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Preface
 

The healthcare industry is ripe for some major changes. From chronic dis
eases and cancer to radiology and risk assessment, there are nearly endless 
opportunities to leverage technology to deploy more precise, efficient, and 
impactful interventions at exactly the right moment in a patient’s care. As 
payment structures evolve, patients demand more from their providers, 
and the volume of available data continues to increase at a staggering rate. 
Artificial intelligence (AI) is poised to be the engine that drives improvements 
across the care continuum. AI offers a number of advantages over traditional 
analytics and clinical decision-making techniques. Learning algorithms can 
become more precise and accurate as they interact with training data, allow
ing humans to gain unprecedented insights into diagnostics, care processes, 
treatment variability, and patient outcomes. Major disease areas that use AI 
tools include cancer, neurology, and cardiology. Along with this, AI is at the 
forefront of scientific research and its progress also complements the growth 
of cloud computing. The effort to resolve many of the most challenging phar
maceutical aspects, with positive implications to pharmaceutical companies, 
researchers, patients, regulators, and payers, is enabled by advanced tech
nology, i.e., artificial intelligence. This book focuses on how artificial intel
ligence brings innovations to the future of healthcare. This book gives an 
overview on how AI can accelerate the process of clinical studies, which can 
reduce clinical trial cycle times while improving the costs of productivity and 
outcomes of clinical development. 

This book will help many pharmaceutical companies, CROs, IT compa
nies, and researchers to explore how AI can be effectively utilized to revolu
tionize the healthcare. This book covers basic- to advanced-level topics related 
to the applications of artificial intelligence in healthcare. It can be offered as 
an elective course for graduate and postgraduate students of medical and IT 
sectors. This book gives compiled information about introduction to AI in 
different fields of health sector or pharmaceutical industry with their appli
cation in various disease managements, cancer diagnoses, and treatments. 
This book contains 12 chapters that are written by profound researchers from 
many parts of the world. The book is profusely referenced and copiously 

xix
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illustrated. It should be noted that all chapters were deliberately reviewed 
and all were suitably revised one or two times. So, the content presented in 
this book is of greatest value and meets the highest standard of publication. 

This book should be of immense interest and usefulness to researchers 
and industrialists working in clinical research, disease management, pharma
cist, formulation scientist working in R&D, remote healthcare management, 
health analysts, and researchers from pharmaceutical industry. 

Finally, here comes the best part. We thank everyone who helped 
to make this book possible. First and foremost, we express our heartfelt grat
itude to the authors for their contribution, dedication, participation, and will
ingness to share their significant research experience in the form of written 
testimonials, which would not have been possible without them. Lastly, we 
are feeling fortunate to express our gratitude to River Publishers for their 
unwavering support. 
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Abstract 

The healthcare industry is evolving and digitizing healthcare practices, 
tools, and techniques as part of the Industrial Revolution 4.0. Healthcare 4.0 
includes big data analytics for healthcare data, AI for smart monitoring, and 
IoT for keeping track of patients’ daily healthcare activities. Healthcare sys
tems are embracing these innovative technologies in a fast and efficient man
ner. Healthcare 4.0 permits the handling and management of a large number 
of real-time patient data as well as the ability to make accurate and improved 
treatment decisions based on such data. It also helps doctors and medical 
practitioners to carry out predictive analyses of diseases in a better and effi
cient way. Furthermore, telemedicine and precision medicine are being used 
to streamline medical operations to ensure remote care. This chapter discusses 
the concept of Healthcare 4.0 and its benefits over conventional healthcare 
systems. It further describes the implementation of innovative technologies 
and the various data management approaches such as big data and virtualiza
tion. Subsequently, this chapter also highlights various tools, smart devices, 
and gadgets used for tracking and monitoring the healthcare vitals of a patient. 
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2 Healthcare 4.0
 

Moreover, various applications and a systematic review of different challenges 
and gaps related to the adoption of the Healthcare 4.0 have been discussed. 

1.1 Introduction 

The healthcare system has experienced different rollers of technology 
advancements, taking first from Healthcare 1.0, in which surgeons main
tained hand-written records of patients. Then followed Healthcare 2.0, in 
which paper manual records were replaced by electronic records, and then 
came Healthcare 3.0, in which wearable devices were introduced to mea
sure a person’s real-time health status utilizing a large amount of computer 
power. An important technical feature that distinguishes Healthcare 4.0 is 
that numerous types of devices interconnect with each other [1], monitor
ing patient health [2] and performing other health activities based on IoT, 
cyber–physical systems, and the Internet of Services. According to vari
ous studies, Healthcare 4.0 can be defined as the combination of healthcare 
applications based on IoT, AI, and intelligent sensors. Its goal is to digitalize 
health services and organizations. As a result, the focus of this chapter is on 
demonstrating the effects of this technology on performance and healthcare 
service delivery. The Industrial Revolution 4.0 defines the transformation 
and advancement of industrial production through the integration of new dig
ital technologies. If we look at the previous revolutions of industry in terms 
of technology, there were no automated systems like mechanical tools in the 
first revolution, electrification systems in the second revolution, and cyber– 
physical systems using IoT, big data, AI, blockchain, and cloud computing in 
the fourth revolution, to support humans in the healthcare sectors [1]. 

The main principles for the Healthcare Industry 4.0 are [2] as follows: 

• 	 Interoperability: Simplifies contextual information to continuously 
exchange the data. 

• 	 Virtualization: Monitoring and individualizing the different therapies to 
treat non-communicable and chronic diseases. 

• 	 Decentralization: Main aspect of intelligence and distribution into net
works with dispersed fragments. 

• 	 Real-time capability: Also known as theragnostic [3], where real-time 
processes diagnostic, control, relief, and remediation approach. 

• 	 Service orientation: The services provided by the smart devices should 
not harm the patients. 

• 	 Modularity: The modular system can adapt and change settings and 
necessities with changing or increasing sub-systems. Therefore, 
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Figure 1.1 Applications of healthcare 4.0 [5]. 

modular systems can be easily configured to manage regular instabili
ties or changes in product/system features [4]. 

Healthcare 4.0 is a strategic deployment and a well-managed model in the 
health industry. Their principles permit the best value for the healthcare 
system. The virtualization allowance in healthcare satisfies the demand in 
the healthcare industry (for all patients, staff, doctors, formal, and infor
mal caretakers). This system combines all the computational power from 
cyber– physical systems, cloud computing, and IoT. Various applications of 
Healthcare 4.0 are shown in Figure 1.1. 

1.1.1 Application scenarios of healthcare 4.0 

Healthcare is critical to survival, as evidenced by current marketing trends 
and classic science fiction. Therefore, healthcare and a variety of settings, 
such as long-term care and real-time response systems, can be implemented. 
The automatic procedures ensure a dramatic reduction in the risk of error sub
mission in comparison to the methods that require manual involvement [6]. 

A 5G communication infrastructure serves as the backbone for 
Healthcare 4.0, which provides improved features to healthcare systems. 
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Implementing cloud and fog computing can manage the devices which can 
be implanted into human to enhance the data collection of every activity and 
movement happening inside the body [5]. To some extent, Healthcare 4.0 
supports self-management, which includes wellness monitoring and illness 
prevention, management of chronic disease by tracking the health status, 
and preventive measures for obesity and diabetes. These systems can alert 
people to establish good nutritional food habits and build a knowledge base 
for a healthy lifestyle plan as well as assist them in achieving any fitness 
goals [7]. Monitoring the condition of the medication consumption by these 
systems adds value to disease management. The advancement of technology 
led to the development of the new advanced sensors (ingestible or wearable) 
that provide intelligent solutions and connectivity to the patient’s body parts. 
Personalized healthcare seeks to make decisions based on the needs of a sin
gle user, using data analysis to better understand the biology of everyone. 

Cloud-based healthcare systems for Healthcare 4.0 provide strength and 
simplification in the architectural designing of the information systems for col
lecting, analyzing, processing, or sharing the data to make the use of the data 
for the patient’s treatment or to keep the record for monitoring any long-term 
consequences. It enhances the data storage efficiency; thus, the management 
of data becomes much easier for the officials. According to future projections, 
all surgeries will be made more transparent with the help of specific smart and 
IoT devices, transforming this approach into a feasible spectating by experts 
with the most virtualization. Teleconsultation, similar to telesurgery, can also 
be used, which does not require the consultant’s physical presence [8]. 

1.1.2 The architecture of healthcare 4.0 

Healthcare 4.0 comprises smart industry and smart engineering as the basic 
blocks to building smart healthcare systems. As per Figure 1.2, the usability 
of the smart devices precisely in the healthcare system broadens the scope of 
treatment available for the patients. The cyber–physical system monitors the 
real-world processes and produces the corresponding output which can assist 
in treating the diseases. 

Cloud computing enhances the storage capacity of the healthcare sys
tem and analyzes the data at ease. The key element in the Healthcare 4.0 sys
tem design is the use of IoT devices, which is modern technology, including 
smart objects, sensors, and devices to track, monitor spectate, and supervise 
patients. In Healthcare 4.0, only medical-related IoT systems are evaluated 
to continuously improve healthcare. The data produced by the sensors in 
the devices are treated to form the results on which the main algorithm for 
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Figure 1.2 Framework for healthcare 4.0. 

the treatment will work [9]. In Healthcare 4.0, there are two categories of 
sensors: clinical sensors and non-clinical sensors, with IoT steadily creating 
more and more space for automation. 

Some of the best products given by IoT to healthcare for self-assessment 
in real time are respiratory sensors, pulse-oximeter sensors, pulse sensors, 
and BP sensors. Many prevailing healthcare resolutions utilize cloud systems 
to make decisions [9]. The problem of latency in the cloud-based environ
ment arises in the time-based application systems. The network topology for 
accessing the data from the server should be capable of retrieving the amount 
of data transferred from source to destination. The security of data transfer 
is critical since any incorrect or inappropriate data can cause the device to 
malfunction, putting patients in danger. Big data techniques meet the need 
for extracting value from previously unmanageable or uncontrollable data. 
Healthcare 4.0 operators can test their procedures by looking for new ways 
for huge data collection, knowing that big data methods can fetch meaningful 
and valuable information from data. 

1.1.3 Requirements and characteristics of healthcare 4.0 

The functional requirements (shown in Figure 1.3) are very specific and vary 
from system to system, whereas non-functional requirements are not very 
specific and can be used to establish the system’s quality [10]. Necessities 
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Figure 1.3 Requirements for the healthcare 4.0. 

Figure 1.4 Characteristics of smart healthcare 4.0 [10]. 

of a smart healthcare system include less power, consistency, service quality, 
enhanced user experience, high effectiveness, interoperability across diverse 
platforms, easy deployment, intelligent health system, system robustness to 
advance to new technologies, and adequate communication. 

The most significant features of a smart healthcare system are repre
sented in Figure 1.4. The features of intelligent healthcare can be divided into 
three categories: 
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• 	 App-oriented structures require reliable authentication and communica
tion between sensors and applications on smartphones to create a per
sonal connection between sensors and the device and protect data. 

• 	 Thing-oriented structures require application-based flexibility, instan
taneous monitoring, timely distribution, high compassion, maintaining 
high effectiveness in low power degeneracy, and initiating intelligent 
deployment. 

• 	 Semantic-oriented organizations require to be capable of changing 
behavioral outlines depending on earlier attained knowledge, develop
ing natural language execution strategies to augment user knowledge, 
and becoming omnipresent computer competencies [11, 12]. 

1.2 Evolution of Healthcare 

Healthcare 1.0 signifies the first industrial revolution, from the early 18th 
century to the middle of the late 19th century. Over time, with the emergent 
technology of the first engines and railways, the transformation of machines 
has facilitated the social movement from agriculture to industry. 

In the late 19th and early 20th centuries, a second industrial revolution, 
namely Industrial 2.0, demonstrated a standard shift from moderate to exten
sive production, due to high energy consumption. Henry Ford’s integration 
lines revolutionized manufacturing processes by allowing for the efficient 
distribution and connecting of multiple operations and equipment [13]. 

Throughout the 20th century, fast technological advancements have 
led to a larger use of ever-changing, digital-reflecting systems, as well as 
network communication production and commercial procedures. Integrated 
and flexible production systems, also known as “enterprise resource plan
ning,” have gained widespread acceptance, bringing in the third industrial 
revolution, termed Industrial 3.0, and paving the way for the fourth, named 
Industry 4.0. 

Entering the 21st century, Industry 4.0 signifies the fourth industrial 
revolution and aimed to fit in cyber–physical systems with data, procedures, 
devices, and operational technologies. IoT and related amenities are widely 
disseminated and utilized in combination with big data and methods of AI. 

Through internet-based and cloud-oriented analysis, performance, con
troller, and storage of resources, goods, and business procedures, one can 
attain sustainable, intelligent, and affordable connections (i.e., amalgama
tion) of product and service. The industrial evolution of healthcare is shown 
in Table 1.1. 



Versions Year Characteristics
 
Healthcare 1.0 1975–1995 • 	 In the field of health, “MRI” and 

“computerized axial tomography (CAT)” 
have been performed. 

• 	  Modular computer programs have 
emerged in the health sector. 

Healthcare 2.0 Subsequent period • IT healthcare connection systems 
and half of 1.0	 continued to link and establish EHRs, 

which began to link to imaging and 
provide doctors with better knowledge. 

Healthcare 3.0	 From 2004 ahead • Growth of genomic data, wearable, and 
implant development. 

• 	 Healthcare 3.0 was established during 
such data integrated with interacted EHR 
programs. 

Healthcare 4.0	 Current period • All these innovative methods, associated 
with real-time data processing, were 
included. Also, enhanced AI usage and an 
easy user interface were included. 

• 	 United with the real-time data group, 
improved AI usage, the overlap of 
imperceptible interfaces, and integration 
of numerous technologies. 

8 Healthcare 4.0 

Table 1.1 Progression of healthcare 4.0. 

1.3 Need of Healthcare 5.0 

Data is a powerful resource that has the potential to revolutionize the way 
healthcare is established, developed, and disseminated in the future. To find 
a model for fast change, Asian healthcare is adopting a digital healthcare 
system that will flourish as a precursor to Industry 4.0. Key to this challenge 
is the acceptance of a fast data communication network with smart devices, 
robots, distant monitoring, and other automatic tools in healthcare systems, 
benchmarking for Healthcare 5.0 and enabling both spectrum conclusions. 
Healthcare 5.0 will do authentication after the digital installation is com
plete. This revolution recognizes the key role of clients and the flexibility of 
working models in the industry to adapt customer procedures. It is a change 
in thinking from customer relationship management to a customer- managed 
relationship. In the healthcare industry, the fifth stage extends beyond 
patient-centered healthcare to include customer-focused health services. 

In 5.0, health service benefactors inquire where they can get into the 
lives of their clients, rather than through other means (where clients can 
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get into provider procedures). In this system, the main emphasis is on cli
ent models: truly knowing clients and not only patients in the healthcare 
industry. The planned difference presented in Healthcare 5.0 is lifetime 
association with clients, which is reflected in the focus on the well-being 
and quality of life of both patients as well as people who are often consid
ered clients in the healthcare industry. Digital health will emerge as part of 
Healthcare 5.0. Industry stakeholders will move from assisting patients to 
strengthening lifelong relationships with people and manufacturing unique 
treatments. Automation and AI are two of the most popular concepts in 
Healthcare 5.0, designed to transform any type of work environment. The 
use of AI in Healthcare 5.0 includes the concepts of exact and automatic dis
ease diagnosis and forecasting, remote-care patient monitoring and healing, 
robotic medical system, AI treatment that includes online courses for peo
ple with social anxiety disorder, and dealing with and verifying outcomes. 
Besides these, machine algorithms can measure the end consequences lack
ing human interference. Subsequently, the smart health system emerged as 
a result of the rapid growth and development of technology in healthcare 
[14]. The combination of AI methods for precise diagnosis and prediction 
makes healthcare smarter. Consequently, smart healthcare manages various 
modules of the healthcare organization intelligently. Through the integration 
of AI into healthcare units, large data groups produced by health components 
can be handled by various machine learning algorithms to make healthcare 
predictions and analyses. 

1.4 Advances in the Healthcare Industry 

Modern technology and inventions are making implications for the era in the 
medical and healthcare systems. The impact of flexible connected and wear
able healthcare devices, as well as other innovations, has been so significant 
and influential for so long that any highly developed medical facility, when 
compared to previous years’ healthcare services, is fortified with the latest 
gadgets and healthcare procedures. Advances in healthcare and digital tech
nology enable us to live safer, healthier, and more fruitful lives. The increas
ing use of digital health applications has been mainly helpful in monitoring 
the five major diseases such as diabetes, asthma, heart disorders, and lung 
conditions that often have the greatest impact on human health. Therefore, 
their treatment and monitoring have benefited from such healthcare innova
tions. As per the IQVIA report, digital healthcare applications are assessed 
to save about $8 billion per year in US healthcare expenses consumed on 
treating and controlling these critical diseases [15]. 
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1.4.1 M-Healthcare 

Mobile applications have arisen as efficient ways to confirm the patient 
appointment. As a result of the health applications communicating with doc
tors and healthcare facilities per hour, the necessity is easier than before. In 
many countries having effective mobile applications for worldwide health
care systems, it contributed to preventing, treating, and controlling severe 
diseases. For example, mobile applications play an important role in averting 
and monitoring type-2 diabetes. Certainly, the evolution of mobile applica
tions for healthcare and their utilization transformed recent healthcare. 

1.4.2 Healthcare data of patients 

Nowadays, patients are well-educated and skilled in various diseases, diagnosis 
constraints, and healthcare procedures. Having easy-to-use healthcare gadgets 
that are convenient and linked to mobile applications for monitoring healthcare 
data is important for general analytic determinations such as blood sugar test
ing, measuring blood pressure, and using a heart rate calculator. Self-diagnostic 
technologies have resulted in a massive surge of patient medical data [16]. 

1.4.3 IoT and healthcare 

Associated healthcare devices possess many new features to the healthcare 
system. From real-time diagnostic information to therapeutic approaches, IoT 
healthcare devices can convert health amenities in a way that has never been seen 
before. Such IoT devices combined with “geotagging” and “location tracking” 
help healthcare services accomplish better innovations, as mentioned below: 

• Prompt diagnosis of patients in emergency. 

• Promptly process important health data. 

• Remotely monitoring patient’s health. 

• Easy access to sensitive healthcare hardware. 

• Improved trailing of records, healthcare staff, and patients. 

• Improved monitoring of medicines. 

1.4.4 Blockchain technology and healthcare 

The major concerns of health facilities around the world are to maintain and 
protect patient data and to prevent all types of threats and risks regarding 
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data security. There is no better and more sophisticated technology to date 
than blockchain when it comes to data security. Blockchain is a limited spot 
that permits open access to data for all participants inside the organization 
while monitoring protected encoding and preventing any information theft or 
disrupting the “write once, never delete, never change” policy. While block-
chain enables healthcare organizations’ data, patient data is stored in a highly 
secured cell. Database of blockchain may permit unrestricted access to cus
tomized patient records and information while averting all kinds of disruptive 
attempts [15]. 

1.4.5 Big data analytics and healthcare 

Big data analysis of digital health applications has developed as important 
new technology to promote the advancements in carrying out treatment and 
monitoring. Big data analytics can handle a wide range of medical data, 
including patient information, medical history, records, medical equipment 
information and inventory, healthcare app data derived from user contacts, 
payment, insurance information, healthcare maintenance data, and many 
other types of data related to the healthcare industry. Additionally, many 
related details for dealing with numerous problems can be measured. 

1.5 Telemedicine Services 

According to research on mobile health applications in all forums, telemedi
cine apps are quite prevalent in every medical health application. Telemedicine 
applications have reformed the way of communication between doctors and 
patients. As a result of telemedicine applications, the physical connection 
between the surgeon and the patient is minimized and provides accessibil
ity to appropriate attention and cure. Many healthcare experts believe that 
such applications may quickly treat chronic illnesses and a variety of daily 
health indicators, as well as recommend accurate medicines and therapy [14]. 
Telemedicine applications permit the patient to connect with physicians and 
simultaneous medication instructions with the help of a mobile device. Many 
telemedicine users think such applications are more efficient in getting stan
dard treatment and care instead of visiting physical clinics. 

1.5.1 Big data and IoT for healthcare 4.0 

With recent technological advancements, many interconnected datasets can
not be analyzed, managed, or processed by the basic computational power 
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carried by any of the computer systems for techniques planned for extracting 
value from large volumes of different data economically, by allowing fast 
capturing, discovering, and analyzing [16]. Healthcare 4.0 has the most con
cise classification associated with the big data, consisting of five Vs [17]: 

• 	 Volume: Scale on which data is increasing. 

• 	 Velocity: Time bounded collection and analysis. 

• 	 Variety: Structure of data, the creation of data into various types. 

• 	 Veracity: Data having various gradations as per the monitoring and 
processing. 

• 	 Value: Providing maximum value extraction by the big data architecture. 

The existence of awareness about the great diversity of accessible databases 
is of the highest importance for comprehending the real competence of big 
data when applied to Healthcare 4.0. 

1.5.2 Blockchain and healthcare 4.0 

Contemporary healthcare systems are considered for being extremely com
plex and expensive. However, this can be focused on enhanced healthcare 
records organization, the use of insurance interferences, and blockchain tech
nology. Blockchain was first presented to offer dispersed archives of financial 
transactions that did not depend on centralized financial institutions [18]. The 
introduction of blockchain technology has led to enhanced connectivity that 
includes medical records, insurance payments, and smart contracts, allowing 
for data security, in addition to offering a wide range of transaction data
bases. Another important benefit of utilizing blockchain technology in the 
healthcare system is that it can transform healthcare data interactions and 
provide additional access to medical records, tracking of the device, medical 
database, and hospital properties, as well as a complete device life cycle in 
blockchain structure. Furthermore, accessing the medical history of a patient 
is vital for recommending medicine effectively, and blockchain can signifi
cantly improve the framework of such healthcare services [18]. 

1.5.3 AI and healthcare 4.0 

Initially, technology was used to perform routine and tedious tasks and to 
reduce paper usage by digitizing medical records while facilitating the flow 
of information between insurance companies, hospitals, and patients [19]. 
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Although these activities endure being implemented, AI has extended 
its operations from prevention to back-office production and is now being 
used as a tool to expand healthcare outcomes. AI is being utilized to find 
associations between genetic codes, the use of surgical robots, or even to 
enhance hospital competence. Overall, AI has been recognized to be benefi
cial to the healthcare industry. 

The major applications of AI in Healthcare 4.0 [19] are as follows: 

• 	 Support in clinical decisions: By the use of natural language processing 
(NLP). 

• 	 Improve primary care and prioritize by chatbots. 

• 	Robotic operations. 

• 	 Virtual nursing subordinates. 

• 	 Assisting in the precise diagnosis. 

• 	 Minimizing the burden of electronic health records. 

Threats of AI are unavoidable as there are many cons to using AI in health
care. Some of them are as follows [19]: 

• 	 Errors and injuries 

• 	Data availability 

• 	 Privacy and security concerns 

• 	 Bias and inequalities 

• 	Unemployment 

1.5.4 Cyber–physical system and healthcare 4.0 

The cyber–physical system integrates with computing and physical compo
nents and processes. Computing components connect and interconnect with 
sensors, monitor online and physical signals, actuators, cyber-converters, 
and the physical environment. The cyber–physical system utilizes sensors to 
join all the distributed intelligence in the system to gain in-depth knowledge, 
resulting in more precise actions and functions [20]. Cyber–physical systems 
can be considered as one of the most important components of a medical 
device network. These programs are gradually being used in clinics to pro
vide quality healthcare. Many types of data are obtained from real life using 
sensors. Furthermore, smart devices, together with smart meters, with great 



 

14 Healthcare 4.0
 

hearing ability and networks, are emerging. The evolution of the internet and 
the computer have unbolted a huge set of new regulatory powers that can 
influence human health through mobility, new health behaviors, new energy 
organization, and new facilities [21]. 

1.5.5 Smart medical devices 

As per the market observation, Amazon provides an integrated healthcare dis
play where users can fetch healthcare information, accessibility to the newest 
products, health insurance, and other services. As a result, smart wearable 
devices, like smartwatches, are modernizing the market. Furthermore, dis
tinguished products like Fitbit, Proteus, Pebble Time, etc., are now avail
able. Noteworthy to healthcare, smart devices are growing more and more 
common. The proposed annual sale is expected to reach around 80 million 
units at an annual growth rate of 20% by 2022. Apple is anticipated to have a 
significant market share; however, Android-enabled smart wearable devices 
are constantly evolving. Interestingly, Apple iWatch provides a built-in GPS 
package as well as heart rate sensors with a dual-core processor [10]. 

1.6 Opportunities and Challenges Involved in Healthcare 

It is a fact that the application and dissemination of such technologies in the 
healthcare brings substantial profits to entire healthcare users. Although the 
healthcare industry is gradually becoming more concerned with the proper 
use of IoT and big data technologies, there are a few difficulties that must be 
addressed before digital healthcare becomes a widespread reality [22]. 

As data expands in quantity, interoperability, which is defined as the 
capacity for devices used by healthcare consumers to be networked rather 
than compatible, becomes a major barrier in smart healthcare [23]. The secu
rity of the smart devices used in Healthcare 4.0 opens the loops for many 
vulnerabilities. Therefore, putting a check and control upon the security of 
smart healthcare systems can nullify the major threats and challenges for 
healthcare. 

1.7 Future Scope and Trends 

Several efforts are being made to increase fog computing service quality, 
such as sensor network integration, to provide more precise disease forecasts 
and automatic prescriptions. Appropriate blockchain algorithms must be 
modified for devices at the network’s edge to work in distributed areas with 
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little computing [24]. Also, there is a need to understand and consider various 
deep and supervised learning approaches to detect malfunctions and failures 
and perform a quality check on the servers’ services. Subsequently, there is a 
need for smart data analytics to analyze the data and formulate results based 
on it, which can help the community serve the commons more effectively. 

1.8 Conclusion 

This chapter discusses the concept of Healthcare 4.0 and its benefits over 
conventional healthcare systems in terms of energy, scalability, security, 
infrastructure, high-performance results and analysis, availability, and data 
privacy. Healthcare 4.0 benefits include smart devices that are more efficient 
than traditional healthcare systems. Healthcare 4.0 offers many opportuni
ties and challenges in the engineering of healthcare systems. Additionally, 
human–machine interactions in the socio-technical system have proven to 
be significant, confirming active communication and safe usage of intelli
gent technology. The users of intelligent healthcare, which include patients, 
caregivers, and health professionals, are placed at the center. It is significant 
to reflect their features, requirements, skills, and issues when scheming and 
using intelligent and integrated healthcare systems. Moreover, it is important 
to discuss the problem of dissimilarity and to confirm that Healthcare 4.0 is 
intended to reduce and alleviate such inequalities. Altogether, Healthcare 4.0 
permits all users to access high-standard healthcare services. 
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Abstract 

In recent years, artificial intelligence (AI) has been developing quickly, and it 
has become a breakthrough technology that uses computerized algorithms to 
analyze complex data. Diagnostic imaging is one of the most powerful clin
ical applications of AI and efforts are increasing toward improving perfor
mance to help detection and quantification of various disease conditions. AI 
tools are now being utilized in medical imaging to assess X-rays, CT scans, 
MRIs, and other images for lesions or other abnormalities that a human 
radiologist may overlook. The number of ways that AI can help physicians, 
researchers, and the patients they serve is continuously growing. AI is used to 
assist medical professionals with a wide range of activities, including admin
istrative tasks, clinical documentation, and patient outreach, along with spe
cialized support in areas such as image analysis, medical device automation, 
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and patient monitoring. In addition to the various applications in healthcare 
settings, there is little dispute that AI will play a significant role in the digi
tal healthcare systems that design and enable modern medicine. In addition, 
very few studies have described the specific benefits of AI in clinical settings, 
including data imaging and disease diagnosis. In line with the existing gap 
in the prevailing literature, this chapter attempts to discuss the role of AI 
in healthcare and clinical settings. Moreover, this chapter also presents the 
most important applications of AI in clinical trials, drug development, and 
biomedical science. 

2.1 Introduction 

The intelligence shown by the types of machinery systems is called artificial 
intelligence (AI) [1]. In recent years, artificial intelligence has been growing 
vastly concerning software algorithms, implementation of hardware, and appli
cation in numerous domains; for instance, healthcare, clinical studies, data 
imaging, and disease diagnosis. Hence, comprehensive learning algorithms 
can deal with up-surging data amounts rendered by mobile monitoring sensors, 
smartphones, and wearables [2]. Recently, researchers have claimed that AI 
can demonstrate an adequate and superior performance in the healthcare sector 
as compared to humans. Therefore, in this chapter, we discuss the benefits and 
drawbacks of using artificial intelligence (AI) to automate the medical field. 

2.1.1 Classifications of artificial intelligence 

AI is no single technology; however, it is a collection of various technologies 
whole together. Although most of the technologies have a significant and rel
evant role in the healthcare sector, the precise tasks and processes they sup
port vary in nature. Therefore, we are choosing the specific AI technologies 
that are of great importance to the healthcare domain [3]. 

2.1.1.1 Machine learning: Deep learning and neural network 
One type of AI is machine learning. Additionally, it is a statistical tactic to 
learn through exercising the data model [3], and the connection between AI, 
deep learning, and learning related to the machine is used to describe how 
computers learn [4]. The author stated that they (AI, deep learning, neural 
networks, and machine learning) are similar to Russian nesting dolls as every 
component is essential to the preceding team (demonstrated in Figure 2.1). 

It is evident from Figure 2.1 that the learning of machines is a subspe
cialty of artificial intelligence. Similarly, deep knowledge is the subspecialty 



 2.1 Introduction 21 

 

 

Figure 2.1 Russian nesting dolls model demonstrating the AI, machine learning, neural net
work, and deep learning relationship [3, 4]. 

of machine learning. Additionally, the networks of neurons are the spine of 
deep knowledge processes. Moreover, the number and depth of the node neu
ral network layer differentiate the single neural network and the deep learn
ing process [3, 4]. 

In the healthcare domain, precision medicine is the most collective 
presentation of outmoded machine learning. This consists of predicting the 
treatment protocols which are likely to succeed for the ill person grounded on 
the various disease attributes and the context of an intervention [5]. However, 
for precise machine learning, one needs to take the training for calculating 
datasets and variable outcomes, and the process of learning is designated 
as supervised learning. A neural network is a more advanced type of learn
ing related to machines, although this tactic is available since the 1960s. 
Since then, this technology has been recognized in the healthcare domain 
and researched by various investigators to categorize its application includ
ing predicting the disease incidence rate in a healthy person. It evaluates the 
inputs, outputs, and variables used to solve problems that linked both input 
and output to present the results [6]. The most difficult type of learning related 
to the machine is deep knowledge which includes various variables to predict 
results. Moreover, there are thousands of veiled features and variables in this 
model that can be uncovered through faster processing of cloud architectures 
and graphing processing divisions. The common use of deeper learning in the 
healthcare domain is the identification of potential cancerous conditions and 
lesions identified by deploying radiological imagining [7]. More specifically, 
deep learning and radionics are frequently utilized together throughout the 
investigation of oncology-related images. Furthermore, deep learning is also 



 

 
 

S. No Task Comments 

1.	 Speech 

recognition 

2.	 Speech tagging 

3.	 Word sense 

4.	 Recognition of 
named entity 

5.	 Resolution of 
co-reference 

6.	  Analysis of 
sentiment 

7.	  Generation of 
natural language 

• 	 Also known as speech-to-text 
• 	 Needed for understanding the voice commands and 

spoken questions 
• 	 Also known as grammatical tagging 
• 	 This aids in identifying the part of speech 
• 	 Semantic analysis 
• 	 It is recognizing the meaning of the word, which has 

multiple meanings 
• 	 This task helps in recognizing the phrases and words 

as useful units 
• 	 For instance, NEM recognizes “Sam” as a name 
• 	 This aids in accessing when and if two words need to 

refer to the same unit 
• 	 Also, it assists to recognize idioms 
• 	 This task is helpful in the extraction of subjective 

qualities, including confusion, sarcasm, attitudes, and 
emotions from the text 

• 	 It is opposite to the first task, which is speech recognition 
• 	 This task is specific to putting the structure of 

information and data into the human language [4] 
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gaining importance in speech recognition through natural language process
ing. Since the 1950s, the goal of the researchers is to make logic of the human 
being’s language. However, this includes various applications, analysis of 
text, recognition of speech, translation, and goals associated with human lan
guage. NLP is the computer science branch, and, specifically, it is a part of AI 
which is concerned to render computers the ability to understand spoken words 
and texts; similarly to humans, it included two major approaches: semantic 
NLP and statistical NLP [8, 9]. Machine learning is the grounded principle of 
statistical NLP. Expanding more, NLP associates computational linguistics, 
deep learning models, machine learning, and rule grounded human language 
models with statics. Together with the above-mentioned dimensions, the 
computer system can access text and voice data containing human language 
format to fully comprehend the significance. Human language is complex 
due to ambiguities, which make it difficult to read and understand by com
puter software. Therefore, the NLP task divides the human voice and texts 
in a manner that aids the computer system to make sense (summarized in 
Table 2.1). In the healthcare sector, NLP creates, understands, and classifies 
the published research and clinical documents. Furthermore, the NLP system 

Table 2.1 NLP tasks for processing the human language [10]. 
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can access unstructured patients’ clinical notes, formulate reports, transcribe 
interactions of patients, and conduct AI. 

2.1.1.2 Rule-based expert systems 
It is the simplest type of AI and deploys prescribed knowledge-grounded 
rules to answer or explain the problem [11]. The goal of the expert system is 
to fetch the knowledge from the human proficiency and convert the same into 
the hardcoded rules to relate to the input data. The rules are the “if–then” type 
and which dominate AI technology since the 1980s. This expert system is 
used for clinical decision support; for instance, electronic health records are 
one of the expert systems [12]. Similar findings from the existing literature 
demonstrated that expert systems needed knowledge engineers and experts 
to form a rules series in a specific knowledge domain. The advantage of this 
system includes working well and being understandable. In contrast, when 
there are a lot of rules, then the rules begin to break down due to conflict 
between the numerous rules. Additionally, if the knowledge domain changes, 
then there is a requirement to change the rules set, which is a time-consuming 
process. 

2.1.1.3 Physical robots and software robotics 
In the recent scenario, around the world, more than 200,000 physical robots 
have been placed. Industrial robots are carrying out several functions includ
ing dislocating, assembling objects, welding, and lifting objects in place, 
including warehouses and factories. Furthermore, such robots are engaged 
in supplying items in hospitals. Recently, industrial robots have developed 
connections with humans and can work with humans in collaboration. One 
of the advantages is that these robots are easy to train by moving them by a 
required task. With time, robots become more intelligent because AI apti
tudes are inserted into the robot’s operating system (also known as the brain). 
In 2000, the USA government initially approved surgical robots. This initia
tive gives the power and vision to the surgeon as it helps in improving the 
ability to access wounds, create precise invasive incisions, and so on [13]. 
However, the important decisions are still taken by humans only. Some of the 
common surgical procedures deploying robotic surgery are prostrate surgery, 
head and neck surgery, and gynecologic surgery. 

Robotic process automation (RPA) is the business procedure automa
tion technology grounded on AI, metaphorical software bots (robots), and 
digital workers. It is also known as software robotics, although it is not asso
ciated with robot software. Traditionally, the workflow automation tools’ 
software developer formulates the actions list to mechanize a task and deploy 
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scripting language or internal applications programming interfaces (APIs) 
for outcomes. However, the RPA system formulates the list of actions by 
observing the task performed by the user and performing the same task by 
repeating it in the graphical user interface [14]. Such a technique aids in 
decreasing the barrier to deploying automation process in products, which is 
commonly not API’s characteristic. 

Additionally, the RPA tool demonstrated similarity with the GUI and 
automated the communication with GUI. In contrast, the RPA tool is not sim
ilar to such a system because it allows data handling in and between various 
applications, for example, getting mail including invoices, data extraction, 
and adding the same information in the book-keeping process system. The 
actual use of this system includes lending and mortgage process, OCR appli
cation, data extraction, fixed automation, customer care, and banking process 
automation. This technology will bring a new wave of efficiency and pro
ductivity to the market, specifically the labor market. Although we have dis
cussed the above-mentioned techniques as separate topics, these techniques 
have been amalgamated, for instance, robots with AI grounded brains and 
image recognition combined with RPA [14]. 

2.2 Machine Learning for Typical Biomedical Data Types 

2.2.1 Data from multiple omics 

The biological process of merging and analyzing various “-omics” data, such 
as genomics, proteomics, transcriptomics, epigenomics, and microbiomics, 
is referred to as multi-omics data [15]. Traditional single-omics methodolo
gies do not provide a comprehensive understanding of biological processes; 
however, multi-omics does. Typically, several omics datasets can describe 
the same or similar biological processes. Every omic is handled as a dis
tinct viewpoint in ML [16], which is known as a multi-view configuration. 
Combining various sources necessitates that integration be data-driven or 
model-driven. 

2.2.2 Integration based on data 

A single model can be created by concatenating with or without transforma
tion, data from all the perspectives. Data from single-nucleotide polymor
phisms have been effectively combined using this integrative approach into 
a single matrix (SNPs) and gene expression of mRNA as well as the use of a 
Bayesian integrative model to investigate the link to estimate a quantitative 
outcome using SNPs and mRNA (e.g., cytotoxicity of drugs) [17]. 
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2.2.3 Incorporating models 

This method is used every perspective of data, which is subsequently com
bined in the model output, ATHENA [18, 19], for example, performed 
genomic studies by incorporating data from several omics sources, for 
example, changes in the number of copies, expression of genes, meth
ylation, and miRNA to uncover connections, for example, ovarian can
cer survival is a clinical outcome. During the stage of the investigation, 
based on each type of omic data, base models and neural networks are 
developed, and then comes the building of an integrative model. Wang et 
al. [20] presented a network convergence strategy to classify cancer that 
starts with the creation of resemblance matrices for patients. These are the 
resemblance matrices for patients built using data from the expression of 
mRNA, methylation of DNA, and expression of miRNA. Following the 
construction of these matrices, an iterative nonlinear approach is used to 
make the three work together to find patient groupings, and researchers 
combined equal matrices into a single matrix. Dr. Ghici and Dr. Potter 
[21] developed a multidisciplinary strategy to assist in the prediction of 
HIV protease mutations that are resistant to treatment. This strategy cre
ates a foundation for the prediction model by using structural data from 
an HIV protease-drug inhibitor combination as well as differences in the 
sequence of DNA and then uses the underlying models’ predictions to 
perform majority voting. 

2.2.4 Data on behavior 

Aside from multi-omics and clinical data, behavioral information is concern
ing one’s health. When it comes to the utilization of behavior, information 
in applications related to health presents a few unique issues as a result of 
how information is acquired and stored; few study groups look into the link 
between information on behavior and related to health. 

Sinnenberg et al. [22], for example, discovered links between Twitter 
tweets as well as the possibility of heart disease. This research discovered 
that individuals having coronary artery disease, maybe have tweets’ tone, 
style, and perspective as well as some basic demographics, aid in identifying 
them, based on a sample of 4.9 million tweets through deploying AI system. 
Researchers [23] studied analytics on social media and mental health as well 
as indicators discovered that are related to social media usage that was asso
ciated with worsening symptoms of psychosis [24], hypomania [25], suicidal 
ideation [26], and sadness [27]. 
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2.2.5 Data from video and conversations 

Many people have become interested in the video and verbal data used, 
both within and without disciplines considering the field of medicine. The 
Chinese internet behemoth, Tencent, claims to be the inventor of a system 
for visual perception which is capable of detecting Parkinson’s illness in 
about 3 minutes. Patients and professional medical workers in an investi
gational study conduct long discussions. and the use of language clues as 
a strategy for detecting cognitive impairment of mild severity (MCI) iden
tification has recently shown potential [28, 29]. Tang et al. [30] used rein
forcement learning techniques based on the transcripts from these clinical 
tests, and conversational AI has been developed [31]. This agent was taught 
to maximize MCI diagnostic accuracy with the fewest number of conver
sational events possible, and it outperformed supervised learning methods 
significantly. 

2.2.6 Mobile sensor data 

In recent years, many research studies have attempted to revolutionize health
care by utilizing data from mobile sensors [32]. Mobile data insights could be 
tremendously valuable in chronic illnesses, for example, mental health diffi
culties along with persistent discomfort and mobility impairments. For exam
ple, Saeb et al. [33] looked into the link with global positioning system (GPS) 
location, data based on the phone utility, as well as the gravity of the situation 
of depression symptoms. Selter et al. [34] developed a self-management of 
chronic lower back pain with a mobile health app. Zhan et al. [35] used a 
machine learning approach to develop an app based on data from mobile 
sensors to predict the Parkinson’s disease severity. Turakhia and Kaiser [36] 
imagined what impact mobile health could have to change atrioventricular 
fibrillation treatment. The National Institutes of Health [37] selected one of 
11 Big Data Centers of Excellence as the Mobile Sensor Data-to-Knowledge 
(MD2K) Center, highlighting the significance of mobile data analysis in the 
field of health. 

2.2.7 Data on the environment 

Factors of the environment play a part in the development of several dis
orders, including coronary heart disease [38], chronic obstructive pulmo
nary disease (COPD) [39], paralysis agitans [40], psychological illnesses 
[41], and tumor [42]. Artificial intelligence technology has progressed to 
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investigate data on the environment to gain a deeper understanding related 
to illness causes and raise the standard of care. Song et al. [43], for exam
ple, used time-series analyses to investigate the influence of the environ
ment on hand, foot, and mouth disease. By using ML models, Stingone 
et al. [44] investi gated air pollution and its relationship to exposure in the 
cognitive abilities of children of the United State. As per the results data 
driven machine learning can be utilized to assess the air pollutants impact on 
the helath outcomes. Similarly, Park et al. created environmental risk scores 
using sophisticated ML models and combine them with mental combina
tions, cardiovascular disease, and oxidative stress. Hahn et al. [46] created 
gene–gene and gene–environment interaction detection software; which was 
also boon in the healthcare system. 

2.2.8 Pharmaceutical research and development data 

Medicines have critical functions in healthcare. Data collected during the 
development of a drug frequently reveals fresh knowledge about disease 
mechanisms and prevention. To get information out of the data, artificially 
intelligent methods were employed. 

2.2.8.1 Chemical compounds 
PubChem [47] is a website that contains data about tiny compounds as well 
as their biological properties. Several researchers utilize the molecular struc
tures in PubChem as a lexicon, followed by an examination of specific com
pounds using a zero-one footprint representation. Zhang et al. [48, 49], for 
example, employed a representation that is based on the footprint to deter
mine medicinal parallels and related them to patient or illness resemblances 
to generate individualized therapy commendations. Graph convolutional 
networks (GCNs) [50] have recently been employed in the construction 
of molecular structures and analysis, which considers every molecule to 
be a graph, with atoms acting as nodes in a network. Using this approach, 
Duvenaud et al. [51] created a GCN structure for extracting features from 
molecules (also known as neural fingerprints), having a high level of pre
dictability, comprehensibility, as well as parsimony. Molecular graph con
volutions, according to Kearnes et al. [52], are “a novel approach to virtual 
screening using ligands.” 

2.2.8.2 Clinical trials 
Clinical trials are a crucial part of the medication development process. 
Clinical trial participants are typically chosen based on precise criteria 
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for acceptance and rejection. Data from clinical trials offer pharmaceu
tical companies a plethora of information. AI techniques have recently 
been employed in data mining and the design of clinical trials. Chekroud 
et al. [53], for example, in cross-trial depression treatment outcome pre
diction, can be utilized for gradient boosting and feed-forward feature 
selection. Kohannim et al. [54] studied the application of a machine that 
supports vectors to improve clinical trial strength and minimize its sam
ple size. 

2.2.9 Unintentional reports 

The FDA Adverse Event Reporting System (FAERS) [55] gathers data on 
adverse events linked to specific drugs. Using FAERS data, Sakaeda et al. 
[56] assessed the efficacy of four specific methods related to data mining 
for forecasting the incidence of side effects from specific drugs. Tatonetti 
et al. [57] used FAERS to construct a method for detecting medication– 
drug interactions based on new signal detection. Zhang et al. [58] created 
a medication–drug interaction prediction approach depending on FAERS 
side-effect profiles and medication similarity graphs. Banda et al. [59] linked 
medicine names and results to RxNorm and SNOMED-CT standard vocabu
laries to improve FAERS utilization. 

2.2.10 Literature in biomedicine data 

Published findings in the literature on biomedicine are yet another major data 
source for artificial intelligence in healthcare. Technologies such as artificial 
intelligence (AI) and natural language processing (NLP) are extractable to 
inform health research, and useful information from the literature is needed. 
In the mining literature of biomedicine, numerous advanced AI methods 
have recently been developed and attained [60] cutting-edge performance 
due to which modern machine learning approaches have revolutionized as a 
result of this transformation, for example, deep understanding, particularly 
in natural language processing. Entity recognition and normalization are 
two major issues that are used to describe the mining of literature; recog
nizing and normalizing identified items of interest is a difficult task (e.g., 
illnesses, variations in genetics, etc.) in the text (e.g., if two separate textual 
descriptions are similar). Leaman et al. [61] created DNorm as a pairwise 
learning-to-rank machine learning technique for the normalization of dis
ease names. 
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2.3 Application of AI 

2.3.1 Biomedical information processing 

In the sphere of medicine, the amazing advancement has been regarded as 
related to natural language interpretation and processing. Its means Question 
Answering (QA) is a benchmark Natural Language Processing (NLP) task 
in which models use linked documents, pictures, knowledge bases, and 
question-answer pairings to anticipate the answer to a given question. Hence, 
the NLP seems to be the appropriate technique for searching the answers. The 
whole process of searching for the answer is systematic and specific [62]. 
This process starts with classifying the asked question into a specific cate
gory to extract the specific information. More specifically, machine learning 
(ML) divides the question into four types with nearly 90% accuracy [63]. It 
is followed by the retrieval of the best answer to the question by an intelligent 
biomedical document/data recovery system. Sarrouti also documented that the 
“yes” and “no” answer formulator based on the sentiment analysis worked suf
ficiently while extracting binary answers [64]. This technique can be deployed 
for merging clinical information, conflict resolution, and comparison. Earlier, 
these were the time-consuming and laborious work done by a human. Recently, 
the AI is demonstrating the capability to perform the above-mentioned task 
effectively and accurately as the human professional evaluator can perform. 
Expanding more, NLP supports the medical narrative information which is 
required to the unrestricted human race from performing the challenging work 
including temporal events track while concurrently maintaining reasons and 
structures. Lastly, ML can be deployed in performing complex clinical infor
mation, for instance, biomedical data and tests, putting logical rationale in the 
datasets, and using knowledge for various purposes [65]. 

2.3.2 AI for living support 

The author stated that AI can be used in assisting the disabled and elderly peo
ple as using smart robotic systems aids in up-surging life quality of the patients 
[66]. Moreover, the author added that, recently, various literature works have 
been published related to home tools and functions for the disabled person, 
and intelligent solution systems grounded on the AI, data mining, and wire
less sensors for supporting the patients who are dependent on family mem
bers to sustain normal day-to-day work. These systems can learn through the 
transformation of images to access expression on the face of the human as per 
the instructions. Moreover, human–machine interfaces (HMIs) are grounded 
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based on the investigation of a disabled person’s facial expression which, 
in turn, guide robot-supported vehicles and wheelchairs without sensors or 
joysticks fixed to the body [67]. In a 2017 study, Hudec and Smutny, through 
their research work, elaborated that RUDO (ambient intelligent system) can 
support blind people to live and work together with the sighted individual in 
the specialized domains, including electronics and informatics. Furthermore, 
the author claimed that blind people can utilize intelligent assistance in var
ious ways by a single operator interface [68]. The author Oprescu describes 
the role of AI in pregnant women. The author argued that women who reside 
in remote and rural areas are unable to access the proper consultations and 
medical facilities. Hence, considering this gap in the medical field, the author 
had planned to render support to the pregnant women through a mobile phone 
application. The key findings of this study suggested that AI can support 
pregnant women with crucial advice including diet, exercise, and medication 
during paramount maternity stages. This can be supported by the amalgama
tion of own intelligence of AI and cloud-dependent communication media 
between the entire individual concerned [69]. Oprescu claimed that the health 
and well-being enhancement of pregnant females can be attained through AI, 
including effective computer-based tools and devices, though further research 
is still required for strong suggestions [70]. 

The radar Doppler time-frequency system that the detecting sensor 
was anchored on was the fall's mechanism. The detecting sensor, which was 
grounded on a radar Doppler time-frequency system, was the fall's mecha
nism. The mechanism of the fall – the detection sensor which was grounded on 
a radar Doppler time-frequency system. The author claimed that radar is a par
amount sensing modality for the people who have a higher risk of falls as this 
system worked on human motion monitoring. The general principle is to trans
fer an electromagnetic wave of some frequencies range and access the radar 
reoccurrence signals [71]. Hence, this system provides a clutter suppressed, 
noise-tolerant, and non-intrusive sensing system for evaluating moving motion 
[72]. Furthermore, the low-cost radar system with narrowband property can be 
deployed to access the moving objects’ instantaneous velocity by calculating 
the backscattered waves’ frequency shift, and this effect is called the Doppler 
effect [73]. A smart communication system has been developed for people 
with autonomy loss, based on the AI information processing system that col
lects the data from various communication technologies and channels. Hence, 
this system aids in determining the event that occurs within the network ambi
ence and assists the elder people to lead a quality life. “Intelligent agent for 
activity limitation and safety awareness (SALSA) screening” helps the elderly 
patients by supporting daily medication processes and activities [74]. 
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Figure 2.2 Alarm system and preventive measure process model for assisting aged peo
ple [75, 76]. 

Gait and motion study established that ML in the assessment of motion 
can raise an alarm system during the hazards act and support with activation 
of preventative measures [75]. In such cases, data (related to human behavior 
and ambient surrounding) is collected through the sensor and the same can 
be accessed through edge intelligence or cloud computing. It is followed by 
the activation of the alarm and rendering the preventative measures [76]. The 
same is illustrated in Figure 2.2. Furthermore, an AI-based expert system 
combined with personal digital assistance and mobile can aid the individual 
with memory damage by improving their memory competencies to achieve 
desired living standards. 

2.3.3 Biomedical research 

AI has been explored as a beneficial tool and application in biomedical stud
ies. This is attributed to the fact that AI can increase indexing and screen
ing of the pre-existing literature in the biomedical domain. This includes 
the research on the tumor-suppressor procedure, human genome, protein 



32 Data Imaging, Clinical Studies, and Disease Diagnosis using Artificial Intelligence in Healthcare 

extraction, and genetic associated illness findings in healthcare [77]. The 
researcher can compile the literature as per the pre-decided subject or area 
of interest through the AI approach known as the semantic graph grounded 
approach. Expanded more, the researcher can rank the selected articles when 
the paper cannot be readable. Additionally, this process helps the investi
gators to test the hypothesis, which is considered the paramount step in the 
research process. For instance, the investigators can access and rank the liter
ature through AI for testing the formulated hypothesis [78]. 

Intelligent medical tools and devices are up-surging consciousness and 
the same can be discovered in biomedical studies. Computational modeling 
assistant (CMA) is one of the intelligent tools that aid the researcher in the 
biomedical field to form executable incentive models grounded on the con
ceptual models that are present as a thought in their mind. The CMA renders 
the various databases, methods, and knowledge. The investigator’s hypoth
esis and ideas are expressed as the biological model that is provided to the 
CMA as input. The CMA has a significant role to convert the hypothesis, 
ideas, and knowledge into the actual stimulation models. Then the investi
gator chooses the suitable and best model, which will be followed by the 
generation of stimulation code by CMA [79]. Throughout the whole process, 
the CMA helps the researchers by reducing time consumption and rendering 
accurate code without much hassle. Hence, CMA enhanced productivity and 
quickens the research procedure. The CMA procedure is demonstrated in 
Figure 2.3. Lastly, some of the intrusive tools can be beneficial in the field of 
oral surgery, plastic surgery, and biomedical imaging [80]. 

2.3.4 Medicine 

This section is aiming to discuss AI’s current application in medicine, which 
includes various fields like cardiology, gastroenterology, nephrology, neurol
ogy, pulmonary medicine, endocrinology, and so on. In the medicine field, 
early identification of arterial fibrillation was the first AI application. In 2014, 
Alive Cor got the approval from FDA to launch the mobile application which 
monitors ECG and aid in the early identification of atrial fibrillation [81]. 
The utility of the smartphone-driven Kardia application in arterial fibrilla
tion identification. This REHEARSE-AF research demonstrated that ECG 
monitoring through Kardia application in ambulatory patients is beneficial in 
atrial fibrillation identification as compared to routine care [82]. Furthermore, 
Apple also gets approval from FDA for their latest watch which permits easy 
ECG acquirement and identification of arterial fibrillation. The same data can 
be shared with the healthcare worker with the help of a smartphone. 
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Figure 2.3 Demonstrating the interaction between CMA and researcher mind [79, 80]. 

There are various critiques of portable and wearable ECG technology, 
which includes uses limitation, adoption barriers in elderly patients, and 
false-positive results. AI can be applied through the electronic patient records 
to calculate the cardiovascular disease risk, for example, heart failure, and 
compared to standard measures for acute artery diseases [83]. The outcomes 
depend on the sample size included in the research [84]. Topalovic et al. [85] 
served to elaborate on the role of AI in the pulmonary medicine domain. The 
author stated that pulmonary function tests are an encouraging field for AI 
application. AI grounded software renders the more specific outcomes and 
serves as the decision tool for interpreting outcomes of the pulmonary func
tion test [85]. However, Delclaux presented the critique for the study con
ducted by Topalovic et al. [85] as the results of this study demonstrated that 
accurate diagnosis rate in pulmonary functioning was significantly inferior to 
the country average [86]. 
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Patients with diabetes mellitus should check their serum glucose levels 
to have a better check on their illness and to avoid the associated complica
tions. FDA provided approval to “Medtronic” for measuring and monitoring 
serum glucose levels [87]. Medtronic tools can be linked with smartphones 
[88]. The company gets in conjunction with Watson to incorporate the AI 
property for the measurement of serum glucose levels to aid the clients to pre
vent or reduce the risk of hyperglycemic episodes grounded on the repeated 
examination values. It is evident from various studies [89] that regular assess
ment of the serum glucose level helps the patient to have better control over 
their condition. Moreover, it also helps patients to attain a positive attitude 
toward their illness as better glycemic control reduces the stigma and stress. 
More specifically, the personal failure in maintaining serum glucose levels 
can cause anxiety and the development of a negative attitude toward the 
disease. Decision assistance powered by artificial intelligence (AI) has the 
potential to lessen these issues and enhance clinical treatment and nephrol
ogy research. The author claimed that AI has a significant role in various set
tings of nephrology. AI aids in the estimation of the glomerular filtration rate 
in an individual suffering from polycystic kidneys disease. Expanding more, 
AI also helps in stating the risk of progressive IgA nephropathy. However, 
there is still a requirement for further research to critically evaluate the role 
of AI in clinical nephrology. AI technology is one of the vital techniques in 
gastroenterology. Gastroenterologists use the neural network amongst other 
types of endoscopy and ultrasound pictures are processed using deep learning 
algorithms. The images can assess the clinical conditions, like colonic pol
yps. Furthermore, a neural network is deployed for the diagnosis of atrophic 
gastritis and gastroesophageal reflux. AI can be deployed in the diagnosis of 
esophageal cancer, collateral cancer, metastasis, and inflammatory bowel dis
ease [90]. Urinary function and storage of the bladder can be failed due to any 
neurological disorder or spinal cord injury. Moreover, aging can also be the 
potential cause of urinary function failure. The implantable neural trigger can 
be an effective treatment in treating bladder functioning failure in patients 
with the drug-refractory condition. Conditional neuro-stimulation can be an 
effective technique to enhance the safety and efficiency of neuroprostheses. 
In this process, the bladder sensor detects the filled bladder through a feed
back mechanism [91]. The digital signal processor for accessing and sensing 
the urine fullness and pressure through the mechanoreceptors (bladder neural 
roots) shows the fluctuations during fillings. Such neuroprostheses have two 
basic units including an internal unit (inside the patient) and an external unit 
(wearable device). The internal unit accomplishes various functions includ
ing recording of neural signals, neuro-stimulation, on-chip processing as per 
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the applications, controlling the external unit, and connecting to the external 
unit through sending the recorded signal [92]. The role of AI in neurology 
includes epilepsy and tremor assessment. The author claimed that intelligent 
seizure assessment devices may be an effective method for recognizing epi
lepsy early on as well as aiding in improving the management of the same. 
In 2018, FDA rendered the approval to “Empatica” for their wearable tool 
which connected with the ectodermal captors to detect the episode of epi
lepsy and send the report through the mobile application. This mobile appli
cation sends an alert to relatives and physicians when there is an epileptic 
attack experienced by the patients [93]. Furthermore, the wearable sensor 
can be an effective technique to quantitatively assess tremor, posture, and gait 
in Huntington’s disease, Parkinsonism, and multiple sclerosis patients [94]. 

2.3.5 Cancer and miscellaneous 

Several studies have been conducted to assess the applications of AI in health
care along with algorithms for detection of cancer through mammograms, 
interpretation of radiographs for chest, analysis of various scans for computer 
tomography, identification of magnetic resonance images for brain tumors, 
and prediction for the development of Alzheimer’s disease with the help of 
positron emission tomography [95]. Other applications of AI are in pathology, 
identification of cancerous skin lesions, explanation of retinal imagining, and 
detection of arrhythmias and hyperkalemia through electrocardiograms [96]. 
The other uses of AI in diagnosis are identification of polyp from colonos
copy, upgrading interpretation of genomics, identifications of genetic condi
tions with the help of the appearance of the face, and evaluation of the quality 
of embryo for maximizing the improvement of in vitro fertilization [97]. 

2.4 Assessment of AI Applications in Healthcare 

Up-surge scrutiny of AI application in medicine and healthcare domain 
demands for evaluation of AI in the real-life situations for assessing unintended 
consequences and effectiveness. Healthcare is becoming increasingly com
plex, and AI applications are becoming more context- and user- dependent; so 
the traditional methods of evaluating AI must be changed. The author claimed 
that artificial intelligence (AI) is becoming more prevalently deployed in the 
care of the patient to diagnose the problem and choose the most appropriate 
course of action for the patient. However, there is a proper regulatory method
ology for assessing the relevance of AI in healthcare. A comprehensive anal
ysis of the role of AI was presented by the author. The phases are as follows. 
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2.4.1 Phase 0 

This phase consists of two equivalent efforts, which include evaluation of 
the user’s requirements and formulation of AI algorithms. This phase aims 
to identify users, ensure interpretability, and identify workflow and proto
typing of the initial design. To assess the user’s requirements and explain-
ability, the researcher can deploy algorithm grounded question-bank method 
for user-addressed AI design [98]. Evaluation of the data quality is the prime 
component of AI. For instance, the investigator must assess the data for com
pleteness (missing data extent and pattern); timeliness (data represent the 
recent practice); biases (data representativeness); and validity (erroneous 
input). Some of the open-basis toolkits including AI Fairness [99, 100] can be 
an effective tool in evaluating metrics of fairness and bias in AI algorithms. 
Moreover, statistical performance metrics should continue to be evaluated. 
More specifically, human performance measurement is paramount to finding 
the baseline from which the AI solutions’ accuracy can be compared in line 
with the human task. 

2.4.2 Phase 1 

A researcher can evaluate the pros and cons of the intervention during this 
phase. For medicines, this phase evaluates the drug-associated toxicities 
and optimal dose. However, this stage improves model performance for AI 
systems, for instance, identifying the difference between recall and preci
sion. This phase requires the ability to evaluate the long-term implications 
of wrong negatives and positives. After the model is formulated based on 
the previous data, this phase can evaluate the real-world data. For instance, 
the AI model can render incorrect information based on algorithm biases 
grounded on improper information [101]. Users can also face the conse
quences of misunderstanding or misperception from the invalid model out
puts and designs of AI solutions. By the proper development of an AI model, 
users should have the necessary information on how to distribute the same 
and how to measure the sureness of the models. Applied social science meth
odologies ethnography and phase 0 can be deployed to understand interac
tions between consumers and AI solutions. Previous evaluation parameters 
are very helpful for the proper understanding, discovery, and use of system 
features by the users. Simulation studies are the usability testing that men
tions the hypothetical clinical scenarios and performance of certain tasks 
by the participants which can be involved in the detection and insurance of 
cognitive overload or overtrust issues. However, there is an identification 
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of potential risks, including disruption of the flow of work, concerns as to 
patient safety or clinicians’ insights can be contradicted by the model out
puts are equally important as well. Errors such as poor model fit, instabil
ity in terms of numerical, malfunction of software and hardware, or human 
error should also be evaluated by the mechanisms for catching and correct
ing errors [102]. 

2.4.3 Phase 2 

This phase intends to access the drug’s efficacy and associated side effects. 
However, the device’s effects and action mechanism are assessed through 
phase 2 trials. As AI solutions impact users and interests, results might be 
different from expectations or reality. Hence, these pages help in understand
ing both unintended benefits and concerns. It is essential to probe and note 
the participants’ thought processes and activities to understand whether the 
intended efficacy of the AI solution is achieved or not. During the insight 
generation, the AI algorithms must be dynamic and usually include random
ness. If the client does not develop faith in the AI system, then there is the 
possibility that the solution is under-evaluated. Kushniruk [102] stated that 
A/B testing can be an effective study design that aids in evaluating the rel
ative efficiency of the AI solutions and discovering the inadvertent conse
quences. What is calculated in “phase 2” is equivalent to the intermediate 
results for the anticipated outcomes. For instance, decisions more attached 
to the pre-decided treatment guidelines would aid in improving the expected 
clients’ outcomes and decreased time consumed in administrative procedures 
which indirectly reduces costs. To conclude, confirming intermediate mea
sures’ improvement is the vital step to rationalizing the subsequent phase and 
estimating the sample extents [102]. 

2.4.4 Phase 3 

Clinical research works help in determining the AI solution’s value in medicine 
by assessing whether AI can be useful in improving the health results in actual 
life. This phase’s goal is to determine the safety and efficacy in comparison 
to the standard care by conducting large-scale and well-designed research. In 
most healthcare settings, AI tools are deployed to improve the client’s perfor
mance but not to substitute them. Hence, it is vital to compare and contrast 
the decision-makers’ or users’ performance with or without using AI tools. 
Clinical research works of devices and medicines are extremely resource- 
demanding and needs several locations, where the investigators must collect 
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the data and track the reliability of subjects. Usually, a trial at a large scale 
has been run by contacting the research organizations, but their operations 
are distinct from the healthcare domain. However, such approaches cannot 
be favorable for estimating the AI solution’s efficacy because the information 
required for creating clinical practice will be based on actionable knowledge 
and the delivery system of AI should be a component of the clinical process. 
Hence, it is paramount to timely evaluate the study infrastructure to effec
tively process and store the gathered data, for instance, EHR. 

2.4.5 Phase 4 

AI technologies have unique characteristics for self-learning and self-
improvement throughout their existence. Because, over time, the data 
and software components that make up the foundation might alter and 
evolve, procedures are needed to evaluate that the AI software’s validity 
and quality are not jeopardized and that these adjustments have no detri
mental implications. AI’s efficacy and safety must be re-evaluated over 
time, much as the performance of antibiotics might be affected by growing 
insurgency [104]. 

To draw valid causal conclusions from observational data, any biases 
must be carefully adjusted. Confounding can be accounted for using a vari
ety of epidemiological and machine learning approaches [105]. Many EHR 
systems can automate data gathering, submitting passively accumulated sets 
of data that reflect results and application. Such data can be used to assess 
the effectiveness of details transmission and inclusion in medical workflows. 
Furthermore, data collection could be programmed into AI software on how 
specific characteristics are utilized in practice, allowing for a more accurate 
assessment of their impact on results. It is a lot of fun to collect data on such 
a wide scale and in real time [106]. 

2.5 	Artificial Intelligence’s Challenges in the Use of 
Pharmaceutical R&D Data 

Artificial intelligence’s challenges, potential, and practical consequences in 
the use of pharmaceutical R&D data is crucial to investigate. Despite good 
studies, there are still obstacles to interpreting R&D statistics from the phar
maceutical industry, as described above. The following are a few of them. 

1. 	 Although graph convolution techniques are effective in de novo drug 
synthesis, interpretability remains an issue. Understanding and linking 
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the action mechanism of drug is crucial; besides being more effective, 
new therapeutic compounds should be identified. We should include a 
model-building method with biology and chemistry domain knowledge 
to attain this goal. 

2. 	 2. Clinical trials have highly strict criteria for patient enrolment which 
include and exclude, which is one of its drawbacks. The idea is to get rid 
of the possibility of several complicating variables having an influence. 
As a result of the stringent requirements for recruiting, the recruited 
patients will be “perfect” and unlike patients in reality. FAERS data is 
made up of a collection of adverse drug reaction reports with insuffi
cient information. It is critical to combine clinical trial and FAERS data 
using actual patient data from EHRs or insurance claims to make the 
insights gained more practical and usable. The FDA has announced a 
novel approach to promote and create the usage of evidence related to 
real-life drug and biological development [107]. This will open up a lot 
of possibilities for developing AI approaches for R&D in the pharma
ceutical industry and applications in real life and facts. 

2.6 Future Directions for AI in Healthcare 

2.6.1 Analytical integration 

There has been a surge in health-related AI research and activity in recent 
years, including the integration of many components of clinical data [108], 
building connections between pharmaceutical R&D and clinical evidence 
[109, 110], and connecting biorepository data to clinical data [111]. More 
exigently, the tonality is to design the health-related AI algorithms having 
to merge knowledge and data. Data related to patients is generally restricted 
and subject to significant fluctuations, unlike in other computer fields, such 
as vision and speech analysis, where large amounts of data may be collected. 

2.6.2 Transparency in models 

Systems that are based on rules, for example, are comprehensible traditional 
AI technology. Deep learning models, for example, are recent AI technol
ogies that might yield excellent perceptible results; yet, they are usually 
ignored. Recently, there have been a lot of discussions about whether model 
interpretability is a necessary concern. In a recent interview [112], Geoff 
Hinton, a pioneer of deep learning, has suggested lawmakers should not 
impose their principles on people without understanding artificial intelligence 
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algorithms because “Humans are unable to express how they function for the 
vast majority of what they do,” says the author. Poursabzi-Sangdeh et al. 
[113] examined a randomized conducted study to find out the importance of 
model interpretability to users. Customer’s faith in black-box and transpar
ent models did not differ significantly. Furthermore, “The public’s ability to 
discern critical errors in a model was compromised by greater transparency,” 
according to the study. Holm [114] justified black-box models by comparing 
them to human decision-making, which is primarily subjective (“outcomes 
of their deep learning”). As a result, “neuroscience faces the equal level of 
interdependence problem as in the field of computer science today.” Model 
interpretability may not be as critical in some cases, particularly in circum
stances where algorithms related to artificial intelligence have already proven 
their worth to deliver accurate results on time. As a result, “Neuroscience, 
like computer science, is confronted with the same interpretability quandary” 
today. In this study, model interpretability may not be as critical in some 
cases, particularly in domains where AI algorithms have already proven their 
ability to be precise, repeatable, and generalizable results. However, with the 
recent level of analytics in healthcare using computational technology, this is 
not healthcare. Deep learning models, for example, have been found to per
form similarly to EHRs [115] or claims [116] data to use logistic regression to 
solve hospital readmission problems. Models based on deep knowledge have 
even surpassed cutting-edge performance in medical picture analysis, and the 
model’s generalization capacity is difficult to defend. If the model succeeds 
in a collection of medical picture data from one institution for radiology, it is 
difficult to argue that it will do as well in another. Furthermore, human clini
cians will still make the final decisions in most healthcare settings, with AI 
algorithms supporting them. To make the doctor feel more at ease, it is critical 
to present explicit rationales for the AI algorithms’ assertions. Furthermore, 
algorithms based on artificial intelligence should be included in everyday 
clinical procedures to improve their clinical value [117]. 

On the contrary, the current performance of algorithms of artificial 
intelligence in many health applications is far from ideal and cutting-edge. 
We ought to continue to push the use of models which is a black box to 
explore if they can improve rendition. Post-hoc explanation approaches [118] 
would be useful in this scenario to comprehend how the model operates. 
Knowledge distillation [119] is an example of such a technique, which used a 
teacher–student collaboration to acquire a simpler/easier-to-understand par
adigm with measurable results that may mimic that the dark information is 
“distilled” from an intricate black-box model. Transparency of the model in 
another aspect to consider it a proprietorship. According to the perspective of 
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Shah et al. [120], there is a concerning tendency toward opaque proprietary 
algorithms, with developers “reluctant to publish” model specifics. When 
these models are used in clinical practice, this may increase the risk of injury 
[121]. As Parikh et al. [122] stated in their debate in the field of medical pre
dictive analytics, “Professional and regulatory entities should work together 
and guarantee the powerful algorithms collide with clinical drugs and prog
nostic biomarkers, there are clinical benefit standards.” 

