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v

Preface

Radiation oncology is a technology-intensive field of medicine undergo-
ing rapid changes. It offers a rich research and development platform to 
move the system toward precision and personalized therapy. Artificial 
intelligence (AI) or deep learning is a powerful technology with many 
subfields in the era of big data to address a variety of issues in medicine. 
AI tools can be used to improve decision-making, productivity, precision, 
safety, and professional satisfaction in various clinical settings.

There are many good teaching materials available for teaching the 
basics of Artificial Intelligence. There is also an exponentially increasing 
body of peer-reviewed literature on AI applications in Radiation Oncology. 
What was missing was a text bridging the gap between basic didactics and 
frontline research: a book which would bridge this gap and set the founda-
tion for applying sophisticated Artificial Intelligence tools in Radiation 
Oncology.

We, together with the contributors, collectively wanted to develop a 
book that defines the future and identifies the problems suitable for AI 
applications as well as AI tools and experiences from other fields such as 
radiology imaging and a new research environment enabling AI research.

In designing the book, we have tried to balance the depth of science 
and technology of AI with the breadth of applications within radiation 
oncology. The book also includes assessment, evaluation, and ethics. 
The excellence of a book depends on the quality of its contributors. 
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vi Artificial Intelligence in Radiation Oncology

World-class experts in AI, radiation oncology, and related fields have col-
laborated to develop this book. Each chapter was peer-reviewed by other 
authors for the book, and that process greatly enhanced the relevance of 
the material through cross-discipline pollination.

The book chapters are grouped into six sections: Defining the Future, 
Strategy, AI Tools, AI Applications, Assessment, and Outcomes.

This book is the result of the efforts of dedicated professionals with 
highly sophisticated expertise working together to share their knowledge 
with the greater radiation oncology community. We thank them all. We 
have been very fortunate to have such a team of more than 30 world-class 
experts in physics, science, engineering, patient care, ethics, assessment 
from academia and industry. We all learned from each other, resulting in 
a book of high value for the radiation oncology community.

Sonja and I feel immensely honored to have such a satisfying experi-
ence as stewards of the contributed expertise in radiation oncology for the 
book.

Seong K. Mun and Sonja Dieterich
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Part 1

Define the Future
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Chapter 1

Clinical Radiation Oncology in 
2040: Vision for Future Radiation 

Oncology from the Clinical 
Perspective

Gabriel S. Vidal*,† and Julian C. Hong‡,§,¶

*Department of Radiation Oncology, University of Oklahoma, 
Oklahoma City OK, USA

†Department of Medicine, University of Oklahoma, 
Oklahoma City OK, USA

‡Department of Radiation Oncology, University of California, 
San Francisco, San Francisco CA, USA

§Bakar Computational Health Sciences Institute, University 
of California, San Francisco, San Francisco CA, USA
¶UCSF-UC Berkeley Joint Program in Computational 

Precision Health, Berkeley CA, USA

Abstract
Oncology has seen tremendous advancements over the past 10 to 30 years 
through the development of a variety of technologies to improve personalization 
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4 Artificial Intelligence in Radiation Oncology

and precision in cancer care. Artificial intelligence (AI) and, more specifically, 
machine learning (ML) have the potential to push this transformation further. The 
chapters that follow will take a deep dive into describing areas where AI will 
advance care. This chapter will synthesize these to formulate a blue-sky vision for 
radiation oncology practice in 2040 and the accompanying role of AI, and more 
broadly, novel computational and statistical technologies. A critical eye and 
rigorous data (including randomized controlled trials in many cases) will be 
imperative as these technologies are evaluated and implemented in the clinic 
(James et al., 2022), and barriers to implementation remain a challenge (Beede 
et al., 2020; Kang et al., 2020; Morse et al., 2020). Nevertheless, early randomized 
controlled data have demonstrated that once these challenges are faced, cancer 
care delivery can be made safer, more efficient, more affordable, more inclusive, 
and more equitable with AI (Hong et al., 2020b; McIntosh et al., 2021). These 
technologies are poised to play a larger and more central role in the radiation 
oncology clinic workflow. 

As in other fields of medicine, oncology practices are faced with a staggering 
amount of healthcare data for each patient. AI has the potential of harnessing this 
clinical data and providing methods to both understand and deliver better 
precision care for cancer at the individual level. It also offers promise in 
improving the delivery of cancer care and providing more systematic and 
accessible care across the spectrum of practices. Overall, these advances will 
improve many of the tasks involved in cancer care to enable physicians to focus 
on the most important aspect of oncology: the patient. 

In this chapter, we will lay out an ambitious vision for the radiotherapy of 
2040, driven by the continued advances in computational technologies. To best 
characterize this, we will follow the journey of a patient through the most typical 
elements in the oncology (specifically radiation oncology) pathway: screening 
and diagnosis, staging and risk stratification, clinical decision-making, 
radiotherapy planning, treatment delivery, and clinical management. 

1. The Diagnosis

A number of cancers are identified through the use of screening via labo-
ratory tests, imaging studies, or procedures. Common screen-detected 
cancers with national guidelines include breast, colorectal, lung, cervical, 
and prostate cancers (Duffy et al., 2020; Mottet et al., 2021; Team, 2011; 
Zauber et al., 2021). Cancer screening is currently delivered with some 
adjustment for risk (age, heritability, exposures, etc.), as well as prior 
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testing (prior colonoscopy or imaging findings, human papilloma virus 
detection on pap smears). AI promises to improve the accuracy and per-
sonalization of this process, and potentially advance the lead time with 
which cancers may be anticipated.

Breast cancer screening, for example, is one of the areas which has 
attracted the most AI-based attention. Importantly, all advances in AI tech-
nology will demand that we learn from lessons of computer-aided diagno-
sis for screening mammography, which, despite years of use and reim-
bursement in routine clinical practice, was ultimately demonstrated to 
have limited — and potentially negative — utility in the diagnosis of 
breast cancers (Lehman et al., 2015). Novel AI has laid out a particularly 
ambitious agenda in breast cancer screening, as a recent mammography-
based risk model assessed internationally was shown to accurately predict 
future breast cancer (Yala et al., 2021). Such approaches, if validated, will 
enable potential early interventional strategies and better streamline the 
screening process.

Colorectal cancer screening has potentially seen the most rigorous 
clinical evaluation of the use of AI, with multiple randomized trials dem-
onstrating the benefit of computer vision technologies to improve the 
detection and quality of exams (Gong et al., 2020; Su et al., 2020; Wang 
et al., 2020; Wu et al., 2019). Similarly, in lung cancer, pre-clinical work 
with computational image analysis approaches have demonstrated prom-
ise in improving the current use of radiologist-assessed pulmonary nodule 
size and morphology for risk stratification based on the Fleischner Society 
guidelines (MacMahon et al., 2017). Numerous studies have been carried 
out with the goal of characterizing benign and malignant pulmonary nod-
ules (Heuvelmans & Oudkerk, 2019; van Griethuysen et al., 2017). 

2.  In 2040, AI will Facilitate Anticipatory Predictions 
to Improve Early Detection

The diagnosis of cancer relies on tissue confirmation, an important step in 
defining the biology of a cancer and subsequently both its commensurate 
prognosis and best treatment strategy. Traditionally, tissue has been inter-
preted via gross histologic examination by expert pathologists, but molec-
ular and genomic biomarkers have allowed clinicians to formulate a more 
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6 Artificial Intelligence in Radiation Oncology

tailored treatment approach for breast and prostate cancers (Feng et al., 
2021; Mamounas et al., 2020; Rakovitch et al., 2021; Solin et al., 2013). 
In particular, the use of genomic tools have already been clearly validated 
in randomized studies and impacted clinical care in breast cancer 
(Kalinsky et al., 2021; Sparano et al., 2018). We anticipate that prostate 
cancer, where genomic tests are already playing a role among early adop-
ters, and other cancers will be close behind. A number of other AI-driven 
approaches to analyzing biological samples are emerging and will likely 
play an important role. These include digital pathology and circulating 
tumor DNA. 

The process of pathology review is importantly impacted by inter-
rater variability (Allsbrook et al., 2001a, 2001b), which is persistent, 
though reduced, among specialized experts despite standardized grading 
guidelines (Ginter et al., 2021). AI-based digital pathology approaches are 
capable of reducing the interobserver variability often noted in histopatho-
logical evaluation (Luchini et al., 2022). However, the important promise 
of AI is in its potential to go beyond interpretation and provide additional 
risk stratification, which may offer opportunities to better stratify treat-
ment (Takamatsu et al., 2022; Yu et al., 2016). 

3.  In 2040, AI-based Approaches will Improve 
Consistency and Accessibility of High Quality 
Pathology Interpretation, and Provide Prognostic 
and Predictive Functionality with Greater 
Randomized Supporting Data

Once a cancer diagnosis is established, the extent and risk of a disease are 
usually assessed in the staging process. Traditional cancer staging incor-
porates several variables to provide risk stratification and prognosis, with 
a focus on anatomic characteristics. Treatment options vary greatly 
depending on staging.  Early signs of the contributions of computational 
approaches to define staging have already become apparent in clinical 
practice. The ICON-S study created a more meaningful staging classifica-
tion for oropharynx cancers based on recursive partition analysis (RPA) 
using an international cohort (O’Sullivan et al., 2016). The results of this 
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study have since been used to define the oropharynx cancer staging 
system. 

4.  In 2040, Advanced Statistical Approaches will Drive 
or Provide Critical Characteristics in Staging

In addition to the risk stratification of staging, prognostication is one of 
the variables considered during the initial visit, critically important to bal-
ance the risks and benefits of potentially toxic therapies. This impacts 
both eligibility for systemic therapies and best approaches in balancing 
toxicity of therapy and treatment goals. AI algorithms and statistical mod-
els in general have long been targeted toward prognosis (Avati et al., 
2017; Charlson et al., 2022; Dosani et al., 2018; Mojica-Márquez et al., 
2020; Peterson et al., 2012). These models have a journey ahead over the 
coming decades to improve their accuracy, robustness, and generalizabil-
ity as they can be brittle depending on clinical context (Wu et al., 2021). 
Nevertheless, they are likely to find an avenue where they can contribute, 
in light of typically optimistic clinician-estimated prognoses (Sborov 
et al., 2019). As it is important that these tools do not become self-fulfill-
ing and adjust with improvements in therapy, one reasonable avenue is to 
improve palliative care referrals and serious illness conversations (Manz 
et al., 2020).

5.  In 2040, AI will Provide Improved Decision 
Support to Improve Appropriate Personalized 
Treatment, and Drive Targeted Areas in 
Patient-Centered Goals of Care

Finally, AI also has the important promise to also practically impact the 
clinical data review process at the point of care. Clinicians currently are 
required to synthesize these large swaths of data through manual review 
and make orders and documentation in the electronic health record (EHR). 
A number of studies have begun to focus on the metadata describing phy-
sician interaction with the EHR, referred to as the audit log. This audit log 
carries significant potential to identify physician pain points, potentially 
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offering solutions to ease the burden on physicians and subsequent burn-
out, reduce areas for errors, and improve care delivery (Huilgol et al., 
2022). 

6.  In 2040, Algorithmic Tools Built into EHR 
Systems will Ease the Process of Record 
Review, Ordering, and Documentation

6.1. Radiotherapy planning

Once a patient is on the path toward radiotherapy, they will undergo the 
simulation and treatment planning process. Target and normal tissue seg-
mentation remain a labor-intensive task in the radiation oncology work-
flow. This process of delineation, particularly for clinical target volumes, 
can be subject to significant variability (Michalski et al., 2010). 

Autosegmentation has been in the pipeline for commercial products 
for some time, with advances based on deep learning. These processes 
may be further advanced through the aggregation of “crowd sourced” data 
(Mak et al., 2019). We ultimately anticipate that these products will be 
ready for broad use in the near future, particularly as treatment volumes 
are subject to clinician review before treatment delivery. However, we 
expect that the AI-assisted radiotherapy of the future will not only apply 
autosegmentation approaches for known targets, but also improve target 
delineation by informing areas of risk for recurrence.

Similarly, dose constraints to vital organs remain an important com-
ponent for radiation planning. Building on the experience of Quantitative 
Analysis of Normal Tissue Effects in The Clinic (QUANTEC), ML offers 
avenues, particularly in standardized settings, to improve the identifica-
tion of clinically meaningful dosimetric goals (Polizzi et al., 2021). 
Statistical approaches similarly enable potential identification of appro-
priate dose constraints for normal tissues (Thor et al., 2021). 

Knowledge-based treatment planning (KBP) and other similar auto-
planning approaches have the potential of reducing overall treatment 
planning times while delivering plans that are non-inferior to the current 
standard. We predict that automated planning will become standard 
across many disease sites. Current prospective studies have already 
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demonstrated that KBP is non-inferior to human-driven plans across 
multiple disease sites (Cornell et al., 2020), and that ML-based planning 
can generate clinically acceptable treatment plans (McIntosh et al., 
2021). We anticipate, as time progresses, this trend will continue and that 
AI will advance both the ability to achieve optimal radiotherapy plans 
(Bitterman et al., 2022) and advance the efficiency of the planning pro-
cess (Li et al., 2021). These advances will also expand the accessibility 
of high-quality planning to practices with fewer resources and improve 
access to radiotherapy.

It is worth highlighting a significant advancement in the treatment 
delivery in the form of online adaptive radiotherapy, ushered in by the 
MRI-guided linear accelerator (LINAC) systems with online adaptive 
radiotherapy, by which physicians can generate a new radiotherapy plan 
prior to each treatment fraction delivery based on anatomical changes. 
The need for resegmentation and replanning is a natural fit for the benefits 
of rapid, AI-assisted segmentation and planning.

7.  In the Year 2040, AI-Assisted Segmentation 
and Treatment Planning will be Commonplace 
and Improve the Quality and Accessibility of 
Radiotherapy Plans, with Particular Impacts 
on Access to Care and Active Replanning

7.1. Clinical management

Patient care remains at the forefront of radiation oncology, and in particu-
lar oncology practice demands the management of patient symptoms and 
quality of life, whether related to disease, treatment, or other comorbid 
conditions. AI has the potential of improving clinical management by 
helping to focus care to improve standardization and equity and reduce the 
cognitive burden on physicians.

The System for High Intensity EvaLuation During Radiation Therapy 
(SHIELD-RT) was a randomized controlled study implementing 
ML-guided management during radiotherapy at Duke University (Hong 
et al., 2018; Hong et al., 2020b). In that study, ML accurately triaged 
patients undergoing treatment and identified those who had a higher risk 
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of requiring acute care. High-risk patients were randomized to mandatory 
supplemental evaluations during treatment, reducing both rates of acute 
care and their associated costs in half.

Clinical management during radiotherapy treatment will also be 
impacted by the influx of patient-generated health data (PGHD). PGHD 
in particular includes data such as patient-reported outcomes (PROs), 
frequently captured in an electronic format, and consumer devices that 
track patient activity and vital signs (Purswani et al., 2019). The clinical 
impact of PROs has already been demonstrated, with improved survival 
for patients with metastatic cancers receiving chemotherapy. These are 
being increasingly reported via digital format, and the next two decades 
will see particular efforts toward improving access and reducing disparate 
use of patient portals (Sinha et al., 2021), which play an integral role in 
capturing PROs in most healthcare centers. These efforts will be critical 
to realizing the potential of these systems.

Data from consumer devices such as wearables are much more lim-
ited. One of the larger experiences at Montefiore Einstein Cancer Center 
implementing activity monitoring demonstrated the prognostic value of 
step counts during chemoradiotherapy (Ohri et al., 2017, 2019). This is 
the subject of the broader upcoming cooperative group NRGF-001 
(NCT04878952), which aims to improve supportive care and decrease the 
rate of adverse clinical events by monitoring daily step counts during the 
course of concurrent chemoradiotherapy for patients with locally advanced 
non-small cell lung cancer.

Project Persist is a current prospective, single-institution trial at the 
Stephenson Cancer Center at the University of Oklahoma. This study cur-
rently uses a novel smartphone app to track emotional, physical, and 
behavioral symptoms as well as cancer treatment side effects. Patients are 
enrolled before radiation treatment starts, and eligible patients must be 
scheduled to receive a minimum of four consecutive weeks of radiation 
treatments. Patients are randomized on a 1:1 basis to receive anxiety/
depression treatment components within the app. Patients are provided 
with a smartphone if they do not own one. 

Finally, a number of medical specialties have advanced surveillance 
efforts to identify drug-related adverse events based on natural language 
processing (NLP) applied to clinical documentation. These approaches 
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have been externally validated to identify National Cancer Institute (NCI) 
Common Terminology Criteria for Adverse Events (CTCAE) encoded 
toxicities in radiotherapy notes (Hong et al., 2020a). Prior manually 
reviewed correspondence from patients via patient portals have suggested 
that specific topics are correlated with the early discontinuation of 
hormone therapy for breast cancer (Yin et al., 2018). One could easily 
envision a future where NLP may offer automated mechanisms for sur-
veillance of both physician- and patient-generated text to direct symptom 
management during cancer therapy. 

8.  In 2040, AI will Enable the Use of Multiple 
Sources of Data to Help Physicians Better 
Manage Patient Quality of Life

We are enthusiastic about the potential AI has to transform radiation 
therapy by the year 2040. While much work and evaluation are needed 
before these approaches are ready for prime time, the foundational steps 
are coming into focus today. AI will likely impact a number of elements 
in the care of patients with cancer, and it will be important for the com-
munity to evaluate this progress and its benefit in clinical practice. We 
have laid out an ambitious agenda over the next couple of decades and are 
optimistic that AI will free clinicians and care teams from certain tasks to 
focus their attention on delivering patient-centric care.
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Abstract
By 2030, clinicians will routinely interact and collaborate with Artificial 
Intelligence (AI) software that leverage closed-loop continuous learning systems 
to extend the reach of radiotherapy.  Cancer incidence and demand for treatment 
continues to outpace the growth of radiation therapy, which is one major driver 
for the adoption of AI.  Another is the continued pressure to reduce the total cost 
of healthcare as the developed world embraces value-based care. AI is expected 
to further the dramatic automation of workflows within the radiation oncology 
department, making it possible to plan and deliver higher-quality care more 
quickly at lower costs. 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



b4808 Artificial Intelligence in Radiation Oncology “6x9”

20 Artificial Intelligence in Radiation Oncology

Today, despite recent advances in techniques and technologies, radiation therapy 
remains a fundamentally manual process, reliant on individual expertise, and 
characterized by subjectivity.  In some parts of the world where training and 
infrastructure are limited, radiation therapy is virtually non-existent.  Early use of 
machine learning tools has demonstrably reduced variability, improved quality, and 
increased efficiency. We predict that AI will eliminate many barriers to the adoption 
of radiotherapy and enable a rapid expansion in global access to high-quality 
radiation oncology, resulting in millions of additional cancer patients’ lives saved.

1. Introduction

1.1. The growing cancer burden

Cancer continues to be one of the biggest global health challenges. In 
2012, a staggering 14.1 million new cases of cancer were reported world-
wide, a number that could rise to 24.6 million by 2030 (Bray et al., 2012). 
Cancer causes one of every six deaths globally. In 2018, at least 9.6 mil-
lion people died from the disease, according to the World Health 
Organization (WHO).

Cancer is, by and large, the disease of the aged with 66 years being the 
median age of cancer patients at diagnosis while 80–84 years being the 
modal age group for incidence (Institute, N.C.). In the list of risk factors, 
advancing age stands alone as being the most important. The past two cen-
turies, and specifically the past five decades, have created the foundation 
for an increasing cancer burden that the coming five decades will experi-
ence. Since 1950 we have witnessed the widening of the global population 
pyramid that, when combined with reduced population growth rates, sug-
gests a ‘filling up’ of the pyramid — a substantial increase in the number 
of older people (see the figure in the next page for reference). Based on 
current population trends, the compounded annual growth rate for people 
over 65 years of age is expected to be almost triple that of people under 65 
years of age over the coming 20 years. 

This data predicts that global cancer incidence will continue to rise. 
Developing economies will rightly focus infrastructure and resources on 
controlling and preventing communicable diseases, which would result in 
people living longer. An aging population increases the need for cost 
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effective and socio-economically beneficial ways of managing the 
expected increasing cancer burden. 

The Lancet Oncology Commission found radiotherapy to be 
indispensable for half or more cancer patients; essential for the effective 
treatment of most common cancers in low- and middle-income countries; 
and used to cure more than half of all localized cancer cases in high-
income countries (Atun et al., 2015). Yet, worldwide access to radiother-
apy is very low, especially in low- and middle-income countries. Scaling 
up radiotherapy capacity could save 26.9 million life years, if done by 
2035, according to the Lancet Oncology Commission, and give countries 
a net economic benefit of USD $278.1 billion. However, increasing access 
to care requires more than simply installing equipment.  Physicians and 
well-educated staff are needed to operate radiation therapy equipment 
safely and effectively. 

To increase access to cost-effective cancer care, radiation therapy 
stakeholders are trying to accomplish several goals simultaneously: sim-
plify treatment planning and delivery, raise the quality of care, increase 
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the efficiency of treatments, and lower the total cost of care. While no 
magic solution can address all these goals, the application of Artificial 
Intelligence (AI) technology to radiation therapy may offer new hope for 
the global cancer care community, given the exponential acceleration of 
this promising technology. 

Innovation in radiation therapy technology has progressed broadly 
along two vectors: higher precision in dose delivery (improved outcomes), 
and the simplification and standardization of processes and technology 
(increased access and utilization). 

It is encouraging that most such studies were undertaken before an 
explosion in technologies such as Artificial Intelligence and Machine 
Learning, which have created significant systemic efficiencies in several 
other industries. What might the large-scale introduction of these 
technologies offer radiation oncology and, indeed, the field of cancer 
therapy at large? This chapter and the following book seek to explore these 
possibilities.

1.2. The growing data challenge

As researchers, clinicians, and industry continuously develop new cancer 
diagnostic and treatment solutions, it creates an information challenge for 
clinicians. Additionally, medical information doubles nearly every 73 
days (Sharon & Lucivero, 2019). Under these circumstances, one must 
ask how can oncologists incorporate the avalanche of data generated by 
these new solutions? How can they determine the optimal care strategy for 
the patient? New solutions are rendered irrelevant when care teams drown 
in data, wasting precious time trying to decide how to manage the patient. 
AI is already proving to be a valuable tool in tackling the data challenge 
and allowing cancer care teams to make faster and better-informed 
decisions.

2. A Vision for the Future

For AI to help address the global cancer challenge, it will likely pass 
through three phases of evolution: automation, augmentation, and ampli-
fication of human capabilities. Each phase involves the combination of 
people, data, and technology working together.
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2.1. Automation

Automation is the simplest phase in the adoption of AI, which emphasizes 
completing tasks faster. The net result is to save time for the oncologist to 
do other work. An important benefit of automation is lower process vari-
ation by eliminating the potential for human error. In the automation 
phase, algorithms automate repetitive and error-prone manual activities, 
such as outlining healthy organs like the liver or heart in a medical image.

Many AI automations can be introduced safely in the Quality 
Assurance of human-driven processes.  As evidence of its performance 
compared to clinicians is collected, the AI automation tools may be intro-
duced into the primary workflow as productivity tools — helping to accel-
erate the care process. 

2.2. Augmentation

The next step up is the augmentation of human skills. This phase allows peo-
ple to solve higher-order problems. AI might expand what a person can do, 
for example, scan large volumes of data to identify best practices for every 
patient. Augmentation may manifest as AI that explores multiple treatment 
plans, each following a different technique to find the best treatment strategy.   

In emerging markets, skill augmentation might boost the abilities of 
caregivers to deliver high-quality care. This could enable relatively low-
skilled technicians to deliver advanced patient treatments, such as IMRT 
that is enabled by automatic image segmentation. Similarly, in developed 
markets, AI-fueled augmentation might boost the expertise of average 
physicians or heighten the skills of less expensive staff.

2.3. Amplification

In this, AI confers “superhuman” abilities onto caregivers, for example, 
the identification of signs that indicate which patients will — or will 
not — respond to certain treatments. These signs would be too subtle for 
even an expert oncologist to spot without the aid of a smart algorithm. 
But, once identified, these signs might be easily screened for. Being able 
to identify them could make the difference between life and death for 
individual patients, regardless of the market in which they reside.
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AI might ultimately be built into radiotherapy equipment, adjusting 
treatments on the fly. (Lightning-fast smart algorithms might reshape the 
radiation beam to concentrate radiation on the target and away from 
healthy tissues. They might even change dose settings.)

The power of AI to automate, augment, and amplify routine processes 
will enable the care team to focus on complex knowledge work needed for 
optimal care. AI will automatically contour both healthy and malignant 
tissues in images obtained throughout the care continuum — the context 
of each image session will be known, and each new image of a patient will 
be automatically registered to previous patient images to form a longitudi-
nal model of the patient, the Digital Patient Twin. The Digital Patient Twin 
can quantify and visualize changes in patient anatomy, physiology, and 
metabolism over time.  AI will adjust radiation therapy plans automatically 
to account for changes in the patient between or during treatments, quan-
tifying the treatment dose on the Digital Patient Twin. Recording the dose 
in this way will render therapy more precise and outcomes more accurate, 
leading to higher quality of life through treatments that are more conveni-
ent and comfortable. 

In emerging markets, nurses and technicians might use AI to augment 
their skills so they can cover for scarce oncologists. In developed markets, 
these same algorithms will be used to reduce the cost of care by accelerat-
ing the care process. As AI elevates the capabilities of physicians and their 
staff, while making the treatment process more efficient, it will enable the 
three hallmarks of value-based medicine — improved quality and better 
patient outcomes at reduced cost.

The use of AI, therefore, could standardize radiation therapy as sites 
administer care of equal quality, regardless of their locations. In sum, AI 
has the potential to expand access to quality radiation therapy, increase 
quality while decreasing variability, and reduce costs.

3. The Radiation Oncology AI Toolkit

3.1. Training and learning paradigms

Supervised learning assumes an i.i.d. (independent, identically distributed) 
set of input data, xi, paired with a label yi. As with any statistical learning, 
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a training paradigm appropriate to the task needs to be selected or engi-
neered to produce a stable equilibrium of trained parameters, to predict y
from x, or more generally predict the probability distribution p(yi | xi). 
This criterion is often evaluated against a held-out set of xi and yi to gauge 
the generalizability of the model and to ensure a means to stop overtraining.

Unsupervised learning finds the essential features or latent space of a 
group of unlabeled samples, xi. This learning can then be leveraged for 
supervised tasks later. Oftentimes, a very high-dimensional input space 
can be reduced to a lower-dimensional feature space that preserves recon-
struction as well as some desirable properties appropriate to future tasks. 
For example, Auto-encoder (AE), and various styles of Variational Auto-
encoders (VAEs), such as the popular Vector Quantized Variational Auto-
encoder (VQ-VAE), can train a latent space that may be exploited for 
many purposes, e.g., transfer learning (explained in what follows) com-
pression, disentangling of style features from object features, or even 
outlier detection.

In semi-supervised learning a small subset of the data is labeled, or 
their labels are trusted, and a larger corpus of data is unlabeled, or other 
labels are not trustworthy. Semi-supervised learning seeks to train features 
on the unlabeled data to transfer-learn and fine-tune with the labeled data 
to avail itself of the probability prior of the input data, xi.

In active learning an agent decides when to ask a human being to 
label a specific sample in order to learn efficiently. Active learning always 
presents a trade-off between the cost of a human query and the general-
ized accuracy of a model. Active learning has been found to collapse the 
number of labeled samples needed for non-medical segmentation; how-
ever, human variability and multiple ground truths within images and 
image labels has prevented similar uptake in radiation therapy. Active 
learning can also refer to specific exploration–exploitation, trade-offs in 
working with knowledge already gained and attempting to gain new 
knowledge through possible failure.

Self-supervised learning essentially plays a series of “games” to supervise 
a machine learning model when it is presented with only unlabeled data. 
In the case of image processing without labeled data, one may attempt to 
reconstruct random holes created from images or look to provide full 
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resolution out of a low-resolution subsampling. These games allow 
machine models to quickly learn the salient features of a data set, particu-
larly when the number of parameters of the model is very high, as in 
Transformers. A very popular form of self-supervised learning constitutes 
the creation of an embedding: for example, word2vec (and more recently 
data2vec) converted words into tensor objects representing the relation-
ships between them and compressed the dimensionality of their input.

Self-distillation is a modern method of self-supervised learning where 
models may be trained without contrasting pairs. In these models, a 
teacher and a student or “twins” train each other taking great care not to 
“collapse” the training between them. These techniques form modern 
state of the art, harnessing the power of many unlabeled examples before 
training on supervised sets.

Generative Modeling seeks to predict the joint probability of the input 
space and labels p(xi, yi) so that new samples may be generated syntheti-
cally from the same distribution. Optionally, these samples can be hard-
ened through an adversary that attempts to distinguish generated samples 
from real samples. Generative models can provide a means for regulariz-
ing networks so as to achieve higher generalizability. Adversarial models 
can probe for robustness of different predictive networks.

Medical data often cut across a variety of patient cases and treatments 
that can introduce many confounders to monolithic statistical training. 
These data are referred to as “long-tail” data, meaning there are diminish-
ingly few of the same contexts even though there are many total samples. 
In these cases, one often uses Multi-Task learning so that certain param-
eters are shared in training to represent learnings independent of con-
founders; yet certain task-specific parameters will continue to contextual-
ize predictions. Meta-learning refers to the ability to quickly learn a new 
context given training on previous contexts.

Deep reinforcement learning is over 50 years old but has found great 
recent success with the advent of deep networks. In essence, reinforce-
ment learning allows one to produce a statistically biased optimizer as an 
output from training on different scenarios where the sample set is deter-
mined by the prediction. Samples are not i.i.d. so they require a great deal 
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of care to ensure stability between the predicting model and the correlated 
training samples of that model.

In dimensionality reduction, a high-dimensional input space is trans-
formed into a low-dimensional manifold that allows one to relate different 
samples. Such relations allow humans or other machine learning to explore 
possible trials or assert possible relationships.

3.2. Toolkit selection

The role of an AI scientist in using the above tools to classify the nature 
of the automation, augmentation, or amplification at hand into one or 
more canonical AI tasks (examples): Classifying (e.g. Diagnosing malig-
nant versus benign tumors), Interpolating, Embedding (using machine-
learned imaging features in Knowledge-Based planning), Forecasting 
(estimating the future positions of organs under patient-specific breathing 
patterns and sensors), Controlling (changing the machine sequence of 
instructions based on movement of the patient), Simulating (modifying 
therapy based on physical simulations of particle transport or biological 
outcomes), Recommending (placing the users’ preferred machine at the 
top of the list), Interacting (providing contour autocompletion when draw-
ing PTV borders), and Designing (modifying the style of the treatment 
plan, rather than optimizing an objective).

This may result in a hybrid or novel AI task type. As with any statisti-
cal learning a training appropriate to the task needs to be engineered to 
produce a stable equilibrium of trained parameters across known data 
tests, training, and validation sets. 

The Inductive Bias of a neural network describes how its initial 
architecture captures the statistics of the problem. For example, popular 
Convolutional-style Neural Networks exploit the statistical, spatial rela-
tionships of real-world 3D objects in the filters of learned convolutional 
functions, while Transformer-style Neural Networks exploit the attention 
affinity of specific elements of high-dimensional inputs. In general, the 
engineering of networks must reflect the known inductive biases of 
the radiation therapy workflow, such as particle transport, anatomical 
features, usual interventional modalities, usual sparing modalities, and 
typical trade-off strategies.
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When one problem is automated through a sufficient domain of data, 
Transfer Learning allows for a fast jump start on a new problem with far 
less data. In the context of radiation therapy, it confers a fast means of 
understanding the anatomy of a new patient in the context of previous 
patients, or learning to automate a new interventional process given previ-
ous interventions, or quickly learning a new preference or recommenda-
tion given previous recommendations. Transfer Learning is ubiquitous 
in Machine Learning as it derives from its underpinning in statistical 
learning theory. Interventional planning execution in engineering terms 
may be thought of as control theory: sensing or diagnosing, reasoning, 
actuating, and then sensing, etc. in a closed loop. Control theory does a 
poor job of leveraging previous control decisions to inform new ones. 
Reinforcement Learning (RL) brings this ability to train control algo-
rithms that statistically learn or train on previous control loops to optimize 
the speed and training time of new ones. 

Inevitably, certain controls cannot be expressed in a real-time training 
gym for RL algorithms due to a lack of modeling and a lack of prospective 
RCT data. Causal Inference is a field that estimates the probability of a 
causal relationship between a series of events or a time-series of data and 
can suggest the minimal experiments that would be needed to support 
those claims further. It is achieved through Perl Causality, Granger 
Causality, or Directed Information, or Synthetic Control analysis. Such 
analysis can refine inclusion and exclusion criteria in new prospective tri-
als and has recently formed the basis of RWE for the FDA when lacking 
large-scale RCT trials. 

4. The Trajectory of AI Tools into 2030

Currently, the AI tools of choice in radiotherapy surround means of con-
tour automation, knowledge-based planning, motion management, and 
specific transfer learning. These will greatly evolve and change by 2030.

When we envision the use of AI in radiotherapy, we need to distin-
guish between solutions that could be implemented realistically in the 
next 3–5 years versus those that need significantly more research and 
development to be deployed safely outside major research institutions. In 
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the immediate future, AI tools extending existing methods to increase 
automation for routine tasks are the most likely candidates for successful, 
robust implementation.

The care process starting when the patient is seen for their first radio-
therapy consultation and ending on the last day of treatment is highly com-
plex, having multiple, interactive feedback loops. While the general steps of 
a typical workflow, as described in the AAPM TG-100 report, are applied 
similarly in different departments, there are significant variations between 
radiotherapy clinics worldwide. In the clinical implementation of automa-
tion and AI, the AI tools must distinguish between desirable variations that 
benefit an individual patient and undesirable variations that lower quality 
and safety. The following paragraphs describe current sources of detrimental 
variations in care and how AI could improve the clinical process. 

Accurate patient staging is the foundation of an evidence-based treat-
ment plan. As more is discovered about cancer genetics, this new informa-
tion influences staging. Staging systems evolve with science. To practice 
evidence-based medicine, Radiation Oncologists must memorize hun-
dreds of treatment recommendations based on patients’ pathology, cancer 
staging, age, co-morbidities, and other factors (Hansen & Roach, 2010). 
As new clinical trial results are published, many studies have shown the 
challenge and multi-year delays to move the best new evidence into rou-
tine clinical practice (Grol & Grimshaw, 2003; Ploeg et al., 2007; 
Szulanski, 1996). For example, more than 30% of women with N2/N3 
breast cancer in the US still do not receive the recommended post-mastec-
tomy radiation, increasing the local recurrence rate by 20–27% and reduc-
ing overall survival by 8–9% (Chu et al.). Clinicians in developing coun-
tries face additional barriers in implementing new evidence, because they 
often do not have the resources to access peer-reviewed literature or attend 
conferences to update their clinical expertise.

EMR-based collaborative intelligence (CI) decision support software 
using natural language processing (NLP) will be able to assist with 
accurate staging and solve the problem of delayed and insufficient imple-
mentation of evidence-based treatment. CI software based on natural 
language processing combined with web scraping is in development (Saiz 
et al., 2021) to assist physicians with literature review and developing 
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treatment plans. Based on the patients’ relevant EMR data, CI decision 
support software will pull the applicable society recommendations and 
clinical trials results and present the resulting treatment recommendations 
in a user-friendly graphical user interface (GUI).

Contouring is one of the best examples of an area at the forefront of 
benefiting patients. Contouring is a time-intensive and repetitive task, 
which is where automation excels. There is also a vast body of literature 
exploring the substantial inter-observer variation even between expert 
physicians in both organ-at-risk (OAR) and target contours. Early studies 
have shown that AI-based contouring tools can significantly reduce the 
variability of OAR contours. AI-based segmentation is a well-developed 
subspecialty within AI and is relatively mature compared to other AI 
applications. The track record and lessons learned from using AI-based 
segmentation and structure labeling in Diagnostic Radiology transfer 
directly to Radiation Oncology applications. 

In addition to reducing contour variability and saving clinician time, 
AI-based segmentation can significantly impact three major areas over the 
next decade. First, AI segmentation tools can facilitate standardized 
nomenclature along the recommendations published by AAPM TG-263 
and adopted by clinical trial groups. This in turn facilitates research based 
on big data science by reducing data pre-processing needs. 

Second, AI-based algorithms can support the faster adoption of con-
touring atlases and guidelines published by clinical trial groups. Currently, 
it takes a conscientious effort by physicians and dosimetrists to seek out 
these guidelines and implement them in their practices. An AI tool could 
integrate updated contouring recommendations into future software 
releases, proactively bringing these standards to physicians when and 
where they need them. Thirdly, and most significantly, AI-based segmen-
tation algorithms could be a training tool. Similar to contouring clinics
available in high-resource regions of the world, AI software could coach 
residents and clinicians moving from 2D to volumetric-based radiation 
therapy using customized feedback and adapting the coaching to the local 
environment:

• The specific equipment a clinic owns. A large radiotherapy center that 
routinely provides adaptive radiotherapy, SBRT, MR-guided simula-
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tion and treatment, and complex interstitial brachytherapy services 
will have different workflows than a clinic with older equipment.

• The amount of staffing for the various specialties. A small satellite 
facility that hires consulting physicists a few days a week may assign 
dosimetrists and therapists tasks that a larger department would assign 
to physicists. In some countries such as Japan, the profession of 
medical physics is new, others have a well-established professional 
role.

• Local regulations and reimbursement methods will drive some of the 
practice variations. For example, reimbursement for third-party 
device-based measurement and routine in-vivo dosimetry for IMRT 
QA affects the number of resources allocated to safety and quality.

Real-time optimization: Currently the creation of a treatment plan can be 
a time-intensive process, particularly with complex cases, such as head 
and neck. The essential iterations that take place between an optimizer 
that does not speak the language of the clinician, and the clinician that 
must learn the vagaries of an optimizer, lead to poorer outcomes. Clinical 
plans are often those that fit within a time box and are deemed acceptable. 
In the future, machine learning will provide nearly instantaneous optimi-
zations. They will rely on scalable distributed GPU computing in the 
cloud and algorithms that exploit prior strategic reasoning born of 
Reinforcement Learning rather than simple standard deviations of optimi-
zation lines in knowledge-based planning and absolute prioritization of 
weight in lexicographic ordering.

Causal Inference-based planning: Today’s standard in treatment planning 
has components of style and anecdotal experience. This is largely due to 
the huge scalability gap between data-based outcome analysis and rigor-
ous clinical, prospective trials. In the future all such longitudinal data will 
be available electronically and will be able to detect how anatomical, sub-
anatomical, and biological outcomes can be optimized directly without 
the style and individual trainings of a radiation oncologist or medical 
physicist. All of the confounders that would otherwise mask the signal 
from the noise will be eliminated using causal inference.
Scheduling is critical for timely access to medical services and efficient 
use of staff and equipment resources. Queuing theory, routinely applied to 
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operations management, traffic control, and staffing models to improve 
customer service, has yet to find its way into routine use in healthcare 
facilities. Radiation Oncology, with treatment courses running over 
4–6 weeks, is a prime model for testing the use of advanced scheduling 
software algorithms in clinical practice. 

Radiation Oncology scheduling has two distinct areas where automa-
tion could benefit the clinic: the staff-intensive scheduling for initial con-
sultation and simulation, which requires coordination of insurance 
authorization, other providers such as Oncology, and more. The treatment 
course scheduling requires optimization of the linac schedule based on 
treatment length, patient preference, and staffing availability.

For the first aspect, initial scheduling, AI-supported scheduling could 
reduce the cognitive workload and task tracking for front office staff. 
Unsupervised learning algorithms could take on tasks such as initiating 
insurance authorization requests and coordinating schedules with other 
departments such as Oncology, nutritionists, and social support services. 
For routine scheduling, ML software will track actual linac time needed 
for classes of treatments such as breast or H&N, including parameters 
such as patient age and mobility. Optimizing machine schedules based on 
large datasets of time required for similar procedures, optimizing patient 
distribution among machines, adjusting schedules based on patient prefer-
ences, and quickly adjusting schedules for machine downtime will 
increase resource use while reducing wait times and increasing patient 
satisfaction.

To realize the above-described implementation of AI into clinics, we 
also need to describe what conditions must be in place for successful AI 
implementation. There are lessons learned from Diagnostic Radiology, the 
IBM Watson project, and on a smaller scale the current rate of adoption 
for commercially available AI solutions in our field.

First, implementation of AI requires IT resources and support. 
Currently, many hospital IT systems are structured such that the data flow 
between the clinic and outside entities is severely restricted. The reasons 
for these restrictions are maintaining Cybersecurity and adhering to 
HIPAA laws. Within these constraints, implementation of AI will require 
building strategies for access to cloud-based computing, HIPAA-compliant 
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data sharing for software relying on big data, and developing a framework 
for open-source software development. In addition to the IT infrastruc-
ture, personnel resources are required to implement, commission, and 
maintain AI tools. Like the installing and continued maintenance of hard-
ware solutions, software and processes also need continued maintenance 
and improvement. 

Second, vendors should aim to build AI tools which can be widely 
adopted in daily clinical practice given the constraints most clinics face. 
To achieve this goal by 2030, vendors need to learn where current barriers 
and pitfalls are, and how product design can create robustness against 
failure. The major challenge for the vendor is their intrinsic removal from 
clinical processes. Unless product managers and software designers are 
embedded in a variety of clinics, it will be difficult to grasp where their 
products are not integrating well with humans. Technology offers a pos-
sible solution here as well: automated workflow monitoring software 
could learn to flag where deviations from the ideal process are larger than 
desired, which in turn could initiate focused clinical immersion of a ven-
dor/clinician team to diagnose the issue. Another challenge vendors face 
is that AI tool development and implementation is currently driven by 
high-resource institutions. Multi-institutional consortiums that work with 
vendors for clinical implementations rarely include small or under-
resourced centers. To achieve widespread adoption of AI by 2030 to 
reduce health disparities, vendors and low-resource clinics need to find a 
way to communicate their respective needs and solutions.

5. Summary

In summary, we can expect the pace of AI tool adoption in clinical practice 
to accelerate in the coming decade. As we improve our knowledge of how 
to build robust algorithms that can be commissioned for local needs and 
are robust in the face of data creep, the safe use of these algorithms will 
reach resource-constrained clinics. As we step through automation, aug-
mentation, and amplification to support clinicians, AI tools in Radiation 
Oncology will increase access to cancer care and lower the cost for cur-
rently under-served patient populations.
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Abstract
Artificial intelligence (AI) promises to bring dramatic changes in all industries as 
new industries are created and existing industries undergo digital transformation 
to meet future demands. The evolution of AI has experienced high expectations 
at times, followed by multiple disappointments over the past 50 years. Meanwhile, 
the development rate of AI science and technology is accelerating. Practitioners 
of AI and the user community understand the pitfalls of some unbounded 
expectations. AI is a set of powerful tools to solve many problems in a data-rich 
chaotic healthcare system. Radiology has been the first healthcare community to 
invest in developing imaging AI tools aggressively. However, after more than 25 
years of research and development that resulted in many FDA-approved products, 
the radiology community’s adoption of these AI tools remains in its infancy. This 
chapter reviews the lessons of AI in radiology and offers some strategic 
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suggestions to the radiation oncology community on development and deployment 
so that AI as a whole can become meaningfully intelligent. We are used to 
thinking in terms of technology push, but AI strategy should be demand-driven 
and match the AI tools to solve significant problems sustainably. The successful 
digital transformation must focus on value creation through productivity 
improvement for the entire service chain.

1. Evolution of the Artificial Intelligence Ecosystem

1.1. Expectations and disappointments of AI

The idea of learning machines began with the concept of the McCullouch–
Pitts mathematical model of a biological neuron (McCullouch & Pitts, 
1943). It remained mainly within the academic community until the recent 
big data era. To recap, Artificial Intelligence (AI) is a broad term describ-
ing a software system designed to identify patterns and make decisions 
without human interventions. Machine Learning (ML) is a subset of AI 
that includes more advanced models and techniques where the programs 
can learn from examples. Deep Learning (DL) is an evolution of ML-based 
on multi-layered artificial neural networks. 

There have been two significant concepts in the evolution of AI: 

(1) AI as a symbolic representation and formal logic expressed as expert 
systems and the development of a family of high-level computer pro-
gramming languages such as LISP, which became a common pro-
gram language for AI in the 1960s and 

(2) Conceptualization and mathematical frameworks mimicking neurons 
in the brain, which have evolved to the technique of artificial neural 
networks. 

During the 1960s and 1970s, some successful applications of AI in the 
form of expert systems generated excitement in the industry. But the com-
munity realized that early successes that worked in well-structured narrow 
problems failed to generalize to the broader category of applications or 
deliver operationally valuable systems. This period is commonly known 
as the AI winter.
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During the AI winter, the various disciplines of computer science, 
probability, mathematics, and AI came together to overcome the initial 
failures of AI. In particular, techniques from probability and signal pro-
cessing and optimization were incorporated into AI architecture, resulting 
in the field known as machine learning (ML). Popular ML techniques 
include random forests, boosting, support vector machines, and artificial 
neural networks. Around 2010, AI began its spectacular global resurgence 
largely fueled by internet industries such as Google and Amazon, with AI 
becoming a core investment area by governments, industries, and aca-
demia. Figure 1 shows the timeline of development and the use of AI since 
1950, including two AI winters (Kaul et al., 2020).

Artificial convolutional neural networks (CNN) have recently domi-
nated machine learning by solving computational problems in training 
neural networks and the availability of data necessary for training. The 
resulting systems are called deep learning (DL) systems and showed sig-
nificant performance improvements over prior generations of algorithms. 
This has generated the next cycle of hype. While we grow out of the AI 
Winter, we must maintain a balanced perspective. We should not overstate 
utility. It is prudent to maintain cautious optimism based on a disciplined 

Fig. 1.  Timeline of the development and the use of AI in medicine.
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strategy for development and deployment, as AI will have ups and downs 
in many industries, including healthcare (West & Allen, 2018). 

1.2. Technical ecosystem helping research and development in AI

There are four main reasons why AI research and development activities 
have exploded.

(1) Availability of Massive Datasets: 
Machine Learning algorithms require large quantities of training data to 
produce high-performance AI models. For example, some facial recogni-
tion AI systems can now routinely outperform humans. Still, to do so, they 
require tens of thousands or millions of labeled images of faces for train-
ing data. More data are becoming available from many industries to 
develop training and testing data sets that match the real-world opera-
tional situations.

(2) Increased Computing Power: 
Machine Learning AI systems require a massive computing power to pro-
cess, store, and manage the data. A new computer architecture, Graphics 
Processing Units (GPUs), was developed around 2010 for massively par-
allel processing necessary for AI modeling. The GPU system can increase 
this AI training process by a factor of 20, obviating the need for supercom-
puters.

The development of cloud computing is also beneficial for AI since 
organizations can rapidly access massive computing resources on-demand 
and limit purchases of computing power to only what they need when they 
need it.

(3) Improved Machine Learning Algorithms: 
The first Machine Learning algorithms are decades old, and some dec-
ades-old algorithms remain useful. However, researchers have developed 
many new algorithms that have accelerated advances in AI capabilities in 
recent years. These new algorithms have made Machine Learning models 
more flexible, more robust, and more capable of solving different types of 
problems.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



b4808 Artificial Intelligence in Radiation Oncology“6x9” 

Lessons from Artificial Intelligence Applications 41

(4) Open Source Code Libraries: 
Machine Learning was a specialized niche within computer science for a 
long time.

Developing Machine Learning systems required many specific exper-
tise and custom software development that only a few organizations could 
afford. Now, however, there are many open-source code libraries and 
developer tools that allow organizations to use and build upon the work of 
external communities. So today, no team or organization has to start from 
scratch. Furthermore, non-experts and beginners can create useful AI tools 
if they have access to high-quality data. Depending on specific applica-
tions of AI, especially in medical imaging, some of these open-source 
codes will require further development for optimum performance. A criti-
cal aspect of an open-source system is allowing users ease of collabora-
tion, which is vital in AI development and testing.

2. Different Types of Machine Learning Tools

As the ML field advances, there is a growing number of many different 
types. However, the following are more common approaches to Machine 
Learning algorithms:

• Supervised Learning System
• Unsupervised Learning System
• Reinforcement Learning System 

(1)  Supervised learning uses example data that human “supervisors” 
have labeled. Supervised learning has incredible performance, but 
getting sufficient labeled data can be difficult, time-consuming, 
and expensive.

(2)  Unsupervised Learning uses data but doesn’t require labels for the 
data. As a result, it has lower performance than Supervised 
Learning for many applications, but it can also tackle problems 
where Supervised Learning isn’t viable.

(3)  Reinforcement Learning has autonomous AI agents that gather 
their data and improve based on their trial and error interaction 
with the environment. An AI agent learns how to do a task by 
relentless trial and error in reinforcement learning. The agent 
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figures out the best solution via millions of attempts. Once it is 
successful, it earns a reward. Reinforcement learning has been 
popular in video games where the system beats humans. It is a 
subject of intense basic research, but it is yet to be adopted for 
real-world problems. 

Figure 2 shows three major types of machine learning categories and 
possible applications. 

3.  Digital Transformation of Radiology and 
Computer-Aided Diagnosis (CAD)

Radiology was one of the first healthcare specialties to adopt digital tech-
nology, an essential foundation for any application of AI. Since the 1970s, 
radiology has adopted many new digital imaging modalities such as 
Computed Tomography (CT), Magnetic Resonance Imaging (MRI), 
Positron Emission Tomography (PET), Single Photon Emission Computed 
Tomography (SPECT), Digital Ultrasound, Digital Mammography, and 
many others. These digital images were initially printed on films for inter-
pretation, sharing, and archiving. Computed Radiography (CR) replaced 

Fig. 2.  Three types of Machine Learning categories and their applications.
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the film-based conventional x-ray images (aka Roentgenography). As 
digital technologies for data capture, storage, image display, and transmis-
sion improved, radiology operations converted to a filmless digital envi-
ronment in the late 1990s. Today, x-ray films are gone, and the Picture 
Archiving and Communication System (PACS) manages all digital radio-
logical images (Mun et al., 1993). These digital images opened the era of 
image processing for various specialty applications beyond diagnostic 
radiology (Mun et al., 2007). Radiation oncology is a specialty area where 
advances in digital imaging, mainly cross-sectional imaging such as CT 
and MRI, have transformed the entire therapy process.

3.1. Computer-aided diagnosis

As more digital radiology images became available, the radiology com-
munity began to explore the concept of an artificial convolution neural 
network for image pattern recognition (Lo et al., 1995). Some began to 
develop computer-aided diagnosis (CAD) as a possibility to assist radi-
ologists (Doi, 2007). At the same time, the computer science community 
was developing computer vision technology. Computer vision, a domain 
of computer science, attempted to replicate the human visual process. 
Softwares were developed to segment, identify, and track objects in still 
and moving images. The computer vision and interpretation of radiology 
images by radiologists seemed to offer a considerable overlap of technical 
tools and applications of those tools dealing with images.

The concept of CAD research in radiology imaging has evolved into 
two distinct clinical applications; computer-aided diagnosis (CADx) and 
computer-aided detection (CADe) (Geiger et al., 2008). CADx means the 
computer provides a diagnosis for physician review as needed. On the 
other hand, CADe means the computer highlights the area of concern (i.e., 
cancer) for further diagnostic evaluation without providing a diagnosis. 
For example, the CADe screens lung cancer or breast cancer for the 
asymptomatic but higher-risk population. The patients will undergo addi-
tional precision diagnostic studies if cancer is suspected from the screen-
ing study. The CADe as a detection algorithm to identify abnormality is 
based mainly on segmentation, pattern recognition, normal structure 
identification, and feature analysis. CADx  as a classification algorithm to 
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categorize disease severity or prognosis would focus on image pattern 
recognition, feature differences, as well as patient information. In many 
situations, particular low-resolution image of a single modality or even 
high-resolution image does not possess sufficient information to develop 
a clinically viable CADx algorithm. 

Additionally, the radiological computer aided triage and notification 
(CADt) software is intended to aid in prioritization and triage of radio-
logical medical images. It notifies a designated list of clinicians of the 
availability of time sensitive radiological medical images for review based 
on computer aided image analysis. Marking, highlighting, or directing 
users’ attention to a specific location in the original image may not be 
provided by a CADt. It should be noted that FDA recently classified CADt 
as class II software.

A family of CAD tools that propelled the dramatic increase in interest 
and imaging AI investments is computer-assisted screening mammogra-
phy. The government’s interests in women’s health in the 1990s created a 
massive demand for breast cancer screening and the need to read a large 
number of screening mammograms. As a result, the US government 
allowed a higher reimbursement rate for AI for computer-assisted screen-
ing mammography than conventional mammography to improve clinical 
service capacity and the quality of screening services. This financial 
incentive associated with CADe increased clinical adoption of CADe 
tools throughout the US. The success of AI in screening mammography 
excited the AI research community and spurred the research and develop-
ment of many new AI products for radiology. In the public press, some 
speculated that robots would soon replace radiologists.

However, a major study involving 271 radiologists and 323,973 
women between Jan 2003 and Dec 2009 compared reading mammograms 
with and without CADe. The study concluded that CADe does not 
improve diagnostic accuracy in mammography. It increased false positives 
(Lehman et al., 2015). A more recent study by Schaffter and colleagues 
conducted a crowd-sourced trial on the use of deep learning in digital 
mammography involving 300,000 mammograms from the US and 
Sweden. The project had 126 teams from 44 countries to see if AI could 
meet or beat the radiologists’ performances. They concluded that AI tools 
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again did not perform better than radiologists without AI tools (Schaffter 
et al., 2020).

One successful AI application in radiology is lung cancer screening. 
With the use of CADe for low-dose CT images for lung cancer screening, 
the sensitivity can be improved, and at the same time, the radiologist’s 
reading speed can be improved by 30% (Lo et al., 2018). In lung cancer 
screening CT, AI tools can reduce the blood vessel interference with 
potential lung nodules and improve the interpretation speed. This signifi-
cant productivity improvement is a considerable incentive for clinical use. 

After more than a decade of intense research and development in AI 
in radiology and the availability of more than 100 FDA-approved imaging 
AI products, the clinical adoption of these tools has been slow (Tadavarthi 
et al., 2020). AI, in general, has not made any significant impacts on radi-
ology despite having a massive digital infrastructure. As a result, some in 
the radiology community see the current situation as AI “winter,” similar 
to that the greater machine vision community has experienced over the 
past 50 years, as shown in Fig. 1.

It is improbable that additional reimbursements will be allowed for 
the use of AI tools in radiology; thus, the productivity improvements, as 
in the case of lung cancer screening and cost savings, may become drivers 
for the clinical adoption of AI tools. There are many opportunities for AI 
to optimize and automate the workflow to improve overall productivity.

3.2. Technical lesson learned from radiology AI

The AI application in radiology has been the exclusive use of the super-
vised learning model mentioned in the early part of the chapter. However, 
several aspects of this process will need additional improvements.

3.2.1. Limitations of CNNs

The neural network as a part of the DL concept is based on the architec-
ture of the multilayer perceptron. The convolution neural network (CNN) 
consists of a series of convolution layers equivalent to compositional 
convolution layers with a set of large kernels. A CNN acts as a feature 
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learning model based on spatial features with multiple channels. They 
were initially developed for the recognition of alphanumerical handwrit-
ing. General image pattern recognition relies on essential graphic pattern 
features (e.g., edges), orientations, and size. However, medical image pat-
tern recognition depends more on gray intensity distribution and size but 
not orientation (Lo et al., 2018). The common difficulties in the traditional 
CNN approach for medical imaging can be grouped into three categories; 

(i) inability to separate normal from ill-defined abnormal structures in 
the past; 

(ii) inability to differentiate disease patterns, particularly in subtle cases 
from a broad spectrum of normal structures; and 

(iii) inability to establish an integrated system between compositional and 
divide-and-conquer models. 

Additional research and developments in the CNN community will be 
required to optimize CNN for medical imaging applications, especially 
CADx. The strength of CNN is to learn features automatically with mil-
lions of convolutions involving short and long regional pixels’ correlation 
(tensor) as long as a sufficient number of samples is provided rather than 
limited number of defined formula. Radiomics is really a conventional 
approach as we have used in the field CAD. 

3.2.2. Data quality and pre-processing

In any data science project, one can spend a significant effort to “clean” 
the data, and medicine is no exception. The data must be of sufficient 
quality and acquired with uniform parameters to validate conclusions. The 
image quality in patient care settings can vary depending on the time and 
day of imaging, image protocol, imaging system set up, patient condi-
tions, and clinical practice standards in different departments. While 
human vision can adapt to reading through the images of varying quali-
ties, AI tools generally cannot. One important task to produce a systematic 
image AI performance is image pre-processing, including image quality 
optimization, noise reduction, clutter removal, and enhancement of essen-
tial features for differentiation. In addition, there is an increasing number 
of AI tools to standardize image quality.
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Thus, a radiology AI tool for screening or diagnosis of the disease 
consists of several components: 

(i) pre-processing such as image normalization; 
(ii) image segmentation or region of interest (ROI) extraction; and 

(iii) potential disease pattern identification and classification. 

Image segmentation is of particular interest when contrasting radiology 
and radiation oncology because the role of segmentation and identifica-
tion in radiation oncology is far more prominent. For many radiology 
exams, segmentation is either not needed or is limited to measuring the 
size and shape of a tumor and may have little bearing on the final diagno-
sis. By contrast, segmentation in radiation oncology will usually involve 
several contiguous or overlapping organs and the treatment target, and 
these volumes are critically crucial for assessing the quality of the treat-
ment plan.

3.2.3. Data volume and data mix

There are two data issues: access to a sufficient volume of data and 
enough data diversity representing a realistic case mix of the clinical, 
operational environment (Yamashita, 2018). 

The imaging data requirement in radiology is relatively modest com-
pared with non-medical applications, less than 10,000 cases per disease 
category. For example, in the case of the recent AI tool development for 
lung cancer screening with CT images, approximately 2,000 cases con-
sisting of 300,000 CT images were sufficient for training. Around 300 
cases of 45,000 images with about 20% subtle cases tested by more than 
ten radiologists were sufficient for an FDA-specified clinical trial (Lo 
et al., 2018a). For different disease types and imaging modalities, these 
numbers would be different. If the clinical problem has many subtle fea-
tures, the required data volume could be much higher.

Biases in AI can be thought of as a specific type of generalizability 
problem, although one which is more insidious because if the bias in an 
AI system matches the bias of human practitioners, it is effectively invis-
ible because no one will notice. Moreover, because of the frequent need 
to draw upon human experts when labeling or interpreting image data, 
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human biases can become enshrined into an AI system at a foundational 
level, making them very difficult to root out. The bias problem is further 
compounded by structural inequalities which affect access to healthcare.

3.2.4. Expert labeling and curation

In radiological imaging, the supervised learning approach is the most 
popular tool, and it requires labeled data for training and validation (Lo 
et al., 2018a). Expert radiologists must do the labeling of images manu-
ally. This process is very labor-intensive and very costly. In addition, the 
truth panel for images is established by having 2 out of 3 radiologists 
agree on the diagnoses and clinical determinations. Non-experts cannot do 
this truth labeling.

