




Artificial Intelligence in Digital Holographic Imaging





Artificial Intelligence in Digital
Holographic Imaging

Technical Basis and Biomedical Applications

Inkyu Moon
Department of Robotics and Mechatronics Engineering
Daegu Gyeongbuk Institute of Science & Technology (DGIST)
Daegu, South Korea



This edition first published 2023
© 2023 John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from
this title is available at http://www.wiley.com/go/permissions.

The right of InkyuMoon to be identified as the author of this work has been asserted in accordance
with law.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley
products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some
content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
In view of ongoing research, equipment modifications, changes in governmental regulations, and
the constant flowof information relating to theuse of experimental reagents, equipment, and devices,
the reader is urged to review and evaluate the information provided in the package insert or
instructions for each chemical, piece of equipment, reagent, or device for, among other things,
any changes in the instructions or indication of usage and for addedwarnings and precautions.While
the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, includingwithout limitation any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives, written sales materials or promotional statements for this work. The fact that an
organization, website, or product is referred to in this work as a citation and/or potential source of
further informationdoesnotmean that thepublisher andauthors endorse the informationor services
the organization, website, or product may provide or recommendations it may make. This work
is sold with the understanding that the publisher is not engaged in rendering professional services.
The advice and strategies contained hereinmay not be suitable for your situation. You should consult
with a specialist where appropriate. Further, readers should be aware that websites listed in this
work may have changed or disappeared between when this work was written and when it is read.
Neither the publisher nor authors shall be liable for any loss of profit or any other commercial
damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data applied for
Hardback ISBN: 9780470647509

Cover Design: Wiley
Cover Images: © KATERYNA KON/SCIENCE PHOTO LIBRARY/Getty Images

Set in 9.5/12.5pt STIXTwoText by Straive, Pondicherry, India

http://www.wiley.com/go/permissions
http://www.wiley.com/


Contents

Preface ix

Part I Digital Holographic Imaging 1

1 Introduction 3
References 6

2 Coherent Optical Imaging 7
2.1 Monochromatic Fields and Irradiance 7
2.2 Analytic Expression for Fresnel Diffraction 8
2.3 Lens Transmittance Function 10
2.4 Geometrical Imaging Concepts 11
2.5 Coherent Imaging Theory 13

References 15

3 Lateral and Depth Resolutions 17
3.1 Lateral Resolution 17
3.2 Depth (or Axial) Resolution 21

References 23

4 Phase Unwrapping 25
4.1 Branch Cuts 27
4.2 Quality-guided, Path-following Algorithms 29

References 32

5 Off-axis Digital Holographic Microscopy 35
5.1 Off-axis Digital Holographic Microscopy Designs 35
5.2 Digital Hologram Reconstruction 37

References 40

6 Gabor Digital Holographic Microscopy 43
6.1 Introduction 43
6.2 Methodology 43

References 46

v



Part II Deep Learning in Digital Holographic Microscopy (DHM) 47

7 Introduction 49
References 50

8 No-search Focus Prediction in DHM with Deep Learning 53
8.1 Introduction 53
8.2 Materials and Methods 56
8.3 Experimental Results 60
8.4 Conclusions 65

References 66

9 Automated Phase Unwrapping in DHM with Deep Learning 69
9.1 Introduction 69
9.2 Deep-learning Model 71
9.3 Unwrapping with Deep-learning Model 75
9.4 Conclusions 84

References 84

10 Noise-free Phase Imaging in Gabor DHM with Deep Learning 87
10.1 Introduction 87
10.2 A Deep-learning Model for Gabor DHM 88
10.3 Experimental Results 94
10.4 Discussion 100
10.5 Conclusions 103

References 103

Part III Intelligent Digital Holographic Microscopy (DHM) for
Biomedical Applications 107

11 Introduction 109
References 110

12 Red Blood Cell Phase-image Segmentation 113
12.1 Introduction 113
12.2 Marker-controlled Watershed Algorithm 114
12.3 Segmentation Based on Marker-controlled Watershed Algorithm 116
12.4 Experimental Results 118
12.5 Performance Evaluation 120
12.6 Conclusions 123

References 124

13 Red Blood Cell Phase-image Segmentation with Deep Learning 127
13.1 Introduction 127
13.2 Fully Convolutional Neural Networks 128
13.3 RBC Phase-image Segmentation via Deep Learning 130

vi Contents



13.4 Experimental Results 132
13.5 Conclusions 136

References 137

14 Automated Phenotypic Classification of Red Blood Cells 139
14.1 Introduction 139
14.2 Feature Extraction 141
14.3 Pattern Recognition Neural Network 144
14.4 Experimental Results and Discussion 146
14.5 Conclusions 153

References 153

15 Automated Analysis of Red Blood Cell Storage Lesions 155
15.1 Introduction 155
15.2 Quantitative Analysis of RBC 3D Morphological Changes 156
15.3 Experimental Results and Discussion 159
15.4 Conclusions 170

References 170

16 Automated Red Blood Cell Classification with Deep Learning 173
16.1 Introduction 173
16.2 Proposed Deep-learning Model 177
16.3 Experimental Results 181
16.4 Conclusions 187

References 188

17 High-throughput Label-free Cell Counting with Deep Neural
Networks 191

17.1 Introduction 191
17.2 Materials and Methods 192
17.3 Experimental Results 198
17.4 Conclusions 207

References 208

18 Automated Tracking of Temporal Displacements of Red Blood Cells 209
18.1 Introduction 209
18.2 Mean-shift Tracking Algorithm 211
18.3 Kalman Filter 213
18.4 Procedure for Single RBC Tracking 215
18.5 Experimental Results 219
18.6 Conclusions 224

References 224

19 Automated Quantitative Analysis of Red Blood Cell Dynamics 227
19.1 Introduction 227
19.2 RBC Parameters 228

Contents vii



19.3 Quantitative Analysis of RBC Fluctuations 233
19.4 Conclusions 238

References 238

20 Quantitative Analysis of Red Blood Cells during Temperature
Elevation 241

20.1 Introduction 241
20.2 RBC Sample Preparations 241
20.3 Experimental Results 242
20.4 Conclusions 247

References 247

21 Automated Measurement of Cardiomyocyte Dynamics with DHM 249
21.1 Introduction 249
21.2 Cell Culture and Imaging 250
21.3 Automated Analysis of Cardiomyocyte Dynamics 250
21.4 Conclusions 263

References 264

22 Automated Analysis of Cardiomyocytes with Deep Learning 267
22.1 Introduction 267
22.2 Region-of-interest Identification with Dynamic Beating Activity

Analysis 268
22.3 Deep Neural Network for Cardiomyocyte Image Segmentation 268
22.4 Experimental Results 272
22.5 Conclusions 284

References 285

23 Automatic Quantification of Drug-treated Cardiomyocytes with DHM 287
23.1 Introduction 287
23.2 Materials and Methods 288
23.3 Experimental Results and Discussion 295
23.4 Conclusions 300

References 301

24 Analysis of Cardiomyocytes with Holographic Image-based Tracking 303
24.1 Introduction 303
24.2 Materials and Methods 304
24.3 Experimental Results and Discussion 307
24.4 Conclusions 313

References 314

25 Conclusion and Future Work 315

Index 319

viii Contents



Preface

Quantitative label-free optical imaging technique represents a new, highly prom-
ising approach to identify cellular biomarkers, particularly when it is combined
with artificial intelligence (AI) technologies for scientific, industrial, and biomed-
ical applications. Among several new optical quantitative imaging techniques, dig-
ital holographic microscopy (DHM) has recently emerged as a powerful new
technique well suited to non-invasively explore cell structure and dynamics with
a nanometric axial sensitivity and the ability to identify new cellular biomarkers.
This book provides detailed explanations for using DHM to perform label-free phe-
notypic cellular assays, thus allowing the non-invasive isolation of different spe-
cific cellular phenotypes. Practically, phenotypes related to the monitoring of
cell responses and cytotoxicity profiling upon interaction with drugs are presented.
Thus, promising theragnostic cellular biomarkers can be successfully explored.
This book further provides explanations of AI and deep learning pipelines for
the development of an intelligent DHM that can perform optical phase measure-
ment, phase image processing, feature extraction, and classification. Multiple bio-
physical single-cell features such as morphological parameters, optical loss
characteristics, and protein concentration are automatically measured in individ-
ual biological cells. These biophysical measurements form a hyper-dimensional
feature space in which supervised learning can be performed for cell analysis. This
technology is undergoing clinical testing for blood screening and live cardiomyo-
cytes analysis as well as for studying neuronal activities in mental diseases includ-
ing psychiatry disorders. Furthermore, combining DHMwith stem-cell technology
including induced pluripotent stem cell (iPSC) approaches paves the way to
develop personal medicine, considering that iPSCs derived from a patient can
be differentiated a priori into any types of cells, including cardiac cells, neural cells,
and so on. However, the development of systems and methods for performing
high-throughput analysis of holographic images in a large volume are indispensa-
ble to have a DHM-based automated high-content screening approach aiming
at identifying theragnostic cellular biomarkers. By combining DHM with AI
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technology, including recent deep learning approaches, this system can achieve a
record-high accuracy in non-invasive, label-free cellular phenotypic screening. It
opens up a new path to data-driven diagnosis. Specifically, AI is one of the most
rapidly evolving subjects in computing and engineering fields, with a special
emphasis on creating intelligent automated systems or applications. These AI algo-
rithms are becoming essential for developing intelligent systems. The main goal of
this book is to explain key concepts and algorithms of AI to show how to build
intelligent DHM systems drawing on techniques from artificial neural networks
(ANN), convolutional neural networks (CNN), and generative adversarial net-
work (GAN). Principles behind these techniques are explained by showing how
various techniques can be implemented for intelligent DHM systems design.
Depending on problems to be solved, AI algorithms can be applied to recognition,
classification, regression, and prediction problems. This book describes represen-
tative algorithms for each problem with some good examples and how to imple-
ment intelligent DHM systems with ANNs, CNNs, and GANs on the computer.
Furthermore, this book gives details of the deep learning CNN to automatically
reconstruct the best focused images in DHM. It describes GANmodels to eliminate
superimposed twin-image noise in the phase image of Gabor holography. It also
introduces a deep learning model to compute an unwrapped phase solution in
DHM. This book brings together the literature addressing biomedical applications
of DHM combined with AI algorithms (e.g. drug safety testing and compounds
selection as a new paradigm for drug toxicity screening) to present recent achieve-
ments in this interesting field. For readers with various backgrounds, this book
provides a detailed discussion of the use of intelligent DHM in biomedical fields
with great potential for biomedical application. This book provides two represen-
tative examples of applying intelligent DHM in biomedical fields. The first exam-
ple describes how instant phenotypic assessment of red blood cells (RBCs) storage
lesion can be automatically performed by AI based-DHM, which has the potential
to lead to new efficient tools for safe transfusions as well as measurement of stored
RBC quality. The second example demonstrates that relevant dynamic parameters
of cardiomyocytes can be obtained byDHMphase signal analysis based on AI algo-
rithms to characterize the physiological state of live cardiomyocytes. This finding
opens the possibility of automated quantitative analysis of cardiomyocytes suitable
for further monitoring some specific drug mediated effects on the dynamics of car-
diomyocytes, which represents a promising label-free approach for drug discovery.
Therefore, my intention in writing this book, is to introduce AI-based DHM back-
ground with detailed description of these two examples in biomedical fields to
make it easier for readers with diverse backgrounds to read this book. I hope that
readers will be able to gain an understanding of the basics for implementing AI in
DHM designs and connecting practical biomedical questions that arise from the
use of DHM with various AI algorithms in intelligence models.
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1

Introduction

Biomedical imaging technologies promise opportunities for effective diagnostics
and treatments as well as new economic perspectives for the medical technology
industry. Increasing demand for accurate early diagnosis and the growth of an
aging population are major forces driving the biomedical imaging market. An
increase in the number of patients suffering from chronic diseases, such as cancer,
and a demand for early diagnosis and treatment are also major factors fueling the
growth of medical diagnostics and medical therapeutics.
Cellular imaging remains one of the most important techniques to solve major

challenges in life sciences and medicine. Optical microscopy is one of the most
productive scientific tools in cell imaging. The identification of microorganisms
and cells was explored for the first time in the nineteenth century, which could
be considered the beginning of the emergence of modern biology and medicine.
However, optical microscopy still faces twomajor problems. One is resolution lim-
itation due to Abbe’s law. Another is the lack of quantitative information due to
the inherent limits of conventional optical microscopes. Conventional intensity-
based imaging techniques are not robust enough to provide detailed quantitative
information for cell morphology. They provide low-contrast images, especially
when investigating cells with transparent or semi-transparent features, which
makes it difficult to analyze cells.
Consequently, several optical imagingmodalities based on contrast mechanisms

were developed to overcome these limitations. Among many contrast-generating
modes, the Zernike phase contrast (PhC) mode and Nomarski differential interfer-
ence contrast (DIC) are widely used for live-cell imaging. Unlike fluorescence-
based imaging techniques, PhC and DIC can visualize transparent specimens,
particularly subcellular structures of living cells, without using a specific staining
contrast agent. However, these two non-invasive modes cannot provide a direct or
quantitative measure of phase shift or the optical path length over a cell area. Since
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PhC or DIC signals contain only qualitative information, it is difficult to further
perform quantitative analysis of the biophysical properties of live cells with recon-
structed cell images (see Figure 1.1).
On the other hand, interference microscopy can provide a direct quantitative

measurement of the optical path length based on interference between the refer-
ence wave and the object wave that passes through the specimen. Interference
microscopy was introduced in the 1950s. Gabor proposed the concept of hologra-
phy in 1948, which enabled lens-less imaging by reproducing the exact wavefront
emerging from the observed specimen. However, due to the non-availability of
coherence light sources such as lasers and the high cost of opto-mechanical
designs, only a few studies of imaging of live cells are reported in the literature.
In recent years, fluorescence microscopy in a confocal configuration, and its

extension into multi-photon fluorescent excitation, have been widely used for cell
imaging in biology among various contrast-generating modes. However, they can-
not provide any information about dielectric properties in terms of the underlying
biological functions of live cells. Fortunately, these dielectric properties can be
measured using new digital holographic imaging approaches that have recently
emerged as promising techniques for the accurate, quantitative visualization of
cell structure and dynamics in a non-invasive manner. To accurately observe live
cells without disturbing them is tremendously important. For example, when the
aim is to assess drug-mediated cellular effects.
The rapid development of computing technologies and scientific advances in

light sources has opened up a new opportunity in the field of holography and inter-
ferometry. Integrating techniques in holography with numerical processing has
led to the development of digital holographic microscopy (DHM) with a nano-
metric axial sensitivity that provides a reliable and quantitative phase signal
observed in live cells [1–5]. Therefore, the fusion of DHM and information tech-
nologies offers an automatic, low-cost, and reliable tool to identify various cell
types, including protozoa, bacteria, plant cells, blood cells, nerve cells, stem cells,
and cardiomyocytes. DHM allows scientists [2] to observe the growing process of

Figure 1.1 Quantification
comparison of digital
holographic microscopy and
other optical imaging
modalities.
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the cell as close to natural conditions as possible, whether in a cell-culture flask or
the tissue environment. Moreover, by numerical reconstruction, DHM offers
unique possibilities including an extended depth of focus and a posteriori numer-
ical refocusing, which allow quantitative and non-invasive analysis of cell struc-
ture, contents, and dynamics with different time scales that vary from a few
milliseconds to several days. Another advantage of DHM is that images of both
single cells and populations can be obtained. However, application of DHM to
the field of cell biology is still in its beginning stages. There are few studies on
the automated quantitative analysis of large-scale holographic cell datasets. There-
fore, systems and methods for performing intelligent analyses of large-scale holo-
graphic images are becoming more important as digital holographic information
rapidly increases with the development of DHM technology. The development of
automated procedures to study various cell types using DHMcan significantly ben-
efit cell biology studies. Until now, most experiments using DHM in its single
mode were performed to prove that the technique is useful. Practically, DHM
can measure relevant biophysical cell parameters including absolute volume,
dry mass density, nanoscale membrane fluctuations, and biomechanical proper-
ties. Furthermore, the development of DHM in a multimodal platform with the
fusion of DHM and other cell imaging methods such as fluorescence confocal ima-
ging opens up the possibility to simultaneouslymeasure a large number of relevant
and specific cell parameters, which can help scientists understand cellular pro-
cesses including cell differentiation, cell cycle, apoptosis, and cell migration.
For example, DHM systems integrated with fluorescence microscopy can add val-
uable information about cell morphology and motility with a broad variety of fluo-
rescence labeling tools to study cell function. Measurements of multiple cell
parameters resulting from multimodal imaging could even enable high through-
put cellular screening assays to identify cell biomarkers for various diseases. The
time has come to develop intelligent DHM in a multimodal platform and apply
multimodal holographic cell imaging informatics to medical and biological
research.
To summarize, the DHM enables label-free, quantitative assessment of biological

specimens. There is recent growth in the study of techniques and applications of
DHM to address important biomedical questions that cannot be solved with conven-
tional optical imaging techniques. This rapidly emerging field enables scientists to
investigate cells and tissues in terms of their morphology and dynamics at a nano-
scale resolution over temporal scales ranging from milliseconds to days. Quantita-
tive measurements of intrinsic optical, chemical, and mechanical properties are
likely to yield a new understanding of cell and tissue pathophysiology.
Before explaining key concepts of DHM and its success in biomedical imaging

and applications, Chapter 2 provides an introductory background on DHM with a
quick review and summary of scalar diffraction theory, coherent imaging, and
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diffraction-limited imaging. In Chapter 3, fundamental definitions and concepts in
lateral and depth resolutions in optical imaging are described. Phase information
obtained by DHM provides principal values wrapped in a range of -π to π, which
can cause 2π phase jumps due to phase periodicity of trigonometric functions.
A phase unwrapping process must be conducted to remove 2π phase discontinu-
ities in the image and obtain an estimate of the true continuous phase image.
Chapter 4 provides a review of phase unwrapping algorithms to solve challenging
problems such as phase discontinuities. Advanced unwrapping algorithms can be
categorized into three types: global algorithms, region algorithms, and path-
following algorithms. This chapter further gives a detail explanation of the key
concepts of quality-guided path-following algorithms. Chapter 5 introduces off-
axis DHM in an example transmission of the quantitative visualization of phase
objects such as living cells. This chapter also presents a detailed description of
the numerical reconstruction procedure in DHM. In addition, this chapter shows
that the transverse resolution is equal to the diffraction limit of the imaging sys-
tem. Chapter 6 introduces Gabor DHM with a simple optical setup as a promising
tool for measuring the distribution(s) of particles in a liquid solution with large
depths. It demonstrates that the Gabor DHM can resolve the locations of several
thousand particles and measure their motions and trajectories with time-lapse
imaging.

References
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2

Coherent Optical Imaging

This chapter provides a basic understanding of the scientific principles associated
with optical image formation based on Fourier optics [1–3] for numerous biomed-
ical applications. Digital holographic microscopy (DHM) is a powerful method for
three-dimensional (3D) and quantitative sensing, imaging, and measuring of bio-
logical and microscopic samples. Methods explored in this chapter form the basis
of DHM systems used in biomedical imaging.

2.1 Monochromatic Fields and Irradiance

A monochromatic scalar field with a single-frequency propagating in free space
can be described by (2.1):

u x, y, z, t = A x, y, z cos 2πft−φ x, y, z , 2 1

where A is the amplitude, φ is the phase at a position (x, y, z), and f is the temporal
frequency. A highly monochromatic light source, like lasers, can provide a specific
form of Eq. (2.1), which is a plane wave that propagates in the z direction:

u z, t = Acos 2πft− kz ,

The wavenumber k is defined as k =
2π
λ
, where λ is the light wavelength. This

plane wave can be interpreted as extending infinitely in x and y directions. If the
monochromatic light is propagating in a linear medium such as air, the temporal
frequency of the resulting light field will be unchanged. Therefore, the temporal
term can be ignored. Note that replacing the cosine function with a complex
exponential form leads to a function that expresses the spatial distribution of
the light field:

U x, y = A x, y exp jϕ x, y
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It is assumed that the field in the (x, y) plane is located at some position on the
z-axis and that z is the fundamental propagation direction. Optical sensors respond
to the time-averaged, squared magnitude of the light field, which is expressed by

I x, y = U x, y U x, y ∗ = U x, y 2

2.2 Analytic Expression for Fresnel Diffraction

Light propagation from a 2D source plane can be indicated by the coordinate vari-
ables ξ and η (see Figure 2.1). At the source plane, an areaΣ defines the illuminated
aperture and U1(ξ, η) denotes the field distribution. The Huygens–Fresnel princi-
ple predicts the field U2(x, y) in the observation plane:

U2 x, y =
z
jλ Σ

U1 ξ, η exp
jkr12
r212

dξdη 2 2

where λ is the light wavelength, k is the wavenumber—which is equal to
2π
λ
for free

space—z is the distance between the centers of the source and observation planes,
and r12 is the distance between a position on the source plane and a position on the
observation plane; r12 is expressed as

r12 = z2 + x− ξ 2 + y− η 2 2 3

Note that integral limits in Eq. (2.2) correspond to the region of the source Σ.
This principle supposes that the source acts as an infinite set of virtual point
sources, each generating a spherical wave at any position (ξ, η). These spherical
waves are summed up at the observation position (x, y), giving rise to interference.
In general, Eq. (2.2) can be expressed as a convolution integral

U2 x, y = U1 ξ, η h x− ξ, y− η dξdη 2 4

Figure 2.1 Propagation geometry between source and observation planes Adapted
from [1, 2].
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where the impulse response function in the Rayleigh–Sommerfeld diffraction

formula is h x, y =
z
jλ

exp jkr
r2

, and where r = z2 + x2 + y2 If the Fourier

convolution theorem is applied to Eq. (2.4), resulting equation is

U2 x, y = IFT FT U1 x, y FT h x, y

where FT and IFT are Fourier and inverse Fourier transforms, respectively.
The Rayleigh–Sommerfeld diffraction expression in Eq. (2.4) can give an accu-

rate diffraction solution since the distance between the source and the observation
planes in most optical systems is much greater than a wavelength. To obtain a
more manageable diffraction form, the distance r12 in Eq. (2.3) can be rewritten
using binomial expansion:

r12 ≈ z 1 +
1
2

x− ξ

z

2

+
1
2

y− η

z

2

This approximation can be applied to the distance term in the phase of the expo-
nential in Eq. (2.2), which amounts to assuming a parabolic radiation wave rather
than a spherical wave. Furthermore, using the approximation r12 ≈ z in the
denominator of Eq. (2.2), the Fresnel diffraction expression is

U2 x, y =
ejkz

jλz
U1 ξ, η exp j

k
2z

x− ξ 2 + y− η 2 dξdη

This expression is also a convolution integral, where the impulse response
function is

h x, y =
e jkz

jλz
exp

jk
2z

x2 + y2

The transfer function is

H f X , f Y = � h x, y = e jkz exp jπλz f 2X + f 2Y

Another useful form of the Fresnel diffraction expression can be obtained by
moving the quadratic phase term that is a function of x and y outside integrals:

U2 x, y =
exp jkz

jλz
exp j

k
2z

x2 + y2

× U1 ξ, η exp j
k
2z

ξ2 + η2 exp − j
2π
λz

xξ + yη dξdη

Along with the amplitude and chirp multiplicative factors out front, this expres-
sion is a Fourier transform of the source field times a chirp function. The frequency
variable substitutions used for the transform are

2.2 Analytic Expression for Fresnel Diffraction 9



f ξ
x
λz

, and f η
y
λz

2 5

Fraunhofer diffraction in far-field can be obtained by assuming that the diffrac-
tion pattern is the result of very long propagation from the diffracting object. In

other words, z
k ξ2 + η2

2
max

as follows

U2 x, y =
exp jkz

jλz
exp j

k
2z

x2 + y2 × U1 ξ, η exp − j
2π
λz

xξ + yη dξdη

The Fraunhofer diffraction pattern is also viewed at the focal plane of an ima-
ging lens. The Fraunhofer expression can be considered a scaled version of the
Fourier transform of the source field with the variable substitutions in Eq. (2.5).

2.3 Lens Transmittance Function

Light sources in the previous section are assumed to be apertures illuminated by a
plane wave. They are modeled with a zero-phase component. In this section, the
spherical lens transmittance function that alters the magnitude and phase of an
initial field is presented. An optical imaging system generally uses a converging
or a diverging optical beam. As shown in Figure 2.2, a beamwith a spherical wave-
front can converge toward the point zf on the z-axis.
We can derive an equation to find the converging phase function in the x–y plane

at z = 0. This is written as

ϕs x, y = − k z2f + x2 + y2 2 6

A converging wavefront has a negative sign
in Eq. (2.6) as shown in Figure 2.2, whereas a
diverging wavefront has a positive sign. The
application of the binomial approximation
gives a parabolic phase front that approxi-
mates the spherical phase front:

ϕ x, y = −
k
2zf

x2 + y2

Therefore, the transmittance function for a
converging optical beam can be written as

tA x, y = exp − j
k
2zf

x2 + y2Figure 2.2 A beamwith a spherical
wavefront [2] / with permission
of SPIE.

10 2 Coherent Optical Imaging



This is a phase chirp function of the same form for the Fresnel impulse response
function h, although the exponent sign is negative. A lens is an optical element that
uses refraction to focus or diverge light. Therefore, the transmittance function for
an ideal, simple lens can be written as

tA x, y = P x, y exp − j
k
2f

x2 + y2 , 2 7

where f is known as the focal length and P(x, y) is the pupil function. A positive
focal length produces a converging wavefront from a plane-wave input, whereas
a negative focal length produces a diverging wavefront. The pupil function
accounts for the physical size of the lens. For example, the most common lens
pupil function is a circle:

P x, y = circle
x2 + y2

wL
,

where wL is the radius of the lens aperture. It is not always practical to implement
the transmittance function of Eq. (2.7) in Fresnel propagation. However, if the field
incident on the lens isU1(x1, y1), then the field exiting the lens isU1(x1, y1)tA(x1, y1).
Insert this into the Fresnel diffraction expression and set z = f, the chirp function in
the integral cancels and

U2 x2, y2 =
exp jkf

jλf
exp j

k
2f

x22 + y22

× U1 x1, y1 P x1, y1 exp − j
2π
λf

x2x1 + y2y1 dx1dy1

2 8

The expression in Eq. (2.8) shows that the field at the focal plane of an ideal pos-
itive lens is simply the Fraunhofer pattern of the incident field with z = f.

2.4 Geometrical Imaging Concepts

In general, the purpose of optical imaging is to reproduce the irradiance distribu-
tion of an object at an image plane. To obtain an image of an object, we must col-
lect and focus the optical beam from an arbitrary object point at the image plane.
Geometrical optics and diffraction theory are used extensively in lens and optical
imaging system design. For an optical imaging situation, the lens law describes the
relationship needed under the paraxial condition (small ray angles relative to the
optical axis) for the best focus imaging:

2.4 Geometrical Imaging Concepts 11



1
z1

+
1
z2

=
1
f
,

where f is the lens focal length, z1 is the distance from the object to the front prin-
cipal plane of the lens, and z2 is the distance from the back principal plane to the
image location.
To form a real image, z1 and z2 are positive and the lens focal length f is also

positive. A positive lens converges light rays, whereas a negative lens diverges rays.
Practical imaging systems use combinations of lenses to control aberrations. How-
ever, imaging still requires a positive focal length for the combined lens group. The
ratio of the image height y2 to the object height y1 is known as the transverse mag-
nification Mt. For a single lens system, it is given by

Mt =
y2
y1

= −
z2
z1

The minus sign indicates an inverted image. An imaging system is characterized
by its pupils. Pupils are virtual apertures that indicate the opening available to col-
lect light from the object (entrance pupil, EP) and the opening from which the col-
lected light exits on its way to form an image (exit pupil, XP). These pupils are
known as the aperture stop, which limits the collection of light. The lens is the stop
for the system in Figure 2.3. The stop generates fundamental diffractive effects in
the image. These diffractive effects are generated due to the stop that represents
the fundamental performance limit of an imaging system.
Figure 2.4 illustrates that the physical elements of a system (lenses, mirrors, iris,

etc.) can be reduced to EP and XPmodels. The distance from an object point on the

Figure 2.3 Geometrical imaging
with a thin, positive lens of focal
length [2] / with permission of SPIE.

Figure 2.4 Entrance pupil (EP) and exit pupil (XP) model of an imaging system [2] / with
permission of SPIE.
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optical axis to the EP is zEP, and the distance from the XP to the axial image point is
zXP. The EP diameter is DEP, and the XP diameter is DXP. The aperture stop of a
system leads to fundamental diffractive effects in the image. For a thin-lens ima-
ging system, z1 = zEP, z2 = zXP, and DEP = DXP = lens diameter.

2.5 Coherent Imaging Theory

Figure 2.5 shows a general imaging arrangement. Imaging with coherent illumi-
nation, such as with a coherent laser, can be described with a convolution oper-
ation involving the optical field. The process is expressed as

Ui u, v = h u, v Ug u, v , 2 9

where u, v are image plane spatial coordinates, Ui is the field at the image plane, h
is the impulse response for the imaging system, and Ug is the ideal geometrical-
optics predicted image field, which is a scaled copy of the object field Uo(x, y):

Ug u, v =
1
Mt

Uo
u
Mt

,
v
Mt

,

Note that ifMt is negative, then the resulting image will appear inverted relative
to the object. In Eq. (2.9), the ideal geometrical field is blurred through the con-
volution with the impulse function. In the frequency domain, the corresponding
spectra for Eq. (2.9) are related by the equation

Gi f U , f V = H f U , f V Gg f U , f V ,

where H is the coherent image transfer function (or amplitude transfer function).
It is defined byH(fU, fV) = P(−λzXPfU,− λzXPfV), where P is the pupil function of the
system. The negative sign in the pupil argument gives a scaled, inverted pupil

Figure 2.5 Generalized model of an imaging system Adapted from [1, 2].
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function. In a systemwith a perfect pupil function, only boundaries of the pupil are
involved in diffractive effects (diffraction limited).
For the first example, a square pupil function is

P x, y = rect
x

2wXP
rect

y
2wXP

2 10

From Eq. (2.10), the coherent transfer function is

H f U , f V = rect
− λzXPf U
2wXP

rect
− λzXPf V
2wXP

Since the rectangle function is symmetric, the negative sign can be ignored. The
coherent cutoff frequency along the u or v direction is defined as

f 0 =
wXP

λzXP
, 2 11

Spatial frequencies with values greater than f0 will not be preserved in the image
plane field. A second example is the circular pupil function

P x, y = circ
x2 + y2

wXP

The coherent transfer function is

H f U , f V = circ
− λzXPf U

2 + − λzXPf V
2

wXP
= circ

f 2U + f 2V
f 0

,

where f0 is again the coherent cutoff frequency as defined in Eq. (2.11). Unlike the
square aperture, the cutoff frequency in this case is the same radially (in all direc-
tions) in the frequency plane. To observe or record a coherent image, the irradi-
ance given by Ii = |Ui|

2 is measured. As a result of the squaring operation, the
irradiance image can theoretically gain up to twice the frequency content of the
field. Think about the fact that cos 2 2πbx = 1

2 1− cos 2π2bx Thus, when an

irradiance image is formed, the following cutoff should be considered

2f 0 =
2wXP

λzXP
Simulating coherent imaging on the computer based on Eq. (2.9) can be imple-

mented as

Ui u, v = IFT H f U , f V FT Ug u, v

For more information on optical image formation based on Fourier optics, per-
haps the best source is Joseph Goodman’s excellent book [1] or David Voelz’s
book [2].
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3

Lateral and Depth Resolutions

In the field of optics, the numerical aperture (NA) of an optical system is a dimen-
sionless parameter that characterizes the range of angles over which the optical
system can accept or emit light. By incorporating the index of refraction in the
definition, NA has the following property: when there is no refractive power at
the interface, it is constant for a beam as it travels from one material to another.
In most areas of optics, especially in microscopy, the NA of an optical system such
as an objective lens is defined as

NA = nsinθ,

where n is the refractive index of the medium surrounding the lens and θ is the
maximal half-angle of the cone of light that can enter or exit the lens.
Optical systems, including digital holographic microscopy, form a 3D image of

the object by reconstructing the wave plane scattered by the object. Resolution
characterizes the quality of the image formed by this optical system. Resolution
has two types: lateral resolution and axial resolution.

3.1 Lateral Resolution

In 1835, Airy reported that the diffracted light at a circular aperture exhibited a
concentric ring in which the maximum and minimum intensities alternated [1].
Light passing through a circular aperture such as a lens interferes with
itself, which creates this ring-shaped diffraction pattern known as the Airy pattern,
when the wave front of the transmitted light over the aperture is spherical or flat.
The Airy pattern and Airy disk describe the optimally focused light spot that a
perfect lens with a circular aperture can create, which is limited by the diffraction
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of the light. The Airy pattern is observable in the far field. Thus, the intensity of the
Airy pattern follows the Fraunhofer diffraction pattern of a circular aperture:

I x, y = I0

2J1
kaq
L

kaq
L

2

, 3 1

where (x, y) are the coordinates of the observation point at the image plane, I0 is the
maximum of the intensity at the Airy disk center, J1 is the Bessel function of the first
kind of order one, k is thewavenumber, a is the radius of the aperture, q= (x2 + y2)1/2

is the radial distance from the observation point to the optical axis, and L is the dis-
tance from the detector to the aperture. In 1882, Abbe provided a formula of lateral
resolution limits:

RAbbe
Lateral =

λ

2nsinθmax
=

λ

2NA
,

where θmax = the maximum of the scattering angle detected by the optical system,
n = the refractive index (n = 1 for vacuum or air), and NA = the numerical aper-
ture of the system [2].
The two point sources are regarded as barely resolved when the principal diffrac-

tion maximum of the Airy disk of one light source coincides with the first mini-
mum of the diffraction pattern of the Airy disk of the other [3, 4] as illustrated
in Figure 3.1a. In Eq. (3.1), the first minimum of the diffraction pattern occurs
when the argument of the Bessel function is 3.83 [5]. It is measured from the direc-
tion of incoming light. Thus, the Rayleigh resolution criterion for incoherent light
is given by

RRayleigh
Lateral 0 61

λL
a

= 0 61
λ

NA
,

Figure 3.1 Images of two point-sources and resolution criteria. Images of two-sources are
(a) barely resolved, (b) resolved, and (c) unresolved.
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where λ is the wavelength of the light. The effect of light coherence on lateral res-
olution can be found in optical textbooks [4, 6]. The two point sources are regarded
as resolved when the zero-order diffraction maximum of one source’s diffraction
pattern coincides with the first-order diffraction maximum of the other source’s
diffraction pattern, which occurs when the argument of the Bessel function in
Eq. (3.1) is 5.14 [5], as shown in Figure 3.1b:

RRayleigh,coherent
Lateral 0 82

λL
a

= 0 82
λ

NA

The object consists of two point sources positioned symmetrically from the
optical axis and on a line parallel to the screen, as shown in Figure 3.2. The scat-
tered spherical waves emerge from two objects, O1 and O2, at positions r1 and r2,
respectively, which are vertically spaced d apart, causing interference. An interfer-
ence pattern of the intensity is displayed on the screenD away from the two points.
The total wave field is

OT r = A1
exp ik r− r1

r− r1
+ A2

exp ik r− r2
r− r2

,

where A1 and A2 are complex amplitudes of two scattered spherical waves, k is the
wavenumber, and r is the position vector to the observation on the source screen.
The intensity of the contrast image is

IT r =
A1

2

r− r1
2 +

A2
2

r− r2
2 + A1A

∗
2
exp ik r− r1 − r− r2

r− r1 r− r2

+ A∗
1A2

exp − ik r− r1 − r− r2
r− r1 r− r2

,

Figure 3.2 Schematics of lateral resolution.
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IT r
A1

2

r− r1
2 +

A2
2

r− r2
2 +

2 A1 A2

r− r1 r− r2
cos k r− r1 − r− r2 + φ ,

3 2

where φ is the relative phase between A1 and A2. For simplicity, we assume that
the relative phase is zero.
The cosine term in Eq. (3.2) produces the modulation of the holographic inter-

ference pattern, which has the maxima when its argument is 2πn. To resolve two
objects, that is, to distinguish between them, it must be ensured that at least the
zero-order and first-order maxima of the interference pattern are reliably recorded.
The phase at point P0 where the zero-order maximum of the interference pattern is
located is shown below because the point P0 is the same distance away from the
two objects:

φP0
= k r− r1 − r− r2 P0

= 0

On the other hand, since D is sufficiently larger than d, the phase at point P1
where the first-order maximum of the interference pattern is located can be
approximated by

φPi
= k r− r1 − r− r2 Pi

−
2π
λ
dsinθ

To distinguish between the two objects, the difference between the phases in P1

and P0 must be at least 2π: φP0
−φPi

=
2π
λ
dsinθ ≥ 2π Therefore, the two points

can be resolved laterally if their lateral separation satisfies

RLateral = d = r1 − r2 ≥
λ

sinθ
=

λ

NA
,

where NA = sinθ =

w
2

D2 +
w
2

2
and W is the screen width.

Meanwhile, the diffraction pattern resolution criterion is determined by the
highest detectable frequency in the diffraction pattern [5]. The distribution of
the scattered wave front in the far field is given by the equation

U r = exp ikz0 U r0
exp ik r− r0

r− r0
dr0,

whereU(r0) is the object distribution, r0 is the position vector of the object, and r is
the position vector of the observation in the far-field domain. The argument of the
second exponent in the integral can be expressed as
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k r− r0 = k r2 − 2r r0 + r20 ≈ k r−
r
r

r0 = kr−K r0,

where K = k
r
r
=

k
r

x x + y y + z z = Kxx + Kyy + Kzz is the scattering vector.

Thus, we can obtain

U K exp ikz0 U r0 exp − iK r0 dr0

= exp ikz0 U x0, y0, x0 exp − i Kxx0 + Kyy0

× exp − iz0 k2 −K2
x −K2

y dx0dy0dz0,

where the resulting far-field distribution is in (Kx, Ky) coordinates.
A wave front diffracted on two objects with period d will create a peak in its

far-field diffraction pattern at Kd
x,y =

2π
d

The largest detected Kx,y in k-space is

acquired at the largest diffraction angle:

Kx,y = ksinθmax =
2π
λ

sin θmax 3 3

Thus, the lateral resolution is Rdiffr pattern
Lateral = dx,y = 2π

Kx,y
= λ

sin θmax
= λ

NA

3.2 Depth (or Axial) Resolution

When a point source is imaged by an optical system, the axial distribution of the
intensity of the wave front is given as

I 0, 0,Δz = I0

sin
βa2

2
βa2

2

2

,

where I0 =
πa2

λL

2

, β =
πΔz
λL2

,Δz is the defocus distance from the in-focus position

at L, and a = the radius of the aperture [5].
According to the Rayleigh criterion, two point sources are regarded as barely

resolved when the first minimum of diffraction pattern occurs at β
a2

2
= π. There-

fore, the axial resolution is given by
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RRayleigh
Axial = Δz =

2λL2

a2
=

2λ

NA 2 ,

where NA ≈
a
L
.

Axial resolution for the diffraction pattern can be determined as

RDiff Pattern
Axial =

2π
ΔKz

,

where ΔKz is the available spread of Kz, which is given by the maximum variation
of Kz that can be estimated on the detector [5]. On the optical axis, Kz = k. At the

largest diffraction angle, Kz = k2 −K2
x,y ≈ k−

K2
x,y

2k
. The spread of Kz is given

as ΔKz = k− k2 −K2
x,y ≈

K2
x,y

2k
. Using Eq. (3.3), the equation obtained is

RDiff Pattern
Axial ≈

2π
ΔKz

= 2k
2π
K2

x,y

=
2λ

sin 2θmax
=

2λ

NA 2

As shown in Figure 3.3, the laser beam from the source is diffracted by objects at
two points O1 and O2, which are horizontally spaced d apart, causing interference.
An interference pattern of the intensity is displayed on the screen D away from
these two points. In this figure, d is very small compared to D. Thus, the angle

between the optical axis (the z-axis) and the line O1P1 can be approximated as
θ. The phase at point P0 where the zero-order maximum of the interference pattern
is located can be expressed as

φP0
= k r− r1 − r− r2 P0

=
2π
λ
d

Figure 3.3 Schematics of depth (or axial) resolution.
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On the other hand, the phase at point P1, where the first-order maximum of the
interference pattern is located, can be expressed using the binomial expansion of
the square root where 1 sin2θ:

φPi
= k r− r1 − r− r2 Pi

2π
λ
dcosθ

=
2π
λ
d 1− sin 2θ ≈

2π
λ
d 1−

1
2
sin 2θ

To be able to distinguish two objects, the difference between phases in P0

and P1 must be at least 2π, in other words, φP0
−φPi

=
π

λ
d sin 2θ ≥ 2π The

lateral resolution can be expressed as d = r1 − r2 ≥
2λ

sin 2θ
=

2λ

NA 2 , where

NA = sinθ =

w
2

D2 +
w
2

2
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4

Phase Unwrapping

Phase information associated with a fringe pattern in an interferogram from dig-
ital holographic microscopy (DHM) is calculated by shifting the fringe through
different known phase increments or by Fourier transforming the fringe pattern,
which is obtained by adding a considerable tilt to the wave front causing carrier
fringes [1, 2]. In either case, the phase distribution of a phase image means that
principal values are wrapped in a range of −π to π, which can cause 2π phase
jumps due to phase periodicity (with a phase modulus of 2π) of trigonometric
functions. A phase unwrapping process must be conducted to remove 2π phase
discontinuities in the image and obtain an estimate of the true continuous phase
image. Phase unwrapping consists of detecting the location of the phase jump
then connecting adjacent pixels by adding or subtracting multiples of 2π to
remove phase discontinuities.
Many phase unwrapping algorithms were proposed to solve challenging pro-

blems such as phase discontinuities. Phase unwrapping algorithms can be
generally grouped into three major categories: global algorithms, region algo-
rithms, and path-following algorithms [3, 4]. Global algorithms minimize dif-
ferences between discrete gradients of wrapped and unwrapped phase
images [5–11]. The LP-norm and least-squares algorithms are typical examples
of this category. Although these algorithms are generally robust, their compu-
tational requirements are huge, making them unsuitable for real-time, live-cell
imaging applications.
Region algorithms split an image into smaller ones, unwrap regions with

respect to each other, and merge them into larger regions until the whole
image is processed. These algorithms are regarded as a compromise between
robustness and computational intensiveness. Region algorithms can be sub-
classified into two groups: region-based algorithms [7, 12–15] and tile-based
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algorithms [8, 9, 16–18]. Region-based algorithms work by dividing the phase
map into sub-regions. Phase unwrapping is first performed on sub-regions.
Unwrapped regions are then grown or merged gradually. Tile-based algorithms
are a special case of region-based algorithms. Tile-based algorithms divide an
image into small local grids (tiles), which are unwrapped by simpler algorithms.
Tiles are unwrapped individually and merged to a continuous phase map. This
approach has some very attractive properties. Most notably, the tile unwrapping
step can be implemented efficiently by parallelization. However, tile-based
algorithms are prone to error propagation in cases of failed single tile unwraps
as well as phase residues.
Path-following algorithms can unwrap the phase map by detecting 2π phase

jumps between adjacent pixels along a path. They operate by using simple
linear paths [19], sophisticated branch-cut algorithms [20–23] or by selecting
an unwrapping path based on a quality criterion [4, 24]. Path-following algo-
rithms can be classified into path-dependent algorithms, residue-compensation
algorithms, and quality-guided path-following algorithms. Among path-
dependent algorithms, the simplest algorithm is the Schafer and Oppenheim’s
unwrapper [25]. This algorithm includes spiral and multiple-scan direction
methods. These path-dependent algorithms can detect the position of edges
or abrupt phase jumps in the image and use this information to calculate run-
ning phase offsets. These algorithms can perform fast unwrapping along a pre-
determined search path. However, they do not remove noise well [25]. Residue-
compensation algorithms search for residues in a wrapped image and generate
branch cuts to connect residues of opposite orientation [7, 18, 20, 21, 23,
26–30]. The role of cut lines is to generate an unwrapping barrier and prevent
the unwrapping path from going through them. The placement of a particular
set of cut lines for any given wrapped-phase map is not unique. They can be
placed in many different arrangements and orientations. These algorithms
can determine the quality of an unwrapped image according to a cut selection
strategy. They are generally computationally efficient (or fast), but not robust
[7, 21, 26].
Quality-guided, path-following algorithms are some of the most promising

methods. They depend on the assumption that a good quality map, or phase
map, will lead to a reasonable unwrapping path while grouping pixels [4, 18,
24, 31–38]. The unwrapping path is determined using pixels’ reliability. According
to the phase map, the highest-quality pixels with the highest-reliability are
unwrapped first while the lowest-quality pixels with the lowest-reliability are
unwrapped last to prevent error propagation. Although some unwrapping errors
can remain undetected and propagate in a way dependent on the unwrapping
path, these algorithms are surprisingly robust in practice [3]. They are generally
computationally efficient [7] and robust in real-time applications.
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4.1 Branch Cuts

The unwrapping along a loop can be achieved by computing the number of 2π dis-
continuities, d(i) (i = 1, 2, …, N), between adjacent pixels [23]:

d i =
Φ i −Φ i− 1

2π
,

i = 1, 2,…,N ,

whereΦ(i) is the phase at the ith pixel and [ ] denotes rounding to the nearest inte-
ger (i.e., 1, 0, 1). It can be systematically unwrapped by considering a closed loop
around each of the smallest possible units of the phase map (i.e., a square of 4 pix-
els) as shown in Figure 4.1a. The distribution of the discontinuity source map is
computed from Φ(m, n) given by [23]:

s m,n =
Φ m,n + 1 −Φ m,n

2π
+

Φ m + 1,n + 1 −Φ m,n + 1
2π

+
Φ m + 1,n −Φ m + 1,n + 1

2π
+

Φ m,n −Φ m + 1,n
2π

For such a path (traversed in the clockwise sense), the unwrapping error will
always be either −1, 0, or 1, which is called the residue. Due to noise, sampling
problems, and characteristics of the object, real phase maps can become logically
inconsistent, that is, phase unwrapping can become path dependent. These

Figure 4.1 (a) Calculation of the distribution of the discontinuity source map. (b) Path A
and B are two alternative paths for unwrapping the phase at the point (m1, n1), given the
phase at the point (m0, n0) Adapted from [23].
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inconsistencies arise from the existence of discontinuity sources in the phase map.
A closed path containing or enclosing one or more discontinuity sources generally
has a nonzero value.
Generally, S can be defined for any close loop as S= m, ns(m, n) = 0, where the

sum is over all pixels enclosed by the loop. In Figure 4.2b, the uniqueness of the
unwrapped phase at (m1, n1) requires that the total number of discontinuities

along the two paths is equal: S = NA
i = 1dA i −

NB
j = 1dB j = 0 If path B is

reversed, all signs of dB are changed so that S is the total number of 2π disconti-

nuities around the clockwise, closed loop C: S = NA + NB
k = 1 dC k = 0

Each source must be at one end of a cut, with the other end attached to a
source of the opposite sign or to the boundary of the phase map [22]. Discon-
tinuity sources (or residues) tend to occur naturally in pairs of opposite signs,
although isolated sources can occur near the boundary. Minimizing the length
of cut is one criterion used when deciding how to pair sources. A cut is con-
structed between the two sources (or source and boundary) separated by the
shortest distance. Any network of branch cuts that satisfies the criterion—
the sum of the residues joined by the branch cuts is zero for all branch
cuts—will result in consistent phase unwrapping, in the sense that it is path
independent. If branch cuts are constructed by joining groups of residues such
that the sum of all joined residues is zero, the unwrapping of the resulting
phase will have no inconsistencies so long as the path along which the unwrap-
ping progresses never crosses a branch cut (or discontinuity). For example, path
A or B from P1 to P2 in Figure 4.2b. On the other hand, since path C crosses a
branch cut (see Figure 4.2a), the phase unwrapping along the path will not be
free of inconsistencies. When a path crosses a branch cut, 2π multiples must be
added to or subtracted from the phase of one of the two pixels that are adjacent
to the branch cut on that path.

Figure 4.2 Phase map with (a) discontinuity sources and branch cuts, which (b) continue
the 2π discontinuity lines [22] / with permission of Optical Society of America.
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4.2 Quality-guided, Path-following Algorithms

Quality-guided, path-following algorithms consist of twomain concepts: calculation
of reliability values and design of the unwrapping path [4, 35, 36]. The algorithm
uses criteria to determine the reliability of a point in an image based on gradients
or differences between a pixel and its adjacent pixels. Reliability is a criterion that
determines the degree of difference between each pixel and its surroundings. The
reliability of a pixel is calculated using the second difference between orthogonal
and diagonal neighboring pixels. First, the second difference D of the (i, j)th pixel
in the 3 × 3 window is separately calculated (see Figure 4.3a) with

D i, j = H2 i, j + V 2 i, j + D2
1 i, j + D2

2 i, j ,

where

H i, j = γ φ i, j− 1 −φ i, j − γ φ i, j −φ i, j + 1 ,

V i, j = γ φ i− 1, j −φ i, j − γ φ i, j −φ i + 1, j ,

D1 i, j = γ φ i− 1, j− 1 −φ i, j − γ φ i, j −φ i + 1, j + 1 ,

D2 i, j = γ φ i + 1, j− 1 −φ i, j − γ φ i, j −φ i− 1, j + 1 ,

Figure 4.3 Schematics of the quality-guided, path-following unwrapping algorithm. (a)
Calculation of reliability, (b) edge reliability, and (c) unwrapping path. Light grey pixels are
unwrapped and grouped by the edge with the highest edge reliability; for example, R5 + R8.
Dark grey pixels are unwrapped and grouped by the edge with the second-highest edge
reliability; for example, R3 + R6. Note that the edge R5 + R8 has the highest edge reliability
and the edge R3 + R6 has the second-highest edge reliability.
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where i and j are coordinates of a given pixel in the phase image,H is the horizon-
tal difference, V is a vertical difference, and D1 and D2 are diagonal differences [4].
γ ( ) is a simple unwrapping operation to add or subtract 2π in a phase jump, and φ
is the phase value at the corresponding pixel. The second difference can be com-
puted for all pixels except at the borders of an image, where the second difference is
set to infinity to be resolved last. Next, the reliability of each pixel in a 3 × 3window

is separately defined as R =
1
D
.

For simplicity, the reliability of each pixel in the window is represented by
R1, R2, …, R9, as shown in Figure 4.3a. Initially, no pixel in the phase image is con-
sidered to belong to any group. The reliability of edges is estimated by adding the
reliability of two facing pixels as shown in Figure 4.3b. The reliability of all edges is
sorted and stored in one array. Phase unwrapping is then performed by starting
with two facing pixels with the highest reliability. For example, yellow pixels with
the highest edge reliability, the (i, j)th and (i + 1, j)th pixels in Figure 4.3c, are first
unwrapped then joined into a single group.
Phase unwrapping is established by adding or subtractingmultiples of 2π to each

group. There are three situations in the phase unwrapping process: (i) two selected
pixels belong to different groups, (ii) both pixels do not belong to any group, and
(iii) one pixel belongs to a group but the other pixel does not belong to any group.
In the first case, the pixel in the smallest group is unwrapped with respect to any
pixel in the largest group. These two groups are then joined together. In the second
case, both pixels are unwrapped with respect to each other, then joined into a sin-
gle group. In the third case, the pixel that does not belong to any group is
unwrapped with respect to the pixel that belongs to the group. The unwrapped
pixel then joins the group. The phase unwrapping is performed sequentially in
the order of highest edge reliability until all edges in the sorted array are processed.
Finally, borders of the image are unwrapped with respect to the rest of the
image [4].
The reliability of an edge is defined as the summation of reliabilities of the two

pixels that the edge connects [4]. Based on a previous study [4], the unwrapping
process is explained using a numerical example as shown in Figure 4.4. In
Figure 4.4a, pixels a and b are connected by the edge with the highest edge reli-
ability. Both pixels are unwrapped with respect to each other to construct the first
group, I. Pixels c and d connected by the edge with the second-highest edge reli-
ability are unwrapped with respect to each other to construct the second group, II.
Pixel e, which does not belong to any group, is connected to pixel c by the edge with
the third-highest edge reliability. Thus, they should be unwrapped with respect to
each other. However, pixel c is already unwrapped with respect to pixel d. Thus,
both pixels belong to the same group II. The 2π multiples required to be added or
subtracted to unwrap pixel e can be calculated and added to or subtracted from
pixel e, which is joined into group II. Pixels f and g are also connected by the edge
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with the third-highest edge reliability. They are unwrapped with respect to each
other to construct the third group, III. Pixels h and i, which are connected by the edge
with the fourth-highest edge reliability, are unwrapped with respect to each other to
construct the fourth group, IV.
The unwrapping and grouping of pixels g and j connected by the edgewith the fifth

highest edge reliability are performed similarly to those of pixels c and e as shown in
Figure 4.4b. The same procedure is performed for pixels i and k. As a result, pixel k is
joined into group IV and pixel j is joined into group III. Pixels a and l and pixels b and
m are connected by edges with the same priority edge reliability. However, pixels a
and b are already unwrapped with each other. They belong to the same group I.
Consequently, pixels l and m are joined into the group I.