2.6.3 Model security 

We frequently talk about how important it is to maintain the safety and pri
vacy of personal health information, particularly information on individual 
patients. As in the field of health, there are a plethora of artificial intelligence 
models. We must be aware of the surveillance risks that these models pose 
as the healthcare field expands. In an adversarial assault, for example, data is 
gathered that can be a source of consternation for the machine’s algorithms, 
leading to poor or even incorrect choices. Sitawarin et al. [123], for example, 
illustrated how self-driving cars are readily fooled by road pollution indi
cators. Sun et al. [124] showed that small changes in a patient’s electronic 
health record and lab values can change the death rate estimate of a well-
versed forecaster. Finlayson et al. [125] go over the potential problems in 
the healthcare industry; there are incentives for increasingly complex hostile 
attacks in further depth. According to the authors of this paper, (i) medical 
personnel must be informed of this potential danger; (ii) in the face of med
ical hostile attacks, AI researchers are working to design effective defense 
measures; and (iii) when building new regulatory frameworks, policymakers 
should think about the danger of model security. 

2.6.4 Learning that is federated 

Data on health is broadly disseminated within and among healthcare organi
zations, and each organization can be linked to a distinguished gathering of 
interested parties. These are private information that should not be shared. 
More data from a variety of sources to inform model training is desired in the 
context of model training. “Federated education is a machine learning envi
ronment that develops centralized workforce models based on massive client 
training data,” according to Konecny et al. [126]. These clients’ network con
nections are frequently unstable and slow. It is impossible to overestimate 
the importance and difficulty of developing federated health AI technology. 
Lee et al. [127] designed and tested leveraging MIMIC III data to develop 
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a federated patient database that protects patient privacy method of learning 
based on similarity [128]. They were able to confirm that in a federated set
ting, adequate patient data is encrypted using a homomorphic algorithm that 
may maintain the level of care provided. 

2.6.5 Data errors 

Training data samples are required for all AI models. In most cases, the 
patient’s size is usually a factor as a sample of training is insufficient to 
obtain the variances across the board of patients as well as the intricacies 
of their medical issues. Often, the prototype developed patients’ perspec
tives that patients from a single institution are not eligible for services 
from another. Data bias is a term used to describe this issue, and one of 
the most popular significant obstacles to AI in health. As Khullar [129] 
points out, such bias can exacerbate health inequities. The collection of 
big and diverse patient datasets is one strategy to eliminate bias. Its means 
that it is a nonprofit research organisation that funds studies designed to 
help patients and health care consumers make better informed healthcare 
choices. These operations create the framework for assembling large-scale, 
diverse datasets, which are necessary for developing artificial intelligence 
models that are strong and generalizable. Further, researchers can elimi
nate prejudice from the entire process of creating models, which is biased 
[131]; for example, the Gaussian process in the counterfactual was made 
for hazard analysis and also for personalized treatment planning, i.e., to use 
“what-if” logic. 

2.7 Conclusion 

In the future, artificial intelligence (AI) will play a big role in healthcare. It 
is the primary capability propelling the advancement of precision medicine, 
which is widely accepted as a much-needed improvement in healthcare. 
Despite initial difficulties in providing diagnosis and therapy suggestions, 
we believe AI will eventually be able to master that field as well. With the 
advancement of artificial intelligence for image analysis, many radiology 
and pathology photos will likely be analyzed by a machine in the future. 
Speech and text recognitions are already utilized for things like patient 
communication and capturing healthcare notes, and their popularity will 
continue to rise in the future. In many healthcare disciplines, the biggest 
challenge for AI is not whether the technologies will be capable enough to 
be useful, but rather ensuring their adoption in everyday clinical practice. 



 2.7 Conclusion 43 

 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

For widespread acceptance to take place, regulators must provide their 
approval to AI systems, EHR systems are integrated, standardized to the 
point where equivalent items behave in the same way, physicians have been 
instructed, financed by public or private payer organizations, and continu
ally updated in the field. These issues will be resolved in the end, but it will 
take considerably longer than it will take for the technologies themselves 
to mature. Furthermore, it seems that AI systems will not be able to com
pletely replace human clinicians; rather than replacing their efforts to care 
for patients, they will augment them. Human therapists may someday move 
their focus to activities and job designs that demand distinctly human qual
ities like empathy, persuasion, and big- picture integration. Those healthcare 
providers who refuse to work with AI may be the only ones who lose their 
jobs in the long run. The work being done to address AI issues in healthcare 
is promising, and this progress will help AI play a bigger role in health in the 
future, both individually and collectively. In many circumstances, the main 
advantage of AI is that it is faster, unbiased, fairly accurate, and dependable 
than traditional approaches. AI has previously been used in medical science 
and will be used more frequently in the future. There are various risks, but 
additional studies and advancements are likely to alleviate them. Artificial 
intelligence’s application in clinical practice is a promising study subject 
that is rapidly expanding alongside other modern sciences such as precision 
medicine, genomics, and teleconsultation. While scientific research into 
novel ways to improve modern healthcare should continue to be rigorous 
and transparent, the ethical and economical problems associated with this 
cornerstone of medical evolution should now be the focus of health policies. 
Humans are the most advanced machines that have ever been made. The 
human brain is working hard to create something that can accomplish any 
task far more efficiently than a human can. Watson for cancer, tug robots, 
and robotic pharmacy are just a few examples of AI technologies that have 
drastically transformed the area. The healthcare industry becomes increas
ingly sophisticated and technologically advanced as time goes on; the more 
infrastructure it will necessitate, the more it will cost. The creation and 
implementation of algorithms for data processing are known as artificial 
intelligence, learning, and interpretation. Healthcare AI implementation is 
a high-risk, high-reward venture. Similar to pharmaceuticals and medical 
equipment, clinical trials must be conducted in a sequential, long-term, 
and rigorous manner. To produce scientifically meaningful findings that 
can be replicated over time and across populations, AI research requires a 
sequential strategy and a long-term and rigorous investigation. In contrast 
to medications and medical devices, the effectiveness of AI technologies in 
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medicine is determined by how well they are understood by their user and 
the trust and the actions that follow. Integration with the existing clinical 
setting as well as a data-gathering platform are also required for AI eval
uation, storage, processing, and transmission of outputs to users on time. 
The analogy to the evaluation of drugs and medical equipment may aid in 
the clinical audience’s understanding of AI evaluation; however, the frame
work has limits, particularly for adaptive AI systems. Learning-induced 
changes in the underlying data and model performance, for example, may 
need a reassessment of several phases at the same time. A thorough review 
of AI technologies throughout all stages of research will necessitate mul
tidisciplinary teams with experience in computer science, healthcare, and 
the social sciences. Developers should ideally not review their technolo
gies to prevent potential biases, especially in the later stages of evaluation. 
Collaborations between academic, public, and corporate institutions, as well 
as dedicated evaluation teams free of responsibility for solution development 
or sales, may be required. While some AI technologies in healthcare may be 
regulated, others are not; informatics professionals’ ethical role should be 
to commit to comprehensive examination. By investing the time, skill, and 
money needed to conduct AI research, patients and healthcare systems may 
be able to reap the promised benefits. As a result of these achievements, we 
will experience along “AI Summer.” 
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Abstract 

Artificial intelligence (AI) is a prominent tool that enables people to rethink 
how they consolidate information, analyze data, and use the observations 
to improve decision making, and it is already revolutionizing every walk 
of life. The objective of AI is to model human intellectual functions. It is 
causing a fundamental change in healthcare, thanks to the growing avail
ability of healthcare data and the rapid advancement of analytics techniques. 
The healthcare market for AI is rapidly increasing at a rate of 40%, and by 
the end of 2021, it is expected to reach $6.6 billion. Deep neural networks, 
natural language processing, computer vision, and robotics have all made 
significant advances in artificial intelligence (AI) in recent years. These tech
niques are already being used in healthcare, with AI anticipated to take over 
many of the tasks currently performed by clinicians and administrators in 
the future. Patient administration, clinical decision support, patient monitor
ing, and healthcare treatments are the four primary areas where AI will have 
the largest impact. Many elements of patient care, as well as administrative 
operations inside providers, payers, and pharmaceutical companies, could be 
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transformed by these technologies. The approach to medicine is progressing 
with the advancement of new (AI) methods of machine learning. Conjoined 
with rapid improvements in computer processing, these AI-based systems 
are already enhancing the accuracy and efficiency of diagnosis and treatment 
across various specializations. The developing focus of AI in radiology has 
led some experts to suggest that someday AI may even substitute radiolo
gists. A number of studies have already shown that AI can perform as well as 
or better than humans at crucial healthcare activities like disease diagnosis. 
Algorithms are already surpassing radiologists in terms of detecting danger
ous tumors and advising researchers on how to build cohorts for expen
sive clinical trials. However, we believe it will be several years before AI 
replaces humans in large medical process domains for a variety of reasons. 
Unquestionably, AI is the most considered issue today in medical imaging 
research, both in diagnostic and therapeutic areas. Scientists have enforced 
AI to automatically analyze complex patterns in imaging data and help in 
quantitative assessments of radiographic characteristics. In radiation oncol
ogy, AI has been applied to different image procedures that are used at differ
ent stages of the treatment, i.e., tumor declination and treatment assessment. 
For example, AI is essential for boosting power for processing a huge number 
of medical images and therefore brings to light disease characteristics that are 
not seen by the naked eye. The utilization of AI within the diagnostic pro
cess aiding medical specialists could be of great potential for the healthcare 
sector and the overall patient’s well-being. The assimilation of AI into the 
current technical framework stimulates the identification of relevant medi
cal data from multiple sources, which is tailored to the needs of the patient 
and the treatment process. Simultaneously, AI unchains silo thinking, such as 
sharing knowledge across departmental boundaries, as information from all 
involved areas is taken into account. Furthermore, AI develops results based 
on a larger community rather than on subjective experiences and achieves 
equal outcomes when using similar medical data and does not depend on 
situations, emotions, or time of day. 

3.1 Introduction 

A subject of computing science known as “artificial intelligence” (AI) is con
cerned with the creation of intelligent computers that function and behave 
like human beings. Some examples of AI-enhanced computer functions 
include voice assistants, learning and planning, and decision making. We will 
discuss the following topics in this section: deep learning, machine learn
ing, computer programming, and the medical field. Deep learning enables a 
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variety of practical applications of machine learning and, by extension, the 
whole domain of artificial intelligence [1]. Deep learning deconstructs work 
in such a manner that all sorts of machine assistance look conceivable, if 
not probable. Driverless automobiles, improved preventative healthcare, and 
even more accurate movie suggestions are all available now or in the near 
future. Artificial intelligence is both the present and the future. With the assis
tance of deep learning, AI may potentially achieve the science fiction state 
we have always envisaged. At its most fundamental level, machine learning 
is the process of parsing data, learning from it, and then making a decision 
or prediction about anything in the environment. Instead of writing computer 
programs that follow a set of rules to do a job, with the help of the superior 
data, the software can be trained to solve a difficult problem [2]. 

In computer science, an area known as artificial intelligence (AI) focuses 
on the creation of artificially intelligent devices. It has grown to be a vital part 
of the technology industry throughout time. The study of artificial intelligence 
is a highly specialized and technological endeavor. Computers may be pro
grammed to demonstrate a wide range of human-like abilities, such as under
standing of the world around them, reasoning and problem solving, as well 
as the capacity to learn and plan. An important part of AI research is study
ing knowledge engineering. For machines to act and respond like humans, 
they must have a vast amount of information about their surroundings [3]. 
It takes a long time and a lot of effort to give robots intelligence, reasoning, 
and problem-solving skills. Another important part of artificial intelligence is 
machine learning. Without sufficient supervision, learning requires the ability 
to recognize patterns in streams of inputs, but with good supervision, learning 
requires categorization and numerical regressions [4–6]. Regression identifies 
a set of numerical input or output samples, therefore discovering functions 
capable of producing acceptable outputs from related inputs, whereas clas
sification determines the category to which an item belongs. Computational 
learning theory is the branch of computational science that deals with the 
learning and execution of machines through an algorithm. When it comes to 
computer vision and machine perception, there are a few sub-problems, such 
as face and object recognition and gesture recognition, which are addressed in 
both fields of study. Another important field of AI is robotics. Object handling 
and navigation, as well as the sub-problems of identification, trajectory plan
ning, and cartography, need the use of intelligent robots. Intelligence is unde
tectable because it is so subtle [5]. It is made of the following components: 

• Reasoning 

• Education 
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• Resolving issues 

• Observation 

Knowledge representation, planning, reinforcement learning, natural lan
guage processing, self-awareness, and the ability to manipulate objects are 
all aims of AI research. The long-term goals of the general intelligence sec
tor are well known. In many ways, today’s reality resembles the fictional 
Wonderland described in Lewis Carroll’s book [6]. In Lewis Carroll’s famous 
works by British mathematician Charles Lutwidge Dodgson, artificial intel
ligence (AI) is described as “a system’s capacity to successfully take infor
mation from various sources, learn from that data, and utilise that learning 
to fulfil specified objectives and tasks via successful modifications.” It has 
made significant advancements throughout the years. This is all possible. 
More than half a century after its academic beginnings in the 1950s, artificial 
intelligence has remained a mostly unexplored area of research. Due to the 
expansion of big data and improvements in computer power, big data has 
become a part of the landscape in today’s business and public debate. An AI 
system that is based on humans can be called analysis, human-inspired, or 
humanized. It can also be called artificial narrow or artificial general intel
ligence based on what kind of intelligence it has (intellectual, emotional, or 
societal intelligence).When AI is employed in a widespread manner, it is no 
longer referred to as “artificial intelligence.” The “AI effect” is a phenomenon 
that occurs when onlookers dismiss an AI program’s behavior by stating that 
it lacks actual intelligence. Author Arthur Clarke famously quipped, “Any  
sufficiently advanced technology is imperceptible from magic.” Magic, on 
the other hand, is gone as soon as one masters the technology. Artificial gen
eral intelligence (AGI) has been predicted by academics since the 1950s as 
being just a matter of years away. AGI would be systems that behave exactly 
like humans in all aspects and exhibit intellectual, emotional, and social 
intelligence. If this is the case, we will have to wait and see. For a greater 
knowledge of what is practical, one may approach AI from two perspectives: 
the route we have already taken and the one we will take in the future. As 
an example, consider the history of artificial intelligence. Then we return to 
the present to learn more about the difficulties businesses have in accurately 
forecasting future occurrences. [8] 

3.2 Advancement in Artificial Intelligence 

3.2.1 AI spring: artificial intelligence’s inception 

Isaac Asimov released his short story “Runaround” in 1942, which many con
sider a prelude to today’s self-driving autos. There are three laws of robotics 
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that guide the story of “Runaround,” a robot story created by Gregory Powell 
and Mike Donavan. The first law states that no robot may harm a human 
being, and the second states that no robot may allow harm to come to a human 
being through inaction. The third law states that robots must obey human 
commands, except when doing so conflicts with the first or second law [9]. 
He had a profound impact on generations of roboticists, artificial intelligence 
researchers, and computer scientists, notably Marvin Minsky of the United 
States (who later co-founded the MIT AI laboratory). The British government 
commissioned Alan Turing, an English mathematician, to embark on a some
what less fantasy project: a code-breaking computer codenamed The Bombe, 
which he developed to crack the German army’s Enigma code during World 
War II. For its size and weight, the Bombe is commonly considered to be the 
first operational electro-mechanical computer [10]. After seeing The Bombe 
break the Enigma, Turing was astonished. Even the best human mathemati
cians had hitherto been unable to do this. “Computers and Intelligence” was 
published by him in 1950, which outlined how to develop intelligent comput
ers and the suitable ways to quantify their intellect. This Turing Test is still 
used today to figure out how smart an artificial system is: if a person interacts 
with a human and a machine and cannot tell them apart, the computer is 
thought to be intelligent. 

When Stanford computer scientists John McCarthy and Marvin Minsky 
conducted the roughly eight-week-long Dartmouth Summer Research Project 
on Artificial Intelligence (DSRPAI) at Dartmouth College in New Hampshire 
six years later, in 1956, they formally invented the phrase “artificial intelli
gence.” The Rockefeller Foundation funded this workshop, which kicked off 
the AI Spring and brought together individuals who would go on to be known 
as the founding fathers of AI. Claude Shannon, the founder of information 
theory, was among the participants. With DSRPAI, researchers from several 
fields were brought together under one roof to create robots that could mimic 
human intelligence [11]. 

3.2.2 	AI summer and winter: Artificial intelligence’s  
highs and lows 

Before the Dartmouth Conference, there had been almost two decades of 
significant progress in artificial intelligence. Joseph Weizenbaum created 
the ELIZA computer program at MIT between 1964 and 1966 while he was 
a student. It was one of the first computers capable of passing the Turing 
Test using ELIZA, a natural language processing program that was able to 
simulate a human-to-human conversation. Herbert Simon, Cliff Shaw, and 
Allen Newell of the RAND Corporation created the General Problem Solver 
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software, which was one of the first successes in artificial intelligence. The 
Towers of Hanoi and other easy problems might be solved automatically by it. 
In light of these positive success stories, substantial funding has been devoted 
to AI research, resulting in a rise in the number of programs. In a 1970 inter
view with Life Magazine, Marvin Minsky predicted that it would take three 
to eight years to build a computer with the general intelligence of an average 
human being. However, this was not the case [12]. Just three years later, in 
1973, Congress started to voice substantial concerns about AI research fund
ing. He also questioned the optimism of AI researchers that year by writing 
an article for the British Science Research Council that was commissioned 
by British mathematician James Lighthill. Lighthill believes that robots will 
never be able to play chess at the level of a “seasoned amateur” and that they 
will never be able to use common sense. After the British government stopped 
supporting AI research at all but three universities (Edinburgh, Sussex, and 
Essex), the United States government shortly followed. The AI Winter began 
at this time. Because of this, despite governmental funding for AI research 
being increased by both Japan and the United States in 1980, little progress 
was made in the following years [13]. 

3.2.3 AI’s fall: The harvest 

Early artificial intelligence systems such as ELIZA and the General Problem 
Solver aimed to replicate human cognition in a unique way, which may have 
contributed to a lack of progress and the fact that reality fell far short of expec
tations. Assuming that the human mind can be codified and reconstructed as a 
series of “if–then” statements using a top-down strategy, they were all expert 
systems. In fields that lend themselves to formalization, expert systems are 
capable of extraordinary performance. This is shown by the 1997 loss of Gary 
Kasparov to IBM’s Deep Blue chess supercomputer, which proved a nearly 
25-year-old claim by James Lighthill to be false. A technique known as “tree 
search” was used by Deep Blue to analyze 200 million possible movements 
per second and choose the best course of action [14]. Expert systems, on 
the other hand, struggle in fields where formalization is difficult or impos
sible. Such tasks like identifying people or distinguishing between muffins 
and Chihuahuas are beyond the capabilities of an expert system. Artificial 
intelligence (AI) is the hallmark of these types of activities since AI systems 
can effectively comprehend and learn from external data, as well as adjust 
those learnings to meet specific goals and tasks [15]. As a result, expert sys
tems are not considered true artificial intelligence under this definition. Real 
artificial intelligence has been contested since Canadian psychologist Donald 
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Hebb first proposed Hebbian Learning in the 1940s, a theory of learning that 
attempts to replicate the neural processes seen in the human brain. A study 
on artificial neural networks was born as a consequence of this. When Marvin 
Minsky and Seymour Papert proved in 1969 that computers lacked the pro
cessing ability to perform the tasks required by artificial neural networks, 
this project came to an abrupt end. In 2015, the term “deep learning” was 
coined when Google’s AlphaGo AI beat the world Go champion using artifi
cial neural networks. It was long considered that computers would never be 
able to beat humans in the game of Go, which is significantly more intricate 
than chess (for example, there are 20 possible moves in chess, but 361 in 
Go). Deep learning, a kind of artificial neural network, is how AlphaGo was 
able to achieve such a high level of skill. Artificial neural networks and deep 
learning are at the core of most AI applications today. Facebook’s photo rec
ognition and speech recognition algorithms, speakers, and self-driving cars 
are built on top of them. The moment of AI fall that we are now experiencing 
is the harvest of previous statistical breakthroughs [16]. 

3.2.4 The future: The importance of regulation 

It raises the question of whether anyhow ordinance is essential and, if so, what 
shape it will take as AI systems become further integrated into our everyday 
lives. A system driven by AI does not have to be completely objective and 
free of prejudice to be slanted. An AI system’s inherent biases are preserved 
and, in some cases, amplified by the raw data it is trained on. Self-driving 
car sensors are better at distinguishing bright skin colors than gloomy ones 
because of the photos that are utilized to direct such algorithms, for example, 
or judges’ capability of decision making may be racially biased because they 
are trained on photographs of bright skin colors rather than gloomy ones (since 
they are grounded on the scrutiny of past rulings) [17]. To avoid such errors, 
rather than attempting to regulate AI directly, the best approach is likely to 
be the adoption of universally agreed standards for training and testing AI 
algorithms, possibly in conjunction with some type of guarantee, similar to 
consumer and safety testing processes for physical goods. Even if the techno
logical components of AI systems continued to advance, this would allow for 
constant control. If businesses should be held liable for algorithmic mistakes, 
or if AI programmers should pledge allegiance to a moral code of conduct, 
these are related issues worth exploring. There is no guarantee that such rules 
would prevent malicious hacking of AI systems, the misuse of such systems 
for microtargeting based on personality traits, or the production of fake news. 
This is further complicated by the fact that deep learning, a fundamental AI 
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technique, is itself a black box. Many of these systems’ output metrics (e.g., 
the percentage of correctly classified photos) are easily measured, but the 
method by which these outputs are generated remains largely unknown [18]. 
There are several reasons for this opacity, including a company’s desire to 
hold an algorithm unrevealed, a lack of technical knowledge, or the size of 
the application (e.g., in cases where a multitude of programmers and meth
ods are involved). In certain cases, this is OK, but not always. For example, 
few people care about how Facebook decides who to tag in a picture. On the 
other hand, AI systems employed to provide skin cancer diagnosis sugges
tions may provide an understanding of how these suggestions are made and 
are essential for automated image processing [19]. 

3.3 Artificial Intelligence’s Health Benefits 

Artificial intelligence (AI) was first proposed in 1956, but noteworthy evolu
tion has occurred in the last 12 years. Many medical records should be exam
ined to provide patients with more efficient and effective treatment. Using 
machine-like computer systems, artificial intelligence (AI) mimics human 
cognition and processes. With this technology, you will be able to learn rap
idly, forecast and analyze your future, and generate your conclusions. Various 
medical difficulties, including planning, imaging, speech recognition, and the 
acquisition of a specific feature [20], were meant to be addressed by it. Based 
on data, AI systems can forecast and achieve a cut above outcomes with 
the ability to solve difficult problems accurately. Patients’ medical records 
may be digitized and assembled into a digital database that can be utilized 
for diagnosis, treatment, and regular maintenance by artificial intelligence. 
Data collection and routine tasks must be developed by medical specialists 
in partnership with software and hardware professionals depending on the 
final requirements. Customizations are made to generic software to satisfy 
the needs of specific applications. Patients’ specific requirements will be 
taken into account while developing modules for diagnosis, treatment, and 
follow-up care. However, the AI system’s success depends on the analysis 
of the data it collects. The inventiveness of doctors and surgeons is enhanced 
by AI. For example, these smart machines understand medical and financial 
information in the same way that human beings do. As a result, these robots 
are capable of understanding human speech and making informed decisions 
[21]. Because of the correct information it provides, it is possible to perform 
precise surgery on the patient. Patient data gathered by this technology may 
be utilized in the future to predict and reduce the risk of joint replacement sur
gery, hospitalization, or recuperation. At this time, artificial intelligence (AI) 
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seems to have the greatest promise for extending human life expectancy. In 
a difficult condition, it uses artificial intelligence to aid in robotic surgery. 
The patient is regularly contacted by this technology, which produces data 
via different virtual help. As a result of the lack of healthcare experts in rural 
areas, the quality of healthcare suffers. 

This is a problem that technology can help solve. Satisfying any urgent 
demand in rural areas raises the quality of medical students in such areas. The 
main role of this technology is to upgrade the productivity of medical prac
titioners and also lower the cost of medical management while improving its 
quality [22]. Diagnostic accuracy is improved as a result of its use by medical 
professionals. Scanners such as X-rays, computed tomography (CT), mag
netic resonance imaging (MRI), and three-dimensional scanners rely heav
ily on artificial intelligence. Using this information, you may build a more 
accurate opinion of the patient. For optimum health, artificial intelligence 
(AI) promotes a balanced diet and good eating habits. Appointment remind
ers are sent to patients through text message or email when they are due. 
With the adoption of this technology, the medical industry has become more 
efficient in dealing with a wide range of issues [23]. Artificial intelligence 
in the medical industry has several advantages. When it comes to executing 
complicated surgeries, AI has the potential to enhance both the excellence of 
the procedure and the excellence of the results. Various applications of AI are 
mentioned in Table 3.1. Most patients may now take pleasure in the quick and 
precise judgment that was made. 

3.3.1 Advantages 

AI has a variety of advantages in the medical profession, which include the 
following: 

• to look for abnormalities and recommend medical treatment if necessary; 

• foretell the onset of new illnesses; 

• accurate and time-saving diagnostic procedures; 

• complex and novel treatments benefit from the use of this tool; 

• ensure that the patient’s blood glucose levels are in check; 

• give careful attention to the patient’s condition; 

• make both doctors and patients feel at ease; 

• medical students must get enough training; 
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• 	 enhance hospital security; 

• 	 enhance the experience of physicians and surgeons; 

• 	 improve the quality of healthcare; 

• 	 improved pathological outcome; 

• 	 cost savings in diagnostics: maintaining a clinical record is an import
ant part of this; 

• 	 ensure that the patient receives the best possible care. 

Self-operating quantification activities like measuring carina angle, the aortic 
valve, and pulmonary artery diameter are all made easier using artificial intel
ligence in the medical industry. In orthopedics, it is now utilized to assess a 
patient’s degree of fracture and trauma [24]. 

Orthopedics, neurology, cardiology, and cancer are just a few of the 
fields where these technologies are used. As a result, the patient receives 
a better and more accurate service as a result of this. Physicians may now 
reduce their reliance on manual labor while improving the quality of their 
treatment plans, clinical judgments, and treatment methods. It is now pos
sible to identify a patient’s medical history, and the patient’s relatives may 
be informed. With the help of backend processing and data storage, AI can 
easily manage routine queries. The patient will be notified if a lab test is 
running late. 

The advancement of artificial intelligence: When it comes to medical 
technology, artificial intelligence is going to be a game-changer. Faster and 
more accurate results are the result of better data analysis and more digital 
automation. Digital consultations and medication management are made eas
ier with this technology [25]. 

It assists physicians in achieving their goals, which are mentioned 
below: 

1. 	 Medication:  The use of artificial intelligence (AI) has the power to 
refine diagnosis, treatment personalization, and the discovery of new 
medications. It completes a time-consuming pharmaceutical process. 
To acquire an accurate result, this technology is functional in clinical 
trials and effective monitoring. It can keep an eye on the patient and 
efficiently convey information. 

2. 	 Surgical procedure: Doctors and surgeons are efficiently implement
ing AI into surgery by capturing data at all stages of the procedure. 
It provides the highest possible patient attention in the near future. It 



Table 3.1 Medical applications of several forms of artificial intelligence technology.

S. No. Technologies Description
 
1.	 Machine learning (ML) • 	 It is possible for these systems to automatically look at medical results and figure out how 

accurate they are based on statistics.
• 	 Machine learning (ML) algorithms can use a variety of algorithms and methods to make 

decisions, such as guided, unguided, semi-guided, or bolstered learning, to make them 
more likely to make good decisions.

• 	 Medical professionals utilize this technology to predict the likelihood of sickness.
• 	 In addition, ML is useful for archiving data for patients to get better care.

2.	 Artificial neural networks • 	 ANN system is similar to the human brain and works on the principle of back-propagation 
(ANN) and layers. ANN works like neurons and is connected similarly to each other.

• 	 It may be used to predict the occurrence of sickness and make decisions.
3.	 Natural language • 	 It relates to voice recognition and language assessment using a variety of methodologies.

processing • 	 Hidden Markov model (HMM) based tagging is one of several NLP algorithms that may 
be used in the medical field. People can use this system to help with clinical trials as well
as to support and analyze data that is not organized.

• 	 Automated coding and patient documentation are also performed using it.
4.	 Support vector machines • 	 Support vector machines classify the data based on its primary requirements.

• 	 After training the SVM classifier, fresh and previously unknown data points may be 
utilized for future correlations in e-mail spam filters.

• 	 They have been extensively used for data collection.
5.	 Heuristics analysis • 	 Input data is fed to an assisting vector machine, which identifies the groupings of data 

based on the provided input data.
• 	 When they are trained, SVM classifiers may utilize unknown data points for future 

correlations.
• 	 It is used to gather and analyze medical data.
• 	 Adequately manage the patient and assist in making an evidence-based decision. 
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allows the surgeon and the patient to make an informed treatment deci
sion. It performs complex surgeries with ease. 

3. 	 Diagnostic radiology: With the help of artificial intelligence, surgical 
procedures may be performed more consistently and accurately. They 
may help the surgeon get better results during surgery and treatment. 
The patient’s active recovery and enhanced surgical options are facil
itated by these changes and advances. To help with conceptualization, 
this technology may also pre- or post-set data variables connected with 
the approach. AI has achieved substantial advances that have made 
it possible to represent and understand complex facts with greater 
accuracy. Managing the hospital and its patients’ health records, this 
technology digitizes records in the healthcare industry to improve 
competence and reliability. For example, AI in hospital management 
systems improves the quality of medical records as well as the collec
tion and storage of customer and patient data. Tracking patients’ vital 
data is made easier with the use of this technology, which provides 
real-time information to doctors as well as the patient’s family. As a 
result, assessing health systems and deciding who effectively controls 
the institution has been made easier thanks to this method of verifi
cation. It accurately identifies a person’s underlying cause. Artificial 
intelligence (AI) helps doctors, surgeons, and other people in hospitals 
work more quickly. 

3.4 Application 

3.4.1 Cardiology 

AI may also be used to reduce the threat of unforeseen heart-related problems 
in the field of cardiology. It includes information about cardiac problems 
which is supported by scientific data. To prevent a heart attack, this gadget 
warns the user when the heart valve is blocked. In addition, it provides reli
able data on blood flow. When AI is used at every step of a patient’s stay in 
a hospital, it makes things better for them, from admission to treatment and 
recovery. 

Precision and speed are made possible by AI throughout even the most 
intricate surgical operations. Automated follow-up procedures are planned, 
verified, and created automatically by the software. Treatment efficiency is 
increased while the risk of misdiagnosis is reduced. Medical professionals 
and academics alike have reaped the benefits of these advancements. Patient 
test results may be reviewed by artificial intelligence, which can then alert 
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or remind patients at the right time. Medical imaging, electroencephalogra
phy, respiratory monitoring, and anesthesia are all viable application areas 
for automatic electrocardiograms (ECGs). With the help of this emerging 
technology, it is possible to analyze blood tests, glucose levels, medical 
photographs, and a wide range of other activities in real time. When patient 
information is included in algorithms, AI can extract the data needed to treat 
a medical condition. With the use of artificial intelligence, computers can 
understand speech and writing and use that information to better manage and 
analyze patients. Doctors, surgeons, and other medical professionals may use 
it to learn and improve their abilities in real time. To improve the surgeon’s 
performance and provide better outcomes, AI analyzes the surgeon’s every 
step. Furthermore, it highlights the kinds of medical advancements that may 
be produced. Physician adherence and emergent concerns may be tracked and 
treated with the help of this system, which is constantly updated. Artificial 
intelligence (AI) can boost efficiency in medical settings while offering min
imal hazards. It is very good at getting data with the help of neural networks, 
high-resolution images, and NLP [27]. 

3.4.2 Applications of artificial intelligence in the medical field 

Innovating technologies that have a positive influence on human life are 
required in our daily lives. Artificial intelligence (AI) has several bene
fits for medical innovation. With the use of this technology, a doctor may 
evaluate a patient without having to go to a clinic or hospital. It is now 
possible to provide online patient service using this technology. Inquiries 
about a wide range of health issues may be answered instantly. In terms of 
treatment planning and attaining better results, it has several applications 
(Table 3.2) [28]. 

In the medical business, artificial intelligence has amazing potential for 
doing activities that need little human intervention. Clinical judgment, anal
ysis, and training seem to be best served by artificial intelligence. It has been 
shown that an accurate and speedy diagnosis can be achieved by correctly 
using this technology. Artificial intelligence (AI) is capable of removing the 
threat of possible human error in treatment and surgery, which is the main 
goal. It is possible that the medical team will investigate the in-depth med
ical tests and the data collected. It is utilized to determine the genetic pro
file of a patient. In this system, medical concerns, case studies, and patient 
histories are all stored. When used properly, it may make a patient aware of 
the need to follow a healthy diet, get enough exercise, and take the correct 
medications [29]. 
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Table 3.2 Use of AI in the medical industry. 

S. No. Technologies Description
 
1. Prevention of • 	 Data that is stored digitally can be used for the 

data record identification of disease causes and to aid research and 
development activities. 

• 	 It gathers, maintains, and analyzes medical data to 
make it more readily available for use and better 
informed medical decisions. 

• 	 To enhance the record of previous treatment to 
felicitate the diagnostic, in a patient’s day-to-day 
history. 

2.	 Proper diagnosis • 	 When it comes to clinical diagnosis and treatment, 
and treatment artificial intelligence (AI) relies mostly on computer 

tools. 
• 	 In the healthcare industry, all data and information is 

maintained digitally, which aids in treatment. 
3.	 Medications alert • An app-based personal virtual assistant is available to 

remind patients to take their medicines. 
• 	 Assisting patients with their unique medical needs is a 

job that needs a lot of attention and education. 
• 	 In the future, artificial intelligence (AI) will have a 

significant impact on healthcare. 

3.4.3 Image and disease diagnosis using artificial intelligence 

After AIA’s conception, the healthcare industry was considered one of its 
most promising application sectors. Utilizing cutting-edge algorithms from 
several fields of information technology, AI-assisted analytics is revolution
izing medical practice and healthcare delivery in groundbreaking ways (IT). 
Computer algorithms are used to understand complicated data in artificial 
intelligence (AI), a game-changing technology. An increasing amount of 
attention has been spent on establishing and fine-tuning diagnostic imaging’s 
performance so that a wide range of clinical disorders may be identified and 
quantified more easily. Recent computer-assisted diagnostics studies suggest 
that they can better detect tiny radiographic abnormalities with greater pre
cision, sensitivity, and specificity. But in AI imaging research, outcome mea
surement is usually based on finding lesions without taking into account what 
kind of lesions they are or how aggressive they are, which gives an inaccurate 
picture of AI’s performance [30]. 

Computer scientist Alan Turing coined the term “artificial intelligence” 
to characterize the science and engineering involved in building robots that 
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can think for themselves. AI systems are computer programs that mimic 
the cognitive capacities of humans. As a result of these influences, artificial 
intelligence may be traced back to the philosophy of possibilities as well as 
the demonstrations of dreams. Several parallel demands, opportunities, and 
interests led to the development and growth of the discipline of information 
assurance (IA). Several sectors, including healthcare, are turning to artificial 
intelligence (AI) combined with analytics (AIA). Medical analytics has been 
one of the most successful ones and is now a viable sector for artificial intel
ligence. Applications were developed and made accessible to clinicians to 
improve their practice when research first started in the middle of the twen
tieth century. 

A few of the possible applications include those in the fields of medical 
systems and automated surgery, as well as in the management of healthcare [31]. 

Diagnostic medical imaging uses artificial intelligence (AI) and is now 
undergoing intensive testing. Imaging abnormalities may now be detected 
with exceptional precision and sensitivity thanks to AI, and this technology 
has the potential to revolutionize tissue-based detection and characterization. 
There are certain drawbacks to this, such as the following: 1) the identifica
tion of small changes that may or may not be substantial; 2) while artificial 
neural networks may not be as good as radiologists in spotting cancer in mam
mograms, one study found that they are more sensitive to aberrant results in 
general and smaller lesions in particular; 3) to ensure that AI-assisted diag
nostic imaging has a successful and safe introduction into clinical practice, 
the medical community must anticipate the unknowns that will be associated 
with this technology. Defining the role of AI in clinical care will require a 
comprehensive study of its potential hazards in light of its unique capabili
ties, and straddling the line between greater detection and overdiagnosis will 
be difficult. External validation and well-defined cohorts are key components 
of this assessment, which requires ongoing external validation. 

There are now several AI image processing studies that measure diag
nostic performance using precision and recall computations, while others 
focus on clinically relevant results. New diagnoses of severe illness, sick
ness requiring treatment, or illnesses linked to poor long-term survival are 
key outcome determinants since AI typically detects subtle image alterations. 
Patients’ quality of life is directly impacted by clinically important events, 
such as the presence of symptoms, the requirement for disease-modifying 
medicine, and death. Despite several studies showing that AI has a higher 
level of specificity and a lower level of recall than conventional reading, 
these studies frequently fail to take into consideration the kind and biological 
aggressiveness of a lesion. Endpoint selection that is not patient-centric may 
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increase sensitivity, but at the cost of potentially increasing false positives 
and overdiagnosis by identifying early or indolent disease. AI may be able to 
find imaging pattern changes that humans cannot see, compared to the clear 
results that come from sophisticated radiography studies [32]. 

Machines can identify tissue changes that are suggestive of an early 
ischemic stroke within a very short time from the beginning of symptoms. 
Despite the potential of artificial intelligence, the link between relatively 
minor parenchymal brain anomalies detected by AI, whether in the natu
ral history of microscopic growing infarcts or non-ischemic processes, and 
large neurological sequelae is still unknown based on early detection. If 
AI-defined cerebral changes suggestive of early ischemia are linked with a 
specific profile of neurologic damage or benefit following thrombolysis, this 
has to be investigated further. A treatment recommendation may be made 
without a clear abnormality being seen during regular imaging, which pres
ents a unique set of challenges. This might lead to confusion and even scep
ticism among patients, which necessitates a public education campaign on 
the new notion of deep learning in image analysis. It also raises medical lia
bility problems (such as missed diagnosis or maybe unneeded surgery) if AI 
becomes the norm of therapy. Early detection of Alzheimer’s disease (AD) 
necessitates the development of noninvasive and quantitative assessment 
methods. It is essential to use positron emission tomography (PET) imaging 
to identify, categorize, and quantify tumors. Various methods for segmenting 
medical image data have been created via quantitative examination. When 
using quantitative methods to analyze medical images, a large amount of 
computer time is required to accurately analyze large amounts of data. Using 
artificial-intelligence-based algorithms, diagnostic accuracy and efficiency 
can both be improved [33]. 

3.5 	Recent Advancements in the Field of  
Artificial Intelligence 

An automated database system capable of analyzing medical images and 
configuring enormous volumes of data using computers has begun to emerge. 
Back-propagation deep-learning artificial intelligence (AI) systems are now 
being used in medical imaging, and it has been said that accurate diagnosis 
may be achieved with this technology. It is the “convolutional neural net
work” (CNN) that is the most effective image processing model. Several 
optimization approaches are used to build CNNs, including LeNet, ZFNet, 
GoogleLeNet, VGGNet, and ResNet (see Figures 3.1 and 3.2). When it comes 
to extracting features from images, CNN’s deep layer is quite successful. 
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Figure 3.1 Medical image diagnosis method using complex neural network. 

Figure 3.2 Diagram showing the process of developing a medical imaging AI diagnostic. 
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Convolutional networks, in particular, are rapidly gaining popularity in deep 
learning medical image analysis, using traction as a technique. With the 
advent of deep-learning architecture, medical imaging analysis of nerves, 
retina, lungs, and digital pathology, as well as the musculoskeletal system 
and the breast, has increased tremendously in recent years [34]. 

3.5.1 	For medical imaging, the use of artificial  
intelligence is essential 

The development of noninvasive and quantitative evaluation methods is crit
ical for the effective treatment of Alzheimer’s disease (AD). Because of its 
capacity to detect, categorize, and measure tumors, PET imaging is critical 
for early diagnosis and therapy planning. Utilizing quantitative analysis, seg
menting medical image data has been made easier. The problem is that many 
quantitative techniques for analyzing medical images are inexact and require 
a large amount of computer time to analyze enormous amounts of data. There 
may be ways to speed up diagnosis and decrease costs based on artificial 
intelligence systems [35]. 

3.5.2 Artificial intelligence science and technology 

The AI method, a deep-learning technology, improves diagnosis accuracy by 
automatically gathering and comparing features from highly detailed medical 
images. Images may now be analyzed using artificial intelligence (AI). The 
diversity of skin lesion types makes it difficult to automatically detect skin 
lesions using photos; yet, they have effectively identified skin cancer. Deep 
learning employing the Inception-v3 architecture was very sensitive and 
exact in the diagnosis of diabetic retinopathy when looking at diabetic retinal 
fundus images. The lung image database collaboration (LIDC) and the image 
database resource project were successful in detecting pulmonary nodules on 
a chest CT scan for the diagnosis of lung cancer early (IDRI). Deep learning 
taught on big mammography lesions beats a currently used computer- assisted 
diagnosis (CAD) method [36]. MR imaging has been effectively used to iden
tify cartilage defects in the knee joint, resulting in the development of an 
automated detection method. Although PET images with inadequate spatial 
resolution overestimated the volume, the optimal volume was recovered using 
an artificial neural network method. AI algorithms are expected to be used in 
medical picture detection systems, even though other quantitative analysis 
methods have been developed. This is because they have a better diagnostic 
performance index than any other quantitative analysis method. 
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3.6 	Artificial Intelligence and its  
Applications in Diagnostics 

For medical imaging diagnosis, massive datasets need to be tagged and har
monized. Depending on the characteristics of the images captured in the 
database, there are several approaches to investigate artificial intelligence, 
which incorporate both machine learning and deep learning. Preprocessing 
and deep-learning architecture are used in the same order to arrive at the 
final diagnostic results. Deep-learning results are checked and fine-tuned 
as appropriate once the hyper-parameter has been changed. Techniques like 
rotation left and right flipping and generative adversarial networks (GANs) 
are employed to overcome the problem of overfitting caused by a lack of 
adequate labeled data [37]. 

3.6.1 Sets of data 

There is a picture archiving and communication system (PACS) that stores 
medical images, but they are of little use to AI researchers. It is necessary to 
identify, standardize, boundary box, and segment medical images before they 
can be used for AI. Human effort is required to produce these high-quality 
images, which may be time-consuming and challenging depending on the 
skill level of the photographer. Building and testing AI algorithms that need 
huge volumes of data necessitates the use of standardized and anonymized 
databases with well-labeled data. A large-scale database system has been 
built, and diagnostic performance has been improved via competition using 
these difficult processes. As a result of these efforts, diagnostic accuracy 
seems to have significantly improved [38]. 

Researchers may now approach and present study results with more 
freedom because of the recent availability of an anonymized medical image 
database. ADNI participants’ F-18 fluorodeoxyglucose (FDG) PET scans 
are being compiled into a database for the research of early detection of 
Alzheimer’s disease (AD). With an accuracy of 88.24%, a specificity of 
88.64%, a sensitivity of 87%, and a specificity of 87%, F-18 FDG PET images 
from the ADNI database were used to distinguish AD patients. For the most 
accurate diagnosis of knee injuries, magnetic resonance imaging (MRI) is the 
best option. However, MRI processing is time-consuming and the risk of mis
takenly diagnosing an injury is high. A collection of 1370 knee MRI images 
collected at Stanford University Medical Center was analyzed using MRNet, 
a CNN, and logistic regression. Analyses were undertaken by nine Stanford 
University Medical Center clinical specialists, and the validation results were 
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quite similar. As of today’s (January 09, 2019) research on abnormal detec
tion, anterior cruciate ligament injuries, and meniscal tears, the leaderboard 
indicates an average area under the receiver operating characteristic curve 
(AUC; 0.917). A radiologist looked at 13,292 anterior chest X-ray photos to 
make a database for testing for severe pneumothorax. 

Digital imaging and communications in medicine were used to store 
potentially analyzed images in a clinical PACS (DICOM; National Electrical 
Manufacturers Association, Arlington, VA, USA). It is appropriate to use 
these well-defined datasets to learn about and test out different network 
configurations. It takes a long time and a lot of effort to build a database 
of this caliber. The chest X-ray 14 set has been made publicly available 
by the National Institutes of Health (NIH). To help students learn, the 
National Institutes of Health (NIH) provides students with well-organized 
and annotated datasets and a database that anybody may use to challenge 
and improve algorithms. To make it easier to spot lung cancer, the LIDC and 
IDRI databases were created and made freely accessible to the public. Skin 
cancer diagnostic competition participants may use the database. Anybody 
with an interest in the MR knee database is invited to participate in the AI 
analysis [39]. The Department of Nuclear Medicine at Dong–A University 
Medical Center collaborated with IRM to build SortDB. Researchers may 
use SortDB to download DICOM files in a certain format (nii, JPEG, or GIF, 
for example) by entering an Excel file list. A vast quantity of data is needed 
to employ an AI algorithm. For small- and medium-sized hospitals, it is an 
automatic database generation tool that stores and retains data in the needed 
format. 

3.6.2 A medical image’s preprocessing 

Using an affine model with 12 parameters, an image was normalized for 
quantitative analysis using the SPM5 program. Images must be normalized as 
part of the preprocessing step for machine-learning-based quantitative evalu
ation. There is a wide range of opinions among researchers since the standard 
template or the process used to normalize an image affects its accuracy. An 
AI system’s accuracy improves when it is applied to a normalized image. 
There is, however, a lack of evidence to support the claim that normalized 
images are more accurate than non-normalized images. The proper prepro
cessing method for picture analysis using AI requires both theoretical and 
empirical research [40]. The quality of the preprocessed image transforma
tion is strongly influenced by the accuracy of the quantitative analysis. The 
quality of the medical images used to apply the algorithm has a substantial 
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impact on the accuracy of AI analysis in particular. The use of a library’s 
GetOuputData function results in a linear change in the DICOM file image. 
It was scaled linearly to the 0–255 range for the eighth bit and the standard
ized uptake values (SUV). A warped jpeg file of the SUV may be created 
using this method of linear manipulation. It is essential to explore the image 
conversion technology to guarantee that medical images are not distorted 
throughout the conversion process. It is feasible to guarantee the consistency 
of AI learning by utilizing image-aware CNNs by downsampling frequently 
used photographs [41]. 

3.6.3 	Optimization of models and parameters  
based on improved data 

It is tough to establish a database of massive data using PET images since 
they do not provide a lot of information. Randomly dispersing data for AI 
analysis is achieved by applying image inversions, enlargements and reduc
tions, shearing, and rotations to reshape it. Over-tuning of hyper-parameters 
is a major roadblock to achieving the highest possible accuracy. The Future 
Gadget Laboratory framework may be used to do this. With respect to AUC, 
sensitivity, specificity, and positive predictive value with scikit-learn, the 
whole validation set can be computed. To plot the receiver operating char
acteristic curves, you may use Matplotlib. Currently, there are several ways 
to build CNN algorithms. The recent trend is to build a CNN model on top 
of TensorFlow, utilizing the Keras deep-learning package. Deep learning 
architectures like VGG16/19, Xception, Inception, and ResNet are the most 
effective for AI analysis because of their high performance. The best image 
classification system may be one that correctly depicts the unique qualities 
of each medical image. This feature’s location is currently estimated using 
an activation map. As things stand right now, the only way to discover the 
optimal model is to carry out a slew of imaging tests in succession. Five 
types of chest X-rays could be classified using the AlexNet method, which 
won the ImageNet Large Scale Visual Recognition Challenge (20) in 2012. 
Using a softmax activation function in the final layer, AlexNet has three fully 
connected (FC) layers and five convolutional layers. The researcher (21) used 
a 256,256-pixel png file as the AlexNet input image after downsampling the 
DICOM image. The adaptive moment estimation (Adam) optimizer has a 
mini-batch size of 128 and 100 training iterations, an adaptive learning rate 
of 1103, and a momentum of 0.5. ReLU activation functions were used in 
the previous stage of the max-pooling layers, and L2 regularization was set 
to 104 [42]. 
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3.6.4 The principal component analysis (PCA) 

It is one of the best ways to use Eigen image analysis. The principal compo
nent analysis (PCA) method is one of them. 

To improve the accuracy of diagnosis and analysis, computer-assisted 
classification (PCA) was used to analyze images of people with early demen
tia [36]. PCA was used to categorize SPECT pictures, utilizing single- photon 
emission computed tomography (SPECT) and three-dimensional (3D) scat
tering to show the results. A quantitative evaluation and classification is an 
effective and sensible method. When PCA-SVM was applied to SPECT 
and PET scans, the classification accuracy for AD was 96.7% and 89.52%, 
respectively. High and low information can be used to automatically choose 
the area of interest (ROI) in a 3D functional brain image. 

Gaussian mixture models were used to determine activation zones. 
Using brain image analysis and pattern illness discrimination, we discovered 
that PCA/independent component analysis is an effective tool for early AD 
diagnosis. Classification and idea extraction using PCA/independent compo
nent analysis (CAD) may be achieved using eigenvector decomposition and 
SVM [11]. 

3.6.5 Analyzing medical images using artificial intelligence 

Medical practitioners are enthralled by AI and machine learning because of 
their increasing accuracy and applicability in a broad variety of jobs. In the 
healthcare business, artificial intelligence (AI) is being used to uncover pre
viously unseen clinical insights and connect them to the tools patients need 
to better manage their health. Imaging data from patients’ medical records 
is a rich and complex source of information. It may be difficult even for the 
most seasoned healthcare professional to sift through high-resolution images 
from X-ray, CAT, MRI, and other examinations since they contain so much 
information. With the aid of artificial intelligence, radiologists and pathol
ogists will be able to increase their efficiency and accuracy. Recent studies 
have demonstrated that AI technology can recognize features in photographs 
quicker and more precisely than human doctors, if not faster. According to 
society authorities, the American College of Radiology does not consider 
AI’s entrance as a problem for physicians in diagnosis. As a means of pro
moting uniformity, security, and efficiency in clinical decision support and 
diagnostics, the American College of Radiology Data Science Institute (ACR
DSI) has announced many high-value use cases for AI in medical imaging 
[42]. This list of use cases is always being updated as new possibilities arise. 
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AI developers may use the ACR’s DSI use cases to assist them in tackling 
healthcare challenges holistically that translate ideas for AI explanations 
into harmless and active tools to support radiologists well serve patients, 
according to DSI Chief Medical Officer, Bibb Allen Jr., MD, FACR, ACR. 
According to the ACR DSI Technology Oriented Use Cases in Health Care-AI 
(TOUCH-AI) Framework, AI-enhanced medical images may be utilized to 
improve patient attention across a wide range of disorders and organ groups. 

3.6.6 Imaging the brain via artificial intelligence 

Alzheimer’s disease classification, anatomical brain segmentation, and AI 
tumor identification have all been the subjects of several investigations. 
Researchers were able to accurately classify patients as having Alzheimer’s 
disease (AD), moderate cognitive impairment (MCI), or healthy controls 
by locating feature expressions in MRI and PET volume patches using the 
Gaussian restricted Boltzmann machine (RBM). Three-dimensional convo
lutional neural networks (3D CNN) beat other algorithms in classifying AD. 
To segment MR pictures of the human brain, it uses CNN technology. Deep 
CNN was used to segment the striatum, and the results were compared to 
those obtained with FreeSurfer to see which was better. For complex struc
tures like those seen in the brain, automated segmentation is outmatched by 
the time and variability required for human segmentation. The voxel-wide 
residual network (VoxResNet) is a network of 25 deep layers that were suc
cessfully segregated automatically. A nonlinear mapping from MR images 
to CT images was shown using a 3D fully CNN in a real pelvic CT/MRI 
dataset. To improve performance, researchers used two-volume CNNs, 
which produced excellent results when analyzing MRI and PET images from 
the ADNI database [43]. As a result of the incurable nature of amyotrophic 
lateral sclerosis (ALS), victims may be surprised when they are diagnosed. 
Unfortunately, many neurological diseases, such as ALS, are now incurable, 
but an accurate diagnosis may help patients plan for their long-term care 
and last wishes. To distinguish ALS from PLS, imaging studies are required, 
according to the College of Physicians and Surgeons of Canada (CPSC). It 
is common for radiologists, who are tasked with determining whether or not 
lesions resemble disease-causing entities, to report false positives. Recent 
research has focused on developing new biomarkers to improve diagnostic 
speed and accuracy. According to ACR DSI, manual separation and quantita
tive susceptibility mapping (QSM) examinations of the motor cortex are now 
mandatory, complex, and time-consuming. Programming this process could 
lead to the development of imaging biomarkers. An algorithm may be able 
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to speed up this procedure by highlighting suspicious pictures and providing 
risk ratios for ALS or PLS. To ease the burden on service providers, algorith
mic reporting may also be possible [41]. 

3.6.7 Chest imaging with artificial intelligence 

The various learning architectures are used to create a de-CNN that shows sus
picious areas on a heat map. Radiologic datasets of publicly accessible chest 
X-rays and reports were used to identify and classify 17 distinct patterns. On 
a dataset of individuals with interstitial lung disease, it has been claimed that a 
segmentation-based label propagation technique can detect interstitial patterns 
and that CNN can identify lung texture patterns. Automated metadata anno
tations were shown to distinguish between frontal and side chest radiography. 
Using a 3D CNN, researchers have developed a new method for minimizing 
the number of false positives in the automated detection of lung nodules. More 
spatial information and more representative characteristics can be extracted 
from a 3D CNN thanks to a hierarchical architecture trained on 3D examples. 
The recommended technique obtained good competition metric scores in the 
LUNA16 Challenge and is capable of processing 3D PET scans [44]. 

3.6.8 In breast imaging, artificial intelligence is being used 

Deep learning in natural photography may be used to analyze AI photos rap
idly since most mammograms are two-dimensional and include a huge amount 
of data. It is possible to use CNN or RBM approaches to efficiently assess the 
identification and classification of tumor lesions as well as the detection and 
classification of microcalcifications and risk-scoring tasks. The estimation of 
breast density was made possible through the use of CNNs. The estimation 
of breast density was made possible through the use of CNNs, which is a 
common strategy which has been modified. We utilized a modified version of 
CNN’s area proposal and R-CNN to pinpoint our location. An MRI dataset was 
segmented between breast and fibro-gluteal tissue using U-net, and the right 
breast density calculation results were seen. According to one study, using 
mammograms as classifiers for various layers of perception, a short-term risk 
assessment model with a projected accuracy of 71.4% was developed [45]. 

3.6.9 The use of AI in cardiac imaging 

Cardiac artificial research is now focusing on the left ventricle, slice catego
rization, image quality evaluation, automated calcium scoring, and coronary 
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centerline tracking. The classification relies on deep learning algorithms 
like the U-net segmentation method, whereas segmentation relies on 2D 
and 3D CNN techniques. With the use of an innovative image SR method, 
the reconstruction of the high-resolution 3D volume in the 2D picture 
stack has been accomplished. However, the SR-CNN approach is better 
at picture segmentation and motion tracking than the SR method because 
of the CNN model’s efficiency (43). When the ROI is considered a candi
date for coronary artery calcification and multi-stream CNN is used, deep 
learning is useful in recognizing low-dose chest CT with great accuracy 
(three views) (44). The 3D CNN and multi-stream 2D CNN were used to 
detect coronary calcium during gated computed tomography angiography. 
Measuring the individual’s heart could reveal their risk of cardiovascular 
disease or identify problems that may necessitate surgery or medication. 
Systematizing the finding of abnormalities in imaging studies, such as chest 
X-rays, may decrease diagnostic errors. One of the most common imaging 
studies that physicians order when someone comes in complaining of short
ness of breath is a chest X-ray. This simple test may detect cardiomegaly, 
an early sign of heart disease that other tests may miss. The “rapid visual 
examination” by a radiologist is not always accurate. Medical professionals 
may be better equipped to diagnose and treat their patients if they employ 
artificial intelligence in the interpretation of chest X-rays to look for left 
atrial enlargement. Analyses of the aortic valve, coronary angle, and pul
monary artery’s diameter all benefit from the use of artificial intelligence 
approaches of a similar kind. Images of the heart and arteries may also be 
used to identify changes in the thickness of the muscle tissues, for example, 
the left ventricle wall, or monitor fluctuations in the flow of blood. ACR DSI 
made the statement that “Manual evaluations would be eliminated, which 
would free resources for the interpreter while also reducing the possibility 
of finding errors and providing designed quantitative data for use in future 
studies or risk categorization systems”. Algorithms might save time and 
effort for doctors by filling out reports and spotting irregularities, which 
could save time and effort [45]. 

3.6.10 Artificial intelligence in bone imaging 

Artificial neural networks (ANNs) may be used to detect abnormalities in 
musculoskeletal images. Segmenting vertebral bodies from three- dimensional 
magnetic resonance imaging (MRI) scans automatically yielded a “Dice” 
similarity coefficient of 93.4%. Since there are so many different types of 
spines and postures, it is difficult to do automatic spine detection without a 
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large amount of photographic data to work with. A deep-learning architecture 
known as a modified deep convolution network was used to automatically 
correct the picture’s spine posture before analysis [46–50]. Using a CNN 
regression to generate an intensity-based 2D/3D registration method has the 
disadvantage of needing a long computation time and a restricted capture 
range. Even if the capture range is much bigger, real-time 2D/3D registration 
with extreme precision is said to be possible. 

Many deep-learning X-ray age estimation methods have been devel
oped, and their performance has been confirmed by averaging a discrep
ancy of a little over one year. Fractures and musculoskeletal injuries may 
cause long-term pain if they are not treated quickly and efficiently. Because 
of the decreased mobility and subsequent hospitalization that hip fractures 
cause, they have been linked to worse overall outcomes in older patients. 
As a result of using artificial intelligence, surgeons and experts may have 
greater confidence in their treatment decisions [51–54]. According to the 
ACR DSI, fractures are considered less critical in the aftermath of a trau
matic incident than internal bleeding or organ injury. Because of this, 
fractures can be overlooked during a trauma-related imaging assessment. 
Patients who have suffered head and neck trauma and have been brought 
to the emergency room could have an odontoid fracture diagnosed with 
the use of an AI radiology tool. For example, however, AI may be better 
able to identify subtle abnormalities in the picture that might indicate an 
unstable fracture requiring surgery than the obvious fracture itself, which 
would require human intervention. An independent algorithm can help 
ensure that the patient receives the proper treatment and has a positive 
outcome. Providers may find AI to be a useful safety net in the case of 
regular continuations of popular hip procedures, for example, replacing 
the hip joint of a patient. According to the ACR DSI [55], there are an 
estimated 400,000 total hip replacements (THAs) made each year. Around 
100 follow-up exams are done each day by an arthroplasty radiologist who 
works with musculoskeletal radiologists. If a joint replacement device 
turns out to be loose or if the tissue around the device reacts badly to the 
implant, patients may need an expensive and surgical revision. As a result, 
finding potential problems on the land might be a challenge. For example, 
“results are not evident on the X-ray image and need comparison with sev
eral earlier tests to determine the development of abnormality over time.” 
Therapy may be delayed for years if the diagnosis is delayed. The legal 
and medical dangers that radiologists face are lessened since AI that fits 
the criteria of this use case is capable of doing so. Patients with elevated 
amounts of cobalt in their blood may be sent for an MRI for additional 
investigation [56]. 
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3.6.11 The use of Artificial Intelligence (AI) in stroke imaging 

Stroke is a long-term disorder that manifests itself in a series of acute episodes. 
To treat a stroke, doctors must use their clinical judgment in several different 
ways. Research in clinical medicine has always been limited in scope to one 
or a few clinical issues, ignoring the continuing aspects of stroke treatment. 
Artificial intelligence (AI) is anticipated to assist researchers in the study of 
vastly more complex, but equally fascinating, topics in the future, including 
pertinent clinical issues, leading to better decision-making in stroke therapy. 
A recent study using this strategy has shown intriguing early findings [57]. 

3.6.12 Using AI to treat diseases of the lungs 

Pneumonia and pneumothorax are two conditions that need immediate med
ical attention. It is possible that artificial intelligence algorithms will be 
interested in both. Pneumonia may be fatal if left untreated. Pneumonia may 
be life-threatening whether it is acquired in the community or during med
ical care. If you are sick, radiation scans may help doctors determine if you 
have bronchitis or pneumonia. Radiologists may have difficulty identifying 
pneumonia in patients with preexisting lung conditions, for example, can
cer or cystic fibrosis, since they are not always available to analyze images. 
Subtle pneumonia, for example, those protruding below the dome of dia
phragms on anterior chest radiographs, the ACR DSI states, may also help 
reduce unnecessary CT scans through the use of artificial intelligence (AI). 
To speed up treatment, X-rays and other images might be examined by an 
AI algorithm for indicators of opacities that signal pneumonia [58]. When a 
pneumothorax is suspected, artificial intelligence (AI) may be able to assist 
in identifying at-risk individuals. Trauma or invasive procedures can cause 
pneumothorax, a condition that occurs when air pockets form between the 
lung and the chest wall. A more serious condition might arise if an illness 
is left untreated or identified too late. According to the American College of 
Radiology (ACR) DSI, pneumothorax can be detected by non-radiologists. 
Treatments for pneumothoraces may be more urgent if artificial intelligence 
can help prioritize the different types and severity of pneumothoraces. In the 
long term, artificial intelligence (AI) may be useful to healthcare providers. It 
is proposed that this use case could be extended to monitor the size of previ
ously discovered and treated pneumothoraces [59]. 

3.6.13 Artificial intelligence in the treatment of cancer 

The use of imaging methods is becoming more common in cancer screen
ings, such as those for breast and colon cancers. In many circumstances, 
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microcalcification in breast tissue could be difficult to differentiate as 
malignant or benign. When malignancies go undetected, unnecessary intru
sive testing and treatment might be carried out, which can have negative con
sequences. When it comes to interpreting microcalcifications on diagnostic 
imaging, “radiologist interpretations vary,” the ACR DSI adds. To reduce the 
number of unnecessary biopsies, artificial intelligence (AI) may be able to 
improve the accuracy of microcalcifications using quantitative imaging char
acteristics. Physicians and patients might make better decisions regarding 
testing and treatment if they were given risk ratings for areas of concern. 
People may have better connections with their physicians if polyps are found 
through routine colon cancer screenings. Polyps are the first signs of cancer. 
ACR DSIS claims that “CT colonography (CTC) enables a nominally inva
sive structural examination of the colon and rectum” to identify clinically 
relevant polyps. In contrast, less experienced radiographers may miss polyps 
or take too long to complete the test. It is possible that employing artificial 
intelligence (AI) to improve polyp detection accuracy and efficiency might 
lessen the risk of medical negligence for radiologists at CTC [60]. 

Patients with advanced cancer may benefit from the use of artificial intel
ligence (AI) in the detection of metastasized malignant tumors. After surgery, 
extranodal extension (ECE), a cancer with a poor prognosis, is often discov
ered. There may be a way to find ECE in diseases that do not often lead to sur
gery using a high-performance algorithm. According to ACR DIS, “treatment 
optimization for postoperative imaging-detected nodal disease might benefit 
from automated ECE categorization and identification.” According to society, 
artificial intelligence may help treat cancers of the head and neck, colorec
tal, prostate, and cervical types. This algorithmic or moderate approach may 
improve cancer consequences and decrease illness, according to the ACR 
DSI, “even if not proven” [61, 62]. Medical imaging, according to the ACR 
DIS, is ready for artificial intelligence, even though further study is needed. 
There are a lot of illnesses, injuries, and ailments that are hard to see with the 
human eye alone. Artificial intelligence (AI) could help healthcare profes
sionals and patients see things that are not visible to the human eye. 

3.7 Conclusion 

While artificial intelligence technologies continue to gain substantial atten
tion in medical research, their practical application faces major hurdles. If 
they are to perform well, artificial intelligence (AI) systems must be taught 
regularly using data from clinical research. Future diagnostic systems will 
rely heavily on artificial intelligence (AI) for their analysis. Nevertheless, 
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there are a few instances where AI diagnosis might need some refinement. 
A deep-learning architecture for AI learning necessitates a significant quan
tity of data. Although the bulk of medical images are technical and man
ual, developing large data systems is difficult. It also takes time to establish 
a collection of medical images that are standardized and tagged. With AI 
diagnosis, previously unanalyzed data may be detected, enhancing diagnostic 
accuracy and speed as well as the quality of medical treatment. 
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Abstract 

Chronic diseases are now the leading cause of death and illness worldwide, 

replacing infectious diseases. There is no immediate cure for chronic con

ditions, which is a significant challenge. To prevent severe symptoms, peo

ple with chronic illnesses need to constantly manage their illnesses. There 

is a growing interest and need for patient monitoring solutions to facilitate 

chronic disease management and, in particular, to improve self-management 

of chronic disease. With the implementation of information technology and 

telecommunication tools, remote patient monitoring has become an emerg

ing healthcare sector. Different sensors or devices, such as smartphones with 

built-in sensors and wireless transmissions, make up the data collection sys

tem. The data processing system continues to receive and send information. 

Large datasets collected from remote monitoring solutions such as medi

cal devices, wearables, and apps can be processed with machine learning 

(ML) tools, which improve assessment, classification, and decision sup

port. In this context, significant advances are being made in artificial intel

ligence (AI), big data, and deep learning (DL) to meet customer demands. 

For patients with chronic conditions, the integration and use of AI and the 

Internet of Things (IoT) for sensors, mobile apps, social media, and loca

tion-tracking technologies can enable early detection, treatment, and better 

self- management. As a result, there is growing interest in AI solutions for 
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future remote patient monitoring to facilitate chronic disease management 

and improve self-management. 

4.1 Introduction 

Healthcare is a constantly changing sector that offers numerous research 

opportunities. Such evolution is predicated on the adoption of IoT technolo

gies. It integrates information and communication technologies (ICT), sen

sor technology, massive data generation, big data, ML techniques, and AI. 

The application of novel skills is primarily aimed at constantly monitoring 

affected roles with chronic sicknesses (Mukhopadhyay, 2014), which has 

improved over the years. Thus, the technology IoT enables the development 

of novel solutions for diabetes patients. Chronic diseases are those that last 

an extended period and necessitate long-term therapy. Patients with stable 

conditions frequently occupy vast amounts of time in the hospital to be mon

itored daily. 

Heart disease, cancer, and diabetes are all examples of common chronic 

diseases. Currently, diabetes condition is quite severe, as it claims thousands 

of lives each year. As a result, the diabetes patient’s blood sugar level must be 

maintained to live a regular everyday life. It is defined by persistent hypergly

cemia caused by pancreas dysfunction when the organ either does not insulin 

properly or the organism does not utilize enough insulin adequately. Low 

or high blood glucose levels in the blood can impair the function and deg

radation of various organs, including the eyes, neurons, and blood vessels. 

Thus, continuous and everyday monitoring is essential to prevent the diabetic 

patient’s healthiness from deteriorating. Over the former limited years, the 

increasing count of diabetes patients consumed necessitated the deployment 

of different technologies to monitor these individuals. Monitoring policies 

for diabetes patients are designed to measure blood glucose levels regularly. 

Consequently, patients, families, and physicians may monitor inter

pretations at all moments and respond swiftly when an alarming reading 

occurs. Transferrable monitoring systems for people living with diabetes 

provide some advantages, including improving diabetic patients’ quality of 

life by minimizing inpatient time. As a result, the adoption of wireless com

munication with extensive coverage which enables data transmission from 

patient to clinicians is quite intriguing. In this perceive, fifth generation (5G) 

technology, also referred to as the resulting generation of mobile, enables 

faster transmission, higher bandwidth capacity, and networks the calling. 

However, this technique is currently being evaluated to boost data transfer 

rates (Pantelopoulos & Bourbakis, 2009). It is possible to treat diabetes using 
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deterministic mathematical models. However, there have been few investi

gations on scientific simulations of diabetes mellitus published so far. The 

stochastic numerical study continues to be an intriguing tool for studying dia

betes mellitus epidemic illness propensity (Neuman, 2010). To collect data 

for categorization, an essential glucose monitoring device with efficiency, 

minimal, and low cost was employed. Each day, the cloud was updated with 

new patient data. Clinicians used the acquired facts to track blood glucose 

variability and administer appropriate medical care in an erroneous glucose 

level. The forecast was made using a combination of ML techniques. In order 

to obtain the best level of accuracy, many classification algorithms were ana

lyzed, tested, and compared using a variety of parameters. 

Asthma, tumor, cardiac, diabetic, and other mental health-related prob

lems have already surpassed viral infections as the primary source of imper

manence and illness worldwide (Wickramasinghe, John, George, & Vogel, 

2019). It is estimated that nearly all participants will increase. An increase in 

suffering from various chronic diseases will rise as the population gets older 

and lives longer in poverty. Chronic illnesses present a significant problem 

because there is no rapid treatment. Individuals with chronic illnesses are 

forced to handle their sickness continually to avoid keen symptoms. It means 

that food, physical activity, and medical management must all be monitored 

regularly. As a result, patient monitoring systems are becoming more popular 

and necessary as a crucial doorway to facilitating chronic disease care, par

ticularly improving self-management (Wickramasinghe, Essential consider

ations for successful consumer health informatics solutions, 2019). Remote 

patient monitoring is a new discipline of medicine that focuses on managing 

health and illness to treat or diagnose illness through information technol

ogy and telecommunications. It employs various tools to gather health data 

from users at home or during everyday activities and then retains or sends 

that data to healthcare specialists for review and recommendations (Ashok 

Vegesna, Melody Tran, Michele Angelaccio, & Steve Arcona, 2017). Patient 

monitoring, telehealth, mobile health, and telemedicine are wholly terms that 

encompass numerous aspects of patient monitoring beyond the hospital sur

roundings with the help of information technology. 