3.3. Lessons from poor clinical adoption of AI tools in radiology

The radiology imaging community has been very active in developing 
computer-aided diagnosis (CAD) tools since the early 1990s, long before 
the imagination of artificial intelligence (AI) fueled many unbounded 
expectations in medicine and other industries. Today there are more than 
100 FDA-approved AI imaging products in the US, but clinical adoption 
of these products has been very slow. 

A number of hindering factors for AI implementation (Strohm, 2020) 
of traditional CAD were identified as follows:

• Inconsistent technical performance of AI algorithms (false positives 
and false negatives);

• Lack of planning and monitoring AI implementation;
• Lack of empirical evidence on the effect of AI application on the radi-

ology workflow;
• Uncertain funding due to lack of evidence of benefits;
• Widely varying acceptance and trust;
• Legal and regulatory issues.

Traditional CAD efforts in radiology have narrowly focused on interpret-
ing diagnoses by radiologists. However, diagnostic imaging services are 
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far more than just aiding interpretation of diagnoses by radiologists. One 
has to address issues in the entire workflow.

As mentioned earlier, AI is a set of powerful tools with multiple capa-
bilities beyond pattern recognition. Current research in imaging AI has 
three parallel tracks, as shown in Fig. 3:

1. Next Generation CAD: 
Improving the technical performance of traditional CAD

2. Radiomics:
Creating new knowledge through quantitative imaging, also known 
as radiomics

3. Productivity:
Workflow optimization to improve overall productivity with predic-
tive analytics

Though the CAD and radiomics are mentioned separately for historical 
reasons, the work in radiomics will improve the performance of CAD in 
the future. Therefore, the rest of the chapter will discuss radiomics for new 
knowledge creation and productivity, and workflow optimization will be 
addressed as two essential target areas for AI application for radiology and 
radiation oncology. 

Fig. 3.  Three potential pathways for AI adoption in Radiology services.
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4. Comparing Radiology and Radiation Oncology

When considering applications of AI, it is helpful to draw some compari-
sons and contrasts between Radiation Oncology and Radiology. At first 
glance, the applications of AI in radiology and radiation oncology appear 
very similar. Both fields make extensive use of medical images as their 
primary source of data. Therefore, large image archives with rapid access 
to the data are essential. Expert labeling and curation are challenging to 
obtain because they require the work of highly trained individuals who are 
already very busy.

However, there are also significant differences between the two fields. 
Table 1 compares and contrasts the two fields along several parameters.

One significant difference relevant to the workflow for the department 
is the number of major devices during the patient care process. Generally, 
in radiology, we deal with a single imaging device per study. In radiation 
oncology, many major components have to work in concert. The following 

Table 1:  Comparison chart showing key differences between radiology and radiation 
oncology. These differences should inform and guide the development of AI algorithms in 
their respective fields.

Radiology Radiation Oncology

Emphasis on detection and diagnosis Emphasis on treatment and cure

Must recognize a very wide range of 
potential disease states

Relatively narrow range of disease states

Screening of asymptomatic patients is 
an important goal

Does not deal with asymptomatic patients

Patient encounters are typically short 
and require only one session

Patients may be treated over several days or 
weeks

Diagnostic imaging follows specific 
protocols with relatively low 
variation from patient to patient.

Treatment plans are highly individualized to a 
specific patient and may change during the 
course of treatment.

Simpler workflow with fewer personnel Complex workflow involving many personnel

Image generation and interpretation are 
not typically dependent on 
computational optimization.

Lengthy history of using computational 
methods for treatment optimization
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are the major components: treatment simulator, treatment planning sys-
tem, verification system, treatment system, and information management 
system. During the course of treatment, some systems are used multiple 
times for the same patient. These enterprise related issues will be further 
discussed in the later section.

5. Quantitative Imaging; For New Insights

One area of shared research interest between radiology and radiation 
oncology is quantitative imaging, also known as radiomics (Kuhl & 
Truhn, 2020).

Quantitative imaging extracts features from radiological images that 
may or may not be visualized by radiologists.  It intends to quantify the 
abnormality, the degree of severity, or the status of a disease relative to 
normal based on phenotype characteristics or tensor features in an auto-
mated high-throughput manner. A semi-automatic operation is necessary, 
particularly in the segmentation of region of interest. It has been hypoth-
esized that such analysis may help prognosticate, predict treatment out-
comes, and assess images of potential disease tissues including the malig-
nancy or benignity of lesions. 

The value of AI in radiomics is two-fold. 
First, AI can be used for automated image analysis at scale, enabling 

rapid evaluation of hypothetical radiomic features. Whereas comparison 
studies involving human radiologists should take into account a wide 
range of ergonomic and perception factors (such as the required number 
of readers or the need to provide time between different readings of the 
same image), a comparison of radiomics algorithms is only limited by 
computational speed and power. Similarly, new features can easily be 
tested against existing data sets. 

Second, unsupervised learning methods can be used to search for new 
radiomic features that might be very different from what would be noticed 
by a human observer. In essence, AI can take on the role of discovery and 
extract new and valuable patterns within existing data.
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Radiomics offers the appeal of objective analysis and the ability to 
detect features or qualities in the image that would either be too subtle for 
a human observer or too difficult/time-consuming to compute without 
assistance. But only a few approaches in this regard have some break-
throughs so far. The current issue of the quantitative imaging approach is 
that it is still unable to fully recognize patterns/features identified by 
expert observers, particularly when the image contains substantial clutters 
or structure or non-structure noises.

Out of many technical issues, to make radiomics effective and scala-
ble, there is an urgent need to standardize factors in processes involved in 
the quantitative analysis. The Image Biomarker Standardization Initiative 
(IBSI) (IBSI, 2022) is a new organization to address many challenges in 
the following areas:

• standard nomenclature and common radiomic features, 
• radiomics image processing schemes, 
• provide data sets for validation and calibration, and 
• set of reporting guidelines.

This group defined 174 radiomics features commonly used to quantify the 
morphologic characteristics, and numerous others needed to determine the 
quantitative information clearly. In addition, the group is trying to stand-
ardize the image processing steps of data conversion, post-acquisition 
processing, segmentation, interpolation, masking, etc. It is expected that 
such standardization will eventually make radiomics clinically useful and 
scalable for imaging application for radiology, and radiation oncology. 

Radiomics can offer non-invasive diagnoses by exploring more 
refined imaging properties such as tumor heterogeneity and biological 
characteristics of a tumor (Vaugier et al., 2020).

6.  Productivity Improvement and Workflow 
Optimization

Much of the AI effort in radiology has focused on diagnostic decision sup-
port. However, potential applications of AI in radiology beyond image 
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analysis and classification can become increasingly more important from 
the perspective of entire radiology and radiation oncology operations 
involving radiologists, therapists, technologists, managers, referring phy-
sicians, and patients. Figure 4 shows a typical radiology workflow con-
ducting activities from ordering images to billing. 

Radiology service is changing from the traditional concept of “read-
ing images” to creating, organizing, and conveying relevant information 
with greater accuracy, faster speed, and lower cost. The department-wide 
issues and end-to-end productivity should be a problem-rich environment 
for AI innovations. 

Most of the AI work in radiology has been primarily focused on radi-
ologists’ efforts in establishing diagnoses, which is only a small portion of 
the entire workflow of the department. There are many segmented com-
ponents where information flows from one sub-system to the next and the 
next. Productivity improvement is rarely a popular area of academic 
research. The research literature on the issues dealing with operational 
efficiency and productivity in imaging services is limited compared with 
research topics on diagnosis and cure of diseases. However, from the AI 

Fig. 4.  A typical series of activities in a Radiology service workflow.
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perspective, there are increasing interests (Choy et al., 2018) in using 
AI to improve the workflow (Letourneau et al., 2020). The following five 
areas with multiple subareas for potential AI applications have been 
identified:

• Before imaging examination or procedures;
• During imaging examination or procedures;
• After imaging examination or procedures;
• During interpretation;
• After interpretation, including billing.

A recent article (Huynh, 2020) proposed the use of AI for the entire 
radiation therapy chain in six parts:

• Treatment Decision with decision support tools for integration of all 
relevant clinical information;

• Simulation to optimize dose efficiency with improved image quality;
• Treatment planning with automated segmentation and optimal dose 

prediction;
• Plan approval and QA that can detect errors and time saving for 

approval and QA;
• Radiotherapy delivery with enhanced image guidance, motion man-

agement, clinical efficacy, and patient outcomes;
• Follow up care with a more accurate prediction of response and 

adverse effect management.

The changes in reimbursement models and emphasis on the quality of care 
will be a strong driver to optimization of workflow and improvement of 
productivity, which will be a rich area of AI application in radiation oncol-
ogy in the near future. There are several shortcomings and discrepancies 
in Medicare’s current fee-for-service payment model for radiation oncol-
ogy service. They include different payment systems, known as site-of-
service payment differential, based on the therapy delivery settings, 
free-standing therapy centers versus hospital outpatient departments. At 
the same time, the current fee-for-service payment system encourages 
volume of service over the values of service, which may discourage the 
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adoption of some evidence-based practices such as hypofractionation 
based on modern technology. The Center for Medical Service began to 
develop an alternative payment model to address these shortcomings 
(Meeks et al., 2021). The proposed episode-based payment system is pro-
spective, site-neutral, and modality agnostic, resulting in high-value radia-
tion therapy care. Some fear that this new model could result in a reduction 
in reimbursement. 

As the debate for a new payment model intensifies, the productivity 
of the radiation oncology service will emerge, becoming an essential issue 
in managing the practice of radiation oncology. A recent survey reported 
the survey results on staffing, productivity, revenue, and expenses as well 
as a salary survey of 27 oncology-specific positions (Bourbeau et al., 
2020). This report offers an initial framework of looking at the productiv-
ity of radiation oncology at the systems level. Changes in payment model 
coupled with advances in science and technology for radiation oncology 
will form a rich data source for successful AI applications. Needless to 
say, successful AI application will require a sufficient volume of high-
quality data from multiple data points in the chain of radiation oncology.

7.  Integration of AI Tools into Workflow and New 
Intelligence Management System (IMS)

Workflow improvements will involve many systems and components 
throughout the radiology department. They could include hospital infor-
mation system, electronic health records, imaging devices, radiology 
information system, radiology workstations, billing and collection system, 
staffing system, radiology reporting system, and, indeed, PACS, to name 
a few.

Eventually, there can be many specific AI tools for specific disease 
types. Integration of these AI tools matched with disease cases and radi-
ologists would require massive integration work involving multiple ven-
dors. It might be prudent to start with PACS, which manages the bulk of 
workflow and work distribution to reading stations.

Systems integration of many innovative AI solutions in radiation 
oncology is expected to be much more challenging than in radiology. As 
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mentioned earlier, the radiation therapy process involves many more sub-
systems, and some are used multiple times for the same patients during 
the course of therapy. In radiology, PACS has been used as system-wide 
workflow optimization tool. However, today’s PACS is a centralized 
architecture of past generations. In order to integrate AI tools to many dif-
ferent parts of the workflow chain, we will need a distributed intelligence 
management system (IMS) with similar functionalities to edge computing 
or internet of things (IOT). This evolution of digital transformation in 
radiology will require collaboration between academia for better tools and 
industry for a new IT platform for intelligence management. Radiation 
oncology, where the workflow is more complex compared with radiology, 
will also need a new IT platform to manage intelligence for the entire 
service chain.

8. Ten Principles for Good Machine Learning 
Practice

The imaging community has accumulated a significant amount of AI 
research and development knowledge (Larson, 2021). The US Food and 
Drug Administration (FDA), Health Canada, and the United Kingdom’s 
Medicine and Healthcare Products Regulatory Agency (MHRA) have 
jointly identified ten guiding principles that can inform the development 
of Good Machine Learning Practice (GMLP) (FDA, 2021). These guiding 
principles aim to help develop safe, effective, and high-quality products 
that use artificial intelligence and machine learning (AI/ML) technolo-
gies. The principles have not been operationalized as regulations yet. 
However, they represent the accumulated lessons on evaluation of AI/ML 
products over 20 years. They also offer a roadmap for developing and test-
ing AI/ML products in the future. The 10-point principles are:

1. Multi-Disciplinary Expertise Is Leveraged Throughout the Total 
Product Life Cycle.

2. Good Software Engineering and Security Practices Are Implemented.
3. Clinical Study Participants and Data Sets Are Representative of the 

Intended Patient Population.
4. Training Data Sets Are Independent of Test Sets.
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5. Selected Reference Data sets Are Based Upon Best Available 
Methods.

6. Model Design Is Tailored to the Available Data and Reflects the 
Intended Use of the Device.

7. Focus Is Placed on the Performance of the Human–AI Team.
8. Testing Demonstrates Device Performance During Clinically 

Relevant Conditions.
9. Users Are Provided Clear, Essential Information.

10. Deployed Models Are Monitored for Performance and Re-training 
Risks Are Managed.

These principles will evolve into a powerful and effective roadmap in 
developing clinically acceptable AI products for radiology and radiation 
oncology.

9. Conclusion

The radiology and radiation oncology workload is increasing, and tech-
nology is getting more sophisticated. Precision medicine demands higher 
accuracy and better outcome. Both services will be expected to do more 
with less. At the same time, there is a constant pressure of limiting reim-
bursement. Therefore, using AI tools, productivity improvement will 
become a core function of digital transformation. 

The major lessons from radiology can be summarized as follows:

• Think productivity. The AI offers powerful predictive analytics to 
improve the productivity of the entire clinical operation.

• Think quantitative imaging. The use of radiomics offers new insights 
into cancer that can contribute to precision medicine.

• Plan for new digital imaging platforms for integrated AI tools.
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Open Access Data to Enable AI 
Applications in Radiation Therapy
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Abstract
Training, testing, and validation of AI algorithms applied to enhance radiation 
therapy require large quantities of high-quality, well-curated, and labeled data. 
For algorithms to generalize they must train on a representative sample of the 
human population including both the varying presentations of the target disease 
and healthy controls. What constitutes labeled data depends on the research 
question being addressed. Thus, AI applications differ in their definition of and 
requirements for labeled data. This adds complexity to curation, data management, 
and query or semantic search requirements imposed on data repositories that 
attempt to make such data widely available. 

Open-access data repositories that support the FAIR and TRUST principles 
provide the types of high-quality data required for AI applications and are 
essential for the rapid advancement of the field. Open access is hampered by 
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international privacy regulation differences, e.g., HIPAA vs. GDPR and intellectual 
property and regulatory requirements that force data sequestration. Approaches 
based on distributed machine learning where the data is not shared are being 
developed as an alternative. Consistent data quality assurance and curation must 
still be employed.

The bulk of Radiation Therapy data are collected and communicated according 
to the DICOM standard, which also provides profiles for proper de-identification 
of this data for research use and open reuse. Acquisition, quality assurance, 
de-identification, and curation tools based on DICOM are key to the success of 
open data repositories as well as distributed machine learning approaches which 
combine data from multiple repositories since in all cases reusable, well-
documented data are required. 

1. Introduction

Radiation oncology is an integral component of cancer care with nearly 
70% of all cancer patients being treated with radiation therapy as part of 
the management of their disease. Modern radiation therapy is planned 
using multiple image data sets and radiation therapy planning platforms 
that construct treatment plans to meet target dose limitations for both 
tumor and normal tissue volumes. Thus, both targeting, and outcome 
assessment are fully image driven and pre-therapy and outcome images 
provide invaluable information required for the application to AI tech-
niques to improve patient care.

The quality of care will be greatly improved with the continued 
growth and development of both validated databases and tools for analy-
sis. The databases need to be comprehensive and house patient-specific 
information with respect to pre-therapy outcome, anatomic and metabolic 
images to support target definition, and outcome images to support evalu-
ation of treatment efficacy and normal tissue function. Tools to provide 
segmental analysis of normal tissue and apply them to dose volume 
analysis will greatly improve and optimize patient care. For example, 
cardiac structures are an indirect and unintentional target of radiation 
therapy for thoracic and upper abdominal malignancies. Correlating nor-
mal tissue segmental dose with outcome will require tool development 
with artificial intelligence platforms to provide contours to cardiac 
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subsegments and correlate the dose volume to outcome. Often injury is 
identified through indirect mechanisms. 

There is a growing need to optimize definitions of tumor dose and 
normal tissue tolerance in the era of targeted radiotherapies and immuno-
oncology. Improved understanding of the dose required for tumor control 
and dose volume kinetics associated with normal tissue damage will 
greatly improve patient care. Increasingly these questions are being stud-
ied with advanced AI techniques, which require complex radiation therapy 
data sets for model development, testing, and validation.

2. AI in Radiation Therapy and Cancer Imaging

Machine learning (ML) has a relatively long history in quantitative image 
analysis beginning with early work in Computer Aided Detection and 
Diagnosis (Doi, 2007; Giger et al., 2008; Sahiner et al., 2019) in the 
1990s. Although benefiting for advancements in ML-based segmentation, 
large-scale extension of these tools into Radiation Therapy (RT) began 
more recently (Sahiner et al., 2019; Thompson et al., 2018). Advanced 
ML techniques are rapidly gaining traction in most aspects of RT, includ-
ing treatment planning, segmentation and auto-contouring, quality assur-
ance, clinical decision support and adaptive therapy (Huynh et al., 2020; 
Kiser et al., 2019; Thompson et al., 2018; Wang et al., 2019). In all these 
areas of active ML research, a key limitation is the availability of data. 

The accuracy of AI model outputs depends on the quality and quantity 
of data used for training. It is usually the training data rather than the 
details of the models that have the greatest impact on accuracy and gener-
alizability (Kiser et al., 2019). Data must be of sufficient quality and 
acquired with consistent parameters to be usable for training and valida-
tion of supervised ML models. For trained models to generalize, the data 
must appropriately represent the variance in the human population, the 
presentation of the target disease, therapy systems, protocols and treat-
ment plans, and imaging systems and imaging protocols (Prior et al., 
2020). Much of the existing literature is based on data that do not accu-
rately represent the human population due to limited geographic diversity 
and the lack of healthy controls.
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Accumulating data on a sufficiently large scale poses a significant 
challenge. Two approaches exist for meeting this challenge: open access 
data repositories and distributed or federated machine learning.

3. Open Access Data Repositories

Vincente-Saez and Martinez-Fuentes define open science as “transparent 
and accessible knowledge that is shared and developed through collabora-
tive networks” (Vicente-Saez & Martinez-Fuentes, 2018). A key compo-
nent of open science is open access to data and analysis results that enable 
the creation of research communities and enhance research reproducibil-
ity (F. W. Prior, 2013). To be useful, open access repositories must comply 
with the FAIR principles for data management and stewardship to make 
data findable, accessible, interoperable, and reusable (Jacobsen et al., 
2020; Wilkinson et al., 2016). To actually develop a research community, 
a repository must be reliable and sustainable, factors included in the 
TRUST principles for digital repositories: Transparency, Responsibility, 
User focus, Sustainability, and Technology (Lin et al., 2020). 

The National Cancer Institute (NCI) has been a historical leader in 
making DICOM images available for public use to support research and 
education. Since 2011, the Cancer Imaging Archive (TCIA) has supported 
open science and cancer research by acquiring, curating, hosting, and 
distributing collections of multi-modal information (Kenneth Clark et al., 
2013; Prior et al., 2020, 2017; Prior, 2013). TCIA supports FAIR and 
TRUST compliant access to a growing number of radiation therapy data 
collections (23 collections comprising data from 4,284 research partici-
pants) derived from completed clinical trials and research projects. 
Unfortunately, existing repositories, including TCIA, tend to focus on data 
from patient populations but not healthy controls, and no single repository 
represents sufficient geographic diversity.

While a growing number of open access cancer image repositories 
have been deployed, particularly in the United States (Fedorov et al., 
2021; Giger, 2021; Grossberg et al., 2018; Prior et al., 2020), patient 
privacy concerns have led to restrictive regulatory environments, 
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particularly in Europe (Minssen et al., 2020). Such concerns have given 
rise to increased interest in distributed or federated approaches to 
machine learning that allow data to remain in the control of the institution 
that created it.

4. Distributed ML Without Data Sharing

US human subjects’ regulations require patient consent to share data 
(Menikoff et al., 2017). Patient privacy regulations require data to be used for 
research to be de-identified prior to leaving the covered entity that created 
them (Freymann et al., 2012). The European Union expanded patient privacy 
rights with the creation of the General Data Protection Regulation (GDPR) 
(Minssen et al., 2020) and in so doing made sharing of data related to a 
European person difficult or impossible to share for research purposes. Unlike 
the US privacy regulation Health Insurance Portability and Accountability 
Act (HIPAA) there is no standard for anonymization in GDPR and a require-
ment that a person can opt out of permitting the use of their data at any time. 
Such data privacy concerns have placed a premium on the use of analytic 
techniques that are applied at each data origination site (i.e., hospital or clinic) 
with only the parameter derived from that analysis being shared.

Distributed machine learning frameworks send the analysis software to 
the data and thus do not require data sharing (Field et al., 2021). A variety 
of training techniques have been developed that either use a central service 
to collect and merge the parameters of the model based on training at each 
site, or pass the parameters from one site to the next such that the model 
accumulates what it learns from each site’s data (Chang et al., 2018). 
While these techniques have been successfully applied in a number of 
Radiation Therapy research applications, (e.g., Field et al., 2021; Lustberg 
et al., 2017), they suffer from two critical problems. The approach assumes 
consistent data quality and curation processes have been applied at each 
site and that each participating institution has appropriate computing 
resources to run the software. The lack of consistent curation and quality 
assurance processes have the greatest impact as they lead to greater vari-
ance in the training data.
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5. Acquisition, Curation, and Quality

Information quality is defined by Talburt (2011) as creating value in the 
use of the data and meeting the user’s requirements. While common qual-
ity measures can be extracted (e.g., MRQy (Sadri et al., 2020)), image 
quality is difficult to generalize as it depends on the ever evolving and 
diverse needs of the user community and the rapid advance of cancer 
research. A base set of quality measures, nevertheless, can be identified:

(1) Completeness — minimize missing data elements and capture the full 
data set that represents a collection; 

(2) Correctness — the data are in a standard format and syntactically 
correct relative to that standard;

(3) Artifact free — the existence and relative severity of image artifacts 
have been established, and low-quality data eliminated;

(4) Fit for use — quality metrics provided for a particular use case.

The data from clinical trials have typically undergone some type of 
quality assessment by a clinical trial QA office as part of data collection. 
The process varies by trial, but generally addresses basic data quality, 
image segmentation (and registration, if applicable), and dosimetric plan 
evaluation. Historically, QA of segmentation (contouring) has been per-
formed by human experts (mostly physicians), but increasingly automated 
segmentation methods are being used for this purpose. The result of the 
assessment is sometimes reported as a score indicating that a particular 
subject’s data are (a) per protocol, (b) acceptable variation, or (c) devia-
tion from protocol. 

Data that are captured for most clinical trials and patient registries 
may not fully reflect the dose delivered to the patient. The information 
about the actual delivery of treatments is often acquired by manual tran-
scription from an oncology information system/treatment management 
system to case report forms. This is especially challenging in adaptive RT 
treatments, where multiple treatment plans are used. This leads to a sig-
nificant quality problem: which plans were used, and which doses were 
delivered to the patient? There are always cases that fall outside of the 
treatment protocol and the ability to detect those would have value. 
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To accomplish this would require new tools for automatic scoring by 
evaluating dosimetric criteria with respect to protocol requirements (Kalet 
et al., 2020).

DICOM is the international standard (ISO 12052:2017) for the 
exchange of digital images and related information (DICOM, 2022). 
Treatment planning data are exported as DICOM objects, in the form of 
CT Images, RT Structure Sets, RT Plans, and RT Doses, from a treatment 
planning system. The DICOM RT Treatment Record is ground truth for 
how a patient was treated, however, the information it contains is not gen-
erally available in a structured form from clinical trials. 

Before data can be exported from a data origination site, the data are 
required to be de-identified (anonymized) in accordance with one of the 
two mechanisms specified in the HIPAA regulations. De-identification is 
a balance between data utility and patient privacy. DICOM Standard 
PS3.15 2016a — Security and System Management Profiles (DICOM, 
2016) defines how to correctly de-identify DICOM objects. It contains 
confidentiality profiles and options that can be used to amend the profile 
for specific applications. 

Data de-identification, completeness, and correctness have been the 
guiding principles of TCIA data curation for the past decade. In this time, 
the open-source Posda tools have supported a scalable workflow, based on 
the DICOM standard, for curation of DICOM objects prior to publication 
on TCIA (Bennett et al., 2018). The TCIA process consists of multiple 
automated and manual steps to ensure the integrity of publicly available 
data without protected health information/personal identification informa-
tion (PHI/PII) while preserving scientifically relevant data associated with 
the images. The TCIA curation team verifies completeness of the received 
collection, full removal of all PHI, proper labeling of all information to 
facilitate retrieval, and proper linkages among components of the collec-
tion (Bennett et al., 2018; Clark, 2013; Moore et al., 2015).

The Posda tools suite was originally developed to support RT data 
acquisition and QA (Bennett et al., 2010), and Posda capabilities for 
acquisition and curation of RT data have continuously evolved to meet the 
needs of the cancer research community served by TCIA. Currently, 
Posda tools in combination with TCIA curation procedures support:
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• De-identification.
• DICOM conformance verification,
• Data integrity checks of the completeness and consistency of RT data 

sets, 
• Referential integrity of inter-object linkages, particularly for RT data,
• Spatial registration in multiple frames of reference, 
• Calculation of dose-volume histograms.

While not a complete package for RT data de-identification, curation, 
and QA, Posda provides a standards-based, best-practices solution that is 
applicable both for data publication and use in clinical trials (e.g., 
Bekelman et al., 2019).

6. Annotations and Labeled Data

Radiologists have used image annotation and markup (Channin et al., 
2010) to highlight significant features in an image since the introduction 
of picture archive and communication systems and digital imaging work-
stations. Supervised machine learning algorithms are trained and tested on 
data sets that have been augmented to contain a label or tag that identifies 
the class to which each datum belongs. These labels can be derived from 
image annotations, or they may come from a variety of other sources 
(Bera et al., 2021; Willemink et al., 2020). 

Labels depend on the research question being addressed by the ML 
algorithm. Thus, an appropriate label may be a binary outcome (cancer/no 
cancer), a lesion location (bounding box), a lesion segmentation, or a 
complex combination of clinical parameters, pathology results, and image 
annotations. In some cases, the needed label for a new study might be the 
result of a previous radiomics or segmentation analysis. 

Labeled data are created manually by human experts resulting in high 
cost and limited volume of high-quality training (and testing) data sets. 
Crowdsourcing can be used to both expand the pool of annotators 
and generate error estimates (Prior et al., 2020). Because labeled data are 
both complex and expensive to produce, they need to be shared. While 
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adherence to the FAIR principle is now common practice for images, 
associated labels are not always easily found or accessed. 

7. Remaining Challenges

The changing international regulatory environment poses a major chal-
lenge for global data sharing to create open access data repositories that 
reflect the variance in the human population and in target diseases. Even 
when local and national repositories are created, the tools for querying 
across repositories in a manner that accounts for the differing regulatory 
requirements are largely missing. Cross-linkage and semantic integration 
of radiology/pathology/clinical/omics data on a sufficiently large scale is 
essential for addressing the needs of advanced AI applications. Such 
cross-linkage greatly exacerbates the problem of protecting patient pri-
vacy (Prosperi et al., 2018).

There is a growing body of literature demonstrating that 3-Dimensional 
(3D) reconstructions of human faces rendered from MRI and CT images 
are equivalent to photographs for identifying the human being who was 
imaged (Prior et al., 2008; Schwarz et al., 2019). The advent of free 
software for 3D reconstruction and facial recognition coupled with the 
huge corpus of photographs available on the internet has made this a 
unique privacy issue. Image defacing algorithms that preserve essential 
scientific data without distortion exist in MRI-based neuroimaging (e.g., 
(Schwarz et al., 2021)), but these do not generalize to other imaging 
modalities used in cancer diagnosis and therapy. For head/neck cancers, 
or radiation therapy planning, it is not possible with existing approaches 
to distort or hide the patient’s face without destroying the scientific value 
of the data.

Standards and standard operating processes for data representation, 
curation, evaluation, and sharing of labeled data sets are in early stages of 
development. Mechanisms for identifying labeled data across repositories 
or determining which of several available annotations are best for a spe-
cific problem are largely non-existent. These limitations severely con-
strain our ability to create truly generalizable AI applications.
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In RT, the relationship between Structured Reports, Segmentations, 
Presentations States, Key Value Objects, and Associated Image Sets are 
very complex. These relationships are not normally captured as part of 
standard clinical or research workflows. Presenting the relationships 
among these objects for rapid review by curators is a significant technical 
challenge. There is a fundamental difference between the kinds of visu-
alization tools required for data curation versus the kinds of visualization 
required in clinical practice. Curation tools require simple, holistic visu-
alizations of the full set of data either by patient or collection. These views 
have minimal controls for varying the presentation but allow a curator to 
easily separate those data which may require detailed attention from those 
which are good.

While there are an increasing number of anonymization tools for 
images and RT data (Robinson, 2014), data and procedures for validating 
that such tools meet regulatory requirements are still in development 
(Rutherford et al., 2021). Approaches for automating the anonymization 
process, which today contains manual review to achieve a close approxi-
mation to zero defects required for regulatory compliance, are largely 
lacking. Similarly lacking are tools for data submitters to acquire, inte-
grate, and properly anonymize clinical data, annotations, and other forms 
of labeled data. Quality standards and tools for measuring quality of 
annotations, labels, and image derived features are slowly evolving as are 
tools and standards for image quality. 

8. Conclusions

Machine learning-based algorithms to enhance radiation therapy require 
large quantities of high-quality and associated data labels or tags for train-
ing and testing. For algorithms to generalize, they must train on a repre-
sentative sample of the human population including both the varying 
presentations of the target disease and healthy controls. Open access 
information repositories and distributed machine learning approaches are 
attempting to address this problem but face substantial obstacles related to 
differing privacy regulations and tools for assuring consistent data quality. 
Acquisition, quality assurance, de-identification, and curation tools based 
on DICOM are key to the success of machine learning approaches as they 
facilitate data reuse and combining data from multiple sources. 
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Science and Tools of Radiomics 
for Radiation Oncology
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Abstract
Radiomics is a catchall term used for the quantitative analysis of medical imaging 
data and is heavily dependent on machine learning. The central hypothesis of 
radiomics is that quantitative analysis of images can reveal correlations between 
radiomic features and molecular or clinical features that are otherwise invisible to 
normal visual inspection by humans. This field has experienced substantial 
advances in the first decades of the 21st century, formalizing and supplementing 
the qualitative analysis that is routinely performed by all users of imaging data. 
This chapter reviews the common inputs, outputs, methods, and software tools 
used in radiomic analyses.

1.  Radiomics Definition and History

Radiology began as a qualitative rather than quantitative field for two rea-
sons. Firstly, the images often speak for themselves; there are conditions 
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that even laypeople with no training can identify such as a severely broken 
bone, or a large tumor. Secondly, it was qualitative out of necessity 
because the mathematical and computational tools required for quantita-
tive analysis were yet to be invented.

Following the discovery and application of X-rays, throughout the 20th 
century new imaging modalities were established and quantitative methods 
to analyze images were steadily developed and refined. The term radiomics
is potentially best understood as a catchall term for the quantitative analysis 
of medical imaging data.

This same pattern of development has been seen in adjacent disci-
plines. Molecular biology was fundamentally revolutionized by bioinfor-
matics, which added statistical and machine learning methods to largely 
pre-existing fields. Sequencing the DNA of the tiny ~5000 base pair 
ΦX174 virus was readily achieved with little more than electrophoresis 
gels, time, and dedication in the late 1970s (Sanger et al., 1977), but it 
took two more decades, serious computation, and billions of dollars to 
assemble a draft of the 3 billion base pairs of the human genome at the 
turn of the century (Craig Venter et al., 2001; Lander et al., 2001). Today, 
molecular biology has truly become a branch of data science and bioinfor-
matics is a required part of almost any project.

A similar outcome is envisioned in the future of radiology. 
Radiologists will not be replaced by machine learning algorithms, but 
their work will be augmented by algorithms, and research will become 
ever more quantitative.

The term radiomics itself is a neologism coined in 2012 (Lambin
et al., 2012), part of the trend at the time to name all biological data sets 
with the omics suffix. The discipline was born surprisingly complete and 
much of the following decade of work has been in formalizing the field.

The central hypothesis of radiomics is that features in radiographic 
images can be used for diagnostic and prognostic purposes. The aim is to 
quantify these features and automate the process to improve the treatment 
and standard of care for patients. A defining characteristic of current radi-
omics is the use of engineered radiomic features that have been carefully 
selected and standardized, rather than feeding raw image data to machine 
learning algorithms. A common workflow for radiomics studies is shown 
in Fig. 1.
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Radiomics also usually refers to imaging data at the anatomical scale. 
The quantitative analysis of smaller structures in pathology slides and cell 
culture is a closely related sister discipline called pathomics or computa-
tional pathology.

2.  Input Data and Preprocessing

Radiomics can be performed using any imaging modality as an input, but 
it is most commonly done using volumetric methods such as computed 
tomography (CT), positron emission tomography (PET), and magnetic 
resonance imaging (MRI) data rather than two-dimensional digital X-ray 
images such as computed radiography (CR).

A critical issue that is often only considered late in the process is how 
much input data are required, or how many samples to use. Many clinical 
trials have the benefit of power analyses performed in advance to answer 
this question. Biostatisticians can determine the optimal size of a clinical 
trial and ensure that it is adequately powered to reach statistical signifi-
cance. Machine learning methods are harder to predict, and the short 

Fig. 1.   A common radiomics workflow. Images are acquired using standard techniques 
either directly from patients or retrieved from a Picture Archiving and Communication 
Systems (PACS) database. Preprocessing is applied and the ROI segmented either manu-
ally or by AI. Radiomic features are then extracted from the ROI, selected based on their 
information content, and finally further analyses may be performed to link them with real-
world variables and outcomes such as genetic mutations and prognosis.
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answer is that more data are better. In general, the minimum number of 
samples should be at least tens of samples and a fair number is in the low 
hundreds. Sample numbers are further inflated by the need to split data 
sets into training, validation, and testing sets.

The objective is to divide the totality of the data into smaller non-
overlapping data sets for sequential steps in the analysis. The training set 
is used to train models, the validation set to confirm that models produce 
acceptable predictions, and finally the test set assesses the performance of 
models. A common protocol would be to gather two independent data sets 
and split the largest one into 70% training data and 30% validation data, 
then use the slightly smaller second data set as a test set. For optimal per-
formance, it is vital that the composition of data sets is similar; it would 
be undesirable to group all disease cases into the training set, as the vali-
dation and test sets would be unlike the training data. An alternative 
approach is cross-validation, where a single data set is sampled multiple 
times to generate many overlapping data sets; this can be particularly use-
ful when samples are scarce.

Consideration should also be given to the source of the data used. 
Most researchers only use data generated at their own institution. This is 
a potential problem, as it not only limits the potential size of a data set but 
may introduce bias. A better approach is to include data from multiple 
institutions, which also validates the findings and eliminates local biases 
within the data. A recent review of AI algorithms for diagnostic analysis 
of medical images found that only 6% of studies performed external vali-
dation (Kim et al., 2019). Gathering multi-center data sets requires either 
collaboration between institutions or alternatively downloading additional 
samples from online repositories such as The Cancer Imaging Archive 
(TCIA) (Clark et al., 2013). The benefits of gathering immense, multi-site 
data sets have been clearly illustrated by genome-wide association studies 
(GWAS), where studies with samples in the hundreds of thousands have 
the statistical power to dissect the inheritance of complex traits and dis-
eases.

The hardware and software used to capture data have a substantial 
effect on the images produced. This includes everything from the manu-
facturer, model, software, and settings used. Medical scanning devices 
and software often offer a variety of preprocessing methods, including 
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correcting for the motion caused by breathing and signal attenuation 
inherently caused by the size and density of patients. Only some of these 
factors can be influenced by an operator and if engaged in a large or multi-
center study, these variables should be tracked, even if they cannot be 
controlled. The variability between data sets introduced by such non-
biological factors is commonly known as batch effects.

If batch effects are observed in radiomic data sets, there are methods 
to help ameliorate them. The ComBat algorithm was initially developed 
to cope with the batch effects commonly seen in DNA expression micro-
arrays and it has recently been modified specifically for radiomics 
(Da-ano et al., 2020; Johnson et al., 2007).

Once captured, there are file-type issues to contend with. Namely, 
choosing between Digital Imaging and Communications in Medicine 
(DICOM) or the Neuroimaging Informatics Technology Initiative (NIfTI) 
file format.

First introduced in 1985 and still evolving, the DICOM standard gov-
erns the communication and management of medical imaging data and 
associated metadata. In short, it can be thought of as the file type used to 
store the data created by medical imaging devices. More accurately, it’s a 
container format with a header in which various metadata can be stored 
describing the patient, the data itself, and how it was created. DICOM is 
extremely flexible and mature, with decades of updates and extensions. 
However, its maturity and complexity can make it appear somewhat 
arcane to new users. For example, DICOM data sets usually store one file 
per two-dimensional plane, so a single data set can consist of hundreds of 
individual files in a single directory.

On the other hand, the NIfTI file format offers a more streamlined 
experience; NIfTI files pack everything into a single binary file containing 
a descriptive header and a three-dimensional matrix of data. However, the 
two formats are not completely interchangeable and there are subtleties 
and edge cases that cannot be handled by NIfTI. NIfTI was explicitly 
designed to handle MRI data for neuroimaging studies, whereas DICOM 
was intended for any digital imaging data.

After image acquisition and reconstruction, further preprocessing 
may be necessary. For example, it is standard to resample data so that all 
voxels are the same isotropic size; voxels become cubes with identical 
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dimensions and spacing. It is typical for medical imaging data to have a 
higher resolution within the axial plane than between slices, so some 
interpolation may be necessary. Just like filetype conversions, this could 
be a source of error if data sets have used different interpolation methods.

There is another layer of image preprocessing that is commonly per-
formed, known as filtering (Fig. 2). Image filters are commonly under-
stood by anyone who has used photo editing software or even photo or 
video mobile applications. They apply a function to an image and alter it. 
In regular photography this is usually performed for a purely aesthetic 
effect, but it can also serve practical purposes such as blurring, smoothing, 
or sharpening images.

Radiomic filters can be very simple, such as taking the exponential, 
log, or square of the intensity values of voxels, but are commonly more 
involved and convolutional. A common convolutional filter is the Laplacian 
of Gaussian (LoG). LoG filters are effective at highlighting the coarseness 
of texture in a volume, which is inelegantly named blob detection. It should 
be noted that LoG filters require the user to specify the size of features they 

Fig. 2.  Effects of filters on images. Original T1 MRI is on the left and a variety of com-
mon image filters are on the right.

Squareroot filter
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are looking for, so it may be beneficial to apply several LoG filters indepen-
dently. It has been demonstrated that image reconstruction settings includ-
ing slice thickness, voxel size, and preprocessing steps affect radiomic 
features (Lu et al., 2016; Shiri et al., 2017).

3.  Segmentation

Image segmentation is fundamental to radiomics and the concept is sim-
ple; regions of interest (ROIs) in images are identified and labeled. This 
can be performed in a slice-by-slice manner where pixels are labeled, or 
volumetrically where voxels are labeled. The purpose is to label large 
biological features such as bones, organs, or tumor tissue. Labeled data 
are essential for supervised machine learning methods.

In practice, segmentation can be extremely challenging and is often 
the bottleneck which limits and arrests further work. Creating these seg-
mentations is a detailed and time-consuming task if performed manually 
and scales extremely poorly. A qualified radiologist can sift through and 
label data as required, but there are neither enough radiologists nor suffi-
cient time available to segment the amount of data required for real-time 
analysis, let alone retrospective analyses. It is common to draft colleagues, 
researchers, and students to assist in segmentation tasks, but ultimately 
segmentations must be approved and verified by a qualified radiologist to 
prevent incorrect labels from polluting data sets.

Fortunately, we are living through a veritable Cambrian explosion in 
terms of artificial intelligence research. As detailed in other chapters and 
thanks to the researchers who have dedicated their careers to it, great pro-
gress has been made in automated segmentation. The two key advances in 
recent years have been moving from segmenting 2D images to directly 
segmenting 3D volumes and the invention of the U-Net and its derivatives 
(Ronneberger et al., 2015). U-Nets are effective because they marry 
encoder and decoder networks that perform opposite tasks. The encoder 
down-samples and pools the input data using convolutional layers, then 
the decoder up-samples the data, resulting in an output segmentation map 
at the same resolution as the original data.

It is interesting to note that a development and testing ground for seg-
mentation algorithms has been competitions such as the Brain Tumor 
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Segmentation (BraTS) Challenge. This yearly competition has been oper-
ating for a decade and now includes radiomics-specific challenges.

Recent automated segmentation methods are sufficiently accurate that 
it may be sufficient for radiologists to confirm the ROIs as correct, at least 
for research purposes. Current systems are analogous to the output of a 
skilled apprentice whose work requires some oversight and occasional 
manual correction, but segmentation remains far from trivial. The amount 
of time and effort consumed by this step should not be underestimated, 
especially in cases where researchers must first train and validate their 
own segmentation methods.

4.  Radiomic Feature Extraction and Standardization

Radiomic features are simply numeric values calculated from the ROI of 
an image or volume. They can be split into several broad categories; 
shape-based, first-order and second (or higher)-order features. The first 
two groups are the most intuitively understood and refer to the base mor-
phological and radiological features of an ROI. Morphological features 
are values describing the physical characteristics of an ROI, such as the 
volume, surface-to-volume ratio, and sphericity. First-order features 
describe the intensities of the observed voxels such as minimum and 
maximum values, as well as statistical descriptions such as the mean, 
range, and skewness of intensities.

Higher-order features are more complex and difficult to describe and 
interpret but are equally valid. The origin of these features comes from 
efforts to classify images based on texture in the 1970s (Haralick et al., 
1973). Starting with only 13 features, this class has grown considerably 
and numbers in the hundreds in current applications.

A further complication in higher-order texture feature calculation is 
the concept of discretization. Imaging data is numeric and the most com-
mon way to visualize it is in a grayscale format, where values are shades 
of gray, with only the most extreme values such as the background being 
close to black or white. The color gray is arbitrary, as any sequential color 
palette could be used, but the important point is that the value of each 
pixel is stored as a number with between 12 and 16 bits. This corresponds 
to 4,096 to 65,536 shades of gray. These thousands of gray levels are   
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discretized by grouping or “binning” them into a smaller number of gray 
levels to reduce variability and increase interpretability of the data.

Radiomic features are calculated after gray-level discretization, there-
fore the choice to use either a fixed bin size or a fixed number of bins, as 
well as how many of these bins to use, will affect results. This has been 
demonstrated to affect radiomic feature values in modalities including 
PET (Leijenaar et al., 2015), CT (Larue et al., 2017; Shafiq-Ul-Hassan
et al., 2017), and MRI (Duron et al., 2019).

The Image Biomarker Standardization Initiative (IBSI) has made sig-
nificant headway into codifying radiomic features (Hatt et al., 2018). This 
is an extremely important project because standards are the foundation of 
interoperability and robust, reproducible science and engineering. We 
must agree on the naming and implementation of radiomic features or we 
will endlessly reinvent the wheel.

There have been two major IBSI projects thus far. IBSI 1 was com-
pleted in 2020 and was dedicated to standardizing the methods for com-
puting commonly used radiomic features (Zwanenburg et al., 2020) in CT, 
PET, and T1-weighted MRI.

IBSI 1 was structured as a collaboration between many international 
groups and was split into three phases of increasing complexity. The first 
phase analyzed a data set created using a simple digital phantom, the sec-
ond used CT data from a lung cancer patient. The third phase used CT, 
PET, and MRI data from 51 sarcoma patients to assess the reproducibility 
of features. The metric for success was consensus between the output of 
the participating groups.

In total, a set of 169 commonly used features was established by IBSI 
1. These reference data were made available to developers to assist in 
designing and calibrating their own software. It is notable that because 
some radiomic software predate IBSI, they may deviate from IBSI defini-
tions, and these deviations are noted in the software documentation.

IBSI 2 is dedicated to standardizing commonly used imaging filters 
(discussed above) and is ongoing. It is almost identically structured as a large 
collaboration with three phases; technical validation using digital phantoms, 
establishing reference values using CT lung cancer data, and finally the 
validation phase using sarcoma patients’ data. Ultimately, IBSI 2 will result 
in a publication and publicly available standards for filter implementation.
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There will be further chapters in IBSI that will likely be focused on 
reinforcing reproducibility in the various aspects of deep learning in radi-
omics. These include data preprocessing, splitting data into training, vali-
dation and test sets, and augmenting the data.

5.  Software Tools for Radiomic Feature Extraction

Researchers aiming to extract radiomic features from an ROI have many 
software options open to them, as there are more than ten implementations 
of the IBSI 1 standards at the time of writing. Rather than engaging in an 
exhaustive and quickly outdated discussion on each of these implementa-
tions, we discuss general issues and spotlight some of the more popular 
software (Table 1).

Radiomics is a branch of academic research and this is reflected in the 
software available. The quality of the software is generally high and is fit 
for purpose, but they are not simple turnkey solutions. Users should be 

Table 1.    A selection of IBSI-1 compliant software which can be used to extract radi-
omic features from radiographic imaging data. Also noted is whether the software has a 
graphical user interface (GUI) or command line interface (CLI), the language it is written 
in, the software license covering it, and a link to the software.

Software Type Language
Software 
License Link to Project

Pyradiomics CLI Python BSD 3-clause https://github.com/AIM-Harvard/
pyradiomics

CaPTk GUI/CLI C++ Multiple https://github.com/CBICA/CaPTk

MITK GUI/CLI C++ BSD 3-clause https://github.com/MITK/MITK

CERR GUI/CLI MATLAB LGPL-2.1 https://github.com/cerr/CERR

LIFEx GUI Java CEA license 
(free for non-
commercial 
research)

https://www.lifexsoft.org/

radiomics-
develop

CLI MATLAB GPL-3.0 https://github.com/
mvallieres/radiomics-develop

MIRP CLI Python EUPL-1.2 https://github.com/oncoray/mirp

SERA CLI MATLAB GPL-3.0 https://github.com/ashrafinia/SERA
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prepared to do some command-line work, scripting, and data wrangling of 
their own, or at least collaborate with someone who can.

Standardization initiatives such as IBSI mean that many of the fea-
tures extracted are named and calculated in the same way, but it is not 
guaranteed that the outputs will be identical between software.

The unifying characteristic of these software is that they have been 
produced by academic researchers and have grown directly out of the 
research interests of their authors. This approach often leads to software 
that is continuously developed, well-maintained, efficient, and well-
tested, but can create usability issues in use cases which were not pre-
dicted or intended by the developers.

A second shared characteristic is they tend to be free and open-source 
software (OSS), often available via GitHub. This provides users with 
access to the original source code and a direct line of communication to 
the developers to ask questions, report potential bugs, and request addi-
tional features. Alternatively, users may directly modify the code them-
selves and submit these changes back to the project.

Language choice may be influenced by what has been used histori-
cally in a field or project, what is popular at the time when new software 
is developed, and what developers are comfortable using. MATLAB has 
been a popular language for image analysis, but Python’s recent primacy 
in data science and machine learning has made anything else written in 
Python inherently attractive. C++ remains a perennial choice for develop-
ers aiming to write fast, highly optimized code. Again, there are parallels 
in other fields; early genomics tools were written in Perl, modern ones are 
typically written in Python, and tools requiring extreme speed such as 
sequence aligners are often written in C++.

While rich in imaging libraries and functionality, the proprietary 
nature of MATLAB is a potential concern, particularly for academic 
researchers. While the MATLAB Compiler Runtime (MCR) allows users 
to run MATLAB code without a paid license, the code must be compiled 
for distribution. Even if the source code is publicly available, it is impos-
sible for end users without a MATLAB license to edit it.

Radiomics software have light hardware requirements and almost any 
modern computer should be capable of running them. The primary target 
operating systems are UNIX-derivatives such as Linux distributions and 
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macOS. Although Windows is sometimes not directly supported, the 
Windows Subsystem for Linux (WSL) has effectively eliminated compat-
ibility issues, as it allows UNIX-targeted code and binaries to run natively. 
It is also common for radiomics software to be command-line only and 
have no graphical user interface, but this is unlikely to faze the intended 
audience.

Radiomics software can broadly be divided into two categories: dedi-
cated software packages and extensions to existing applications. Software 
packages provide a very specific set of radiomic functions and are 
intended for standalone use. Extensions are add-ons for existing applica-
tions for viewing and editing imaging data that have a graphical user 
interface (GUI) that provide tools for radiomics. Both types of software 
may provide a direct command-line interface (CLI) to allow scripting.

Each has advantages and disadvantages and users may benefit from 
utilizing both. GUI-enabled programs allow visual interaction and imme-
diate feedback, so are an excellent way to explore data. However, human 
interaction is error prone and not scalable if studying more than a handful 
of samples. CLI access is required for automated processing of samples 
and performing reproducible research. Conversely, the raw text output 
from CLI programs does not lend itself to rapid and easy interpretation.

The most widely used CLI software package is Pyradiomics (Van 
Griethuysen et al., 2017), but it is by no means the only option. It can be 
deployed as a command-line application, or alternatively imported into 
other software, so users can manage both feature extraction and analysis 
in one codebase.

6.  Feature Selection and Dimensionality Reduction

Researchers face a significant hurdle once they have extracted radiomic 
features from an image. The combination of filters and features is multi-
plicative; if one extracts 100 features from an image and uses the original 
image and a dozen filters, then one can have over 1000 radiomic features 
to contend with. Multiple testing correction will quickly dilute statistical 
significance and render any analysis futile. Therefore, the number of fea-
tures must be pared down. This process is termed feature selection and 
should use only the training data set.
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The issues associated with large numbers of features are not unique to 
radiomics and are commonly known as the curse of dimensionality. 
Fortunately, decades of experience and problem solving have been gained 
in other fields which are directly applicable to mitigating this curse in 
radiomics (Fig. 3).

The first step in this process is to look for feature stability, which tests 
for radiomic features that are reproducible, with similar values when 
measured multiple times. Features with high stability are good candidates 
for biomarkers to correlate with genomic and clinical features, whereas 
low stability implies that a feature is either noisy or even potentially ran-
dom and should be discarded. Many radiomic features frequently display 
a lack of robustness to perturbation and this remains an ongoing concern 
in the field (Reiazi et al., 2021).

Stability can be defined and tested in multiple ways. Temporal stabil-
ity can only be measured if one has access to series of images taken over 
a period of hours or days. However, most medical imaging data are cre-
ated opportunistically during the routine diagnosis and treatment of 
patients. In this setting, testing for temporal stability would introduce 
significant additional cost, inefficiency, and inconvenience.

A more commonly tested definition is spatial stability. Individual 
radiologists or algorithms will produce subtly different segmentations of 

Fig. 3.    Radiomic feature selection. A linear pipeline drastically pares down the number 
of features based on their stability, information content, and redundancy, aiming to retain 
the minimal number of features to aid statistical power.
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the same ROI from the same image. These differences generally occur at 
the edges of the ROI and the most clinically relevant part of the object of 
study is captured in all cases. Therefore, radiomic features extracted from 
these segmentations should be highly similar, regardless of the source of 
the segmentation. In practice, this can be achieved by having multiple 
radiologists or algorithms segment ROIs. This has the additional benefit 
of being able to generate inter-user variability assessments, which report 
how reproducible the segmentations are. Alternatively, the ROI can be
jittered computationally. For example, the edges can be expanded or con-
tracted by a few voxels, or the entire ROI shifted to simulate the variabil-
ity introduced by humans.

Data set stability compares radiomic features between data sets; for 
example, the training and validation data sets. If data sets are reasonably 
sized and balanced in their sample composition, then one expects similar 
ranges of values detected in both.

Analogously, consider photographs of an iconic building. One might 
expect it to have similar features in different photographs taken days apart 
(temporal stability), if the images were segmented by different individu-
als (spatial stability), or in completely separate photographs (data set 
stability).

Whichever definition of stability is considered, the concepts for test-
ing stability remain similar. Sets of radiomics features are computed from 
the two data sets in question and the correlation between them is assessed 
by examining a correlation coefficient. Spearman’s rho may be preferred 
over Pearson’s rho, as it is more forgiving of outliers when looking for a 
monotonic relationship.

A robust solution is to calculate the concordance correlation coeffi-
cient (CCC) (Lin, 1989), which also takes into account the mean and 
variance of the radiomic features. The resulting score ranges between 0 
and 1 and although somewhat arbitrary, scores above 0.85 are considered 
acceptable (Peerlings et al., 2019).

Counter-intuitively, there do not appear to be common radiomic fea-
tures or classes of features that are inherently stable or unstable, with 
results varying substantially between studies. This may be driven by dif-
ferences between imaging modalities, image acquisition parameters, or 
even the subjects of the images themselves. Whatever the causes, the best 
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solution is that researchers test the stability of their radiomic features in 
every study.

The second step is to discard non-informative features which contain 
little meaningful information. Features that have very little or no change 
in their variance or entropy can be safely removed and this depends on the 
study. For example, the size of a tumor is a clinically important feature, 
but if a study were conducted with tumors of approximately the same size, 
then shape-based features such as volume would likely become non-
informative.

The third step is to remove redundant features. If multiple features are 
highly correlated, then keeping them all only serves to dilute the statistical 
significance and important findings could be missed. When removing 
highly correlated features, it is often best to manually choose which to 
keep. A complex wavelet-based radiomic feature could potentially be act-
ing as a proxy for something simpler to measure and more intuitive such 
as a shape feature.

Finally in feature selection, there are many more advanced methods 
that can be employed. The objective is to minimize the correlation 
between individual radiomic features and maximize the relevance of them 
to target features such as clinical features. As an example, the minimum 
redundancy maximum relevance (mRMR) method (Ding & Peng, 2005) 
does exactly this. However, there are other options available that only 
consider minimizing the correlation between radiomic features and are 
well known among machine learning practitioners, examples being classic 
principal components analysis (PCA) and t-distributed stochastic neigh-
bor embedding (t-SNE).

7.  Radiomic Analyses

Once researchers have finalized data sets of informative, non-redundant, 
and stable radiomic features, the radiomic hypothesis can be tested; are 
there associations between radiomic features and clinical, molecular, or 
genomic features?

This is a task of training, validating, and testing models using the data 
sets defined earlier. The only requirement is that researchers have a good 
understanding of machine learning methods. Researchers could potentially 
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have very little knowledge of radiomics or the target variables they are 
correlating them with. However, as with all translational research, it is 
important to keep domain experts such as physicians in the loop to help 
interpret the findings. Without this sanity-check, researchers could report 
trivial or even incorrect findings.

A factor in choosing appropriate methods is whether the target clinical 
or genomic variables are continuous or discrete. The most common con-
tinuous variables in a clinical setting are time to disease progression and 
overall survival time, which require building a Cox proportional hazards 
model.

Radiomics tends to revolve around discrete variables such as the pres-
ence of specific mutations, rather than continuous variables such as the 
amounts of specific molecules or metabolites in the blood. Therefore, 
radiomics leans toward the domain of classification problems. These 
methods range from classifiers such as naïve Bayes, random forests, 
k-nearest neighbors, to support vector machines and neural networks
(Fig. 4). However, modern machine learning methods such as neural net-
works can equally be used as regression models, so the same tools can be 
used in a variety of applications.

Fig. 4.    Machine learning methods for radiomics. Using a variety of machine learning 
methods, radiomic features can be used to predict other variables including clinical, 
molecular, and genomic features.

Radiomic Features Clinical, Molecular and Genomic Features

Survival Analysis Neural Networks Random Forests KNN / SVM
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Ensemble methods should be considered, which are combinations of 
the classifiers above. The results of multiple methods can be aggregated 
using something as simple as a majority voting rule or something more 
complex such as using bagging or boosting of multiple random forests.

After the first decade of research, there are examples that demonstrate 
the radiomic hypothesis to be true, or at the very least that we cannot 
reject it. Radiomic features in multiple cancer types across a range of 
imaging modalities have been associated with both clinical features, such 
as survival time, and genomic features, such as mutations of specific 
genes.

The most common cancer types studied have been those that are both 
common and have large amounts of imaging data, meaning that the litera-
ture is rich in lung cancer studies. It has been demonstrated that radiomic 
features have some prognostic value in lung cancer (Aerts et al., 2014; 
Chong et al., 2014; Coroller et al., 2016; Fried et al., 2014). Radiomic 
features may also predict the activity of specific transcriptional pathways 
(Grossmann et al., 2017) or presence of EGFR mutations in lung cancer 
(Yip et al., 2017). Similarly, the radiomic features of head and neck can-
cers have been shown to be prognostic (Aerts et al., 2014; Vallières et al., 
2017). Radiomic features in CT imaging have also been linked to multiple 
RAS-pathway mutations in colorectal cancer (Yang et al., 2018). BRAF 
mutations in melanoma are detectable using both PET imaging in the 
primary tissues (Saadani et al., 2019) and MRI imaging of melanoma 
metastases to the brain (Shofty et al., 2020). Additionally, IDH and EGFR 
mutations can be predicted in glioblastoma using MRI data (Verduin
et al., 2021).

Mutations are not the only genomic lesions that are detectable through 
radiomics; the co-deletion of 1p and 19q chromosomal arms has been 
found in low grade glioma (Casale et al., 2021) and MGMT promoter 
methylation in glioblastoma (Verduin et al., 2021). Physiological phe-
nomena may also be predicted; radiomic signatures derived from PET and 
CT data can predict tumor hypoxia, which indicates poor prognosis 
(Sanduleanu et al., 2020).

Most radiomics papers focus on data gathered at a single time point, 
but in recent years there have been studies that have analyzed the changes 
in radiomic features over time; so-called delta radiomics (Fave et al., 
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2017). The concept is that changes in radiomic features may reflect dis-
ease progression or therapeutic response. For example, a higher-order 
radiomic feature could be used to stratify non-small cell lung cancer 
patients into high and low risk groups.

Course corrections have taken place as research has advanced. A 
study reexamined a prognostic radiomic signature in lung cancer and 
found that the prognostic feature was in fact tumor volume. The initially 
reported intensity and texture features themselves were acting as proxies, 
illustrating the importance of rigorous validation (Welch et al., 2019).

There have been efforts to standardize and report the quality of entire 
radiomic studies. The most notable is the radiomics quality score (RQS) 
(Lambin et al., 2017). This is a metric with 16 categories spanning the 
entire process from data collection through to model validation, with each 
category offering positive or negative points, up to a perfect score of 36. 
However, this is not in common use and there are acceptable reasons why 
researchers may not employ it. Researchers may not be aware of it and an 
imperfect score does not mean a careless piece of work; for example, 
seven points (~20% of the total) are lost if the work is not a prospective 
study in a trial database, which is not applicable in many cases. It remains 
a useful template for developing and assessing radiomic studies.

8.  Conclusions

Invented in the 20th century under other names such as quantitative imag-
ing analysis, the 21st century has seen radiomics exit infancy and enter 
adolescence. Radiomics is still very much in a developmental stage and 
the field continues on its rapid evolution driven by a variety of factors. 

Machine learning is fundamental to radiomics, as the immense and 
formerly intractable scale of segmentation problems are beginning to be 
addressed through automated methods. Secondly, machine learning meth-
ods are vital for finding associations between clinical and molecular
features and radiomic features, once they have been extracted and appro-
priately selected.