Figure 4.4 Numerical example of the unwrapping path [4] / with permission of Optical
Society of America. (a) In order of edge reliability, pixels a and b (group I), pixels c and d
(group II), pixels f and g (group III), and pixels h and i (group IV) are unwrappedwith respect to
each other and grouped. Pixel e is joined into the group II. (b) Pixel j is joined into the group
III and pixel k is joined into the group IV by the third case of the phase unwrapping process.
In a similar way, pixels l and m are joined into the group I. (c) By the first case of the phase
unwrapping process, pixels in the group III is unwrapped with respect to pixel f in the group I
and the group III is joined into the group I. (d) Pixels n and o are joined into the group I. In a
similar way to (c), the group II and the group IV are joined into the group I. (e) Finally, pixel
p is joined into the group I. The phase unwrapping is complete.
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In Figure 4.4c, pixels f andm are connected by the edge with the seventh-highest
edge reliability. Pixelm belongs to group I and pixel f belongs to group III. That is,
these two pixels belong to different groups. Thus, these two groups should be
unwrapped with respect to each other. Group III has a smaller number of pixels
than group I. Thus, 2πmultiples of the difference between one pixel in group I and
one pixel in group III can be calculated then added to or subtracted from all pixels
in group III, which is then joined into group I. The quality-guided, path-following
unwrapping is performed sequentially in the order of higher edge reliability until
all pixels are unwrapped as shown in Figures 4.4d and 4.4e.
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5

Off-axis Digital Holographic Microscopy

5.1 Off-axis Digital Holographic Microscopy Designs

In this chapter, we will study an off-axis configuration of digital holographic
microscopy (DHM) [1–5] for transmission imaging with transparent samples
(e.g. biological cells) as shown in Figure 5.1. The basic architecture of DHM is
based on the Mach–Zehnder interferometer: a beam expander produces a plane
wave in which the coherent beam comes from a coherent laser source. The beam
is then divided into object and reference beams using a beam splitter with a small
tilt angle between them (see Figure 5.1). The object beam illuminates the specimen
and creates the object wavefront. A microscope objective (MO) magnifies the
object wavefront. Object and reference wavefronts are then combined by a beam
collector at the exit of the interferometer to create a hologram.
At the exit of the interferometer, interference between the object beamO and the

reference beam R creates the hologram intensity

IH x, y = R 2 + O 2 + R∗O + O∗R,

where R∗ and O∗ are complex conjugates of the reference beam and the object
beam, respectively. A digital hologram is recorded by either a charge-coupled
device (CCD) camera or a complementary metal oxide semiconductor (CMOS)
camera and transferred to a personal computer for numerical reconstruction.
The digital hologram IH(k, l) (CCD size: L × L) is an array ofN×N that results from
a 2D sampling of IH(x, y) by the CCD or CMOS camera:

IH k, l = IH x, y rect
x
L
,
y
L

×

N
2

k =− N
2

N
2

l =− N
2

δ x− kΔx, y− lΔy , 5 1
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where k and l are integers −
N
2

≤ k, l ≤
N
2

, rect() is the rectangular function,

andΔx andΔy are sampling intervals in the CCD plane (pixel size:Δx = Δy =
L
N
).

DHM has been proposed in various configurations. Here, we will consider a
geometry that includes an MO. The optical arrangement in the object arm of
the off-axis DHM can be assumed to be an ordinary, single-lens imaging system
(see Figure 5.2). The MO in the single-lens imaging system produces a magnified
image of the object. The CCD plane x (the hologram plane) is placed between the
MO and the image plane (xi), at a distance d from the image plane. This situation
can be considered equal to a holographic configuration with an object beam that

Figure 5.1 Schematic of the off-axis DHM setup.

Figure 5.2 A single-lens imaging system for off-axis DHM.
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emerges directly from the magnified image. Therefore, this procedure is called
image holography. In classical microscopy, the focused image can be obtained
by adjusting z-position of the object or the CCD plane. If the specimen is placed
in the object focal plane of the MO, the object hologram is recorded with the Four-
ier transform of the object field since the distance between the image and the MO
(di) is infinite. In this case, a numerical reconstruction can be performed by the
Fourier transform of the digital hologram. Basically, in the off-axis DHM, the
numerical reconstruction method consists of calculating the Fresnel diffraction
pattern of the digital hologram.

5.2 Digital Hologram Reconstruction

In off-axis DHM, image focusing happens when the reconstruction distance is
equal to the distance between the CCD plane and the image plane during the hol-
ogram recording (d in Figure 5.2). In classical off-axis holography, hologram
reconstruction occurs by illuminating the hologram intensity with the reference
beam R. The reconstructed wavefront can be defined as

Ψ = RIH = R R 2 + R O 2 + R 2O + R2O∗, 5 2

The first two terms of Eq. (5.2) are a zero order of diffraction. The third term
produces a twin image. The fourth term produces a real image. Since the hologram
is recorded in off-axis configuration, Fourier transform of the hologram can sep-
arately represent bandwidth of real image, virtual image, and zero-order noise (see
Figure 8.2(c) in Chapter 8). Therefore, in off-axis DHM, a spatial filter with a prop-
erly defined size to cover only the bandwidth that corresponds to the real image is
used (see Figure 23.1c). The resulting filtered hologram is reconstructed by Fresnel
approximation. The reconstructed wavefront can be written as

Ψ ξ, η = Aexp
iπ
λd

ξ2 + η2 × IH x, y exp
iπ
λd

x2 + y2

× exp
i2π
λd

xξ + yη dxdy,
5 3

where λ is the wavelength, and A = exp

i2πd
λ
iλd

is a complex constant. As shown

in Eq. (5.3), the Fresnel integral can be considered a Fourier transform in spatial

frequencies
ξ

λd
and

η

λd
of the following function: IH x, y exp

iπ
λd

x2 + y2
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For fast numerical calculations, a discrete formulation of Eq. (5.3) using a two-
dimensional fast Fourier transform can be expressed as

Ψ m,n = Aexp
iπ
λd

m2Δξ2 + nΔη2

× FFT IH k, l × exp
iπ
λd

k2Δx2 + l2Δy2
m,n

,

where k, l, m, and n are integers −
N
2

≤ k, l,m,n ≤
N
2
, and IH(k, l) is the digital

hologram (Eq. (5.1)). Values of sampling intervals in the image plane (Δξ and
Δη) can be derived from the relationship between sampling intervals in the
CCD and Fourier domains in discrete Fourier-transform calculations

Δv =
1

NΔx
. In our case, the Fourier transform must be calculated in the spatial

frequencies
ξ

λd
and

η

λd
. We have the following equations forΔξ andΔη to define the

transverse resolution in the image plane: Δξ = Δη =
λd
NΔx

=
λd
L

For a typical reconstruction distance d = 300 mmwith a wavelength λ= 633 nm
and a CCD size L = 5mm, the transverse resolution of the optical imaging system
is limited to Δξ= 38 μm. In an off-axis DHM, Δξ indicates the resolution for the
reconstructed image of the object in a given magnification. Note that in image hol-
ography, a transverse resolution can be equal to the diffraction limit of theMO. For
quantitative phase imaging, the digital hologram should be multiplied by a digital
reference plane wave RD, which must be a replica of the experimental reference
beam R. In classical holography, the same operation is conducted optically when
the hologram is illuminated with the reference beam. If we assume that a perfect
plane wave is used as a reference beam for hologram recording, RD is formulated

as RD k, l = AR exp i
2π
λ

kxkΔx + kylΔy , where AR is the amplitude, Δx and

Δy are the sampling intervals in the CCD or hologram plane, and kx, ky are wave
vectors that must be adjusted for the propagation direction of RD to match the
experimental reference beam as closely as possible.
As shown in Figure 5.3, the MO produces a curvature of the wavefront in the

object arm of an off-axis DHM. This deformation does not affect the amplitude dis-
tribution of the object beam for amplitude-contrast imaging. However, for quan-
titative phase imaging in a DHM system, this phase aberration must be corrected.
In our DHM, this phase aberration problem can be overcome experimentally by
inserting the sameMO in the reference arm of the DHM at the same distance from
the exit of the interferometer. We can also design a numerical method that allows
us to perform the correction by multiplying the reconstructed wavefront by the
numerically computed, complex conjugate of phase aberration. If we assume an
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optical imaging system with a monochromatic illumination, the relation between
the optical fieldsUo(xo, yo) in the object plane andUi(xi, yi) in the image plane can
be described as

Ui xi, yi = h xi, yi; xo, yo Uo xo, yo dxodyo,

where h(xi, yi; xo, yo) is the point-spread function. If the object plane and the image

plane form an object–image relation with the lens law
1
di

+
1
do

=
1
f
, h(xi, yi; xo, yo)

can be written as

h xi, xo = Cexp
iπ
λdi

x2i exp
iπ
λdo

x2o

× P xφ exp
− i2π
λ

xo
do

+
xi
di

xφ dxφ,
5 4

where xφ is the coordinate of the MO plane, P(xφ) is the MO’s pupil function, and
C is a constant (we only considered the x coordinate for simplicity). Note that
the integral in Eq. (5.4) is a Fourier transform of the pupil function P(xφ) (see
Chapter 2 for more details). If we assume a perfect imaging system of magnifica-

tionM =
di
do

in which points (xo, yo) in the object plane becomes points (xi =−Mxo,

yi = −Myo) in the image plane, the integral in Eq. (5.4) can be approximated by a
Dirac function. We can obtain the following impulse response function by repla-

cing xo with −
xido
di

in the quadratic phase term preceding the integral,

h xi, yi; xo, yo Cexp
iπ
λdi

1 +
do
di

x2i + y2i × δ xi + Mxo, yi + Myo

5 5

Figure 5.3 Schematic of the wavefront deformation by the microscope objective [1] / with
permission of Optical Society of America.
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Equation (5.5) indicates that the image field is a magnified reproduction of the
object field multiplied by the quadratic phase term. It also means that the phase
aberration can be corrected by multiplying the reconstructed wavefront by the
complex conjugate of the phase term that precedes the δ function in Eq. (5.5).
Therefore, a digital phase maskΦ(m, n) for the correction of the phase aberration

can be calculated byΦ m,n = exp
− iπ
λD

m2Δξ2 + n2Δη2 , whereD is a param-

eter that must be adjusted to compensate the wavefront curvature. According to

Eq. (5.5), we can define
1
D

=
1
di

1 +
do
di

Finally, the complete expression of

the hologram reconstruction algorithm is

Ψ m,n = AΦ m,n exp
iπ
λd

m2Δξ2 + n2Δη2

× FFT RD k, l IH k, l × exp
iπ
λd

k2Δx2 + l2Δy2
m,n

,

5 6

SinceΨ(m, n) is an array of complex numbers, an amplitude-contrast image can
be obtained by calculating the intensity: I(x, y) = Re[Ψ(m, n)]2 + Im[Ψ(m, n)]2.
We can obtain a quantitative phase image by calculating the argument

φ x, y = arctan
Im Ψ m,n
Re Ψ m,n

The numerical reconstruction algorithm in Eq. (5.6) contains four reconstruc-
tion parameters: the reconstruction distance (d), the twowave vectors in the digital
reference beam (kx, ky), and the digital phase mask (D), which represents physical
quantities (distances and angles). These parameters can be efficiently adjusted
using the presented digital methods to produce high-quality phase-contrast
images. An example of numerical reconstruction results obtained with red blood
cells is shown in Figure 8.2.
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6

Gabor Digital Holographic Microscopy

6.1 Introduction

Direct observations of microscale biophysical processes such as kinematics and the
dynamics of live cells require suitable tools to resolve both spatial and temporal
scales at proper levels. An available candidate is optical microscopy in which,
as the power increases and lateral resolution improves, the field of view and depth
of field decrease nonlinearly. For example, increasing the power from 10× to 40×
will decrease the theoretical depth of field from 12 to 2 μm,which greatly limits the
size of the resolvable volume.
Basically, digital holographic microscopy (DHM) can record a 3D volumetric

field on a charge-coupled device (CCD) plane and later reconstruct it. It can be
used to investigate the spatial distribution and velocity of a dense particle cloud
with an extended depth. Gabor DHM [1] can be implemented by combining Gabor
holography and microscope objective (MO) using the same setup as an optical
microscopy in which the light source is replaced with a collimated coherent beam
and a sequence of magnified holograms is recorded on a CCD camera. Three-
dimensional fields can be digitally reconstructed from these magnified holograms
with a similar resolution to optical microscopy. Gabor DHM allows scientists to
analyze particle dynamics by recording a time series of particle traces and the tra-
jectory of biological specimens. This chapter introduces Gabor DHM as a promis-
ing tool for measuring particle motions and trajectories using time-lapse imaging.

6.2 Methodology

As shown in Figure 6.1, the optical configuration of Gabor DHM is similar to con-
ventional bright-field microscopy except that it uses a laser beam as a light source.
A hologram is a record of interference patterns between the light diffracted from
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samples and the non-scattered part of the light (reference beam). The optical field
of samples can be represented at the hologram plane by

UH x, y = Ae jkrnH +
i

ai xo, yo; zi hz x− xo, y− yo; zi dxodyo,

where kr is the propagation vector of the reference beam and nH is the norm vector
of the hologram plane [1]. The first term represents the optical field of the refer-
ence beam in Gabor DHM. The angle of the reference beam is assumed to be zero.
The second term is the superposition of light diffracted from discrete samples
located at a distance zi from the hologram plane, and produce fields with local dis-
tributions of ai(xo, yo). Each particle is considered a superposition of point sources
whose individual fields are hz(x, y; zi). Using a paraxial approximation for particles
much smaller than zi yields [1]

hz x− xo, y− yo; zi =
1
jλzi

exp j
k
2zi

x− xo
2 + y− yo

2 6 1

Each particle can be thought of as a 2D aperture. Thus, diffraction from a single
particle is the result of the convolution of a 2D aperture with the impulse response
function in Eq. (6.1). The resulting interference intensity on the hologram plane
can be presented as

Iz x, y = UHUH
∗ = A2 −A a∗ x, y h∗

z x, y −A a x, y hz x, y

+ a x, y hz x, y 2,

where indicates a convolution integral. To determine the effect of the MO in
Gabor DHM,we consider its compound lens system as a perfect thin lens. The opti-
cal field at distance di behind the lens that results from an optical field isUo(xo, yo,
d0) where d0, the distance before the lens (see Figure 6.1), can be represented by

Ui xi, yi; di = hl xi, yi; xo, yo Uo xo, yo dxodyo,

where

hl xi, yi; xo, yo =
1
M

δ
xi
M

+ xo,
yi
M

+ yo × exp j
k

2M2do
x2i + y2i

× exp j
k
2di

x2o + y2o

M =
di
do

is the magnification. After integration, and replacing Uo(xo, yo) with

UH (xo, yo), the optical field generated by the hologram at the image plane is

Ui xi,yi;di =
1
M

UH −
xi
M

, −
yi
M

× exp j
k

2M2do
x2i + y2i × exp j

k
2di

x2o + y2o

6 2
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Equation (6.2) shows that if the image is highly magnified, the image plane con-
tains a magnified holographic plane with a phase correction that becomes unity.
The intensity distribution in the image plane simply becomes a magnified
hologram:

Ii xi, yi =
1
M2 UH −

xi
M

, −
yi
M

U∗
H −

xi
M

, −
yi
M

This true magnified hologram enables scientists to drastically relax the spatial
resolution requirement of the recording medium such as the CCD camera.
Furthermore, scientists can use magnification as a means to match the desired
resolution with that of the recording medium. Finally, the magnified 3D particle
field, Ψp(x, y; z), is numerically reconstructed using the Fresnel diffraction
formula:

Ψp x, y; z = Ii x, y hz x, y; z , 6 3

Ip x, y; z = ΨpΨ∗
p

Since Eq. (6.3) is a convolution of the magnified hologram with an impulse
response function, bothΨp and Ip(x, y; z) can be efficiently computed in the Four-
ier domain. This numerical reconstruction method allows the Gabor DHM to

Figure 6.1 Optical setup of Gabor DHM [1] / with permission of Optical Society of America.
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resolve the locations of several thousand particles and measure their motions and
trajectories using time-lapse imaging. An example of the numerical reconstruction
that results from Gabor DHM obtained with live cells is shown in Figure 10.10 in
Chapter 10. For more details of Gabor DHM, please refer to [1–5].
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Introduction

Digital holographic microscopy (DHM) has recently emerged as a promising new
technique well suited to explore cell structure and dynamics with a nanometric
axial sensitivity without the need for labels, thus enabling the identification of
new cellular biomarkers [1–6]. Recent advances in artificial intelligence (AI)
and deep learning have opened up a new way for holographic image reconstruc-
tion with real-time performance. Specifically, in 2017, a deep-learning approach
based on a convolutional neural network (CNN) began to be applied to DHM. Ini-
tially, simple problems using deep learning such as phase-image restoration and
segmentation were investigated [7, 8]. Currently, more advanced deep-learning
algorithms are applied to develop compact, low-cost, smart DHM systems.
DHM using deep learning has outperformed conventional numerical methods
in several applications such as depth estimation, phase unwrapping, and direct
hologram reconstruction [9–14].
Part II provides an overview of previously published work on deep-learning

techniques for digital, holographic image reconstruction of live cells for automated
cell identification. Notable achievements include holographic image auto-focusing
with deep learning, deep learning-based phase unwrapping in DHM, and noise-
free Gabor holography by fusing deep learning and DHM [15–17]. In DHM, the
numerical reconstruction algorithm allows the retrieval of both phase-contrast
and amplitude-contrast cell images. This is possible when the exact distance
between the charge-coupled device (CCD) plane and image plane is provided.
Chapter 8 shows a deep CNNwith a regression layer at the top to estimate the best
focus distance. Experimental results with microsphere bead and red blood cells
(RBC) showed that the deep-learning method could accurately estimate the prop-
agation distance from the hologram. This method can significantly accelerate the
numerical reconstruction time since the correct focus is provided by the CNN
model without a need for digital propagation in different distances. Another
advantage of this method is that since the distance is estimated at the single-object
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level, it can provide reconstruction distances with respect to the location of micro-
sized objects.
Phase values of the reconstructed holographic image are limited between −π

and π. Therefore, discontinuity might occur due to the modulo 2π operation.
Chapter 9 demonstrates that the deep-learning model based on generative adver-
sarial network (GAN) can convert wrapped phase images to unwrapped ones. The
deep-learning model is also free of phase jumping noise, which is typical for con-
ventional unwrapping algorithms. In addition, we show that our model is twice as
fast than quality-guided, path-following algorithms, which allows for the observa-
tion of morphology and cell movement in real-time. Chapter 10 shows that deep
learning can eliminate a superimposed twin-image noise in phase images of Gabor
holographic setup. This is achieved by using conditional generative adversarial
network (C-GAN) trained by input–output pairs of noisy phase images obtained
from synthetic Gabor holography and corresponding quantitative noise-free con-
trast-phase image obtained with off-axis digital holography. Two models are
trained: a human red blood cell model and an elliptical cancer cell model.
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8

No-search Focus Prediction in DHM with Deep Learning

8.1 Introduction

DHM allows for nondestructive investigations of biological samples as well as
marker-free and time-resolved studies of cell biological processes. More specifically,
interpretation of quantitative phase signals with DHM gives access to quantitative
measurements of both cellular morphology and sample content with only a single
shot. It is a real-time approach that can be used for time-lapse studies of biological
samples in the absence of a mechanical focus adjustment. The propagation distance
must be determined to obtain a quantitative phase image for phase objects. The dis-
tance between the hologram plane (CCD plane) and the observation plane (image
plane) is defined by the reconstruction distance d. In digital holographic reconstruc-
tion, an in-focus image is reconstructed when the reconstruction distance is equal to
the distance between the CCD plane and the image plane during the hologram
recording (see Figure 8.1). An out-of-focus image appears if d is not precise (see
Figure 8.2). Several automated approaches have been proposed to find the best focus
plane inDHM [1–6]. Generally,multiple images at different focus planes are numer-
ically reconstructed and a focus-evaluation function determines whether the image
is focused by assessing the sharpness of either the amplitude-contrast or phase-
contrast image. For example, pure phase objects have minimum visibility in
amplitude-contrast images when in-focus reconstruction is estimated [3]. All these
methods require several propagations at various distances, which are time-
consuming since they require Fourier transforming. It becomes more apparent
when time-lapse imaging is needed. Long-term biological studies require continu-
ous focus readjustment to maintain optimum image quality.
In this chapter, we will introduce a deep learning convolutional neural network

(CNN) for the estimation of propagation distance d [7]. This deep learning
model can estimate the reconstruction distance from the recorded hologram for
micro-sized objects without any focus-evaluation functions. This method has
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Figure 8.1 (a) Scheme of off-axis hologram recording and (b) configuration of image sensor
(CCD camera), sample, and image plane.
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two main advantages. First, it is significantly faster because it does not require
many digital propagations or a function to evaluate sharpness at each distance.
Second, this model can provide a specific d regarding the location of cells with
respect to other cells. This can be used to analyze the cell adherence on surfaces.

Figure 8.2 (a) A recorded red blood cell (RBC) hologram and (b) its magnification.
Fringes are curved due to phase aberrations caused by MO. Fringes are not concentric with
respect to the center of the image regarding the off-axis setup. (c) Fourier transformation
of hologram shown in (a). Bandwidth of real image, twin image, and zero-order noise
are separate due to the off-axis geometry. (d, e) Amplitude and phase of the numerically
reconstructed signal when the reconstruction distance d is too short, (f, g) when the
reconstruction distance d is correct, and (h, i) when reconstruction distance d is too long.
The corresponding amplitude image for the in-focus phase contrast image has the lowest
contrast. (j) Cross-sectionof the phase imageofRBC in (e), (g), and (h). The phase is converted to
thickness by Eq. (8.1) where nRBC = 1.39 and nm = 1.3345 [7] / with permission of Optical
Publishing Group.
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Focused images for training data are obtained with the focus-evaluation function,
which uses the standard deviation of amplitude images.

8.2 Materials and Methods

The phase value in DHM is sometimes represented as the optical path length dif-
ference (OPD) between the reference beam and the object beam that passes
through the sample:

OPD x, y = ϕ x, y ×
λ

2π
= t x, y × ns x, y −nm , 8 1

where ns(x, y) is the integral refractive index of the sample at pixel (x, y) along the
optical axis, nm is the refractive index of the sample’s surrounding medium, and t
(x, y) is the thickness of the sample at the (x, y)th pixel.
The deep architecture of the processing units in CNN allows themodel to extract

features of images at different scales [8]. Consequently, CNN models with these
features can make accurate predictions thanks to the supervised learning of
desired target values provided during the training process. The CNN has been
applied to many applications including medical-image segmentation [9]. CNN
has also been applied in several optical-related studies, such as depth estimation
in inline holograms of natural images [10], the predication of the focus plane by
AlexNet and VGG16 models [11], and non-parametric autofocusing with a regres-
sion CNNmodel [12]. Shimobaba, Kakue, and Itoonly used a portion of the inten-
sity and spectrum from inline holograms to show that CNN with regression could
predict depth [10]. In addition, deep-learningmodels have promising outcomes for
phase recovery and eliminating twin-image noise in holographic images [13],
which extends the depth of field in reconstructed images [14]. Furthermore,
diffractive deep-neural networks for faster deep-neural networking have been
proposed [15]. For amore comprehensive description of DHMusing deep-learning
models, please see a review paper [16].
Figure 8.3a shows a general scheme of our deep-learning convolutional neural

network with a regression layer as the top layer (R-CNN) to estimate the best
reconstruction distance. The linear regression layer in the R-CNN attempts to find
the best fitting line between the feature map and continuous target values for the
training. The feature map is obtained from the amplitude part of filtered holo-
grams (see Figure 8.3a). Note that we used a spatial filter to extract only real images
in the off-axis hologram (see Chapter 5).
Experiments demonstrated that non-filtered holograms reduced the accuracy of

our estimation (data not shown). Target values are obtained by the focus-
evaluation function, which will be explained in later parts of this section. Our
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R-CNN architecture consists of two main parts (see Figure 8.3b): a feature extrac-
tion part for learning features of images and a linear regression part to predict the
focus distance. The feature extraction part consists of five stages. Each stage
involves convolution layers, batch normalization layers, an activation function,
and a pooling layer. All convolution layers have the same size filter of 5 × 5.
A rectified linear unit (ReLU) activation function is applied to the output of every
batch normalization since it has the advantage of reducing the vanishing gradient

Figure 8.3 (a) General scheme of the proposed R-CNN for the estimation of reconstruction
distance. Inset shows RBC hologram before and after filtering. (b) Details of R-CNN,
various layers of the network, and configurations of R-CNN. Hologram after filtering has
complex data. Thus, only the amplitude of the filtered hologram is fed into the model [7] /
with permission of Optical Publishing Group.
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problem. A max-pooling layer is used for the pooling layer due to its good
performance [8, 17]. After passing through each convolution layer, the depth of
the feature map is doubled. Using the pooling layer allows scientists to greatly
reduce the size of the input while obtaining translation invariant features. The
fully connected layer for linear regression has 150 nodes linked to all units in
the previous layer. Because our network model has to predict continuous focus
values, a linear function is used as an output layer function.
In this study, two models with the same structure were developed: one for RBCs

and one for microsphere beads. The main reason for designing these models was
that the performance of a combined model was slightly worse than two independ-
ent models. We used the mean squared-error metric to minimize the difference
between actual and predicted values. To train our network, the Adam optimizer
was used to minimize the loss function and update all trainable parameters. Since
the Adam optimizer is invariant to rescaling, it is suitable for a non-stationary loss
function and automatic learning rate annealing [18].
The initial learning rate of 0.001 was decreased by a decay factor of 0.7 every five

epochs. The momentum was set to be 0.9. The training process stopped when the
validation loss did not change for 10 consecutive epochs. The mini-batch size for
training was 128 for the RBCs model and 256 for the bead model. A data augmen-
tation method (45 clockwise rotation at each mini batch, horizontal and vertical
flip) was applied to our models to avoid over-fitting problems. All R-CNN simula-
tions were done in Python. R-CNN models were built in Tensor flow (Keras, GPU
only, NVIDIAGeforce GTX 690, version 2.2.4). The dataset is divided into two: 80%
for training and 20% for validation. Several holograms of RBCs and microspheres
were captured to train the two R-CNN models. Figure 8.4 shows variation in the
reconstruction distance d regarding the distance between the sample andMO or ds
shown in Figure 8.1b. Several holograms are generated by adjusting ds.
To generate a training set, the distance between the sample and MO was

adjusted by a controllable stage with a resolution of 0.1 μm along the optical axis.
For training the two R-CNN models, more than 3000 holograms containing 8
RBCs each and more than 2400 holograms containing 8 microspheres each were
recorded (Figure 8.4). As previously mentioned, these holograms were filtered
before they were fed into the R-CNN model. This filtering can reduce uninform-
ative noise patterns stored in the hologram, thus providing more informative pat-
terns for the R-CNNmodel. Figure 8.5 shows various examples of holograms at the
object scale with corresponding reconstructed phase images at the single-object
level. The focus image for the training data is obtained using the focus-evaluation
function, which uses the standard deviation of amplitude images.
The best focus plane is determined by conducting 90 reconstructions at different

focus planes for each hologram containing several micro-sized objects. The focus-
evaluation function then estimates the best focus plane by computing the 2D
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Figure 8.4 Two examples of holograms at different distances ds recorded for training the R-CNN model. (a, b) For the RBC model and (c, d) for
the bead model. Insets show a single hologram extracted for training. Variations of ds and the corresponding optimal reconstruction distance d
for the best reconstruction of the training set are illustrated for (e) the RBC model and (f ) the bead model. The optimal distance for each
hologram containing multiple cells or objects is evaluated by reconstructing 90 holograms at different d values and evaluating the amplitude
image’s 2D standard deviation for the 2D STD output for (g) one RBC hologram and (h) one bead hologram / with permission of Optical
Publishing Group.



standard deviation of the amplitude image (Figures 8.4g and 8.4h). This function
evaluates the dispersion of the reconstructed amplitude image’s pixel values by
standard deviation measurements in x and y directions. Evaluating the amplitude
image is a particularly useful approach for investigating transparent or semi-
transparent objects, like biological samples, because these objects are nearly invis-
ible in the amplitude image. Accordingly, the standard deviation of pixels is
almost zero.

8.3 Experimental Results

The performance of the trained R-CNN model was analyzed by recording several
new holograms at different ds and comparing the R-CNN’s estimation result with
the output of a focus-evaluation function. The hologram test dataset was not used
for the training. The R-CNNmodel provides estimation of the optimal reconstruc-
tion distance according to the spatial pattern of the input hologram. Figure 8.6
shows some examples of test holograms used to evaluate the performance of
our model at different distances ds.
Figure 8.7 presents the results of our R-CNN model to estimate the reconstruc-

tion distance of microsphere beads during hologram reconstruction. Since this
method allows for the estimation of the reconstruction distance at the single object

Figure 8.5 (a) Several single RBC and corresponding phase images by numerical
reconstruction. Reconstruction distance d is found by the focus-evaluation function. d is
considered the desired output for the regression layer of the CNN model. (b) Several bead
holograms and corresponding phase images by numerical reconstruction. Hologram images
at the single-object level are fed into the CNN regression model during the training stage.
Units for ds and d distance are 0.1 μm and 1.0 μm, respectively [7] / with permission of
Optical Publishing Group.

60 8 No-search Focus Prediction in DHM with Deep Learning



level in the hologram containing multiple objects, it is possible to automatically
perform multiple reconstructions for each micro-object in the hologram. Accord-
ingly, four beads were considered as shown in Figure 8.6. To validate the output of
our model, the output of a single object’s hologram was compared with the focus-
evaluation function. A correlation analysis was then performed. Alongside the

Figure 8.6 Holograms used for performance evaluation of the trained regression CNN
model. (a)–(c) Three holograms for microbeads recorded at unknown distances ds. Four
beads were chosen from each sample for the bead R-CNN model test. All beads are located
at the same distance along the z-axis. B1–B4 are 3D representations of the bead holograms.
(d)–(f ) Three holograms for RBCs recorded at unknown distances ds. R1–R5 are 3D
representations of the RBC holograms. R5 is located at a different depth with respect to
R1–R4 [7] / with permission of Optical Publishing Group.
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Figure 8.7 (a) Comparison of the R-CNN model output and the focus-evaluation function for estimating the optimal reconstruction distance.
Holograms are recorded corresponding to different unknown ds, which is manually increased (ds is along the optical axis, by moving the stage ds
changes). A few bead holograms with multiple beads are shown in Figure. 8.6. (b–e) Reconstructed phase images by the value provided by R-CNNwhen
the input to model respectively is B1–B4. The color map is similar for all figures. (f–i) Correlation analysis between CNN’s output (input to the model is
B1–B4, respectively) and focus-evaluation function. (j) Cross-section of the reconstructed phase images of B1–B4 when the R-CNN provides d for
holograms of B1–B4. Reconstruction by the focus-evaluation function is also presented for comparison [7] / with permission of Optical Publishing Group.



analysis, a cross-section of the 3D profile of each bead is also shown. Since beads
are positioned at the same location along the z-axis, they are in the same focus dis-
tance from the CCD camera. We can see that the output of the R-CNN provides
similar results for the four input holograms. The correlation between the focus-
evaluation function’s output and our R-CNN’s output is significant.
The performance of our deep learning model was also analyzed using RBCs.

Unlike microsphere beads, there is substantial cell-to-cell variation in RBCs.
The variation is beneficial for testing a model’s performance in various conditions.
Five single RBCs (R1–R5) were selected to evaluate performance of the R-CNN
model (Figure 8.6). As shown in Figure 8.6, R5 is placed at a different focus dis-
tance compared to other RBCs. Therefore, it might be difficult for conventional
focus-evaluation functions to determine a focus distance at which the 3D profile
of R5 is best resolved. We can see that the RBC-to-RBC single-hologram variation
(Figures 8.6d–f ) is considerable. Therefore, the performance of our model can be
evaluated under conditions different from training. To validate themodel’s output,
the output of a single RBC hologram was compared with that of the focus-
evaluation function. A correlation analysis was then performed (Figure 8.8).
Figure 8.8 demonstrates that ourmodel could correctly estimate the propagation

distance with respect to the hologram of the micro-size sample. Moreover, our R-
CNN model could predict the correct value for the R5, which is located at a differ-
ent focus distance. This can be very helpful for studying samples where cells are
placed at different levels along the optical axis. Figure 8.9 shows that the focus-
evaluation function is unable to find a reconstruction distance at which the profile
for R5 is well resolved. In contrast, when the input is the R5 hologram, our R-CNN
model can find a perfect reconstruction distance at which R5 contrast is best
resolved. Furthermore, a perfect profile of RBCs can be achieved by combining
two reconstructions at two different distances (for example, R1 and R5).
In this work, 90 reconstructions were performed. The focus-evaluation function

was then applied to examine standard deviations of pixel values within the whole
amplitude image for multiple cells or objects. It is assumed that the plane that
minimizes the standard deviations of amplitude image is the best focus plane.
Our deep-learning models without reconstruction enabled us to estimate the focus
plane of the corresponding object, which could be further used to determine the
distance between micro-sized objects along the optical axis. This is critical for
studying biological samples in 3D environment cultures because live cells move
freely along the optical axis during the experiment. The R-CNN model is fast. It
can instantly find the focus plane without reconstruction. This can significantly
enhance the reconstruction time in DHM. One main challenge in designing
CNN-based predication models is that the model needs a lot of samples to be
well-trained.
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Figure 8.8 (a) Comparison of the R-CNN model output and the focus-evaluation function
for estimating the optimal reconstruction distance. Holograms are recorded corresponding
to different unknown ds, which is manually increased (ds is along the optical axis, by moving
the stage ds changes). A few RBC holograms recorded at various ds are shown in Figure 8.6;
R5 is located at a different distance from R1–R4. (b–e) Correlation analyses between the R-
CNN model outputs and focus-evaluation function when the input to the model is R1–R4,
respectively [7] / with permission of Optical Publishing Group.
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8.4 Conclusions

In this chapter, we introduced a deep-learning CNNwith a regression layer to esti-
mate the best focus distance in the numerical reconstruction of micro-sized objects
at the single-object level. Focused images and corresponding reconstruction dis-
tance for the training dataset were obtained using a conventional focus-evaluation
function. Experimental results and comparison with the focus-evaluation function
demonstrated that the presented models could properly estimate the reconstruc-
tion distance from a filtered hologram. We experimentally showed that the deep-
learning method could significantly reduce the numerical reconstruction time to
find the correct focus distance. The numerical focus-evaluation function requires
many digital propagations at different distances making it computationally ineffi-
cient. Moreover, since the reconstruction distance of the object is numerically esti-
mated at the single-cell level, our deep-learning model can offer reconstruction
distances in accordance with the location of various micro-size objects. This
method can be applied to biological cell studies, particularly cancer cells, since

Figure 8.9 Reconstructed phase images when (a) d is estimated with a focus-evaluation
function, (b) d is estimated with the R-CNN model and R1 input, and (c) d is estimated with the
R-CNN model and R5 input. (d) Combination of (b) and (c); R5 is copied from (c) and inserted
into (b). Colormap is similar for all images. (e)3Dprofile ofR1–R5whenthe focus is according to
the focus-evaluation function. In this case, R5 is at a different focus level. Thus, the profile is
not correct. (f ) 3D profile of R1–R5when the focus is according to CNNmodel with R1 as input.
R5 is at a different focus level. Thus, the profile is not correct. (g) 3D profile of R1–R5when the
focus is according to CNN model with R5 as input. R5 profile is correctly reconstructed.
(h) Profiles extracted from combination of (c) and (d) [7] / with permission of Optical
Publishing Group.
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they are round cells with very similar visual structures. For generalization, it is
required to train the model with plenty of cells and a wide range of reconstruction
distances.
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9

Automated Phase Unwrapping in DHM with Deep Learning

9.1 Introduction

The digital holographic microscopy (DHM) can provide quantitative phase images
related to the morphology and content of biological samples. Phase values in the
reconstructed image are limited between −π and π. Thus, discontinuity may occur
due to modulo 2π operation. A phase unwrapping process must be carried out to
remove 2π phase discontinuities in the phase image and estimate the true contin-
uous phase image. Phase unwrapping consists of finding the location of the phase
jump and connecting adjacent pixels by adding or subtracting multiples of 2π to
remove phase discontinuities.
Many phase unwrapping algorithms have been studied to solve challenging pro-

blems such as phase discontinuities. Advanced phase unwrapping algorithms can
be divided into three types: global, region, and path-following algorithms. Global
algorithms can minimize differences between discrete gradients of wrapped and
unwrapped phase images. Although these algorithms are robust, their computa-
tional requirements are large. Hence, they are unsuitable for real-time live-cell
imaging applications. Region algorithms can split an image into smaller ones,
unwrap regions with respect to each other, and merge them into larger regions.
These algorithms have been regarded as a compromise between robustness and
computational intensiveness. Region algorithms are further categorized into
region-based algorithms and tile-based algorithms according to the procedure
in defining a homogeneous region. Region-based algorithms can find homogene-
ous regions using phase gradients, while tile-based algorithms can split an image
into a small local grid unwrapped by simpler algorithms. Path-following
algorithms are classified into path-dependent, residue-compensation, and qual-
ity-guided algorithms. Path-dependent algorithms can perform unwrapping
through a predetermined search path. However, they cannot remove noise well.
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Residue-compensation algorithms search for residues in a wrapped phase image
and generate branch cuts to connect opposite orientation residues. These algo-
rithms can determine the quality of an unwrapped phase image according to a
cut selection strategy. For a detail description of the phase unwrapping algorithms,
see Chapter 4.
Quality-guided algorithms are the most promising methods. They depend on the

assumption that a good quality or phase map will lead to a reasonable unwrapping
path while grouping pixels. According to the phase map, the highest-quality pixels
are unwrapped first, while the lowest-quality pixels are unwrapped last to avoid
error propagation. These methods are computationally efficient in real-time appli-
cations. There are cases where systematic phase unwrapping methods fail to
obtain unwrapped phase values. Abrupt phase changes can occur at cell bound-
aries in phase images. When the phase continuously rises to π and exceeds it,
the phase rapidly changes to−π due to the modulo 2π operation on the phase. This
results in 2π discontinuities whichmust be removed using phase unwrapping algo-
rithms. However, if either the thickness of cells is out of the depth of focus or cells
are reconstructed on a partially defocused image plane, the phase in the cell
boundary may immediately shoot up above π. Thus, the phase difference in the
local boundary in the wrapped phase image with these abrupt phase change pro-
blems can bemuch less than 2π (smaller than π). Consequently, the phase unwrap-
ping algorithm will incorrectly interpret that the phases belonging to the two
pixels are in the same range without requiring unwrapping. Hence, phase unwrap-
ping is not correctly executed in the cell area. In this chapter, we will introduce a
new deep learning model that can effectively resolve this incomplete phase
unwrapping in real-time [1]. Moreover, this model can carry out an autofocusing
that converts the out-of-focus wrapped phase image into an in-focus unwrapped
phase image. Our model is a fusion of deep learning and off-axis DHM to recover
the phase value of biological samples, which is essential for studying morpholog-
ical and material changes in live cells at the single cell level.
Recently, deep learningmodels for phase unwrapping have been proposed using

convolutional neural network (CNN) models, especially the U-net type model
[2–7]. A CNN model can learn to minimize a certain loss function such as the
Euclidean distance between actual and predicted image. Due to its squared char-
acteristic of calculated distance, it can correct large errors well. However, it is tol-
erant of small errors, causing the CNN model to produce blurry images. Besides,
CNN-based models face the problem of an abrupt phase shift that happens in the
numerical phase unwrapping algorithms. To overcome these problems, we will
introduce a generative adversarial network (GAN) to completely unwrap wrapped
phase signals obtained using DHM which can automatically learn a proper adver-
sarial loss function [8–10]. We will employ Pix2Pix GAN [11] which consists of a
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generator and a discriminator and learns image-to-image translation with label
images to automatically reconstruct unwrapped focused-phase images.
In this study, our model is defined as UnwrapGAN which consists of a U-net

generator and a discriminator [11, 12]. To train the UnwrapGAN model, we used
three types of cancer cells and obtained wrapped defocused-phase images for each
cell using DHM. Unwrapped focused images for true or label data were obtained
from wrapped defocused-phase images using a quality-guided unwrapping algo-
rithm (see Figure 9.1a). Wrapped defocused-phase images were used as input to
a generator and the generator produced unwrapped focused-phase images.
A discriminator determines whether the output image is well-formed and proceeds
to train the generator to create a similar image to the true unwrapped phase image
(see Figure 9.1b).
To test the trained model, we used defocused wrapped data not used in training

as input to the generator. The trained model performed both unwrapping and
focusing work on the untrained data. Results were compared with those of the
numerical phase unwrapping algorithm through a single cell comparison and
the entire image containing several sells. Compared with the U-net model, the
trained model reconstructed more elaborate phase images. We also showed that
it was possible to generalize our models since it performed phase reconstruction
for other types of cells (liver cancer and colon cancer cells). Besides, we demon-
strated that the presented model could overcome the problem of an abrupt phase
change caused by a phase jump in which all numerical phase unwrapping meth-
ods failed to restore true phase images. Furthermore, the model is several times
faster than the conventional quality-guided algorithm. The quality-guided method
requires sorting. It must find the best unwrapping path, while our model uses fixed
trained weights to unwrap the wrapped phase image, making it faster. Therefore,
our deep learning model offers both phase unwrapping and autofocusing simul-
taneously in real time, which can greatly influence the process of imaging biolog-
ical cells through DHM.

9.2 Deep-learning Model

Our deep learning model is based on a Pix2Pix GAN model with generators and
discriminators. The generator conducts an image-to-image translation task. When
a raw image is fed into the model, a modified output is generated. The discrimi-
nator is used to accurately train the generator. The generated or real image is fed as
input into the discriminator which is trained to determine whether an input image
is a generated image or a real image. The generator and discriminator have a
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Figure 9.1 (a) Quantitative phase image of multiple lung cancer cells. These images
are focused manually then unwrapped by the quality-guided unwrapping algorithm. The
unwrapped focused-phase images are used for labeled training in the model. Cross-section
and 3D representation of one cell with wrapped and unwrapped signals are shown.
(b) Training of model where the UnwrapGAN model consists of a discriminator and a U-net
generator. (c) Results for untrained cells. It tests whether the trained model can generate
unwrapped focused-phase images from unseen images that have not been used for training
and whether it is possible to recover phase values for other types of cells to evaluate model
generalization. We found that the proposed model could enable the correction of problems
on abrupt phase change. The proposed model’s result is also compared with that of the
U-net [1] / with permission of Optical Publishing Group.
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convolution-BatchNorm-Leaky ReLU with a 3 × 3 filter. The generator consists of
down-sampling to extract features of the input image for translation and up-
sampling to reconstruct the image based on extracted features (see Figure 9.2a).
Both down-sampling and up-sampling have eight convolution layers. When
down-sampling is conducted before up-sampling, much information of the origi-
nal image is lost, resulting in a blurred output. Thus, a skip connection technique
was used to share high-frequency information between the input and output. By
doing this, blurry effects of the generated image can be reduced by connecting
information in the ith layer of the down-sampling process to information about
the (n−i)th layer of the up-sampling process with the general shape of a U-net [12].
The discriminator learns to distinguish between real and fake images (see

Figure 9.2b). We used an Adam optimizer with adaptive momentum and para-
meters of β1 = 0.5 and β2 = 0.999. The number of epochs is 100 and the learning
rate is 0.0002. Models are trained on a server with five NVIDIA RTX Quadro 6000
graphics cards.
An adversarial loss is used to train the Pix2Pix GAN model [11], which is

defined as

LC−GAN G,D = Ex,y logD x, y + Ex 1− logD x,G x ,

where E is the expected value, x is the wrapped input image, y is the unwrapped
label image, G is the generator, and D is the discriminator. The generator tries to
minimize this objective against an adversarial D, which tries to maximize it. Addi-
tionally, the generator requires the following L1 loss function to produce the over-
all structure of the image and low-frequency information:

LL1 G = Ex,y y−G x 1

Figure 9.1 (Continued)
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Figure 9.2 (a) Architecture of the generator similar to a U-net to recover an unwrapped phase image from wrapped phase images. The U-net
has convolution layers, batch normalization, and various activation functions. (b) Discriminator to compare fake and real images with
convolution layers. Tanh is the hyperbolic tangent function [1] / with permission of Optical Publishing Group.



Therefore, the objective to train our model is as follows:

L = argmin
G

max
D

LC−GAN G,D + λLL1 G

We obtained wrapped phase images of three types of cancer cell lines: PC9
(lung cancer cells), SNU449 (liver cancer cells), and SW640 (colon cancer cells).
The training dataset was generated using the numerical reconstruction algo-
rithm in off-axis DHM (see Chapter 5). During numerical reconstruction, a qual-
ity-guided unwrapping algorithm was toggled on and off and the following two
sets with the same area were stored for training: the wrapped phase and the cor-
responding unwrapped value. Reconstruction and unwrapping algorithms were
run in MATLAB 2018. Cell segmentation was conducted using macro code in
ImageJ [13].
We reconstructed cell images with a size of 900 × 900 pixels (a single cell covers

an area of averagely 18 μm× 18 μm). The image size was changed to single cell
level (256 × 256 pixels) or multiple-cell level (1024 × 1024 pixels) using an interpo-
lation method to fit the model. The PC9 cell line was used as a training dataset.
A total of 5200 pairs of defocused wrapped and unwrapped phase images were
used. All unwrapped phase images for training were focused on through manual
control. Figure 9.3 shows a gallery of images used for training. For training single
cell level (256 × 256 pixels) with the proposedmodel, it took about 10 hours to train
100 epochs. It took about three days to train multiple cells (1024 × 1024 pixels) for
the same epochs. Meanwhile, for comparison with our model, U-net was trained
only on multiple cells. It took about 60 hours to train. The test dataset consisted of
PC9, SNU449, and SW640 cell images.

9.3 Unwrapping with Deep-learning Model

9.3.1 Reconstruction of Unwrapped Phase Image at the Single
Cell Level

We input wrapped phase images of lung cancer cells at the single cell level that
were not used when training our model generator to validate the trained model.
The model output was compared with that of the quality-guided unwrapping
algorithm. Figure 9.4 shows results of the UnwrapGAN model for lung cancer
cells. We could see that our deep learning model precisely removed 2π phase dis-
continuities in the wrapped phase image and restored correct unwrapped phase
of cells.
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9.3.2 Reconstruction of In-focus Unwrapped Phase Image
with Multiple Cells

In this section, we present an autofocus method based on our UnwrapGANmodel.
To train our model, we used phase images with a size of 1024 × 1024 pixels includ-
ing multiple cells. For model training, wrapped defocused-phase images at ran-
dom positions as input images to our model were generated and matched with
unwrapped phase images in focus. Our model learned to accurately generate
unwrapped phase images in focus from wrapped defocused-phase images, which
were reconstructed at random positions deviated from the exact reconstruction
distance.

Figure 9.3 Gallery of lung cancer cell images used for training the model. Phase images
were obtained using a numerical reconstruction algorithm from off-axis holograms.
A quality-guided unwrapping method was switched off and on to provide input and target
images. Image pairs were used for training [1] / with permission of Optical Publishing Group.
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Figure 9.4 Results of the trained model compared with those of the quality-guided unwrapping method. The model was trained using PC9 cell
line (lung cancer cells). Graphs presented on the right show phase profiles along the yellow line in cell images [1] / with permission of Optical
Publishing Group.



To test how the deep learning model learned well to reconstruct unwrapped
phase images in focus from wrapped defocused-phase images, we used wrapped
defocused-phase images obtained at different reconstruction distances as test data
and compared them with three cases (see Figure 9.5). In the first case, we used a
quality-guided method for phase unwrapping. In the second case, the

Figure 9.5 Gallery of phase images with different reconstruction distances. (a) Wrapped
focused-phase image and corresponding unwrapped focused-phase image. (b) Images of the
cell in the red box in (a) with specific reconstruction distance away from in-focus. The first
column line of (b) indicates wrapped phase images, the second line indicates unwrapped
phase images reconstructed using the quality-guided phase unwrapping method, the third
line indicates unwrapped phase images reconstructed using the trained model with paired
datasets in-focus, and the last line indicates unwrapped phase images reconstructed using
our trainedmodel with paired datasets out of focus. (c) Result of numerically computed SSIM
indices between phase images obtained at different reconstruction distances and the
unwrapped focused-phase image in (a) [1] / with permission of Optical Publishing Group.
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UnwrapGANmodel was trained using the input dataset in-focus. In the third case,
we trained the UnwrapGAN model using the input dataset out of focus, where
defocused images were reconstructed at random positions. Note that to create
defocused images, reconstruction distances were deliberately moved away from
the correct focus distance by specific values. In the case of phase image reconstruc-
tion with the quality-guided method (see Figure 9.5), the further away the recon-
struction distance was from the in-focus, the bigger the difference between the
correct phase and reconstructed phase image. In the case of the model trained
using input datasets in-focus, there was less difference than that with the qual-
ity-guided method. However, the reconstruction accuracy decreased as the recon-
struction distance deviated from the exact reconstruction distance. We observed
that phase images produced from our model trained using the defocused input
dataset were almost identical to the phase image in-focus, although wrapped defo-
cused-phase images obtained at different reconstruction distances away from the
focus position were fed into the UnwrapGAN model. This indicated that the deep
learning model outperformed the numerical quality-guided path-following algo-
rithm in phase unwrapping. It could even reconstruct a stable unwrapped phase
image in focus from wrapped images restored at different reconstruction distances
away from the focus position.
In addition, we quantified the structural similarity (SSIM) index [14] numeri-

cally to indicate how similar our results are to those of the original in-focus phase
image. The SSIM is a framework for quality assessment based on the degradation
of structural information. The SSIM index indicates the unity for two identical
images. It drops below 1 if the similarity is low. SSIM indices for the unwrapped
phase images at different reconstruction distances were calculated based on the in-
focus unwrapped phase image, which was obtained using the quality-guided phase
unwrapping algorithm. Circles on the solid lines in the graph of Figure 9.5 repre-
sent the average of SSIM indices for 30 different phase images as input data. The
SSIM index of the in-focus unwrapped phase image from the quality-guided phase
unwrapping method was exactly 1 since the two images were identical. When the
reconstruction distance was away from the focus position, the SSIM index
decreased rapidly. The trained model with in-focus input datasets showed the
same trend as the quality-guided phase unwrapping method although the SSIM
index was higher than that of the quality-guided method. However, the model
trained with the defocused input datasets showed almost constant SSIM index
value close to 0.9 regardless of the reconstruction distance value.

9.3.3 Model Comparison for Phase Unwrapping

In this section, we will compare the performance of the UnwrapGAN model with
that of the U-net model based on CNN structure. Figure 9.6 shows that these two
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Figure 9.6 Gallery of phase recovery results generated by U-net and UnwrapGAN. Wrapped
defocused-phase images were fed into the model as input. In-focus unwrapped phase
images of corresponding inputs were obtained using a quality-guided path-following
algorithm to make ground truth. The two output images indicate unwrapped focused-phase
images reconstructed using trained U-net and UnwrapGAN models, respectively. Middle
graphs show phase profiles along the straight line in sample #3. Bottom graphs show the
calculated SSIM index between the label and output images of each model with 110 single
cells’ phase images, where the area marked with a square was considered as shown in the
upper graph. The graph of the bottom left shows the SSIM index for each phase image. The
graph of the bottom right shows the mean and standard deviation of SSIM indices for 110
phase images [1] / with permission of Optical Publishing Group.
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deep learning models are remarkably different in the performance of phase
unwrapping. The U-net model has a smoother phase distribution than the actual
phase distribution (see Figure 9.6). However, we observed that the UnwrapGAN
model tried restoring the phase values close to the actual phase distribution as
much as possible. We also quantified the SSIM value numerically to indicate
the similarity between each model and those of the label phase image. As shown
in the bottom graph of Figure 9.6, SSIM values for the UnwrapGAN model were
above 0.9 on average. However, for the U-net model, the SSIM was much smaller
than that of the UnwrapGAN and deviation of SSIM values was very large.

9.3.4 Model-generalization with Different Cell Types

It is necessary to accurately unwrap wrapped phase images regardless of cell types.
Liver and colon cancer cells were tested to verify the validity of our deep learning
model, which was trained using lung cancer cells at the single cell level. This study
evaluated whether the model well learned general phase reconstruction rather
than phase reconstruction for specific cells. Figure 9.7 shows that our model
can provide phase values correctly for other types of cells. This is because the train-
ing dataset of the same type of cells has different morphological features due to the
heterogeneous cancer cell population. For example, the shape of colon cancer cells
is partially different from that of lung cancer cells. However, the phase unwrap-
ping was accurately performed according to ground truth phase values.