 Patient monitoring is the process of analyzing the indications and 

performance of individuals who have long-lasting illnesses and are in dan

ger of acquiring acute symptoms of those illnesses. Increased patient care, 

assurances that unanticipated health crises will be monitored, and a reduc

tion in hospital visits are all benefits of the program. Many advantages of 

remote monitoring can be realized, including genuine or rather fairly con

stant symptom analysis, early identification or prevalence of the disease, 
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lower healthcare costs, improved knowledge of health issues, and, in the end, 

expanded support and emergency care opportunities (Malasinghe, Ramzan, 

& Daha, 2019). It is cost reduction that is the primary impetus for the deploy

ment of remote health monitoring, which is being pushed by an aging pop

ulation, increasing needs, limited facilities, and the possibility of healthy 

aging (Albahri, et al., 2018). A monitoring system is typically composed of 

the following components: a heart rate monitor, data capture, and end-user 

administer, also a transmission module. The data gathering arrangement is 

made up of a variety of sensors or equipment, such as handsets with built-in 

devices and wireless gets turned. 

The procedure involves receiving and transmitting data, and the termi

nus can be anything from a hospital computer to a gadget to a smartphone 

database to a tablet computer. Frequently, a communication network is uti

lized to connect this same user and data order fulfillment with a practitioner 

(Catherine Klersy, Annalisa De Silvestri, & Gabriella, 2009). Patients may 

collect and use data continuously and only submit it to a professional on 

an ad hoc basis in some situations, whereas in others, data gets delivered 

to the registered dietitian for review in all instances. All of this is depen

dent on the patient’s condition; the information will be stored, as well as the 

complexity of the data. It may be recommended that the patient goes to the 

clinic, remove harm, take medication, or contact a healthcare professional. 

Technology, communication channels, and sensor integration are all signif

icant differences between the current monitoring systems, as illustrated in 

Figure 4.1. 

Figure 4.1 Patient monitoring architecture using AI. 
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A review of previously published research on generation wireless sys

tems for the control of type-2 diabetic glucose levels is presented in this 

section. The section contains various previously published studies on large 

healthcare datasets that use classification to predict potential episodes of reac

tive insulin resistance or reduced blood sugar levels. These studies include 

the following: the ability to segment data in the maintenance of e-health is 

vital for tracking and treating the disease. Ahad et al. (Ahad, Tahir, & Yau, 

2019) present a brief introduction of 5G technologies and intelligent smart 

systems brought about by Digital of Things, as well as a case study of a 

smart healthcare application. In addition, the authors analyze the problems, 

research areas, and future aspirations in the technology field in the context of 

5G technology deployment. According to Lloret et al. (Lloret, Parra, Taha, & 

Tomás, 2017), an infrastructure and protocol based on 5G technology would 

be used to enable continuous and sophisticated online monitoring. The plan is 

meant to make use of the current scenario, which includes 5G mobile phones 

and wearables, to collect 16 critical indications from patients. Each piece of 

data collected is stored in a database and evaluated by employing business 

intelligence and ML technologies to deliver intelligent reactions that arouse 

an alarm if the system detects an unexpected event. Chen et al. (Chen, Yang, 

Zhou, Hao, & Zhang, 2018) are proposing a 5G mobile health system to 

continuously measure the effectiveness of diabetic patients. For starters, the 

authors explain the 5G-Smart Diabetes setup, which includes recent technol

ogy such as Wearable tech 2.0, algorithms, and predictive analysis to pro

vide diabetics with comprehensive evaluation and control. Next, the authors 

present the data-sharing mechanism and analytic paradigm for 5G-Smart 

Diabetes, both of which are described in detail below. Finally, a testbed for 

the 5G diabetes has been developed. 

According to the findings, the approach is capable of offering patients 

with tailored diagnoses and treatment recommendations. Another device that 

relies on the IoT is the indoor anti-collision warning system (Xiao, Miao, 

Xie, Sun, & Wang, 2018). Through the use of radio frequency identifica

tion, the system can recognize and track electronic labels by evaluating 

back-broadcast signals that have been received from labels.To assist blinded 

users in avoiding obstacles, scientists have developed wireless signal indi

cators and phase patterns that act as fingerprints. In terms of obstacle avoid

ance, experiments have shown that the systems function admirably, with 94% 

effectiveness. 

Goyal et al. (Chatrati, et al., 2020) offer a smart home prototype system 

for the early diagnosis and prediction of diabetes and hypertension in people 

who live alone. This technology is intended to be used in the home to monitor 
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patients’ blood pressure and glucose levels. Aside from that, the system  predicts 

the presence or absence of hypertension and diabetes by employing typi

cal supervised learning classification methods. Najm et al. (Najm, Hamoud, 

Lloret, & Bosch, 2019) present a unique ML technique based on the decision 

tree technique that is proposed for estimating the best rise in network problems 

in 5G IoT wireless sensors. A unique approach to forecasting the blood glu

cose levels of diabetic patients has been developed by Ahmed et al. (Ahmed & 

Serener, 2016). The glucose application is used by the authors to analyze the 

patient data. As a result, there has been a reduction in the intensity of noise. In 

this system, continuous glucose measuring sensors plus an additional Kalman 

filter would have been used to measure glucose levels  continuously. This 

method aids in the prevention of serious complications linked with  hypogly

cemia. Kannadasan et al. (Kannadasan, Edla, & Kuppili, 2019) aim to increase 

the success rate and other evaluation criteria for identifying the Pima Indians 

type-2 diabetes dataset to improve the overall accuracy of the dataset. They 

propose a method for diabetes data classification that is based on deep archi

tectures and stacked autoencoders, as described in the paper. High accuracy, 

recall, responsiveness, and F1-score are used to evaluate the effectiveness of 

the investigations, which are conducted using these methodologies. 

Wang et al. (Wang, Wang, Chen, Jin, & Che, 2020) propose a string 

section learning algorithm, extreme gradient boosting, to predict type-2 dia

betes risks. They contrast it to artificial neural networks (ANNs), support 

vector machine (SVM), the random forest (RF), and the K-nearest neigh

bor (KNN) algorithm to support the computer model effect of existing mod

els. When forecasting chronic renal illness using clinical data, Charleonnan 

et al. (Charleonnan, et al., 2016) recommend further use of KNN, SVM, 

regression models, and tree-based classifiers, among other methods of pre

diction. Several models are evaluated to establish the best effective technique 

for anticipating chronic renal illness, which the authors do in this paper. A 

model for customized heart problem classification is presented by Yoo et al. 
(Yoo, Han, & Chung, 2020), which is combined with a rapid and conve

nient preprocessing phase and a convolutional neural network to process 

the proper cumulative biosensor input data. Based on a handoff approach, 

González-Valenzuela et al. (González-Valenzuela, Chen, & Leung, 2011) 

present a constant monitoring program for ambulatory patients in their own 

homes. This system is built on two-tier internet services, with this layer of 

biosensors accessing vital signs and constructing an intersection connection 

between both the bodily sensor nodes coordinator devices and a port num

ber, and another layer of sensing devices collecting patient’s condition and 

trying to establish a level linkage between some physiologic sensor network 
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coordinator devices and a destination address (AP). The sensor is carried on 

certain wrists and the service user moves at a velocity of 0.5 m/s, the amount 

of packet loss is decreased to 20% to 25% of the value achieved when using 

only the time in history, administrator link. 

Finally, we look at several papers that are concerned with the use of sta

tistical models. In (Izonin, et al., 2018), Izonin presents two ways for identi

fying medical implant materials that are consistent with the use of the Fourier 

polynomials and SVM. These approaches are consistent with the use of the 

Fourier polynomials and SVM. When comparing the proposed approach 

to existing available algorithms, the author makes several observations. To 

reduce the chance of erroneous alloy detection in medical devices, Temple 

et al. (Tepla, et al., 2018) developed a classification biomaterial technique 

based on classification, regression analysis to create materials wearable imag

ing. In their paper (Tkachenko, Doroshenko,, Izonin, Tsymbal, & Havrysh, 

2018), Tkachenko et al. examine the outcomes of tackling data classification 

problems using the most extensively used different classifiers and propose a 

unique classification methodology based on the neural-like properties of the 

geometric transformation model. 

4.2 Purpose of Patient Monitoring 

Patient monitoring organizations collect biological information from affected 

roles over sensors and supplementary data causes that are required. Most 

commonly obtained by current systems are pulse, cardiovascular system, 

respiratory rate, air circulation, oxygen levels, volume, electrocardiograph, 

electroencephalography (EEG), electromyography, mass and strength heat

ing rate, and blood levels, among other things. It is possible to include infor

mation like the steps taken and caloric burn, sleeping statistics, position, and 

the patient’s weight. Most traditional monitoring systems collect informa

tion through sensors fixed in place, for example, electrodes attached to the 

skin, while few are better invasive – in particular, factors that can affect brain 

monitoring (Gopalsami, et al., 2007). With the continued advancement of 

technology and wireless devices, sensors and surveillance equipment are 

becoming thinner and more wireless. Devices, such as smartphones or tab

lets, are powering many new gadgets. 

4.2.1 Patient monitoring involvement in today’s healthcare 

Patient monitoring is essential in today’s healthcare environment. In addition, 

remote patient monitoring can reduce hospitalizations, decrease mortality, 
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and improve treatment and service in a range of infections (e.g., diabetic, 

cardiovascular, and neurological illnesses). Diabetes comes to a widespread 

long-term illness that necessitates meticulous supervision to keep blood levels 

back to normal and reduce the likelihood of complications. Diabetes patients’ 

insulin levels can vary significantly during the day; thus, it is critical to mon

itor them multiple times to ensure that they are within the proper range when 

taking insulin therapy. It is difficult and intrusive to use traditional glucose 

sensors, which use electromechanical methods to evaluate blood glucose lev

els from a bit of blood sample taken from the finger prick (Yoo & Lee, 2010). 

Continuous glucose monitoring (CGM) turned out to have emerged as a spe

cific miracle for individuals over type-1 diabetes, and also type-2, allowing 

them to improve their lives and health outcomes significantly. These CGMs 

monitor blood glucose scales during the day and, provide analysis reports and 

hollow blood sugar detection. 

The primary advantage of CGM is that they allow patients to spend 

less time in hyperglycemia as they are often constantly monitored (Rodbard, 

2016). It has been shown that they are connected with lower hemoglobin A1c 

(HbA1c) levels, which is an important diabetic biomarker. CGMs, when used 

in conjunction with an insulin pump, are particularly effective for regulating 

blood sugar levels since family members may provide more frequent mon

itoring and changes in glucose levels. Like Medtronic and Dexcom (which 

includes Tandem), few manufacturers provide integrated systems, which are 

unsuitable for immense monitoring (Chen, et al., 2017). Furthermore, despite 

the tremendous benefits of CGM devices, clinics associated with the imple

mentation have remained modest in recent years. Heat loss is a serious med

ical condition that affects approximately 26 million individuals worldwide 

and is related to higher rates of hospitalization and mortality (Savarese & 

Lund, 2017). The inability to follow patients with heart failure after treat

ment episodes is likely to increase the likelihood of re-hospitalization and 

morbidity in these patients. The cost-effectiveness of patient monitoring is 

demonstrated by the comparison of visits by healthcare experts. An electro

cardiogram (ECG), heart rate, and mass measurements are routinely taken as 

part of the monitoring process. Phone-based tracking and consultations are 

also available in some cases. Many approaches are used, including telemon

itoring, others of which include conferencing or cellphone surveillance and 

assistance (Bashi, Karunanithi, Fatehi, Ding,, & Walters, 2017). 

Several clinical studies have been conducted to document the outcomes 

of such monitoring programmers, and the conclusions have varied in terms 

of their significant influence on patients. However, according to the liter

ature, some home surveillance can minimize cardiac hospitalizations and 
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death (Ong, et al., 2016) if appropriately used. Vascular dementia, seizures, 

neurodegenerative disorders, and dementia are just a few of the neurological 

conditions that can be treated using remote patient monitoring technology. 

In patients with these illnesses, two clinical issues must be addressed: iden

tifying and measuring changes in everyday functioning over time, as well as 

evaluating the efficacy of medicine on symptoms and function. Because of the 

link between being physically inactive and a variety of morbidities, assessing 

physical activity is beneficial in treating many neurological conditions. In 

remote monitoring, it is possible to assess aerobic exercise evaluate determi

nants and outcomes, and assess determinants, results, and decision-support 

mechanisms. A technique called regular exercise monitoring, which uses 

accelerometer sensors to forecast fall risk and detect mistakes in Parkinson’s 

patients, has proven to be beneficial (Block, et al., 2016). Various devices, 

like those of the Omron monitoring, which is widely viable, can simulate 

the human movement upon the leg and arm while a person is reaching for 

something while walking. They appear to be legitimate in terms of posture 

lifting time and rate of rotation. Users and physicians obtain feedback from 

these systems, enabling them to evaluate the situation accurately and provide 

better rehabilitation and therapeutic management alternatives (Lonini, et al., 

2018) to the patients. 

4.2.2 	Improving healthcare outcomes by using  
patient monitoring 

Improving healthcare results through patient monitoring based on clinical tri

als and pilot projects has established that patient monitoring applications can 

improve clinical outcomes in a wide range of circumstances. While this is going 

on, numerous studies show no improvements in clinical results, even when 

using the same sort of monitoring equipment or treating the same condition. 

Because of the variety of applications and diseases that can be monitored, it is 

difficult to make broad statements regarding patient monitoring systems. The 

fact that most market monitoring systems are based on a particular invention 

or ailment illustrates the fragmentation of the market. Historically, the majority 

of discussions about clinical outcomes have been on lower morbidity and mor

tality and physiological indicators like suHbA1c diabetes abdominal obesity. 

Whereas, on the other side, some critical indications of therapeutic suc

cess, such as tolerance, are frequently disregarded. The term “adherence” 

applies to a patient’s willingness to comply with medical recommendations 

and medications. It entails adhering to prescribed medicine and accessing 

additional forms of care that have been recommended. Adherence should be 
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acknowledged as a crucial inpatient monitoring measure to maintain correct 

control and improve patient outcomes. Following up on medication com

pliance with remote monitoring devices, including health technologies, has 

risen in recent months and is currently one of the most often used applica

tions for new software applications. Various methods of encouraging com

pliance are available, ranging from text message reminders to sensor-based 

surveillance systems that include built-in medical support. After compiling 

data on patient outcomes and medication compliance from 107 research trials 

in which both medication compliance and traditional clinical outcomes were 

recorded, Hamine et al. concluded that revisions required a significant favor

able influence on adherence in 57% of cases. 

However, the revisions required such a heavy negative impact proceed

ing health consequence (Hamine, Gerth-Guyette, Faulx, & Green, Journal 

of medical Internet research) that they were significant. Also demonstrated 

was the text message alerts are the furthermost extensively and successfully 

used tool for loyalty facilitation then that admittance improvement is very 

error-prone, requiring a high degree of active patient contact and informa

tion sharing. Increasing the level of active patient satisfaction is essential 

for keeping users and enhancing commitment and therapeutic outcomes. 

Because it requires additional effort and may not yield immediate results, 

patients are usually reluctant to improve their adherence to their medications. 

Successfully implementing habits is challenging, and this is made consider

ably more difficult when the behavior lacks any entertainment factor or an 

immediate benefit. 

On the other hand, these adherent measures must go beyond clinical 

studies and case studies to significantly impact society. For various reasons, 

most systems have been reluctant to gain widespread adoption to date (Baig, 

GholamHosseini,, Moqeem, Mirza, & Lindén, 2017). Body-worn monitoring 

devices are commonly used to obtain reliable data. Because they are typically 

substantial in size, they must be precisely positioned on the body to give reli

able results. Many detection systems also have connectivity issues caused by 

delays, losing data, with the addition of network communication, all of which 

contribute to a negative user experience for the user. Clinical decision-making 

precision and consistency  assist could also exist a problem for physicians who 

utilize the tracking if the framework was established in addition to assessed 

primarily following the following organizational and simulation conditions. 

Finally, involvement and communication with clients frequently lack 

quality. As aggressive specifics receivers with limited access with the inten

tion of this information collected, users frequently perceive themselves 

as having a limited interpretation of the information they collect, which 

inhibits their acceptance and uptake (Deshmukh & Shilaskar, 2015). The 
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acknowledgment must be increased, and monitoring materials essentially 

remain improved by stressing end-user engagement, even more guaranteeing 

that the service delivers worth to users. The receiving and approval of each 

invention across the healthcare business depend significantly on the user’s 

awareness and appreciation, including the patient and the physician. 

4.3 Wearable Patient Monitoring Sensors 

The value of health monitoring has grown in recent years, as has most indi

viduals who use it. It can be defined as a method of looking at the differ

ence in an individual’s well-being overview period. Furthermore, it has been 

defined as the recognition of changes in one’s circumstances that impact 

one’s health. Indeed, vital signs should be closely checked thoroughly that 

the hospital’s life quality is not adversely impacted. It has been demonstrated 

that on-body sensors are particularly effective when considerations such as 

service user mobility and convenience of use are considered (Teichmann, 

De Matteis, Bartelt, Walter, & Leonhardt, 2015). The development of wear

able monitoring devices has attracted significant interest from industry and 

academics over the last decade. Because of the rising expense of medical 

services and the changing demographics, there has been an increase in the 

desire for patients’ health conditions to be monitored outside of the clinical 

setting. In this case, the goal is to offer essential info about a person’s current 

health and well-being, to the elected official, a hospital, or exclusively to the 

medical team, with the capability of notifying when life-threatening condi

tions are detected (Pantelopoulos & Bourbakis, 2009). Due to their multiple 

advantages and the usage of devices for data gathering, wearable sensors 

are incredibly advantageous since they continuously monitor a patients’ 

life while limiting human involvement and results in a low price whenever 

attached to the human body. 

Ubiquitous healthcare systems are composed of a variety of tiny sen

sors, power supply, processing elements, and actuators that are worn or 

implanted to provide monitoring and treatment. Each of the multiple bio

sensors can send data to something like a Wi-Fi module, a personal digi

tal assistant, and go to a health center in its entirety, depending on the data 

collection method. Important health indicators, including heartbeat, pulse 

rate, respiration rate, and blood pressure, can be monitored using biosensors. 

When treating patients with sleep problems, heart attack, vascular dementia, 

and other conditions, wearable sensors have made it possible to treat them 

at home rather than requiring them to be admitted to the hospital following 

the attack. To build intelligent sensing devices that can detect falls in the 

family environment of older people (Clifton, Clifton, Pimentel, Watkinson, 
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& Tarassenko, 2012), researchers are conducting research (Yan, Yoo, Kim, & 

Yoo, 2010) in this area. Falling can result in physical concerns that require 

immediate attention to avoid more complications from occurring. If immedi

ate aid is not provided, symptoms such as coldness, dehydration, and acute 

discomfort may deteriorate and get worse. 

4.3.1 Wireless health monitoring specifications 

By implementing a health monitoring system, data obtained from biosensors 

can be transmitted as far as the structure’s central node immediately to a dis

tant pharmaceutical station or the physician’s cell phone. Data transfer can be 

accomplished via a wired medium, which restricts the user’s movement and 

comfort, or via a wireless medium. In the wireless medium (Pantelopoulos & 

Bourbakis, 2009), data transmission can be accomplished by establishing a 

catalog of sensor networks known as a body area network that is configured 

in a star network to facilitate data flow to the BAN’s central node, which can 

be a smartphone, a microcontroller-based device, or a smart device. When 

data transmission to a remote medical station is required, a variety of technol

ogies can be employed. Among them are Wi-Fi, Bluetooth, WiMAX, GSM, 

and GPRS (Mukhopadhyay, 2014). 

The network’s design is critical since it should be competitively priced, 

flexible in terms of configuration, and allow for additional nodes. As shown 

in Table 4.1, ZigBee (IEEE 802.15.4), Bluetooth is the most extensively used 

Table 4.1 Comparison of different wireless specifications. 

Wireless 
specifications Area Data Bandwidth Application 
IrDA 1 m 115 Kbps to – A wireless monitoring 

1 Mbps system is not a viable 

option. 
ZigBee 10–100 m 250 Kbps 868 GHZ, 915 Applications with lower 

GHz, 2.4 GHz power usage and data 

transfer rates 
Bluetooth 100 m 1–3 Mbps 2.14 GHz Control and monitoring 

on a short range 
Wi-Fi 5 Km 1–450 Mbps 2.4, 2.5 GHz Acquires data from a 

personal computer and 

gives internet service 
WiMAX 15 Km 75 Mbps 2.3 GHz, Provides access to the 

2.5 GHz, internet for mobile 

3.5 GHz devices 
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standard for body area networks (IEEE 802.15.1). ZigBee is typically pre

ferred in applications that demand network security, long battery life, and a 

modest data rate (Ramathulasi & Babu, 2020). For authentication and encryp

tion, ZigBee makes use of advanced encryption standard with a 128-bit key. 

If data needs to be transported over a long distance, it can be transmitted via 

a communication network of gateway devices. Bluetooth is frequently used 

for short-range data transmission by masking mobile devices’ further use of 

personal area network. Bluetooth eliminates synchronization issues by con

necting several devices. As Bluetooth transmission occurs in the presence of 

a master and slave device, a total of seven devices can communicate via the 

master device. Bluetooth comes in various versions, as stated in the chart, 

including data rates of 1, 3, 24, and 24 Mbps, respectively. 

4.3.2 Different types of sensors 

According to the manufacturer, physical signs should be monitored with pre

cision and for an extended length of time. Because it is based on monitor

ing systems, sensors contribute to the achievement of the goals mentioned 

above. There is a plethora of biosensors available for multi-tracking activities. 

As dynamic behavior, advanced materials, and other analogous technologies 

evolve, the formation of acute sensor monitors data more swiftly and effec

tively while requiring less power is becoming more feasible. The temperature 

of a patient’s body is one of the heart rhythms that could be used to evaluate 

the health status of that patient. Body temperature changes can emerge due to 

a variety of factors, including infection, joint pain, heart attacks, and electric 

shocks. Body temperature was previously determined using a thermometer; 

however, temperature sensors and equivalent electrical and electronic technolo

gies have essentially replaced this method of measurement (Chen, et al., 2017). 

Accurate acceleration measurements along a specified axis are required 

but only within a specific frequency range. Accelerometers are used in this 

situation. They are also employed to monitor human behavior. They are usu

ally used around wearables and implantables to detect falls, which is their 

primary application. Accelerometers are available in various configurations, 

including piezoelectric, impedance, and piezoresistive types, among others. 

The respiratory rate is another crucial physiological parameter to monitor. 

The breathing rate tends to rise as a consequence of injury and physical 

activity, among other things. When it comes to detecting health problems, 

estimating heart rate can be pretty helpful. Persistent cardiac problems are 

also a source of concern, and they must be closely monitored. In these set

tings, ECG sensors could be utilized to diagnose cardiovascular diseases. In 
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Table 4.2 Sensor with their incidental bio-signals. 

Sensor type Bio-signal type Data that has been measured 
Temperature The temperature of the The capacity of the body to generate 

body or the skin and dissipate heat 
Piezoelectric Rate of respiration Phonocardiograph Heartbeat 

sensor Breathing rate per unit measurement with a stethoscope 

of time 
Electrodes on the ECG Sound wave recording of the 

chest or the skin contraction and relaxation phases of 

the heart cycle 
Accelerometer Body movements Measurement of acceleration forces 

in three-dimensional spaces 
The oximeter of Saturation with oxygen Oxygen carried by human blood in a 

the pulse given volume 

addition to providing information on the consistency and frequency of the 

heart’s pulse, ECG sensors also provide information that can be used to diag

nose cardiovascular illness. Several nano sensors and the business derived 

from them are summarized in Table 4.2, which may be viewed here. 

4.4 Involvement of AI in Patient-Monitoring 

4.4.1 Mobility aids the living environment 

Assisted living in the home (also known as ambient assisted living (AAL)) 

is a term that refers to the integration of modern technology into a person’s 

regular life to fulfill the increased healthcare cost and backing, later refining 

the distinct overall peculiarity of life. In certain, AAL systems established 

on AI are incredibly beneficial to the aged, the disabled, and patients with 

severe environments. Remote patient monitoring, personality, emergency 

response services, and in-home quality healthcare are some of the successful 

healthcare solutions provided by these organizations (Darwish, Senn, Lohr, 

& Kermarrec, 2014). Examples include remote monitoring with AI-based 

sensors, which can be used to observe patients’ everyday activities and pro

vide constant help to elderly persons under the supervision of careers. In 

AAL systems (Davis, Owusu, BastaniX, & Marcenaro, 2018), an ANN is a 

vital component of the system. Several technologies, including the Web of 

Things and big data, are used to power it. Massive volumes of data can be 

managed by AAL systems, which can then be interpreted with appropriate 

models, accurate patterns detected, and predictions generated, which may 

then be used for decision-making in employing AI approaches such as ML. 
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The approach uses a variety of ML approaches to recognize different types 

of mobility patterns, including RF, Bayesian network, K-means, and other 

classifiers. Using the IoT, for example, a variety of sensors, including AI 

technologies and AAL mechanisms, may be used to monitor in real time 

this same patient’s various activities, such as lying down, lying on the floor, 

standing, stepping on flat ground, walking upwards, or climbing the stairs 

(Chetty, White, & Akther, 2015). 

Numerous AAL systems practice the detectors on the smartphone to 

detect activity (accelerometer and gyroscope). Davis-Owusu et al. (Davis, 

Owusu, BastaniX, & Marcenaro, 2018) accustomed a smartphone with inte

grated sensor detectors to accumulate particulars from senior individuals. 

It was discovered that they were able to distinguish six specific activities 

using three ML techniques: SVM, ANN, and an SVM-hidden Markov model 

(HMM) hybrid approach. Many functionalities have also been conducted in 

AAL systems by utilizing techniques that are based on DL (Ronao & Cho, 

2016). A significant amount of research has been done on applying convolu

tion neural network (CNN) to recognize everyday movements such as exer

cise, standing up, walking down a staircase, going for a walk, reclining, and 

standing (De-La-Hoz-Franco, Ariza-Colpas, & Quero, 2018) among other 

things. It is possible to build AAL systems utilizing a variety of sensors. It 

is common to see smartphones and wearables being used, and because they 

are generally unobtrusive and inexpensive, this results in highly profitable 

AAL systems, similar to e-textiles, building automation, and helping robots 

(Majumder, Mondal, & Deen, 2017). 

Syed and colleagues (Syed, Jabeen, Manimala, & Alsaeedi, Smart 

healthcare framework for ambient assisted living using IoMT and big data 

analytics techniques, 2019) introduced an intelligent medical system treat

ing AAL that uses AI and the IoT to measure the aerobic exercise of older 

people. To evolve this structure, the researchers possessed to position many 

sensors on various segments of the participant’s frame. Sensors placed on 

the person’s ankle, arm, and breast were utilized to collect data and then sent 

through the IoT. In order to execute multiple tasks on the data, advanced 

automation technologies such as MapReduce and multivariate regression 

classifiers are being used to complete the jobs. When it came to remotely 

forecasting 12 physical actions, the developed algorithm was 98.2% accu

rate. The interface for this project is a mobile medical app that permits 

telemedicine through data visualization and reports generation and report 

generation. As shown in Figure 4.2, a distant specialist app allows specialists 

to screen their sufferers from a distance and provide records based on cate

gorized everyday activities. 
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Figure 4.2 Clinical decision-making assistance. 

In conformity with the results of bodily activity classification, experts 

might make appropriate judgments and provide relevant records. For care

takers who get treatment recommendation, communication cautions to assess 

potential threats and intervene accordingly in the case of a problem such as 

cardiogenic shock or fall detection. As it can distinguish numerous physical 

motions and thus remotely monitor the patient’s health status, such a frame

work may be termed a solution for reintroducing AAL to the elderly and 

crippled. 

4.4.2 Clinical decision-making assistance 

In recent years, evaluated and clinical findings decision support systems 

(CDSS) for house telemonitoring of persons with chronic illnesses, includ

ing respiratory distress, have been devised and constructed (Sanchez-

Morillo, Fernandez-Granero, & Leon-Jimenez, 2016). The CDSS’s primary 

purpose is to monitor the patient’s health daily to detect any recurrence or 

progression of the ailment early on and averted [50]. CDSS is predicated 
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on machine-readable medical experience, evidenced particulars, and encap

sulated AI patterns that exploit this data and expertise to offer relevant 

information to doctors and aid in their decision-making (Mills, 2019). The 

most common and developed CDSS are those that target drug protection 

and loyalty. These CDSSs constitute the backbone of electronic prescrib

ing and clinical decision support. In general, sophisticated AI algorithms 

are not required to assist physicians; to have available data is enough to 

aid clinicians’ decisions. However, because CDSS retain large quantities 

of sufferer data (Lilly, et al., 2014), AI is emerging in complete agreement 

with a wide number of rich datasets. Technology and neural networks, for 

example, have been developed to manage large datasets utilizing developed 

feature selection approaches (Kindle, Badawi, Celi, & Sturland, 2019). Due 

to the use of AI to progress huge quantities of data, CDSS could work on 

various plateaus. The AI algorithms embedded into a CDSS, for example, 

can use the center’s electronic health data to forecast emergent admissions 

at various levels. It intends to permit the hospice to develop more effective 

decision-making methods for crisis room administration, resulting in bet

ter patient care and lower costs. Furthermore, by enabling the app before 

the device to monitor patient medical conditions and alert them to potential 

exacerbations, these solutions can improve quality of life (Iadanza, Mudura, 

Melillo, & Gherardell, 2020). 

Furthermore, the presence of a CDSS does not always guarantee that 

clinicians will use it in an intended way. According to new findings, nurses 

rely on clinical information systems while they are first starting their careers; 

nonetheless, once they expand involvement, they mostly practice the sys

tem to “double-check” or even make judgments due to personal experiences 

(Dowding, Randell, Mitchell, & Foster). The suggestions of these systems, 

according to some nurses, limit their specialized findings and, when unwell 

constructed, contradict their judgment (Ernesäter, Holmström, & Engström, 

2009). It suggests that although building furthermore assessing each CDSS, 

specific, precise strategies must be succeeded. 

1. 	 The five principal rules should be followed, as described in the literature: 

2. 	 Appropriate information (clinical expertise, clinical protocols, and AI 

algorithms that are acceptable) 

3. 	 Appropriate individuals (practitioners, members of interdisciplinary 

teams, and patients all require data to make decisions) 

4. 	 Appropriate format (decision data is presented through alerts, prompt

ing, guidelines, templates, and information buttons) 
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5. 	 Appropriate channels (determining the data’s time structure and prop

erly incorporating it into the decision-making process (Borum, 2018)) 

A satisfying medical staff results when these requirements are met, and cli

nicians acquire valuable data that does not contradict their professional judg

ment or take more time and effort. 

4.4.3 Smartphones, apps, sensors, and devices 

AI as well as the IoT, which prevent potential cellphone apps, social networks, 

also location-tracking expertise, be able to help chronic disease patients receive 

timely detection, treatment, and self-management (Malasinghe, Ramzan, & 

Daha, 2019). Passive monitoring, participatory sensing, and muscle strength 

are the three types of remote healthcare sensing technology. The most com

mon passive sensing device is a smartphone. The built-in sensors on a smart-

phone (accelerometer, odometer, and magnetometer) provide physics-based 

features such as determining a user’s daily step. They may provide air pres

sure information, bright sources, voice, and also pressure on the touchscreen. 

Additionally, the created camera allows for more creative uses of these detec

tors. Such as turning the phone first into fall detection technique, analysis 

refers to the process (through detecting sound data gathered via speakers), or 

a fitness tracker (Coppetti, et al., 2017) as demonstrated in Figure 4.3. 

Wristbands, are examples of wearable devices, components, are 

becoming more common in the modern period and include some of the same 

Figure 4.3 Wearable sensors in healthcare. 
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sensors found in telephones. They may detect vibrations associated with 

smoke (Saleheen, et al., 2015) as well as seizure occurrence. In 2017, 18% 

of persons in the United States wear a gadget that could be worn, such as a 

smartwatch or a wrist-worn gadget. Photoplethysmography sensors, which 

monitor fluctuations in reflected light caused by perivascular blood flow 

adjustments with each heartbeat, are typically seen on wrist sensors. It gives 

details on the characteristics that regulate the cardiac rhythm. Clinicians also 

use wearable sensors; for example, smartwatch patches can measure physi

cal movement and posture, radio frequency sensors placed over clothing can 

check respiration rate, and others can track the healing process for a range of 

neurological disorders (McLaren, Joseph, Baguley, & Taylor, 2016). 

A tiny sensor put in a pill delivers signals to a compostable patch when 

the tablet reaches the stomach in an emerging gadget for medication adher

ence (Hafezi, et al., 2014). Active sensing requires the observation of a patient, 

whereas passive sensing collects just observable evidence. As a result, active 

sensing allows for a subjective perspective of a patient’s health condition to 

be obtained through questionnaires that ask patients to report their sensations 

during specific time intervals. Patient-reported data is equally as crucial as 

measured data, and it needs to be factored into AI models for an accurate 

assessment of results. Active and passive sensing is combined in operational 

assessment approaches, with the patient’s subjective assessment and specific 

device sensor’s highly objective data collecting. It evaluates the functioning 

of patients’ mobile health devices to fulfill maintenance appropriately; fur

thermore, it assesses cognitive processes like memory and responding speed 

via smartphone platforms (Sim, 2019). 

The bulk of mobile apps used to assess cognitive performance are 

mental-stimulation-based brain training aids. Many emotional health solu

tions have improved users’ mental health by enhancing cognitive qualities 

such as velocity, memory, attention, and problem-solving. Apple’s Lumosity 

and Elevation were among the first apps on the market; these apps use fas

cinating mini-games created by researchers to improve the brain’s neuro

plasticity. AI can be included through these apps to provide users with a 

user-friendly monitoring interface for analyzing their cognitive functions in 

real time. Another significant usage of technology in cognitive health mon

itoring is chatbot coaches. Bots, Youper, Wysa, and Unmind (Apps, avatars, 

and robots: The future of mental healthcare, 2019) are all smartphone health 

apps that use conversational AI chatbots to provide everyday assistance and 

mental health tracking. Cognitive behavioral therapy approaches created by 

psychology/mental health researchers are used to teach and evaluate chat

bots’ AI algorithms. 
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4.4.4 Processing of text language 

The scale and complexity of patient-provided medical data are growing dras

tically. These enormous datasets contain critical information that could prove 

to be beneficial in medical decision-making. Unfortunately, due to express

ing the personal, unstructured nature (e.g., available clinical records), these 

data are limited in their use, and almost no local workforce can manage a 

large number of records because the majority of them is not well-organized 

(stored data). On the other hand, AI-powered computer software may scan 

all gathered and save pertinent information for potential use. These AI tech

niques use natural language processing (NLP) to extract a human-written 

text’s meaning, emotion, or intent. NLP algorithms help computers under

stand human language, making clinical research easier by automating their 

extraction of relevant data and evaluating free-text documents. Probabilistic, 

ML, and DL are the most commonly used methodologies (Senders, et al., 

2019; Remote patient monitoring using artificial intelligence, 2020). 

4.4.5 Healthcare applications of text processing technology 

NLP-based solutions are becoming more common. Hands-free communica

tion is very important in healthcare. These technologies have been imple

mented in several AI-based applications, the most notable of which were 

Chatbots for healthcare management via wearable technology. The follow

ing are a few examples of NLP uses in healthcare: aside from NLP tools in 

education, where a variety of mobile apps could be beneficial to students 

with reports and summaries, specific NLP-based applications can help people 

with significant points notes during their doctor visit. Using voice recogni

tion algorithms, the integrated language processing technique allows for the 

summary and extraction of crucial information. Doctors and nurses can also 

record speech updates using NLP-based mobile apps. This same surgeon, for 

example, can orally document and communicate with the rest of the team 

promptly (Medical internet of things and big data in healthcare, 2016). 

Secure remote control: NLP technology allows people with disabili

ties to communicate without having to use their hands. NLP technology in 

the smartphone app may simulate human conversation and engage consum

ers via autonomous systems, chatbots. NLP applications within the chatbot 

industry: m-health apps. Chatbots are innovative conversation programs that 

mimic a human narrative using powerful AI technology to read and reply to 

what users say. These virtual assistants will resemble family doctors today 

and, in the future, will be ready to provide sufferers with immediate medical 
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assistance. In the field of healthcare, several chatbot technologies have shown 

potential. Babylon health: the healthcare guidance app incorporates many 

cutting-edge patients who can use AI algorithms to help them remotely con

sult surgeons and other health professionals. Patients are assigned consulta

tions by appropriate AI algorithms based on their medical background and 

other health considerations. Users can also carry out real-time video chats 

with doctors about their health profiles using this program. 

This software uses NLP to create a symptom check Chatbot that can 

provide people with helpful information like solutions and subscriptions to 

their medical issues. With the assistance of the national health system of the 

United Kingdom, this app is now giving a limited range of free services to 

satisfy the medical needs of many individuals. The health of the Buoy: the 

Buoy health app promotes patients/users in discovering the etiology of their 

disease, with the main focus on diagnosis. Using built AI applications qual

ified on vast medical datasets, this application provides a discussion of a 

real-time chatbot that can aid patients. The chatbot provides information on 

patients. A reasonably precise diagnosis of their illness based on their sensa

tions, as well as relevant medical advice for their health complications. 

4.4.6 Using consumer technology to its full potential 

AI is being more widely applied in various fields of monitoring systems due 

to society’s rising technology adoption. According to the most recent data 

from Pew Research, 81% of people own a smartphone, with far more than 

63% of intelligent phones completing heath or medical searches. In addition, 

a 2018 study on smartphone usage and fitness app use by disadvantaged pop

ulations in the United States discovered that 38% of responders use a cell 

phone app to keep pace with innovation overall health (Vangeepuram, et al., 

2018). Significant progress in areas such as data science and computer vision 

has been made in intelligent machines, which are serving to meet consumer 

expectation. Consumer demand for healthcare technologies is influenced by 

factors at the community level, including population increase and aging, ris

ing healthcare costs, healthcare gaps in care provision, and the significant 

prevalence of diseases like asthma, cardiovascular disease, dementia, and 

Parkinson’s (Gibbons & Shaikh, 2019). This requires periodically assessing 

one’s food, physical exercise, and medical care. There is a growing demand 

for how AI technologies for monitoring patients turn out, as they are seen as 

a crucial step toward bettering pain treatment and self-management. 

Furthermore, as mentioned in the national healthcare system (Dall, 

West, Chakrabarti, & Iacobucci, 2015), there is growing concern about 
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personnel shortages. According to the 2010 American association consumer 

survey on healthcare access, these shortages are more likely to affect under-

served customers in regional and interior areas. Additionally, the existing 

health staff in the United States is aging, resulting in a greater retirement 

rate. As a result, AI’s role in monitoring patients has been broadened to 

include developing advanced healthcare monitoring systems that can help 

people cope with increased demands. The most exciting developments would 

be those that focus on patient stabilization, reducing the length and cost of 

staying, performing therapy and diagnostics under physician oversight, and 

monitoring the patients while they will not be in the hospital, and those who 

are going through the recuperation process. 

Furthermore, data suggest that low-income persons have poorer health, 

have less healthcare coverage, are more prone to being health-conscious, and 

live in generally adverse environments (Gibbons & Shaikh, 2019). These 

disparities persist for various cultural, socioeconomic, behavioral, regional, 

and healthcare system characteristics. As a result, whenever the system is 

inattentive to or insufficiently sensitive to genuine concerns, significant dis

trust and issues occur between these individuals and healthcare practitioners 

(Wickramasinghe, John, George, & Vogel, 2019). 

4.4.7 AI’s function in diabetes forecasts and management 

Diabetes is a widespread condition that affects millions of people world

wide. Healthcare systems worldwide spend a lot of money on prescription 

drugs (Syed, Jabeen, Manimala, & Alsaeedi , Smart healthcare framework 

for ambient assisted living using IoMT and big data analytics techniques, 

2019). While there are many alternative treatments, there is an outstand

ing essential for enlightening diabetes patients’ eminence of life and illness 

management to reduce diabetes-related difficulties. Supplementary to only 

maintaining blood glucose levels like glycated HbA1C, diabetes manage

ment also comprises sensation improved and understanding or monitoring 

the illness (Fagherazzi & Ravaud, 2019). Improvements in the device and 

new technologies offer an opportunity to rethink the ways diabetes is treated 

and managed in this context. A substantial number of articles on AI systems 

for diabetes care have been published in the recent decade, demonstrating the 

huge interest in the topic and the range of ways to use AI to progress the lives 

of individuals with diabetes. These systems can be rummage-sale for diabe

tes screenings, diagnosis, dealing, or administration, for example (Dankwa-

Mullan, et al., 2019). We will delve a little deeper into each of these diabetes 

patient monitoring solutions. 
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4.4.7.1 Apps and technologies for diabetes monitoring 
The Behavior Change Technique (BCT) app, for diabetes, is one of the numer

ous commercially accessible diabetic treatment methods for patient monitor

ing. BCT is a phone app that allows diabetics to display their sugar levels, in 

real-time levels, and estimates potential swings in blood sugar levels ranging 

from an hour ahead of time. Using CGM, mobile phone sensors, and personal 

user inputs, diabetes uses ML algorithms to estimate future blood glucose 

variations. This feature allows patients to take preventative measures to keep 

their sugar levels within the target range. This is also combined with technol

ogies for historical analysis to effectively monitor and control the condition 

and achieve improved blood glucose control. 

Diabetic is a diabetes care program for people who have insulin resis

tance and type-2 diabetes. It allows for diabetes management that is tailored 

to the individual by stimulating the blood sugar system. It also supports the 

handler to understand the influence of various inducements, such as diets, 

on the insulin-level tendency to avoid hyperglycemia. To receive continuous 

glucose monitor data, the app is used with Dexcom, a third-party program 

that displays glucose levels. It may also be linked to a Fitbit or an Apple 

Watch to incorporate data like temperament rate, diet, and step score. These 

extra efforts help to improve forecast accuracy. DiaBits’ ML algorithm takes 

three to seven days to get to know the user’s physiology, and as the user’s data 

grows, so does its accuracy at forecasting blood glucose. 

SVM and unsupervised-DL techniques are performed relying just on 

volumes of information and whether it derives personalities or groups of peo

ple. Although auto-regressors are useful, they can only forecast blood glu

cose values 15 minutes in advance [68]. BCT’s technology was successfully 

implemented in the Canada Hospital for Children in Canada, with a predic

tion accuracy increase of 96%. The diabetic app was tested in eight adoles

cent patients for 60 days using a blood glucose meter and Fitbit trackers, 

gathering information about personal activities, breathing rate, and glucose 

level. This was before the model was used to anticipate the user’s near-future 

glucose level results after 30 days of training just on the effect of activity, 

heartbeat, and glucose levels. Using statistics from a constant glucometer and 

a fitness tracker, the researchers discovered that being projected up to 1 hour 

ahead of time, blood glucose levels can be anticipated. DiaBits’ algorithms 

are currently being integrated into Premier Health’s healthcare app. 

Premier Health’s ecosystem includes 292 clinics and over three mil

lion patients. To enhance the performance of overall patient care and health- 

related decisions, Prestigious Health would continue to incorporate clinical 

decision tools into its electronic health record (EHR) platform. Pilot tests 
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are being conducted with people who use the Premier mobile applications to 

track their pulse rate, hypertension, age, sex, and strength. Will it be fascinat

ing to see how the software works when used in a larger sample of patients? 

To see if they can improve glucose control, most diabetes treatment programs 

have been tested on a small- to medium-sized patient group. Long-term trials 

with a significant proportion of people are required to obtain appropriate data 

for treatment outcomes and tolerability (Cvetkoviü, et al., 2016). 

For tasks such as patient self-monitoring, physician decision support, 

customizable risk assessment, and also the detection of retinal and other 

delayed concerns, many diabetes monitoring devices are being developed by 

employing AI-based methodologies. Recent advancements in innovative con

sumer electronics such as glucose detection, stents, and fitness tracking have 

resulted in a slew of clinical research, evaluating and seeking to improve gly

cemic management and prevent hypoglycemic episodes by merging genuine 

CGM with AI algorithms. A closed-loop insulin pump with automation con

trol and reporting was employed in several types of research (Thabit, et al., 

2015). 

4.5 AI-Assisted Monitoring of the Heart 

AI holds potential encouraging implications in cardiovascular medicine, par

ticularly in diagnostic and therapeutic procedures, and sufferer intensive care. 

These requests are separated into two groups: virtual and physical investiga

tions. Virtual study topics for healthcare management and automated CDSS 

include ML and text analysis. In the construction sector, AI enforcements 

mostly lay robotic surgical procedures. 

4.5.1 AI in cardiology with virtual applications 

The use of ML in imaging can be broken down into three phases: image 

processing, renovation, and analysis. The implementation of advanced 

AI systems on vast volumes of images acquired has eased picture analysis 

by establishing new organizational patterns for image interpretation. Several 

AI-based solutions have been developed to automate various image process

ing tasks. To automate the heartbeat phase and post-analytical frame, Molony 

et al. (Molony, Hosseini, & Samady, 2018) constructed and validated DL 

models on communication skills for cardio endoscopies of 3900 people. Data 

mining algorithms are used in several AI frameworks; for example, University 

of Pennsylvania researchers developed a neural network approach for cardiac 

ultrasound image segmentation. This method automates the lumen area and 

plaques weight computation operations in real time. This method yielded 



 

 

 

 

 

4.5 AI-Assisted Monitoring of the Heart 115 

promising picture segmentation results and received positive evaluations 

from field experts. The researchers anticipate that combining data mining and 

ML methodologies in creative AI systems would enable autonomous moni

toring and diagnosis of many image-based disorders soon, in a manner that 

closely resembles a specialist’s role (Sardar, et al., 2019). 

4.5.2 Supporting system in clinical decisions 

CDSS are also progressing in cardiology toward inner systems that use 

DL, machine training, and language handling to mimic a human expert’s 

decision-making process. Watson in intellectual health technology, for exam

ple, makes substantial use of data from health files (health records, lab, or 

imaging reports) as well as web information sources (Syeda-Mahmood, 

2018). AI is a machine training solution, which are mostly based on data 

science, and is designed to caricature the decision-making processes of the 

anthropoid brain. IBM has built an arrangement for medical practitioners and 

radiologists to use in their cardiovascular medical decision-making. Various 

cardiac monitoring functions, especially in imaging, are included in IBM’s 

Medical Sieve project, such as automatic detection of coronary vascular dis

ease undergoing angiography (Sardar, et al., 2019). 

4.5.3 	Augmented reality (AR), virtual reality (VR), and  
virtual assistants 

Among the most important requests of techniques in cardiology is the group

ing with AI techniques with augmented worlds and AR technology. When it 

comes to treatment, the foremost VR frameworks are aimed at postoperative 

and presence modalities such as cardiovascular treatments and stress man

agement for sufferers. AR platforms also assist interventionists during heart 

procedures by giving important real-time data through many monitoring dis

plays. Vocal-style automated systems, including Google, Apple’s Siri, and 

Amazon’s Alexa, identify speech utilizing extremely advanced AI schemes. 

Adopting physicians and operators can quickly communicate with virtual 

assistants, along with speech interface, effectively and simply look through 

evidence in their EMR arrangement or gain web evidence using only their 

voice signature credentials (Steinhubl & Topol, 2018). 

4.5.4 Automated analysis with data 

Databases have become progressively more composite and also difficult to 

evaluate using outdated statistical approaches as a result of the growth of 
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varied and useful datasets, including such sequence data, social networks, 

and cardiac imaging. Approaches to AI that use big data methodologies for 

automatic theory construction have shown analytical and predictive potential 

(Jiang, et al., 2017). DL algorithms, for example, can sift through incredibly 

detailed facts regarding specific cardiovascular diseases, identify key risk 

factors, and conduct accurate analysis. ML established approaches may be 

used to forecast the danger of a heart attack and mortality associated with 

various cardiac operations for patient monitoring. In cardiology, ML was 

used to forecast a year’s worth of events. Death in patients with diastolic 

dysfunction and long-term illness survival in patients with cardiovascular 

disease (Johnson, et al., 2018). 

4.6 	Neural Applications Linked to AI and 
Patient Monitoring 

4.6.1 AI for dementia patients 

In the latter days, there has been substantial growth in the demographic char

acteristics of the number of western countries, as well as a corresponding 

fall in the birth rate, signaling those civilizations are aging. Simultaneously, 

difficulties are becoming increasingly difficult to handle due to a shortage of 

medical personnel, notably doctors, nurses, and elderly caretakers. Persons 

with age-related problems, such as dementia, face a difficult time ensur

ing high-quality nursing care. Dementia affects 50 million people globally 

today, with 10 million new cases diagnosed each year (Pharmacotherapy of 

dementia in Germany: Results from a nationwide claims database, 2015). As 

a result, enhancing clinical care facilities and providing psychiatric patients 

with the standards of security, they require to live a standard life and will 

require a concerted effort. 

The majority of dementia patients are successfully preserved, albeit 

their special assistance needs vary depending on the stage of the infection. 

These demands may be transitory, but they might be things if the resources 

and efforts required exceed the capabilities of the careers. As a result, 

Alzheimer’s management necessitates collaboration across professional 

and sectoral lines. Coordination is less effective in practice due to delays 

or perhaps a lack of data flow among players. This recognizes the signifi

cance of establishing shared support systems that include medical services, 

family members providing informal care, and distance care. Regularities in 

the routine behavior of persons with dementia or emergency can be detected 

automatically using a similar support system, allowing easy synchronization 

of necessary measures. The German scientific project “SAKI,” which aims 
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to overcome dementia-related challenges and meet patients’ requirements in 

their homes, is a comparable support system. 

4.6.2 Dementia monitoring 

Recent AI-based dementia monitoring services and infrastructure are intended 

to follow the succession of the complaint about time and help patients main

tain their daily activities. The computational orthosis for assisting activities 

system is a dementia-residence system. This device was intended to assist 

individuals with dementia in performing daily tasks such as washing their 

hands. This method is generally based on the field of computer-vision-based, 

which allows it to monitor the present stage as well as an activity before deter

mining the right spoken or pictorial instructions to offer, whereas dementia 

sufferers wash their manpower. This research popularized the idea of “zero 

activity innovations” or technologies that require little to no energy to oper

ate, resulting in the development of multiple successful systems. The primary 

idea behind these technologies is to gather data, evaluate it, and use the nec

essary ICT, such as computer vision, algorithms, sensor systems, as well as 

the IoT, without interfering with people’s lives. A recent advanced study has 

concentrated on embedding AI systems for emotions and personality assess

ment into those support structures to make them easier to incorporate into 

users’ lifestyles (Robillard & Hoey, 2018). 

4.6.3 Supporting dementia patients 

With the elaboration of AI with the IoT infrastructures in people’s homes, the 

notion of intelligent housing was formed. ML and IoT developments have 

broadened intelligent homes by introducing a new supporting system based on 

prepared and clothing (An assistive technology system that provides personal

ized dressing support for people living with dementia: capability study, 2018). 

The Gloucester HomeKit is indeed an early form of a dementia-friendly smart 

home. It has a digital forum for discussion for visual and voice guidance, 

immersion and microwave screens, a computerized night light system, an item 

finder, and a digital conversation forum for visible and auditory directions. 

This method also used voice hasty to attentive patients when potentially haz

ardous situations arose, such as when heaters were left on and when midnight 

wandering happened. This automated remote support system was tested at a 

care facility as part of such an intelligent installation to see how it affected 

the lives of people with severe dementia. By evaluating data from monitors 

and surveys, this technology has promised to boost a sufferer’s independence. 

This intelligent home system assisted the client in recovering from urine 
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incontinence, sleeping two hours longer each night, and cutting night-time 

explorations in half (Orpwood, Adlam, Evans, Chadd, & Self). 

Intelligent machine advancements have improved the cognition of these 

innovative homes and are shrewd by allowing for more user engagement. 

Intelligent home elements can learn about their owners’ routines and automat

ically adjust their programming to match their needs thanks to these powerful 

AI algorithms. Human-like (user action, not physically) robots are currently 

the topic of investigation; in fact, most smart home gadgets are expected 

to be equipped with artificially intelligent systems in the future, allowing 

them to assist people in various ways. In Japan, charming and friendly nurse 

robots have already been used to aid patient care. These intelligent machines 

are calculated to assist individuals with sensual activities; however, they can 

also look after every patient’s overall well-being, a crucial component of life 

for people with disabilities like dementia sufferers. As an illustration, PARO 

robotic is just a fun and engaging seal toy that soothes and relaxes while also 

providing mammal therapy. 

4.7 AI for Migraine Patients 

Migraine is a prevalent neurological disease marked by repeated headaches, 

vomiting, and light sensitivity (Olesen, 2008). It is the third common dis

ease in the globe and the seventh most devastating neurological disorder. 

On the other hand, migraine is a highly complex disease that is commonly 

misinterpreted since its symptoms are similar to those of other conditions, 

including convulsions and tension headaches. Several studies using the simple 

flash method have been undertaken in the brand-new few years to tackle the 

dilemma of recognizing migraine diagnosis, with positive results. The prem

ise behind this method is to employ multichannel EEG to analyze the patient’s 

brain reactions to different speeds of flash stimulation; the results are most 

accurate when the flash frequency is 4 Hz (Akben, Subasi, & Tuncel, 2012). 

Furthermore, diagnostic aids for tension headache and, subsequently, 

migraine were proposed. When the remembrance rate, declining rate, F-score, 

and overall accuracy were taken into account, they came up with more 

accurate results (Yin, Lu, Yu, Chena, & Duan, 2015). Numerous AI-based 

migraine management efforts are ongoing, intending to manage migraines 

only through a mobile phone app or connected phone. The collected informa

tion from migraine patients is used in AI-based big data approaches (Akben, 

Tuncel, & Alkan, Classification of multi-channel EEG signals for migraine 

detection, 2016). To determine migraine gestures, wavelet-based character

istics were employed. The EEG data were fragmented into two associations 
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using neural networks: migraine and onslaught (Akben, Tuncel, & Alkan, 

Classification of multi-channel EEG signals for migraine detection, 2016). 

Another study (Krawczyk, Simiü, Simiü, & WoĨniak, 2013) used ML mech

anisms to contrive a decision-assistance system for headache categorization. 

For various migraines, including nerve pain and migraine headaches, the 

method described above yielded adequate categorization results. Although 

there are numerous challenges in the area of cluster headache identification, 

the most significant is the symptomatic nature of the condition. Furthermore, 

it has been proved that emerging technologies merging AI and the Internet 

of Things can begin to produce promising results if a massive amount of 

data on epilepsy patients is available (Subasi, Ahmed, Aliþkoviü, & Hassan, 

2019). Migraine researchers have recently focused on relevant quality mobile 

health apps that notify patients of migraines attacks. To construct effective 

predictive models, these AI-powered smartphone apps use a range of big data 

methodologies. As vast datasets with various sorts of data are acquired, these 

models become increasingly accurate. For example, a mobile medical app 

called Migraine Alert was developed through collaborators at the Cleveland 

Clinic, the University of Washington, and Two View Health (a digital health 

startup). This program uses multivariate ML algorithms to create personal

ized and predictive forecasting that can forecast migraine attacks daily for an 

individual. 

The AI representations in the indicated app have been skilled on a 

dataset that comprised migraines sensations, daily inputs, stimuli, and other 

biological variables (Fitbit) from just the clinical trials of other collabora

tors. In contrast, Migraines Buddy and Reduce My Pain Pro are two mobile 

health apps that provide high-quality treatments of migraine reduction using 

massive data based on ML techniques. Experts created this monitoring tool 

in psychology and data analytics to help patients track potential everyday 

stressors and contextual factors that cause migraine attacks. Doctors have 

found this program an excellent remote monitoring tool because it allows 

them to propose various alleviation options based on their medical illness. 

The former program leverages user-provided data on migraine discom

fort to assist users in tracking their symptoms by offering an intelligent tai

lored visualization of their migraine status in the form of graphs, charts, and 

calendar views. There are several mobile health programs for migraine effec

tive strategies to address on the same premise, including Migraine Insights 

and Migraine Monitoring. More apps are not created explicitly for migraine 

monitoring but instead focus on pain management techniques. Backlight 

Filter and Night Vision are two examples of apps that reduce exposure to 

blue light linked to migraines. Other examples are Sam Harris’s Relax Tunes: 
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Sleep Sound or Waking Up, which provide thoughtful remedies through hyp

nosis and directed meditations employing relaxing melodies. 

4.8 Conclusion 

Although more people will develop chronic conditions that necessitate behav

ior and generic drug control, there has been a significant increase in inter

est in remote monitoring technology that can assist patients and healthcare 

professionals in disease management. This monitoring technology lets users 

collect real-time data either in the household or while traveling and then save 

or discharge it to dental professionals for therapeutic consultation. Several 

essential requests for medical decision support were addressed in this arti

cle. These included glucose measures in favor of diabetes, mobility 24-hour 

care Parkinson’s illness, and also ECG forecasting for focal point problems. 

However, many more are already in use or development. Despite the enor

mous potential, there is just a small body of testimony to encourage security 

and surveillance tactics regarding improved health services and cost savings. 

Large-scale employment is mandatory to demonstrate the true assis

tances of certain therapies crosswise a wide range of sectors and individuals 

within the supply chain network. Over the past few years, promotions in data 

science have directed to virtually every problem in surveillance systems in 

the field of computer vision, with encouraging results. Massive datasets gen

erated by secure web monitoring systems like medical procedures, wearables, 

and applications can be handled using ML methods. Because it is capable of 

handling big datasets, hypothesis, classification, and decision mentoring can 

be improved. Improved health results have been documented in a wide range 

of vehicle tracking situations, apart from cardiovascular disease, migraines, 

and diabetes management, when an AI-based system is utilized. Many issues, 

including barriers to evaluation, medical education, data, security and pri

vacy, and integration into standard healthcare services, need to be addressed 

in the meantime. 
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Abstract 

Cancer is one of the leading causes of death due to its high morbidity and 
mortality throughout the world. Various anticancer therapies like chemother
apy, radiation therapy, hormone therapy, surgical approaches, etc., are widely 
used in treating cancer but have serious adverse effects mostly due to cyto
toxic action toward normal cells. AI is a boon in the field of oncology too. 
Anticancer drug activity is predicted using AI, and AI is used to help in the 
development of anticancer medicines. Various cancers and medications may 
react differently, and recent screening tools have repeatedly revealed a con
nection between cancer cell genetic variety and therapeutic efficacy. Its main 
features are lesion recognition, target area delineation, three-dimensional 
tumor localization, clinical and pathological analysis, quantitative tumor 
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analysis, and tumor picture segmentation. The present review will cover the 
current status of various monoclonal antibodies used in targeted drug ther
apy of cancer along with the prospects of therapy. This article highlights the 
application of AI in various facets of the pharmaceutical sector with a focus 
on cancer treatment. 

5.1 Introduction 

Artificial intelligence has already become an integral part of our day-to-day 
lives and proposes to improve it further. Constantly increasing data volumes, 
improvements in algorithms, and continuous evolution of computer power 
and storage are some of the major reasons for the popularity of AI. This con
cept of artificial intelligence was rooted in the early 1950s and was defined 
as the science of developing intelligent machines by one of the founders of 
this field, John McCarthy [1]. AI is the capability of machines to learn and 
simulate the tasks that are often related to human behavior; it can also be 
described as a set of self-learning techniques [2]. AI is not a single technol
ogy but a cluster of various other technologies like machine learning (ML) 
and deep learning (DL) which are used separately or in a combination for 
completing the provided tasks. Machine learning is a computational process 
that requires input data to achieve a desired task [3]. It comprises a lot of the
ories and algorithms. Algorithms are nothing but a set of rules that create a 
model. These algorithms can be classified into supervised, unsupervised, and 
reinforcement learning as shown in Figure 5.1 [4]. 

If any desired output is described by certain attributes, then machine 
learning portrays and connects those attributes for achieving final results or 
desired output. 

5.2 AI, Machine Learning, and Deep Learning 

Artificial intelligence is a concept that arises from an idea to use technol
ogy that will utilize behavior that imitates man (Figure 5.1). This idea gave 
rise to another recommendation called machine learning, which comprises 
statistical strategies to understand by being specifically programmed; it can 
also be understood in cases where programming is unknown [5]. Machine 
learning incorporates supervised learning (observed and directed planning), 
unsupervised learning (unobserved and in-directed planning), and reinforce
ment learning (supportive planning). Supervised learning is the determin
ing method; it encompasses regression methods along with classification 
methods where prognostic models are framed based on data from the input 
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Figure 5.1 Classification of machine learning algorithms. 

and the output sources. The classification sub-section output implies illness 
identification, and the regression sub-section identifies the efficacy of the 
drug and absorption, distribution, metabolism, excretion, and therapeutics 
prediction. Unsupervised learning is the un-determined method, which takes 
into consideration grouping and characterizing approaches based on inputs 
[6, 7]. As per this concept, the output identification (sub-section to illness) 
can be identified from the grouped inputs and target identification can be 
done by the characterized inputs. Reinforcement learning is practiced by the 
ideology of composing decisions in specified circumstances and enforcing 
them to augment performance. The output of this is de novo drug design 
which is a part of making the decision and experimental designs under the 
enforcement or execution. These all are achievable by modeling and quan
tum chemistry [8]. 

Machine learning is further sub-classified into another aspect that uti
lizes machine-made neural networks which learn from huge experimental 
data; this is called machine learning. The huge database gives more probabil
ity to the chances of discovering a new molecule that can, in turn, be a novel 
drug for a disease or disorder [9]. As technology is advancing, new methods 
of data management aid in handling huge data and synchronize the concept 
of ML. The concept revolves around neural networks and their subtypes 
like conventional, recurrent, and fully connected feed-forward networks. 
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This idea will give rise to an era of successful clinical trials with negligible 
errors and maximum achievable efficiency with the fastest possible speed and 
economical process [10]. 

Another important methodology or element of AI is deep learning 
(DL). DL projects the input data toward the output by utilizing representa
tion learning or feature learning. This conversion process takes place inside 
a cluster of numerous mathematical processing units also known as neurons. 
These neurons derive a logical relationship between the input and the output 
with the help of forming a deep neural network (DNN) [11]. It is evident 
that the representation of data by deep learning provides better results in bet
ter sample generation and better classification modeling and it also enables 
the automated extraction of depictions from the unsupervised data (shown in 
Figure 5.2). 

In the current scenario, AI has revolutionized almost all the facets of 
the healthcare industry including drug discovery, diagnosis of complex dis
eases, patient care and monitoring, assisting experts in decision making, and 
so on. In the same way, AI is playing a crucial role in oncology too [12]. The 
way to reduce the mortality rate due to cancer is through early detection and 
treatment. The utilization of AI complex algorithms can help in accessing 
the patient’s relevant clinical information so that any type of inaccuracy in 

Figure 5.2 Relationship between the AI, ML, and DL. 
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diagnosis or treatment can be avoided. Neural networks and deep learning 
also provide genetic analysis and detection data which makes it easier to 
analyze the treatment outcome. Similarly, the application of AI in radiomics 
allows easy and accurate diagnosis of complex malignant tumors which oth
erwise cannot be detected by the human eye [13]. The clinical oncologists 
obtain the image of tumor sites and, with the help of certain software, outline 
the tumor for providing the radiotherapy dose; AI helps in marking these 
spots and margins so that the therapy acts at the site and prevents poten
tial unnecessary side effects. It also allows the experts to identify organs at 
risk to be more accurate and protect them from side effects. This process is 
called radiotherapy target delineation or contouring which can be performed 
precisely with the application of AI technologies [14]. Deep neural network 
(DNN) can also support the classification of cancer subtypes by using med
ical images. One of the important elements of cancer detection is the deter
mination of the stage. The stage decides the kind of therapies or treatments 
to be given to the patients. Gleason score (merger of two scores indicating 
the presence of tumor at two different locations in the body) is a component 
that aids determination of stage in the prostate cancer. DNN has proved to 
give promising results in calculating the Gleason score by using histopatho
logical images of tumors. AI has opened new ways for early diagnosis of 
cancer via various novel detection techniques like liquid biopsies for circu
lation tumor DNA (ctDNA). This technique involves minimal invasion in the 
body (detected by blood samples) and allows tracking of the possible risk of 
relapse and predicting the appropriate treatment options. Along with early 
detection as seen in the above examples, the AI also serves other purposes 
like identification of key mutations by utilizing the histopathological images 
and detecting the origin of tumors for providing effective chemotherapy to 
the patients [15]. 

Cancer research, drug discovery, and development cost excessive 
money and time, making the cancer treatment expensive; it is very essential 
to make it affordable and accessible to common people. The involvement of 
AI plays a key role in making this process more efficient. This is somehow 
achieved by integrating various sets of data, for example, integration of clini
cal data and gene expressions, thus inscribing all the components of the drug 
discovery process. Along with its application in discovery, AI is also applied 
in drug designing for the generation of new molecules (in silico) consisting of 
specific properties and target affinities, though there are certain problems and 
difficulties in modeling complex targets and certain specific objectives still 
help serve the purpose [16]. One of the examples is designing of structural 
analog of celecoxib and sulfur fewer compounds (Figure 5.3). 
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Figure 5.3 Integration of various datasets to support stepwise drug discovery. 

5.3 Drug Development Process 

The data is available from various substantial sources. The derivation can be 
from high-degree efficiency compound and fragment screening, computer 
modeling, and literature sources. These multifactor variables are used to 
commence the feedback-driven drug development process. The inductive 
and deductive analysis is a vital part of this process. These are used for 
the optimization of the identified hits and also lead compounds. The drug 
development process has several components and their automation leads 
to a substantial decrease in the unpredictability and probabilities of errors, 
which, in turn, enhances the efficiency of the process. Design method such 



 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

5.3 Drug Development Process  135 

Table 5.1 Implications of AI during multiple stages of cancer therapy. 

Phases Opportunities 	Challenges 

Discovery 	 Minimize off-target effect Identifying optimal targets and 

and toxicity and enhance drug properly validating AI-designed 
exposure. drugs. 

Development 	 Optimize drug and dose Improving trial outcome and 
selection and match patients to stratification with the right 
therapies and trials. patient data. 

Administration 	 Sustained dose optimization. Moe clinical validation is 
Overcoming resistance with needed. Use in more cancer 
game theory. types. 

as de-novo takes comprehensions of organic chemistry for the synthesis of 
in silico compounds and virtual screening of models [17]. This, in turn, 
gives a place to efficacy and toxicity analysis of biochemical and biologi
cal parameters. These algorithms enable the invention and identification of 
novel compounds with various anti-disease activities. The fundamental step 
is to identify the novel compounds that comprise a promising biological 
activity. Biological activity denotes the interaction of the compound to the 
organism as a whole or it can even be limited to an enzyme. When a com
pound exhibits a promising biological activity to a target, it is considered 
as a “hit.” To identify the hits(finding), screening methods include using 
chemical databases, substances extracted from plants, fungus, bacteria, etc., 
naturally and computer simulations can be screened to identify the hits. 
Once the hits are identified, then the subsequent step is the recognition of 
the lead molecule. Lead can be the new drug for disease treatment. The lead 
is then optimized based on the chemical structure, and alterations are done 
to get a compound that gives more efficacy, safety, and therapeutic benefit. 
The compound is characterized for its safety and efficacy on animal models 
or cell-based assays [18]. The implications of artificial intelligence during 
multiple stages of cancer therapy with the challenges are summarized in 
Table 5.1 [19]. 

5.3.1 Role of AI in chemotherapy 

Artificial Intelligence can be widely applied during chemotherapy, focus
ing majorly on the patient’s response to drugs. There are many milestones 
of implications of artificial intelligence achieved by researchers in cancer 
treatment. As of now, researchers claim that AI can be successfully used to 
optimize and manage overall chemotherapy and drug tolerance. Chen et al. 
used stacked RBMs deep learning method to predict the synergy of drug 
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regimen or drug in combinations carried in by patients during the chemother
apy. Out of many effective ways, the synergistic effect caused by the com
bination of a drug is one of the most advantageous properties known for the 
treatment of cancer. However, the desirable synergistic effect was challenged 
by the prediction of drug combination, which is effective. Drug synergy was 
predicted using gene expression, pathway, and ontology fingerprints, which 
are the literature-derived ontological profile of the genes, a method that is 
novel in the scope of chemotherapy and is based on a deep belief network 
[20]. Using deep belief networks, we can create a fairly decent framework to 
capture predictions despite comprehending the underlying mechanisms if we 
have enough, well-annotated data for training. This enables us to extend the 
present model to include more types of data, such as mutation, methylation, 
and proteomics data. Because of its scalability, we can improve the sustain-
ability of our technique by including data collected in the future. 