As capabilities increase and barriers to entry decrease, there are mas-
sive opportunities for further breakthroughs to be made in the next decade 
of radiomics research.
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Chapter 6

Artificial Intelligence for Image 
Segmentation in Radiation Oncology

Xue Feng* and Quan Chen†
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KY 40506, USA
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1500 E Duarte Rd, Duarte, CA 91010, USA

Abstract
Image segmentation is an important task in radiation oncology. For example, 
radiation therapy requires accurate organ and tumor contours to design the 
treatment plan. In addition, outcome prediction using radiomics also needs 
structures of interest to be accurately segmented in order to obtain intensity, 
texture, and statistical information. Recently, artificial intelligence (AI), 
represented by the deep-learning approaches, has shown great performance 
improvements in medical image segmentation compared to traditional approaches. 
However, while the deep-learning approach showed great promise in clinical 
adoption, issues on robustness of the AI model arise. In this chapter, the AI 
techniques will be first introduced, followed by the advantages and limitations of 
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the AI segmentation models, finally, strategies for clinical adoption will be 
recommended.

1. Importance of Segmentation in Radiation Oncology

Radiation Oncology primarily relies on ionizing radiation to treat cancer, 
a process called radiation therapy. In radiation therapy, the ability of local 
control increases with the administrated dose (Hara et al., 2002; Rusthoven 
et al., 2009). However, as higher doses are applied, the organs-at-risk 
(OARs) around the tumor may receive high enough doses to affect their 
functions, which in turn can increase morbidity and reduce overall sur-
vival (Stam et al., 2017; Timmerman et al., 2006; Wu et al., 2014). As 
radiation therapy techniques have improved, both in treatment delivery 
and in treatment planning, it is possible to create sharp dose fall-offs 
around the tumor and trade-off between tumor coverage and OAR sparing. 
In order for the optimizer to make appropriate adjustments, both tumor 
and OARs have to be accurately segmented. Errors in tumor or OAR seg-
mentation could lead to over- or under-coverage of the tumor or damage 
to critical organs. Therefore, accurate segmentation is very important for 
radiation therapy treatment planning. 

Conventionally, the tumor and OARs are segmented manually by 
radiation oncologists or dosimetrists. However, as manual contouring is a 
tedious task, it often suffers from human fatigue. Contouring error has 
been identified as one of the most critical in the treatment planning pro-
cess (Broggi et al., 2013; Chen et al., 2015; Ford et al., 2020; Hui et al., 
2018). In addition, there can be fairly large inter- and intra-observer vari-
ability even among expert radiation oncologists. Li et. al. compared target 
and normal structure delineation by nine expert radiation oncologists from 
eight institutions (Li et al., 2009). They found that the variability in con-
touring the targets and OARs was substantial, with overlaps as low as 10% 
and standard deviation in volume as high as 60% for target structures, and 
overlaps as low as 35.8% and standard deviation in volume as high as 
18.3% for the heart. This created variation in target coverage (range of 
85–95%) and OAR dose (Lung V20 from 5% to 25%, Heart V10 from 2% 
to 20%) (Li et al., 2009). An analysis of prostate contouring by five well-
trained radiation oncologist showed that the inter-observer variability for 
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prostate is the largest at the anterior side with a standard deviation of 
7.1 mm and between 2–3 mm at other sides (Fiorino et al., 1998). Due to 
this uncertainty, often-used larger margins increase dose to surrounding 
OARs.  The inaccuracy and inconsistency in organ contouring impede 
obtaining accurate data to model normal tissue toxicity, especially in 
national clinical trials. Researchers from Memorial Sloan-Kettering 
Cancer Center examined the treatment plans submitted to the Radiation 
Therapy Oncology Group (RTOG) 0617 dose escalation trial. Using a 
coherent heart definition, they found that the heart dose in RTOG 0617 is 
significantly higher than reported using the contouring in the original 
treatment plan (Thor et al., 2021). In this case, the inaccuracy of the 
clinical contour leads to higher toxicity to patients and could affect the 
determination of the radiation toxicity to the heart.

In addition to accuracy and consistency, another concern for manual 
contouring is the cost of time and labor. It can take several hours to con-
tour a head and neck case (Hong et al., 2012; Vorwerk et al., 2014). This 
presents a barrier for wider adoption of adaptive radiation therapy (ART) 
(Yan et al., 1997, 1998). In ART, the treatment plan is adjusted during the 
course of treatment to account for the anatomical changes in the patient 
(e.g. weight loss, bladder filling, tumor response) or the patient’s response 
to the current treatment (e.g. normal tissue toxicity). The end result is an 
improved tumor control and/or reduction in normal tissue toxicity. 
Studies have demonstrated improved loco-regional control in naso-
pharyngeal and oropharyngeal cancers (Schwartz et al., 2012; Yang et al., 
2013), improvements in both normal tissue toxicity and tumor control in 
prostate cancers (Brabbins et al., 2005), 20% improvement in two-year 
tumor controls in non-small-cell lung cancer (Kong et al., 2017). In order 
to perform adaptive re-planning, organ segmentation has to be performed 
on the new planning imaging. This dramatically increases the workload 
for radiation oncologists and dosimetrists. Recently, the online-ART 
approach (Lim-Reinders et al., 2017), which involves adjusting treatment 
plan based on the daily imaging of patient anatomy, demonstrates great 
promise in improving treatment outcome. It has produced 60% improve-
ment in two-year overall survival in pancreatic cancer cases (Rudra et al., 
2019). In online-ART, the treatment plan adjustment is performed 
while the patient is lying on the table waiting for the treatment to start. 
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Thus, the speed for segmentation is very important for online-ART 
(Byrne et al., 2021). 

The conventional cancer treatment is a “one-size-fits-all” approach, 
where the patients who have the same cancer and staging receive the same 
standardized treatment. Multiple evidences have shown the heterogeneity 
of the tumor and the patient response (Li et al., 2018; Nardone et al., 
2018; Paul et al., 2017). In particular, information about tumor genotypes 
and patients’ responses can be mined from medical images. This approach 
was termed as “radiomics” (Lambin et al., 2012). Personalized treatment 
based on radiomics has gained a lot of interest. Radiomics features have 
shown good performance in predicting the treatment response (Li et al., 
2018; Nardone et al., 2018; Paul et al., 2017). This information can help 
oncologists select a better treatment plan based on the expected response. 
Radiomics features include shape-based, intensity-based, and texture-
based features. The first step in the calculation of the radiomics feature is 
the segmentation of the region of interest (ROI), usually the tumor itself. 
Conventionally, the ROI were outlined manually by expert oncologists or 
radiologists. Similar to the treatment planning, the accuracy and consist-
ency of manual contouring will affect the validity of the radiomic features 
identified and negatively impact the interpretation of the radiomics study.

2.  Review of Deep Learning Technologies in Medical 
Image Segmentation

Tremendous effort has been invested into the development of auto-seg-
mentation solutions. The atlas-based auto-segmentation showed a promis-
ing result and multiple commercial software were developed based on that 
technology, including Varian Smart Segmentation, Elekta ABAS, Pinnacle 
SPICE, Raystation, VelocityAI, and MIM Maestro.  However, a survey 
showed that while 70% of the clinics have one of these tools, only 30% of 
them used these tools in clinical practice (Sharp et al., 2014). The major 
issue cited for underutilization of these tools was poor segmentation qual-
ity. Studies has have shown that substantial manual editing times are still 
required after the auto-segmentation (Caria et al., 2013; Gambacorta 
et al., 2013; Gooding et al., 2013; La Macchia et al., 2012; Teguh et al., 
2011; Walker et al., 2014). In some cases, the operator prefers to perform 
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manual contours from scratch rather than edit existing contours (Thomson 
et al., 2014). 

Deep learning — a recently developed technique that applies 
artificial intelligence techniques to image classification, detection, and 
segmentation — has demonstrated superior performance over that of 
humans alone (Krizhevsky et al., 2012; Long et al., 2015; Ren et al., 
2015). Early adoptions in medical imaging applications, including seg-
mentation, have shown great promise (Çiçek et al., 2016; Havaei et al., 
2017; Ronneberger et al., 2015). Different from traditional atlas-, edge-, 
or shape-based segmentation methods, which mainly rely on pre-defined 
rules or priors, deep learning mainly uses a convolutional neural network 
(CNN) structure that contains many convolution, pooling, and/or upsam-
pling layers and the network is trained from a given dataset with ground-
truth to optimize itself toward a specific task with few, if at all, prior 
information. Many neural network architectures have been proposed in 
order for the deep learning model to better learn the segmentation task 
from the limited training data. It is not the purpose of this chapter to per-
form a comprehensive literature review. Instead, only a few core network 
architectures will be briefly introduced.

2.1. Fully Convolution Network (FCN)

Fully convolution network (FCN) is one of the earliest network architec-
tures developed for segmentation tasks (Long et al., 2015). It converts 
fully connected layers in classification network architectures, which throw 
away spatial coordinates and produce only predictions, into convolution 
layers, which preserves spatial information. In order to produce pixel-by-
pixel segmentation, backwards strided convolution was used to up-sample 
the result. Figure 1 illustrates the basic FCN architecture. The FCN was 

Fig. 1.  FCN architecture (Long et al., 2015).

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



b4808 Artificial Intelligence in Radiation Oncology “6x9”

108 Artificial Intelligence in Radiation Oncology

adapted for different segmentation problems and demonstrated good per-
formance, including the segmentation of infant brain image during the 
isotense phase on MRI images (Nie et al., 2018), multi-organ segmenta-
tion on abdominal CT (Roth et al., 2018), and intervertebral disk segmen-
tation on multi-modality MRI (Li et al., 2018).

2.2. U-Net

U-Net architecture is an extension of the FCN architecture. The general 
structure of the U-Net is shown in Fig. 2. In essence, it is can be consid-
ered as an encoder–decoder with skip connections between different fea-
ture scales of the encoder and decoder. On the encoder side, the image 
feature information is extracted while the spatial information is reduced. 
Similar to the FCN network, the spatial information was recovered 
through the up-sampling with the decoder. At the same time, the skip con-
nection brings high-resolution features from the encoder side to help with 

Figure 2.  General structure for a 3D U-Net. Each encoding block consists of two sets of 
consecutive convolution, batch norm, and rectifier linear activation layers. Padding was 
used to maintain the spatial dimension during convolution. Number of features were dou-
bled after each pooling layer. Long range connections were used by concatenating the 
outputs from the corresponding encoding blocks with the decoding blocks. M, N, P, f, and 
p are parameters that are unique for each network.
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the spatial information recover. This innovative design improves the seg-
mentation performance dramatically (Ronneberger et al., 2015). 

Since the introduction of the original U-Net concept, multiple adjust-
ments have been attempted. The original U-Net was implemented for 2D 
images. To better utilize the 3D spatial information carried by most medi-
cal imaging modalities for volumetric segmentation, the U-Net architec-
ture was simply extended to accommodate 3D volumetric data and 
become 3D U-Nets (Çiçek et al., 2016; Feng et al., 2019; Yang et al., 
2018) (shown in Fig. 2). On the other hand, 3D U-Net requires large 
amount of GPU memory and incurs much higher computational cost. To 
address these issues, a 2.5D approach was tested (Angermann & 
Haltmeier, 2019; Hu et al., 2018). 

To better accommodate the 3D volumetric images, V-Net was devel-
oped based on the U-Net architecture (Milletari et al., 2016). The V-Net 
also has the encoder–decoder design and the skip connections between 
them. The major difference is that the V-Net introduces residual blocks at 
each stage. The introduction of residual blocks allows the information 
flows to deep layers of the network, allowing more accurate and faster 
convergence. Also, the pooling layer is replaced by convolution. One 
variant of the V-Net architecture, Dense V-Net, achieved significantly 
better results on abdominal CT segmentation than other methods (Gibson 
et al., 2018). 

In the U-Net design, the skip connection is designed to bring in spatial 
information from the encoder side. However, this also brings across 
redundant low-level feature extractions that can degrade the segmentation 
performance. To suppress activation in irrelevant regions, “soft attention” 
is implemented which weights the skip-connected images from the 
encoder side based on the relevance. The resulting attention U-Net has 
shown to improve the segmentation of the pancreas in the abdominal CT 
(Oktay et al., 2018). 

U-Net++ (Zhou et al., 2018, 2019) is another attempt to improve upon 
U-Net by using the dense block ideas from the DenseNet (Iandola et al., 
2014). The key innovations in U-Net++ include the use of dense skip con-
nections to improve gradient flow, perform convolution on skip pathways 
to bridge the semantic gap between the encoder and decoder feature 
maps, and perform deep supervision to improve the model performance. 
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The U-Net++ has demonstrated better performance than baseline models 
on multiple imaging modalities such as CT and MRI (Zhou et al., 2019). 

2.3. Generative Adversarial Network (GAN)

GAN is originally designed for generative modeling. The basic GAN con-
sists of a discriminator and a generator. The generator learns to create 
“fakes” that can fool the discriminator and the discriminator learns to 
catch those “fakes”. While the initial application was in image enhance-
ment, it quickly finds application in a variety of applications, including 
segmentation. To train GAN for segmentation, the generator becomes a 
segmentor, which takes in images and produces a segmentation. The seg-
mentor can use any existing architectures for segmentation, such as FCN, 
U-Net, etc. The discrimator needs to read the segmentation and the origi-
nal images and determine whether the segmentation is good or bad. The 
architectures used for the discrimator can be a classifier network such as 
FCN. During the training process, both the discrimator and the segmentor 
try to defeat each other. Any improvement for one network would prompt 
the other to learn. The end result of this adversarial learning process is that 
the segmentor learns to produce accurate segmentation. Using MICCAI 
brain tumor segmentation challenge data, a SegAN network with multi-
scale loss was trained with this adversarial learning process and demon-
strated better performance than the state-of-the-art U-net segmentation 
method (Xue et al., 2018). 

Since the GAN is very successful in generating realistic images, 
another use of GAN for segmentation is to perform data augmentation. 
The training of deep learning models requires a large amount of training 
data for the massive neural network to properly train. However, this is 
often difficult to satisfy. Data augmentation is one of the basic strategies 
to increase the training data by performing simple translation, rotation. 
However, these simple strategies are limited in the variations they can cre-
ate. A GAN can produce variations in the training data, which can help 
reducing overfitting and improving model generalization. This method 
had been applied to brain tumor segmentation tasks and demonstrated 
improvement in segmentation accuracy (Bowles et al., 2018). In another 
study, the U-Net trained on contrast enhanced CT images generalized 
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poorly on non-contrast CTs. With a cycleGAN model that was trained on 
a separate image database to transform contrast CT images into non-
contrast images, non-contrast CTs were created from the contrast CTs in 
the training data. The U-Net re-trained on both original and synthetic non-
contrast images demonstrated dramatic improvement in kidney segmenta-
tion on non-contrast CTs (DSC improves from 0.09 to 0.94) (Sandfort 
et al., 2019). 

3. Evaluation of Auto-segmentation Performance

The simplest method for evaluating auto-segmentation performance is to 
compare the contours created with a ground truth contour. Various indexes 
can be computed to reflect the geometric similarity with the ground truth. 
These indexes include dice similarity coefficient (DSC), recall, precision, 
Hausdorff distance (HD) (including maximum and different percentile), 
and mean surface distance (MSD). DSC is calculated as follows: 

=
+

2 X∩
D C

Y
S

X Y
(1)

where X and Y are the ground truth and the tested contours, respectively. 
Alternatively, we can consider the part of ground truth contour X cov-

ered by the tested contour Y as true-positive (TP). Similarly, we can define 
false-negative (FN) and false-positive (FP) as Fig. 3 illustrated. Recall, or 
true positive rate, can be calculated as follows:

(a) (b)

Fig. 3.  Illustration for (a) DSC, Recall, Precision and (b) HD.
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 ∩
= .

X Y
Recall

X
(2)

Precision, or positive predictive value can be calculated as follows:

∩
= .

X Y
Precision

Y
(3)

The directed HD from contour X to Y is defined as

= ∈ ∈

��
, ( Y ( , )),X Yd m ax x X m in y d x y  (4)

where d(x,y) is the distance between point x in X and point y in Y. 
The maximum bidirectional HD between contour X and Y is then

= ( )�� ��
H D m ax d X ,Y , d Y , X .  (5)

The percentile HD can be similarly defined by switching the max 
function in Eq. (4) into percentile function, and turn the max function in 
Eq. (5) into mean. 

The directed average Hausdorff measure is the average distance of a 
point in X to its closest point in Y, given as

( ),
1

H avg , ( , ).y Y
x X

d X Y min d x y
X ∈

∈

= ∑
��

(6)

The mean surface distance (MSD) is then defined as the average of the 
two directed average Hausdorff measures, as follows:

, ( , ) , ( , ) .
2

d H avg X Y d H avg Y XMSD +=

�� ��

(7)

DSC, precision, and recall are unitless quantities between [0, 1], with 
higher value indicating better agreement. HD (maximum and percentile) 
and MSD have the unit of distance with smaller value indicating better 
agreement. While the general properties of each of the metrics are clear, 
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it is difficult to tell directly whether a contour is “good” based on the value 
of those metrics alone. Due to the limited imaging resolution, as well as 
the instability of the human hand when drawing contours, it is expected 
that manual contours contain deviations from the underlying anatomical 
structures. In addition, structures lacking contrast along their borders 
would also pose challenges for the interpretation of the true boundaries.
It has been well documented that the inter-observer and intra-observer 
variability remains high even among expert radiation oncologists 
(Joskowicz et al., 2019; Loo et al., 2012; Tao et al., 2015). However, the 
same amount of deviation in distance would produce different impact on 
the DSC, recall, precision scores on structures of different sizes. Smaller 
structures will experience a bigger drop in these metrics than larger struc-
tures. As a result, a DSC score of 0.95 may not be considered good enough 
for lungs, while a DSC score of 0.6 for optic chiasm is considered very 
good. 

Inter-observer variability (IOV) for each structure under evaluation is 
often characterized when evaluating auto-segmentation performance. 
Multiple human experts would independently contour the same group of 
cases. The disagreement between the human experts’ contours would be 
measured using the geometric evaluation metrics such as DSC, HD. These 
measures of IOV will serve as benchmarks. If an auto-segmentation algo-
rithm achieves the geometric evaluation metrics better than the IOV, it is 
usually considered to achieve “similar or better than human expert perfor-
mance”. In multiple studies, the deep learning-based segmentation algo-
rithms have demonstrated similar or better performance than human 
experts based on one or multiple metrics (Feng et al., 2019; Wong et al., 
2020; Yang et al., 2018). 

The choice of contours used as “ground truth” also requires attention. 
Often, the contours used clinically were taken as the “ground truth”. 
However, the quality of such a contour depends on how rigorously the 
contouring was created and its quality controlled. Therefore, those con-
tours need to be carefully reviewed and, in many cases, edited before they 
can be regarded as good quality contours. Still, this contouring only 
reflects the judgment of one observer. A “consensus” contour could 
be created from multiple observers through a simultaneous truth and 
performance level estimation (STAPLE) algorithm (Kosmin et al., 2019; 
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Liu et al., 2019; Warfield et al., 2004). This consensus contour would be 
more robust to random errors from individual observers. This may lead to 
better agreement with a segmentation that is also unbiased, as Liu et al.’s 
study (Liu et al., 2019) demonstrated.

The geometric indexes had been widely adopted in the evaluation of 
the segmentation performance. They provide an objective measure of the 
contour agreement and are very convenient to compare different algo-
rithms or adjustments on the same reference. IOV studies can be used to 
establish relevant benchmarks for these indexes. However, there are still 
limitations on these indexes. DSC, recall, precision, and MSD are indexes 
that assess the overall agreement of the entire structure. As a result, good 
agreement on the majority of the contours could mask out large deviations 
on a small section of the contour. Figure 4 illustrates this scenario. DSC, 
recall, precision would be very close to a perfect score of 1.0, and the 
MSD would also be nearly perfect, even though the contour Y contained a 
mis-contouring and likely significantly impacts the maximum dose evalu-
ation of this structure. The percentile HD may also fail to detect this 
except for the maximum bidirectional HD. This example shows that pass-
ing certainty threshold for one or several geometric indexes does not 
necessary guarantee the clinical acceptability of a contour.

In radiation therapy treatment planning workflow, the contouring for 
target and organs created by resident oncologists or dosimetrists needs to 
be reviewed and approved by the attending radiation oncologist. For deep 
learning-based auto-segmentation used in clinical practice, the contours 
created have to also pass the scrutiny of the attending radiation oncologist. 

Fig. 4.  An example illustrating the limitation of geometric indexes. 
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In the case that contour editing may be needed, the time taken for the edit-
ing should also be recorded to evaluate whether the auto-contouring can 
indeed improve the efficiency in the clinical workflow. A “Turing Test” 
was designed for eight clinical observers to evaluate the clinical accepta-
bility of auto-contouring in a blinded study design (Gooding et al., 2018). 
The manual editing time was also recorded.  It was found that a significant 
portion of the deep learning-based auto-contour was deemed indistin-
guishable from the manual contour and therefore provides a great time 
saving option. One interesting finding is that the DSC scores are less cor-
related with the time saved as compared to the observer’s assessment. This 
again highlights the importance of performing observer assessment of the 
contouring performance when evaluating the clinical utility of auto-seg-
mentation methods. The time and workload saving of one deep-learning 
auto-contouring software were evaluated and compared against manual 
contouring and atlas-based auto-contouring of bladder and rectum (Zabel 
et al., 2021). It was found that the deep-learning auto-contouring software 
requires similar radiation oncologist review and editing time compared 
with manual contours and much less than atlas-based methods. 

The review by an expert radiation oncologist can identify clinically 
unacceptable contour deviations. However, this could be a time-
consuming process if a thorough review is required. The clinically 
unacceptable designation is also subjective. Some may apply stricter 
criteria while others may be laxer. Even for the same oncologist, the 
criteria can be inconsistent and could be affected by other factors like 
the time of the day or the amount of clinical workload outstanding. The 
ultimate evaluation of the clinical acceptability of the auto-contours is 
to evaluate the clinical acceptability of the treatment plan created with 
the auto-contours. It should be noted that the ground truth contour 
should be used to evaluate the dosimetry of plans created with the auto-
contour, otherwise it becomes a self-fulfilling prophecy. The dose vol-
ume histogram achieved by the plan can be compared against the toler-
ance tables adopted locally to determine if the auto-contour can be 
safely used to create treatment plans. This is an objective evaluation and 
the standards are consistent. Therefore, it is another important method 
for auto-segmentation evaluation. 
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4.  Challenges in Adopting AI Segmentation in 
Clinical Practice

While superb performance metrics were reported in the literature or by 
vendors that use AI segmentation techniques, it should not be taken for 
granted that the same performance will be achieved in individual clinical 
practice. It has been well-documented that a well-trained deep learning 
model on data from one institution would produce worse results if tested 
on data from different institutions (AlBadawy et al., 2018; Alis et al., 
2021). Factors that may contribute to this performance loss include gen-
eralization error and different contouring guidelines used. 

4.1. Generalization error

Generalization error is a common issue that plagues the machine learning 
models (Advani et al., 2020). Generalization error describes the loss 
of performance of a well-trained machine learning model due to over-
training on a distributationally shifted data set. There can be many sources 
contributing to the generalization error of a given neural network, such as 
imaging protocol, patient pose, contrast administration, implants, abnor-
mal patient anatomy (collapsed lung, resection of organs). It has been 
shown that even simple transformations (Azulay & Weiss, 2018; Engstrom 
et al., 2017; Pei et al., 2017) can pose challenges to the neural network. 

A study by Feng et al. (2020) showed that even a state-of-the-art 
model trained on data from three institutions and having achieved top 
finishes in a public challenge (Feng et al., 2019; Yang et al., 2018) had 
trouble with data from a different institution. The root cause was identified 
as the use of abdomen compression technique during the CT which 
changed the locations of organs relative to the bony anatomy, as illustrated 
in Fig. 5. Since the model was trained with data from institutions that do 
not adopt this practice, the model mishandled this anatomy and produced 
a completely wrong heart segmentation illustrated in Fig. 6(a). It was only 
after including the data with abdomen compression into the training data 
that the model learned how to correctly handle this anatomy, as illustrated 
in Fig. 6(b).
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(a) (b)

Fig. 5.  Difference between data used in model training (a) and the data from test institu-
tion (b). Due to the use of abdomen compression technique in the test institution (the 
compressor is visible at the bottom), internal organs such as liver and heart were pushed 
superiorly. The ground truth heart contour was overlaid on each image.

(a) (b)

Fig. 6.  Example of (a) mis-segmentation of heart with the original model and (b) correct 
segmentation after the inclusion of data with abdomen compression in the training data. 
Blue contour shows the ground truth manual contour. Light green contour shows the auto-
segmentation.

As this example shows, the most direct way to address the generaliza-
tion issue of a deep learning model is to train the model with a great 
variety of data that can be seen in clinical practice. However, the effort 
involved in data collection and training can be prohibitive. Especially due 
to data privacy and data ownership concerns, institutions are reluctant to 
provide data to third-party vendors. While the Cancer Imaging Archive 
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(TCIA) provides a platform for sharing anonymized data, and the 
uploaded collections are growing, only a small percentage include high-
quality contouring. Technical solutions attempting to bypass those limita-
tions, such as federated learning (McMahan et al., 2017), have been pro-
posed and the feasibility demonstrated on medical image segmentation 
tasks (Sheller et al., 2018). However, these approaches can only reduce 
the chance of generalization error, not eliminate them, as it is technically 
impossible to exhaustively collect every possible variety of data that can 
be seen in clinical practice. Therefore, it is expected that AI may fail dur-
ing the clinical practice. It is recommended that users who wish to adopt 
an AI model into their local practice should rigorously test the model with 
the local data to ensure the generalization error is small.

Another issue in the generalization error for AI models is that it tends 
to fail in an unpredictable and unrealistic manner. As shown in Fig. 6(a), 
when the heart segmentation failed, it yielded a result that is very far away 
from the expected heart shape so that the impact to dose calculation may 
be higher if left uncorrected. This is because most AI models perform a 
voxel-by-voxel prediction instead of considering the overall shape infor-
mation; while in atlas-based methods, the output shape is confined to the 
orthogonal space of the chosen atlases. Incorporating shape constraint in 
AI is a promising area for research, as summarized in Bohlender et al. 
(2021), however, one challenge is deciding when and how much to 
enforce the shape constraint. As the failed cases are usually a small num-
ber, or related to different imaging protocols, it may negatively affect the 
performance of the majority cases if the constraint is applied to every 
case. Further studies, such as automatic quality check for the output con-
tours so that the shape constraint can be applied more aggressively to the 
failed cases, may provide a good solution for this problem.

4.2. Variation in contouring standard

In clinical practice, the contouring of the same organ can vary between 
physicians and clinics (Allen Li et al., 2009; Nelms et al., 2012; van der 
Veen et al., 2019, 2021). Although contouring guidelines are developed 
to create consistent contouring across different institutions (Brouwer 
et al., 2015; Jabbour et al., 2014), the various guidelines themselves can 
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become the source of confusion and inconsistent contouring. For exam-
ple, in NRG-BR001{Oncology NRG, #134}, RTOG-0618{Timmerman, 
2006 #135} and RTOG-0236{Timmerman, 2006 #136}, the heart is con-
toured with the superior aspect beginning at the level of the inferior 
aspect of the aortic arch. However, in RTOG-1106{Kong, 2012 #137}, 
the heart is contoured with the superior aspect beginning at the level of 
the inferior aspect of the pulmonary artery passing the midline. In 
another example, the parotid is defined to have superior boundary at 
external auditory canal and in mastoid process in a 2009 guideline{Van 
de Water, 2009 #139}. However, in a 2013 guideline, the superior border 
is defined as a zygomatic arch{Hoebers, 2013 #138}. It is expected that 
with the accumulation of more normal tissue complication cases, guide-
lines for contouring those normal tissues as avoidance can be updated 
accordingly (Caglar et al., 2008; Christianen et al., 2011, 2012; Barbara 
Stam et al., 2017). Physicians following different studies may adopt dif-
ferent contouring guidelines, which can lead to inconsistent contouring 
(Brouwer et al., 2014). While there are efforts from multiple organiza-
tions to create a unified contour guideline (Brouwer et al., 2015; Grégoire 
et al., 2018), with the most recent being initiated by NRG{Mir, 2020 
#140}, new clinical evidence may prompt the change in guidelines again, 
such as the most recent update of the prostate and prostate bed contour-
ing guideline (Grégoire et al., 2018; Robin et al., 2021). Therefore, an AI 
segmentation model trained with data following one contouring guideline 
may face resistance from clinics that follow a different contouring guide-
line. Also, the AI segmentation model trained to follow the current con-
touring guideline may become obsolete a few years later. In those cases, 
either the vendor needs to provide the new model, or the clinic has to 
train their own model. However, collecting enough data, training, and 
tuning the AI model will require a lot of effort and expertise that are 
beyond most clinical users. Therefore, this can be another challenge to 
the universal adoption of AI segmentation. Users who wish to adopt an 
AI model should evaluate the contour and determine if it follows their 
clinical practice as part of their commissioning process. Subsequently, 
routine QA should be established to check if the performance of an AI 
model is still satisfactory as clinically adopted contouring guidelines 
change. 
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5. Summary

In this chapter, we reviewed the use of AI segmentation in radiation oncol-
ogy. The primary application of the segmentation is to delineate the OAR 
and determine accurate treatment plans. The AI segmentation relieves 
humans from repetitive tasks so that they can focus their attention on more 
important tasks. In addition, the speediness of AI segmentation can facili-
tate the online-ART process to produce better treatment for patients. A 
few popular neural network architectures and approaches have been 
briefly introduced, along with literature that reports good results using 
these networks and approaches. Various metrics that were frequently used 
to evaluate AI segmentation performance have been described. Pros and 
Cons of each metrics in the performance evaluation have been discussed. 
While geometric indexes such as DSC have been widely adopted, these 
values are insufficient to determine the clinical acceptability of a given 
contour. It is recommended to include the expert’s evaluation as well as 
dosimetric analysis for the assessment of the clinical acceptability of AI 
contours. Finally, the challenges of the clinical adoption of AI contours 
have been discussed. Due to the limitation of AI segmentation models, 
before adopting a given model into clinical practice, it is highly recom-
mended that the model’s performance is evaluated on the local data set to 
ensure that the generalization error is small, and the contouring conforms 
to the guideline adopted by the local clinic.
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Abstract
The term artificial intelligence (AI) has been nearly synonymous with machine 
learning (ML) in recent times. However, there’s a lesser-discussed field within AI, 
knowledge representation (KR), that will be a big driver of the future of medical 
AI, ML, and intelligent oncology software in general. In this chapter, we will 
define and describe what KR is at a level that radiation oncologists and medical 
physicists should be familiar with, how it can help our field, and how it interacts 
with other medical AI technologies. Along the way, we’ll describe how it can 
enhance efficiency of clinical workflows, reduce cognitive burden for physicians, 
and help to mature the vision of precision medicine.

1. Introduction

As we enter the era of precision medicine, there’s a need to consider the 
patient in an increasingly holistic manner and with a finer level of detail. 
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This is needed to discover the ever-increasing array of variables that may 
impact patient care and outcomes. The fields of radiomics, pathomics, and 
genomics are currently leading this charge. In some instances, they are 
helping to augment traditional tumor characterizations with entirely new 
worldviews of how to describe tumors and are bringing increasingly quan-
titative measurements and frameworks into the analysis-fold. Clinical phe-
notyping of electronic health record (EHR) data is just as crucial to 
precision medicine. One example is the capture of adverse events and other 
short-term and long-term outcomes data, and then standardizing these data 
across all patients, hospitals, and clinics for analysis. Quantifying co-mor-
bidities is another example. We can all probably think of a cancer patient 
with a relatively early-stage diagnosis on a straightforward treatment pro-
tocol but due to poorly controlled co-morbidities, their care can quickly 
devolve into complex management. The same logic extends to the rest of 
the patient history. Co-morbidities are important, but so are social determi-
nants of health (SDoH). In fact, many predictive algorithms have shown 
that SDoH can sometimes be a better predictor of outcomes than clinical 
factors in the medical record. As a simple, but edge-case illustration, just 
think of the possible effects of homelessness on cancer prognosis. 

All of this is to say that our consideration of the patient must be multi-
factorial and holistic if the goal is continued improvement in cancer care. 
With such a diversity and breadth of patient data, our analytics must 
increase in sophistication to keep pace. Most of the patient data are stored 
in textual format. Even non-text-based diagnostic testing results such as 
imaging and immunohistochemistry have accompanying reports, which 
are arguably more important from a multidisciplinary point of view as 
they contain a summary and interpretation of findings. Therefore, much of 
the sophistication for better clinical phenotyping and quantitation has 
been aimed at textual analysis. The main focus of this chapter will be 
accordingly aimed here as well.

Machine Learning (ML) represents a significant step toward sophisti-
cation with regard to pattern recognition, but as it’s applied to medical 
text, most ML studies in the published literature are relatively rudimen-
tary, treating for example words in a pathology or radiology report just as 
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symbols (symbolic manipulation), unable to see the simple connection 
between the words “cancer” and “cancers”. Natural Language Processing 
(NLP) adds an important layer of sophistication on top of this by mode-
ling, for instance, the syntax of the English language, understanding parts 
of speech, differentiating between singular/plural via stemming and lem-
matization techniques. 

On top of these layers of symbolics and syntactics, knowledge repre-
sentation (KR) adds semantics: the meaning behind the language. It’s a 
layer of sophistication with an inherent understanding of medical con-
cepts, whether they’re represented by a single word or a descriptive 
phrasing that spans across multiple words. There’s a framework for under-
standing synonyms and related concepts. On top of this, there is an inter-
connected web of relationships among all of these concepts. Taken 
together, all of the above constitute a semantic layer of information that 
adds crucial contextual background knowledge to any recorded descrip-
tion of a patient. Think of the conciseness of the “one-liner” in a written 
assessment and plan section of the medical record and the background 
knowledge to fully appreciate the depth of what’s written. For medical 
students, it can take years of training to gain a sufficient level of under-
standing of just the “one-liner”. For machines, we are now starting this 
journey of semantic understanding with the assistance of KR to help 
machines understand the same.

The implications of this added knowledge are vast (Fig. 1). Quantitating 
and contextualizing patient data for precision medicine is just one of many 
uses. For clinical workflows, this added contextual knowledge enables 
building smarter software with added automation, which in turn can 
enhance clinical efficiency, help alleviate cognitive fatigue, and reduce 
burn-out. For clinical research, data capture can be more automated and 
more comprehensive in their scope. Study results contextualized with KR 
may surface deeper insights with less manual effort involved.

In this chapter, we’ll explore all of these topics and more in greater 
detail starting with a discussion of what KR is and technical details that 
practitioners should at least have some exposure to, followed by a discus-
sion of potential applications.
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Fig. 1.  Building a machine interpretable network of standardized knowledge that 
enhances clinical medicine and biomedical research. Reprinted with permission from 
(National Research Council (US) Committee on A Framework for Developing a New 
Taxonomy of Disease, 2011).

2. Knowledge Representation

The history and evolution of how humankind has sought to represent the 
knowledge existent in their heads is rich and vast and the theoretical con-
structs devised are multitudinous and varied. Thus, knowledge representa-
tion is a field of AI unto itself. A comprehensive and in-depth description 
of the field is beyond the scope of the current chapter. What we focus on 
here is a simplified description that is geared for practicality of usage in 
medicine and radiation oncology.
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In this context, the purpose of knowledge representation can be sim-
ply stated as a way for machines to understand the world in a similar way 
to how we understand the world. Once the machine has some understand-
ing of this world, the world of medicine, it can begin to reason for itself. 
Being able to reason independent of a human chaperone — to think, in a 
way — enables so many possibilities. If the reader stops to think about 
this, they can probably logically extrapolate on a few of these possibilities. 
Later on, we’ll discuss this in more detail.

Next, let’s look at some KR designs and implementations. We’re 
going to focus on the areas of KR where most of the progress has been 
made, especially with regard to biomedical informatics. The scope is cast 
wider here than just radiation oncology because we would like the 
machine to have a holistic understanding of the patient including their 
medical problems — malignancies and otherwise — as well as a basic 
understanding of relevant biology including genes and small molecules 
which are increasing pertinent to cancer care and FDA approved thera-
pies. First and foremost, the KR systems of interest to us here are designed 
to be intuitive. That’s why at their core they deal with concepts that we as 
human beings and domain experts typically think about as important in 
medicine, from roots in basic science to implementations in clinical 
practice — concepts such as genes, proteins, cells, organs, body systems, 
pathophysiologic mechanisms, diseases/syndromes, signs/symptoms, 
tests, procedures, drugs, chemotherapies, biologics, radiotherapy tech-
niques, and the more granular concepts within these (overlapping) catego-
ries. For each concept, the machine assigns a code to it that is used to 
uniquely identify and efficiently store that concept within the machine.

These concepts/facts in KR systems don’t live in a vacuum. Instead, 
they are only meaningful when compared and contrasted with one another. 
This brings us to the second important component of KR systems: rela-
tions among concepts. One key relation is the type–subtype (also called 
the class–subclass) relation. For example: “NSCLC” (non-small-cell lung 
cancer) is-a type of “lung cancer”; and “lung cancer” is-a type of “can-
cer”. This is analogous to what we learn as children on the taxonomic 
classification of animals and other kingdoms of life. This type of relation 
is intuitively called the is-a relation because e.g. NSCLC is a type of lung 
cancer. There are many other types of relations that match with the 
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training and expertise in the reader’s mind, connecting relevant concepts. 
“Procedure A” or “Drug B” treats “disease C”; “disease C” manifests as 
“symptoms D, E, F”.

Concepts and relations are the basics of what makes an ontology, an 
important type of KR system we’ll reference again and again. You may 
have heard of the term ontology before, and we’ll talk more about a spe-
cific implementation that’s highly pertinent to our space later on. An 
ontology, in the information sciences sense as opposed to ontology in the 
philosophical sense, is a formal system for capturing and representing the 
knowledge in a domain. It starts with what we just described: a vocabulary 
with standardized concepts plus relations among these concepts, but this 
is only the start. The architecture of knowledge can be as complex, 
detailed, and intricate as the best of human thought — seemingly infinite 
from our perspective. Therefore, many ontologies try to capture the most 
practically useful aspects of such complex knowledge, layering the archi-
tecture of these complexities on top of the core ideas of concepts and 
relations. One such layer of knowledge is specifying different types of 
relations, for example the is-a, treats, and manifests relations mentioned 
earlier. Similar to concepts, relations can also have synonyms and can be 
compared and contrasted with one another.

There are numerous other layers of knowledge that are practically 
useful and routinely captured in ontologies. For example, some relations 
have special properties. If we know that “NSCLC” is-a type of “lung can-
cer” and that “lung cancer” is-a type of “cancer”, we as human beings can 
infer almost reflexively that “NSCLC” is-a type of “cancer”. The property 
at play here is called transitivity and can be formalized as a knowledge 
representation structure to be used by a machine. The is-a relation is tran-
sitive. The general form of the reasoning is: if “X” is-a type of “Y”, and 
“Y” is-a type of “Z”, then “X” is-a type of “Z”. Additionally, in a cor-
rectly constructed ontology, subtypes also inherit all the properties of the 
supertype. Thus, NSCLC inherits properties that all cancers have in com-
mon, including a neoplastic process. Ideally, we can use this knowledge 
to build a machine that performs the above reasoning in an automated way 
without human expertise or intervention.

When transitivity is correctly applied to medical ontologies, it gives 
us a very powerful tool set for reasoning. Here’s a motivating clinical 
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scenario: a patient has a newly discovered tumor with high clinical suspi-
cion for malignancy. One question that every oncologist has as a next step 
is: has the patient ever had cancer before? Patient self-reporting is error-
prone with mistakes and omissions and shouldn’t be relied upon as the 
sole source of information. Thus, the medical record should be scanned. 
As every physician knows, due to substantial time constraints this task 
must be balanced with other parts of patient care. Every effort is made to 
find the most relevant documents as quickly as possible and mentally store 
as many relevant facts as possible. A complete review of the entire patient 
record is impossible so there’s always a risk that a clinically important 
piece of information could be overlooked. This is where technology 
should come into play and relieve the majority of the burden and cognitive 
load away from the physician. Using ontologies and transitive is-a rela-
tions, a machine can find all subtypes of “cancer”, then subtypes of sub-
types, repeating this recursively until completion — to materialize the 
entire cancer taxonomic tree. Then it can search in all patient notes in the 
medical record for each cancer subtype and all the synonyms/abbrevia-
tions for each subtype. It can do this automatically, exhaustively, and if 
implemented correctly, finishes the search in a fraction of a second. The 
oncologist gets an answer right away, and armed with this knowledge, can 
more confidently prescribe the appropriate next steps of care.

A typical clinical workday is filled with countless similar situations 
that machine intelligence like the above can help expedite. What protocols 
were tried in the past; what were previously experienced adverse events; 
etc. All of these questions answered in an automated way saves the radia-
tion oncologist valuable time and energy, and reduces cognitive burden in 
an era where these demands are ever increasing and in a specialty that 
requires providing complex care management for one of the sickest popu-
lation of patients — elderly, with multiple co-morbidities, in the setting of 
a cancer diagnosis — and in the end ultimately should improve the lives 
of patients as well as their caregivers.

The machine intelligence described above requires many moving 
pieces to implement but are all feasible to build these days including a 
medical NLP engine, a search engine, and question answering capabili-
ties. But the heart of this implementation requires something that is still 
very difficult to do accurately and reliably even with today’s technological 
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advancements in machine learning: reasoning capabilities. It is this part 
that knowledge representation, especially medical ontologies, can help 
with. That is why medical knowledge representation will be at the heart of 
the future of intelligent medical software.

3.  Unified Medical Language System and 
Constituents

Multiple knowledge representation systems have been developed in the 
fields of medicine and biology over the decades. Some are as simple as a 
set of shared terms or a vocabulary for uses such as standardizing data 
collection for research studies and medical administration. Other KR sys-
tems are structured more like ontologies with relations connecting related 
concepts, transitive properties, etc. Each system has its own set of 
strengths and weaknesses. Some may cover one area of medicine more 
comprehensively than others. Some may have relations others don’t have. 
Many systems have some overlap with each other in terms of the knowl-
edge covered and represented. If one could merge concepts from different 
KR systems where there is overlap, then we can combine the knowledge 
of these various KR systems into one unified knowledge-base and create 
a radically more comprehensive knowledge source that everyone can ben-
efit from. This is exactly what the Unified Medical Language System 
(UMLS) has done, as the name implies (Bodenreider, 2004). As of now, 
there are over 200 KR systems that are a part of what UMLS calls its 
Metathesaurus. Some are familiar: ICD-10 (International Classification of 
Diseases) (World Health Organization (WHO), 2003) and SNOMED CT 
(Systematized Nomenclature of Medicine-Clinical Terms) (SNOMED 
International, n.d.). The individual KR systems in UMLS are called 
source vocabularies because the vocabulary is the common denominator 
among all these KR systems even though many contain more than just a 
vocabulary. For example, SNOMED CT contains is-a relations that are 
poly-hierarchical in structure and is built on ontological foundations. For 
simplicity of nomenclature, we will follow similar conventions to UMLS 
and describe KR systems used in UMLS as vocabularies. In other texts, a 
vocabulary is also sometimes called a lexicon or terminology.
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As a start to exploring UMLS, let’s look at some vocabularies relevant 
to radiation oncology. ICD in its various versions and modifications has 
to be mentioned because of its prevalence in many countries for reim-
bursement and for attributing morbidity and mortality in population statis-
tics. However, it’s a poor vocabulary to use for capturing the clinically 
important nuances of a patient encounter (which was never its intended 
purpose). For example, there is no concept specifically for NSCLC. 
Therefore, we couldn’t build, for example, a database containing only 
NSCLC patients if our starting point solely consisted of ICD-10 codes. It 
takes more than ICD to capture clinical details at a level that is appropri-
ately granular to be useful in the everyday clinic. The finer the level of 
granularity we can represent and capture, the more useful this information 
would be to us and to the machine for downstream analytics. For this task, 
SNOMED CT is a much more preferred alternative to ICD.

SNOMED CT in its current state of development is designed to have 
broad coverage of many concepts important to medicine and radiation 
oncology such as neoplasms and most other diseases, signs/symptoms/
adverse events, anatomy, many drugs and procedures, etc. From a practi-
cal perspective, there should be a SNOMED CT term for the vast majority 
of these medical concepts that physicians use to communicate and docu-
ment in clinic. 

Next, let’s look at relations. As we mentioned earlier, SNOMED CT 
contains is-a relations. If we trace is-a relations consecutively for a con-
cept like “lung cancer”, we find that its lineage contains ancestors such as 
“neoplastic disease”, which provides some information on the patho-
physiologic process. The is-a relation then traces back to the concept of 
“disease” which tells us the high-level category that this concept falls 
under (as opposed to “drugs”, “procedures”, etc). “Lung cancer” also 
contains is-a ancestors to “respirator finding” and “disorder of trunk”, 
which provides anatomical descriptors to compare and contrast with 
anatomy in other diseases. Remember, this knowledge is common sense 
to us, but for a machine to have this type of background knowledge to 
reason over is far beyond the reasoning found in medical software that we 
encounter in the typical clinic. In general, SNOMED CT contains many 
useful relations for various diseases that inform on pathophysiology and 
anatomy. However, one should not rely on these relations to convey for 
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example the same breadth and depth of information on pathophysiology 
as a pathology textbook. Many other relations (non-is-a relations) exist in 
SNOMED CT such as “X disease” has causative agent “Y organism” or 
“Z substance”, but these relations are much sparser in coverage and are 
therefore of limited utility as they exist today. If anything, they are more 
of a placeholder that guides future knowledge engineering (adding to the 
ontology).

Moving forward, let’s look at some other important vocabularies 
included in UMLS. As much as SNOMED CT strives for broad coverage 
of medical concepts, no vocabulary is all-inclusive. For classification of 
neoplasms there is vast coverage in SNOMED CT, but there is even more 
coverage and more detailed subtype classifications of tumors in NCIt 
(National Cancer Institute Thesaurus) (Fragoso et al., 2004). Similarly, 
SNOMED CT’s coverage of drugs is vast, but RxNorm’s (Nelson et al., 
2011) is better.  RxNorm also contains many useful relations that, for 
example, can be used to convert between brand names and generic ingre-
dients, and between combination drugs and their individual ingredients. 
This may be important in situations such as cataloging chemotherapy that 
is given as part of chemoradiation. For anatomical descriptions, SNOMED 
CT has decent coverage, but FMA (Foundational Model of Anatomy) 
(Rosse & Mejino, 2008) provides a richer framework for describing 
anatomy, with relations that describe the “part-of” hierarchy, arterial 
supply and venous drainage, adjacency, among others. For adverse events, 
most concepts can be captured as SNOMED CT signs/symptoms/dis-
eases, but there is also a formal vocabulary dedicated to adverse events 
called CTCAE (Common Terminology Criteria for Adverse Events) 
(National Cancer Institute, n.d.) that is used as a reporting standard in 
contemporary clinical trials. Again, where there is overlap in coverage 
among vocabularies, UMLS can be used as a Rosetta Stone to translate 
across vocabularies. Where the overlap ends, one vocabulary can then be 
used to extend the knowledge of another vocabulary.

For coverage of different types of radiotherapy techniques, NCIt is 
preferred. NCIt also includes is-a relations that attempt to group radio-
therapy techniques into a reasonable hierarchy. Similarly, oncogenes, 
tumor suppressor genes, as well as gene products have coverage as NCIt 
concepts. The Gene Ontology (GO) (Ashburner et al., 2000) vocabulary 
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takes this a step further and aims to comprehensively catalog genes as they 
relate to discovered molecular functions, biological processes, and cellu-
lar components. For example, with respect to oncology, GO has a listing 
of genes associated with the biological process of cell population prolif-
eration, along with annotations and pointers to source references. This 
knowledge can be used in studies such as pathway analyses to discover 
cancer driver genes (Colaprico et al., 2020).

4. UMLS Limitations

When trying to combine over 200 vocabularies with an aggregate of over 
4.5 million concepts, mistakes are unavoidable. One of the biggest chal-
lenges is determining whether to merge concepts from different vocabu-
laries into one concept in UMLS. It may be better to err more on the side 
of caution and not make the mistake of merging two similar but distinct 
concepts. However, this strategy can lead to more unintended redundancy. 
Also, in some instances it can be highly debatable where to draw the line 
between similar vs equivalent, and this can shift depending on the context 
of the usage and the intention of the author.

One other major class of UMLS limitations is with regard to relations. 
The coverage of concepts vs relations we described earlier in SNOMED 
CT is reflected more broadly in UMLS and many of its constituent vocab-
ularies. The primary aim is for broad coverage of medical concepts. 
Representing relations is a secondary aim, with is-a relations many times 
prioritized over other types of relations. Given the stage of development 
of UMLS and its vocabularies, this is justifiably necessary: without first 
articulating the necessary concepts, one cannot begin to talk about rela-
tions with other concepts. 

It should be noted that UMLS attempts to address this gap in relations 
with what it calls the Semantic Network (McCray, 2003). It assigns broad 
subject categories (semantic types) to every UMLS concept, then overlays 
relations on top of these broad categories; for example, “injury or poison-
ing” disrupts “physiologic function”. These are “some–some” relations 
i.e. [some] injuries or poisonings disrupt [some types of] physiologic 
function, which can be useful at a high level, but at the level of granularity 
of clinical documentation the Semantic Network is of limited practical 
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utility and informativeness for relation-building algorithms in many 
instances.

Due to a lack of detailed coverage of many important relations within 
any one vocabulary (even is-a relations), one can utilize UMLS to com-
bine relations across vocabularies to greatly enhance, for example, the 
classification of diseases by pathophysiology and anatomy. Care should 
be taken during this procedure, as many vocabularies are not amenable to 
a simple merger of this kind. Curation at the level of ontologies and sub-
ontologies using biomedical informatics domain expertise may be 
required. One prominent example is ICD, which was not constructed with 
this use case in mind and is typically excluded as a source vocabulary in 
order to preserve the accuracy of this type of semantic expansion across 
vocabularies.

Many other classes of errors exist, but for the most part UMLS and 
their source vocabularies do a commendable job given the scale and chal-
lenges of the tasks involved. UMLS has demonstrated proven practical 
utility in countless projects involving biomedical information retrieval, 
data standardization, and interoperability. There are continuous efforts at 
improvement through manual vetting and automated error detection algo-
rithms. UMLS’s current stage of development and limitations gives us a 
sense of its evolutionary path and future stages of advancements.

It should be noted that machines with reasoning algorithms built on 
top of ontologies are able to behave as if they understand the layer of 
knowledge that exists in the ontologies, but this is not to say there is an 
equivalence of reasoning or understanding capabilities similar to what we 
possess as human beings. Thus, more correctly, when we say that the 
machine performs reasoning we mean to say that the machine mimics 
some types of reasoning powers that we have, and it does so only to the 
extent and the level of complexity that is designed into the structure of the 
ontology and reasoning algorithms.

5. KR Outside UMLS

There are some prominent vocabularies not in UMLS but pertinent to 
radiation oncology. RadLex (Langlotz, 2006) is built to be a unified 
vocabulary for radiology terms with a classification hierarchy that mirrors 
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the important conceptual categories in radiology reports. International 
Classification of Diseases for Oncology (ICD-O) is an extension to ICD 
used in cancer registries and oncology information systems (OIS). Its 
design is superior to ICD-10 alone because it explicitly recognizes there 
are multiple orthogonal categories of information that are clinically 
important to more accurately describing a tumor. It structures cancer 
descriptions according to tumor site (adapted from ICD-10’s malignant 
neoplasm section), histologic cell type, differentiation and grade, as well 
as a range of behaviors from benign to malignant metastatic. These cate-
gories can be thought of as slots to be filled in for a tumor description. By 
design, one slot is independent of another slot so many permutations are 
possible when filling in these slots, which leads to a rich and flexible way 
to describe many clinically important features of tumors.

OncoTree (Kundra et al., 2021) is a cancer classification system 
originally developed by Memorial Sloan Kettering. There is large overlap 
with NCIt and SNOMED CT classifications. Similar to ICD-O, it recog-
nizes the importance of classifications independent of tumor site. Unique 
to OncoTree, there are genomic subclassifications that are today pertinent 
to diagnostics, prognostics, and therapeutics such as representing “BCR-
ABL1-fusion positive chronic myeloid leukemia”.

The Radiation Oncology Ontology (ROO) (Traverso et al., 2018) 
purposefully reuses concepts from other vocabularies such as NCIt, FMA, 
ICD-10 and adds radiation oncology terms such as target volume, organ 
at risk, nonuniform margin that are infrequently or not at all covered by 
other vocabularies. The Radiation Oncology Structures ontology (ROS) 
contains a subset of anatomical and treatment planning structures relevant 
to radiation oncology delineation (Bibault et al., 2018).

As the reader can see, it is together with this mosaic of vocabularies, 
each with their own strengths in representing a subdomain of knowledge, 
that we are able to build a more comprehensive source of knowledge for 
machines to use — one that begins to parallel our own knowledge. There 
are undoubtedly other vocabularies/ontologies useful to radiation oncol-
ogy that are not exhaustively covered here. What we have described are 
the broad strokes and should represent a good first foray for exploring the 
world of knowledge representation as it applies to our field. There isn’t 
one single ontology that fits every radiation oncology need and it’s 
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unlikely this will ever be the case. Therefore, more ongoing work will be 
needed to create a universal standard that is fit-for-purpose: which vocab-
ularies should be used for which categories of concepts and relations 
important to radiation oncology (Hayman et al., 2019; Mayo et al., 2018; 
Phillips et al., 2020).

Further exploration of vocabularies and ontologies is recommended 
within UMLS and beyond. UMLS Metathesaurus Browser (National 
Library of Medicine, n.d.) (free registration required) and BioPortal
(Noy et al., 2009) are two popular websites for browsing biomedical 
vocabularies.

6. Medical NLP Backed by KR

Data standardization is the primary reason many biomedical vocabularies 
were created. Traditionally and even today, standardizing data is per-
formed predominantly by manual human data entry, whether it’s medical 
coders assigning ICD-10 codes for billing purposes, or oncologists select-
ing SNOMED CT codes in an EHR/OIS, or a clinical data abstractor 
entering ICD-O codes in a cancer registry. The vast majority of this work 
can and should be (semi-)automated. There are no hard-stop technical bar-
riers to doing so today.

Natural language processing (NLP; sometimes also called NLU for 
natural language understanding) is the preferred solution for this task. The 
promise of NLP is automated extraction of relevant information directly 
from the sentences, paragraphs in a patient record — information that may 
not exist elsewhere in a more organized and structured form — and stand-
ardizes that information for easier retrieval, analysis, and interoperability. 
An NLP engine reading through the entire EHR data set can theoretically 
be more thorough and accurate in extracting codes compared with a 
human being, while taking a fraction of the time required. Looking under 
the hood of NLP, it is heavily dependent on a KR system. Many medical 
NLP systems rely on a vocabulary to tell them which words or phrases are 
synonymous with one another. Vocabularies also represent different 
senses of the same word as separate concepts. As examples, cold could 
refer to temperature or illness; the abbreviation SOB has a very different 
meaning within and outside of medicine (shortness of breath in medicine). 
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Knowing the senses of a word helps the NLP choose the correct one in a 
process aptly named word sense disambiguation. A few vocabularies in 
UMLS have multilingual components: a medical concept is translated into 
multiple languages with the same ID code assigned to it across languages. 
NLP can use this feature to standardize patient data across multiple lan-
guages to enable interoperability across countries. Lastly, medical NLP 
systems designed for information extraction almost invariably produce 
output in the form of codes that are concept identifiers from a shared 
vocabulary (in order to standardize these medical concepts to a common 
knowledge space). This is true whether the NLP algorithm uses a vocabu-
lary as an integral part of the pipeline from the very start in dictionary-
based methods or whether the NLP is a transformer-based bidirectional 
encoder neural network in which the vocabulary codes are generated in a 
step termed entity linkage toward the end of the NLP pipeline. 

One should be aware that a generic NLP software package is not well-
suited to the above task. Instead, a specialized NLP system is usually 
designed with biomedical applications in mind from the start. This is due 
to the particular needs of the field such as the expanded dictionary of 
terms and abbreviations used in medicine, idiosyncrasies in the language 
model for patient records including those for negation and conveying 
uncertainty of findings (Chapman et al., 2001), differences in document 
templates, lemmatization geared specifically toward the biomedical 
domain (Lu et al., 2020), need for temporal processing to e.g. construct a 
patient timeline, and numerous other designs, features, and fine tunings 
involved. Thus, when we refer to NLP here, it is really a specialized 
medical NLP system that we have in mind and that the reader should be 
aware of. Some popular and freely available medical NLP systems in use 
today are cTAKES (Savova et al., 2010) and MetaMap (Aronson & Lang, 
2010). Promising future-facing NLP systems include BERT-based models 
such as BioBERT (Lee et al., 2020).

7. Applications of Knowledge Representation

NLP is one of the most promising technical applications for KR, with the 
potential for mass adoption in select use cases in the near future. 
Therefore, there is a large overlap in current and potential use cases 
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between NLP and KR in medicine. By combining the two, we can enable 
a wide gamut of radiation oncology end-user applications (Bitterman 
et al., 2021) in clinical practice, academia, industry, and the payer space. 
Here, we’ll focus on applications as they pertain to direct patient care and 
clinical research.

Standardization/curation of medical data remains one of the primary 
roadblocks to analytics for providers, academia, and industry support for 
these institutions. The way in which NLP + KR can help this process 
should be thought of as a stepwise process analogous to the six levels of 
autonomous driving capabilities in cars. Self-driving technology will 
advance in a stepwise manner from the first level of no automation to the 
last level of full automation. Fully autonomous driving on all open roads 
with human-level accuracy is currently impossible, but advanced driver 
assist technology currently is achievable, beneficial, and used on the road 
today. Similarly, NLP + KR is able to extract many types of medical infor-
mation from unstructured/unorganized data, with accuracies that are 
undoubtedly clinically useful today (it’s useful to remind ourselves that 
manually curated human data entry isn’t 100% accurate). This type of 
AI-assist may not be fully autonomous but can still reduce the amount of 
traditional manual work by upwards of 90%, which could easily tip the 
balance between an infeasible, time- and resource-intensive project to one 
that is feasible, scalable, and sustainable.

Semi-automation could work in the following way in a two-step pro-
cess: the NLP + KR machine would do the first pass analytics of informa-
tion extraction and standardization to a vocabulary. Then, subsequently, a 
human domain expert would always be involved to vet the results to make 
sure they are correct before being used in downstream analytics. This is 
analogous to the two-step process of performing a screening test then 
diagnostic test when necessary, taking advantage of higher sensitivity then 
higher specificity. In our case the machine can filter out the vast majority 
of non-relevant documents as much as possible while aiming to not 
exclude relevant information (aiming for higher recall/sensitivity). This 
filtered set of documents, paragraphs, and snippets of text is much smaller 
than the full medical record, takes less time to read through, and contains 
a much higher percentage of relevant information that the domain expert 
then can more easily vet through to find the correct answers, with the aim 
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of higher precision (positive predictive value) in the machine learning 
world (vs. specificity). The vetting process would be AI-assisted as well, 
with the machine highlighting snippets of possibly relevant text along with 
recommended matching codes from a vocabulary, thus saving additional 
time in the text search and codification process. AI-assist plus manual vet-
ting (sometimes described as “human-in-the-loop” or intelligence 
amplification) is feasible and advantageous for a variety of applications 
including cancer registry abstraction, standardizing target volume labels, 
clinical trial recruitment, adverse events monitoring, semantic (intelligent) 
search of the medical record, and clinical quality measures capture.