9.3.5 Abrupt Phase Change Problem

A phase image from DHM can be divided into two areas: cell area and background
area. Phase distribution within the cell area is larger than that in the background
area. Thus, phase distribution inside the cell is wrapped to values near or above−π
due to modulo 2π operation. When the optical path length at the cell boundary is
smaller than that at the center of the cell as shown in the phase profile of the cell
(Figure 9.8a), the cell boundary and background are grouped according to the
grouping principle in quality-guided unwrapping. The phase unwrapping algo-
rithm can unwrap the phase of the cell by adding or subtracting multiples of 2π
to remove a phase discontinuity of the cell. To this end, the boundary between
the interior of the cell and the background is crucial for phase unwrapping. How-
ever, if an abrupt phase change occurs due to either a partially defocused phase
image or strong diffraction patterns on the cell boundary, the phase might have
very big jumps above π at the boundary and wrap values much bigger than −π.
Here, the phase difference between the cell and background becomes smaller (less
than π). Thus, they are classified into the same group in quality-guided unwrap-
ping. This results in phase unwrapping failure as shown in Figures 9.8a and 9.8b.
On the other hand, our UnwrapGAN model can successfully perform phase
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Figure 9.7 Unwrapping results of liver and colon cancer cells. These cell types were not used during the training. Results showed that the
model was generalized. Right graphs show phase value of the yellow line in the cell image [1] / with permission of Optical Publishing Group.



unwrapping by removing the abrupt phase change (Figure 9.8c). To train our
model, we obtained wrapped phase images partially out of focus which were
reconstructed at the distance a little bit away from the exact focus distance. The
trained model converted a wrapped phase image partially out of focus into a
focused unwrapped phase image at the single cell level. The unwrapped phase
image generated by the trained model was also compared with the unwrapped
phase image in-focus obtained by manually removing abrupt phase changes.
These results demonstrate that our model can remove phase jumps and success-
fully perform phase unwrapping. The quality-guided phase unwrapping algorithm

Figure 9.8 (a) Abrupt phase change noise at a cell boundary with one enlarged area and the
cross-section of the phase value. (b) The quality-guided phase unwrapping algorithm fails to
recover the image. (c) Manually unwrapped image and output of the proposedmodel. The 3D
profile and cross section are also shown for visual comparison [1] / with permission of
Optical Publishing Group.
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performs phase unwrapping depending on edge reliability. However, our model
can extract various features using a convolution layer and learn to use an accurate
unwrapped image database to generate an unwrapped phase image.

9.3.6 Computational Time for Phase Unwrapping

One of the advantages of our model is that it can unwrap multiple phase images in
a very short time. It only convolves trained filters for down-sampling and up-
sampling an input image for phase unwrapping. Our method was compared with
the quality-guided phase unwrapping algorithm. The phase unwrapping time was
measured with 1000 images of the same size for the model trained using single cell
level phase images (256 × 256 pixels). To calculate the phase unwrapping time
taken regardless of the content of the image, the unwrapping time for 100 images
was measured. The average and standard deviation were calculated by measuring
the time taken for phase unwrapping of 100 images 10 times. The quality guided
phase unwrapping algorithm is widely used for real-time phase unwrapping. It
was confirmed that the deep learning model provided the output about twice as
fast as the quality guided phase unwrapping algorithm. With our UnwrapGAN
model, phase unwrapping can be done in real-time while solving various problems
(autofocusing, generalization, and abrupt phase change).

9.4 Conclusions

It is essential to restore correct phase images of cells when studying live biological
samples in real-time. Experimental results showed that the UnwrapGAN model
could automatically reconstruct an unwrapped phase image in-focus from a
wrapped phase image regardless of the reconstruction distance. It showed higher
performance than recent U-net models. Moreover, we showed that the proposed
model could be generalized to observe various cell types with DHM. The presented
model outperformed numerical phase unwrapping methods since it could over-
come problems related to abrupt phase changes and conduct phase unwrapping
at a faster rate. Thus, the presented model can be used for analyzing morphology
and movement of live cells in real-time applications.
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10

Noise-free Phase Imaging in Gabor DHMwith Deep Learning

10.1 Introduction

Gabor holography [1] is particularly useful in conjunction with a digital recon-
struction algorithm for particle image analysis, 3D tracking, cell identification,
or swimming cells in a liquid flow [2–5]. The main advantage of Gabor holography
is that it can be easily set up. The optical setup is very simple and compact. In addi-
tion, its building cost is lower than those of other popular configurations in optics
since it requires only a few optical components. However, Gabor holography suf-
fers a major limitation in that a focused real image and an unfocused twin-image
are strongly superposed. To overcome this problem, several instrumental methods
were proposed. However, they all required objects to stay immobile. This require-
ment makes it difficult to study live cells, especially in real-time flow cytometry
applications. Iterative phase-recovery methods were also suggested for Gabor hol-
ography to remove the twin-image noise [6–9]. Their main drawback is that they
need several back-and-forth propagations of light to obtain the phase value. Fur-
thermore, they also require a convergence criterion, which is generally unknown.
The determination of the criterion is particularly difficult for studying biological
samples in real-time. Non-iterative methods and inverse problem solutions were
also suggested for phase recovery in Gabor holography [8–14]. Another approach
in DHM is off-axis recording, in which the object beam and reference beam are not
on the same optical axis. A small tilt (a few degrees) is inserted between the two
beams, thus allowing the separation of the real image and the twin image by spa-
tial filtering in the spectrum domain. The off-axis setup requires several optical
element adjustments for imaging sufficient to study biological samples. Optical
path lengths of the reference beam and the object beam must be matched before
recording the hologram of the biological sample. Any change made in the object
arm needs readjustment on the reference arm. For example, if a microscope objec-
tive (MO) is inserted in the object arm, the same MO must be included in the
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reference arm. Otherwise, aberrations should be compensated for by adding extra
equations in the numerical reconstruction algorithm. However, an off-axis config-
uration does not allow for use of an imaging sensor’s entire bandwidth, like a
charge-coupled device (CCD) camera, since real and twin images are recorded
in separate, non-overlapped bandwidths of the sensor.

10.2 A Deep-learning Model for Gabor DHM

Convolutional neural network (CNN) and deep-learning approaches were pro-
posed for several optical applications, including virtual staining of non-stained
samples [15], increasing spatial resolution in a large field of view in optical micros-
copy [16, 17], color holographic microscopy with CNN [18], autofocusing and
enhancing the depth-of-field in inline holography [19], lens-less computational
imaging by deep learning [20], super-resolution fringe patterns by deep-learning
holography [21], virtual refocusing in fluorescence microscopy to map 2D images
to a 3D surface [22], and others [23–25]. Phase recovery based on a residual CNN
model was also suggested [26]. However, its application is limited because the
noise-free phase image necessary for the labeled data to train the deep learning
model is generated by recording multiple holograms. For biological cells and par-
ticularly moving cells (e.g. cancer cells and blood cells in flow cytometry applica-
tions), it is problematic. Another drawback of this method is that blurriness may
occur in the model output.
In this chapter, we will show that Gabor holograms can be digitally synthesized

from an off-axis hologram, which allowed us to obtain the target or actual phase
image for the Gabor hologram [27]. This unique method is very important for the
purpose of generating the labeled datasets required for supervised learning. We
also show that an image-to-image translation model can be trained to convert
noisy Gabor phase images to noise-free Gabor phase images. To overcome the sta-
tionary condition of the biological cell during imaging, we suggest the use of off-
axis holography and generation of corresponding Gabor holograms as shown in
Figure 10.1.
Our approach uses CNNs (a conditional generative adversarial network [C-

GAN] model) to eliminate twin image distortion in phase images generated from
the numerical reconstruction of Gabor holograms. Themodel is trained with a pair
of datasets that consist of phase images from Gabor holography (the model input)
and corresponding quantitative phase images obtained from off-axis DHM (the
desired model output). A novel method is used to replicate Gabor holograms from
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off-axis holograms as shown in Figure 10.1. This is an essential step because it
offers a set of phase images for the exact same microscopic object. Two phase
images (one obtained from a Gabor hologram and one from an off-axis hologram)
of the exact same cell are fed into the model as input and output. Themodel is then
trained for a few hundred epochs. Three bandwidths of the zero-order noise, real
image, and twin image of the off-axis hologram are isolated separately with spatial
filtering in the frequency domain. After frequency shifting the real image and twin
image spectrum to the center, the three holograms (zero-order noise, real image,
and twin image) are added together to generate a Gabor hologram from the off-axis
hologram. Numerical propagation of the Gabor hologram provides a superim-
posed, noisy phase image. We will describe optical equations, optical configura-
tions, and deep-learning models in the following subsections.

Figure 10.1 Scheme of the proposedmethod to generate superimposed noisy phase image
and the corresponding noise-free high-contrast phase image. The original hologram is
recorded in (a) an off-axis configuration with its spectrum obtained by a Fourier
transformation. The bandwidth of the real image, twin image, and zero-order noise in the
frequency domain are selected separately by spatial filtering. After filtering, the real-image
spectrum and twin-image spectrum are shifted to the center frequency. By applying inverse
Fourier transformation, three holograms are provided. (b) The intensities of these three
holograms are added together, which is equivalent to a Gabor hologram. The Gabor
hologram is numerically propagated at distance d. (c) The noisy superimposed phase image
is the input for the C-GAN model. Fresnel propagation of H1 at distance d can provide a
noise-free phase image to be used for (d) the output of the C-GAN model [27] / with
permission of Optical Publishing Group.
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10.2.1 Gabor Hologram Construction from Off-axis Holograms
and Optical Details

The off-axis hologram between object beam O and reference beam R can be
expressed as IH = |O|2 + |R|2 + R∗O+O∗R, where O∗ and R∗ denote complex conju-
gates of object and reference beams, respectively. The small tilt angle betweenO and
R allows complete isolation of the zero-order noise, real image, and twin image.
Three spatial filters in the Fourier domain are used. The bandwidth of real and twin
images are the same, and for zero-order noise, a filter with a smaller bandwidth is
used. Finally, three holograms corresponding to the real image, twin image, and
zero-order data are obtained as shown in Figure 10.2 with the following equations:
H1 = IFFT[FS[FFT(IH) × Filterreal]], H2 = IFFT[FS[FFT(IH) × Filtertwin]], H0 = IFFT
[FFT(IH) × Filternoise], andGH=H0 +H1 +H2, where FFT and IFFT are Fourier and
inverse Fourier transforms, respectively, and FS is the frequency shifting. To obtain
theGabor hologram, three isolated holograms (H0,H1, andH2) are added together in
the spatial domain. Only the amplitude is preserved. For quantitative phase ima-
ging, multiply the Gabor hologram or the off-axis hologram by the digital reference
wave RD during the reconstruction process (see Chapter 5). When a MO is inserted
into the object wave arm, it introduces phase aberration in the off-axis configuration.
This can be numerically resolved by multiplying the reconstructed wave front with
the computed complex conjugate of the phase aberration (see Chapter 5). Recon-
struction of each real-image complex field ΨH1 and Gabor hologram complex field
(ΨG) can be expressed by the Fresnel approximation. Eventually, the phase image
from the Gabor hologram and the noise-free quantitative phase image of the off-
axis hologram are obtained from

Figure 10.2 An off-axis hologram, shifting its bandwidth, filtering, and spectrum to the
center generates three holograms: real image, twin image, and zero-order noise image. The
intensity of the zero-order noise is adjusted for visualization [27] / with permission of
Optical Publishing Group.
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ϕG x, y = arctan
Im ΨG m,n
Re ΨG m,n

,ϕreal x, y = arctan
Im ΨH1 m,n
Re ΨH1 m,n

During deep training of the model, ϕG is the input and ϕreal is the desired output
of the deep-learning model (C-GAN). A gallery of off-axis holograms, correspond-
ing Gabor holograms, reconstructed phase images from the off-axis hologram, and
reconstructed super-imposed phase images from the Gabor hologram is shown in
Figure 10.3.

Figure 10.3 A gallery of phase images obtained with the proposed Gabor hologram
construction approach. For each off-axis phase image, a corresponding Gabor hologram was
made. Both holograms were numerically reconstructed. Phase images were used for training
and testing of our proposed deep-learning model [27] / with permission of Optical
Publishing Group.
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10.2.2 A Deep-learning Model for Gabor DHM

CNN is a class of deep neural networks consisting of neurons. It was originally
inspired by biological processes. A CNN generally includes an input layer, multiple
hidden layers, and an output layer. The input to a CNNmodel is a matrix with size
of (image number) × (image height) × (image width) × (image depth). Hidden
layers of a CNN typically consist of a series of convolutional layers that convolve
with a multiplication and pass its results to the next layer. The input image
becomes abstracted to a feature map after passing through one convolutional
layer. Layer parameters have a set of learnable kernels. During the training proc-
ess, each filter is convolved across the width and height of the input volume. It
computes the dot product between filter elements and input values and outputs
a 2D activation map of that filter. The network learns filters that activate when
it detects particular features at some spatial positions in the input. Neurons in a
model produce an output value by applying a specific function to inputs from
the previous layer’s receptive field. The function applied to input values is deter-
mined by weights and a bias in a vector form. Learning in a CNN progresses by
making iterative adjustments to these biases and weights [28].
For noise-free phase imaging in Gabor DHM, we will introduce deep learning

based on a C-GAN used in several image-to-image translation studies [29–32]
to solve the blurriness effect of CNN models. The advantage of this model is that
it uses a structured loss function different from unstructured functions (pixel-to-
pixel similarity). Thus, it can be generalized for image-to-image applications with-
out changing the loss function or the structure of the model. The C-GAN consists
of a U-net image generator and a PatchGAN classifier or discriminator. The gen-
erator (Figure 10.4a) is trained to produce images that cannot be distinguished
from real images by an adversarial trained discriminator. The discriminator
(Figure 10.4b) learns to classify between the generator’s synthesized image (a fake
image) and the real image (noise-free phase image). In other words, the generator
attempts to produce a noise-free phase image with the same statistical features as
the phase image obtained using an off-axis DHM, while the discriminator tries to
distinguish if the input image is the actual off-axis phase image or the generator’s
output. The training procedure seeks a state of equilibrium in which the genera-
tor’s output and the actual off-axis phase image share very similar statistical
distributions.

10.2.3 Model Architecture

The presented image-to-image conversion is based on the concept of the condi-
tional generative adversarial model (C-GAN) used in several applications
[29–32]. The C-GAN model typically consists of a generator and a discriminator.
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In this study, the generator’s input or output image size was 768 × 768 pixels to
perform image-to image translation (see Figure 10.5a). The architecture of the
C-GAN model allows for testing images with a bigger size if hardware resources
are not limited. The discriminator receives a 1536 × 768 input image (two images
are concatenated: the generator output and the real image) that passes through
four convolution layers and derives a small patch (see Figure 10.5b). The discrim-
inator learns to distinguish between real and fake patches. Evaluating images with
patches allows the model to be trained faster with fewer parameters.

Figure 10.4 Structure of the proposed model to recover phase values from Gabor
holograms. (a) After digital propagation of a Gabor hologram, the phase image is fed into a
U-net shape generator. This generator tries to remove the noise. (b) The Markovian
discriminator receives images (one is the output of the generator, and the other is the
quantitative phase image). The discriminator outputs a probability value that the image is
fake or real [27] / with permission of Optical Publishing Group.
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10.3 Experimental Results

TwoC-GANmodels were trainedwith 500 RBCs for the RBCmodel and 1000 lung,
skin, or breast cancer cells for the elliptical cell model. The accuracy of each model
was evaluated with several unseen images. We used the Adam solver as the opti-
mization process with an adaptive momentum and parameters of β1 = 0.5 and
β2 = 0.999. The number of epochs was 450 and learning rate was 0.0002. We used
an Nvidia Titan Xp graphical processing unit (GPU) for training. We selected 450
epochs because we did not observe any changes in the output images produced by
our model’s generator around 400 epochs. Batch training with a batch size of
10 was used. We implemented the model on a computer with an Intel(R)
Xeon(R) Gold 6134 central processing unit (CPU) @3.20 GHz and 64 GB of
RAM running Ubuntu 18.04.03. The network was implemented using Python ver-
sion 3.6.8 and TensorFlow framework version 1.14.0. After the training, we tested

Figure 10.5 (a) Generator architecture similar to a U-Net to recover noiseless phase images
in Gabor DHM, (b) Discriminator to compare fake and real images with convolution layers.
Tanh is the hyperbolic tangent [27] / with permission of Optical Publishing Group.
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the deep-learning generator with several images. Network testing was performed
using an Nvidia Titan XP. The objective function of the C-GANmodel is explained
in Chapter 9 (see Section 9.1). A gallery of images used for the test is shown in
Figure 10.6. In addition, for the RBCmodel, we tested the trained RBCmodel with
real Gabor holograms recorded by blocking the reference beam in our off-axis
DHM configuration. Figure 10.7a shows development of the training according
to the generator output. At each epoch, the generator is updated with the help
of the discriminator, resulting in a less noisy Gabor phase image. Figure 10.7b
and 10.7c show normalized loss function for the generator and the discriminator
at different epochs, respectively.

Figure 10.6 A gallery of test images. (a) RBC Gabor phase image, (b) breast cancer cell, and
(c) lung cancer cell. For each sample, an off-axis quantitative phase image is also shown for
visualization. (d) A gallery of test images with Gabor holograms recorded using only the
object wave (the reference wave was blocked). A Gabor hologram alongside the
reconstructed super-imposed phase image and noise-removed phase image is shown [27] /
with permission of Optical Publishing Group.
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Figure 10.7 (a) Development of generator at different epochs. (b) Normalized loss for both generator and discriminator for the RBC model.
(c) Normalized loss for both generator and discriminator for the cancer cell model [27] / with permission of Optical Publishing Group.



10.3.1 Quantitative Evaluations

To evaluate the performance of our deep-learning model, we calculated the mean
square error (MSE) between the phase image obtained by the proposed method
and the off-axis DHM. Histograms of MSE for 2000 RBC images and 1000 cancer
cell images (all cell types pooled together) are shown in Figures 10.8a and 10.8b,
respectively. Another criterion is the structural similarity index (SSIM), which can
numerically evaluate the perceptual difference between two phase images.
Figures 10.8c and 10.8d show histograms of the SSIM for 2000 pairs of RBC images
(one is a quantitative phase image in off-axis DHM and the second is a noise-free
phase image in Gabor DHM with our deep-learning model) and 1000 cancer cell
images, respectively. One important advantage of quantitative phase imaging by
DHM is that biophysical and morphological features can be analyzed at the sin-
gle-cell level. To validate the output of our deep-learning model, the dry mass
of 200 cells at the single-cell level wasmeasured and compared with the exact same
cells in the off-axis quantitative phase image. The dry mass is directly related to the
mean corpuscular-hemoglobin (MCH) content since RBCs aremostly composed of
hemoglobin. The dry mass can be computed by integrating phase values over the

projected surface area of the cell,DryMass =
ϕλS
2πα

, where S is the projected surface

area of the cell, ϕ is the summation of all phase values within the projected surface
area of the cell, and α is the specific refractive index increment factor (~0.193 ml/g
for RBCs and 0.2 for most cancer cells) [33, 34]. Single-cell extraction is performed
by binarization using the same binary mask for our model’s phase-image output
and the phase image obtained by off-axis DHM. A correlation analysis revealed
that the MCH value obtained from the off-axis phase imaging strongly correlated
with our method (see Figure 10.8e). The Pearson product–moment correlation
coefficient was 0.78 with a 99% confidence level when t-test was applied. The
MCH value was 30 ± 5 pg (average ± standard deviation) for the off-axis method
and 28 ± 4 pg for our model. Additionally, there was a significant correlation
between the dry mass of cancer cells obtained from off-axis DHM and our
deep-learning model (these two values linearly increased [ y = 0.92x + 1.3], see
Figure 10.8f ). The average dry mass values for off-axis DHM and ourmodel output
were 31 ± 6 pg and 29.6 ± 5 pg, respectively.

10.3.2 Evaluations for Gabor Holography Setup

To validate our method, the off-axis DHM setup was modified. One shutter was
added to the off-axis configuration to block the reference beam as shown in
Figure 10.9. In this case, the only object beam that illuminated the sample and
reached the camera was a real Gabor hologram. After blocking the reference beam,
several Gabor holograms were saved. After numerical propagation, superimposed
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Figure 10.8 Histograms of phase MSE for (a) RBCs and (b) cancer cells. Histograms of phase SSID for (c) RBCs and (d) cancer cells between off-
axis quantitative phase image and the proposed deep-learning phase recovery in Gabor holography. (e) Single-cell mean corpuscular
hemoglobin analysis between off-axis phase image and our model. (f ) Dry mass analysis between off-axis phase image and our model output.



phase values were fed into the model and a noise-free phase image was obtained
(one image is shown in Figure 10.10). A gallery of results is shown in Figure 10.6.
We also measured the volume and MCH value of RBCs obtained from the real

Gabor holography. Gabor holograms were numerically reconstructed and noise in
the phase image was removed with our trained model. The volume andMCHwere
compared with results obtained with off-axis DHM in Table 10.1. The volume was
obtained using

V p2
i, j Sp

h i, j ,

where summation was achieved over all pixels (i, j) belonging to the RBCs’ pro-
jected surface Sp, and p was the pixel size in the reconstruction plane; h(i, j)
was the thickness value at pixel (i, j), which was obtained using

Figure 10.9 Gabor holography experimental setup. The Gabor holographic configuration
was obtained using a shutter to block the reference beam from the off-axis DHM.

Figure 10.10 (a) A Gabor hologram recorded in Gabor configuration, (b) spectrum
of the hologram, (c) reconstructed phase image from the Gabor hologram, and
(d) noise-free result from our model [27] / with permission of Optical Publishing Group.
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h x, y =
λ × ϕ x, y

2π nRBC −nm
,

where λ was the wavelength of illumination light, ϕ(x, y) was the phase value at
pixel (x, y), and nRBC = 1.42 and nm = 1.3334 were refractive indices of RBCs and
HEPA buffer, respectively [35].

10.4 Discussion

Phase recovery in Gabor DHM can be obtained by deep-learning models that
extract and separate spatial features of the desired data (the real image) from fea-
tures of noise (the twin image and other undesired interference terms) in the phase
image. Surprisingly, we also observed that the generator could artificially recover
the shape of cells that were partially unfocused (see Figures 10.11a and 10.11b).
This highlights that the deep-learning model can learn global and local features
of the real phase image at the whole-image level and compensate for other errors
at the single-cell level while imaging. A quantitative analysis of the un-focusing
recovery is shown in Figure 10.12.
Note that if the correct focus is R, then the Gabor hologram is propagated at R +

0.25R, R + 0.50R, R + 0.75R, and R + 1.0R and the superimposed phase image is
fed to our RBC model. If focus deviates around 50% of its correct value, then
the model can roughly preserve the shape of an RBC. For 75 and 100% deviations,
the biconcave shape is not preserved (see Figure 10.12). Additionally, our model
can recover different cell lines not observed by the model during the training proc-
ess. In this case, we fed our model with the Gabor phase image of bladder cancer
cells (see Figure 10.11c). Noise-free phase images were then generated (see
Figure 10.11d). This highlights that our model is applicable to other cell lines like
elliptical cancer cells with spherical shapes. Generally speaking, all types of ellip-
tical cells can be recovered by the trainedmodel due to their similar shapes, despite
the differences in organs from which they are produced. We also trained another
model with Hela cancer cells cultured for several hours, and one hologram
was recorded for 10 minutes. These cells have considerable shape variations

Table 10.1 Volume and MCH values for off-axis DHM and our model (n > 70).

Method Volume (fl) MCH (pg)

Off-axis DHM 90 ± 7 30.0 ± 5

The proposed phase recovery model 87 ± 6 28.5 ± 5
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throughout the culturing period since they can attach to the culture glass, detach,
and divide. Some results are shown in Figure 10.13. Our deep-learning model is
instant, making it suitable for high-throughput screening or high-content screen-
ing (around 0.02 seconds for each phase image; average of 3000 images). This can

Figure 10.11 The proposed model can recover single cells that are not in focus compared
to other cells. (a) Two off-axis quantitative phase images where some cells are unfocused
(see arrows). (b) The exact same image obtained by the deep-learning method for noise-free
Gabor holography. (c) Gabor phase image of bladder cancer cell not observed by the model
while training. (d) Model output of cancer cell shown in (c). Two cells are magnified and
plotted in 3D [27] / with permission of Optical Publishing Group.
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be achieved using a PC with 16 GB of RAM, an Intel(R) Core-i7-9700K 3.60 GHz
CPU, and NVIDIA GeForce RTX2080Ti GPU card.
Several points should be considered when applying deep learning to study live

biological samples with optical setups since many variables can affect the results,

Figure 10.12 Representative model output when the input Gabor phase image is
reconstructed with a deviated reconstruction distance. (a) Super-imposed phase images,
(b) corresponding model outputs, and (c) a 3D mesh of one RBC [27] / with permission of
Optical Publishing Group.

Figure 10.13 Gabor phase image of Hela cancer cells and the model’s output. Cells go
through several shape changes. (a) A noisy phase image and (b) a noise-removed phase
image [27] / with permission of Optical Publishing Group.
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like reconstruction distance, sample-to-sample variations, and so on. Based on our
experiments, we believe that training separate models for similar biological organs
is more efficient than using a single model with a mix of biological samples that
have different morphologies. During the training process, deep learning tries to
learn features of each morphology, which can differ from sample to sample and
result in a poorly trained model. For example, biconcave RBCs basically consist
of a dimple and a ring. They are different from elliptical cancer cells with a spher-
ical geometry. It is also worth mentioning that plenty of sample images with dif-
ferent distances from the camera should be recorded for a well-trainedmodel. This
is essential for a very good training dataset. In Gabor holography, the superim-
posed phase image differs if the distance between the sample and camera varies.
Additionally, it is very important to estimate the reconstruction distance for
numerical propagation. Propagating the image into a plane (propagation of the
hologram too short or too far) will result in a phase image that has an unknown
feature for the trained model. In this case, the model may fail to remove the super-
imposed phase image. Training can be performed on a GPU server to speed up the
training process. To perform the phase recovery for another unobserved sample, a
conventional PC with a GPU card can be considered.

10.5 Conclusions

We presented a deep-learning model to obtain noise-free quantitative phase
images in Gabor DHM. To achieve this, a C-GAN was trained with several RBCs
and elliptical cancer cells. The model input consisted of separately isolating the
spectrum of a real image, twin image, and zero-order noise of an off-axis digital
hologram. These three images were added to construct the Gabor hologram.
The Gabor hologram was digitally reconstructed, and the reconstructed phase
image was fed into our C-GAN model. The desired output is a noise-free phase
image of off-axis DHM. After training for several epochs, our model could remove
the superimposed noise in actual Gabor holograms. Interestingly, our model was
also able to solve depth-of-focus limitations at the single-cell level and restore
unobserved elliptical cells during training.
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Introduction

DHM is a new and highly promising approach to identify cellular biomarkers, par-
ticularly when it is combined with AI or deep-learning techniques for biomedical
applications [1–10]. DHM is also a contact-less and label-freemethod. Thus, a sam-
ple can be studied without damaging it. Part III provides an overview of some of
the recently published work on AI or deep-learning techniques in holographic
image analysis as a tool to study the intracellular content and morphology of
live cells [1, 11–30]. The overview focuses on the automated phenotypic analysis
of live RBCs and cardiac cells via intelligent DHM.
Chapters 12 through 20 introduce an automated phenotyping platform based on

DHM for the quantitative analysis of RBCs. Chapters 12 and 13 introduce RBC
phase image-segmentation techniques essential for automated RBC analysis.
Chapters 14–16 demonstrate that integrating DHM techniques integrated AI ena-
ble scientists to obtain rich, quantitative information about the structure of RBCs
in non-invasive, real-time conditions for automatic phenotypic classification of
RBCs. Chapter 17 shows that deep-learning DHM can also rapidly detect and
count multiple cells in hologram images at the single-cell level, which is needed
for high-throughput cell counting. Chapter 18 introduces a tracking algorithm to
locate a single RBC through RBC image sequences obtained with time-lapse DHM
and dynamically monitor its biophysical cell parameters. Chapter 19 introduces
methods to quantitatively calculate the fluctuation rate of RBCs with nanometric
axial and millisecond temporal sensitivity using time-lapse DHM, which are also
important for quantitative RBC studies. Chapter 20 further demonstrates holo-
graphic, image-based methods to automatically analyze changes in membrane
profile, mean corpuscular hemoglobin, and cell-membrane fluctuations of healthy
RBCs at varying temperatures.
Chapters 21 through 25 describe an overview of DHM application in studying

cardiomyocytes derived from induced pluripotent stem cells (iPSCs) under control
and drug-treated conditions. DHM allows scientists to extract a set of parameters
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that characterize the beating patterns of cardiomyocytes from recorded quantita-
tive phase images. This demonstrates that DHM can represent a promising label-
free approach to identify new drug candidates by measuring their effects on
iPSC-derived cardiomyocytes. Chapter 21 shows that integrating DHM with
image-processing algorithms can provide automatic, dynamic, quantitative phase
profiles of beating cardiomyocytes. We further demonstrate that multiple
parameters of cardiomyocyte dynamics can be obtained from beating profiles of
cardiomyocytes. In Chapter 22, we introduce an automated method to quantita-
tively investigate the rhythm strip and parameters of cardiomyocyte synchroniza-
tion at the single-cell level. In addition, we present deep-learning models to
characterize single cardiomyocytes by nucleus extraction from time-lapse holo-
graphic images using fully convolutional neural networking (FCN). Chapter 23
introduces an automated procedure for to assess the effects of drugs on cardiomyo-
cyte beating patterns. We used DHM to image and quantify the beating movement
of cardiomyocytes under control and drug-treated conditions. Chapter 24 further
demonstrates holographic, image-based tracking algorithms for the automated
measurement of drug-treated cardiomyocyte dynamics. These results clearly
demonstrate that DHM is a promising label-free approach to identify new drug
candidates by measuring their effects on human cardiomyocytes.
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12

Red Blood Cell Phase-image Segmentation

12.1 Introduction

With advances in DHM, 3D-imaging techniques have received increased attention.
The 3D-image processing of holographic images is suggested for several tasks
such as the segmentation, recognition, and tracking of objects [1–6]. However,
due to the unnecessary background noise in the holographic image, a reliable
holographic image segmentation is required [6].
Analyzing RBC morphological characteristics in the peripheral blood is impor-

tant for studying hematological functions and detecting disease. However, a nota-
ble morphology variation in RBCs represents a challenge for automated analyzers.
As a result, an important proportion of RBC samples still requires careful manual
examination from an expert, which is time consuming. Within this framework, we
will introduce an automated segmentation algorithm specifically designed to proc-
ess quantitative phase images obtained from DHM. One significant advantage of
the presented algorithm is that it provides relevant quantitative cell parameters
including, but not limited to, cell size, shape, and volume. It is also possible to
obtain the mean corpuscular hemoglobin (MCH) value and MCH concentration
of RBCs [7]. Furthermore, segmented phase images of RBCs also benefit the track-
ing of single or multiple RBCs to study their dynamics (3D morphology and bio-
mass changes).
Segmentation techniques can be classified into two main categories [8, 9]. One

category is based on the intensity value. The other is related to the edge detection of
objects. Some regions in a single RBC have phase values very close to the back-
ground value as shown in Figure 12.1a. Consequently, it is not easy to accurately
obtain phase-image segmentation with only an intensity-based method like
threshold algorithms. The other problem is that most RBCs have two gradients
due to their discoid shape. One gradient is between the RBC boundary and the
background. The other gradient lies inside the surface of a single RBC, as shown
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in Figure 12.1b and 12.1c. This makes it difficult to correctly segment RBC cells
using an algorithm only based on edge detection. Furthermore, some individual
RBCs are connected to each other, as shown in Figure 12.1d. This can also affect
isolated RBC segmentation. All these problems complicate phase-image segmen-
tation of RBCs.
This chapter presents a detailed explanation of the automatic algorithm to seg-

ment the RBC phase image to accurately calculate the RBC phase value in DHM. It
also shows that the presented segmentation method can efficiently minimize over-
segmentation and under-segmentation [10]. In particular, the automated RBC seg-
mentation algorithm is suitable for the quantitative comparison of different RBC
types because phase values in the backgrounds of RBC phase images can be set to
zero. First, we used the Otsu algorithm to obtain a binary image. Next, a morphol-
ogy operation was performed for the binary image. After conducting a series of
morphology operations such as morphological opening, erosion, and reconstruc-
tion, we obtained internal markers of these RBCs, which allowed us to avoid
effects of the internal gradient and connections between RBCs. With these internal
markers, external markers were generated using the distance-transform algorithm
combined with the watershed algorithm [9]. Finally, with these extracted internal
and external markers, we applied the watershed algorithm to the modified gradi-
ent image obtained with a minima imposition technique [11]. We obtained good
experimental results with these methods.

12.2 Marker-controlled Watershed Algorithm

The watershed transform algorithm is especially well-suited for generating the
closed boundary of objects in question [12]. It also shows a good performance.
However, it often leads to over-segmentation. To address this issue, the standard

Figure 12.1 Some characteristics of red blood cell (RBC) quantitative phase images.
(a) Some regions in a single RBC have phase values similar to the background value. (b) The
original quantitative phase image of RBCs with two kinds of edges (inside and outside parts).
(c) The gradient image of (b). (d) Some RBCs are connected to each other [10] / with
permission of SPIE.

114 12 Red Blood Cell Phase-image Segmentation



watershed transform algorithm can be improved with marker control. In this
section, we will discuss both algorithms.

12.2.1 Watershed-transform Algorithm

The watershed-transform algorithm is based on flooding simulation. We consider
intensity values like terrain elevations with valleys and peaks that represent
regional minimal andmaximal values, respectively.Whenwater floods the terrain,
dams are built between valleys. The watershed-transform algorithm finds the peak
value between the two valleys as shown in Figure 12.2. These peaks form the
watershed line. This can be implemented using Meyer’s algorithm [13]. First, a
set of markers are selected as valleys and labeled. All neighboring pixels of each
labeled area are filled to the priority queue with a priority level determined by
the label’s intensity value. The label with the highest priority is then chosen from
the priority queue. If neighbors of the selected value, which are already labeled,
have the same label, these neighboring values are labeled the same. After that,
all non-labeled neighbors are put into the priority queue. This step is repeated until
the priority queue has no value. Finally, non-labeled intensity values are peak
values (see Figure 12.2) that are included in watershed lines.

12.2.2 Marker-controlled Watershed Algorithm

In the watershed-transform algorithm, water fills the terrain starting from the
regional minimal value. However, this goes according to markers. Maximum
values between every two markers are determined when these maximal values
become watershed lines. The marker-controlled watershed algorithm can further
distinguish between internal and external markers. Internal markers represent
objects that we are looking for. As a result, all objects must be marked as internal

Figure 12.2 Flooding simulation model of the watershed algorithm.
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markers to obtain correct objects. Internal markers are usually obtained with a
threshold algorithm. External markers, on the other hand, represent the back-
ground around objects. The distance-transform algorithm combined with the
watershed algorithm with internal markers is a good way to obtain external mar-
kers. Distance transform measures the distance from every pixel to the nearest
nonzero-valued pixel [9].
The watershed transform is usually applied to gradient images since objects and

background both have low values while edges correspond to high values in the gra-
dient image. However, the gradient image always contains a large number of
regional minimal values due to noise and other local anomalies. For this reason,
the segmentation result is not good enough. In the marker-controlled watershed
algorithm, after internal and external markers are obtained, they are used to modify
the gradient image. Using a minimal imposition method [11], only positions where
marker values are located become regionalminima. Thus, we can efficiently remove
unnecessary regional minimal values and apply the watershed-transform algorithm
to the updated gradient image. Figure 12.3 shows an example of such processing.

12.3 Segmentation Based on Marker-controlled
Watershed Algorithm

Although the marker-controlled watershed algorithm described in [9] offers a
good way to reduce over-segmentation, it cannot efficiently extract internal or
external markers. Therefore, we present a method for efficient extraction of mar-
kers in the phase image of RBCs based on an enhanced marker-controlled water-
shed algorithm. Using this algorithm, we can overcome problems shown in
Figure 12.1. We can also avoid under-segmentation. Below are the six steps of
the enhanced marker-controlled watershed for RBCs phase-image segmentation:

Step 1: Normalize the RBC phase image (Inorm).
Step 2: Segment Inorm using Otsu’s method [14] and fill holes using morphologi-

cal reconstruction [9] (Ibin). The Otsu’s method can be presented as

Figure 12.3 An example of
experimental results for the
marker-controlled watershed
algorithm [10] / with permission
of SPIE.
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σ2(t) =ω1(t)ω2(t)[μ1(t)− μ2(t)]
2 where σ2(t) is the variance of the inter-class,ωi(t)

is the class probability, and μi(t) is the class means. The variable t, which can
maximize the inter-class variance σ2(t), is the required threshold.

Step 3:Obtain the gradient magnitude of the original phase image (Igrad). Here, we
can use the Sobel operator to calculate the gradient in both vertical and hori-
zontal directions:

gx =

− 1 0 1

− 2 0 2

− 1 0 1

Ibin and gy =

− 1 − 2 − 1

0 0 0

1 2 1

∗Ibin

Igrad = g2x + g2y ,

where Igrad denotes the image of gradient magnitude, Ibin is the source image,
and ∗ is the symbol for the convolution operation.

Step 4: Obtain internal markers.
a) Apply morphological opening [9] to Ibin with a disk structuring element of

radius 9 (Iopen1). Such an element is much smaller than the smallest RBC.
Thus, all required objects will be preserved while additional noise is
removed.

b) Apply morphological erosion to Iopen1 with a disk structuring element of
radius 17. Get image Iero1. Such an element is about the size of a medium
RBC. As a result, connected objects will be separated.

c) Take image Iero1 as a marker and image Iopen1 as a mask. Apply the morpho-
logical reconstruction operation to them. Denote the obtained image asIrec1.

d) Subtract Irec1from Iopen1. Denote the obtained image as Isma1. When the sep-
aration of connected cells is necessary, as shown in Figure 12.4a, we can
use a disk structuring element with radius 17 as described in Step 4a to
erode the image. However, this can completely remove small RBCs, as

Figure 12.4 (a) Connected and small objects. (b) Erosion of the image in (a) where the disk
structuring element is so large that small objects are lost [10] / with permission of SPIE.
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shown in Figure 12.4b. If no precautions are taken, this will result in
under-segmentation (small RBCs are lost). The goal of this step is to obtain
small-sized RBCs.

e) Apply the morphological dilation to image Iero1 with a disk structuring ele-
ment of radius 11. This step reduces the effect of internal gradients as
described in Figure 12.1b by extending the center region to cover the internal
gradient (Idila).

f) Combine image Isma1 (Step 4d) with image Idila (Step 4e). The result, which
has most objects marked, can be used as internal markers (Iinter).

Step 5: Obtain external markers from image Iinter (Step 4e) using the distance-
transform and watershed-transform algorithms (Iexter). To compute the distance
from each pixel to the nearest nonzero-value pixel, use the equation

D xi, yi = 0 if O xi, yi = 1

D xi, yi = xi − xj
2
+ yi − yj

2
if O xi, yi = 0

whereD(x, y) is the distance transform image,O(x, y) is the source image, andO
(xj, yj) is the nearest non-zero value pixel of O(xi, yi).

Step 6: Combine internal markers from Iinter with external markers from Iexter and
obtain the final marker image Imark. Now, modify the gradient magnitude image
Igrad obtained in Step 3 using the minimal imposition algorithm [11, 15]:
Imodify = Rε

Igrad + 1 Imark
Imark where Rε

Igrad + 1 Imark
Imark is the morphological

erosion reconstruction of Imark from (Igrad+ 1) Imark, and the symbol stands
for the pointwise minimum between Igrad+ 1 and Imark. Finally, we can apply
the watershed-transform algorithm to the modified gradient image Imodify and
obtain a reasonably segmented phase image Iobj.

Figure 12.5 shows a flow chart of the presented method. In the enhanced
marker-controlled watershed, we can efficiently and properly extract internal
and external markers. It also has the advantage of reducing both over-
segmentation and under-segmentation issues.

12.4 Experimental Results

In this experiment, we obtained the phase of RBCs with DHM. Here, we used two
classes of RBCs corresponding to two different durations of storage to demonstrate
the robustness of our method (more than 100 images are tested). It is suggested
that during storage, preserved RBCs will undergo progressive structural and func-
tional changes that may affect RBC function and viability after transfusion [16].
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The first class of RBCs is newer, with a 14-day storage duration. The second group
of RBCs is older, with a 38-day storage duration. Figure 12.6 shows respective seg-
mented images using the classical watershed algorithm and the marker-controlled
watershed algorithm described in [9].

Figure 12.5 Flowchart of the presented phase-image segmentation method.

Figure 12.6 RBC phase images. (a) Newer RBCs. (b) Older RBCs. Segmentation results
of (c) newer and (d) older RBCs using the standard watershed algorithm. (e),(f ) Results
using the marker-controlled watershed algorithm [10] / with permission of SPIE.
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From Figure 12.6, we can see that without further processing, neither the
standard nor the marker-controlled watershed method could provide sufficiently
accurate segmentation results because they cannot properly handle over- or under-
segmentation issues. Figure 12.7 shows experimental results obtained using the
enhanced marker-controlled watershed algorithm described in 12.3; both internal
and external markers are correctly extracted. Using our enhanced marker-
controlled watershed algorithm, we obtained good experimental results for RBC
phase-image segmentation. The algorithm is fairly efficient in reducing both
over-segmentation and under-segmentation. It also can properly separate RBCs
that touch each other.
After segmentation, the background phase value of the phase images can be set

to zero. The average phase value in the background region can then be used to
determine the average phase within a single RBC. It allows directly comparing
phase images with each other, such as the phase images of two different RBC
classes.
Figure 12.8 shows the statistical distribution of the average phase value of a sin-

gle RBC between two different classes of RBCs (one stored for 14 days and the
other for 38 days). The average phase value of a single RBC is calculated by sub-
tracting the average phase value in the background of the corresponding phase
image from the average phase value within each RBC. Figure 12.8 shows that
the mean and standard deviation of RBCs with 14 days of storage are 97 and
9 , respectively. For RBCs with 38 days of storage, the mean and standard devia-
tion are 74 and 15 , respectively.

12.5 Performance Evaluation

We used a scientific tool [17] for performance evaluation. This tool is based on the
experimental design methodology and is independent of the output of systems.
The performance comparison of two methods with biased segmentation results
mainly depends on varied parameters in segmentation. The procedure of the per-
formance evaluation can be briefly described as steps of data characterization, data
sampling, primary parameter selection, parameter sampling, performance metrics
definition, performance model calculation, and statistical analysis. The primary
parameter that greatly affects the segmentation result in our procedure is the
threshold value obtained with Otsu’s method in step 2 (see section 12.3). The main
parameter for the marker-controlled watershed algorithm in [9] is also a threshold
used to find regional minimum values. For performancemetrics, the segmentation
accuracy is defined as the absolute value of correlation between segmented RBC
images and manually segmented reference images. The closer the segmented
image is to the reference image, the closer the segmentation accuracy will
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Figure 12.7 Key steps of the proposed phase image segmentation. (a) Newer and (b) older
RBC phase images. Original gradient images of (c) newer and (d) older RBCs. Internal
markers of (e) newer and (f ) older RBCs, respectively. External markers of (g) newer and
(h) older RBCs. Modified gradient images of (i) newer and (j) older RBCs. Segmented phase
images of (k) newer and (l) older RBCs [10] / with permission of SPIE.
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approach one. The analyzed dataset consists of newer and older RBC phase
images. The range of parameters and segmentation accuracy is between 0 and
1. Accordingly, sample data for 21 RBCs were extracted from the range of para-
meters and examined to construct a performance model for each segmentation
method. The threshold used in [9] was sampled with an interval of 0.05 and the
corresponding segmentation accuracy was calculated. Figures 12.9a,b show the
performance model conducted between segmentation accuracy and varied thresh-
old values for new and old RBC images, respectively. Threshold values in our seg-
mentation method also varied from 0 to 1 with an interval of 0.05. Figures 12.9c,d
show equivalent performance models between segmentation accuracy and thresh-
olds for newer and older RBC images. For curve fitting, we used the least squares
error estimation technique [17, 18]. Statistical analysis by a Chi-squared test was
conducted to check the similarity between obtained results (segmented data and
the fitted polynomial) [18, 19]. Consequently, p-values for the null hypothesis—
that the predictive performancemodels could approximate the computed response
curve—were 0.7578, 0.3571, 0.9135, and 0.1213 for Figures 12.9a–d, respectively.
Therefore, the null hypothesis that the fitting curve is similar to the measured one
should be accepted at the significance level of 0.05.
It should be noted that the maximum segmentation accuracy in our method out-

performed that presented in [9]. Proper threshold values for newer and older RBC
images were approximated at 0.27 and 0.30, respectively, similar to threshold

Figure 12.8 Distribution of the average phase of a single RBC after subtracting the average
background phase.
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values obtained by Otsu’s method used in step 2. It proves that Otsu’s method can
be used to automatically find the threshold, which allows us to reduce the uncer-
tainty of segmentation results by setting a random value.

12.6 Conclusions

In this chapter, we presented a method to successfully segment phase images of
RBCs to compute an accurate phase value of RBCs. Advantages of our method
include reducing over- and under-segmentation events. Furthermore, we can
obtain isolated RBCs without touching other cells. Our automated RBC segmen-
tation algorithm enables an adequate comparison of different RBC types because
phase values for the background of RBC images can be set to 0 . Classifying RBCs
traditionally requires a time-consuming, manual inspection by a qualified person.
Our segmentation algorithm can aid the automated classification of RBCs using
phase images obtained by DHM.

Figure 12.9 Performance models for (a) newer and (b) older RBC phase images in the
method of [19] / John Wiley & Sons. Performance models for (c) newer and (d) older RBC
phase images in our proposed procedure.
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13

Red Blood Cell Phase-image Segmentation with
Deep Learning

13.1 Introduction

In Chapter 12, we segmented RBC phase images obtained by DHM using the
marker-controlled watershed algorithm combined withmorphological operations.
However, this method cannot properly segment heavily overlapped RBCs or those
touching multiple cells. Therefore, is essential to develop a more robust algorithm
for RBC phase-image segmentation.
Deep learning is a promising technique that can offer results superior to those

obtained by traditional methods. Consequently, it is extensively studied in the
computer vision community [1–8]. CNNs are used for image classification with
great success. Recurrent neural networks provide reasonably good performance
for text classification and translation. Fully convolutional neural networks
(FCNs) are proposed for semantic segmentation with surprising outcomes. FCNs
have the advantage of end-to-end training with pixel-wise prediction. Moreover,
the size of the image provided to an FCN algorithm can be arbitrary. Other
FCN algorithms such as U-net and SegNet are also suggested for semantic segmen-
tation and are applied to biological images. In this chapter, we will apply the FCN
method to RBC phase images for RBC segmentation [9]. We will introduce two
RBC segmentation schemes. In the first scheme, FCN-1, RBC phase images and
manually segmented RBCs were used as a true label to train the FCN model.
The trained FCN model was then applied to predict foreground (RBC) or back-
ground phase-image pixels for RBC segmentation. In the second scheme, FCN-
2, we combined the FCN model with the marker-controlled watershed algorithm
to segment RBCs. In FCN-2, we used the FCN to predict the inner part of each RBC
then used the predicted results as internal markers of themarker-controlled water-
shed algorithm to further segment RBCs. In the second scheme, the training label
image was not the mask of all segmented RBCs. It was an erosion result of that
mask representing the inner portion of each RBC.
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We prepared two kinds of training images from RBC phase images and trained
FCNs for two different schemes. One FCN was used to predict all RBCs whereas
the other was only used to predict the inside of each RBC. Predicted results were
further combined with the marker-controlled watershed algorithm to fully seg-
ment RBCs. We then compared segmentation results from the two methods with
those obtained by other methods in terms of the segmentation accuracy (SA) and
cell separation ability. Experimental results showed that our methods achieved
overall good segmentation results, with the FCN-2 model offering the best perfor-
mance in separating overlapped RBCs.

13.2 Fully Convolutional Neural Networks

FCNs, an extension of CNNs [3], are the mainstream algorithms in the field of
semantic segmentation due to their amazing performance [6]. FCNs are success-
fully applied to biomedical images such as cardiac segmentation in magnetic res-
onance imaging (MRI) and liver or lesion segmentation in computed tomography
(CT) [10, 11].
Unlike CNNs, FCNs do not have fully connected layers [6]. A general network

architecture of an FCN is shown in Figure 13.1 (see rowA). It has some basic layers
consisting of convolution (conv), pooling (pool), activation, and deconvolution
(deConv) [3, 6]. The convolution layer performs convolution between image or
feature map and a kernel for feature extraction. Pooling mainly refers to max pool-
ing in the FCN algorithm that shrinks feature maps in spatial dimension. Max
pooling has the advantage of leading to a faster convergence rate by selecting supe-
rior invariant features that enhance the performance of generalization. The acti-
vation layer in FCN refers to rectified linear units (Relu) [6] that can add
nonlinearity in a network. Because an FCN is an end-to-end and pixel-to-pixel
training or prediction technique, the FCN output must have the same size as
the input image. Consequently, the deconvolutional layer is used to map feature
resolution to the same size of the input image. The deconvolutional operation is
achieved by upsampling previous coarse output maps followed by convolutional
manipulation. As a result, the FCN can consume an image of arbitrary size and
output a dense prediction map of the same size. FCN has a translation-invariant
feature due to the local connectivity properties of convolutional, pooling, Relu, and
deconvolutional layers [6]. A loss layer is included in the FCN training phase so
that network parameters can be learned by minimizing the cost value [6]. Some
other layers such as batch normalization, dropout, and softmax are also commonly
used in FCNs [1, 2, 6]. Specifically, each layer of data in the FCN are contained in a
3D array of h×w× d, where h andw are spatial dimensions, and d is the dimension
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of feature. The core units in FCN (convolution, pooling, and activation functions)
can only operate on local input regions. They depend on relative spatial
coordinates.
Since parameters of an FCN model only exist in the kernel used in the convo-

lutional and deconvolutional layers, the total number of parameters required for
an FCN model is much smaller than that for a fully connected deep neural net-
work when the same number of hidden units is used. The number of parameters
is even smaller than that in CNNs. The relatively small number of parameters
required by an FCN is beneficial for network training. In an FCN, the feed-forward
passing through the network provides a dense prediction map, and the back-
propagation algorithm minimizes the loss function—a sum over spatial dimen-
sions of the final layer combined with information from the ground truth label
image—to learn the network [12]. In other words, in an FCN, the forward path
is for inference and the backward direction is for learning.
Following a series of successful FCN model applications to semantic segmenta-

tion, many new algorithms based on the FCN method were proposed. They are
widely studied in fields of image segmentation, classification, and tracking [6,
13, 14]. Long et al. [6] presented two other FCN architectures (FCN-16s and
FCN-8s) with different upsampling scales to compensate for a shortcoming of
the main FCN architecture, which requires 32×upsampling. They provided better
semantic segmentation results than the original one. Network architectures of

Figure 13.1 Fully convolutional neural networks [6] / with permission of IEEE. Row A:
Single-stream net, upsamples stride 32 predictions back to pixels in a single step (FCN-32s);
Row B: Fusing predictions from both the final convolutional layer and the pool4 layer for
additional prediction (FCN-16s); Row C: Fusing predictions from the final convolutional
layer, pool4, and pool3 for additional prediction (FCN-8s).

13.2 Fully Convolutional Neural Networks 129



FCN-16s and FCN-8s are also shown in Figure 13.1 (row B is FCN-16s and row C is
FCN-8s). In FCN-8s, for example, the coarse output from the FCN model is first
4×upsampled and the pool4 image is 2×upsampled. These upsampled images
are then fused with the image at the pool3 layer. Fused images are finally
8×upsampled to obtain the prediction image with the same size as the input image.

13.3 RBC Phase-image Segmentation via Deep
Learning

In this section, we introduce the RBCs phase-image segmentation procedure based
on deep learning. The RBC hologram was first recorded using DHM. The corre-
sponding RBC phase image was numerically reconstructed using the numerical
algorithm described in Chapter 5. We prepared two training datasets for RBC seg-
mentation using the FCN model. In the first scheme (FCN-1), we manually seg-
mented RBCs in the RBC phase image and used the mask of the segmented
RBC phase image as the ground-truth labeled image (the RBC target). We then
zeroed the background. Figure 13.2 shows one of the RBC phase images obtained
by DHM along with the corresponding prepared ground-truth labeled images. The
FCN was trained by minimizing the error between the ground-truth label image
and the FCN prediction image. The trained FCNwas then used to predict the class
of each pixel in the RBC phase image (0: background, 1: RBC target). In this
approach, the predicted results are viewed as final RBC segmentation results since

Figure 13.2 RBC phase images and ground-truth label images. (a) RBC 3D profile obtained
by off-axis DHM, (b) a reconstructed RBC phase image, (c) a ground-truth label image for the
FCN-1model, and (d) a ground-truth label image for the FCN-2model. Bar is 10 μm [9] / with
permission of Optical Publishing Group.
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the training dataset expresses the segmented RBCs. In the second scheme (FCN-2),
the ground-truth label image only represented the middle part of each RBC in the
RBC phase image. These ground-truth label images were obtained by conducting
morphological erosion on the ground-truth label image in the first scheme (FCN-
1) with structuring elements of size seven. Figure 13.2d shows one of the ground-
truth label images used for the FCN-2 model. Consequently, the FCN-2 scheme
was trained and used to predict the center area of each RBC. Because the second
FCN method could not segment RBCs directly, we combined this model with the
marker-controlled watershed algorithm for RBC phase-image segmentation. The
predicted center part of RBCs from the FCN could be efficiently used as internal
markers of the marker-controlled watershed algorithm. RBC phase images were
finally segmented using the marker-controlled watershed segmentation algo-
rithm. Figure 13.3 shows flowcharts of these two FCN schemes.
The original FCN model in [6], which performs max pooling layer five times, is

not very robust for small-object segmentation [8] because of its large upsampling
scale value. Figure 13.4 shows our FCN structure for RBC phase-image segmen-
tation. The presented model only uses the max pooling layer four times. There
is no max pooling operation at the second layer. The image size in the pool2 layer
is the same as that of the previous layer (see Figure 13.4). Further, the image in the
pool5 layer is 4×upsampled and fused with the 2×upsampling image at the pool4

Figure 13.3 Flowcharts for the (a) FCN-1 and (b) FCN-2 models.