Levine et al. applied AI to the electronic health record (EHR) to main
tain the well-timed data of the effect of chemotherapy on patient’s out
comes. The EHR helps the doctors and clinicians to have insight into the 
real-world patient experience – good, bad, or some troublesome ADR. The 
AI was applied to the extracted data from the EHR after it was imported 
into the IBM cloud [21]. Data were retrieved from the EHR of patients 
with stage III breast cancer who presented between 2013 and 2015, 
de- identified, and put further into the IBM Cloud. Medical concepts were 
extracted from unstructured clinical literature and transformed into struc
tured attributes using specialized natural language processing (NLP) anno
tators. These annotators were tested on 19 more patients with stage III 
breast cancer within the same period during the validation phase. For nine 
critical indications, the generated data was compared to that in the medical 
chart (gold standard). To examine the patient journey, data from the EHR 
can be extracted, read, and combined. The degree of correlation between 
NLP and the gold standard was found to be high and significant, indicating 
that it was legitimate. 

Pantuck et al. used an AI platform named CURATE. AI for the opti
mization of combination chemotherapy thus applies synergism as a cura
tive and effective way for the treatment of cancer. The two drugs ZEN-3694 
and enzalutamide were used in combination when the study.CURATE.AI 
was found to identify significant dose modifications for ZEN-3694 and 
enzalutamide, improving the efficacy of treatment and tolerance. It addi
tionally indicates that ZEN-3694’s involvement in the regimen is responsi
ble for the patient’s long-term response. The patient was likely to progress 
with the combined treatment because of the CURATE.AI’s improved safety 
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and effectiveness, leading to a sustained response and no tumor progression 
based on CURATE. PSA levels were kept under control by AI, and the size 
of the lesion was reduced. The introduction of technology platforms like 
CURATE.AI has made it possible to modulate combination therapy doses to 
improve therapeutic efficacy and maintain patient tolerance. These qualities 
could help to enhance crucial clinical trial results like objective response 
rates and overall survival, among other things. CURATE.AI was able to 
individualize ZEN-3694 and enzalutamide delivery in combination in this 
study due to dose adjustments in a patient, receiving combination therapy 
for mCRPC [22]. 

5.3.2 Role of AI in radiotherapy 

In radiotherapy for the treatment of cancer, the role of artificial intelligence is 
quite specific. Radiotherapy includes mapping out the target regions to cure 
them via radiations. Artificial intelligence was found to assist radiotherapy, 
from targeting the affected region to defining the specific radiation for the 
same [23]. In general, radiotherapy for the treatment of cancer consists of 
seven different stages: imaging, treatment planning (TP), simulation, radio
therapy accessories, radiation delivery, radiotherapy verification, and patient 
monitoring [24]. 

The first step in radiotherapy is imaging, which is the diagnostic stage 
for the presence of a tumor. The detection of the tumor leads to a collection of 
information. The process of imaging delivers the gross volume of the tumor, 
its location size, and information about its vicinity. Due to the implication of 
AI, presently, there are many models for the imaging of tumors, like positron 
emission tomography (PET), single-photon emission tomography (SPECT), 
and computed tomography (CT). The TP and simulation process is intended 
to obtain the data of patients under recovery which mainly often includes a 
mass of the tumor, patient’s body weight, height, BMI, and pre-exposures 
to any treatment. All the details are noted and calculated to obtain the best 
outcomes. As the name itself suggests, treatment planning (TP) includes risk 
and failure estimation, optimization of treatment planning, beam intensity 
shaping, etc. [25]. 

To immobilize the patient under treatment, radiotherapy accessories are 
used and then the radiations are delivered. The main target of the ionizing 
radiations is to destroy the tumor cells while safeguarding the healthy cells. 
The current radiotherapy modalities include stereotactic body radiotherapy 
(SBRT), proton therapy, electron therapy, etc. After the successful delivery 
of radiotherapy, the patient is followed for the period of months to years, to 
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make sure his well-being after the exposure of the therapy, i.e., patient is 
monitored. 

Lin et al. studied and constructed a deep learning tool for the contour
ing of primary gross tumor volume in patients with nasopharyngeal carci
noma (NPC). The use of artificial intelligence in the treatment of patients 
under study made the treatment accurate and precise; this could be seen to 
have a fruitful impact in controlling and reducing the tumor and in the sur
vival of the patient. Babier et al. used deep learning to develop a software 
that offers time reduction in the course of radiation therapy from days to just 
a few hours [26, 27]. 

The switch from traditional AI to deep learning algorithms of modern 
AI requires as much data as possible. As the novel AI is helping out to pro
duce automated regimens for the cure, data sharing becomes necessary with 
the guarantee of patient privacy. This need became the root of growing IT 
infrastructure promoting data sharing [28, 29]. 

The manual delineation of the targeted area before AI takes 4–5 hours, 
while automated delineation after the implication of AI in radiotherapy 
takes 15–20 minutes; thus, the use of AI mainly focuses on targeting cancer-
affected areas and the formation of an automatic radiotherapy plan. The 
AI plays its role effectively without the hustle of manual image extraction, 
registration, and interpolation. In manual radiotherapy, treatment of some 
organs requires the doctor to manually change the location after the result is 
generated. Also as the AI offers treatment planning (TP), it becomes easier 
for doctors to take a follow-up, and, thus, AI accelerates the overall treatment 
duration [30]. 

5.3.3 Role of AI in cancer drug development 

The application of AI is not limited to diagnosis, but these technologies are 
actively applied in anticancer drug development too. One of the most import
ant factors in drug development is determining the interaction between drugs 
and the cancer cell genome. Many scientists have worked in this direction of 
utilizing machine learning for identifying accurate interactions. Lind et al. 
amalgamated machine learning technology with the screening data, which 
resulted in a forest model for forecasting the action of the antitumor drugs as 
per the mutation state of the cancer cell genome [31]. Similarly, Wang and 
friends created a machine-learning-based prediction model that was known 
as an elastic regression model that successfully forecasted the sensitivity of 
the patients suffering from ovarian cancer, gastric cancer, and endometrial 
cancer who were treated with tamoxifen, 5FU, and paclitaxel, respectively. 
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AI can also easily help in assessing how the tumor cells acquire resistance 
toward cancer drugs by analyzing the large datasets [32, 33]. 

The development of a drug is a tedious process that requires a lot of 
time and a huge sum of money. Many of the developed molecules are rejected 
in clinical trials due to certain toxicity-related problems or other issues. AI 
in various forms can reduce the intensity of these factors and make the drug 
development process less tedious and economic. Virtual screening of mole
cules is a very promising process that involves the identification of the potential 
molecules from millions of different compounds. The association of machine 
learning and high throughput screening may easily reduce the cases of false 
predictions [34]. In technologies, the researchers adopt the most complex 
and effective algorithms to perform this screening, such as SVM, Bayesian, 
deep neural network, RF, etc. Xie et al. used SVM along with docking-based 
method, while Meslamani et al. described the use of PROFILER for deter
mining which of the ligands have the highest probability for combining with 
bioactive compounds [35, 36]. Precision medicine is a rapidly evolving strat
egy for disease management. This allows the experts to create personalized 
and more accurate treatment plans for the patients by analyzing their genetic 
profiles, type of tumor, and other medical records. Assessment of such a huge 
dataset and drug discovery is again supported by AI technologies. These are 
the various approaches where AI supports the development of cancer drugs, 
making the process more efficient and economic. 

5.3.4 Role of AI in immunotherapy 

Immunotherapy is one of the most critical therapies of all the treatments 
adopted for the treatment of cancer. It involves curing cancer by acting 
patient’s immune system or defense system by utilizing the substances either 
made by the body or in the laboratory. This therapy is proved to be effective 
in treating different types of cancer; yet, there are certain limitations of this 
therapy including high cost and frequent adverse effects (autoimmune disor
ders) in patients. Application of the AI can make this therapy more efficient 
by elevating diagnosis accuracy, reducing human resource costs, predicting 
the outcome of the treatment with the aid of medical imaging, immune signa
tures, and histological analysis. It is evident that AI enhances the success ratio 
of immunotherapy by forecasting the outcome of therapy in patients with 
the help of immune predictive scores like immunophenoscore and immuno
scores. The identification of major histocompatibility complex (MHC) by 
AI technologies renders 99.66% accuracy in recognition of patterns related 
to immune response. So, in a nutshell, it is evident that the combination of 
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AI algorithms and clinicians’ interpretations may lead to better results for 
patients [37, 38]. 

The advancements in immunotherapy are often subject to the identifi
cation of targets that are connected to the development of resistance against 
tumors or tumor-causing factors; hence, AI is of great use in broadening the 
applicability of immunotherapy in treating cancer. A large number of sam
ples and assays are required for effectively analyzing the interaction of tumor 
cells and immune cells along with patient’s response to this interaction; these 
assays, in return, generate a huge amount of datasets that are quite difficult to 
scrutinize manually. AI supports easy and quick investigation of large data-
sets. The presentation of peptides that binds with the MHC is important for 
the development of cancer vaccine; thus, machine learning has been imple
mented in recognition of neoantigens presented by the solid tumors [39]. 
The recognition of neoantigens properly requires screening of a large number 
of synthetic peptides and difficult to acquire clinical specimens or human 
leukocyte antigen (HLA). Sullivan et al. evolved an AI method involving 
deep learning that uses tumor HLA peptide mass spectrometry datasets for 
enhancing neoantigen recognition [40]. 

5.4 	Monoclonal Antibodies (mAbs) used in 
Cancer Treatment 

Monoclonal antibodies in the treatment of cancer have been established as 
a milestone around various pre-existing therapeutic strategies. Comes under 
immunotherapy monoclonal antibodies are now considered as one of the 
most effective elements for cancer treatment [41]. 

Monoclonal antibodies are featured to have a specific and common 
antigen-binding site in all the antibodies produced homogeneously from a 
single cell line. Thus, all the antibodies produced are identical in their protein 
sequence and have the same affinity and biological interactions [42]. 

Antibodies are potent enough to elicit the later immune response, by 
first recognizing the foreign antigen and then neutralizing them. Structurally, 
antibodies are glycoproteins and belong to Ig (immunoglobin) superfamily. 

In the structure of an antibody, the fragment-antigen binding (Fab) 
region, as its name suggests, is for the identification of the specific antigen. 
Another region that is located downside the Y structure of the antibody, 
namely the fragment crystallizable (Fc) region, is responsible for the interac
tion between antibody and other elements of the immune system. These Fc 
regions are identified by Fc receptors (FcRs) present on the immune cells. 
Based on the heavy chain, there are five types of antibodies, namely IgM, 
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IgG, IgA, IgD, and IgE. Among them, the IgG is the most common antibody 
that is used in immunotherapy and antibody therapy [43, 44]. 

5.5 MOA of mAbs 

The monoclonal antibodies can effectively cause cancerous cells death by 
various known mechanisms. The very first and head-on mechanism known 
is the blocking of growth factor receptor (GFR) signaling. When mAbs 
binds to the target GFR while controlling their activation and ligand bind
ing state, then, eventually, the growth of the tumor is unsettled. One very 
fine example of a mAb drug that follows this MOA is Cetuximab, which is 
an anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibody. 
The overexpression of EGFR in cancer cells eventually leads to tumor cells 
multiplication and migration. Cetuximab initiates apoptosis in tumor cells by 
blocking the ligand-binding site and dimerization of the growth factor [45]. 

Another mechanism involving the growth factor follows internalization, 
a type of endocytosis because the growth factor has no ligand, and, thus, they 
follow heterodimerization for their activation. One such growth factor is the 
human epidermal growth factor receptor 2 (HER2) is a tyrosine kinase recep
tor that is overexpressed in breast and ovarian cancerous cells. Monoclonal 
antibodies treat such cancerous cells by inhibiting heterodimerization and 
internalization. The first FDA-approved mAb was Trastuzumab, an anti
HER2 that remains an effective treatment for breast and ovarian cancer. 

Apart from the two mentioned direct mechanisms, various indirect mech
anisms also exist, which need the element of the host immune system to func
tion, namely complement-dependent cytotoxicity (CDC), antibody- dependent 
cellular phagocytosis (ADCP), and antibody-dependent cell- mediated cyto
toxicity (ADCC). Table 5.2 summarizes FDA-approved mAbs [46]. 

Even though monoclonal antibody treatment has had some remark
able clinical achievements, therapeutic resistance still poses a major barrier. 
Additional studies should concentrate on examining the mode of action of 
mAbs to find novel ways to improve clinical efficacy. 

5.6 Future Prospects 

Currently, the applications of AI in oncology are vast spread. Though the 
major challenges and questions in oncology including analysis of a large 
amount of data, lack of early diagnostic techniques, difficulty in implement
ing patient treatment plans, drug development, etc., are efficiently combated 
and answered by AI technologies to a large extent, there are still many more 



Name Antigen
Atezolizumab PD-L1
Avelumab PD-L1
Bevacizumab VEGF
Cemiplimab 
Cetuximab 

PD-1 
EGFR

Daratumumab CD38
Dinutuximab GD2 
Durvalumab PD-L1
Elotuzumab SLAMF7 
Ipilimumab 
Isatuximab 

CTLA-4
CD38 

Mogamulizumab 
Necitumumab 

CCR4
EGFR

Nivolumab PD-1
Obinutuzumab CD20
Ofatumumab CD20
Olaratumab  PDGFRα 
Panitumumab EGFR
Pembrolizumab PD-1
Pertuzumab HER2 
Ramucirumab VEGFR2
Rituximab CD20
Trastuzumab HER2
Gemtuzumabozogamicin 
Brentuximab vedotin 

CD33 
CD30 

Trastuzumab emtansine HER2 
Inotuzumabozogamicin 
Polatuzumabvedotin 

CD22 
CD79B 

Enfortumabvedotin Nectin-4 
Trastuzumab deruxtecan HER2 
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Table 5.2 Monoclonal antibodies approved by FDA for cancer treatment.
 

 

 
 
 

 
 

 

 

 
 

 
 
 

 
 

 
 
 

obstacles at the ground implementation level that are needed to be managed 
yet. The certain areas that require to be addressed to avoid pitfalls include the 
building of cancer AI research communities, access to quality cancer data, 
black box problem (lack of rationale in predictions made by machines), etc. 
Also to get complete benefits of AI, it is very important to fill the knowledge 
gaps. Today, the clinicians are least informed about data science and technol
ogy, and in a similar way, the tech experts are least informed about the field 
of oncology; bridging this gap will lead to utilization of AI to its maximum 
potential. It is evident from many studies that in the coming years, AI will be 
incorporated in the clinical decision making, care, and diagnosis of cancer 
patients in a much more advanced manner. Cancer diagnostics is a traditional 
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starting point for developing effective therapeutic methods and management 
of diseases; its AI-based refinement is a significant success. Moreover, future 
AI innovations should take into account undiscovered but critical boundar
ies in this scenario, such as medication discovery, therapy administration, 
and follow-up tactics. Indeed, the expansion of AI, as per our viewpoint, 
needs to follow through and integrative patterns to determine a substantial 
improvement in the diagnosis treatment of cancer patients. This is among the 
most significant benefits of AI, as it will allow for the proper interaction and 
amalgamation of domains related to cancer on a single patient, enabling the 
difficult goals of personalized therapy. The ability to combine various and 
composite data produced from multi-omics techniques to oncologic patients 
is among the most promising AI expectations. AI’s potential tools may be 
the only ones capable of handling large amounts of data from many sorts 
of analysis, such as information collected from DNA and RNA fingerprint
ing. In this vein, the recent publication of the American College of Medical 
Genetics’ criteria and recommendations for the interpretation of sequence 
variants has sparked a new generation of AI development, with new possibil
ities in precision oncology. 

At present, work is needed to ensure the consistent implementation 
of AI in medical institutions and hospitals. Many experts believe that AI 
technologies hold the massive potential to take oncology, cancer research, 
and patient care to another level, and combating challenges by continuous 
research and study will boost this potential further. 

5.7 Conclusion 

AI has certainly made some significant contributions as far as cancer research 
and drug development are concerned. We cannot deny the fact that the human 
brain is restricted in many ways, making it difficult to discover and formu
late the most appropriate treatment along with the identification of minute 
details. This may deprive the patients of getting the best possible treatment 
and care. AI plays the key role here; it provides the experts and clinicians 
with a perception that otherwise would be very difficult to obtain. AI technol
ogies have enabled us to make cancer research and drug development more 
efficient and economic. It has also contributed to speeding up the cancer drug 
discovery process, and precision drug discovery making patient care more 
effective. However, there are still many challenges needed to be addressed 
for more unprecedented advancements in the field. More research and stud
ies are required to take complete advantage of these AI technologies, but it 
is very certain that the integration of AI will be the driving force for future 
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advancements in cancer research and will bring about promising changes 
in the existing technologies. Talking about integration, the most significant 
challenges for completing the “AI-revolution” in oncology are the creation of 
integrative and interdisciplinary research formative beliefs, the prompt under
standing of the relevance of all malignancies, including rare tumors, and the 
continuous support for ensuring its growth. As discussed in this chapter, AI is 
having an increasing impact on every domain of oncology. The initial steps 
in establishing new development strategies with practical implications are to 
understand AI’s historical background and current successes. AI is currently 
being used in oncologic clinical practice, but continued and increased efforts 
are required to allow AI to reach its full potential. 
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Abstract 

This chapter describes the role of artificial-intelligence-based cloud computing 
techniques in inpatient data management. The practice of installing a remote 
server accessed by the internet to manage, store, and process healthcare data 
is called cloud computing in healthcare. In contrast, setting up an onsite data 
center or data hosting on a personal computer with servers are both options. 
The manuscript describes the role of cloud computing research in health man
agement like telemedicine or teleconsultation, patients’ self- management 
and public health, management of a hospital, therapy, and secondary utiliza
tion of data. Cloud computing is a low-cost alternative that helps in storing 
vast volumes of data; it is also accessible via telehealth which increases the 
patient experience. However, it has some challenges of security which will get 
resolved in future and provide more efficient healthcare services. 
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6.1 	Introduction of Artificial Intelligence Based Cloud 
Computing Techniques 

“Cloud” is frequently utilized as a symbol for the internet (which is frequently 
shown in ICT courses as cloud illustrations). Some individuals attribute the 
name to Google’s CEO, Eric Schmidt, who is reported to have coined the 
term “cloud computing” in a 2006 conference. Financial pressures, manage
ment of many stakeholders for service delivery, and aging populations are 
all the issues that are faced by the healthcare business. Surged utilization of 
information and communications technology (ICT) can aid the health indus
try in solving these difficulties. ICT advancements, along with the need to 
make healthcare more efficient, have increased health ICT applications. ICT 
has been used to help healthcare professionals; it has greater access to patient 
records and also helps to make better decisions. ICT has much more poten
tial to assist the healthcare sector in lowering costs and improving service 
outcomes [1, 2]. 

Cloud computing increases the availability of IT services at all times and 
from any location. It is not a novel technique but, rather, a novel method of 
providing computing resources. Google Docs and Microsoft Office 365 are 
instances of cloud-based nonmedical platforms, whereas Google Health and 
Microsoft HealthVault are examples of medical-related applications. In com
parison to traditional computing, the cloud computing approach has three key 
advantages, i.e., on-demand access to powerful computing resources, supply of 
services without requiring clients to commit upfront, and availability for short 
time utilization. Several industries have been affected by the cloud model, and 
in upcomig few years, it is expected that about 80% of existing industries would 
have adopted cloud computing. Furthermore, firms that lack the resources and 
infrastructure to set up on-premises apps might use cloud computing [2]. 

Health information technology (HIT) and related computer-based 
information or data can increase the quality and productivity of health- 
related facilities and are, thus, believed as an important part of the health
care industry’s achievement. Traditional IT techniques for health, in which 
health organizations build or buy hardware infrastructures and in-house soft
ware applications are frequently inadequate to meet the ever-changing and 
growing needs in the health sector. Healthcare institutions, especially those 
in rural locations, sometimes face a shortage of IT sources like computation 
and capacity of storage [3, 4]. 

To stay cost-efficient, effective, and timely while providing high- 
quality facilities, healthcare requires continual and systematic innovation. 
Cloud computing, according to many managers and experts, will enhance 
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healthcare facilities, promote research in healthcare, and reshape the infor
mation technology (IT) sector. Cloud computing was thought to have lower 
initial costs for electronic health records (EHRs), like hardware, network
ing, software, staff, license fees, and, hence, boost adoption. The biomedical 
infromatics community is a group which exchange data and applications 
which benefit in new computing paradigms like cloud computing [5]. 

Both healthcare organizations and cloud service providers must take 
proper precautions to ensure the patient data’s secure handling to safeguard 
the security and privacy of healthcare data. The majority of the problems 
occur due to the storage of personal information and medical data on cloud 
servers, a virtual environment from where data can be readily drudged. As a 
result, before introducing any cloud-based healthcare facilities, strict security 
procedures and guarantees must be implemented. Government regulations 
and rules must be followed to confirm that facility providers of the cloud 
respect the law and take all important precautions to preserve the security 
and privacy of patient information. Whether or not cloud-based systems were 
used, the Health Insurance Portability and Accountability Act (HIPAA) con
trols and governs the security and privacy of patient information. Protected 
health information (PHI) is a privacy provision established by HIPAA that 
assures that patient information cannot be utilized without an order of a court 
or the patient’s agreement and approval [6]. 

6.2 Cloud Computing: A New Economic Computing Model 

Traditional health IT approaches can be enhanced by cloud computing’s (CC) 
unique IT service philosophy. Cloud computing has three paradigmatic mod
els in terms of services: software, platform, and infrastructure. As a result, 
CC can provide resources of IT (via IaaS), IT programs with programming 
devices, libraries, and languages for software deployment or development 
(via PaaS), or software applications which are ready to use and run on the 
infrastructure of cloud (via SaaS) to healthcare industries [3, 4]. Figure 6.1 
shows the cloud computing paradigmatic models that help to provide the 
services. 

6.2.1 Infrastructure as a service (IaaS) 

Infrastructure as a service is a model of computing in which customers rent 
storage, processing, networks, and additional computer resources over that 
they can deploy and execute software such as applications and operating sys
tems. The equipment is owned by the supplier, who is also responsible for 
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Figure 6.1 A schematic diagram that shows the cloud computing paradigmatic models that 
help to provide the services. 

operating, housing, and repairing. Typically, the customer pays on a basis of 
per use. 

6.2.2 Platform as a service (PaaS) 

It is a service model in that a service provider facilitates access to a cloud-
based system to customers, in which they can grow and deploy applications 
while the provider manages the underlying infrastructure. The development 
of tools (for example, operating systems) is organized by a cloud that is 
accessed via using a browser. Developers may use PaaS to create web appli
cations without implementing any devices on computers and then use them 
without needing any particular administration abilities. 

6.2.3 Software as a service (SaaS) 

Consumers use provider applications through a cloud application via the pro
gram interface or a customer interface such as a web browser in software as 
a service (SaaS). A cloud facility provider hosts the programs (for example, 
EHRs) and makes them available to consumers over a network, usually the 
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Table 6.1 List of main cloud computing service providers [8]. 

S. No. Type of Service Providers Example
 
a. (IaaS) Infrastructure as a service GoGrid Cloud Hosting 

Savvis Colocation Hosting 
Amazon Amazon Services 

b. (PaaS) Platform as a service Salesforce Force.com 
Microsoft Azure 

c. (SaaS) Software as a service 
Google 
Apple 

Google Apps 
iCloud 

Netsuite NetSuite CRM+ 
Salesforce.com Sale Cloud 
Google Google Docs 

internet [7]. Table 6.1 summarizes the list of major cloud computing service 
providers. 

6.3 The US National Institute of Standards and  
Technology (NIST) has Identified four Models for  
Cloud Computing Deployment 

6.3.1 Public cloud 

On a pay-as-you-go basis, a cloud service provider prepares resources (stor
age and application) that get available to the common public using the inter
net. Users can borrow a virtual computer from Amazon Elastic Compute 
Cloud (EC2) to run their apps. EC2 is a cloud computing service that runs on 
Amazon’s network infrastructure and data centers, allowing users to spend 
only for the services they utilize, with no minimum cost. 

6.3.2 Community cloud 

Various firms utilize cloud infrastructure and they all have similar challenges 
(for example, mission, requirements of security, compliance, and policy). The 
Google GovCloud facilitates a secure data environment to the Los Angeles 
City Council which helps in the storage of information and application which 
are only manageable by city interventions. 

6.3.3 Private cloud 

A cloud infrastructure works only for the benefit of a specific company. The 
proprietary network or information center provides facilities for a particular 
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people’s group. With the help of Microsoft Azure or Dynamic Data Center 
Toolkit, clients can make the base of private cloud infrastructure by utilizing 
the Windows Server. 

6.3.4 Hybrid cloud 

There are two or more clouds in the cloud infrastructure (public, commu
nity, and private). In this infrastructure, a business manages and delivers few 
resources in its data center while outsourcing another. For instance, IBM and 
Juniper Networks cooperate to supply a hybrid cloud infrastructure to asso
ciations that allow them to expand their private clouds toward the remote 
servers in a safe public cloud [8]. 

6.4 	Cloud Computing from the Perspective of 
Management, Security, Technology, and Legality 

6.4.1 Management aspect 

The huge increase in average life expectancy has resulted in the rapid aging 
of the population. As a result, there was an increasing requirement for more 
resources and a wider range of medical services. To help healthcare profes
sionals, it is necessary to find more productive ways to handle this worldwide 
crisis, which needs innovative and cost-effective techniques. Cloud comput
ing can provide practical answers, as demonstrated by IBM and Active Health 
Management in the novel clinical data management system, “Collaborative 
Care Solution,” which was released in November 2010. Cloud-computing
based systems have the goal to allow healthcare and medical professionals to 
quickly access healthcare information from a different source such as elec
tronic health records (EHRs). Patients with chronic diseases are benefited by 
connecting with their doctors and following up on their recommended drugs. 
With the expanding volume of information and data of patients available on 
personal and electronic health records, data management became more effi
cient. This may be seen from the standpoint of information storage and vari
ous servers are required to handle such massive volumes of data. 

Furthermore, EHR systems include built-in security features that assure 
secure environment availability for patient data management. Patients are 
involved in the handling of their health information and data process in a 
secure manner. The addition of proper authentication mechanisms to the role-
based system helps to provide a more secure environment for storing and 
managing patient data. There are security considerations to be taken when 
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transferring healthcare information to a cloud system, including data encryp
tion. A public key infrastructure (PKI) is utilized to manage and maintain 
public-key encryption, which is an expensive technology [6, 9, 10]. 

6.4.2 Technology aspect 

Cloud computing is a modern computational technique that may be able to 
assist in the resolution of various issues. Many storages, computation, hard
ware, networking, and software resources are available as facilities (without 
the need of considerable configuration) and on-demand with cloud comput
ing (when required). Microsoft Azure, AWS (Amazon Web Services), and 
Google Cloud Platform (GCP) are a few of the commercially available cloud 
platforms available today [11]. 

Because it is simple to utilize, has network resources on-demand access, 
takes minimum administrative effort, and is of lower price, cloud computing 
is gaining a lot of traction among IT firms, academia, and individual users. 
This novel cloud computing technique has taken off in the industry, with an 
enhancement in the number of businesses adopting it. It captivates cloud con
sumers by offering low-cost services, a pay-for-use policy, distributed nature, 
and a quick supply of computing resources, as well as storage of data center 
with endless space and high computing capability for managing and storing 
the data. Despite potential benefits of cloud computing, organizations are 
less interested in implementing it because of some drawbacks like account 
hijacking, data cleaning, low control over the process, data loss, cloud ser
vice providers (CSPs) insider attacks, lack of migration or portability from 
one service provider to other, lack of legal aspects, less reliability, lack of 
suitability, and lower quality of service (QoS). There are various obstacles in 
cloud computing adoption like virtualization, resource scheduling, interoper
ability, load balancing, multi-tenancy, and security [12]. 

6.4.3 Security aspect 

There are various security difficulties and problems in cloud computing since 
it covers multiple techniques like databases, networks, operating systems, 
resource scheduling, virtualization, management of transactions, memory 
management, and concurrent control. This is critical since the cloud service 
provider must confirm that consumers do not face catastrophic issues such as 
data loss or theft, which could result in significant losses depending on the 
sensitivity of the data kept in the cloud. A malevolent client may impersonate 
normal users to infect the cloud. Data theft is a relatively typical problem 
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that cloud service companies face nowadays. Furthermore, due to the cost 
flexibility and effectiveness, few cloud service providers do not even offer 
their servers. There are also occurrences of loss of data that can be a severe 
issue for customers. 

For instance, the server may be unexpectedly closed down, resulting in 
a loss of data for customers. Moreover, data may be damaged or corrupted as 
an outcome of a natural disaster. Furthermore, a major securities problem in 
cloud applications is the physical availability of data. Cloud computing secu
rity should be addressed on both the supplier and user sides. Users should 
not tamper with the data of other users; so the cloud service provider should 
facilitate a good layer of security for them. Cloud computing is a better way 
to cut costs and offer additional storage only if both the provider and user 
take care of security. 

According to the report, regulatory reform is necessary to safeguard the 
important data in the cloud because a major difficult aspect of cloud comput
ing is ensuring the consumer’s trust toward the privacy and security of their 
data. For maintaining data security available in the cloud application, the 
design of the cloud application environment is critical. The consumers must 
comprehend the notion of the cloud service provider’s data storage restric
tions. Some of the best choices include cloud service providers that provide 
security solutions that comply with requirements such as PCI DSS, HIPAA, 
and EU rules of data protection [13]. 

6.4.4 Legal aspect 

Privacy and data protection are important factors for making the trust of the 
customer which is required by a cloud computing system to attain its proper 
potential. Customers would be capable to estimate the problems they face if 
providers do not adopt better and clearer policies and practices. The various 
main providers, fortunately, have made promises to adopt the best policies 
and procedures to safeguard consumers’ privacy and data. In addition to ser
vice providers’ promises toward this protection, certain groups like Cloud 
Security Alliance have published a detailed roadmap to address privacy and 
security concerns. The Trusted Computing Group, a non-profit organization, 
has proposed a set of software and hardware solutions for building trusted 
platforms. Governments have an important role in promoting generally 
agreed-on laws for both users and suppliers [14]. 

Physical storage on the cloud could be dispersed across numerous juris
dictions, each with its security and intellectual property, own set of rules govern
ing data privacy, and usage. For instance, the US Health Insurance Portability 
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and Accountability Act (HIPAA) prohibits organizations by revealing personal 
health information to unaffiliated third parties, and the Providing Appropriate 
Tools Required to Intercept and Obstruct Terrorism Act (PATRIOT) provides 
the authority to the government of US to demand information if conditions are 
declared a necessary or emergency to the security of homeland [15]. 

Likewise, the Personal Information Protection and Electronic Documents 
Act (PIPEDA) in Canada restricts an organization’s ability to acquire, uti
lize, or disclose personal information in the course of business. However, a 
provider may shift customers’ data from one jurisdiction to another without 
notifying the user [16]. 

6.5 Cloud Computing Strategic Planning 

When a healthcare company decides to go to the cloud applications, it requires 
a model for strategic planning to assure perfect goal for the work, tangible 
steps are taken to reach the goal, and all positive and bad aspects of the effort 
are identified and handled. There is a model for cloud computing strategic 
planning that a health industry can use to define its strategy, resource, and 
direction allocation for transitioning traditional information technology (IT) 
infrastructure to clouds. Identification, action, evaluation, and follow-up are 
four stages of the model [17]. 

6.5.1 Stage I – Identification 

The first stage of the approach is to assess the present state of the association’s 
service process and determine the primary goal of quality improvement (QI) 
by listening to the voice of the patients or the voice of the customer (VOC). 
The root cause analysis (RCA) technique is used to investigate existing service 
process issues. To serve patients more effectively and efficiently, the identifica
tion objective and its scope must be cleared. The strategic planning team must 
develop and explain the quality indicators of healthcare services as well as 
their objective and application. More importantly, the description of the perfor
mance indicators and the procedures for evaluating them must be agreed upon 
and approved by all parties concerned. This model gives the strategic planning 
to team a clear picture of the challenge through which they are dealing [17, 18]. 

6.5.2 Stage II – Evaluation 

The model’s second stage is related to the benefits of assessment and draw
backs of cloud-based computing adoption. ENISA, the Cloud Security 
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Alliance, and the National Institute of Standards and Technology have created 
thorough directions to assess the advantages and hazards of cloud-based 
computing adoption. To assess the feasibility of the cloud-based method, 
a capable user can do a “strengths, weaknesses, opportunities, and threats” 
(SWOT) analysis. 

Cloud Security Alliance identifies 12 cloud computing security 
domains. Governance and operations are the two basic groups that make 
up the domains. For each domain, there are also proposals for solutions. 
Many significant cloud security and privacy challenges, as well as the 
associated preventative guidelines for organizations to take while devel
oping or launching a public cloud service outsourcing arrangement, are 
listed in NIST Guidelines on Privacy and Security in Public Based Cloud 
Computing [19]. 

6.5.3 Stage III – Action 

The organization will be able to decide whether or not to embrace the new 
computing paradigm after evaluating it. If the response is positive, an imple
mentation plan must be developed. There is the four-step plan as follows. 

6.5.3.1 	Step 1: Determination of cloud service and  
deployment model 

Cloud-based computing can relate with a variety of services (PaaS, IaaS, and 
SaaS) as well as deployment models (public, private, hybrid, and community 
cloud). Every model of service or deployment has its own set of advantages 
and drawbacks. As a result, when contracting for various types of deployment 
or services patterns, the primary factors should differ [20]. 

6.5.3.2 	Step 2: Obtain confirmation from a chosen  
cloud provider 

The company needs proof that the chosen provider will deliver a high-quality 
facility while adhering to solid privacy, security, and legal policies and leg
islation. Pay-per-use, on-demand access, quick flexibility, on-time technical 
support, and operational openness are among the quality-of-service guaran
tees. Data integrity, availability, confidentiality, authenticity, nonrepudiation, 
and authorization all are covered by the privacy and security assurances. In 
addition, the provider should ensure that data including any backups is held 
exclusively in places allowed by contract, regulation, and service level agree
ment [21]. 
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6.5.3.3 Step 3:Take consideration in migration of future data 
The association may have to migrate information and services to other pro
viders or return to an in-house IT atmosphere because the provider stops the 
service or business operations (like the latest suspension of Google Health), 
has an undesirable reduction in quality of service, or has a contract dispute. 
Data portability should be factored into the strategy from the start [22]. 

6.5.3.4 Step 4: Start of implementation of pilot 
Several previous strategic planning approaches recommend that a company 
with no prior cloud expertise begin with a trial project. The pilot should be 
sufficient to demonstrate the advantages of cloud computing to the enter
prise [23]. 

6.5.4 Stage IV – Follow-up 

The final step is to set up cloud-based computing infrastructure and create 
a follow-up strategy. The strategy specifies how and when service develop
ments will be measured. To assess the size of the improvement, reasonable 
targets are defined ahead of time and outcomes of novel facilities are deter
mined against the performance indicators or particular targets. If the novel 
facility condition is not met, the health industry must examine what factors 
affect the attainment of a goal. If the cloud provider is the primary source 
of unsatisfactory service, the business will consult and negotiate ways to 
enhance service with the provider, or it may consider shifting of services and 
data toward other providers and back to its in-house IT system [24]. 

6.6 Cloud Computing Research Utilization in Healthcare 

Figure 6.2 shows the various application of cloud computing research in 
healthcare. 

6.6.1 Cloud computing in telemedicine/teleconsultation 

Cloud computing provides transparent service, flexibility and scalability, 
remuneration service support, omni-accessibility, and other benefits. This par
adigm not only allows customers to take advantage of convenient, diverse, and 
efficient services but also frees them from upkeep. The telemedicine cloud, 
which is attached to smart mobile devices, is a promising strategy to provide 
cost-effective and pervasive healthcare. Although many telemedicine systems 
take advantage of powerful cloud computing characteristics, the telemedicine 
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Figure 6.2 A schematic diagram that shows various cloud computing research applications 
in healthcare. 

cloud is still in its infancy. The promise for cloud computing in telemedicine 
is evident, but there are still a lot of questions to be answered [25]. 

Countries throughout the world are grappling with healthcare concerns 
such as equity, access, cost-effectiveness, and quality. Modern information 
and communication technologies (ICTs) like computers, networks, and 
mobile devices, which are transforming how people convey with one another, 
also show a lot of promise for tackling the world’s increasingly serious and 
diversified health issues. Telemedicine is the most important ICT-enabled 
service and it has improved and promoted novel ICTs which have become 
more accessible. 

Though no single explanation of telemedicine exists, the World Health 
Organization (WHO) states it as “long-distance healthcare delivery uses 
the communication and information techniques for sharing of information 
for injuries and disease therapy, diagnosis and prevention.” Patient meet
ings through video conferencing, medical picture transmission and storage, 
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remote vital sign monitoring, e-health services (including patient portals), 
continuing education, nursing contact centers, and consumer-focused wire
less applications are all examples. Recent breakthroughs and the widespread 
adoption of wireless mobile technology have fueled a surge in interest in 
telemedicine as a means of delivering healthcare [26]. 

According to a survey, cloud-based healthcare applications are divided 
into five groups: the Health Cloud eXchange (HCX), emergency medical 
system (EMS), health ATM kiosks, @HealthCloud, and DICOM-based 
system. 

EMS stands for emergency medical services, and it is a system that 
allows patients’ personal health records to be accessed to give prompt care. 
EMS application, personal health record (PHR) stage, and a portal to access 
the former are three key components. A medical recorder and user interface 
make up the PHR platform. Patients can access their medical history data 
through the user interface, while authorized healthcare providers can access 
certain aspects of the data. The EMS application, on the other hand, stores 
emergency medical information as well as application software. A variety of 
web services are included in the application software, but they are only acces
sible by an approved person in the ambulance and emergency department. 

A distributed web interactive system called HCX offers private cloud-
based information exchanging service that enables dynamic innovation of 
different records of health and healthcare services. HCX enables the health 
information to be shared between multiple electronic health record (EHR) 
systems. It responds to modifications done in the cloud system automati
cally [27]. Patients can use health ATM kiosks to handle their health-related 
data. It allows patients and care providers to get fast access to relevant health 
data. Individuals can manage their care online by reviewing personal account 
information and doing transactions. 

The DICOM-based system was created to cope with the huge num
ber of images of medical and diagnostic imaging procedures that traditional 
healthcare data has to deal with. The internal hospital network is used to store 
and manage image archives. A firewall keeps the network safe. HealthCloud 
is a cloud-based and Android-based mobile healthcare information manage
ment solution. It uses Amazon Simple Storage Service to update, retrieve, 
and store healthcare information [27, 28]. 

Teleconsultation is a viable and promising approach for making health
care more inexpensive and of greater quality. It offers better patient outcomes 
and a higher quality of life as well as lower national healthcare costs by 
decreasing unneeded assessments, in-person appointments, and transfer 
of the patient. Various types of data must be retrieved during telemedicine 
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consultations by using heterogeneous customer devices in various commu
nication settings to provide elevated quality ongoing hygienic care whenever 
and wherever it is required. In the context of clinical information sharing, 
video conferencing and electronic monitoring also possess significant issues 
for data privacy and interoperability. Clinical data of patients are still dis
persed, inaccessible, and fragmented. 

Isolated in a variety of medical facilities, when patients want tele
consultation, consulting doctors must manually collect clinical data from 
them. In some cases, a lack of clinical data can lead to information loss, 
misdiagnoses, and repeat medicine prescriptions, among other things. This 
results in excessive costs and inefficiency as well as medical security issues. 
The telemedicine consulation, compatibility, accessibility, availability and 
portability is get improved by decereasing the price. For remote medical 
consultation, a prototype of a cloud-based mobile telemedicine consulta
tion method is used. Many diverse technologies are necessary to establish 
a worldwide infrastructure for offering collaborative diagnosis, remote tele
consulting, and emergency scenario management. It is made easier by cloud 
computing, which provides a solution that allows for interoperability and 
data interchange at the time of consultation. In a cloud setting, web services 
are employed to solve clinical information interchange issues automatically 
rather than manually. When used as a mobile telemedicine device, the iPad 
is easy and portable [29]. 

6.6.2 	Cloud computing in public health and  
patient self-management 

Individual residents and patients, as well as big demographic groupings, are 
the focus of public health (epidemiology) [30]. In home-based healthcare, 
especially for long-term disease treatment, patient self-management is pro
moted. Patient self-management could be improved by sharing health infor
mation. In comparison to previous technologies, cloud computing can give a 
long time of sustainable elucidation. A hybrid cloud has been recognized as 
a viable option for allowing patients to share health information to improve 
chronic disease treatment. 

Chronic diseases have a long-term impact on sufferers. Most chronic 
diseases are caused by physical activities such as lifestyle, nutrition, and 
metabolism. Chronic disease treatment is mainly reliant on the patients’ daily 
habits. As a result, most chronic disease symptoms can be relieved by modi
fying daily habits such as quitting drinking and smoking, implementing and 
maintaining a nutritious diet, or enhancing physical activity [31, 32]. 
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Care recipients may be able to live independently at home with the 
help of home-based healthcare. Healthcare providers may keep an eye on the 
patients based on their daily health information, which is shared, facilitate 
medical recommendations, and also provide feedback via medical examina
tion reports. In addition, more people are urged to help with home-based 
healthcare, like family members and other patients having similar symptoms. 
The patient will be encouraged to take an active role in their care as a result 
of patient-centered home-based healthcare, which will include few self- 
management actions and the sharing of vital health data with their physicians 
or other research institutes. 

The advancement of ICT has resulted in the widespread usage of wireless 
personal devices such as cellphones, PCs, and other self- monitoring equip
ment. This could be a viable option for home-based healthcare. HealthVault 
and Apple Health, for example, are commercial or research-based elucida
tions for self-management of healthcare. 

Cloud computing “may deliver distributed, swiftly provisioned and 
adjustable computing sources (like servers, applications, storage, networks, 
and other facilities) that are on-demand, elastic and measurable with net
work connections” according to Wikipedia. The obvious benefits of cloud 
computing, like large scalability, security, and availability, have made it 
a trend in the eHealth sector in recent years. Because patient daily health 
data is so large, cloud storage appears to be a better option than sharing this 
information among healthcare groups, hospitals, or third-party institutions 
of research. Remote services like various IT systems of hospitals and other 
healthcare institutions, and also some third-party online care providers, can 
process huge healthcare data in the cloud. These benefits add to the case for 
using cloud computing to share health data [32]. 

The majority of elderly adults have chronic illnesses that can lead to 
morbidity and mortality. Cardiovascular diseases (stroke, coronary heart dis
ease, and other cerebrovascular illness), diseases of the respiratory system 
(trachea, lung, bronchus cancers, pulmonary hypertension, lower respiratory 
infections, obstructive sleep apnea syndrome, asthma, bronchiectasis, and 
chronic obstructive pulmonary disease), and arterial hypertension are gen
eral clinical problems encountered in each clinical practices among the elder 
patients also in the general population. 

However, it has been discovered that there is a link between the different 
chronic illnesses and total healthcare spending. Furthermore, there appears to 
be a link between concomitant chronic illnesses, the occurrence of ambu
latory care sensitive hospitalizations, and the prevalence of care problems. 
The major issue is that healthcare providers recently have little evidence or 
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guidance on how to approach treatment decisions for these patients. As a 
result, knowing how to effectively care for individuals with co-morbidities 
may lead to enhancements in life quality, healthcare utilization, safety, mor
bidity, and mortality. 

In research, it was found that congestive heart failure is frequently asso
ciated with diabetes, hypotension, atrial fibrillation, hypertension, myocardial 
infarction, cognitive impairment, dementia, depression, or chronic obstruc
tive pulmonary disease, which is often followed by osteoporosis, glaucoma, 
ischemic heart disease, osteopenia, cachexia, peripheral muscle dysfunction, 
cancer, ventricular arrhythmias, malnutrition, and other conditions. 

It will be incredibly beneficial if telemonitoring programs could be 
implemented to cover a variety of conditions. Diabetes and failure of heart 
and chronic obstructive pulmonary diseases (COPD) are examples of such 
pairings. As the impacts of chronic illness, the number of chronic illnesses 
and particular difficulties like comorbidities continues to rise, resulting in 
polypharmacy (multidrug) and a deterioration in life quality. They can also 
contribute to an increase in long time care and costs of therapy (mostly in 
drug administration). 

Telemonitoring offers various solutions for the management of patients’ 
health, ranging from non-invasive monitoring of important parameters like 
using wearable sensor networks and signal processing technologies to mak
ing a proper analysis, identifying right therapies, and intervening at the cor
rect time, to overall treatment regulation. Sensory systems should be designed 
in such a way that they can be implanted within the skin or housed in wear
able fabrics. Low bandwidth networks based on improved low-power wire
less technologies can be utilized to send and receive data. Wearable sensors in 
context with detection algorithms help to activate a message at a specific time, 
which can be delivered to the appropriate location via mobile technique [33]. 

Hybrid cloud was found to be an appropriate paradigm for sharing 
well-being data in this application based on outcomes of literature research 
and evaluation. The National Institute of Standards and Technology explains 
hybrid cloud as a “composite of two or more independent cloud services and 
infrastructures which are separate entities but get linked together via meth
odologies.” By combining private cloud and public cloud, a hybrid cloud is 
generated, which benefits in the public cloud’s cost savings and scalability 
without putting key apps and data on a third-party public cloud. It appears 
to be the best cloud utilization approach for simultaneously sharing health 
information created by the patient to the hospital and third parties. Security, 
effective scalability, customization, expandability, and relatively low cost are 
the advantages of installing a hybrid cloud [34]. 
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6.6.3 	Cloud computing in hospital management/ 
clinical information systems 

Medical records have increased considerably as a result of fast social and 
economic growth. To meet the requirements of medical records, hospitals 
and organizations must use advanced science and technology innovation to 
continuously raise the level of modern records administration. Various issues 
come with the traditional medical management system, such as quality and 
storage capacity of electronic files are limited by hardware tools; as the vol
ume of data grows, the system’s speed will reduce due to channel access 
mode and bandwidth; the current backup mode is insufficient for the long-
term storage and security of medical files and records. The standard storage 
model of data does not allow resource sharing. 

Cloud computing is the technique that is used to create virtual data 
centers that give software applications with a container environment. 
Dynamically deployable compute and storage resources, as well as dynamic 
tuning and recovery, are all possible. Virtualization and parallel computing, 
based on cloud techniques can not only meet the basic requirements for archi
val information retrieval and storage but also importantly enhance the storage 
of system, computing, transportation, and other resource utilization of exist
ing electronic records information management solutions [35]. 

The term “hospital information system” means a computer system that 
is used to manage clinical data and conduct online activities. It includes all 
services and operations of hospitals. Radiology information system (RIS), 
laboratory information system (LIS), and ultrasound information system 
(UIS) are all examples of general HIS. Information sharing is recognized as 
critical to lessen the complexity of HIS maintenance and construction. Due 
to a lack of appropriate technology for establishing an efficient and secure 
connection, clinics have developed their own HIS system. Apart from expen
sive management and construction costs, it is unable to provide enough infor
mation sharing. Although the province is beginning to develop a consistent 
medical archive, it is still difficult to expand and impossible to resolve the 
repetitive construction. All of these issues are expected to be resolved, which 
will need creativity and improvements to the overall structure of HIS. 

Cloud computing, which has been proposed in recent years and is being 
promoted by Google, Yahoo, IBM, Amazon, Microsoft, and other significant 
corporations, is a new network paradigm. Narrow cloud computing is a dis
tribution and usage pattern for IT infrastructure that allows users to claim 
sources with increased needs and capabilities via a network. This network 
concept is extended to any service in a broader meaning of cloud computing. 
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Simple Storage Service (S3) and Amazon’s Elastic Compute Cloud 
(EC2) offer facilities primarily for enterprises; IBM’s “Blue Cloud” com
puting facilitates an open cloud computing system for consumers with buy-
to-use cloud policy, and many large organizations, including Microsoft, are 
actively increasing the utilization of cloud computing. The cloud comput
ing concept offers a novel approach to addressing the existing challenges. 
Recently, certain research works have been conducted in an attempt to use the 
cloud approach in clinical practices. 

The paper discusses the challenges that medical imaging analysis 
(MIA) researchers and doctors faced and proposes a novel paradigm for can
cer imaging research based on the cloud computing concept. Though it is 
not specifically about hospitals, the problems in processing clinical data and 
the importance of cloud computing are discussed in depth. Furthermore, the 
article suggests a cloud-based mechanism for collecting patient data. It can 
automate everything from data collecting at the bedside to data delivery and 
remote access for clinical personnel. This research demonstrates how cloud 
computing is used in clinical operations and makes recommendations for 
future HIS development [36]. 

Both in-hospital and pre-hospital services are used in emergency med
ical procedures. From administrative to medical care, there are a variety of 
associated operations. As a result, proper information sharing and commu
nication between emergency medical services (EMS) and healthcare organi
zations are required. The obtainability of patient data has an impact on the 
emergency care plan as well as the mode of transportation (like ambulance 
or helicopter) and the accurate relaying of the patient’s state. Furthermore, it 
leads to more precise case prioritization based on severity, the avoidance of 
superfluous testing, and complete development in the quality of emergency 
care. Emergency responders’ communication is just as crucial as informa
tion transmission between healthcare companies and EMS. The Emergency 
Data Exchange Language (EDXL) was created by the Organization for the 
Advancement of Structured Information Standards (OASIS) Emergency 
Management Technical Committee to allow EMS to transmit important 
information between national and regional organizations. Integrating cloud 
computing technologies with emergency care services systems allows for 
faster data recovery from the personal healthcare record (PHR) or electronic 
health record (EHR) of patients. This data will assist paramedics in making 
the best decision and managing patients’ conditions depending on their med
ical histories. 

In addition, an emergency personal healthcare record (EPHR) is created 
to assist paramedics in gaining access to data that is constantly updated from 



 

 
 
 
 

 

6.6 Cloud Computing Research Utilization in Healthcare 167 

multiple resources. This data is divided into three categories: emergency 
documents, patient documents (comprise the medical history of the patient), 
and resource documents (that include instructional sources). Through the 
use of cloud computing services, EPHR assists EMS workers in access
ing patient-oriented data that can be delivered in either Clinical Document 
Architecture (CDA) or Health Level 7 (HL7) standard [37]. 

6.6.4 Cloud computing in therapy 

A cloud computing expert system was created and installed to assist diabet
ics in managing their condition and providing advice on what they should 
do. This method can also benefit care providers and physicians by assisting 
them in speeding up the decision-making process for which diabetic ther
apy is most appropriate. Personal information about the patient, such as age, 
gender, weight, and diabetes types, such as gestational and type-1 and type-2 
diabetes, are input to the system. In addition, the system uses three blood 
sugar tests as input: breakfast, lunch, and dinner. 

The HBA1C (A1C) test is an additional input. A1C is a blood glucose 
index that is calculated for patients with diabetes over the past three to four 
months. It indicates the fraction of hemoglobin that has glucose clinging to 
it. The lower the amount of glucose in the bloodstream, the better the diabet
ic’s health will remain. A1C levels in adults without diabetes are typically 
between 4% and 6%. After the patient has entered all of the necessary infor
mation, the system calculates the average of the three tests and compares the 
result to the normal blood sugar range of 80–140; if it is more than 140, it is 
high, and if it is lower than 80, it is low. 

The system determines the right treatment based on the patient’s dia
betes type and the results of two tests (average blood sugar test and A1C 
test). If type-l, the therapy will consist of a calculated diet, scheduled phys
ical exercise, numerous daily insulin injections, and multiple daily home 
blood glucose tests. Insulin doses could be increased, lowered, or kept 
the same based on an average blood sugar test. Type-2 diabetes is treated 
with a combination of diet, exercise, home blood glucose testing, and oral 
medications. 

The patient must take insulin injections if the A1C test is over 10% or 
over 7.5% plus the average blood test glucose is over 324. If the patient wants 
to keep a record or not, there are two options in the system. He must log in 
if he wants a record; as a result, the system keeps his information and allows 
him to retrieve it. If the patient does not want a record kept, he can just submit 
all of the information and the system will handle him appropriately [38]. 
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Cloud computing is crucial for the implementation of assisted living 
environments. In addition, patients can be monitored via cloud computing 
services. In various poor countries, where clinical facilities and knowledge 
are rare, the aged and others with disabilities live in inaccessible or remote 
towns and villages. 

Women suffering from cancer of the breast are frequently left undiag
nosed in rural locations, and by the time they reach the doctors in developed 
cities, it is often too late. Doctors can diagnose patients who are unable to 
reach them due to financial constraints using cloud technology. They can uti
lize cloud-based applications for eHealth and telemedicine, which comprises 
the medical data transmission from remote areas to specialized physicians 
and major hospitals in other geographical regions. During an emergency, 
cloud-based applications also allow critical services like a speedy search 
engine for organ and blood donations [39]. 

6.6.5 Cloud computing in secondary use of data 

Cloud computing can be used to make clinical data available for second
ary use, such as mining of text, analysis of data,, and clinical research. To 
achieve a HIPAA-compliant atmosphere, cloud computing can be utilized 
to store and exchange research health information and data from electronic 
health records in a cloud structure. For them, cloud computing has the benefit 
of offering vast computing resources to researchers. Security of data can be 
gained by allowing researchers to establish their virtual servers and custom
ized networks by using proprietary cloud technologies. 

A method for enabling cloud-based services with great scalability and 
data security that complies with HIPAA. A cloud based software allows 
the extraction, processing, management and comparison of medical data of 
several hospitals. However, it is unclear how the security of data should be 
gained because, at this time, the information in the cloud is not anonymous 
and will only be available to the specific data provider. 

While the stated project makes possible the use of a community cloud, 
the OpenNebula-based application shows its utilization in both private and 
public environments. The key advantages of cloud computing are reduced 
costs of data processing (no upfront investment, pay as you go) and managed 
services that allow data providers to use complicated, computation-intensive 
services [40]. Data mining models and findings may be shared between dif
ferent clinics via a cloud-based server [41, 42]. 
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6.7 Conclusion 

Cloud computing helps in the management of the healthcare of patients. Cloud 
computing comprises three archetypal models: platform, software, and infra
structure. The manuscript describes the cloud computing opportunities from the 
various aspects of technology, security, management, and legality. It describes 
the cloud computing strategic planning which includes identification, action, 
evaluation, and follow-up. The manuscript also enclosed detailed information 
on cloud computing categorization for research in healthcare such as telemed
icine or teleconsultation, patient self-management, and public health, hospital 
management or medical information systems, secondary use of data, and ther
apy. It also focuses on the challenges regarding privacy and security of cloud-
based computing which creates problems in data handling. This issue will be 
resolved in the future and help to provide better healthcare services. 
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Abstract 

Artificial intelligence (AI) is increasingly being used in healthcare due to the 
increasing complexity and volume of data. Additionally, AI is currently being 
used by pharmaceutical and biotechnology companies as well as payers and 
healthcare providers. Furthermore, AI assists thousands of individuals in 
diagnosing and treating illnesses, along with keeping patients on track with 
their treatment plans. Although AI is one of the most exciting robotics topics, 
it has only recently entered the healthcare industry. It is most commonly used 
in “deep or non-deep machine learning,” the process of making computers 
smarter through new research. On the other hand, previous models concen
trated on a specific function or type of AI rather than supporting patients 
and physicians during surgery. Based on studies, the broad coverage of AI 
in medical applications led to the construction of a graphical representa
tion conceptual model. Moreover, blockchain technology is used to connect 
patients and professionals before, during, and after surgery. Interestingly, in 
some circumstances, AI can help arrange a doctor’s appointment or choose 
a suitable time for it. Subsequently, AI assists doctors in developing future 
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treatments and patients in preparing for surgery. Besides, the third sort of 
learning is deep learning. In addition, by analyzing medical data and pre
scribing therapy, AI can assist post-operative patients. 

7.1 Introduction 

7.1.1 History of artificial intelligence 

The health specialist system is based on Bayesian statistics and decision 
theory, which were first used in medical research in the 1970s to identify 
and propose treatments for glaucoma and infectious disease. Advances in 
Bayesian networks (BN), artificial neural networks (ANN), and hybrid intel
ligence (HI) accelerated bioinformatics research throughout the late 1990s, 
culminating in increased acceptance of medical artificial intelligence (MAI). 
Interestingly, medical installations are expected to save $150 billion by 2026, 
which will lead to a $6.6 billion investment in MAIs around the world by 
2021 [1]. Besides, health information technology (HIT) has had a signifi
cant impact on the field of health information management (HIM). The HIM 
team put their efforts to make medical data accessible, accurate, safe, and 
secure for healthcare professionals. Furthermore, the digitalization of med
ical information had a considerable impact on the duties and activities of 
HIM professionals, pushing many people to take on more technical roles in 
the collection, storage, and use of medical information. The digitalization of 
medical information, as well as new data processing and storage technology, 
has enabled the creation of complicated algorithms in the same way as AI 
does [2]. John McCarthy invented the term “artificial intelligence” which 
he defines as the “science and engineering of making intelligent machines.” 
According to him, the word “simple” refers to a machine’s ability to perform 
tasks that humans consider intelligent [3]. In addition, AI applications can be 
divided into two categories: 

1. 	 an attempt to duplicate a person’s mental abilities; 

2. 	 the advancement of technologies that can perform tasks that previously 
required human interaction. 

Furthermore, AI is divided into several sub-disciplines, each focusing on dif
ferent subjects, including vision, problem-solving, speech recognition, and 
learning [4]. Indeed, AI is the replication of human intelligence in systems 
such as computers or robotics, which are designed to duplicate cognitive 
processes such as training and problem-solving abilities that people asso
ciate with other human brains. AI, machine learning (ML), and deep learn
ing (DL) are buzzwords that everyone seems to be using nowadays because 
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Figure 7.1 AI in various fields of medical study. 

they depend on technologies that are becoming increasingly widespread in 
everyday life. Additionally, the adoption of AI technologies will become a 
prerequisite for every firm [5]. AI is one of the most exciting and rapidly 
increasing topics of medical study in the 21st century. Its diverse applications 
are represented in Figure 7.1 [6]. 

Before AI technologies can be used in the medical field, they must be 
“trained” with data generated by medical operations such as testing, assess
ment, and therapy assignments so that they can recognize comparable sub
jects and connections between subject characteristics as well as desired 
outcomes. In this system, the medical evidence includes demographics and 
data from clinical equipment, diagnostic tests, medical lab tests, and photos. 
These pieces of evidence could also be used to show how people spend their 
time [7]. Furthermore, medical care is becoming increasingly important in 
the age of AI healthcare when everyone is trying to be smart and live a better 
and longer life by predicting their illness prognosis. It is based on the premise 
that “caution is the mother of safety,” which means that it is preferable to pre
vent anything from happening in the future than to treat something that has 
already happened. Interestingly, AI researchers in medicine can now work 
and prosper [8]. The technique, self-regulating formation, and application 
of a device (robot) have previously been tested by humans. Besides, many 
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parts of robotics have AI. Robots may be able to think, sense, and know 
how hot or cold things are. Also, people are capable of making decisions; 
thus, robotics research is now focused on developing autonomous robots 
with decision-making abilities. Because today’s industrial robots are not 
human-like, the robot in the human pattern is designed to assist an android 
[9]. In addition to robotic systems, which were first developed in the 1950s 
to streamline unsanitary, tedious, and demanding situations, today’s modern 
health and social machines are programmed for entirely different purposes 
[10]. The improvement center, the theater, and the family compartment are 
all accessible to individuals who engage with humans in a surgical setting. 
In addition, commercial and research interests are shared by medical centers 
and pharmaceutical companies. Intriguingly, the use of robotics in healthcare 
has increased dramatically in recent years. Consequently, robot-assisted tech
nological advancements are speeding up the development of modern therapy 
methods by improving patient outcomes and lowering healthcare costs, while 
also giving patients a different level of care [11]. 

Furthermore, the need for robotics in healthcare has been identified as 
one of the primary drivers of improved healthcare education, lower healthcare 
costs, and shorter recovery times, thereby increasing the number of people 
who have access to wellness services. New therapeutic methods, improved 
patient outcomes, and less stress and workload for hospital staff are just a few 
of the many positive outcomes that could occur with robotics in healthcare. 

Healthcare robots can be divided into three categories: 

• 	 A medical device that combines robotic surgery, detection, and diag
nostic tools. 

• 	 Aided robotics include wearable robots and rehabilitative equipment. 

• 	 Robots that look like the human body include implants, artificial organs, 
and body part simulators [12]. 

Robotics is becoming a vital part of today’s healthcare practices. The method 
for a neurosurgical biopsy has gone over without a glitch since 1985, when 
a robotic dubbed “PUMA” initially assisted in surgeries [13]. In medicine, 
robotic surgery refers to the use of machines to perform surgical procedures 
that are guided by a clinician. The term “robot” was first used in the play 
Rossum’s Universal Robots (RUR) by the Czech novelist and dramatist Karel 
Capek in 1921. The term is derived from the Czech word for “forced labor.” 
Even though robotic surgery relieves doctors from some repetitious tasks, it 
still necessitates a high level of surgical experience. Additionally, in the early 
21st century, scientists reported on the benefits of robotic surgery. People with 
fewer complications and fatalities also have lower prices, well- functioning 
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robotic medical tools, and do not report when they do not work. The first 
medical robots appeared in the 1980s, providing surgical assistance with 
robotic arm technology. Over the years, AI-enabled computer vision and data 
analytics have revolutionized health robots, expanding their capabilities into 
many other areas of healthcare [14]. Medicare robotics aids in surgery by 
speeding up clinical administration and allowing employees to provide more 
immediate attention to patients. Besides, robots are revolutionizing resection, 
easing stock and decontamination, and freeing up time for contributors to 
interact with patients [15]. 

7.1.2 The need for AI 

Initially, the only way to obtain actual medical data was to use books and 
periodicals that presented professional suggestions and contained an expert 
connection. In addition, doctors used to gain expertise by guiding and mon
itoring patients’ diagnoses. Integration of such a large amount of informa
tion and expertise to provide specialized healthcare services was a significant 
challenge. Fortunately, AI has stepped forward to assist by combining a mas
sive amount of healthcare data to improve and expand doctor efficacy. The 
right questions can help AI in finding relevant information hidden in large 
datasets, which could play a big role in healthcare decisions [16]. 

Furthermore, AI has played an essential and expanding role around the 
world in recent years. The majority of users are unaware of the various ways 
AI can manifest itself in their daily lives. AI methods, among other things, are 
utilized to improve efficiency when logging into email accounts, purchasing 
on digital sites, and looking for vehicle transportation services. Moreover, 
healthcare is the most important area in which AI is rapidly progressing, 
particularly in the areas of therapy regulation and diagnostics. As a result, 
there is concern that AI will outperform humans in both goals and abilities. 
Numerous studies have shown that AI will improve social judgment, thera
peutic choices, and efficiency in the future [17]. Figure 7.2 depicts the broad 
applications of computational methods in analytics in healthcare. 

AI is composed of numerous components, including intelligent 
machines and natural language processing [3]. Improved diagnostic proce
dures hold a lot of potential for the betterment of the healthcare sector. ML 
is a branch of AI that focuses on the development of algorithms both instinc
tively and by exposing them to vast amounts of “trained” information [18]. 
Medical care costs are rising all over the world. Rising longevity, an increase 
in the prevalence of chronic diseases, and the ongoing development of costly 
new treatments all contribute to this pattern. As a result, it is no surprise 
that academics predict a bleak future for medical care technology around the 
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Figure 7.2 Computational methods in healthcare. 

world. By improving and lowering the cost of healthcare delivery, AI may be 
able to mitigate the effects of these changes [19]. 

7.1.3 	How did AI change the way medicine was  
practiced in the past? 

Initially, researchers concentrated on developing robotics that could aid phy
sicians in therapies such as surgery. This effort was a failure, but you already 
believe that while these machines cannot replace humans, they can certainly 
assist physicians in anticipating illness and suggesting treatments. Doctors 
have to remember each person’s history, previous prescriptions, ailments, and 
other details, so that medications can be prescribed based on their case history 
[20]. The rise of AI is dependent on medical technologies and is accompa
nied by a flood of clinical data. Electronic healthcare records (EHRs), smart 
sensors and diagnostic devices, genetic testing, and a variety of other sites 
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provide scientists and doctors access to a massive amount of data. However, 
the amount of data available outweighs people’s ability to cope with and 
utilize it. Advanced AI technologies, such as ML and prediction algorithms, 
may help people make sense of the avalanche of information and identify 
trends that will allow them to make better decisions for patients [21]. When 
used in conjunction with clinicians, AI techniques and procedures have the 
potential to improve treatment delivery beyond what they can achieve on 
their own. Consider precise drugs, which aim to tailor clinical therapy to a 
patient’s specific characteristics. Similarly, AI is expected to change the way 
doctors provide care by allowing them to find the best medicine doses and 
determine whether genetic abnormalities cause specific disease. There are a 
lot of medical, genomic, and diagnostic data at the heart of personalized med
icine, which helps doctors be more effective, diagnose correctly, and give the 
right treatment to the right person [22]. AI and ML are important to making 
this happen. 

7.1.4 Types of AI 

AI is divided into three categories as follows: 

• 	 Artificial narrow intelligence (ANI): It is a type of insensible intelli
gent machine that is usually targeted at a certain job (weak AI). 

• 	 Artificial general intelligence (AGI: fictional scenario): A computer 
that can use intellect on every issue instead of just one, often referred to 
as “at least as clever as a regular person.” 

• 	 Artificial superintelligence (ASI: a fictional scenario): It is an AI 
that outperforms even the most brilliant and capable person’s brain. 
The notion is that robots can outperform humans in terms of technol
ogy, interpersonal skills, and technical understanding in a variety of 
fields [23]. 

7.2 AI in Healthcare 

An international health epidemic, such as the coronavirus, brought the medi
cal industry to the forefront for all stakeholders fighting on the front lines. In 
other nations, including India, the outbreak has been termed a fundamental 
shift in computerized medical care. Most people believe that it is a perfect 
time for India to restart its medical system and encourage medical IT compa
nies to fill gaps in the existing system. Besides, in India, many medical care 
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sectors require robotics for a variety of activities [24]. Humans and robots 
have different benefits and drawbacks, but they can work together to pro
vide and improve medical care. The American Medical Association recently 
defined AI’s role in clinical care as “intelligence amplification,” implying 
that AI would be developed and used to supplement rather than completely 
replace human intellect [25]. 

In the field of medicine, AI has several advantages over human intelli
gence. For instance, AI could learn more effectively than physicians through 
large datasets, such as inaccessible walls of unstructured data within a digi
tal medical database. Effective AI can quickly retrieve important facts from 
disconnected or actual data to help improve organizational performance and 
assist physicians in researching and teaching actual choices. Furthermore, AI 
is more precise in carrying out current tasks. AI can work indefinitely with
out losing effectiveness, and, unlike humans, it does not get tired. Moreover, 
AI tool has the potential to revolutionize the way complicated surgeries are 
performed [26]. Besides, AI is well suited to medical care delivery. In reality, 
the use of AI in therapeutic settings has skyrocketed in the last few decades. 
Subsequently, AI technologies with data mining and data modeling capabil
ities could be useful because modern drugs have a huge difficulty in obtain
ing, interpreting, and using structured and unstructured information to cure 
or control illnesses. Clinical AI is primarily concerned with the development 
of AI algorithms to aid in disease prediction, diagnosis, therapy, and admin
istration [27]. Interestingly, AI and robots are rapidly evolving in medical 
services, particularly in recent detection and treatment applications. At the 
same time, AI is becoming more powerful. AI completes the task that humans 
are not able to do, often more quickly and efficiently, and at a lower cost [28]. 

7.2.1 AI tool 

AI technologies, according to the preceding explanation, are classified into 
two types: classical and advanced. The first category includes ML approaches 
that examine properly programmed data such as genomic and EP datasets. 
ML algorithms are used in clinical settings to group individuals’ character
istics or to predict the likelihood of negative outcomes. The second group 
includes natural language processing (NLP) approaches that retrieve data 
from non-fundamental information such as medical documents and medical 
reviews to augment and enhance organized clinical data. NLP methods aim to 
convert words into machine-readable information that can then be analyzed 
using ML methods [7]. Furthermore, when it comes to creating interesting AI 
systems, big data and data mining are steps in the right direction [29]. 
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7.2.2 Natural language processing 

By extracting vital data from patients’ vast clinical statistics, NLP tech
nology may aid in improving diagnostic and therapy recommendations. 
Subsequently, the ability of robots to rapidly absorb massive amounts 
of visual and textual information using ML and NLP would allow phy
sicians to make rapid diagnostic and treatment recommendations. This 
technology has a significant impact on healthcare delivery, particularly 
on how patients are treated [30]. Implementing NLP in the analysis of 
chest radiography data, for example, can enable antibiotic support tech
nology to alert clinicians to the possibility of anti-infectious treatment 
being required. Also, NLP is used to manually track difficult impacts in 
research laboratories [31]. 

NLP could be useful in a variety of healthcare applications, as given 
below: 

1. 	 Effective invoicing: Getting data from doctor records and providing 
clinical codes for such payment procedures are two of the most obvious 
uses. 

2. 	 Authorized permission: Prevent delays and administrative errors while 
using data from doctors’ records. 

3. 	 Clinical decision support system (CDSS): Assists employees of the 
healthcare group in making important decisions, such as forecasting the 
diagnosis and consequences of patients. 