For cancer registries, the primary task would be semi-automating cod-
ing into a North American Association of Central Cancer Registries 
(NAACCR) format (in the US). Ontological reasoning can be important. 
For example, NLP may pick up the concept “Herceptin” in the medical 
record. Ontological relations can be used to infer that “Herceptin” has 
ingredient “trastuzumab” and that “trastuzumab” is-a “anti-HER2 mono-
clonal antibody” which in turn is-a “antineoplastic biological agent” 
which now can be matched at the same level of granularity to a cancer 
registry’s NAACCR formatted field of “biological response modifiers”. In 
general, this type of ontological reasoning is a powerful tool to increase 
the degree of automation, although it should be noted that any depth of 
reasoning more advanced than what’s described here becomes exponen-
tially harder for current technologies to perform in a consistently accurate 
way for clinical use. NLP also relies on upfront iteration and optimization 
steps to adapt to verbiage, abbreviations, and document templates that are 
idiosyncratic to a particular institution.

Semi-automation of ICD-O coding is another clear goal for AI-assist 
in cancer registries. On top of this goal, NLP can supplement ICD-O 
descriptions by utilizing other, more detailed and expressive vocabularies 
compared with ICD-O, such as SNOMED CT. By doing so, we can extract 
multiple SNOMED CT medical concepts that when combined can better 
express a more complete, accurate, and granular clinical description. This 
would, for example, include genomic characterization. Depending on the 
level of manual vetting required, this process could exponentially expand 
the breadth and depth of clinical information captured in registries in a 
scalable way.
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An analogous situation applies to adverse events monitoring. CTCAE 
is a well-established vocabulary for this task, but there are well-known 
limits to the granularity of the vocabulary. We can use other vocabularies 
to supplement CTCAE and capture a more detailed clinical description. 
The end result is a semi-automated adverse events capture pipeline that is 
applicable to treatment monitoring, research studies, clinical trials, and 
“real-world” postmarketing surveillance. Adverse events can be correlated 
with clinical phenotypes extracted by NLP. Ontological relations again 
can be used to “connect-the-dots”. Statistical insights generated from such 
analyses may lead to immediately correctable actions in clinic if the cause 
were of a logistical nature in the delivery of medical care. Other categories 
of insights may serve as hypothesis generation for more rigorous studies 
of biological mechanistic causes that can subsequently translate from 
bench to bedside.

Radiation treatment summaries can also benefit from KR. A consen-
sus recommendation was recently proposed for a treatment summary 
template (Christodouleas et al., 2020). Further standardization using 
vocabularies would lead to greater machine readability that can be used 
for more automated clinical decision support and cross-institution analyt-
ics. Useful vocabularies include CTCAE, SNOMED CT for adverse 
events; RxNorm for systemic therapy; ICD-O, SNOMED CT, NCIt for 
tumor characterization; FMA, SNOMED CT for anatomy; and NCIt for 
radiotherapy techniques, with useful overlap in coverage of conceptual 
entities among these vocabularies. NLP can be reasonably expected to 
achieve clinically useful accuracy for a subset of the above vocabulary 
extractions with minimal vetting needed, which should offset the majority 
of the added burden of including these vocabulary codes in the radiation 
treatment summary. Furthermore, if a standardized treatment summary 
template is the starting point for NLP extraction, accuracy is expected to 
increase compared with NLP extraction on more unstructured data — 
non-relevant information is already filtered out from the summary. A 
bonus increase to accuracy can be achieved with ontological relations 
used to filter NLP results to specific categories of information pertinent 
to the section of the summary. This technique is analogous to what has 
been done outside of the radiation oncology space e.g. in NLP extractions 
of problem lists, we can reasonably confine our results to only concepts 
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that descend from the ontological ancestors of diseases, syndromes, 
symptoms.

8. Machine Learning Backed by KR

ML has demonstrated usefulness for many potential applications in the 
clinical space. One application is in patient stratification: predicting 
patient subpopulations at highest risk of negative outcomes and introduc-
ing appropriate interventions such as ones aimed at early detection, 
reducing adverse events, reducing hospitalization time and urgent care 
visits — in an effort to ultimately increase quality of life and survival. 
Purely symbolic pattern detection efforts have already shown usefulness 
in estimating risk. Even more recently, strides in artificial neural network 
(ANN)-based ML development have shown that highly complex features 
can be learned by the network without a priori assumptions, for example 
functionally reproducing the fusiform face area in the inferior temporal 
cortex of our brains used for facial recognition. However, the data sets 
used to train these networks are usually massive — many orders of mag-
nitude larger than data sets currently available in patient record databases. 
Therefore, today in medicine, augmentation using KR remains an impor-
tant addition for increasing accuracy of ML models whether for ANNs 
(Michalopoulos et al., 2021) or for more traditional methods such as 
feature generation for support vectors machines and random forests. 

Historically, the richest ML features have been generated by human 
domain experts using their own knowledge and experience to shape these 
features. With ontological reasoning, we can automate feature generation 
to a useful degree and include complex and relevant features that were not 
previously possible to automate. This process would be similar to what 
was outlined earlier: using ontological relations to create a web of relevant 
background knowledge that surrounds the raw input data. This KR-enriched 
data set would then serve as the new input to ML. Recent precedents of 
analogous approaches exist and have been successfully applied in many 
areas of ML and ANN research. As a canonical example, convolutional 
neural networks (CNNs, a type of ANN) that are meant to classify images 
usually develop near-to-input network layers that recognize line orienta-
tions, similar to orientation columns in the primary visual cortex of our 
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brains. This is a grossly reproducible finding for many CNNs trained from 
scratch for computer vision applications. Therefore, rather than reinvent-
ing the wheel each time, we can re-use what are functionally orientation 
columns as one useful set of features, thereby significantly reducing the 
time and cost of ML training. More generally, this type of approach is an 
example of transfer learning.

Another consideration is that there’s no guarantee that a neural net-
work can learn all the knowledge contained within an ontology. There are 
multiple variables of relevance here including data size, common vs rare 
findings, repeatability of training results, stability of representation with 
noisy input, the high non-linearity of many ontological relations com-
pared with the limits of gradient descent on a finite data set. It is far more 
practical to use the ontological representations rather than try to reinvent 
the wheel. Of course, there are boundless features not contained in ontol-
ogies that should and need to be learned via ML training, but these two 
methods are complementary and shouldn’t be thought of as mutually 
exclusive. Much can be achieved already in ML with just symbolic pro-
cessing. KR backing can potentially take this to the next level of accuracy.

KR-backed feature enrichment can be equally useful for non-super-
vised methods/clustering to provide early insights to hidden undiscovered 
structures, relationships, and correlations in the data. All the usual caveats 
apply for use in supervised or unsupervised ML, including considerations 
of overfitting.

9.  ANNs, Knowledge Representation, and 
Explainability

One important point of consideration that’s worthy of discussion is the 
general topic ANNs. An ANN is able to retain a representation of the data 
that it’s trained on, but the form of this representation is in stark contrast 
to the form in ontological representations. ANNs, at their core, represent 
knowledge and processes as very large mathematical matrices of artificial 
“synaptic” weights with varying high-level architectures. Gaining a 
detailed conceptual understanding of the representations within neural 
networks can be highly challenging even for their creators. Exceptions 
always apply, but this is the general rule especially for the ever more 
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complex and exponentially large networks trained these days for state-of-
the-art accuracy. 

In contrast, ontologies are intuitive by nature, fitting with our precon-
ceived notions of what are the important concepts/relations in medicine 
and radiation oncology. This intuitive design has a very important inherent 
advantage. It’s easily explainable. There is a recently popularized term 
called “explainable AI”, which is a phrase defined more by what it 
excludes rather than what it includes. Its usage was popularized specifi-
cally by the need to have a contrast against traditional ANNs which are 
typically described as “black boxes” i.e. it is hard to decipher how they 
work. Thus, any AI technology that is less of a “black box” is more 
“explainable AI”. Ontologies fit well within an explainable AI framework. 
The concepts represented make sense to us and if we use ontologies to 
build algorithmic reasoners, we can easily trace back the steps in logic for 
how our machine arrived at a conclusion. If the conclusion is incorrect, 
there are straightforward ways to make changes to either the reasoner or 
the ontology as appropriate. Making corrections to ANNs with certain 
guarantees of correctness is a much harder task. In fact, trying to change 
the output of an ANN for a given input could very well change its output 
in unpredictable ways for different/unrelated inputs. ANNs can also be 
“brittle” in their output. Subtle differences in input data format compared 
with data that it was trained on — differences that would not stump a 
human being — can sometimes lead to highly unpredictable and incorrect 
results for an ANN.

It’s this uncertainty and lack of easy explainability/provability that is 
a major hindrance for trust and adoption of ANNs for many uses in medi-
cine. When an ANN makes an error in other fields — say a shopping 
recommendation engine — the error doesn’t typically result in risk to 
human lives. Explainable AI is not a guarantee against bad outcomes but 
should be thought of as an important layer of protection against such out-
comes.

The above considerations may make it seem that there is no role for 
ANNs. Quite the opposite, we believe some form of ANN will be key to 
the future of knowledge representation universally, in medicine and else-
where. However, there is no predictable timeline for this future. ANNs are 
rapidly evolving and have many uses outside of KR, but within KR there’s 
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still a significant gap for usage in pure medical knowledge representation 
as a replacement for ontologies — thus the considerations and cautionary 
language elaborated above. Some state-of-the-art NLP engines use ANNs. 
Their trained models have an internal representation of semantic elements 
from the original text corpus used to train it and contain structural ele-
ments that are functionally analogous to many ontological concepts and 
relations. However, transparency and sufficient understanding into the 
details of how knowledge is represented in these ANNs is again hard to 
come by. Near-term practical challenges include efficiently updating 
knowledge contained within an ANN with new information such as add-
ing the names and contextual knowledge of new drugs that are introduced 
with regular cadence to the market, and more easily correcting mistakes 
in ANN model representation in more stable and predictable ways. 

10. The Future of KR in Medicine

The sheer size and number of biomedical informatics ontologies that one 
can pick and choose from is a pleasant surprise to many who first venture 
into knowledge representation in medicine. There are already significant 
challenges that KR can help tackle, but it still represents a drop in the 
ocean of the totality of medical knowledge in existence. Here’s a peek at 
what the future of medical KR may hold.

As mentioned earlier, relationships other than is-a taxonomic hierar-
chy relationships will be represented more widely. Today, for example, 
causative agents linked to their respective diseases are sparsely repre-
sented. If they are represented, it’s mostly in the form of subject–
predicate–object triples at the level of e.g. some “viruses” can cause some 
“cancers”. It’s at a very high level of abstraction; there little nuances; 
therefore, not that useful as a piece of knowledge to reason on. A more 
granular statement that fills in the blanks a bit better is “Heliobacter 
pylori” can cause “gastric cancer”. If one were to build a machine rea-
soner on top of this statement, it would be much more useful. For exam-
ple, in clinics, for every gastric cancer patient seen, the machine will 
automatically search for a history of H. pylori infection and if it exists in 
the medical record, will present this fact to the physician. As another 
example, if a patient reports diarrhea after treatment, the machine should 
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be able to use enhanced ontological relations to flag recent radiotherapy 
as well as recent antibiotic use, if present. There’s little doubt representa-
tions of this kind will be more complete in the future.

Subject–predicate–object triples are how most biomedical KR sys-
tems store relations. They are also the mainstays at the top tech companies 
in the world. However, even for moderately complex medical information 
there is a need to improve the underlying KR architecture in various ways 
to match that complexity. We need to represent probabilistic relationships 
(and with more nuance) for machines to use e.g. “the relative risk of gas-
tric non-cardia adenocarcinoma in individuals with H. pylori infection 
compared with no infection is six-fold”. As another example, the collec-
tion and pattern of symptoms offers clues to a diagnosis. Therefore, 
representation of a collection of symptoms associated with a disease is 
warranted. Hypergraph representations may be a more efficient represen-
tation of this information, a more general form of the subject–predicate–
object triple expressed as a graph, and compatible with the greater range 
of flexible expressions that are basic properties of set theory. Still, this is 
only the beginning of a generalized knowledge framework for reasoning 
on diagnoses: it must also include dimensions such as pertinent negatives, 
time course, severity, relevant past medical, family, and social history, 
active medications, physical exam findings to begin to have a firmer grasp 
on the clinical situation.

In the future, much of this knowledge engineering — creating new 
and increasingly complex knowledge — may not need to be done manu-
ally but instead could be extracted from “real-world” data such as patient 
records as well as scientific literature. Relations can be weighted to repre-
sent the strength of statistical associations and co-occurrences (versus a 
binary one that only expresses a relation/no relation representation). For 
example, patient record search could become even smarter. Given a seed 
concept of “cancer”, a search engine should be able to pull up relevant 
past CT and PET scans and reports, pathology reports, referral notes, neo-
adjuvant chemotherapy regimen and automatically present this informa-
tion to the radiation oncologist before his first consult with the patient. 
Current simple attempts at defining these relations, many in the form of 
co-occurrence databases, have been of limited value and usefulness due to 
the high level of noise in these databases. Near future attempts would 
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require more domain knowledge to more properly design analytics for 
much higher accuracies. 

Furthermore, it’s exciting to ponder the largely undiscovered possi-
bilities of what neural networks can bring to pure knowledge representa-
tion. For example, what are the best methods to interrogate, understand, 
manipulate, refine, extract, and utilize the vector representations latent 
within large-scale neural networks and the richness of the information 
learned in a self-supervised way on a large medical text corpus? What 
depth of reasoning powers can we achieve with the knowledge that resides 
in these ANNs? Disassembling, understanding, and utilizing the core rep-
resentations of simpler neural networks such as word2vec implementa-
tions give us a glimpse of what might be possible with more complex and 
advanced ANN embeddings such as those based on shared convolution, 
attention, and beyond.

11. Conclusion

The geometry and dimensionality of knowledge representation architec-
tures can be as complex as the best of human thought. That’s the chal-
lenge, the opportunity, and the creativity of it — to flexibly, efficiently, 
and scalably represent the best and brightest ideas that humanity has dis-
covered and created. Radiation oncology care is one of the most complex 
fields in medicine with foundational underpinnings in multiple scientific 
domains. Developing and applying KR-based AI for radiation oncology 
will not only advance our specialty and benefit patient care but also 
advance the basic science of artificial intelligence.
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Radiation Oncology
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Abstract
The bulk of clinical information in electronic medical records (EMR) is in 
narrative form. Unlike structured data, while free text is effective and convenient 
for communication and documentation, it is not easily translatable for research, 
quality improvement, or clinical decision support. Recently, there has been 
increasing interest in the use of natural language processing (NLP) to extract the 
valuable clinical information from free-text narratives available within EMRs. 
This chapter aims to provide an overview of NLP technologies, applications in 
medicine and oncology in particular, and future directions that will facilitate 
advances in the field of radiation oncology.

*These authors contributed equally to this work.
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1. Introduction

Free narrative text is a convenient and commonly used form of communi-
cation in medicine. However, this type of text is difficult to search, sum-
marize, and analyze for research or quality improvement purposes. 
Because of this, there has been increasing interest in using natural lan-
guage processing (NLP) in the field of medicine across a wide variety of 
applications. In this chapter, our aim is to provide an overview of NLP, 
applications in medicine and oncology in particular, current work within 
radiation oncology, and future directions that will facilitate advances in 
our field.

2. What Is NLP? 

NLP is an area of research in artificial intelligence (AI) at the intersection 
of computer science, linguistics, and psychology. NLP involves the use of 
a range of computational techniques to analyze and represent naturally 
occurring text to be used for a variety of tasks and applications. Because 
NLP involves such a wide range of disciplines, it is important for those 
interested in working in NLP to have a good knowledge base of concepts 
prior to proceeding. There are generally two overarching goals: language 
processing and language generation. 

2.1. The history of NLP

Research into NLP has been ongoing for several decades, dating back to 
the late 1940s. One of the oldest applications of NLP is machine transla-
tion, which is the task of translating a text from a source language to a 
target language (Koehn, 2009). Later on, more sophisticated rule-based 
methods rooted in linguistic principles were developed, but due to natural 
language’s vast size and unrestrictive nature, problems arose such as rules 
becoming unmanageably numerous and interacting unpredictably, or dif-
ficulty in handling ungrammatical prose that was comprehensible by 
humans but not with handwritten rules. Thus, since the 1980s, the trend 
has moved toward data-driven methods for machine translation, including 
statistical and neural-based approaches (Okpor, 2014). 
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Nowadays, NLP strategies typically follow rule-based, statistical, or 
hybrid approaches. Rule-based methods are designed by domain special-
ists and have the advantage of interpretability. However, as mentioned 
above, with increasingly complex rule-based systems, interpretability 
decreases, with rules interacting unpredictably. As such, they become dif-
ficult to replicate and update. Because of this, rules handle “ungrammati-
cal” prose very poorly, even though this type of text is comprehensible by 
humans. Statistical systems, also known as machine learning systems, are 
designed using training data. In the case of NLP, the training data are large 
bodies of text (corpora), which have now become widely available and 
provide the gold standards for evaluation. 

As the field of NLP research expanded, more and more corpora have 
been developed, including specialized data sets for purposes such as senti-
ment analysis, voice recognition or chatbots, and audio speech data sets, 
many of which can be found for free online. 

2.2. NLP definitions

In the following, we explain common sub-problems and associated tasks 
in NLP. 

Low-level NLP tasks: 

• Sentence boundary detection: Detecting where one sentence ends and 
another begins. 

· Tokenization: Separating a piece of text into smaller units called 
“tokens”. Tokens can be broadly classified into words, characters, or 
subwords. 

· Part-of-speech assignment to individual words (“POS tagging”): 
Categorizing words in a text in correspondence with a particular part 
of speech, depending on the definition of the word and its context. 

· Morphological decomposition: Comprehending words through 
decomposition of compound words. Useful sub-tasks include stem-
ming, which is a more crude heuristic process of removing the ends of 
words, and lemmatization, which is the conversion of a word to a root, 
often by removing suffixes.
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· Shallow parsing (“chunking”): Analyzing a sentence to identify the 
constituents (noun groups, verbs, verb groups, etc). 

Higher-level NLP tasks:

· Grammatical error correction: Correcting various errors in text such 
as spelling, punctuation, grammatical, and word choice errors. 

· Named entity recognition: Scanning text and pulling out fundamental 
entities and classifying them into predefined categories. Entities are 
the most important chunks of a particular sentence, such as noun 
phrases and verb phrases. Examples of entities include people’s 
names, dates and times, disease names, and geographical locations. 

· Word sense disambiguation: Determining a homograph’s correct 
meaning, which involves properly identifying words and determining 
the specific usage of a word in a particular sentence.

· Negation and uncertainty identification: Differentiating when a 
named entity is absent and quantifying the uncertainty of this 
inference. 

· Relationship extraction: Extracting semantic relationships from a text, 
usually occurring between two or more entities of a certain type, and 
falling into a number of semantic categories. 

· Temporal inferences/relationship extraction: Making inferences from 
temporal expressions and relations. 

· Information extraction: Extracting meaningful information from 
unstructured text data and presenting it in a structured format. This 
task often comprises many of the tasks described previously. 

2.3. NLP transformation and representation methods

Next, we define transformation and representation methods, which are 
used to convert text into mathematical models that can then be processed. 
These models typically assign probabilities, frequencies, or weights to 
words, sequences of words, sections of documents, or whole documents. 

· 1-hot encoding: representing categorical variables as binary vectors. 
In NLP, the length of the word vector is equal to the length of the 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



b4808 Artificial Intelligence in Radiation Oncology“6x9” 

Natural Language Processing for Radiation Oncology 161

vocabulary, and each unique observation (e.g. word) is mapped to an 
integer value. Then, each integer value is represented as a binary vec-
tor that is all zero values except the index of the integer, which is 
marked with a 1. A list of words creates an array of vectors or a 
matrix. A list of sentences creates a three-dimensional tensor. This 
representation does not take into account the relationships between 
words and does not convey information about their surrounding 
context. 

· Bag-of-words: a model that represents the text as an unordered set of 
words, ignoring their original position in the text and keeping only 
their frequency. This method of representing text is useful in applica-
tions such as sentiment analysis and detecting the language a text is 
written in. 

· TF–IDF (term frequency–inverse document frequency): a statistical 
measure that evaluates how relevant a word is to a document in a col-
lection of documents. Term frequency is defined as the frequency of 
the word in the current document. Inverse document frequency is 
defined as log(N/d), where N is the total number of documents and d
is the number of documents that contain the word. The TF–IDF 
weight is the product of these two metrics. With TF–IDF, discrimina-
tive words with low term frequency in a document but which appear 
in very few other documents are weighted more highly than terms 
with have high raw frequency in a document but that appear with high 
frequency in all documents. 

· N-gram model: estimates the probability of the next word in a 
sequence given the previous words. A 2-gram (or bigram) is a two-
word sequence of words, and so on. Probabilities for various n-grams 
can be obtained from large bodies of texts. 

· Word embedding: techniques that map words or phrases to continuous 
vector representations that predict the likelihood of those words/
phrases occurring in the context of other words/phrases. In general, 
this involves projecting a word from a dimension equivalent to the 
vocabulary length to a lower dimensional space. These techniques are 
primarily used with neural network models. 

· Recurrent neural networks (RNN): a variant of neural networks that 
includes loops and allows information to persist, commonly used in 
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NLP. The standard input is a word instead of the entire sample (as in 
the case of a standard neural network). Each word is a separate input 
occurring at time ‘t’ and uses the activation value at ‘t-1’ as an input 
in addition to the input at time ‘t’. The architecture categories are: 
Many-to-One (many inputs used to give one output, e.g. classification 
tasks), One-to-Many (generates a series of outputs based on a single 
input, e.g. music generation), and Many-to-Many (e.g. machine trans-
lation). This provides two main advantages: flexibility for the network 
to work with varying sentence lengths, and sharing features learned 
across different positions of text. However, RNNs are only capable of 
capturing the dependencies in one direction of language, and are not 
very good at capturing long-term dependencies (i.e. the vanishing 
gradient problem). The following two definitions are the main modi-
fied architectures that are used in almost every application of RNNs. 

· Gated recurrent unit (GRU) (J. Chung et al., 2014): a modification to 
the basic recurrent unit that consists of an additional memory unit, 
commonly referred to as an update gate or a reset gate. This unit uses 
tanh as an activation function since its output can be both positive and 
negative and can be used for scaling up or down. The output from this 
unit is then combined with the activation input to update the value of 
the memory cell. Thus, at each step, the value of both the hidden unit 
and the memory unit are updated. This helps capture long range 
dependencies and fixes the vanishing gradient problem. 

· Long short-term memory (LSTM): instead of having one update gate 
(as in GRU), there is an update gate and a forget gate. This gives the 
memory cell an option of keeping or dropping old values, for exam-
ple, dropping the information regarding an old subject’s gender when 
a new subject is encountered. 

· Transformer Networks: a simple network architecture based solely on 
self-attention mechanisms (as opposed to complex RNNs or convolu-
tional neural networks that rely on sequence to sequence models). 
Attention mechanisms are not reliant on the sequencing and the dis-
tance between input or output, but instead gather global dependencies 
between inputs and outputs. This allows for a deeper understanding of 
the context and relationship of language. In addition, the model 
uses multiple attention layers, which are stacked on top of each other. 
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This maintains information from all prior layers of the network, which 
avoids the vanishing gradient problem as seen in RNNs.

· Bidirectional Encoder Representations from Transformers (BERT) 
(Devlin et al., 2019): a novel language representation model that 
applies multi-layer bidirectional training of transformers using 
Masked Language Model (MLM). Inputs are read in a non-directional 
fashion by jointly conditioning on both left and right contexts, instead 
of in a unidirectional (right-to-left or left-to-right) manner. The MLM 
randomly masks some of the words from unlabeled input with the 
pre-training objective of predicting the original word based on the 
context of the other inputs. At the same time, the BERT model is pre-
trained for Next Sentence Prediction (NSP) by understanding sen-
tence relationships. These learned, pre-trained parameters are then 
fine-tuned for specific downstream tasks, which can be done rela-
tively quickly and inexpensively. BERT uses a unified architecture 
across different tasks; thus, the same model can be applied to a broad 
variety of NLP tasks and has outperformed many task-specific archi-
tectures. A few examples of BERT-based models that apply to the 
field of medicine include BioBERT (BERT with integration of bio-
medical corpora for biomedical text mining), UmlsBERT (BERT with 
integration of clinical domain knowledge using the Unified Medical 
Language System clinical metathesaurus), and Med-BERT (BERT 
with integration of structured EMR data set) (Lee et al., 2019; Micha-
lopoulos et al., 2021). 

Now that we have defined basic concepts that are fundamental to 
NLP, we will explore the various ways that NLP is applied within medi-
cine. Then, we will examine the progress in NLP thus far within the field 
of oncology and then more specifically within radiation oncology 
throughout the rest of this chapter. 

3. NLP in Medicine

In modern medicine, electronic medical records (EMRs) contain most of 
the clinically important data, most often not encoded within structured 
data fields but rather in clinician-generated narrative text. These data are 
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often difficult to access, let alone analyze, in a critical, comprehensive, or 
structured way. Recent changes in health information technology have 
drastically increased the availability of data for research and quality 
improvement. The HITECH Act under the 2009 American Recovery and 
Reinvestment act has encouraged widespread use of EMRs, and their 
ubiquitous use has led to increasing volume and scope of data collected. 
However, most of the data cannot be easily extracted in a usable way from 
EMR. There is, therefore, increasing interest in applying NLP in the 
clinical setting, and research has been thriving, as evident in the increasing 
number of articles published about NLP in medicine over the past two 
decades (Wang et al., 2020).

3.1. The linguistic string project

The use of NLP in the clinical setting began in the 1960s. The Linguistic 
String Project was an early study starting in 1965 that focused on NLP in 
the medical setting, including a dictionary of medical terms, and addressed 
issues such as de-identification, parsing, mapping, and normalization of 
clinical text (Sager et al., 1987). Research in this area increased in the 
1970s and 1980s, continuing to demonstrate that it was feasible to struc-
ture clinical information occurring in text. The Unified Medical Language 
System (UMLS) was initiated in 1986 by the National Library of Medicine 
(NLM), and provided controlled vocabularies of medical concepts with 
mappings across the vocabularies. Soon, more and more NLP systems 
were developed that demonstrated the utility of NLP in the clinical 
domain for data extraction in the late 1980s and 1990s. 

3.2. The realtime outbreak and disease surveillance system

Another early application of NLP in medicine was the Real-time Outbreak 
and Disease Surveillance (RODS) System initially deployed in 1999, a 
public health surveillance system for early detection of disease outbreaks 
by classifying chief complaints into syndrome categories (Tsui et al., 
2003). Detection algorithms monitored complaints from patients in a data-
base of emergency department cases for anomalous patterns of occurrence 
(Wong et al., 2002). Soon, it was demonstrated that free-text triage chief 
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complaints from emergency department visits could be successfully 
encoded into diagnostic codes and syndromic categories that could be 
used for biosurveillance (Chapman et al., 2005). However, due to the 
varying length and quality of the free-text descriptions within chief com-
plaints and lack of standard nomenclature, use of chief complaint data in 
decisions and research has been difficult. One possible solution reported 
has been development of contextual embeddings with the goal of mapping 
free-text chief complaints to structured labels and deriving a standardized 
dictionary of chief complaints (Chang et al., 2020).

3.3. Predicting patient outcomes

Across various clinical settings, NLP has been incorporated into develop-
ing algorithms to predict patient outcomes. Multiple groups have reported 
on neural network models using NLP to predict disposition including 
hospital admission from emergency department nursing and physician 
notes in combination with available clinical data (Zhang et al., 2017). 
Algorithms have also been developed to predict intensive care unit out-
comes, including in-hospital mortality or prolonged ICU stay, with good 
predictive performance (Marafino et al., 2018). These NLP-augmented 
models are often developed using clinical trajectory models leveraging 
predictor variables such as vital signs and laboratory tests and enriching 
these models with information extracted from clinical notes (Marafino 
et al., 2018). 

3.4. Monitoring adverse drug events

NLP has also been applied to monitor adverse drug events (ADEs), in 
order to quantify the incidence and risk of ADEs, identify patients at risk, 
and provide earlier and more accurate ADE detection. Several initiatives 
have emerged to establish and develop a global knowledge base to
standardize information regarding drugs and their health outcomes of 
interest (Boyce et al., 2014). For example, Duke et al. developed an NLP 
application which extracts adverse events from product labels to generate 
a standardized ADE knowledge base (Duke & Friedlin, 2010). Since 
then, researchers have been working to identify the optimal sources of 
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information from which to extract ADE data. There has also been research 
into using clinical narratives to identify ADEs; for example, using existing 
NLP systems such as MedLEE (Friedman et al., 2004) to process patient 
records and identify ADEs (Li et al., 2014). Proposed future directions 
include extraction of information from social media, e.g. online health 
forums and social networks, as patients increasingly share their experi-
ences with medications online.

3.5. Processing medical literature for clinician use

Another area that is of interest is using NLP models to aid in the process-
ing of medical literature, as clinicians who practice evidence-based medi-
cine are required to incorporate the latest scientific research into their 
practices. In order to develop such models, corpora specific to medical 
literature are necessary. As discussed in the previous section, modern NLP 
models are often trained using corpora, many of which are freely available 
online. However, the data sets available for the medical setting are more 
limited, and many are recently developed or currently in the works. In the 
2000s, studies demonstrated that key elements could be extracted from the 
abstracts of medical articles, including statistical techniques used and 
clinically relevant aspects (Demner-Fushman & Lin, 2007). Nye et al. at 
Northeastern University developed EBM-NLP, a corpus of about 5,000 
abstracts of articles describing clinical randomized controlled trials, anno-
tated using PICO elements (Populations, Interventions, Comparators, and 
Outcomes) (Huang et al., 2006; Nye et al., 2018; PICO Extraction, n.d.). 
The eventual goal of developing corpora such as EBM-NLP would be to 
provide physicians with a way to easily search and organize the published 
literature while practicing evidence-based medicine. Examples include 
improving medical literature search and retrieval systems and extracting 
structured information to automate knowledge base construction.

3.6. Design and implementation of clinical trials

Next, we turn our attention to the design and implementation of clinical 
trials. Currently, a critical rate-limiting step for clinical trials is defining 
and identifying the patient cohort for randomized controlled trials. 
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Poor cohort definition can lead to expensive protocol amendments or 
failed recruitment. Thus, different avenues to address this using NLP have 
been explored. First, since eligibility criteria are mostly documented as 
unstructured free-text, many eligibility criteria representations have been 
developed (Weng et al., 2010). For example, Tu et al. designed the 
Eligibility Rule Grammar and Ontology for clinical eligibility criteria and 
demonstrated its effectiveness in transforming free-text eligibility criteria 
into computable criteria (Tu et al., 2011). Meanwhile, other groups were 
working on developing information extraction systems to parse and for-
malize eligibility criteria (Kang et al., 2017). The next step will be trans-
forming the structured eligibility criteria to execute cohort queries on 
standards-based clinical databases. Yuan et al. published their work on 
Criteria2Query, a hybrid information extraction pipeline using named 
entity recognition that can be used as a natural language interface to clini-
cal databases, demonstrating usability with a 0.795 and 0.805 F1 score for 
entity recognition and relation extraction, respectively (Yuan et al., 2019). 

3.7. Future applications/directions

Research involving NLP in medicine has been developing rapidly over the 
past few decades, now averaging over 100 publications annually (Wang 
et al., 2020). As detailed in this section, information extraction and syntax 
parsing are the most common uses of NLP in the clinical domain. The 
most common subject area in NLP-assisted medical research is unsurpris-
ingly in oncology, accounting for the highest proportion of studies pub-
lished about medical NLP. Advances in using NLP to facilitate cancer 
research will be the focus of the next section in our chapter. 

4. NLP in Oncology

As discussed, most of the data archived in EMR is in free text form and 
cannot be extracted in a readily analyzable form. Free text data allows for 
personalized documentation for each patient and can capture more 
nuanced information, especially longitudinally, as oncologic status needs 
to be monitored over time. However, in a retrospective or research setting, 
these data then need to be extracted and normalized into useable data, 
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typically in a tabular representation. In addition, there must be inter-
operator transferability of information as patients are often cared for in a 
multidisciplinary fashion and may not stay within the same healthcare 
network.

4.1. Radiographic surveillance and diagnosis

In the realm of oncology, there are many areas in which NLP can have a 
transformative impact on data extraction (Spasić et al., 2014; Yim et al., 
2016). Much of the focus has been on semi-structured texts such as radiol-
ogy or pathology reports. Hripcsak et al. demonstrated the use of NLP in 
translating clinical prose of radiology findings and impressions reports 
into structured semantics that could be coded for (Hripcsak et al., 2002). 
Here, NLP was used to code narratives for 10 years’ worth of chest radio-
graphs, which included over 800,000 radiographs, at an urban academic 
center, and was compared to manual coding, resulting in a sensitivity of 
0.81 and specificity of 0.99. This could potentially translate to more accu-
rate hospital diagnosis coding, automated decision, support, and clinical 
research (Hripcsak et al., 1995). The ability to extract data by a standard-
ized method can pave the way for diagnostic surveillance. Specifically, in 
regard to potentially malignant lesions where temporal change over time 
is critically important in addition to new findings on imaging, NLP can be 
used to alert physicians to critical findings to aid in unmissed surveillance 
and timely diagnostic work up. Gara et al. demonstrated this by develop-
ing a system to alert physicians for potentially malignant liver lesions 
(Garla et al., 2013). Not only is there a role for NLP in detection of malig-
nancy, NLP can also be utilized to characterize a lesion’s status over time. 
For example, Cheng et al. utilized NLP to classify tumors in a cohort of 
brain tumors as stable, progressing, or regressing with 80.8% sensitivity 
and 91.6% specificity (Cheng et al., 2010). 

4.2. Detailed pathological, molecular, and genomic features

There has also been work in the use of NLP for extracting information 
from narrative pathology reports to efficiently gather large volume data 
and appropriately categorize disease diagnoses (Leyh-Bannurah et al., 
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2018). Cancer genetics and phenotypes are increasingly being used to 
tailor therapy (Savova et al., 2017). Extracting specific tumor characteris-
tics, such as histology, staging features, genomics, can allow for selection 
of appropriate patient cohorts for studies without the tedious human 
role of parsing out free text forms. In addition, this allows for a wider 
analysis of biomarkers based on immunohistology reports that may not be 
specific to a single diagnosis or type of cancer. This, in part, requires an 
accessible database of known pathological diagnoses with expression of 
certain biomarkers to aid in diagnosis and prediction of pharmacological 
response (Lee et al., 2018). Though there exists an online resource from 
Pathpedia, available data are dependent on journal articles addressing the 
biomarkers of interest, which is not always the case. Thus, an NLP algo-
rithm to extract these data can be incredibly informative. Given the abun-
dance of information within pathology specimens, institutions are also 
utilizing NLP to dynamically populate a continuous tumor registry in a 
comprehensive manner (Oliwa et al., 2019).

4.3. Identifying patient cohorts from EMR

Both radiology and pathology in addition to clinical assessment play 
critical roles in identifying patients within a desired cohort. NLP technol-
ogy has shown promise in appropriately classifying cancer diagnoses 
from semi-structured and free-text documentation, identifying terminol-
ogy related to a cancer diagnosis, and if the relation with the patient is a 
positive or negative one, often with high F-scores (D’Avolio et al., 2010). 
Often, billing codes are utilized to identify patient cohorts, though this has 
been achieved with variable accuracy. Potential areas for error include 
limited clinical data, diagnostic errors, or miscoded data (Peabody et al., 
2004). One should keep in mind that ICD-9 codes were intended for reim-
bursement purposes, and thus, may not always align with clinical goals; 
however, this has been an easy method to identify patients. NLP can 
potentially identify cases that have more complexity than what is captured 
with a billing code, which may not be as specific. NLP methods have been 
compared to ICD-9 code methods to identify certain cancers. In evaluat-
ing the accuracy of identifying pancreatic cancer in those with IPMN, 
NLP demonstrated marked greater specificity (94% vs 46%) and PPV 
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(84% vs 38%), though with a sensitivity of 87% vs 95% when using 
ICD-9 codes (Friedlin et al., 2010). A combination of ICD-9 and NLP has 
been suggested to improve case identification (Danforth et al., 2012). 

4.4. Identifying cancer stage from EMR

In addition to identifying patients with a certain disease, appropriate stag-
ing is critical in oncology for both management and predicted outcomes. 
Often, staging data are missing from large cancer registries, even in those 
with mandate stage data collection, and can be inaccurate. When data are 
not entered prospectively, it is even more difficult and labor-intensive to 
retrospectively stage patients from medical reports (Threlfall et al., 2005). 
Initially, studies focused on extracting TNM staging from pathology 
reports as those are more semi-structured data, though this limits M clas-
sification (Kim et al., 2014). Soysal et al. did, however, show feasibility 
of developing an NLP system to extract metastasis site and status from 
pathology reports in a cohort of lung cancer specific patients (Soysal 
et al., 2017). Clinical staging is often a combination of biopsy, imaging, 
and clinical assessments, which requires more advanced data extraction 
methods. Differentiation between pathological and clinical staging is also 
required. A hybrid system of both pattern matching and machine learning 
to extract unstructured T, N, M staging in a large cancer registry was 
developed and achieved an F score of about 0.85 (AAlAbdulsalam et al., 
2018). Areas of error included differentiating clinical and pathological 
staging and confusion of staging vs MRI sequence T2. Ling et al. were 
able to use NLP to extract a metastatic breast cancer cohort, including 
de novo and recurrent metastatic disease with >85% sensitivity and 
specificity (Ling et al., 2019).

4.5. Risk assessment

The focus on obtaining accurate and detailed oncological characteristics 
for research and clinical purposes is ultimately with the goal of tailoring 
therapy and improving outcomes. The ability to predict patient outcomes 
would aid in discussions for optimal treatment for patients. For example, 
often surgical candidacy is determined in part by preoperative risk assess-
ments involving structured, discrete features. NLP has the potential to 
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capture a more nuanced clinical assessment for a patient and predict for 
post-operative complications and readmission with increased accuracy 
compared to using discrete features alone (Barber et al., 2021).

4.6. Clinical outcomes

The ability to assess patients long term is necessary to understand the 
course of patients’ malignancies. These outcomes include oncological 
status as well as toxicities, complications, quality of life, etc. This is an 
ongoing area of study as an application of NLP, as it typically involves 
more free text language. Most research has been centered around detect-
ing cancer recurrence as there is more semi-structured documentation 
involving radiology or pathology reports (Banerjee et al., 2019). Most 
cancer registries do not track recurrence status; thus, there is reliance on 
manual chart review. However, this is often not feasible in large studies. 
The extraction tools must be able to identify pertinent information in each 
document, determine the temporal relationship between every event, and 
determine if the patient meets specified criteria (Ping et al., 2013). Much 
of the details and nuances in clinical status are retained in clinical docu-
mentation such as H&Ps, progress notes, and discharge summaries. In 
evaluating unstructured texts, Kehl et al. recently demonstrated the ability 
to use assessment and plans from oncology notes to predict clinical out-
comes (Kehl et al., 2020). This group developed an algorithm using neural 
networks to determine retrospectively if the oncology note indicated the 
presence of cancer and if so, whether there was improvement or progres-
sion of disease. They then determined if this translated to differences in 
outcomes. They found that NLP output of progressive disease was associ-
ated with decreased survival, and NLP output of improvement was associ-
ated with improved survival. This is exciting as it demonstrates the 
feasibility and real potential of NLP to identify temporal changes in dis-
ease status that may translate to clinical outcomes. 

4.7.  Identifying social determinants of care and identifying 
healthcare gaps

There is also potential to assess social determinants from the cancer 
patient population that may affect care such as social isolation, substance 
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use history, and living situation (Hong et al., 2020; Zhu et al., 2019). This 
may allow for more efficient needs assessment for patients and appropri-
ately allocate resources to support patients. This could also help identify 
gaps in care and at-risk populations in more detail with more population-
based extractions. 

4.8. Summary

With the burgeoning knowledge in oncology, large volumes of data are 
continually published. Due to the fast-paced nature of clinical practice as 
well as the desire to assess patients and start treatment in a timely manner, 
an efficient method of triaging literature is of value. The generalizability 
of these tools still needs to be investigated but would greatly enhance the 
utility of evidence-based medicine in clinical practice. 

5. NLP in Radiation Oncology

Radiation oncology is a highly technical field that relies heavily on digital 
data and computer software and comprises many different healthcare pro-
fessionals. This combination highlights the number of human–machine 
interactions that each treatment relies on. Much of the data, including 
clinical documentation, radiation treatment planning, and dosimetric 
detail, are stored in various software programs and often require manual 
extraction. However, research into applications of NLP in radiation oncol-
ogy has remained limited, despite the advances in the field of oncology. 
With increasing NLP efforts, there is a large opportunity to analyze data 
that have previously been difficult and unavailable to access (Bitterman 
et al., 2021).

5.1. Big data analysis

Cancer registries provide databases that allow for epidemiologic studies, 
surveillance, and outcome measurements. Even large registries, such as 
SEER or NCDB, lack high-quality radiation therapy data, thereby limiting 
the ability to conduct population analyses (Jacobs et al., 2019). This has 
been acknowledged by organizations such as the American Society of 
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Clinical Oncology (ASCO) and American Society for Radiation Oncology 
(ASTRO). In response, they launched a collaborative registry in 2018 to 
improve the quality of data recorded (New Registry Launched to Track 
and Improve the Quality of Cancer Care Delivered in the U.S. — American 
Society for Radiation Oncology (ASTRO), 2018). NLP can be used to aug-
ment existing registries to obtain more complete information, and moving 
forward, input additional data. As discussed previously, appropriate 
patient identification is the first step toward data collection and analysis. 
In addition, more complete registries can help identify larger cohorts of 
rare, underreported malignancies, which raises the potential for further 
research and knowledge of these tumors. 

5.2. Understanding complex radiation histories

As patients are living longer due to improvements in therapies, more 
patients are undergoing additional courses of radiation. There is emerging 
evidence for the use of targeted therapies and immunotherapies in combi-
nation with radiation therapy as well as data to support radiation therapy 
for oligometastatic or oligo-progressive disease. As such, more complex 
radiation histories will become more common, and our field would ben-
efit from advanced algorithms to analyze these data accurately and effi-
ciently. NLP has already been used to help identify patients who have 
received radiation and identify the sites treated with good accuracy. The 
latter is a task that would otherwise be difficult, especially since a single 
site can often be named differently depending on the treating physician or 
group (Walker et al., 2019). This is one of the ways that NLP will aid in 
continued surveillance and updates of cancer registries efficiently. 

5.3. Overcoming non-standardized nomenclature

A known barrier to aggregating data within radiation oncology is the lack 
of standardized nomenclature; however, NLP can be used to make these 
data more accessible. Consistency in nomenclature throughout radiation 
oncology is necessary for a variety of reasons, including facilitation of 
large data collection, collaboration among institutions, dosimetric analy-
sis, and transfers of care. As such, this consistency is critical in both the 
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clinical patient care and research settings. Though there does exist a stand-
ardized naming system for organs at risk and target structures according 
to TG-263 developed in 2018, there has not been universal adoption of 
this system by every institution (Mayo et al., 2017). Some challenges 
include software limitations in naming, institutional lack of participation 
or oversight, and difficulties with transitioning from previously used 
nomenclature. Researchers have, instead, utilized NLP to match unstruc-
tured naming from clinical documentation and treatment planning sys-
tems to standardized nomenclature (Syed et al., 2020). 

5.4.  Improving documentation and communication of 
radiation histories

ASTRO is also working to identify a minimum set of data from radiation 
therapy that needed to be captured within EMR and oncologic databases 
to facilitate research, quality improvement, interdisciplinary communica-
tion, and ease of transfer among hospital systems with the goal of improv-
ing patient care (Hayman et al., 2019). This includes data such as 
treatment site, dose, fractionation, technique, and dates. Often, these data 
are extracted manually, leaving room for error and can become a docu-
mentation burden. A consensus treatment summary has been proposed by 
the Commission on Cancer to standardize the reporting of radiation treat-
ment, which comprises three sections including a mix of structured and 
free text (Christodouleas et al., 2020). Thus, implementation of NLP to 
extract these data in a standardized fashion can help streamline clinical 
care and ensure data is not lost during transfers of care (Bitterman et al., 
2020). 

5.5. Treatment-related toxicity

A primary source of interest in radiation therapy is the potential toxicities 
experienced, which can occur during treatment or months to years after 
treatment. Much of these data are captured in free text forms during on 
treatment visits, treatment summaries, and follow up notes, which are 
compared to their baseline, often noted in consultation notes. Though 
toxicity is graded according to the National Cancer Institute (NCI) 
Common Terminology Criteria for Adverse Events (CTCAE), there is 
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often inter-rater variation and retrospective collection is labor-intensive 
(Fairchild et al., 2020). Thus, the ability of NLP to systematically extract 
CTCAE symptoms has been of interest (Fig. 1). NLP has shown good 
precision and recall for common present symptoms, including ones that 
previously had low human inter-rater reliability; however, negated symp-
toms have proven to be more difficult (J. C. Hong, Fairchild et al., 2020). 

Patient reported outcomes also offer significant insight into adverse 
events that are symptomatic, and these can be underrepresented based on 
provider-documented CTCAE (Grewal & Berman, 2019). Thus, the NCI 
also commissioned the creation of PRO-CTCAE, a patient reported out-
come measurement to capture symptomatic toxicity (Basch et al., 2014). 
Similarly, there are many other questionnaires used by institutions to 
capture patient reported data, which often contain free text entries (Chung 
et al., 2019). The details within free text entries stand to benefit from 
extraction using NLP, as it is often laborious and time consuming to obtain 
such data manually.

5.6. Real-time management

In addition, the use of NLP can potentially play a role in real-time man-
agement of patient care. The increasing use of patient portals and messag-
ing platforms made available by EMR systems has translated to change in 
therapy, such as discontinuation of hormone therapy (Yin et al., 2018). 
This serves as an additional pool of data that is unstructured and often not 
utilized, even though it can directly impact management. About 10–20% 
of patients undergoing radiation treatment or chemoradiation will require 
acute care, either with an emergency department visit or inpatient admis-
sion (Jairam et al., 2019; Waddle et al., 2015). In an effort to reduce the 
number of preventable visits, machine learning has been used to extract 
pretreatment and treatment information to predict for emergency depart-
ment visits during outpatient radiotherapy or chemoradiation (Hong et al., 

Fig. 1.  A natural language processing pipeline, which can be used for extracting CTCAE 
symptoms from radiation oncology on-treatment visit notes with high accuracy.
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2018). In a prospective, randomized, single institution study, this NLP 
pipeline was used to direct intervention. High risk patients were 
randomized to standard weekly clinical evaluation versus twice weekly 
evaluation, though both arms were allowed to evaluate patients more fre-
quently based on clinical discretion. Hong et al. showed that NLP accu-
rately identified high-risk patients and that additional evaluation of these 
patients led to a reduction in emergency department admissions (Hong 
et al., 2020). By accurately identifying these high-risk patients, early sup-
portive care and tailored monitoring can be successfully employed. 

6. Conclusion

All in all, applications of NLP in radiation oncology remain in their 
infancy. Radiation oncology healthcare teams will need to work closely 
with data scientists to become more well-versed in the field of informat-
ics. Clinically, NLP has the potential to be applied throughout all aspects 
of patient care. NLP offers a pathway to more efficient individualized care 
and real-time patient management. It may improve communication of 
complex radiation histories to other members of the healthcare team and 
improve transfer of patient information. As standardization of EMR data 
and radiation oncology nomenclature is still ongoing, NLP offers a way to 
utilize the vast amounts of EMR data available that would not otherwise 
be amenable to analysis and reduces the labor-intensive nature of research. 
The ability of NLP to accurately select patient cohorts for research analy-
sis will be a critical first step to generating reliable real-world data, which 
will complement prospective clinical trials. Ultimately, NLP has demon-
strated enormous potential in multiple applications in the field, but contin-
ued research is necessary to optimize its accuracy and reliability.
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Abstract
Knowledge-based treatment planning (KBP) generates treatment plans by 
utilizing information and knowledge accumulated from manually generated 
treatment plans collected in a database. Through categorization of anatomical 
features, such as target volume and organs at risk (OAR) and the spatial 
orientation relative to each other, KBP selects DVH parameters achieved in a 
clinical plan in the database as the DVH objectives for a new patient who has 
anatomical features similar to the database patient. This methodology therefore 
eliminates the typical trial-and-error process in treatment planning optimization 
and reduces the time requirement and plan quality variation in planning. The 
process of selection, comparison, extraction of data and plan optimization can be 
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automated through scripting to generate a good quality plan in a matter of 
minutes instead of the typical hours and days. In this chapter, we describe in 
detail the KBP methodology, present a few representative cases of KBP studies, 
and discuss its utility and future direction in radiotherapy. 

1. Introduction

Radiotherapy is a multiple-step, sequential process that generally follows 
the following three steps: (1) prescription, (2) treatment planning, and (3) 
treatment plan delivery (Khan et al., 2021). While each step is important, 
the ability to produce high-quality treatment plans is arguably the most 
technically challenging in meeting the treatment requirements specified in 
the prescription. The skills to generate high-quality treatment plans for 
various complexities take years of training and practice to develop and are 
frequently limited to a particular treatment modality only (Bentel, 1996; 
Xia et al., 2018). As such even within a single radiotherapy institution 
treatment plan quality varies in a rather wide range due to the various 
degrees of experience of the treatment planning staff (Kubo et al., 2019; 
Nelms et al., 2012). Such variations limit operational efficiency, pose 
challenges to treatment plan quality standardization, and hinder adoption 
of standardized treatment protocols. Furthermore, from the financial and 
operational point of view, it takes substantial resources to train staff with 
no or limited experience to reach a reasonable level of planning compe-
tency which has been the case for most radiotherapy facilities in the past 
decades (Babashov et al., 2017; Das et al., 2009). 

Traditionally, treatment planning has been an iterative process that 
involves many rounds of trial and error. The planner starts from an initial 
set of optimization parameters to produce a dose distribution, which in 
most cases will be not clinically satisfactory. The planner will then modify 
the optimization parameters to start another round of optimization with 
the intent for improved dose distribution. This process is repeated many 
times until the dose distribution satisfies the clinical goals. In this process, 
planner experience plays a very important role in the end outcome of the 
treatment plans and the amount of time and effort to achieve it. As the 
treatment technology becomes more sophisticated, the requirement on 
the planner skills becomes more stringent to achieve desired dose 
distributions (Gardner et al., 2019). The ability to shorten the learning 
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curve, to generate plans of more consistent and uniform quality and to 
improve operational efficiency has become ever more desirable. 

In the last decade, radiotherapy physicists and other scientists have 
intensified efforts to achieve the above-mentioned desire to make treatment 
planning less planner dependent and more automated. The approaches gen-
erally can be categorized as the following: (1) knowledge-based planning 
(Alpuche Aviles et al., 2018; Appenzoller et al., 2012; Babier et al., 2018; 
Boutilier et al., 2016; Cagni et al., 2017; Chang et al., 2016), (2) protocol-
based automatic iterative optimization (Chanyavanich et al., 2011; Chatterjee 
et al., 2017, 2020; Chin Snyder et al., 2016; Cooper et al., 2016; Cornell 
et al., 2020), (3) multi-criteria optimization (Buschmann et al., 2016;
Craft et al., 2012; Zhang et al., 2019, 2020), (4) artificial-intelligence-based 
treatment planning (Chen et al., 2019; Ghandour et al., 2015; Kierkels et al., 
2015; Liu et al., 2019; Young et al., 2016). In this chapter, we will focus our 
discussion on knowledge-based treatment planning.

2. Knowledge-Based Treatment Planning (KBP) 

KBP may be described as any approach that makes use of knowledge, 
data, and experience gained in treatment plans collected in a database to 
predict an achievable dose in a new patient of similar anatomical features 
to a subset of patients in the database or to derive a better initial set of 
optimization parameters to reduce the rounds of trial-and-error optimiza-
tions. The library-based approach and the model-based approach may be 
covered under the domain of KBP (Alpuche Aviles et al., 2018; 
Appenzoller et al., 2012; Babier et al., 2018; Boutilier et al., 2016; Cagni 
et al., 2017; Chang et al., 2016; Gardner et al., 2019). In the library-based 
approach, a better initial set of optimization parameters can be derived to 
reduce the rounds of optimization from the database based on the closest 
anatomical feature match between a new patient and patients in the data-
base, whereas the model-based KBP utilizes characterization of the ana-
tomical and geometric features for a particular anatomical site to build a 
DVH model that predicts achievable DVH values for a new patient with 
anatomical features resembling that in the database (Faught et al., 2018; 
Fogliata et al., 2014, 2017). In the following sections, we will describe 
both library-based and model-based approaches to generate treatment 
plans and discuss their clinical applications.
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2.1. Library-based approach 

Central to the KBP is a library of prior plans for a given anatomic site for 
a large number of patients. While no studies have specified the number of 
plans necessary in order to build an adequate database, the smallest data-
base employed 40 patient plans (Hussein et al., 2016). The plans should 
follow a standardized planning protocol with consistent naming of all 
anatomic structures of interest. For instance, in the case of H&N, there 
may be PTV1, PTV2, and PTV3 for a simultaneous integrated boost (SIB) 
treatment technique to doses of 70, 63, and 58.1 Gy, and a rather large 
number of OARs that are consistently named (Wang et al., 2019; Wu 
et al., 2012). Naturally, there will be variation in plan quality amongst the 
plans, the extent of which depends on the planning skills of the planners. 
The data should include PTV and OAR sizes, the associated DVH values 
for each patient, and most importantly, a parameter or a set of parameters 
that quantify the anatomic configurations between PTVs and OARs that 
can be used to determine anatomic similarities between patients, in par-
ticular, between a new patient whose plan needs to be generated and a 
patient in the database. 

2.2. Overlap Volume Histogram (OVH) 

While there are several geometric parameters that have been reported in 
the literature for anatomic similarity evaluation, including OVH, distance 
to target histograms (DTH), and OAR distance-to-PTV, we will only dis-
cuss the most widely used OVH parameter for similarity assessment 
between database patient and a new patient. The OVH is a geometric 
parameter that describes the relative orientation and closeness of an OAR 
to a PTV. It is a one-dimensional, unitless, parameter describing how the 
percentage of overlap volume between a PTV and an OAR varies as the 
volume of PTV is made to expand or contract in pre-defined increments. 
A histogram relating the overlap volume and the expansion/contraction 
distance is constructed as the process continues until the expanding PTV 
completely overlaps the OAR or the contracting PTV completely sepa-
rates from the OAR. Figure 1 shows one example of the OVH curve (Wu 
et al., 2009). 
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Fig. 1.  An example of OVH construction between an artificial PTV and two artificial 
OARs, where the two OARs have identical volume but oriented differently relative to the 
PTV. Adapted from Wu et al. (2009) with permission, where the distance is the expansion 
distance (+) or contraction distance (–) from the initial position.

(a)

(b)
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The two curves corresponding to OAR1 and OAR2 demonstrate how 
the overlap volume will vary as the PTV is expanded or contracted. 
A smaller OVH value at a given expansion distance r implies a closer 
distance between the PTV and an OAR. Bear in mind that this distance r
should not be visualized as a line in a Cartesian coordinate system 
describing the separation between two points on two objects, but rather an 
indirect measure of the volume overlapping effect. OVH histograms are 
constructed for each OAR and PTV permutation and kept in the library 
database. It can be expected that a smaller OVH value will lead to a 
greater DVH value at a given expansion distance r. 

2.3. Correlation between OVH and DVH

The goal of radiotherapy planning is to create treatment plans that maxi-
mize tumor dose and minimize OAR dose. The ideal plan is one that only 
gives dose to the tumor and no dose at all to the OARs. Obviously, this is 
not possible in realistic situations. In practice, an ideal dose distribution 
perhaps can be described as such that the isodose surface exactly matches 
the shape of the target boundary and other isodose surfaces are simply the 
expansion or contraction of the target boundary with a sharp dose gradient 
between target and OAR (Wu et al., 2011). The ability to achieve such a 
result will depend heavily on the target and OAR sizes, locations, and 
relative orientation. As a descriptor of such configuration, the OVH is 
predictive of potential achievable DVH for a given configuration. For a 
given percentage overlap volume v between a PTV and an OAR at an 
expansion distance r, the larger the r to achieve v, the smaller the DVH of 
the OAR at v. Therefore, for two OARs relative to a PTV, the one that 
requires a larger r to yield the same v will have lower DVH at that 
volume v and therefore easier to control the dose. Based on this correla-
tion, OVH can be used to select patients in the database that have OVH 
values similar to a new patient. Among the group of patients with similar 
OVHs, plans with the lowest DVH can be selected as optimization objec-
tives for the new patient (Wu et al., 2012, 2013). In the following section, 
a description of the selection process will be given.
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2.4.  Selection of DVH values as the optimization objectives 
for a new patient

Now that a database has been constructed with each patient’s PTVs, 
OARs contoured and the associated DVH values of their plans stored, we 
can use OVH to select the best plans in the database where the DVH val-
ues are used as optimization goals to be achieved or further improved for 
a new patient’s plan. 

The process can be outlined in the following steps: (1) compute the 
new patient’s OVH for each PTV/OAR pair; (2) search in the database for 
a subset of patients with similar OVH values; (3) select the plan with the 
lowest DVHs in the subset and use its DVH values as the new patient’s 
DVH objectives. 

A process like this significantly improves planning efficiency and 
guarantees a certain level of plan quality. Not only does it eliminate the 
inefficient trial-and-error process in optimization to generate an accepta-
ble plan, but also it ensures the selection of the highest quality plans in the 
database. It can be imagined that the application of KBP will significantly 
reduce the planning time and create plans of better consistency and good 
quality. In the following section, we will select a few published studies to 
demonstrate its application and provide a summary of existing literature 
on this topic.

3. Applications of KBP 

Many studies on KBP application have been reported in the literature. 
KBP has been applied to clinical sites where inverse planning and optimi-
zation are required, and treatment protocols have been standardized with 
consistent structure naming. They include head and neck, prostate, 
gynecological, breast, and GI cancers.

3.1. KBP in head and neck cancer 

Due to the high likelihood of lymph nodes involvement of many types of 
head and neck cancers, the PTVs frequently extend to large areas and 
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bilateral, and require different dose levels for treatment (Orlandi et al., 
2010). Furthermore, there are numerous OARs in this region that are in 
contact with the PTVs. As a result, head and neck planning is frequently 
the most complex and challenging, requiring high levels of skills to gener-
ate quality plans. Therefore, the need for planning automation to minimize 
reliance on the skills of individual planners is most widely pursued.

Wu et al. (2009, 2011, 2012, 2013, 2014, 2017) were one of the earli-
est in developing a KBP-based methodology in treatment planning for 
head and neck cancer. They developed the OVH parameter described in 
the previous sections for similarity quantification of patient anatomy to 
retrieve DVH parameters in the database as the planning objectives for a 
new patient plan. In one study, they built a database consisting of 91 HN 
patient plans and applied the KBP method to generate plans for compari-
son with the clinical plans. Their comparison showed a non-inferiority of 
the KBP plans in PTV coverage but with significantly reduced doses to 
the spinal cord, brainstem and parotid. Furthermore, the KBP plans were 
generated in substantially shorter times (Wu et al., 2012). 