Figure 13.4 The proposed FCN structure for RBC phase-image segmentation.
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layer and the image at the pool3 layer. The final layer is 4×upsampled from the
fused image. The relatively small upsampling scale value in the last layer can help
obtain fine segmentation results. For FCN training, the pre-trained VGG-16 Caffe
model [15] was used to initialize the parameters in the two schemes. Here, the
parameters within layers that also existed in the VGG-16 network were initialized
with their corresponding weight values in a pre-trained VGG-16 Caffe model [15]
while other parameters were randomly initialized [1–3]. Training a deep-learning
model with a pre-trainedmodel can help the network converge faster and improve
accuracy while training a network from scratch usually requires more training
images and time [6].

13.4 Experimental Results

We manually segmented 50 RBC phase images for training and testing datasets.
Each RBC phase image was 700 × 700 pixels in size. We randomly cropped five
images with a size of 384 × 384 from each 700 × 700 RBC phase image to
increase the size of training and testing images. The ratio of the training dataset
to the testing dataset was set at 7 : 3. Figure 13.2 shows one example of the two
ground-truth label images for the RBC phase image in FCN-1 and FCN-2 mod-
els. For FCN training, the stochastic gradient-descent algorithm [16] was used
to optimize the loss function of the FCN model. A momentum of 0.99 and a
weight decay of 0.0005 were used to regularize the loss function. The learning
rate was initially set at 0.01 and decreased by a factor of 10 every 1000 itera-
tions. Weights for shared layers were initialized with the pre-trained VGG-16
neural network. Those for varied layers were initialized with values randomly
extracted from a normal distribution. The iteration number was set at 4000. Our
FCN models were trained on a personal computer equipped with an NVIDIA
Tesla K20 GPU running Ubuntu 15.04. The training time for our FCN models
with the given specification was approximately 58 minutes on the Caffe deep-
learning framework [15].
To show the feasibility of the two FCN schemes for RBC phase-image segmen-

tation, they were compared to two other methods: the marker-controlled water-
shed algorithm described in Chapter 12 and a method described by Yang et al.
[17]. Figure 13.5 shows three RBC phase-image segmentation results from these
methods. Visually, it was clear from Figure 13.5 that all methods worked well
for RBC phase images. There were no overlapped RBCs. On the other hand,
our methods, especially the FCN-2 model, appeared to perform better on RBC
phase images for touching and overlapped RBCs. For the quantitative analysis
of segmentation results, SA was used. The SA is defined as
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SA Sseg, Sgt = 2
Sseg Sgt
Sseg + Sgt

,

where Sseg and Sgt are the segmented region and the ground-truth region, which
are manually extracted as the gold standard; |•| signifies the number of pixel points
in a certain region, Sseg or Sgt. The SA tends toward one when the segmentation
results are very similar to the ground truth. The higher the SA, the better the seg-
mentation algorithm performs. In this study, 20 RBC phase images, each consist-
ing of approximately 70 RBCs, were used to compute the segmentation accuracy of

Figure 13.5 Segmentation results for the four segmentation algorithms. (a) Original
RBC phase images, (b) segmentation results using FCN-1, (c) segmentation results using
FCN-2, (d) segmentation results using marker-controlled watershed algorithm (see
Chapter 12), and (e) segmentation results using the Yang et al. method [9] / with permission
of Optical Publishing Group.
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each method. Table 13.1 provides quantitative evaluation of segmentation results
with our deep learning methods, marker-controlled watershed algorithm, and
Yang et al.
Our FCN-2method achieved the best segmentation results in terms of SA. This is

because it can properly handle RBCs with touching and overlapping problems in
RBCs phase images, whereas marker-controlled watershed algorithm and Yang
et al. were unable to separate multiple connected RBCs or heavily overlapped
RBCs. To highlight the separation ability for connected or overlapped RBCs of
these segmentation methods, some segmentation results for regions with con-
nected or overlapped RBCs are shown in Figure 13.6. Our FCN-2 scheme clearly
separated RBCs well in RBC phase images. The Yang et al. method used two struc-
turing elements with different sizes to isolate the connected target. However, this
method can only divide two connected cells and, it is difficult to define the size of
the structuring element. The marker-controlled watershed algorithm separates
connected RBCs using morphological operations. However, it also has difficulty
determining the size of the structuring element because each RBC and connected
area have different sizes. The FCN-1 model could achieve a better performance in
terms of RBC separation if more data containing connected or overlapped RBCs
were used for training.
Metrics of under-separating, over-separating, and encroachment errors were

employed to quantitatively measure the RBC-separation abilities of these segmen-
tation methods. Under-separating is defined as the number of non-separated, con-
nected, or overlapped RBCs. Over-separating refers to the number of RBC
divisions within a single, non-touching RBC. The encroachment error refers to
the number of incorrect RBC separations. Table 13.2 shows the measured values
for under-separating, over-separating, and encroachment errors for 33 RBC
phase images with 150 overlapped RBC regions and approximately 1000 RBCs.
RBC-separation evaluation curves for the four methods are also shown in
Figure 13.7. It was clear that our methods had improved separation above the
marker-controlled watershed algorithm and Yang et al. method. Moreover, the
FCN-2 method offered the best segmentation result in terms of RBC separation
ability. This means that integrating FCN with the marker-controlled watershed
algorithm can further boost segmentation performance.

Table 13.1 Segmentation accuracy of the RBC phase image.

Visualization FCN-1 FCN-2 Method in Ch 12 Yang et al.

SA (average/std) 0.9503 (0.0085) 0.9557 (0.0168) 0.9440 (0.0126) 0.9283 (0.0306)
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Figure 13.6 RBC separation.
(a) Connected RBC region in
original RBC phase images. RBC
separation results using (b) FCN-
1, (c) FCN-2, (d) the marker-
controlled watershed algorithm,
and (e) the Yang et al. method
[9] / with permission of Optical
Publishing Group.
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Our FCN fine-tuning process, based on the Caffe deep-learning framework, was
58minutes. The average computing time for RBC phase-image prediction or seg-
mentation was 11.36 seconds for the FCN-1 model and 12.96 seconds for the FCN-
2 model for 20 RBC phase images with a size of 700 × 700 pixels. In contrast, the
average computing time on 700 × 700 images was 4.67 seconds using the marker-
controlled watershed algorithm and 7.83 seconds using the Yang et al. method.
Our methods achieved outstanding SA and RBCs separation performance but
sacrificed efficiency in terms of computation time. Since computing power con-
tinues to improve, this is not a major problem.

13.5 Conclusions

We presented two FCN models for automated RBC extraction of RBC phase
images obtained using DHM. In the first FCNmodel, only fully convolutional net-
works were used for semantic segmentation of RBC phase images, whereas the

Table 13.2 RBC separation evaluation results.

Under split Over split Encroachment error

FCN-1 32 2 2

FCN-2 9 1 1

Method in Ch 12 56 2 4

Yang et al. [17] 34 11 15

Figure 13.7 RBC separation evaluation results.
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second FCN model integrated fully convolutional networks with the marker-
controlled watershed algorithm for RBC segmentation. FCN parameters were
initialized using a VGG 16-layer net, then fine-tuned by manually labeling RBC
phase images in the two models separately. Experimental results showed that
our two methods could automatically segment RBCs in phase images. However,
connected and overlapped RBCs in RBC phase images were better handled by
our second model than by others. Comparison results indicated that our methods
achieved better performance than the other two algorithms in terms of RBC SA
and separation ability for overlapped or connected RBCs. This is the first work
to apply deep-learning algorithms to holographic images for RBC segmentation.
The proposedmethods can be useful for quantitatively analyzing RBCmorphology
and other features to allow the detection of RBC-related disorders.
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14

Automated Phenotypic Classification of Red Blood Cells

14.1 Introduction

Human blood contains different cell types. RBCs or erythrocytes are the most
abundant cell type. They transport oxygen to the tissues and organs as well as car-
bon dioxide to be removed by the lungs. The biconcave shape of the erythrocyte is
extremely important for RBC functionality as it increases the surface-area-to-
volume (SAV) ratio and facilitates the large reversible elastic deformation of the
RBC required to squeeze through tiny capillaries [1]. Pathological disorders can
modify RBCs and lead to significant changes in their original shape [2]. The con-
sequences of modified RBCs are often observed as clinical symptoms that range
from the obstruction of capillaries and restriction of blood flow to necrosis and
organ damage [2, 3]. Counting cell types in a blood sample during cytometry is
an important task to investigate clinical status.
In the case of RBCs, a biconcave cell type accounts for a substantial portion of

RBCs in a healthy person, although there are other RBC shapes with different per-
centages between healthy and non-healthy persons [4]. Accordingly, it is essential
to determine the percentage of each RBC type in a blood sample that contains dif-
ferent RBC shapes to diagnose and determine the appropriate treatment of sub-
jects. Typically, an image-based cell analysis for diagnosis is performed by
experts. It has drawbacks, like being time-consuming and inaccurate. A sample
is generally viewed through microscopy images based on the experts’ subjective
understanding of intensity, morphology, texture, and other characteristics. Usu-
ally, small-scale differences in features are overlooked by human eyes, especially
in the case of a borderline diagnostic scenario.
Regarding conventional RBC classification problems, experts deal with 2D

erythrocyte images obtained using a conventional microscopy. However, the
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intensity-based microscopy suffers from the loss of substantial quantitative
information about cell structure and content. It also requires the use of dyes
or stains, which could kill cells or destroy their structure. On the other hand,
DHM is superior at the non-invasive imaging and analysis of biological cells.
When studying RBCs, DHM enables the measurement of 3D features such as
the mean corpuscular volume (MCV), surface area, SAV ratio, functionality fac-
tor, sphericity index, and sphericity coefficients. The chemical parameters of
mean corpuscular hemoglobin (MCH) and MCH surface density (MCHSD)
can also be measured using DHM. Accordingly, an automated RBC classifica-
tion that can accurately distinguish between RBC types could benefit from
DHM imaging.
In this chapter, we will introduce automated methods to classify four RBC

shapes (biconcave, flat disks, stomatocyte, and echino-spherocyte) and quantify
the percent of RBC types in human RBCs [5]. First, RBCs are obtained by
DHM. Single RBCs are then extracted from phase images of multiple RBCs using
the watershed segmentation algorithm (see Chapter 12). In the next step, 2D
features of the projected surface area (PSA), perimeter, radius, elongation, and
PSA-to-perimeter ratio are extracted from segmented RBC images. The volume,
surface area, SAV ratio, average RBC thickness, sphericity index, sphericity coef-
ficient, functionality factors, MCH, and MCHSD are also extracted from single
RBCs. The latter feature set is related to the morphological and chemical proper-
ties of the RBC 3D profile. Along with these 3D features, two new features related
to the ring section of RBC are introduced. These features can add significant infor-
mation to the classification model and improve the discrimination power of the
classifier. Each feature set is then separately fed into a neural network model.
The classification results are compared using a 10-fold cross validation (CV) tech-
nique. To train our classifier, the Bayesian regulation back-propagation algorithm
is used. It can adjust weights according to the Levenberg–Marquardt optimization
technique. The hyperbolic tangent sigmoid activation function is used in mid-level
layers.
To propose the best feature set, sequential forward feature selection (SFFS) is

used to consider both 2D and 3D features. The best performance of a classification
model is achieved by selecting the most informative features and removing noisy
ones that are either redundant or irrelevant. Indeed, the reduced number of fea-
tures can provide a shorter training time, decreased complexity of classifier, and a
concise model for interpretation goals.
We extracted 108 biconcave RBCs from a healthy blood-bank sample, 106 sam-

ples of stomatocyte shaped RBCs from a sample with predominantly stomatocytes,
38 samples of flat-disk shaped RBCs, and 71 samples of echino-spherocyte shaped
RBCs for training and testing our model. Flat-disk and echino-spherocyte cells
were also extracted from RBC samples stored in the blood bank. The performance
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comparison was performed by calculating the misclassification rate of the 10-fold
CV technique.
Our experimental results demonstrated that our model trained by 3D features

performed well in automatically classifying and counting RBCs compared to 2D
features. We also introduced the best set of features that blended 2D and 3D fea-
tures to improve RBC classification accuracy. We believe that the final feature set,
evaluated with the presented neural network classification, can offer better dis-
crimination results. Figure 14.1 shows a reconstructed phase image of a sample
consisting of biconcave, flat-disk, and stomatocyte shaped RBCs. It shows that
within in a single sample, RBCs can have different morphologies.

14.2 Feature Extraction

14.2.1 Two-dimensional (2D) Features

After extracting many single RBCs, features can be extracted. We first started
with 2D features (see Table 14.1). The elongation of the RBC is a measure of
the width-to-length ratio for oblong RBCs. It can be calculated from the chain
code by summing the number of each element type, 0–7, then combining 0
and 4, 1 and 5, 2 and 6, as well as 3 and 7 [6]. Average and standard deviation
values of the above features are in the agreement with previously reported values
(data not shown) [7, 8].

Figure 14.1 Reconstructed phase image with three RBC types; A is a flat disk RBC, B is a
biconcave RBC, and C is a stomatocyte. The white scale bar is 10 μm [5] / SPIE / CC BY 3.0.
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14.2.2 Three-dimensional (3D) Features

Since some 3D features require RBC thickness, we first need to convert the phase
image into thickness image. Accordingly, the thickness value h(i, j) for each pixel
of (i, j) with the phase value φ(i, j) in a phase image can be presented as

h i, j =
φ i, j × λ

2π nrbc − nm
,

where φ(i, j) is the phase value in radians and the refractive index of RBCs, nrbc, is
measured with a dual-wavelength DHM. Here, nrbc is 1.396, without a significant
difference between groups of RBCs. The HEPA buffer index of refraction, nm, is
1.3334. Surface area is another important property and is the main contribution
to 3D features. Generally speaking, the RBC surface area is the surface area of
the membrane mesh plus PSA. The method in this study splits and divides RBC
surfaces into smaller regular areas (triangles) and adds these smaller areas to yield
the entire surface area. The accuracy of such a calculation depends on the selected
smaller area.
Table 14.2 is a list of 3D features. We will provide a brief description of the eight

features related to themorphological properties of RBC. Formore detailed descrip-
tions of these features, refer to [9] and Chapter 15. Regarding the calculation of
three features (F9–F11), we obtained many points over the ring section of RBC
by applying two methods. First, we estimated the ring section (blue points in
Figure 14.2) by computing the radius of a circle with the area of the RBC projection
on the x-y plane (the ring is approximately three-fourths of the RBC radius). We

Table 14.1 Descriptions of 2D features.

Feature name Description

2D-F1 Projected surface
area (PSA)

PSA = N × p2 (p is pixel size in the holographic image;
N is the number of pixels within an RBC.)

2D-F2 Perimeter (Pr) Length of the RBC boundary.

2D-F3 Circularity (Ci) Ci =
Pr2

PSA

2D-F4 Elongation (El) Orientation of chain code in the cell boundary.

2D-F5 Radios (R) Radius is estimated by considering the radius of a circle
with an area of the PSA.

R =
PSA
π

2D-F6 PSA/Perimeter
(PSP)

PSP =
PSA
Pr
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Table 14.2 Descriptions of 3D features.

Feature name Description

3D-F1 Average thickness (AT) AT =
k
i = 1

l
j = 1h i, j

k × l
(h(i, j) is the thickness at

(i, j)th pixel)

3D-F2 Volume (MCV) MCV p2
k

i = 1

l

j = 1
h i, j

3D-F3 Top-view surface area
(TVS)

The surface area of the upper view of the RBC
calculated by dividing the surface into small triangles
and finding the sum of each triangle’s surface area.

3D-F4 Top-view SAV ratio
(TVSV)

TVSV =
TVS
V

3D-F5 Total surface area (SA) SA = TVS+ PSA

3D-F6 Surface-area-to-volume
ratio (SAV)

SAV =
SA
V

3D-F7 Sphericity index (SI) SI =
4πV

2
3

4π
3

2
3

SA

3D-F8 Functionality factor
(FF)

f =
SA

4πR2

3D-F9 Sphericity coefficient
(SP)

SP =
dc
dr

(dc and dr are the thickness values in the RBC

center and ring section, respectively.)

3D-F10 STD of thickness in ring
section

The variation in RP thickness of the RBC ring.

3D-F11 Upper side of the ring/
lower side of ring

The division of four maximum RPs by four minimum
RPs.

3D-F12 Mean corpuscular
hemoglobin (MCH)

MCH =
10λφ PSA

2πα
(φ is the average phase value, λ is the wavelength of the
light source of the setup, and α = 0.00196 dl/g is the
specific refraction increment constant, which is related
to the protein concentration.)

3D-F13 MCH surface density
(MCHSD)

MCHSD =
MCH
PSA
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then updated the position of each point on the estimated ring (blue points) by find-
ing the thickest point in a 3 × 3 neighbor (red points in Figure 14.2). A single green-
point indicates the center of the RBC for the calculation of the sphericity
coefficient.
We believe that the above 3D features can discriminate between different RBCs

since they are related to the 3D profile of RBC. The statistic t-test using a two-
sample Kolmogorov–Smirnov test revealed that some of these features were inde-
pendent (data not shown). Table 14.3 shows the average and standard deviation
values of each feature for each RBC type.

14.3 Pattern Recognition Neural Network

Artificial neural networks (ANN) are highly simplified mathematical models of
biological neural networks that may learn and provide meaningful solutions to
high-level complex and nonlinear problems. The ANNmodel is faster than its con-
ventional techniques and more robust in noisy environments. It can solve a wide
range of problems. A typical ANN is presented in Figure 14.3. An important appli-
cation of neural networks is pattern recognition that can be implemented using a
feed-forward neural network with a specific training function. During training, the

Figure 14.2 A 3D representation of four RBC types and points on the ring section. Typical
(a) biconcave, (b) flat disk with a raised center, (c) stomatocyte, and (d) spherocyte RBCs [5] /
SPIE / CC BY 3.0.
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Table 14.3 Average and standard deviation values of 3D features (mean ± STD).

Biconcave Flat disk Stomatocyte Echino-spherocyte

Average thickness (μm) 2.18 ± 0.3 2.27 ± 0.25 2.75 ± 0.36 4.47 ± 0.36

Volume (μm3) 93.23 ± 13 103.29 ± 14.72 95.85 ± 11.52 101.91 ± 16.4

Top-view SA (μm2) 103.85 ± 15 94.50 ± 9.62 106.04 ± 12.39 95.65 ± 10.6

Top-view SAV ratio
(μm−1)

1.12 ± 0.09 0.92 ± 0.05 1.11 ± 0.1 0.95 ± 0.06

Total SA (μm2) 148.32 ± 16.38 143.21 ± 12.48 147.32 ± 16.11 120.76 ± 11.79

SAV ratio (μm−1) 1.61 ± 0.17 1.40 ± 0.13 1.55 ± 0.18 1.19 ± 0.09

Sphericity index (SI) 0.40 ± 0.18 0.74 ± 0.04 0.69 ± 0.06 0.87 ± 0.032

Functionality factor
(FF)

0.86 ± 0.16 0.74 ± 0.07 0.93 ± 0.19 1.21 ± 0.14

Sphericity coefficient
(SP)

0.67 ± 0.05 0.82 ± 0.06 0.5799 ± 0.21 1.16 ± 0.14

STD of ring thickness 0.0332 ± 0.021 0.054 ± 0.018 0.1321 ± 0.096 0.1254 ± 0.03

Upper side of the ring/
lower side of ring

1.31 ± 0.11 1.25 ± 0.09 1.93 ± 0.44 1.44 ± 1.14

MCH (pg) 31.29 ± 4.55 34.68 ± 5.01 32.17 ± 3.94 34.29 ± 5.51

MCHSD (pg/μm2) 0.68 ± 0.1 0.71 ± 0.08 0.85 ± 11 1.39 ± 0.11

Figure 14.3 A feed-forward artificial neural network configuration with five input nodes,
two output nodes, and two hidden layers.
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ANN is trained to associate outputs with input patterns. After training, it can iden-
tify the input pattern and provide the associated output pattern.
The information processing in the ANN model starts from the input layer to the

hidden layer (or from one hidden layer to another if there are multiple hidden
layers) and from the hidden layer to the output layer. A synaptic weight is assigned
to each link to indicate the relative connection strength of two nodes at both ends
in predicting the input–output relationship. The output yj of any node j is given as

yj = f
n

i = 1

WiXi + bi ,

whereWi is the connection weight, Xi denotes the ith input of node j, n is the num-
ber input(s) to node j, and bj is the bias value. The activation function f determines
the response of a node to the total input signal that is received. The hyperbolic
tangent sigmoid function is used as the activation function for the hidden layer
in this study.
For the output layer in the ANN model, we used the softmax function (normal-

ized exponential) that could be interpreted as the posterior probability for a cate-
gorical target variable. It is highly desirable for those outputs to lie between zero
and one with a sum of one. The purpose of the softmax activation function is to
impose these constraints on outputs. Let the input to each output neuron be ql,
l = 1,…,k, where k is the number of classes. The softmax output yl is

yl =
eql

k
m = 1e

qm
14 1

According to Eq. (14.1), the sum of all outputs is equal to unity and can be inter-
preted as the posterior probability for the final decision. The training algorithm
updates the weight and bias values according to the Levenberg–Marquardt opti-
mization. It minimizes a combination of squared errors and weights and deter-
mines the correct combination to construct a network that generalizes well [10].

14.4 Experimental Results and Discussion

In our experiment, 108 RBCs labeled as biconcave, 106 RBCs labeled as stomato-
cytes, 38 RBCs labeled as flat-disk, and 71 RBCs labeled as echino-spherocytes
were used. Figure 14.4 shows four samples of each group. The performance of
the ANN model was assessed using a 10-fold CV check. The dataset was divided
into 10 subsets, and the test was repeated 10 times. Each time, one of these 10 sub-
sets was used as the test set and the other 9 subsets were put together to form a
training set. The average misclassification error across all 10 trials could indicate
the overall miss-classification error. Pattern recognition neural network (PRNN)
has one input layer, one output layer, and three hidden layers. Each hidden layer
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Figure 14.4 Samples of each RBC group used in the study. Four samples each of (a) flat disk, (b) stomatocyte, (c) biconcave, and (d) sphero-
echinocyte RBC morphologies [5] / SPIE / CC BY 3.0.



has 5, 10, and 5 neurons, respectively. The number of neurons was obtained by the
trial-and-error technique.

14.4.1 Comparison between 2D and 3D Features

In the case of 2D features (see Table 14.1), the 10-fold CV indicated that that the
total misclassification rate was considerably high. The following are the percent of
misclassification for each group: flat-disk, 64%; stomatocyte, 13.4%; biconcave,
32.3%; and echino-spherocyte, 4.2%. Only echino-spherocyte RBCs could be accu-
rately classified using 2D features while other classes had significant errors.
According to the confusion matrix, the ANN model became confused between
biconcave and flat disks using 2D features (data not shown). In contrast, the 3D
features explained in Table 14.2 offered more accurate and interesting results.
According to the 10-fold CV results, the misclassification rates were 0, 1.6, 3.2,
and 0% for flat-disk, stomatocyte, biconcave, and echino-spherocyte RBCs, respec-
tively. Table 14.4 shows the classification errors for 2D and 3D features. Classifi-
cation results obtained with the ANN model showed that 3D features were more
effective than 2D features for RBC classification.
In another experiment, we evaluated the mutual information between each fea-

ture in 2D and 3D features. In the case of 2D features, Table 14.5 shows that there is
considerable mutual information between some features. Mutual information is
the quantity of information that two features share. If the mutual information
between the two features is big (or small), the two features are closely (or not

Table 14.4 Misclassification results of 2D and 3D features.

Flat disk Stomatocyte Biconcave Echino-spherocyte

2D features 64% 13.4% 32.3% 4.2%

3D features 0% 1.6% 3.2% 0%

Table 14.5 Normalized mutual information between 2D features.

2D-F1 2D-F2 2D-F3 2D-F4 2D-F5 2D-F6

2D-F1 1 0.61 0.13 0.37 0.31 0.33

2D-F2 0.61 1 0.057 0.25 0.071 0.37

2D-F3 0.13 0.057 1 0.12 0.7 0.014

2D-F4 0.37 0.25 0.12 1 0.15 0.14

2D-F5 0.31 0.071 0.7 0.15 1 0.04

2D-F6 0.33 0.37 0.014 0.14 0.04 1
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closely) related. If the mutual information reaches zero, the two features are inde-
pendent. For example, 2D-F1 had considerable mutual information with features
2D-F2, 2D-F4, 2D-F5, 2D-F6 (see first row of the Table 14.5). As a result, this fea-
ture was statistically redundant. It could not add significant information.

14.4.2 Combining 2D and 3D Features

The best classification model should consider both 3D and 2D features. The perfor-
mance of any classification model can be improved using a feature selection (FS)
technique. In FS, we try to find the best set of features with a strong ability to dis-
tinguish each class. In general, FS keeps original features intact. Features deemed
unimportant, irrelevant, or redundant are removed from further consideration
while only those features that significantly contribute to the classification are cho-
sen. Therefore, FS can minimize the number of features in the classification prob-
lem, which makes the classification model simpler (or less complex) and reduces
training time. We also implemented FS in this study using the SFFS technique.
In SFFS, features are sequentially added to an empty candidate set until the addition
of further features does not decrease the criterion. It has two components: an objec-
tive function (criterion) and a sequential search algorithm. Common criteria are the
misclassification rate for classification and mean squared error for regression mod-
els. A sequential forward search algorithm adds features from a candidate subset
while evaluating the criterion. Since an exhaustive comparison of the criterion value
at all 2n subsets of an n-feature dataset is typically infeasible (or time-consuming),
sequential searches can increase the candidate set. The following features can pro-
vide better results in the classification of RBCs: average RBC thickness (3D-F1), top-
view SAV ratio (3D-F4), sphericity coefficient (3D-F9), the upper side of the ring
divided by lower side of the ring (3D-F11), and perimeter (2D-F2). Our experimental
results also showed that adding more features did not provide significant discrimi-
nation ability to the final classification model. Figure 14.5 shows the data distribu-
tion of each RBC for each selected feature. Table 14.6 provides the misclassification
rates of the final feature set and the ANN model.
The confusion matrix of the test set shows that the ANN model sometimes con-

fuses stomatocytes and echino-spherocytes, since there are cases in which RBCs
have a morphology similar to both stomatocytes and echino-spherocytes (see
Figure 14.6). The posterior probabilities for belonging to stomatocyte and
echino-spherocyte classes are 0.33 and 0.66, respectively. Even a human examiner
may be challenged to put it in the correct category.
In another experiment, we tried to count different RBC types in five quantitative

phase images with multiple RBCs. RBC images were also inspected visually by a
human inspector. As shown in Figure 14.7a, stomatocyte RBCs were dominant
(flat disks, 0/80; stomatocytes, 58/80; biconcave, 8/80; and echino-spherocyte,
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Table 14.6 Misclassification results for the best feature set obtained by sequential feature
selection technique.

Flat disk Stomatocyte Biconcave Echino-spherocyte

Best feature set 0% 0.9% 3.1% 0%

Figure 14.5 Data distribution of the best feature set [5] / SPIE / CC BY 3.0.
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Figure 14.6 An RBC sample that confuses the neural network, which resembles both
stomatocyte and spherocyte RBCs. (a) 3D representation, and (b) representation on the x–y
plane [5] / SPIE / CC BY 3.0.

Figure 14.7 Five RBC samples and their counting results. (a) Flat-disk: 0%, Stomatocytes:
76.2% (61/80), Biconcave: 11.25% (9/80), and Echino-spherocyte: 10% (8/80). (b) Flat-disk:
7.40% (2/27), Stomatocytes: 18.51% (5/27), Biconcave: 74.07% (20/27) and Echino-
spherocyte: 0%. (c) Flat-disk: 0%, Stomatocytes: 12.24% (6/49), Biconcave: 10.2% (5/49) and
Echino-spherocyte: 77.55% (38/49). (d) Flat-disk: 0%, Stomatocytes: 7.94% (5/63),
Biconcave: 1.59% (1/63) and Echino-spherocyte: 90.4% (57/63). (e) Flat-disk: 47.22%
(17/36), Stomatocytes: 25% (9/36), Biconcave: 19.5.2% (7/36) and Echino-spherocyte:
8.3% (3/36) [5] / SPIE / CC BY 3.0.
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14/80), whereas biconcave RBCs were dominant in Figure 14.7b (flat disks, 2/27;
stomatocytes, 5/27; biconcave, 20/27; and echino-spherocyte, 0/27), and echino-
spherocytes were dominant in Figure 14.7c (flat-disk, 0/49; stomatocytes, 7/49;
biconcave, 6/49; and echino-spherocytes, 38/49). Figure 14.7d has the following
RBC types: flat-disk, 0/63; stomatocytes, 3/63; biconcave, 1/63; and echino-spher-
ocytes, 59/63. Figure 14.7e shows an RBC image with 40 days of storage time con-
taining many flat-disk RBCs (flat-disk: 16/36; stomatocytes, 7/36; biconcave, 5/36;
and echino-spherocytes; 8/36). Each image was first segmented into many RBCs
because feature extraction should be applied at the single cell level. The percen-
tages of each RBC type in RBC phase images were then calculated (see
Figure 14.7). The classifier showed that stomatocyte RBCs were dominant in
the first sample as expected. In contrast, biconcave and flat-disk RBCs were dom-
inant types in the second and fifth figures. Echino-spherocytes were dominant
RBCs in the third and fourth figures. Although there was a small error counting
non-dominant RBCs, the most important outcome was counting and reporting the
dominant RBC type.
According to these findings, our feature set and classifier could automatically

count and categorize RBC types in humans using 2D and 3D RBC profiles. The
classifier can be used to assess RBC-related abnormalities because the ratios of
RBC types are associated with certain diseases. Figure 14.8a, for example, com-
pares the density of the average echino-spherocyte cell thickness to those of other
RBCs. Any binary classifier can be employed to separate these two groups.
Figure 14.8b shows the scattering of two groups based on their average thickness
value and surface area as well as the boundary region of an SVM classifier.

Figure 14.8 (a) The average thickness value distribution for echino-spherocytes and other
RBCs. (b) An SVM classifier for separating echino-spherocytes and other cells using the
average thickness and total surface area [5] / SPIE / CC BY 3.0.
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14.5 Conclusions

We presented the PRNN applied to the 2D and 3D features of RBCs obtained
by DHM to classify and count biconcave, stomatocyte, flat-disk, and echino-
stomatocyte RBCs. Six 2D features and thirteen 3D features were extracted, and
the classification results compared. Our findings showed that 3D features provided
more useful information for RBC classification than 2D features. Furthermore, FS
showed that the average RBC thickness, top-view SAV ratio, sphericity coefficient,
the upper side of the ring divided by lower side of the ring, and RBC perimeter
could be used to better classify RBCs into proper categories. The final feature
set may help classify and count RBCs, which is important for analyzing RBC
abnormalities and identifying shape-related diseases.
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15

Automated Analysis of Red Blood Cell Storage Lesions

15.1 Introduction

RBCs serve many purposes in the human body. One of the most important RBC
functions is to transfer oxygen and carbon dioxide between the lungs and the rest
of the body’s tissues. Importantly, the shape of an RBC should be optimized for
maximal deformation, a maximum surface at a given volume, rapid changes,
and cell survival during repeated passages through narrow channels. Surface area
is one of the most important properties of RBCs because the exchange of oxygen
and carbon dioxide takes place at the cell surface. A larger surface area allows for
greater oxygen and carbon dioxide exchange in the lungs and other bodily tissues.
These conditions are satisfied by a biconcave disk shape, which is the medical
norm for RBCs. The biconcave shape of RBCs has a flexible membrane with a high
surface-area-to-volume ratio that facilitates extensive, reversible elastic deforma-
tion of the RBC as it repeatedly passes through narrow capillaries. The biconcave
shape is thought to be the result of minimizing the free energy of membranes
under area and volume constraints because there are no complicated inner struc-
tures in RBC. However, during the storage period, RBCs undergo metabolic, bio-
chemical, biomechanical, and molecular changes, which are referred to as storage
lesions [1]. Furthermore, many adverse effects related to RBC storage are reported
in critically ill patients when the RBC storage period exceeds four weeks [2, 3].
Scientific evidence supports that the RBC structure undergoes essential changes
in shape during the storage period, from biconcave, to flat, and finally an
echino-spherocyte, which results in the inability of RBCs to carry oxygen [4–7].
In this chapter, we will introduce automated methods to analyze changes in 3D

morphology and mean corpuscular hemoglobin (MCH) in RBCs caused by the
length of storage for the 3D classification of RBCs with different storage periods
using DHM [8, 9]. To analyze the morphological changes in RBCs induced by stor-
age time, we use datasets from blood samples stored for 8, 13, 16, 23, 27, 30, 34, 37,
40, 47, and 57 days. These datasets were divided into 11 classes of RBCs stored for
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11 different periods. These 11 classes have more than 3300 blood cells with more
than 300 blood cells per storage class.
Using RBCs donated by healthy persons, DHM reconstructed several RBC phase

images from each class of blood sample. To automatically calculate characteristic
features such as the averaged phase value, projected surface area (PSA), volume,
surface-to-volume ratio (SVR), MCH, MCH surface density (MCHSD), sphericity
index, morphological functionality factor, and sphericity coefficient of RBCs, the
image-segmentation method explained in Chapter 12 was applied to remove the
unnecessary background in the RBC phase image. All RBCs in the phase image
were extracted to obtain characteristic RBC properties. More than 300 RBCs were
extracted from segmented phase images for each class of blood sample. The sample
size was large enough to derive statistical distributions of characteristic RBC fea-
tures at a given storage period. Our main goal was to quantitatively analyze the
relationship between RBC properties and their aging as well as to automatically
analyze the morphological and chemical parameters of RBCs with different ages
at the single-cell level. We also performed a correlation analysis between MCH or
MCH concentration and the morphological parameters of RBCs at different
storages. Our findings demonstrated that in storage lesions, the RBC structure
underwent significant changes in terms of shape, like from a biconcave disc to
an echino-spherocyte. Interestingly, our experimental results showed that the sur-
face area values of normal RBCs obtained by DHM agreed with values reported by
other methods [10–12].

15.2 Quantitative Analysis of RBC 3D
Morphological Changes

To automatically analyze 3D morphological changes in RBCs induced by storage
time, our off-axis DHM reconstructed several phase images from each class of
blood sample. Individual RBCs were then extracted from the phase image using
the segmentation method described in Chapter 12. For comparing RBC phase
images with different storage times, we set the phase value of the phase image
background to be 0 . After segmentation, the characteristic properties of RBCs
were computed for all RBCs extracted from phase images. The following provides
a short description of features related to the morphological properties of RBCs. For
details of each feature, please refer to [8, 9, 13, 14]. The average phase value Φ
induced by the whole RBC and the PSA are defined as

Φ =
1
N

N

i = 1
φi,PSA = Np2

where N is the total number of pixels within a RBC, p denotes the pixel size in the
phase image, and φi is the phase value of each pixel within the RBC. The RBC
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volume or the size of RBC is a good indicator of RBC functionality. The volume of a
single RBC or the corpuscular volume is denoted as

V
p2λ N

i φi

2π nrbc −nm
, 15 1

where nrbc is the refractive index of RBCs, nm is the index of refraction of medium,
and λ is the wavelength of the light source [15]. When a population of RBCs is con-
sidered, Eq. (15.1) allows us to derive the mean corpuscular volume (MCV) [14].
Another important characteristic property is the dry mass that measures the
weight of the cell after dehydration. The dry mass is a reliable biomass. It is widely
used to compare cells since it is free from disturbance of water that exists in living
beings [15]. The dry mass of a cell is related to the phase value and can be
defined by

DryMass DM =
10λ
2πα

φds =
10λ
2πα

ΦS, 15 2

where Φ is the average phase value induced by the whole cell and α is a constant
known as the specific refraction increment (in m3/kg or dl/g), which is related to
the protein concentration [15, 16]. As far as RBCs are concerned, α = 0.00196 dl/g
is the hemoglobin refraction increment between 663 nm and 682 nm [15]. When
an RBC population is considered, Eq. (15.2) provides the MCH. The MCH is an
important parameter to investigate changes in RBC hemoglobin content. The
MCHSD, which can show hemoglobin concentration, is defined as the ratio
between the MCH and projected surface area S:

MCHSD =
MCH
S

Converting these phase images to thickness images allows an easier morpholog-
ical computation. Accordingly, the thickness value h(i, j) for each pixel of (i, j) with
phase value φ(i, j) in a phase image can be expressed as:

h i, j =
φ i, j × λ

2π nrbc − nm

The sphericity coefficient, k, is the ratio of the RBC thickness at the center dc to
the thickness at half of its radius dr (dimple area):

k =
dc
dr

15 3

The sphericity coefficient k can identify three types of RBCs. A value of k less
than unity specifies a biconcave-shaped RBC. A value of k around unity denotes
a flat disk-shaped RBC and a value of k greater than unity indicates an echino-
spherocyte.
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The surface area of the top view of an RBC (see Figure 15.1) is the area of a sur-
face or collection of surfaces that bind to a solid. There are several formulas to com-
pute the surface areas of regular shapes. For irregular shapes, like RBCs, many
methods are suggested [17]. In most cases, covering the entire surface area of
an RBC with small triangles can provide high accuracy. In this study, the RBC sur-
face area was calculated using Eq. (15.4), which was shown by our experimental
results to be sufficiently accurate enough for calculating the RBC surface area:

Surface Area =
S

δz
δx

2

+
δz
δy

2

+ 1dA 15 4

We assumed that the surface area had the form of a function z = f(x, y) and took
the integral of the entire surface. The total surface area (SA) of an RBC in DHM
consists of the surface area of the top view added to the PSA of the top view:

SA = PSA + TVSA, 15 5

where PSA is the projected surface area and TVSA is the surface area of the top
view. The RBC radius r can be estimated by considering the radius of a circle with
the PSA of an RBC:

r
PSA
π

We can also estimate the morphological functionality factor of RBCs, f, using the
calculated surface area for RBC, which is the ratio of the RBC surface area to the
surface area of an echino-spherocyte of the same volume [18]:

f =
SA
Ss

=
SA
4πr2

,

Figure 15.1 3D view of an RBC obtained by the DHM method [9].
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where SA can be determined by Eq. (15.5) and Ss is the surface area of the sphere
with radius r. An f value around unity characterizes an echino-spherocyte.
Moreover, we can compute the total surface area of all RBCs, St, which affects
the oxygen capacity of blood. St is equal to the product of the number of RBCs
in the blood, M, and the average surface area SAm of RBCs [18]:

St = M × SAm 15 6

Equation (15.5) can be applied to calculate the SVR, which is a critical parameter
for an RBC since the greater the SVR, the more material a cell can exchange with
its surroundings.
Another important parameter related to the shape of RBCs is the sphericity

index, which indicates the extent to which the cell shape approaches a sphere.
The sphericity index of each cell can determine the cell’s degree of tolerance to
deformation, for example, in passing through a small cylindrical channel. This
parameter can also discriminate between healthy and pathological cells. For exam-
ple, it can be used to identify pathological cells in some hereditary diseases such as
spherocytosis. Thus, the sphericity index for determining RBC deformability can
be defined as

SP =
4πV

2
3

4π
3

2
3

SA

15 7

The mean value of the sphericity index for normal RBCs is reported as 0.79 ±
0.026 at room temperature. According to Eq. (15.7), the sphericity index has amax-
imal value of unity, which corresponds to a spherical cell.

15.3 Experimental Results and Discussion

To analyze morphological changes in RBCs caused by the length of storage time,
we prepared 11 classes of blood samples stored for 8, 13, 16, 23, 27, 30, 34, 37, 40,
47, and 57 days. The off-axis DHM reconstructed several RBC phase images for
each class of blood samples. After RBC phase images were obtained, they were
segmented to remove unnecessary background in phase images. Figure 15.2a–f
shows six original RBC phase images and Figure 15.2g–l their corresponding seg-
mentation results. Once the image is segmented, each cell in the image is extracted
individually and the corresponding properties are computed automatically.
After the segmentation and extraction of RBCs from phase images, characteristic

properties, including the PSA, average phase value, MCV, MCH, SA, SVR, mor-
phological functionality factor, cell diameter, sphericity coefficient, sphericity
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index, and oxygen capacity for all samples were calculated as well as their standard
deviations (STDs). To reduce noise and increase accuracy in Eq. (15.3), dc and four
adjacent values were averaged (dr was the average of some values selected from
different portions of the dimple). Table 15.1 shows the calculated mean and
STD values for all characteristic properties of RBCs with different ages.

Figure 15.2 Original RBC quantitative phase image and corresponding segmentation
results. (a), (b), (c), (d), (e), and (f ) are RBC’s stored for 8, 16, 30, 34, 47, and 57 days,
respectively, while (g), (h), (i), (j), (k), and (l) are the corresponding segmented images of
(a)–(f )[[8] / with permission of Optical Publishing Group.
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Table 15.1 Characteristic properties of RBCs across storage groups, estimated with the proposed method.

Property

Storage time (days)

8 13 16 23 27 30 34 37 40 47 57

Mean phase value (degree) Mean 74 74 81 76 77 76 78 87 96 112 136

STD 12 15 16 16 15 24 21 26 27 28 28

MCH (pg) Mean 32.2 32.3 35.7 32.8 34.8 29.2 30.9 32.7 33.6 34.6 32.5

STD 5.0 5.5 7.7 7.3 8.6 7.6 6.1 5.7 5.0 6.8 5.1

MCH surface density (pg/μm2) Mean 0.70 0.70 0.76 0.71 0.72 0.71 0.73 0.82 0.90 1.05 1.28

STD 0.11 0.13 0.14 0.15 0.14 0.23 0.20 0.24 0.25 0.26 0.26

Projected surface area (PSA) (μm2) Mean 45 46 47 45 47 42 43 41 39 34 26

STD 5 6 7 7 10 8 9 8 9 9 6

Top-view surface area (TVSA)
(μm2)

Mean 81 81 89 83 84 85 84 81 81 79 81

STD 8 8 9 8 8 9 7 6 8 8 10

Surface area (μm2) Mean 126 127 136 128 131 127 127 122 120 113 107

STD 11 14 16 16 17 16 11 12 13 14 15

Volume (μm3) Mean 91 92 102 94 98 88 86 93 98 98 94

STD 9 12 14 14 15 20 12 11 12 13 11

SVR (per μm) Mean 1.38 1.38 1.33 1.36 1.34 1.44 1.48 1.31 1.22 1.15 1.13

STD 0.19 0.22 0.19 0.20 0.21 0.26 0.21 0.22 0.20 0.20 0.16

Cell diameter (μm) Mean 7.76 7.77 7.76 7.63 7.70 7.45 7.65 7.52 7.25 6.73 6.04

STD 0.49 0.55 0.53 0.58 0.58 0.69 0.75 0.75 0.86 0.89 0.68

k factor Mean 0.88 0.78 0.66 0.84 0.70 0.70 0.93 0.93 1.03 1.20 1.35

STD 0.18 0.19 0.21 0.22 0.23 0.37 0.30 0.56 0.34 0.36 0.41

f factor Mean 0.66 0.69 0.72 0.70 0.70 0.73 0.69 0.69 0.73 0.79 0.93

STD 0.07 0.09 0.10 0.10 0.10 0.13 0.17 0.14 0.15 0.16 0.16

Sphericity index Mean 0.78 0.78 0.78 0.78 0.79 0.75 0.74 0.81 0.86 0.91 0.94

STD 0.07 0.08 0.07 0.08 0.07 0.08 0.08 0.09 0.09 0.10 0.09



Figure 15.3 illustrates the relationship between RBCMCH or MCV and the stor-
age time of RBC samples. Results revealed that the trends for RBCMCH andMCV
values were almost identical with increasing days of storage. Both MCH and MCV
values seemed to swing around their respective mean value. Figure 15.3a shows
the relationship between MCH and storage time; although the MCH fluctuated
around a value of 32 pg, the MCH was nearly stable, even with increasing storage
time. Figure 15.3b shows the relationship between MCV and storage time. It was
noted that the MCV hovered around of 94 μm3, even with increasing storage day.
The MCV was not significantly affected by the storage time. As a result, we can
conclude that the hemoglobin content within RBCs does not change as a function
of storage time. This is an expected outcome because MCV and nrbc do not vary
over storage time.
Figure 15.4 shows the relationship betweenMCHSD and storage time. Although

the MCH in Figure 15.3a showed little fluctuation over the storage time, the
MCHSD tended to increase as shown in Figure 15.4. This could be explained by
the fact that the MCH remained constant while the average projected surface area
of RBCs tended to decrease with increasing storage periods. We also noted that the
MCHSD was nearly constant when RBCs were stored for less than 34 days. When
the storage period was longer than 34 days, there was a noticeable increase
in MCHSD.
Figure 15.5 shows is a graphical representation of the central tendency of RBC 3D

geometric characteristics as a function of age. Figures 15.6 and 15.7 show RBC sam-
ples at different storage days and their respective histograms of the surface area,
which shows the variation in size and shape of stored RBCs. As shown in
Figures 15.6 and 15.7, the leftward shift of the normal distribution for the surface
area indicates that the RBC surface area decreases as storage increases. Considering

Figure 15.3 Relationship between the MCH or MCV of RBCs and storage durations. (a)
Relationship between the MCH and storage time. (b) Relationship between the MCV of RBCs
and storage time. square = mean; bar = standard deviation.
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Figure 15.5 Graphical representation of RBC’ PSA, TVSA, surface area, volume, cell
diameter, SVR, k factor, f factor, and sphericity index trends across storage duration.
bar = standard deviation [9] / with permission of SPIE.

Figure 15.4 Relationship
between the MCHSD of RBCs
and storage duration. square =
mean of the dry mass surface
density; bar = standard
deviation.



Table 15.1 and Figures 15.5, 15.6, and 15.7, the SA fluctuated during the first four
weeks of the storage period, then began to decline. The same trendwas also observed
for changes in cell diameter while there were only slight fluctuations in volume. As
the diameter decreased with an almost fixed volume, the thickness value increased.

Figure 15.6 Histograms of RBC’ surface areas by storage time, less than 30 days; RBCs
stored for (a,b) 8, (c,d) 16, and (e,f ) 23 days [9] / with permission of SPIE.
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The cell diameter for healthy RBCs was reported to be 7.7 ± 0.5 μm [18]. Although
cell diameters for the first five weeks were within this reported range, they began
decreasing when storage exceeded five weeks. It was interesting to note that the
RBC SA values within the first four weeks of storage time (see Table 15.1) were close
to those obtained by other methods [10–12]. We also noted that the top-view

Figure 15.7 Histograms of RBC surface areas by storage time, at least 30 days. RBCs stored
for (a,b) 30, (c,d) 40, and (e,f ) 57 days [9] / with permission of SPIE.
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surface area neither decreased nor increased significantly and remained
within its STD during the entire storage period. The PSA dropped as storage
increased. The SVR decreased as the volume remained relatively constant and
surface area dropped. Most biological cells can maximize the SRV to preserve
their biological processes. The SVR in RBCs within the first four weeks of stor-
age was approximately 1.36. As mentioned previously, aside from the presence
of hemoglobin, the cell surface area or SVR is the most important factor in the
oxygen-carrying processes of erythrocytes. The effect of a smaller surface area
is clearly seen in terms of oxygen capacity, which can be estimated using the
averaged surface area values across storage, according to Eq. (15.6). We
observed the oxygen capacity for RBCs within a 30-day storage period to be
approximately 15% larger than that for RBCs with a storage period greater
than six weeks, assuming an equal number of RBCs for each group.
The k factor (or sphericity coefficient) began with a value less than one. It then

increased gradually to a value greater than one. This indicated that the RBCs
were initially biconcave and as storage exceeded five weeks, they became flat
disks and finally transformed into echino-spherocytes. In contrast, the function-
ality factor f had the same trend as the k factor in that f approached unity. This
indicated that the surface area of RBCs was almost equal to a sphere with the
same radius. The sphericity index, which determines deformability, had the
same trend as the functionality factor and the k factor because it grew after
the first five weeks of storage. Our finding regarding the sphericity index was that
over storage, the sphericity index grew, implying less tolerance during the pas-
sage through small channels.
Modifications in the morphological functionality factor, along with the spheric-

ity coefficient, consistently showed that RBCs changed from biconcave into an
echino-spherocyte under a constant volume. These substantial changes caused
a decrease in the functionality with respect to materials exchanged between tissues
and lungs.
The morphological functionality factor, sphericity coefficient, and sphericity

index are very important because they can determine the shape, type, and deform-
ability of RBCs as they age. An increase in the sphericity coefficient corresponds to
a decrease in the RBC surface area under its given volume. Geometric modifica-
tions related to decreased RBC surface area can also decrease their functionality
with respect to the supply of oxygen to the tissues and organs. Variations in k factor
during the first five weeks of storage might have been due to inaccuracies in deter-
mining correct values of rc and rd, despite averaging some pixels or the presence of
stomatocyte RBCs. Many studies have established that normal or biconcave RBCs
will undergo transformation in their shapes upon variation in some of their chem-
ical components. A morphological functionality factor close to unity confirms that
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the RBC surface area is nearly equal to the surface area of a sphere with the same
radius. Our findings about k and f are consistent, showing that RBCs become flat
disks and finally transform into echino-spherocytes. The sphericity index that indi-
cates the degree of cell tolerance for deformation increased, implying that the
deformability required for passing through a narrow cylindrical channel was
decreasing.
Since chemical and morphological parameters of RBCs are simultaneously

measured at the single-cell level using DHM, we can perform correlation analyses
for these parameters. We divided our samples into two groups according to their
storage duration for clear visualization. The first group had DHM data from 8 and
30 days of storage, and the second group had DHM data from 47 and 57 days of
storage. Figure 15.8 shows the correlation analysis results between the chemical

Figure 15.8 Correlation between chemical-morphological and morphological-
morphological properties. Gray lines show a linear relationship. (a) Surface area and MCH,
(b) volume and MCH, (c) SVR and MCH, (d) SVR and MCHC, (e) surface area and MCHC,
(f ) volume and MCHC.
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and morphological parameters of the two groups. Correlations between RBC para-
meters allow us to understand the cellular physiology of RBCs in detail.
As shown in Figure 15.8, there was a positive correlation between MCH and the

surface area (Figure 15.8a) as well as a significantly strong positive correlation
between MCH and volume (Figure 15.8b), consistent with previous reports
[19, 20]. The correlation coefficient fluctuated slightly, and the slope of the regres-
sion line changed in the case of storage lesions. It was interesting to observe that
RBCs with higher MCHC had lower surface area and volume values
(Figures 15.8e,f ) in all cases. We noted that the correlation coefficient between
the surface area and MCHC value was smaller than that between the volume
and MCHC in the same group. Our analysis also showed that there was no signif-
icant correlation between functionality factor-MCH and functionality factor-
MCHC while RBCs were aging. Furthermore, the sphericity index followed the
same trend as the functionality factor. Interestingly, RBCs with higher MCH
had lower SVR values in all storage groups (Figure 15.8c). However, higher MCHC
RBCs had higher SVR values (Figure 15.8d). We noted that in all cases, there were
linear relationships between two variables according to the computed root mean
squared error of residuals (RMSE) values. However, the RMSE of polynomial line
of degree 2 for SVR-MCHC was significantly lower than that of the linear
relationship.
We also computed correlation coefficients between geometrical parameters of

RBCs to help us understand storage lesions better. Table 15.2 shows correlation
results between geometrical parameters of RBCs. The correlation between sur-
face area and diameter was more significant than that between volume and
diameter. In addition, we found that the surface area and volume had a signif-
icant positive correlation, indicating that RBCs with larger volumes had larger
surface areas. Interestingly, when the storage duration was 57 days, the correla-
tion coefficient between volume and surface area was larger than those on
other days.
The biconcave shape provides RBCs with sufficient surface area to exchange

metabolic products across the membrane and cytoskeleton, resulting in their
slight deformation. RBCs must be deformable to moderately stretch as they
undergo distortions under mechanical stress during their circulation through
small channels. However, echino-spherocytes with smaller surface area have
less deformability. The viscosity of spherocytic RBCs is also higher than that
of RBCs with a biconcave shape, which leads to a high resistance during tran-
sit through narrow channels. Findings of this study showed that when the
storage time of RBCs exceeded five weeks, the dominant morphology was
echino-spherocyte, they lost surface area, and became roughly 20% less
deformable.
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Table 15.2 Correlation results between RBC geometrical parameters.