4. 	 Evaluation of healthcare strategy: Gathering medical advisors and 
developing appropriate treatment recommendations [32]. 

7.2.3 Machine learning 

ML, a major subfield of AI, uses large datasets to discover interaction design 
patterns between parameters [33]. ML programs are becoming more popular 
due to faster response rates and cloud computing. It can detect abnormalities 
in images beyond what the human can detect, helping in the diagnosis and 
treatment of illness. In the coming years, ML will continue to transform the 
healthcare system. ML has been used in research to create scans for diabetic 
eye disease and to predict when breast cancer will recur based on clinical 
data and images [34]. There are three ways to learn ML: unsupervised (the 
ability to recognize patterns), supervised (the ability to classify and predict 
methods based on previous instances), and reinforcement learning (the use 
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of reward and penalty systems to make plans for operating in a specific issue 
area) [35]. 

1. 	 Supervised learning: Throughout this section, the receiver gets labeled 
with inputs. Depending on such identifiers, the program must generate 
out-turn. 

2. 	 Unsupervised learning: The input is not categorized and labeled 
throughout this class. To effectively generate out-turn, the machine does 
not have to identify the exact out-turn; instead, it draws its very own 
conclusions. 

3. 	 Reinforcement learning: A device that includes a reinforcement learn
ing method generates behavior that depends on its interactions with the 
environment and attempts to maximize payoff [36]. 

Furthermore, ML offers a way to reduce rising healthcare expenditures while 
simultaneously improving the patient–doctor relationship [37]. The findings 
from ML can aid doctors in deciding which medicines and treatments are best 
for their patients. They could also help people if they need to come back for 
follow-up visits. ML approaches, such as artificial neural networks (ANN), 
represent a completely different approach to AI. Computer systems that use 
the ANN method build decision-making systems of artificial “neurons” that 
function in the same way as the human central nervous system does [38]. 

7.2.4 Algorithms 

Some of the well-known ML algorithms are logistic regression (LR), naive 
Bayesian classification (NBC), k-nearest neighbor (KNN), multiple lin
ear regression (MLR), support vector machine (SVM), probabilistic neural 
network (PNN), binary kernel discrimination (BKD), linear discriminant 
analysis (LDA), random forest (RF), ANN, partial least-squares (PLS), and 
principal component analysis (PCA) [39]. In many clinical studies, ANN and 
SVM are used to analyze scans. ML has high potential and implications in a 
few areas of medicine. Illness prognosis and diagnosis are fields of applica
tion for medicine’s efficacy and outcome prediction, repurposing, and inno
vation [33]. 

7.2.5 Artificial neural network 

An ANN is an ML system that is based on the network organization of the 
human brain. As the name implies, it is an algorithm based on the neural 
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Figure 7.3 Development stages of ANN. 

network of lifeforms, specifically the human vision cortical area. Surprisingly, 
the foundation of AI is the ANN, which is based on a human brain arrangement 
[40]. ANNs were developed with the goal of better understanding and shap
ing the functionalities of the nervous system, including computing aspects, 
while it performs cerebral activities such as sensory sensing, idea classifica
tion, idea association, and learning. Nowadays, however, a great effort is put 
into developing neural networks for purposes such as data analysis and orga
nization, as well as compressed data optimization [41]. Figure 7.3 depicts the 
various stages of ANN development. 

The four main areas of pharmacy in which neural networks may be used 
are modeling, bio-signal, diagnosis, and prognosis. In a range of clinical appli
cations, ANNs can assist physicians in analyzing, modeling, and interpreting 
the logic of complex medical investigations. Additionally, categorization is 
the goal of many ANN medical applications, which indicates that the goal is 
to place the client into one of a few categories, based on measurable features 
[42]. ANNs can also be used to help with traditional CDSSs that are based 
on ancient computer science. They can help predict the prognosis of many 
diseases, such as cancer, heart problems, and abnormal blood sugar levels. 
Besides, they can also be used for radiology and histopathology detection [43]. 

7.2.6 Support vector machine 

SVM is an ML-based multi-class approach for data classification that max
imizes predicted performance while avoiding modeling error. In imagery 
analysis, it is more precise than the advanced neural nets [44]. In ML algo
rithms, each statistic is represented by an equation in the n-sphere, where “n” 
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denotes the total number of characteristics and each character denotes the 
quantity of a specific position. This method looks at vectorized data and finds 
a hyperplane that can tell the two signals apart [45]. 

7.2.7 Deep learning 

DL, also known as deep learning, is an ML method in which an algorithm 
learns from its flaws and adapts accordingly. DL activities become much 
more sophisticated as they develop to replicate human minds by tackling 
challenges through many levels of neuronal networks and then shaping pre
dicted decisions using input information [46]. Such a network, which is influ
enced by the human mind, is made up of millions or even billions of neurons. 
DL is frequently applied to and adapts to significantly larger volumes of data 
than ML [47]. An ANN is a collection of algorithms which uses a technique 
that simulates the individual mind to identify the hidden correlations in a set 
of data. On top of that, ANNs are a subset of ML techniques that form the 
foundation of DL techniques [48]. In medical care, ML is a new topic, as its 
applications to heart problems are limited when compared to other profes
sions. One of the first commercial applications of DL was ML or the com
puterized analysis of imagery. Additionally, computer vision has been central 
to many of AI’s early biological applications [49]. Interestingly, DL learns 
through information with the overall aim of studying processes rather than 
the feature engineering used in traditional neural networks. Furthermore, DL 
uses both supervised and unsupervised learning [50]. 

As the use of robotic systems for spinal fusion procedures becomes 
more frequent, a substantial source of reference has evolved, focusing solely 
on the software’s correctness, a reduction in intraoperative radiation treatment 
(IORT), and surgery efficacy. According to research involving 379 orthope
dic cases, Mazor-robotics (AI) supported robotic systems minimize surgery 
problems by five times when compared to manual doctors. The initial effec
tive experiment of robot-assisted eye surgery was done at the University of 
Oxford. During general anesthesia, 12 people who needed retinal separation 
were arbitrarily allocated to robot-assisted or hand operations. Even though 
AI-supported operations have been around for a long time, surgical outcomes 
have been extremely good in both robotics and human operation groups [51]. 

7.3 Integrating AI into Healthcare Delivery 

The use of AI provides a wide range of capabilities that can assist clinicians 
in making better decisions, improving care delivery procedures and health 
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Figure 7.4 Implementation of digital medical fields in patient care. 

outcomes, and lowering healthcare costs. The purpose of such research is 
to locate and summarize current papers on the use of AI in medical care. It 
reveals the necessary and remarkable outcomes [52]. 

7.3.1 Patient monitoring 

Healthcare is critical in hospitals, operating rooms, intensive care units, and 
coronary care units, where patient care is defined in seconds, as shown in 
Figure 7.4. Regular observing tools generate a massive amount of data in 
these high acuity units (HAU) scenarios, presenting a good opportunity for 
AI-assisted devices [53]. AI methods can now be used to look at patients in a 
new way because of the widespread adoption of digital medical fields and the 
extensive usage of mobile phones and activity trackers. Doctors can now see 
people’s sleep habits, hypertension, pulse, and other vital signs in ways they 
have never seen before [43]. 

7.3.2 Disease diagnostics and prediction 

The most pressing need for AI in conventional medicine is disease diagnosis. 
Interestingly, there have been numerous notable developments in this field. 
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Now, doctors can use AI to diagnose diseases more quickly and accurately. 
One of the most prevalent methods of diagnostics is inside-body diagnosis 
using bio-sensors or microchips. Furthermore, the main research tool and 
genetic makeup could be investigated using ML, which employs AI to iden
tify and discover problems in microarray databases [54]. In the next few 
years, AI may be able to make a real diagnosis in “visible” health fields like 
radiology and pathology, dermatology, and ophthalmology [55]. 

7.3.3 Precision medicine 

Personalized or precision medicine (PM) aims to use personal genetic 
information rather than community genetic information at every stage of a 
patient’s health journey. It entails gathering information from patients, such 
as genomic data, health check records, or electronic medical records (EMR), 
and personalizing the therapy using cutting-edge software [32]. Rather than 
treating the entire population, PM focuses on a proportion of patients. It is 
useful because a single patient population can have a lot of variations. High 
efficacy in a few, often insignificant, patient subcategories could influence the 
observed mean efficiency, while another patient subcategory is ignored [56]. 

7.3.4 Drug discovery 

Using AI and computer-aided drug discovery (CADD) tools, investigators 
can select a small number of therapeutically successful candidates from a 
large number of compounds in a fraction of the time, whereas conventional 
methods can take a very long time. AI also includes programs that help peo
ple to determine which documents in a group of documents are healthy and 
which are unhealthy [57]. 

7.3.5 Dermatology 

Due to its huge clinician dreamscape and dermatopathology picture data
bases, a dermatologist has taken the lead in implementing AI in the health 
sector, as represented in Figure 7.5. However, designing and interpreting 
clinical studies in this field will require a fundamental knowledge of AI. 
As a result, it is critical to think about AI’s possible involvement in derma
tological practices. Melanoma, dermatitis, and plaque psoriasis are just a 
few of the dermatological conditions where AI is slowly gaining attraction. 
Furthermore, scientists are looking into how AI can be used to improve and 
enhance existing skin-cancer diagnostic methods [58]. 
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Figure 7.5 AI in healthcare. 

7.3.6 Coronavirus 

AI automated support robotics and human robots are known as “Cloud 
Ginger” XR-1 which are used in health centers in Wuhan, China. Its primary 
purpose is to assist medical personnel in transporting snacks and medications 
to patients. Besides, its secondary purpose is to keep the patients entertained 
during their confinement [59]. 

AI has the potential to have a significant impact as follows: 

1. The contagion should be detected and diagnosed as soon as possible. 

2. Therapy is being monitored. 

3. Tracking of links. 

4. Case studies and mortality estimations in the future. 

5. Medicines and vaccinations are being developed. 

6. Reducing medical staff workload. 

7. Disease prevention [60]. 

7.3.7 AI in ophthalmology 

As ophthalmology is an intensive field that depends mainly on imaging, AI 
can be utilized to help prevent medication errors [61]. 

7.3.8 Design of the treatment 

AI is enabling breakthroughs in medical procedures such as better medica
tion strategy and data analysis, allowing for the best therapeutic strategies 
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and therapeutic objectives. AI can more quickly and accurately detect 
disease indications and signs in clinical images such as MRIs, computed 
tomography (CT) scans, ultrasounds, and X-rays. Diagnostics may now be 
completed fast, cutting treatment time for patients from days to hours and 
allowing for more therapy intervention [62]. In addition, AI has been used 
in a variety of clinical applications, including therapy, diagnosis, rehabilita
tion, surgery, and prognostic treatments. Another important area of medicine 
where AI is having an impact is clinical management and medical diagnos
tics [29]. 

7.4 The Present State of AI and Its Future 

AI techniques are not yet thinking machines, which means they cannot think 
in the same way that normal practitioners do, relying on “rational thinking” 
or “medical instinct and expertise.” On the other hand, AI functions as a data 
converter, converting trends from databases into themes. Medical businesses 
are starting to use AI to automate time-consuming and complex ongoing pro
cedures. Many people have demonstrated that AI can be used to find mistakes 
in things like diabetic retinopathy and radiotherapy planning [63]. 

7.4.1 Benefits 

1. 	 An AI structure deployed in the healthcare setting can assist clini
cians in providing the latest healthcare data from a variety of aca
demic articles. Similarly, AI could aid in the reduction of pathogenic  
and restorative errors that are not avoidable in in-person facility oper
ations [64]. 

2. 	 Robot-assisted operations can replace costly operations, which will be 
economical and useful in psychiatric care. 

3. 	 AI will shorten the time it takes to diagnose and cure patients [65]. 

4. 	 The use of AI in computer models for disease propagation and incep
tion may be measured by applying standard information from the inter
net, social media, and other media sources [66]. 

5. 	 Intense healthcare costs may reduce with AI technologies [67]. 

6. 	 Data from research labs is utilized to track patients’ data in real time to 
diagnose diseases ahead of time [68]. The ease in the process of hospi
talization by implementing AI is depicted in Figure 7.6. 
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Figure 7.6 AI in hospitalization. 

7.4.2 Difficulties of AI in healthcare 

• The origin of statistics 

• Confidentiality 

• It requires comprehensive and impartial data 

• Classification schemes are analyzed 

• Excessive  interpretation 

• The long-term consequences of actual entity decisions 

• Discriminatory practices 

• Premium depending on individual characteristics 

• Biases are reinforced [69] 

7.5 Role of Robotics in Modern Healthcare 

During the COVID-19 pandemic, robotics assisted in reducing pathogen con
tact. It has become obvious that healthcare robotics can assist in a variety 
of situations. They can be more efficient in reducing the risk of accidents. 
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Figure 7.7 AI in various fields of the pharmaceutical industries. 

Automation, for example, could clean and prepare people’s beds on their 
own, reducing the amount of person-to-person contact in infectious situa
tions. It is now used in clinical settings to assist health personnel and improve 
patient care, in addition to operating rooms. During infectious disease cases, 
hospitals and clinics began using robots for a much broader range of jobs. 
Also, in hospitals, a machine with AI-enabled medication assists patients. 
As technology grows, robotics will become more autonomous, potentially 
executing activities fully on their own. Therefore, doctors, nurses, and other 
health professionals should help to treat patients with more empathy [15]. 
The implementation of AI in various fields is indicated in Figure 7.7. 

7.5.1 Drug research and development 

Robots are used at every stage of the drug supply chain, from basic research 
to drug manufacturing, quality assurance, and packaging. Robotics aids in 
the development of critical therapies, allowing for rapid diagnostic proce
dures for patients and aiding healthcare organizations in meeting stringent 
drug manufacturing laws while improving drug manufacturing processes. 
Computers and robots have their origins in the industrial sector; therefore, 
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there is no surprise that they have not made it into the manufacturing pro
cess of the drug development lifecycle. The capabilities required to carry out 
routine tasks with great precision and accuracy are now in place. Robots are 
most useful during the filing, assembling, and packaging stages of the man
ufacturing process [70]. 

7.5.2 Dispensing in pharmacies 

Hospital dispensing is a novel robotics application with a promising future. 
Robots improve the efficiency and accuracy of drug dispensing in pharma
cies. Additionally, they are used in both clinical and community drugstores to 
fulfill digitally placed pharmaceutical orders [70]. 

7.5.3 Logistics at the hospital 

In a typical 300-bed facility, equipment and garbage are transported slightly 
less than 400 miles per week. It is expected that the use of automation 
machines will reduce shipping costs by 85%. It also reduces the average daily 
distance walked by nurses by 3–4 miles. These robots can reduce the number 
of injuries caused by healthcare lifting and provide caregivers more time to 
focus on what they do best to provide excellent care [70]. 

7.6 	Robotic Healthcare Is More Advance than 
Conventional Dispensing 

Drug dispensing by hand, preparation of dosages, and organization of med
ications according to the needs of the patient are all aspects of conventional 
medical practice. It has been discovered that chemists spend a significant 
time on those tasks. The growing popularity of robotic pharmacy in the field 
of medication dispensing has led to the use of robots and automation to per
form all of these tasks with the least amount of human interaction, includ
ing mixing, classifying, and wrapping drugs. Following are just a few of the 
numerous benefits. 

7.6.1 Increased effectiveness 

In addition to a regular human pharmacist, a pharmacy robot can fill and admin
ister a wide range of medications without the need for operator interaction and 
chances of error. This means that chemists will have more time for higher-value 
work while also contributing to the smooth operation of the company. 
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7.6.2 Medical dispensing in an error-free environment 

When robots are used, human errors may be reduced to five per lakh drugs. 
“After you’ve trained the robot to do the right thing, it will do it again and again, 
without making errors. Only people contribute to those errors all along the 
way,” says the administrator of the UCSF (Mission Bay hospital pharmacy). 

7.6.3 Pharmaceutical operations efficiency 

One of the challenges for pharmaceutical companies is that human pharma
cists end up advising drug dosage and completing the appropriate patient 
details on the prescriptions based on patient demand. It could have serious 
consequences as well as legal and regulatory ramifications. 

7.6.4 Confidentiality 

In a robotic pharmacy, medicine is safely encrypted in dispensing machines. 
Due to strict hospital administration policies, these systems can only be man
aged by someone with network access. With this level of security, the chances 
of pharmaceutical theft or negligence are significantly reduced. On top of 
that, the computer software monitors and tracks everything that is distributed. 

7.6.5 A toxin-free and secure setting 

Infections caused by microbial exposure and improper prescription medi
cation result in a variety of disorders. Interestingly, a robotic drugstore 
provides a clean atmosphere, which overcomes these problems. Following 
a dramatic shift from social methods, the pharmaceutical industry has res
urrected its operational activities by incorporating automation and robotics. 
With automated processes, healthcare and clinics can improve operational 
economies, medication filling levels, count reliability, pharmaceutical errors, 
people’s safety, medical dose consistency, and distribution networks. It may 
also assist businesses in reducing inventory and waste, as well as expenses 
because firms will not have to hire additional staff to deal with the increased 
workload during busy periods. It will be interesting to see how smart health
care facilities react to this new trend [71]. 

7.6.6 Advantages of robotics in healthcare systems 

1. 	 According to current projections, only 5% of the demand for general 
surgery is expected to be met. However, the wall has been breached by 
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robotics. The processor does not use 95% of the available options. Even 
as surgical procedures become more popular, many surgical profes
sionals accept the robotics. Furthermore, many clinics have expressed 
an interest in collaborating with AI companies. The next era will be 
dominated by robotics surgical systems that address the operational and 
financial problems that current autonomous robots have had [72]. 

2. 	 Smart technologies must be able to show that they can help people who 
face a lot of problems like high healthcare costs in complex settings and 
limitations of hepatic sensing and judgment [73]. 

3. 	 Because of its accuracy, repetition, and identification ability, robotic 
digitalization is transforming the medical industry including advances 
in diagnostics, post-operative planning, post-operative assessment, 
acute rehabilitation, and chronic assistant devices [74]. 

4. 	 Machines are not always beneficial to patients, but they can provide 
a bit of relaxation for doctors and surgeons. As surgeries are not long 
or stressful with the use of a machine, doctors spend less time in the 
operating room and are not forced to stand in awkward positions [75]. 

5. 	 The foremost benefit appears to be that robotic systems are to promote 
economic growth. Consider how much time and effort doctors would 
save if they did not have to worry about identifying, administering, or 
monitoring patients, which results in a successful outcome of 90% of 
the time. Instead, they could use this time to treat patients, perform 
life-saving procedures, or even develop innovative healthcare technol
ogies. Another advantage is that robots have unrivaled access to the 
body; imagine performing surgery in small, difficult-to-reach areas that 
would have been impossible to reach with only a prosthetic arm [76]. 

7.7 	Acceptance and Implementation of Robots in the 
Healthcare Business 

According to current forecasts, just 5% of the need for general surgery will 
be met. Robotics, on the other hand, has burst through the barrier. The CPU 
ignores 95% of the parameters. Even though surgical procedures are becom
ing more popular, many surgical professionals accept robotics. Many clinics 
have expressed a desire to work with robotics. Robotics will dominate the 
next era surgical systems that address current autonomous robots’ opera
tional and financial issues [72]. Smart technologies must be able to demon
strate their ability to assist people who face numerous challenges, such as 



196 Role of Artificial Intelligence and Robotics in Healthcare 

high healthcare costs in complex settings, the expense, and limitations of 
hepatic sensing, and judgment. These individuals deserve to be recognized 
and utilized in intelligent ways [73]. This is because robots and digitaliza
tion are improving everything from diagnostics to post-operative planning to 
rehabilitation to chronic assistant devices [74], and acute rehabilitation [75]. 
Machines are not always beneficial to patients, but they can aid in the relax
ation of doctors and surgeons. Doctors spend less time in the operating room 
and are not forced to stand in awkward positions because surgeries are not as 
long or as stressful without the use of a machine. The first apparent advantage 
appears to be that robotic systems promote economic growth. Consider how 
much time and effort doctors would save if they did not have to worry about 
identifying, administering, or monitoring patients, which results in 90% of 
the time having successful outcomes. They could instead use this time to treat 
patients, perform life-saving procedures, or even develop innovative health
care technologies. Using robots to do surgery in hard-to-reach places would 
have been impossible with a prosthetic arm alone [76]. 

In the medical industry, robotic applications range from surgical pro
cedures to the living room. Robots are used in a variety of settings to assist 
people with repetitive tasks that are high-risk or require a high level of pre
cision. Robots have also been used in medical care in Europe successfully. 
“Paro,” the seal, a psychological responsibility automaton, was sold all over 
the world. Around 1200 robots have been sold in Japan, 100 in Denmark, 
and 100 in the United States. Even though the results of robotics use in dif
ferent parts of the world and the United States have shown promising and 
beneficial results in the medical industry, it has been used infrequently in 
the United States. Currently, research is being conducted on assisted robots. 
There is mounting evidence that rehabilitative assistance robots can assist 
people [80–84]. 

7.8 	AI Robotics Emerging Together to Transform the 
Healthcare System 

AI is becoming more capable of doing what humans do, but more effectively 
and quickly. In addition, AI and robotics both have enormous potential in 
the medical field. Furthermore, AI and robotics are becoming increasingly 
important components of our medical environmental friendliness, just as they 
are in our daily lives. Machine intelligence is improving its ability to per
form tasks that humans do much more accurately and quickly, and at a lower 
cost. By discovering novel genetic code connections and performing machine 



 

 

7.8 AI Robotics Emerging Together to Transform the Healthcare System 197 

surgery, AI assists patients, clinicians, and healthcare workers [82]. It is 
replacing the current medical system with machines that can imagine, com
prehend, remember, and respond in ways that humans cannot. Furthermore, 
in the field of medicine, AI has enormous potential. Both innovations are 
gradual, and they will become an immediate part of healthcare, just as they 
are in our daily lives. Many healthcare organizations rely on computers to 
make decisions with minimal human input. However, it is expected that, 
in the long run, similar computerized systems will make difficult decisions 
based on their knowledge without the need for human intervention [81]. We 
have selected a few examples of how this transformation is currently taking 
place, which is as follows. 

7.8.1 Error rates reduction 

Hospitals can use AI and robotics to reduce misdiagnosis and medical error 
rates, which will result in a lower death toll worldwide each year. In 2015, 
misdiagnosed illnesses and medical errors were responsible for 10% of all 
deaths worldwide. By examining individuals’ health histories, AI could be 
useful in predicting and detecting illnesses at a rapid rate. Aside from that, 
it is designed to assist doctors in implementing a much more comprehensive 
illness management strategy and in the coordination of care plans. It also 
helps patients to manage and adhere to lengthy clinical guidelines. 

7.8.2 Improving the health of patients 

On the other hand, AI empowers individuals to manage their health and 
well-being, allowing healthcare practitioners to have a better understanding 
of the problems they confront on a daily basis. Individuals who are attempting 
to develop self-expression or who are deteriorating due to lifestyle, environ
ment, cell biology, or even other factors can be classified using the modeling 
approach. AI may also be useful in identifying patients who are developing 
self-expression or deteriorating due to lifestyle, environment, bioinformat
ics, or other factors and taking effective action to treat them. Individuals are 
encouraged to adopt healthier habits through the use of digital software and 
apps that aid in the proactive maintenance of healthy lifestyles. It also gives 
customers access to healthcare and well-being services [84]. Furthermore, AI 
improves healthcare providers’ ability to comprehend the day-to-day behav
iors and needs of the people they manage, allowing them to provide better 
advice, direction, and assistance to stay fit. 
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7.8.3 Early detection 

AI has already been used to diagnose diseases such as cancer more precisely 
and earlier. According to the cancer society, a significant percentage of mam
mograms produce false results, resulting in one out of every two healthy people 
being diagnosed with cancer. Mammography is being reviewed and translated 
at a rate of 30 times faster and with 99% accuracy, reducing the need for unnec
essary biopsies. Consumption wearables and other medical equipment, along 
with AI, have been used to identify and detect serious episodes of high choles
terol levels at an early stage [85]. This allows doctors and other care providers 
to better supervise and identify deteriorating conditions at this early stage. 

7.8.4 Improving decision-making 

To improve the healthcare system, health information must be combined 
with accurate and effective judgments, and prescriptive analytics can assist 
health professionals in managing administrative duties while providing rec
ommendations on behavior and choices. Watson Healthcare, an IBM division 
dedicated to data-driven health technology, is said to have made progress in 
providing clinical decision-making for clinical care. Watson Healthcare is 
also collaborating with health centers to assist them in utilizing cognition 
technology to disseminate a large amount of health information and more 
accurate diagnoses. By combining huge volumes of health data with relevant 
and appropriate judgments, analytics can help with healthcare decisions and 
activities, as well as everyday activities, which are high on the agenda for 
improving treatment. Another area in healthcare where AI is gaining trac
tion is the use of recognized data to identify people who are at high risk of 
contracting, developing, or worsening disease as a result of their behavior, 
environment, heredity, or other variables. 

7.8.5 Research and development 

According to the Californian Medical Research Association, the journey from 
the laboratory to the person is lengthy and costly, with medicine taking at least 
12 years to reach the user. Only 5 out of every 5000 medications that begin 
in clinical trials make it to animal trials, and only 1 of those 5 is approved for 
human use. Furthermore, it costs an average of $54.5 million for a manufac
turer to develop a drug/medicine for human use. Pharmaceutical research and 
development is one of the most recent applications of healthcare analytics. 
There is a way to use the most recent advances in AI to accelerate the devel
opment of new drugs and recycling processes [86]. As a result of ongoing 



7.9 Categories of AI Robotic Systems used in the Healthcare System 199 

technological advancements and innovations, biopharmaceutical companies 
are paying attention to AI’s productivity, dependability, and knowledge. One 
of the most significant AI discoveries in drug discovery occurred in 2007 
when a group of academics tasked a robot named Adam with investigating 
yeast activities. The robot then sifted through a large amount of data in read
able codes to make predictions about the activities of the fungus’s 19 chro
mosomes, and it made nine correct predictions. 

7.8.6 Treatment 

The technology could indeed assist medical providers in taking a more sys
tematic approach to disease management, best-coordinating wellness pro
grams, and assisting patients in managing and continuing to comply with 
their lengthy drug treatments, as well as continuing to search medical files 
to assist suppliers in identifying severely mentally ill people who are already 
at an increased risk of adverse events. Robots have been used in the medical 
field for over 30 years. They range in severity from small laboratory robots to 
overly complicated robotic surgery that can either assist a traditional surgeon 
or perform surgeries on their own. They are used in hospitals and clinics to do 
very time-consuming things, like therapy, physiotherapy, care to people who 
have long-term illnesses, as well as surgery [87]. 

7.8.7 End-of-life care regeneration 

In recent years, robotics has proven to be an excellent component of medical 
care. They have the potential to transform life care, ranging from simple to 
advanced experimental robotic systems to extremely difficult tasks such as 
robotic surgery, which can either assist a conventional physician or perform 
procedures on their own. In the future, robots will be able to go one step 
further and have social conversations with humans, which will keep them 
healthy and their brains sharp as they get older [87, 88]. 

7.9 	Categories of AI Robotic Systems used in the 
Healthcare System 

7.9.1 Assistants to surgeons 

Intelligent robots could be developed to assist doctors with a variety of tasks. 
These things have been getting better and better, and the most recent 3D tech
nology gives surgeons the positional references they need for very complex 
surgery. These robots have improved natural stereo visualization as well as 
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augmented reality. Using computer vision, these machines are also taught 
different types of learning data to help them understand the situation and take 
the right steps [89]. Major companies are expanding their logistics processes 
in the field of robotic surgical systems. The majority of the market is now 
controlled by intuitive surgical; however, the situation remains volatile. The 
entry of large automakers such as Johnson & Johnson and Medtronic has 
benefited the MED-tech surgical robotics sector. Furthermore, the number of 
robotic surgical procedures performed in the medical field is steadily increas
ing. This expansion can be linked to an increase in the global market adoption 
of robotic surgical equipment. Between 2017 and 2018, the innovative sur
gery industry saw a 32% increase in global surgeries [90]. 

7.9.2 Pharmabiotics 

It is critical in the medical field to be able to provide precise numbers or med
icine, as well as move quickly so that people can recover faster and receive 
an accurate diagnosis. In addition, another improved pharmacy automation 
technique has been implemented, allowing robotics to manage powdered, 
fluid, and extremely sticky ingredients with significantly greater efficiency 
and agility [89]. Whether at hospitals or healthcare institutions, autonomous 
robots can offer a wide range of products. In February, Omnicell unveiled the 
next generation of their Medimat dispensing robots, which are aimed at med
ical centers. According to Omnicell, Medimat can help a pharmaceutical club 
in saving time and preventing medication errors by analyzing factors such as 
repackaging drugs, searching for the exact medication, and staying on top of 
inventory management. With this type of sub-system, the Medimat system 
functions as both a small processing facility and a distribution center [91]. 

7.9.3 Telehealthcare 

Telehealth makes use of telemedicine robotics as well as records or displays 
depicting personal clinical procedures and discussions. Maintaining individ
ual confidentiality is another issue in telehealthcare. When images or voice 
captures are generated, it appears that a moral quandary exists. Experts at the 
medical center recommend phone lines, the internet, and other methods for 
telehealth. Many people with the same illness or a counseling service can see 
it [92]. As a result, treatment, such as gripping someone’s arm, could imme
diately signal how they were feeling, allowing confidence to be created more 
easily with such a healthcare professional than with a web camera or indirect 
communication channels, which could leave all parties guessing about the 
effectiveness of the communication [93]. 
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7.9.4 Robotics with exoskeletons 

Exoskeletons were initially developed to assist handicapped people, quadri
plegics, and others in standing. The platform’s inventions begin to play a sig
nificant role in people’s lives. Ekso Bionics, one of the leading players in the 
industry recently received Federal Drug Administration approval for a new 
exoskeleton. Individuals with heart and nervous system damage can get their 
lives back on track faster with this innovative exoskeleton [94]. Exoskeletons 
or motorized exoskeletons are modular smart machines that use processor 
systems to control a network of actuators, pneumatic cylinders, valves, or 
hydraulic systems to recover locomotion [95, 96]. This topic of artificial limbs 
appears to be current, given the volume of mobility technologies researched 
and acquired by healthcare institutions and individuals for home use [97, 98]. 
According to the World Health Organization, regular exercise is any muscu
lar movement that occurs through muscular activities and causes an increase 
in energy consumption. Without the use of muscles, prosthetic limbs allow 
for the voluntary contraction of the upper extremities. This appears to be the 
case in exoskeleton bipedal locomotion when there is an insufficient intake 
of extra oxygen and nutritional content. As a result, combining functional 
brain impulses with robot conditioning can be an effective way to combat the 
problem by increasing muscle activity or energy intake [99–101]. 

7.9.5 Robots for cleaning and decontamination 

Machines are the most effective approach to eliminating or cleaning up 
polluted areas, preventing individuals from falling ill from viruses such as 
COVID-19. It can quickly and efficiently remove chemicals and clean a large 
area. However, robots and AI may become contaminated if used to clean and 
decontaminate hazardous areas. When people are exposed to infectious envi
ronments, they become ill or suffer from a variety of health problems, such 
as infectious diseases caused by organisms like bacteria, viruses, fungus, 
or parasites. Unfortunately, healthcare facilities are notoriously unpleasant 
places to work. Thus, anyone going for therapy may get different illnesses. 
Bacterial resistance can be found in hospitals since many of the most efficient 
antibacterial drugs are available there. Sophisticated cleaning robots can be 
deployed in apartments, which employ high-powered ultraviolet radiation for 
a few seconds to eradicate any lingering bacteria [102]. 

7.10 Robotic Programming 

When AI-based robots are used in the real world, they are capable of per
forming a wide range of tasks without the need for human intervention. In 
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reality, autonomous robots are built with ML capabilities that enable them 
to distinguish between different parts and comprehend complex situations. 
Computational models are used to distinguish unique characters and properly 
anticipate the consequences learned from these sets of data, which is accom
plished through the use of object identification software. Systems such as 
robots, which use AI, provide tagged photos of goods that allow computers 
to detect elements in a wide range of situations and dimensions. Currently, 
analytics is a well-known brand that offers cognitive computing methods 
and an attribute selection service. Furthermore, image recognition and smart 
automation datasets could be used in this case, allowing comparable systems 
to perform with the highest level of accuracy and speed [89]. 

Automation allows equations to be generated automatically by ana
lyzing large amounts of data, which speeds up research and simplifies the 
development of complex systems such as ML tools. Even though massive 
amounts of data are required for accurate computer learning to function, 
the data used to train ML models must be precise and of the highest qual
ity. Currently, most mass-produced assistive devices that assist people with 
daily tasks are significantly less motivated to embrace the design of such a 
production line with mechanical arms or even the automated personal assis
tants that were initially anticipated during the space program period. After 
two centuries, robot brains that are not needed for limbs are scarce in every 
field. Pattern recognition uses ML levels to aid in the simple use of informa
tion. This idea was imagined 20–30 times but never gained popularity due to 
the limitations of processing capabilities at the time. Because of the ground-
breaking capabilities and technological advancements of fully convolutional 
techniques, ML is finally getting its due. If you have the processing power 
and the right knowledge, machine understanding can be extremely powerful. 
It is critical to distinguish between preparation and comprehension when it 
comes to intelligence processing of such information. Preparation includes 
situations in which all of the parameters are provided and the robot only 
needs to figure out how quickly each component should operate to complete 
a goal, such as collecting an element. During training, on the other hand, 
the machine has to deal with a lot of different outputs in a very chaotic and 
demanding way [103]. 

7.11 Conclusion 

Robotic surgery has advanced to the point where it will be capable of trans
forming human healthcare and communities. The surgical team is now 
a complicated mixture of segments and subs, video conferencing screens, 



References 203
 

laptop procedures, and technologically improved operating room procedures. 
Scanners used by doctors are an excellent complement to robots, providing 
them with additional options with the least amount of unwanted intervention. 
Methods are being used, and access to target areas is being expanded. They 
have also accelerated the delivery of freight and pharmaceuticals throughout 
the facility. Many more are on the way, each with its unique value proposition. 
This entails receiving the best medical care possible at the most affordable 
price. Robotic systems have resulted in the development of critical treatment, 
rehabilitation, and infant and geriatric care equipment. Furthermore, clinical 
experience in geriatric care is preferred. The da Vinci surgical system is a 
field of study that aims to improve people’s lives by providing new skills. It 
will undoubtedly continue to be in high demand in the healthcare industry. 
Moreover, robotic surgery has a good chance of becoming more popular in 
the coming years. 
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Abstract 

Artificial intelligence (AI) is the combination of human brain power, machine, 

and computer techniques. In the healthcare and pharmaceutical industries, AI 

has been used in a variety of ways, with an emphasis on research, wearables, 

drug discovery, and virtual assistants. It also helps in maintaining patient data, 

regular monitoring of health issues, and diagnosis, all of which contribute to a 

better lifestyle and mental health. AI is a blessing for the pharmaceutical indus

try in terms of drug discovery, identification, validation, and improving the 

R&D efficiency in analyzing biomedical information. In the drug development 

process, it contributes to the initial steps of research by predicting 3D structural 

protein with effective receptor binding or targeted protein. Various applications 

are available for estimating possible drug interactions like Chem Tapper, SEA, 

etc. Similarly, instead of preliminary studies followed by a clinical trial, several 

web applications are used to identify the toxicity of new moieties while saving 
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money and time. Furthermore, several AI tools are available to use, includ

ing DeepChem, DeepTox, organic PotentialNet, and Hit Dexter. This chapter 

focuses on AI-assisted platforms and tools that are changing the way drugs are 

discovered and bringing innovation to healthcare facilities in the future. 

8.1 Introduction 

In today’s scenario, artificial intelligence (AI) is elevating day by day in vari

ous sectors, especially in the pharmaceutical Industry. Also, AI has shown an 

effective role in drug discovery and development. There are various tools and 

techniques in AI which makes it more effective in further aspects of the phar

maceutical industry [1]. It is very useful for drug repurposing, clinical trials, 

and improving pharmaceutical productivity. AI reduces the human workload 

and manpower by achieving targets in a short duration. In the pharmaceuti

cal industry, digitalization is in great demand with acquiring and executing 

the knowledge for solving serious clinical problems. Interestingly, AI leads to 

automation as it can store large volumes of data [2]. AI is a technology-based 

system that can mimic human intelligence but cannot threaten to replace man

power completely. Recently, AI has been able to evaluate, interpret, and under

stand input data with the use of systems and software to conclude correct and 

independent verdicts. In the pharmaceutical sector, the applications of AI are 

gradually extending, and, in the future, it will completely modify the work 

culture [3]. With the help of deep learning and machine learning, it has made 

a significant contribution to the progress of drug and vaccine development [4]. 

AI is a game-changing tool for the development of new therapies. 

Additionally, deep learning generates a lot of buzz in the AI community. 

Many researchers suggest that machine learning will speed up drug discovery 

and development and the application of AI procedures; however, there is still 

a gap and a lack of understanding [5]. In the era of personalized medicine, 

data collection and management in pharmaceutical industries are becoming 

increasingly important. Thus, their information should be instantly and effi

ciently assembled, analyzed, and characterized. AI is a promising application 

for drug discovery, diagnosis, research, and clinical trials [6]. AI also helps 

in maintaining quality control and quality assurance, which maintains batch

to-batch consistency; thus, many pharmaceutical companies employ this 

technique in a combination of AI and human power. It is being regulated in 

line dosage forms fabricating process to attain the specific product standard. 

Besides, it also helps in marketing and designing pharmaceutical products. 

It creates a special identity for each product to attract customers for buying 

them. Indeed, many companies already employ this method, and it is pro

jected that AI will promote smart work with massive innovative techniques in 
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the coming days, acting as a fuel for industrial progress in any circumstance. 

Globally, AI is pivotal in all leading biopharmaceutical companies; for exam

ple, Sanofi signed a deal with a UK firm, Exscientia, to use its AI platform for 

advanced metabolic disease therapies, while Pfizer is using IBM Watson sys

tem that utilizes machine learning to improve immune-oncology drugs [6]. 

Likewise, GNS Healthcare in Cambridge, MA, USA, is providing an AI sys

tem for Roche subsidiary, Genetech, to hunt multinational company’s deals 

for cancer treatments [7]. Currently, precision medicine helps researchers to 

co-relate and identify relationships between different datasets and medical lab 

reports through dynamic visualizations. AI utilizes symbolic programming 

for problem-solving with vast applications in healthcare, engineering, and 

business [8]. AI is integrated with software science that greatly evolved into 

a modern science. The main objective of AI is to deal with the problem solv

ing, design, and application for learning, analyzing, and interpreting data. AI 

has distinct fields, including pattern recognition, statistics, similarity-based 

methods, clustering, and machine learning [9]. In the pharmaceutical sector, 

AI is a flourishing technology that utilizes automated algorithms to perform 

various tasks [9]. Traditionally, AI relies on human intelligence in multiple 

aspects of life and industry. Over the last three years, the pharmaceutical and 

biotechnology sectors have been using this powerful technology to reshape 

how scientists approach a disease, discover new and innovative approaches to 

generate new medications, and much more [10]. Figure 8.1 summarizes var

ious steps for a drug development process that could be linked and assisted 

with AI to improve result efficacy and save time and money. 

8.2 Tools of AI used to Emphasize Pharmacy 

8.2.1 The robot pharmacy 

The UCSF Medical Center utilized robotic technology for the preparation and 

tracking of medications to improve the safety of patients. Interestingly, the 

robotic technology has efficiently prepared 400,000 medication doses (oral 

and injectable) without any error [11]. As a result, UCSF pharmacists and 

nurses are free to use their knowledge by focusing on direct patient care and 

cooperating with physicians on their patients’ health. This demonstrates that 

robots are superior to humans in terms of shape, size, and ability to deliver 

proper and accurate medications [11]. 

8.2.2 The MEDi robot 

MEDi is an abbreviation for medicine and engineering designing intelligence. 

Tanya Beran, a professor of community health sciences at the University of 
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 Figure 8.1 A schematic diagram of drug discovery. 

Calgary, Calgary, AB, Canada, had a project to develop a pain management 

robot. After working in hospitals, she had the idea for children and infants 

who scream during treatment or medical procedures [12]. Although the robot 

is unable to think, determine, plan, or reason, the robot quietly establishes 

a rapport with the children and explains what to expect during therapy or 

medical procedures, indicating the existence of most advanced and effective 

AI tools [13]. 

8.2.3 The erica robot 

Hiroshi Ishiguro, a professor at Osaka University, Suita, Japan, developed 

a new care robot namely, Erica. It has a blend of Asian and European facial 

features [14]. Besides, it has various other features, including the ability to 

speak Japanese, animated films look, a wish to visit south-east Asia, and 

a desire for a life partner to chat with. Erica has human-like facial expres

sions, and it can understand and answer questions but cannot walk inde

pendently [15].
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8.2.4 The TUG robots 

Aethon TUG robots can autonomously travel all over the hospital and deliver 

medications, meals, and all other necessities. Also, it can carry heavy things. 

It is designed in such a way that it is a very flexible and utilizable resource for 

loading various carts or different racks [16]. 

8.3 Applications 

8.3.1 Modifying drug release 

Controlled Drug Release: Hussain and his coworkers at Cincinnati 

University, Cincinnati, OH, USA, performed the modeling of pharmaceutical 

formulations in neural networks. Subsequently, in various in vitro studies, 

they used hydrophilic polymers for modeling the release characteristics of 

drugs and the range of drugs dispersed in matrices. With a single hidden layer 

in neural networks, all of these experiments were able to predict the range of 

drug release with reasonable accuracy [17]. Recently, researchers at phar

maceutical company Krka d.d., and the University of Ljubljana, Ljubljana, 

Slovenia formulated the Diclofenac sodium matrix tablet. They used neu

ral networks and 2–3-dimensional response surface analysis to optimize and 

predict the rate of drug release [18]. 

Immediate Release Tablets: Almost 2–3 years ago, the University of 

Marmara and the University of Cincinnati employed statistics and neural net

works to model hydrochlorothiazide tablet formulations [19]. 

8.3.2 Product development 

The process of pharmaceutical drug development is a huge multivariate 

optimization problem as shown in Figure 8.2. The most beneficial aspect of 

artificial neural networks is their ability to generalize the system. These char

acteristics are ideal for overcoming and resolving obstructions in optimizing 

the formulations during drug development [20]. 

8.4 Benefits [21, 22] 

New medicine development and discovery of active pharmaceutical ingredient. 

• Analysis of data with speed, reproducibility, and accuracy. 

• Effective utilization of incomplete datasets. 
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Figure 8.2 Drug discovery chain. 

• Accommodate constraints and preferences. 

• Generate understandable rules. 

• Performance at low cost with enhancing drug quality. 

• Improvement in confidence level. 

• Improvement in customer response. 

• The time duration is short for market. 

• The very low error rate in comparison to humans. 

• The accuracy, precision, and speed level are incredible. 

• No effect on hostile or external environments. 

8.5 AI-Integrated Medicine Development 

The primary purpose of drug development research is to find medicinal agents 

that have beneficial effects on the body and can be used to diagnose, prevent, 
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or treat various diseases [23]. Drugs are small chemically synthesized mole

cules or a molecule obtained from natural origin or a semisynthetic moiety, 

which can significantly attach to a target receptor (a proteaceous 3D structure) 

that are directly or indirectly involved in the pathogenesis of disorders [24]. 

To discover these active molecules, researchers and scientists pri

marily execute a large screening of available literature to identify the lead 

with a promising role in the field of life sciences. There are various steps to 

analyze the effectiveness of these active leads and to develop into a promis

ing compound with patient safety and efficacy [25]. Nowadays, more pre

cise structure-oriented drug design approaches are in common practice. As 

a result, the initial screening of new molecules will be easier as compared 

to the previous method. However, still, scientists and researchers need to 

design, synthesize, and test a variety of chemicals to find possible new drugs 

[26]. For example, even if a new molecule demonstrates its potential thera

peutic impact in laboratory testing, clinical trials may still fail. Indeed, only 

about 10% of drug candidates make it to the market after Phase I studies [27]. 

It would be simple to predict the biological action of a lead molecule on 3D 

portentous structures using AI drug design. Accordingly, AI could predict 

the biological action of a lead molecule on 3D portentous structures, as well 

as side effects and toxicity levels, before their synthesis or production, by 

analyzing the chemical domain of proteinous 3D structures for the probable 

target of lead and its interaction with various biomolecules [28]. Moreover, 

AI has the potential to save billions for the development of medicinal agents 

and their suitable dosage forms by the next decade [29]. 

8.6 	Role of Active Learning and Machine Learning  
in Drug Discovery 

The implementation of machine learning can be explained by the introduc

tion of many companies into this field to expand their business areas. The 

primary purpose of machine learning is to use high throughput techniques to 

screen lead compounds, thus reducing rigorous efforts of drug discovery [30]. 

Through in silico models and techniques, machine learning has reduced the 

use of in vivo animal testing. Besides, the data obtained from chemical struc

tures, physiological pathways, and biological activities were used to fabricate 

and design accurate as well as advanced approaches [31]. They also provide 

a computational and comparative way to analyze and correlate the results 

based on the structure of the lead compound [32]. 

The input data normally contains many medicinal features, including 

cellular toxicity level, heterogeneity level of cellular structures, the efficacy 
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of available animal model with its on-target activity, and pharmacokinetic 

parameters like elimination rate constant, elimination half-life, MRT, VRT, 

and cytochrome P450 metabolic rates [33]. These input data along with 

orthogonal data and its application within a probable domain with the inte

gration of data for terminating programs are used to design algorithms. This 

previously designed algorithm predicts results as well as illustrates improve

ments required in current ongoing methodologies and procedures to get more 

efficient and reliable predictions [34]. These techniques are modified by 

repeating the same procedures until a final product is designed with desir

able biological efficacy. The algorithm principles used in the active learning 

concept economically enable product screening [35]. Furthermore, active 

learning via machine learning is a useful approach for multi- dimensional 

optimization and drug discovery. 

The active-learning is an area of computer science; currently, it is suc

cessfully used for drug discovery with its proven practical applicability in 

fabrication and drug development [36]. The most considered topics of active 

learning which are associated with drug discovery are cost-effective and cost-

aware learning, re-labeling of existing molecules, and selection of various 

batches. The active learning algorithms of machine learning aid to reduce the 

high noise ratio and the probability of false negatives [37]. Semisupervised 

learning is a part of active learning algorithms which is successfully used for 

complex objectives. 

Active learning algorithms are a representation of a promising concept 

for drug discovery with a wide range of practical applicability [38]. With 

future advancements in algorithmic technologies, this technique may enable 

lead discovery in an automated and rational decision-making way [39]. 

8.7 Explainable AI 

Explainable AI is a branch of AI in which researchers and scientists can com

prehend the outcomes of diverse issues. In the current state of AI-assisted and 

structure-based drug discovery, there is a high demand of such algorithms 

[40]. Explainable AI techniques are now emerging due to a lack of interpreta

tion from certain machine learning tools as well as a need to enhance human 

reasoning and decision-making ability [41]. The area of explainable AI is 

developing, and it will prove its relevance in the upcoming years. The recent 

explainable AI research along with its advantages, limited data options, and 

prospects for drug discovery is explained here [42]. A summary of selected 

terminologies used in explainable AI is provided in Table 8.1. 
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Table 8.1 AI terminologies with their explanations used frequently in drug development. 

S. No. AI terminologies Explanation 

1 Active learning for Active learning is a subfield of machine learning in which algorithms 

drug design for an underlying model with selected data are used to improve their 

models. Actively, the aim of active learning is to label new data and to 

understand the task more efficiently [43, 44]. 

2 Algorithm An algorithm is a mathematical formula or mathematical expression 

that depicts the link between two or more variables in linear, 

exponential, or any other form of relationship. Algorithms can 

be aimed at a simple set of instructions with a finite end goal of 

producing a result [45]. 

3 Bots A bot or chatbot is a program that runs on a website or app and 

interacts with users directly to assist them with simple tasks [46]. 

4  Cluster Any collection of people or things who have something in common 

[46, 47]. 

5 In silico fragment-to- To find a lead chemical, this computational strategy involves 

lead screening screening low molecular weight compounds against various 

macromolecular targets (typically high molecular weight proteins) of 

clinical importance [46–48]. 

6 Functional group and Molecule functional group that is responsible for characteristic 

spectral deep learning chemical reactions. Screening of multi-level network of functional 

groups [49]. 

7 Image recognition Computers can be programmed to grasp what is happening in an 

image, processed for image magnification with clarity, which is one 

of the most sophisticated machine learning techniques [43–45]. 

8 Natural language This technology enables machines to decipher what humans are 

processing saying through text or voice [42, 45]. 

9 Lead optimization The process of improving a compound’s potency, selectivity, and 

pharmacokinetic characteristics [43, 46]. 

10 Neural networks This AI model, which is designed to resemble the human brain, uses 

natural language processing and deep learning to recognize faces in 

photographs and analyze handwriting [43]. 

11 Databases It combines a data warehouse for processing and storage [42–44]. 

12 Molecular mapping Graphical representation and mapping of the compound topology at 

and representations the molecular and cellular level [47, 48]. 

13 Pharmacophore The combination of numerous chemical properties is required for a 

fingerprint: ligand’s particular interaction with a biological receptor [47, 48]. 

pharmacoprint 

14 3D pharmacophore 3D assemblies with well-defined ligand interactions [47–49]. 

modeling 

15 Toxalerts Compounds’ undesirable characteristics, toxicity, and undesired 

reactivity are connected to functional groups and other molecular 

substructures. These are collectively stored and predicted [50, 51]. 

16 Descriptor-free QSAR These are approaches for predicting lead’s physicochemical and 

model biological properties as a result of its molecular structure, bonds, and 

atomic bonding, applying descriptor selected algorithms [52, 53]. 
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8.8 Computational Approaches for Explainable AI 

8.8.1 Feature attribution 

It helps to determine the local feature of the active ingredient which could 

be important for the prediction of its potency, safety, and efficacy [54–56]. 

Gradient-based methods, surrogate models, and perturbation-based meth

ods are used to predict feature attribution of lead compounds [57]. These 

approaches have found their application to identify ligands, identification, 

and structure-based data for various correlated adverse effects in the predic

tion of protein–ligand interaction profiling [58]. 

8.8.2 Instance-based approach 

This method is based on calculating a set of criteria that must be present or 

absent to anticipate the lead compound’s activity. Anchors, counterfactual 

examples, and contrastive explanations are used in computation methods. 

However, its application in the field of drug discovery is not yet reported [59]. 

8.8.3 Graph convolution-based approach 

It interprets various drug activities based on the message-passing framework mod

els. Subgraph-based techniques and attention-related methods are used in this 

approach [48]. This method has been used in the studies of retrosynthesis, tox

icophore and pharmacophore discovery, ADMET, and reactivity prediction [60]. 

8.8.4 Self-explaining 

This approach develops models that are explained by design. Various meth

ods used for this approach include prototype, self-explaining neurological 

networks, concept learning, and natural learning [61]. 

8.8.5 Uncertainty estimation 

This approach is aimed to quantify the reliability of various approaches used 

for this purpose. It includes ensemble and probabilistic-based approaches. It 

has been used in reaction prediction, molecular-structure-based activity pre

diction, and active learning [62]. 

8.8.6 In silico molecular modeling 

In silico molecular modeling is mainly based on 3D structures of proteins 

and receptors to predict the rate and time course of absorption, distribution, 
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metabolism, elimination, and toxicity of the compound. Molecular model

ing mainly works on ligand- and structure-based modeling [63]. It receives 

information from the electronic properties of molecules, their shape in lattice 

space, inhibitors, substrates, and metabolites’ conformational structures 

[64]. These data are used for designing pharmacophore, density function, 

and shape focus models for the illustration of the spatial as well as chemical 

nature of the ligand. Structure-based models mainly use binding properties of 

atoms and conformational changes of receptors. Moreover, molecular mod

eling helps to discover a stable and reliable method to predict absorption, 

distribution, metabolism, elimination, and toxicities [65, 66]. 

8.9 AI Networks and Associated Tools 

Life sciences have benefitted immensely from advances in AI. AI has a lot of 

potential to enhance and accelerate drug discovery. In 2020, a British start-up, 

Exscientia, and a Japanese pharmaceutical firm, Sumitomo Dainippon 

Pharma, used AI to develop a drug for obsessive–compulsive disorders [67]. 

The typical drug development process takes around five years to reach the 

trial stage; however, this drug took only one year. Additionally, cheminfor

matics has also grown by leaps and bounds in the last decade [68]. 

8.9.1 AlphaFold 

Proteins are made up of amino acids and are the building blocks of life. The 

unique 3D structure of proteins largely defines their function. In the critical 

assessment of structure prediction, the AlphaFold has been recognized as a 

solution for various protein folding problems [69]. AlphaFold developed an 

attention-based neural network system to interpret the structure of a protein’s 

spatial arrangements. It uses related amino acid sequences, multiple sequence 

alignment of its monomer units, and a representation of amino acid residue 

pairs, to refine the graph[70]. The AI system has developed strong predictions 

of the underlying 3D structure of the protein through iterating the physiolog

ical bioprocess [71]. AI can look into how protein structure predictions can 

help us learn more about diseases by identifying the proteins that fell into dis

repair. Such insights could accelerate drug development efforts. Besides this, 

protein structure prediction is also helpful in pandemic response efforts [72]. 

8.9.2 DeepChem 

DeepChem is a drug discovery framework based on open-source deep learn

ing. The python-based framework includes a set of features for using deep 
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learning in drug development. It creates deep learning neural networks with 

Google TensorFlow and scikit-learn. It also employs the RDKit Python 

framework for simple molecular data operations like converting SMILES 

strings to molecular graphs [73]. 

8.9.3 ODDT 

The Open Drug Discovery Toolkit (ODDT) is a free open-source program 

for computer-assisted drug development (CADD). To create CADD pipe

lines, ODDT employs machine learning scoring functions (RF-Score and 

NN-Score) [74, 75] and is available as a Python library. ODDT can support 

a multitude of formats by boosting the use of Cinfony, a common API that 

unites molecular toolkits like RDKit and OpenBabel and makes interfacing 

with them more Python-like [73]. Numpy arrays are used to hold all-atom 

data collected from the underlying toolkits, providing speed and versatility. 

The ODDT is available under a three-clause BSD license that is suitable for 

both academic and industry use [76]. 

8.9.4 Cyclica 

A biotech firm MatchMaker from Cyclica uses reams of biochemical and 

structural data to quickly compare candidate compounds against the full 

proteome. Pareto-optimal embedded modeling (POEM) is a parameter-free 

supervised learning method for creating property prediction models with less 

overfitting and higher interpretability. “If you’re developing a chemical, it 

behooves you to examine the other 299 interactions that might have terrible 

impacts on humans,” said CyclicA CEO, Naheed Kurji [77]. 

8.9.5 DeepTox 

The clinical trials phase of drug development constitutes another bottleneck, 

taking a long time and money before a drug reaches the market. With the aid 

of machine learning and algorithm-based tools, clinical trial design becomes 

much easier and more economical. DeepTox is deep learning for the prediction 

of toxicities during clinical studies [74, 75]. DeepTox works by normalizing 

the chemical formula-based representation to compute a sufficient quantity of 

chemical descriptors. These descriptors are input data for machine learning [75]. 

8.9.6 Deep neural net QSAR 

This is a correlation between deep neural networks and other ligand-based 

virtual screening. In deep neural net QSAR, the machine learning method 
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uses active algorithms for the screening of the active lead and concurrent 

predictions from various QSAR models [76]. Chemoinformatics is employed 

in these models to present data and make predictions; nonetheless, they have 

significant drawbacks, such as the inability to be self-explainable and the 

prioritization of structural features with high activity [75, 76]. 

8.9.7 Organic 

This tool helps digitalize the organic synthesis. Organic is an AI planning 

tool that uses a robotic platform to do planned and flow synthesis of organic 

structures that have the potential to act as lead [77]. 

8.9.8 PotentialNet 

PotentialNet is designed to analyze protein–ligand binding affinity. It seeks 

input data as the distance between two adjacent atoms in an angstrom with a 

restriction against its chemical bond predictions. Neighbor type and nonco

valent interactions are viewed for predictions. PotentialNet consists of three 

types of propagations, including covalent-bond-based propagation, noncova

lent and covalent propagation, and third ligand-based propagations [78]. 

8.9.10 Hit dexter 

Hit Dexter models are used for the prediction of large fractions of promising 

compounds among approved drugs. This technology works to find out and 

estimate the trigger effect of small molecules in biochemical processes and 

various biological assays [79]. 

8.10 Technical Obstacles and Prospects 

The qualitative properties of input data used for designing algorithms are 

the main technical challenge for the application of AI at drug discovery plat

forms. The published results of various models lack reproducibility and are 

erroneous [80]. Subsequently, the complexity of the dataset for the predic

tion of 3D structures and their spatial arrangement is not easy to under

stand and predict. Furthermore, many published data are proprietary, and the 

inventors have highlighted legal concerns about the use of AI and machine 

learning technologies in this field [81]. On the other side, a lack of data-

sets in the field of drug discovery as well as a scarcity of skilled workers 

are two problems limiting the market’s growth [82]. The global AI in the 

drug discovery market is expected to grow at a CAGR of 40.8% from USD 
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259 million in 2019 to USD 1434 million by 2024 [83, 84]. This growth 

is being driven by a growing number of cross-industry collaborations and 

partnerships, the increasing need to control drug discovery and development 

costs and reduce the overall time taken in this process, the rising adoption of 

cloud-based applications, and services, and the impending patent expiry of 

blockbuster drugs [85, 86]. 

8.11 Conclusion 

A human being is the most sophisticated and complex machine that can 

ever be created in the whole universe. On the other hand, AI has changed 

and modified the pharmaceutical profession considerably. The need for 

advanced technology will increase continuously as the healthcare sector 

gets more sophisticated. Globally, in today’s scenario, AI is known as the 

application of the algorithm and the best technique for the analysis and inter

pretation of data. The advancement of AI, along with its astonishing tools, 

is constantly aimed at reducing obstacles faced by pharmaceutical firms, 

affecting the medication development process as well as the total lifespan 

of the product, which may explain the rise in the number of start-ups in 

this area [87]. Using the latest AI-based technologies will not only reduce 

the time it takes for products to reach the market but also improve product 

quality and overall safety of the manufacturing process. Furthermore, this 

will provide better resource utilization and cost-effectiveness, highlighting 

the importance of automation [88]. Moreover, AI will develop further in the 

future, allowing it to reach its full potential and assist the pharmaceutical 

business. 
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Abstract 

The discovery and development of a drug is always influenced by a high 

degree of chance and serendipity. Drug development is the process of bring

ing a new drug molecule into clinical practice. Chemical entities with the 

potential to become therapeutic agents must be identified and rigorously 

evaluated during the drug development process, which is very complex and 

expensive. Several computational approaches have been established in recent 

years to minimize drug discovery timelines and costs, as well as to improve 

the quality and success rate of the development process. However, there is 

still more work to be done in terms of using innovative technology to sim

plify this process. Artificial intelligence (AI) has the potential to significantly 

improve the chances of finding novel drug candidates that can be marketed. 

AI can identify hit and lead compounds, allowing for rapid therapeutic target 

validation and structural design optimization. AI presents a huge technical 

advancement that might lead to a paradigm change in drug discovery and, 

eventually, clinical development. We think that developments that currently 

feel innovative will quickly become standard practice in terms of time of 

discovery, novelty, and commercial potential. This chapter focuses on AI 
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methods that are used in the development of a drug. This chapter also dis

cusses various tools and techniques used in AI and their challenges. 

9.1 Artificial Intelligence 

Artificial intelligence (AI) is increasingly being used in several aspects of 

society, including the pharmaceutical industry comprising drug investigation 

and development, drug repurposing, working on drug efficiency, and clinical 

preliminaries, among others; such use diminishes the human responsibility. 

We likewise examine crosstalk among the apparatuses and strategies used in 

artificial intelligence, continuous difficulties, and ways of defeating them, 

alongside the fate of AI in the drug business. 

In recent years, the pharmaceutical business has seen a tremendous 

surge in information digitalization. Increasing digitalization, however, brings 

with it the issue of securing, analyzing, and applying that data to complex 

healthcare situations. This justifies the usage of artificial intelligence, which 

can cope with massive amounts of data, thanks to enhanced computeriza

tion. Computer primarily based intelligence is an innovation primarily based 

totally framework that includes specific improved gadgets and agencies that 

could emulate human knowledge. Simultaneously, it does not take steps 

to supplant human real presence totally [1, 2]. Artificial intelligence uses 

frameworks and programs that could interpret and take advantage of statis

tics for you to make impartial judgments for you to reap sure objectives. 

As this study shows, its uses are frequently sought in the pharmaceutical 

industry. According to the McKinsey Global Institute, fast breakthroughs 

in artificial-intelligence-directed robotization would most likely completely 

transform society’s work culture [3]. 

Computer-based intelligence encompasses several technical areas, 

including thinking, information representation, and arrangement search, as 

well as a key artificial intelligence viewpoint (machine learning). Machine 

learning uses calculations that can comprehend styles in a formerly labeled 

series of data. Deep learning (DL) is a department of the device getting to 

know that entails the usage of artificial neural networks (ANNs). These are 

constructed of some of the interconnected state-of-the-art figuring compo

nents, such as “perceptions,” which might be essentially equal to human 

herbal neurons and simulate electric motivation transmission inside the human 

mind [4]. ANNs are made up of many hubs, each of which receives various 

data and then switches them over to yield, either individually or in a multi- 

connected manner, using computations to solve problems. ANNs include dif

ferent sorts, including multi-layer perceptron (MLP) organizations, repetitive 
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neural networks (RNNs), and convolutional neural networks (CNNs), which 

use either administered or solo preparing methodology [5, 6]. 

The MLP network has applications including design acknowledgement, 

advancement helps, process recognizable proof, and controls, which are nor

mally prepared by administered preparing methods working a solitary way, 

and can be utilized as general example classifiers. RNNs, like Boltzmann con

stants and Hopfield networks, are networks with a shut circle and the ability 

to retain and store data. CNNs are a collection of dynamic frameworks with 

close affiliations, as defined by geography that is used in image and video 

processing, organic framework demonstration of difficult cerebrum capac

ity management, design recognition, and current sign processing. Kohonen 

organizations, RBF organizations, LVQ groups, counter-proliferation orga

nizations, and ADALINE networks are among the most complex structures. 

Figure 9.1 summarizes instances of artificial intelligence method spaces [5]. 

A few apparatuses have been created which are dependent on the orga

nizations that structure the center engineering of artificial intelligence frame

works. The Watson supercomputer from International Business Machines 

(IBM) is an instance of synthetic intelligence-primarily-based equipment 

(USA). It changed into an advanced resource withinside the assessment of 

a patient’s medicinal statistics and its interplay with a huge statistics collec

tion, ensuing in remedy tips for malignant growth. This structure can also 

be implemented for the fast detection of diseases. This changed into testing 

with the aid of using its capacity to come across breast cancers in about 60 

seconds [7]. 

Figure 9.1 Different methods of artificial intelligence with their subfields. 
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9.2 	Computer-Based Intelligence in the 
Lifecycle of Drug Items 

Inclusion of artificial intelligence in the improvement of a drug item from the 

seat to the bedside can be envisioned, given that it can help judicious medi

cation plan, aid dynamics, decide the right treatment for a patient, including 

customized meds, and deal with the clinical information created and using it 

for upcoming medication advancement. E-VAI is an insightful and dynamic 

AI stage created by Eularis, which utilizes ML calculations alongside a 

simple-to-utilize UI to make logical guides dependent on contenders, key 

partners, and at the presently held portion of the overall industry to foresee 

key drivers in deals of drugs, in this way helping advertising chiefs to assign 

assets for the greatest piece of the pie again, switching helpless deals and 

empowered them to expect where to make speculations. Various utilization 

of artificial intelligence in drug revelation and improvement are summed up 

in Figure 9.2. 

9.3 Drug Development 

In its broadest sense, drug improvement encompasses all levels of the pro

cess, from initial studies to finding an inexpensive subatomic goal to Phase 

III scientific trials that are useful resources inside the commercialization of 

Figure 9.2 Application of artificial intelligence in diverse subfields. 
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the medicine to post-marketplace pharmacy surveillance and medicine repur

posing considerations. Chemical components with the potential to become 

therapeutic specialists must be found and extensively examined during the 

medicine creation process, and the entire interaction must be lengthy and 

costly. Each new medicine that enters the market is projected to cost billions 

of dollars and take more than 10 years to create. As a result, methods for 

collaborating with and expediting the drug development process are in great 

demand. 

The Food and Drug Administration (FDA) has currently made develop

ment in improving the usage of real-world data (RWD) in drug development. 

Data collected from assets other than usual exam settings, along with elec

tronic health records (EHRs), authoritative cases, and billing facts, is cited as 

“RWD.” These RWDs regularly include full-size affected person facts that 

are accompanied over time, together with contamination status, therapy, rem

edy adherence and results, comorbidities, and concomitant medicines. Data 

from RWD may be utilized to highlight beneficial development, outcomes 

research, patient consideration, security reconnaissance, and relative ade

quacy analysis. More crucially, RWD allows clinical scientists and admin

istrative offices to reply to inquiries more rapidly, saving time and money 

while providing solutions that can be applied to a broader population. The 

adoption of EHR frameworks has increased in the United States during the 

previous decade. In the United States, technical developments and strategic 

adjustments have offered fertile ground for the usage of RWD in drug devel

opment. As a result, the FDA has released guidelines for using EHR data in 

scientific assessments, also including guidelines for combining RWD into 

administrative records. 

Because of high-quality development in AI approaches, the location of 

AI, including machine learning and deep learning (ML/DL), has changed 

from hypothesis to real. Man-made intelligence has been broadly utilized in 

numerous ranges of the drug improvement procedure to discover novel tar

gets, grow knowledge of sickness components, and increase new biomarkers, 

among different things. Many pharmaceutical agencies have begun to spend 

money on assets, advancements, and services, mainly inside the era and 

amassing of datasets to beautify AI and ML/DL research, and a lot of those 

datasets come from RWD foundations. There is a growing call for contempo

rary clinical development to observe a top-level view of AI and RWD conver

gence to outline the most up-to-date things, like discover current exploration 

gaps, and deliver bits of records [8]. 
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9.4 The Drug Development Process 

The drug development procedure in the United States is divided into five 

sections, each having several phases and stages (Figure 9.3). The five steps 

are as follows. 

Step 1: Process of Discovery and Development 
Drug discovery is the manner in which new pills are observed. All matters 

considered, pills have been commonly observed with the aid of using spot

ting dynamic fixings from commonplace medicines or sincerely with the aid 

of using a few coincidences. Traditional pharmacology was utilized a few 

years later to examine synthetic libraries including tiny atoms, natural items, 

and plant extracts to see which ones had therapeutic characteristics. Since the 

sequencing of human DNA, switch pharmacology has employed testing to 

uncover treatments for existing illnesses. 

Throughout the cycle below, disease processes, atomic compound stud

ies, current drugs with unanticipated side effects, and fresh advancements 

push drug discovery. To reduce probable medication side effects, today’s 

medicine disclosure comprises screening hits, restorative science, and 

Figure 9.3 Drug discovery and development process phases. 
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improvement of hits (expanding fondness and selectivity). At this level of 

the medication improvement process, viability or power, metabolic solidity 

(half-life), and oral bioavailability also are addressed [4]. 

a. 	 Target Identification and Validation 

Target ID identifies a protein (restorative specialist) of high quality that 

plays an important role in sickness. When restorative traits are identi

fied, they are written down. Targets are safe, efficacious, and useable as 

drugs, and they fulfill clinical and commercial requirements. Some of 

the strategies that scientists use to favor objectives encompass in vitro 
genetic regulators, antibodies, and constituent genomics. Other tech

niques embody infection association, bioactive elements, cell-based 

absolute models, protein cooperation, weakening ways of research, 

and practical inspection of makings. The Duolink PLA and the Sanger 

Whole Genome CRISPER library are all right assets for drug develop

ment objectives [3]. 

b.	 Hit Discovery Process 

Compound screening procedures are designed after objective approval. 

c. 	 Measure Development and Screening 

Examinations take a look at frameworks that verify the brand new med

ication applicant’s results at the cell, atomic, and natural stages. 

d. High Throughput Screening 

High throughput screening (HTS) makes use of superior mechanics, 

facts handling/managing programming, fluid looking after gadgets, 

and sensitive signs to quickly lead a large variety of pharmacological, 

substance, and hereditary tests, killing lengthy intervals of meticulous 

checking out via investigators. HTS distinguishes energetic mixtures, 

makings, or antibodies that impact social elements [4]. 

e. 	 Hit to Lead 

Minor particle hits from an HTS are analyzed and amplified in a con

trolled fashion into major complexes in the hit to lead (H2L) process. 