Other investigators have similarly studied KBP application in head 
and neck cancer. Lian et al. (2013) and Yuan et al. (2014) took a different 
approach; instead of directly retrieving plans from a database based on 
anatomy similarity comparison, they used the database plans to create a 
DVH prediction model for a new patient. The anatomy feature they used 
is a distance to target histogram between an OAR and a PTV. The average 
of model predicted OAR dose indices were found within 2.1% of that of 
clinical plans. 

3.2. KBP in prostate cancer

Prostate is another anatomic site where KBP has found many applications. 
Appenzoller et al. (2012) use the minimum distance from a voxel of an 
OAR to the PTV surface as an OAR–PTV spatial relationship evaluator to 
predict achievable DVH values for rectum and bladder. Good et al. (2013) 
use a summed BEV projection for PTV, rectum, bladder and the femoral 
heads from each beam angle as an anatomy similarity quantifier to retrieve 
DVH values in plans in the database as the predicted new patient DVH 
values. Their KBP plans have on average more homogeneous doses in the 
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PTV and statistically lower volumes to receive specified doses to all the 
three OARs for most of the planning cases although for about 6% of 
the cases, the KBP plans have yielded worse DVH results than the data-
base plans. Sheng et al. (2015) applied another anatomical descriptor, the 
percent distance to the PTV from each OAR and the concaveness angle 
formed by seminal vesicle relative to the anterior-posterior axis to retrieve 
DVH values for a new patient. 

3.3. KBP in lung, breast and GI cancers

Lung and breast are the other sites where more than a dozen KBP applica-
tions have been reported in the literature (Chin Snyder et al., 2016; 
Cornell et al., 2020; Delaney et al., 2017; Hoffmann et al., 2021; 
Kavanaugh et al., 2019; Rago et al., 2021; Van’t Hof et al., 2019). In all 
cases, KBP generated plans either outperformed clinical plans or showed 
non-inferiority to clinical plans. 

As mentioned before, the KBP application is not limited to a specific 
site. Inverse planning and optimization are the only requirements. A few 
KBP studies have also been reported for other anatomic sites, such as the 
rectum, pelvis and liver (Celik et al., 2021; Hussein et al., 2016; Sheng 
et al., 2019; Wu et al., 2016; Zhang et al., 2018).

3.4. Cross-institutional application of KBP

In addition to intra-institution evaluation, Wu et al. further applied the 
KBP methodology for cross-institutional application to demonstrate the 
transferability and quality consistency of the KBP (Wu et al., 2017). They 
have further extended the methodology to generate VMAT plans from an 
IMRT plan database (Wu et al., 2013), thus allowing the applicability of 
KBP to different treatment techniques. Their technique was commercial-
ized in Rapid Plan by Varian. 

3.5. Multi-modality application of KBP

While most KBP studies are centered on linac-based treatment tech-
niques, Wu et al. have extended the KBP methodology to Cyberknife 
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treatment planning (Wu et al., 2014). They constructed a database of 400 
patient clinical plans and retrospectively and prospectively generated KBP 
plans. They found that almost all KBP plans are at least as good as the 
best-quality plans in the database, demonstrating the applicability of the 
KBP technique to generate quality plans for other treatment modalities. 

4. Summary

From the above discussions, one can see that the traditional treatment 
planning process based on the individual user’s experience using a trial-
and-error method is at the stage of being replaced with auto-treatment 
planning. Knowledge-based treatment planning is just one of the many 
auto-planning techniques in development and refinement. Gradual and 
broad implementation of the auto-planning techniques in the radiotherapy 
community will undoubtedly improve planning efficiency and quality in a 
significant way. 

References
Alpuche Aviles, J. E., Cordero Marcos, M. I., Sasaki, D., Sutherland, K., Kane, B., & 

Kuusela, E. (2018). Creation of knowledge-based planning models intended for large 
scale distribution: Minimizing the effect of outlier plans. Journal of Applied Clinical 
Medical Physics, 19(3), 215–226. 

Appenzoller, L. M., Michalski, J. M., Thorstad, W. L., Mutic, S., & Moore, K. L. (2012). 
Predicting dose-volume histograms for organs-at-risk in IMRT planning. Medical 
Physics, 39(12), 7446–7461. 

Babashov, V., Aivas, I., Begen, M., Cao, J., Rodrigues, G., D’Souza, D., Lock, M., & Zaric, 
G. (2017). Reducing patient waiting times for radiation therapy and improving the 
treatment planning process: A discrete-event simulation model (radiation treatment 
planning). Clinical Oncology, 29(6), 385–391. 

Babier, A., Boutilier, J. J., McNiven, A. L., & Chan, T. C. (2018). Knowledge-based auto-
mated planning for oropharyngeal cancer. Medical Physics, 45(7), 2875–2883. 

Bentel, G. C. (1996). Radiation Therapy Planning (Vol. 162). New York: McGraw-Hill. 
Boutilier, J. J., Craig, T., Sharpe, M. B., & Chan, T. C. (2016). Sample size requirements 

for knowledge-based treatment planning. Medical Physics, 43(3), 1212–1221. 
Buschmann, M., Seppenwoolde, Y., Wiezorek, T., Weibert, K., & Georg, D. (2016). 

Advanced optimization methods for whole pelvic and local prostate external beam 
therapy. Physica Medica, 32(3), 465–473. 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



b4808 Artificial Intelligence in Radiation Oncology“6x9” 

Knowledge-Based Treatment Planning 197

Cagni, E., Botti, A., Micera, R., Galeandro, M., Sghedoni, R., Orlandi, M., Iotti, C., Cozzi, 
L., & Iori, M. (2017). Knowledge-based treatment planning: An inter-technique and 
inter-system feasibility study for prostate cancer. Physica Medica, 36, 38–45. 

Celik, E., Baues, C., Claus, K., Fogliata, A., Scorsetti, M., Marnitz, S., & Cozzi, L. (2021). 
Knowledge-based intensity-modulated proton planning for gastroesophageal carci-
noma. Acta Oncologica, 60(3), 285–292. 

Chang, A. T., Hung, A. W., Cheung, F. W., Lee, M. C., Chan, O. S., Philips, H., Cheng, 
Y.-T., & Ng, W.-T. (2016). Comparison of planning quality and efficiency between 
conventional and knowledge-based algorithms in nasopharyngeal cancer patients 
using intensity modulated radiation therapy. International Journal of Radiation 
Oncology* Biology* Physics, 95(3), 981–990. 

Chanyavanich, V., Das, S. K., Lee, W. R., & Lo, J. Y. (2011). Knowledge-based IMRT 
treatment planning for prostate cancer. Medical Physics, 38(5), 2515–2522. 

Chatterjee, A., Serban, M., Abdulkarim, B., Panet-Raymond, V., Souhami, L., Shenouda, 
G., Sabri, S., Jean-Claude, B., & Seuntjens, J. (2017). Performance of knowledge-
based radiation therapy planning for the glioblastoma disease site. International 
Journal of Radiation Oncology* Biology* Physics, 99(4), 1021–1028. 

Chatterjee, A., Serban, M., Faria, S., Souhami, L., Cury, F., & Seuntjens, J. (2020). Novel 
knowledge-based treatment planning model for hypofractionated radiotherapy of 
prostate cancer patients. Physica Medica, 69, 36–43. 

Chen, X., Men, K., Li, Y., Yi, J., & Dai, J. (2019). A feasibility study on an automated 
method to generate patient-specific dose distributions for radiotherapy using deep 
learning. Medical Physics, 46(1), 56–64. 

Chin Snyder, K., Kim, J., Reding, A., Fraser, C., Gordon, J., Ajlouni, M., Movsas, B., & 
Chetty, I. J. (2016). Development and evaluation of a clinical model for lung cancer 
patients using stereotactic body radiotherapy (SBRT) within a knowledge-based algo-
rithm for treatment planning. Journal of Applied Clinical Medical Physics, 17(6), 
263–275. 

Cooper, B. T., Li, X., Shin, S. M., Modrek, A. S., Hsu, H. C., DeWyngaert, J., Jozsef, G., 
Lymberis, S. C., Goldberg, J. D., & Formenti, S. C. (2016). Preplanning prediction of 
the left anterior descending artery maximum dose based on patient, dosimetric, and 
treatment planning parameters. Advances in Radiation Oncology, 1(4), 373–381. 

Cornell, M., Kaderka, R., Hild, S. J., Ray, X. J., Murphy, J. D., Atwood, T. F., & Moore, 
K. L. (2020). Noninferiority study of automated knowledge-based planning versus 
human-driven optimization across multiple disease sites. International Journal of 
Radiation Oncology* Biology* Physics, 106(2), 430–439. 

Craft, D. L., Hong, T. S., Shih, H. A., & Bortfeld, T. R. (2012). Improved planning time and 
plan quality through multicriteria optimization for intensity-modulated radiotherapy. 
International Journal of Radiation Oncology* Biology* Physics, 82(1), e83–e90. 

Das, I. J., Moskvin, V., & Johnstone, P. A. (2009). Analysis of treatment planning time 
among systems and planners for intensity-modulated radiation therapy. Journal of the 
American College of Radiology, 6(7), 514–517. 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



b4808 Artificial Intelligence in Radiation Oncology “6x9”

198 Artificial Intelligence in Radiation Oncology

Delaney, A. R., Dahele, M., Tol, J. P., Slotman, B. J., & Verbakel, W. F. (2017). Knowledge-
based planning for stereotactic radiotherapy of peripheral early-stage lung cancer. 
Acta Oncologica, 56(3), 490–495. 

Faught, A. M., Olsen, L., Schubert, L., Rusthoven, C., Castillo, E., Castillo, R., Zhang, J., 
Guerrero, T., Miften, M., & Vinogradskiy, Y. (2018). Functional-guided radiotherapy 
using knowledge-based planning. Radiotherapy and Oncology, 129(3), 494–498. 

Fogliata, A., Belosi, F., Clivio, A., Navarria, P., Nicolini, G., Scorsetti, M., Vanetti, E., & 
Cozzi, L. (2014). On the pre-clinical validation of a commercial model-based optimi-
sation engine: Application to volumetric modulated arc therapy for patients with lung 
or prostate cancer. Radiotherapy and Oncology, 113(3), 385–391. 

Fogliata, A., Reggiori, G., Stravato, A., Lobefalo, F., Franzese, C., Franceschini, D., 
Tomatis, S., Mancosu, P., Scorsetti, M., & Cozzi, L. (2017). RapidPlan head and neck 
model: The objectives and possible clinical benefit. Radiation Oncology, 12(1), 1–12. 

Gardner, S. J., Kim, J., & Chetty, I. J. (2019). Modern radiation therapy planning and 
delivery. Hematology/Oncology Clinics, 33(6), 947–962. 

Ghandour, S., Matzinger, O., & Pachoud, M. (2015). Volumetric-modulated arc therapy 
planning using multicriteria optimization for localized prostate cancer. Journal of 
Applied Clinical Medical Physics, 16(3), 258–269. 

Good, D., Lo, J., Lee, W. R., Wu, Q. J., Yin, F.-F., & Das, S. K. (2013). A knowledge-based 
approach to improving and homogenizing intensity modulated radiation therapy plan-
ning quality among treatment centers: An example application to prostate cancer 
planning. International Journal of Radiation Oncology* Biology* Physics, 87(1), 
176–181. 

Hoffmann, L., Knap, M., Alber, M., & Møller, D. (2021). Optimal beam angle selection 
and knowledge-based planning significantly reduces radiotherapy dose to organs at 
risk for lung cancer patients. Acta Oncologica, 60(3), 293–299. 

Hussein, M., South, C. P., Barry, M. A., Adams, E. J., Jordan, T. J., Stewart, A. J., &
Nisbet, A. (2016). Clinical validation and benchmarking of knowledge-based IMRT 
and VMAT treatment planning in pelvic anatomy. Radiotherapy and Oncology,
120(3), 473–479. 

Kavanaugh, J. A., Holler, S., DeWees, T. A., Robinson, C. G., Bradley, J. D., Iyengar, P., 
Higgins, K. A., Mutic, S., & Olsen, L. A. (2019). Multi-institutional validation of a 
knowledge-based planning model for patients enrolled in RTOG 0617: Implications 
for plan quality controls in cooperative group trials. Practical Radiation Oncology,
9(2), e218–e227. 

Khan, F. M., Sperduto, P. W., & Gibbons, J. P. (2021). Khan’s Treatment Planning in 
Radiation Oncology. Philadelphia: Lippincott Williams & Wilkins. 

Kierkels, R. G., Visser, R., Bijl, H. P., Langendijk, J. A., van’t Veld, A. A., Steenbakkers, 
R. J., & Korevaar, E. W. (2015). Multicriteria optimization enables less experienced 
planners to efficiently produce high quality treatment plans in head and neck cancer 
radiotherapy. Radiation Oncology, 10(1), 1–9. 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



b4808 Artificial Intelligence in Radiation Oncology“6x9” 

Knowledge-Based Treatment Planning 199

Kubo, K., Monzen, H., Ishii, K., Tamura, M., Nakasaka, Y., Kusawake, M., Kishimoto, S., 
Nakahara, R., Matsuda, S., & Nakajima, T. (2019). Inter-planner variation in treat-
ment-plan quality of plans created with a knowledge-based treatment planning sys-
tem. Physica Medica, 67, 132–140. 

Lian, J., Yuan, L., Ge, Y., Chera, B. S., Yoo, D. P., Chang, S., Yin, F., & Wu, Q. J. (2013). 
Modeling the dosimetry of organ-at-risk in head and neck IMRT planning: An inter-
technique and interinstitutional study. Medical Physics, 40(12), 121704. 

Liu, Z., Fan, J., Li, M., Yan, H., Hu, Z., Huang, P., Tian, Y., Miao, J., & Dai, J. (2019). 
A deep learning method for prediction of three-dimensional dose distribution of heli-
cal tomotherapy. Medical Physics, 46(5), 1972–1983. 

Nelms, B. E., Robinson, G., Markham, J., Velasco, K., Boyd, S., Narayan, S., Wheeler, J., 
& Sobczak, M. L. (2012). Variation in external beam treatment plan quality: An inter-
institutional study of planners and planning systems. Practical Radiation Oncology,
2(4), 296–305. 

Orlandi, E., Palazzi, M., Pignoli, E., Fallai, C., Giostra, A., & Olmi, P. (2010). 
Radiobiological basis and clinical results of the Simultaneous Integrated Boost (SIB) 
in Intensity Modulated Radiotherapy (IMRT) for head and neck cancer: A review. 
Critical Reviews in Oncology/Hematology, 73(2), 111–125. 

Rago, M., Placidi, L., Polsoni, M., Rambaldi, G., Cusumano, D., Greco, F., Indovina, L., 
Menna, S., Placidi, E., & Stimato, G. (2021). Evaluation of a generalized knowledge-
based planning performance for VMAT irradiation of breast and locoregional lymph 
nodes — Internal mammary and/or supraclavicular regions. PLoS One, 16(1), 
e0245305. 

Sheng, Y., Li, T., Zhang, Y., Lee, W. R., Yin, F.-F., Ge, Y., & Wu, Q. J. (2015). Atlas-
guided prostate intensity modulated radiation therapy (IMRT) planning. Physics in 
Medicine & Biology, 60(18), 7277. 

Sheng, Y., Zhang, J., Wang, C., Yin, F.-F., Wu, Q. J., & Ge, Y. (2019). Incorporating case-
based reasoning for radiation therapy knowledge modeling: A pelvic case study. 
Technology in Cancer Research & Treatment, 18, 1533033819874788. 

Van’t Hof, S., Delaney, A. R., Tekatli, H., Twisk, J., Slotman, B. J., Senan, S., Dahele, M., & 
Verbakel, W. F. (2019). Knowledge-based planning for identifying high-risk stereo-
tactic ablative radiation therapy treatment plans for lung tumors larger than 5 cm. 
International Journal of Radiation Oncology* Biology* Physics, 103(1), 259–267. 

Wang, Y., Heijmen, B. J., & Petit, S. F. (2019). Knowledge-based dose prediction models 
for head and neck cancer are strongly affected by interorgan dependency and dataset 
inconsistency. Medical Physics, 46(2), 934–943. 

Wu, B., Kusters, M., Kunze-Busch, M., Dijkema, T., McNutt, T., Sanguineti, G., Bzdusek, 
K., Dritschilo, A., & Pang, D. (2017). Cross-institutional Knowledge-Based Planning 
(KBP) implementation and its performance comparison to Auto-Planning Engine 
(APE). Radiotherapy and Oncology, 123(1), 57–62. 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



b4808 Artificial Intelligence in Radiation Oncology “6x9”

200 Artificial Intelligence in Radiation Oncology

Wu, B., McNutt, T., Zahurak, M., Simari, P., Pang, D., Taylor, R., & Sanguineti, G. (2012). 
Fully automated simultaneous integrated boosted–intensity modulated radiation 
therapy treatment planning is feasible for head-and-neck cancer: A prospective clini-
cal study. International Journal of Radiation Oncology* Biology* Physics, 84(5), 
e647–e653. 

Wu, B., Pang, D., Lei, S., Gatti, J., Tong, M., McNutt, T., Kole, T., Dritschilo, A., & 
Collins, S. (2014). Improved robotic stereotactic body radiation therapy plan quality 
and planning efficacy for organ-confined prostate cancer utilizing overlap-volume 
histogram-driven planning methodology. Radiotherapy and Oncology, 112(2), 221–
226. 

Wu, B., Pang, D., Simari, P., Taylor, R., Sanguineti, G., & McNutt, T. (2013). Using over-
lap volume histogram and IMRT plan data to guide and automate VMAT planning:
A head-and-neck case study. Medical Physics, 40(2), 021714. 

Wu, B., Ricchetti, F., Sanguineti, G., Kazhdan, M., Simari, P., Chuang, M., Taylor, R., 
Jacques, R., & McNutt, T. (2009). Patient geometry-driven information retrieval for 
IMRT treatment plan quality control. Medical Physics, 36(12), 5497–5505. 

Wu, B., Ricchetti, F., Sanguineti, G., Kazhdan, M., Simari, P., Jacques, R., Taylor, R., & 
McNutt, T. (2011). Data-driven approach to generating achievable dose–volume his-
togram objectives in intensity-modulated radiotherapy planning. International 
Journal of Radiation Oncology* Biology* Physics, 79(4), 1241–1247. 

Wu, H., Jiang, F., Yue, H., Li, S., & Zhang, Y. (2016). A dosimetric evaluation of knowl-
edge-based VMAT planning with simultaneous integrated boosting for rectal cancer 
patients. Journal of Applied Clinical Medical Physics, 17(6), 78–85. 

Xia, P., Godley, A., Shah, C., Videtic, G. M., & Suh, J. (2018). Strategies for Radiation 
Therapy Treatment Planning. New York: Springer Publishing Company. 

Young, M. R., Craft, D. L., Colbert, C. M., Remillard, K., Vanbenthuysen, L., & Wang, Y. 
(2016). Volumetric-modulated arc therapy using multicriteria optimization for body 
and extremity sarcoma. Journal of Applied Clinical Medical Physics, 17(6), 283–291. 

Yuan, L., Wu, Q. J., Yin, F. F., Jiang, Y., Yoo, D., & Ge, Y. (2014). Incorporating single-side 
sparing in models for predicting parotid dose sparing in head and neck IMRT. 
Medical Physics, 41(2), 021728. 

Zhang, J., Ge, Y., Sheng, Y., Wang, C., Zhang, J., Wu, Y., Wu, Q., Yin, F.-F., & Wu, Q. J. 
(2020). Knowledge-based tradeoff hyperplanes for head and neck treatment planning. 
International Journal of Radiation Oncology* Biology* Physics, 106(5), 1095–1103. 

Zhang, J., Ge, Y., Sheng, Y., Yin, F. F., & Wu, Q. J. (2019). Modeling of multiple planning 
target volumes for head and neck treatments in knowledge-based treatment planning. 
Medical Physics, 46(9), 3812–3822. 

Zhang, Y., Li, T., Xiao, H., Ji, W., Guo, M., Zeng, Z., & Zhang, J. (2018). A knowledge-
based approach to automated planning for hepatocellular carcinoma. Journal of 
Applied Clinical Medical Physics, 19(1), 50–59. 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



201

b4808 Artificial Intelligence in Radiation Oncology“6x9” 

Chapter 10

Artificial Intelligence in Radiation 
Therapy Treatment Planning

Xiaofeng Zhu*, Jiajin Fan*, Ashish Chawla* and 
Dandan Zheng†

*Inova Schar Cancer Institute, Falls Church VA, USA
†University of Rochester Medical Center, Rochester NY, USA

Abstract
Treatment planning is arguably the most critical step in the radiation oncology 
workflow, and has traditionally involved intense manual work, highly trained 
expertise, and interactions between experts. Over the past decade, there have been 
fruitful strides and intense research efforts on automating treatment planning with 
algorithms powered by Artificial Intelligence (AI). These algorithms can be 
divided into soft-AI, including knowledge-based algorithms, rule-based algorithms, 
and algorithms exploring multi-criteria optimization, and hard-AI algorithms.

This chapter will provide an overview of these four categories of algorithms, 
and introduce the mathematical foundation and technical basis from the soft-AI 
methods to the hard-AI algorithms. Popular methods such as principal component 
analysis, convolutional neural network, generative adversarial network, and 
reinforcement learning will be discussed. Further, in this chapter we will also 
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review the current success of these methods in improving the efficiency, 
consistency, and quality of treatment planning. 

1. Introduction

Radiation therapy is a main treatment modality for cancer and is used for 
over half of cancer patients. Treatment planning is an essential and effort-
consuming step of the radiation therapy workflow. It has become more 
sophisticated over the past couple of decades with the help of operation 
research and computer science, enabling planners to design highly com-
plex radiation therapy plans to minimize normal tissue damage and maxi-
mize tumor control. Like how it is applied to automate and improve many 
other medical fields, artificial intelligence (AI) has also been employed to 
automate and improve radiation therapy treatment planning. In addition to 
the cost-saving provided by automating the labor-intensive plan optimiza-
tion process, AI-powered radiation therapy treatment planning offers 
several other main advantages. The improved plan-generating speed com-
pared with manual planning is highly desirable for scenarios where a 
quick turnaround time is needed, such as online adaptive radiation therapy 
and emergent treatments. The consistent quality of AI plans reduces 
healthcare disparities by making advanced treatment planning expertise 
broadly available. Potentially, advanced AI could also offer better plan 
quality than manual planners could achieve en masse. In this chapter, we 
will describe the technical basis as well as current clinical implementa-
tions of AI in radiation therapy treatment planning.

Radiation therapy treatment plans can be created through a forward or 
an inverse fashion. Forward planning is usually employed for simple plan-
ning tasks, in which the planner designs beam apertures to create plans 
with dose desired by the physician. Inverse planning typically involves 
more complex dose designs, in which structures are outlined based on the 
patient anatomy, the physician desired dose distribution is specified as 
dose prescription and dose volume constraints, and the plan is generated 
inversely via optimizing a cost function based on the constraints. These 
machine planning algorithms can be loosely categorized into two main 
categories, the soft-AI approaches that have been implemented in current 
clinical software and the hard-AI approaches that are currently under 
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active research, some in-house deployment, and recently released com-
mercial software. Both categories contain various algorithmic approaches. 
Although radiation therapy treatment planning automation is rapidly pro-
gressing into a hard-AI era, in this chapter we also include the soft-AI 
methods as they lay the foundation for the hard-AI methods and still 
dominate current clinical applications. It is our hope that the knowledge 
of the mathematics of the simpler methods will help readers better under-
stand the more complex, newer methods. 

2.  Radiation Therapy Treatment Planning Workflow 
and Automation

An inverse planning workflow is depicted in Fig. 1 for the manual plan-
ning process (A), three soft-AI processes including Automated Rule 
Implementation and Reasoning (ARIR, B), knowledge-based planning 
with dose volume histogram-based predictions (KBP, C), and multicriteria 
optimization (MCO, D), as well as a generic hard-AI process (E).

Fig. 1.  Workflow of (A) manual, (B) ARIR, (C) KBP, (D) MCO, and (E) hard-AI in 
treatment planning. AI indicates artificial intelligence; ARIR, automated rule implementation 
and reasoning; KBP, knowledge-based planning; MCO, multicriteria optimization. Reprinted 
from Wang  et al. (2019) with permission.
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2.1. Automated Rule Implementation and Reasoning (ARIR)

A typical manual planning process involves the planner setting up beams 
and optimization dose objectives and iteratively fine-tuning them to yield 
a satisfactory plan. Physicians’ inputs are integrated into the process via 
one or more rounds of plan evaluation, depending on if changes are sug-
gested from the evaluation. An ARIR algorithm mimics the manual pro-
cess via hard-coded rules and “if-then” actions. The most popular ARIR 
algorithm is Auto-PlanningTM implemented in Pinnacle treatment plan-
ning system (TPS) (Philips Radiation Oncology Systems, Fitchburg, 
Wisconsin).  With Auto-PlanningTM, the planner specifies a planning 
technique that includes the basic target prescription and organ at risk 
(OAR) sparing goals, for a type of treatment instead of individual patients’ 
treatment. For individual patients, the Auto-PlanningTM algorithms auto-
matically generate auxiliary planning structures and fine-tune the optimi-
zation objectives in several cycles of iterations based on the technique, 
emulating a human planner. Since its advent about a decade ago, Auto-
PlanningTM has been documented in many clinical studies to yield clini-
cally acceptable intensity modulated radiation therapy (IMRT) and 
volumetric modulated arc therapy (VMAT) plans with no or minimal 
manual interventions, greatly reduce the planner-TPS interaction time, 
and improve the plan quality consistency (Chen et al., 2018; Gintz et al., 
2016; Hansen et al., 2016; Hazell et al., 2016; Kusters et al., 2017; Nawa 
et al., 2017). 

2.2.  Knowledge-based Planning (KBP) for Dose Volume 
Histogram (DVH) prediction

KBP is arguably the most popular method for planning automation. It is 
based on reviewing similar prior high-quality cases to derive information 
that can guide the inverse planning of a new case and hence reduce itera-
tive plan adjustments before reaching a satisfactory treatment plan. Early 
developments in this direction, currently deployed in commercial solu-
tions, use dose volume histogram (DVH)-based prediction and inverse 
optimization. DVH is one important metric that physicians use to evaluate 
a treatment plan. Such evaluations are usually discrete, by checking only 
certain points on each DVH to assess whether they satisfy the target or 
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OAR dose tolerances derived from evidence and previous clinical experi-
ence on tumor control or normal tissue toxicity. Therefore, a typical 
manual plan optimization is also based on these point objectives, as the 
toxicity evidence and human experience are often only quantified at these 
discrete points. The advent of DVH-based KBP methods not only auto-
mated the treatment planning process, but also changed point objectives 
into line objectives in the optimization although point objectives can still 
be similarly applied. This is because unlike human experts who are lim-
ited to using only discrete points, the KBP AIs predict and quantify the 
entire DVH. 

The most popular KBP algorithm currently in clinical use is 
RapidPlanTM implemented in Eclipse TPS (Varian Medical System, Palo 
Alto, California). Because statistical or simple machine learning methods 
are used in KBP algorithms with DVH-based prediction goals, the 
required training case numbers is moderate, typically as few as a couple 
dozen. From these training cases, characteristic relationships between the 
DVHs and anatomical/geometrical features of target(s)/OARs are estab-
lished during the modeling process. The geometry of an OAR relative to 
the target is represented by the distance-to-target histogram (DTH). To 
reduce the number of model variables, the features of DTH and DVH are 
learned and extracted via methods such as principal component analysis 
(PCA). Numerous studies have been published on development and clini-
cal applications of RapidPlanTM and similar in-house algorithms (Fogliata 
et al., 2014 2015; Wu et al., 2011; Zhu et al., 2011a). Like Auto-
PlanningTM, RapidPlanTM was also found to greatly improve the treatment 
planning efficiency and consistency (Berry et al., 2016b; Kubo et al., 
2017; Rice et al., 2019; Scaggion et al., 2018; Schubert et al., 2017). 
Because no iterative optimization objective fine-tuning is involved, the 
plan generation speed is even faster for RapidPlanTM, while the plan qual-
ity was found to be comparable between the two algorithms (Smith et al., 
2019).

2.3. Multicriteria Optimization (MCO)

In inverse planning, the task is mathematically the minimization of a cost 
function, defined with a weighted sum of the penalty for deviations from 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



b4808 Artificial Intelligence in Radiation Oncology “6x9”

206 Artificial Intelligence in Radiation Oncology

target and normal tissue dosimetric constraints. In the iterative process of 
manual plan generation, the planner fine-tunes both the dosimetric criteria 
and their weights. Yet, the optimal tradeoff between the conflicting criteria 
identified by the planner may not be acceptable to the physician due to 
clinical factors, and the communication and understanding between the 
planner and the physician. In the manual process when a plan is rejected 
by the physician and new priorities communicated, the planner re-initiates 
a new set of constraints for a more suitable solution. In contrast, MCO 
generates multiple anchoring Pareto plans simultaneously instead of a 
single plan in the initial inverse planning process. Based on these Pareto-
optimal plans where the dose constraints of a single OAR are optimized 
without compromising the target constraints, the physician can navigate 
through the pre-generated series of Pareto-optimal plans along different 
Pareto surfaces and interactively select the desired tradeoff (Breedveld 
et al., 2009; Chen et al., 2012; Romeijn et al., 2004; van de Water et al., 
2013).

MCO can be implemented in an a posteriori approach, where the 
Pareto database of feasible plans are browsed and the users select the 
optimal plan by adjusting the combination of dosimetric criteria through 
interactive sliding bars, or an a priori approach, where an explicit set of 
dosimetric preferences are defined before the inverse optimization to 
sequentially minimize the criteria based on the ascribed priorities to reach 
a single optimal plan on the Pareto surface (Biston et al., 2021; Breedveld 
et al., 2007, 2012). Currently, two commercial TPSs have implemented 
MCO, both using the a posteriori approach: the pioneer MCO system 
RayStation (RaySearch, Stockholm, Sweden) and, more recently, Eclipse 
(Varian Medical System, Palo Alto, California). 

2.4. Voxel dose prediction and hard-AI

A major drawback of the DVH-based KBP, ARIR, and MCO soft-AI 
approaches is the lack of spatial dose information. Some important spa-
tially relevant dosimetric endpoints are hence missed by such methods. 
Therefore, current AI RT planning research has focused on spatial dose 
distribution or voxel dose-based approaches. Voxel dose prediction is not 
only able to provide accurate spatial dose information to guide the 
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machine decision-making, but also enable fully automated treatment plan-
ning workflow without the need for DVH-based inverse optimization. 
There has been intense voxel-dose-based AI planning research. Many of 
them used KBP, but other approaches such as MCO were also developed 
(Babier et al., 2018, 2020b; Fan et al., 2019a; Kearney et al., 2018a; Li 
et al., 2021b; Ma et al., 2021b; Mashayekhi et al., 2022; McIntosh & 
Purdie, 2017; McIntosh et al., 2017). Because of the increased complexity 
in the prediction compared with DVH-based prediction, deep learning-
based approaches are usually used in these hard-AI agents. In the follow-
ing sections, some most relevant deep learning algorithms will be 
introduced, along with current clinical developments using such algo-
rithms. The algorithms and process for the simpler case of KBP with DVH 
prediction will first be described to lay some foundation for and to con-
trast with the more complex algorithms. 

3.  AI Approaches in Radiation Therapy 
Treatment Planning

Visual feature extraction and pattern recognition is at the foundation of 
various AI RT planning approaches. Feature extraction reduces dimension-
alities, where smaller data sets are easier to explore and visualize. It makes 
analyzing data much easier and faster without extraneous variables to 
process. Here we will introduce a few of the most popular AI approaches/
algorithms used in radiation therapy treatment planning: (1) manual fea-
ture extraction to characterize dose distribution, applied in DVH-based 
KBP; (2) auto feature extraction using deep learning for dose prediction; 
(3) generative adversarial network; and (4) reinforcement learning using 
state-action pairs to explore machine parameter prediction. 

3.1.  Manual Feature Extraction in Dose Volume Histogram 
(DVH)-based Knowledge-based Planning (KBP)

In radiation therapy, each plan’s dose distribution is determined by the 
individual patient’s anatomy. AI algorithms thus use key characteristics 
called features to deduce the relationship between anatomy and dose for 
prediction and automation. Both ARIR and KBP employ manual feature 
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extraction, such as using dose volume histogram (DVH) and distance to 
target histogram (DTH). Classic machine learning tools such as principal 
component analysis (PCA) are often used in these implementations to 
reduce number of dimensionalities. In the following paragraphs, we will 
use DVH-based KBP as an example to introduce the basic process and 
important concepts of manual feature extraction. 

A common goal of both the DVH-based KBP algorithms and the 
hard-AI algorithms with deep architecture and compositionality is to 
develop good models that can fit dose outputs from anatomy or imaging 
inputs. As both images and dose maps are high dimensional data with very 
large numbers of voxels, dimension reduction is needed for a model to be 
fitted by computer. In DVH-based KBP, substantial dimension reduction 
is achieved via manual feature extraction on both ends, i.e. using DTH as 
the input and using DVH as the output. By doing so, the 3D data from 
both the input end (image) and the output end (dose) are reduced to 1D 
data. The histogram data are further dimension reduced using classic 
machine learning tools such as PCA, through which the 1D curve is often 
reduced to two or three parameters. 

Figure 2 shows example key plots for the DVH-based KBP process. 
Figure 2(a) shows the voxel dose of a given OAR as a function of the 
minimal 3D distance from the voxel to the tumor target. Intuitively, since 
the tumor target is where high radiation dose is delivered, dose in the 
normal tissue voxels decreases as its distance to the tumor target increases. 
In this plot, each symbol represents a voxel of the OAR, and different 
colors denote the voxels on different axial CT slices. This explains that 
different doses at the same distances are related to those distances to the 
radiation beam.

By projecting all points to the dose axis, we obtain a cumulative DVH, 
where the 3D dose cloud of the OAR is reduced to a 1D DVH curve, 
shown in Fig. 2(b). The number of variables is reduced from thousands 
(the 3D dose cloud) to about a hundred, depending on the resolution. 
Similarly, by projecting the 3D distance cloud to the distance axis, the 
geometric information of the distance map is also compressed to the 1D 
DTH curve as shown in Fig. 2(c). 

The 1D DTH is then taken as the input data for model training to 
predict the 1D DVH output. During the modeling, the 1D data usually 
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Fig. 2.  Manual feature extraction in KBP. (a) Aggregated dose-to-distance histograms. 
Voxels of the same CT slice are plotted with same color and symbol, showing that dose to 
normal tissue decreases as the distance from tumor increases. Manual feature extraction is 
performed in this approach by reducing the 3D data to 1D: (b) yielding DVH via projecting 
to the dose axis (output of the prediction), and (c) yielding DTH via projecting to the 
distance axis (input of the prediction).

(a)

(b)

(c)

further go through dimension reduction by application of methods such as 
PCA. 

PCA uses covariance calculation to find relationships within
high-dimensional data sets (X, Y, Z, etc.). It can be thought of as fitting 
a multi-dimensional ellipsoid to the data, where each axis of the ellipsoid 
represents a principal component. If some axis of the ellipsoid is small, then 
the variance along that axis is also small, so it can be removed for dimen-
sionality reduction. To find the axes of the ellipsoid, we must first subtract 
the mean of each variable from the data set to center the data on the origin. 
Then, we compute the covariance matrix of the data and calculate the 
eigenvalues and corresponding eigenvectors of this covariance matrix. 
Equation (1) shows the calculation of the covariance between X and Y, 

( ) =
− −

=
−

∑ 1
( )( )

,
( 1)

n

i i iX X Y Y
Cov X Y

n
(1)

where n is the number of data points, and X  and Y  are the averages, 
respectively. Each orthogonal eigenvector is then normalized to turn it into 
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a unit vector. Once this is done, each of the mutually orthogonal, unit 
eigenvectors can be interpreted as an axis of the ellipsoid fitted to the data. 
This choice of basis will transform the covariance matrix into a diagonal 
form with the diagonal elements representing the variance of each axis.

In simple KBP, PCA is usually applied on the DTH and the DVH. 
Through PCA, each curve is often characterized and reconstructed by 2–3 
PCA components. Therefore, the whole input data are reduced to a vector 
of about 10 variables. An example is shown in Fig. 3 for a prostate cancer 
radiation therapy case. In this case, the geometry input was reduced to 
9 variables, 3 DTH principal components each for bladder and rectum, 
and the volumes of the PTV, and of the two OARs (bladder and rectum). 
As shown in Fig. 3, a parallel coordinates plot is used to visualize the   

Fig. 3.  An example DVH-based KBP modeling case for prostate cancer showing a 
parallel coordinates plot to assist feature visualization and modeling. The plot shows how 
one output parameter (First principal component of the bladder DVH) is connected with 
the 9 input parameters (3 DTH principal components each for bladder and rectum, the 
volumes of the PTV, and the two OARs). Variables from the same patient plan are linked 
by the green lines. The blue lines highlight the patients with output parameters within the 
narrow brackets denoted with the two arrows on the left.
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non-linear correlation between the input data and to assist modeling based 
on a database of ~200 patient cases. 

With the dimension reduction by 1D histogram projection and further 
PCA decomposition, the modeling problem of the DVH-based KBP 
approach then involves modeling from ~10 input variables to a few output 
variables, as shown in the complete workflow plotted in Fig. 4. Using 
PCA, the input DTH data are compressed to a vector X of ~10 variables. 
Those variables are mapped to the output vector Y, which is also the PC 
variables reduced from the training DVH. The mapping process is called 
modeling, which could use either simple statistical methods or classical 
machine learning methods such as support vector regression or artificial 
neural network. 

As a forerunner of radiation therapy treatment planning AI, the sim-
ple KBP approach has been actively studied and broadly applied. 
Different manual feature extraction and modeling methods were explored 
(Berry et al., 2016a; Yuan et al., 2012; Zhang et al., 2018; Zhu et al., 
2011b). Sometimes when the mapping (modeling) task is simple and the 
training data set size is limited, a simple statistical model may perform 

Fig. 4.  Workflow for DVH-based KBP showing the downsample and upsample 
processes: PCA is used for dimensionality reduction, inverse PCA for DVH curve 
reconstruction. Both input (DTH) and output (DVH) are compressed using PCA to reduce 
them to a simple input vector X and output vector Y, each containing ~10 variables. 
Mapping from X to Y can be achieved using statistical or simple machine learning 
methods. For new patients, the predicted Y is then converted back to predicted DVHs 
through an inverse PCA. In this example, the predicted DVHs of the two OARs are shown 
in the bottom right plot, with the semi-transparent bands showing the uncertainty or 
confidence intervals.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



b4808 Artificial Intelligence in Radiation Oncology “6x9”

212 Artificial Intelligence in Radiation Oncology

non-inferiorly or even superiorly to machine learning methods (Landers 
et al., 2018). Besides DVH prediction, it has also been used to predict 
beam angle arrangement prediction, etc. for facilitating automated treat-
ment planning (Yuan et al., 2015; Zhang, et al., 2011). As the approach 
was commercialized in clinical treatment planning systems, it has been 
widely applied in treatment planning for all kinds of cancer sites and 
showed improved treatment efficiency and consistency, with clinically 
acceptable treatment plan quality that sometimes outperforms average 
human planners (Amaloo et al., 2019; Chang et al., 2016; Fogliata et al., 
2017, 2019; Kubo et al., 2017; Scaggion et al., 2018; Smith et al., 2019; 
Tinoco et al., 2020; Tol et al., 2015; Wu et al., 2016a, 2016b). 

3.2.  Automatic feature extraction: Convolutional Neural 
Network (CNN)

Compared with soft-AI methods with manual feature extraction, the more 
recent hard-AI methods apply automatic feature extraction using deep 
learning and other AI methods. These deep learning methods further 
remove human interactions using algorithms inspired by the structure and 
function of human brains.

One popular deep learning method is convolutional neural network 
(CNN). This method mimics human visual neurons and is widely used to 
reduce data dimension by extracting spatial features in applications such 
as image segmentation. This method is based on convolution filters, a 
common feature extraction tool in imaging processing. Figure 5(a) shows 
a simplified example: a 3 × 3 2D matrix represents CT voxels labeled as 
tumor or organs at risks (OARs); a matrix of its distance to target; a matrix 
of dose where tumor is expecting 100% dose with fast dose fall off at 
OARs. Figure 5(b) shows a dose fall off feature extraction and dimension 
reduction using convolution/deconvolution filters, also termed encoder/
decoder filters. In this example, using a 2 × 2 encoder filter, a 3 × 3 input 
image/dose matrix is reduced to a 2 × 2 compressed matrix. This encoder 
filter is chosen to highlight the dose difference along the diagonal 
direction. The compressed matrix can then be reconstructed back using 
a decoder filter to restore the resolution and feature of the original
input. Clearly, the convolution step is down sampling, and the transpose 
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convolution is the reverse. In transpose convolution, the transpose kernel 
is placed over each pixel. The pixel values are multiplied by the kernel 
weights to produce the upsampled matrix/images. Ideally, the recon-
structed output would be identical to the input. The decoder filter is then 
least-square fitted by minimizing the difference between the input and the 
reconstructed output. 

Unlike the 1D conversion used in the manual feature extraction case 
presented in the last section, a CNN applies convolution filters directly 
onto the input image. Figure 5(c) shows the building blocks of a feature 
extraction CNN, including convolution, activation, and pooling layers. 
The convolution layer reduces the image data size by using a bank of 
small filters, which characterizes limited spatial feature only seen by one 
neuron. To mimic the activation of a neuron, the output of convolution is 
fed to an activation function. For instance, Rectified Linear Unit (ReLU): 
g(x) = max (0, x), with fast computation and non-linearity, is a widely used 
activation function in CNN. The output of activation could be further 
reduced using a pooling layer such as a maximum pool local filter, which 
simply calculates the maximum value for patches of the feature map. 
Small variation of translation, rotation, and scaling of the input will not 

(a)

(b) (c)

Fig. 5.  A simple convolution/deconvolution process example demonstrating auto feature 
extraction in CNN-based automated treatment planning: (a) inputs of 3 × 3 matrices 
consisting of CT/Contour, distance to target, and ideal dose. (b) downsampling from a 
3 × 3 input image matrix to a 2 × 2 compressed matrix with an encoder filter, then 
reconstructed back to a 3 × 3 output matrix with a decoder filter; (c) showcasing the 
building blocks of a feature extraction CNN for automated treatment planning: A 3D CT/
contour/dose feature extraction is compressed to a 1D array Y, the latent vector.
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affect the convolution-pooling results. The spatial invariance is main-
tained within the multiple layers of convolution and pooling network for 
feature extraction and dimension reduction. The last layer is always made 
of a fully connected neural network, with an output of a 1D data array, Y, 
the latent vector, which is the final extracted feature. 

Therefore, the latent vector is a low-dimensional representation of the 
higher-dimensional input data that can be applied for dose prediction as 
shown in Fig. 6, and can similarly be applied to other applications such as 
classification and segmentation (contouring) through the upsampling of 
the latent vector.

At the time of this writing, CNN has been arguably the most popular 
deep learning method used for hard-AI treatment planning. Various net-
work architectures have been studied such as U-net originally developed 
for biomedical image segmentation, DenseNet, and ResNet. In these 
applications, dose is predicted from patient images, target and OAR con-
tours, and manual dosimetric or distance features are also sometimes 
added to the input to improve the prediction efficiency and accuracy 
(Barragan-Montero et al., 2019; Kajikawa et al., 2019; Kandalan et al., 

Fig. 6.  3D dose prediction achieved using downsampling and upsampling CNN 
architecture. The latent vector, Y, is the input for the transpose convolution.
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2020; Kearney  et al., 2018a, 2018b; Liu et al., 2019; Ma et al., 2021a; 
Ma et al., 2019a, 2019b; Nguyen et al., 2019a 2019b).

Auto feature extraction could be achieved with or without data labe-
ling. When the upsampling network is reconstructing the original input, 
data labeling can be omitted. In this case, the later vectors X and Y make 
up a bottleneck hidden layer forcing the network to learn compressed 
representation and find its hidden structure. Model training is hence 
through minimizing the loss function shown in Eq. (2), as follows:

L = (Reconstruction loss) + (Regularization term) (2)

The reconstruction loss is the difference between the prediction and 
training. The regularization term is used to tune the network to avoid over-
fitting due to limited training data set. Through training of the neural 
network, the weight would be increased for convolution filters that 
emphasize dose fall off outside the tumor. Finally, the one feature that 
must be automatically modeled by a successful neural network is that dose 
decreases when its distance to the tumor increases. 

3.3. Generative Adversarial Neural network (GAN)

Huge data are essential for the success of CNN, which relies on training 
millions of parameters. While the sampling size in radiation therapy is 
very limited, usually it results in biased sample distribution.  To overcome 
overfitting and data biasing, Generative Adversarial Network (GAN) is 
another deep learning approach that was introduced to address the com-
plex sample distribution. Using upsampling to build a generator network, 
it creates fake samples from learning the representation of data distribu-
tion. Figure 7(a) presents the GAN architecture. The generator and dis-
criminator will be trained iteratively by competing with each other.  Its 
loss function is defined as

L = minmax E [log D(G(img)) + log(1 – D(img))] (3)

where D is the probability that the discriminator estimates the image to be 
a true image; G is the generator’s fake image output from noise; E is the 
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expected value over all data instances; L is the loss function that G
tries to minimize while D tries to maximize. Following the example in 
Fig. 5(a), three fake dose samples were created by the generator in 
Fig. 5(a). Those doses in the three samples do not decrease as their dis-
tances to target increase, so D(G(img)) is close to 0, and the loss function 
will approach ∞. 

GAN is gaining popularity as a treatment planning AI with reported 
recent successes, trained by radiation therapy data of small sample sizes 
(Babier et al., 2020a; Fan et al., 2019b; Kearney et al., 2020; Li et al., 
2020, 2021a; Murakami et al., 2020). Some of these applications directly 
predict radiation fluence maps instead of the dose distribution. Due to the 
degenerative nature that varying fluence maps can yield similar 3D dose 

(a) 

(b) “Fake” dose examples: 

Fig. 7.  (a) Outline of a GAN: Generator tries to synthesize fake images that fool the best 
discriminator; the discriminator tries to identify the synthesized images; (b) Following the 
example in Fig. 5(a), a three sample dose matrix where dose doesn’t fall off outside tumor 
will be identified by the discriminator as “fake”, while the dose sample in 5(a) will be 
“real”.
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distribution, GAN is suitable for identifying the non-unique fluence map 
solutions.

3.4.  Reinforcement Learning (RL): Optimize machine 
parameters

Reinforcement Learning (RL) develops from dynamic system theory, as 
the optimal control of incompletely-known Markov decision process, 
where exact mathematical models and methods are infeasible. The plan-
ning of Volume-Modulated Arc Therapy (VMAT) represents such a chal-
lenge. For instance, the MLC aperture has almost infinite number of 
shapes for selection in the optimization process.

RL uses short-term reward, rt, at a step t, to evaluate an agent’s action, 
at, at a certain state St. The total reward including its long-term impact is 
defined as g∞= Σ = ,kR t k t rk discounted by the factor g (0 < g < 1). The 
Q-function captures the estimated total future reward. To achieve optimal-
ity, the Q-function is updated by the Bellman equation described in
Eq. (4),

( , ) ( , ) { ( , ) ( , )}.aQ s a Q s a α r g max Q s a Q s a′= + + ′ ′ −  (4)

The training of the Q network is through minimizing the loss function 
between the target and the predicted in Eq. (5):

{|| ( , ) ( , ) ||}2
aL E r g max Q s a Q s a′= + ′ ′ −  (5)

For an application in VMAT planning, the term ‘step’ is naturally defined 
as the Linac gantry angle gap or control point in VMAT; the action includes 
the Linac dose rate and MLC leaf positions; dose difference between the 
prescribed and the current setup is defined as the rewards to compute the 
discounted cumulative cost in the Q-value. RL was performed to determine a 
policy to minimize the Q-value, and the policy will guide the MLC position 
and dose rate selection at each control point. 

An example is shown in Fig. 8: a single deep Q learning (DQN) agent 
is implemented to control the dose rate and MLC leaves. The DQN 
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consists of three convolutional layers followed by a fully connected layer 
and a final output layer (with ReLU activation). The DQN training follows 
the ε–greedy algorithms to balance the exploration–exploitation tradeoff. 
By assigning an ε between 0 and 1. With a probability of ε at each step, 
the dose rate and leaf position will change randomly, as does the Q-value. 
The Q-value is maximized with a probability of 1-ε. At the initial training, 
ε is chosen close to 1 to allow more searching freedom. During training, 
ε will be decreased to speed up convergence, similar to the simulated 
annealing process. 

Due to the complexity in radiation therapy treatment planning and the 
strength of RL to solve very complex problems, RL began to be studied 
for this application. While this line of efforts is relatively new, some pre-
liminary success has been demonstrated. RL application has also been 
expanded from external beam radiation therapy to high dose rate brachy-
therapy (Hrinivich & Lee, 2020; Shen et al., 2020). 

4. Other AI Methods and Considerations

In addition to the methods introduced above, there are also other 
approaches being researched for AI-based radiation therapy treatment 

Fig. 8.  Training of the deep-Q-network: optimizing the MLC aperture and dose rate at 
each step to achieve final high-quality treatment plan.
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planning. For example, there are atlas-based approaches by selecting the 
atlas closest to the new image from the training atlas pool for dose mim-
icking (Conroy et al., 2021; McIntosh et al., 2017, 2021; McIntosh & 
Purdie, 2016, 2017).

As with other AI applications, AI treatment planning shares many 
common challenges and considerations. For example, the data set size 
limitation is usually present because unlike millions of natural images 
available for other semantic segmentation problems, the number of radia-
tion therapy treatment plans available for AI training is usually only a few 
hundreds or less. In addition, despite the fact that radiation oncology is 
one of the most evidence-based medical field using standard care, dosi-
metric constraint and prescription differences still exist among individual 
practitioners and institutions. Generalizability is therefore an important 
consideration for treatment planning AIs. Furthermore, as the AI methods 
become increasingly automated and complicated, they function more and 
more like a black box. Efforts are also devoted to improve the interpreta-
bility of treatment planning AI agents. Lastly, as with other medical AIs, 
there exist various biases both within the data set used to train the AI and 
in steps of the AI workflow itself. The developers and users need to dis-
cover and understand these biases to mitigate and correct their effects in 
the treatment planning AIs. 
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Abstract
There are numerous high-performing technical solutions for Artificial Intelligence 
(AI)-based treatment planning; however, clinical use of these algorithms as 
standard-of-care in the clinic remains low. Challenges in real-world clinical use 
of AI treatment planning include the ongoing applicability in the dynamic clinical 
setting, gaining clinician trust, workflow integration, and a lack of guidance on 
Quality Assurance (QA), re-training, and algorithm maintenance. This chapter 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



b4808 Artificial Intelligence in Radiation Oncology “6x9”

228 Artificial Intelligence in Radiation Oncology

provides an overview of considerations and strategies for safe implementation 
and routine clinical use of AI for radiation treatment planning.

1. Introduction

Artificial Intelligence (AI) has the potential to revolutionize healthcare by 
increasing efficiency and improving patient outcomes (Hong et al., 2020); 
however, most medical AI technologies do not ultimately reach clinical 
patient care. Many algorithms, despite their technical performance, are 
not clinically relevant or are not designed to integrate with the clinical 
setting (Hollon et al., 2020; McCarroll et al., 2018; Nimri et al., 2020; 
Wijnberge et al., 2020). Even AI with validation results that approach or 
surpass human performance are not adopted into routine clinical practice 
due to logistical challenges in translation from the ideal, simulated 
research environment into clinical workflows (Gaube et al., 2021; Wiens 
et al., 2019). Radiation therapy treatment planning is an ideal testbed for 
prospective AI deployment as dose prediction for automated radiation 
treatment planning represents a classic computer vision problem for 
which there is tremendous active research interest (McIntosh et al., 2021). 

However, even with AI algorithms demonstrating high performance in 
the research setting, real-world clinical use of these algorithms remains 
low (Topol, 2019).  In radiation treatment planning, the transition from 
research to clinical implementation of AI is challenged by (i) the ongoing 
applicability of AI in the dynamic clinical setting (e.g., clinical practice 
changes over time based on clinical and technical considerations), (ii) 
clinical end user familiarity with AI outputs in order for clinicians to gain 
trust and confidence in AI, (iii) integration of AI into well-established 
clinical workflows with minimal disruption, and (iv) lack of guidance on 
quality assurance (QA), re-training AI models, AI algorithm maintenance, 
and systematic processes for data curation (Challen et al., 2019; Parikh 
et al., 2019; Tonekaboni et al., 2019). This chapter provides an overview 
of considerations and strategies for safe implementation and routine 
clinical use of AI for radiation treatment planning. 

A framework for stepwise implementation of AI into the Radiation 
Oncology clinic for AI radiation treatment planning requires evaluation of 
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the AI by specific stakeholders and should assess AI performance using 
the appropriate methods and metrics (Fig. 1). Machine Learning (ML) 
algorithm development for AI deployment should be executed by a multi-
disciplinary team formed at the outset of algorithm design and data 
curation. This core team should include computer scientists, medical 
physicists, and radiation oncologists, with expertise from other members 
of the clinical team including dosimetrists/planners. The framework steps 
for successful clinical deployment are highlighted throughout the chapter. 

2. Problem Definition, Scope, and Data Curation

The first stage of development for an AI algorithm intended to be deployed 
in the clinic is to define the scope of the problem to be solved. For treat-
ment planning this may include factors such as treatment site(s), patient 
population(s), who will use the algorithm, and at what point in the clinical 
workflow the algorithm will be implemented. It is imperative that both 
clinical and technical stakeholders are involved in defining the problem 
and scope. Clinical expertise is needed to ensure that the problem is not 
only clinically relevant, but also desired by the clinical care team to avoid 
development of an algorithm for which the clinical team will not see suf-
ficient value to support future implementation (Saria & Subbaswamy, 
2019). The clinicians involved in the early development stages can later 
become champions during clinical validation and implementation (Shah 
et al., 2019). Conversely, the technical experts that will be developing the 
algorithm, including computer scientists and ML developers, should be 
involved in early problem definition discussions to provide expert advice 
about the possibilities, limitations, and potential pitfalls for various design 
and training considerations. Ethical implications should be considered by 
all team members at this earliest design stage, including privacy, safety, 
and fair treatment of patients (He et al., 2019).

Both clinical and technical expertise is required for data curation. 
Radiation treatment planning is often viewed as an ideal AI application 
due to the abundance of labeled image data (e.g., delineated regions of 
interests and spatial radiation dose); however, historical treatment plans 
were not labeled nor created for the purpose of training an AI. A clinical 
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radiation treatment plan that may be clinically acceptable for an individual 
patient’s treatment may not be appropriate for model training. While 
clinical treatment plan data is likely to be more applicable than simulated 
treatment plan data (i.e., planned retrospectively, often without considera-
tion of clinical factors), blind, non-curated collation of historical clinically 
approved treatment plans for training may negatively impact the real-
world performance of the AI. Furthermore, the rapid pace of change in 
radiation oncology practice warrants caution in using even recent histori-
cal data. Clinicians must be engaged at the start of data training to help 
identify cases that are most relevant to current treatments, and to provide 
input on future directions to avoid training a model that is out-of-date 
before it reaches the clinic. 

From a prospective data curation perspective, the concept of ontolo-
gies and harmonization of data elements in radiation oncology are well 
understood and establishing standardized nomenclatures (Mayo et al., 
2018) for components of treatment plans (e.g., dose specification, treat-
ment site definition, clinical intent, imaging specifications, etc.) are 
important to improve the quality of data for AI treatment planning. The 
implementation and clinical integration of data harmonization concepts 
will require top-down data policies and clinical department buy-in 
(including across departments or across an entire hospital) providing 
another important set of stakeholders to engage for AI deployments. 

The potential for bias in the training data should be considered at the 
data curation stage (Obermeyer et al., 2019). Algorithmic bias occurs 
when data for certain populations are underrepresented. An example of a 
potential bias in treatment planning is when there is a small sample
of patients with a clinically relevant organ-at-risk volume for a given 

Fig. 1. (Continued on Facing Page)  A framework for the stepwise implementation of ML 
into the Radiation Oncology clinic for AI radiation treatment planning. Each step of suc-
cessful clinical deployment requires evaluation of the AI by specific stakeholders and 
should assess AI performance using the appropriate methods and metrics. The outcome of 
each step is two-fold: validation of the technical or clinical utility of the AI and under-
standing of the limitations (technical, clinical, or social) of the algorithm. At the conclu-
sion of each step, the team must decide whether to modify the algorithm or how it is used 
within the workflow or accept the limitations of the algorithm and ensure end users are 
educated to understand and expect the known limitations.
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treatment protocol that is not routinely delineated in a treatment plan (e.g., 
for conventional locally advanced lung treatment planning, the right 
brachial plexus is only delineated for superior right lung targets and is 
otherwise not included in the treatment plan).  Without intentional consid-
eration of patient selection in historical data sets, bias in training data may 
extend to other patient factors not explicitly considered during treatment 
planning such as body mass index (BMI) or ethnicity. These biases in 
training data may be easy to predict and detect, similar to cases with less 
common organ-at-risk volumes, or may be hidden without careful thought. 
Bias may also present as patterns for a department, clinic, individual phy-
sician, or dosimetrist/planner. It is the responsibility of the development 
team to ensure that adequate data are used for training for all populations 
and subpopulations for which the algorithm will be used. Methods to 
interrogate algorithmic bias and stability are discussed in Section 6 of this 
chapter.

3. Technical Validation

The first validation step toward clinical deployment is to ensure the AI 
algorithm meets the specified performance based on technical parameters. 
This validation is performed by the technical development team, including 
computer scientists and medical physicists. Technical validation metrics 
will depend on the nature of the AI treatment planning algorithm. 
Common technical validation metrics (McIntosh et al., 2021; McIntosh & 
Purdie, 2016) and their relevance to treatment planning are described as 
follows:

Dice Similarity Coefficient (DSC): The DSC is traditionally used to 
compare segmented anatomy on images i.e., from different contouring 
sources such as between physicians or between physician ground truth 
and an automated method. The DSC is

DSC = 2|Union{A,B}| / (|A| + |B|)

The DSC compares the overlap between segmented volumes in which 
a score of 0% indicates no overlap and 100% indicates identical volumes. 
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The DSC is useful for evaluating treatment planning dose distribution 
comparing the binary mask of individual isodose line values between the 
ground truth dose distribution and the dose distribution generated using 
AI. DSC provides a simple metric that is straightforward to implement 
and evaluate but is limited in that it practically provides an independent 
evaluation of only discrete dose levels.