Properties

Storage time (days)

8 13 16 23 27 30 34 37 40 47 57

Surface area vs. diameter 0.7109 0.6722 0.5783 0.6145 0.6228 0.5105 0.6974 0.6513 0.7086 0.7162 0.5780

Volume vs. diameter 0.2582 0.3331 0.3518 0.283 0.4336 0.1413 0.272 0.1476 0.1679 0.2726 0.2331

Volume vs. surface area 0.4127 0.4617 0.5589 0.5433 0.5882 0.4701 0.6064 0.4071 0.4874 0.5449 0.6359



15.4 Conclusions

We quantitatively analyzed the 3D morphology and MCH of RBCs with different
storage durations. Statistical analyses showed that 3D morphological changes in
RBCs were induced by the length of storage, while the hemoglobin content within
RBCs did not change substantially. In addition, we found that 34 days of storage
might be a threshold beyond which the RBC morphology begins to change signif-
icantly and possibly alters their functionality.
Furthermore, 3D geometric changes of RBCs during storage were analyzed

using the surface area values of RBCs. Investigations of the sphericity coefficient
and functionality factor along with the sphericity index demonstrated that RBCs
could transform from biconcave to spherical when the storage time exceeded five
weeks. Our experimental results showed that the transition from biconcave to
echino-spherocytes was accompanied by a significant loss of surface area and
an increase in the sphericity index. We performed correlation analyses between
morphological and chemical properties. Results showed that surface area had a
significant negative correlation with MCHC values. Interestingly, sphericity index
did not correlate with either MCH or MCHC values, similar to the functionality
factor. Furthermore, the correlation between the surface area and diameter was
stronger than the relationship between volume and diameter. Automated analysis
of the relationship between characteristic RBC properties and storage time might
aid the quality assessment of stored RBCs.
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16

Automated Red Blood Cell Classification
with Deep Learning

16.1 Introduction

RBC transfusions are a life-saving clinical procedure for patients with severe bleed-
ing before or during surgery. For people who need RBC transfusions, the blood
bank collects blood, isolates RBCs, and stores them at 4 C for 42 to 49 days,
depending on the additive used to improve oxygen saturation and product quality.
However, stored RBCs are continuously degraded over time, resulting in structural
and biochemical changes known as RBC storage lesion, which may cause pro-
blems in transfused patients due to altered RBC’s functionality [1–3]. Multiple
studies have shown that RBCs undergo crucial changes in shape from biconcave
disks into a spherocyte during storage to maintain optimal functionality, which
may lead to an inability to transfer oxygen [4–6].
Therefore, rapid automated screening of RBC storage lesions could be beneficial

for safe transfusions. However, the traditional intensity-basedmicroscopy does not
provide robust quantitative information about the morphological properties of
RBCs, which may affect cell investigation. Furthermore, staining contrast agents
are needed to visualize cells, which can destroy the original shape or structure of
RBCs. In Chapter 15, we introduced automated methods to investigate 3D mor-
phological alterations in RBC storage lesions using phase images obtained with
label-free DHM. However, the presented methods require multiple image proces-
sing algorithms to extract a single RBC, compute important morphological para-
meters at the single cell level, and so on, which creates a high computation burden.
In this chapter, we will introduce new deep learning–basedmethods for efficient

RBC segmentation and classification to reduce the computational burden while
achieving a high classification accuracy [7]. We will also show that the presented
deep-learning models can classify RBCs stored for different durations, identify
dominant shapes in each storage group, and evaluate storage lesions in RBCs
for safe transfusions.
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Recently, deep-learning technology was successfully used to analyze natural
and medical images [8, 9]. CNNs are widely used in computer vision and
visual recognition problems with remarkable results [10–21]. Long et al. pro-
posed FCNs for semantic segmentation [10] with good performance in bench-
mark tests. These methods have been applied to RBC segmentation with good
performance outcomes [11]. U-Net was developed based on FCNs and applied
to medical images using skip connections between an encoder and a
decoder [12].
Some challenges in RBC segmentation include independent boundary detec-

tion and the separation of overlapping RBCs. Conventional CNN-based seg-
mentation generally produces blurry outputs since the optimization function
aims to minimize the Euclidean distance between the actual value and pre-
dicted results during training. Therefore, standard models with traditional
pixel-based loss function (e.g. mean square error (MSE)) struggle to segment
overlapped RBCs precisely. For example, several overlapped RBCs can be
detected as one cell. To overcome this, we will use generative adversarial net-
works (GANs) with a generator and a discriminator. In particular, conditional
GANs and Pix2Pix have demonstrated that adversarial loss could help us
obtain sharp outcomes [13–15]. The structure of adversarial loss is essential
for detecting boundaries of individual RBCs among overlapping RBCs. Many
recent studies have shown promising results using GAN models in medical-
image segmentation [16–21].
We found that the GAN model could be used to simultaneously segment and

classify RBC types, including overlapping RBCs in phase images obtained with
DHM. It can also identify morphological changes that occur in RBCs during stor-
age. Accordingly, we could extract and classify RBCs stored for different durations
using GAN-based deep-learning models to accurately assess RBC storage lesions.
We will also present a method to generate additional markers to separate overlap-
ping RBCs. Separation of connected RBCs is very important for automated RBC
analysis.
We will provide a new approach that combines GAN [22] and a watershed-

segmentation algorithm to effectively segment RBCs according to their shape as
well as separate overlapping RBCs (see Figure 16.1). Holograms of RBCs are
recorded using DHM, and RBC phase images are reconstructed using a numerical
reconstruction algorithm (see Chapter 5). We manually segmented RBCs from
phase images to obtain RBC masks with multiple labels. We then applied a
distance-transform algorithm to RBCmasks to determine RBCmarkers. RBCmask
and marker images were used as true labels to train our deep-learning models (see
Figure 16.1). Our model received RBC phase images and generated multi-class seg-
mentation and binary marker maps. Finally, a marker-controlled watershed
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algorithm was employed to efficiently separate overlapping RBCs using the pre-
dicted multi-class map and binary marker map as inputs.
Furthermore, we compared our method with recent deep learning–based seg-

mentation algorithms. Performance comparisons for the segmentation of different
RBC shapes and overlapping RBCs were performed with the aggregated Jaccard
index (AJI) [23] and Dice coefficient [24]. Experimental results showed that our
method outperformed other deep-learning models in terms of semantic segment-
ing and separation of overlapping RBCs.
Our models were tested to classify different RBC shapes stored for different

lengths of time (days). Ground-truth images were manually annotated and classi-
fied by an expert biologist. Four typical RBC shapes were annotated with different
values (0: background in black, 1: discocytes in red, 2: spherocytes in blue, 3: echi-
nocytes in green, and 4: stomatocytes in yellow, see Figure 16.2). According to Bes-
sis’ nomenclature [25] and previous studies [26, 27], there are multiple RBC types.
Stomatocytes are divided into four subclasses: I, II, III, and IV. Echinocytes
includes subclasses of I, II, III, and IV. Echinocyte IV is also defined as an
echino-spherocyte. In this study, echino-spherocytes were grouped and annotated
as echinocytes [25–27].

Figure 16.1 Presented method for segmentation and classification of RBCs, including
overlapped RBCs. RBC phase images are used as input images. Multi-label maps
(background, discocytes, spherocytes, echinocytes, and stomatocytes) and binary marker
maps are used as ground truth to train the proposed deep-learning method. GAN provides
two outputs of multi-class labels for semantic segmentation and binary markers. These two
outputs are used in marker-controlled watershed transformation to find individual RBCs.
These multi-labeled individualized RBCs are then visualized.
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The total number of phase images used to train our model was 219. Of the total
dataset, 13% had overlapping RBCs. We used about 20, 70, and 10% of the phase
images for testing, training, and validation, respectively. Annotated images were
generated with five channels including the background through one-hot encoding
to allow our models to separate each type of RBC from the background. To gen-
erate marker maps to be learned as seeds for separating overlapping RBCs, anno-
tation images were converted to binary maps. The distance transform function was
then applied to each cell. Finally, the image was subjected to thresholding (the
threshold value was 0.3). Figure 16.2c shows results of the binary marker map
method.

Figure 16.2 Examples of phase images and training maps. (a) RBC phase images obtained
with DHM. (b) Annotated images and color-coded cell types. (c) Binarymarker maps obtained
from annotated images. (d) Phase images of four RBC types and (e) corresponding 3D
visualizations. Note that the two examples for echinocyte cells are defined as echino-
spherocytes. We assume that these echino-spherocytes are grouped and annotated as
echinocytes [7] / with permission of IEEE.

176 16 Automated Red Blood Cell Classification with Deep Learning



16.2 Proposed Deep-learning Model

16.2.1 Model Architecture

Multi-label segmentation requires incorporating both local low-resolution and
high-resolution information in images. Therefore, we employed a deep CNN with
nonlinear processing units that could extract low-level to high-level features of
each RBC in a hierarchical manner. Adding skip connections in each layer could
help directly transfer data from one layer to another one. Furthermore, since
detecting and predicting the inner part of overlapping RBCs are difficult tasks,
we developed a new two-stage procedure that combined a GAN-based model with
a marker-controlled watershed method to separate the overlapped RBCs as shown
in Figure 16.1.
In the training step, we generated eight patch images from the original

phase image with a size of 768 × 768 pixels by randomly selecting an arbitrary
location in the image. The size of the patch images were 256 × 256 pixels.
Patch images were also rotated randomly by 90, 180, or 270 for each epoch.
All patch images were fed into our model. We obtained two output images
from the model.
Our deep-learning model was based on GANwith a generator and discriminator

(see Figure 16.3) [15, 22]. The generator was trained to take an input image, extract
the RBCs from the background, segment and classify them by RBC type, and gen-
erate markers representing internal RBCs (Figure 16.3a). Two generator’s output
images (i.e. multi-class probability map and binary marker probability map) were
combined and fed to the input of the discriminator.
The training goal of the discriminator was to distinguish whether the input

image was fake or real (see Figure 16.3b). In this way, the discriminator
forces the generator to produce a desired image. Additionally, our generator
needs to produce separate markers for tightly overlapped RBCs. Therefore,
we built the generator model based on a deep residual U-Net that could take
advantage of both residual network and U-Net architecture. The main feature
is the use of residual units as basic blocks instead of standard convolutional
layer units. Figure 16.3c shows the residual block construction. The advan-
tage of this structure is that it allows us to design a neural network with
fewer parameters. Even if the network layer is deep, the residual unit can
facilitate training [28].
In our network, the encoder has one block for input image and three residual

blocks. The output of the last residual block goes into the residual block in the
bridge. The outcome of the bridge block then enters the decoder as shown in
Figure 16.3a. The decoder has upsampling, concatenate, and residual block layers.
This structure is repeated four times to restore the desired output size with features
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extracted from the encoder. Finally, our decoder generates two types of predictive
maps through different 1 × 1 convolutional layers. The first type is a multi-class
probability map to segment and classify RBCs according to type. The second type
is a binary marker probability map to separate overlapping RBC. Therefore, the
activation function of the first output is softmax, whereas the function of the sec-
ond output is sigmoid.
Our discriminator model is based on a general Markovian discriminator that

consists of the following sequence: a convolution layer with 3 × 3 filter size, a batch
normalization with amomentum of 0.8, a leackyReLUwith an incline of 0.2, and a
dropout. The discriminator concatenates the marker prediction map with 256 ×
256 × 1 and the multi-class prediction map with 256 × 256 × 5 and generates the
patch image with a size of 16 × 16 pixels (see Figure 16.3b). Our GANmodel learns
how to distinguish real (ground truth) and fake patch images by overlapping patch
images. It has fewer parameters that facilitate learning more than a full image
discriminator.

Figure 16.3 An overview of the proposed network for multi-class RBC segmentation and
separation of overlapping RBCs. (a) A generator based on a deep ResUnet [23], which feeds a
random patch from an RBC phase image and generates a marker prediction map and
semantic-segmentation prediction map. (b) A discriminator that takes the predicted map
from the generator or ground truth and estimates whether it is real or fake in units of
patches. (c) A residual unit with identity mapping.
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16.2.2 Objective Function

The goal of our model is to find weight values to minimize the loss function
between the two types of output and the corresponding ground truth. In addition,
an adversarial loss function ensures that high-frequency features are completely
preserved while the output is being generated [13, 15]. Accordingly, the overall
objective function can be defined as

G∗ = argmin G max DLCGAN G,D + λSLS G + λMLM G ,

where G denotes the generator and D is the discriminator network. λS and λM are
two empirical weight parameters. G tries to minimize this objective, while adver-
sarial D tries to maximize it. LS is the cost associated with the supervised RBC
semantic segmentation, and LM is the loss associated with the supervised task
of RBC binary marker segmentation. LCGAN is an adversarial loss between the gen-
erator and the discriminator [22]. It can be expressed as

LCGAN G,D = Ey logD y + Ex log 1−D G x ,

where x is the RBC phase image and y is the concatenation of the multi-label
ground-truth segmentation map and binary marker map ground truth. G(x) is
the concatenation of the multi-label predicted segmentation map and the pre-
dicted binary marker map.
Accordingly, the size of G(x) is H × W × (C + 1) and the size of y is H × W ×

(C+ 1). Given our class-imbalance segmentation task, we added an additional gen-
eralized multi-class Dice loss function LDice [29] and a cross-entropy (CE) cost
function LCE for pixel classification. The objective function (LS) is defined as

LS = LDice y1,G1 x + 10LCE y1,G1 x ,

where y1 and G1(x) are the multi-class ground truth segmentation map and the
multi-class predicted segmentation map, respectively. The loss function of LM is
expressed by

LM = LDice y2,G2 x ,

where y2 and G2(x) are the ground truth binary marker map and the predicted
binary marker map, respectively.

16.2.3 Deep Learning-based RBC Image Segmentation

To test the trained model for RBC image segmentation, test images with a size of
768 × 768 pixels were zero-padded and turned into images of 1024 × 1024 pixels.
We then generated test patch images with a size of 256 × 256 pixels by moving the
first pixel point of the patch image over the zero-padded test image of size 1024 ×
1024. For example, if the first pixel point at the first test patch image was (1, 1), the
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first pixel point at the next patch image would be (129, 129). These patch images
were fed into the trained model. Finally, we obtained the two types of prediction
images (marker and segmentation) with the original size of 768 × 768 pixels by
extracting the center area of size 128 × 128 from each output patch image and
stitching all extracted patch images. Note that any image with a large size can
be smoothly reconstructed from the trainedmodel. The reconstructed output maps
can be used as inputs to the watershed-segmentation algorithm to further separate
overlapping RBCs. We can achieve complete separation of overlapping RBCs by
combining marker-controlled watershed transformation (at the post-processing
level) with the binary marker probability maps and the multi-class probability
maps obtained from our model (see Figure 16.4). As shown in Figures 16.4b,c,
our deep learning model was unable to completely separate overlapping RBCs.
However, our model provided a more accurate marker map by learning valuable
features from RBC phase images than did the marker-controlled watershed trans-
form. Therefore, the marker map can be used to obtain much better performance
in the marker-controlled watershed segmentation. Figure 16.4d shows that the
overlapped RBCs can be segmented and classified by combining the deep-learning
model and the watershed-segmentation method.

16.2.4 Evaluation Metrics

In general, cell-segmentation methods are evaluated at the pixel level (the shape
and size of RBCs) or at the object level (RBC detection). Due to class imbalance, we
computed the Dice coefficient to measure segmentation and classification perfor-
mance rather than the pixel accuracy at the pixel level. The Dice coefficient is
widely used in segmentation applications. It is defined as

DiceCoef G, S =
2 G S
S + G

,

where |G| and |S| are pixels of the ground-truth image and the corresponding seg-
mented image, respectively. |G S| represents the intersection between the pixels
from the two images. We also calculated the AJI to evaluate the performance at the
object level. The AJI is defined as an extension of the global Jaccard index:

AJI =
N
i = 1 Gi Si

N
i = 1 Gi Si + i R Si

,

where Si is the predicted object that maximizes the Jaccard index with the ground
truth object Gi, and R is the set of segmented objects that do not match with the
ground truth. The AJI reflects the ratio between the intersection area of the match-
ing element and segmentation results. Therefore, any inaccurate segmentation
(under- or over-segmentation) will result in a decreased AJI.
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16.3 Experimental Results

To evaluate our model performance, we prepared an unobserved test dataset,
which consisted of 40 phase images. Of them, nine images included overlapping
RBCs. Due to an imbalance in the number of cells in each image, the calculation
for the evaluation was performed for the test dataset, not per image. For perfor-
mance comparison, our method was compared with the following: transfer learn-
ing-based FCN-VGG16 [11], standard U-Net [13], Pix2Pix [15], Resnet [28], GANs
with Resnet generator [30], DeepLab v3+ [31], and MAnet [32]. All methods were
trained with enough epochs to allow convergence.

16.3.1 Implementation Details

Hyper-parameter values used in the experiment were determined through trial
and error. Objective functions of our model were set at λS = 50 and λM = 25 to
reduce visual artifacts and balance learning. An Adam optimizer with an adaptive

Figure 16.4 Gallery of segmentation examples with or without markers. (a) The RBC
separation process using predicted multi-class maps with overlapping cells and predicted
markers. The marker-controlled watershed algorithm floods basins from markers until
basins from another marker meet the watershed line. The flooding of basins from predicted
markers separates the overlapping mask along a watershed line. (b) Samples of RBC phase
image. Enlargements of red boxes: (c) Segmentation results when there are no markers and
(d) results of separating overlapping RBCs by our method [7] / with permission of IEEE.
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momentum was used. Epochs of the model stopped learning when the loss func-
tion of the generator was stabilized (no longer decreasing). The batch size was 16.
The initial learning rate was 0.0002. It was reduced by one tenth for every
30 epochs.
Figure 16.5 shows generator loss and the Dice coefficient in each epoch. The

average and variance of the generator loss were decreased with the increase of
training epochs. The best predictionmodel was obtained when the Dice coefficient
for the validation task reached its maximum after 197 epochs. The prediction
time for a 256 × 256 patch image was 0.026 seconds. The merging time from patch
to full-size image was 0.060 seconds.

16.3.2 Evaluation of RBC Segmentation and Classification
Performance

Figure 16.6 shows the final segmentation, classification, and separation results.
Different colors of results represent RBC types. The segmentation boundary is
shown in white (Figure 16.6 [second to last row]). Seven other evaluated methods

Figure 16.5 Loss of generator and the Dice coefficient during training. (a) Our generator
loss values for training and validation dataset, (b) Dice coefficients for training and
validation dataset of multi-class segmentation, (c) Dice coefficients for training and
validation dataset of markers [7] / with permission of IEEE.
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Figure 16.6 Visualization of RBC semantic segmentation and separation results for phase
images. (a)–(f ) Examples of tested phase images. Grey arrows in phase images indicate
overlapping cells [7] / with permission of IEEE.
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could segment RBC types from the background due to some sharp contrast
between the background and RBCs in the phase image, as shown in
Figure 16.6. Table 16.1 shows the Dice coefficients for different types of RBCs
in the sevenmodels. Our method showed a slightly higher Dice coefficient because
it could generate RBC details more precisely.
In the case of U-Net, we could see that it wrongly predicted discocytes (red) as

stomatocytes (yellow), which might be due to the loss of the inner part of disco-
cytes (see Figure 16.6 [first column]). Since it was not easy to evaluate the segmen-
tation performance of overlapped RBCs by the Dice coefficient, we calculated the

Table 16.1 Results of quantitative performance analysis of multi-class RBC semantic
segmentation.

Type Discocytes Spherocytes Echinocytes Stomatocytes Overall

Dice (Pixel
based)

FCN 0.9519 0.9442 0.9401 0.8904 0.9317

U-Net 0.9520 0.9535 0.9397 0.8895 0.9337

Pix2Pix 0.9558 0.9495 0.9442 0.9009 0.9376

Resnet 0.9485 0.9452 0.9377 0.8238 0.9138

GAN
with
Resnet

0.9533 0.8551 0.9435 0.8727 0.9062

Deeplab
v3+

0.9284 0.8674 0.8457 0.8051 0.8617

MAnet 0.8941 0.8911 0.7993 0.8220 0.8516

Proposed 0.9548 0.9575 0.9466 0.9064 0.9413

AJI (Object
based)

FCN 0.8071 0.8941 0.7545 0.7977 0.8133

U-Net 0.8698 0.9112 0.7330 0.8008 0.8287

Pix2Pix 0.8582 0.9039 0.7713 0.8197 0.8383

Resnet 0.8922 0.8962 0.8827 0.7003 0.8429

GAN
with
Resnet

0.8876 0.7469 0.8796 0.7742 0.8221

Deeplab
v3+

0.8651 0.6822 0.7913 0.7348 0.7684

MAnet 0.8504 0.6876 0.8214 0.6176 0.7442

Proposed 0.8932 0.9169 0.8915 0.8288 0.8826

Throughput
rate (cells/
second)

183: Before marker-controlled watershed transform
153: After marker-controlled watershed transform
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AJI metric. Our method showed better performance in dividing overlapping RBCs
than other models (see Figure 16.6a–f ). As shown in Table 16.1, with our method,
AJIs were high for all RBC types used in the experiment and RBCs were well-
divided. Since there were a few overlapping RBCs among spherocytes and stoma-
tocytes, there was a small difference in the AJI evaluation compared to that of dis-
cocytes and echinocytes, as shown in Table 16.1. Comparison results with two
recent networks (DeepLab v3+ and MAnet, which are widely used for semantic
segmentation) also showed that our method provided the best results for segmen-
tation and classification of RBCs.
Moreover, our method is suitable for high-throughput screening applications. It

could classify around 183 RBCs per second. Its throughput for counting RBCs was
slightly lower (around 153 RBCs per second) due to computation of the marker-
controlled watershed transformation.

16.3.3 Automated Assessment of RBC Aging Markers

In this section, we will demonstrate how our image-based, deep-learning models
can perform an instant phenotypic assessment of RBC storage lesions, which has
the potential to lead to new efficient tools for safe transfusions and measurement
of stored RBC quality. To automatically identify any changes in RBC shape due to
storage, without computing any feature vectors such as PSA, MCH, or MCH sur-
face density in RBC phase images, we tested our trained models with datasets from
RBC samples stored for different periods (8, 13, 16, 23, 27, 30, 34, 37, 40, 47, and 57
days). These datasets contained more than 2500 RBCs across 11 storage durations,
with more than 200 blood cells for each storage duration. The total number of
phase images under all storage periods was 66 (6 for each of 11 classes).
Figure 16.7a–k show examples of the semantic segmentation and classification
results from RBC phase images with differing storage durations (8, 13, 16, 23,
27, 30, 34, 37, 40, 47, and 57 days) achieved with our model. Figure 16.8 shows
the accuracies of our trained model for classifying four RBC types (discocytes,
spherocytes, echinocytes, and stomatocytes) using all 66 RBC phase images.
Our model showed an accuracy of over 90% for all RBC classification types. In par-
ticular, the accuracy for discocyte and spherocyte classification was over 97%.
To see the trend of changes in the 3D morphology of RBCs as a function of stor-

age duration, we also applied our trained models to phase images of RBCs from
each storage duration for classification. Figure 16.9 shows the relationship
between the ratio of RBC types and storage duration of RBC samples. It demon-
strated that the dominant shape of RBCs began to change when stored longer than
40 days. Increased storage duration was strongly related to the transformation of
RBCs from discocytes to transitory echinocytes and finally to spherocytes. To con-
firm these classification results, we manually counted each RBC type for each
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Figure 16.7 Visualization of RBC segmentation and classification results achieved
with our deep-learning models. (a)–(k) Original RBC phase images and corresponding
segmentation and classification results with 8, 13, 16, 23, 27, 30, 34, 37, 40, 47, and
57 days of storage, respectively.

Figure 16.8 Confusion matrix of RBC type classifications for all 66 phase images
of RBCs stored across 11 storage periods.
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storage period. These two methods provided similar classification results with a
high concordance rate of over 95%.
Furthermore, our classification results were consistent with previous findings

showing that the dominant shape in RBCs changed as storage time increased
[2, 3, 33–35]. In this experiment, we developed a learning model to calculate
the percent of spherocytes in stored RBCs, which provided information about mor-
phological perturbation. Therefore, this method could be used to monitor cell dis-
tribution and assess stored blood quality.

16.4 Conclusions

We presented an approach for classification and segmentation of RBCs and
demonstrated the potential of this approach for assessing RBC storage lesions
for safe transfusion. Our model combined a GAN with marker-controlled water-
shed-segmentation method. Our approach obtained good segmentation and clas-
sification accuracy with a Dice coefficient of 0.94 and a high-throughput rate of
more than 152 RBCs per second. Ourmodel, with fewer parameters, outperformed
standard U-Net, FCN-VGG16, Pix2Pix, Resnet, GANs with Resnet generator,
DeepLab v3+, and MAnet models. Moreover, our deep-learning model identified
morphological changes that occur in RBCs during storage. We believe that our

Figure 16.9 Relationships between the ratios of RBC types and varied storage time
of RBC samples. Note that the dominant shape of RBCs started to change when the
storage time exceeded 40 days.
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deep-learning models can be applied to the automated assessment of RBC quality,
identification of storage lesions for safe transfusions, and identification of RBC-
related diseases.
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17

High-throughput Label-free Cell Counting with Deep
Neural Networks

17.1 Introduction

Previous chapters introduced a digital holographic microscopy (DHM) system to
reconstruct phase images of red blood cells (RBCs) using a numerical reconstruc-
tion method. This numerical reconstruction algorithm includes processes such as
spatial filtering, phase unwrapping, and numerical propagations of complex dif-
fraction waves. Since cell studies based on phase images need a numerical recon-
struction step, cell analysis may benefit from this new scheme that can completely
eliminate the numerical reconstruction step.
Reconstructed phase image can clearly reveal targets while those in the raw hol-

ogram are much more vague. The cell edge in the diffraction pattern recorded by
DHM is usually not clearly defined. Therefore, it may be difficult to perform cell
analyses based on a raw hologram using traditional image processing due to ambi-
guity of biological cells in the diffraction pattern. Fortunately, the diffraction pat-
tern recorded by DHM can be analyzed using deep neural networks, which do not
require defined specific features within the raw hologram. They can automatically
extract useful features according to the goal of the networks.
In this chapter, we will introduce the U-Net algorithm for cell detection and

counting using the DHM diffraction pattern [1]. The U-Net algorithm is an
end-to-end segmentationmethod that uses images as input and output. It can over-
come disadvantages of the CNN algorithm such as time consuming and difficulty
in patch size selection for pixel-based image segmentation. In addition, the U-Net
algorithm is invariant to the size of the input image while the CNN algorithm
requires a fixed-size input image. After the U-Net algorithm is trained, cell targets
inside the diffraction pattern are directly investigated without any numerical
reconstruction processing. Similar to U-Net, other fully convolutional neural net-
works (FCNs) such as the pyramid scene parsing network (PSPNet) [2] and
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Deeplab V3+ may also work for cell detection and counting in hologram images.
Figure 17.1 shows one hologram of RBCs and its corresponding reconstructed
phase images of RBCs.

17.2 Materials and Methods

17.2.1 U-Net Algorithm

The U-Net is a kind of deep FCN. It does not have any fully connected layers. Thus,
it can handle images of different sizes. Figure 17.2 shows U-Net’s structure for cell
detection and counting. Basically, there are convolution, rectified linear unit
(Relu) activation, up-convolution, max pooling, and concatenate layers in our
U-Net’s structure. The convolution layer extracts feature from the input image.

Figure 17.1 Hologram and phase image. Left: digital hologram of RBCs recorded by DHM.
Right: RBC phase image reconstructed from the digital hologram.

Figure 17.2 U-Net structure for cell detection and counting in diffraction pattern.
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It is a mathematical operation between two inputs such as image or feature map
and a kernel with learning parameters. The convolution operation can preserve
the spatial relationship among pixels and learn image features based on small
squares of input image or feature map [3]. The Relu activation is defined as
y =max(0, x), where x is the input image or feature, y is the output, and max()
is the maximum operation function. The Relu activation function is used to intro-
duce nonlinearity into the networks. Compared to the sigmoid activation function
in deep neural networks, the Relu activation function can alleviate the gradient
vanish problem during training [3]. The up-convolution layer is commonly used
in encoder-decoder architecture networks such as FCN and U-Net algorithms. The
up-convolution operation reconstructs the previous spatial resolution before per-
forming a convolution. It can be implemented using a combination of image
upscaling and convolution layer. The up-convolution layer also refers to as a
deconvolution layer or a transposed convolution layer [3, 4]. Max pooling layer
is one kind of pooling operation. It extracts the largest element from the rectified
feature map [3, 4]. Pooling layer in deep FCNs can reduce the dimensionality of
each feature map, which improves the network’s computation. Although the size
of the feature map is reduced in the max pooling layer, important feature informa-
tion can still be retained. To some extent, the max pooling layer can also make the
algorithm robust to perform a translation of the target in the input image. The con-
catenate layer is a utility layer that canmergemultiple featuremaps into one group
of feature map.
In Figure 17.2, single numbers such as 64 and 128 denote the number of feature

map in that layer, whereas a squared number like 3842 indicates the spatial size of
the feature map. In our U-Net algorithm, the diffraction pattern fromDHM is used
as the input image and the size used to feed the U-Net is 3842. The ground-truth
image is a binary image where the foreground represents target cells. The sigmoid
function is applied to the last layer of U-Net to ensure that each pixel in the output
image has a value between 0 and 1. The loss function is defined between the
ground-truth image and the U-Net output. Equation (17.1), which combines a soft
Dice coefficient and cross-entropy loss (logarithmic loss for the two classes case) L
is used to learn parameters in U-Net’s architecture using the back-propagation
algorithm [3, 4]:

L = 1−
N
i = 12 yiyi

N
i = 1 yi + yi

−
1
N

N

i = 1
yi log yi + 1− yi log 1− yi ,

17 1

whereN is the total number of pixels in the output map, yi is the true category of ith
pixel in the ground truth image, and yi is the probability of belonging to the
foreground category for the ith pixel in the output map from U-Net algorithm.

17.2 Materials and Methods 193



17.2.2 Multiple Cell Detection and Counting Procedure

There are two main steps for cell detection and counting in diffraction patterns: a
learning step and a prediction step. In the learning stage, the input is the diffrac-
tion pattern or raw hologram, and the output is a probability map. The output is
then compared to the ground truth image. Parameters in our U-Net are then
learned using a back-propagation algorithm based on the cross-entropy loss func-
tion. In the prediction phase, the output of our trained U-Net is considered the
prediction result for a new input diffraction pattern. We set the threshold value
at 0.5, indicating that the pixel is categorized into cells if the probability value
is larger than 0.5. Otherwise, the corresponding pixel is labeled as the background.
Before the learning starts, parameters of the U-Net in the encoder layer are initi-
alized with pre-trained VGGnetworks [3, 5] while the first layer and other layers in
the decoder part are initialized using the He initialization method [6]. During
training, input images are augmented to increase the training dataset and reduce
the over-fitting problem. Some augmentation methods are described in the data
preparation section.
Multiple cells were segmented from our U-Net model. We obtained a binary

image where the foreground represented cells. Before counting cells, the binary
mask image was processed using morphological opening operation where the
structuring element was a disk with a radius of 3 [7]. This morphological operation
could remove some small, isolated targets that might be noise while smoothing the
target edge. Moreover, we excluded these cells on the frame boundary whose area
was less than 40 pixels from both the ground truth and predicted image for cell
counting. The object in the processed binary image was then labeled. A unique
label was assigned to every pixel of each cell in the binary image. It could be easily
done using the connected-component labeling method [7]. After labeling, the
maximum value in the labeling image was the number of cells in the detected
image. It might also be a good idea to make cell-count processing a loss layer
and achieve cell detection and counting from the network directly. We only used
a post-processing method to automatically count cells from the algorithm output
in this study. Figure 17.3 shows the procedure for cell detection and counting using
our U-Net model.

17.2.3 Data Preparation

Holograms of RBCs were obtained from DHM. Although our model was based on
the diffraction pattern with a prediction that did not need reconstructed phase
images, we reconstructed phase images from the holograms for the purpose of
U-Net training and evaluation. The numerical reconstruction method was used
to reconstruct phase images with a size of 700 × 700 pixels, which corresponded
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to a field of view (FOV) of 100 μm× 100 μm. A biologist manually labeled 150
images for our model development. The labeling processing was based on recon-
structed phase images. Figure 17.4 shows a hologram of RBCs, a phase image of
RBCs, and the labeled image (ground truth).
Since deep-learning models have several hyper-parameters for training, such

as learning rate and weight decay, we split our dataset into training and val-
idation datasets for the purpose of hyper-parameter tuning and model evalu-
ation. The training dataset had 125 holograms and the validation dataset had
25 holograms. For the performance evaluation, the fivefold cross-validation
method was used based on the training dataset. All holograms (n = 150) were
obtained with DHM at 40× magnification. We also had 50 holograms that

Figure 17.3 Cell detection and counting procedure at the single-cell level using U-Net.

Figure 17.4 Illustration of (left) hologram, (center) reconstructed phase, and (right) labeled
ground-truth images [1] / SPIE / CC BY 4.0.
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included correspondingly labeled ground-truth images. These images were
obtained with DHM at 20× magnification. In addition, 70 bead holograms
were captured at 40× magnification. The original size of the diffraction pattern
obtained with DHM at 20× magnification was 700 × 700 pixels with a FOV of
200 μm× 200 μm. We used these datasets to test the generalization of our U-
Net model and compare prediction outputs using the training dataset at dif-
ferent magnifications.
Image normalization and augmentation were applied to each hologram before

feeding it to our U-Net model. Image normalization was done by subtracting the
mean value then dividing by the standard deviation. Bothmean and standard devi-
ation were computed from the training dataset. Image augmentation used during
training consisted of image cropping, resizing, translation, rotation, and flipping.
These augmentation methods were from a python package called imgaug [8].
Figure 17.5 shows some image augmentation examples. The hologramwas padded
with a zero value after resizing when it was smaller than 384 × 384 pixels. which
was the input size to our U-Net model.

17.2.4 Hardware and Hyper-parameter Configuration

Our U-Net model was trained on a server with 48 CPUs (Intel(R) Xeon(R) CPU E5-
2650), one P100 Nvidia graphics processing unit (GPU), and anUbuntu 16.04 oper-
ating system. Both training and prediction were based on GPU parallel computing.
The algorithm was implemented based on the Pytorch deep-learning framework
[9]. The batch size used in the learning step was four and the loss function, which
was a combination of a soft Dice coefficient and cross-entropy loss, was optimized
using a gradient-descent algorithm with momentum set at 0.9. The learning rate
was initialized as 0.01 and decreased by a factor of 10 every 30 epochs. L2 regular-
ization was used to reduce the over-fitting problem. Its value was set at 0.0001. The
number of epochs was set at 60.

Figure 17.5 Illustration of image augmentation. (a) Original image, (b) image resizing,
(c) image rotation, and (d) image flipping [1] / SPIE / CC BY 4.0.
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17.2.5 Evaluation Metrics

Several metrics were used to evaluate cell detection and counting. First, we used
accuracy, sensitivity, and Dice score coefficient (DSC) metrics. Sensitivity measures
the proportion of positive cases correctly identified as such. A high sensitivity rarely
overlooks an actual positive. The sensitivity within a predicted image is expressed as

Sensitivity =
TP

TP + FN
,

where TP is the true positive and FN is false negative pixels within the image. The
metric accuracy is the evaluation of all pixels within the image. It is defined as

Accuracy =
TP + TN

TP + TN + FP + FN
,

where true negative (TN) is the number of non-cells pixels that are correctly clas-
sified, and FP is the false positive. Accuracy is the percentage of correctly classified
pixels (both cells and background) out of the total number of pixels. The DSC is
defined as

DSC =
2TP

2TP + FP + FN
17 2

The DSC is also used to evaluate cell segmentation results. The performance
evaluation included two additional metrics: the Hausdorff distance (HD) and
the ninety-fifth percentile Hausdorff distance (95th HD) [10, 11]. They were cal-
culated by comparing binary objects in two images: the ground-truth image and
the predicted image. It was an indicator of the largest segmentation error. HD
was defined as the maximum surface distance between objects. It was calculated
between boundaries of the predicted segmentation and the ground-truth segmen-
tation. For two point sets X and Y (see Figure 17.6), the HD(X,Y ) was the longest
distance one had to travel from a point in one of the two sets to its closest point in
the other set. It was computed using the equation:

HD X ,Y = max hd X ,Y ,hd Y ,X ,

where hd X ,Y = max
x X

min
y Y

x− y 2, and hd Y ,X = max
y Y

min
x X

x− y 2 ||x − y||2

was the Euclidean distance between point x and y. Compared to the Hausdorff dis-
tance, the ninety-fifth percentile Hausdorff distance is slightly more stable to small
outliers and is commonly used in image segmentation. The smaller the value for
both HD and 95th HD, the better performance is indicated.
We additionally defined metrics for correctly counted and over-counted cell

metrics for to evaluate cell counting. If the centroid point of an isolated region
in the predicted image from U-Net was within the cell of the ground-truth image,
the cell was correctly counted. Otherwise, the cell was considered over-counted.
When centroid points of more than two isolated regions were found in the same
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cell in the ground-truth image, only one predicted isolated region was regarded as
correctly counted cell while others were considered over-counted cells (see
Figure 17.7). The throughput rate (the number of cells counted per second) was
also given. The higher the number, the better cell-counting performance. All these
metrics were measured using the fivefold cross-validation technique.

17.3 Experimental Results

Our U-Net model was trained using the fivefold cross-validation scheme based on
training data. Hyper-parameters were tuned based on the validation dataset.
DSC as defined in Eq. (17.2) was used to evaluate the U-Net model and tune

Figure 17.6 Illustration of the
Hausdorff distance between
point sets X and Y.

Figure 17.7 Illustration of different counted cell types. Dark grey = ground-truth cells;
grey circles = predicted cells Adapted from [1].
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hyper-parameters (learning rate and weight decay). We used the grid search
method to tune our model. Candidate values for learning rate and weight decay
during grid search were these empirical values. Table 17.1 shows varied values
of learning rate and weight decay with their corresponding best DSC values on
the validation dataset during U-Net learning.
As shown in Table 17.1, our U-Net model had the best Dice score value on the

validation dataset when the learning rate was 0.01 and the weight decay value was
0.0001. Therefore, the final U-Net model was trained based on learning rate and
weight decay with values of 0.01 and 0.0001, respectively. The fivefold cross vali-
dation was used for the performance evaluation. Hyper-parameters were tuned in
the first round of fivefold cross validation while the other four rounds used tuned
hyper-parameters in the first round. Figure 17.8 shows learning curves between
epoch numbers versus the loss and DSC values. As shown in Figure 17.8, the best
DSC value was achieved when the epoch number was 50. Thus, we used trained
parameters at epoch 50 to create the final model. The average execution time for

Table 17.1 DSC values from varied learning rates and weight decay.

Weight decay

Learning rate

0.01 0.001 0.0001 0.00001

0.01 0.9112 0.8788 0.8376 0.4053

0.001 0.9303 0.8626 0.8432 0.4244

0.0001 0.9321 0.8542 0.8468 0.3648

0.00001 0.9190 0.8800 0.8439 0.3325

Figure 17.8 Loss and Dice score values during algorithm training. (Left) Loss values for
training and validation datasets. (Right) Dice score values for training and validation
datasets [1] / SPIE / CC BY 4.0.

17.3 Experimental Results 199



the U-Net training with 50 epochs was 633.2311 seconds and the prediction time
for a 384 × 384 image was 0.1050 seconds. Computation time for both U-Net train-
ing and prediction are highly promising.
Our trained U-Net model was then evaluated using the fivefold cross-validation

technique. All holograms for model training were obtained from DHM at 40×
magnification. To test the performance of our trained model on holograms
obtained from different conditions, we also evaluated the trained U-Net model
on holograms obtained from DHM at 20× magnification and bead holograms at
40× magnification. Table 17.2 shows some metric values for holograms obtained
from 40× magnifications (125 RBC holograms in fivefold cross validation) or 20×
magnifications (50 RBC holograms in fivefold cross validation) and bead holo-
grams (70 bead hologram images in fivefold cross validation). The average and
standard deviation values from the fivefold cross validation are given in
Table 17.2. The total number of cells is the sum of correctly counted cells andmiss-
ing counted cells. It is equal to the number of cells in ground-truth images. To com-
pare the performances of different methods, the CNN algorithm in [12] for cell
counting from holograms was adopted. PSPNet, another famous algorithm, was
also included for the performance evaluation. All algorithm hyper-parameters
were tuned using the validation dataset. Figure 17.9 shows the loss values for both
CNN and PSPNet algorithms with one training and validation dataset. The initial
learning rate was 0.01 for the CNN and 0.001 for the PSPNet. The epoch number
was 60 for both CNN and PSPNet. The weight decay value was 0.0001 for both
CNN and PSPNet. The input image size for CNN algorithm was 80 × 80 and the
architecture was the same as that in [12] (see Figure 17.10). The mirroring method
was used for the patch extraction along the image border. The PSPNet architecture
is given in Figure 17.11. The input image size for PSPNet was 384 × 384. Resnet34
[13] was used as the encoder. All configurations about POOL, CONV, and UPSAM-
PLE can be found in [2]. Results from CNN and PSPNet algorithms are also
included in Table 17.2. The average training time was 8819.83 seconds for CNN
and 576.8960 seconds for PSPNet. For a 384 × 384 image, the average prediction
time was 36.8764 seconds for CNN and 0.0872 seconds for PSPNet. As expected,
FCN-based algorithms such as U-Net and PSPNet achieved much faster prediction
time than CNN algorithms for semantic segmentation because the FCN method
could automatically finish all pixel predictions in parallel. Throughput rates for
CNN and PSPNet algorithms for different datasets are also given in Table 17.2.
As shown in Table 17.2, the trained model worked well for holograms obtained

with DHM at 40× magnification where these holograms were identical to those
used in the U-Net training. However, the U-Net model trained from holograms
obtained with DHM at 40× magnification did not achieve good prediction results
for holograms obtained with DHM at 20× magnification or bead holograms
because the DSC value was low, and the number of over-counted cell was high.
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Table 17.2 Evaluation of models trained on holograms at 40× magnification.

Metrics

RBC hologram (40×)(mean/std) RBC hologram (20×)(mean/std) Bead hologram (40×)(mean/std)

CNN U-Net PSPNet CNN U-Net PSPNet CNN U-Net PSPNet

DSC 0.85/0.003 0.91/0.002 0.88/0.003 0.32/0.009 0.42/0.02 0.35/0.01 0.21/0.007 0.26/0.01 0.31/0.01

HD 20.90/6.25 14.88/5.51 17.37/4.35 50.48/3.36 43.55/6.93 35.74/7.42 105.17/11.13 79.55/7.4 105.8/5.9

Sensitivity 0.92/0.006 0.96/0.003 0.92/0.003 0.81/0.01 0.83/0.02 0.84/0.02 0.51/0.03 0.76/0.04 0.46/0.04

Accuracy 0.97/0.0004 0.99/0.0003 0.98/0.0005 0.90/0.003 0.92/0.003 0.94/0.002 0.93/0.0004 0.95/0.001 0.95/0.0006

Throughput
rate

0.37/0.01 125.4/4.65 148.71/6.6 1.04/0.08 430/27.14 405.73/33.69 0.93/0.04 422.47/47.05 305.96/22.83



The model’s performance decreased when the testing dataset was very different
from the training dataset. Results from Table 17.2 also revealed that U-Net and
PSPNet models produced very similar results. Both outperformed the CNNmodel.
Figure 17.12 shows some prediction results from the CNN, U-Net, and PSPNet
models for holograms obtained with DHM at 40× magnification, DHM at 20×
magnification, and bead holograms, respectively.
To further investigate models, we re-trained them. We added 50 holograms

obtained with DHM at 20× magnification and 70 bead holograms at 40× magni-
fication into the training dataset. The fivefold cross validation was used.

Figure 17.9 Loss values during training for (left) PSPNet and (right) CNN algorithms [1] /
SPIE / CC BY 4.0.

Figure 17.10 Illustration of the CNN architecture. FMs = feature map; RF = receptive field.

Figure 17.11 Illustration of the PSPNet architecture.
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The hyper-parameter was tuned using the validation dataset. Table 17.3 shows
some evaluation results. We found that model performances for holograms
obtained with DHM at 20× magnification and bead holograms greatly increased.
The performance for holograms obtained with DHM at 40×magnification was still
very good. Note that the performance of U-Net with holograms at 20× magnifica-
tion was worse than that with holograms at 40× magnification. The reason could
be a lack of holograms at 20× magnification in the training dataset because there
were 125 holograms at 40×magnification. However, there were only 50 holograms
at 20× magnification in the training dataset. The prediction performance for holo-
grams at 40×magnification was also better than that for bead holograms. One rea-
son could be a shortage of bead holograms (70 bead hologram images) used in the
training. Another reason could be target complexity in bead holograms because
the bead hologram included both focused and defused objects. Some beads were
located at a different focus distance than other beads. These focused and defocused
beads are shown in reconstructed phase images in Figure 17.13.
Figures 17.14 shows prediction results for input holograms at 40× and 20× mag-

nifications and bead holograms for CNN, U-Net, and PSPNet algorithms. Predic-
tion results in Figures 17.12a and 17.14a are very similar. However, results in
Figures 17.14b and 17.14c are much better than results in Figures 17.12b and
17.12c. Furthermore, both focused and defocused beads in the bead holograms

Figure 17.12 Illustration of prediction results. (a) RBCs at 40× magnification, (b) RBCs at
20× magnification, (c) bead holograms at 40× magnification. U-Net, PSPNet and CNN
algorithms were trained with data at 40× magnification [1] / SPIE / CC BY 4.0.
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Table 17.3 Evaluation of models trained on holograms from different sources.

Metrics

RBC hologram (40×)(mean/std) RBC hologram (20×)(mean/std) Bead hologram (40×)(mean/std)

CNN U-Net PSPNet CNN U-Net PSPNet CNN U-Net PSPNet

DSC 0.86/0.003 0.91/0.002 0.88/0.003 0.76/0.01 0.88/0.01 0.88/0.02 0.57/0.03 0.72/0.02 0.70/0.02

HD 17.85/4.27 13.17/4.32 15.44/3.85 25.85/9.43 23.08/8.96 22.32/8.17 78.76/6.4 43.51/6.81 51.09/9.38

Sensitivity 0.90/0.004 0.95/0.004 0.93/0.005 0.85/0.01 0.90/0.02 0.93/0.01 0.48/0.03 0.72/0.03 0.68/0.03

Accuracy 0.97/0.0003 0.99/0.0003 0.98/0.0007 0.96/0.0005 0.98/0.0004 0.98/0.001 0.94/0.0004 0.98/0.0003 0.95/0.0003

Throughput
rate

0.36/0.01 125.18/4.42 149.90/6.06 0.77/0.08 288.41/26.9 355.73/35.37 0.50/0.04 221.58/17.42 267.01/17.21



were detected when the algorithm was trained on hologram images obtained from
different sources. Regarding algorithms, both U-Net and PSPNet outperformed
CNN. These findings also imply that it is better to train a deep-learning model
using a training dataset that is similar to those used in the testing space. Our

Figure 17.13 Illustration of focused and defocused beads in bead holograms.
(Left) Bead hologram and (right) the corresponding reconstructed phase image with
some focused and defocused beads indicated [1] / SPIE / CC BY 4.0.

Figure 17.14 Illustration of prediction results. (a) RBCs at 40× magnification, (b) RBCs
at 20× magnification, and (c) beads at 40× magnification. U-Net, PSPNet, and CNN
algorithms were trained with holograms at 40× and 20×magnifications [1] / SPIE / CC BY 4.0.
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simulation results verified that deep FCNs could be used to detect and count cells
from holograms directly without needing phase image reconstruction. Therefore,
our algorithm can improve the efficiency of label-free detection and counting of
cells at the single-cell level. Additionally, our high-throughput cell counting
schemes at the single cell level may be further enhanced by increasing the image
FOV. Future studies are needed to see if deep FCNs may detect, count, and classify
biological cells in lower resolution holograms.
Cell detection and counting from diffraction patterns using deep FCNs can

avoid numerical reconstruction, which is complex and inefficient. We also expect
that results from diffraction patterns are comparable with those from recon-
structed phase images. Consequently, we tested our U-Net model using phase
images reconstructed from holograms obtained with DHM at 40× magnification.
The training procedure was identical to that used for diffraction patterns.
Table 17.4 shows fivefold cross-validation evaluation results for our U-Net model
trained with reconstructed phase images; results for our U-Net trained with
reconstructed phase images and diffraction patterns are very similar, indicating
that cell detection and counting from diffraction patterns can be feasible. In our
algorithm training, we applied an image augmentation method to increase the
training dataset and reduce the over-fitting problem. To show the importance
of image augmentation, we conducted U-Net model training without using
any augmentation. Figure 17.15 is a learning curve between epoch number ver-
sus loss and DSC value for our U-Net model without any image augmentation.

Table 17.4 Evaluation of UNet based on DHM at 40× magnification.

Metrics
RBC hologram (with
image augmentation)

RBC phase image (with
image augmentation)

RBC hologram (without
image augmentation)

DSC 0.91/0.002 0.92/0.003 0.86/0.003

HD 14.88/5.51 12.17/3.34 21.09/4.91

95th HD 4.30/1.24 3.00/0.75 10.21/2.23

Sensitivity 0.96/0.003 0.96/0.002 0.89/0.007

Accuracy 0.99/0.0003 0.99/0.0002 0.92/0.002

Correctly
counted cells

323.4/10.03 323.6/8.16 258.5/12.42

Over-
counted cells

5.8/2.18 4.3/1.28 14.1/3.57

Ground-
truth cell
number

328/11.84 328/11.84 328/11.84
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We noted that the performance for the training dataset became better with
increasing epochs while the performance for the validation dataset peaked
and then declined. It was a typical example of over-fitting where the model
learned the training dataset too well to be generalized to new data. Correspond-
ing evaluation results of our U-Net model without image augmentation are also
given in Table 17.4. Results showed that the performance was not as good as that
of U-Net with image augmentation during training.

17.4 Conclusions

We trained deep FCNs to detect and count cells directly from the diffraction pattern
recorded by DHM, a label-free imaging technique. Simulation results showed that
our model was capable of rapidly detecting and counting cells in holograms at the
single cell level. Our method can reduce the phase reconstruction step and greatly
improve the efficiency and convenience of analytical processing. Furthermore,
our model is an end-to-end training and prediction technique that can be applied
to an entire image and adapted to images of different sizes. Therefore, it avoids
the drawbacks of convolutional neural networks and enables a high-throughput
capability with a counting rate of more than 288 cells per second and a FOV of
200 μm× 200 μm. For cell detection and counting from the diffraction pattern, our
results also indicated that theU-Net algorithm could achieve very good performance
whenwe used holograms at 40×magnification. Our U-Net model outperformed the
CNNalgorithm in terms of accuracy and throughput rate. ThePSPNet achieved sim-
ilar results to U-Net, implying that other deep FCNs can also work for cell detection
and counting of DHM diffraction patterns. In the future, some explainable deep-
learning models could be used to address the black box feature of deep-learning

Figure 17.15 U-Net learning curve between (left) epoch numbers versus loss value
and (right) DSC values without image augmentation [1] / SPIE / CC BY 4.0.
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models.Wecanalsoapply explainablemachine-learningalgorithms suchasdecision
trees to features extracted fromdeep-learningmodels for cell detection and counting.
Webelieve ourdeep-learningmodel provides a promising tool for rapid cell counting
and applications in the field of hematology.
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18

Automated Tracking of Temporal Displacements
of Red Blood Cells

18.1 Introduction

RBCs, particularly spherocytes, may exhibit temporal displacement or movement
when their membranes are loosely attached to their substrates during sedimenta-
tion on a glass surface. In addition, RBCs investigated with time-lapse DHM may
undergo lateral displacement due to microscope drift. Consequently, it is inevita-
ble to develop a tracking algorithm to automatically investigate RBCs with tempo-
ral displacement or movement over time even though these RBCs are attached to a
coverslip (they show temporal displacement when their membranes are loosely
attached to a glass surface or due to microscope drift). By using a tracking scheme,
it is possible to quantitatively analyze temporal displacement and 3D morphology
of RBCs. This scheme may also be used in other studies like analyses of RBC fluc-
tuation since it can localize the same RBC in time-lapse sequences. In this chapter,
we will introduce a tracking algorithm to measure temporal movements of RBCs
along x and y axes. We will focus on RBCs attached to a coverslip with 2D
movements.
For cell tracking, there are several algorithms based on segmentation and track-

ing [1, 2]. These approaches first segment target objects and then establish the
association of segmented cells between successive frames. Segmentation-based
tracking algorithms need target objects to have a sharp border and the same object
in adjacent frames to share an overlapping area. Otherwise, it is difficult to obtain
accurate tracking results. Other types of cell-tracking algorithms are based on
object model adjustment [3–6]. These approaches attempt to optimize a parame-
terized model shape to fit the model of the targeted object in the previous frame.
Algorithms based on model adjustment such as snakes [3], level set [4], and mean-
shift [5, 6] are reported to successfully track cells. However, tracking algorithms
based on snakes and level set easily fail to provide an appropriate tracking outcome
when the target cell does not share a partial overlap with adjacent frames.
Although mean-shift-based algorithms do not have the aforementioned
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disadvantages, they take a long time to successfully search for the target cell when
the tracked cell’s positions in successive frames are widely separated. Further-
more, a mean-shift algorithm will fail to find the target cell in this situation
due to the presence of several similar cells within the search window and when
the scale or shape of the target cell changes quickly. To overcome these drawbacks,
many modified mean-shift algorithms have been presented [7, 8]. Most of them
aim to design robust kernels that are suitable for targets with a changing scale
and shape. A Kalman filter [9] has also been applied to improve the efficiency
of the mean-shift tracking algorithm. The Kalman filter can broadly reduce the
search time and increase the tracking accuracy of the mean-shift tracking algo-
rithm since it can predict the location of the target in the next frame. On the other
hand, it is difficult to obtain the measurement value when we only use a Kalman
filter to link the target cell.
In this study, we will combine the mean-shift method with the Kalman filter to

achieve the goal of RBC tracking [10]. The mean-shift algorithm has a reasonable
computational speed and a robust tracking performance when the image back-
ground is not complicated, and the target speed varies smoothly. It is also easy
to implement computationally. On the other hand, a Kalman filter can predict
the object position of future states and use a recursive method to estimate the tar-
get position, which can minimize the mean of the squared error when the process
and measurement noise are independent with a normal probability distribution.
For RBC tracking, the RBC target needs to be selected in the first frame. The Kal-
man filter is then applied to this RBC to predict the location of the RBC in the next
frame. Mean-shift then searches the RBC from the predicted target position. Con-
sequently, the search time can be dramatically decreased, and the tracking accu-
racy increased when the speed of the RBC is high or abruptly changes. Once the
mean-shift algorithm has reached convergence, the center point of the search win-
dow is used as a measurement value for the Kalman filter to estimate the position
of the tracked RBC. As a result, the velocity of the target RBC and the error covar-
iance of the Kalman filter can be updated for the next prediction. Since the scale,
shape, and direction of the target RBC may change during the capture stage of
DHM, conventional kernels used inmean-shift such as Gaussian or Epanechnikov
kernels [7, 11] may not be effective in modeling the RBC target, resulting in track-
ing failure. Accordingly, we designed a novel kernel adaptable to changes in RBC
scale, shape, and direction. The designed kernel is an ellipse that resembles the
shape of RBCs rather than a rectangle. Parameters such as lengths of major and
minor axes used to represent the ellipse must be extracted at each frame to renew
the kernel. Consequently, it is necessary to segment the tracked RBC to obtain
values of these parameters as well as RBC properties such as average optical path
difference (OPD) and projected surface area (PSA). To extract the target RBC after
tracking in each frame, we used the marker-controlled watershed-segmentation

210 18 Automated Tracking of Temporal Displacements of Red Blood Cells



algorithm (see Chapter 12 for more details) since the center point of the tracked
RBC could be treated as an internal marker and the expanded ellipse surrounding
the RBC could be regarded as an external marker. In other words, our tracking
method contributes to the determination of internal and external markers
required in the marker-controlled watershed algorithm. The marker-controlled
watershedmethod has the advantage of obtaining an isolated target, which is help-
ful for RBC feature measurement. It also has an acceptable speed (see Chapter 12).