These combinations are then subjected to the principal streamlining 

technique. 

f. Lead Optimization 

The lead compounds discovered in the H2L interaction are integrated 

and adjusted in the number one lead optimization (LO) process to 

increase strength while reducing incidental effects. Lead streamlining 
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prepares the medication competitor by conducting exploratory testing 

with creature-viable models and ADMET devices. 

g. 	Active Pharmaceutical Ingredients 

Active pharmaceutical ingredients (APIs) are certainly dynamic fixes 

that motivate facts in a medicinal drug application. All medicines 

include the API or APIs, in addition to excipients. (Excipients are inert 

chemical materials that resource the drug’s absorption into the human

oid body.) High potency active pharmaceutical ingredients (HP APIs) 

are debris with an extensively decreased detection restriction than tradi

tional APIs. They are utilized in multi-stage drug development and are 

classified by their potential for damage, pharmacological intensity, and 

occupational exposure limits (OELs) [4]. 

When one lead chemical for a pharmaceutical rival is discovered, the 

drug discovery process comes to an end, and the process of medication 

improvement starts. 

Steps 2: Preclinical Research 
Preclinical testing determines the medication’s viability and safety when a 

lead chemical is discovered. Analysts choose the associated with regard to 

the medication: 

• Retention, dispersion, application, and discharge data 

• Expected benefits and systems of activity 

• Best measurement and organization course 

• Secondary effects/unfriendly events 

• Consequences for sex, race, or identity gatherings 

• Cooperation with different medicines 

• Viability contrasted with comparable medications 

Preclinical trials examine the novel medicine in nonhuman individuals for 

safety, toxicity, and pharmacokinetic (PK) data. Researchers focus on these 

preliminaries in vitro and in vivo using infinite measures [5]. 

a. 	 Absorption, Distribution, Disposition, Metabolism, and Excretion 

The pharmacokinetic characteristics of absorption, distribution, dispo

sition, metabolism, and excretion (ADME) are used to estimate how a 
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new medicine affects the body. The individual impact is represented 

numerically in ADME. 

b.	 Proof of Principle/Proof of Concept 

Proof of principle (PoP) focuses on preclinical preliminaries and early 

well-being assessments that are effective. In drug disclosure and devel

opment initiatives, the terms proof of concept (PoC) and proof of prin

ciple (PoP) are used interchangeably. Effective PoP/PoC focuses on 

advancing the program through Phase II measurements research. 

c. 	 In Vivo, In Vitro, and Ex Vivo Assays 

These three forms of research are focused on all living species or 

cells, including animals and people, as well as non-living substances 

and tissue removal. In vivo preclinical examination models are used to 

discover new medications employing in vivo preclinical examination 

animals such as mice, rats, and canines. In vitro research takes place 

in a laboratory setting. Individual cells or tissues from a non-living 

individual are used in ex vivo research [5]. Ex vivo studies have been 

conducted to select relevant malignant growth treatment specialists as 

well as to examine tissue attributes (physical, thermal, electrical, and 

optical) and establish the viability of innovative treatments. Because 

it provides an energetic, measured, and antiseptic atmosphere, a cell is 

constantly active as the basis for micro explant communities in an ex 
vivo investigation. 

d. In Silico Assays 

Test frameworks or organic exams carried out on a computer or using 

programming experience are referred to as in silico measures. With the 

continual advancements in computational power and conduct grasp of 

sub-atomic components and cell science, they are expected to become 

increasingly well-known. 

e. Drug Delivery 

Oral, cutaneous, film, intravenous, and internal breath are all-new med

ication delivery methods. Drug transport structures are used to manage 

the migration or appearance of novel medications. Biological barriers 

in animal or humanoid bodies may avoid medics from reporting to their 

assigned region or conveying when they are supposed to. The goal is to 

keep the drug from aiding in the mending of healthy tissues while it is 

still alive [6]. 
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• 	Oral: Patients benefit from oral pharmaceutical administration since 

it is safe, cost-effective, and convenient. Oral medication transport 

may not be able to make precise calculations to the optimal loca

tion, but it is ideal for preventative immunizations and maintenance 

regimes. Patients should be aware of delayed movement, stomach 

complex destruction, maintenance discrepancies, or patients with 

gastrointestinal troubles or distress during association. 

• 	Skin: The topical medicine movement includes balms, creams, 

lotions, and transdermal patches that provide a prescription to the 

body through maintenance. Patients like the non-interfering move

ment and their freedom to self-administer the medicine while using 

viable transportation. 

• 	Parenteral (IM, SC, or LP Membrane): Medicine is given intramus

cularly (IM), intraperitoneally (IP), or subcutaneously (SC). Because 

it avoids epithelial blockages, which make drug distribution difficult, 

it is frequently utilized in the treatment of unconscious patients. 

• 	Parenteral (Intravenous): One of the most effective methods of 

consuming drugs is intravenous imbuement. In comparison to IM, 

SC, or LP film techniques, IV imbuement ensures that all prescription 

segments enter the circulatory system. 

• 	Parenteral (Inhalation): The medicine quickly enters the mucosal 

lungs, nasal passages, throat, and mouth when inhaled. Internal breath 

transport issues include low mucosal surface areas and patient load, 

which make it difficult to transmit optimum estimates. In pneumonic 

internal breath medication conveyance, fine medicine powders or 

macromolecular prescription game plans are utilized. Small particles 

can be contained and transmitted into the flow framework because 

lung fluids mimic blood [2]. 

f. 	 Detailing Optimization and Improving Bioavailability 

Throughout the preclinical and clinical stages, the plan is constantly 

evolving. It guarantees that pharmaceuticals are delivered to the appro

priate location at the correct time and in the proper amount. Upgrades 

might help you combat dissolvability. 
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Stage 3: Clinical Development 
Following preclinical research, scientists go on to experimental drug devel

opment, which entails preliminary experimental trials and volunteer trials to 

fine-tune the medication for humanoid usage. 

a. 	 The Complexity of Study Design, Associated Cost, and Implementation 

Issues 

Preliminary plans may be impacted at this time due to the intricacy of 

the clinical preliminary plan as well as related expenses and execution 

challenges. Preliminaries must be harmless and practicable, and they 

must be finished inside the drug development low-priced, with a mech

anism in place to verify that the therapy performs as well as it can. This 

complete cycle must be well set up and attract a big number of helpers 

to be appealing [3]. 

b.	 Clinical Trials – Dose Acceleration, Single Ascending, and Multiple 

Dose Studies 

Prescription viability is determined by legitimate medicating, and 

clinical preliminary research examines portion acceleration, single 

increasing, and numerous portion studies to regulate the greatest silent 

measurement. 

• 	 Stage I – Healthy volunteer study: Under 100 participants will aid 

analysts in analyzing the wellness and pharmacokinetics, retention, 

metabolic, and disposal repercussions for the body as well as slightly 

incidental impacts for harmless measurement limits. 

• 	 Stage II and Phase III – The second phase of the trial examines the 

medicine’s care and effectiveness in an additional 100–500 persons 

who may have been given a phone therapy or a normal prescription 

that has recently been utilized as treatment. While hostile occurrences 

and dangers are noted, an analysis of optimal part strength results 

in plans. Stage III involves the selection of 1000–5000 patients as 

well as the empowerment of prescription labeling and guidelines for 

proper medicine usage. In preparation for full-scale manufacturing 

and prescription approval, Stage III requires a large-scale collabora

tive effort as well as coordination and guidance from an Independent 

Ethics Committee (IEC) or an Institutional Review Board (IRB). 

c. 	 Organic Samples Collection, Storage, and Shipment 

Normal models are constructed, cared for, and sent from testing objec

tions according to general guidelines and regulations during clinical 
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primers. Dry ice packs or other temperature-settling processes can be 

used by natural model carriers to consolidate their models. Natural 

models are subject to a variety of criteria [3]. 

d. 	Pharmacodynamics (PD) Biomarkers 

PD biomarkers are nucleotides that link pharmacological standards 

with natural reactions in the real-world human environment. This data 

may be used to help choose objective subject matter expert combina

tions and improve prescription regimens and programs. Sensitivity and 

hypothesis testing power is improved by using PD endpoints in human 

starters. 

e. Pharmacokinetic Analysis 

A preliminary evaluation of how medicine interacts with the human 

body is known as a pharmacokinetic assessment. Using compartmental 

presentation, the volume of movement, opportunity, and terminal half-

life are all displayed. 

f. 	 Bioanalytical Method Development and Validation 

Bioanalytical procedures identify analyzers and metabolites in regular 

or human guides, such as medicine or biomarkers, to determine drug 

practicality and security. Test grouping, clean up, examination, and dis

closure are all part of the full bioanalytical test. 

g. 	Medicine (Analyte) and Metabolite Stability in Biological Samples 

The importance of adequacy in determining human prescription appro

priateness necessitates the use of natural models. Prescriptions and 

pharmaceutical metabolites are prone to dilapidation, which might lead 

to drug center closure due to the prescription’s existence. 

h. 	Blood, Plasma, Urine, and Faces Sample Analysis for Drug and 

Metabolites 

To pick and look at changing qualities and effects of the medicine and 

its metabolites on persons, standard clinical starting models combine 

blood, plasma, urine, and faces. 

i. 	 Patient Protection – GCP, HIPAA, and Adverse Event Reporting 

To reliably get human patients, clinical essentials, as well as good clini

cal practices (GCP), the Health Insurance Portability and Accountability 

Act (HIPAA), and an opposing event explaining the IEC/IRB monitor 

and guarantee their care, should all be implemented [3]. 
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Stage 4: FDA Review 
It is a big step forward for the FDA to conduct a full survey after the new 

medicine has been tested for maximum viability and security and clinical 

preliminary results have been released. Currently, the FDA conducts an audit 

and either supports or rejects the pharmaceutical application submitted by 

the medication advancement group. The FDA approval process is mentioned 

in Table 9.1. 

a. Administrative Approval Timeline 

Depending on the wishes and needs of patients, the new medicine 

administrative endorsement course of events might be standard, rapid 

track, forward leap, and speed up endorsement or need an audit. If a 

standard or necessity audit is required, the approval process might take 

a lengthy time. Early endorsements, such as quick track, forward jump, 

or faster endorsements, might happen. 

b.	 IND Application 

IND presentations must be filed to the FDA before clinical studies may 

begin. Engineers can start clinical preliminaries if the preliminaries are 

ready to go and the FDA has not given the drug a negative response. 

c. NDA/ANDA/BLA Applications 

When clinical preliminaries indicate pharmacological security and via

bility, an NDA shortened new drug application (ANDA) or BLA is filed 

with the FDA. The FDA conducts surveys to gather information earlier 

determining whether or not to endorse a product. Formerly reaching 

a concluding determination, additional investigation, or a professional 

optional board may be mandatory. 

d. Vagrant Drug 

A vagabond medicine is intended to cure an illness that is so uncommon 

that financial backers are wary of promoting it under regular marketing 

conditions. It is possible that these medications will not be able to be 

supported promptly or at all. 

e. Sped-up Approval 

If there is compelling proof of a favorable outcome on an auxiliary end

point rather than proof of result on the medication’s honest therapeu

tic benefits, new medications may be given fast approval. The goal of 

endorsement is to show that the treatment may help treat significant or 

dangerous illnesses. 
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Table 9.1 The FDA’s medication approval procedure in a nutshell.
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f. 	 Purposes Behind Drug Failure 

For a variety of reasons, new drug applications may fail, including tox

icity, appropriateness, PH characteristics, bioavailability, or poor med

icine execution. 

Poisonousness: Due to security concerns about its use after assembly, 

the drug may be rejected if the danger of further medicine is too large in 

human or animal patients. If another medication’s adequacy is not high 

enough, or if the proof is not clear, the FDA may reject it [3]. 

Medication can also fail an FDA audit due to PK characteristics or inad

equate bioavailability as a result of low fluid solvency or excessive first-

pass digestion. Insufficient activity duration and unanticipated human 

medication connections are two PK explanations for pharmacological 

disappointment. 

Lack of Drug Performance: The FDA may discard a request for a plan 

that accomplishes improvement if the new treatment works as predicted 

but only to a limited extent. 

Stage 5: Post-Market Monitoring 
The FDA mandates drug corporations to analyze the care of their products 

utilizing the FDA Adverse Event Reporting System (FAERS) data collecting 

once they have been authorized and collated. FAERS is used by the FDA 

to assist in its post-advertising security reconnaissance program. This effort 

allows manufacturers, health experts, and customers to report concerns with 

supported medications. 

Here is a quick rundown of the current FDA medication agreement pro

cedure [9]. 

9.5 In Drug Discovery, Artificial Intelligence 

The enormous substance space, which comprises more than 1060 particles, 

encourages the production of many medication atoms [10]. The pharmaceu

tical development process, on the other hand, is constrained by a lack of 

cutting-edge technologies, making it a time-consuming and costly process 

that AI can assist with [11]. Simulated intelligence can recognize hit and 

lead chemicals, enabling a more efficient medication structure plan and faster 

approval of the pharmaceutical target [12]. 

Notwithstanding its benefits, AI faces some critical information 

challenges, like the scale, development, variety, and vulnerability of the 
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information. Traditional machine learning methods are unlikely to be able 

to manage the informative indexes accessible for drug discovery in pharma

ceutical businesses, which might contain a large number of combinations. 

Using a computer model based on the quantitative design action connection, 

large volumes of mixes or basic physicochemical constraints, such as log P 

or log D, may be anticipated fast (QSAR). Regardless, these models are far 

from being able to forecast mind-boggling biological features such as com

bination viability and bad consequences. In addition, QSAR-based models 

handle issues such as a shortage of preparation sets, trial information prob

lems in preparation sets, and trial approvals. Recently established AI proce

dures, like DL and substantial displaying exams, can be applied to undertake 

security and viability assessments of pharmaceutical particles based on 

huge data demonstrating and study to solve these challenges. Merck was 

the winner of a QSAR ML rivalry in 2012, which recognized the welfare 

of DL in the pharmaceutical industry’s drug disclosure approach. DL mod

els beat outdated ML methods for 15 absorptions, distribution, metabolism, 

excretion, and toxicity (ADMET) informative indices of pharmacological 

competitors [13, 14]. 

The virtual synthetic space is enormous, and it presents a particle 

topographical guide by expressing atom appropriations and attributes. 

Synthetic space modeling’s purpose is to assemble positional data for 

bioactive mixes, confidentially and virtual screening (VS) aids in the 

assortment of appropriate atoms used for additional testing. PubChem, 

ChemBank, DrugBank, and ChemDB are examples of open access synthetic 

environments. 

Using a combination of in silico techniques to computer-generated 

screen compounds from simulated synthetic spaces, as well as construction 

and ligand-based methodologies, researchers were able to obtain a better 

profile examination, a faster end of nonlead mixtures, and a better choice 

of medication particles, all while consuming less. To pick a lead ingredient, 

medication plan computations such as coulomb grids and sub-atomic finger 

impression acknowledgement reflect the physical, substance, and toxicolog

ical outlines [12, 15]. 

Different restrictions, such as prediction models, particle similarity, the 

atomizing method, and the usage of in silico methods, can be utilized to fore

cast the best synthetic assembly of a molecule [16]. When 95,000 distrac

tions were tried against these receptors, Pereira et al. introduced DeepVS, 

a framework for docking 40 receptors and 2950 ligands that displayed good 

presentation. A multiobjective computerized substitution calculation was 

used to increase the strength profile by evaluating the form comparability, 
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pharmacological activity, and physicochemical properties of a cyclin- 

subordinate kinase-2 inhibitor. 

Straight discriminant analysis (LDA), support vector machines (SVMs), 

arbitrary timberland (RF), and decision trees are examples of AI-based QSAR 

procedures that have grown into QSAR exhibiting apparatuses that may be 

employed to speed up QSAR examination. When Lord et al. compared the 

capability of six AI computations to rank unknown mixes with natural action 

to that of conventional approaches, they found that the difference was statis

tically insignificant [17]. 

9.6 Artificial Intelligence in Drug Screening 

The most common way of finding and fostering a medication can assume 

control for longer than 10 years and costs US$2.8 billion by and large. That 

being said, the vast majority of restorative atom bomb Phase II clinical pre

liminaries and administrative endorsement [1, 18] nearest-neighbor classi

fiers (RF), support vector machine machines (SVMs), and profound neural 

organizations (DNNs) are used for VS and can predict in vivo movement 

and risk based on amalgamation attainability [18, 20]. Bayer, Roche, and 

Pfizer are among the biopharmaceutical companies that have partnered with 

IT companies to create a platform for medication disclosure in parts like 

immuno-oncology and cardiovascular disease. The AI-enabled elements of 

VS are detailed later down [12]. 

9.6.1 The expectation of the physicochemical properties 

Dissolvability, segment coefficient (logP), degree of ionization, and inborn 

porousness are physicochemical qualities of medicines that impact its phar

macokinetics properties and objective receptor family in a roundabout way 

and should be addressed while developing another drug. To predict physico

chemical features, unique AI-based devices can be used. For example, ML 

makes use of massive informative indexes that are given throughout the com

pound augmentation process that has previously been completed to prepare 

the software [21]. In drug configuration calculations, subatomic parameters 

like SMILES strings, potential energy estimations, electron thickness every

where the particle, and iota orientations in 3D are utilized to construct likely 

atoms using DNN and forecast their attributes [22]. 

Zang et al. established the estimation program interface (EPI) suite 

[21], which is a workshop approach for determining the six physico

chemical characteristics of ecological synthetic chemicals offered by the 
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Environmental Protection Agency (EPA) using a measurable construction 

property relationship (QSPR). The lipophilicity and dissolvability of various 

combinations were predicted using neural networks based on the ADMET 

indication and the ALGOPS algorithm. To predict the dissolvability of 

atoms, DL techniques such as aimless chart recursive neural organizations 

and diagram-based convolutional neural organizations (CVNN) have been 

utilized [23]. 

ANN-based models, diagram sections, and part-edge-based models 

have all been used to predict the corrosive separation steady of mixes in a 

few cases [21]. Cell lines like Madin–Darby canine kidney cells and human 

colon adenocarcinoma (Caco-2) cells have also been utilized to produce 

cell penetrability data for a certain particle class, which is then analyzed by 

AI-assisted indicators. 

Kumar et al. used 745 mixtures to create six extrapolative models 

[SVMs, ANNs, LDAs, probabilistic neural organization calculations, and 

fractional least square (PLS)], which were then applied to 497 mixtures to 

forecast their digestive absorptivity based on boundaries like sub-atomic sur

face region, sub-atomic mass, all-out hydrogen count, sub-atomic refractiv

ity, sub-atomic volume, logP, and absolute value. In a similar line, human 

gastrointestinal digestion of a range of synthetic combinations was predicted 

using in silico models based on RF and DNN. As a result, AI plays an import

ant role in drug research, anticipating not just a medication’s ideal physico

chemical properties but also its optimum bioactivity [25]. 

9.6.2 Forecast of bioactivity 

The viability of medication atoms relies upon their partiality or the objective 

protein or receptor. Medication particles that do not show any communica

tion or partiality toward the designated protein cannot convey the restorative 

reaction. In certain occurrences, it may likewise be conceivable that cre

ated drug atoms collaborate with accidental proteins or receptors, prompt

ing poisonousness. Subsequently, drug target restricting liking (DTBA) is 

indispensable to anticipating drug–target associations. Artificial-intelligence

based techniques can gauge the limiting proclivity of medication by thinking 

about either the elements or likenesses of the medication and its objective. 

Element-based connections perceive the substance moieties of the medica

tion, and the objective is to decide the component vectors. On the other hand, 

in similitude-based cooperation, the comparability among medication and 

target is thought of, and it is expected that comparative medications will asso

ciate with similar targets [26]. 



9.6 Artificial Intelligence in Drug Screening  251 

For predicting drug–target communications, web programs like as 

ChemMapper and the comparability gathering method (SEA) are available. 

KronRLS, SimBoost, DeepDTA, and PADME are just a few of the ML and 

DL methods that have been utilized to conclude DTBA. ML-based meth

ods like Kronecker-regularized least squares (KronRLS) evaluate the resem

blance among medications and protein atoms to predict DTBA. SimBoost, 

on the other hand, forecasts DTBA using relapse trees, taking into account 

both element-based and likeness-based cooperations. Any combination 

of SMILES medication features, ligand most extreme normal foundation 

(LMCS), expanded availability unique mark, or any combination of these 

can be evaluated [26]. 

DL approaches, as opposed to ML, have demonstrated improved execu

tion since they use network-based strategies that do not rely on the accessibil

ity of the 3D protein structure. Some of the DL approaches used to measure 

DTBA include DeepDTA, PADME, WideDTA, and DeepAffinity. DeepDTA 

takes drug data in the form of SMILES, which include an amino acid order 

for protein input as well as a one-dimensional illustration of the pharma

cological structure [27]. WideDTA is a CVNN DL approach that considers 

ligand SMILES (LS), amino corrosive configurations, LMCS, and protein 

sections and themes for selecting the limiting fondness [28]. 

The methodologies addressed before [29] are DeepAffinity and pro

tein and drug molecule association prediction (PADME). DeepAffinity is a 

customizable deep learning model that can be used with RNN and CNN, as 

well as unlabeled and labeled data. In terms of fundamental and physical 

qualities, it examines the molecule in the SMILES configuration and pro

tein successions [30]. PADME is a DL-based stage that uses feed-forward 

neural networks to predict drug–target interactions (DTIs). It uses a mix of 

the drug’s components and aim at protein’s information to assess the degree 

of collaboration between the treatment and the target protein. To calculate 

the prescription and aim, the SMILES illustration and the protein arrange

ment composition (PSC) are used independently [29]. Medicines and mark 

proteins of recognized and unidentified compounds, as well as medication 

repurposing and atomic system comprehension, may all be studied using solo 

ML techniques like MANTRA and PREDICT. MANTRA bundles chemi

cals with comparable quality articulation profiles and groups those combina

tions that are believed to have a common component of activity and a regular 

chemical pathway using a CMap informative index. A medicine’s bioactiv

ity also contains information on ADME. XenoSite, FAME, and SMARTCyp 

are artificial-intelligence-based devices that are tasked with determining 

where medicine is digested. Furthermore, the programming tools CypRules, 
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MetaSite, MetaPred, SMARTCyp, and WhichCyp were utilized to find exact 

CYP450 isoforms that interfere with a process. The leeway route of 141 sup

ported drugs was accurately completed using SVM-based metrics [31]. 

9.6.3 Expectation of poisonousness 

To avoid unwanted repercussions, every medicine particle’s poisonousness 

must be predicted. To determine a medicine’s poisonousness, cell-based in 
vitro tests are frequently performed as initial research and monitored by animal 

studies, increasing the cost of pharmacological disclosure. LimTox, pkCSM, 

admetSAR, and Toxtree are some of the online cost-cutting tools accessible. 

Advanced AI-based systems seek for commonalities amongst blends or use 

input highlights to determine a substance’s toxicity. The National Institutes 

of Health, the Environmental Protection Agency (EPA), and the US Food 

and Drug Administration (FDA) organized the Tox21 Data Challenge to test 

a few computer methods for assessing the toxicity of 12,707 natural combi

nations and medications. DeepTox, a machine learning system, beat all other 

approaches when it came to recognizing static and dynamic components 

inside synthetic atom descriptors such as molecular weight (MW) and Van 

der Waals volume. Table 9.2 highlights the different AI techniques that have 

been employed in drug research. 

SEA was used to compare the health goal expectations of 656 featured 

medications to 73 unintentional targets that might have antagonistic effects. 

eToxPred was developed using a machine-learning-based technology and used 

to assess the harmfulness and union plausibility of small natural atoms, with 

an accuracy of 72% [31]. In essence, open-source devices like TargeTox and 

PrOCTOR are employed in the prediction of poisonousness [32]. TargeTox 

is an aim-based medical hazard estimating technique based on natural orga

nizations that use the culpability by-affiliation standard, which asserts that 

elements in natural organizations with comparable practical properties share 

likenesses [33]. It may provide protein network data and utilize a machine 

learning classifier to predict drug toxicity by combining pharmacological and 

useful properties. The delegate was created using an RF model that com

prised medicine likeliness characteristics, sub-atomic elements, target-based 

components, and attributes of protein which focuses to provide a “Delegate 

score,” which indicated if a drug would fail clinical preliminaries because 

of its noxiousness. It also discovered FDA-approved drugs with potentially 

hazardous drug interactions. Using a sophisticated CVNN method, the Tox 

(R) CNN was used to assess the cytotoxicity of drugs given to DAPI-stained 

cells [34]. 
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Table 9.2 Examples of artificial intelligence (AI) techniques in drug development. 

Tools	 Details
 
DeepChem	 The MLP model was utilized to locate a feasible 

candidate for drug development using a python-based AI 

system. 
DeepTox	 A processer program that calculates the noxiousness of 

over 12,000 medicines. 
DeepNeuralNetQSAR	 A Python-based system that practices computational 

techniques to help in the identification of chemical 

molecular movement. 
ORGANIC	 A molecular plan tool that aids in the creation of 

molecules with certain characteristics. 
PotentialNet To forecast ligand binding affinity, NNs are employed. 
Hit Dexter A machine learning method is being utilized to forecast 

which molecules will reply to biological investigations. 
Delta Vina A machine learning technology is being utilized to 

anticipate which molecules will answer biological tests. 
Neural graph fingerprint Using a scoring system, re-scoring drug-ligand binding 

affinity. 

It can be used to anticipate novel molecular properties. 
AlphaFold Predicts protein 3D structures 
Chemputer Aids in the reporting of chemical synthesis procedures in 

a uniform style. 

9.7 Artificial Intelligence in Planning Drug Particles 

9.7.1 The expectation of the objective protein structure 

When building a medication atom, it is vital to choose the right target for 

effective therapy. Various proteins have a role in the infection’s growth, and 

they can be overexpressed at times. Consequently, for a specific focus of 

infection, foresee the construction of the objective protein to plan the medi

cation atom. Artificial intelligence can help with structure-based medication 

disclosure by anticipating the 3D protein structure if the plan is in harmony 

with the synthetic climate of the aim protein site, assisting with foreseeing 

the impact of a complex on the aim as well as security thoughts before it is 

blended or created. AlphaFold, a DNN-based AI tool, was utilized to analyze 

the distance among neighboring amino acids and the comparison sites of the 

peptide securities to predict the 3D objective protein assembly, and it did a 

fantastic job, appropriately foreseeing 25 out of 43 structures. 

AlQurashi utilized RNN to estimate the protein structure in a concen

trate. After three steps (calculation, math, and assessment), the inventor iden

tified an intermittent mathematical structure (RGN). The essential protein 
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arrangement was encoded here, and the torsional plots for a certain buildup 

and, to a degree, finished spine obtained from the mathematical unit upstream 

were then deemed information and given another spine as yield. As a result 

of the last unit, the 3D construction was supplied as a yield. The predicted 

and test structures were compared using the distance-based root mean square 

deviation (dRMSD) measure. To keep the dRMSD between the test and pro

jected designs low, RGN’s bounds were enhanced [35]. AlQurashi antici

pated that his AI approach will be faster than AlphaFold’s when it comes to 

predicting protein structure. In any case, AlphaFold is expected to be extra 

precise in forecasting protein assemblies with comparable layouts to the ref

erence assemblies [36]. 

A review was done to anticipate the 2D assembly of a protein using 

MATLAB and a nonlinear three-layered NN tool compartment based on 

feed-forward directed learning and backpropagation blunder computing. The 

NNs learned calculations and performed execution assessments while using 

MATLAB to prepare data and generate relevant indexes. The 2D structure 

has a prediction accuracy of 62.72%. 

9.7.2 Foreseeing drug-protein communications 

Collaborations amongst pharmaceutical proteins are important to a treat

ment’s effectiveness. Forecasting a drug’s communication with a receptor or 

protein is serious for determining its viability and efficacy and medication 

repurposing and evading polypharmacology. Numerous AI approaches have 

demonstrated their effectiveness in correctly forecasting ligand–protein inter

actions and delivering suitable repair. Wang et al. used the SVM technique to 

uncover nine unique mixtures and their communication with four critical tar

gets based on 15,000 protein–ligand cooperations generated based on major 

protein groupings and fundamental features of small atoms [37]. 

Yu et al. used two RF models to forecast likely medicine–protein 

connections, comparing them to stages with high affectability and explic

itness, such as SVM, and employing pharmacological and substance data. 

Furthermore, these modes may be used to forecast drug–target affiliations, 

which might be expanded to include target–sickness and target–target affilia

tions, allowing for a faster medication disclosure procedure [38]. Xiao et al. 
employed the synthetic minority over-sampling technique and the neighbor

hood cleaning rule to improve the data for the construction of drug targets. 

The iDrug-GPCR, iDrug-Chl, iDrug-Enz, and iDrug-NR sub-predictors may 

be used to distinguish between GPCRs, particle channels, chemicals, and 

atomic receptors (NR). Target-pocketknife testing was used to compare this 
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indication to other indicators, and the former outperformed the latter in terms 

of forecast precision and consistency [39]. 

AI’s capability to forecast medication–target communications has also 

been utilized to aid in drug repurposing and polypharmacy evasion. When 

a remedy is repurposed, it becomes eligible for Phase II clinical trials right 

away. Because it costs $8.5 million to relaunch an old drug vs. $41.2 mil

lion to introduce a new pharmacological component, utilization is limited. 

The “culpability by affiliation” method may be used to estimate the creative 

association between a treatment and an infection, which can be determined 

either by information or by calculation. The ML methodology, which utilizes 

algorithms like SVM, NN, computed relapse, and DL, is commonly used in 

a computationally determined organization. When repurposing a pharmaceu

tical, different relapse stages like PREDICT, SPACE, and other ML draws 

close comparison between drug–drug, ailment infection similitude, target 

atom similarity, compound construction, and quality articulation profiles [40]. 

DeepDTnet, a deep learning technology based on cell networks, 

was used to anticipate the therapeutic usage of topotecan, a topoisomer

ase inhibitor now in use. By blocking the humanoid retinoic acid corrosive 

receptor-related vagrant receptor-gamma t, it can also be used to treat multiple 

sclerosis (ROR-t). A provisional US patent presently protects this level. Self-

assembling manuals (SOMs) are ML’s sole classification and are employed 

in the repurposing of medications. They adopt a ligand-based strategy to deal 

with scanning innovative off-focuses for a set of pharmaceutical particles, 

preparing the framework on a predetermined number of mixes with perceived 

natural activities and then using it to study other combinations. According to 

current research, DNN was utilized to repurpose present medications with 

the confirmed movement against SARS-CoV, HIV, flu sickness, and 3C-like 

protease inhibitors. Extended network finger impressions (ECFPs), useful 

class fingerprints (FCFPs), and octanol-water segment coefficient were used 

to create the AI stage (ALogP count). Based on their cytotoxicity and viral 

limitation, of the examined medications may be progressed further, accord

ing to the findings [41]. 

Polypharmacology, defined as a medication atom’s predisposition 

to interact with numerous receptors, resulting in asymmetric antagonistic 

effects, may also be predicted by drug–protein interactions. Artificial intel

ligence can aid in the era of more secure pharmaceutical particles by plan

ning another atom based on polypharmacology reasoning. Computer-based 

intelligence stages, such as SOM, may be used to link a variety of mixes to 

various objectives and off-targets, thanks to the vast knowledge bases avail

able. To create connections between the pharmacological properties of drugs 
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and their prospective aims, Bayesian classifiers and SEA computations may 

be utilized. 

Li et al. verified the application of KinomeX, a web-based artificial 

intelligence platform that uses deep neural networks (DNNs) to discover 

kinase polypharmacology based on chemical structures. This step makes use 

of DNN, which has over 300 kinases and 14,000 bioactivity data. By concen

trating on a medication’s overall selectivity for the kinase family and specific 

subfamilies of kinases, this method can help in the development of innova

tive synthetic modifiers. NVP-BHG712 was used as a model chemical in 

this study to precisely predict its primary targets and off-targets [42]. Ligand 

Express, a cloud-based proteome-screening AI tool developed by Cyclica, is 

used to identify receptors that can communicate with a certain small atom 

(represented by a SMILE string) and to build on-target and off-target con

nections. This makes thoughtful the medication’s potential negative effects 

much easier. 

Computer-based intelligence is one of the best medication plan over a 

couple of years, the new drug configuration approach has been generally used 

to configure drug particles. The conventional strategy for a new drug configu

ration is being supplanted by developing DL techniques, the previous having 

weaknesses of convoluted amalgamation courses and troublesome forecast 

of the bioactivity of the original particle. PC-supported union arranging can 

likewise propose a great many constructions that can be combined and pre

dict a few diverse union courses for them. 

The Chematica program was created by Grzybowski et al., and it may 

encrypt a set of criteria into the machine and provide various combination 

courses for eight therapeutically significant targets. This program has demon

strated its effectiveness in terms of refining yield and cutting costs. It can also 

provide alternate integrating ways to protect components and is intended to 

aid in the mixing of yet-to-be-combined mixtures. Similarly, DNN is founded 

on natural science and retrosynthesis principles, which, when combined with 

Monte Carlo tree look and emblematic AI, allow for considerably quicker 

response prediction and medication disclosure and planning than older 

approaches [43, 44]. 

Coley et al. fostered a structure where an unbending forward response 

format was applied to a gathering of reactants to blend synthetically achiev

able items with a huge pace of response. Based on a score provided by the 

NNs, ML was used to determine the winning item. Putin et al. studied a DNN 

dubbed with the built-up ill-disposed neural PC (RANC) in the context of RL 

for the reorganization of small natural atoms. Particles addressed as SMILES 

strings were used to prepare this step. It then built particles with predefined 
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synthetic properties at the time, such as MW, logP, and topological polar 

surface area (TPSA). RANC was associated with ORGANIC, a stage that 

outdone RANC in terms of producing interesting structures with little design 

length loss [45]. 

To recognize particles taken from the ChEMBL dataset and processed 

into SMILES strings, RNN also employed the long momentary memory 

(LSTM). This was used to create a VS particle library with a diverse collec

tion of particles. This approach was used to secure 5-HT2A receptor focuses, 

Staphylococcus aureus focuses, and Plasmodium falciparum focuses [46]. 

For a novel pharmacological mix, Popova et al. designed the reinforce

ment learning for structural evolution technique, which employs generative 

and prophetic DNNs to encourage new combinations. The generative model 

uses a stack memory to produce more unique particles in the form of SMILE 

strings, but prophetic models are employed to forecast the properties of the 

freshly formed complex [47]. Merk et al. employed a generative AI model 

to create retinoid X and PPAR agonist atoms with the intended restorative 

belongings lacking the need for composite criteria. The scientists created five 

atoms, four of which showed considerable modulatory movement in cell test

ing, demonstrating the efficacy of generative AI in particle union. Because of 

its numerous advantages, AI’s contribution to particle back planning can be 

valuable to the pharmaceutical industry, including providing internet learning 

and synchronous advancement of all-around educated information, as well 

as proposing possible combination courses for intensifying prompting quick 

lead planning and improvement [48]. 

9.8 	Artificial Intelligence in Propelling 
Drug Item Advancement 

The revelation of an original medication atom requires its ensuing consol

idation in an appropriate dose structure with wanted conveyance qualities. 

Around here, AI can supplant the more established experimentation approach. 

Different computational instruments can resolve issues experienced in the 

plan region, for example, strength issues, disintegration, porosity, etc., with 

the assistance of QSPR. Rule-based frameworks are used to choose the kind, 

nature, and amount of excipients conditional on the medicine’s physicochem

ical features. They work through an input component to screen and adjust the 

complete interaction periodically [48]. 

Guo et al. developed a crossover framework for the creation of piroxi

cam direct-filling hard gelatin cases based on the drug’s disintegration profile 

using expert systems (ES) and artificial neural networks (ANN). The model 
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expert system (MES) selects and offers plan progression based on the infor

mation limits. Backpropagation is used by ANN to find out how to connect 

plan limitations to the best reaction, all while being constrained by the con

trol module to maintain smooth definition development [49]. 

The influence of the dust stream property on the pass on filling and cycle 

of pill pressure was investigated using a variety of numerical approaches, 

including computational liquid elements (CFD), discrete component display

ing (DEM), and the finite element method. CFD may also be utilized to look 

at the impact of tablet computation on the disintegration profile of the tablet. 

The employment of these numerical models in combination with AI might 

help speed up the development of medications [50]. 

9.9 Artificial Intelligence in Drug Fabricating 

As the complexity of assembling operations rises, along with the demand 

for more effectiveness and improved item quality, current assembling frame

works strive to deliver human input to machines, constantly adjusting the 

assembling practice. The pharmaceutical business may profit from AI 

addition in processing. Devices, such as CFD, employ Reynolds-averaged 

Navier–Stokes solvers technology to focus on fomentation and anxious emo

tions in various hardware (e.g., blending tanks) by automating many medi

cine jobs. Comparative frameworks, like direct mathematical reproductions 

and enormous swirl recreations, include progressed ways to deal with tack

ling confounded stream issues in assembling. 

By connecting diverse substance codes and functioning using a prear

ranging language known as Chemical Assembly, the smart Chemputer stage 

permits computerized atom combination and assembly. It has been used to 

successfully mix and assemble sildenafil, diphenhydramine hydrochloride, 

and rufinamide, with profit and quality comparable to hand union [51]. AI 

breakthroughs should be able to efficiently finish granulation in granula

tors with sizes from 20 to 500. Basic components were connected to their 

reactions via neuro-fluffy thinking and innovation. In both mathematically 

comparable and distinct granulators, they inferred a polynomial condition for 

forecasting the extent of the granulation liquid to be added, needed speed, 

and impeller width. 

DEM has been broadly used for the pharmaceutical industry to inves

tigate the period consumed by tablets in the shower zone, the belongings of 

fluctuating cutting edge speediness and outline, anticipating the likely path 

of the tablets in the covering system, and focusing on the isolation of pow

ders in a twofold combination, for example. Along with fluffy models, ANNs 
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focused on the relationship between machine parameters and tablet covering 

in the assembly process to reduce tablet covering. 

Meta-classifiers and tablet-classifiers are artificial intelligence (AI) 

devices that help check the final product’s quality, highlighting a proba

ble mistake in the tablet’s manufacturing. A patent has been filed based on 

patient data that provides a system for selecting the best drug and measuring 

routine for each patient, as well as creating the best transdermal fix in the 

same manner. 

Modern fabricating frameworks are attempting to supply human infor

mation to machines, constantly modifying the assembling practice, as assem

bling operations become more complex and there is a greater demand for 

efficiency and improved item quality. The application of AI industries might 

be a boon to the pharmaceutical industry. Apparatuses, like CFD, employ 

Reynolds-averaged Navier–Stokes solvers technology to focus on the influ

ence of turbulence and anxiety in varied hardware (e.g., mixed tanks), mak

ing use of the robotization of many pharmacological activities. Comparative 

frameworks, like direct mathematical reproductions and huge whirlpool rec

reations, include progressed ways to deal with tackling confounded stream 

issues in assembling [52]. 

9.10 	Artificial Intelligence in Quality Assurance and 
Control 

Getting the most out of raw resources necessitates a delicate balance of 

numerous constraints. Manual impedance is required for quality control test

ing on the goods as well as the upkeep of bunch to group uniformity. While 

this is not always the ideal solution, it does show the present need for AI exe

cution. The FDA changed the current good manufacturing practices (cGMP) 

by introducing a “quality by design” method to deal with the core activity as 

well as specified standards that oversee the last nature of the medicinal item. 

Gams et al. utilized a grouping of humanoid and AI efforts to examine 

initial data from creation bunches and construct decision trees. These were 

also turned into regulations, which the administrators assessed to manage the 

formation cycle in the future [53]. With an inaccuracy of 8%, Goh et al. used 

ANN to predict the disintegration of the tested materials [54]. They focused 

on the disintegration profile, which has effectively foreseen the disintegration 

of the tested material with a mistake of 8% with an indication of the bunch to 

group uniformity of theophylline pellets. 

Simulated intelligence may also be used to control in-line production 

processes so that the item meets the specified standard. An ANN that uses a 
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mix of self-versatile advancement, proximity pursuit, and backpropagation 

calculations to watch the freeze-drying procedure is utilized. This may be 

utilized to forecast the temperature and parched cake width at a later time 

point (t + t) for a specific set of operating parameters, which can aid in final 

product quality control. 

A mechanized information section stage, like an Electronic Lab 

Notebook, combined with current, astute methods may ensure the item’s 

quality assurance. Similarly, under the total quality management master 

framework, information mining and other information revelation processes 

may be used as significant approaches in generating difficult decisions and 

developing innovations for astute quality control [55]. 

9.11 Artificial Intelligence in a Clinical Trial Plan 

Clinical trials take 6–7 years to complete and need a substantial financial 

commitment. They are used to measure the security and feasibility of a drug 

in people with a specific infectious disease. Despite this, just one particle 

out of every ten that enters these early phases reaches effective freedom, 

which is a severe setback for the business. Unseemly understanding deter

mination, a lack of specific requirements, and a powerless framework can 

all lead to disappointment. However, with the vast amount of sophisticated 

clinical data available, these disappointments can be reduced by implement

ing AI [56]. 

Patient enrollment accounts for 33% of the clinical preliminary course 

of events. The recruitment of relevant patients ensures the attainment of a clin

ical preliminary, which otherwise results in 86% of disappointment instances 

[57]. By utilizing patient-explicit genome–exposome outline investigation, 

which can aid in the initial forecast of the accessible medication focuses in 

the patients chosen, artificial intelligence can aid in the selection of only an 

exact ailing populace for enrollment in Phase II and III clinical preliminaries. 

Preclinical atom disclosure, also foreseeing lead compounds earlier at the 

beginning of clinical preliminaries using various parts of AI, such as pre

scient ML and additional thinking procedures [56], aids early forecasting of 

lead particles that would permit clinical preliminaries with the deliberation of 

the chosen persistent populace. 

Existing patients from clinical preliminary tests resulted in a 30% fail

ure rate, necessitating extra screening procedures to complete the prelimi

nary, wasting time and money. This may be prevented by keeping a careful 

eye on the patients and assisting them in following the clinical preliminary’s 

recommended protocol. In a Phase II trial, AiCure created portable software 
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to track normal medication usage by schizophrenia patients, which enhanced 

patient adherence by 25%, assuring the study’s success [57]. 

9.12 Artificial Intelligence in Drug Item Execution 

9.12.1 Artificial intelligence in market situating 

Market positioning is the most common approach for generating a personal

ity for a product to convince customers to acquire it, making it a crucial com

ponent in nearly all business systems for enterprises to build their distinct 

brand. This method was employed in the promotion of the pioneering brand 

Viagra, which was intended not just for the conduct of erectile dysfunction in 

males but also for the treatment of other issues related to personal enjoyment. 

It has been simpler for firms to acquire a distinct awareness of their 

image in the public eye, thanks to innovation and the internet as a platform. 

Organizations employ online search tools as one of the basic steps to achieve 

a prominent place in web-based advertising and aid in the location of the item 

on the lookout, according to the Internet Advertising Bureau. Businesses are 

always seeking to rank their websites more advanced than those of competi

tors to get rapid awareness for their brand. 

Researchers were able to get a greater understanding of markets by 

combining factual inquiry methods and molecular swarm augmentation cal

culations (invented by Eberhart and Kennedy in 1995) with NNs. They could 

be able to assist in determining the best marketing plan for the creation based 

on the unique client request expectation [55]. 

9.12.2 	Artificial intelligence in market expectation and 
investigation 

The accomplishment of an organization lies in the persistent turn of events 

and the development of its occupational. Indeed, smooth with admittance to 

considerable assets, R&D yield in the drug business is dropping as a result of 

the disappointment of organizations to take on novel showcasing innovation. 

The advances in computerized advances alluded to as the “fourth modern 

transformation” are serving creative digitalized showcasing using a multi-

criteria dynamic methodology, which gathers and dissects measurable and 

numerical information and executes human surmising to settle on AI-based 

dynamic models to investigate new advertising systems [58]. 

Artificial intelligence additionally helped in an exhaustive examination 

of the principal prerequisites of an item according to the client’s perspec

tive just as understanding the need of the market, which helps in dynamic 
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utilizing forecast instruments. It can likewise conjecture deals and examine 

the market. Computer-based intelligence-based programming connects with 

buyers and makes mindfulness among doctors by showing notices guiding 

them to the item site by a tick. What is more, these techniques utilize regular 

language-handling devices to examine watchwords entered by clients and 

relate them to the likelihood of buying the item [59, 60]. 

A few B2B organizations have unveiled self-administration innovations 

that permit for allowed glancing of health goods, which can be found by pro

viding identity, placing orders, and tracking their delivery. Pharmaceutical 

companies are also promoting their web-based apps, such as 1 mg, Medline, 

Netmeds, and Ask Apollo, to meet patients’ unmet requirements. Market 

expectations are also vital for various medication distribution organizations 

that may use artificial intelligence in the sector, such as “business keen smart 

sales prediction analysis,” which mixes time series gauging and continuous 

application. This enables pharma businesses to anticipate the sale of items 

ahead of time, avoiding expenditures connected with surplus stock or cus

tomer loss due to deficiencies [58]. 

9.13 Artificial Intelligence in the Item Cost 

The organization determines the final cost of the medical item based on 

market research and costs associated with its creation. The primary concept 

behind using AI to compute this cost is to take advantage of its capability 

to impress the rationale of a humanoid master to investigate the issues that 

impact estimation after a product has been manufactured. Patent expiry, 

cost of the reference item, and value fixative approaches control the cost of 

marked and nonexclusive medications. Variables such as consumption during 

innovative work of the medication, severe cost administrative plans in the 

worried nation, a distance of the selectiveness period, and a portion of the 

overall industry of the enhanced medication following a year prior are patent 

finish, and cost of the orientation item, as well as value fixing approaches. 

Huge amounts of measurable data, such as item improvement cost, item 

interest on the lookout, stock expenditure, fabricating cost, and rivals’ item 

cost, are broken down by product in ML, resulting in calculations for predicting 

item cost. Man-made intelligence stages, for example, competitor, dispatched 

by Intelligence Node (founded in 2012), is a completed retail aggressive insight 

stage that dissects the competitor value information and assists retailers and 

brands in screening the opposition. Savvy Athena and Navetti PricePoint allow 

customers to select how much their item is worth, and they urge that medicine 

companies do the same to aid with item pricing [60]. 
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9.14 Conclusion 

Drug research and development may be made more efficient and accurate 

with AI and machine learning. These technologies not only improve process 

efficiency but also reduce or eliminate the need for clinical trials in some 

cases by replacing them with simulations. They also allow researchers to 

study molecules more thoroughly without the use of trials, lowering costs 

and raising ethical concerns. Integrating AI and machine learning into drug 

research is expected to revolutionize drug development in the future, but there 

are still a lot of challenges to overcome, such as cleaning of unstructured and 

heterogeneous datasets, and occasional computing hardware incompetency, 

to name a few. Once these hurdles are removed, AI and machine learning 

developments may be more broadly deployed and enhanced, ushering in a 

new era for the pharmaceutical industry. 

9.15 Acknowledgment 

The authors are grateful to the administration of Oriental University, Indore, 

for their assistance. 

9.16 Funding 

There is no funding issued. 

9.17 Conflict of Interest 

There is no potential for a conflict of interest. 

References 

[1] Yang, Y., & Siau, K. L. (2018). A qualitative research on marketing and 

sales in the artificial intelligence age. MWAIS 2018 Proceedings, 41. 

[2] Wirtz, B. W., Weyerer, J. C., & Geyer, C. (2019). Artificial intelligence 

and the public sector—applications and challenges. Int. J. Public Adm. 
42, 596–615. 

[3] Lamberti, M. J., Wilkinson, M., Donzanti, B. A., Wohlhieter, G. E., 

Parikh, S., Wilkins, R. G., & Getz, K. (2019). A study on the applica

tion and use of artificial intelligence to support drug development. Clin. 
Ther. 41, 1414–1426. 

[4] Beneke, F., & Mackenrodt, M. O. (2019). Artificial intelligence and col

lusion. IIC-Int. Rev. Intellect. Prop. Comput. Law. 50, 109–134. 



 
 

 

 

 

 

 

 

 

 

 

 

264 Artificial Intelligence in Boosting the Development of Drug 

[5] Bielecki, A. (2019). Models of neurons and perceptrons: selected prob
lems and challenges. Springer International Publishing. 

[6] Kalyane, D., Sanap, G., Paul, D., Shenoy, S., Anup, N., Polaka, S., ... & 

Tekade, R. K. (2020). Artificial intelligence in the pharmaceutical sec

tor: current scene and future prospect. In The Future of Pharmaceutical 
Product Development and Research (pp. 73–107). Academic Press. 

[7] Mishra, V. (2018). Artificial intelligence: the beginning of a new era in 

pharmacy profession. Asian Journal of Pharmaceutics (AJP): Free full-
text articles from Asian J Pharm, 12. 

[8] Chen, Z., Liu, X., Hogan, W., Shenkman, E., & Bian, J. (2021). 

Applications of artificial intelligence in drug development using real-

world data. Drug Discov. Today, 26, 1256–1264. 

[9] Pandey, A. (2020). Drug Discovery and Development Process. Learning 
Center, June. 

[10] Mak, K. K., & Pichika, M. R. (2019). Artificial intelligence in drug 

development: present status and future prospects. Drug Discov. Today, 

24, 773–780. 

[11] Duch, W., Swaminathan, K., & Meller, J. (2007). Artificial intelligence 

approaches for rational drug design and discovery. Curr. Pharm. Des. 
13, 1497–1508. 

[12] Baronzio, G., Parmar, G., & Baronzio, M. (2015). Overview of methods 

for overcoming hindrance to drug delivery to tumors, with special atten

tion to tumor interstitial fluid. Front. Oncol. 5, 165. 

[13] Ciallella, H. L., & Zhu, H. (2019). Advancing computational toxicology in 

the big data era by artificial intelligence: data-driven and mechanism-driven 

modeling for chemical toxicity. Chem. Res. Toxicol. 32, 536–547. 

[14] Chan, H. S., Shan, H., Dahoun, T., Vogel, H., & Yuan, S. (2019). 

Advancing drug discovery via artificial intelligence. Trends Pharmacol. 
Sci. 40, 592–604. 

[15] Sellwood, M. A., Ahmed, M., Segler, M. H., & Brown, N. (2018). 

Artificial intelligence in drug discovery. Future Med. Chem. 10, 

2025–2028. 

[16] Zhang, L., Tan, J., Han, D., & Zhu, H. (2017). From machine learning 

to deep learning: progress in machine intelligence for rational drug dis

covery. Drug Discov. Today. 22, 1680–1685. 

[17] Álvarez-Machancoses, Ó., & Fernández-Martínez, J. L. (2019). Using 

artificial intelligence methods to speed up drug discovery. Expert Opin. 
Drug Discov. 14, 769–777. 

[18] Fleming, N. (2018). How artificial intelligence is changing drug discov

ery. Nature, 557, S55–S55. 



 

  

 

 

 

 

 

 

 

References 265
 

[19] Dana, D., Gadhiya, S. V., St Surin, L. G., Li, D., Naaz, F., Ali, Q., ... 

& Narayan, P. (2018). Deep learning in drug discovery and medicine; 

scratching the surface. Molecules, 23, 2384. 

[20] Yang, X., Wang, Y., Byrne, R., Schneider, G., & Yang, S. (2019). 

Concepts of artificial intelligence for computer-assisted drug discovery. 

Chem. Rev. 119, 10520–10594. 

[21] Hessler, G., & Baringhaus, K. H. (2018). Artificial intelligence in drug 

design. Molecules, 23(10), 2520. 

[22] Kumar, R., Sharma, A., Siddiqui, M. H., & Tiwari, R. K. (2017). 

Prediction of human intestinal absorption of compounds using artificial 

intelligence techniques. Curr. Drug Discov. Technol. 14, 244–254. 

[23] Chai, S., Liu, Q., Liang, X., Guo, Y., Zhang, S., Xu, C., ... & Gani, R. 

(2020). A grand product design model for crystallization solvent design. 

Comput. Chem. Eng. 135, 106764. 

[24] Thafar, M., Raies, A. B., Albaradei, S., Essack, M., & Bajic, V. B. (2019). 

Comparison study of computational prediction tools for drug-target 

binding affinities. Front. Chem., 782. 

[25] Öztürk, H., Özgür, A., & Ozkirimli, E. (2018). DeepDTA: deep drug- 

target binding affinity prediction. Bioinform. 34, i821–i829. 

[26] Mahmud, S. H., Chen, W., Jahan, H., Liu, Y., Sujan, N. I., & Ahmed, S. 

(2019). iDTi-CSsmoteB: identification of drug–target interaction based 

on drug chemical structure and protein sequence using XGBoost with 

over-sampling technique SMOTE. IEEE Access, 7, 48699–48714. 

[27] Lang, J. (2018). Proceedings of the Twenty-Seventh International Joint 

Conference on Artificial Intelligence (IJCAI 2018). 

[28] Feng, Q., Dueva, E., Cherkasov, A., & Ester, M. (2018). Padme: A deep 

learning-based framework for drug-target interaction prediction. arXiv 
preprint arXiv:1807.09741. 

[29] Karimi, M., Wu, D., Wang, Z., & Shen, Y.	 (2019). DeepAffinity: 

interpretable deep learning of compound–protein affinity through 

unified recurrent and convolutional neural networks. Bioinform. 35, 

3329–3338. 

[30] Pu, L., Naderi, M., Liu, T., Wu, H. C., Mukhopadhyay, S., & Brylinski, M. 

(2019). eToxPred: a machine learning-based approach to estimate the 

toxicity of drug candidates. BMC Pharmacol. Toxicol. 20, 1–15. 

[31] Basile, A. O., Yahi, A., & Tatonetti, N. P. (2019). Artificial intelligence 

for drug toxicity and safety. Trends Pharmacol. Sci. 40, 624–635. 

[32] Lysenko, A., Sharma, A., Boroevich, K. A., & Tsunoda, T. (2018). An 

integrative machine learning approach for prediction of toxicity-related 

drug safety. Life Sci. Alliance. 1. 



  

 

 

 

 

 

  

 

 

 

266 Artificial Intelligence in Boosting the Development of Drug 

[33] Jimenez-Carretero, D., Abrishami, V., Fernandez-de-Manuel, L., Palacios, I., 

Quilez-Alvarez, A., Diez-Sanchez, A., ... & Montoya, M. C. (2018). Tox_ 

(R) CNN: Deep learning-based nuclei profiling tool for drug toxicity 

screening. PLoS Comput. Biol. 14, e1006238. 

[34] AlQuraishi, M. (2019). End-to-end differentiable learning of protein 

structure. Cell systems. 8, 292–301. 

[35] Hutson, M. (2019). AI protein-folding algorithms solve structures faster 

than ever. Nature. 

[36] Wang, F., Liu, D., Wang, H., Luo, C., Zheng, M., Liu, H., ... & Jiang, H. 

(2011). Computational screening for active compounds targeting pro

tein sequences: methodology and experimental validation. J. Chem. Inf. 
Model. 51, 2821–2828. 

[37] Yu, H., Chen, J., Xu, X., Li, Y., Zhao, H., Fang, Y., ... & Wang, Y. (2012). 

A systematic prediction of multiple drug-target interactions from chem

ical, genomic, and pharmacological data. PloS one, 7, e37608. 

[38] Xiao, X., Min, J. L., Lin, W. Z., Liu, Z., Cheng, X., & Chou, K. C. 

(2015). iDrug-Target: predicting the interactions between drug com

pounds and target proteins in cellular networking via benchmark dataset 

optimization approach. J. Biomol. Struct. Dyn. 33, 2221–2233. 

[39] Park, K. (2019). A review of computational drug repurposing. Transl. 
Clin. Pharmacol. 27, 59–63. 

[40] Ke, Y. Y., Peng, T. T., Yeh, T. K., Huang, W. Z., Chang, S. E., Wu, S. 

H., ... & Chen, C. T. (2020). Artificial intelligence approach fighting 

COVID-19 with repurposing drugs. Biomed. J. 43, 355–362. 

[41] Li, Z., Li, X., Liu, X., Fu, Z., Xiong, Z., Wu, X., ... & Zheng, M. (2019). 

KinomeX: a web application for predicting kinome-wide polypharma

cology effect of small molecules. Bioinform. 35, 5354–5356. 

[42] Grzybowski, B. A., Szymkuü, S., Gajewska, E. P., Molga, K., Dittwald, 

P., Wołos, A., & Klucznik, T. (2018). Chematica: a story of computer 

code that started to think like a chemist. Chem, 4, 390–398. 

[43] Klucznik, T., Mikulak-Klucznik, B., McCormack, M. P., Lima, H., 

Szymkuü, S., Bhowmick, M., ... & Grzybowski, B. A. (2018). Efficient 

syntheses of diverse, medicinally relevant targets planned by computer 

and executed in the laboratory. Chem, 4, 522–532. 

[44] Putin, E., Asadulaev,	 A., Ivanenkov, Y., Aladinskiy, V., Sanchez-

Lengeling, B., Aspuru-Guzik, A., & Zhavoronkov, A. (2018). Reinforced 

adversarial neural computer for de novo molecular design. J. Chem. Inf. 
Model. 58, 1194–1204. 



 

 

 

 

 

 

 

 

 

 

 

 

 

References 267
 

[45] Segler, M. H., Kogej, T., Tyrchan, C., & Waller, M. P. (2018). Generating 

focused molecule libraries for drug discovery with recurrent neural net

works. ACS Cent. Sci. 4, 120–131. 

[46] Popova, M., Isayev, O., & Tropsha, A. (2018). Deep reinforcement 

learning for de novo drug design. Sci. Adv. 4, eaap7885. 

[47] Merk, D., Friedrich, L., Grisoni, F., & Schneider, G. (2018). De novo 

design of bioactive small molecules by artificial intelligence. Molecular 
informatics, 37(1–2), 1700153. 

[48] Guo, M., (2002). A prototype intelligent hybrid system for hard gelatin 

capsule formulation development. Pharm. Technol. 6, 44–52. 

[49] Chen, W., Desai, D., Good, D., Crison, J., Timmins, P., Paruchuri, S., ... 

& Ha, K. (2016). Mathematical model-based accelerated development 

of extended-release metformin hydrochloride tablet formulation. AAPS 
PharmSciTech, 17, 1007–1013. 

[50] Steiner, S., Wolf, J., Glatzel, S., Andreou, A., Granda, J. M., Keenan, G., ... 

& Cronin, L. (2019). Organic synthesis in a modular robotic system 

driven by a chemical programming language. Sci., 363, eaav2211. 

[51] P. J. Das, P. J., Preuss, C., Mazumder, B., Mandlik, V., Bejugam, P. 

R., and Singh, S. (2016). Artificial Neural Network for Drug Design, 

Delivery and Disposition. 

[52] Gams, M., Horvat, M., Ožek, M., Luštrek, M., & Gradišek, A. (2014). 

Integrating artificial and human intelligence into tablet production pro

cess. Aaps Pharmscitech, 15, 1447–1453. 

[53] Goh, W. Y., Lim, C. P., Peh, K. K., & Subari, K. (2002). Application 

of a recurrent neural network to prediction of drug dissolution profiles. 

Neural Comput. Appl. 10, 311–317. 

[54] Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., & Tekade, R. K. 

(2021). Artificial intelligence in drug discovery and development. Drug 
Discov. Today, 26, 80. 

[55] Harrer, S., Shah, P., Antony, B., & Hu, J. (2019). Artificial intelligence 

for clinical trial design. Trends Pharmacol.l Sci. 40, 577–591. 

[56] Fogel, D. B. (2018). Factors associated with clinical trials that fail and 

opportunities for improving the likelihood of success: a review. Contem. 
Clin. Trials Commun. 11, 156–164. 

[57] Singh, J., Flaherty, K., Sohi, R. S., Deeter-Schmelz, D., Habel, J., Le 

Meunier-FitzHugh, K., ... & Onyemah, V. (2019). Sales profession and pro

fessionals in the age of digitization and artificial intelligence technologies: 

concepts, priorities, and questions. J. Pers. Sell. Sales Manag. 39, 2–22. 



 

 

 

 

268 Artificial Intelligence in Boosting the Development of Drug 

[58] Davenport, T., Guha, A., Grewal, D., & Bressgott, T.	 (2020). How 

artificial intelligence will change the future of marketing. J. Acad. Mark. 
Sci. 48, 24–42. 

[59] Syam, N., & Sharma, A. (2018). Waiting for a sales renaissance in the 

fourth industrial revolution: Machine learning and artificial intelligence 

in sales research and practice. Ind. Mark. Manag. 69, 135–146. 

[60] De Jesus, A. (2019). AI for Pricing–Comparing 5 Current Applications. 

Emerj Artif. Intell. Res. 2. 



10
 

Artificial Intelligence in Medical 

Image Processing
 

Mohamed Yousuff*, Rajasekhara Babu, and Thota Ramathulasi 

School of Computer Science and Engineering, Vellore Institute of 
Technology, India 
yousuffrashid@gmail.com 
*Corresponding Author 
Mohamed Yousuff 
Research Scholar, School of Computer Science and Engineering, Vellore 
Institute of Technology (VIT University), India  
Email: yousuffrashid@gmail.com 

Abstract 

Image processing and medical science domains have seen an increase in 
using the term artificial intelligence (AI) over the past decade. Although AI 
is a relatively new concept, it has been formalized since the 1940s. In its 
simplest form, AI refers to computer algorithms that can mimic human intel
ligence’s problem solving and learning abilities. In particular, AI applications 
based on machine learning (ML) algorithms have experienced remarkable 
innovation in the field of computer vision during the past decade. As a result 
of these extraordinary developments, the medical community has created 
new steps in medical care or assisted with treatment planning. AI and ML 
research works have shown promising results in a wide range of medical 
applications. Diagnosis, image segmentation, outcome prediction, and many 
more tasks are transformed by the advent of AI. Research and clinical teams 
and companies have been working together to develop clinical AI solutions 
since ML tools have matured enough to meet clinical requirements in recent 
years. Today, we are closer than ever to seeing AI used in clinical settings; 
so learning the basics of this technology is a “need” for any medical profes
sional. This chapter provides an overview of AI, paying particular attention 
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to the methods utilized based on medical imaging (MI) analysis. It also dis
cussed how current ML and deep learning (DL) methods could be used to 
automate and improve different steps of clinical practice. Function approx
imation, like regression and classification, is a typical supervised task. For 
example, pathology can be classified as present or absent in an image. In case 
of regression, we can also enhance images pixel by pixel or map images to 
each other (e.g., mapping an input computed tomography (CT) image to its 
corresponding dose distribution output). 

10.1 Introduction 

AI models are gaining traction in biomedical research and therapy, demon
strating their utility in various applications, including risk determination and 
assessment, personalized monitoring, diagnostics (such as categorization of 
molecular illness subclasses), prognostication reaction to the treatment, and 
progression. Incorporating much information flows from disparate reposi
tories may have therapeutic potential for these innovatory breakthroughs. 
These data contributors encompass medical images, which account for the 
majority of patient information (particularly in oncology) but also risk factors 
in infections, multi-omics data, therapeutic practices, and timely information. 
Integrating these sources effectively into models results in superior medical 
services and promotes human intellect and AI synchronization [1]. 

All of these areas of research have the potential to significantly advance 
the present situation approaching precision medicine, culminating in much 
more credible and personalized methodologies that have a significant impact 
on diagnosis and treatment trajectories. This entails a turning point away from 
statistical and population-oriented forecasting toward individual prognostica
tion, permitting even more efficacious prophylactic and curative initiatives. 
Although numerous regulations on the construction and use of AI models 
are presented, approved, and published, prospective AI techniques are mul
tiple and diverse. Some difficulties and areas need to be explained regarding 
“how to build AI models” for clinical decision-making. Implementation of 
AI on MI covers many topics such as computing sample size, data curation, 
data augmentation strategies to be followed while handling comparatively 
less and unbalanced datasets, data harmonization, labeling, and annotation of 
radiomics data [2]. 

The Coronavirus Disease 2019 (COVID-19) pandemic has necessitated 
the search for rapid, widespread, precise, and minimal cost assessments, and 
lung imaging is a critical adjunctive resource for COVID-19 diagnostics and 
monitoring. According to the American College of Radiology and Fleischner 
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Society Consensus Statements, imaging of COVID-19 is suggested in the 
event of aggravating breathing problems and, in resource-limited scenarios, 
for prioritizing patients with reasonable to severe pathological symptoms and 
a strong likelihood of malady. This entails two primary responsibilities. The 
first is diagnostics, which incorporates casual assessment and offers support
ing corroboration in medical scenarios involving a suspicious false-negative 
reverse transcription–polymerase chain reaction (RT-PCR) test. The second 
objective is to contribute to evaluating treatment consequences, progression 
of the disease, and expected diagnosis. In the perspective of COVID-19, the 
domain of AI in MI is advancing, and expectations are elevated that AI could 
indeed assist health care professionals and radiologists with all these func
tions [3]. 

Echocardiography (ECCG) has developed into a critical imaging tool 
for anesthetists in monitoring and diagnosing central thoracic pathology 
in cardiovascular surgery patients in the course of the perioperative spell. 
Moreover, it is a expert reliant procedure that includes specialized skills in 
order to construe the information adequately. The contribution of AI method
ologies is widening in enabling anesthetists to handle complex and confusing 
electrocardiography data and assuring more precise and reliable perspec
tives in a short time span, with the intent of enhancing the consequences of 
inmates with circulatory system illness at the time of surgery [4]. With the 
accumulation of huge collective ultrasound (US) conventional datasets and 
the immersion of AI approaches and their missing patterns, it is presumed 
that AI-oriented US will progressively develop into an essential learning 
resource, describing its diagnosing premise, assisting the US diagnosis pro
cess, and, inevitably, favoring both patients and clinicians [5]. 

This chapter is organized to cover a plethora of applications and imple
mentations of AI in the field of MI. Section 10.2 addresses the utilization 
of AI strategies to deal with MRI data. Section 10.3 elaborates the signifi
cance of various ML and DL models in COVID-19 chest computed tomog
raphy (CCT) data and COVID-19 chest X-ray (CXR) data. The usage of 
AI approaches in the field of ECCG and US image analysis is discussed in 
Sections 10.4 and 10.5, respectively. The conclusion of the chapter is pre
sented in Section 10.6. 

10.2 Magnetic Resonance Imaging (MRI) 

Magnetic resonance imaging (MRI) is a type of biomedical approach used 
to provide visuals of the interior of impenetrable body parts in living crea
tures and determine the quantity of adsorbed water in geological formations. 



 

 

272 Artificial Intelligence in Medical Image Processing
 

Figure 10.1 MRI machine with its complete setup. 

It is mostly used to visualize diseased or other biological changes in live 
tissues. It is currently a widely utilized technique for MI. MRI instruments 
use extremely strong magnets to polarize and energize hydrogen nuclei pres
ent in the molecules of water found in living organisms, generating a con
structive interference that is regionally recorded and culminating in visuals 
of the physique. MRI produces a two-dimensional view of a lean carve of 
the body, whereas, nowadays, it is possible to generate three-dimensional 
frames. There are most certain health hazards linked with cellular inflaming 
due to radio frequency exposure, especially in cases of an embedded device 
(for example, pacemaker) in the body. These dangers are rigorously handled 
as part of the instrument’s design and scanning methods [6]. This section of 
the chapter elaborates on the role of AI in MRI image processing for various 
diseases. Figure 10.1 depicts the MRI machine, whereas Figure 10.2 shows 
an MRI image of a human head in the side view. 

10.2.1 Alzheimer’s disease (AD) 

AD is a chronic, incurable brain condition that gradually deteriorates mem
ory and cognitive abilities. It is among the most prevalent neurodegenerative 
disorders in those over the age of 66 globally. Several AI-oriented comput
er-aided diagnostic (CAD) techniques based on brain imaging data have been 
developed to achieve precise and appropriate diagnostic and to diagnose AD 
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Figure 10.2 MRI visual of human 
head side view. 

in its initial phases [7]. The scientific community is actively pursuing the goal 
of developing automated methods for achieving an earlier and definite diag
nostic. A contemporary multinational contest for AD predictors is conducted 
under the title “A Machine Learning Neuroimaging Challenge for Automated 
Diagnosis of Mild Cognitive Impairment” (MLNeCh). The event is on the 
basis of preprocessed collections of T1-biased MRI image repository that have 
been categorized into four classes: persistent AD, patients with mild cognitive 
impairment (MCI), patients with MCI turned to AD, and healthy individuals. 

A strategy is presented for timely detection of AD, which is assessed using 
the MLNeCh data repository. Due to the fact that instantaneous categorization 
of AD is relying on the input (feature vectors) data of high- dimensional nature, 
various methodologies of choosing the features and reducing the dimensions 
are evaluated by comparing to evade the “curse-of- dimensionality” challenge 
[8]. The classification technique is then accomplished as a conjunction of sup
port vector machine (SVM) models, trained on various subsets of the actual 
collection of data meant for training. The proposed tetra- classifier strategy 
excels all self-contained methods assessed in the evaluations. The ultimate 
ensemble is constructed using a collection of classifiers, each of which has 
been trained on a separate subset of the complete training dataset. The pre
sented ensemble model holds the significant benefit of executing effectively 
when only a subset of the dataset is utilized [8]. 