Gamma Index: The Gamma Index was developed and is traditionally used 
to evaluate the delivery of a radiation treatment plan to a dosimeter com-
pared with the dose calculated by the treatment planning system, for exam-
ple, in patient specific QA. The Gamma Index provides a composite quantity 
for the number of points measured passing or failing a defined criteria based 
on the percent dose deviation at each point and the distance from each point 
to achieve the same dose. Therefore, the index can be a useful metric to 
evaluate entire dose distributions generated in dose prediction and auto-
mated planning by replacing the discrete measurement points in the tradi-
tional implementation with the dose at each voxel in the dose distribution. 
The thresholds for evaluation of the Gamma Index in the case of voxel-based 
assessment are not well established and will vary depending on the use case. 
In addition, an appropriate cutoff dose below which the dose distribution is 
not used for analysis should be established to avoid biasing results to lower 
dose areas for which dose prediction algorithms will typically have learned 
large variations in low doses relative to the prescription dose.

Receiver Operating Characteristic (ROC) curve: The ROC curve is a 
graph that shows the performance of a classification model at all classifi-
cation thresholds. This curve plots two parameters:

True Positive Rate (TPR), on the y-axis, which is a synonym for recall 
and is defined as

TPR = TP/(TP + FN)

False Positive Rate (FPR), on the x-axis, defined as

FPR = FP/(FP + TN)

where TP is True Positive, FP is False Positive, TN is True Negative, and 
FN is False Negative.
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Area Under the ROC Curve (AUC): AUC is a measure of the two-
dimensional area underneath the ROC curve. AUC provides an aggregate 
measure of performance across all possible classification thresholds. One 
way of interpreting AUC is as the probability that the model ranks a 
random positive example more highly than a random negative example. 
A perfect classifier has an AUC of 1.0, and a model with no discrimination 
capacity has an AUC of 0.5. AUC is scale-invariant; it measures how well 
predictions are ranked, rather than their absolute values. AUC is classifi-
cation-threshold-invariant. It measures the quality of the model’s predic-
tions irrespective of what classification threshold is chosen. In radiation 
treatment planning, AUC is most helpful to investigate the clinical deci-
sions and preferences for AI treatment planning methods. 

In addition to the technical metrics above, to estimate model perfor-
mance different validation strategies can be deployed depending on the 
size of the available data set and considerations about computational 
intensity (Fig. 2). The following approaches can be used as tools for per-
formance estimation, model tuning, and parameter optimization:

Fig. 2.  Generalized data organization for model validation and testing. For holdout vali-
dation, the data set is split once, and the data do not change between training, validation, 
and testing. For cross-validation, data is randomly split in each group multiple times. In 
leave-one-out cross-validation, the number of splits is equal to the number of instances of 
data with each sample used for validation in each split.
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Holdout set: The data set is split once; and data do not change between 
training, validation, and testing. This is the preferred method when com-
putational resources are a consideration and a truly independent testing set 
that has never been used for training is desired. This approach can only be 
employed with large data sets and is useful when the testing set is intended 
to be fixed. 

N-fold cross-validation: The data set is split multiple times to create 
multiple instances of training and testing data. This approach requires 
fewer overall data because there is no holdout data. Data are used for both 
training and testing, but not within the same instance. Cross-validation 
can provide confidence intervals and provides a more generalized under-
standing of model performance and evaluation.

Leave-one-out validation: The data set is split multiple times but is a 
special case of cross-validation, where the number of splits equals the 
number of instances in the data set. Thus, the learning algorithm is applied 
once for each instance, using all other instances as a training set and using 
the selected instance as a single-item test set.

Holdout is often used synonymously with validation with independent 
test sets, although there are crucial differences between splitting the data 
set randomly and designing a validation experiment for independent test-
ing. Independent test sets can be used to measure performance that cannot 
be measured by resampling or holdout validation, for example perfor-
mance for unknown future cases (cases that are acquired after the training 
is finished). This approach can provide information about the current 
performance of an existing model for new data. More generally, this may 
be described as measuring the extrapolation performance to define the 
limits of applicability.

A practical matter for implementing a holdout approach is that it is 
more straightforward to ensure that training and testing data are properly 
separated, compared with resampling validation in which data splitting 
and random assignment of cases is required. In addition, a common 
data set for testing has benefits for QA and re-training as discussed in 
Section 6 of this chapter.
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4. Clinical Validation

The results of AI technology developed and tested in retrospective envi-
ronments may not be realized in real-world clinical environments. The 
translation of AI to the clinic is often confounded by the separation 
between technical development and clinical implementation creating a 
disconnect between computer algorithms and clinical care. Retrospective 
or ‘simulated’ settings can overestimate impact and fail to account for 
real-world clinical factors and biases (McIntosh et al., 2021). Employing 
an iterative, multidisciplinary feedback approach for clinical integration 
of AI technology is essential to ensure that the AI technology successfully 
reaches patient care. Direct integration and monitoring of human interac-
tion with the AI technology provides quantitative clinical feedback met-
rics and may help with identification of barriers to clinical adoption 
(Elish, 2019).

Following rigorous technical validation, clinical validation is the next 
step toward clinical use. The purpose of the clinical validation step is to 
determine the fitness of the algorithm for clinical deployment and to 
monitor the impact of the AI on the clinical environment. 

Quantitative metrics for clinical adoption should be based on those 
used in clinical treatment plan evaluation by dosimetrists/planners, radia-
tion oncologists, and medical physicists (e.g., dose-volume constraints, 
treatment plan complexity metrics, quantitative measurements). However, 
clinical validation also must include qualitative evaluation by clinical 
experts based on their human experience and judgement (e.g., visual 
isodose inspection, appropriateness of the treatment plan given the 
patient’s clinical history, evaluation of dose-volume features that may not 
be reflected in dose-volume histograms such as hotspot location). 
Evaluation of these judgement-based metrics is critical prior to clinical 
deployment to avoid surprises in AI treatment plan rejection rates and 
potential loss of trust in the approach by clinicians and the clinical team. 

Retrospective or ‘simulated’ treatment plan review is the first step in 
clinical validation and is necessary to evaluate clinical expert judgement 
and fitness of the AI for clinical deployment (Fig. 3). The retrospective 
evaluation should be based on metrics directly used for clinical evaluation 
and measuring expert human judgement to provide a preliminary 
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Fig. 3.  Simplified framework for understanding baseline AI clinical acceptability against 
current clinical ground truth process, i.e., human-generated radiation therapy treatment 
plans.

understanding of the impact AI will have on the clinical environment. The 
results from retrospective evaluation should also be tempered by the fact 
that when deployed, clinical decision-making may be altered from the 
purely retrospective setting. Therefore, the retrospective evaluation pro-
vides the ceiling of clinical applicability for AI as the simulated environ-
ment has more control over the evaluation process and represents a more 
idealized evaluation setting that does not contend with clinical timelines, 
variation in clinical staff, peer-consultation, among other factors that are 
part of the normal course of clinical care that can influence the evaluation 
process and results. 

There is evidence to suggest that there could be a disconnect between 
clinical utilization of AI between the retrospective and prospective set-
tings (McIntosh et al., 2021), highlighting that clinical validation must 
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include a prospective component before clinical deployment. AI technol-
ogy cannot be provided to clinical end users in a silo and needs to be 
integrated with the clinical workflow also requiring validation. Prospective 
clinical evaluation is a crucial and necessary step for clinical acceptance 
and safe deployment of AI in the clinic with various clinical evaluations 
based on the level of AI automation of the clinical AI deployment (Fig. 4).

Furthermore, just as a single clinician curating data to build an AI 
treatment planning model may not capture the clinical practice of the 
entire clinician group, the inclusion of many end users provides a more 
reliable mechanism for ensuring wide clinical applicability. A natural 

Fig. 4.  Progressive automation of treatment planning process through prospective clini-
cal AI deployment. There are various approaches to quantify the clinical applicability of 
AI for treatment planning depending on the level of rigor and goal of implementing AI for 
use. Although the ultimate goal may be a fully automated process, it should be recognized 
that fail-safe methods must exist when AI does not perform to a clinically acceptable level. 
Clearly, having human experts in the loop enables greater adoption, promotes a collabora-
tive environment, and will provide a framework for getting buy-in and gaining trust at least 
initially.
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extension of multiple end user evaluation is multi-institutional evaluation, 
although this requires considering higher levels of the implementation 
framework (Fig. 1) to ensure there is clear alignment with clinical practice 
guidelines regarding contouring, clinical objective of treatment, as well as 
harmony between data used for model building and the input data required 
to generate treatment plans.

5. Clinician Trust, AI Explainability, and Bias

In addition to technical and clinical testing, the successful integration of 
AI treatment planning requires refined understanding of end user percep-
tion, including dosimetrists/planners. physicians, medical physicists, and 
even patients. AI outputs are often difficult to interpret by clinicians and 
fail to provide sufficient information to the end user. It is difficult for end 
users to feel confident in AI predictions as AI algorithms often do not 
provide sufficient evidence for their outputs, resulting in end users lacking 
trust in AI and ultimately failing to adopt AI in routine clinical practice. 
Healthcare providers not only expect high accuracy from AI, but also 
expect AI to agree with their own views (including biases), even when, in 
practice, large inter-clinician variation exists (Challen et al., 2019; Parikh 
et al., 2019). With a well-defined problem, significant patient volumes, 
and tasks highly amenable to AI, radiation therapy treatment planning is 
an ideal space for prospective AI deployment to not only improve patient 
care, but to establish processes for clinical integration of AI around clini-
cian adoption, bias, and real-world impact.

As in any healthcare application of AI, lack of explainability (e.g., 
“black-box” algorithms) of AI outputs are a major barrier to clinical adop-
tion (Holzinger, 2018; Holzinger et al., 2019). Although we rely on vari-
ous technology and algorithms for the entire treatment planning process 
including image acquisition, segmentation, dose calculation, image visu-
alization, dose statistics, etc., the outputs from AI algorithms are funda-
mentally different from these other algorithms as AI predictions are 
learned from historical data and end users are usually at arm’s length from 
the data curation process on which the outputs are based. Furthermore, it 
may not be clear to end users how the training data are being used spe-
cifically for an individual patient. 
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In order to increase trust in the deployment and clinical implementa-
tion of AI, it is paramount that there is focus on training all relevant end 
users including dosimetrists/planners, radiation oncologists, and medical 
physics. While all end users need not understand all the technical details 
of an AI algorithm, trust increases when there is shared understanding of 
the clinical applicability of the algorithm, including scenarios in which it 
is expected or likely to fail (Cutillo et al., 2020). Upfront design of inter-
pretable AI, such as confidence in prediction scores, outlier flags, or heat 
maps, will improve transparency and end user trust in algorithms (Haibe-
Kains et al., 2020). Interpretable AI interfaces should be deployed using 
the same framework as the AI, and require significant end user (i.e. physi-
cian) input throughout the deployment process (Luo et al., 2019).

One of the final considerations in the clinical deployment of AI for 
treatment planning to understand the clinical applicability of AI is to 
measure physician bias toward or against AI (Fig. 5). By including physi-
cian bias, a more fundamental evaluation of AI beyond more objective 
metrics can capture the perceptions of physician end-users and their 
clinical decisions impacting AI evaluation results and separate any algo-
rithmic, data, or technical deficiencies of AI. Clearly, physician bias 
analysis is not a requirement for clinical deployment; however, in cases 
where a preliminary evaluation of AI is being undertaken, the ability to 
capture the entire decision-making process will enable differentiation 
between treatment plan quality based on objective measurements vs qual-
ity considering how treatment plans were generated (AI vs human). 

The physician bias analysis captures variation in physicians’ accept-
ability criteria and provides insight into clinical practice versus the 
established clinical protocols that are to be followed. This will ulti-
mately provide data to support the requirement for further standardiza-
tion, changes in clinical protocols, and potentially exposes true or 
perceived deficiencies in the AI treatment plans that have not been cap-
tured previously.

With the ultimate goal of improving treatment plan quality with AI, as 
with all facets of medicine, if there is a disconnect between AI treatment 
plans being technically or objectively superior to treatment plans used for 
patient treatment, in practice AI has failed. And the physician bias analysis 
can readily quantify this disconnect. 
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Fig. 5.  Requirement in study design for understanding and evaluating bias toward or 
against AI. (1) providing a framework where the physician has access to simultaneously 
review both AI-generated and human-generated treatment plans in a blinded fashion. (2) 
The physicians’ perception of the source of the treatment plan (AI vs human). (3) An 
independent evaluation of the actual superior treatment plan (including one or more of the 
following: quantitative metrics, group consensus review, independent review, etc.). This 
framework would enable quantification using AUC as described above.

6.  Special Considerations for AI Treatment Planning 
Implementation

It is clear that AI introduces new challenges for workflow integration and 
clinical implementation from previous technology that has been deployed 
for radiation treatment planning. Radiation treatment planning and the 
technology to generate higher quality treatment plans is constantly becom-
ing more automated and at the same time becoming more complex. There 
are parallels between AI and the introduction of optimization in treatment 
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planning, however, even with access to optimization methods, the process 
is still highly manual and requires the end user to understand fundamental 
concepts of how the optimization method works even if they don’t under-
stand how their decisions are being used by the underlying mathematics of 
the optimization algorithm. With AI, the analogous manual work is done 
well before the end user is generating a treatment plan including algorithm 
development, data curation, and algorithm testing. The shift in the upstream 
manual effort for AI also highlights a fundamental difference between the 
clinical integration of optimization and AI into the clinical workflow. 
Optimization methods provide end users a general-purpose tool that can be 
applied to practically any treatment requiring planning. By contrast, AI is 
more rigid to end users, as the AI model is directly linked to specific treat-
ment plan requirements. These clinical workflow factors introduce differ-
ent considerations for downstream clinical implementation: 

(1) Data curation: AI model development requires consistency in decid-
ing clinical tradeoffs for similar patients which may be a consequence 
of human bias driving clinical decisions.

(2) Standardized data inputs: The correspondence between input data for 
AI model training and novel patients to be planned is paramount. 
Inconsistency in contouring practice, the inclusion/exclusion of 
delineated targets and organs, and including an essential organ that 
has not been used for training may render the model not appropriate 
for use (as described in Section 2)

(3) Stability Bias: For a given AI model, the training data is static but 
clinical practice is constantly changing over time, including different 
clinical teams with different acceptability preferences, major and 
minor updates to clinical protocols, and changes in equipment affect-
ing the dose distributions presented to clinicians.

(4) AI model applicability: AI models are often specific for a particular 
clinical use case and therefore it is imperative to understand the 
limitation of the models (e.g., using an AI model trained on one dose-
fractionation applied to treatment plan for a different dose-fractiona-
tion) may produce potentially deleterious outputs (as described in 
Section 7 that follows).
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(5) Automation Bias: Physician preference for or against AI (as described 
in Section 4) enables a better understanding when AI failures are a 
result of model and algorithm limitations that can potentially be 
improved through data or better methodologies.

7. Quality Assurance, Re-Training, and Maintenance

Clinical best practice and workflows are constantly changing, which pre-
sents significant barriers to the deployment and long-term use of ML 
models in clinical medicine. Clinical treatment planning practice varies 
widely between institutions and can evolve rapidly, driven by advances in 
technology and clinical management. 

As a result, the initial technical and clinical validation of an ML 
model prior to deployment must be continuously verified. Despite the 
historical importance of robust QA programs in Radiation Oncology, sys-
tematic methods for training, validation, and testing of ML treatment 
planning methods are not well established (Kalet et al., 2020). 

There should also be periodic testing of models against the original 
model to ensure the introduction of new data is not adversely affecting the 
results. This represents yet another fundamental difference between optimi-
zation methods and AI (as discussed in Section 5). The QA process for 
optimization algorithms is typically limited without formal analysis. The 
onus is placed on the end users to navigate the optimization space and build 
the necessary regions of interests needed for optimization, setting objectives 
and weights, and evaluating treatment plans between optimization itera-
tions. In the case of AI, as models are built or re-trained a formal process is 
required to ensure models are emulating the intended clinical practice.

One of the fundamental steps in the QA process is to understand for 
cases which failed or provided inadequate clinical results the source of the 
failure. In cases that in fact conform to the protocol, the failure may 
indicate a limitation of the training data and the failed sample provides a 
useful source of new data for training. In other cases, the issue may be that 
the model does not actually apply or there is insufficient/missing data that 
is resulting in the failure. In this case, the sample may not apply to any 
current or future model.
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There are several approaches to ensure maintenance of a given AI 
model for treatment planning. At the most fundamental level, adding data 
(Fig. 6) or removing data from a model should not decrease previous 
performance that has been accepted by the clinical team. Therefore, a 
common set of patients that represents the normal variation in clinical 
presentation should be retained for testing purposes over the lifetime of a 
model and which can be readily reviewed (preferably in head-to-head 
comparison) by multiple end users. Re-training has the potential to change 
the output for certain use cases while other use cases will be unchanged 
even from a quantitative point of view (e.g., evaluating dose-volume 
clinical criteria) and limits for changes must be established initially as a 
first evaluation. For example, it may be acceptable to have changes in 
treatment plans between models based on (1) dose-volume criteria limits 

Fig. 6.  General simplified framework for quality assurance (QA), model re-training, and 
maintenance. The above structure establishes treatment plans that will be useful for future 
model re-training and will enhance model performance. For treatment plans that are 
deemed to be clinically unacceptable or inferior to a treatment plan that was available for 
decision making, the sample may be used to build an entirely new model or may be an 
appropriate sample that is consistent with data used to supplement an existing model. In 
all cases, QA processes must be built to ensure data curation. There should also be interim 
analysis of samples as a function of time to understand if there are deviations in practice 
as changes in practice occur. The concept of removing older data is a solution (moving 
average).
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that are less than a predefined percentage of the criteria value and (2) 
dose-volume limits that are still passing the clinical acceptability criteria. 
Furthermore, image-based metrics such the Gamma Index, Dice Similarity 
Coefficient of relevant isodose lines, or evaluation of entire dose-volume 
histogram curves can be compared and quantified. These will provide 
further technical metrics to understand differences between treatment 
plans pre and post model update. In cases where the re-trained model is 
different from the previous model based on the established criteria, further 
training would be required or reverting to the previous model. 

The second level of model maintenance and QA evaluation should 
include clinical review to understand quality of treatment plans generated 
with an updated model that is not captured with quantitative metrics. 
Similar to the above evaluation, the same test set of patients can be used 
to ensure clinical treatment plan acceptability generated with the updated 
model.

One potential consideration for QA, maintenance, and re-training are 
changes in clinical practice that may occur over time and can be incorpo-
rated into the data used for model training. Changes to contouring prac-
tice, including changes to expansion margins for targets or differences in 
organ contouring practice could introduce undesirable variation in data 
that will generate an inferior model for re-training (Conroy et al., 2021). 
Furthermore, including or excluding organs and/or targets can also have 
adverse effects on the quality of treatment plans for the new model. This 
is particularly a challenge for evaluation as the test set of treatment plans 
may not have these additional organs and/or targets even available for 
analysis. 

8. Summary

There are numerous high-performing technical solutions for AI-based 
treatment planning; however, clinical use of these algorithms as standard-
of-care in the clinic remains low. Challenges in real-world clinical use of 
AI-based treatment planning include applicability in the clinical setting, 
gaining clinician trust, workflow integration, and a lack of guidance 
on algorithm maintenance, testing, and re-training. Strategies must be 
developed and implemented into the routine clinical process to ensure the 
safe and effective use of AI for radiation treatment planning.
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Abstract
The collateral irradiation of normal tissues can result in damage that reduces the 
quality of life for cancer survivors. The variability of toxicity risk has been 
increasingly recognized as multifactorial, involving patient-specific genetics, dose-
volume levels, and other risk factors. The association between genetics and 
radiotherapy (RT)-induced toxicity, referred to as radiogenomics, has received 
increasing attention. Traditional statistical analyses have mainly focused on testing 
the effect of individual genetic variants without considering non-linear interactions 
of variants. We have shown that artificial intelligence (AI) methods, including 
machine learning approaches, can efficiently leverage large-scale genetic variants 
(e.g., single nucleotide polymorphisms [SNPs]), taking into account the complex 
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interactions among genetic markers. In addition, novel post-modeling analyses, 
employing bioinformatics network techniques, can identify key genes associated 
with tissue-specific toxicity. The next challenge of genetic prediction models will 
be to integrate genetic and RT dose-volume factors. Such models have the potential 
to identify patients at high risk for the development of toxicity and thus offer 
individualized risk-specific treatment planning. In this chapter, we review results 
for multiple endpoints yielding usable stratifications of odds ratios for a significant 
fraction of patients treated with RT. Progress in radiogenomics has been slow 
primarily due to a lack of data sets and other analytical obstacles. We discuss these 
issues that need to be addressed when handling genome-wide variants. We 
conclude by looking to a future when germline genomics is combined with RT 
dose-volume factors to personalize RT-induced toxicity risk.

1. Introduction

Many normal tissue complication probability (NTCP) models have been 
developed to predict symptomatic radiotherapy (RT)-induced complica-
tions with the ultimate goal to guide individualized risk-specific RT treat-
ment planning (Marks et al., 2010). Risk factors for RT-induced toxicity 
are multifactorial including RT dose, co-morbidities, as well as genetic 
factors (Kerns et al., 2015). Researchers have explored associations 
between the risk of RT-induced toxicity and germline genetic variants at 
a genome-wide level to identify plausible biomarkers and better under-
stand patient-specific radiosensitivity (West et al., 2014). The establish-
ment of the Radiogenomics Consortium (RGC) in 2009 accelerated the 
field of research (West & Rosenstein, 2010; West et al., 2010). The 
radiogenomics study is grounded in the fact that differences in pheno-
types or traits are in part attributed to individual genetic variations. The 
term radiogenomics is here used to refer to studies of genetic variation vs. 
RT toxicity. (Note: a different use of the term ‘radiogenomics’ refers to 
the relationship between tumor image characteristics and genomic char-
acteristics.)

The healing process following radiation damage to normal tissues is 
complicated, involving coordinated processes at different scales of molec-
ular processing and inter-cellular processing, and is dependent on the tis-
sue type and other characteristics of the host (Denham & Hauer-Jensen, 
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2002). Like other complex phenotypes or traits, the radiation response is 
expected to be dependent on many genetic variants with mostly small 
effects (Sun et al., 2021; Yang et al., 2010). It is not surprising that meth-
ods searching for single genetic variants with large effects have mostly 
been unproductive. Even though some causal variants have been identi-
fied, they apply only to a modest fraction of the population with the given 
alleles (Kerns et al., 2020). Our hypothesis, confirmed in multiple studies, 
is that robust predictive models can be constructed by layering on small 
effects from many (dozens or even hundreds) of genetic variants in differ-
ent genomic regions. In particular, we focus on common genetic variants 
(single nucleotide polymorphisms [SNPs]) carried in the germline as 
opposed to infrequent, rare variants (Pitter et al., 2021). A successful 
model need not be restricted to causal genetic factors only; success can be 
achieved if the overall predictions are validated and accurate, leading to 
clinically usable odds ratios (>2 between the safest 1/3 of patients and the 
riskiest 1/3 of patients treated in a conventional manner). Machine 
learning/artificial intelligence (AI) is well-suited to this task. Moreover, 
the resulting models can be interpreted using bioinformatics network 
approaches, as we will discuss, identifying key biomarkers.

In this chapter, we review the application of AI to predictive modeling 
on large-scale genetic variants and further propose to employ such mod-
eling methods in radiogenomics studies, investigating incorporated 
genetic variants and dose-volume factors to stratify patients for the devel-
opment of RT-induced toxicity, potentially aiming to guide treatment 
planning.

2. Machine Learning Approaches to GWAS

A typical genome-wide association studies (GWAS) analysis investigates 
common variants across the whole genome collected from a number of 
individuals and the statistical relationship with a target trait or phenotype. 
There are two main approaches used in GWAS analysis: statistical analy-
sis and machine learning. In this section, we first sketch the statistical 
analysis approach followed by machine learning-based modeling methods 
that have been used in GWAS.
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2.1. Statistical analysis approaches

Traditional statistical analysis is often carried out to identify genetic sus-
ceptibility loci strongly associated with a trait or phenotype. The statisti-
cal power of a given SNP association depends on the frequency of 
occurrence in the population, the effect size, and the number of endpoint 
events. To compute the individual significance of each SNP, univariate 
single SNP-trait association analysis is performed using chi-square test or 
regression analysis. Clinical variables known as high-risk predictors can 
be added in the univariate regression analysis to adjust the p-values of 
individual SNPs. The degree of association is represented by a so-called 
Manhattan or QQ (quantile–quantile) plot. In general, most putative risk 
loci have small effect sizes (odds ratio <1.5) (Hindorff et al., 2009). In 
statistical analysis approaches, a power calculation can be made before 
GWAS to compute the effect sample size to achieve sufficient statistical 
power while minimizing false negative and false positive findings 
(Hong & Park, 2012). In the following, the considerations in GWAS 
analysis are described.

2.1.1. Multiple hypothesis correction

Multiple hypothesis testing is a major issue in GWAS due to the large 
number of SNPs tested simultaneously. The Bonferroni correction method 
and permutation testing are common approaches for dealing with this 
issue (Hendricks et al., 2014). A permutation test, wherein endpoint val-
ues are randomly re-assigned among samples to judge the likelihood of a 
random correlation, is a general technique to control a type-I error (false 
positive significance). However, permutation testing is computationally 
expensive for high-throughput data. The Bonferroni correction, in con-
trast, simply adjusts the standard p-value threshold under the assumption 
that multiple tests are statistically independent. The Bonferroni correction 
is widely used in GWAS, but it is overly conservative. Bonferroni analysis 
may result in the overcorrection of single SNP associations due to non-
independent SNPs that are partially correlated due to linkage disequilib-
rium (LD) across the genome (Kang et al., 2018). This situation is further 
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exacerbated when genotyping data are imputed, which increases the num-
ber of SNPs within LD blocks (Bohmanova et al., 2010).

2.1.2. Population structure correction

Population stratification is a key concern in GWAS, which arises when 
systematic genetic differences in allele frequencies exist in a study popu-
lation, leading to inflated false positive and false negative error rates 
(Hellwege et al., 2017; Naret et al., 2018). Therefore, correction for 
population stratification is important prior to association tests. Typically, 
a few principal components that describe the genetic structure of the 
cohort are used in regression modeling as covariates, which results in cor-
rected univariate association p-values (Price et al., 2006). 

2.1.3. Genotype imputation

Current GWAS arrays typically produce a million genotypes per blood 
sample. Yet, the number of SNPs in the full genome is much larger. To 
improve genome coverage and increase the power of potential higher 
associations, genotype imputation is widely used, which results in more 
than 10 million additional un-genotyped SNPs utilizing common popula-
tion references (Malhotra et al., 2014; Marchini & Howie, 2010; Pei et al., 
2010). Although genotype imputation is a powerful tool to boost statistical 
power in an association analysis, it further increases the challenge of 
p-value corrections as described above (Schurz et al., 2019). Imputation 
also facilitates meta-analysis across multiple studies where different 
GWAS arrays are used. After imputation, quality control for imputed 
variants is important. This includes the removal of SNPs with low imputa-
tion accuracy (e.g., R2 < 0.3), as well as the removal of SNPs that do not 
appear often in the population, referred to as a low minor allele frequency 
(MAF). A cutoff of ignoring SNPs with an MAF of less than 5% is com-
mon. The PLINK software tool is useful for the processing of GWAS data, 
including quality filtering and computationally efficient significance tests 
(Purcell et al., 2007). Two imputation servers are publicly available: the 
TOPMed Imputation Server (https://imputation.biodatacatalyst.nhlbi.nih.
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gov) and the Michigan Imputation Server (https://imputationserver.sph.
umich.edu); both provide a user-friendly interface for genotype imputa-
tion, and both use the Minimac4 algorithm for genotype imputation (Das 
et al., 2016). 

2.1.4. Fine mapping

The group of SNPs that capture the local genomic allelic variations are 
called ‘tag SNPs’. Hence, tag SNPs can be used to reconstruct the rest of 
non-tag SNPs (Hyten et al., 2007; Ilhan & Tezel, 2013). It is important to 
note that significant SNPs identified from GWAS are not necessarily 
causal to the phenotype of interest, but are rather correlated to true causal 
SNPs due to the genomic LD structure (Stram, 2004). Thus, GWAS is 
typically followed by the post-GWAS processing to search for causal 
SNPs, referred to as ‘fine mapping’ (Spain & Barrett, 2015), based on the 
tag SNPs and genomic structure that surrounds the tag SNPs. This can be 
heuristically conducted by examining the GWAS signals from the SNPs 
within the same region of statistically correlated SNPs with the tag SNP 
in LD, using a software tool such as Haploview (Barrett, 2009). The two 
main quantitative approaches for fine mapping are penalized regression 
and Bayesian methods, both of which can be used to jointly analyze the 
SNPs in the vicinity of the tag SNPs and either result in a smaller set of 
putative causal SNPs (penalized regression) or posterior probability of 
causal SNPs (Bayesian method). More details on these approaches can be 
found in a review paper by Schaid et al. (Schaid et al., 2018).

2.2. Machine learning approaches

2.2.1. Selecting genomic features as inputs to model building

While statistical approaches seek a high degree of confidence that identi-
fied SNPs are at least statistically related to the endpoint in the patient 
population, machine learning modeling can take an unbiased and integra-
tive approach to build predictive models. The use of machine learning 
methods allows for a de-emphasis on SNP identification with a gain in 
ability to build more robust predictive models. However, the large number 
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of SNPs requires feature reduction. Fortunately, a univariate approach that 
identifies a large, but not too large, number of SNPs as inputs to model 
building is a practical approach.

2.2.2. Validating machine learning models

Universal agreement on the best approach to model validation is elusive. 
Most studies set aside data for a final test of a model. This can either be a 
second data set, not mixed with data for the model building, or a fraction 
of the original data set that is randomly sampled to form a separate data 
set. Due to the decreased need for data when the model is fixed, less data 
are used for validation in general. A split of 70/30 is a common method. 
Within the 70% of data for model building, it is common to repeatedly 
split the data into similar training/testing cohorts. Most machine learning 
algorithms have parameters that need to be fixed for the model to be 
applied; these are called ‘hyper-parameters’. The model building process 
then consists of multiple shuffles of the data to create training/testing 
splits. The hyper-parameters are gradually modified or locked in based on 
the testing cohort results. Drilling further into the use of the training/test-
ing strategy, common practice is to use cross-validation to estimate per-
formance. In the so-called k-fold cross-validation, data are split into k
sub-groups with equal size (Koul et al., 2018). In each iteration, the sam-
ples in the k–1 folds are used for model fitting, and the remaining samples 
are used to estimate model performance, repeating the process for each 
fold. In particular, when the number of samples in the data is small, leave-
one-out cross-validation can be used with k = n (number of samples) 
(Cheng et al., 2017). Bootstrapping is another resampling method such 
that the training samples are randomly selected from the whole data with 
replacement, and the samples that do not belong to the training data are 
used for testing. 

2.2.3. Methods for developing prediction signatures from GWAS

Several machine learning methods have been proposed for GWAS to 
develop predictive multi-SNP models, which we review. 
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2.2.3.1. Support vector machines

Wei et al. (2009) employed a support vector machine (SVM) method for 
predicting disease risk for type 1 diabetes, using a GWAS data set and 
validating the model on an independent data set, wherein both resulted in 
an area under the curve (AUC) of about 0.84 (Wei et al., 2009). Kim et al.
(2013) proposed a prediction method for GWAS, consisting of two steps: 
(a) a MAX test, based on the maximum of three trend test statistics 
derived for recessive, additive, and dominant models, was employed to 
identify genetic models of each SNP and (b) a final predictive model was 
built employing penalized SVMs on the SNPs (Kim et al., 2013). Mittag 
et al. (2012) conducted GWAS analyses for seven diseases from the 
Wellcome Trust Case-Control Consortium (WTCCC), employing several 
machine learning methods, and found that predictive power of machine 
learning methods was similar, therefore suggesting simple models for 
GWAS such as linear SVMs for better model interpretation (Mittag et al., 
2015). 

2.2.3.2. Penalized logistic regression

In another study, Wei et al. (2013) adopted penalized logistic regression 
with an L1 penalty to build a predictive model of inflammatory bowel 
disease. Due to the desirable nature of L1 regularized models, redundant 
SNPs with high correlations, in particular within LD, are likely to be fil-
tered out while fitting a predictive model (Wei et al., 2013). Thus, this 
approach has the advantage of performing feature selection and predictive 
modeling, simultaneously. For this reason, penalized logistic regression is 
an attractive approach as a filtering step prior to applying other machine 
learning methods. In addition, the estimation of effect sizes for SNPs as 
assessed from L1 coefficient values quantifies individual SNP contribu-
tions. Yang et al. (2020) introduced a permutation-assisted tuning proce-
dure for the selection of the L1 LASSO (least absolute shrinkage and 
selection operator) tuning parameter in a joint multiple-SNP regression 
model to identify phenotype-associated SNPs (Yang et al., 2020). More 
recently, Nouira and Azencott (2022) developed a multitask group LASSO 
method, MuGLasso, for the multivariate analysis of multi-population 
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GWAS data (Nouira & Azencott, 2022). In this method, feature selection 
was conducted at the level of LD-groups with each task corresponding to 
a subpopulation.

2.2.3.3. Random forest models

Random forest is the most extensively used machine learning method in 
GWAS (Botta et al., 2014; Cosgun et al., 2011; Nguyen et al., 2015; Oh 
et al., 2017), being well-suited to unbiased model building with many 
possible predictors and non-linear interactions. The random forest algo-
rithm is an ensemble method that builds a group of decision trees for each 
application (Denisko & Hoffman, 2018). There are two random selection 
processes at work in random forest construction. Each tree, consisting of 
decision nodes based on single variables, is constructed using boot-
strapped data randomly sampled with replacement, having the same num-
ber of samples as the original data. For the random process in feature 
selection, a random subset of features is selected at each node split, and 
the SNP feature that yields the lowest mean squared error is chosen. By 
building up a ‘forest’ of such decision trees, the model yields unbiased 
estimate despite the fact that any individual tree overfits to the randomly 
sampled data. Correspondingly, individual SNPs and decision trees do not 
dominate the prediction result. Nguyen et al. (2015) proposed a two-stage 
random forest approach for GWAS (Nguyen et al., 2015). In the first step, 
the importance scores of SNPs were computed and p-values were assessed 
against the maximum important score of injected SNPs, resulting in the 
identification of informative vs. irrelevant SNPs. Only informative SNPs 
were then used during random forest modeling. Botta et al. (2014) pro-
posed a tree-based ensemble method, called T-Trees, designed to consider 
the correlation structure observed in LD across genome-wide variants, 
which replaced the univariate linear split functions by multivariate non-
linear split functions on several SNPs located in the same block (Botta 
et al., 2014). Cosgun et al. (2011) tested several machine learning meth-
ods, including random forest regression, boosted regression tree, and sup-
port vector regression, to build a predictive model of warfarin maintenance 
dose for African Americans, using GWAS data (Cosgun et al., 2011). 
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In various warfarin dose-response tests, random forest regression with 200 
SNPs achieved the best accuracy. 

2.2.3.4. Deep learning

Multiple deep learning approaches have recently been developed for 
GWAS analysis and prediction. Mieth et al. (2021) introduced a deep 
learning-based approach, called DeepCOMBI, to identify SNP-phenotype 
associations in GWAS (Mieth et al., 2021). In this modeling approach, a 
layer-wise relevance propagation (LRP) method was adopted to compute 
SNP relevance scores and only a set of SNPs that were selected based on 
the relevance scores were tested for statistical associations (Bach et al., 
2015). Sun et al. (2020) proposed a multi-hidden-layer Cox-based sur-
vival model employing a feedforward deep neural network (DNN) where 
the last output layer produces a prognostic index (Sun  et al., 2020). 
Arloth et al. (2020) presented a deep learning model, called DeepWAS, 
which can identify potential disease/trait-associated SNPs (Arloth et al., 
2020).

2.2.3.5. Network analysis

The basic premise of using networks to represent biological networks is 
that the genes or loci that are functionally correlated (via gene–gene inter-
action, pathways, or expression quantitative trait loci [eQTL]) are more 
likely to have joint causal effects (Oti & Brunner, 2007). Azencott et al.
(2013) proposed a network-based approach, called SConES, to identify 
sets of genetic loci that are likely associated with a phenotype based 
on an underlying network, employing a minimum cut reformulation 
(Azencott et al., 2013). In their study, three network types were proposed: 
(a) a genomic sequence network wherein SNPs adjacent on the genome 
sequence are connected, (b) a gene membership network wherein SNPs 
near the same gene are connected, and (c) a gene interaction network 
wherein SNPs belonging to two genes connected in a gene–gene interac-
tion network are linked together. Table 1 summarizes the various machine 
learning methods applied to GWAS.
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Table 1.  Machine learning methods used in GWAS. 

Method Algorithm Disease/Trait Reference

SVM Type 1 diabetes (Wei et al., 2009)

SVM Chronic myelogenous leukemia (Kim et al., 2013)

SVM WTCCC (Mittag et al., 2015)

LASSO Inflammatory bowel disease (Wei et al., 2013)

LASSO
LASSO
RF

MuGLasso
Cardiovascular disease
Breast cancer
Warfarin dose

(S. Yang et al., 2020)
(Nouira & Azencott, 2022)
(Cosgun et al., 2011)

RF T-Trees WTCCC (Botta et al., 2014)

RF ts-RF Parkinson and Alzheimer diseases (Nguyen et al., 2015)

RF PRFR Radiotherapy toxicity in prostate 
cancer

(Oh et al., 2017)

DL Age-related macular degeneration (T. Sun et al., 2020)

DL DeepWAS Multiple sclerosis, major 
depressive disorder, height

(Arloth et al., 2020)

DL DeepCOMBI WTCCC (Mieth et al., 2021)

Network SConES Arabidopsis flowering time 
phenotypes

(Azencott et al., 2013)

Note: WTCCC: Wellcome Trust Case Control Consortium; SVM: support vector machine; LASSO: 
least absolute shrinkage and selection operator; RF: random forest; DL: deep learning.

2.3.  A hybrid method of machine learning and statistical 
analysis

Oh et al. (2017) proposed a hybrid method that integrates statistical 
analysis with machine learning (Oh et al., 2017) in GWAS, referred to as 
pre-conditioned random forest regression (PRFR). First, before the mod-
eling, SNPs with univariate p-values >0.001 for a target endpoint are 
omitted, making the problem tractable. This p-value threshold is modest 
in comparison with the genome-wide significance level (often, 5 × 10–8) 
and was chosen to decrease the large number of SNPs to a reasonably 
manageable number (500−2000), but with as many potential biomarkers 
as possible. The machine learning phase starts with a step called pre-
conditioning to account for the broad population structure. The result is an 
alteration of the observed outcomes to ‘pre-conditioned’ outcomes that are 
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meant to incorporate more information about each patient. This is per-
formed using supervised principal component analysis (SPCA): principal 
components (PCs) are computed using highly ranked SNPs (a few hun-
dred) in association with the original binary outcomes on training data. 
The resultant few PCs are weighted within logistic regression, resulting in 
the adjusted ‘pre-conditioned outcomes’ that are used in random forest 
regression modeling. The idea is to make the outcomes more informative 
by changing the binary outcome to something more like an expected aver-
age outcome. The approach PRFR has demonstrated superior predictive 
performance over other alternative methods in several GWAS of cancer 
treatment-associated outcomes, including late rectal bleeding (Oh et al., 
2017), erectile dysfunction (Oh et al., 2017), genitourinary toxicity (Lee 
et al., 2018) in prostate cancer, breast cancer treatment-induced fatigue 
(Lee et al., 2020), and RT-associated induction of contralateral breast 
cancer (Lee et al., 2020). 

Figure 1 illustrates the performance comparison of PRFR with alter-
native methods for rectal bleeding, erectile dysfunction, and genitourinary 
toxicity (weak stream) in prostate cancer. For all endpoints, PRFR 
achieved the highest performance and smallest standard deviation, sug-
gesting its reliability. Note that all models were tested against set-aside 
validation data (not used in the modeling). Patients were sorted based on 
the predicted outcomes and binned into six groups with one being the low-
est risk group and 6 being the highest risk group. As shown in Fig. 2, for 
all endpoints, the comparison between the predicted and observed inci-
dences had a good level of agreement and showed promising odds ratios. 

Fig. 1.  Performance comparison of PRFR (pre-conditioned random forest regression) 
with alternative methods on the set-aside validation data for (a) rectal bleeding, (b) erectile 
dysfunction, and (c) genitourinary toxicity (weak stream) in prostate cancer patients. STD: 
standard deviation; AUC: area under the curve; LASSO: least absolute shrinkage and 
selection operator. Reprinted from Oh et al. (2017) with permission.

(a) (b) (c)
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Fig. 2.  Comparisons of the predicted and actual incidence rates for (a) rectal bleeding, 
(b) erectile dysfunction, and (c) genitourinary toxicity (weak stream) on the validation 
data set. The error bar indicates the standard error. Reprinted from Oh et al. (2017) with 
permission.

(a) (b) (c)

2.4.  Integration of dose-volume and genetic factors into 
NTCP models

To better guide RT treatment planning, the development of accurate 
NTCP predictive models is vital, using complementary information from 
genetic risk factors in addition to RT dose. A few studies have proposed 
methods that incorporate the effect of SNPs as dose modifying factors 
(DMFs) in NTCP models (Coates et al., 2015; Tucker et al., 2013). 
Incorporating information about SNPs into a predictive model adjusts the 
effect of RT dose and the combined information is likely to yield better 
predictive power. Coates et al. (2015) proposed a method that integrates 
genetic variations into a Lyman–Kutcher–Burman (LKB) NTCP model as 
a DMF to build predictive models of RT-induced rectal bleeding and erec-
tile dysfunction in prostate cancer, using copy number variation (CNV) 
and the SNP rs5489 in the XRCC1 gene (Coates et al., 2015). The inte-
grated model led to increased cross-validated predictive power. Tucker 
et al. (2013) developed a predictive model for radiation pneumonitis in 
lung cancer, incorporating 16 SNPs from 10 genes (XRCC1, XRCC3, 
APEX1, MDM2, TGFß, TNFα, TNFR, MTHFR, MTRR, and VEGF) in an 
LKB model as DMFs, demonstrating that SNPs significantly improved 
the LKB model (Tucker et al., 2013). Note that these studies analyzed 
only a small number of selected SNPs, and in some cases it is not clear if 
they were selected from a larger number of SNPs. Clearly, the integration 
of many SNPs (hundreds or thousands) and RT dose in machine learning-
based methods remains underexplored. 
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In multi-omic predictive modeling, it is important to consider the dif-
ferent nature of genomic data and conventional dosimetric or clinical data. 
Genomic data are much higher dimensional, which means that much more 
genomic features can be identified as significant by random chance. 
Moreover, clinical and dosimetric variables are often curated based on 
previous studies or mechanistic understanding of the endpoint. Therefore, 
rather than merely integrating RT dose into genetic modeling, a more 
sophisticated approach may be needed to assess the effect of genetics in 
combination with RT dose. For example, the predictive power represented 
by an odds ratio in a genetic machine learning model could be added into 
an existing RT dose-volume model, which would allow for assessing the 
effect size of integrated genetic factors. Figure 3 illustrates a general 
workflow in building a dose-volume-genetic predictive model.

Fig. 3.  A general workflow for building dose-volume-genetic predictive models.
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3. The Identification of Biological Correlates Associated 
with Toxicity: A Key Advantage of Machine Learning 
Signatures in GWAS

After predictive modeling, the functional annotation of key SNPs exploit-
ing bioinformatics techniques is essential to gain insights into biologic 
functions associated with RT-induced toxicities (Lee et al., 2018, 2020; 
Oh et al., 2017). For biological analysis at a gene level, SNPs should be 
mapped to the genes that are putatively causal to the phenotype of interest. 
There are two major methods for SNP-gene mapping. First, SNPs can be 
assigned to genes based on physical proximity within the genome. 
However, there is no clear threshold for the proximity, possibly introduc-
ing false-positive mapping. In another approach, SNPs are mapped to 
genes using tissue-specific eQTL effects. An eQTL is a region that has 
been identified as driving the genetic variation in gene expression patterns, 
and eQTL SNPs are often overrepresented in regulatory regions (Fagny
et al., 2017; Miller et al., 2015). A disadvantage of this approach is that 
not all eQTL effects have been investigated. Once a list of genes for the 
key SNPs has been identified, gene ontology or protein–protein interaction 
analysis can be performed to recognize key biological processes in which 
the genes act together, which characterizes the functional effects of SNPs. 
To this end, enrichment analysis can be conducted to test the statistical 
significance of the enrichment of a group of genes or ontology. The result-
ant enrichment p-values indicate the significance of those biological pro-
cesses identified in association with RT-induced toxicity. Several databases 
provide gene ontology analysis tools, including AmiGO 2 (http://amigo.
geneontology.org/amigo), DAVID (https://david.ncifcrf.gov/), and the 
commercial database MetaCore (https://portal.genego.com/). Lamparter
et al. (2016) presented a powerful tool, called Pathway scoring algorithm 
(Pascal), to compute gene and pathway scores from GWAS association 
summary statistics (Lamparter, Marbach, Rueedi, Kutalik, & Bergmann, 
2016). This tool enables the identification of key pathways associated with 
phenotypes in the lack of genotype data.

In the following, we sketch the biological analysis after machine 
learning-based modeling on GWAS. In a bioinformatic analysis after 
PRFR modeling, Oh et al. (2017) identified ion transport activity as a key 
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biological process associated with RT-induced rectal bleeding in prostate 
cancer patients (Oh et al., 2017); this process has been shown to be critical 
to the repair of rectal mucosa damage in several mouse model studies 
(McCole et al., 2005). Figure 4 shows directly connected protein–protein 
interaction networks identified using the corresponding genes for impor-
tant SNPs. In pre-clinical models, the results of several studies have 
shown that vitamin D receptor (VDR) deficiency is associated with rectal 
bleeding (Figure 4(a)) (Froicu et al., 2003; Kong et al., 2008). For erectile 
dysfunction, the top two biological processes identified were the negative 
regulation of heart contraction and the negative regulation of blood 
circulation. Figure 4(b) shows a protein–protein interaction network likely 

Fig. 4.  Post-model bioinformatics analyses to identify key protein–protein interaction 
networks based on information derived from random forest modeling for (a) rectal bleed-
ing, (b) erectile dysfunction, and (c) genitourinary toxicity (weak stream). Connections 
indicate known interactions. For all three endpoints, some of the interacting genes have 
previously been identified as relevant to the endpoint. Reprinted from (Oh et al. (2017) and 
(Lee et al. (2018) with permission.

(a)

(b)

(c)
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associated with erectile dysfunction. Several pre-clinical studies have 
previously found PKC (Wingard et al., 2007) and SMAD3 (Zhang et al., 
2008) to be associated with erectile dysfunction. For genitourinary toxic-
ity in the same cohort, Lee et al. (2018) identified a significantly enriched 
functional group, consisting of 9 gene ontology terms, strongly associated 
with neurogenesis. This is a plausible biological process since the lower 
urinary tract is innervated by various peripheral nerves (Lee et al., 2018). 
Among the proteins identified through further network analysis, seven 
proteins, including protein-kinase C (PKC), annexin I, protein kinase G, 
epidermal growth factor receptor (EGFR), schwannomin, acid-sensing ion 
channel 2, and neurexin, have previously been associated with lower uri-
nary tract syndrome (Fig. 4(c)). In another study, Lee et al. (2020) found 
the cyclic adenosine monophosphate (cAMP)-mediated signaling path-
way to be associated with RT-associated contralateral breast cancer (Lee 
et al., 2020), which has been previously shown to promote RT-induced 
apoptosis in human lung cancer cells via interaction with the ATM gene 
(Cho et al., 2014). In further protein–protein interaction analysis, two 
distinct clusters were identified, consisting of eight proteins. The literature 
survey indicated that all eight proteins have been reported to be associated 
with breast cancer, radiation, or both. In particular, four (CD63, Ephrin A, 
ERBB4, and Neuregulin 1) out of the eight proteins were found to be 
relevant to both radiation and carcinogenesis (Kaenel et al., 2012; Shi 
et al., 2015; Sundvall et al., 2008; Tsai et al., 2003). Clearly, one of the 
underlying ideas is that variations in closely related genes are more likely 
to contribute to phenotype variability. This means that network analysis 
can be combined with unbiased machine learning methods in GWAS to 
better understand biological mechanisms.

4. Conclusion

In summary, it is clear from the results presented that germline genetic 
variation is a significant contributor to the variability in radiotherapy tox-
icity response among patients. Fortunately, AI/machine learning methods 
represent a practical approach to using this information, even when it 
spreads across hundreds of SNPs. The integration of germline genetic 
variants and RT dose into advanced interpretable machine learning 
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modeling has the potential to provide NTCP models with increased accu-
racy, thereby enabling a reduction of RT-induced complications in cancer 
survivors. Importantly, the use of bioinformatics techniques in connection 
with AI/machine learning in GWAS provides an unbiased and powerful 
method to identify key biological mechanisms. Despite the promise of this 
area of research, progress is slow due to the need to accrue GWAS data 
sets for each relevant endpoint. Hopefully, recent results will help spur 
acceleration. 
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Abstract
The relatively new field of radiomics seeks to leverage previously under/
unutilized aspects of diagnostic imaging as a clinically meaningful tool with 
promise to change the face of how imaging may be used in future clinical 
practice. Through analysis of features in individual voxels and how those features 
interact with similar features of surrounding voxels as well as establishing 
patterns within individual features or classifications of features throughout an 
imaging set, a vast amount of data can be generated and mined. Further, through 
the current field of radiogenomics, researchers are seeking to gain a better 
understanding as to what these individual radiomic features and patterns truly 
represent at a cellular and subcellular level. Since its inception, the concept of 
radiomics has promised the potential to provide actionable information through 
multiple aspects of clinical care. 
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To date, a majority of radiomic-related publications have focused on two 
aspects of potential use: Providing information that can act as an adjunct to 
clinical and pathological prognostic criteria for patients with newly diagnosed 
malignancies and producing radiomic feature signatures that can predict 
likelihood and degree of response to specific treatments. With these, the potential 
clinical utility is apparent. Providing patients with the most accurate prognostic 
information possible allows for a more thorough and realistic discussion 
regarding treatment options and will help to better optimize healthcare resources. 
Predicting treatment response in an accurate real-time manner allows for better 
decision-making regarding the need or lack thereof for individual therapies, 
determination of total duration of treatment, and help to further clarify which 
treatment or combination thereof provides the best likelihood of treatment 
response in each individual patient.

Of increasing interest, however, are two additional potential avenues through 
which radiomics can provide aid to treating clinicians. Using radiographic signals 
beyond apparent tumor size reduction to track response to ongoing treatments can 
provide vital information to patients and providers regarding whether a current 
treatment should be continued or abandoned for other options, particularly in tumors 
that are difficult to objectively assess using standard imaging techniques or show a 
mixed response on follow-up imaging. Further, the potential utility of radiomic 
signatures to provide information regarding histology, mutational status, or targetable 
receptor status with a high degree of accuracy could open an avenue for patients and 
clinicians to gain information on primary tumors and metastatic disease without the 
need for biopsies, reducing the associated risk and morbidity to patients in the process. 

Through this chapter, we seek to offer a glimpse into the general state of 
knowledge gained from and current failures of modern radiomics with a focus on 
each of the four directions of radiomic research delineated above. Our desire is to 
provide a high-level overview of radiomics literature with commentary throughout, 
highlighting areas of consistent promise while additionally underscoring areas of 
inconsistency or shortcomings in the data. With this, we hope to illustrate the 
continued and growing excitement in this field and provide areas in need of 
further development, helping to guide readers in the consideration and design of 
the future research directions that will shape this field in the coming years. In 
keeping with the theme of this work as a whole, we will also offer commentary 
on how artificial intelligence has been incorporated into the development of 
radiomics signatures and the general themes that emerge when assessing this field 
in its totality. The primary uses of radiomics in cancer is summarized at the end 
of this chapter, in Table 1.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



b4808 Artificial Intelligence in Radiation Oncology“6x9” 

Utilization of Radiomics in Prognostication and Treatment Response 275

1. Radiomics as an Adjunct to Prognosis

In patients with newly diagnosed malignancies, understanding their prog-
nosis is of paramount importance. This knowledge can help patients deter-
mine how aggressive they may like to be with their treatment, the risk and 
nature of side effects they may be willing to tolerate, and what decisions 
should be made outside of the clinic regarding home life, finances, travel, 
and beyond. Classically, prognosis was based primarily on the nature of 
the malignancy the patient was diagnosed with, their clinical stage, and, 
to some degree, pathological grade. As we have increased our knowledge 
with regards to various malignancies, new aspects have arisen that are also 
considered such as hormone receptor status of breast cancer, growth factor 
receptor mutations or amplification, the presence or absence of specific 
mutations such as in primary CNS malignancies, and general mutational 
signatures in cancers such as breast and prostate. The vast amounts of data 
that are generated through radiomics analyses promise to potentially pro-
vide an additional tool by which to assess patient prognosis that goes 
beyond any of the current clinical, pathological, or histological tools cur-
rently available. Used either alone or in conjunction with other prognostic 
tools available, these radiomic signatures may provide the most robust 
individual assessment of prognosis currently possible.

Of all malignancies in which radiomics has been considered for bol-
stering prognostic differentiation of patients, the most robust data exists in 
primary CNS malignancies and, more specifically, glioblastoma. When all 
glioblastoma associated radiomics papers are amassed and considered in 
concert, several consistent findings emerge. Various radiomics signatures 
using multiple types of MRI sequences have demonstrated the ability to 
predict progression-free survival, the presence of disease recurrence, and 
patient overall survival (Oltra-Sastre et al., 2019). Beyond providing 
improved prognostic distinction at the time of diagnosis, Ammari and col-
leagues demonstrated that a combination of clinical and radiomic infor-
mation extracted from pretreatment contrasted T1 and T2 flair MRIs are 
able to stratify patients by overall survival at 9, 12, and 15 months after 
initiation of bevacizumab in the setting of recurrent glioblastoma. 
Interestingly, while their algorithms were able to differentiate patients 
who survived 12 months or longer with an AUC of up to 0.85 in their test 
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set, they were unable to reliably construct an algorithm to predict progres-
sion-free survival, a fact that is perhaps attributable to the difficulty in 
reliably determining disease progression of glioblastoma in the setting of 
bevacizumab (Ammrai et al., 2021).

Interestingly however, and perhaps with significant implications for 
all radiomics studies regardless of application, Beig et al. demonstrated 
differing prognostic and predictive abilities of radiomics signatures 
derived from contrasted T1 MRIs across genders and within tumor sub-
compartments. These findings suggest that radiomic signatures are 
unlikely to represent a one size fits all scenario and that both demographic 
factors and exact location of analysis within a tumor must be accounted 
for if the true clinical utility of radiomics for gliomas is ever to be realized 
(Beig et al., 2021). 

Radiomics signatures have also demonstrated potential prognostic 
capabilities within the CNS outside of the setting of primary CNS neo-
plasms. For example, Bhatia et al. found that MRI-based radiomics fea-
tures were able to predict overall survival in patients with intracranial 
metastatic disease from melanoma receiving treatment with immune 
checkpoint inhibitors on univariate analysis though upon multivariate 
analysis their findings became statistically nonsignificant (Bhatia et al., 
2019). It remains unclear if this loss of significance is due to low patient 
numbers in their training and test sets, overly restrictive feature extraction 
techniques, or a general failing of radiomics in this setting. Langenhuizen 
et al. expanded the field of intracranial radiomic prognostication beyond 
malignant diseases, demonstrating that a predictive model using pretreat-
ment MRI-derived texture features in patients with acoustic neuromas 
treated with SRS was able to predict likelihood of future tumor growth 
with an AUC of 0.93 (Langenhuizen et al., 2020).

The ability of radiomics to improve prognostic abilities have been 
investigated across myriad extracranial malignancies as well. Liu et al. 
combined clinicopathologic features and deep learning radiomic signature 
analyses based on pretreatment MRIs from multiple centers to construct a 
nomogram that was able to predict likelihood of development of distant 
metastatic disease in patients with locally advanced rectal cancer receiving 
neoadjuvant chemoradiotherapy followed by TME with negative margins. 
The derived nomogram was found to be significantly superior to analysis 
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of clinical features along with a p-value of less than 0.001 (Liu et al., 
2021). Similar results have been found across multiple additional studies, 
suggesting that radiomic signatures based on pretreatment MRIs promise 
to provide significantly improved prognostication of rectal cancer patients 
in the future (Wang et al., 2021). FDG PET-based radiomics signatures 
have been demonstrated to improve prediction of disease-free survival in 
non-small-cell lung cancer patients undergoing surgical resection beyond 
that afforded by clinical and histological features alone (Kirienko et al., 
2018). Huang et al. additionally found that a five feature radiomic signa-
ture could predict survival in patients with ALK-mutated non-small-cell 
lung cancer based on data from The Cancer Imaging Archive, however, 
their signature performed better in patients not treated with targeted thera-
pies and demonstrated general poor performance in those treated with 
ALK-directed agents; again suggesting that clinical and demographic 
information will weigh heavily on the predictive abilities of radiomic sig-
natures (Huang et al., 2019). Others have demonstrated the predictive 
abilities of radiomics in gynecologic malignancies, showing both CT- and 
MRI-based radiomic models to provide better predictions of both progres-
sion-free and overall survival than is possible using clinical or pathologi-
cal features alone in patients with ovarian cancer (Nougaret et al., 2021) 
and that post-treatment clinical outcomes including local control, regional 
control, distant metastasis-free survival, and overall survival could be rea-
sonably predicted in node positive cervical cancer patients treated with 
definitive chemoradiation using pretreatment MRI-based radiomics fea-
tures (Park et al., 2020). Similarly, radiomics have shown predictive 
potential in malignancies of the GI tract though the results have been quite 
variable across subsites of disease. Pretreatment radiomic features based 
on PET scans have been shown to be able to predict both disease-free 
survival and overall survival in esophageal squamous cell carcinoma 
patients undergoing trimodality therapy consisting of neoadjuvant chemo-
radiation followed by surgical resection. Importantly, however, the predic-
tive ability of these radiological features appeared to be no better than 
changes in delta SUV or degree of pathologic response when used alone 
though it was better when used in concert with clinical parameters (Chen 
et al., 2019). Radiomic signatures from pretreatment CTs in esophageal 
cancer patients have also been found to be able to stratify patients based 
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on overall survival, though they did not hold up when tested against a 
validation set of patients. Further, the AUCs derived from these investiga-
tions have remained relatively modest, generally below 0.7, and it remains 
unclear as to how much the addition of these features may add to the 
predictive abilities of currently used demographic and clinical information 
(Larue et al., 2018). In contrast, in a very large retrospective study 
consisting of almost 1600 consecutive patients, Jiang et al. found that a 
19-feature radiomics signature provided a robust ability to predict both 
disease-free and overall survival in patients undergoing treatment for gas-
tric cancer and was significantly superior to that directed by clinicopatho-
logic nomograms or TNM staging (Jiang et al., 2008). Additionally, our 
group demonstrated that a six-feature radiologic signature derived from 
treatment planning CT scans obtained after initial chemotherapy but prior 
to radiation treatment was superior to clinical models in predicting overall 
survival of pancreas cancer patients undergoing treatment with Stereotactic 
Body Radiotherapy (SBRT) and the further addition of clinical features to 
the radiomic feature model only slightly improved its predictive abilities. 
Additionally, a separate seven-feature signature was significantly better 
than routinely used clinical predictors at predicting disease-free survival 
(AUC of 0.78 versus 0.66) (Parr et al., 2020).