18.2 Mean-shift Tracking Algorithm

The conventional mean-shift tracking method based on a color histogram distri-
bution has four basic steps [7, 11], which are described in this section.

18.2.1 Representation of Target Model

In the previous frame, the center point of the target is assumed to be x0. There are n
pixels within the target. The gray level of the target is divided intom bins. The color
histogram distribution within the target model region is denoted as follows [11]:

qb x0 = C
n

i = 1
k

xi − xo
h

2
δ b xi − b , b = 1…m, 18 1

where qb is the probability of the quantized histogram bin b in the target model,
b(xi) indicates the quantized histogram bin at point xi, k(x) means the kernel
function, namely a weighted function in which greater weight is assigned when
the pixel point is close to the center point, and h denotes the bandwidth of kernel
function k(x). Constant C is a normalized factor that satisfies m

i = 1qb = 1 and is
defined [11] as

C =
1

n
i = 1k

xi − xo
h

where δ(x) denotes a Kronecker delta function with the properties

δ x =
0 when x 0
1 when x = 0

18.2.2 Representation of a Candidate Target Model

In the current frame, it is assumed that the center point of the candidate target is y
and xi is the pixel position in the candidate target. The color histogram is quantized
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into m bins, which should be the same as the target model at the previous frame.
Similarly, the candidate target model is calculated [11] by

pb y = C2
n

i = 1
k

xi − y
h

2
δ b xi − b , b = 1…m, 18 2

where pb is the probability of component bin b in the candidate target model. Defi-
nitions for other notations are the same as those in Eq. (18.1) [11]. Consequently,
target and candidate target models are described as vectors qb = q1…qm , and
pb = p1…pm , respectively.

18.2.3 Similarity Measurement Based on Bhattacharyya Coefficient

Once target and candidate target models are extracted, the similarity between the
two models should be calculated. The purpose of target tracking is to find the best
candidate target that can maximize the similarity. Usually, the similarity between
these models is obtained by computing the distance as [11]

dist = 1− ρ pb y , qb x0 , 18 3

where ρ[ ] is the Bhattacharyya coefficient between target and candidate models,
which is defined as [10]

ρ pb y , qb x0 =
m

b = 1
pb y qb x0 18 4

The geometry meaning of the Bhattacharyya coefficient indicates the cosine
value between two unit vectors. It can be used for comparing similarity between
different vectors.

18.2.4 Target Localization

The distance between two models is minimized in Eq. (18.3) in the same manner
that it is maximized in Eq. (18.4). First, the target search process in the current
frame starts from the center point of the target in the previous frame. This point
is denoted as point y0. The candidate target model is computed as pb = y0 in the
current frame. Then ρ pb y0 , qb x0 is measured to achieve a maximum value.
ρ pb y0 , qb x0 can be approximated according to the following equation by
unwrapping a Taylor series to pb y0 and omitting high-order items [11]:

ρ pb y , qb x0 ≈
1
2

m

b = 1
pb y0 qb x0 +

1
2

m

b = 1
pb y0

qb x0
pb y0

18 5
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Using Eq. (18.2), we can rewrite Eq. (18.5):

ρ pb y , qb x0 ≈
1
2

m

b = 1
pb y0 qb x0 +

C2

2
N

i = 1
wik

xi − y
h

,

18 6

where wi is defined by wi =
m
b = 1

qb x0
pb y0

δ b xi − b

Since the first term in Eq. (18.6) is not related to the center point of the potential
candidate target, only the second term in Eq. (18.6) needs to be maximized to
obtain the smallest distance in Eq. (18.3). In fact, the second term in Eq. (18.6)
is the probability density estimation in the current frame. The new center point
yj + 1 of the candidate target can be acquired by a recursion calculation from posi-
tion yj [11]:

yj + 1 =

n
i = 1xiwig

xi − yj
h

2

n
i = 1wig

xi − y0
h

2
,

where g(x) = −k (x). When yj + 1 − yj is smaller than a predefined threshold, the
recursion can be stopped, and the final position yj + 1 can be used as the center
point of the candidate target in the current frame.

18.3 Kalman Filter

The Kalman filter is a mathematical method to combine the predicted value
obtained using data from the previous time step and the measurement value of
the current time step to obtain an optimal a posteriori estimated value that can
minimize the a posteriori error covariance. The Kalman filter is successfully used
in many applications such as automation, military technology, space, and assisted
navigation [9, 12].

18.3.1 State Space and Measurement Model

The state space and the measurement model for the discrete Kalman filter are
defined [9] by

xk = Axk− 1 + Buk− 1 + wk− 1, 18 7

and zk = Hxk+ vk, respectively. In the above state space and measurement model

equations, x �n indicates the state variable vector, subscripts k and k − 1
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represent the time of the vector, z �m denotes the measurement variable vector,

u �l indicates the input vector in the system, A denotes an n × nmatrix, which
can form a relation between the state variable at the previous time instant and that
of the current time instant, B refers to an n × l matrix relating the input vector to
the state variable,H denotes anm× nmatrix, which relates the state variable to the
measurement variable, while w and v represent process and measurement noise,
respectively. They are assumed to be independent. In addition, w and v follow a
normal probability distribution [9]: p(w) N[0, Q], p(v) N[0, R], where Q and
R denote process and measurement noise covariance, respectively. These noises
may vary over time. They are usually assumed to be constant. In this study, Q
and R were also assumed to be constant. After the state space and measurement
are successfully modeled, the Kalman filter algorithm can be applied to them. In
this study, the position and velocity information of the target RBCwere reflected in
the state variable vector.

18.3.2 Kalman Filter Algorithm

The Kalman filter algorithm has two main steps: a prediction step (time update)
and a correction step (measurement update). The prediction step can be expressed
with the equations [9]:

xk = Axk− 1 + Buk− 1, 18 8

and

p−
k = Apk− 1A

T + Q, 18 9

where p−
k = E xk − xk xk − xk

T
is an a priori estimate error covariance and

pk = E xk − xk xk − xk
T is a posteriori estimate error covariance. At this step,

the a priori estimate of the state variable vector xk and the a priori estimate error
covariance p−

k are computed from time step k − 1 to step k. These estimates are
then used at the second step-correction step, which is expressed with the
equations [9]

Kk = p−
k HT HP−

k HT + R
− 1

, 18 10

xk = xk + Kk zk −H xk , 18 11

and

Pk = I −KkH P−
k , 18 12

where Kk is the Kalman gain used to minimize the a posteriori estimate error
covariance pk. At this step, the Kalman gain [Eq. (18.10)] is calculated with the
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predicted value obtained in the previous step. The a posteriori state estimate of the
state variable xk is then corrected with the Kalman gain. Finally, the a posteriori
error covariance Pk is generated for use at the prediction step in the next time
instant. The equations within these two steps [Eq. (18.8) to Eq. (18.12)] are recur-
sively called. As a result, the Kalman filter can track a target effectively because it
only needs to store the data from the previous step. The process of the Kalman
filter algorithm is illustrated in Figure 18.1 [9].

18.4 Procedure for Single RBC Tracking

18.4.1 System State Modeling

Before RBC tracking, we need to model the state of the system. The input vector
uk− 1 in Eq. (18.7) is set at 0 since there are no input data. The center point and
velocity of the RBC are used as tracking parameters in the Kalman filter. The state

variable vector in this RBC tracking system is expressed by xk = ckxc
k
yv

k
xv

k
y , where

ckxc
k
y is the center point of the tracked RBC at time k along x and y directions;

vkx and vky denote the velocity of the tracked RBC in x and y directions at time k,

respectively. In each time step, the velocity is different. vkx and vky are defined by

vkx =
Ck
x −Ck− 1

x

Δt
, vky =

Ck
y −Ck− 1

y

Δt
, 18 13

Figure 18.1 Flow diagram of the Kalman filter algorithm.
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where variable Δtmeans the interval time between two frames. Here, the interval
time Δt is 0.05 seconds. Other parameters in this system are modeled by

H =
1 0 0 0

0 1 0 0
, 18 14

A =

1 0 0 05 0

0 1 0 0 05

0 0 1 0

0 0 0 1

, 18 15

R =

r 0 0 0

0 r 0 0

0 0 r 0

0 0 0 r

, 18 16

and

Q =

q 0 0 0

0 q 0 0

0 0 q 0

0 0 0 q

18 17

After modeling the system, the next step is to use these matrices in the Kalman
filter and combine them with the mean-shift algorithm to predict and track the
target RBC.

18.4.2 Kernel Design in Mean-shift Algorithm

Because the shape, direction, and scale of RBCs can change over time, the kernel
used in the conventional mean-shift algorithm is not robust enough to track the
changed target without an update operation. In this case, it is easy to lose the target
RBC during tracking since the target histogram obtained by this kernel is not cor-
rect. Therefore, we designed a novel kernel that is adaptive to changes in RBC
scale, shape, and direction to better cover the target and establish its intensity his-
togram. A single RBC is approximately elliptical in shape and tends to be a circle,
so an ellipse-like kernel can generally cover the target RBC. We can define the ker-
nel for RBC tracking in the mean-shift algorithm as

k x, y, a, b, θ =
1

2πab
× exp −

xcosθ + ysinθ 2

2a2
+

ycosθ− xsinθ 2

2b2
,

18 18
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where (x, y) is a point within the ellipse kernel, a and b are lengths of major and
minor axes, respectively; θ is the angle between the x-axis and the major axis of
the ellipse kernel. These parameters of the ellipse kernel are shown in
Figure 18.2.

18.4.3 Single RBC Tracking with Mean-shift Algorithm
and Kalman Filter

The process of RBC tracking with mean-shift algorithm and Kalman filter is
described as follows:

Step 1: Select a single target RBC in the first frame. It can be manually or auto-
matically obtained using motion detection methods [13, 14]. The target RBC
is then segmented to calculate its center point and kernel parameters for track-
ing. Once the region of the target RBC is determined, extract the isolated RBC
using the marker-controlled watershed algorithm since both internal and exter-
nal markers can be easily obtained.

Step 2:With the center point of the target RBC extracted in the current frame, the
predicted center point in the next frame is obtained using the Kalman prediction
process. Before we use the Kalman filter, the process noise covariance (Q) and
the measurement error covariance (R) should be initiated. These values can be
calculated by tracking a series of RBC images manually. Q and R indicate the
covariance matrix of prediction and observation errors, respectively. The veloc-
ity of the target RBC is also initiated. It is initially set to 0 because it can be
updated once the RBC is successfully tracked in the next frame. The estimate
error covariance P0 must be initiated with a value that does not equal 0 [9, 12].

Step 3:Mean-shift starts to search for the RBC from the center point predicted by
the Kalman filter in Step 2. After the mean-shift reaches convergence, the con-
verged point is considered themeasurement value in the Kalman filter. The Kal-
man correction procedure is then executed to obtain the estimated center point

Figure 18.2 Illustration of ellipse
kernel parameters.
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of the RBC and the estimate error covariance is updated accordingly. The speed
of the target RBC in Eq. (18.13) is updated and used in the next Kalman predic-
tion procedure.

Step 4: The tracked target RBC is segmented using the marker-controlled water-
shed algorithm (see Chapter 12) with the estimated center point. Corresponding
ellipse edge and parameters shown in Figure 18.2 are computed to update the
ellipse kernel. Meanwhile, target RBC properties such as velocity, motion, mean
OPD, and PSA are dynamically observed and measured.

Step 5: Repeat the operation from Steps 2 to 4 until the tracking is complete.

18.4.4 Segmentation of a Single RBC

After the target RBC is tracked, it is segmented to obtain the parameters of the
kernel and compute properties of the target RBC. The center point of the RBC
is treated as an internal marker and the expanded ellipse edge is considered an
external marker. Correct determinations of internal and external markers depend
on the success of RBC tracking. Once internal and external markers are appropri-
ately identified, themarker-controlled watershedmethod is applied to segment the
target RBC. Kernel parameters such as a, b, and θ in Eq. (18.18) are calculated and
used to update the kernel for RBC tracking in the next frame. Furthermore, RBC
properties including OPD, PSA, MCH, MCH surface density, volume, and RBC
fluctuation rate can be measured with the segmented RBC. In this study, we dem-
onstrate that our tracking method can be used for the dynamic analysis of an RBC
image sequence obtained with time-lapse DHM. The procedure for our RBC track-
ing algorithm based on the combined mean-shift and Kalman filter models is illus-
trated in Figure 18.3.

Figure 18.3 Procedure for single RBC tracking.
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18.5 Experimental Results

OPD images of RBCs are reconstructed from the holograms recorded by DHM
using digital reconstruction methods (see Chapter 5). Some OPD images of RBCs
are shown in Figure 18.4.
The RBC target is manually identified in the first frame. The selected target RBC

is then tracked using our tracking method, which combines the Kalman filter with
mean-shift using the ellipse-like kernel defined in Section 18.4. Experimental
results show that our method could successfully track a target RBC. Figure 18.5
shows the tracked target RBC in multiple frames. Consequently, the velocity of
the target RBC is updated with Eq. (18.13) using the estimated center point of
the target RBC in each frame. Figure 18.6 shows the velocity of the tracked
RBC. We noted that there was a lateral movement of the target RBC, possibly
due to a loose substrate attachment or microscope drift in the RBC OPD image
sequence. The trajectory of the target RBC after tracking is also shown in
Figure 18.7. Note that the total travel distance of the tracked RBC was approxi-
mately 23.30 μm in 10 seconds.

Figure 18.4 RBC’s OPD images in (a) frame #1, (b) frame #100, and (c) frame #200
[10] / with permission of Optical Publishing Group.

Figure 18.5 Tracked target RBC in (a) frame #1, (b) frame #100, and (c) frame #200
[10] / with permission of Optical Publishing Group.
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Figure 18.6 Velocity of target RBC along the (a) x-axis and (b) y-axis within 10 seconds.

Figure 18.7 Motion curve of the target RBC. The total length of the RBC trajectory is about
23.30 μm in 10 seconds.
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The next step is to segment the tracked RBC with the marker-controlled water-
shed algorithm to obtain RBC properties and update ellipse-like kernel para-
meters. The segmented target RBC in a different frame is shown in Figure 18.8.
The target RBC’s biophysical properties are computed with the segmented RBC
after tracking. This method allows clinical parameters of RBCs, particularly its
membrane fluctuations, to be dynamically analyzed, which could be beneficial
for testing potential therapies and analyzing RBC-related diseases. Computed fea-
tures, including OPD and PSA, based on tracked RBC are shown in Figure 18.9.
Parameters of the ellipse-like kernel are updated simultaneously.
Previous simulation results showed that our method could successfully track

spherocyte RBCs. To illustrate that our algorithm could also work for other
RBC types, Figure 18.10 shows tracking results for a discocyte RBC. The trajectory
of the discocyte RBC is given in Figure 18.11. Note that the movement direction or
behavior of a spherocyte RBC (see Figure 18.7) is different from that of a discocyte
RBC (see Figure 18.11). In our tracking algorithm, each target has its own model

Figure 18.8 Segmented target RBC in (a) frame #1, (b) frame #100, and (c) frame #200 [10] /
with permission of Optical Publishing Group.

Figure 18.9 Properties of the target RBC: (a) Mean OPD and (b) PSA.
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which is presented by Eq. (18.1) so that each object is tracked using its own model.
We can also track multiple RBCs when multiple models are designed before track-
ing. Therefore, our tracking algorithm can be applied to all RBCs in the field
of view.
To evaluate the accuracy of estimated target RBC positions with our tracking

algorithm, centroid points of the target RBC were calculated in time-lapse

Figure 18.10 Tracked target discocyte RBC in (a) frame #1, (b) frame #100, and (c) frame
#200 [10] / with permission of Optical Publishing Group.

Figure 18.11 Motion curve of the target discocyte RBC. Total length of the trajectory of
this tracked discocyte RBC is about 16.22 μm in 10 seconds.
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holographic images. These centroid points were then used as ground-truth values
for comparison. The MSE between estimated RBC positions and measured cen-
troid points from segmented target RBC was calculated in both x and y axes. Four
RBCs randomly chosen from time-lapse holographic images were used as tracking
targets. The correspondingMSEwas then computed. Estimated RBC positions and
measured centroid points for four target RBCs are shown in Table 18.1. Here,
10 position values are presented, although there are a total of 200 frames in
time-lapse OPD images. MSEs between estimated RBC positions and calculated
centroid points in x and y axes are also given in Table 18.1. We found that the

Table 18.1 Comparison of RBC position measurements.

Cell 1 Cell 2 Cell 3 Cell 4

Estimated RBC
positions with our
tracking algorithm

(12.33,35.33) (58.75,53.86) (26.29,27.64) (56.76,14.76)

(12.35,35.75) (58.70,54.27) (26.02,27.46) (56.82,14.69)

(12.67,35.84) (58.96,54.20) (25.70,27.12) (56.91,14.71)

(12.75,35.77) (59.10,54.24) (25.60,26.85) (56.77,14.73)

(13.11,35.79) (59.44,54.28) (25.89,27.15) (56.85,14.73)

(13.32,35.29) (59.65,53.62) (25.26,27.80) (56.93,14.85)

(12.90,35.38) (59.29,53.89) (24.75,27.66) (56.98,14.86)

(13.10,35.20) (59.39,53.59) (24.96,27.86) (56.90,14.85)

(13.23,34.74) (59.42,53.07) (24.47,28.07) (56.74,14.81)

(13.52,34.34) (59.22,52.72) (24.57,28.17) (56.75,14.90)

Calculated centroid
points of the target RBCs

(12.09,35.34) (58.74,53.70) (25.96,27.28) (57.11,14.33)

(12.31,36.27) (58.75,54.34) (25.66,27.60) (57.14,14.37)

(12.55,35.65) (58.92,54.00) (25.69,26.70) (56.94,14.37)

(12.59,35.72) (59.01,54.02) (25.69,26.78) (56.84,14.35)

(12.92,36.12) (59.48,54.32) (25.79,27.32) (56.87,14.69)

(13.01,35.03) (59.26,53.51) (25.39,27.34) (57.11,14.79)

(12.63,35.54) (58.94,53.58) (24.98,27.67) (57.10,14.31)

(12.96,34.86) (59.33,53.41) (25.64,27.62) (56.92,14.79)

(13.25,34.53) (59.46,53.02) (24.81,28.19) (57.13,14.74)

(13.56,34.40) (59.20,52.61) (24.18,28.09) (56.81,14.77)

MSE 0.0587 μm2

(in x-axis)
0.0543 μm2

(in y-axis)

0.0454 μm2

(in x-axis)
0.0375 μm2

(in y-axis)

0.0546 μm2

(in x-axis)
0.0496 μm2

(in y-axis)

0.0545 μm2

(in x-axis)
0.0624 μm2

(in y-axis)
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MSE for each of the four target RBCs was very small. The average MSE was
0.05330 μm2 along the x-axis and 0.05095 μm2 along the y-axis. Root MSEs were
0.230 μm and 0.226 μm along the x- and y-axis, respectively. Considering that
the pixel resolution was 0.155 μm, our tracking algorithm’s inaccuracy was less
than 2 pixels along both x and y axes. These experimental results demonstrate that
our tracking method can measure the temporal displacements of RBCs with high
precision and accuracy.

18.6 Conclusions

We presented amethod to track a single RBCwith temporal displacements in OPD
images obtained by time-lapse DHM using the integration of a Kalman filter and
the mean-shift algorithm. The Kalman filter was used to predict the position of the
target RBC in the next frame to increase the efficiency of the mean-shift method.
Moreover, an ellipse-like kernel adaptive to changes in RBC scale, shape, and
direction was designed to establish the target model for mean-shift tracking. It
greatly reduced the effect of background during mean-shift tracking. The tracked
RBC was segmented using a marker-controlled watershed algorithm to obtain the
isolated target RBC. After segmentation, parameters of the ellipse-like kernel were
recursively updated. Moreover, we demonstrated that the OPD value of RBCs with
temporal displacements could be dynamically computed. Our tracking method
could be used for the quantitative analysis of RBC membrane fluctuation or
dynamics to understand RBC-related diseases.
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19

Automated Quantitative Analysis of Red Blood
Cell Dynamics

19.1 Introduction

Mature erythrocytes, or discocytes, are the main type of RBCs in blood circulation.
Their biconcave shape and associated deformability are essential functional fea-
tures. Their exceptional ability to deform, particularly when passing through nar-
row capillaries during microcirculation, is caused by this structure, which
corresponds to the highest surface area for a given volume. Cell-membrane fluc-
tuations (CMFs) exhibited by RBCs reflect their ability to deform. However, the
exact mechanism(s) of CMFs remain unclear. Considering that CMFs reflect
the biomechanical properties of RBCs, it is important to study the evolution of
CMFs over time within the discocyte subpopulation of RBCs. Indeed, it was
reported that during their transformation into temporary echinocytes and finally
spherocytes, RBCs show a significant CMF decrease [1, 2].
In previous chapters, we showed that DHM systems could measure the morpho-

logical properties of discocyte RBCs, including PSA, surface area, sphericity
coefficient, and two clinical cell parameters (MCH and mean corpuscular volume
[MCV]) at the single cell level. In this chapter, we will introduce automated meth-
ods to measure quantitative fluctuation rates at the single RBC level as a function
of their storage time using time-lapse DHM [3]. We will also analyze both the ring
and dimple areas of RBC separately. Quantitative phase images were acquired
every few days over a 71-day period to systematically analyze alterations in
RBC parameters over their storage time.
Our quantitative analysis revealed some interesting findings. First, we found

that older discocytes (stored for 71 days) exhibited more apparent stiffness than
younger ones (stored for 4 days). In particular, the fluctuation rate in the dimple
area was greater than that in the ring section of younger RBCs. Moreover, the
MCV, MCH, PSA, and surface area did not change significantly during these time
intervals. Interestingly, we found that the CMFs of a whole cell (RBCs stored for
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4 days) showed a significant negative correlation with the sphericity coefficient,
indicating that the more that RBCs transition to a spherocyte shape, the less fluc-
tuation they exhibit. In contrast, dimple fluctuations showed a significant positive
correlation with the sphericity coefficient.

19.2 RBC Parameters

19.2.1 Cell Thickness

RBC thickness images can be computed using DHM phase images of RBCs using
the equation

h x, y =
λ × ϕ x, y

2π nRBC −nm
, 19 1

where h(x, y) is the RBC thickness, and nRBC and nm are refractive indices of the
RBC and HEPA buffer, respectively. The value for nRBC is obtained using the
decoupling technique [4, 5], which was reported to be 1.418 ± 0.012 for a sphero-
cyte population. The refractive index of HEPA (1.3334 ± 0.0002) is measured at
room temperature with an Abbe-2WAJ refractometer.

19.2.2 Membrane Fluctuation Rates

To calculate the fluctuation rate, we defined a region of interest (ROI) and two
independent variables: (i) std(hcell + hbackground), the temporal deviation within
the RBC area (combining both the cell fluctuations and noise), and (ii) std
(hbackground), the mean temporal deviation calculated over all pixels located outside
the RBC area (see Figure 19.1). Measured STDs for one pixel outside the cell
(Figure 19.2 point “A”), on the ring (Figure 19.2 point “B”), and at the center
(Figure 19.2 point “C”) were 17, 42, and 29 nm, respectively, indicating that
membrane fluctuation amplitudes were significantly larger than background noise
level (see Figure 19.2). Accordingly, fluctuations at each pixel CMF(x, y) can be
calculated using the following equation [6]:

CMFcell x, y = std hcell + hbackground x, y
2
− std hbackground

2

19 2

Chapter 18 showed that RBCs occasionally displayed significant lateral displa-
cements in time-lapse sequences due to lose attachment of the cell to substrate
(only a small part of the membrane is in contact with the substrate). Such cases
also exhibited strong CMF changes. We removed these lateral displacements using
ImageJ [7] software and the StackReg [8] plugin. Another point of concern was the
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Figure 19.1 Distribution of temporal deviations within an ROI. The left-side distribution
represents the background, and the right side corresponds to the RBC area (cell membrane
and noise together).

Figure 19.2 Thickness signals and standard deviations (STD) of the changes in three
regions recorded at 20 Hz over a 10 s period. Standard deviations for the “A” (background
location), “B” (on the cell ring), and “C” (in the dimple region) signals are 17, 42, and 29 nm,
respectively [3] / with permission of Optical Publishing Group.
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steep membrane gradient at the RBC border and around the center, where a small
lateral displacement of the RBC membrane had a strong impact on the thickness
measurement because the thickness was along the z-axis (blue vector in
Figure 19.3b). To avoid overestimation of cell fluctuations in such steep-slope
areas, cell fluctuations should be evaluated in a direction perpendicular (normal)
to the RBC membrane (green vectors in Figures 19.3a and 19.3b). Finally, normal
fluctuations can be estimated as follows:

hn x, y = h x, y × cos θ x, y 19 3

To calculate θ, normal vectors at each vertex of the RBC mesh were measured
(see Figure 19.3a). To do so, a bicubic fit of data in x, y, and z axes was performed.
Diagonal vectors were then calculated and crossed to form the normal at each ver-
tex. Finally, θ is computed by:

θ i, j = arctan
Nz i, j

N2
x i, j + N2

y i, j
, 19 4

where Nx(i, j), Ny(i, j), and Nz(i, j) are the normal for pixel (i, j) in the x, y, and z
directions, respectively.
The deviation map of the RBC is obtained by Eq. (19.2). std(hcell + hbackground)

(x, y), the temporal deviation within the ROI that combines both RBC fluctuations
and noise, is then calculated. We also computed the average value of std
(hbackground), which was the temporal deviation of all pixels outside the RBC’s
projected area. These two computed values were substituted into Eq. (19.2) and
the resulting map evaluated. CMFs of the whole RBC, dimple, and ring are
averages of CMF(x, y) over the projected area of the whole RBC, dimple, and ring,
respectively. We used binary masks to analyze the ring and dimple parts of RBCs

Figure 19.3 (a) RBCmeshwith normal vectors. (b) x-z view of themembrane surface and its
normal vector [3] / with permission of Optical Publishing Group.
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separately as well as isolate the ROI background area. Masks were generated by
applying thresholding and a binary operator to implement an erosion effect (of
a few microns). The CMF amplitudes of the whole membrane, ring, and dimple
were 35 ± 4.7 nm (in agreement with a previously reported value [6]), 35 ±
5.2 nm, and 36 ± 5.3 nm, respectively (n = 33, 4 days, see Figure 19.4).
Biconcave and spherocyte morphologies can be separated using sphericity coef-

ficients (stomatocytes are removed from the biconcave set). The sphericity coeffi-
cient k is the ratio of the RBC thickness hc at the cell center to the thickness ht at a
radius that is halfway to the cell perimeter [9]:

k =
hc
ht

19 5

A threshold value of kt = 0.97 was assigned to distinguish biconcave cells from
spherocytes and echinocytes. After making two masks to isolate the cell and back-
ground by applying a proper threshold and several image processing techniques,
we calculated the PSA of the RBC. The RBC radius can then be evaluated with

r
PSA
π

, 19 6

where PSA is defined by

PSA = Np2, 19 7

where N is the total number of pixels that make up the RBC projected area result-
ing from the image segmentation algorithm, and p is the pixel size in the phase
image (0.142 μm). Using r, we can choose candidate pixels that are likely to be
close to the ring section (blue points in Figure 19.5). Since the above procedure
could not identify points located precisely on the ring section, we sought the pixel
with the greatest thickness value near each candidate pixel (within an area of size

Figure 19.4 Deviation map of the (a) ring and (b) dimple sections of a 4-day-old RBC as
well as (c) the background. Color-bar scale is in nanometers [3] / with permission of Optical
Publishing Group.
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3 × 3 pixels). Finally, ht was defined as the arithmetic average of the heights for all
these updated points (red points in Figure 19.5). The single green point (hc) was the
center of the bounding box of the projected area of RBC on the x–y plane. After
image segmentation and thresholding to binarize the RBC projected area, the
binary result was bounded with a rectangle. The center of the bounding box
was a quick estimation of the center of the RBC projected area.

19.2.3 Morphological- and Hemoglobin-related Parameters

For correlation analysis, we considered morphological parameters such as the
MCV, PSA, surface area, sphericity coefficient, and MCH. The RBC volume at
the single cell level in the thickness image can be expressed as

V p2
i, j Sp

h i, j , 19 8

where h(i, j) is the thickness value at pixel (i, j) and Sp is the RBC projected area.
The thickness summation is achieved over all pixels (i, j) of Sp. To measure the
RBC surface area, we used the method described in Chapter 13.
The RBCMCH can bemeasured by calculating the dry mass of RBCs since RBCs

are mainly composed of hemoglobin [4, 10]:

MCH =
10ϕSPλPSA

2παHb
, 19 9

Figure 19.5 Blue points show those points obtained using r. Red points are the maximum
values within a range of 3 × 3 pixels from blue points. The green point is the geometric
center of the cell obtained by finding the geometrical center of the bounding box on the
projected area or RBC [3] / with permission of Optical Publishing Group.
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where ϕSP is the mean phase value of the RBC projected area and αHb = 0.00196
dl/g is a constant known as the specific refraction increment, which is related to
protein concentration.

19.3 Quantitative Analysis of RBC Fluctuations

In our correlation analysis, we computed the Pearson product–moment correla-
tion coefficient and conducted a t-test with a 95% confidence level [11]. Error bars
shown in the plots represent twice the corresponding STDs. Numbers written after
a ± sign are STDs.
The impact of the number of storage days was assessed bymeasuring fluctuation

rates, morphological parameters, and MCH over time. In this study, more than
32 RBCs were extracted from each image (four blood samples) to measure these
parameters. We also found a small increase in the sphericity coefficient, indicating
that cells were becoming more spherical, less flexible, and stiffer [9], which could
also affect the fluctuation rate. Specifically, the sphericity coefficient increased
from 0.74 ± 0.09 for 4-day-old RBCs to 0.79 ± 0.12 for 71-day-old RBCs, consistent
with reported values [9]. In the case of older RBCs, the STD of the sphericity coef-
ficient was significantly larger (± 0.12). It illustrates the early stage of the gradual
discocyte-spherocyte transformation process. In contrast, the MCH did not change
significantly over the storage time. It only fluctuated around its average value of 32
± 0.6 pg (see Figure 19.6), consistent with previous reports [5, 9]. Moreover, MCH
was in agreement with the value obtained with Sysmex KX-21 (see Figure 19.6).
This constancy demonstrates that while biconcave RBCs undergo morphological
changes during storage, they do not leak their hemoglobin contents into the stor-
age solution.
The CMF amplitude fluctuated over the storage time. However, the overall trend

of CMF amplitudes as a function of storage time for the whole RBC, ring, and cen-
ter decreased (F-statistics suggested that the linear regression line had a slope sig-
nificantly different from zero, p-value <0.05), consistent with previous findings
[12]. Our experimental results showed that RBC membranes stiffened as storage
time increased, in agreement with reported decreases in flexibility [12, 13].
According to Figure 19.7, the fluctuation amplitude at the dimple area was gener-
ally larger than that in the ring region of 4-day-old RBCs (p < 0.05; two-sample
Kolmogorov–Smirnov test), in agreement with previous findings [5].
Figure 19.8 shows the results of a correlation analysis of fluctuation amplitudes

for the whole membrane and dimple of 4-day-old RBCs (n = 33) as functions of
morphological and MCH parameters. The ring section exhibited the same trend
as the whole membrane, so we excluded these results from our correlation analysis
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Figure 19.6 MCH level changes versus storage time. Dark grey points are MCH levels
obtained with a Sysmex KX-21 hematology analyzer; grey points are MCH levels obtained
using Eq. (19.9).

Figure 19.7 Evolution of fluctuation amplitudes during storage for the RBC (a) whole
membrane, (b) ring, and (c) dimple. The length of the error bar measures two standard
deviations (Statistical test is two-sample Kolmogorov–Smirnov test; p < 0.05).



(Figure 19.8). Interestingly, the CMF amplitude of the whole membrane showed a
strong negative correlation with the sphericity coefficient (p < 0.05; Pearson prod-
uct–moment correlation test). The CMF amplitude of the whole RBC decreased as
k increased. This could be due to the fact that RBCs become more spherical as they
become stiffer [13]. On the other hand, there was a significant positive correlation
between CMF amplitude in the dimple section and the k factor (Figure 19.8a). The
lower the RBC PSA, the larger the observed CMF amplitude (Figure 19.8b). Fluc-
tuation amplitudes of both the whole membrane and dimple (Figure 19.8c) did not

Figure 19.8 Results of a correlation analysis between the fluctuation rate and
morphological or hemoglobin parameters for the entire membrane and the dimple region of
4-day-old discocyte RBCs: (a) sphericity coefficient (k factor), (b) PSA, (c) MCH, (d) MCV, and
(e) surface area. (n = 33; ∗ indicates a significant linear correlation by Pearson correlation
analysis, p < 0.05) [3] / with permission of Optical Publishing Group.
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significantly correlate with the MCH, also consistent with previous findings [13].
Figures 19.8d and 19.8e indicates that CMF amplitudes do not correlate with MCV
or surface area values.We also computed the correlation between CMF amplitudes
and both the k factor and MCH parameters of 43- and 71-day-old RBCs (see
Figure 19.9). Our statistical model to evaluate CMF amplitudes indicated that both
the ring and dimple areas differed between the younger and older discocyte RBCs.
Moreover, our MCH results showed that the hemoglobin contents of RBCs
remained constant over time.
Previous findings [12, 14] have indicated that RBCs become less flexible and

much stiffer over longer storage days. Consequences of this flexibility loss by RBCs
are significant to human organs since it is more difficult for stiff RBCs to traverse
and oxygenate a microcapillary system. Figure 19.10 depicts two discocyte RBCs
stored for different lengths of time. Figure 19.10a displays smaller sphericity coef-
ficients and bigger amplitudes of fluctuation for younger RBCs. On the other hand,
older RBCs have larger sphericity coefficients and smaller fluctuation amplitudes
(see Figure 19.10b).

Figure 19.9 Correlation analysis between the CMF amplitude and parameters for the entire
membrane and the dimple region of discocyte RBCs. The sphericity coefficient (k factor) for
(a) 43- and (b) 71-day-old RBCs. The MCH values for (c) 43- and (d) 71-day-old RBCs. (n = 33;
∗ indicates a significant linear correlation by Pearson correlation analysis, p < 0.05) [3] / with
permission of Optical Publishing Group.
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Figure 19.10 (a) 3D reconstruction of a 4-day-old RBC with k = 0.85 as well as the (b) temporal deviation distribution and (c) fluctuation
map (surface average = 34.78 nm). (d) 3D reconstruction of a 71-day-old RBC with k = 0.95 as well as the (e) temporal deviation distribution
and (f ) fluctuation map (surface average = 26.33 nm). Color-bar scales are in nanometers [3] / with permission of Optical Publishing Group.



19.4 Conclusions

In this chapter, we quantified fluctuations in the membrane, dimple, and ring of
discocyte RBCs with storage lesions using quantitative, DHM phase images. Since
DHM could visualize RBCs at the single-cell level, we evaluated relationships
between discocyte morphological features and CMFs as a function of the storage
duration. Our measurements showed that membrane fluctuations were signifi-
cantly correlated with the sphericity coefficient of observed discocytes. Increases
in the discocyte sphericity coefficient were accompanied by a considerable reduc-
tion in the CMF, which corresponded to the RBC whole membrane, ring, and cen-
ter (dimple), implying a loss of deformability. An increased sphericity coefficient
was also observed as a function of the storage duration. The overall trend of CMF
amplitudes – the entire RBC membrane, the ring, and the center – as a function of
the storage duration was a decrease, implying that discocytes stiffened as they
aged. We believe that this DHM discocyte flexibility study can help us evaluate
the impact of storage duration on RBC quality and transfusion outcomes.

References

1 Korenstein, R., Tuvia, S., Mittelman, L., and Levin, S. (1994). Local bending
fluctuations of the cell membrane. Biomech. Active Movement Division Cells 84:
415–423.

2 Bardyn, M., Rappaz, B., Jaferzadeh, K. et al. (2017). Red blood cells aging markers, a
multi-parametric analysis. Blood Transfus. 15: 239–248.

3 Jaferzadeh, K., Moon, I., Bardyn, M. et al. (2018). Quantification of stored red blood
cell fluctuations by time-lapse holographic cell imaging. Biomed. Opt. Express 9:
4714–4729.

4 Rappaz, B., Barbul, A., Emery, Y. et al. (2008). Comparative study of human
erythrocytes by digital holographic microscopy, confocal microscopy, and
impedance volume analyzer. Cytometry A 73: 895–903.

5 Rappaz, B., Marquet, P., Cuche, E. et al. (2005). Measurement of the integral
refractive index and dynamic cell morphometry of living cells with digital
holographic microscopy. Opt. Express 13: 9361–9373.

6 Rappaz, B., Barbul, A., Hoffmann, A. et al. (2009). Spatial analysis of erythrocyte
membrane fluctuations by digital holographic microscopy. Blood Cells Mol. Dis. 42:
228–232.

7 Schneider, C., Rasband,W., and Eliceiri, K. (2012). NIH image to imageJ: 25 years of
image analysis. Nat. Methods 9: 671–675.

8 Thévenaz, P., Ruttimann, U., andUnser, M. (1998). A pyramid approach to subpixel
registration based on intensity. IEEE Trans. Image Process. 7: 27–41.

238 19 Automated Quantitative Analysis of Red Blood Cell Dynamics



9 Jaferzadeh, K. and Moon, I. (2015). Quantitative investigation of red blood cell
three-dimensional geometric and chemical changes in the storage lesion using
digital holographic microscopy. J. Biomed. Opt. 20: 111218.

10 Barer, R. (1952). Interference microscopy and mass determination. Nature 169:
366–367.

11 Mukhopadhyay, N. (2000). Probability and Statistical Inference. CRC Press.
12 Bhaduri, B., Kandel, M., Brugnara, C. et al. (2014). Optical assay of erythrocyte

function in banked blood. Sci. Rep. 4: 6211.
13 Kim, Y., Shim, H., Kim, K. et al. (2014). Profiling individual human red blood cells

using common-path diffraction optical tomography. Sci. Rep. 4: 6659.
14 Evans, J., Gratzer, W., Mohandas, N. et al. (2008). Fluctuations of the red blood cell

membrane: relation tomechanical properties and lack of ATP dependence. Biophys.
J. 94: 4134–4144.

References 239





20

Quantitative Analysis of Red Blood Cells during
Temperature Elevation

20.1 Introduction

There has been considerable scientific interest in studying the shape changes of
erythrocytes induced by various conditions. Temperature, in particular, can affect
steady-state volume, ion exchange rate, hemolysis rate, membrane dynamics, and
cell deformation [1, 2]. Several studies suggest that red blood cell (RBC) mem-
branes become less stable when they are exposed to temperatures above the nor-
mal body temperature. Another study showed that the uni-lamellar state of the
RBC membrane is stable at 37 C but changes to a multi-bilayer at a higher tem-
perature [3]. Cell membrane fluctuations (CMFs) of the elastic membrane are
based on the assumption that the driving force of fluctuations is purely thermal.
Since membrane flickering is thermally dependent, temperature changes can
directly affect membrane flickering. Thermal-induced changes in membrane pro-
file can also affect RBC CMF maps and amplitude. In this chapter, we will intro-
duce a quantitative method to monitor changes in the shape and CMF map of
RBCs as a function of temperature at the single-cell level using label-free DHM
[4]. We believe that thermal-induced changes can disrupt RBCmembrane equilib-
rium in several ways that can be monitored quantitatively by DHM.

20.2 RBC Sample Preparations

RBCs were imaged at 17, 23, 37, and 41 C with a sensitivity of ±0.1 C for our RBC
membrane fluctuation study. RBCs were imaged continually for all other para-
meters. Only RBCs with the discocyte shape (n ≥ 36) were considered for the final
analysis. All other shapes were excluded from the sample set.
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20.3 Experimental Results

20.3.1 Biochemical and Morphological Parameters

Several characteristics related to morphological features, RBC membrane fluctua-
tions, and MCH, such as the PSA and sphericity coefficient, were investigated at
the single-cell level. All these parameters were computed using the corresponding
equations described in previous chapters (see Chapters 14 and 15). For this anal-
ysis, four temperatures were considered: 17, 23, 37, and 41 C. At each tempera-
ture, we recorded 100 holograms with a sampling rate of 10 Hz. Holograms were
numerically reconstructed after the experiment.

20.3.2 RBCs Trapped Between Cover Slip and Glass

Figure 20.1 shows RBC optical path difference (OPD) images at different tempera-
tures as well as the profile and cross-section of one RBC at two temperatures:
17 and 41 C. When RBCs are trapped between a cover slip and glass, the dimple
section, or the central portion, of the RBC differs between the two temperatures.

Figure 20.1 (a) Gallery of RBC images. The same RBCs imaged at (b) 17 C and (c) 41 C
as well as (d) a cross-section of (b) and (c) drawn together. For (b) and (c), the PSAs were
60 and 64 μm2, respectively; the sphericity coefficients were 0.65 and 0.45, respectively; and
the MCH levels were 32.3 and 32.5 pg [4] / Springer Nature / CC BY 4.0.
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The impact of increasing temperature was evaluated by measuring morpholog-
ical parameters, MCH, and magnitude of fluctuation rates. Figure 20.2a shows the
time course of temperature elevation in this experiment. MCH remained
unchanged, showing only small fluctuations around its average value of 30.76
pg (see Figure 20.2b). Increasing temperatures resulted in an increase in PSA
but a decrease in sphericity coefficient (see Figures 20.2c and 20.2d). These results
suggest that RBCs are losing their intracellular fluid, causing the RBC volume to
drop. At the beginning of the experiment, the RBC and extracellular mediumwere
isotonic. Thus, there was no water movement so that RBCs could maintain their
shape. After some moments due to increasing temperature, the surrounding

Figure 20.1 (Continued)
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medium began to evaporate, creating an imbalance between intracellular and
extracellular fluids. Intracellular fluidity increases because it is directly affected
by the increasing temperature. As a result, a concentration gradient formed
between the RBC membrane and the extracellular medium. Water left RBCs to
diminish the gradient, leading to volume loss. This also increased concentrations
inside the RBC to increase compared to lower temperatures due to the water loss at
higher temperatures.
Figure 20.3 demonstrates the CMF maps of RBCs measured at four different

temperatures. The CMF amplitude of the whole RBC is the average of the CMF
(x, y) over the projected area of the whole RBC. The CMF amplitude for each tem-
perature is also computed and the comparison given as a box plot (see
Figure 20.3e). As shown in Figure 20.3, the CMF map at lower temperatures
was usually present at the ring area of the RBC membrane. The RBC membrane
fluctuations had a direct relationship with the Gaussian curvature of RBC [5].

Figure 20.2 (a) Increasing temperature duration, (b) MCH (c), PSA, and (d) sphericity
coefficient changes versus temperature (n≥ 36 cells). F-statistics performed on data shown
in (c) and (d) suggested that the slope of the linear regression line was significantly different
from zero with p-value <0.05. Error bars represent twice the corresponding standard
deviations.
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The deformation of the RBC membrane predominantly occurred at the area in
which the Gaussian curvature approached zero. Higher temperatures caused loss
of intracellular fluid, resulting in an RBC with a lower sphericity index. Thus, the
Gaussian curvature was altered, and the fluctuation map differed in the case of
higher temperatures. In Chapter 19, we reported a significant negative correlation
between the CMF value and sphericity coefficient [6]. In addition, the Kolmo-
gorov–Smirnov test showed that the ring CMF was greater than the dimple
CMF for all temperatures (data not shown). We observed no significant changes
in morphology, shape, or CMF when RBCs were kept at room temperature for one
hour (data not shown).

20.3.3 RBCs Imaged on Chamber

In the second experiment, 200 μl of the suspension was dropped on the imaging
glass of an 18 mm, round coverslip chamber. The temperature was raised and
the RBCs imaged over time. The RBCs were imaged at 5 and 10 minutes after
the temperature reached the desired level. Figure 20.4 depicts a gallery of RBC
images at different temperatures as well as a profile of the same RBC at multiple
temperatures.
Figure 20.5 shows the effects of temperature elevation on the RBC shape and

membrane fluctuations. The sphericity coefficient of RBCs at a lower temperature
is less than that at higher temperatures. There was no significant change in PSA.
However, the CMF values at 17 and 37 C are significantly different (p-value
<0.005). We found no significant change in the volume or MCH at different

Figure 20.3 Fluctuation map for an RBC at: (a) 17 C, (b) 23 C, (c) 37 C, and (d) 41 C.
(e) Box plot representation of the CMF amplitude for each temperature. ∗ indicates a
two-sample Kolmogorov–Smirnov test with p-value <0.05 [4] / Springer Nature / CC BY 4.0.
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Figure 20.4 (a) Gallery of images of the same RBCs at multiple temperatures; (b) a cross-
section of the same RBC at multiple temperatures; (c) a 3D representation of the RBC at
17 and 41 C. For the RBC in (b) and (c) the PSAs were 49 and 50 μm2, respectively; the
sphericity coefficients were 0.86 and 0.91, respectively; and theMCH contents were 30.5 and
30.9 pg, respectively [4] / Springer Nature / CC BY 4.0.

Figure 20.5 The (a) PSA, (b) sphericity coefficient, and (c) CMF values at multiple
temperatures. (d) The CMF map at different temperatures. ∗ indicates a two-sample
Kolmogorov–Smirnov test, p-value <0.05; n≥ 36 cells) [4] / Springer Nature / CC BY 4.0.



temperatures (data not shown). We did not observe significant reversible changes
in RBC membranes as they preserved their shape. Some RBCs gradually lost their
membrane stability. Accordingly, RBCs with spiculated shapes (echinocytes)
began to appear.
Cell membranes are made of phospholipids and more rigid at lower tempera-

tures. They become softer at a higher temperatures, even very fluid and unstable
at some temperatures above its physiological temperature (e.g. 37 C for RBCs).
Another hypothesis suggests that when the cell’s physiological temperature is
exceeded, the membrane bilayer will transform. As a result, the growth tempera-
ture of the cell is a key determinant of membrane bilayer stability.

20.4 Conclusions

Temperature changes may affect the mechanical properties and morphology of
cells. In this chapter, we investigated the effects of brief (less than one hour) ele-
vated temperatures on several RBC parameters using DHM. Our results indicated
that RBCs retained their normal morphology, although there were changes in
some parameters related to the RBC profile. For instance, the sphericity coefficient
changed when RBCs were exposed to high temperatures, possibly because temper-
ature can increase the fluidity of some membrane compounds.
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21

Automated Measurement of Cardiomyocyte
Dynamics with DHM

21.1 Introduction

It is crucial to improve the predictability of chemical toxicity through safety
profiling assays during the lengthy drug discovery process. This should be done
to detect potentially toxic compounds early in the process before considerable
amounts of time and financial investments are made. Safety assessments are,
therefore, performed in preclinical drug development to identify possible drug side
effects, particularly those that may affect the electrical conduction and beating of
the heart [1–3]. Consequently, it is critical to establish more informative tools for
in vitro cardiotoxicity screens at early phases of drug development to prevent late-
stage failure [4–6].
Cardiomyocytes, also known as myocardial cells, are main contractile elements

of heart muscles. These cells can collaborate with each other to generate the
human heartbeat and control blood flow in blood vessels of the circulatory system
[3]. Like many other types of cells, cardiomyocytes are mostly transparent. As a
result, traditional imaging systems based on bright-field intensity can only provide
a low contrast image with limited informative details of the cell structure.
Although some optical imaging techniques such as phase contrast and differential
interference contrast microscopies can provide contrast for transparent cells, they
cannot offer quantitative information on their thickness.
Various imaging systems have been used to analyze cardiomyocytes. For exam-

ple, with fluorescence microscopy [7, 8], specific biological molecules are fluores-
cently stained, and the location of a protein traced, or the activity of specific ions
can be monitored over time [9, 10]. However, fluorescence can fade or interfere
with the molecule being analyzed [11, 12]. Atomic force microscopy [13] allows
the measurement of advanced physical-mechanical parameters such as stiffness
and elastic modulus. It also provides a high-resolution profile of the sample
[14]. However, it has a limited spatial sampling speed. Phase contrast and
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differential interference contrast microscopies canmonitor isolated cardiomyocyte
contraction non-invasively. However, they require advanced image correlation
analysis [15]. Although each of these techniques has its own advantages and draw-
backs, when combined, they offer complementary information that can be
exploited in multimodal setups [16].
In this chapter, we will introduce automated methods to quantitatively analyze

dynamic phase profiles of beating cardiomyocytes reconstructed from holograms
captured by DHM [17]. The contraction profile, relaxation profile, and beating
activity of cardiomyocytes are determined from the reconstructed quantitative
phase image. Other characteristic parameters used to categorize phenotypes
[2, 18] such as the rising time, falling time, peak width, and frequency are also
analyzed. These parameters are useful for determining the impact of medication
candidates on cardiomyocytes. We analyzed the dynamic beating profile of cardi-
omyocytes obtained with DHM using two methods: monitoring the average or
obtaining the variance information in optical path difference (OPD) images of
cells. We further quantified contraction and relaxation movement by analyzing
the difference between two successively acquired OPD images. From our experi-
mental findings, we offer automated procedures for recording multiple parameters
of cardiomyocyte dynamics captured by DHM for a new methodology in drug tox-
icity screens.

21.2 Cell Culture and Imaging

iCell cardiomyocytes (human-induced pluripotent stem cell–derived cardiomyo-
cytes) obtained from Cellular Dynamics Int. (Madison, WI, USA) were cultured
according to the manufacturer’s instructions and grown for 14 days before record-
ing. Measurements were taken using a Chamlide WP incubator system for 96-well
plates (LCI, South Korea) set at 37 Cwith 5%CO2 and high humidity. OPD images
were acquired with an off-axis DHM. Images were recorded using a Leica 20×/0.4
NA objective. Time-lapse images were acquired at 10 Hz for one minute.

21.3 Automated Analysis of Cardiomyocyte Dynamics

For the automated quantitative analysis of cardiomyocyte dynamics, we computed
the beating activity using two methods: the averaged OPD images and variance of
OPD images. The contraction and relaxation characteristics of cardiomyocytes
were also measured using our automated procedure. Figure 21.1 shows two cardi-
omyocyte OPD images reconstructed from holograms. The high similarity

250 21 Automated Measurement of Cardiomyocyte Dynamics with DHM



between these two OPD images highlights the need for extensive analysis to quan-
tify the beating dynamics.