Figures 10.1 and 10.2 represent the setup of MRI machine and the 
visual of head side view, respectively. 
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Structural MRI (sMRI) and resting-state functional MRI (rs-fMRI) 
have already shown potential outcomes in diagnosing AD, but the useful
ness of combining sMRI and rs-fMRI is still not substantially investigated. 
The performances of rs-fMRI and sMRI in mono- and multi-mode methods 
are assessed for categorizing individuals with MCI whose health condition 
transitions into likely AD-MCI as converter (MCI-C) and those having MCI 
without chances of getting AD as non-converters (MCI-NC). The approach 
incorporates cortical and subcortical proportions as input features to the 
model. The rs-fMRI and sMRI characteristics are fed to train and evaluate a 
SVM model to differentiate MCI-C from MCI-NC. The proposed model for 
categorizing MCI-C and MCI-NC made use of a limited set of optimum fea
tures and attained sMRI Ă = 90%, rs-fMRI accuracy (Ă) = 94%, and sMRI 
and rs-fMRI combined Ă = 98%. This study examines the integration of 
rs-fMRI and sMRI to detect initial level of AD [9]. 

AD is caused due to the death of neurons in the brain because of 
beta-amyloid accumulation and the quick dissemination of tau proteins in 
the portions of the brain. Contemporary diagnosis techniques are either too 
expensive or incapable of detecting AD’s histopathology characteristics. As 
a result, computing information model (CIM) is proposed for AD diagnos
tics. The brain’s MRIs are preprocessed with an adaptable histogram and 
fragmented into four inherent modal operations (IMOs) using “bidirectional 
empirical mode decomposition.” For each IMO, indigenous duple patterns 
(IDPs) are generated, and the histograms are joined together. The dataset 
balancing is achieved using adaptable simulated sampling, and a correlated 
pair t-test is used to choose the most important characteristics for every fold 
of 10-fold cross-validation. SVM-Poly 1 and random forest (RF) are imple
mented to classify the input observations, with each achieving the maximum 
Ă = 94%. The approach suggests that the proposed CIM is effective in hospi
tals for automatically classifying AD versus healthy MRI images [10]. 

The new approach is proposed to determine the utility of rule mining 
in assessing AD by utilizing decision trees (DT) and RF methods and incor
porating the obtained rules into an argumentation-oriented rationale scheme 
to facilitate the interpretation and explanation of the results. On the brain 
MRIs collected from healthy subjects (HSs) and AD individuals, the DT 
and RF techniques are implemented. The DT is computed using the KNIME 
analytical framework, while the RF is computed using the R package. The 
argumentation strategy executed in the Gorgias environment attained an 
accuracy of 92%, outperforming the DT and RF algorithms. Ultimately, the 
effectiveness of all algorithms throughout this analysis is consistent with pre
vious research. Additionally, the interpretation provided by the suggested 
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technique for the many feasible forecasts results in a better, accurate, and 
comprehensive evaluation of the patient’s situation. The approach revealed 
the utility of rule extraction in assessing AD using MRI data and the benefits 
of using the argumentation-oriented symbolical rationale to compose and 
evaluate ML results [11]. 

Currently, DL-oriented techniques for classifying neuroimaging datasets 
associated with AD have been developed and substantial growth is achieved. 
The endwise learning that maximizes the effects of DL has received little 
consideration because of the congenital difficulty of neuroimaging driven by 
data paucity. Thus, a method is proposed for endwise learning of a volumet
rical CNN model for a two-class determination such as AD versus HS, grad
ual MCI (gMCI) versus HS, persistent MCI (pMCI) versus HS, and gMCI 
versus pMCI versus HS on MRI data repository. The suggested methodol
ogy employs a convolutional autoencoder (CAE) prominent unsupervised 
learning to resolve the AD versus HS categorization job and regulated TL 
approach to tackle the gMCI versus pMCI determination task. To identify 
the maximum significant biomarkers associated with AD and gMCI, a gradi
ent-oriented visualization technique is utilized to represent the geographical 
relevance of the convolution neural network (CNN) model’s conclusion. To 
evaluate the experimental contributions, the experiments are carried out on 
the ADNI data repository. The findings indicate that the suggested method 
outperformed previous network models with Ă = 87% and Ă = 74% for the 
AD and gMCI discrimination tasks, respectively [12]. 

10.2.2 Skeletal issues 

Considering the popularly accepted perception that structural changes are 
associated with ail in knee joint [osteoarthritis (OA)], a causal correlation is 
not clearly demonstrated. Modern research indicates the presence of various 
subcategories of OA pain patterns in the knees. Although few individuals 
experience increasing aggravation of their pain, others endure considerable 
anguish stabilization. Formulating a direct link with image-oriented indi
cators and pain escalation is beneficial for prognosis. The proposed objec
tive is divided into two sections: (i) to denote various pain pathways in OA 
sufferers; and (ii) to examine the relationship between MRI bioindicators 
obtained with the help of three-dimensional (3D) CNN and the denoted pain 
itineraries [13]. 

The OA schemes gathered recurrent scales of “knee injury and OA 
outcome score” for a pair of knee joints over 10 years’ duration from 4797 
patients. The imaging biomarker finding process utilized 3D “double echo 
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steady state” photos of the knee joint from standard patients. Specific pain 
curves are leveled with the help of the regression approach with quadratic 
polynomials of the unit and dual degree to minimize the innate distortion in 
the collected observations and to manage missing features. Clustering analy
sis is performed using Bayesian Gaussian mixture method which takes stan
dardized computed variables as input. Silhouette score is utilized to select the 
optimum model which can obtain better unique pain patterns. The regression 
attributes are altered toward the “Gaussian mixture model’s” means in order 
to determine the posterior distribution for every anguish curve describing 
group affiliation [13]. 

The built model is a 3D version of the DenseNet-121 architecture. 
The data augmentation procedures are implemented randomly on the train
ing data repository image files in order to avoid class imbalance problems. 
Kaiming He weight initialization procedure is followed. The layers are 
trained to understand the posterior likelihood of pain patterns. Mean square 
error (MSE) is considered as a cost function for regression. The expectation– 
maximization approach was used to optimize a total of 26 possible models 
with a varied number of items and various forms of correlation (complete, 
linked, diagonal, and sphere). The Gaussian combination (with three factors) 
with linked correlation is picked as an ideal clustering model because it ren
dered the greatest average silhouette score. Clustering evaluation revealed 
unique pain pathways: persistent, deteriorating, and gradually deteriorating. 
The MSE values are found to be 0.0149 for training, 0.1557 for testing, and 
0.1550 for validation. The accuracy performance metric is used as a measure 
to ensure that the model precisely estimates the appropriate and likely clus
ters with Ă = 99% for the training phase while 81% and 78% for validation 
and testing phases [13]. 

OA is predominantly diagnosed through variations in hyaline cartilage on 
MI, technological impediments such as distortion, aberrations, and modalities 
create a significant barrier to the most accurate, reliable, and effective earlier 
identification of OA. Due to contemporary improvements, deep neural networks 
(DNNs) are demonstrating exceptional performance in this specific applica
tion space. A DeepKneeExplainer, a unique explicable approach, is proposed 
for diagnosing knee joint OA primarily using radiography and MRI images. 
The methodology starts from a deeply built stacked transformation approach 
to thoroughly preprocess radiography images and MRIs against distortion and 
aberrations. Next, using a U-Net structural model implementing residual neural 
network (ResNet) framework, the feature points are extracted [14]. 

DenseNet and visual geometry group (VGG) models are trained 
using the portion of interest to distinguish the associations. Ultimately, a 
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gradient-directed category activating maps and layered architecture is used 
to emphasize category features, accompanied by presenting domain expert 
interpretable justifications for the estimates. The technique outperforms 
equivalent cutting-edge methods by 92% in extensive trials using the multi-
modal OA study collaborators. It is anticipated that the findings would 
inspire medicinal practitioners and researchers to adopt easily interpretable 
methodologies and DNN-oriented analytical workflows, resulting in a greater 
endorsement and approval of AI-aided solutions in medical care for enhanced 
knee joint OA diagnosis [14]. Due to the intrinsic slowness of MRI record
ing, two distinct speeding approaches have been developed: a continuous 
collection of numerous correlating observations (parallel imaging) and the 
acquirement of less than needed for typical signal computation approaches 
(compressed sensing). Both technologies complement one another in terms 
of expediting MRI procurement. 

A new technique for integrating a classic parallel imaging approach 
with DNN is proposed which generates good feature reconstructions also 
at massive accelerating factor. The suggested technique, dubbed GrappaNet, 
accomplishes gradual restoration just by modeling the reconstruction issue to 
an easier thing that can be rectified using only a conventional parallel imag
ing technique utilizing a neural network (NN), then applying the parallel 
imaging approach, and eventually refining the outcome using another NN. 
End-wise training is feasible for the complete network. The evaluation met
rics are reported on the newly published fast MRI collection, demonstrating 
GrappaNet that can produce nice, enhanced, and good reconstructions over 
alternative approaches [15]. 

10.2.3 Brain illness diagnosis 

Cancer of the brain or central nervous system is one of the top ten risk fac
tors of mortality. Globally, brain tumors are not the main cause of death, but 
40% of other forms of cancer result in brain tumors because of metastasis 
dissemination. Despite the fact that biopsy is regarded as the ideal marker for 
cancer diagnostics, it has a number of limitations, including low sensitivity/ 
specificity values, health threats associated with the biopsy process, and com
paratively more time duration is spent to view the biopsy results. Due to the 
growing number of individuals with brain cancer, there exists an undeniable 
need for non-invasive and intelligent CID method capable of precisely diag
nosing and grading a tumor within a no-time [16]. 

Clinically related six-class dataset is collected and utilized for transfer 
learning (TL) based AI approach using a CNN which resulted in a higher 
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standard of performance metrics in brain cancer rating and discrimination 
using MRI image data repositories. The CNN-based DL model surpasses all 
the considered ML models in this multi-class classification task. AlexNet 
architecture-based model reported amazing performance metrics for K3 
(Ă = 100%), K7 (Ă = 96), and K10 (Ă = 97) cross-validation. The average 
area under the curve (AUC) of DL and ML are registered to be 0.998 and 
0.887, respectively, for p < 0.0001, and the proposed model demonstrated a 
13% betterment compared to ML. The best model is evaluated statistically 
using a tumor isolation factor and on a simulated dataset containing seven 
categories [16]. 

To enhance compressive sensing MRI (CS-MRI) techniques in the con
text of finer feature attrition at large accelerating factors, a recursive fea
ture refining (RFR) model endowed with predefined transformations for the 
purpose of restoring significant features and minutiae. Nonetheless, the sug
gested RFR-CS does have a few drawbacks, including the requirement for 
hyper-parameter choosing, a prolonged rebuilding duration, and a constant 
sparsifying transformation. To address these concerns, the RFR processes 
are unfurled in RFR-CS into a supervisory model-oriented network termed 
RFR-Net. When both the regularization variable and the maximum attri
bute improvement function in RFR-CS are supplied with training datasets, 
they acquire learning. Furthermore, in order to extrapolate the sparseness- 
imposing operation, CNN-oriented inverting modules are investigated in the 
sparseness-enforcing denoising component. Rigorous testing on both gener
ated and brain invitro magnetic resonance repository have demonstrated that 
the suggested model is capable of capturing picture features and preserving 
spatial features while performing quick reconstruction [17]. 

A stable technique for 3D picture segmentation retains the benefits of 
both types of learning techniques, but it also overcomes its drawbacks by 
efficaciously incorporating supervised and unsupervised learning models. 
The suggested strategy is used for the segmentation of brain MRI images in a 
wide range of studies using numerous publicly available 3D brain MRI data 
repositories. The practical results demonstrate that the suggested model sur
passes previous contemporary segmentation techniques under both types of 
learning when implemented on unique MRI observations or on forge obser
vations excluding the requirement to retrain the model with the help of data 
repository annotations metadata [18]. 

InfiNet is a unique, parameter-efficacious, and pragmatic complete 
CNN model for meaningful segmentation of newborn brain MRI data at the 
iso-acute level. InfiNet may readily be adapted for various multi-modality 
segmentation applications. The T1 and T2 data of the scans are considered 
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as input meant for dual encoder branches of InfiNet. The articulate-decoder 
branch gets terminated in the classification layer. The decoder portion of 
the InfiNet acts inventively by upsampling the less-resolution input features 
received through many encoder branches. To accomplish nonlinear interpo
lation, the aggregated values produced in the max-pooling levels of every 
encoder unit are connected to the associated decoder unit. To generate densely 
connected attribute maps, the sparse markers are merged with intermediary 
encoder approximations (jump links) and convolved using learnable chan
nels. InfiNet is trained from start to finish in order to optimize the generic 
dice losses, which is appropriate in situations involving higher class-label 
imbalances. InfiNet accomplishes the entire segmentation in less than 60 sec
onds and outperforms a variety of modernistic DNN structures and its multi-
modal versions [19]. 

10.2.4 Cancer and other disease analysis 

Brain imaging methods are critical in specific diagnostics because they deliver 
unique perspectives on the brain structure, allowing for a better understand
ing of the brain’s functioning and activity. In the field of medical science, 
image processing is utilized to aid in earlier identification and medication of 
life-threatening sickness. The purpose of the approach is to offer a method 
for cancer identification using brain MRI samples by combining CNN and 
shallow stacking autoencoders. This pairing is proven to have a substantial 
impact on the categorization process’s accuracy and efficacy. The technique is 
implemented in MATLAB and validated using a sample of 125 MRI images. 
The observed findings demonstrated that the suggested classifier is highly 
remarkable at distinguishing and rating malignancy MRI images [20]. 

Cancer is the second leading cause of death, after cardiovascular ill
nesses. Particularly, brain tumor has the lowest survivability among all 
types of cancer. The classification of tumors is determined by a variety of 
variables, including textures, form, and position. Healthcare professionals 
had already recommended much more suitable therapies depending on a 
precise diagnosis of the malignancy. Due to the varying form, position, 
scale, and textures of brain tumors, the procedure of subdividing the MRI 
is highly complicated throughout their examination. Surgeons and radiol
ogists can quickly identify and classify cancers if a platform integrating 
CAD and AI is available. A new approach is proposed for automatic seg
mentation that facilitates the extraction of tumors from MRI images and 
also improves the effectiveness of categorization and segmentation. The 
preliminary tasks involve data preprocessing and fragmentation techniques 
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for subdividing normal and malignant tumors or cells via data expansion 
and grouping [21]. 

A current learning-oriented strategy was used to process automatic seg
mentation in composite MRI samples in order to detect tumors; thus, the 
clustering technique termed “Bat Algorithm with Fuzzy C-Ordered Means 
(BAFCOM)” was used to endorse subdividing of tumors. The Bat procedure 
computes the first centroids and distances between a pixel in the BAFCOM 
grouping method, which further obtains the tumor by calculating the distance 
between the carcinoma region of interest (RoI) and the non-carcinoma RoI. 
Following that, the MRI samples were evaluated using the “enhanced capsule 
networks (ECN)” approach to determine whether it is healthy or a tumor. 
Finally, the ECN algorithm is used to evaluate the effectiveness through dis
criminating between two types of tumors in MRI data. Additionally, a genetic 
algorithm (GA) is used to perform the automated cancer grade categoriza
tion, increasing classification results [21]. 

Characterization of the left and right ventricular chambers and cardiac 
muscle using cardiovascular MRI is a typical diagnostic procedure. Thus, 
automating the similar duties has been a focus of considerable research for 
past 10 years. The “Automatic Cardiac Diagnosis Challenge” data is the larg
est freely accessible and completely labeled data repository for cardiac MRI 
(CMRI) analysis. The collection includes information of 155 CMRI observa
tions using multiple instruments as well as benchmark values and categoriza
tion by two health professionals. The primary goal is to determine the extent 
to which cutting-edge DL approaches can segment the cardiac muscles and 
the ventricles and categorize diseases in CMRI. The findings suggest that 
the appropriate systems precisely duplicate expert analysis, with an average 
correlation level of 0.98 for automated medical parameters retrieval and Ă = 
96% for automated diagnostic. These findings pave the way for amazingly 
precise and automated CMRI assessment. Additionally, the circumstances in 
which DL algorithms continue to fail is also identified [22]. 

10.3 Radiography-Based COVID-19 Diagnosis 

Radiography is an imaging approach that uses radiation to observe an entity’s 
internal structure. Medical radiography is utilized for diagnostics and treat
ment. In the context of this chapter, CCT scan and CXR image datasets are 
used. The CCT scan and CXR image of the patient is shown in Figures 10.3 
and 10.4. 

Given the critical nature of early patient identification in terms of treat
ing patients and isolating infected people to avoid virus spread, numerous 
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Figure 10.3 CCT scan image of a patient 

Figure 10.4 CXR image of a patient. 

studies have focused on creating methods for more rapid and cost- effective 
patient identification. Researchers are trying to find better substitutes for 
screening since RT-PCR consumes more time and is limited in quantity. 
Radiography images (CCT and CXR) of the COVID-19 infected individuals 
contain crucial information. Pneumonia caused by virus pathogens appears 
uniquely in radiography images. So, AI is expected to deliver better anal
ysis and performance while handling these images. COVID-19 patient’s 
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diagnostics using CCT or CXR datasets is a multi-step classification task. 
To begin with, the lungs images are preprocessed. The features are then 
retrieved using CNN or another approach. Finally, the excerpted features are 
employed to make a diagnosis via a classifier system. This section addresses 
the applications of AI to CCT and CXR image processing for COVID-19 
diagnosis. 

10.3.1 ML-based approach 

The main goal is to obtain early detection of COVID-19 by combining five 
image filters with a “composed hybrid feature selection model” using a stan
dard CCT image collection. This provides the benefits of three different ways 
to limit feature extraction and improves the genetic pseudo-code by opti
mizing the first parent or sample generation and genetic operators. Thus, the 
outcomes of filter strategy are utilized as preceding knowledge and J48 DT 
model as an evaluation function to accelerate convergence in order to pick the 
most delicate features. A stack hybrid classification approach is employed on 
the short-listed features to improve prediction and performance metrics. The 
model outperforms conventional classification techniques in terms of opti
mal feature selection and discrimination process betterment and efficiently 
minimized the false-negative observations with good accuracy of 96% using 
a Naive–Bayes classification model. The model’s output demonstrates a high 
degree of accuracy in classifying COVID-19 CCT scans. These outcomes 
demonstrate the feasibility of employing AI to extract radiological parame
ters for the accurate and prompt diagnosis of COVID-19 [23]. 

The deep studying-based methodology on CXR is typically suggested 
for the identification of COVID-19 infected individuals. Deep features, along 
with the assistance of vector gadget COVID-19 CXR images, are easily 
distinguished from other illnesses. The approach is beneficial for practic
ing physicians since it allows the early diagnosis of COVID-19 infection in 
patients. The proposed technique of multi-level thresholding combined with 
SVM demonstrated good accuracy in classifying COVID-19-infected lungs. 
All images are identical in size and saved in the JPEG image format with 
512 × 512 pixels resolution. The lung classification performance metrics 
such as sensitivity (ǅ), specificity (ù), and Ă are found to be 96%, 99%, and 
97%, respectively [24]. 

A unique “joint classification and segmentation (JCS)” approach is pro
posed for pragmatic and explicable COVID-19 CCT diagnostic. To prepare 
the JCS model, a vast COVID-19 dataset for classification and segmenta
tion is produced, consisting of 144,168 CCT images from 410 COVID-19 
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individuals and 355 healthy subjects. 3860 CCT scans from 205 patients 
are labeled using pulverized pixel-level annotations for opacities, which are 
enhanced fading of mesenchymal tissue of the lung. Additionally, lesion 
counts, opacification areas, and positions are marked, which aids in many 
facets of diagnostics. Numerous trials reveal that the JCS diagnostic is quite 
effective at classifying and segmenting COVID-19 [25]. 

10.3.2 DNN algorithms for diagnosis 

DL has been a burgeoning area of research in AI in recent years. These tech
niques have been hailed as a highly effective means of automatically detect
ing disease using CCT scan and CXR images. Many of these methodologies 
begin by training CNN on a considerable collection of CXR image reposi
tories; then, fine-tuning procedures are carried out with COVID-19 observa
tions at a smaller scale. 

10.3.2.1 DNN and chest CT scan 
A group of viral pneumonia cases occurring within a short period of time 
may signal a flare-up. Expeditious and reliable identification of viral pneu
monitis will surely aid in the prevention of epidemics. Due to virus evolution 
and the emergence of new mutations, datasets shift, limiting the performance 
of classifiers; the challenge of distinguishing viral from non-viral pneumo
nia is articulated as a one-class anomaly detection issue. A methodology is 
proposed for confidently detecting anomalies comprising a feature exercise 
component, an anomaly monitoring component, and a confidence- predicting 
component. Finally, the categorization task is carried out using DL algo
rithms [26]. 

A DL model is designed for automatically detecting anomalies in CCT 
scans of COVID-19 patients and evaluating its quantitative performance to 
that of radiological physicians. The DL method for lesion recognition, seg
mentation, and localization was developed and validated in 14,435 patients 
who had CCT images and a confirmed pathogen diagnosis. The approach 
was evaluated on a non-overlapping observation of 96 definite COVID-19 
patients who were admitted to three hospitals throughout China during the 
pandemic. The quantitative identification performance of the model is eval
uated with three radiological clinicians with two proficient radiologists’ and 
performance is measured. Out of 96 individuals, 88 exhibited pneumonia 
lesions on CCT imaging, while 8 had no abnormalities. The model demon
strated an impressive ǅ of 1.00 on a per-patient basis. With an average com
putation time of 20 seconds per case, the algorithm outperformed radiology 
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physicians in evaluating CCT images. Additionally, the DL technology can 
help radiologists in making faster and more correct diagnoses [27]. 

CCT scans can be used to identify lung infections. However, the prob
lems associated with these traits, such as image quality and infection fea
tures, restrict their usefulness. By utilizing AI technologies and computer 
vision algorithms, detection accuracy can increase, resolving these concerns. 
A multi-task deep-learning-based technique is proposed for segmenting 
lung infections using CCT scans. The procedure begins by segmenting the 
infected lung areas. Following that, segment the infections within these loca
tions. Additionally, the suggested model is trained to utilize the two-stream 
inputs to accomplish multi-class segmentation. Multi-task learning enables 
us to address the scarcity of labeled data. Additionally, the multi-input stream 
enables the model to learn on a variety of features, which can enhance the out
comes. Numerous characteristics have been utilized to assess the approach. 
The results demonstrate that the proposed system can segment lung infec
tions with a fair degree of precision even when data and tagged images are 
scarce [28]. 

The CCT scan plays a vital role in diagnostics. It is not feasible to 
determine the surface area and location of lesions reliably and laboriously. 
DL-based software is developed to assist in the identification, emplace
ment, and determination of COVID-19 pneumonitis. Between February 
12 and March 17, 2020, a total of 2461 severe acute respiratory syndrome 
Coronavirus 2 (SARS-CoV-2) positive individuals are noticed retroactively 
at Huoshenshan Hospital in Wuhan and the fundamental medical peculiar
ities are examined. The uAI intelligent assistant analysis system is applied 
and evaluated on CCT dataset resulting in precise evaluation of pneumonia 
in COVID-19 patients [29]. 

10.3.2.2 DNN and chest X-ray 
Recent research from CXR imaging indicates that these images possess 
pertinent information concerning the COVID-19 virus. Advanced AI tech
niques combined with CXR imaging aid in the efficient espial of disease and, 
thus, help in vanquishing the issue of deficit health experts in rural areas. 
A model is developed for autonomous COVID-19 diagnosis utilizing raw 
CXR. The suggested approach is designed to offer a precise diagnosis for 
binary (COVID-19 versus nil-outcomes) and categorization (COVID-19 ver
sus nil-outcomes versus pneumonitis). The DarkNet model was utilized as a 
classifier in a newfangled object identification system called You Only Look 
Once (YOLO). The model is implemented with 17 convolutional layers with 
distinct filtering upon every layer. The model achieved Ă = 98% for binary 
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each CXR image in less than 9 milliseconds. Thus, the described CAD sys
tem is capable of predicting 108 frames per second during deployment. The 
DL CAD system demonstrates its competence and dependability in diagnos
ing COVID-19 and other considered lung disorders. Thus, the model appears 
to be dependable for assisting medical systems, patients, and clinicians inval
idating their practices [31]. 

10.3.2.3 New DNN models on chest CT scan 
Accurate COVID-19 screening remains a significant issue because of the spa
tial intricacy of three-dimensional (3D) volumes, the challenge of marking 
sites of infection, and the modest variation in CCT between COVID-19 and 
other viral respiratory disorders. A few pioneering efforts have achieved sub
stantial strides; they usually require manual labeling of infectious areas and 
are incapable of being interpreted. It is plausible to get remarkably precise 
and intelligible COVID-19 detection through CCT with weak marking. “An 
attention-based deep 3D multiple instance learning (AD3D-MIL)” method is 
proposed in which a patient-level tag is given to a 3D CCT that is regarded as 
a bundle of entities. AD3D-MIL is capable of semantically inducing deep 3D 
entities in the vicinity of a potential disease location [32]. 

Additionally, AD3D-MIL employs a care-oriented combined sharing 
approach on 3D entities to render perceptiveness into the participation of each 
entity to the bundle label. Finally, AD3D-MIL understands the categorical 
distributions of the bag-level tags to facilitate the learning process. 462 CCT 
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images are used, including 232 images from 80 individuals with COVID-19 
infection, 103 images from 103 individuals with usual pneumonia, and 128 
images from 128 persons without pneumonia. The model achieves the best Ă 
of 98%, an AUC of 99%, and a Cohen kappa value of 96% after a sequence 
of empirical investigations. These benefits qualify the method as an effective 
assisting tool for COVID-19 screening [32]. 

Recent research indicates that individuals parasitized with SARS
CoV-2 have specific imaging structures noticed on their CCT scans. A 
publicly available SARS-CoV-2 CCT scan dataset has been assembled, con
sisting of 1253 CCT scans confirmed for SARS-CoV-2 illness and 1231 CT 
scans of persons who were not affected with SARS-CoV-2, for a total of 
2484 CCT scans. This image dataset is gathered from actual patients hos
pitalized in the hospitals of Sao Paulo, Brazil. This repository of data holds 
a strong purpose such as exploring and innovating AI systems capable of 
determining whether a person is affected with SARS-CoV-2 by analyzing 
their corresponding CCT scans. As a benchmark result for this image dataset, 
a new DL model named the explainable deep neural network (xDNN) tech
nique is implemented, and the model attained an F1-score of 97%, which is 
somewhat encouraging [33]. 

Rapid and precise segmentation of COVID-19 from CCT is critical 
for early diagnosis and patient monitoring purposes. A novel U-Net-based 
segmentation structure that makes use of an attention mechanism is pro
posed because not all encoder components are suitable for segmentation. 
The new approach is intended to integrate an attention mechanism, which 
consists of a spatial and channel attention subsystem, into a U-Net frame
work to reweight the feature delineation spatially and channel-wise in order 
to apprehend affluent context-specific associations for enhanced feature 
depiction [34]. 

Additionally, the pivotal Tversky loss is inducted to handle the seg
mentation of tiny lesions. The experimental findings, which are assessed 
against a COVID-19 CCT segmentation image dataset containing 474 CCT 
slices, demonstrate that the novel method is capable of producing an exact 
and timely segmentation outcome on COVID-19. Segmenting a single CCT 
slice ends up taking 0.3 seconds only. Dice score and Hausdorff distance 
computed are found to be 83% and 19, respectively [34]. 

10.3.2.4 New DNN models on chest X-ray 
Many proficient physicians believe, based on research, that it is intricate to 
detect COVID-19 at its genesis using CXR because the infection’s traces 
are detectable only after the sickness has transitioned to the symptomatic or 
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moderate, or acute stage. A compact trending classifier, the convolutional 
support estimator network (CSEN) model, is created due to its adaptability 
for classification tasks using fewer data. Finally, this approach offers a new 
benchmark observation termed Early-QaTa-COV19, which contains 175 ini
tial-stage COVID-19 pneumonitis data (with very few or no infectious indica
tions) annotated by medical experts, as well as 1579 normal stage observations. 
A comprehensive set of trials demonstrates that the CSEN reports the highest 
ǅ = 99% and ù t 96% [35]. 

One of the most frequently used and efficacious procedures employed 
by researchers is the analysis of CXR of the respiratory system for COVID-19. 
However, personally inspecting each record requires multiple radiology pro
fessionals and time, which is one of the cumbersome duties during an out
break. A DL-based method termed nCOVnet is offered as a possible quick 
screening option for identifying COVID-19 by evaluating patients’ CXR and 
seeking visual markers from the CXR of infected individuals. The model is 
adequate to detect a COVID-19 positive individual in less than 5 seconds. 
With such a small quantity of data, the model obtains a true positive rate of 
98% [36]. 

Additionally, nCOVnet overcomes the problem of lack of RT-PCR 
kits, as it requires only a CXR apparatus, which is usually available in the 
majority of hospitals worldwide. As a result, nations and states will no longer 
be required to await massive supplies of RT-PCR kits. Rapid diagnosis of 
COVID-19 enables isolation of COVID-19 patients and reduction of com
munal dissemination. The COVID-19 outbreak seems to be in Stage 2 in 
numerous places throughout the world, and they will be unable to purchase 
the excessively priced kits, and the COVID-19 epidemic will not abate fairly 
soon until all countries establish effective testing methods. Numerous pre
liminary works that claimed accuracy of up to 98%–99% did not account 
for the likelihood of data leaking, which is tackled during the training phase 
of nCOVnet, ensuring that the results are fair. This model may aid hospital 
or clinical administration and medical specialists in taking the appropriate 
procedures to handle COVID-19 patients following their rapid detection [36]. 

10.3.3 Transfer learning (TL) approach 

TL is a technique in which the cognition acquired while resolving a previ
ous challenge is applied to another that is related but not alike. This strategy 
is especially appealing when there is insufficient data available to train the 
DL model. VGG16 or VGG19, ResNet50, and GoogLeNet (InceptionV3) are 
some of the famous TL models. Figure 10.5 depicts the TL approach. 
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Figure 10.5 TL approach implemented for the classification of CCT scans. 

10.3.3.1 Implementing TL approach on chest CT scan 
Based on the radiographic alterations associated with COVID-19 in CCT 
images, DL algorithms can grasp COVID-19’s unique, vivid properties and 
facilitate diagnostics before the pathogenic trials, thereby reducing signifi
cant duration for infection prevention. 1065 CCT scans of COVID-19 cases 
with infection confirmation (325 images) and those diagnosed recently with 
normal viral pneumonia (740 images) are gathered for analysis. The incep
tion TL model is altered to create the intended model, which is then validated 
internally and externally. Internal validation resulted in a Ă of 89.5%, while 
external testing obtained 79.3%. These findings establish a shred of credible 
evidence for AI algorithms implementation to extract radiological character
istics for the expeditious and correct diagnostics of COVID-19 [37]. 

COVID-19 has a detrimental effect on the lungs, and the severity of the 
illness can be determined utilizing a selected imaging technique. TL is used 
to identify COVID-19 from CCT scans that have been disintegrated to three 
levels using a type of transform known as a stationary wavelet. To increase 
the recognition rate, a three-phase identification approach is presented. 
Phase 1 involves stationary wavelets in action to perform data augmenta
tion, Phase 2 involves COVID-19 identification using a previously trained 
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CNN architecture, and Phase 3 involves peculiarity positioning in CCT scan 
images. For the experimental analysis, this approach used prominent pre-
trained CNN models such as SqueezeNet architecture and ResNet architec
ture with 18, 50, and 101 layers, respectively. 70% of the dataset is meant to 
train and update the weights of the network, while 30% is used to evaluate 
the model. The performance analysis reveals that the ResNet18 TL-based 
model transcended with the highest classification Ă of 99% during training 
and testing, while it reports Ă of 97% during validation [38]. 

A simple two-dimensional DL framework termed the “fast-track 
COVID-19 classification network (FCONet)” is designed to identify COVID-19 
pneumonitis from a solitary CCT scan. FCONet is constructed using TL 
by selecting one model from the four [Visual Geometry Group (VGG16), 
ResNet-50, Google Inception Version3, and Extreme Inception (Xception)] 
contemporary pre-trained DL models as a core. 3994 CCT scans of people 
with COVID-19 pneumonitis, another pneumonitis, and non-pneumonitis dis
orders are accumulated for training and testing FCONet architecture. These 
CCT scans are divided into an 8:2 ratio for training and testing. The testing data 
is used to examine the diagnosis efficacy of four pre-trained FCONet models 
for COVID-19 pneumonitis. ResNet-50 surpassed the competing pre-trained 
models with ǅ = 99%, ù = 100%, and Ă = 99% during the testing phase. 

10.3.3.2 Implementing TL approach on chest X-ray 
A classification model for CXR using dense convolutional networks and 
TL with three categories, namely COVID-19, pneumonitis, and normal, is 
developed. The neural networks are refined on the ImageNet model and then 
transferred twice with the NIH ChestX-ray14 dataset. The unique approach 
of output neuron retention is used, which modifies the twice TL technique. To 
illustrate the models’ method of operation, heatmaps are generated using lay-
er-wise relevance propagation (LRP). An accuracy of 100% on a test dataset 
is exceptional. Twice, TL and output neuron retention demonstrated encour
aging results in terms of performance, particularly at the early stages of the 
training phase [39]. 

The LRP demonstrated that words on CXR could impact network estima
tions; this effect had a negligible influence on the accuracy metric. Although 
additional laboratory tests and more observation are required to assure ade
quate generalization, the cutting-edge results demonstrate that, when com
bined with AI, CXR can turn into a low-cost and efficient supplementary 
approach for COVID-19 diagnosis. Heatmaps produced by LRP enhance 
the interpretability of DNN and point the way to future diagnostic research. 
Twice, TL with output neuron maintained performance  improvements [39]. 
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Leveraging the detection rate of CXR becomes crucial. Patient prior
itization is essential, and DL can help accelerate CXR image diagnosis by 
recognizing COVID-19 instances. COVIDPEN, a TL strategy based on an 
amended EfficientNet-oriented framework for the identification of COVID-19 
situations, is developed. The post-hoc analysis is used to extrapolate the sug
gested model to determine the interpretability of the predictions. The sug
gested model’s efficacy is proved using a systematic observation of CXR. 
Experimental results involving many baseline assessments demonstrate that 
the procedure is comparable and provides clinically describable situations for 
healthcare practitioners [40]. 

10.3.3.3 Smartphone apps 
Comfortable diagnosis of COVID-19 using any technical device, such as a 
smartphone, can be pretty beneficial. It is an intriguing technique to use AI 
to identify COVID-19 from CXR on an android mobile device. In MATLAB, 
a CNN model is constructed and subsequently transformed to a TensorFlow 
Lite (TFLite) model for deployment on a mobile device operating on the 
android operating system. The developed android application utilizes 
the TFLite model to distinguish COVID-19 in CXR. The detection phase 
achieved a precision of 99% and an F1-score of 99% as a result of five-fold 
cross-validation [41]. 

COVID-MobileXpert is a lightweight DNN-based mobile application 
that is used to screen for COVID-19 cases and prediction. The design and 
construction of a new knowledge transmit and distilment system includes 
a previously trained serving physician network, retrieving CXR attributes 
and properties from a vast dataset of lung illnesses. A calibrated NN that 
understands the vital CXR attributes is needed to distinguish COVID-19 
from pneumonitis or healthy subjects with less quantity of observations or 
data. To address the issue of enormously alike predominant foreground and 
background in clinical images, innovative cost functions and training tech
niques for the layers to understand reliable properties are inducted. COVID-
MobileXpert has demonstrated immense capability for faster deployment 
through rigorous testing with a variety of design and tuning parameter con
figurations [42]. 

10.4 Echocardiogram Analysis and Classification using AI 

The heart is visualized through the use of sound waves in an ECCG. Heart 
rate and blood flow can be observed by performing this prevalent test. An 
ECCG is a diagnostic tool the surgeon uses to look for signs of heart disorders 
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Figure 10.6 ECCG of a heart perceived from the apex. 

as shown in Figure 10.6. For example, a physician generally recommends an 
ECCG to look for heart valve or chamber problems or to determine whether 
symptoms like respiratory distress or pain in the chest are due to a heart 
condition, or to screen for congenital abnormalities prior to actual childbirth 
(fetal ECCG) [43]. AI is becoming a primary priority in medical science that 
can be applied to ECCG in order to overcome the troubles of discrepancy 
and intra- and inter-spectator fluctuation while obtaining and interpreting the 
images. ECCG is prone to inter-observer variations and a heavy reliance on 
expertise level contradicting other methodologies, like CCT, CXR, and MRI. 
ECCG, a type of cardiovascular imaging, is becoming increasingly popular 
and intricate. The indispensable requirements are to enhance efficacy, reduce 
acquirement time, and decrease echocardiographic variations. Patients, 
sonography technicians, and heart specialists will all benefit from AI in this 
regard. AI will never substitute sonographers; instead, it will become more 
productive and precise due to its use [4]. 

Heart disease can be detected using myocardial contrast ECCG 
(MCECCG), an imaging modality that evaluates left ventricular operation 
and myocardial permeability to identify atherosclerotic and coronary issues. 
Obtaining reliable myocardial segmentation (MS) from blurry and time-vary
ing image data is difficult when performing automatic MCECCG reperfusion 
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quantitation on the myocardium. There have been numerous flourishing 
applications of RF to clinical image segmentation challenges. On the other 
hand, the pixel-wise RF discriminator does not take into account contextual 
correlations among labeled responses of individual pixels. In addition, RF 
that merely makes use of localized appearance aspects is vulnerable to input 
that has experienced significant intensity changes. To address the shortcom
ings of classic RF, a unique model is proposed that includes the presentation 
of a wholly automated segmentation pathway for MS in comprehensive 2D 
MCECCG data [44]. 

Furthermore, a statistical contextual structure model is employed in 
order to offer contextual structure prior knowledge, which is used to assist 
the RF segmentation in two different directions. As a first step, an innovative 
contextual structure feature is introduced into the RF architecture, allowing 
for a more precise RF likelihood map. Second, the contextual structure model 
is suited to the RF likelihood map in order to refine and confine the ulti
mate segmentation to myocardial forms that are likely to occur. Additionally, 
the inclusion of a locality preserving detection technique as a preprocessing 
phase in the segmentation process results in another compelling performance 
establishment. This technique on a 2D visual is even further generalized to 
2D + t series, which assures that the ultimate sequence segmentations are per
sistent in terms of temporal consistency. On medical MCECCG datasets, the 
provided method significantly enhances segmentation performance metrics 
and excels other conventional technologies, such as the traditional RF and its 
versions [44]. 

The apical four-chamber (A4C) vision obtained using ECCG during 
prenatal development is a critical step in assessment and prompt treatment 
of congenital heart anomalies, and it should be used whenever possible. A 
novel approach aims to automate the segmentation of cardiovascular for
mations in ultrasonic A4C stances, specifically the thorax, aorta, ventricles, 
atrium, and epicardium, in order to aid physicians during an early fetal inspec
tion. Moreover, when it comes to segmentation tasks, the following difficul
ties are frequently encountered. There are three problems with this image: 
(i) pixelated or sparse distribution of pixels resulting in low-resolution imaging; 
(ii) ambiguous tissue demarcation; and (iii) reasonably low crispness and con
trast. In order to overcome these problems, a cascaded U-net (CU-net) model 
is proposed that uses “structural similarity index measure (SSIM)” loss [45]. 

First and foremost, the CU-net with two separate formative assessments 
aids in the establishment of unambiguous tissue boundaries as well as the 
assuagement of the gradient disappearing situation faced by the expansion 
of network depth. Second, the refinement of segmentation results is assured 
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since the prior information gets transmitted from initial layers to deeper lay
ers of CU-net architecture. Third, the approach makes use of SSIM loss in 
an attempt to uphold delicate structural features while also obtaining clear 
boundary definitions. On a data source of 1713 A4C stances, experiments 
conducted illustrate that the presented approach accomplishes 0.93 as pixel 
Ă, 3.4 as Hausdorff distance, and 0.86 as dice coefficient, demonstrating its 
performance and possibilities as a therapeutic technique [45]. 

ECCG allows doctors to see the apparent movement of the heart’s cham
bers and valves and to diagnose cardiovascular disease. DL has played a signif
icant role in the development of many medical computer-abetted diagnostics 
systems. DL techniques must be used to improve the performance of this kind 
of system, which is a demanding necessity. The proposed DL-based system 
is helpful in the task of classifying multiple ECCG views and identifying the 
physiological spot. To begin with, every structure in the echo- motion is used 
to fetch the spatial CNN characteristics. Second, the neutrosophic temporal 
motion properties are retrieved. A ResNet model is employed to retrieve the 
CNN features. Then, using the features composition method, both spatial and 
neutrosophic temporal CNN characteristics are combined. Eventually, the 
merged CNN characteristics are sent into a long short-term memory (LSTM) 
network in order to categorize and locate echo-cardio views. The experiment 
is conducted on freely accessible ECCG data that included 433 recordings for 
nine cardio-views. Deploying the ResNet architecture resulted in the highest 
overall Ă = 97% and ǅ = 96% across many pre-trained models [46]. 

Accurate recognition of end-systolic (ES) and end-diastolic (ED) 
frames in an ECCG cine sequence can be a challenging but crucial prepro
cessing phase in forming autonomous cardiovascular parameter measure
ment systems. Given the disparity in cardiac architecture and pulse rate that 
are commonly linked with pathological situations, the identification process 
is challenging. This task is described as a regression problem and offers mul
tiple DL-based strategies for localizing the ED and ES frames by minimizing 
a unique universal extrema structural loss function. The suggested architec
ture combines a model for visual feature excerption based on CNN and a 
model for periodic interdependence between frames in a series using RNN. 
The performance of two CNN models, namely DenseNet and ResNet, and 
four RNN models such as LSTM, bi-directional LSTM, Gated Recurrent 
Unit (GRU), and bi-GRU are compared. The ideal DL model is made up 
of a DenseNet and a GRU which has been trained using the specified loss 
function. Correspondingly, the frame disparities of 0.21 and 1.44 for the ED 
and ES frames are present in the observed inter-observer variation for manual 
identification of these frames [47]. 
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Figure 10.7 US image of birth cord and placenta in human. 

10.5 AI-Based Ultrasound Imaging Analysis 

US, a versatile green imaging method, is gaining international recognition as 
a principal imaging modality in a range of diagnostic disciplines (as shown 
in Figure 10.7) as a result of the ongoing advent of sophisticated ultrasonic 
systems and the implanted US-oriented digital healthcare services. Indeed, 
experienced clinicians should personally gather and physically examine 
images to diagnose, identify, and track diseases in the US. Diagnosis effec
tiveness is necessarily compromised due to the innate attribute of significant 
operator dependency in the US. In comparison, AI succeeds at automatically 
detecting complicated patterns and quantifying imaging datasets, indicating 
a significant possibility for assisting clinicians in obtaining more precise and 
reliable outcomes. ML and DL are extensively implemented in the domain of 
US on the respective vascular structures, namely throat, chest, childbirth and 
fetal cardiology, abdomen, and pelvis, muscular and skeletal system, by cov
ering visual quality control, physiology characterization, object recognition, 
lesion edge detection, and morphological segmentation [5]. 

Contrast-enhanced ultrasound (CEUS) is frequently used to diagnose 
liver injuries (LI). Unconventional liver cancer (LC) is hard to determine 
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from focal nodular hyperplasia (FNH) on CEUS footage even among LI. 
As a result, a new approach termed feature fusion is suggested and analyzed 
as a solution for resolving this issue. From the CEUS motion clips data, the 
suggested methodology excerpts a collection of hand-crafted characteristics 
and deep features. The two distinct sorts of characteristics are then com
bined. Eventually, a classifier is used to determine if the patient has LC or 
FNH. Numerous classification algorithms have demonstrated superior effi
ciency, emphasizing the advantage of fused features. Additionally, compared 
to conventional CNN, the suggested fused features are more interpretable 
[48]. A ResNet is utilized to excerpt features from carotid ultrasound images 
(CUSIs) and to classify plaques within the given images. The experimental 
results demonstrated that when applied to 1829 CUIS data, the model based 
on SVM achieved a significantly lesser plaque recognition accuracy than the 
ResNet model. SVM and ResNet showed 75% and 81% accuracies in classi
fying CUSI, respectively [49]. 

Thyroid nodules are extremely common, and only a tiny proportion 
of them are malignant. Numerous non-invasive strategies have been imple
mented with the assistance of the Internet of Medical Things (IoMT) to accel
erate the amount of malignant tumor detection. These methodologies can be 
broadly classified into two categories such as radiomics-based and DL-based 
methods. In essence, DL models based on CNN have demonstrated impres
sive performance metrics in a wide range of medical image processing, 
analysis, and classification tasks. First, radiomics-based approach is imple
mented to extract 303-dimensional statistical properties from preprocessed 
image dataset at maximum throughput. The classification step is executed 
after reducing and extracting more appropriate features using dimensionality 
reduction techniques. Later, a technique based on DL is designed and evalu
ated by refining and tweaking the pre-trained VGG16 model. US dataset of 
3122 nodules (1842 benign and 1394 malignant nodules) are retroactively 
gathered from 1042 case scenarios. The 80-20 rule of splitting the data for 
training and testing is adapted. The DL-based approach showed compara
tively better performance metrics (Ă = 75%) than the counterpart perfor
mance metrics (Ă = 67%) [50]. 

Cirrhosis is an acute liver disorder that compromises patients’ lives and 
general well-being. Presently, the CAD platform frequently uses US imag
ing to detect cirrhosis. DL methods for cirrhosis diagnostic tests using US 
image data repository have appeared as a consequence of the rapid advent 
of AI. Moreover, owing to the difficulty and fluctuation of US images, this 
input is frequently required to be physically annotated. A study presents a 
top DL approach termed LiverTL for instantaneous cirrhosis US classifica
tion tasks to address these shortcomings. LiverTL contains an immediate 



 

 

296 Artificial Intelligence in Medical Image Processing 

RoI detection module that facilitates the retrieval of RoIs from multiple US 
images. Concurrently, the categorization module makes use of RoI regions 
and the TL infrastructure to acquire the cirrhosis diagnostics results. On the 
test dataset, LiverTL reaches the highest level of classification accuracy. 
The cirrhosis dataset experiments showed that a well-designed TL model is 
critical for obtaining precise and reliable classification results. These obser
vations may lead to future advancements in the detection and treatment of 
cirrhosis [51]. 

10.6 Conclusion 

A wide range of ML and DL strategies are being used to evaluate AD based 
on observable brain radical reforms on MRI with hyper-good performance. 
However, since these frameworks are black boxes without explicit and 
specific unambiguous knowledge representation, generating rudimentary 
expository imaging structures is challenging. A DL framework associates 
automatically learned MRI imaging biological markers with ankle pain data-
sets. It is possible to provide the estimated spot and the inherent dubiety in 
the challenge using the architecture. The DL model should be enhanced to 
include additional variables such as demographic data that may assist pain 
management. 

Conversely, because of their layered nonlinear and complicated struc
tures, DNN is largely murky and is regarded as black-box methodologies, 
raising a slew of professional and practical considerations. Additionally, 
these strategies cannot rationalize specific diagnostic choices in the way that 
subject experts or clinicians do, posing an increased danger in the healthcare 
context. With the fast development of ML in the current times, image seg
mentation approaches based on unsupervised and supervised learning have 
shown significant strides and successfully applied to various fields, includ
ing MI. Both approaches, moreover, will get their own set of strengths and 
weaknesses. 

COVID-19 testing is typically performed using the RT-PCR procedure, 
which is not quite reliable. Other indicators of respiratory illness include 
urine and blood tests, clinical signs such as flu, muscle soreness, absence of 
odor, and CCT and CXR imaging. The innovation of ensemble models that 
consider all types of discriminatory inputs from multiple tests to produce 
quite precise results is necessary. Including almost every area that is exam
ined, the data sources are growing exponentially. Each day, new evidence 
and information outcome emerge that, in some instances, contradict prior 
data. In this context, incremental learning models are a beneficial strategy. 
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This is especially true for data relating to epidemics and CCT/CXR images. 
As a result, AI frameworks should be developed to adjust to changing data 
inputs. 

It is improbable that computers will substitute human specialists in 
the inference, perception, and interpretation of echocardiographic data. 
Whereas, AI, ML, and DL models have revealed the private details of the 
machine’s correlations to pathological conditions. Human experts must 
remain an integral part of clinical care and the diagnostic process to pro
tect patients from harm to safeguard against machine errors. Considering 
its drawbacks, AI remains a crucial concept for the long term of echocardi
ography, and extra added research is required. Anesthetists must be familiar 
with the benefits and disadvantages of AI innovation in echocardiography. 
AI approaches, fueled by the high requirement for US image analysis in 
medical care and sophisticated technology, will undeniably have a bright 
future in US. Regrettably, a complete and precise comprehension of this 
new topic is necessary. Because AI-based US prognosis lacks the ability 
of a human mind to achieve top affiliations and the individualistic care and 
logical arguments endorsed in the treatment process, radiologists cannot be 
completely substituted by AI. 
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Abstract 

Cancer is one of the leading causes of death in both men and women. 
According to a new global analysis show that 1.93 million new cases and 
ten million deaths from melanoma. Tumor patients have a range of treat
ment choices available to them, depending on their stage of the disease. Big 
data analysis could be utilized to aid in the resolution of critical healthcare 
concerns. Due to the plethora of data sources, consistency in data collect
ing is crucial. Data standardization results in more consistent and complete 
datasets, which facilitates their connection to other data sources. The rate 
of adoption of state-tested and certified EHR applications within the care 
industry is nearing a halt. The availability of numerous government-certified 
EHR programs, on the other hand, has inhibited knowledge exchange and 
sharing. The initial objective is now to gain unjust insights from the massive 
amounts of data generated by EMRs. 

303
 

mailto:pandey.akanksha1611@gmail.com


 

 

304 Advancement of AI in Cancer Management: Role of Big Data 

11.1 Introduction 

According to the most recent global estimates, cancer is one of the leading 
causes of death, affecting both men and women, with 193 hundred thou
sand new cases and 10 million melanoma fatalities (20% of all fatalities) 
per year. Cancer is a broad group of disorders (approximately one hundred 
well-known tumors) characterized by aberrant cell proliferation with a non-
heritable propensity to spread uncontrollably and invade surrounding tis
sues, interrupting vital activities and ultimately resulting in death. Cancer 
cells’ genetic features are driven by six basic talents: continual regenerative 
output, development inhibitor avoidance, tolerance against killing, replica
tion of eternity, initiation of developmental stages, and triggering the malig
nant transformation. Tumor patients can choose from a variety of treatment 
choices depending on the severity of their illness. Patients with localized 
and early-stage tumors typically undergo surgery, benefit from careful wait
ing or vigorous police work, as in glandular cancer, or rely on medicine to 
sustain rather than cure, as in the case of such abnormal blood malignancy. 
Patients with severe stages of sickness, on the other hand, would be treated 
with chemotherapy, molecularly focused medical help, or a combination of 
such treatments. NASA scientists invented the term “big data” in 1997 to 
characterize the difficulty of storing huge volumes of data generated by a 
new data-intensive form of computer activity. A study published in 2008 
titled “Achieving Fundamental Advancements across Business, Research, as 
well as Community with BD Technology,” credited with popularizing the 
term, emphasized the ease with which content solutions may be integrated 
into a variety of scenarios, ranging from Wal-computer Mart’s memory units 
(4000 trillion bytes) understanding storage facility to the 15 petabytes of data 
proposed to be produced annually by the huge essential particle accelerator 
project 2. 

The term “big data” is used in oncology to describe the quick collec
tion as well as the collection of vast volumes of information that is typi
cally derived via public tumor entries, EHR, and sometimes huge genotyping 
research. Multidisciplinary collaboration as well as dataset management to 
combine a variety of data sources and give trustworthy statistics to capture 
essential information are some of the challenges in adopting BD in cancer 
research. Big data approaches may be employed in tumor studies as well as in 
transforming knowledge into new ways to make better cancer treatment and 
delivery decisions. In this chapter, we discuss the connection between cancer 
and big data. Especially, what role does big data play in oncology, and what 
new treatments are emerging as a result? [4]. 
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11.1.1 Big data 

To date, the term “big data” has a hazy definition, but it generally refers 
to datasets that are sufficiently big to be analyzed by humans. Datasets are 
included within the range in size from 1012 to 1018 bytes. Large amounts 
of data are inherently heterogeneous. Consider the electronic medical record 
(EMR). A single patient’s EMR contains test results, examination results, 
radiography feature-based images (per pixel), and patient records complete 
with transcription faults and spelling errors. In general, formatted informa
tion (test results or CPT codes) and unstructured information (material from 
a doctor’s belief about the concept) can be found in big datasets. This implies 
that an investigation program must first identify a question before building 
an investigation to respond to it. On either approach, big data investigation 
may be methodology-driven, with approaches performed to the data first to 
identify causal links. It could contribute to a list of relationships with differ
ent degrees of association that can then be thoroughly examined. As a result, 
big data analysis could be utilized to jumpstart the methodological approach 
before the key questions have been defined. Methodologies for BD analytics 
including data mining and machine learning differ from earlier CER proce
dures in that they can be utilized to harness massive data assets [5–11]. 

“Big data” refers to a large amount of patient-level data obtained for 
another reason, including patient history or compensation claims, in the 
framework of treating cancer. To acquire fresh insights, the data elements 
are integrated or processed. “Real-world proof” can be found in big data 
derived from electronic health records [12]. Clinical evidence obtained 
from de- identified real-world datasets gathered as part of routine care rather 
than a planned randomized clinical trial is known as “real-world evidence.” 
Processing such a massive volume of data needs a high level of knowledge 
due to its complexity and diversity. To turn enormous amounts of information 
into useful evidence to make healthy choices and to treat patients, proper 
study designs and competent analysis approaches are essential. Because big 
data often contains real-world data, it could help bridge the gap between clini
cal and translational research. This is especially significant in cancer research 
because pharmaceutically funded studies usually include poor control arms, 
forcing patients to choose between a new treatment and the best current stan
dard [13]. Furthermore, it is well known that randomized controlled trials 
underrepresent minorities and other underserved groups, with just around 
4% of all cancer patients taking part on average. Dr. Norman E. Shapeless, 
Director of the NCI, highlighted big data as one of the four areas of remark
able possibility for researchers, during the 2018 ASCO Annual Meet. As a 
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result, scientists will have to shift their focus from passive data transmission 
to data aggregation. This will improve our understanding of cancer therapy 
and present real-world evidence [12–17]. 

One of the ten major revolutions projected to occur in the next ten years is 
the usage of large amounts of data, and the technological innovation required 
to evaluate it [18]. Big data is a phenomenon that influences almost every sort 
of company. Businesses that rely on information technology, including IBM, 
Google, Facebook, and Amazon, were among the first to make significant 
use of it. Several of the world’s biggest information technology companies 
have created algorithms that use neural networks and machine learning algo
rithms to predict people’s behavior and then use that information for targeted 
marketing. Big data has caught the interest of health insurance firms, govern
ments, and being used in the field of life sciences [18–21]. 

As a result, information acquisition, procedures, and technology are all 
focused in order to ensure acceptable quality. Whereas, recently, the empha
sis has been on elevated information such as monitoring of genomics, get
ting equally important to have high-quality medical statistical results, if not 
more crucial [22]. To preserve reliability, a continuous learning health system 
must handle and assure data quality. Some of these applications use informa
tion from registries, EMRs, organ repositories, genetic decoding, care plans, 
and optical elements, among other sources, to reduce treatment disparities, 
ensure quality and safety for specific patients, and make adjustments to drugs 
based on the outcomes of patients who have had the same disease [23]. The 
objective is to develop a medical system that is receptive to learning aug
menting and improving the treatment that professionals can give to their 
patients. In radiation oncology, there are three categories of data, including 
diagnostic, therapy, and symptom management. The objective is to impact 
treatment decisions quantitatively based on diagnostic and prognostic criteria 
to improve future patient outcomes. With each new patient, the system learns 
more [24]. The system’s data can assist us in understanding treatment risks 
and results but not biological processes. As a result, every big data project 
should be evaluated with known and unknown biological processes. More 
scientific research is needed to properly understand the biological mecha
nisms that trigger them [22–26]. 

Cancer therapeutic development today faces a massive and growing 
demand for proof. Clinical trials are essential in the development of new 
medications, but they are not without downsides. They are, for example, both 
expensive and time-consuming. Clinical trials enroll a minority of sufferers, 
and those who are not generally representative of the general population. 
Cancers are now divided into subtypes based on molecular characteristics 
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that are too tiny to analyze in a randomized trial. Furthermore, faster FDA 
approvals of innovative medications are associated with bigger post-approval 
obligations. The traditional evidence-generation strategy, which is primarily 
based on prospective clinical trials, will be unable to close the significant 
evidence gap. Big data analysis can help to solve several problems in can
cer treatment and medication research. Using data collected during ordinary 
treatment and real-world instances, it is feasible to learn from each patient. 
This strategy demands an interpretation mechanism in the EHR for both 
aggregation and data analysis. Almost every cancer patient’s care is recorded 
electronically. However, these electronic health records were not designed 
with research in mind, and the majority of data necessary for research is 
in unstructured formats such as physician narratives, radiology reports, and 
biomarker test results, which are difficult to acquire and analyze. To make 
sense of the data in electronic health records, both structured data (such as 
height, weight, and chemotherapy regimens) and unstructured data must be 
used. Previously, researchers had to read and interpret these records, which 
impeded their expansion [27]. 

Big data might be valuable in the design and modification of disease 
preventive measures, particularly in the medical industry. The combination 
of large genetic and environmental data will help determine if individuals 
or groups are at risk of specific chronic diseases such as cancer. This might 
lead to tailored interventions aimed at altering environmental and behav
ioral factors that contribute to health concerns in certain groups. Big data 
may also be used to examine current preventative measures and reveal fresh 
insights that can be utilized to improve them. Big data may also be utilized in 
a therapeutic setting to track the impact of specialist drugs, such as the cost 
of oncolytic, depending on the individual as well as malignancy (genetic) 
features. It will contribute to the advancement of targeted therapy because 
it will give important information about how much different treatment regi
mens will cost [28]. 

11.2 The Source and Type of Big Data, and Their Concern 

Care delivery actions generate huge volumes of data daily due to interactions 
between people and organizations within the medical system. Demographic 
and medical data sources include laboratory and radiographic findings (both 
verbatim and as a digital file), programmed throughput from patient testing 
equipment, enrollment, and financial records. Consider the following clinical 
and demographic data sources [29]. Unstructured and structured data can be 
found on the internet. 
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Structured data is defined as information that could be arranged into 
spreadsheets and are accessible and frequently obtained from a set of pre-
determined answer possibilities. When dealing with an EHR, a clinician can 
select values from a drop-down menu or be presented with a list of diagnostic 
or billing codes to choose from. Patient or doctor responses in free-text fields, 
narrative notes, handwritten or scanned papers, pictures, and other unstruc
tured data formats account for up to 80% of all healthcare data. As the con
cept of big data gained traction across industries, several underlying concepts 
arose, including an ever-expanding list of characteristics that can be used to 
identify exceedingly large datasets [30]. What began as a simple list of three 
big data “Vs” volume, velocity, and variety has evolved into a list of ten cri
teria to examine when analyzing a source of information about any industry 
that demonstrates characteristics such as truthfulness, variation, authenticity, 
vulnerability, instability, transparency, and value. Additional components of 
health relational databases should be researched to aid in quality improve
ment efforts. Due to errors or fragmentation caused by patient migration 
across many institutions, missing data might result in gaps and, in certain 
cases, erroneous interpretations of service provision frequency and clinical 
outcomes; thus, EHRs. Discrimination and inaccurate data could also con
tribute to incorrect conclusions. For instance, each investigation found that 
service users who starved to death in the nearest hospital and yet will not 
survive long enough to be admitted to an inpatient unit had less diagnostic 
and side effect documentary evidence in their patient history as a result of 
the brief encounter [31]. This finding was made while examining mortality 
associated with community-acquired pneumonia using EHR-derived data. 
Because of the systematic lack of such data, the analytic algorithms assigned 
these patients a lower acuity score, but a physician’s manual assessment 
would have swiftly placed them among the most critical. Interoperability 
issues commonly impede data aggregation across systems, resulting in dif
ferent EHR systems being unable to share or use data. Despite how difficult 
it may seem, this is a goal that can be reached. All it takes is one phone call to 
show that exceptional interoperability can be achieved [29–33]. 

11.2.1 The challenge of big data 

Interoperability issues, on the other hand, are not limited to the capacity 
to transmit data from one device to another. Additionally, similar contents 
ought to be sufficiently interpretable. The widespread acceptance of EHRs 
by medical practices, laboratories, and hospital systems have resulted in the 
widespread utilization of standardized terminology to document clinical 
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manifestations, symptoms, diagnostic tests, test results, and procedures. As 
a result, many businesses and their EHR systems get entrenched in the usage 
of the local language, creating barriers to “semantic interoperability.” While 
this may not be an issue if the EHR is simply used to refer to a patient’s 
condition rather than a specific patient, performance evaluation aims to col
lect and evaluate health information at the community level, and research is 
hampered by the difficulty of correctly mapping comparable phrases or codes 
together [33]. The terms sonar, radiology, ultrasonography, and imaging 
tests, for example, all seem to be rationally connected to a real practitioner, 
even though they are not unless explicitly taught otherwise. There are cur
rently two possible solutions to this problem: upgrading both EHR systems 
and physician behavior to use standard terminology consistently and creating 
artificial intelligence tools to recognize and precisely map phrases [34–37]. 

11.3 Big Data Sources and Platforms 

11.3.1 The national population-based cancer database 

One of the foremost well-known population-based cancer datasets is the 
National Cancer Institute’s investigating, medicine, and end results (SEER) 
program and, thus, the Centers for Illness Management and Prevention’s 
NPCR. SEER now collects and disseminates tumor prevalence and mortality 
data from community-based confirmed cases, which cover around one-third 
of the population [38]. SEER collects information on patients’ demography 
(age, sexual identity, race, ethnicity, and place of birth); melanoma aspects 
(tumor cell sorts, biochemical and genetic characteristics, as well as many 
screening tools and genomic details on tumors); illness phases; therapy details 
(surgery, radioactivity, drug treatment, secretion therapy, and monoclonal 
antibodies); and health experience (surgery, radiation, therapy, secretion med
ical aid, immunotherapy, vital standing, and cause of death). The Centers for 
Disease Control and Prevention manage the National Preventive Cardiology 
Registry, which is established by Congress in 1992. It collects data on cancer 
incidence, early treatment methods, and outcomes. NPCR and SEER work 
along to gather knowledge on 97% of the North American population. With 
such near-universal coverage, researchers could study the cancer burden and 
highlight the importance of cancer interference and management activities 
at the national, state, and native levels. Since 1990, the American College of 
Surgeons and the American Cancer Society have partnered on the National 
Cancer Information (NCDB) [39]. The NCDB today has over 1500 institu
tions licensed by the Commission on Cancer, which account for almost 70% 



310 Advancement of AI in Cancer Management: Role of Big Data 

of newly diagnosed cancer cases in the United States, as well as over 
34 million historical records. While SEER, NPCR, and NCDB have data on 
the vast majority of cancer patients in the United States, they do not cover 
every patient’s entire treatment history. There are no statistics on recurrence 
or longitudinal follow-up data. Furthermore, the most commonly stated goal 
is general survival; however, no further information is available. There is no 
record of any second-line or salvage therapy after the original course of treat
ment. Inhabitant tumor databases (SEER and NPCR) collect treatment data 
at a high level, but descriptions of the criteria, prescription brands, and quan
tities are not collected. Due to these limitations, conducting research based 
solely on current national demographic figures is difficult [40]. Despite these 
constraints, SEER is taking numerous initiatives to improve the quality of 
its existing data. The American Society of Clinical Oncology launched the 
CancerLinQ project with the purpose of gathering and analyzing the details 
collected out of each cancer sufferer in the U.S. CancerLinQ collects data 
from EHRs directly, eliminating the need to switch data sources. CancerLinQ 
uses cloud-based algorithms to analyze and convert the datasets. Due to the 
absence of a standardized data layout in actual medical environments or EHR 
platforms, a range of computer technologies is being employed to convert 
complex data into analyzable structured information [41]. On the other hand, 
human data abstraction and/or natural language processing will be required 
for unstructured clinical notes. SEER and CancerLinQ cooperated to make 
it easier for people to share cancer information. This would improve patient 
treatment while also raising cancer awareness in the country [38–45]. 

11.3.2 Commercial and private cancer databases 

Many industrial large info enterprises have evolved to collect and combine 
actual data such as patient history, medical reports, and billing records in 
order to provide cancer care stakeholders with real-time feedback on treat
ments and outcomes. Iron Health, as an associate example, created the 
medication cloud for this purpose. Flatiron’s network includes more than 
one-quarter thousand tumor health centers and 1.5 million active patients 
[46], all of whom are joined through a cloud-based EHR platform to form a 
unified system. Their associate in Nursingalytical tools is employed to boost 
associate EMR system, analyze the value of particular sufferer care, gather 
quality indicators, and see realizable clinical trial candidates. Flatiron’s meth
odology is utilized in conjunction with clinical biological science info from 
Foundation Medicine by the FDA to see the importance of “actual proof.” 
A pair of such private-sector health maintenance organizations’ exploitation 
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and databases are Kaiser Permanente clinical analysis networks and Truven 
Health’s MarketScan. These sorts of large info are distinct from the qual
ity giant information bases created exclusively to assemble information for 
clinical trials or analysis objectives [47]. There are some ways to use the 
above-mentioned info sources to induce unstructured info and provide an 
amount of your time analysis and feedback, which could facilitate improved 
cancer medical aid delivery [46–49]. 

11.3.3 Cancer biological science and various “Omic” databases 

The NCI’s center for cancer genomics established the Cancer info workplace 
in 2018. The project’s objective is to supply laptop tools for analyzing and 
mixing info from cancer biological science labs and patients. These tech
niques would probably be applied to elementary scientific queries like cancer 
genetic predisposition, status, and response to treatment. The  cancer Genome 
Atlas (TCGA), which was maintained by the NCI and so the NHOAI, was 
one in each of the first large-scale cooperative genomic datasets. As of March 
2019 [50], the TCGA had sequenced and molecularly profiled tumors from 
over 33,000 patients. UN agency had been diagnosed with around 70 dif
ferent types of cancer, beat 22,000 genes, and characteristic over 3,140,000 
alterations [51, 52]. Notably, academics from all around the world have 
profited from the TCGA’s intensive publicly out molecular identification, 
which has been cited in over 5000 studies. The National Cancer Institute’s 
Clinical Proteomic Growth Analysis pool could also be a collaboration of 
institutions and researchers that uses “pan” and “omic” analyses to inves
tigate the molecular foundations of cancer. Genetic science info generated 
by Clinical Proteomic Growth Analysis pool analysis is kept publicly out 
that is accessible to researchers worldwide. To boot, the National Cancer 
Institute’s Therapeutically applicable research to generate effective treat
ments (TARGET) program collaborates with a variety of clinical trial coop
erative groups and consortia to assemble clinical info and tissue samples for 
the aim of generating, analyzing, and coding genomic info [53]. TARGET 
investigates genomes and transcriptomes through the utilization of a “multio
mic” approach that comes with a style of sequencing and array-based tech
nologies. Attributable to the advancement to facilitate the development of 
genomic sequence therapeutic targets, a majority of educational medical cen
ters had also established one’s committee polymer sequence alignment strate
gies (e.g., Memorial Sloan Kettering-Integrated Mutagenesis Recognition of 
Inequitable Melanoma Objectives) or rely on commercially available frames 
such as those from base treatments. Although knowledge was first gathered 
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Figure 11.1 Big data collaborate with oncology to predict the best treatment for patient. 

in silos, the American Association for Cancer Research is attempting to com
bine it through the biological science-based pathological process information 
sharing [54]. The data generated by these efforts have benefited researchers 
in gaining associated improved information on the genetic makeup of various 
cancers and seeking out therapeutic targets. In some ways, we have barely 
scraped the surface, and there is still a mountain of data to assemble and 
analyze. As a result, academics have increased their efforts to discover new 
ways to increase the accessibility of this information, as well as the tools 
required to view it [50–55]. Figure 11.1 shows the collaboration of big data 
with oncology. 

11.4 Data Collection in Big Data for Oncology Treatment 

In terms of digital imaging of the treatment delivery process, radiation oncol
ogy is one of the most modern medical fields. We have a computerized record 
of each patient’s radiation medicine and know exactly where it is going in 
the body. Current linear accelerators with on-board imaging capabilities can 
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assist researchers better comprehend the relevance of typical life variations 
in the victim’s framework in terms of radioactive delivery position [56]. Our 
understanding of the impact of radiation on human function will increase 
as automated anatomy segmentation and tools for analyzing the topological 
effect change in the dose of ionizing radiation within a certain anatomical 
structure [57]. As a result of the highly automated nature of radiation therapy, 
the treatment delivery process may be measured and evaluated. Radiation 
medicine needs to pay more attention to the increase of digital data collec
tion of critical patient states and, perhaps more importantly, oncologic out
comes of interest. Pathology, genetics, and, more recently, radiomics (six 
to nine) have all contributed to our understanding of the ailments we treat. 
Furthermore, genetics provides information on the radiation susceptibility of 
normal anatomy [56–61]. 