While radiomics signatures have demonstrated the consistent ability 
to improve prognostication of patients beyond current clinically utilized 
methods, the signatures found across each of the associated studies are 
heterogenous in nature, even within specific diseases. Currently, little 
work has been performed comparing signatures with regards to ease of 
implementation or overall clinical utility. Thus, each of the published 
works to date has been relegated to demonstrations of proof of concept as 
opposed to providing something actionable in the near future. 

2. Prediction of Treatment Response

As knowledge continues to increase with regards to therapeutic options in 
patients diagnosed with cancer, patients are currently often faced with 
multiple treatment options that they could potentially pursue. Further, as 
the drive continues toward personalized medicine, there is a general desire 
among clinicians to be able to provide patients in such situations with 
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information regarding which treatment options may provide their best 
individual outcomes. Currently, however, neither clinicians nor patients 
have significant information to go on in this regard, creating a situation 
where the patient and provider choose a specific treatment paradigm 
based on general practice patterns or, often, best clinical salesmanship. To 
date, however, multiple studies have suggested that leveraging data from 
radiomics may provide increasing knowledge with regards to likelihood 
of response to specific treatments, thus potentially providing patients with 
an ability to weigh treatment options in a way that is truly specific to 
themselves. 

One such malignancy with multiple treatment options is non-small-
cell lung cancer. In patients diagnosed with locally advanced disease, 
current treatment paradigms include definitive chemoradiation as well as 
neoadjuvant chemoradiation or chemotherapy alone followed by resec-
tion. To date, there is little to guide optimal treatment strategy on a 
patient-to-patient basis, leading current guidelines to represent the most 
recently published large-scale clinical trials as opposed to a more fluid 
and individualized approach. Radiomics, however, offers the potential to 
help guide treatment strategies by providing pre-treatment insight into 
likely response to these various treatment strategies, allowing for an opti-
mized treatment regimen to be selected. For example, radiomics features 
from pretreatment CT scans have demonstrated a remarkable ability to 
predict clinical response to upfront chemotherapy in patients with non-
small-cell lung cancer, achieving an accuracy of 85.7% and AUC of 0.941. 
Such a model promises the potential for better patient stratification with 
regards to upfront treatment options prior to curative intent resection 
(Chang et al., 2021). Further, a 13-feature model of intratumoral and 
peritumoral texture features on pretreatment CT scans was also demon-
strated to be able to predict the likelihood of significant pathologic 
response following neoadjuvant chemoradiation followed by surgical 
resection in patients with stage IIIA non-small-cell lung cancer, achieving 
an AUC of 0.86. Importantly, the same model was associated with an 
increase in both disease-free survival and overall survival as well, suggest-
ing its clinical utility could be quite robust in designing optimal treatment 
strategy and prognostication of such patients (Khorrami et al., 2019). 
Radiomic signatures derived from metabolic tumor volumes from   
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pre-chemoradiation FDG PET scans in patients with locally advanced 
non-small-cell lung cancer were also found to be able to predict regional 
disease response as noted on a second FDG PET obtained mid chemora-
diotherapy course. Importantly, radiomics features with predictive abili-
ties were variable across tumor regions with high or low respective SUVs; 
again demonstrating the necessity of precision with regards to radiologic 
feature measurement to provide consistent or reproducible results (Duan 
et al., 2020). The potential utility of radiomics in the setting of non-small-
cell lung cancer is not limited only to the locally advanced setting but also 
has been demonstrated in patients with metastatic disease, for whom 
many treatment options exist including cytotoxic chemotherapy, immuno-
therapy, and targeted agents. In this patient population, pretreatment FDG 
PET derived radiomic signatures consisting of six individual features 
from the imaged primary tumor was able to better predict future response 
to the immune checkpoint inhibitor pembrolizumab than was afforded 
with the currently used PD-L1 tumor proportion score (AUC = 0.9 vs 0.6) 
(Valentinuzzi et al., 2020). Additionally, radiomic modeling using a deep 
learning semantics signature method has been found to predict post EGFR 
TKI progression-free survival, with those patients noted to be in the low 
risk of progression cohort having a 2-month improvement in PFS over 
those in the high-risk cohort as predicted by modeling from their pretreat-
ment CT scans. This is particularly important as patients with stage IV 
non-small-cell lung cancer found to have targetable variants of EGFR 
continue to have heterogenous responses to EGFR tyrosine kinase inhibi-
tors (Song et al., 2020). Of paramount importance however is that fact that 
radiomic features appear to be specific not just to intra-tumoral regions 
but also how and when the associated radiographs were obtained. 
Highlighting this, our group investigated a panel of 841 radiomic features 
from 4-dimensional CTs to determine stability across various phases of 
the breathing cycle. Our data suggests that, while some features remain 
relatively stable with a less than 10% coefficient of variance across breath-
ing cycles, approximately a quarter of the features were found to have 
significant variation and thus would likely not be reliable in a clinical 
setting. Further, when only stable features were used for prediction of 
overall survival in early stage non-small cell lung cancer patients undergo-
ing SBRT, predictability was significantly enhanced over models in which 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



b4808 Artificial Intelligence in Radiation Oncology“6x9” 

Utilization of Radiomics in Prognostication and Treatment Response 281

all radiomic features were considered regardless of stability (Du et al., 
2019).

Similar studies have also underlined the potential utility of radiomics 
in patients embarking on treatment for newly diagnosed rectal cancers. 
For example, pretreatment MRIs of patients with rectal cancer undergoing 
upfront chemoradiation have been found to provide radiomic signatures 
that could reliably predict subsequent response with an AUC of 0.904 
predicting good versus poor response and an AUC of 0.93 for predicting 
pathologic downstaging (Shayesteh et al., 2019). This has been similarly 
shown in a multi center international study by Shaish et al. (Shaish et al., 
2020). In contrast, radiomics signatures have also been shown to be able 
to predict lack of response to neoadjuvant chemoradiation in patients 
receiving concurrent FOLFOX chemotherapy, thus potentially defining a 
patient population who should proceed directly to surgery after their diag-
nosis (Zhou et al., 2019). Notably, the difference in chemotherapy used in 
this reported neoadjuvant regimen compared to what is generally used in 
American and European countries (5-fluorouracil or capecitabine alone) 
makes the generalizability of these findings difficult to interpret. However, 
others have conversely suggested that the ability of radiomic signatures 
from pretreatment MRIs to predict likely response to neoadjuvant radia-
tion is no better than that provided through conventional radiological 
assessment by expert radiologists (van Griethuysen et al., 2020). The abil-
ity to predict pathologic response following neoadjuvant chemotherapy 
alone without the addition of neoadjuvant radiation has also been demon-
strated, noting that radiomic signatures based on pretreatment MRI are 
able to achieve an AUC of approximately 0.93 in such a patient population 
(Li et al., 2020). Similar to pretreatment MRIs, pretreatment non-contrast 
CT-based radiomics signatures have also been shown to be able to predict 
the likelihood that a rectal cancer patient undergoing neoadjuvant chemo-
radiation will achieve a pathological complete response, a surrogate for 
overall prognosis and potentially signaling that subsequent surgical resec-
tion is unnecessary, with an accuracy of approximately 84% (Yuan et al., 
2020). Pretreatment MRI-based radiomics signatures have further been 
demonstrated to predict patient prognosis and likely benefit of adjuvant 
chemotherapy, the addition of which remains clinically controversial due 
to conflicting clinical trial results (Cui et al., 2020). As in non-small-cell 
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lung cancer, the utility of radiomics is not limited to local disease. In 
patients who have developed metastatic disease to the liver from HER-2 
amplified cancers of the colon and rectum, pretreatment abdominal 
CT-based radiologic signatures demonstrated a significant ability to pre-
dict response to HER-2 directed therapy with a sensitivity of 92% and 
specificity of 86% (Giannini et al., 2020). Such information will provide 
invaluable abilities for future physicians to guide upfront systemic therapy 
options including the potential for multimodality treatments to provide 
optimal response. Similar results have also been found in the ability for 
pretreatment CT-based radiomics signatures to predict response to 
FOLFIRI with or without cetuximab in patients with liver metastases from 
rectal cancer (Dercle et al., 2020). Importantly, as a response to the vari-
ous potential downfalls of radiomic signature reproducibility as suggested 
above, Cusumano et al. derived a pretreatment MRI-based radiomics 
signature that was able to predict pathological complete response rates 
following neoadjuvant chemoradiation in patients with locally advanced 
rectal cancer with an AUC of 0.72 regardless of field strength of the MRI 
utilized. However, while it was found that this signature was able to pre-
dict response across both 1.5 and 3.0 T field strengths, the accuracy of the 
signature was numerically better with the higher strength field (AUC 0.83 
versus 0.70), suggesting that even among this data significant heterogene-
ity regarding signature interpretability remains (Cusumano et al., 2021).

Other GI malignancies have additionally shown potential use of radi-
omics signatures though with more heterogenous results. Pretreatment 
CT-based radiomics features have been found to be able to predict the 
likelihood of achieving a clinical complete response in patients with squa-
mous cell carcinoma of the esophagus undergoing definitive chemoradia-
tion with a reliability far greater than that achieved by clinical parameters 
alone. However, the combination of radiographic features and clinical 
parameters into a single all-encompassing nomogram provided the great-
est accuracy of all, once again suggesting that radiomics features, while 
likely of significance and potentially clinically relevant, are unlikely to 
stand on their own (Luo et al., 2020). In contrast, however, another study 
found that pretreatment CT-based radiomics signatures could predict 
pathological complete response following neoadjuvant chemoradiation 
followed by surgical resection in patients with squamous cell carcinoma 
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of the esophagus while no initial clinical or pathological features were 
able to provide the same (Yang et al., 2019). The differences in these 
results can potentially be attributed to a lack of reliability in clinical com-
plete response assessment, as supported by the clinical observation that 
esophageal cancer patients found to have a clinical complete response 
following chemoradiation and who do not undergo surgical resection 
ultimately have a high rate of local recurrence, as well as the general het-
erogeneity of radiomics results across studies, again highlighting the 
continued difficulty in making these results into clinically reliable tools. 
Additionally, in hepatocellular carcinoma, data showing radiomics ability 
to predict treatment outcomes remains sparse, however they have indeed 
been demonstrated in specific clinical situations. For instance, response of 
hepatocellular carcinoma to transarterial chemoembolization (TACE) 
remains quite heterogeneous though noncontrast CT-based radiomics fea-
tures, combined with patient level clinical features, have demonstrated the 
ability to predict TACE response and, subsequently, overall survival in this 
patient population (Guo et al., 2021).

Other high prevalence cancers for which radiomics have demon-
strated potential utility to predict treatment response with salient clinical 
implications include breast cancer. Across multiple studies, pretreatment 
MRI radiomics-based features have been found to be able to predict like-
lihood of response to neoadjuvant cytotoxic chemotherapy in breast can-
cer patients, specifically for the potential achievement of a pathologic 
complete response (Bian et al., 2020; Sutton et al., 2020; Zhou et al., 
2020; Chen et al., 2020; Liu et al., 2019). Of note, however, while the 
ability to achieve a pathologic complete response is of great prognostic 
significance, it itself is not the most relevant endpoint for clinical
decision-making at the time of initial patient diagnosis, particularly if the 
decision on neoadjuvant chemotherapy is being made in an attempt to 
provide the patient with a less extensive surgical resection that could not 
otherwise be achieved without reasonable treatment response. In this vein, 
radiomic features that could predict significant response, any response, or 
the ability to de-escalate surgical resection would likely be of greater 
clinical benefit. Regardless, while these specific signatures may not be of 
great clinical benefit, it does represent a proof of concept that chemo-
therapy response can be predicted based on radiomic features at the 
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outset. Of particular interest in recent years, it has additionally been 
shown that pretreatment MRI-based radiomic signatures are able to pre-
dict likelihood of tumor response to neoadjuvant endocrine therapy in 
patients with newly diagnosed breast cancer (Hilal et al., 2018). Other 
studies have attempted similar associations however with pretreatment 
PET-based radiologic signatures (Li et al., 2020–2). While the radiomic 
signatures derived in this study achieved a reasonable AUC, especially 
when patient demographic features were also included, it is noteworthy 
that there were also significant associations between the radiomic features 
and both hormone receptor expression and tumor stage, both of which are 
independently known to be associated with likelihood of significant 
treatment response. Interestingly, another group attempted to derive a 
radiomics signature from ultrasound that could predict neoadjuvant chem-
otherapy response (DiCenzo et al., 2020). While this endpoint is likely 
more clinically valid than those used in other studies as noted above, the 
true benefit of such a signature lies in the fact that the majority of breast 
cancer patients undergo ultrasound as part of their normal staging work-
up whereas the addition of MRI and PET scan are often not clinically 
indicated and, thus, any such use of associated radiomics features would 
necessarily increase associated healthcare costs.

The ability of radiomics to predict treatment response has been shown 
in rarer malignancies as well. Multiple studies have suggested that preop-
erative imaging-based radiomics have the ability to predict response to 
neoadjuvant chemotherapy in patients with osteosarcoma (Zhong et al., 
2020). Such capacity could have significant ability to guide upfront treat-
ment for these patients, shuttling some directly to surgery if upfront 
chemotherapy is unlikely to be helpful. Response to induction chemo-
therapy has also been demonstrated through radiomics signatures derived 
from pretreatment MRI imaging in patients with newly diagnosed cancer 
of the nasopharynx (Zhao et al., 2020). Notably, however, the patient 
cohorts used for this study were from regions with endemic EBV infec-
tions and thus any potential extrapolation to nonendemic regions such as 
the Americas or Europe remains unclear. Preoperative MRI-based radiom-
ics signatures have also demonstrated the ability to predict postoperative 
normalization of hormone levels in patients diagnosed with functional 
pituitary adenomas more reliably than clinical features, a finding that may 
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help to guide recommendations for post-operative radiotherapy in future 
patients (Fan et al., 2019). Going beyond solid malignancies, heterogene-
ity and radiomics signatures within pretreatment FDG PET scans in 
patients with newly diagnosed Hodgkin’s lymphoma have also shown the 
ability to predict response to initial chemotherapy and, associated with 
this, both progression-free and overall survivals (Lue et al., 2020). These 
findings may help to optimize escalation in chemotherapy regimens or 
predict who will likely require a future stem cell transplant. 

Interestingly, it appears that the abilities for radiomics signatures to 
predict treatment response are not necessarily specific to individual dis-
eases but rather may be able to predict response to specific drug classes 
regardless of the malignancy in which they are used. Prediction of likeli-
hood of response to immune checkpoint inhibitors across many cancers 
has been demonstrated using radiomics features derived from pretreat-
ment imaging including CTs, MRIs, and PET scans (Wu et al., 2019). 
Additionally, and as well summarized by Wang et al. in 2021, radiomics 
signatures derived from both CT and PET imaging have also been estab-
lished to identify pathologic features associated with immunophenotype 
and response to immunotherapy across myriad malignancies (Wang et al., 
2021–2). Importantly, however, the reliability of the signatures remained 
somewhat questionable with reported AUCs rarely rising above 0.8. 
Additionally, while this work represents the breadth of data generated in 
this regard, it is noteworthy that the number and nature of features 
included in each of the respective signatures derived from the individual 
studies varied widely and thus reproducibility and extrapolation to true 
clinical relevance remains murky.

Once again, regardless of if radiomics signatures are used to predict 
treatment response within specific malignancies or within a specific drug 
class across malignancies, the data to date is quite promising. However, 
as previously noted, there remains a general lack of uniformity across the 
patient populations studied, the methods used in each investigation, and 
in the radiomics signatures derived. Further, evidence suggests that fea-
tures may vary wildly depending on where within the tumor the features 
are extracted, the type and quality of scan used, and the normal physio-
logical and anatomical variations within the patient at the time the scan is 
conducted. Accounting for this will be paramount in transitioning the field 
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of radiomics from a scene of scientific interest to that of true clinical 
value.

3. Tracking Treatment Response

Similarly, individualized treatment decision-making with regards to dura-
tion of treatment or whether a currently utilized treatment should be revis-
ited in consideration of switching to a new treatment/paradigm is also an 
area in which radiomics has demonstrated a potential ability that goes 
beyond currently available methods. Such a concept is of particular 
importance in malignancies that are difficult to assess through standard 
radiographic methods. Specifically, in cancers treated with neoadjuvant 
therapy prior to attempted resection such as pancreas, esophagus, and 
rectal cancers, there is a general lack of ability to assess real-time treat-
ment efficacy, thus making the neoadjuvant treatments standardized and 
not adapted to individual patients. As such, there is a proportion of 
patients who necessarily receive more neoadjuvant therapy than required 
while others would likely benefit from further extension of the preopera-
tive treatments. Further, in cancers that have multiple treatment options 
such as newly diagnosed prostate cancer, the ability to assess treatment 
response in real-time in patients undergoing definitive radiation may 
allow for more optimal conversion to a potential surgical intervention if 
poor response is seen midway through the treatment course. This concept 
could prevent patients from undergoing unnecessary treatments while 
helping them to pivot to more efficacious treatments based on their indi-
vidual responses, all utilizing noninvasive imaging tests with low associ-
ated healthcare costs.

One malignancy in which the ability to better track response is of vital 
importance is adenocarcinoma of the pancreas. This cancer is well known 
to be associated with a significant desmoplastic reaction within the tumor 
itself, which often does not change with therapy regardless of actual 
response seen within the sparse malignant cells interspersed throughout. 
As such, tumor size and shape often do not change significantly with 
neoadjuvant treatments, making it clinically difficult to determine when 
a sufficient number of neoadjuvant chemotherapy cycles has been 
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delivered, when the addition of neoadjuvant radiation therapy should be 
considered, and when the patient may indeed have resectable disease after 
upfront therapy despite lack of objective tumor regression in the unresect-
able and borderline resectable settings. To date, multiple authors have 
demonstrated that changes in CT-based radiomic signatures over the 
course of neoadjuvant chemotherapy more robustly predict treatment 
response and ultimate surgical resectability than clinical radiologic crite-
ria in patients with newly diagnosed adenocarcinoma of the pancreas 
(Zhang et al., 2021). While the majority of these studies continue to show 
relatively modest differentiation capabilities and suffer from inter-study 
heterogeneity, the ability to use radiomic profiling to go beyond overt 
radiographic changes and provide a more accurate assessment than is cur-
rently afforded has a potential to offer a seismic shift in how such patients 
are assessed and how clinical decision-making is undertaken.

It has also been seen across multiple malignancies that radiomics 
features from imaging obtained both during and after completion of an 
upfront therapy as well as changes in the signatures during such therapies 
may have significant predictive abilities with regards to overall treatment 
response and patient outcomes. For example, changes in radiomic signa-
tures between pretreatment and mid treatment PET scans in patients with 
stage III non-small-cell lung cancer undergoing definitive chemoradiation 
have demonstrated the ability to predict overall treatment response and 
progression-free survival more reliably than standard conventional imag-
ing metrics such as tumor volume and SUV max value (Zhang et al., 
2020). Further, longitudinal changes in radiomics signatures derived from 
cone beam CT scans from patients actively undergoing chemoradiation 
for locally advanced non-small-cell lung cancer have demonstrated the 
potential to stratify patients based on overall survival, suggesting that dif-
ferences in treatment response as notable by radiomic features may be 
able to progressively predict overall response to treatment and patient 
prognosis (Shi et al., 2020). Additionally, changes in radiomic features 
based on CT scans before and after two cycles of immune checkpoint 
inhibitor therapy in patients with non-small-cell lung cancer has also been 
demonstrated to help differentiate those who will versus will not respond 
to this therapy with associated differences in overall survival also 
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demonstrated accordingly (Khorrami et al., 2020). In rectal cancer, delta 
radiomics from serial MRIs used for MRI guided radiation therapy has 
also been demonstrated to be able to reliably predict both clinical and 
pathologic complete response in patients undergoing neoadjuvant chemo-
radiation for locally advanced disease (Cusumano et al., 2021). Similar 
results have also been shown from delta radiomic features derived from 
diagnostic quality MRIs obtained both pre and post neoadjuvant chemo-
radiotherapy (Li et al., 2019). Treatment response to neoadjuvant chemo-
therapy in patients with bladder cancer has also been demonstrated using 
pre and posttreatment CT-based radiomic signatures (Cha et al., 2017). 
However, it is noteworthy that this model primarily focused on differenti-
ating patients who achieved pathologic complete response from those who 
did not which, itself, is only partially clinically meaningful. Patients who 
derive any significant response to upfront chemotherapy have improved 
prognosis compared to those who do not regardless of if that response is 
pathologically complete and, thus, such a differentiation should be the 
focus of future studies. In patients with newly diagnosed breast cancer, 
serial ultrasound derived radiomic signatures, particularly derived at treat-
ment weeks 1 and 4, have also been demonstrated to predict and track 
response to neoadjuvant chemotherapy, however it is notable that it 
remains unclear as to whether this predictive ability is superior to conven-
tional radiologic features and/or physical exam (Quiaoit et al., 2020). 
Multiple studies have also demonstrated the ability of posttreatment or 
serial imaging derived radiomic signatures to accurately represent treat-
ment response in patients undergoing definitive treatment for cancers of 
the head and neck, however, as discussed by Guha et al. and is true across 
most disease sites, heterogeneity among the designs and statistical meth-
ods utilized in the studies prevents a clear picture of the true clinical rel-
evance or promise of radiomics from being apparent (Guha et al., 2019). 

4.  Radiomics as a Surrogate for Pathologic 
Information

The potential utility of radiomic signatures to provide information 
currently reserved for histological or molecular testing would be of 
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significant benefit, both in clinical decision-making and with regards to 
general healthcare costs. Identification of new or targetable mutations, 
understanding the amount by which a patient’s tumor is evading the 
immune system through expression of PD-L1 and thus how likely they are 
to derive benefit from immune checkpoint inhibition, as well as the deter-
mination of if a new lesion represents the development metastatic disease/
metastatic progression versus being a benign entity or a second primary 
malignancy altogether are of paramount and ever-increasing importance. 
In the current clinical setting, however, answering these questions often 
requires obtaining new tissue from the lesion/lesions of interest, thus cre-
ating increased costs from the procedure as well as the increased cost and 
morbidity of any associated complications. As we improve our under-
standing as to the histological and molecular underpinnings of the radi-
omic signatures derived from various imaging exams, the potential for 
these signatures to reduce the requirement for, or replace entirely, such 
procedures becomes increasingly promising. To date, multiple studies 
have suggested that radiomics have the ability to provide histology level 
information with the potential to significantly impact clinical decision-
making.

In some malignancies, improving the ability to noninvasively differ-
entiate tumor subtypes or characteristics which impact treatment options 
available to patients is of paramount importance. For example, in non-
small-cell lung cancer, a patient’s candidacy for targeted therapies has 
great impact on both prognosis and treatment associated morbidity. Zhu 
et al. found that radiomic signatures derived from pretreatment CT imag-
ing in patients with newly diagnosed locally advanced or metastatic 
adenocarcinomas of the lung could reliably differentiate tumors that were 
EGFR negative, EGFR positive but without mutation of p53, or had com-
mutations in EGFR and p53 (Zhu et al., 2021). This latter differentiation 
is of significant importance as the presence of commutations in EGFR 
and p53 is associated with reduced efficacy of EGFR TKIs as well as 
overall worsened patient prognosis. Thus, collectively, these results sug-
gest that radiomics may be able to help guide use of targeted therapies 
in non-small-cell lung cancer without the time and expense of the 
added pathological evaluations. Further, Wang et al. demonstrated that 
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radiomics features from CTs of patients ultimately diagnosed with ade-
nocarcinoma of the lung were able to predict both tumor mutation burden 
status as well as the presence of EGFR and p53 mutations though with 
relatively modest AUCs which were collectively less than 0.7 (Wang 
et al., 2019). While obviously not yet ready for prime time, this work acts 
as a further proof of concept that radiomics features can predict molecu-
lar/mutational characteristics with significant clinical impact. Jian et al. 
additionally reviewed many articles investigating the ability of radiomics 
signatures to determine the likelihood of IDH mutation, MGMT meth-
ylation, and 1p/19q codeletion in preoperative MRIs of patients with 
newly diagnosed gliomas (Jian et al., 2021). This information is signifi-
cant for patient prognosis, treatment response, and optimal systemic 
therapy utilized during primary and subsequent treatments. Li et al. dem-
onstrated the ability of PET-based radiomics signatures to predict likeli-
hood of LVSI in patients with early-stage squamous cell carcinoma of the 
cervix, a pathological feature with clinical importance in choosing opti-
mal treatment paradigms (Li et al., 2021). Importantly, however, while 
these radiomic features were found to have good reliability in the training 
set of patients, the reliability was significantly reduced in the validation 
set but subsequently improved with the addition of information regarding 
the presence of tenascin-C (TNC) and cyclooxygenase-2 (COX-2) in the 
pathologic specimen, thus reducing the true clinical utility of this finding. 
Further, Bos et al. found that radiomics features extracted from primary 
tumor volumes derived from pretreatment MRIs in patients with oro-
pharyngeal cancer were able to predict the likelihood of HPV positivity 
on eventual pathologic assessment though, notably, were by themselves 
no better than clinical models including smoking status, T stage, and 
tumor morphology. However, when both clinical and radiomics models 
were combined, the predictive ability increased significantly, again sug-
gesting that radiomics when combined with validated clinical features 
will likely provide the greatest predictive ability for most/all salient end-
points (Bos et al., 2021). 

Other cancer diagnoses are notable for having significant difficulty in 
differentiating benign entities from clinically significant malignancy, a 
distinction that radiomics has demonstrated the potential to overcome. For 
instance, Conti et al. provided an in-depth synopsis of current literature 
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with regards to pathologic predictive abilities of radiomics derived from 
both mammography and MRI in the differentiation of benign versus 
malignant breast lesions as well as the abilities of these imaging tech-
niques in addition to ultrasound to determine histologic tumor type and 
grade in those found to be malignant (Conti et al., 2021). Collectively, 
through their thorough review of the literature the authors suggest that 
they believe it highly likely that radiomics signatures will be able to 
further classify patients based on likelihood of being diagnosed with a 
malignant tumor, thus potentially saving many women from unnecessary 
biopsies. Further, Abdollah et al. noted that radiomic features derived 
from T2 weighted MRI imaging were able to predict the Gleason score of 
patients with prostate cancer with a reasonable reliability (AUC 0.74) 
(Abdollahi et al., 2019). While this, itself, does not provide evidence that 
ultimately would lead biopsies to be unnecessary, it again acts as a proof 
of concept with potential clinical relevance in the setting of prebiopsy 
MRIs in which such an ability could help to risk stratify patients regarding 
urgency or necessity of obtaining a subsequent tissue diagnosis. 

As with the other aspects of radiomics previously described in this 
chapter, the concept of utilizing radiomics signatures in lieu of tissue 
level evaluation remains a hope of eventual clinical utility but is not yet 
ready for clinical application. However, as the landscape of oncology 
diagnosis and treatment continues to evolve, becoming ever more com-
plex as we gain further understanding regarding histologic and molecular 
heterogeneity of each disease, the importance of radiomics’ potential in 
this regard is becoming ever more apparent. While, to date, this portion 
of radiomics research remains less robust than the use of radiomics for 
predicting patient prognosis or predicting/tracking treatment response, 
this ability to noninvasively differentiate clinically meaningful differ-
ences within specific diagnoses likely represents the greatest promise of 
radiomics of all.

5.  Artificial Intelligence in the Development of 
Clinically Focused Radiomics Signatures

Similar to the discussion regarding the field of radiomics as a whole 
across each of the four potential avenues of clinical utility, concise 
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assessment of the role that artificial intelligence has played in the devel-
opment of radiologic signatures to date is hobbled by an extreme lack of 
uniformity in methods used as well as the clarity of the written manu-
scripts. In total, of the 64 manuscripts referenced in this book chapter, a 
total of 20 clearly state that analytical methods using artificial intelli-
gence were utilized in their productions with the remainder either using 
more conventional techniques or being unclear in the exact techniques 
used.

Of the studies that clearly discussed artificial intelligence methods 
utilized, exact methods used were again quite heterogeneous. In general, 
fewer studies utilized deep learning methods (examples: Liu et al., 2021; 
Song et al., 2021) than did various methods of supervised or unsupervised 
machine learning. Notably, when deep learning through a convolutional 
neural network was compared to machine learning using random forest, 
the latter emerged victorious in the assessment of treatment response in 
bladder tumors (Cha et al., 2017). Of the studies that undertook various 
methods of machine learning for production of their radiomics signatures, 
several reported on a single method being used with the majority using 
random forest (Sutton et al., 2020; Zhou et al., 2020; Li et al., 2020). 
Others, however, utilized multiple methods of machine learning in parallel 
and then chose whichever method provided the best performance for their 
final signature optimization (Ammari et al., 2021; Chang et al., 2021; 
Quiaoit et al., 2020; Zhu et al., 2021). In these settings, either random 
forest or support vector machine consistently beat out the other methods 
such as k-nearest neighbor and logistic regression, suggesting that these 
may be the most robust methods for development of further radiomics 
signatures going forward. 

6. Conclusions and Future Directions

As discussed above, research into the clinical utility of radiomics, particu-
larly with regards to patient prognostication, choice of treatment, and 
tracking treatment response, is simultaneously relatively robust and yet 
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still in its infancy. Currently, the literature to date should be considered a 
general proof of concept that, with each subsequent publication, it is 
becoming increasingly proven. At this point, there is little doubt that the 
vast amounts of information derived through routine clinical imaging that 
is, otherwise, not clinically apparent hides within it many secrets that will 
improve our abilities to treat and observe our future patients. In this 
regard, the field of radiomics is both exciting and deserving of significant 
future investigations.

However, upon looking at the current literature collectively and with 
a critical eye, it is equally apparent that no current study has provided a 
clinically actionable tool that is useful outside of very specific contexts. 
While each study has sought to provide the most optimized radiomics 
signature within its specific data sets, the generalizability of these signa-
tures, or even individual features within them, across different patient 
populations remains a mystery. Even in studies looking to answer highly 
similar questions, the consistency of the predictive abilities of specific 
radiomic signatures and the robustness of specific radiomics features 
across different images and physiologic contexts is unknown. As such, 
two separate research pathways must be followed going forward to bring 
the clinical promise of radiomics to fruition. (1) the most promising radi-
omic signatures with regards to predictive accuracy and clinical impact 
must be validated across multiple unrelated data sets to prove their abili-
ties to be extrapolated to the studied populations as a whole and (2) the 
understanding of radiogenomics must be further improved to provide a 
better comprehension of what specific radiomics features represent at a 
histological, cellular, and subcellular level. With this, individual radiomics 
features with the greatest likely clinical impact and consistency across 
individual patients can be thoughtfully selected for future investigations. 
Of additional and near equal importance, establishment of the most con-
sistently reliable methods for development of radiomics models, particu-
larly those using artificial intelligence via either machine learning or deep 
learning, is required to improve efficiency and provide a framework for 
best practices in future projects.
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Table 1.  There are four primary areas of clinical promise for radiomics in cancer, including acting as an adjunct for patient prognosis, 
predicting treatment response, tracking treatment response, and providing further histological or pathological information.

Individual Avenues of Clinical Promise for the Field of Radiomics

Promise Explanation and Importance Examples

Adjunct to prognosis Radiomics promises to provide more robust 
information regarding patient prognosis than is 
currently afforded by standard clinicopathologic 
features. This will ultimately help to inform 
decisions regarding treatment aggressiveness as 
well as nonmedical decision-making such as 
those regarding finances, home life, travel, etc.

– Predicting PFS and OS in glioblastoma (Oltra-Sastre 
et al., 2019; Ammari et al., 2021) 

– Predicting local recurrence of acoustic neuromas after 
SRS (Langenhuizen et al., 2020)

– Predicting development of metastases in locally 
advanced rectal cancer (Liu et al., 2021) 

– Predicting DFS in NSCLC (Wang et al., 2021)
– Predicting DFS and OS in stomach cancer (Jiang et al., 

2018)

Predicting response to 
treatment

By providing better prediction with regards to 
response to various aspects of individual 
treatment regimens as well as the relative 
efficacies for specific treatment options when 
multiple options exist, radiomics promises to 
allow for greater personalization of treatments 
for individuals diagnosed with cancer based on 
an optimized balance between effectiveness and 
toxicity reduction.

– Predict pathologic response rate following neoadjuvant 
CRT in NSCLC (Khorami et al., 2019)

– Predicting pathologic response rate following 
neoadjuvant CRT in rectal cancer (Shayesteh et al., 
2019; Shaish et al., 2020) 

– Predicting response to TACE in HCC (Zhao et al., 
2019) 

– Predicting response of breast cancer to neoadjuvant 
chemotherapy (DiCenzo et al., 2020)

– Predicting response to chemotherapy in Hodgkin 
lymphoma (Fan et al., 2019)

Tracking treatment 
response

Enhanced assessment of treatment response, as 
potentially afforded by radiomics, may allow 
for more optimized decision-making regarding

– Predicting pathologic response and resectability after 
neoadjuvant chemotherapy in pancreas adenocarcinoma 
(Zhang et al., 2021) 
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overall treatment duration as well as both the 
need and candidacy for further treatments in 
patients with diseases that are difficult to assess 
using standard clinical and radiographic means. 

– Predicting pCR after neoadjuvant CRT in rectal 
adenocarcinoma based on changes during the treatment 
(Cusumano 2021)

– Predicting response to neoadjuvant chemotherapy in 
newly diagnosed breast cancer (Quiaoit et al., 2020) 

Providing 
histopathological 
information

As treatment decision-making becomes 
increasingly complex based on the presence/
absence of specific individual mutations or 
epigenetic alterations within a tumor as well as 
the overall mutational burden of a malignancy, 
the cost with regards to both patient-associated 
morbidity due to increasing need for further 
biopsies for tissue analysis and financial cost to 
healthcare system increases. Radiomics may 
provide the ability to forego a portion of this 
histopathologic testing with the ability to 
predict mutational status/burden using imaging 
features alone.

– Predicting mutational status of EGFR and p53 in newly 
diagnosed NSCLC (Zhu et al., 2021)

– Predicting IDH mutation, MGMT methylation, and 
1p19q codeletion status in newly diagnosed gliomas 
Jian et al., 2021)

– Predicting the presence of LVSI in newly diagnosed 
early-stage cervical cancer (Li et al., 2021)

– Predicting if a new breast lesion is malignant vs benign 
in nature as well as histopathologic features of 
malignant lesions (Conti et al., 2021) 

Note: PFS; progression-free survival, OS; overall survival, SRS; stereotactic radiosurgery, DFS; disease-free survival, NSCLC; non-small-cell lung cancer, 
CRT; chemoradiotherapy, TACE; trans-arterial chemoembolization, HCC; hepatocellular carcinoma, pCR; pathological complete response, LVSI; lympho-
vascular space invasion. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om



b4808 Artificial Intelligence in Radiation Oncology “6x9”

296 Artificial Intelligence in Radiation Oncology

References
Abdollahi, H., Mofid, B., Shiri, I., Razzaghdoust, A., Saadipoor, A., Mahdavi, A., 

Galandooz, H. M., & Mahdavi, S. R. (2019). Machine learning-based radiomic mod-
els to predict intensity-modulated radiation therapy response, Gleason score and stage 
in prostate cancer. Radiology Medicine, 124(6), 555–567. https://doi.org/10.1007/
s11547-018-0966-4. Epub 2019 Jan 3. PMID: 30607868.

Ammari, S., Sallé de Chou, R., Assi, T., Touat, M., Chouzenoux, E., Quillent, A., Limkin, 
E., Dercle, L., Hadchiti, J., Elhaik, M., Moalla, S., Khettab, M., Balleyguier, C., 
Lassau, N., Dumont, S., & Smolenschi, C. (2021). Machine-learning-based radiomics 
MRI model for survival prediction of recurrent glioblastomas treated with 
bevacizumab. Diagnostics (Basel), 11(7), 1263. https://doi.org/10.3390/diagnostics
11071263. PMID: 34359346; PMCID: PMC8305059.

Beig, N., Singh, S., Bera, K., Prasanna, P., Singh, G., Chen, J., Saeed Bamashmos, A., 
Barnett, A., Hunter, K., Statsevych, V., Hill, V. B., Varadan, V., Madabhushi, A., 
Ahluwalia, M. S., & Tiwari, P. Sexually dimorphic radiogenomic models identify 
distinct imaging and biological pathways that are prognostic of overall survival in 
glioblastoma. Neuro Oncology, 23(2), 251–263. https://doi.org/10.1093/neuonc/
noaa231. PMID: 33068415; PMCID: PMC7906064.

Bhatia, A., Birger, M., Veeraraghavan, H., Um, H., Tixier, F., McKenney, A. S., Cugliari, 
M., Caviasco, A., Bialczak, A., Malani, R., Flynn, J., Zhang, Z., Yang, T. J., 
Santomasso, B. D., Shoushtari, A. N., & Young, R. J. MRI radiomic features are 
associated with survival in melanoma brain metastases treated with immune check-
point inhibitors. Neuro Oncology, 21(12), 1578–1586. https://doi.org/10.1093/neu-
onc/noz141. PMID: 31621883; PMCID: PMC7145582.

Bian, T., Wu, Z., Lin, Q., Wang, H., Ge, Y., Duan, S., Fu, G., Cui, C., & Su, X. (2021). 
Radiomic signatures derived from multiparametric MRI for the pretreatment predic-
tion of response to neoadjuvant chemotherapy in breast cancer. British Journal of 
Radiology, 93(1115), 20200287. https://doi.org/10.1259/bjr.20200287. Epub 2020 
Sep 2. Erratum in: Br J Radiol. 2021 Nov 19; bjr20200287c. PMID: 32822542; 
PMCID: PMC8519645.

Bos, P., van den Brekel, M. W. M., Gouw, Z. A. R., Al-Mamgani, A., Waktola, S., Aerts, 
H. J. W. L., Beets-Tan, R. G. H., Castelijns, J. A., & Jasperse, B. (2021). Clinical 
variables and magnetic resonance imaging-based radiomics predict human 
papillomavirus status of oropharyngeal cancer. Head Neck, 43(2), 485–495.
https://doi.org/10.1002/hed.26505. Epub 2020 Oct 7. PMID: 33029923; PMCID: 
PMC7821378.

Cha, K. H., Hadjiiski, L., Chan, H. P., Weizer, A. Z., Alva, A., Cohan, R. H., Caoili, E. M., 
Paramagul, C., & Samala, R. K. (2017). Bladder cancer treatment response assess-
ment in CT using radiomics with deep-learning. Scientific Report, 7(1), 8738. https://
doi.org/10.1038/s41598-017-09315-w. PMID: 28821822; PMCID: PMC5562694.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://doi.org/10.1007/s11547-018-0966-4
https://doi.org/10.1007/s11547-018-0966-4
https://doi.org/10.3390/diagnostics11071263
https://doi.org/10.3390/diagnostics11071263
https://doi.org/10.1093/neuonc/noaa231
https://doi.org/10.1093/neuonc/noaa231


b4808 Artificial Intelligence in Radiation Oncology“6x9” 

Utilization of Radiomics in Prognostication and Treatment Response 297

Chang, R., Qi, S., Yue, Y., Zhang, X., Song, J., & Qian, W. (2021). Predictive radiomic 
models for the chemotherapy response in non-small-cell lung cancer based on com-
puterized-tomography images. Frontiers in Oncology, 11, 646190. https://doi.org/ 
10.3389/fonc.2021.646190. PMID: 34307127; PMCID: PMC8293296.

Chen, Y. H., Lue, K. H., Chu, S. C., Chang, B. S., Wang, L. Y., Liu, D. W., Liu, S. H., Chao, 
Y. K., & Chan, S. C. (2019). Combining the radiomic features and traditional param-
eters of 18F-FDG PET with clinical profiles to improve prognostic stratification in 
patients with esophageal squamous cell carcinoma treated with neoadjuvant chemo-
radiotherapy and surgery. Annals of Nuclear Medicine, 33(9), 657–670. https://doi.
org/10.1007/s12149-019-01380-7. Epub 2019 Jun 19. PMID: 31218571.

Chen, X., Chen, X., Yang, J., Li, Y., Fan, W., & Yang, Z. (2020). Combining dynamic 
contrast-enhanced magnetic resonance imaging and apparent diffusion coefficient 
maps for a radiomics nomogram to predict pathological complete response to neoad-
juvant chemotherapy in breast cancer patients. Journal of Computer Assisted 
Tomography, 44(2), 275–283. https://doi.org/10.1097/RCT.0000000000000978. 
PMID: 32004189.

Conti, A., Duggento, A., Indovina, I., Guerrisi, M., & Toschi, N. (2021). Radiomics in 
breast cancer classification and prediction. Seminars in Cancer Biology, 72, 238–250. 
https://doi.org/10.1016/j.semcancer.2020.04.002. Epub 2020 May 1. PMID: 
32371013.

Cui, Y., Yang, W., Ren, J., Li, D., Du, X., Zhang, J., & Yang, X. (2021). Prognostic value 
of multiparametric MRI-based radiomics model: Potential role for chemotherapeutic 
benefits in locally advanced rectal cancer. Radiotherapy & Oncology, 154, 161–169. 
https://doi.org/10.1016/j.radonc.2020.09.039. Epub 2020 Sep 22. PMID: 32976874.

Cusumano, D., Meijer, G., Lenkowicz, J., Chiloiro, G., Boldrini, L., Masciocchi, C., 
Dinapoli, N., Gatta, R., Casà, C., Damiani, A., Barbaro, B., Gambacorta, M. A., 
Azario, L., De Spirito, M., Intven, M., & Valentini, V. (2021). A field strength inde-
pendent MR radiomics model to predict pathological complete response in locally 
advanced rectal cancer. Radiology Medicine, 126(3), 421–429. https://doi.org/10.1007/
s11547-020-01266-z. Epub 2020 Aug 24. PMID: 32833198; PMCID: PMC7937600.

Cusumano, D., Boldrini, L., Yadav, P., Yu, G., Musurunu, B., Chiloiro, G., Piras, A., 
Lenkowicz, J., Placidi, L., Romano, A., De Luca, V., Votta, C., Barbaro, B., 
Gambacorta, M. A., Bassetti, M. F., Yang, Y., Indovina, L., & Valentini, V. (2021). 
Delta radiomics for rectal cancer response prediction using low field magnetic reso-
nance guided radiotherapy: An external validation. Physical Medicine, 84, 186–191. 
https://doi.org/10.1016/j.ejmp.2021.03.038. Epub 2021 Apr 23. PMID: 33901863.

Dercle, L., Lu, L., Schwartz, L. H., Qian, M., Tejpar, S., Eggleton, P., Zhao, B., & 
Piessevaux, H. (2020). Radiomics response signature for identification of metastatic 
colorectal cancer sensitive to therapies targeting EGFR pathway. Journal of the 
National Cancer Institute, 112(9), 902–912. https://doi.org/10.1093/jnci/djaa017. 
PMID: 32016387; PMCID: PMC7492770.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://doi.org/10.3389/fonc.2021.646190
https://doi.org/10.3389/fonc.2021.646190
https://doi.org/10.1007/s12149-019-01380-7
https://doi.org/10.1007/s12149-019-01380-7
https://doi.org/10.1007/s11547-020-01266-z
https://doi.org/10.1007/s11547-020-01266-z


b4808 Artificial Intelligence in Radiation Oncology “6x9”

298 Artificial Intelligence in Radiation Oncology

DiCenzo, D., Quiaoit, K., Fatima, K., Bhardwaj, D., Sannachi, L., Gangeh, M., Sadeghi-
Naini, A., Dasgupta, A., Kolios, M. C., Trudeau, M., Gandhi, S., Eisen, A., Wright, 
F., Look Hong, N., Sahgal, A., Stanisz, G., Brezden, C., Dinniwell, R., Tran, W. T., 
Yang, W., Curpen, B., & Czarnota, G. J. (2020). Quantitative ultrasound radiomics in 
predicting response to neoadjuvant chemotherapy in patients with locally advanced 
breast cancer: Results from multi-institutional study. Cancer Medicine, 9(16), 5798–
5806. https://doi.org/10.1002/cam4.3255. Epub 2020 Jun 29. PMID: 32602222; 
PMCID: PMC7433820.

Du, Q., Baine, M., Bavitz, K., McAllister, J., Liang, X., Yu, H., Ryckman, J., Yu, L., Jiang, 
H., Zhou, S., Zhang, C., & Zheng, D. (2019). Radiomic feature stability across 4D 
respiratory phases and its impact on lung tumor prognosis prediction. PLoS One, 
14(5), e0216480. https://doi.org/10.1371/journal.pone.0216480. PMID: 31063500; 
PMCID: PMC6504105.

Duan, C., Chaovalitwongse, W. A., Bai, F., Hippe, D. S., Wang, S., Thammasorn, P., 
Pierce, L. A., Liu, X., You, J., Miyaoka, R. S., Vesselle, H. J., Kinahan, P. E., Rengan, 
R., Zeng, J., & Bowen, S. R. (2020). Sensitivity analysis of FDG PET tumor voxel 
cluster radiomics and dosimetry for predicting mid-chemoradiation regional response 
of locally advanced lung cancer. Physics in Medicine and Biology, 65(20), 205007. 
https://doi.org/10.1088/1361-6560/abb0c7. PMID: 33027064; PMCID: PMC7593986.

Fan, Y., Liu, Z., Hou, B., Li, L., Liu, X., Liu, Z., Wang, R., Lin, Y., Feng, F., Tian, J., & 
Feng, M. (2019). Development and validation of an MRI-based radiomic signature 
for the preoperative prediction of treatment response in patients with invasive func-
tional pituitary adenoma. European Journal of Radiology, 121, 108647. https://doi.
org/10.1016/j.ejrad.2019.108647. Epub 2019 Sep 7. PMID: 31561943.

Giannini, V., Rosati, S., Defeudis, A., Balestra, G., Vassallo, L., Cappello, G., Mazzetti, S., 
De Mattia, C., Rizzetto, F., Torresin, A., Sartore-Bianchi, A., Siena, S., Vanzulli, A., 
Leone, F., Zagonel, V., Marsoni, S., & Regge, D. (2020). Radiomics predicts response 
of individual HER2-amplified colorectal cancer liver metastases in patients treated 
with HER2-targeted therapy. International Journal of Cancer, 147(11), 3215–3223. 
https://doi.org/10.1002/ijc.33271. Epub 2020 Sep 14. PMID: 32875550.

Guha, A., Connor, S., Anjari, M., Naik, H., Siddiqui, M., Cook, G., & Goh, V. (2020). 
Radiomic analysis for response assessment in advanced head and neck cancers, a 
distant dream or an inevitable reality? A systematic review of the current level of 
evidence. British Journal of Radiology, 93(1106), 20190496. https://doi.org/10.1259/
bjr.20190496. Epub 2019 Nov 6. PMID: 31682155; PMCID: PMC7055439.

Guo, Z., Zhong, N., Xu, X., Zhang, Y., Luo, X., Zhu, H., Zhang, X., Wu, D., Qiu, Y., & Tu, 
F. (2021). Prediction of hepatocellular carcinoma response to transcatheter
arterial chemoembolization: A real-world study based on non-contrast computed 
tomography radiomics and general image features. Journal of Hepatocellular 
Carcinoma, 8, 773–782. https://doi.org/10.2147/JHC.S316117. PMID: 34277508; 
PMCID: PMC8277455.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://doi.org/10.1016/j.ejrad.2019.108647
https://doi.org/10.1016/j.ejrad.2019.108647
https://doi.org/10.1259/bjr.20190496
https://doi.org/10.1259/bjr.20190496


b4808 Artificial Intelligence in Radiation Oncology“6x9” 

Utilization of Radiomics in Prognostication and Treatment Response 299

Hilal, T., Covington, M., Kosiorek, H. E., Zwart, C., Ocal, I. T., Pockaj, B. A., Northfelt, 
D. W., & Patel, B. K. (2018). Breast MRI phenotype and background parenchymal 
enhancement may predict tumor response to neoadjuvant endocrine therapy. Breast 
Journal, 24(6), 1010–1014. https://doi.org/10.1111/tbj.13101. Epub 2018 Jul 31. 
PMID: 30066421.

Huang, L., Chen, J., Hu, W., Xu, X., Liu, D., Wen, J., Lu, J., Cao, J., Zhang, J., Gu, Y., 
Wang, J., & Fan, M. (2019). Assessment of a radiomic signature developed in a gen-
eral NSCLC cohort for predicting overall survival of ALK-positive patients with 
different treatment types. Clinical Lung Cancer, 20(6), e638–e651. https://doi.
org/10.1016/j.cllc.2019.05.005. Epub 2019 May 11. PMID: 31375452.

Jian, A., Jang, K., Manuguerra, M., Liu, S., Magnussen, J., & Di Ieva, A. (2021). Machine 
learning for the prediction of molecular markers in glioma on magnetic resonance 
imaging: A systematic review and meta-analysis. Neurosurgery, 89(1), 31–44. https://
doi.org/10.1093/neuros/nyab103. PMID: 33826716.

Jiang, Y., Chen, C., Xie, J., Wang, W., Zha, X., Lv, W., Chen, H., Hu, Y., Li, T., Yu, J., Zhou, 
Z., Xu, Y., & Li, G. (2018). Radiomics signature of computed tomography imaging 
for prediction of survival and chemotherapeutic benefits in gastric cancer. 
EBioMedicine, 36, 171–182. https://doi.org/10.1016/j.ebiom.2018.09.007. Epub 
2018 Sep 14. PMID: 30224313; PMCID: PMC6197796.

Khorrami, M., Jain, P., Bera, K., Alilou, M., Thawani, R., Patil, P., Ahmad, U., Murthy, S., 
Stephans, K., Fu, P., Velcheti, V., & Madabhushi, A. (2019). Predicting pathologic 
response to neoadjuvant chemoradiation in resectable stage III non-small cell lung 
cancer patients using computed tomography radiomic features. Lung Cancer, 135, 
1–9. https://doi.org/10.1016/j.lungcan.2019.06.020. Epub 2019 Jul 5. Erratum in: 
Lung Cancer. 2019 Oct; 136:156. PMID: 31446979; PMCID: PMC6711393.

Khorrami, M., Prasanna, P., Gupta, A., Patil, P., Velu, P. D., Thawani, R., Corredor, G., 
Alilou, M., Bera, K., Fu, P., Feldman, M., Velcheti, V., & Madabhushi, A. (2020). 
Changes in CT radiomic features associated with lymphocyte distribution predict 
overall survival and response to immunotherapy in non-small cell lung cancer. 
Cancer Immunology Research, 8(1), 108–119. https://doi.org/10.1158/2326-6066.
CIR-19-0476. Epub 2019 Nov 12. PMID: 31719058; PMCID: PMC7718609.

Kirienko, M., Cozzi, L., Antunovic, L., Lozza, L., Fogliata, A., Voulaz, E., Rossi, A., Chiti, 
A., & Sollini, M. (2018). Prediction of disease-free survival by the PET/CT radiomic 
signature in non-small cell lung cancer patients undergoing surgery. European 
Journal of Nuclear Medicine and Molecular Imaging, 45(2), 207–217. https://doi.
org/10.1007/s00259-017-3837-7. Epub 2017 Sep 24. PMID: 28944403.

Langenhuizen, P. P. J. H., Zinger, S., Leenstra, S., Kunst, H. P. M., Mulder, J. J. S., 
Hanssens, P. E. J., de With, P. H. N., & Verheul, J. B. (2020). Radiomics-based predic-
tion of long-term treatment response of vestibular Schwannomas following stereotac-
tic radiosurgery. Otology & Neurotology, 41(10), e1321–e1327. https://doi.
org/10.1097/MAO.0000000000002886. PMID: 33492808.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://doi.org/10.1016/j.cllc.2019.05.005
https://doi.org/10.1016/j.cllc.2019.05.005
https://doi.org/10.1007/s00259-017-3837-7
https://doi.org/10.1007/s00259-017-3837-7
https://doi.org/10.1097/MAO.0000000000002886
https://doi.org/10.1097/MAO.0000000000002886


b4808 Artificial Intelligence in Radiation Oncology “6x9”

300 Artificial Intelligence in Radiation Oncology

Larue, R. T. H. M., Klaassen, R., Jochems, A., Leijenaar, R. T. H., Hulshof, M. C. C. M., 
van Berge Henegouwen, M. I., Schreurs, W. M. J., Sosef, M. N., van Elmpt, W., van 
Laarhoven, H. W. M., & Lambin, P. (2018). Pre-treatment CT radiomics to predict 
three year overall survival following chemoradiotherapy of esophageal cancer. Acta 
Oncology, 57(11), 1475–1481. https://doi.org/10.1080/0284186X.2018.1486039. 
Epub 2018 Aug 1. PMID: 30067421.

Li, Y., Liu, W., Pei, Q., Zhao, L., Güngör, C., Zhu, H., Song, X., Li, C., Zhou, Z., Xu, Y., 
Wang, D., Tan, F., Yang, P., & Pei, H. (2019). Predicting pathological complete 
response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy 
for locally advanced rectal cancer. Cancer Medicine, 8(17), 7244–7252. https://doi.
org/10.1002/cam4.2636. Epub 2019 Oct 22. PMID: 31642204; PMCID: PMC6885895.

Li, Z. Y., Wang, X. D., Li, M., Liu, X. J., Ye, Z., Song, B., Yuan, F., Yuan, Y., Xia, C. C., 
Zhang, X., & Li, Q. (2020). Multi-modal radiomics model to predict treatment 
response to neoadjuvant chemotherapy for locally advanced rectal cancer. World 
Journal of Gastroenterology, 26(19), 2388–2402. https://doi.org/10.3748/wjg.v26.
i19.2388. PMID: 32476800; PMCID: PMC7243642.

Li, P., Wang, X., Xu, C., Liu, C., Zheng, C., Fulham, M. J., Feng, D., Wang, L., Song, S., & 
Huang, G. (2020). 18F-FDG PET/CT radiomic predictors of pathologic Complete 
Response (pCR) to neoadjuvant chemotherapy in breast cancer patients. European 
Journal of Nuclear Medicine and Molecular Imaging, 47(5), 1116–1126. https://doi.
org/10.1007/s00259-020-04684-3. Epub 2020 Jan 25. PMID: 31982990.

Li, X., Xu, C., Yu, Y., Guo, Y., & Sun, H. (2021). Prediction of lymphovascular space inva-
sion using a combination of tenascin-C, cox-2, and PET/CT radiomics in patients 
with early-stage cervical squamous cell carcinoma. BMC Cancer, 21(1), 866. https://
doi.org/10.1186/s12885-021-08596-9. PMID: 34320931; PMCID: PMC8317359.

Liu, Z., Li, Z., Qu, J., Zhang, R., Zhou, X., Li, L., Sun, K., Tang, Z., Jiang, H., Li, H., 
Xiong, Q., Ding, Y., Zhao, X., Wang, K., Liu, Z., & Tian, J. (2019). Radiomics of 
multiparametric MRI for pretreatment prediction of pathologic complete response to 
neoadjuvant chemotherapy in breast cancer: A multicenter study. Clinical Cancer 
Research, 25(12), 3538–3547. https://doi.org/10.1158/1078-0432.CCR-18-3190. 
Epub 2019 Mar 6. PMID: 30842125.

Liu, X., Zhang, D., Liu, Z., Li, Z., Xie, P., Sun, K., Wei, W., Dai, W., Tang, Z., Ding, Y., 
Cai, G., Tong, T., Meng, X., & Tian, J. (2021). Deep learning radiomics-based predic-
tion of distant metastasis in patients with locally advanced rectal cancer after neoad-
juvant chemoradiotherapy: A multicentre study. EBioMedicine, 69, 103442. https://
doi.org/10.1016/j.ebiom.2021.103442. Epub 2021 Jun 20. PMID: 34157487; PMCID: 
PMC8237293.

Lue, K. H., Wu, Y. F., Liu, S. H., Hsieh, T. C., Chuang, K. S., Lin, H. H., & Chen, Y. H. 
(2020). Intratumor heterogeneity assessed by 18F-FDG PET/CT predicts treatment 
response and survival outcomes in patients with Hodgkin Lymphoma. Academic 
Radiology, 27(8), e183–e192. https://doi.org/10.1016/j.acra.2019.10.015. Epub 2019 
Nov 21. PMID: 31761665.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://doi.org/10.1002/cam4.2636
https://doi.org/10.1002/cam4.2636
https://doi.org/10.3748/wjg.v26.i19.2388
https://doi.org/10.3748/wjg.v26.i19.2388
https://doi.org/10.1007/s00259-020-04684-3
https://doi.org/10.1007/s00259-020-04684-3


b4808 Artificial Intelligence in Radiation Oncology“6x9” 

Utilization of Radiomics in Prognostication and Treatment Response 301

Luo, H. S., Huang, S. F., Xu, H. Y., Li, X. Y., Wu, S. X., & Wu, D. H. (2020). A nomogram 
based on pretreatment CT radiomics features for predicting complete response to 
chemoradiotherapy in patients with esophageal squamous cell cancer. Radiation 
Oncology, 15(1), 249. https://doi.org/10.1186/s13014-020-01692-3. PMID: 
33121507; PMCID: PMC7597023.

Nougaret, S., McCague, C., Tibermacine, H., Vargas, H. A., Rizzo, S., & Sala, E. (2021). 
Radiomics and radiogenomics in ovarian cancer: A literature review. Abdominal 
Radiology (NY), 46(6), 2308–2322. https://doi.org/10.1007/s00261-020-02820-z. 
Epub 2020 Nov 11. PMID: 33174120.

Oltra-Sastre, M., Fuster-Garcia, E., Juan-Albarracin, J., Sáez, C., Perez-Girbes, A., Sanz-
Requena, R., Revert-Ventura, A., Mocholi, A., Urchueguia, J., Hervas, A., Reynes, G., 
Font-de-Mora, J., Muñoz-Langa, J., Botella, C., Aparici, F., Marti-Bonmati, L., & 
Garcia-Gomez, J. M. (2019). Multi-parametric MR imaging biomarkers associated to 
clinical outcomes in gliomas: A systematic review. Current Medical Imaging 
Reviews, 15(10), 933–947. https://doi.org/10.2174/1573405615666190109100503. 
PMID: 32008521.

Park, S. H., Hahm, M. H., Bae, B. K., Chong, G. O., Jeong, S. Y., Na, S., Jeong, S., & Kim, 
J. C. (2020). Magnetic resonance imaging features of tumor and lymph node to pre-
dict clinical outcome in node-positive cervical cancer: A retrospective analysis. 
Radiation Oncology, 15(1), 86. https://doi.org/10.1186/s13014-020-01502-w. PMID: 
32312283; PMCID: PMC7171757.

Parr, E., Du, Q., Zhang, C., Lin, C., Kamal, A., McAlister, J., Liang, X., Bavitz, K., Rux, 
G., Hollingsworth, M., Baine, M., & Zheng, D. (2020). Radiomics-based outcome 
prediction for pancreatic cancer following stereotactic body radiotherapy. Cancers 
(Basel), 12(4), 1051. https://doi.org/10.3390/cancers12041051. PMID: 32344538; 
PMCID: PMC7226523.

Quiaoit, K., DiCenzo, D., Fatima, K., Bhardwaj, D., Sannachi, L., Gangeh, M., Sadeghi-
Naini, A., Dasgupta, A., Kolios, M. C., Trudeau, M., Gandhi, S., Eisen, A., Wright, 
F., Look-Hong, N., Sahgal, A., Stanisz, G., Brezden, C., Dinniwell, R., Tran, W. T., 
Yang, W., Curpen, B., & Czarnota, G. J. (2020). Quantitative ultrasound radiomics 
for therapy response monitoring in patients with locally advanced breast cancer: 
Multi-institutional study results. PLoS One, 15(7), e0236182. https://doi.org/10.1371/
journal.pone.0236182. PMID: 32716959; PMCID: PMC7384762.