21.3.1 Cardiomyocyte-beating Profile Measurements Using Averaged
OPD Images

The beating profile of cardiomyocytes was obtained by thresholding cardiomyo-
cyte OPD images at 10% of the maximum OPD signal. Thresholded images were
then averaged. The threshold value was used to restrain the effect of noise. This
process is described by

opd
i
= average opd_thresh x, y i ,

with opd_thresh x, y i =
opd x, y i if opd x, y i ≥ max opd x, y i × 0 1

0 if opd x, y i < max opd x, y i × 0 1
,

Figure 21.1 Optical path difference (OPD) images of cardiomyocytes captured at different
times (a total of 540 frames). Cardiomyocyte OPD images at (a) maximum and (b) minimum
peaks. (c) Thedifferencebetween (a) and (b) [4] /withpermissionofAmericanChemicalSociety.
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where opd
i
is the average value of ith OPD image after thresholding, opd_thresh

(x, y)(i) is the OPD value at (x, y) on the ith thresholded cardiomyocyte image, opd
(x, y) is the OPD value at (x, y) for the ith cardiomyocyte image in the optical path
difference while 1 ≤ x ≤M, 1 ≤ y ≤ N (M and N are the size of cardiomyocyte OPD
image) andmax(opd(x, y))(i) is themaximum value of the ith cardiomyocyte image.
Figure 21.2 shows the beating profile and capture time of cardiomyocytes using

our method, including a small inset with a zoom on a single beating pattern. The
beating activity of cardiomyocytes is clearly visible (short peaks of high ampli-
tude). Figure 21.3 shows the beating activity of cardiomyocytes with different
threshold settings. Although the resulting OPD values are slightly different, the
beating profiles of cardiomyocytes are approximately the same, as shown in
Figure 21.3. Our final results were very similar since multiple parameters only
depended on the beating profile of cardiomyocytes. Because these beating profiles
are similar under different threshold settings, the values of multiple parameters
will be comparable as well. In other words, changing the threshold value will
not largely affect the final parameter data. Multiple parameters including the
amplitude, rising time, falling time, IBD50, IBD10, rising/falling slope, beating rate,
and beating period based on beating profile in Figure 21.2 are then derived. These
parameters are described in Table 21.1 [1].
To measure the above-defined parameters, peaks were detected by applying the

first derivative technique to the original data curve in Figure 21.2 and looking for
locations where the first derivative values are zeros. Figure 21.4a shows detected
peaks based on cardiomyocyte beating profiles. Figure 20.4a shows that several
peaks, including false peaks, were detected. During the sorting process, we
removed positive peaks with values below a given threshold and negative peaks

Figure 21.2 The beating activity of cardiomyocyte (inset shows a single beat).
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with values above a given threshold. This threshold was automatically determined
with Otsu’s method [19] using all positive peaks detected in Figure 21.4a. Further-
more, the minimum negative peak between two nearby positive peaks was
extracted. The maximum positive peak between two neighboring negative peaks
was then selected. This process reduced some incorrect peaks and resulted in the
appropriate peaks for each beating period, as shown in Figure 21.4b.
Accordingly, we extracted the beating profile between two adjacent negative

peaks, which we considered one beating period (see Figure 21.5). It was noted that
beating periods computed between two negative peaks were almost equal to those
computed between two positive peaks. At the same time, the extracted beating pro-
file for each beating period was fitted with polynomials of degree 9 in a least-square
criterion. Examining polynomials of up to 9 degrees (the data samples of some
beating profiles were about 10) to fit the data based on the final fitting errors
yielded a degree of 9. The fitted 9-degree polynomial is described by

f x =
10

i = 1
aix

10− i,

where x indicates the sample point on each beating period and ai, which is the
coefficient of the polynomial, is obtained with a least-squares criterion based on
sample points. The average absolute error (absolute error between actual and fitted
points) for each sample point was computed at 0.19. Figure 21.5 depicts one of the
fitted polynomial curves with the measured parameters.

Figure 21.3 The beating activity of cardiomyocyte under different threshold values.
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The amplitude (Amp) value defined in Table 21.1 can be computed using the
fitted polynomials curves by subtracting the minimum value from the maximum
value on the fitted curve. The corresponding time (in seconds) on the x-axis for
Amp10, Amp20, Amp50, and Amp80 (see Figure 21.5) can also be calculated by sol-
ving the fitted polynomial equation. All parameters mentioned above were then

Table 21.1 Characteristic cardiomyocyte parameters.

Parameter Definition

Amplitude Value difference from each positive peak to the following negative
peak (Amplitude = Ampmax −Ampmin) [see Figure 21.5]

Rising time The time elapsed from Amp20 to Amp80 (=T3 − T1) [see Figure 21.5]

Falling time The time elapsed from Amp80 to Amp20 (=T6 − T4) [see Figure 21.5]

IBD50 The time elapsed for two points equal one Amp50 (=T5 − T2) [see
Figure 21.5]

IBD10 The time elapsed for two points equal one Amp10 (=T7 − T0) [see
Figure 21.5]

Rising/falling
slope

The change of increased/decreased amplitude between Amp80 and
Amp20 (=Amp80 −Amp20) [see Figure 21.5]

Beating rate The total number of positive/negative peaks in 1minute
(= total number of positive peaks/total time)

Beating period The time between two adjacent positive and/or negative peaks
(= the time of ith positive peak− the time of (i − 1)th positive peak)

Frequency The number of beats period per second
(= total number of beats in a period/total time)

Figure 21.4 Detected peaks in the beating profile of cardiomyocytes. (a) Detected peaks on
raw data. (b) Filtered peaks based on the results of (a) [17] / with permission of Optical
Publishing Group.
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measured for each individual beating period. A population average with the coef-

ficient of variation (cv =
standard deviation

average value
, a parameter often used in high-

throughput screening) was then calculated (see Table 21.2). Multiple parameters
were calculated by fitting a curve between two negative peaks, which allowed for
the isolation of a full beating pattern and better fitting rising/falling time and

Figure 21.5 An illustration of fitted curves, parameters are within one beating period of the
cardiomyocyte beating profile.
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amplitude. Furthermore, the IBD can only be quantified if a full beat is present in
the analyzed period. However, as shown in Figure 21.4, positive peaks tended to be
more stable and less noisy. Thus, we also calculated the beating period as defined
by the time between two adjacent positive peaks and found similar results (2.93/
sd = 0.10 seconds versus 2.94/0.10 seconds).

21.3.2 Cardiomyocyte-beating Profile Measurement Using
the Variance of OPD Images

An alternative way to derive the beating profile of cardiomyocytes is to calculate
the variance of each OPD image after the temporal mean of the image stack is sub-
tracted. This alternative way is less sensitive to noise (originating from shot noise,
speckle, and contribution of out-of-focus structures). However, it demands more
computing resources. This method can be defined by

δ i
opd = variance opd x, y i

− opdtemp ,

where opd(x, y)(i) is the ith OPD image with 1≤ x≤M and 1 ≤ x, y≤N (M andN are

the size of cardiomyocyte OPD image), δ i
opd denotes the variance of the ith cardi-

omyocyte image after temporal mean subtracted, and opdtemp is the temporal

mean, which is calculated as the mean value of the image stack in the temporal
dimension. Figure 21.6 presents the beating profile measured using this method.
Compared to the previous analysis method (Figure 21.4), this method is more sta-
ble and less sensitive to noise (changes in the absolute value of the OPD signal).

Table 21.2 Measured values for multiple parameters
of cardiomyocyte-beating profiles.

Multi-parameter Values (mean/cv)

1: Amplitude: 2.05/0.30

2: Rising time: 0.58/1.05 (seconds)

3: Falling time: 0.86/0.69 (seconds)

4: IBD50: 0.79/0.33 (seconds)

5: IBD10: 2.94/0.19 (seconds)

6: Rising/Falling slope: 1.19/0.30

7: Beating rate: 21.86/0

8: Beating period: 2.94/(sd = 0.10 seconds)

9: Frequency 0.34/0
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Similar to the previous method, peaks in Figure 21.6 can be detected using the
first derivative property (see Figure 21.7a). In addition, positive and negative peaks
are screened with a threshold value obtained using Otsu’s method [19]. Conse-
quently, the minimum negative peak between two neighboring positive peaks
and the maximum positive peak between two neighboring negative peaks (see
Figure 21.7b) were chosen.
The beating profile within one beating period (between two negative peaks) can

be individually extracted and fitted using a polynomial equation of degree 9 in a
least-square error, as shown in Figure 21.5. The average absolute error for each
sample point is computed to be 2.0359. Consequently, the same parameters can
be measured as in the previous method. The corresponding mean and coefficient
of variation (cv) are given in Table 21.3. These measured parameters are in excel-
lent agreement with the literature [12].

Figure 21.6 The measured beating profile with variance information (inset shows a
single beat).

Figure 21.7 Detected peaks on a cardiomyocyte beating profile. (a) Multiple detected
peaks. (b) Multiple detected peaks with some false peaks removed [17] / with permission of
Optical Publishing Group.
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21.3.3 Cardiomyocyte Contraction and Relaxation Measurements

To observe the contraction and relaxation features of cardiomyocytes, each captured
image in the temporal stack is subtracted from the next one. The spatial variance of
the OPD is then measured to quantify the degree of spatial displacement between
successive frames. The resulting image contains cardiomyocyte contraction and
relaxation information (both indicated by an increase in the temporal variance sig-
nal). Two of the subtracted images are shown in Figure 21.8. Figures 21.8a,b are
images at the minimum and maximum of a beat. Figure 21.9a shows the beating
profile of cardiomyocytes with contraction and relaxation information, where one

Table 21.3 Multiple measured parameters of the
cardiomyocyte beating profile.

Multi-parameter Values (mean/cv)

1: Amplitude: 23.06/0.17

2: Rising time: 0.45/0.98 (seconds)

3: Falling time: 0.26/1.04 (seconds)

4: IBD50: 0.66/0.23 (seconds)

5: IBD10: 2.30/0.25(seconds)

6: Rising/Falling slope: 13.83/0.17

7: Beating rate: 21.91/0

8: Beating period: 2.93/(sd = 0.10)

9: Frequency 0.34/0

Figure 21.8 Illustrations of different images. (a) An image at the minimum peak of a beat.
(b) A different image at the maximum peak of a beat [17] / with permission of Optical
Publishing Group.
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higher peak represents contraction, and the neighboring lower peak represents
relaxation. Peaks were then detected with the first derivative criterion (locations
with a zero first-derivative values). Similarly, the positive peaks for contraction were
extracted with Otsu’s thresholding algorithm using all positive peaks detected.
A maximum peak between two nearby contraction peaks was then picked as a pos-
itive peak for relaxation and the inappropriate peaks removed. Figure 21.9b shows
the resultant curves with peaks indicated from Figure 21.9a. Finally, the beating
rate, beating period, and frequency for cardiomyocytes contraction and relaxation
were measured using the positive peaks detected, including contraction and relax-
ation peaks. The time between the cardiomyocyte contraction and the following
relaxation can also be computed with the detected peaks shown in Figure 21.9b.
These measured data are given in Table 21.4. Tables 21.1–21.3 show that our three
methods can produce similar values for the beating rate, beating period, and fre-
quency using the identical cardiomyocyte image sequence.
Four more cardiomyocyte image sequences were examined to show the gener-

ality of our methods. One of these image sequences was obtained under difficult

Figure 21.9 Cardiomyocyte beating profiles with contraction and relaxation information.
(a) Raw data of a cardiomyocyte beating profile. (b) Cardiomyocyte beating profile with
contraction and relaxation peaks indicated (inset shows a single beat with contraction and
relaxation peaks).
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conditions (severe disturbances occurred due to out-of-focus debris that flowed
through the field of view). Other sequences were comparable in quality to that pre-
viously presented. Four image sequences with peaks detected using each of our
three methods are given in Figures 21.10, 21.11, and 21.12. Figures 21.10a,

Table 21.4 Measured parameters for the cardiomyocyte contraction and relaxation curves.

Multi-parameters Values (mean/cv)

Contraction Beating rate: 21.71/0

Beating period: 2.93/(sd = 0.08)

Frequency 0.34/0

Relaxation Beating rate: 20.84/0

Beating period: 3.05/(sd = 0.49)

Frequency 0.32/0

Time between contraction and the following relaxation 0.41/0.14

Figure 21.10 Detected peaks based on four cardiomyocyte sequences with the method
shown in Section 21.3.1 (cardiomyocyte beating profile measurement using averaged OPD
images). (a) Cardiomyocyte image sequences acquired in difficult conditions. (b), (c), and (d)
“noise-free” recordings (i.e. no debris) similar to the previous recording [17] / with
permission of Optical Publishing Group.
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Figure 21.12 Detected peaks based on four cardiomyocyte sequences with the method in
Section 21.3.3 (cardiomyocyte contraction and relaxationmeasurements). (a) Cardiomyocyte
image sequences acquired in difficult conditions. (b), (c), and (d) “noise-free” recordings
(i.e. no debris) similar to the previous recording [17] / with permission of Optical
Publishing Group.

Figure 21.11 Detected peaks based on four cardiomyocyte sequences with the method
shown in Section 21.3.2 (cardiomyocytes beating profile measurement using variance of
OPD images). (a) Cardiomyocyte image sequences acquired in difficult conditions. (b), (c), and
(d) “noise-free” recordings (i.e. no debris) similar to the previous recording [17] / with
permission of Optical Publishing Group.
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21.11a, and 21.12a are from image sequences under tough/difficult conditions. It
should be emphasized that our method can detect all peaks, even in image
sequences with debris interference. However, we found that our first method pro-
duced many noisy peaks under difficult conditions (first image sequence), which
made the parameter measurement inaccurate. On the other hand, our second and
third methods were more reliable at analyzing these image sequences, even under
difficult conditions. Consequently, all the needed multi-parameters were meas-
ured using these images, demonstrating the robustness of our analysis algorithm.
Finally, the mean value of each parameter described in each of our three methods
was computed using all five sequences. The computed mean values for the three
methods are given in Table 21.5, Table 21.6, and Table 21.7.
Combined measurements demonstrated the robustness of our methods and how

they could quantify important cardiomyocyte dynamic characteristics, which
might be used to screen the cytotoxic effects of compounds. The beating profile
contains more information than what can be obtained by electrophysiology or
fluorescence imaging because it integrates the effect of all ion channels involved,
thus providing a signature that can be used to predict the effect of a specific com-
pound. For instance, inhibitors of hERG channels (the main class of channels
assessed in cardiac safety, these channels are involved in producing the repolari-
zation current) all result in a similar profile [4]. Furthermore, due to the nonin-
vasive aspect of measurements, both short-term and long-term effects of
compounds can be monitored and analyzed with DHM.

Table 21.5 The measured values of multiple parameters for the
cardiomyocyte-beating profile of five sequences (the first method).

Multi-parameter Values (mean/cv)

1: Amplitude: 0.85/1.50

2: Rising time: 0.62/1.37 (seconds)

3: Falling time: 0.85/0.99 (seconds)

4: IBD50: 0.44/0.50 (seconds)

5: IBD10: 2.44/0.45 (seconds)

6: Rising/Falling slope: 0.51/1.52

7: Beating rate: 71.14/0.81

8: Beating period: 0.95/ (sd = 0.84 seconds)

9: Frequency 1.16/0.83

262 21 Automated Measurement of Cardiomyocyte Dynamics with DHM



21.4 Conclusions

The dynamics of human cardiac muscle cells and their spontaneous beating rates
are quantitatively investigated through the fusion of DHM and information
processing algorithms. We demonstrate the DHM is suitable for monitoring and
quantifying the beating function of cardiomyocytes as well as automatically mea-
suring multiple cardiomyocyte parameters based on quantitative phase profiles

Table 21.7 The measured parameters for the
cardiomyocyte contraction and relaxation curve of five
sequences (the third method).

Multi-parameters Values (mean/cv)

Contraction Beating rate: 28.52/0.16

Beating period: 2.19/0.19

Frequency 0.45/0.16

Relaxation Beating rate: 28.52/0.17

Beating period: 2.22/0.31

Frequency: 0.45/0.18

Time between contraction and the
following relaxation

0.59/0.62

Table 21.6 The measured values of multiple parameters for
the cardiomyocyte-beating profile of five sequences (the
second method).

Multi-parameter Values (mean/cv)

1: Amplitude: 40.01/1.21

2: Rising time: 0.57/0.86 (seconds)

3: Falling time: 0.43/1.13 (seconds)

4: IBD50: 0.79/0.65 (seconds)

5: IBD10: 2.35/0.38(seconds)

6: Rising/Falling slope: 24.00/1.21

7: Beating rate: 34.48/0.36

8: Beating period: 1.98/(sd = 0.83)

9: Frequency 0.55/0.37
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acquired with DHM. Our method is rapid, noninvasive, and effective. It allows for
an automated analysis of normal cardiomyocyte dynamics and abnormal activ-
ities. Our automated, noninvasive measurement procedures open a new avenue
for the cardiotoxicological screening or profiling of candidatemolecules in preclin-
ical drug discovery and safety testing programs.
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22

Automated Analysis of Cardiomyocytes with Deep Learning

22.1 Introduction

Many efforts have been made to develop complementary methods for human-
induced pluripotent stem cell–derived cardiomyocytes (HiPSC-CMs) characteriza-
tion to reduce drug development costs and cardiotoxicity-related drug attrition.
CM characterization methods including patch clamping [1, 2], calcium imaging
[3, 4], and image processing–based contraction-relaxation [5, 6] are reported.
The mechanical probe is another widely used method for CM characterization
[7]. There are drawbacks associated with eachmethod that require either expertise
and costly equipment or plating CMs onto specialized material, which makes the
process difficult. Furthermore, these methods were only applied to the entire slide
images of multiple CMs, so CM characterization methods at the single-cell level
are lacking. As a result, it is important to exploit high-throughput and reliable
methods for single-cell CM characterization.
In Chapter 21, we employed DHM for non-invasive, label-free studies of HiPSC-

CMs and subsequent beating activity quantification [8]. We showed that the
nucleus section of HiPSC-CMs from time-lapse DHM clearly reflects its rhythmic
beating pattern, which might be less noisy and more informative for subsequent
characterization. The CM beating activity at the single-cell level can thus be effi-
ciently characterized if the dry-mass redistribution signal is observed only in the
CM nucleus region.
To analyze the beating activity of a single CM, the region of interest (ROI) can be

separated from the whole phase image of multiple CMs where the ROI is a region
of the CM nucleus. The non-ROI includes the surrounding cytoplasm and mem-
brane. Beating profiles in the non-ROI usually contain undesirable noisy peaks,
which can make further dynamic activity characterization difficult. In general,
CMs appear in any shape, size, and orientation by their very nature [9]. Therefore,
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it is a challenging task to extract the ROI from phase images of CMs. Recently,
deep-learning methods have been applied to many image analysis tasks. Specifi-
cally, deep-learning models have shown great potential in medical image
segmentation.
In this chapter, wewill show how to use an FCN to extract nuclei fromCMphase

images to characterize single CMs [10, 11]. We will introduce an FCN-based net-
work architecture consisting of parallel multi-pathways featuring concatenation
for accurate CM nucleus extraction. We compared the performance of our method
for CM nucleus extraction to that of the U-Net model. Our experimental results
indicate that our model outperformed the U-Net model. Finally, multiple para-
meters related to the beating profile (contraction period, relaxation period, resting
period, beating interval, and beat rate) of several single CMs were measured at the
single-cell level from their phase images.

22.2 Region-of-interest Identification with Dynamic
Beating Activity Analysis

Figure 22.1 shows one off-axis digital hologram of CMs and its corresponding
reconstructed optical path difference (OPD) images of CMs. Note that the OPD

and phase values are exchangeable with the following equation: OPD =
λ × φ

2π
,

where φ denotes the phase value. A dynamic beating activity comparison between
the ROI and non-ROI was carried out to precisely identify the ROI as illustrated in
Figure 22.1d. Beating results are shown in Figure 22.2. The dynamic of beating
profile was obtained from the spatial variance between successive time-lapse
OPD images as explained in Chapter 21. As stated in Chapter 21, OPD variance
reflects the time course of cell dry-mass redistribution during the contraction-
relaxation cycle of CMs. Since the OPD value redistribution of the ROI is dominant
compared to that of non-ROI (see Figure 22.2), the OPD variance in the ROI might
significantly reflect beating activity. The OPD variance in the non-ROI, on the
other hand, shows no beating activity.

22.3 Deep Neural Network for Cardiomyocyte Image
Segmentation

Deep-learning methods have been applied to a wide range of problems including
medical image analysis [12]. The CNN is a type of deep-learning model that uses
locally shared weights to capture hierarchical data characteristics. Multiple con-
secutive convolution kernels can capture the properties of input data, followed
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Figure 22.1 (a) A recorded hologram of cardiomyocytes and (b) an inset of the 3D portion of
the hologram. (c) The OPD image after numerical reconstruction, which provides high
contrast data for quantitative analysis. (d) A single cardiac cell with its nucleus
section marked with a white line (the ROI) to be extracted for dynamic beating profile
quantification. The OPD image was reconstructed from 540 images recorded at a sampling
frequency of 10 Hz [10] / with permission of Optical Publishing Group.

Figure 22.2 Beating activity comparison of ROI versus non-ROI for precise ROI
identification.
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by max-pooling layers for data dimension reduction. CNN mainly consists of the
following elements: (i) a set of filters that can be trained to extract local features,
(ii) a nonlinear function as an activation function, and (iii) a max-pooling layer
that aggregates local feature specifications to reduce data dimensions. The max-
pooling operation for down-sampling is used to obtain the maximum value of each
filter in the convolution layer. The summation of each convolution layer is applied
to a rectified linear unit (ReLU) as an activation function. The ReLU function is a
nonlinear function that can increase the nonlinearity of CNN feature maps. Dif-
ferent network architectures can be designed depending on the task, whichmay be
more efficient than simple CNN-based models. A fully convolutional network
(FCN) is a type of CNN in which the fully connected layer is replaced with another
convolution layer [13]. An FCN-based deep-learning model can be applied to CM’s
nucleus extraction for CM characterization at the single-cell level.

22.3.1 U-Net

U-Net is a widely used end-to-end network model for semantic segmentation. It
consists of encoder and decoder pathways with skip connections between corre-
sponding layers that offer good segmentation performance. The designed architec-
ture is based on symmetric pathways for accurate localization. The first section of
the U-Net extracts deep features while the second section is responsible for seg-
mentation with extracted features. However, the U-Net architecture has some
drawbacks such as a lack of flexibility and scalability. Deeper networks provide
better segmentation while increasing parameter space and causing gradient van-
ishing [14].

22.3.2 Our Network Model

Wewill introduce a new FCN-based network architecture for accurate CMnucleus
extraction. It takes advantage of parallel multi-pathway feature concatenation
with dense connection blocks and residual connections [15]. The overall structure
and building blocks of our network architecture are shown in Figure 22.3. The
overall network structure leads to a better training performance compared to
the U-Net model. It also improves the pixel classification accuracy. The building
blocks of our FCN-based network model are briefly explained below.

22.3.2.1 Parallel Multi-pathway Feature Concatenation

In multi-pathway feature concatenation, different feature maps extracted by var-
ious kernel sizes are concatenated. Regarding the kernel size of convolution layers,
it is difficult to decide which kernel size is more efficient for the task at hand
because different kernel sizes will result in different features. The commonly used
convolutional kernel size is 3 × 3. In our model, we used 1 × 1, 3 × 3, and 5 × 5
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Figure 22.3 The proposed FCN-based network architecture for cardiac-cell ROI extraction. It is made of several modular blocks as follows.
A parallel multi-pathway feature concatenation (yellow box) takes advantage of different kernel sizes: 1 × 1, 3 × 3, and 5 × 5. Each pathway is a
composition of a convolutional layer, batch normalization layer, and rectified linear unit. Features are concatenated at the end. A 2 × 2 max-
pooling layer with a stride of two is used for down-sampling data. A dense connection technique is used for efficient gradient propagation to
prevent a vanishing gradient. Residual skip connections are denoted with dotted horizontal arrows [10] / with permission of Optical
Publishing Group.



kernel sizes in different pathways in parallel followed by batch normalization (BN)
and ReLU. Features from different pathways are concatenated at the end. A max-
pooling layer with a size of 2 × 2 and a stride of 2 was used to down-sample feature
maps from different pathways to reduce data dimension.

22.3.2.2 Dense Connection

We used the convolutional dense connection blocks explained in [16]. Within each
dense block, layers were directly connected with their preceding layers, which was
implemented through the concatenation of feature maps in subsequent layers.
Dense connection blocks provide several advantages including efficient gradient
propagation to avoid vanishing gradients, which commonly happens in deep net-
works. They can also reuse feature maps from previous layers instead of only the
last layer, resulting in better network performance.

22.3.2.3 Residual Connection

Residual connection uses skip connections or short-cuts to jump over some layers
to facilitate the training of deep networks [17, 18]. In addition, the shorter connec-
tion between layers close to the output and input offers better performance and
reduces the number of parameters. Pooling operations can lead to the loss of some
spatial information. These skip connections allow the network to recover such lost
spatial information. In our network model, the output of the standard 3 × 3 con-
volutional layer prior to the pooling operation was transferred to the correspond-
ing output of the up-sampling layer.

22.3.3 Patch Extraction

Deep-learning models, in general, require a large number of samples for training.
There are several methods to increase the number of training samples such as data
augmentation.We used a patch extractionmethod, which could increase the num-
ber of samples to a sufficient level, to train our FCN-based deep-learning model.
We extracted patches from the OPD image containing multiple CMs using a slid-
ing window and captured patches along with the corresponding ground truth
(manually extracted) with a size of 32 × 32 pixels. Captured patches using a sliding
window were not overlapped (see Figure 22.4).

22.4 Experimental Results

After manually annotated OPD images were reconstructed, we trained our
model using the training dataset (OPD images generated by patch extraction)
and corresponding ground-truth labels. The whole dataset contained 2500
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extracted patches along with the corresponding ground truth. Of the whole
dataset, 80% (n = 2000) were used for training and 20% (n = 500) were used
for testing. We evaluated our trained model for ROI extraction using test images
containing multiple CMs (see Figure 22.5a). Predicted masks from our model
and the U-Net model are shown in Figures 22.5b,c. Figure 22.5d shows the
ground-truth mask. The predicted mask by the U-Net model contained extra
seeds and exhibited both over- and under-segmentation. However, our model
effectively handled different edge directions and specific ambiguous attributes
of the ROI and non-ROI, despite difficulties of ROI extraction including ROI
size, shape, and orientations.
Figures 22.6 shows an example of beating activity comparison of the whole sli-

de of OPD image with multiple CMs before and after ROI extraction (see
Figures 22.6a,c) and their corresponding beating activity (see Figures 22.6b,d).
As previously stated, the beating activity before ROI extraction was noisy, with
extra incorrect peaks due to the OPD variance in the non-ROI section, which
might make quantifying the beating profile difficult. However, the ROI
section reflects a clean and less noisy beating activity with the wrong peaks
removed. Hence, it is more relevant for CM dynamic characterization.

22.4.1 Single Cardiomyocyte Beating Profile Quantification

ROIs of CMs were extracted in the first step of our method. The resulting mask
image was multiplied by each OPD image in the sequence. Finally, the spatial var-
iance between successive images was computed to obtain the beating profile as
explained in Chapter 21. The computed variance was sensitive to redistribution

Figure 22.4 Sliding window patch extraction method for training data preparation.
(a) Original OPD of multiple cardiomyocytes (grey bar = 20 μm). (b) Magnified portion
of the original phase image with the indicated patches. (c) Corresponding ground-truth
patches with the ROI (light grey) and non-ROI (dark grey) portions [10] / with permission of
Optical Publishing Group.
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of dry mass within CMs to monitor characteristics of the cardio beating over time.
The corresponding equation is shown as follows:

opdvar = var opdi − opdi− 1 , 22 1

where opdi and opdi−1 are the ith and i–1th images. Specifically, opdvar (OPD var-
iance) represents the time course of the cell dry-mass redistribution during CM’s
beating activity. The opdvar signal contains information about redistribution of dry
mass within CMs, namely contraction and relaxation durations. After ROI extrac-
tion, we monitored CMs’ beating activity and measure their dynamic parameters

Figure 22.5 Results of ROI extraction using the proposed FCN-based method compared
to the U-Net network model. (a) Original phase image of multiple cardiac cells obtained
by DHM. (b) Predicted mask using our trained FCN-based model. (c) Predicted mask using the
U-Net network model. (d) Ground-truth mask extracted manually [10] / with permission of
Optical Publishing Group.
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Figure 22.6 Example of a CM beating profile reconstruction before and after ROI extraction. An OPD image of multiple CMs (a) before ROI
extraction and (b) the corresponding beating activity profile. An OPD (c) after ROI extraction using our method (grey outline) and (d) the
corresponding beating activity profile [10] / with permission of Optical Publishing Group.



at the single cell level. Descriptions of the parameters for quantifying CM dynam-
ics are shown in Table 22.1.
To further examine our method for single-cell level characterization, six individ-

ual CMs were extracted from the whole slide OPD image of CMs shown in
Figure 22.7a. The corresponding beating profile was calculated from Eq. (22.1)
(see Figure 22.7b). We measured several parameters related to the beating activity
profile for each individual CM. To characterize the dynamic beating profile activity
of single CMs using ROI extraction, we detected two main peaks of contraction
and relaxation using the Otsu thresholding method. The first peak with a larger
amplitude value in most cases is the contraction, and the corresponding relaxation
peak is represented by the second peak, which has a lower amplitude value. The
contraction and relaxation peaks are then used to define three auxiliary points:
(i) start-of-contraction, (ii) end-of-contraction, and (iii) end-of-relaxation showed
in Figure 22.7c. The following steps are used to locate auxiliary points: (i) the end-
of-contraction point (start-of-relaxation) (Figure 22.7c, blue points) is obtained by
finding the smallest amplitude value between contraction and the corresponding
relaxation peaks; and (ii) auxiliary start-of-contraction and end-of-relaxation
points are detected using a search strategy around the contraction and relaxation
peaks. The time difference between the end-of-contraction (start-of-relaxation)

Table 22.1 Descriptions of parameters to quantify cardiomyocyte dynamics.

Parameters Description

Contraction Beat rate The total number of contraction peaks in 1
minute (number of red points in Figure 22.7b)

Beating interval AVG
[see #1 in Figure 22.7c]

The time between two adjacent contraction
peaks.

Contraction period AVG
[see #2 in Figure 22.7c]

The average time between the start-of-
contraction and end-of-contraction points.

Contraction period STD The standard deviation of the contraction
beating period.

Relaxation Relaxation period AVG
[see #3 in Figure 22.7c]

The average time between the start-of-
relaxation and end-of-relaxation points.

Relaxation period STD The standard deviation of the relaxation
beating period.

Resting Resting period AVG
[see #4 in Figure 22.7c]

The average time between the end-of-
relaxation and the next start-of-contraction
points.

Resting period STD The standard deviation of the resting beating
period.
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Figure 22.7 (a) Original OPD image of multiple cardiomyocytes in which single cells are denoted for further quantification. (b) Beating activity
profile derived from cell #1 (at 30 s) and (c) details on quantification parameters explained in Table 22.1 [10] / with permission of Optical
Publishing Group.



and the end-of-relaxation is considered as relaxation period and the time differ-
ence between the start-of-contraction and the corresponding end-of-contraction
points specifies the contraction period. The time difference between two consec-
utive contraction peaks determines beating intervals. The resting period is the time
difference between the end-of-relaxation and the next start-of-contraction points.
Extracted features of the beating profile and their corresponding descriptions are
listed in Table 22.1. Figure 22.8 shows a beating activity profile reconstructed from
cell numbers 1, 2, 3, 4, 5, and 6 with detected contraction-relaxation peaks and
auxiliary points for precise single-CM characterization. The dynamic beating pro-
file quantification of single CMs demonstrates that the contraction period is
shorter than the relaxation period due to the presence of different ion channels
and transporters expressed in cardiomyocytes as well as the mechanisms by
which their activities are sequentially orchestrated when CMs contract and relax
(see Figure 22.9). As shown in Figure 22.9, all CMs have similar average beating
rates, average beating intervals, and resting times.

22.4.2 Network Performance Accuracy Measurement

A set of evaluations were carried out to compare our model’s performance against
the U-Net model in terms of training process performance, pixel classification
accuracy, and the Dice coefficient. The learning curve evaluation showed that
our model convergence was faster than the U-Net model (see Figures 22.10a
and 22.10b). The confusion matrix of pixel classification indicates the accuracy
percentage of correctly classified pixels versus the misclassification rate. As shown
in Figure 22.10c, the classification accuracy rates using our FCN-basedmodel were
99.76% and 99.28%, respectively, while the same evaluation for the U-Net model
showed classification accuracies of 93.69% and 91.25% (see Figure 22.10d). These
experimental results indicate that our method is more robust with more accurate
pixel classification. To statistically evaluate the segmentation performance of our
model against the U-Net model for each CM sample, we performed the Dice coef-
ficient analysis (see Table 22.2). The Dice coefficient was calculated using the
equation

DSC =
2TP

FP + 2TP + FN

where TP, FP, and FN were the numbers of true positive, false positive, and false
negative detections, respectively.
To validate our method for single CM characterization using the nucleus section

and see if the segmentation area included nuclei, one CM sample was stained with
Hoechst dye. We applied our segmentation model prior to and after nuclei
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Figure 22.8 Beating profiles of single cells extracted from sample number five (cell #1, 2, 3, 4, 5, and 6). The sample was recorded with a 10 Hz
sampling frequency for 54 seconds [10].



staining. ROI and non-ROI sections were marked for visual comparison. As shown
in Figure 22.11, the ROI section mainly included the nuclei (marked in blue).

22.4.3 Automated Quantification of Cardiomyocyte Synchronization

For optimal functionality of the cardiac muscle system, CMs must respond to the
commands of mechanical contraction. The signal propagates through CMs, result-
ing in the myocardium pumping blood out of the ventricle chamber. It requires

Figure 22.9 Quantification results of single extracted CM beating profiles.
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Figure 22.10 A comparison of learning curves and confusion matrix for pixel classification
of the proposed FCN-based model versus the U-Net model. (a) Training process accuracy
in 55 epochs and (b) the corresponding loss curves. (c) A confusion matrix of pixel
classification prediction accuracy for the proposed model. (d) A confusion matrix of
pixel classification prediction accuracy for the U-Net model.

Table 22.2 Segmentation performance evaluation using the Dice
coefficient for the proposed method against the U-Net model.

Cardiomyocyte samples

Dice (%)

Proposed method U-Net

Sample #1 96 88

Sample #2 95 89

Sample #3 94 88

Sample #4 96 87

Sample #5 97 88
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synchronization between CMs. Contraction and relaxation time must be finely
controlled without a time lag between signals of two CMs in the same sample.
We will present the same state visually by analyzing the cross-correlation between
two signals.
For the analysis of cell-to-cell synchronization, we obtained OPD images of CMs

with DHM. Several single CMs from the OPD images were then extracted using a
marker-controlled watershed algorithm (see Chapter 12 for more details). As
shown in Figure 22.12, the extracted region contained mostly the nucleus of the

Figure 22.11 (a) Segmentation results of the original OPD image of multiple CMs before
Hoechst nuclei staining. (b) An overlay of the original OPD image with nuclei staining on the
segmented image. Segmented sections (ROI) mostly included the nuclei. The inset shows a
single cardiomyocyte with its nuclei marked (grey line) and defined as the ROI to be
extracted for dynamic beating profile quantification [10] / with permission of Optical
Publishing Group.

Figure 22.12 (a) Original OPD image of cardiac muscle cells obtained by DHM,
(b) A cardiomyocyte image showing cell regions, internal markers, and external markers
obtained using the marker-controlled watershed algorithm, (c) Final segmented
cardiomyocyte image (some cells are labeled for further discussion). OPD scale applies to
both (a) and (c) [10] / with permission of Optical Publishing Group.
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cardiac muscle cell. Note that the segmented region also included a small portion
of the cytoplasm within which the nucleus was enclosed. To quantify the beating
profile of segmented single CMs, we used the variance of each OPD image frame
subtracted from its successive frame. We compared contraction and relaxation
points of CMs labeled in Figure 22.12c. Measured values were analyzed to demon-
strate cell-to-cell synchronization. We found that the isolated CMs were rising and
falling at the exact same time as the 3D representation (see Figure 22.13) and that
positive peak-peak increases overlapped exactly, showing a highly synchronous
population.
We performed a cross-correlation analysis to check the similarity and synchro-

nization between two signals (two cells) using the equation

f ∗g n def =
∞

m = − ∞
f ∗ m g m + n ,

where f∗ denotes the conjugate of f (first signal), g is the second signal, and n is the
time lag between the two signals in the time domain (m) [11]. It is a useful tool to
determine the time delay between two beat signals and analyze the signal synchro-
nization. The maximum cross-correlation of functions indicates the time where
the two signals are best aligned.
The argument that maximum cross-correlation can determine the point where

the two signals are best matched is:

Tdelay = arg max
m

f ∗g m

Figure 22.13 Rhythm strip comparison: a 3D representation of rhythm strips’
synchronization detection [11].
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Figure 22.14 shows cross-correlation between the two beating signals. We can
see in this diagram that the two signals are at a maximum value when the time
lag is zero, indicating that they are perfectly synced in time.

22.5 Conclusions

In this chapter, we introduced an automated FCN-based platform for CM nucleus
extraction and beating pattern characterization at the single-cell level. We demon-
strated that the CM nucleus section (denoted as ROI) from an OPD image can suf-
ficiently reflect the beating pattern to characterize CMs at the single-cell level. We
designed a new FCN-based model to discriminate the CM nucleus section from
other sections of CMs using pixel classification techniques. Our FCN-based model
outperformed the U-Net model for segmentationmask prediction with a high pixel
classification accuracy (over 99%). The predicted mask was further used to quan-
tify the dynamic contraction-relaxation of a single CM.We obtained multiple OPD
images of CMs under different circumstance including shape, size, and orienta-
tions.We extracted several individual CMs from anOPD image using the predicted
segmentationmask. Multiple parameters associated with the dynamic beating pro-
file of each CM after removing the non-ROI were measured at the single-cell level.
Single CM beating profile quantification was precisely performed using contrac-
tion-relaxation peak detection and multiple auxiliary points. Experimental results

Figure 22.14 Cross-correlation between cells 1:2, 1:3, and 7:8 [11] / with permission of
Optical Publishing Group.
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demonstrate that our method is robust for CM nucleus extraction and subsequent
CM beating profile characterization at the single-cell level. Furthermore, our
results showed that our method could quantitatively investigate cell-to-cell syn-
chronization in the cardiovascular system.We believe that our models can be used
to study cardiomyocyte disorders at the single-cell level.
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23

Automatic Quantification of Drug-treated
Cardiomyocytes with DHM

23.1 Introduction

There is a high demand for innovative drug-discovery technologies. The past
decade has seen a great expansion of label-free imaging platforms and methods
in various stages of the drug discovery process including target engagement deter-
mination and drug safety assessments. Moreover, with the advent of human-
induced pluripotent stem cell (HiPSC) technology, substantial attempts have been
made to use HiPSCs to screen for new drugs and to test candidate drugs for toxicity.
In particular, HiPSC-derived CMs can help us elucidate the molecular and cellular
mechanisms of cardiac arrhythmias in patients. They can also serve as robust plat-
forms for developing new drugs for clinical therapy. Therefore, it is highly relevant
to develop label-free imaging systems capable of monitoring the effects of drug
candidates on HiPSC-derived cells.
DHM can provide quantitative imaging of cell structures and dynamics in a non-

invasive manner. This is of tremendous importance since it can enable us to accu-
rately visualize live cells without disturbing them as drug-mediated cellular effects
are assessed. The unique capability of DHM to visualize live cells without the need
for scanning or contrast agents is particularly well suited for label-free, high-
content screening [1–3]. Therefore, invaluable information regarding the mor-
phology (contraction–relaxation) and dynamics of the quantitative redistribution
of materials within CMs can be non-invasively obtained by DHM.
In this chapter, we will introduce an automated method to quantitatively assess

the effects of E-4031, a class III anti-arrhythmic compound, and isoprenaline,
which is a treatment for slow heart rates and heart-block abnormalities, on
CMs by analyzing a set of dynamic cell parameters derived from phase imaging
[4]. These cell parameters, which can help us measure mechanical and beating
properties of CMs, can be used to quantitatively characterize effects of these
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compounds (E-4031 and isoprenaline) by monitoring control and drug-treated
CMs. We believe that our label-free DHM is efficient for quantifying and assessing
the specific effects of promising candidates on relevant CM functions within the
framework of drug development.

23.2 Materials and Methods

23.2.1 Cell Preparations and Experimental Conditions

HiPSC-CMs (iCell CMs, catalog number CMC-100-010-001) were obtained from
Cellular Dynamics Int. (Madison, WI, USA) and cultured according to the man-
ufacturer’s instructions (2 × 104 cells per well in 96-well plates pre-coated with
0.1% gelatin) and grown for 14 days. Measurements were achieved with a Cham-
lide WP incubator system for 96-well plates (LCI, South Korea) set at 37 C and 5%
CO2 with high humidity. For the control condition, a sequence of CM images was
recorded before treatment. Each drug was then added to individual wells at several
concentrations and the CMs imaged again after a 15-minute incubation period.
Experiments were performed in triplicate (three wells of about 50 cells with one
330 × 330 μm field acquired per well). For confirmation, cell viability was also
determined using a Presto Blue fluorescence assay. Automated image analysis
for toxicity assessment was performed with CellProfiler software 3.1.9 [5].
Figure 23.1a shows a recorded hologram of a control CM sample. Since the hol-

ogram was recorded in an off-axis configuration, a Fourier transform of the hol-
ogram could separately represent the bandwidth of the real image, virtual
image, and zero-order noise as shown in Figure 23.1b. A spatial filter to cover only
the bandwidth corresponding to the real image was used (see Figure 23.1c).
Figures 23.1d and 23.1e show the amplitude and phase images of CMs recon-
structed from filtered holograms. Note that phase and optical path difference

(OPD) values can be exchanged with the equationOPD =
λ × ϕ

2π
, where ϕ denotes

the phase value.

23.2.2 Cardiomyocyte Beating Signal Extraction

Several image pre-processing techniques were used to accurately quantify
dynamic parameters of control and drug-treated CMs (see Figure 23.2a). The pro-
cedure is similar that used in Chapter 21. We used a signal fitting approach and a
3Dmedian filter, which allowed us to enhance the accuracy of measurements. The
filter (2 × 2 × 2) was applied to the whole stack to reduce spatial and temporal
noise. According to Chapter 21, during the first step of our image processing
method, temporal OPD images of CMs were arithmetically averaged. The resulting
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Figure 23.1 (a) A recorded hologram of a control cardiomyocyte sample (inset shows a
portion of the hologram in 3D. Interference patterns between the reference wave and object
wave were spatially recorded), (b) A spectrum of the off-axis hologram (three bandwidths
were isolated). (c) Spatial filtering can preserve the bandwidth of a real image. (d) Amplitude
image after numerical reconstruction. The contrast in the amplitude image is poor since
cells are transparent. (e) Phase image after numerical reconstruction and phase unwrapping.
The phase image provides high-contrast data for quantitative analysis [4] / with permission
of American Chemical Society.
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averaged OPD image was then subtracted from each image in the sequence.
Finally, the spatial variance between successive images was computed. This
parameter, being sensitive to any redistribution of dry mass within CMs, can mon-
itor various aspects of the cardiac beat over time. The corresponding equation is
defined as

OPDvar
i = var OPDi x, y −OPD , 23 1

where OPDi is the ith OPD image from total samples and OPD is the average of
total OPD images in the stack. Specifically, OPDvar (OPD variance) represents
the time course of cell dry-mass redistribution occurring during the CM contrac-
tion–relaxation cycle. As a result, theOPDvar signal contains information about the
beating pattern, such as the contraction and relaxation durations, resting duration,
and beating period. Figure 23.2b shows a beating profile of control CMs after
applying Eq. (23.1).
We will introduce a new approach to evaluate dynamic parameters correspond-

ing to both a low CM beat rate (less than 20 bpm for which the resting period cor-
responds to a flat shoulder) and a high CM beat rate (greater than 30 bpm)
characterized by a short resting time. For this purpose, the high-frequency noise
of the OPDvar signal was removed by applying a moving average filter with a span
of 6 (unweighted mean of 6 OPDvar points). This filtering procedure can efficiently
reduce the noise that appears in the flat region of the signal corresponding to the

Figure 23.2 (a) General scheme of the proposed method to study cardio cells, and
(b) Beating profile of a cardio sample at control conditions (beat rate = 26 beats per
minute [bpm]).
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shoulder area (the resting duration) of the beating profile. Furthermore, it can pro-
vide less-noisy positive peaks for the peak-finding procedure.
We will also address the increasing or decreasing trends in OPDvar signal

observed in some samples, which are probably due to experimental drift that
can occur during DHM recording periods or unfocused particles moving across
the ROI. The trended signal can compromise the peak-detection step described
in Chapter 21 (a first-order derivation followed by Otsu’s thresholding method
to identify a positive peak threshold). The trended signal can be de-trended by sub-
tracting the fitted 5-degree polynomial from the de-trended signal (see
Figure 23.3). The fitted polynomial of degree 5 is defined as

f x =
6

i = 1
bix

6− i, 23 2

where bi is the coefficient of the polynomial obtained with a least-square criterion.
The de-trended cardio beating profile is thus determined from

OPDde = OPDvar − f x , 23 3

where OPDde denotes the de-trended signal considered for further analysis.

23.2.3 Cardiomyocyte-related Parameter Measurements

In Chapter 21, we presented the fitting scheme to cover specific parts of the beating
pattern, namely the rising and falling portions as well as the flat resting area of
each beating pattern. Here, we will focus on the rising–falling portion of the beat-
ing pattern since it represents the contraction–relaxation dynamics of CMs, which

Figure 23.3 A trended cardiomyocyte signal and the detrended signal (beat rate = 21 bpm).

23.2 Materials and Methods 291



is specifically affected by E-4031 and isoprenaline drugs. The rising–falling portion
of the beating pattern is asymmetrical due to the presence of CM-membrane ion
channels and transporters as well as the mechanisms by which their activities are
sequentially orchestrated during depolarization and repolarization [3, 6, 7]. The
new polynomial function that fits the rising–falling portion makes it possible to
characterize contraction and relaxation periods, resting time, and beating
period/rate by allowing us to calculate the amplitudes of signals at different levels.
The rising–falling portion is extracted from the two adjacent negative peaks with a
positive peak between them. The location of the positive peak corresponds to
either the point where the first derivative vanishes or the largest point between
two neighbors. In the event of undesirable positive peaks, a general threshold
value could be determined to remove peaks below the threshold. To do so, the
Otsu’s thresholding method is applied. All positive peaks below the threshold
are excluded. There are cases in which two or three positive peaks are located very
close to each other due to fluctuations of the beating signal near the actual positive
peak. In this case, only the peak with the highest value is considered. The two neg-
ative peaks are detected by a search strategy around the positive peak. In this man-
ner, the span of search is selected to cover an area larger than the rising–falling
section. The search is initiated by computing the difference between adjacent ele-
ments of the OPDvar signal. The first element of the difference signal that exceeds a
pre-determined threshold is the left-side negative peak. The right-side negative
peak is also located in the same manner. Eventually, only one positive peak
between two negative peaks is available for each beating profile. After extracting
the rising–falling portion of each beating profile, a 9-degree polynomial function is
fit to the rising–falling signal. The degree 9 polynomial is defined with the
equation:

f x =
10

i = 1
bix

10− i

To find the bi, the least-squares criterion is implemented. The fitted function
yields a quantitative characterization of the beating profiles from which a set of
highly relevant parameters to characterize the drug effects can be derived. Specif-
ically, we can calculate the contraction and relaxation time, resting time, time of
full width at half maximum (TFWHM), and the rising and falling slopes (see
Table 23.1). The time corresponding to 10%, 50%, and 90% of the amplitude fitted
signal (see Figure 23.4) can be calculated by solving the fitted polynomial equation.
Specifically, 10% and 90% of the amplitude maximum are used to calculate the
time duration of the contraction–relaxation process. TFWHM, the width of
the beat profile amplitude at half weight, is an important parameter regarding
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the action potential analysis of contractile CMs. It can provide information about
the depolarizing and repolarizing phases of CMs [7, 8]. All the parameters men-
tioned above are measured at the single-beat level. Population average and stand-
ard deviations are calculated. Table 23.1 gives a description of calculated
parameters that are important for the analysis of drug candidates’ effects. To com-
pute an average mass movement, the numerical integration of the OPDvar signal
between T1 and T6 is evaluated.

Table 23.1 Description of cardiomyocyte dynamic parameters and values for one control
sample (au = arbitrary unit).

Parameter Description
Values
(Mean ± STD)

Contraction period
(Rising duration)

The time difference between Amp10 and
Amp90. (T3−T1)

200 ± 20 [ms]

Relaxation period
(Falling duration)

The time difference between Amp90 and
Amp10. (T6−T4)

290 ± 30 [ms]

Contraction–
relaxation period

The time difference between T1 and T6.
(T6−T1)

650 ± 50 [ms]

TFWHM The time difference between two Amp50
(T5−T2) points corresponding to full width
at half maximum (TFWHM).

410 ± 50 [ms]

Resting time The time difference between the beating
period and contraction–relaxation time.

1700 ± 100 [ms]

Beating period The time between two adjacent positive
peaks.

2380 ± 100 [ms]

Beating rate (beats
per minute)

The total number of positive peaks in
60 seconds.

29 ± 2 BPM

Rising slope
(Contraction
slope)

The amplitude difference at (T3, T1). 75 ± 11OPD [nm]

Falling slope
(Relaxations slope)

The amplitude difference at (T6, T4). 76 ± 11 OPD [nm]

Maximum
contraction speed

Rising slope divided by the time interval
(T3−T1).

38 ± 3 (au)

Maximum
relaxation speed

Falling slope divided by the time interval
(T6−T4).

25 ± 3 (au)

Average mass
displacement

The total area under the OPD variance
signal between T1 and T6.

350 ± 60 (au)
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Figure 23.4 Representation of fitted functions on cardiac action potential and definitions
of multiple parameters. The inset shows a sample in control conditions. The fitting function
is similar for both the control and drug-treated samples. The fitting function should fit a
single rising–falling portion for analysis.
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23.3 Experimental Results and Discussion

23.3.1 Quantitative Analysis of Drug-treated Cardiomyocytes

Figure 23.5 shows the drug’s effects on the beating activity of CM samples obtained
using Eqs. (23.1) to (23.3). According to Figure 23.6, CMs exhibited an increase in
beat duration in response to increasing concentrations of E-4031. However, their
beat rate (defined as the number of positive peaks over a 60 s imaging interval)
decreased (see Figure 23.5). Furthermore, E-4031 did not significantly change
the contraction period, relaxation period, or the contraction–relaxation duration.
Note that regardless of the E-4031 concentration, the two-sample Kolmogorov–
Smirnov (KS) test indicated that the CM contraction period was significantly

Figure 23.5 Beating profiles of control samples and samples treated with drugs (E-4031
and isoprenaline).
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shorter (p <0.01) than its relaxation period. On the other hand, resting duration
prolonged with the increasing concentration of E-4031, which explained
the increase in beat duration. However, a TFWHM decrease was observed for
E-4031 at concentration of 3 μM or higher. Considering that the contraction–
relaxation duration was not significantly modified by E-4031, these TFWHM
decreases nevertheless reflected a modification of the dynamic contraction–
relaxation response pattern.
Figure 23.7 shows that the average mass movement, the maximum relaxation

speed, and the maximum contraction speed are increased by E-4031. However,
these increases were already present with a low concentration of E-4031 at
3 μM. They did not show a clear dose-response relationship. Note that the maxi-
mum contraction speed was larger than the maximum relaxation speed according
to the KS test (p <0.05), consistent with previous reports [8–10]. These results for

Figure 23.5 (Continued)
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E-4031 align with its mode of action. E-4031 is a synthesized, class III antiarrhyth-
mic toxin drug known to block hERG-type potassium channels by binding to open
channels that can cause lethal arrhythmias. Specifically, it blocks the delayed rec-
tifier potassium current in CMs, which increases the ventricular effective refrac-
tory period. This effect is compatible with our observations, particularly the
decreased beat rate and increased resting duration.