Improving knowledge integration can greatly improve the flexibility 
to refine groups of patients that are otherwise “similar.” The cost of genetic 
sequencing has declined significantly in recent years, and it appears that it 
will remain low for the foreseeable future. The most challenging knowl
edge to collect is outcome knowledge, which should be obtained through
out the review process to ensure the accuracy of knowledge. Otherwise, the 
time it takes to gather knowledge after patient examination erodes accu
racy and introduces bias. This issue is not confined to the large knowledge 
enterprise; it is going to even be encountered in early-stage clinical inves
tigations. Each patient visit provides an opportunity to learn more about 
treatment side effects, symptom management, illness response, and quality 
of life. The challenge is to get this information while not distracted by the 
patient–physician connection or a frantic clinical procedure [60]. As a result, 
establishing the right technology to support these goals while maintaining 
existing clinical practices and documentation standards could be a major 
challenge. This technique of text-based record-keeping and dictation is shy 
for capturing data. Consequently, the observer may interpret these find
ings as crucial; thus, various documentations opt to report just the relevant 
positive findings. Analytical algorithms, on the other hand, need important 
negatives to produce context for relevant positive findings [61]. Therefore, 
optimal knowledge capture strategies should include these issues, with the 
optimum knowledge capture strategy favoring the use of organized knowl
edge objects. While fast processing and abstraction are beneficial, the abil
ity to evaluate the knowledge/information integrity required for many huge 
data projects’ insight finding goals may be limited. It is vital to develop 
more tailored user interfaces for physicians and nurses that allow for coor
dinated data collection while keeping practitioners present for patients. 
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These user interfaces can be changed to fit different types of encounters; 
also, they have displays that show how the patient is doing and allow for 
quick changes [62]. 

Along with medical evaluations, physician consequences enable the 
collection of some more frequent data on a person’s well-being. Validated 
Quality of Life devices can be electronically collected to retain consistent and 
global assessments of individual health. Portable gadgets have the potential 
to do more continuous patient evaluations on a daily (or even minute) basis. 
These devices are essential for recording real-time patient encounters. To 
drive a culture transformation, we must demonstrate the value of the learning 
health system in supporting and improving patient care [63]. Data collection 
should be emphasized as a paradigm for better serving the particular patient. 
We must be cautious not to discourage its use by imposing rigorous practice 
monitoring, which may be perceived as punitive while not influencing patient 
care. If quality metrics are to be used at all, they must be linked to relevant 
therapeutic objectives. 

11.4.1 Data management and aggregation in big data 

Over the last two decades, system-to-system syntactic compatibility has 
improved substantially. DICOM RT has allowed methods to communicate 
about therapy, freely. Additionally, HL7 enables the linking of test results, 
patient schedules, and demographic data. On the other hand, semantic 
interoperability is still in its infancy. Ontologies such as SNOWMED-CT are 
gaining popularity, and their adoption will allow systems and organizations 
to interchange vast amounts of data while maintaining semantic integrity. 
Ontologies for radiation oncology have been improved further, and we will 
be able to correlate data with meaning even more in the future. 

Although ontologies give a uniform terminology, the underlying con
cept is difficult to communicate to all clinicians. These ontologies need to be 
set up in such a way that clinicians can utilize them without having to worry 
about how they operate while caring for patients [64, 65]. 

When it comes to data aggregation, the most often used method is to 
employ a data warehouse, which was created for business analytics. Radiation 
oncology is unaffected by these fundamental business analytics tools [66]. 
These off-the-shelf solutions are incapable of handling our data due to its 
complexity and the number of variables in our queries. The architectures of 
medical data warehouses range from classic relational databases to more con
temporary no-SQL versions that put a larger emphasis on documents. To do 
research, we need a model capable of storing all patient data. Analytical tools 
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must be used by medical researchers and clinicians, and they must help to 
make pragmatic controlled trials possible [66–70]. 

All types of radiation oncology providers may participate in big central 
data repositories such as the NROR, QOPI, and ASCO CancerLinQ. The ulti
mate goal is to centralize all data to facilitate quality comparisons and valida
tion assessments across institutions. The issue is that, historically, these models 
limited data collection to what was deemed “acceptable” for each patient. As 
a result, data extraction through healthcare workflows into such centralized 
information sources requires approval from the participating institution, takes 
more time and effort to maintain interfaces with electronic medical records, 
and limits access to the participating institution’s data. This has made export
ing data from clinical systems to these central data repositories very costly. 

Both Oncospace and MAASTRO/EuroCAT25 use federated data archi
tectures, which allows each institution to keep track of its own data, which 
offers several advantages. Each institution retains total control over data 
access and analysis. This expands your options for connecting to internal 
electronic medical records. Flexible criteria for data gathering offer more 
accurate analysis and decision support with less worry about data consis
tency. This method protects patient privacy because the institution has com
plete control over the data and makes sure that it never leaves the institution. 

11.4.2 The data sources for big data in medicine 

There are several massive data sources accessible, each with its unique set of 
properties and dimensions. The findings of clinical trials conducted on cancer 
patients are the most evident. Often utilized for therapeutic purposes, com
puterized patient files include a high number of data points or subjects [61]. 
These files contain a wealth of information about patients and their tumors 
and treatments, as well as demographic information such as the patient’s gen
der, age, family history, and comorbidities. They additionally contain tomog
raphy knowledge (such as magnetic resonance imaging, CT, PET, and US) 
and solid and liquid tissue-based analysis (such as histopathological identifi
cation, DNA/RNA sequencing blood analyses, and whole order BAM files), 
which can be used to perform whole-genome sequencing. In vitro data, on 
the other hand, may be informative and important [62]. The computational 
analysis of massive datasets is another source of big data. Indirect and cal
culated data are incorporated in the processed information, such as radio
mic and digital picture analysis, as well as genetic expression and mutation 
research. Massive computer files, particularly structured data, are a rapidly 
rising source of machine-learning-processed data. Another major source of 
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information is data derived from patients’ self-reported outcomes and experi
ences, commonly referred to as “big data.” This data is collected using soft
ware on computers and mobile devices and may be given by their healthcare 
professionals (eHealth, telemedicine, etc.) or collected by the patients them
selves. A fourth source is the published literature (IBM project). Given that 
over 1 million biomedical publications are published each year, it is difficult 
for any clinician to study even a fraction of the available material. However, 
one critical component of cancer is the volume of data acquired on each 
patient. Despite the relatively small patient population in oncology, the sector 
creates and maintains a vast number of observables (thousands to millions) 
[64]. Patients with rare conditions, such as head and neck cancer, confront 
an even bigger disparity between the quality of their data and the size of 
their cohorts. Recent breakthroughs in machine learning and neural networks 
may be highly beneficial if examples are available. For example, hundreds to 
millions of instances must be employed to create algorithms for object rec
ognition in photos. We will need a bigger sample size to use this data to build 
personalized medicines. Some important parts of cancer research are import
ant for all types of cancer, but especially for head and neck oncology [75, 76]. 

11.5 Therapy Plan for Cancer 

11.5.1 	Big data will aid in the development of  
novel cancer therapies 

Consistency in data collection is critical, given the abundance of sources of 
data. In the long term, this standardization will result in more consistent and 
full datasets, which will connect them to other data sources easier. Consistency 
is required for data integration to make sense of and produce value from data. 
When assessing the quality of care delivered after various surgical opera
tions, patients’ tumor stages, adjuvant treatments, co- morbidity, and other 
aspects must be considered. In Netherlands, there are a lot of national data
bases that collect medical, pathogenic, hereditary, chromosomal, and PROM/ 
PREM data from people [75]. 

The Dutch Head and Neck Audit (DHNA) started collecting clinical 
data in 2014 and are now part of the Dutch Institute for Clinical Auditing 
(DICA), which has subsequently established subgroups for numerous med
ical disorders (cancer and non-cancer). Oncological tissue-based data has 
been collected meticulously and is now accessible synoptically for over 20 
unique tumor types throughout the country. The organization of radiological 
data remains an open question. The NET-QUBIC organization has developed 
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a nationwide website for reporting PREMs and PROMs for HNC and other 
forms of cancer. In Netherlands, the majority of patient-derived data sources 
have been integrated into HNC [76]. The Cancer Imaging Archive (TCIA) and 
the Head and Neck Squamous Cell Carcinoma (HNSCC) Collection are two 
instances of similar global efforts, which collect this data as soon as possible, 
preferably on a patient-by-patient basis. In Netherlands, the Dutch Head and 
Neck Society runs eight hospitals in collaboration with six approved partners 
(NWHHT). The head and neck cancer community has a lot of potential in 
terms of pooling resources and coordinating actions to universally complete 
existing databases [76]. There is an enormous possibility to link these data-
sets throughout the country and develop algorithms for analyzing data from 
several locations simultaneously in head and neck cancer [77, 78]. 

11.5.2 A cancer treatment plan that is tailored to each patient 

Personalized medicine is based on actionable insights derived from big data, 
which are used to translate current knowledge and data into improved treat
ment results. New technologies, including sequencing and imaging, are gen
erating terabytes of data that are becoming more available to the scientific 
community. In terms of volume, radiomic and digital image analyses account 
for the great majority of data output, rather than direct patient-related infor
mation. Head and neck tumors provide a unique diagnostic and therapeutic 
challenge due to their intricate architecture and unpredictability. Radiomic 
may be able to assist in addressing some of these concerns. Radiomic is a 
non-invasive and low-cost approach for collecting medical imaging features. 
Imaging characteristics may be utilized to quantify the phenotypic character
istics of a whole tumor, which is the foundation for the radiomic notion. It is 
possible to identify differences in expected/predicted survival rates between 
groups of patients and treatment outcome(s) prediction using radiomics, 
which enables prognostic and reliable machine learning methods, to aid in 
the selection of the best possible treatment for patients with head and neck 
cancer. Medical and radiation oncologists may be able to (de)increase the 
doses of systemic treatment or irradiation administered to cancer patients in 
various circumstances [71]. 

11.6 	Big Data Powers the Design of “Smart” Cell 
Therapies for Cancer 

By merging machine intelligence with biological innovation, scientists can 
create “living medicines” that can target malignancies with pinpoint accuracy. 



 

318 Advancement of AI in Cancer Management: Role of Big Data 

The goal of oncology research is to find drugs that can destroy cancer cells 
while sparing healthy tissue. Researchers at Princeton and UC San Francisco 
(UCSF) have different ideas about how to solve this problem by using "smart 
cell therapies," or biological drugs that are only activated by specific protein 
combinations found in cancer cells. Scientists from Princeton University and 
the University of California, San Francisco (UCSF) have different ideas on 
how to overcome this issue [72]. 

Researchers at the UCSF Cell Design Initiative and National Cancer 
Institute-Sponsored Centre for Synthetic Immunology have been studying 
the biological elements of this wide approach for many years. By merging 
cutting-edge therapeutic cell engineering with cutting-edge computational 
approaches, the most recent study brings a significant new dimension to this 
endeavor. Princeton’s Lewis-Sigler Institute for Integrative Genomics and the 
Flatiron Institute of the Simons Foundation collaborated with Lim’s team, 
as did the computer scientist Olga G. Troyanskaya, Ph.D. The researchers 
examined massive datasets, including hundreds of proteins identified in both 
cancerous and healthy cells, using machine learning technologies. They nar
rowed down the millions of possible protein combinations to those that may 
be utilized to target cancer cells while leaving healthy cells alone [73]. Using 
this computationally produced protein data, Lim and his colleagues were able 
to develop cancer treatments that were successful and precisely targeted [74]. 

According to the UCSF professor and head of the cellular and molec
ular pharmacology, Dr. Lim, most cancer therapies, including chimeric anti
gen receptor (CAR) T cells, are now focused on “stopping this” or “killing 
this,” as opposed to “treating this,” as in the past. A therapeutic cell’s choices 
should be more nuanced and sophisticated, according to the researchers. 

CAR T cells have received a lot of interest in recent years as a pro
spective cancer treatment; however, solid tumors have not responded well 
to this method. CAR T cell therapy is genetically modified immune system 
cells taken from a patient’s blood to develop a particular receptor that recog
nizes a specific marker or antigen on cancer cells. Cancers of the blood, such 
as leukemia and lymphoma, have shown great promise when treated with 
CAR T cells, but the treatment has not yet been shown successful against 
solid tumors like breast, lung, or liver cancer. Since cells in solid tumors 
commonly interchange antigens with normal cells, CAR T cells may have 
unexpected consequences by attacking healthy organs. CAR T cells are often 
limited in their ability to combat solid tumors because of the hostile milieu 
they face [74]. When it comes to evaluating their surroundings and making 
decisions, cells are analogous to molecular computers, according to Lim. 
Solid tumors are more difficult to treat than blood cancers; so “you have to 
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construct a more comprehensive strategy,” he says. The Cell Systems team, 
which comprised a graduate student in Troyanskaya’s Princeton lab and a 
clinical fellow in Lim’s lab, examined at almost 2300 genes in normal and 
malignant cells to see which antigens could help separate one from the other. 
Researchers employed machine learning methods to discover prospective 
hits and identify clusters of antigens. Antigen combinations based on gene 
expression data may help T cells recognize cancer while disregarding healthy 
tissue, according to Lim, Troyanskaya, and colleagues. The Boolean AND, 
OR, or NOT operators may be used to differentiate tumor cells from normal 
tissue, for example, using markers “A” or “B,” but not “C,” where “C” is an 
antigen that is detected exclusively in normal tissue [74]. 

11.6.1 Instructions are inserted into the cells 

SynNotch, a molecular sensor that enables synthetic biologists to fine-tune 
cell programming, was utilized to encode these instructions into T cells. It 
was developed at the Lim lab in 2016 and is a receptor that can be designed to 
identify a broad variety of target antigens. If synNotch’s output response can 
be controlled, the cell may be able to perform a variety of things in response 
to the discovery of an antigen [75]. 

They were able to utilize synNotch as a tool to educate T lymphocytes to 
attack kidney cancer cells that produce a particular combination of antigens 
known as CD70 and AXL, demonstrating the potential importance of the data 
they had collected. Using a designed synNotch AND logic gate, T cells were 
able to target cancer cells and not healthy ones. Tumor-specific T cells were 
able to target just cancer cells even though CD70 and AXL are present in both 
healthy immunological and lung cells [75]. 

In the last five years, Troyanskaya said, “Cancer big data analysis and 
cell engineering have both expanded, but these accomplishments have not 
been brought together.” Thanks to the computational abilities of therapeu
tic cells and machine learning methodologies, it is now possible to act on 
the growing amount of comprehensive genetic and proteomic data regarding 
cancer [76]. 

The discoveries of Jasper Williams, a former UCSF graduate student, 
are taken into account when numerous synNotch receptors are daisy-chained 
to construct a variety of sophisticated cancer detection circuits. As a result 
of synNotch’s ability to “plug and play” the expression of particular genes, 
these components may be connected in many ways to form circuits with a 
wide range of Boolean functions, allowing for accurate detection and a vari
ety of reactions when sick cells are found. 
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Lim described his research as “basically a cell engineering manual” to 
develop therapeutic T cells that can detect nearly any combination of antigen 
sequences on a cancer cell; it teaches us how to produce multiple types of 
therapeutic T cells. 

Antigen A may be recognized by a synNotch receptor and then utilized 
to generate a secondary synNotch that recognizes antigen B, triggering the 
production of a CAR that recognizes antigen C. As a result, for a T cell to 
be deadly, all three antigens must be present. When a T cell recognizes an 
antigen that is present in normal tissues but not in the tumor, it can be trained 
to self-destruct. No harm will be done to normal cells, and unwanted reper
cussions will be avoided [77]. 

Lim and colleagues demonstrate that by utilizing synNotch arrange
ments of this type, they can selectively kill cells that exhibit different com
binatorial indicators of melanoma and breast cancer. T cells coupled with 
synNotch were also tested in mice with two distinct malignancies, each 
with a unique antigen combination, and they quickly and properly detected 
the tumors expected [80]. In addition to pancreatic cancer, the researchers 
are looking into how similar circuits could be used in CAR T cells to treat 
aggressive brain malignancies like glioblastoma, which is nearly always fatal 
when treated conventionally. “It is not just a one-shot wonder bullet that you 
are looking for,” Lilim saw that Lim was using every piece of data he had. 
This might open the way for the generation of more intelligent cells that can 
make use of the computational complexity of biology, which could have a big 
effect on cancer therapy [82–84]. 

11.7 Future and Challenges of Big Data in Oncology 

11.7.1 Challenges 

Methods for large knowledge administration and assessment are constantly 
changing for period knowledge monitoring, collection, compilation, statistics 
(including cubic centimeter plus data modeling), and visual image technol
ogies which will aid within the integration of EMRs into care. For example, 
in the United States, the adoption rate of state-tested and authorized EHR 
applications in the healthcare industry is nearing completion [85]. However, 
the provision of many government-certified EHR programs with its clinical 
nomenclature, technical necessities, and purposeful capabilities has ham
pered knowledge interchange and sharing. However, we can confidently 
conclude that the healthcare industry has reached the “post-EMR” phase 
of deployment. The first objective now is to draw unfair insights from the 
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massive amounts of data generated by EMRs. We will go over a few of these 
challenges in further depth in this section. 

11.8 Perspectives for the Future 

In the present era of technologies and digitalization, numerous medical and 
research techniques, including genome sequencing, digital biosensors, and 
digital assistants, create a massive volume of information. Therefore, one 
must be aware of or evaluate the benefits which can be obtained by using 
such information. Examination of these kinds of information will provide 
more perspectives on methodological, conceptual, therapeutic, as well as 
other sorts of transforming healthcare [86]. 

Working with advanced analytics is difficult with many relational data
base management systems, portable statistical, and visualization programs 
[87]. Several assessments seem impossible to finish in a reasonable time-
frame. ML, information retrieval, and computation evaluation are all names 
used to represent certain “computation” processes [88]. The two principal 
components for reinforcement methods and logistic regression exhibit a wide 
range of aims they are attempting to achieve. Several computer models that 
have already gained broad appeal include neural networks, support vector 
machines, Bayesian network modeling, choice branches as well as random
ized, and cluster approaches [89]. 

As the usage of digitalization grows, more processing effort will be 
required for multivariable calculus [90]. To accommodate this form of 
research, the infrastructure must also be extensible or even contain the statis
tical methods along with facts. This is necessary for understanding the addi
tional issues presented by many records, as well as how to properly utilize 
them. Throughout the next decade, the overall space of CER would shift, and 
the effects might still be seen among allied subspecialties investigation. Major 
University commitments involving new clusters of attendees (beneficiaries, 
practitioners, victims, or even corporate entities) would then arise to con
struct information of such area. Additionally, they will construct uniqueness 
designed to sustain sophisticated analytics strategies to evaluate meta- analyses 
and thus to acknowledge person variability throughout terms of diagnosis 
curriculum and drug sensitivity. Some comparisons are frequently included 
throughout, including both terms of information references as well as the uti
lization of widely diverse data sources. Multiple examples of such efforts are 
the Observational Medical Outcomes Partnership [91] and eMERGE [92]. A 
study of lithium medication efficacy conducted through the PatientsLikeMe® 
platform (MA, USA) [93] demonstrates patient involvement in efficacy 
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research. CER research will become significantly more multipolar, encom
passing both government and academia, as well as the biopharmaceutical 
industry. Researchers categorized the major conceptual framework of investi
gation in health informatics based on the relevant evaluation. Considering the 
variances from every study’s methods, we found that the future perspectives 
were often comparable. We categorized the data into three different catego
ries: “technological” observations (succeeding digitalization innovations to 
host a variety and perhaps forecast technological advancements mostly in 
the surrounding region), “organizational” viewpoints (possible enhancements 
to hospital methods in order of confidentiality, mentoring, service delivery, 
cost-cutting, and so on), and “investigation” outlooks (future study objectives 
that all mentioned strategies would then be bridging). Technology will play 
the most important contribution to the BDA’s development in health since the 
volume of health data will expand at a rapid pace around the world, increasing 
the demand for information technology infrastructure [94]. 

Many researchers indicated that their primary goal was to improve 
the technological technique presented or evaluated in their study so that 
more advanced versions of their approaches will be accessible in the future. 
Scientists determined features of their methods that may be enhanced with 
expert input, and they expect more innovative strategies for mining of large 
datasets, as well as new platforms or procedures, to optimize data value. 
They also anticipate that technology will expand the capacity of systems 
and increase the accuracy of health data, allowing for better risk adjustment. 
Advanced new broadcast technology has the potential to improve, commu
nicate, and provide cost-effective therapies to patients [95], thereby mini
mizing resource misallocation (e.g., tracking patients across service sites, 
aggregating more data, providing another more detailed perspective of sta
tistics, accessibility of the patient history to every physician, and so forth) 
[96]. Programs that permit or enhance clinical experts’ judging abilities, par
ticularly when diagnosing complex diseases or pathologies, appear to be in 
high demand in medical services. Finally, numerous researchers saw room 
for change in their computational method in terms of offering new modalities 
to provide more adequate outcomes [97]. 

Among the “organizational viewpoints,” future advancements in the 
field of private information secrecy, as a result of the emergence of technol
ogies that will standardize and secure the process of combining anonymous 
aid data from aid organizations, are the most important. Aid companies and 
researchers are ready to employ these datasets for extra worth creation if pri
vacy and cybersecurity are ensured. Another future approach is for aid organi
zations to train and educate all physicians as well as the general public about 
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the next redeveloping era or the period in which people play an active role 
in the creation and management of health and medication data using digital 
technology. Environmental factors are expected to be incorporated into the 
data analysis method and judgment calls to observe natural dangers, like gas 
outpouring. On the other hand, in order to reduce our negative impact on the 
environment, we can sanction the real-time implementation of water closet 
light sources, reduce unnecessary journeys, prevent patient falls, and use 
other alternative methods. Because of the need for brand new patient treat
ment protocols and patient–clinician relationships, victimization of artistic 
and computer-aided identification systems, like questioning ancient practices, 
can lead to new social group norms. Given the value of knowledge analysis in 
aid, additional investments in IT infrastructure and individuals with appropri
ate interest/expertise from aid firms or governments for aid monitoring, such 
as national machine-driven bio- surveillance systems, are expected. Scientists 
additionally indicated that understanding the extent to that style selections are 
created on things like drug prescription patterns, which might impact value 
outcomes, would be useful. In the formation of broad collaborations between 
makers, payers, providers, and regulators within the healthcare system, very 
little attention is currently being paid to organizational future views, to say 
nothing of true worth that massive knowledge can provide in medicine. 

The main focus of the “research views” is researchers’ need for a large 
number of investigations to support their theory, as well as their conviction 
that their approach may “provide value” in alternative help applications. 
Incorporating period sensing element knowledge from patients’ devices into 
the BDA method, for instance, will enhance clinical call support for a poly
genic disorder, similarly to alternative sophisticated medical diseases like 
Alzheimer’s and psychopathy. Alternative researchers envision a future in 
which massive data is used to guide time clinical decision-making based on 
individual patient characteristics, and in which large teams of patient data are 
pooled from multiple institutions so that everyone, including associated phy
sicians, will notice “people accept them” to aid in clinical decision- making 
during the particular duration. As a result, many writers argue that their knowl
edge analytic methodologies ought to be valid with patient demographic 
options from totally different areas or nations to broaden the reach of their 
model and provide world assumptions. Finally, there is proof that the authors’ 
projected approach can be utilized in alternative scientific fields in the future. 
For example, knowledge-based innovations in a variety of large knowledge 
fields, such as precision medicine, nutrigenomics, vaccinomics, personalized 
medicine, protocols in order, and other possible suspects, are expected to be 
centered on the interpretation of post-genomics data using specific algorithms. 
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11.9 Conclusion 

Cancer is a leading cause of death in both genders. Patients with tumors 
have a variety of options. Big data approaches could be employed in tumor 
research and in improving cancer therapy and delivery decisions. The term 
“big data” is vague, but it often refers to large datasets that require human 
analysis. Huge datasets typically are both organized (test results or CPT 
codes) and unstructured (doctor’s notes). There is a large amount of patient-
level data, which may help overcome the clinical–translational research 
gap. However, processing such large amounts of data requires a high level 
of knowledge. Radiation oncology data includes diagnostic, therapeutic, and 
symptomatic management. The purpose is to influence treatment decisions 
using diagnostic and prognostic criteria. A project’s biological impact should 
be considered in every case. The requirement for proof is increasing in the 
field of cancer treatment development. Big data analytics can help solve sev
eral problems in cancer therapy and medication research. Data from routine 
treatment and real-world settings can be used to learn from each patient. It 
may also help design and refine disease preventive measures. The National 
Cancer Institute’s SEER program, and hence the Centers for Disease Control 
and Prevention’s NPCR, can now follow tumor frequency and mortality rates 
in communities, thanks to this new data collection. 
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Abstract 

Cancer is considered as one of the fastest evolving, ever-changing complex 
disease. According to the WHO, cancer is the leading cause of death world
wide, accounting for nearly 10 million deaths in 2020. The global burden of 
cancer is continuously growing and creating tremendous emotional, phys
ical, and financial strain on individuals, families, communities, and health 
systems. The fight against cancer has made huge progress over the last 30 
years with a great improvement in the survival rate, but the general cure is 
still elusive. Targeting cancer depends on the proper understanding of cancer 
biology by applying different “omics” approaches like genomics, proteomics, 
and transcriptomics, which are considered as the predictive analytical tool for 
different cancers. Approaches for targeted delivery of therapeutics in cancer 
typically involve the systemic and localized administration of therapeutics or 
drug entrapped nanocarriers. Several steps are involved in designing a targeted 
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drug delivery system, such as identifying suitable small molecular therapeu
tics and selecting different biomarkers, a ligand for targeting, optimization, 
and evaluation of the formulation. This is the era where most of the research 
activities are based on AI (artificial intelligence) or information technology, as 
they are less time-consuming and cost-effective. Despite such advancements, 
the challenges that oncologists face are managing huge data coming from dif
ferent high throughput sources like computer-aided drug discovery (CADD), 
molecular biology, ADMET profiling, imaging, and pathological studies in 
vitro experiments, and statistical analysis. To mitigate this problem, “big data 
analytics” comes into the picture. “Big data analytics” plays an important role 
in integrating and interpreting the massive amount of data scattered around 
the world of cancer research. In a data-rich field like oncology, interpretation, 
storage, standardization, and sharing of data are also important, for example, 
different databases available in the public domain like Drug Bank which is 
a database composed of detailed information of different approved, investi
gational, and withdrawn drugs, The Cancer Genome Atlas (TCGA) which is 
a database that includes detailed information regarding the cancer patients, 
PubChem which is a chemical compound database, and Protein Data Bank 
which is crystal structure database for different proteins as well as ligands. 
In short “big data analytics” fuels cancer research by offering quality and 
precise data, thus intern accelerating the decision making, risk stratification, 
and prevention program. This book chapter deals with the emerging advances 
in “big data analytics” concerning targeted drug delivery toward cancer and 
its utility in the screening of drug molecules, selection of target, and ADMET 
profiling; further, the current challenges, as well as future applications of “big 
data analytics” in oncology, are also enlightened. 

12.1 Introduction 

Cancer is one of the severe pathological conditions in which abnormal cells 
grow out of control and, by invading the nearby tissues, ultimately causes dis
turbances in the normal health condition. The therapy in cancer patient is still 
a challenging and uphill task due to the lack of ability to distinguish between 
normal cells from cancer cells [1, 2]. Cancer is a serious global public health 
concern, with millions of new cases and deaths, which ultimately motivates 
the researcher to explore the new therapeutic options to cater the unmet clin
ical needs in the cancer therapy [3]. 

Till date, more than 200 types (or subtypes) of cancers have been iden
tified based on the shape, location, and metastatic behavior of the tumor 
cells [4]. Due to the changes in the genomic behavior among the cases and the 
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development of drug resistance, it is very difficult to justify the generalized 
treatment toward metastatic tumor. According to the investigation, cancer biol
ogists identified that the changes in the genome-like altered gene expression 
of certain proteins, mutations (somatic or genetic), copy number aberrations 
(CNAs), and changes in epigenetic patterns are the reasons behind the huge 
dynamic behavior in the cancer treatment [5]. This variations intern causes 
vulnerability in the translation of successful treatment; that is why the custom
ized and precision medicine came into the picture [6]. Precision medicines are 
developed on the basis of proper understanding of a patient’s genome structure 
and function, which gives them direction to target either specific receptor or 
molecular pathways for the betterment of therapeutic efficacy and safety. 

Conventionally, the role of cytotoxic therapies predominated in the 
treatment of cancer and is the mainstay in cancer therapeutics for several 
decades. Most of the existing anticancer drugs are unable to show specific 
action toward malignant cells and, thus, generate severe adverse reactions, 
which may prompt the cessation of treatment in certain patients. Another 
major issue with all chemotherapies is the emergence of chemoresistance as 
a result of the continued use of cytotoxic medicines [7]. 

The failure rate of drug products in oncology suffers a greater setback. 
Despite the various challenges in creating clinically effective antineoplastic 
drugs, pharmaceutical companies are still interested to pursue novel oppor
tunities for anticancer drug candidates due to their high returns on invest
ment [8]. Figure 12.1 depicts global expenditure on oncology medicines for 
example, global sales of oncology drugs reached $164 billion in 2020 and are 
estimated to be around $269 billion by 2025 [9]. 

To date, many anticancer drugs are being used to ultimately kill 
cancer cells, thus increasing overall survival rates and patient quality of 

Figure 12.1 Global spending on oncology medicines [10]. 
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life. Traditionally discovered anticancer cytotoxics act by blocking single 
essential function and killing the dividing cancer cells, categorized as alkylat
ing agents (e.g., Cyclophosphamide, Thiotepa, Carmustine, Dacarbazine, 
and others), forming altered DNA complexes (e.g., Cisplatin, Carboplatin, 
etc.), antimetabolites (e.g., Azathioprine, Methotrexate, 5-flurouracil, etc.), 
as well as those altering microtubule formation and chromosome topology 
(e.g., Paclitaxel and Irinotecan) [11, 12]. Further, newer cytotoxic agents 
explored in the journey that are used to target dividing tumor cells in new 
ways or targeting over-expressed proteins in tumors include kinase inhibi
tors (e.g., Barasertib, Alisertib, Danusertib, etc.), cyclin-dependent kinase 
inhibitors (e.g., Abemaciclib, Palbociclib, etc.), modifying chromatin 
topology (histone deacetylase inhibitors), as well as proteasome inhibi
tors (Bortezomib) [13–16]. Since time, the oncological drug research has 
progressed from hormonal therapy (e.g., Tamoxifen), immunomodulators 
(e.g., nivolumab), to targeted therapy (e.g., Bevacizumab). Now, the focus 
shifts toward targeted drug delivery in cancer tissues directly along with the 
immune modulators which aids in the patient’s immune system to defeat in 
the fight against cancer. In a real sense, the path of a novel molecular dos
age form or innovator product is not simple and needs years of incumbent 
scientific research; thus, most of the pharmaceutical industries are facing 
the major issues of low productivity and return on investment in R&D [17]. 
At the same time, the large capital investment required to bring a new drug 
to market, estimated at around USD 2.6 billion, is constantly accompanied 
by high complexity and high failure rates, amidst intense scrutiny from reg
ulatory bodies and the general public concerned about the safety of drug 
products [18]. 

The emergence of translational research in drug discovery is a pioneer
ing step toward the development of novel therapeutics, which has resulted 
in the emergence of new key market players, such as academic institutions, 
biotech firms, large pharmaceutical organizations, and the National Institutes 
of Health (NIH), all focusing on developing the expertise required to gen
erate new therapies by linking basic drug discovery directly to unmet clini
cal therapeutic needs [19]. However, there are still increasing concerns over 
traditional drug discovery programs resulting in inefficiency and failure to 
provide pharmaco-technological breakthroughs that have transformed other 
scientific industries. With the introduction of translation research and the cur
rent buzzwords “artificial intelligence,” “machine learning,” and “big data 
analytics,” a changing paradigm shift in the drug discovery and development 
is observed; intending to drive healthcare forward through clinical break
throughs in the treatment of cancer diseases [20]. 
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12.2 Tools and Techniques for Targeted Drug 
Discovery and Delivery 

Over the past three decades, drug discovery and drug delivery in various dis
eases, particularly in oncology that too site-specific targeted drug delivery in 
cancer tissues utilizing the Internet of Things (IoT), artificial intelligence- 
machine learning (AI-ML) clubbed with big data analytics (BDA), have rev
olutionized the multiple domains in pharmaceutical and healthcare industry. 
However, big data is being explored in multiple sectors including healthcare 
[21, 22], pharma sector [23–25], biotechnological sector [26], genomics [27], 
agriculture [28], business management [29], and many others. BDA changes 
the scenario of the drug discovery and drug formulation development and 
continuously leads toward development of bio-pharmaceutically viable, sta
ble, safe, and efficacious product (Figure 12.2). The usage of BDA and AI 
has also led to reduction in the overall drug development costs as well as 
timelines for the launching of a pharmaceutical drug product [30]. 

Targeted drug delivery of chemotherapeutic agents in cancer tissues is 
dependent on understanding of the cancer cell biology, the role of cell cycle 
regulators, or tumor microenvironment (TME) along with exploring differ
ent predictive analytical tools, for example, “omics” such as genomics, pro
teomics, and transcriptomics. The research in the pharmaceutical domain has 
witnessed the translation of several new chemical entities (NCEs) as well as 
drug repositioning from “omics” data to securing FDA approval for clini
cal practice. The research in the targeted drug delivery in cancer tissues has 
benefitted from the implementation of many such innovative approaches and 
technologies right from the drug discovery phase to utilizing next-generation 
sequencing coupled with RNAi interference and, more recently, the CRISPR 
technology. These approaches are found to be important for understanding 
the biological system, cancer cell growth, and physiology and identification 
of drug targets, while exploring targeted drug delivery within cancerous cells, 
thus attaining the therapeutic efficacy and excluding the chances of adverse 
effects [31]. In that case, the usage of IoT, AI, and BDA could be harnessed to 
fulfill the unmet clinical needs, especially in oncology. There is a huge diver
sity as well as complexity in data generated during extensive drug discovery 
programs. The oncology sector apart from biopharmaceuticals has witnessed 
a steep rise in getting innovative drug approval from regulatory agencies in the 
last few decades [32]. Recent drug discovery research has focused on under
standing the tumor microenvironment, identifying key molecular events in 
the pathophysiology of specific cancer diseases, and investigating abnormali
ties at the genomic level, leading to the development of targeted therapeutics 
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that selectively kill tumor cells resulting in a higher safety and efficacy profile 
[33]. Traditionally, the development of antineoplastic agents involved screen
ing of lead molecules in in vitro studies on cultured cancer lines, followed 
by in-vivo testing in human cancer xenografts growing in immunodeficient 
mice, assessing pharmacokinetics and toxicological profile, and thereon test
ing their therapeutic potential in a human clinical trial. Following this pipe
line strategy, many successful anticancer therapeutics were made available in 
clinical practice and still making their existence in the clinical domain [34]. 

For instance, Imatinib (a tyrosine kinase inhibitor) was the first targeted 
therapeutic agent developed, which acts by targeting specific oncogenic sig
naling cascade (constitutively including active Bcr-Abl, c-KIT, and PDGFR) 
used for the treatment of chronic myeloid leukemia (CML) or gastrointestinal 
stromal tumor (GIST) patients [35, 36]. 

Even though traditional rational drug design has resulted in many 
blockbuster successes in the development of anticancer therapeutics, there 
is still a high rate of attrition, and selected lead molecules in the preclinical 
phase are still found to be failed to exert therapeutic effects in phase I/II clin
ical trials [37]. The primary underlying hypothesis is that malignant cells are 
constantly monitored by the immune system and that immunosuppression 
(active inhibition of immune responses) and immunoselection (recognition 
of suitable immunogenic determinants by immune detectors) allow them to 
grow into clinically viable tumors [38, 39]. 

As a result, researchers from various backgrounds are collaborating 
to develop safe and therapeutically effective diagnostic tools and targeted 
drug delivery systems, in shorter time frames. Nanomedicines, nanoneedles, 
pulsed laser surgery, injectable, genetic testing tools, nanotube-based bio
sensing devices, and integration of intelligent/smart biomaterials for site- 
specific tumor eradication, all belong to hot topics recently [40]. 

In the industry, the data revolution is both thrilling and worrisome 
because of the enormous volume of unstructured data generated and because 
they are difficult to synchronize structurally. Currently, big data companies 
are collaborating with major pharmaceutical companies, biotech companies, 
and academic research institutions to derive newer findings at every stage 
of the drug discovery process, from target identification to lead discovery, 
molecular design, precision medicine, and clinical development. The com
putational R&D platform aims at understanding the intricacies of human dis
ease and increases the chances of developing a viable treatment [41, 42]. 

The drug discovery program in the oncology sector remains a highly 
challenging endeavor due to tumor heterogeneity and genetic complexes of 
many tumors and, thus, creates a formidable challenge in the development 
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Figure 12.2 “Big data analytics” to accelerate business value and foster innovation. 

of targeted drug delivery [43]. Big data analytics in combination with cloud 
services and knowledge graphs can be used to drive to a particular conclu
sive decision. A knowledge graph basically integrates multiple data sources, 
allows users to gather informative insights from those sources, and ultimately 
makes the information available for convenient questioning [44]. 

We are familiar with the complexity of big data (the five Vs: volume, 
velocity, variety, veracity, and value), and it is an important attribute since the 
generation of zettabyte (1021) and yottabyte levels (1024) of data is expected 
in early drug discovery programs such as chemistry, toxicological screen
ings, pharmacological studies, bioassays, and mechanistic mapping of cancer 
disease [45]. The diversity generated in data obtained through different drug 
discovery disciplines illustrates the complexity of the analytics required to 
fully unlock the potential insights in real-time applications. 

Big data is increasingly being used to generate novel leads for the devel
opment of new chemical entities (NCEs) to address unmet clinical needs in 
oncology (Figure 12.3). In addition, big data plays an important role in gen
erating conclusive evidence of the mechanism of drug resistance possessed 
by cancer therapeutics, which is a key challenge to tackle among oncology 
clinicians and drug discoverers [46]. 

The next-generation genome sequencing (NGS) approach often pro
vides numerous candidate targets in mechanism-based cancer drug devel
opment, which must be systematically evaluated along with the progression 
from hit identification to lead optimization. The integrated approach is needed 
to prioritize and validate the selected target site(s) using big data both in 
chemistry and biology. All of this adds to the difficulty of obtaining focused 
knowledge for the selection of animal models, experimental methods, drug
gability prediction, and biomarker discovery [47]. 
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Figure 12.3 Applications of BDA and AI-ML throughout the phase of drug discovery. 

A fast-paced optimization process of lead molecules and clinical candi
dates highly depends on the application of tools like AI, and various compu
tational techniques. In a drug discovery cycle where past data and insightful 
expertise generated are critical assets, during the clinical development of 
the drug, the candidate will give feedback into future target identification 
attempts. 

12.2.1 Data sources available for drug discovery 

Many publicly supported organizations and institutes operate as data custodi
ans and have allowed open access to enormous data being generated available 
to the scientific community. Examples include the European Bioinformatics 
Institute (EMBL-EBI) https://www.ebi.ac.uk/, The National Center for 
Biotechnology Information (NCBI) https://www.ncbi.nlm.nih.gov/, Swiss 
Institute of Bioinformatics (SIB) https://www.sib.swiss/, American Type 
Culture Collection (ATCC) genome portal https://genomes.atcc.org/, 
Addgene https://www.addgene.org/, Broad Institute https://www.broadin
stitute.org/, BGI Group https://www.bgi.com/global/home, The Cambridge 
Crystallographic Data Center https://www.ccdc.cam.ac.uk/, and many oth
ers. Drug developers and oncologists recognize the value of big data in can
cer biology by utilizing complex data to achieve breakthroughs in the cancer 
drug discovery and development. 

12.2.2 Anticancer drug target discovery and validation 

Earlier, drug discovery was mainly done by detecting phenotypic changes 
and afterward investigating the mechanism of action of the drug. However, 

https://www.ebi.ac.uk
https://www.ncbi.nlm.nih.gov
https://www.sib.swiss
https://www.genomes.atcc.org
https://www.broadinstitute.org
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https://www.addgene.org
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the drug’s safety and efficacy are more important than its pharmacological 
mechanism for successful regulatory approval [48]. For example, in the 
Human Genome Project (HGP), a number of potential therapeutic targets has 
been discovered with possibly hundreds of mutations, which can help to set 
a plethora of cancer targets in each type of tumor for their specific treatment 
[49]. Anticancer drugs include small molecular therapeutics and biologicals 
(including peptides, nucleic acid derivatives, and vaccines) that interact with 
either druggable or undruggable target moieties. The majority of clinically 
authorized therapies interact with protein targets, except in a few situations 
where they might be dubious targets (e.g., gaseous anesthetics), lipidic tar
gets (e.g., amphotericin B), free-radical targets (e.g., antioxidants), or undis
tinguishable targets (e.g., loop diuretics) [50, 51]. Lazo et al. have explored 
the undruggable proteinaceous targets lacking enzymatically active sites, 
such as protein phosphotransferases, transcription factors (MYC-MAX, p53, 
and so on), RAS oncoprotein, and so on and, thus, need to be reinvestigated 
as potential drivers of cancer disease [51]. Among the approximately 30,000 
genes discovered in humans, around 6000–8000 sites are regarded to repre
sent promising therapeutic targets. However, only roughly 400 encoded pro
teins are effective in drug development so far [52]. 

Cancer is the most complicated disorder and involves several possible 
molecular targets; thus, identification of drug–target interactions is a crucial 
step in drug discovery program. High-throughput screening and other biolog
ical procedures are considered as the most typical approaches utilized in drug 
discovery, but they are expensive, time-consuming, and complex to execute. 
Nowadays, models for predicting drug–protein interactions utilizing net
work-based and machine learning approaches have been created using a vari
ety of computational tools [53]. The discovery of various anticancer drugs 
along with specific therapeutic target sites (both essential and non-essential) 
still remains a mystery [43]. Multiple target proteins can also be found for a 
single therapeutic agent. Sildenafil, for example, was created to treat angina 
pectoris but was subsequently repurposed to treat erectile dysfunctioning also 
[54]. The science of molecular oncology is booming, from oncogenes and 
tumor suppressor genes to metastasis regulators. Cancer pharmacology has 
been changed by advances in the genetics and immunology. There is still a lot 
of work to be done to find novel targets [51]. The screening of nearly 200,000 
genomes from patients with a variety of disorders using AI becomes possi
ble, and, as a result, the identification of a disease target as well as prospec
tive medication candidates become easy to find out. Nowadays, established 
drug companies are also applying AI-ML in their multi-omics operations, 
like Roche and Genentech, which are recently partnered with Stanford 
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University to employ AI to discover novel ways that a drug can target can
cer targets [55]. 

The presence of multi-omics databases has made targeted drug deliv
ery in cancer conceivable on a large scale. Using computational techniques 
like The Cancer Genome Atlas (TCGA) [56], The Human Protein Atlas [57], 
International Cancer Genome Consortium (ICGC) [58], and many cancer- 
related proteins can be recognized as therapeutic targets. The collective use 
of these large databases helps in the identification of appropriate targets, 
selective biomarkers involved in the oncologic pathway, and creating a ratio
nal hypothesis behind the mechanistic pathway. Computer-aided drug design 
(CADD) is a more rational, efficient, and economical strategy for drug dis
covery in this virtual era. The molecular docking is usually utilized to find out 
the best ligand binding site in the promising therapeutic target molecule, and 
based on the binding energy of docked hit molecules, the lead molecules are 
selected. The successful development of viracept (an HIV protease inhibitor) 
in the United States in 1997 was the first structure-based CADD concept of 
its kind, laying the groundwork for CADD to become an important tool in 
drug discovery initiatives [59]. 

12.3 Sources of Big Data in Drug Discovery and Delivery 

In oncology, drug discovery is triggered by newer approaches like gene 
sequencing, high throughput screening, and in silico study while the chemi
cal library and protein library have helped in the design hit to lead molecule. 
Big data generated across different pharmaceutical, biotechnological, med
ical, and genetic sectors caused complexity in drug discovery. Recently, big 
data analytics are being employed in multiple domains allowing the academic 
section to analyze a massive number of diverse datasets. Some resources of 
big data have been explained in this section and summarized in Table 12.1, 
which are utilized in the discovery of drugs for cancer. 

12.3.1 COSMIC-3D 

COSMIC-3D datasets include mutations involved in cancer, protein struc
ture, human genetic, and proteomics data. Handling genomic profiles of 
humans specifically allow more precision in drug discovery. Thus, in order 
to achieve better precision, this database combined the COSMIC database 
related to somatic mutations in cancer of the human body and the 3D struc
ture of human proteomic data for mapping, translating, and coordinating the 
position in protein structure [65]. 



Table 12.1 Some important resources for different databases.

Resource databases Description Reference URL 
Drugbank Since 2006, this database has been available for [60] https://www.drugbank.com/ 

free and contains detailed drug information such
as mechanisms, drug interactions, and drug targets, 
as well as transcriptomic, metabolomic, and
proteomic data

The Cancer Genome The program started in 2006, containing over 2.5 [56] https://portal.gdc.cancer.gov/ 
Atlas (TCGA) petabytes of genomic, epigenomic, transcriptomic,

and proteomic data
International Cancer Comprehensive genomic resource in oncology, [61] https://dcc.icgc.org/ 
Genome Consortium representing data from 86 cancer projects,
(ICGC) representing around overall 81 million somatic 

mutations and data-insights obtained from over 
22,000 donor samples

The 100,000 Genome Genomic database covering 100,000 genomes [62] https://www.genomicsengland.co.uk/
Project obtained from around 97,000 patients, including

both rare disease and cancer patients
Genomics of Drug Unique database facilitating cancer drug discovery [63] https://www.cancerrxgene.org/ 
Sensitivity (GDSC) by identifying molecular biomarkers and resources 

on therapeutic sensitivity in cancer cell lines 
Genomic Data GDC is a repository and cancer knowledge base for [64] https://gdc.cancer.gov/ 
Commons (GDC) cancer research community 

12.3 Sources of B
ig D

ata in D
rug D

iscovery and D
elivery 

345
 

https://www.drugbank.com
https://www.portal.gdc.cancer.gov
https://www.dcc.icgc.org
https://www.genomicsengland.co.uk
https://www.cancerrxgene.org
https://www.gdc.cancer.gov


 

 
 

 
 

 
 
 
 
 

 

346 Targeted Drug Delivery in Cancer Tissues by Utilizing Big Data Analytics 

12.3.2 The cancer genomic atlas 

The Cancer Genomic Atlas (TCGA) is a genomic algorithm that generates 
a database of cancer-causing genetic mutations. The researchers can utilize 
this database to discover the most effective compound that will be suitable for 
the treatment of cancer. TCGA BRCA RNA-sequence data expression was 
studied by Gruener et al., and it has been found that AZD-1775 is the most 
effective compared to AZD7762 and leptomycin B specifically inhibiting the 
G2/M checkpoint [66]. ComBat software plays an important role in integrat
ing already filtered common genes between Cancer Cell Line Encyclopedia 
(CCLE) and TCGA expression datasets. TCGA was utilized in the study 
for breast cancer patients who have similar characteristics called a cohort. 
The imputation-based analysis also uncovered the mutation status of 13 
genes, allowing for the discovery of a possible biomarker for the screening. 
Recently, Loxo Oncology developed LOXO-101 by utilizing publicly avail
able TCGA data, which is found to be effective in metastatic cancer [67]. By 
analyzing large-scale cancer databases, CiDD helps to uncover prospective 
medications for in vitro tests. Scientists have used datasets of mutation and 
RNA-sequencing from the TCGA colon for the treatment of BRAF V600E 
mutations to discover the lead compound [68]. According to the findings of 
this investigation, the TCGA-derived classifier displayed lesser sensitivity 
but greater specificity (62%) resulting in competition with the PETACC3
derived signature, and it is more specific in distinction between BRAF wild-
type and BRAF mutant cell lines [69]. 

12.3.3 Gene expression omnibus (GEO) 

Gene Expression Omnibus archive database serves as a public library for 
people all around the globe. It gathers and shares high-throughput gene 
expression data as well as information from other functional genomic stud
ies for free. This database is also supported by the NCBI for profiling RNA 
methylation. Next-generation sequencing is used for drug discovery as well 
as for the identification of the target. Several software are available for ana
lyzing and labeling datasets of GEO, which include GEO2R, ScanGEO, and 
GEOracle query. Researchers studied gene expression profile, GSE108524, 
to identify genes associated with the disease called acoustic neuromas and 
possible therapeutic medications by utilizing GEO database [70]. While 
screening 542 differentially expressed genes by the GEO2R tool, 12 genes 
were found to be promising for the target of disease. Recent reports sug
gested that under some circumstances, miRNAs can act as either oncogenes 
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or tumor suppressors [71, 72]. Scientists have discovered the genes that 
code for miR-452-5p, a protein that has previously been linked to prostate 
cancer [73]. 

12.3.4 Human protein atlas 

The Human Protein Atlas is another technique for examining and map
ping protein localization, expression in human tissues and cells in addition 
to antibody-based imaging. This is a free resource that allows scientists to 
investigate various human proteomes. While we are focusing on cancer 
here, the human protein atlas is already being used on COVID-19, tuber
culosis, cardiovascular disease, and other disorders. Kaplan et al. imple
ment a Kaplan–Meier plotter to discover the gene of interest that seems to 
be involved in pancreatic cancer so that it may be detected early [74]. The 
model included characteristics like gender/race and compared the outcomes 
to the typical clinical information from Human Protein Atlas databases to 
acquire a clearer picture of the targeted gene for validation. The assessment 
of mRNA expression of the RAS-related protein, Rab-1A in tumor and nor
mal pancreatic tissue revealed that pancreatic cancer patients with reduced 
Rab1A gene expression have a higher survival rate with a p-value of 0.048 
[74]. CanSAR is another largest scientific database in the world for drug dis
covery in the field of oncology from fundamental to clinical research. This 
database contains 562,375 proteome sequences along with data on protein– 
protein interactions from other databases such as MSigDB and TRRUST and 
over 300,000 medication combinations derived from various cancer cell line 
models [75]. 

12.4 Big Data Analytics 

The word “data” is derived from a Latin word and it is a classical plural form 
of the word “datum” which means “things given.” Data refers to the massive 
volume of information. Currently, we are living in an information age where 
vast amount of information is easily available for us. This information is 
crucial to the development of infrastructure and future creativity in medicine 
and healthcare. Big data is fundamentally a massive volume of data related 
to a particular topic. Big data analytics acquire and analyze this vast quantity 
of data for future applications. In the medical field, big data includes two 
types of information: 1) disease-related and 2) data related to the patients 
[76]. The big data allows understanding of mechanisms of disease, treatment 
plans, recovery rates, future medicine inventions, and time-saving treatment 
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strategies. There was a time when gathering and storing huge amounts of data 
for medical use was very costly, complex, and even time-consuming. But, 
with growing technologies, it has become easier to collect and store such data 
which can be utilized to provide a better care. In the case of cancer, the main 
purpose of big data analytics is to predict and provide solutions to a prob
lem before it is too late by using the data-driven findings, assessing different 
methods to provide faster treatment, and involving the patients more in their 
health by providing them essential tools to do so (e.g., smartwatches tracking 
blood pressure). 

Several genetic mutations are linked to cancer [77, 78]. Cancer may 
grow and propagate as a result of these mutations. Using various tools 
and technologies to handle data, linked to DNA sequencing can aid in the 
early detection of genetic alterations. Big data is gathered from several 
sources for the treatment of cancer along with medical records in electronic 
form, pharmacological data, environmental variables, and dietary patterns 
[79]. In big data analytics, the machine learning technique is being utilized 
to handle complicated data. Among the few are MapReduce framework 
for execution of clustering algorithm [80], MapReduce-based hierarchi
cal clustering algorithm [81], density-based spatial clustering of applica
tions with noise (DBSCAN) [82], P3C algorithm [83], MapReduce-based 
subspace- clustering algorithm [84], an automatic segmentation method 
[85], Bland–Altman analysis, and concordance correlation coefficients 
(CCC) [86]. 

Manogaran et al. were particularly interested in variations in the num
ber of copies of DNA in the genome to discover a genetic abnormality and 
make an early cancer diagnosis. A Bayesian hidden Markov model (HMM) 
is utilized for cancer modeling and change-point detection in sequences of 
the genome by applying Gaussian mixture (GM) clustering methodology 
[84]. The MATLAB cghcbs algorithm failed to detect the second mutation 
cluster region and split the first MCR into two halves. The CBS technique 
fails to find any outliers in sample PA’s Chromosome 12. C.Dan.G. With 
80.22% accuracy and 12.22% error, the Bayesian hidden Markov model 
(HMM) with GM clustering-based change detection methodology outper
forms the pruned exact linear time (PELT), binary segmentation, and seg
ment neighborhood method [84]. Data analysis is also important for the 
detection of genetic disorders. The reported HMM with Gaussian clustering 
change has shown effectiveness in marking changes in DNA sequencing; 
thus, pre-indication of cancer can be known. The HDFS-based pheno
type method uses national language processing (NLP) to examine large 
amounts of data such as DNA sequencing, imaging, ultrasound analysis, 
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and age-related data among other things and production values that aid in 
cancer diagnosis [87]. 

12.5 Future Prospects of “Big Data Analytics” 

Receptors are complex protein structures comprising folded, winded twisted 
amino acid chains. These different structures are results of differential amino 
acid sequences and folding patterns uncommon to each other. In the last two to 
three decades, substantial advancements in the crystallographic method have 
resulted in a tremendous rise in the establishment of structural data for recep
tors proteins and enzymes. Nowadays, biological data is available in the pub
lic domain. Atlas is a database that provides information about cancer- related 
genomes [88] Figure 12.4 depicts future prospects of big data analytics (BDA). 

Omics science is a combined term used for genomics, transcriptomics, 
proteomics, and epigenomics. It includes the study of cancer pathophysiol
ogy. High throughput sequencing or next-generation sequencing is recent 
technology being used in the sequencing of DNA and RNA, which is faster 
and more economical as compared to older sequencing technologies. The 
generated data is tremendous and is effective only when analyzed and studied 
in-depth. It is challenging to explore this whole data appropriately without 
proper tools, ultimately resulting in the slowing of process of genome study. 
It further requires critical thinking, a scientific approach, and a complex com
putation method to extract knowledge from this data. Already existing data 
is enormous and there is necessity to evaluate it with different approaches. 
Better predictive analysis of omics data and getting the best conclusions as a 
new chemical entity is possible when there will be good collaboration among 
various organizations working on cancer research as well as sharing of data. 

Figure 12.4 Future prospects of big data analytics (BDA). 
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Currently, omics data is easily assessable to scientists and is freely available 
on different platforms like The Cancer Genome Atlas (TCGA) data portal 
and International Agency for Research on Cancer (IARC) (TP 53 gene) data. 
ASCO, and CancerLinQ allow patients and physicians to share their find
ings and access the data. The APOLLO platform intends to build a well- 
coordinated network for generating long-term informative data on detailed 
medical records as well as data from their tissue specimens [89]. 

AI is taking part in pharmacotherapy and more particularly in oncol
ogy. AI is a simulation of the human intellectual process by machines, which 
learns by experience or by monitoring the activities and does not require a 
specific program to work. AI is widely utilized in medicine and is employed 
in diagnostics, especially to identify minor differences from reference, to 
detect progression of the disease and to imaging of disease. IBM Watson for 
oncology is a project started in 2011 and had promised to convert big data 
into personalized medicines. IBM Watson gathers information from oncolo
gists, medical publications, manuals, medical evidence, and data from cancer 
patients. Currently, it provides some AI-enabled tools for medicines to doctors 
and institutions along with few mobile-based applications to consumers for 
deciding the best-suited treatment on a particular cancer. Other AI platforms 
focused on the implementation of AI in healthcare are Microsoft Hanover 
and Google Deep Mind. The use of AI in medication is being debated till 
now, as AI had little success in medicine and data analysis in properly under
standing cancer pathology [90]. Regulators have only allowed a handful of 
AI-based technologies for usage in hospitals and doctors’ offices. Those 
ground- breaking products generally work in the visual arena, analyzing pic
tures such as X-rays and retina scans with computer vision. We need to comb 
through all of the available cancer data to find the unambiguous combinato
rial signature of cancer. 

More and more data are being generated in the field of oncology, and, 
therefore, it will be a good fit for predictive analytics. In cancer therapy, 
predictive analytics is used to better estimate the average lifespan, critical 
care use, adverse effects, genomics, and genomic risk. Predictive analytics 
is emerging as a future tool in clinical practice for pathological interpreta
tion, drug development, and population health management. The research, 
technical, and regulatory barriers that are preventing analytics from being 
used in oncology must be addressed by developers and policymakers [91]. 
Big data and predictive analytics tools will encourage clinicians to use this 
technology in routine patient care activities and decision-making in choos
ing treatment strategies. Along with decision support, predictive analytics 
will be utilized in genomic risk stratification [91]. Clinical studies collect 
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a massive quantity of possibly relevant information on multiple patients, 
even those who are getting routine therapies. Different stakeholders have 
advocated for data-sharing initiatives on a national and international level 
to create detailed data related to clinical studies accessible for researchers 
[92]. Scientists may utilize shared data to build a more inclusive network, 
solve research-related problems faster than they would ever do with tradi
tional randomized clinical trials, reduce redundant work, and maximize pro
ductivity. Surrogate endpoint verification, advancement of strong predictive 
or accurate designs, the patient choice for phase II randomized trials, and 
recognition of subgroups of patients for newer therapeutic strategies could 
help in industrial research and accuracy in innovation and provide a guide in 
upcoming development [92]. 

The National Cancer Database (NCDB) is a worldwide open-access 
database used openly in oncology. It is used to collect approximately 70% of 
all newly reported melanoma diagnoses in the United States each year. The 
American College of Surgeons (ACoS) Commission on Cancer (CoC) has 
recognized the NCDB as effective clinical monitoring and quality enhance
ment technique for cancer programs. In addition, the NCDB collects data 
on operative treatment such as radiotherapy, immunotherapy, chemotherapy, 
and hormonal therapy [93]. The NCDB is a huge, robust database that offers 
a variety of clinical and industrial research-related data. Importantly, the 
NCDB can be used to benchmark hospitals on performance measures and act 
as a catalyst for hospital-level quality improvement programs. Cancer regis
tration activities are costly for hospitals, but the benefits are demonstrated by 
the NCDB’s extensive efforts to feed important information back to partici
pating institutions. The NCDB is the only cancer registry that provides hos
pitals with feedback data [93]. Because of the comparatively large number of 
cases in adult group compared to the pediatrics patient population, big data 
has been actively applied to adult oncology. Even though the application of 
big data in pediatrics is limited, the National Cancer Institute has led efforts 
to encourage joint usage and sharing of big data across oncology subspecial
ties. Other existing data-sharing programs, such as pediatric cancer data, are 
supported by sub-discipline interest organizations, national health agencies, 
and university consortia. In Cancer Research Data Commons (CRDC), the 
ecosystem is included. The ecosystem’s purpose is to construct data common 
nodes and sources where data storage and computing infrastructure as well as 
services, tools, and applications can be located. Therapeutically Applicable 
Research to Generate Effective Treatments (TARGET), Proteomics Data 
Commons (PDC), Imaging Data Commons, Genomic Data Commons (GDC), 
Integrated Canine Data Commons, and the Human Tumor Atlas Network are 
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all part of the ecosystem [94]. Social media will increase communication 
between patients, providers, and communities, e.g., patients with similar 
conditions and providers with similar specialties. This will not only work to 
globalize and democratize healthcare, but it is also a potentially important 
source of big data [95]. 

Cloud-hosted software as service (SaaS) solutions reduce the obstacles 
while entering into the big data domain. With the aid of MapReduce-based 
solutions and thousands of machines, Google and Amazon, like a huge 
firm, process and analyze large amounts of complex data in the terabytes. 
MapReduce algorithms break down complex challenges to small tasks that 
may then be shared over a multitude of devices for analysis and the find
ings compiled into the best response. Tableau is another option where a 
visualization-focused cloud-based service can be obtained [95]. Accessible 
Hadoop is a high-performance, flexible, and typically low-cost solution for 
handling huge datasets used by many enterprises. To implement Hadoop 
systems successfully by utilizing an open platform, one needs training, 
professional expertise, and support. Hadoop has been monetized by com
panies like Greenplum, Oracle, and other businesses like British Airways 
and Expedia [95]. SaaS is a key tool for making big data results more 
accessible to the general public. Healthcare organizations that manage 
subsets of data can disclose access through SaaS-based solutions, which 
eliminate some of the aggregation and integration problems. Additional 
analytics-related services, both basic and advanced, can be incorporated 
into the total offering [95]. 

The quality of medical records has an impact on the accuracy of real-
world data. There is a requirement of clinicians to enter the structured data 
into the medical record. As a result, new approaches to increase the com
pleteness and accuracy of data entered into the electronic health record that 
is consistent across platforms and does not disrupt physician workflow are 
needed [96]. In ordinary practice, real-world evidence can be used to conduct 
evaluations of the efficacy of diagnostic instruments and treatment strategies. 
Real-world evidence may be used to predict outcomes such as short-term 
survival or the chance of hospitalization, identify the likelihood of benefit 
and adverse events with certain medicines, and choose the treatments that are 
most likely to benefit individual patients [96]. 

Larger the data is, better will be the conclusion with minimal error 
and more precision. Clinicians planning large-scale observational studies 
should engage population scientists to ensure that patient identification, end
point selection, and analytical method are all thoroughly scrutinized. When 
every aspect of patient treatment and tumor characteristics are recorded, 
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large-scale observational studies will become even more beneficial for 
clinical  conditions [97]. 

12.6 Challenges in the Field of “Big Data Analytics” 

Parikh et al. have described future challenges in front of big data analysis as 
(1) challenges related to collection of exhaustive data and clinical end points 
from patient population, (2) unavailability of anticipated validation process 
for predictive tools in big data analytics, and (3) risk of automating bias in 
observational dataset and risk of spontaneous bias in observed dataset. 

Due to emergency hospitalization and severe chemotherapies, collect
ing multiple samples from patients may be difficult, resulting in patient non
compliance. Furthermore, collection of samples from critically ill patient 
seems to be unethical and has social constraints. Overall, this makes collec
tion of real-time data difficult and expensive for research organization [91]. 
Several studies have demonstrated the benefits of big data, but the problems 
of incorporating big data into everyday healthcare have received significantly 
less attention. The benefits of big data analytics technologies have been 
proven in a different field of healthcare, extending from medical imaging 
technology and chronic disease treatment to public health services for precise 
and personalized medicine. This strategy has the potential to increase the 
efficiency of hospital-patient care, lower management costs, and accelerate 
disease identification. Apart from all of the benefits, data access, collection 
biases, and data hoarder trust in big data analytics systems have hampered 
their adoption in everyday healthcare. While communication with both the 
provider and the end user is crucial during this process, it is often just half the 
battle. It takes a long time and a lot of effort to collect high-quality data in 
order to construct unbiased analytical tools [98]. Patients are also concerned 
about data privacy and security when developing algorithms [98]. 

Troyanskaya described that the field of cancer big data analysis and cell 
engineering have grown popularity in recent years. Researchers are analyzing 
a massive database of thousands of proteins in cancer and normal cells using 
machine learning and artificial intelligence. This has led to millions of alterna
tive protein combinations that may be utilized to precisely target only cancer 
cells while leaving healthy cells alone [99, 100]. Big data and predictive ana
lytics may face significant challenges in the daily healthcare system, including 
data collection, potential algorithm evaluation, and bias prevention [91]. Big 
data has similar issues when it comes to integrating into other businesses as 
it does in healthcare. In some fields, the major difficulty has shifted from data 
collection to knowing how to properly interpret and exploit the data. To become 
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efficient to store the datasets, advances in computational biology are required. 
Apart from the difficulty of organizing and keeping this data, the equipment 
required to do so is incredibly expensive and takes up lots of space [3, 101]. 

The main difficulties in big data arise due to the decentralized and faded 
data among the healthcare provider including health insurance companies, 
hospitals, laboratories, auxiliary venders, and regulatory agencies. The obso
lete model, in which all data were stored into a warehouse, is being replaced 
by online big data architecture. Data federation will emerge as a solution in 
which the big data architecture is built on a collection of nodes both inside 
and outside the company and accessed through a layer that combines data and 
analytics [102]. Big data solution architectures must be adaptable enough to 
handle not only the addition of new sources but also the growth of schemas 
and structures for transferring and storing data. Metadata and semantic layers 
that accurately evaluate the large data and provide suggestions and direction, 
including appropriate uses of the data, are required to guarantee that analytics 
are meaningful, accurate, and suitable. This growth of strictness will help to 
improve data effectiveness in the long run [102]. 

The goal of data-driven science and discovery is to uncover the insights 
that lead to valuable inventions. Without a thorough understanding of the 
data and the domain, it is easy to fall into the trap of simplistic and erroneous 
correlation, resulting in the development of false discoveries. It is critical to 
completely know and appreciate the domain in which one is working as well 
as to structure all observations and ideas inside that domain effectively [103]. 

In the current state of the art, the implication of novel algorithms to 
address the four Vs (volume, value, velocity, variety, and veracity) of big 
data with consideration of previous advances and identification of potential 
bottlenecks, challenges, and pitfalls creates a different impact. Any advance
ments in scalable algorithms should be linked to architecture, systems, and 
new database constructs. The schema-free environment of new data types and 
the predominance of unstructured data led to a shift toward technologies like 
NoSQL and Hadoop. The construction of data storage and the computational 
fabric is a collaborative work usually done by both an algorithmic researcher 
and a system/database researcher with proper integration of machine learning 
and data mining algorithms [103]. 

12.7 Conclusion 

The 21st century is the era of newly invented technologies generating a large 
volume of datasets. Data may be social, economic, and related to healthcare; 
this large volume of dataset cannot be easily analyzed by using traditional 
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computing tools. This exponentially increasing data is called big data. Big 
data analytics is the process of extracting meaningful insights from raw data 
using advanced analytical techniques (BDA). 

Big data is characteristically described by fundamentally five V’s 
– volume, value, velocity, variety, and veracity. Big data is not only rele
vant to oncology and genomics, but it applies to online social platforms like 
Google, Facebook, different E-commerce companies, and the insurance sec
tor too. The velocity concept of big data explains that the data generation is 
a high-speed process in which the data is computed at a faster rate. As the 
worldwide cases of cancer are increasing on every passing day, the huge data 
generation in genomics and cancer is taking place. Advanced technologies 
are being employed in the field of genomics and cancer diagnosis to enable 
patient-centric treatment. In the upcoming 10–15 years, personalized medi
cation, more particularly in chronic diseases, will be of prime importance. 
More patient-centric diagnosis and treatment will automatically lead to an 
increased need for superior data generation and analysis techniques. The 
term variability of big data represents a variation in data from subject-to-sub
ject and on a case-to-case basis. The variability in data makes it necessary to 
increase the numbers of subjects to be studied. The data may vary for differ
ent types of disease, genetics of individuals, different time points, as well as 
different places. The value or importance of big data can change the pros
pects of the whole healthcare sector. The current conventional disease-cen
tric aspects will be converting into patient-centric diagnosis and personalized 
medication very soon. The research and development field are more likely to 
benefit from big data. The dominating phase of “genome-wide association 
studies,” or GWAS, is gradually shifting to a phase of “data wide association 
studies,” or DWAS, with a focus on big data. 

Reuse of already generated data is of great importance for new research; 
the new conclusion may be derived from existing data, and, hence, acces
sibility, security, and privacy of this data are the main concerns of discus
sion. Findable, accessible, interoperable, and reusable (FAIR) data principles 
were first published in 2014 and recognized by the G20 (2016) and G7 
(2017). Findability (F) of data relies on a persistent identifier in the place. 
Accessibility (A) defines rules and regulations for accessing data and licenses 
for data, by keeping a vision on data privacy. Interoperability (I) describes 
ready to be exchanged, interpreted, and combining with other means of data-
sets by humans as well as large computer networks. Reusability (R) refers to 
future usage of digital assets in a well-defined way, allowing for data inte
gration to be made compatible with data resources for reaping fruitful drug 
development in oncology sector. 
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Owing to sophisticated research technologies, the amount of data or 
metadata collected during biomedical research has increased dramatically. The 
accessibility of these metadata, visualization, and deriving potential insights in 
exploring human biology of disease has excited the research community about 
the potential of speeding up progress toward precision  medicine-tailoring pre
ventative measures, diagnosis, and therapeutic interventions depending on the 
molecular characteristics of a diseased patient. For uncommon malignancies, 
such as those that affect children, the return on investment from pooling and 
sharing research data is extremely high. However, sorting through huge vol
umes of “big data” to find answers to the complex biological concerns that 
will introduce precision medicine into clinical practice remains a challenging 
endeavor. This difficulty is exemplified in oncology, where a large portion of the 
data will originate from clinical studies of cancer patients. Pharmacovigilance 
(PV) is an important part of clinical research, which detects, assesses, and 
understands the adverse effects associated with new medications and gener
ates a relatively large extent of data. PV is extensively used in clinical trials 
of all medications, including anticancer drugs. The usage of generated data is 
improving public health and safety, as well as the decision-making process for 
medical practitioners. AB Cube Safety Easy, Oracle Argus Safety, and AIR 
Sg are some private platforms engaged in the generation and analysis of data 
regarding the safety of new drug applications. 
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