot encoding),

215
Tokenization, in NLP activities, 105,

108, 110, 118
Traffic anomalies, detection, 104–105

Variance, for linear regression,
112–113

Vector-matrix, 82
Vedic, 47
Vendor and research laboratories

supporting AI infrastructure, 20
Versicolour, 119
VHDL, 47
Virginia, 119
Virtex, 57
Virtual assistant, 96, 97
Vocabulary, 108, 109
Voice bots, 97. see also Sanskrit voice

bot, NLP-based AI-powered
von-Neumann, 64, 67, 68

Web scrapping, 100, 106–107
Winner-take-all, 84

Xilinx, 57
architecture created by, 216
FPGAs, 205
ZYNQ SoCs, 209, 216

ZYNQ XC7Z020 FPGA, 209, 216

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

	Cover
	Title Page
	Copyright Page
	Contents
	Preface��������������
	Chapter 1 Strategic Infrastructural Developments to Reinforce Reconfigurable Computing for Indigenous AI Applications��
	1.1 Introduction�����������������������
	1.2 Infrastructural Requirements for AI��
	1.3 Categories in AI Hardware������������������������������������
	1.3.1 Comparing Hardware for Artificial Intelligence���

	1.4 Hardware AI Accelerators to Support RC���
	1.4.1 Computing Support for AI Application: Reconfigurable Computing to Foster the Adaptation��
	1.4.2 Reconfiguration Computing Model��
	1.4.3 Reconfigurable Computing Model as an Accelerator���

	1.5 Architecture and Accelerator for AI-Based Applications���
	1.5.1 Advantages of Reconfigurable Computing Accelerators��
	1.5.2 Disadvantages of Reconfigurable Computing Accelerators���

	1.6 Conclusion���������������������
	References�����������������

	Chapter 2 Review of Artificial Intelligence Applications and Architectures���
	2.1 Introduction�����������������������
	2.2 Technological Platforms for AI Implementation—Graphics Processing Unit���
	2.3 Technological Platforms for AI Implementation—Field Programmable Gate Array (FPGA)���
	2.3.1 Xilinx Zynq������������������������
	2.3.2 Stratix 10 NX Architecture���������������������������������������

	2.4 Design Implementation Aspects��
	2.5 Conclusion���������������������
	References�����������������

	Chapter 3 An Organized Literature Review on Various Cubic Root Algorithmic Practices for Developing Efficient VLSI Computing System—Understanding Complexity���
	3.1 Introduction�����������������������
	3.2 Motivation���������������������
	3.3 Numerous Cubic Root Methods for Emergent VLSI Computing System—Extraction��
	3.4 Performance Study and Discussion���
	3.5 Further Research���������������������������
	3.6 Conclusion���������������������
	References�����������������

	Chapter 4 An Overview of the Hierarchical Temporal Memory Accelerators���
	4.1 Introduction�����������������������
	4.2 An Overview of Hierarchical Temporal Memory��
	4.3 HTM on Edge����������������������
	4.4 Digital Accelerators�������������������������������
	4.4.1 PIM HTM��������������������
	4.4.2 PEN HTM��������������������
	4.4.3 Classic��������������������

	4.5 Analog and Mixed-Signal Accelerators���
	4.5.1 RCN HTM��������������������
	4.5.2 RBM HTM��������������������
	4.5.3 Pyragrid���������������������

	4.6 Discussion���������������������
	4.6.1 On-Chip Learning�����������������������������
	4.6.2 Data Movement��������������������������
	4.6.3 Memory Requirements��������������������������������
	4.6.4 Scalability������������������������
	4.6.5 Network Lifespan�����������������������������
	4.6.6 Network Latency����������������������������
	4.6.6.1 Parallelism��������������������������
	4.6.6.2 Pipelining�������������������������

	4.6.7 Power Consumption������������������������������

	4.7 Open Problems������������������������
	4.8 Conclusion���������������������
	References�����������������

	Chapter 5 NLP-Based AI-Powered Sanskrit Voice Bot��
	5.1 Introduction�����������������������
	5.2 Literature Survey����������������������������
	5.3 Pipeline�������������������
	5.3.1 Collect Data�������������������������
	5.3.2 Clean Data�����������������������
	5.3.3 Build Database���������������������������
	5.3.4 Install Required Libraries���������������������������������������
	5.3.5 Train and Validate�������������������������������
	5.3.6 Test and Update����������������������������
	5.3.7 Combine All Models�������������������������������
	5.3.8 Deploy the Bot���������������������������

	5.4 Methodology����������������������
	5.4.1 Data Collection and Storage��
	5.4.1.1 Web Scrapping����������������������������
	5.4.1.2 Read Text from Image�����������������������������������
	5.4.1.3 MySQL Connectivity���������������������������������
	5.4.1.4 Cleaning the Data��������������������������������

	5.4.2 Various ML Models������������������������������
	5.4.2.1 Linear Regression and Logistic Regression��
	5.4.2.2 SVM – Support Vector Machine���
	5.4.2.3 PCA – Principal Component Analysis���

	5.4.3 Data Pre-Processing and NLP Pipeline���

	5.5 Results������������������
	5.5.1 Web Scrapping and MySQL Connectivity���
	5.5.2 Read Text from Image���������������������������������
	5.5.3 Data Pre-Processing��������������������������������
	5.5.4 Linear Regression������������������������������
	5.5.5 Linear Regression Using TensorFlow���
	5.5.6 Bias and Variance for Linear Regression��
	5.5.7 Logistic Regression��������������������������������
	5.5.8 Classification Using TensorFlow��
	5.5.9 Support Vector Machines (SVM)��
	5.5.10 Principal Component Analysis (PCA)��
	5.5.11 Anomaly Detection and Speech Recognition��
	5.5.12 Text Recognition������������������������������

	5.6 Further Discussion on Classification Algorithms��
	5.6.1 Using Maximum Likelihood Estimator���
	5.6.2 Using Gradient Descent�����������������������������������
	5.6.3 Using Naive Bayes’ Decision Theory���

	5.7 Conclusion���������������������
	Acknowledgment���������������������
	References�����������������

	Chapter 6 Automated Attendance Using Face Recognition��
	6.1 Introduction�����������������������
	6.2 All Modules Details������������������������������
	6.2.1 Face Detection Model���������������������������������
	6.2.2 Image Preprocessing��������������������������������
	6.2.3 Trainer Model��������������������������
	6.2.4 Recognizer�����������������������

	6.3 Algorithm��������������������
	6.4 Proposed Architecture of System��
	6.4.1 Face Detection Model���������������������������������
	6.4.2 Image Enhancement������������������������������
	6.4.3 Trainer Model��������������������������
	6.4.4 Face Recognition Model�����������������������������������

	6.5 Conclusion���������������������
	References�����������������

	Chapter 7 A Smart System for Obstacle Detection to Assist Visually Impaired in Navigating Autonomously Using Machine Learning Approach���
	7.1 Introduction�����������������������
	7.2 Related Research���������������������������
	7.3 Evaluation of Related Research���
	7.4 Proposed Smart System for Obstacle Detection to Assist Visually Impaired in Navigating Autonomously Using Machine Learning Approach��
	7.4.1 System Description�������������������������������
	7.4.2 Algorithms for Proposed Work���
	7.4.3 Devices Required for the Proposed System���

	7.5 Conclusion and Future Scope��������������������������������������
	References�����������������

	Chapter 8 Crop Disease Detection Accelerated by GPU��
	8.1 Introduction�����������������������
	8.2 Literature Review����������������������������
	8.3 Algorithmic Study����������������������������
	8.4 Proposed System��������������������������
	8.5 Dataset������������������
	8.6 Existing Techniques������������������������������
	8.7 Conclusion���������������������
	References�����������������

	Chapter 9 A Relative Study on Object and Lane Detection��
	9.1 Introduction�����������������������
	9.2 Algorithmic Survey�����������������������������
	9.2.1 Object Detection Using Color Masking���
	9.2.1.1 Color Masking����������������������������
	9.2.1.2 Modules/Libraries Used�������������������������������������
	9.2.1.3 Algorithm for Color Masking��
	9.2.1.4 Advantages and Disadvantages���
	9.2.1.5 Verdict����������������������

	9.2.2 YOLO v3 Object Detection�������������������������������������
	9.2.2.1 YOLO v3����������������������
	9.2.2.2 Algorithm Architecture�������������������������������������
	9.2.2.3 Advantages and Disadvantages���
	9.2.2.4 Verdict����������������������

	9.3 YOLO v/s Other Algorithms������������������������������������
	9.3.1 OverFeat���������������������
	9.3.2 Region Convolutional Neural Networks���
	9.3.3 Very Deep Convolutional Networks for Large-Scale Image Recognition���
	9.3.4 Deep Residual Learning for Image Recognition���
	9.3.5 Deep Neural Networks for Object Detection��

	9.4 YOLO and Its Version History���������������������������������������
	9.4.1 YOLO v1��������������������
	9.4.2 Fast YOLO����������������������
	9.4.3 YOLO v2��������������������
	9.4.4 YOLO9000���������������������
	9.4.5 YOLO v3��������������������
	9.4.6 YOLO v4��������������������
	9.4.7 YOLO v5��������������������
	9.4.8 PP-YOLO��������������������

	9.5 A Survey in Lane Detection Approaches��
	9.5.1 Lidar vs. Other Sensors������������������������������������

	9.6 Conclusion���������������������
	References�����������������

	Chapter 10 FPGA-Based Automatic Speech Emotion Recognition Using Deep Learning Algorithm���
	10.1 Introduction������������������������
	10.2 Related Work������������������������
	10.2.1 Machine Learning–Based SER��
	10.2.2 Deep Learning–Based SER�������������������������������������

	10.3 FPGA Implementation of Proposed SER���
	10.4 Implementation and Results��������������������������������������
	10.5 Conclusion and Future Scope���������������������������������������
	References�����������������

	Chapter 11 Hardware Implementation of RNN Using FPGA���
	11.1 Introduction������������������������
	11.1.1 Motivation������������������������
	11.1.2 Background������������������������
	11.1.3 Literature Survey�������������������������������
	11.1.4 Project Specification�����������������������������������

	11.2 Proposed Design���������������������������
	11.3 Methodology�����������������������
	11.3.1 Block Diagram Explanation���������������������������������������
	11.3.2 Block Diagram for Recurrent Neural Network��
	11.3.3 Textual Input Data (One Hot Encoding)���

	11.4 PYNQ Architecture and Functions���
	11.4.1 Hardware Specifications�������������������������������������

	11.5 Result and Discussion���������������������������������
	11.6 Conclusion����������������������
	References�����������������

	Index������������
	EULA

ARTIFICIAL-
INTELLIGENCE.
APPLICATIONS
RECONFIGURABLE.
ARCHITECTURES