Figure 23.6 Multiple parameters in response to drug concentration. (Top) The effect of
different concentrations of E-4031 on cardiac samples. (Bottom) The effects of different
concentrations of isoprenaline on cardiac samples.
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On the other hand, isoprenaline decreased both resting and beating durations
in a dose-dependent manner (see Figures 23.5 and 23.6). There was also a trend
toward a decrease in the contraction-relaxation duration. Similar to E-4031, we
found that the contraction duration of isoprenaline-treated CMs was slightly
shorter than the relaxation duration, as with previous findings [8]. As shown

Figure 23.7 (a) Average mass movement relative to the control condition. (b) Maximum
contraction speed relative to the control condition. (c) Maximum relaxation speed relative to
the control condition [4] / with permission of American Chemical Society.
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in Figure 23.6,the average mass movement was significantly increased for iso-
prenaline concentrations below 18 nM, but drastically decreased when samples
were treated with higher concentrations of isoprenaline. The maximum con-
traction and relaxation speeds were significantly increased by isoprenaline.
Although these speed increases were greater than those observed for E-4031
and compatible with an increase in contractile force, we did not observe a
dose-dependent response. These observations were in good agreement with iso-
prenaline mechanisms of action, an agonist of cardiac β1 and β2 receptors,
which increases ion movements through both sodium and calcium channels
and leads to increased contractile force and beating rates characterized by a
decreased refractory period.
Our method can measure multiple CM parameters in a label-free, noninvasive,

and contactless manner. It can directly evaluate the mechanical contraction–
relaxation of CMs by recording dry-mass changes during beating. Dry-mass redis-
tribution can be related to the multi-parameter measurement of CMs and used to
study the effects and cardiotoxicities of drugs.

23.3.2 Cardiotoxicity Assessment

We confirmed that DHM could monitor cell viability and toxicity in CMs.
A parallel measurement of CMs treated with the toxic compounds doxorubicin
and staurosporin showed both a decreased Presto Blue signal (a resazurin-based
metabolic activity indicator, Figure 23.8a) and an increased average OPD
(Figure 23.8b), which are indicative of cell death [11]. Both parameters were highly
correlated (see Figure 23.8c) and fully translated morphological changes related to
cell death (see Figure 23.8d).
We further obtained cell intensity (average OPD), cell count, and cell area data

from all previous experiment OPD images by performing segmentation and cell-
morphological parameter extractions. Figure 23.8e shows that all three parameters
are correlated with Presto Blue data, showing that a feature analysis of CM OPD
images obtained with DHM allows us to directly assess cell toxicity. This experi-
ment further demonstrates that extensive information can be extracted fromDHM
without requiring invasive, costly, and/or time-consuming assays.
We, therefore, performed this extended image analysis to confirm that all the

recorded parameter signals analyzed in previous figures were not perturbed by cell
death or cell toxicity and that the monitored, beating CMs were in a healthy state
throughout CM hologram acquisitions. As shown in Figure 23.9, we could clearly
observe that all CM images from the sequence recording in presence of E-4031 or
isoprenaline clustered in the same 3D space as the negative control (DMSO), while
positive toxicity controls exhibited a very distinct pattern with higher cell intensi-
ties (average OPD) and decreased cell counts and areas.
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23.4 Conclusions

In this chapter, we introduced DHM to directly and non-invasively measure the
dynamics of drug-treated CMs by recording CM phase images. Our experimental
results of E-4031-treated CMs showed that the beat rate decreased as the concen-
tration of E-4031 increased as the result of an extended resting duration. We also
observed that the contraction duration was shorter than the relaxation duration.
Isoprenaline demonstrated its effect on CM samples by increasing both the con-
tractile force and the beat rate as a result of the decreased resting period. These

Figure 23.8 Cell viability assays with (a) Presto Blue or (b) DHM on cardiomyocytes treated
with two dilutions of doxorubicin or staurosporin. (c) Correlation between Presto blue and
DHM. (d) Selected DHM example images showing cardio-toxic conditions versus control
condition. (e) Correlation between cell intensity, area, and count measured with CellProfiler
and Presto Blue. Statistical analysis: two-tailed test for Pearson correlation with 95%
confidence interval [4] / with permission of American Chemical Society.
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findings demonstrate that our DHM system, with the development of proper anal-
ysis algorithms, can monitor specific drug-mediated effects on the dynamics of the
CM contraction–relaxation process, which can reflect the underlying drug
mechanisms of action at some extent. DHM, with a proper analysis of its phase
image, thus represents a promising label-free approach for drug discovery.

References

1 Klabunde, R. and Richard, E. (2017). Cardiac electrophysiology: normal and
ischemic ionic currents and the ECG. Adv. Physiol. Educ. 41 (1): 29–37.

2 Nerbonne, J. and Kass, R. (2005). Molecular physiology of cardiac repolarization.
Physiol. Rev. 85 (4): 1205–1253.

3 Trenor, B., Cardona, K., Saiz, J. et al. (2017). Cardiac action potential repolarization
revisited: early repolarization shows all-or-none behavior. J Physiol. 595 (21):
6599–6612.

4 Jaferzadeh, K., Rappaz, B., Fabien, K. et al. (2020). Marker-free automatic
quantification of drug-treated cardiomyocytes with digital holographic imaging.
ACS Photonics 7: 105–113.

Figure 23.9 A 3D scatterplot of parameters extracted from image analysis using
CellProfiler software. Cell count, cell intensity, and cell area are normalized by the
corresponding control condition. Dots size is proportional to the compound
concentration [4] / with permission of American Chemical Society.

References 301



5 Carpenter, A., Jones, T., Lamprecht, M. et al. (2006). CellProfiler: image analysis
software for identifying and quantifying cell phenotypes. Genome Biol. 7 (10): R100.

6 Pinnell, J., Turner, S., and Howell, S. (2007). Cardiac muscle physiology. Contin.
Educ. Anaesth. Crit. Care Pain 7 (3): 85–88.

7 Bers, D. (2002). Cardiac excitation-contraction coupling. Nature 415 (6868):
198–205.

8 Hayakawa, T., Kunihiro, T., Ando, T. et al. (2014). Image-based evaluation of
contraction–relaxation kinetics of human-induced pluripotent stem cell-derived
cardiomyocytes: correlation and com-plementarity with extracellular
electrophysiology. J. Mol. Cell. Cardiol. 77: 178–191.

9 Nomura, F., Kaneko, T., Hattori, A., and Yasuda, K. (2011). On-chip constructive
cell-network study (II): on-chip quasi-in vivo cardiac toxicity assay for ventricular
tachycardia/fibrillation measurement using ring-shaped closed circuit
microelectrode with lined-up cardiomyocyte cell network. J. Nanobiotechnol.
9 (1): 39.

10 Yamazaki, K., Hihara, T., Taniguchi, T. et al. (2012). A novel method of selecting
human embryonic stem cell-derived cardiomyocyte clusters for assessment of
potential to influence QT interval. Toxicol. in Vitro 26 (2): 335–342.

11 Kühn, J., Shaffer, E., Mena, J. et al. (2013). Label-free cytotoxicity screening assay by
digital holographic microscopy. Assay 11 (2): 101–107.

302 23 Automatic Quantification of Drug-treated Cardiomyocytes with DHM



24

Analysis of Cardiomyocytes with Holographic
Image-based Tracking

24.1 Introduction

DHM is a promising tool with a remarkable role in live-cell analysis by providing
quantitative phase images well-suited to study cell behavior without labels. In
Chapter 23, we showed that cardiomyocyte (CM) responses to pharmacological
compounds could be quantitatively characterized by monitoring dry-mass
changes. However, developing a high-throughput screening system to monitor
the beating behavior of human-induced pluripotent stem cell–derived (HiPSC)
at the single-cell level remains essential. Obtaining functional signals that reveal
detailed information about pharmacological effects on CM contractility at the sin-
gle-cell level has several challenges. Optical flow-based motion-tracking methods
allow the monitoring of CM contractile activity without needing a physical con-
tact. In particular, the Farneback dense optical-flow algorithm uses single-pixel
displacement detection to track moving objects. Furthermore, a combination of
DHM and optical flow-based analysis can enable us to observe CMs for a long time
at the single cell level. Using motion waveforms obtained from single CMs, the
motion speed measurement and dynamic parameters of CMs, including the con-
traction, relaxation, beating, and resting periods, can be automatically quantified
at the single cell level.
In this chapter, we will introduce a novel platform to integrate DHM and Farne-

back dense optical flow for single-CM contractile motion characterization [1].
First, we obtained phase images of CMs with DHM and performed motion track-
ing at the single-cell level using the Farneback dense optical-flow method that can
detect high-resolution contractile centers. In this way, the CM contractile motion
speed, which reflects changes in CM morphology, can be measured, then the
motion waveform further characterized by computational algorithms to CMs.
Multiple temporal parameters including contraction period, relaxation period,
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beating period, and resting period are then measured. Since our method occurs at
the single-cell level, the synchronization of CMs can also be qualitatively assessed.
We analyzed the pharmacological effects of isoprenaline (166 nM) and E-4031
(500 μM) in CM motion speed compared to control conditions at the single-cell
level to evaluate the usefulness of our method for cardiotoxicity screening. We also
quantified multiple parameters of CM dynamics using several whole-slide images
for tens of cells (or beats). Furthermore, we validated our platform using speed
measurements of fixed CMs versus live CMs, single-CM synchronization testing,
and noise sensitivity analyses.

24.2 Materials and Methods

24.2.1 Cardiomyocyte Preparation and Imaging Conditions

HiPSC-CMs were obtained from Cellular Dynamics Int. (Madison, WI, USA) and
cultured according to the manufacturer’s instructions for 14 days before recording
a hologram. For drug-treated CMs, a sequence was recorded for the control con-
ditions before the drug was added. After a 15-minute incubation, CM images were
recorded again. The images were acquired at three sampling frequencies of 10, 25,
and 50 Hz. CMs were fixed using a 4% formalin solution (Sigma-Aldrich) and incu-
bated for 15 minutes at room temperature. These cells were then washed three
times with phosphate-buffered saline for 10 minutes at room temperature.
A total of 1500 CM images were taken at a sampling frequency of 50 Hz before
and after cell fixation.

24.2.2 Single-cardiomyocyte Motion Tracking with Farneback
Optical Flow

Steps of single-CM motion tracking and motion waveform generation using the
Farneback optical flow are shown in Figure 24.1a. In the first step, our algorithm
generated a hierarchy of resolution levels from the original OPD image using
Gaussian pyramids, with each level having a lower resolution than the previous
level (see Figure 24.1b). Figure 24.1c shows an optical flow for the pixel displace-
ment estimation in two successive image frames, where I(x,y,t) is the pixel position
in the reference frame and I(x + dx, y + dy, t + dt) is the pixel displacement in the
subsequent frame (current frame). The Farneback algorithm is a dense optical
flow that performs motion tracking in multi-resolution levels [2]. Tracking proce-
dures start with the lowest resolution and continues to the highest one. As a result,
the displacement of two local patches in consecutive image frames is determined
by approximating the neighborhood of each pixel with a quadratic polynomial [3].
The tracking is refined at each resolution level by starting from the lowest
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Figure 24.1 Overview of the workflow to motion track single CMs and beating profile quantification. (a) Quick steps of single-CM motion
tracking using the Farneback optical flow and motion waveform generation. (b) Multi-resolution leveling of an image at three levels. The image
resolution at each level was downsized. (c) Diagram of the optical flow for pixel displacement estimation. (d) Close-up phase image of a single CM
with superimposed motion vectors on the CM image for contraction. (e) Relaxation state, (f ) resting state (first row), and corresponding heat map
generated from the absolute motion (second row) with encircled contractile centers. Contractile centers refer to regions in which contractions are
maximized. (g) Quantification description as explained in Section 24.2.3. (h) Beating activity profile of a single cell [1] / with permission of
Elsevier.



resolution level and moving to the highest resolution. Large displacement can be
detected since the detected tracking points at each level are base points for the
next. For details of the Farneback optical flow, please refer to [3].

24.2.3 Workflow for Beating Signal Quantification

Ten single CMs were manually extracted from different parts of the CM phase
image (see Figure 24.1a). The extracted cell area mostly includes the nucleus
region, assuming the nucleus part is the center of the motion. During CM beating
activity, an array of motion vectors is generated by repeating the optical flow as
shown in Figure 24.1a, in which the motion direction and action potential (AP)
speed of each CM are computed. The motion waveform of the CM is generated
by computing the AP speed using the equation

Speedμm s =
Displacement

Time
=

dx 2 + dy 2

Time
, 24 1

where dx and dy denote displacements in x and y directions, respectively. They are
estimated by the Farneback algorithm, which represents CMmotion in the x and y
directions. The time in Eq. (24.1) is the time between two consecutive frames. Once
the motion waveform is generated, the contraction peak, relaxation peak, and sev-
eral auxiliary points for quantifying CM physiological behavior can be calculated
with the automated peak identification method. A single CM, with superimposed
motion vectors on the image that refer to the motion directions for different bating
statuses, are shown in Figures 24.1d, 24.2e, and 24.2f, which correspond to con-
traction, relaxation, and resting beating status, respectively. During contraction
and relaxation, motion vectors indicated opposite directions. In contrast, motion
vectors in the resting status indicated no motion. Heat maps generated from the
absolute motion for each beating status are also shown (see the second row in
Figures 24.1d–f ). The heat map represents specific regions of the CM, which is
a center of contraction. More contractile centers are observed on the heat map
when the CM is in the contraction mode than in relaxation. In contrast, the heat
map shows almost no contractile centers in the resting state, leading to an almost
zero value for the motion speed.
The measurement of temporal motion speed can reveal details about the beating

activity of the CM sample (see Figure 24.1g). Thus, we reconstructed important
temporal parameters such as the contraction period, relaxation period, resting
period, and beating period using the accurate peak detection and average period
selection described in Chapter 22 (see Figure 24.1h). Figure 24.1g details the
obtained, averaged temporal parameters related to CM mechanical events. To
compute characteristics of CM activity based on motion speed signal, single beat-
ing profiles were extracted, which required twomain contraction–relaxation peaks
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and three auxiliary points. The three stages of contraction are the contraction
start, contraction end, and relaxation end. Figure 24.1g shows the representation
of these points. Details of accurate peak detection along with auxiliary points are
described in Chapter 22. Dynamic parameters measured for each isolated CM are
described as follows: (1) themaximum contraction speed (see #1 in Figure 24.1g),
the average amplitude of contraction peaks; (2) the beating period (see #2 in
Figure 24.1g) is the time between two adjacent contraction peaks; (3) the contrac-
tion period (see #3 in Figure 24.1g), the average time between the start of con-
traction and end of contraction points; (4) the relaxation period (see #4 in
Figure 24.1g), the average time from the start of relaxation to the end of relaxa-
tion; (5) the maximum relaxation speed (see #5 in Figure 24.1g), the average
amplitude of relaxation peaks; and (6) the resting period (see #6 in
Figure 24.1g), the average time between the end of relaxation and the next con-
traction start.

24.3 Experimental Results and Discussion

Single CM motion characterization, beating profile quantification results, and
synchronization analysis are shown in Figure 24.2. A heat map analysis of the
absolute motion was used to monitor contractile centers (see Figures 24.2a–c,
second row). Four single CMs are provided as examples. Figure 24.2d shows that
the maximum contraction speed is larger than themaximum relaxation speed and
the contraction period is shorter than the relaxation period. During the CM
contraction–relaxation beating activity, motion vectors indicate opposing direc-
tions. However, during the CM resting state, motion vectors are weak, indicating
that the CM is nearly immobile (Figures 24.2a–c, first row). Quantification results
revealed that all single CMs had a similar average beating rate and average beat-
ing period. The beating activity occurred at regular intervals (see Figure 24.2e).
Note that there was a cell-to-cell variation in the magnitude of the speed value,
whereas the CM beating rate and other properties related to physiological aspects
of the CM (contraction period, relaxation period, and so on) were almost the same.
Furthermore, we performed a reliable synchronization analysis since our

method could analyze CMs at the single cell level, Figures 24.2f and 24.2g show
synchronization results for all extracted single CMs. As shown in Figure 24.2f,
the temporal activity (contraction–relaxation) beats at the same frequency during
different periods. As shown in Figure 24.2g, which presents the results of a cross-
correlation evaluation between the beating activity signals of single CMs, the max-
imal cross-correlation value is on the zero time-lag, demonstrating that single CM
signals are perfectly synced in time (see Figure 24.2g).
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24.3.1 Verification of the Proposed Motion Tracking Method

24.3.1.1 Whole-slide Image Motion Characterization

To demonstrate the robustness of our CM motion characterization method, we
investigated five whole slide images with multiple CMs obtained at different
sampling frequencies (10, 25, and 50 Hz). Sample #1, with superimposed motion
vectors for the contraction beating status, is displayed in Figure 24.3a and its

Figure 24.2 Single-CM motion characterization and synchronization analysis. Motion
vectors superimposed on a single-CM image representing the motion direction for (a)
contraction, (b) relaxation, and (c) resting beating cycle shown in the first row. The
corresponding contractility heat map is demonstrated in the second row. Contractile centers
are circled and shown in warmer colors on the heat map. (d) CM motion waveform derived
from dry-mass redistribution speed calculation. (e) Results of CM motion waveform
quantification parameters. (f ) A 3D representation of single-CM beating activity
synchronization. (g) Cross-correlation analysis between different pairs of individual
CMs [1] / with permission of Elsevier.
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Figure 24.3 Proposed method validation. (a) Whole-slide image of multiple CMs with superimposed motion vectors for the contraction state,
(b) the corresponding heat map, and (c) beating activity profile (maximum contraction speed: 1.4 μm/s; maximum relaxation speed: 0.8 μm/s; contraction
period: 0.58 s; relaxation period: 0.63 s; beating period: 2.1 s; resting period: 0.75 s). (d) Contractile speed measurement of fixed versus live CMs.
(e) Image of single-CM #1 with Gaussian noise ranging from 5% to 20%. The beating profile regularity was constant for all noise percentages.



corresponding heat map is presented in Figure 24.3b. Figure 24.3c shows a beating
activity profile with the detected contraction–relaxation peaks and auxiliary
points. It was noted that the average contraction–relaxation motion speed of
the whole image with tens of CMs was affected by the motionless region, where
there were few cells. These results showed decreased average speeds compared
to the results of the single-cell analysis.

24.3.1.2 Speed Measurement of Fixed Cardiomyocytes Versus
Live Cardiomyocytes

Our method was verified by measuring the speed of fixed CMs versus live CMs.
Results are shown in Figure 24.3d. The amplitude of the speed of the fixed CMs
fluctuated around zero. The amplitude was substantially less than both contrac-
tion and relaxation peaks but similar to the amplitude of the resting mode.

24.3.1.3 Noise Sensitivity Analysis

Noise might have several sources. To demonstrate the robustness of our method
for CM motion characterization in noisy images, we artificially applied Gaussian
noise ranging from 5% to 20% on the CM #1 image (see Figure 24.3a). We then
quantified the motion waveform generated by our method (see Figure 24.3e).
The regularity of the CM beating profile remained constant all at different noise
levels. The quantified dynamic beating properties or parameters were almost
constant.

24.3.2 Monitoring Pharmacological Effects of Compounds
on Cardiomyocytes

24.3.2.1 Whole-slide Image Analysis of Drug-treated Cardiomyocytes

We performed additional experiments to examine the effect of pharmacological
compounds on CM motion activity. We investigated the effects of an adrenergic
receptor agonist (isoprenaline) and an hERG channel blocker (E-4031) on CM con-
tractile speed using our automated method. We treated multiple CMs with 166 nM
of isoprenaline or 500 μM of E-4031 and compared the beating activity parameters
to those obtained under control conditions (see Figures 24.4a and 24.5a). Com-
pared to controls, isoprenaline increased CM beating frequency by raising the con-
tractile speed and shortening the resting period, in line with previous findings [4].
CMs responded to the E-4031 drug by decreasing their contractile speed and
prolonging resting period, thus slowing down their beating frequency, which
reflect the drug’s mode of action.

310 24 Analysis of Cardiomyocytes with Holographic Image-based Tracking



24.3.2.2 Single-cell Motion Characterization of Isoprenaline-treated
Cardiomyocytes

Figure 24.4a shows the contractile speed of the whole-slide image with tens of CMs
in both control and isoprenaline-treatment conditions. Figure 24.4b demonstrates
an example of a single-beat profile of the whole-slide image and a comparison

Figure 24.4 Single-CM contractile motion analysis in control (ctrl) and drug-treated conditions in
response to treatment with 166 nM of isoprenaline. (a) Whole-slide image contractile motion
analysis in control and drug-treated conditions, (b) Single-beat contractile motion comparison under
control and drug-treated conditions. (c) Motion waveforms of single CMs #1 to #4 extracted under
control conditions. (d) Quantification result comparison under control conditions (dark grey points)
versus drug-treated conditions (grey points) at the single-cell level. (e) Single CMs #1 to #4 extracted
after isoprenaline treatment. (f ) Average of each quantification parameter for all extracted single
cells in control (dark grey bars) versus drug-treated conditions grey bars. All statistical comparisons
were carried using an unpaired Student’s t-test. Statistical differences between the two groups with
p-value <0.05 were considered statistically significant. We averaged each quantification result for all
extracted single CMs (n=10) in control conditions and isoprenaline-treated conditions. Bars
represent the mean and standard deviation for each quantification parameter.
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between control and drug-treated conditions. The contraction–relaxation speed of
CMs increased during isoprenaline treatment compared to control conditions.
Examples of single-CM beating profiles of cell numbers 1 to 4 extracted from
control (blue) and isoprenaline-treated (yellow green) conditions are presented
in Figures 24.4c and 24.4e. Single-cell parameter quantification results are
compared in Figure 24.4d. A summary of isoprenaline effects is presented in
Figure 24.4f. We averaged each quantification result for all extracted single
CMs (10 single cells) under control and isoprenaline-treated conditions.
The unpaired Student’s t-test analysis showed that single CMs responded to iso-

prenaline with a significant increase in the relaxation speed during contraction
speed, although it was not significantly increased compared to control CMs.
The resting period was significantly reduced, causing a significant increase in
the beating frequency. These findings are in line with previous reports [5, 6].

24.3.2.3 Single-cell Motion Characterization of E-4031-treated
Cardiomyocytes

It was reported that treating CMs with E4031 can significantly decrease the heart
rate due to the loss of intracellular potassium ions (K+) in CMs [6, 7].
Figure 24.5a shows the contractile motion of a whole-slide image with multiple
CMs under control and E-4031-treated conditions. After drug treatment, a
decrease in the contraction–relaxation speed was observed, along with a pro-
longed resting period that resulted in a lower beat frequency compared to control
conditions. The quantification of beating parameters showed a prolonged relax-
ation period. An example of a single-beat profile comparison is shown in
Figure 24.5b.
The effects of E-4031 on CM contractile speed were tested at both the whole-

slide and single-cell levels. Single-CM beating patterns for cell numbers 1 to 4
are given in Figures 24.5c and 24.5e. A comparison of the beating profile quan-
tification parameter was performed at the single-cell level as shown in
Figure 24.5d. We observed a contractile response of CMs to the E-4031 drug.
The average of all single-CM contractile speeds decreased compared to control
conditions. The average resting period for all the extracted single CMs treated
with E-4031 was nearly the same and showed a significant prolongation com-
pared to control conditions. As a result, there was a significant decrease in the
beating period. The motion profiles of some single CMs showed irregular beat-
ing patterns after drug treatment. The averaged results of each quantification
parameter for all extracted single CMs are presented in Figure 24.5f. We aver-
aged each quantification result for all extracted single CMs (10 single cells)
under control and E-4031-treated conditions. These results are in good agree-
ment with previous findings [4].
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24.4 Conclusions

We presented a motion characterization platform for single HiPSC-CMs using the
optical-flow method combined with DHM for cardiotoxicity applications. We
obtained detailed information about CM functionality by generating CM beating
activity profiles based on single-cell speed calculations. We quantified beating

Figure 24.5 CM contractile motion analysis under control (ctrl) and drug-treated conditions (500 μ
M E-4031). (a) Whole-slide image contractile motion analysis for control versus 500 μM E-4031
conditions along with the beating profile. (b) Single-CM beat contractile motion comparison
between control and drug-treated conditions. (c) Motion waveforms of the single CMs, cells #1 to #4
extracted under control conditions and (d) a comparison of quantified results at the single-cell level
under control conditions (dark grey) versus drug-treated conditions (grey). (e) Single CM cells #1 to
#4 extracted after 500 μME-4031 treatment. (f ) The average of each quantification parameter for all
extracted single cells under control conditions (dark grey) versus drug-treated (grey) conditions. All
comparisons were conducted using an unpaired Student’s t-test and a p-value < 0.05. We averaged
the quantification results for each extracted single CM (n=10) under control and E-4031-treated
conditions. Bars represent the mean and standard deviation for each quantification parameter of all
extracted single CMs.
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profiles for every extracted single CM using our automated peak identification
method. We validated our CM characterization platform by measuring the con-
tractile speeds of fixed versus live CMs with a noise sensitivity analysis. Further-
more, we validated the applicability of our platform for cardiotoxicity screening at
the single-cell level by comparing the effects of E-4031 and isoprenaline chemicals
on multiple CM beating activity-related parameters to those under control condi-
tions. Our platform demonstrated that it could efficiently and accurately reveal
detailed quantification results about the pharmacological effects of a drug on _single
CMs. Our findings offer insights into the contractile motion of single HiPSC-CMs
and a deeper understanding of their kinetics at the single-cell level for cardiotoxicity
screening and predictive toxicology.
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25

Conclusion and Future Work

In this book, we introduced applications of deep learning in digital holographic
cell imaging and DHM-based phenotypic analysis methods. Basically, DHM can
provide quantitative phase images if the exact distance between the sensor plane
and the reconstruction plane is correctly provided. This process requires an iter-
ative diffraction calculation, which is computationally time consuming. We pre-
sented a deep-learning convolutional neural network with a regression layer as
the top layer to estimate the best reconstruction distance. Experimental results
obtained using microsphere beads and RBCs showed that the proposed method
could accurately predict the propagation distance from a filtered hologram. Addi-
tionally, our approach could be used at the single-cell level for cell-to-cell depth
measurement and cell adherent studies.
Conventional, numerical phase unwrapping techniques can connect wrapped

phases to recover the optical path length of a target object. However, these meth-
ods are computationally time consuming. We introduced a new deep-learning
model that can automatically reconstruct unwrapped, focused phase images by
combining digital holography and a generative adversarial network (GAN) for
image-to-image translation. Compared with numerical phase unwrapping meth-
ods, the proposed GAN model overcomes the difficulty of accurate phase unwrap-
ping due to abrupt phase changes. It can perform phase unwrapping at twice
the rate of numerical methods. We showed that the proposed model could be gen-
eralized for different types of cell images. It has a higher performance than recent
U-Net models.
In addition, we showed that deep learning could eliminate the superimposed

twin-image noise in phase images from Gabor DHM setups. This is achieved with
a conditional generative adversarial model (C-GAN) trained by input–output pairs
of noisy phase images obtained from Gabor DHM and the corresponding quanti-
tative noise-free contrast phase image obtained by off-axis digital holography.
Surprisingly, we discovered that our model could recover other elliptical cell lines
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not included in the training dataset. Additionally, some misalignments can be
compensated for with the trained model. In particular, if the reconstruction dis-
tance is slightly incorrect, our model can still retrieve in-focus images.
Furthermore, we demonstrated the potential of novel approaches to study live

RBCs by integrating DHMwith deep learning, which achieved good segmentation
and classification accuracy with a Dice coefficient of 0.94 and a high-throughput
rate of about 152 cells per second. Moreover, our holographic image-based deep-
learning models could be applied to identifying morphological changes that occur
in RBCs during storage. These deep learning–based classification results were in
good agreement with previous findings describing RBC-marker changes affected
by storage duration. Therefore, we believe that our DHM-based phenotypic anal-
ysis has potential as a new, efficient tool for the automated assessment of RBC
quality and storage lesions to ensure safe transfusions as well as the diagnosis
of RBC-related diseases.
Finally, we introduced DHM as a non-invasive measure of the dynamics of car-

diomyocyte mechanical contraction and relaxation by recording quantitative
phase images. Our automated image-processing algorithms extracted a set of
parameters from quantitative phase images that allowed us to characterize beat-
ing patterns that reflect the mechanical contraction–relaxation cycle. Our exper-
imental results of E-4031-treated cardiomyocytes showed that the beat rate was
negatively correlated with E-4031 concentration, mainly due to an extended rest
period. We also found that the contraction period was shorter than the relaxation
period under these conditions. Isoprenaline increased both the contractile force
and the beat rate, resulting in a decreased resting period. These results stress that
intelligent DHM, with the development of proper, automated analysis algo-
rithms, can be used to monitor drug-mediated effects on the dynamics of cardi-
omyocyte contraction and relaxation, which may help uncover their underlying
mechanisms of action. DHM with proper AI or deep learning–based analysis of
its quantitative phase image might be a promising label-free approach for drug
discovery.
In this book, we introduced new deep-learning DHM systems well suited to

label-free high-content screening. However, these models require complete
labels or paired datasets (holograms and corresponding phase images) during
training, which are often not available in practice. Moreover, since hologram pat-
terns differ significantly according to hologram recording conditions and target
cells, it may be difficult to establish generalized models with hologram patterns,
thus restricting their efficient application. To overcome these issues, unsuper-
vised learning or self-supervised learning DHM models should be studied to
develop live-cell imaging and analysis platforms that are more efficient in
practice.
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While we presently use black-box deep learning techniques, explainable deep
learning models for DHM, with a proper analysis of its quantitative phase signal
for theranostical purposes, could be used in the near future. We also suggested,
here-in, a new multi-modal imaging technique using deep learning to better
understand cellular and subcellular physiology. This is vital to improve studies
on disease pathology, disease prevention, and disease treatment.

25 Conclusion and Future Work 317





Index

a
Abbe 18

abrupt phase changes 70, 71, 81, 83

accuracy 197

Adam optimizer 58, 73, 181

Adam solver 94

adrenergic receptor agonist

(isoprenaline) 310

adversarial loss 73, 179

adversarial loss function 179

Airy pattern 17, 18

AJI 180

AJI evaluation 185

ANN see artificial neural network

artificial intelligence (AI) 49, 109

artificial neural networks 144, 146

activation function 146

hidden layer 146

softmax activation function 146

softmax function 146

synaptic weight 146

atomic force microscopy 249

automated phenotypic analysis 109

axial resolution 17, 21, 22

b
back-propagation algorithm 193

bead holograms 200, 202

biconcave cell type 139

binary marker

map ground truth 179

segmentation 179

binary marker

probability map 177, 178

binomial expansion 9

biomass 157

biophysical properties 4, 221

black-box deep learning 317

bridge block 177

c
cancer cell images 97

cancer cell lines 75

cardiomyocytes (CM) 249

action potential (AP) speed 306

beating activity 250, 252, 267, 273, 306

beating pattern 291

beating period 256, 306, 307

beating profile 251, 252, 253, 256, 257,

258, 290

cell death 299

cell-to-cell synchronization 282, 283

cell viability 299

characterization 267, 270, 276, 278

contractile motion speed 303

contraction 250, 258, 259, 306

contraction beating status 308

contraction period 278, 306, 307

contraction-relaxation dynamics 291

contraction time 282, 292

319

Artificial Intelligence in Digital Holographic Imaging: Technical Basis and Biomedical Applications,
First Edition. Inkyu Moon.
© 2023 John Wiley & Sons, Inc. Published 2023 by John Wiley & Sons, Inc.



cardiomyocytes (CM) (cont’d)
control 288

digital hologram 268

drug-treated 288, 295, 304

dry-mass redistribution 299

dynamic beating profile 250, 276

dynamic characteristics 262

dynamic parameters 288, 293, 303, 307

dynamics 276

effects of E-4031, 312

E-4031-treated 312

HiPSC-derived 287

inhibitors of hERG channels 262

isoprenaline-treated 298, 311

maximum contraction speed 307

maximum relaxation speed 307

motion characterization 307, 311, 312

motion tracking 304

motion waveform 306

multi-parameters 262, 299

multiple parameters 252, 255, 256, 268

nucleus section 278

optical path difference (OPD)

images 268

phase image 306

redistribution of dry mass 274, 290

relaxation 250, 258, 259, 306

relaxation period 278, 306, 307

relaxation time 282, 292

resting beating status 306

resting period 278, 306, 307

resting time 292

synchronization 278, 307

toxicity 299

cardiotoxicity assessment 299

cardiotoxicity screening 304

cell detection and counting 194, 206

cell dry-mass redistribution 268, 274, 290

cell-membrane fluctuations (CMFs) 227,

241 see also RBC CMF

cellular imaging 3

C-GAN see conditional generative

adversarial network

chain code 141

circular pupil function 14

class III antiarrhythmic toxin drug 297

class imbalance 180

class-imbalance segmentation task 179

CMF amplitude 233, 235, 236

CNN 268, 270 see also convolutional

neural network

coherent cutoff frequency 14

coherent image transfer function 13

coherent transfer function 14

color histogram distribution 211

conditional generative adversarial

network 88, 91, 92, 94

confusionmatrix of pixel classification 278

connected-component labeling

method 194

conventional intensity-based imaging 3

converging wavefront 10

convolutional neural network 49, 56,

92, 174

convolutional neural network models 70

convolution integral 8

convolution layers 57

cross-entropy (CE) cost function 179

cross-entropy loss 193

curve fitting 122

d
data augmentation 272

method 58

decoder 177, 178

DeepLab v3+, 181, 192

deep learning 49, 109

deep learning convolutional neural

network 53, 65, 177

deep-learning DHM systems 316

dense connection 272

blocks 272

depth of focus 5

depth resolution 21 see also axial

resolution

DHM see digital holographic microscopy

Dice coefficient 180, 182, 184,

193, 278

Dice score coefficient (DSC) 197, 199 see

also Dice coefficient

320 Index



dielectric properties 4

differential interference contrast

microscopies 250 see also Nomarski

differential interference contrast

diffraction limited 14

diffraction pattern 19

diffraction pattern resolution criterion 20

diffractive effects 14

digital holographic imaging 4

digital holographic microscopy (DHM) 4,

7, 35, 49, 69, 109, 287, 315, 316

amplitude-contrast image 40

digital hologram 35

digital phase mask 40

digital reference plane wave 38

filtered hologram 37

hologram intensity 35

hologram reconstruction 37, 40

image focusing 37

image holography 37

Mach0–Zehnder interferometer 35

microscope objective (MO) 35

numerical reconstruction 37, 40

off-axis configuration 35

off-axis DHM 36, 37

off-axis hologram 90

phase aberration 38, 40, 90

point-spread function 39

quantitative phase image 40, 69

real image 37

reconstruction distance 37, 53

reconstruction parameters 40

single-lens imaging system 36

transverse resolution 38

virtual image 37

zero-order noise 37

discriminator 71, 73, 92, 177, 178, 179, 303

disk structuring element 117, 118

distance-transform algorithm 114, 116

distance transform image 118

diverging wavefront 10

down-sampling 73

doxorubicin 299

drugs effects 295

dry mass 97, 157, 232

dry mass of cancer cells 97

dry-mass redistribution signal 267

dynamic phase profiles 250

e
E-4031, 287, 288, 292

effect of pharmacological compounds 310

elliptical cell model 94

elongation 141

encoder 177, 178

encroachment errors 134

enhanced marker-controlled watershed

algorithm 116

erythrocytes 139

estimation of propagation distance 53

Euclidean distance 197

experimental drift 291

explainable deep learning 317

external markers 114, 116, 118,

211, 218

f
fake patch images 178

far-field diffraction pattern 21

Farneback

algorithm 304

dense optical-flow algorithm 303

dense optical-flow method 303

optical flow 304

FCN 129, 130, 200, 268 see also fully

convolutional neural networks

FCN-1, 127, 130

FCN-2, 127, 131

FCN-8s 129, 130

FCN-16s 129, 130

FCN-based network architecture 268

feature selection (FS) 149

first derivative criterion 259

first derivative property 257

first derivative technique 252

first-order diffraction maximum 19

first-order maximum 20, 23

fitted polynomial curves 254

Index 321



flexibility loss 236

fluctuation amplitudes 236

fluctuation rate 227

fluorescence microscopy 4, 5, 249

focused unwrapped phase image 83

focus-evaluation function 53, 56, 58, 63

Fourier optics 7

Fraunhofer

diffraction 10

diffraction pattern 10

expression 10

pattern 11

Fresnel diffraction expression 9, 11

fully convolutional network 270 see also

fully convolutional neural

networks

fully convolutional neural networks

(FCNs) 127, 128, 131, 191

convolution layer 128

deconvolutional operation 128

max pooling 128

rectified linear units (Relu) 128

g
Gabor 4

Gabor DHM 43, 44, 45, 315

deep-learning model 88

magnified hologram 45

noisy Gabor phase images 88

numerical reconstruction method 45

phase recovery 100

Gabor hologram construction 90

Gabor holograms 88, 90, 97

Gabor holography 87

generalized multi-class Dice loss

function 179

general phase reconstruction 81

generative adversarial network

(GAN) 70, 177

generator 71, 73, 92, 177, 179

loss 182

gradient-descent algorithm 196

ground truth 178, 179

ground-truth image 180, 193, 194, 196

ground-truth labeled image 130

ground-truth mask 273

h
Hausdorff distance (HD) 197

heat maps 306, 307

He initialization method 194

hERG channel blocker (E-4031) 310

hERG-type potassium channels 297

high-content screening 100

high-throughput screening 100, 185, 303

HiPSCs 287

hologram 191

holographic image reconstruction 49

holographic image segmentation 113

holography 4

human-induced pluripotent stem

cell-derived cardiomyocytes

(HiPSC-CMs) 267

human induced pluripotent stem cell

(HiPSC) technology 287

Huygens–Fresnel principle 8

hyper-parameter 181

i
image augmentation 196, 206

image normalization 196

imaging system 12, 13

imposition algorithm 118

in-focus image 53

instant phenotypic assessment 185

intelligent DHM 316

interference 4

interference microscopy 4

interference pattern 20, 22, 23

internal markers 114, 115, 116, 117, 118,

131, 211, 218

in vitro cardiotoxicity screens 249

irradiance 14

irradiance image 14

isolated holograms 90

isoprenaline 287, 288, 292, 298

concentrations 299

mechanisms of action 299

322 Index



k
Kalman filter 210, 213

correction procedure 217

correction step 214

estimate error covariance 217

Kalman gain 214

measurement error covariance 217

measurement variable vector 214

posteriori error covariance 214

posteriori estimate error covariance 214

posteriori state estimate 214

prediction process 217

prediction step 214

priori estimate error covariance 214

process and measurement noise 210

process noise covariance 217

state space and measurement

model 213

state variable vector 213, 215

l
labeled image 195 see also ground truth

label-free approach 316

label-free DHM 241

label-free high content screening 287

lateral displacement 209

lateral resolution 17, 21, 23

learning step 194

lens law 11

L1 loss function 73

loss function 179

L2 regularization 196

m
MAnet 181

marker-controlled watershed

algorithm 115, 211, 217

method 218

segmentation 180

marker image 118

Markovian discriminator 178

maximum surface distance 197

mean corpuscular-hemoglobin

(MCH) 97, 113

mean corpuscular volume (MCV) 157

mean-shift tracking algorithm 211

Bhattacharyya coefficient 212

candidate target model 211

ellipse-like kernel 221

kernel 216

kernel design 216

kernel function 211

kernel parameters 218

Kronecker delta function 211

target histogram 216

target localization 212

target model 211

mean square error (MSE) 97

membrane fluctuation

amplitudes 228

membrane fluctuation rates 228

microscope drift 209, 219

minimal imposition algorithm 118

mirroring method 200

model-generalization 81

monochromatic scalar field 7

morphological dilation 118

morphological erosion 117

morphological opening 117

morphological reconstruction 116

morphological reconstruction

operation 117

morphology operation 114

motion detection methods 217

motion-tracking methods 303

motion waveform generation 304

multi-class probability map 177, 178

multi-class RBC semantic

segmentation 184

discocytes 184

echinocytes 184

spherocytes 184

stomatocytes 184

multi-label

ground-truth segmentation map 179

predicted segmentation map 179

segmentation 177

multimodal platform 5

multiple-cell level 75

myocardial cells 249

Index 323



n
negative control (DMSO) 299

noise-free phase image 92, 99, 100

noise-free quantitative phase image 90

Nomarski differential interference

contrast (DIC) 3

normal fluctuations 230

numerical aperture (NA) 17

numerical phase unwrapping

techniques 315

numerical reconstruction 5

numerical refocusing 5

o
objective function 179, 181

optical flow 304, 306

optical imaging 11

optical imaging modalities 3

optical microscopy 3

optical path difference 210, 288 see also

optical path length difference

optical path length 3, 4, 81

optical path length difference

(OPD) 56, 219

Otsu algorithm 114 see also Otsu’s method

Otsu’s method 116, 123, 253

Otsu’s thresholding
algorithm 259

method 292

out-of-focus image 53

over-counted cell 197, 198, 200

over-fitting 194, 207

overlapped RBCs 177

overlapping RBC 178, 180

over-segmentation 114, 120, 180, 273

over-separating 134

p
parallel multi-pathway feature

concatenation 270

patch extraction 272

PatchGAN classifier 92

pattern recognition neural network 146

see also artificial neural network

PC9 (lung cancer cells) 75

peak-finding procedure 291

pharmacological effects 303, 304

phase

discontinuity 81

information 25

profile 81

unwrapping 25, 30, 69

unwrapping process 25, 30, 69

phase-image segmentation 113, 116

phase unwrapping algorithms

branch cuts 27, 28

deep learning models 70

discontinuity source map 27

discontinuity sources 28

global algorithms 25, 69

isolated sources 28

path-dependent algorithms 69

path-following algorithms 25, 26, 69

phase map 70

quality-guided algorithms 70

quality-guided method 71

quality-guided path-following

algorithms 26, 29

region algorithms 25, 69

region-based algorithms 69

reliability 29, 30

residue-compensation algorithms 70

tile-based algorithms 69

unwrapping error 27

phenotypic analysis 316

pixel-based image segmentation 191

Pix2Pix 181

GAN 70

GAN model 71

polynomial function 292

positive toxicity controls 299

predicted binary marker map 179

prediction step 194

Presto Blue signal 299

projected surface area 97

pupil function 11, 14

pyramid scene parsing network

(PSPNet) 191

architecture 200

q
qualitative information 4

quality-guided path-following

unwrapping 32

324 Index



quantitative analysis 4

quantitative phase imaging 38, 90

quantitative phase signal 4

r
Rayleigh resolution criterion 18

Rayleigh–Sommerfeld diffraction

expression 9

R-CNN 56, 57

R-CNN model 60, 63

rectified linear unit (ReLU) 57, 270

red blood cell (RBC)

abnormalities 152

biconcave 140, 152, 155, 166, 168

characteristic properties 156

classification 140

CMF 245

CMF amplitude 244

CMF maps 241, 244

corpuscular volume 157

deformability 159

discocyte 236

dominant shape 185, 187

echino-spherocyte 140, 152

flat-disk 140, 152

hemoglobin contents 236

hemoglobin refraction increment 157

MCH 99, 157, 232, 236

MCH concentration 113

MCH surface density (MCHSD) 157

MCV 236

membrane equilibrium 241

membrane flickering 241

membrane fluctuations 244, 245

model 94

morphological characteristics 113

morphological functionality

factor 166

morphological properties 156

optical path difference (OPD)

images 242

oxygen capacity 166

phase images 114

projected surface 99

properties 210, 218

PSA (projected surface area) 156,

210, 231

radius 158, 231

refractive indices 100

ring and dimple areas 236

ring and dimple parts 230

shape 245

sphericity coefficient 157, 231, 236

sphericity index 159

spherocytes 187

stomatocyte 140, 149

storage lesion 173

storage period 155

surface area 142, 158, 236

SVR 159

thickness 99, 142, 157, 228

tracking 210, 217

transformation 185

transfusions 173, 185

types 152, 185

volume 99, 156

refraction increment 233 see also

refractive index increment

refractive index increment 97

region of interest (ROI) 228, 267

residual block construction 177

residual connection 272

Resnet 181

Resnet34, 200

rising-falling

portion 291, 292

signal 292

ROI extraction 273

s
SA 132 see segmentation accuracy

segmentation accuracy 120, 122

segmentation performance 184

segmentation techniques 113

segmented phase images 113

self-supervised learning 316

sensitivity 197

SFFS technique 149

signal synchronization 283

single-beat level 293

single-cell level 65, 75, 81, 83, 97, 167, 267,

270, 303, 307

single cell level phase images 84

skip connections 272

Index 325



skip connection technique 73

SNU449 (liver cancer cells) 75

Sobel operator 117

spherical lens 10

square pupil function 14

Staurosporin 299

steep membrane gradient 230

storage lesions 155, 168

stored RBC quality 185

structural similarity index (SSIM)

index 79, 97

structured loss function 92

superimposed motion vectors 306, 308

super-imposed phase images 91, 100

superimposed phase values 97

supervised RBC semantic

segmentation 179

SW640 (colon cancer cells) 75

t
TFWHM 292, 296

thin-lens imaging system 13

three-dimensional (3D) features 142,

143, 148

threshold 120, 122

throughput rate 198

time-lapse DHM 227

time-lapse holographic images 223

time of full width at half maximum

(TFWHM) 292

tracking algorithms 209

training dataset 75

training epochs 182

trajectory 219, 221

transfer learning-based FCN-VGG16, 181

transmission imaging 35

transmittance function 10, 11

transverse magnification 12

travel distance 219

trended signal 291

two-dimensional (2D) features 141,

142, 148

two-stage procedure 177

u
under-segmentation 118, 120, 180, 273

under-separating 134

U-Net 79, 81, 181, 192, 193, 270

concatenate layer 193

convolution operation 193

deconvolution layer 193

encoder-decoder 193

feature map 193

gradient vanish problem 193

image features 193

image generator 92

loss function 193

max pooling layer 193

Relu activation 193

up-convolution layer 193

up-convolution operation 193

unfocused twin-image 87

unstructured functions 92

unsupervised learning 316

UnwrapGAN 71, 76, 79, 81

unwrapped phase image 83

up-sampling 73

v
vanishing gradients 272

VGG-16 Caffe model 132

VGG networks 194

viscosity 168

w
watershed

algorithm 114

line 115

segmentation algorithm 180

transform 116

transform algorithm 114, 115

wrapped phase image 83

z
Zernike phase contrast (PhC) 3

zero-order diffraction maximum 19

zero-order maximum 20, 22

326 Index



WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.


	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Part I Digital Holographic Imaging�����������������������������������������
	Chapter 1 Introduction�����������������������������
	References�����������������

	Chapter 2 Coherent Optical Imaging�����������������������������������������
	2.1  Monochromatic Fields and Irradiance�����������������������������������������������
	2.2  Analytic Expression for Fresnel Diffraction�������������������������������������������������������
	2.3  Lens Transmittance Function���������������������������������������
	2.4  Geometrical Imaging Concepts����������������������������������������
	2.5  Coherent Imaging Theory�����������������������������������
	References�����������������

	Chapter 3 Lateral and Depth Resolutions����������������������������������������������
	3.1  Lateral Resolution������������������������������
	3.2  Depth (or Axial) Resolution���������������������������������������
	References�����������������

	Chapter 4 Phase Unwrapping���������������������������������
	4.1  Branch Cuts�����������������������
	4.2  Quality-guided, Path-following Algorithms�����������������������������������������������������
	References�����������������

	Chapter 5 Off-axis Digita Holographi Microscopy������������������������������������������������������
	5.1  Off-axis Digita Holographi Microscop Designs��������������������������������������������������������
	5.2  Digita Hologra Reconstruction�����������������������������������������
	References�����������������

	Chapter 6 Gabo Digita Holographi Microscopy��������������������������������������������������
	6.1  Introduction������������������������
	6.2  Methodology�����������������������
	References�����������������


	Par II Dee Learning in Digital Holographic Microscopy (DHM)������������������������������������������������������������������
	Chapter 7 Introduction�����������������������������
	References�����������������

	Chapter 8 No-search. Focus Prediction in DHM with Deep Learning����������������������������������������������������������������������
	8.1  Introduction������������������������
	8.2  Materials and Methods���������������������������������
	8.3  Experimental Results��������������������������������
	8.4  Conclusions�����������������������
	References�����������������

	Chapter 9 Automated Phase Unwrapping in DHM with Deep Learning���������������������������������������������������������������������
	9.1  Introduction������������������������
	9.2  Deep-learning Model�������������������������������
	9.3  Unwrapping with Deep-learning Model�����������������������������������������������
	9.4  Conclusions�����������������������
	References�����������������

	Chapter 10 Noise-free Phase Imaging in Gabor DHM with Deep Learning��������������������������������������������������������������������������
	10.1  Introduction�������������������������
	10.2  A Deep-learning Model for Gabor DHM������������������������������������������������
	10.3  Experimental Results���������������������������������
	10.4  Discussion�����������������������
	10.5  Conclusions������������������������
	References�����������������


	Part III Intelligent Digital Holographic Microscopy (DHM) for Biomedical Applications��������������������������������������������������������������������������������������������
	Chapter 11 Introduction������������������������������
	References�����������������

	Chapter 12 Red Blood Cell Phase-image Segmentation���������������������������������������������������������
	12.1  Introduction�������������������������
	12.2  Marker-controlled Watershed Algorithm��������������������������������������������������
	12.3  Segmentation Based on Marker-controlled Watershed Algorithm������������������������������������������������������������������������
	12.4  Experimental Results���������������������������������
	12.5  Performance Evaluation�����������������������������������
	12.6  Conclusions������������������������
	References�����������������

	Chapter 13 Red Blood Cell Phase-image Segmentation with Deep Learning����������������������������������������������������������������������������
	13.1  Introduction�������������������������
	13.2  Fully Convolutional Neural Networks������������������������������������������������
	13.3  RBC Phase-image Segmentation via Deep Learning�����������������������������������������������������������
	13.4  Experimental Results���������������������������������
	13.5  Conclusions������������������������
	References�����������������

	Chapter 14 Automated Phenotypic Classification of Red Blood Cells������������������������������������������������������������������������
	14.1  Introduction�������������������������
	14.2  Feature Extraction�������������������������������
	14.3  Pattern Recognition Neural Network�����������������������������������������������
	14.4  Experimental Results and Discussion������������������������������������������������
	14.5  Conclusions������������������������
	References�����������������

	Chapter 15 Automated Analysis of Red Blood Cell Storage Lesions����������������������������������������������������������������������
	15.1  Introduction�������������������������
	15.2  Quantitative Analysis of RBC 3D Morphological Changes������������������������������������������������������������������
	15.3  Experimental Results and Discussion������������������������������������������������
	15.4  Conclusions������������������������
	References�����������������

	Chapter 16 Automated Red Blood Cell Classification with Deep Learning����������������������������������������������������������������������������
	16.1  Introduction�������������������������
	16.2  Proposed Deep-learning Model�����������������������������������������
	16.3  Experimental Results���������������������������������
	16.4  Conclusions������������������������
	References�����������������

	Chapter 17 High-throughput Label-free Cell Counting with Deep Neural Networks������������������������������������������������������������������������������������
	17.1  Introduction�������������������������
	17.2  Materials and Methods����������������������������������
	17.3  Experimental Results���������������������������������
	17.4  Conclusions������������������������
	References�����������������

	Chapter 18 Automated Tracking of Temporal Displacements of Red Blood Cells���������������������������������������������������������������������������������
	18.1  Introduction�������������������������
	18.2  Mean-shift Tracking Algorithm������������������������������������������
	18.3  Kalman Filter��������������������������
	18.4  Procedure for Single RBC Tracking����������������������������������������������
	18.5  Experimental Results���������������������������������
	18.6  Conclusions������������������������
	References�����������������

	Chapter 19 Automated Quantitative Analysis of Red Blood Cell Dynamics����������������������������������������������������������������������������
	19.1  Introduction�������������������������
	19.2  RBC Parameters���������������������������
	19.3  Quantitative Analysis of RBC Fluctuations������������������������������������������������������
	19.4  Conclusions������������������������
	References�����������������

	Chapter 20 Quantitative Analysis of Red Blood Cells during Temperature Elevation���������������������������������������������������������������������������������������
	20.1  Introduction�������������������������
	20.2  RBC Sample Preparations������������������������������������
	20.3  Experimental Results���������������������������������
	20.4  Conclusions������������������������
	References�����������������

	Chapter 21 Automated Measurement of Cardiomyocyte Dynamics with DHM��������������������������������������������������������������������������
	21.1  Introduction�������������������������
	21.2  Cell Culture and Imaging�������������������������������������
	21.3  Automated Analysis of Cardiomyocyte Dynamics���������������������������������������������������������
	21.4  Conclusions������������������������
	References�����������������

	Chapter 22 Automated Analysis of Cardiomyocytes with Deep Learning�������������������������������������������������������������������������
	22.1  Introduction�������������������������
	22.2  Region-of-interest Identification with Dynamic Beating Activity Analysis�������������������������������������������������������������������������������������
	22.3  Deep Neural Network for Cardiomyocyte Image Segmentation���������������������������������������������������������������������
	22.4  Experimental Results���������������������������������
	22.5  Conclusions������������������������
	References�����������������

	Chapter 23 Automatic Quantification of Drug-treated Cardiomyocytes with DHM����������������������������������������������������������������������������������
	23.1  Introduction�������������������������
	23.2  Materials and Methods����������������������������������
	23.3  Experimental Results and Discussion������������������������������������������������
	23.4  Conclusions������������������������
	References�����������������

	Chapter 24 Analysis of Cardiomyocytes with Holographic Image-based Tracking����������������������������������������������������������������������������������
	24.1  Introduction�������������������������
	24.2  Materials and Methods����������������������������������
	24.3  Experimental Results and Discussion������������������������������������������������
	24.4  Conclusions������������������������
	References�����������������

	Chapter 25 Conclusion and Future Work��������������������������������������������

	Index������������
	EULA