Shaish, H., Aukerman, A., Vanguri, R., Spinelli, A., Armenta, P., Jambawalikar, S., 
Makkar, J., Bentley-Hibbert, S., Del Portillo, A., Kiran, R., Monti, L., Bonifacio, C., 
Kirienko, M., Gardner, K. L., Schwartz, L., & Keller, D. (2020). Radiomics of MRI 
for pretreatment prediction of pathologic complete response, tumor regression grade, 
and neoadjuvant rectal score in patients with locally advanced rectal cancer undergo-
ing neoadjuvant chemoradiation: An international multicenter study. European 
Radiology, 30(11), 6263–6273. https://doi.org/10.1007/s00330-020-06968-6. Epub 
2020 Jul 14. PMID: 32500192.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://doi.org/10.1371/journal.pone.0236182
https://doi.org/10.1371/journal.pone.0236182


b4808 Artificial Intelligence in Radiation Oncology “6x9”

302 Artificial Intelligence in Radiation Oncology

Shayesteh, S. P., Alikhassi, A., Fard Esfahani, A., Miraie, M., Geramifar, P., Bitarafan-
Rajabi, A., & Haddad, P. (2019). Neo-adjuvant chemoradiotherapy response predic-
tion using MRI based ensemble learning method in rectal cancer patients. Physical 
Medicine, 62, 111–119. https://doi.org/10.1016/j.ejmp.2019.03.013. Epub 2019 May 
15. PMID: 31153390.

Shi, L., Rong, Y., Daly, M., Dyer, B., Benedict, S., Qiu, J., & Yamamoto, T. (2020). Cone-
beam computed tomography-based delta-radiomics for early response assessment in 
radiotherapy for locally advanced lung cancer. Physics in Medicine and Biology, 
65(1), 015009. https://doi.org/10.1088/1361-6560/ab3247. PMID: 31307024.

Song, J., Wang, L., Ng, N. N., Zhao, M., Shi, J., Wu, N., Li, W., Liu, Z., Yeom, K. W., & 
Tian, J. (2020). Development and validation of a machine learning model to explore 
tyrosine kinase inhibitor response in patients with stage IV EGFR variant-positive 
non-small cell lung cancer. JAMA Network Open, 3(12), e2030442. https://doi.
org/10.1001/jamanetworkopen.2020.30442. Erratum in: JAMA Netw Open. 2021 
Feb 1;4(2):e211634. PMID: 33331920; PMCID: PMC7747022.

Sutton, E. J., Onishi, N., Fehr, D. A., Dashevsky, B. Z., Sadinski, M., Pinker, K., Martinez, 
D. F., Brogi, E., Braunstein, L., Razavi, P., El-Tamer, M., Sacchini, V., Deasy, J. O., 
Morris, E. A., & Veeraraghavan, H. (2020). A machine learning model that classifies 
breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy. 
Breast Cancer Research, 22(1), 57. https://doi.org/10.1186/s13058-020-01291-w. 
PMID: 32466777; PMCID: PMC7254668.

Valentinuzzi, D., Vrankar, M., Boc, N., Ahac, V., Zupancic, Z., Unk, M., Skalic, K., Zagar, 
I., Studen, A., Simoncic, U., Eickhoff, J., & Jeraj, R. (2020). [18F]FDG PET immu-
notherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell 
lung cancer patients treated with pembrolizumab. Radiology & Oncology, 54(3), 
285–294. https://doi.org/10.2478/raon-2020-0042. PMID: 32726293; PMCID: 
PMC7409607.

van Griethuysen, J. J. M., Lambregts, D. M. J., Trebeschi, S., Lahaye, M. J., Bakers, F. C. 
H., Vliegen, R. F. A., Beets, G. L., Aerts, H. J. W. L., & Beets-Tan, R. G. H. (2020). 
Radiomics performs comparable to morphologic assessment by expert radiologists 
for prediction of response to neoadjuvant chemoradiotherapy on baseline staging 
MRI in rectal cancer. Abdominal Radiology (NY), 45(3), 632–643. https://doi.
org/10.1007/s00261-019-02321-8. PMID: 31734709.

Wang, X., Kong, C., Xu, W., Yang, S., Shi, D., Zhang, J., Du, M., Wang, S., Bai, Y., Zhang, 
T., Chen, Z., Ma, Z., Wang, J., Dong, G., Sun, M., Yin, R., & Chen F. (2019). 
Decoding tumor mutation burden and driver mutations in early stage lung adenocar-
cinoma using CT-based radiomics signature. Thoracic Cancer, 10(10), 1904–1912. 
https://doi.org/10.1111/1759-7714.13163. Epub 2019 Aug 14. PMID: 31414580; 
PMCID: PMC6775017.

Wang, P. P., Deng, C. L., & Wu, B. (2021). Magnetic resonance imaging-based artificial 
intelligence model in rectal cancer. World Journal of Gastroenterology, 27(18), 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://doi.org/10.1001/jamanetworkopen.2020.30442
https://doi.org/10.1001/jamanetworkopen.2020.30442
https://doi.org/10.1007/s00261-019-02321-8
https://doi.org/10.1007/s00261-019-02321-8


b4808 Artificial Intelligence in Radiation Oncology“6x9” 

Utilization of Radiomics in Prognostication and Treatment Response 303

2122–2130. https://doi.org/10.3748/wjg.v27.i18.2122. PMID: 34025068; PMCID: 
PMC8117733.

Wang, J. H., Wahid, K. A., van Dijk, L. V., Farahani, K., Thompson, R. F., & Fuller, C. D. 
(2021). Radiomic biomarkers of tumor immune biology and immunotherapy 
response. Clinical and Translational Radiation Oncology, 28, 97–115. https://doi.
org/10.1016/j.ctro.2021.03.006. PMID: 33937530; PMCID: PMC8076712.

Wu, M., Zhang, Y., Zhang, Y., Liu, Y., Wu, M., & Ye, Z. (2019). Imaging-based biomarkers 
for predicting and evaluating cancer immunotherapy response. Radiology Imaging 
Cancer, 1(2), e190031. https://doi.org/10.1148/rycan.2019190031. PMID: 33778682; 
PMCID: PMC7983749.

Yang, Z., He, B., Zhuang, X., Gao, X., Wang, D., Li, M., Lin, Z., & Luo, R. (2019). 
CT-based radiomic signatures for prediction of pathologic complete response in 
esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy. Journal 
of Radiation Research, 60(4), 538–545. https://doi.org/10.1093/jrr/rrz027. PMID: 
31111948; PMCID: PMC6640907.

Yuan, Z., Frazer, M., Zhang, G. G., Latifi, K., Moros, E. G., Feygelman, V., Felder, S., 
Sanchez, J., Dessureault, S., Imanirad, I., Kim, R. D., Harrison, L. B., Hoffe, S. E., & 
Frakes, J. M. (2020). CT-based radiomic features to predict pathological response in 
rectal cancer: A retrospective cohort study. Journal of Medical Imaging and Radiation 
Oncology, 64(3), 444–449. https://doi.org/10.1111/1754-9485.13044. Epub 2020 
May 9. PMID: 32386109.

Zhang, N., Liang, R., Gensheimer, M. F., Guo, M., Zhu, H., Yu, J., Diehn, M., Loo, B. W. 
Jr, Li, R., & Wu, J. (2020). Early response evaluation using primary tumor and nodal 
imaging features to predict progression-free survival of locally advanced non-small 
cell lung cancer. Theranostics, 10(25), 11707–11718. https://doi.org/10.7150/
thno.50565. PMID: 33052242; PMCID: PMC7546006.

Zhang, Y., Huang, Z. X., & Song, B. (2021). Role of imaging in evaluating the response 
after neoadjuvant treatment for pancreatic ductal adenocarcinoma. World Journal of 
Gastroenterology, 27(22), 3037–3049. https://doi.org/10.3748/wjg.v27.i22.3037. 
PMID: 34168406; PMCID: PMC8192284.

Zhao, L., Gong, J., Xi, Y., Xu, M., Li, C., Kang, X., Yin, Y., Qin, W., Yin, H., & Shi, M. 
(2020). MRI-based radiomics nomogram may predict the response to induction che-
motherapy and survival in locally advanced nasopharyngeal carcinoma. European 
Radiology, 30(1), 537–546. https://doi.org/10.1007/s00330-019-06211-x. Epub 2019 
Aug 1. PMID: 31372781.

Zhong, J., Hu, Y., Si, L., Jia, G., Xing, Y., Zhang, H., & Yao, W. (2021). A systematic 
review of radiomics in osteosarcoma: Utilizing radiomics quality score as a tool pro-
moting clinical translation. European Radiology, 31(3), 1526–1535. https://doi.
org/10.1007/s00330-020-07221-w. Epub 2020 Sep 2. PMID: 32876837.

Zhou, X., Yi, Y., Liu, Z., Cao, W., Lai, B., Sun, K., Li, L., Zhou, Z., Feng, Y., & Tian, J. 
(2019). Radiomics-based pretherapeutic prediction of non-response to neoadjuvant 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://doi.org/10.1016/j.ctro.2021.03.006
https://doi.org/10.1016/j.ctro.2021.03.006
https://doi.org/10.7150/thno.50565
https://doi.org/10.7150/thno.50565
https://doi.org/10.1007/s00330-020-07221-w
https://doi.org/10.1007/s00330-020-07221-w


b4808 Artificial Intelligence in Radiation Oncology “6x9”

304 Artificial Intelligence in Radiation Oncology

therapy in locally advanced rectal cancer. Annals of Surgical Oncology, 26(6), 
1676–1684. https://doi.org/10.1245/s10434-019-07300-3. Epub 2019 Mar 18. PMID: 
30887373; PMCID: PMC6510882.

Zhou, J., Lu, J., Gao, C., Zeng, J., Zhou, C., Lai, X., Cai, W., & Xu, M. (2020). Predicting 
the response to neoadjuvant chemotherapy for breast cancer: Wavelet transforming 
radiomics in MRI. BMC Cancer, 20(1), 100. https://doi.org/10.1186/s12885-020-
6523-2. PMID: 32024483; PMCID: PMC7003343.

Zhu, Y., Guo, Y. B., Xu, D., Zhang, J., Liu, Z. G., Wu, X., Yang, X. Y., Chang, D. D., Xu, 
M., Yan, J., Ke, Z. F., Feng, S. T., & Liu, Y. L. A Computed Tomography (CT)-derived 
radiomics approach for predicting primary co-mutations involving TP53 and 
Epidermal Growth Factor Receptor (EGFR) in patients with advanced Lung 
Adenocarcinomas (LUAD). Annals of Translational Medicine, 9(7), 545. https://doi.
org/10.21037/atm-20-6473. PMID: 33987243; PMCID: PMC8105857.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://doi.org/10.21037/atm-20-6473
https://doi.org/10.21037/atm-20-6473


305

b4808 Artificial Intelligence in Radiation Oncology“6x9” 

Chapter 14

How AI can Help us Understand 
and Mitigate Error Propagation 

in Radiation Oncology

Ed Kline* and Srijan Sengupta†

*RadPhysics Services LLC, Albuquerque NM, USA
†North Carolina State University, Raleigh NC, USA

Abstract
The treatment workflow in radiation oncology involves a long chain of clinical and 
technical steps involving numerous subsystems, multiple vendors, and a variety of 
medical professionals. This complex workflow must be further customized for 
individual patients whose tumor size and locations can change during treatment. 
Therefore, medical errors can occur, and, crucially, such errors can propagate to 
future steps unless detected and addressed immediately. Understanding this error 
propagation is key to proactive error management. This chapter aims to discuss 
these issues and to provide guidelines toward an artificial intelligence (AI)-based 
analytical framework to analyze structured and unstructured incident reports. Such 
an analytical framework can be used to model error propagation and proactively 
identify points of weakness in radiation oncology pathways. Incorporating 
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statistical learning and AI tools in this model may preemptively identify errors or 
trends in errors and suggest actions to prevent their recurrence.

1. Introduction

The Institute of Medicine (IOM), an authority at the intersection of medi-
cine and society, released a report titled “To Err is Human: Building a 
Safer Health System” in November 1999. Its goal was to break the cycle 
of inaction regarding medical errors by advocating a comprehensive 
approach to improving patient safety. Based on two studies [conducted in 
1984 and 1992], the IOM concluded that between 44,000 and 98,000 
patients die every year in United States (U.S.) hospitals due to medical 
errors. Costs alone from medical errors were approximately $37.6 billion 
per year. About $17 billion were associated with preventable errors (Kohn 
et al., 2000). Given the intense level of public and scientific reaction to the 
report, various stakeholders responded swiftly to take action. In February 
2000, President Clinton announced a national action plan to reduce pre-
ventable medical errors by fifty percent within five years.1 Congress man-
dated the monitoring of progress in preventing patient harm. In July 2004, 
a Healthgrades Quality Study asserted that IOM had in fact vastly under-
estimated the number of deaths due to medical errors, citing 195,000 
deaths per year (Smith, 2005). In September 2013, a study covering the 
period 2008–2011 estimated preventable medical errors leading to patient 
deaths at 210,000 to 400,000 each year (James, 2013). Of $2.5 trillion 
spent on domestic healthcare costs in 2009, $765 billion (or 30%) was 
attributed to preventable errors (Olsen et al., 2010). In May 2016, Johns 
Hopkins released a study suggesting more than 250,000 deaths per year 
were due to medical errors in the U.S. This figure made medical errors the 
third leading cause of death in the U.S. (Makary & Daniel, 2016). Today, 
preventable deaths due to medical errors are 10 times higher than the IOM 
estimate based on quality-adjusted life years. A 2012 study estimated that 
preventable medical errors may cost the U.S. economy up to $1 trillion in 
lost human potential and contributions (Andel et al., 2012). 

1 https://clintonwhitehouse4.archives.gov/textonly/WH/New/html/20000222_1.html.
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Government regulations have flourished in an attempt to reduce 
medical errors. Federal and state legislation was passed to establish safety 
standards and deter bad performance of healthcare providers. Medical 
providers and healthcare organizations spend significant resources and 
money to comply with federal quality and safety requirements to avoid 
civil penalties and reduced insurance reimbursement. A number of federal 
agencies and regulations2 were created to promote quality of care and 
patient safety:

(1) The Healthcare Research and Quality Act required the Agency for 
Healthcare Research and Quality (AHRQ) to support research and 
build private–public partnerships,3 

(2) The Patient Safety and Quality Improvement Act required patient 
safety organizations in each state to collect data and report on medi-
cal errors,4 

(3) Patient safety advisory groups were created to promote patient 
safety,5 

(4) The Joint Commission (JC) revised standards required all accredited 
hospitals to implement ongoing medical error reduction programs 
(Frankel et al., 2013), 

(5) A sentinel event policy was created requiring the identification of 
sentinel events, preventative actions, root cause analysis, and action 
plans (Levinson & General, 2010), 

(6) The National Quality Foundation announced a list of serious 
(“never”) reportable events where state federal insurance programs 
no longer reimburse providers for events (Editorial Board, 2009), and 

2American Association of Physicists in Medicine. Government affairs: State Regulations 
and Licensure. http://aapm.org/government_affairs/licensure/default.asp. Accessed 
November 20, 2018.

American Society of Radiologic Technologists. Individual State Licensure Information. 
www.asrt.org/main/standards-regulations/state-legislative-affairs/individual-state-
licensure-info. Accessed February 7, 2018.
3 https://www.ahrq.gov/cpi/about/profile/index.html.
4 https://www.hhs.gov/hipaa/for-professionals/patient-safety/statute-and-rule/index.html.
5 https://www.nashp.org/state-patient-safety-centers-new-approach-promote-patient-safety/.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om

https://www.ahrq.gov/cpi/about/profile/index.html
https://www.hhs.gov/hipaa/for-professionals/patient-safety/statute-and-rule/index.html
https://www.nashp.org/state-patient-safety-centers-new-approach-promote-patient-safety/


b4808 Artificial Intelligence in Radiation Oncology “6x9”

308 Artificial Intelligence in Radiation Oncology

(7) AHRQ established safety indicators6 while JC announced unannounced 
on-site evaluations.7 

More recently, regulations were enacted that affect the finances of the 
hospital or healthcare provider. Under the Health Insurance Marketplace 
Quality Initiatives–Patient Protection and Affordable Care Act, health 
plan insurers are required to verify that hospitals use a Patient Safety 
Evaluation System (PSES) or else the Center for Medicare & Medicaid 
Services (CMS) will not reimburse the hospital for medical expenses.8

The government also introduced incentives for providing better quality 
and patient safety. CMS announced quality incentives such as “Pay-for-
Performance” and Physician Quality Reporting Initiative (PQRI) to 
reward good performance in the form of financial reward.9 These incen-
tives have further taken root in today’s marketplace under the Medicare 
Access and CHIP Reauthorization Act of 2015 (MACRA) and Quality 
Payment Program (QPP) where CMS ties payments to quality and value. 
Financial penalties (–4 to –9%) and bonuses (+4 to +9%) apply in this 
program under the Merit-based Incentive Payment System (MIPS).10

Further CMS proposed the Radiation Oncology (RO) Model to test 
whether prospective episode-based payments to designated providers 
reduce CMS expenditures while preserving or enhancing the quality of 
care for Medicare recipients. The RO Model would qualify as an Advanced 
Alternative Payment Model (Advanced APM) and a MIPS APM under the 
CMS QPP.11

Despite numerous regulations, resources, training courses, webinars, 
and standards, certain sentinel events continue to occur with alarming 
frequency. And although there has been an intense focus over two decades 

6 https://www.ahrq.gov/sites/default/files/publications/files/advancing-patient-safety.pdf.
7 https://www.jointcommission.org/-/media/08c0024441f54848b8c212dd0b5dbeff.ashx.
8 https://www.govinfo.gov/content/pkg/FR-2016-03-08/pdf/2016-04439.pdf.
9 https://www.hhs.gov/guidance/document/provider-inquiry-assistance-program-over-
view-2010-physician-quality-reporting-initiative.
10 https://go.cms.gov/QualityPaymentProgram.
11 https://innovation.cms.gov/innovation-models/radiation-oncology-model.
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to improve safety of medicine in the U.S., it appears little if any improve-
ment has been made (Farokhzadian et al., 2018).

2. Patient Safety in Radiation Oncology

The goal of radiation therapy is to deliver prescribed doses of lethal 
radiation as precisely as possible to the tumor while sparing the surround-
ing healthy tissue. Dosimetric benefits of precision radiotherapy allow for 
improved treatment quality in managing different cancer types such as 
breast, prostate, lung, head and neck, brain, and others. Focused radio-
therapy is used for neuro-oncological applications such as radiation-based 
neuromodulation in treating cardiac tissue (ventricular tachycardia), 
trigeminal neuralgia (pain relief), and medically refractory Essential 
Tremor (movement disorder). 

Radiotherapy treatment involves a long chain of specialized activities 
customized for individual patients whose tumor size and locations can 
change during treatment. This process can consist of as many as 300 or 
more steps involving numerous subsystems from multiple vendors and 
medical staff (e.g., radiation oncologist, nurses, dosimetrists, physicists, 
and administrative personnel). The specialized computer systems and 
devices used in this process often transfer data digitally between different 
subsystems. Automatic data transfer between subsystems may reduce 
manual data entry errors; however, it does not eliminate data use and 
transfer errors as a whole. Complexity of the entire system connected with 
inherent trust of digital transfers may result in data transfer errors not 
being identified (Siochi et al., 2011). Procedural intricacies of accurate 
and timely radiation treatment add to further risk of making errors. Yet, 
various periodic checks are often performed manually using paper and 
spreadsheets. Ensuring the quality of checks to identify errors in the entire 
treatment process is difficult as treatment complexity continues to evolve 
in radiotherapy environments.

Human contributing factors resulting in preventable errors are on par 
with some of the most notable diseases in terms of their negative impact 
on human health (Weintraub et al., 2021). Reducing avoidable medical 
errors involving human and machine interactions in the field of radiation 
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oncology is a high priority for a growing audience of stakeholders. In 
2020, an estimated 1.8 million new cancer cases were diagnosed in the 
U.S. which is the equivalent of approximately 4,950 new cases each day 
(Siegel et al., 2020). Further, in the U.S., approximately 50% of cancer 
patients receive radiation therapy as part of their care at one of 2,322 
radiation therapy centers (Bajaj, 2020). From a worldwide perspective, 
cancer diagnosis is projected to increase by 80% in low-income countries 
compared to 40% in high-income countries through 2030.12 The global 
radiotherapy market is projected to reach $11.5 billion by the end of 2027, 
growing at a CAGR (compounded annual growth rate) of 7.3%.13 The 
need for safe and reliable treatments in radiation oncology will continue 
to grow in the U.S. and worldwide.

In the U.S., most current data in radiation oncology suggests that 
approximately 0.04–4.7% of patients undergoing radiation therapy experi-
ence some operational and clinical shortcoming. Approximately 0.003–
0.01% experience some level of harm per treatment. Approximately 100 
and 500 patients experience some harm annually in the U.S. and world-
wide, respectively. This figure corresponds to approximately 6–100 
serious events per million treatments, of which some lead to death (Howell 
et al., 2019; Ford et al., 2012). Although the associated risk of mistreat-
ment is estimated to be rare, the consequences of an error may be high 
(Ford & Terezakis, 2010). However, according to a New York Times article 
published in January 2010, radiation therapy accidents are chronically 
underreported, and some states do not require any error reporting.14

A patient safety reporting system (PSRS) is a risk management plat-
form for collecting, investigating, examining, and learning from safety 
matters related to near misses and incidents (Ford et al., 2012; Hutchinson 
et al., 2009; Mazur et al., 2015; Ford & Evans, 2018). Over the past 
15 years, professional groups, accrediting organizations, governments, 
and others have responded with the development of PSESs or similar 
reporting systems using public databases such as Manufacturer and User 
Facility Device Experience (MAUDE), Vaccine Adverse Event Reporting 

12 https://www.grandviewresearch.com/industry-analysis/tumor-ablation-market.
13 https://www.grandviewresearch.com/industry-analysis/radiation-oncology-market.
14 https://www.nytimes.com/2010/01/24/health/24radiation.html.
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System (VAERS), and FDA Adverse Event Reporting System (FAERS). 
More specific to the field of radiation oncology, voluntary incident report-
ing systems have been created in the U.S. and various countries. Many of 
these reporting systems in the U.S. are local, home-grown programs. The 
broader goal in radiation oncology is to improve the safe planning and 
delivery of radiotherapy by sharing safety-related events and safety analy-
sis within respective countries and around the world. The most promi-
nently known reporting systems worldwide in radiation oncology are as 
follows:

• ASTRO: Radiation Oncology–Incident Learning System (RO-ILS)
(US)

• Radiation Oncology Safety Education and Information System 
(ROSEIS)(IRL)

• International Atomic Energy Agency (IAEA): Safety in Radiation 
Oncology (SAFRON)(AUT)

• Radiotherapy Incident Reporting & Analysis System (RIRAS)(US)
• Relir Othea (FR)
• National Reporting and Learning System (NRLS)(UK)
• National System for Incident Reporting in Radiation Therapy (NSIR-

RT)(CAN).

Though progress has been made in identifying and correcting errors 
in radiation oncology pathways, significant weaknesses exist in PSRSs. 
Most if not all PSRSs are reactive reporting systems with limited flexibil-
ity and utilization. Errors are caught downstream, if at all (Mullins et al., 
2020; Mullins et al., 2019; Ford et al., 2009; Clark et al., 2013). By the 
time users find the errors, they have already occurred and imparted their 
damaging effects. This strategy relies on hopes to stop the next types of 
similar errors from occurring by entering action plans typically using 
descriptors using free text. Further, there is no failure mode and effects 
analysis (FMEA) or comprehensive risk prioritization in these programs. 
Nor is there any automatic suggestion of corrective actions. Action plans 
do not drill down, nor do they offer a roadmap to correcting errors using 
credible root cause analysis (Rooney & Heuvel, 2004). If an adverse or 
medical event occurs that requires reporting to federal or state agencies in 
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the U.S. or a country’s regulatory authority, none of the PSRSs offer step-
by-step guidance and reporting capabilities.15 Barriers continue to exist in 
numerous PSRSs designed to promote a culture of safety and high relia-
bility in radiation oncology. Open reporting culture is not acceptable. Fear 
of error is compounded by the manner in which error is investigated. The 
outcome inevitability results in an assessment of blame, blends liability 
with fault, and fails to promote a no-fault culture. In summary, local 
PSRSs are inadequate to investigate incidents, identify contributory fac-
tors, and implement and embed no-fault learning.16 Large or enterprise 
reporting solutions benefit from collection of larger data pools and com-
pilation of lessons learned; however, similar limitations plague their 
robust adoption and use. 

The American Association of Physicists in Medicine (AAPM) looked 
at errors produced from failures in workflow and process in radiation 
oncology. AAPM Task Group 100 (TG-100) provided a systematic under-
standing of the likelihood and clinical impact of possible failures through-
out a course of radiotherapy. TG-100 was designed to help effectively use 
limited quality management (QM) resources (Huq et al., 2016). It estab-
lished a framework for designing QM activities based on estimates of the 
probabilities of identified failures and their effect on the clinical process 
from radiotherapy planning to treatment delivery (Huq et al., 2016). The 
strategies presented in TG-100 provide a mechanism to enhance quality 
and safety of patient care. Prospective QM techniques proposed by 
TG-100 include FMEA. FMEA provides a proactive approach to focus on 
identifying and addressing vulnerabilities before harm occurs. Simply 
stated, FMEA is a proactive, systematic method of identifying ways a 
process can go wrong and actions to address them (Spath, 2003). 

A hazard analysis model known as System Theoretic Process Analysis 
(STPA) has been used to perform hazard analysis in radiation oncology 
(Pawlicki et al., 2016). STPA uses a deductive hazard analysis method 
based on a Systems-Theoretic Accident Model and Process (STAMP). 
STAMP views safety as a system control problem rather than a component 
failure problem. STPA extends this model by detecting unsafe behaviors 

15 https://www.nrc.gov/reading-rm/doc-collections/cfr/part035/index.html.
16 https://www.psqh.com/resource/the-cultural-cure-for-sentinel-events/
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that can result in hazards and causal scenarios that identify the unsafe 
behavior.

TG-100, STPA, and other methodologies acknowledge the challenge 
in teaching a whole new way of thinking about quality and safety needs in 
relation to risk management. Buy-in and adoption of risk-based quality 
programs or hazard analysis techniques is difficult to establish and imple-
ment without proper tools. The historical, reactive approach to error miti-
gation and the challenging implementation of proactive methodologies 
makes it a key area for development of a predictive risk management tool. 
The complexity of the workflow makes this a difficult problem. 
Furthermore, errors can propagate from one step to the next in different 
care pathways. Hence, it is not only whether we can detect an error, but 
also, how quickly before they proceed downstream. A practical tool to 
foresee errors could improve patient safety, prevent errors, and drive effi-
ciency in radiotherapy workflow.

3. The Radiation Oncology Workflow: Constructing 
a Reference Timeline

Predicting when and where errors occur in the entire treatment delivery 
process could provide an enhanced systematic understanding of risk man-
agement in patient safety and quality of care. Determining probability of 
failures in pathways could significantly help provide safe clinical work-
flows (Pillai et al., 2019; Potters et al., 2016; Weidlich & Weidlich, 2018; 
Chang et al., 2017; Kalet et al., 2015).

In our work, we chose to build upon an established, commercially 
available error reduction and regulatory compliance program called 
Medical Error Reduction Program (MERP©) (https://www.radphysics.
com). MERP helps reduce preventable systems-related medical errors in 
radiation oncology. The MERP product is used in cancer center workflow 
to help minimize risk and improve patient safety by identifying errors, 
measuring improvement, and correcting causal factors with action plans. 
Errors are defined as failures in workflow or process to perform specific 
acts timely and/or correctly. Failures can include but are not limited to 
near misses, events, and violations. For our purposes, error data from 
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multiple institutions were collected in MERP and fitted in various silos 
configured in the database. The silos comprise deep, multiple levels of 
categories. Each piece of data is characterized with specific identifiers and 
properties in the MERP database fields.

Figure 1 is a process tree that references a main timeline of steps in 
radiation oncology. The process tree works as an archetypical example for 
a typical patient undergoing external beam radiotherapy treatment. The 
temporal relationship between each step is shown from process start to 
end. Typical check points are shown on the main timeline. This main 
timeline represents a relative display of chronological events. It does not 
account for time from patient consultation to imaging (acquired before 
simulation) and diagnosis. The process tree shows the first part of this 
reference timeline for illustration. Here we do not show subsequent steps 
in the interest of space. 

The bolded central arrow shows the entry of the patient into the pro-
cess. The main steps are shown in bolded boxes along the central arrow. 

Fig. 1.  A partial timeline of the different stages of the radiation oncology process.
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Smaller vertical arrows point from each step to the central arrow. Each 
step is labeled with the step’s name and a number representing the approx-
imate chronological order of the step in the treatment process. Substeps 
show greater detail in regular boxes that appear below each step. Patient 
flow entering each step is shown with branches emerging horizontally 
from the smaller vertical arrows to boxes labeled “Step Time”. Step Time 
boxes are bolded and show specific time intervals (a range of days with an 
optimal day) when the step should typically be performed in the treatment 
process. Typical checks (e.g., initial chart checks, dose calculation checks, 
etc.) for standard treatments (e.g., EBRT (2D), 3D-CRT, and IMRT) and 
non-routine checks for high-dose treatments (e.g., SBRT, SRS) along the 
main timeline are shown in bold boxes labeled “Routine Checks” and 
“Non-routine Checks”, respectively. Each type of check shows the typical 
responsible individual who performs the check and when the check should 
generally be performed.

Key steps in our MERP process tree were compared to key steps in a 
process tree taken from TG-100 (Huq et al., 2016) using color boxes. The 
orange shade boxes show steps and substeps in our MERP workflow. The 
yellow boxes show steps in the TG-100 workflow. The green shaded boxes 
in the MERP workflow show when steps should typically be performed. 
Routine and non-routine checks in MERP for standard treatments and 
high-dose treatments are shown in bright green and red shaded boxes, 
respectively. The lighter green shaded boxes under routine and non-routine 
checks in MERP show the responsible individual who performs the check 
and when the check should generally be performed in the process.

The process tree of steps in MERP compares favorably with similar 
steps in TG-100 and provides external validation of pathways used within 
our workflow. Steps in TG-100 (yellow boxes) matching similar steps in 
MERP (orange shaded boxes) are shown vertically in line with each other. 
For example, the step called “1 Patient Database Information Entered” in 
TG-100 matches similar steps called “1 Registration” and “2 Scheduling” 
in MERP. A comparison of remaining steps in TG-100 and MERP shows 
similar matches in both process trees.

The design and architecture of our MERP workflow expands the
levels of “steps” and “substeps” found in the process tree into a deeper 
hierarchy of folders called “categories, subcategories, and attributes”.   
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Pretreatment and posttreatment classifications were introduced, and new 
groupings called radiation safety, Quality Assurance (QA), and billing 
were added in MERP.

The MERP software design comprises a pre- and posttreatment time-
line of 24 categories at level 1 hierarchy (first level of folders), 182 
subcategories at level 2 hierarchy (second level of folders), and 1872 
attributes at level 3 hierarchy. Each such category, subcategory, and attrib-
ute refers to the location where an error occurs in the radiotherapy pro-
cess. When an error is identified (e.g., a particular task is not completed 
in a timely manner or correctly), the user (e.g., therapist, dosimetrist, 
physicist, physician, nurse, front desk, financial counselor, etc.) enters the 
error by selecting the error attribute from a hierarchy display of categories 
and subcategories that expand into various examples of error attributes. If 
the attribute is not shown on the list, a custom attribute may be created. 
When selecting or creating an error attribute, the MERP user selects the 
day of occurrence of the error (day when the error actually happened 
upstream) and the day when the error was identified (day when the error 
was found downstream). Note that at the time of this writing, MERP did 
not ask the user for the day of occurrence of the error. Natural language 
processing was subsequently used to derive this date from error data (dis-
cussed in what follows). Each attribute and location are mapped to the 
MERP database. Attributes are benchmarked against professional medical 
standards (e.g., American College of Radiology (ACR), American Society 
for Radiation Oncology (ASTRO), American College of Radiation 
Oncology (ACRO), etc.) and regulatory requirements (i.e., Conference of 
Radiation Control Directors, Inc. — Suggested State Regulations for the 
Control of Radiation, https://www.crcpd.org). MERP uses a scoring sys-
tem (FMEA) and analyzes errors for which action plans (short- and long-
term) are preconfigured and selected. New action plans can be created. 
Depending on the nature of the error, a Root Cause Analysis (RCA) can 
be performed to identify the causes of the event. MERP can launch dose 
analysis, sentinel event reports, and medical event reports for local and 
state reporting. Errors are routed through the network server to client 
workstations at the center level. Responsible parties are alerted to review 
and approve the proposed action plans. MERP allows for tracking, 
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trending, and charting with dashboards and report writing capabilities. 
Procedures can be generated for action plans and retraining.

4. Creating a Prototype Statistical Model

To illustrate MERP, we created an error propagation model that models 
the likelihood that any single error is caught within a category and subcat-
egory. The model would automatically flag potential high-risk failure 
points and errors in specific stages of the treatment, quality assurance, 
radiation safety, and billing processes before that specific process com-
mences or proceeds downstream in the workflow. To illustrate our mode-
ling strategy, we shall use an MERP data set from February 2006 to March 
2008 with a total of 1121 error incidents. Each error incident has multiple 
fields, such as category level 1, category level 2, and attribute. The first 
two fields help us in determining the precise step in the radiation oncology 
process where the error was identified downstream. Furthermore, from 
each error incident we extracted two dates: (a) the date of error occurrence 
(the date when the error actually occurred upstream) from the free-text 
narrative (using natural language processing) and (b) the date of error 
detection downstream, which is assumed to be the same as the reporting 
date. Note the date when the error occurred upstream is the actual date 
when the incident took place in comparison to the date when the incident 
was subsequently discovered downstream. Any noted time difference 
between error detection and error reporting was kept at a minimum by 
daily oversight of error flow. The difference between the two dates 
described in (a) and (b) gives us the “detection lag” that passed between 
error occurrence and error detection.

Clearly, a large detection lag is problematic, as it implies that the error 
propagated for a long time before it was detected and a corrective action 
was taken. On the other hand, a small detection lag implies that the error 
was detected quickly. The most preferred outcome is that an error is 
detected on or during the first routine check. The next preferred outcome 
is that an error propagates undetected during the first routine check but 
gets detected on or during the second routine check. The worst possible 
outcome is that an error propagates undetected through both the first and 
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second routine checks that were designed to catch it. To formalize this, we 
can flag each record with one of the following three labels:

1. Check 1: if detection lag is less than or equal to the gap between rou-
tine check 1 and day of occurrence

2. Check 2: if detection lag is greater than the gap between routine 
check 1 and day of occurrence, but less than or equal to gap between 
routine check 2 and day of occurrence

3. Neither: if detection lag is greater than the gap between routine check 
2 and day of occurrence.

We now proceed to build a statistical model for error propagation with 
“flag” as the response variable and other fields as potential predictor/
explanatory variables or features. Here, the “flag” variable is neither 
numeric nor categorical, but rather ordinal in nature. A “check 1” outcome 
is the best outcome, followed by “check 2”, and “check 3” is the worst 
outcome. Therefore, we employ the ordered logit model, which is a well-
known regression model for ordinal outcome variables. To analyze the full 
scope of the model, we consider a hierarchical framework that has three 
levels of aggregation:

(a) Level-1 model considers category-1 levels as the only explanatory 
variable, 

(b) Level-2 model considers both category-1 and category-2 levels as the 
explanatory variables, and 

(c) Level-3 model considers category-1 and category-2 levels as well as 
attributes and category-2 as the explanatory variables.

We fit these models using the Proportional Odds Logistic Regression 
(POLR) method in the statistical programming language, R. We briefly 
report the results from the level-1 and the level-2 models and skip further 
details in the interest of space. 

Results for Level-1 model: We observed that the fitted probabilities show 
several interesting patterns. For example, errors related to patient docs/
notes (e.g., documents or notes related to the patient’s treatment) are very 
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unlikely to be detected by either the first (2.4%) or the second check 
(9.6%). A similar observation holds for errors related to dose calculations 
(5.3% Check 1, 18.4% Check 2). On the other hand, errors related to reg-
istration (80.8% Check 1, 15.1% Check 2) and radiation safety (100% 
Check 1) are very likely to be detected within the first two checks. This 
helps us identify points of weakness and strength in the error detection 
process. 

Results for Level-2 model: Now, we add level-2 categories in the mix. 
These results provide us with a deeper understanding of the error detec-
tion process. For example, from the level-1 model we saw that dose cal-
culation errors are very likely to remain undetected, but the level-2 model 
tells us more — dose calculation errors related to computer calculations 
are quite likely to get detected, but others do not get detected in time. 
Thus, the level-2 model provides us with greater detail on the risk at vari-
ous points of the radiation oncology treatment process. The following 
table shows a few selected results from this model.

Level-1 Category Level-2 Category
Check 
1 (%)

Check 2 
(%)

Neither 
(%)

Scheduling 
(Appointments)

Appointments 89.0 7.5 3.5

Computer Treatment 
Planning

Treatment Plan 57.8 24.6 17.6

Dose Calculations Computer Calculations 35.1 29.7 35.1

Treatment Delivery 
(Patient Setup)

Treatment Plan 12.2 19.9 67.9

This illustrative example shows the value of our modeling approach. 
The modeling framework is highly flexible and additional features (e.g., 
treatment stage, professional role, severity) can be easily integrated. By 
rigorously quantifying the risk patterns arising from various features we 
can objectively, efficiently, and effectively determine points of weakness 
in the care system.
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5.  Understanding Error Reporting Data in Our System: 
Past and Present

Figure 2 shows a simple example of a typical radiation oncology system 
with various subsystems and interfaces to external imaging, PACS, elec-
tronic medical record system, CT-simulation scanner, treatment planning 
system, record and verify system, linear accelerator, and other software 
services. Many of these systems may come from different vendors. These 
component subsystems from multiple manufacturers must communicate 
correctly for the safety and quality of treatment. Systematic errors could 
be a significant concern if communication flaws propagate undetected 
under a specific set of conditions. Data transfer is one of many error 
sources and can lead to poor productivity (Zietman et al., 2012; Hendee 
& Herman, 2011; Siochi et al., 2011). Efforts to improve data transfers are 
ongoing initiatives. Integrating Healthcare Enterprise – Radiation 
Oncology (IHE–RO)(https://aapm.org/IHERO/) is a non-profit organiza-
tion and AAPM/ASTRO-sponsored initiative to develop a process of shar-
ing data and a database standard for use cases to help eliminate issues with 
data transfers. 

In our work, the error propagation model shows the likelihood that 
any single error is caught within a subsystem. For risk management, we 
are interested in analyzing the risk of failure to detect, which can be 

Fig. 2.  Radiation oncology network system.
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calculated as one minus the estimated probability from the statistical 
model that was previously discussed. Failures to detect errors at or before 
the first, second, and subsequent periodic checks are determined as a 
product of patient throughput. The primary subsystems of interest include 
external imaging, CT-simulation, treatment planning system, record and 
verify system, and linear accelerator. The secondary subsystems of inter-
est include radiation safety (patient and worker regulatory compliance and 
safety), QA (quality requirements of machines, equipment, instruments, 
and clinical processes such as various physics and therapist checks, chart 
checks, chart rounds, etc.), and billing (charge capture for delivery of 
professional and technical services). As illustrated in the preceding sec-
tion, by using MERP data collected from existing centers, our error 
propagation model recognizes which risk patterns exist for certain specific 
mixes of categories, subcategories, attributes, and subattributes at each 
stage. 

6.  Understanding Error Reporting Data: What’s 
in the Future?

Upstream failure pathways influence workflow in all stages of the treat-
ment delivery and task system (e.g., policies, procedures, schedules, 
checks). Corrective actions are often subjective to upstream latent failure 
pathways (contributory factors that may lie dormant for long periods of 
time) and active failure pathways (e.g., an error or oversight). Highly reli-
able organizations use this concept to identify latent and active failure 
pathways in their systems (Marks & Mazur, 2015). Identifying latent and 
active pathways of failure either in anticipation or before they occur can 
minimize and prevent errors and inefficiencies. Indications of a suspicious 
activity that falls outside the expected activity in one or more pathways 
can flag the action as a potential weakness or pending failure that will 
occur downstream at another point. Once a safety barrier (e.g., check 
point) is penetrated (error is detected), dependability in catching the error 
is compromised and risk of failure in the pathway increases. Measurable 
errors typically occur when one or more latent and active failure pathways 
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intersect at some point downstream and proliferate through the treatment 
delivery process to cause a medical event or regulatory violation.

A tool that can provide a systematic understanding of the probability 
of an error occurring could measurably improve patient safety, compli-
ance, and efficiency in the radiotherapy industry. Prospective identifica-
tion of incidents in the treatment process could more effectively mitigate 
hazards and risks. Minimizing the probability of failure in quality assur-
ance, radiation safety, and billing could expand the risk management 
model by tying verification of professional standards and regulatory com-
pliance within the radiotherapy process.

An error propagation model can be very effective in radiation oncol-
ogy if the model aims to integrate various subsystems from the perspec-
tive of error detection, error propagation, error reduction, and prevention. 
Ideally, the error propagation model would “sit” on top of various subsys-
tems located in the clinical workflow process. The subsystem could inter-
face with each machine or device by using an HL7 framework to exchange 
information. HL7 is a well-known standard for exchanging information 
between medical applications. The subsystem would let the error propaga-
tion model know the exact location where the patient or task resides in the 
overall clinical pathway.

The error propagation model can be designed to recognize which risk 
patterns exist for certain specific mixes of categories, subcategories, 
attributes, and subattributes at each stage. Because of this capability, the 
module could automatically flag potential high-risk failure points and true 
errors in specific stages of the treatment, radiation safety, QA, and billing 
processes before that specific process commences or proceeds down-
stream in the workflow. In the case of high-risk failure points, the alert can 
prompt the user if they want to evaluate the risk for potential corrective 
action or proceed to the next step. In the case of automatically flagging a 
predicted true error, risk could be automatically evaluated, assessed, and 
then scored for prioritization using FMEA. Scoring could be quantita-
tively expressed using a surrogate metric called the risk priority number. 
True errors of high severity could have a hard stop and warning deployed 
before allowing the user to proceed further in the process. The true error 
could next be routed for automatic processing of the corrective action 
plan. Escalation of any error to a status of high significance, such as 
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sentinel event or medical event, could automatically launch a root cause 
analysis with reporting features.

In instances where the error propagation model does not catch the 
error but rather the user catches the error, the user could manually enter 
the error and action plan using a step-by-step roadmap provided in the 
error propagation model. In cases where a radiation oncology EMR sys-
tem (i.e., record and verify) identifies an error as part of their verification 
checking process, the error propagation model could be alerted via an 
HL7 interface message and automatically capture the error. The same 
process could commence as described above. The error propagation 
model could ask if you want to correct the error before proceeding and 
allow for automatic processing of the corrective action plan.

The error propagation model could employ an automatic trigger tool 
developed that is powered by probability theory using sophisticated deci-
sion algorithms. Our approach to these algorithms is shown in what fol-
lows in the section “statistical modeling of error propagation”. 
Dependability of the radiation therapy process could be the first function 
of the trigger tool. When a high-risk pattern presents, the trigger tool 
could automatically relay a notification to the user that a weak point or 
potential failure point has been identified. Error propagation model could 
have an automatic analytic and visualization system (dashboard) to dis-
play such results: (1) the estimated versus predicted “failure-to-detect” 
ratio for each checkpoint as a function of clinical stage within each sub-
system for each patient in the treatment process, and (2) the estimated 
“failure-to-detect” ratios for each checkpoint displayed with a graduated 
color scale, ranging from a high to low, showing the chance of the error 
being detected. In our work, the estimated “failure-to-detect” ratio comes 
from existing MERP databases of errors. Predictability of dependability 
in process could be the second function of the trigger tool. In our work 
using MERP data and applying the predicted “failure-to-detect” ratio at 
each checkpoint based on patient volume at each clinical stage, one can 
predict near misses, probable hits, and direct hits. Thus, the estimated 
versus predicted “failure-to-detect” ratio can be determined for each 
stage. The automatic analytical and visualization system (dashboard) of 
the error propagation model could display the results: (1) pre and post-
treatment errors produced, errors identified (caught), and errors missed by 
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stages in the radiation therapy process; and (2) posttreatment errors that 
propagate through each stage and result in probable mistreatment of the 
patient.

With this knowledge, the error propagation model could perform two 
key roles in a real-time manner: (1) showing the effectiveness of check-
points with both estimated and predicted “failure-to-detect” ratios for each 
stage within each subsystem, and (2) showing dependability of the radia-
tion treatment process by targeting which errors propagate through stages 
of each subsystem and become near misses, probable hits, or direct hits. 
Confidence intervals for the “failure-to-detect” ratios can be adjusted on 
the fly for each clinical stage or combination of stages.

User validation for this process could be performed by comparing the 
estimated versus predicted “failure-to-detect” ratios at each checkpoint 
based on patient volume or tasks at each clinical stage. Prediction of pro-
cess dependability is determined by using actual MERP data consisting of 
total error data and applying the predicted “failure-to-detect” ratio at each 
checkpoint. Based on patient volume at each clinical stage, one can make 
comparisons between predicting and recording near misses, probable hits, 
and direct hits. In addition, use cases with embedded errors could be sent 
through the pathways and error propagation model to measure the accu-
racy of the model in detecting errors. 

Statistical regression modeling of past errors can help us identify the 
contributing factors and points of weakness in the treatment workflow. 
This is useful for understanding patterns and systematic issues at an 
operational level. In addition to this, it is also desirable to develop an 
automated tool to analyze individual incident reports, which are in the 
form of free-text narratives. In the next section, we cover this topic and 
outline current research as well as future directions.

7.  Envisioning an AI-powered Error Mitigation 
System

Medical errors have traditionally been reported as free-text descriptions, 
which naturally results in a variety of responses as reporters use different 
levels of detail and types of vocabulary, and might have conflicting 
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perspectives regarding the error itself. When the process was examined, 
one of the primary barriers to error reporting was the perspective on errors 
themselves (Soydemir et al., 2017). Given these problems associated with 
the analysis of error reports and the process of error reporting itself, 
machine learning, specifically the branch of machine learning that deals 
with human language and speech — Natural Language Processing 
(NLP) — has become a key tool in the development of ways to improve 
error detection, reporting, and classification/analysis. Previous studies 
have demonstrated the ability of convolutional neural networks and multi-
class classification models to accurately categorize errors and illuminate 
patterns in medical text (Young et al., 2019; Yahia et al., 2021). 

One of the key benefits that NLP models have to offer for medical 
personnel and staff is the reduction in time required to report medical 
errors by streamlining the process and removing the need for reporters to 
essentially predict what caused the error despite their limited perspective. 
In these situations, reporters may end up using heuristics to save time and 
introduce experiential or contextual bias into the report. NLP offers a way 
to make the error reporting and analysis process more efficient by offering 
suggestions for reporters based upon what the natural language model has 
learned from previous reports, giving the reporters more time to focus on 
treatment and patient well-being. An added benefit of the model making 
suggestions is the removal of heuristic bias from error reports as these 
suggestions are being made. This is based on patterns observed across all 
reports and not just the experiences of one staff member.

The field of radiation oncology specifically is prone to errors due to 
the nature of the practice. Due to extensive planning and workflows that 
contain multiple steps involving multiple personnel at each step, highly 
accurate planning and treatment delivery inherently creates an error-prone 
environment. Errors due to miscommunication, inaccurate measures, and 
elongated timelines are frequent, and can have drastic effects on patient 
treatment outcomes. To date, the field of radiation oncology has received 
limited attention when it comes to the exploration of NLP as a tool to 
mitigate medical errors. Research shows promise in the ability of NLP to 
develop models that are effective in error labeling/classification (Mathew 
et al., 2021; Syed et al., 2020).
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The general modeling framework is as follows. For each incident 
report, we are interested in predicting a certain variable, say y. The input 
data, x, consists of the free-text narrative of the incident report, which is 
converted into a numerical vector by leveraging NLP. The target variable 
y is “known” for the training data in the form of manual annotation by 
human experts. The goal is to construct a predictive model for y as a func-
tion of x by integrating NLP and statistical modeling. Two recent papers 
that have utilized this modeling framework are Mathew et al. (2021) and 
Syed et al. (2020). We now briefly describe their work and lay down 
future directions for this topic. 

In Mathew et al. (2021), the authors collected a database of around 
6000 incident reports from their own Safety and Incident Learning 
System (SaILS) as well as the National System for Incident Reporting  — 
Radiation Treatment (NSIR-RT) managed by the Canadian Institute for 
Health Information (CIHI). There are three target (y) variables: (1) pro-
cess step where the incident occurred, (2) problem type of the incident, 
and (3) the contributing factors of the incident. These three variables 
were chosen because human experts can typically derive these labels 
from the incident descriptions itself, without requiring additional infor-
mation. To convert the free-text narrative to numerical vectors, they used 
the Term Frequency–Inverse Document Frequency (TF-IDF) vectorizer 
with unigrams (i.e., individual words) as well as selected bigrams (word 
pairs) and trigrams (groups of three words). A number of multilabel 
classification models were employed for the prediction task, of which 
the best three were selected. It was observed that this NLP-based strat-
egy is much more accurate than the benchmark method based on label 
frequencies. Figure 3 provides a schematic representation of the mode-
ling strategy.

In Syed et al. (2020), the authors collected a data set of around 1000 
incident reports from Radiation Oncology facilities across the US Veterans 
Health Affairs (VHA) enterprise and Virginia Commonwealth University 
(VCU). In this work, the target variable of interest is incident severity, 
which has four possible values: A, B, C, and D, with A being the most 
severe to D being the least. Similar to [14C], the authors also used the 
Term Frequency–Inverse Document Frequency (TF–IDF) vectorizer to 
convert free text into numeric vectors. Next, they tested four classification 
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models: k-Nearest Neighbors (kNN), Logistic Regression (LR), Support 
Vector Machines (SVM), and Random Forests (RF). It was found that 
SVM with linear kernels performed the best.

Future research directions: The use of NLP to extract information from 
radiation oncology error incident reports is still in its infancy. The research 
so far is promising and there are several important paths to pursue. In what 
follows we outline some of the future research directions.

• In existing literature so far, the representation of free text as numerical 
vectors has been done through text-document matrices, which are 
known to be noisy, sparse, and high-dimensional. A better approach 
would be to use well-established vector embeddings such as word-
2vec, GLOVE, or BERT (Mikolov et al., 2013; Pennington et al., 
2014; Devlin et al., 2018).

• So far, neural networks have not been used as classification models. 
Given the remarkable success of deep neural networks in other similar 
classification tasks (Ker et al., 2017; Bakator and Radosav, 2018; 
Mohsen et al., 2018), it is likely that deep neural networks will out-
perform the traditional models that have been used in the literature.

Fig. 3.  Schematic representation of the method proposed in Mathew et al. (2021).
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• The target variables for prediction so far considered in the literature 
are fairly simple, such as process step or severity. It would be more 
useful to set downstream corrective actions as the target variable, as 
this can lead to a truly automated system for handling errors. If this 
can be achieved, then the NLP-based system can directly predict the 
correct downstream action to address an error. Corrective actions can 
be categorized into two groups: (i) immediate or short-term and   
(ii) long-term or lasting corrective action. The first group of corrective 
actions arises in the scenario where a set process has a disruption, 
which needs to be undone. For example, this could happen because of 
an individual not performing their assigned task as an unintended 
oversight. The second group of corrective actions arises when the 
workflow itself needs to be improved for future patients. Currently, 
each incident report is manually analyzed to determine whether a 
short-term or a long-term corrective action is required. To be able to 
determine this automatically will be useful. A closely related task 
would be to automatically identify appropriate individuals to take a 
corrective action.

• There is a severe lack of high-quality, large, publicly available data 
sets that can be used as test beds for comparing different methods. So 
far, these methods have been applied on small and ad-hoc proprietary 
datasets. It is unclear whether the performance of a method on a par-
ticular data set can be generalized to other data sets. Most evident can 
be variations in model generalization caused by different data sets. 
The distribution of errors may be diverse for different institutions. For 
example, error data may vary due to different types of machines, scan-
ners, EMR systems, and user types (e.g., physicians, physicists, dosi-
metrists, therapists, etc.). The model trained using the developer’s 
data set may perform very differently on the workflow and process of 
a local user compared to an enterprise user. Developing a universal 
model could be a challenge. The curation of a national-level data set 
of radiation oncology error reports will be crucial for the training and 
development of AI systems.
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8. The Challenges and Pitfalls of AI

The envisioned AI-powered system has several highly desirable benefits 
as it can be much more efficient and computationally scalable than current 
error mitigation systems based on human action. Furthermore, it has the 
potential to become a truly objective and quantifiable risk management 
system free from human subjectivity. This important benefit can help 
pivot the perspective on medical errors from a blame culture to a safety 
culture. 

At the same time, we must be clear-eyed about the challenges and 
possible pitfalls of AI so that we can be proactive in avoiding them. 

1. Data quality: Medical data in radiation oncology can be extraordi-
narily rich with information but also extremely complex. It is im-
portant to keep the garbage-in-garbage-out principle in mind when 
building an AI model. The quality of data inputted determines the 
reliability of outputted information. Building models to make predic-
tions is significantly influenced by the structure of the data and data 
formatting. Sparse or incomplete data reduce the predictive power of 
AI algorithms. Missing data can introduce bias and false conclusions. 
Therefore, we must proactively build robust checks for data quality. 

2. Implicit bias: It has been well documented that AI can suffer from 
bias (Panch et al., 2019). In fact, it has been demonstrated that AI 
tools in healthcare not only reflect back social inequities but may 
ultimately make them worse (Panch et al., 2019). AI tools must 
understand and account for potential sources of bias in the tools 
themselves, proactively looking for and evaluating for bias in models 
and monitoring results over time. 

3. Interpretability: Convention and nomenclature usage can introduce 
problems in defining the terminology being used in the data pool. 
The use of terminology and their understanding changes between 
different institutions. This leads to variability in accuracy of terms 
used in training data sets. The end result is noise and lack of depend-
ability of the AI-based algorithm.
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Different technologies in radiation oncology can introduce differ-
ent practices that change the patterns of the clinical process. This can 
exacerbate already existing interpretability challenges of AI outputs. 
Evaluating the quality of machine-learned models can be challeng-
ing. Thus, the frequency distributions of certain protocols evolve that 
effect the underlying assumptions of the AI algorithm. The AI model 
must evolve and relearn to reflect changes due to various technolo-
gies and clinical pathways.

4. Statistical principles: AI-powered systems are notorious for a “data 
first, theory later” approach, which flouts foundational statistical 
principles. For example, AI tools often ignore the statistical principles 
of multiple comparisons, colloquially known as the “Texas sharp-
shooter fallacy” (Smith, 2018). It is crucial to ensure that statistical 
principles are followed when building AI tools for healthcare. This 
includes all steps of algorithm development: from design to sampling 
to modeling and inference. Furthermore, we should carry out rigor-
ous uncertainty quantification at all steps of statistical analysis.

AI should be able to help the medical professional make the best deci-
sion that ultimately benefits the treatment outcome and process. If the user 
does not know how the data predicts the outcome and how the information 
is combined, then the suggestion for an action to be taken can be unclear 
to the user, thus making the suggested decision difficult (accept or reject).

9. Conclusion

Preventable medical errors are one of the most critical problems of the 
U.S. healthcare system. While medical errors arise in all aspects of health-
care, they are particularly concerning in the case of radiation therapy due 
to complex treatment workflow involving several systems with fragile 
interconnectedness. As treatment complexity increases, the quality of data 
transfers becomes more problematic to produce errors. To address these 
problems, we first need to capture high quality incident report data in 
order to learn from past errors. Statistical modeling of such data can give 
us valuable operational insights into the entire treatment workflow and 
help identify points of weakness in a proactive manner.
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The development of an error propagation model can be very effective 
in radiation oncology. Research on this issue is at a nascent stage, and 
there are several future directions to pursue. The error propagation model 
of the future should integrate various subsystems from the perspective of 
error detection, error propagation, error reduction, and prevention. The 
error propagation model can be designed to recognize which risk patterns 
exist for certain specific mixes of categories, subcategories, attributes, and 
subattributes at each stage. The error propagation model could employ an 
automatic trigger tool developed that is powered by probability theory 
using sophisticated decision algorithms.

Since medical errors are mostly reported in the form of free-text nar-
ratives, the use of NLP techniques can be transformational in our pursuit 
of an efficient, automated error mitigation toolbox. One of the key bene-
fits that NLP models have to offer for medical personnel is the reduction 
in time required to report medical errors by streamlining the process and 
removing the need for reporters to essentially predict what caused the 
error despite their limited perspective. Research in this area has so far 
predicted simple target variables such as process step or severity. In the 
future, it would be more useful to set downstream corrective actions and 
designated roles as the target variables, as this can lead to a truly auto-
mated system for handling errors. Recent word embedding models (e.g., 
BERT) and deep learning-based classification methods can be valuable 
tools in this venture.
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Abstract
In this chapter, we aim to overview the main ethical concerns that arise from the 
use of Artificial Intelligence (AI) in medicine, particularly those that apply to 
radiation oncology. We then examine some ethical concerns in greater detail, 
considering how the ethical principles of respect for autonomy, beneficence, 
nonmaleficence, and justice may apply when addressing these concerns at 
multiple stages of AI development and implementation. These considerations 
may provide some of the groundwork needed toward developing a more 
comprehensive, robust ethical framework for AI applications in radiation 
oncology as this technology becomes more prevalent in medicine.
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1. Ethical Principles in Medicine

When considering ethical decision-making in artificial intelligence (AI) 
research, applications in medicine, or use in radiation oncology in par-
ticular, it is important to first understand the ethical principles that drive 
contemporary biomedical ethics. It would be difficult to present here a 
robust ethical framework to guide all of AI research and medical use in 
radiation oncology, partly because of the rapid advancements being 
made in the field and new dilemmas continually arising as a result. 
However, these basic ethical principles can and should guide ethical 
decision-making for scientists, medical practitioners, and other stake-
holders in medical AI. In this section, we provide an overview of the 
four ethical principles that are widely accepted in contemporary bio-
medical ethics. In the remaining sections of this chapter, we will apply 
these principles to some pertinent dilemmas that impact the current or 
emerging use of AI in radiation oncology. We will then touch on some 
dilemmas that may arise from future use of AI as the technology 
advances and becomes more prevalent in this field. Our hope is that our 
treatment of these dilemmas may serve as an example for readers to 
further explore and understand how to apply these principles more 
broadly on this topic.

The four ethical principles that are widely accepted in contemporary 
biomedical ethics, as described by Beauchamp and Childress (2009), are 
as follows:

1. Respect for autonomy
2. Beneficence
3. Nonmaleficence
4. Justice.

While they may be presented in different terms elsewhere (e.g., in The 
Belmont Report, which combines beneficence and nonmaleficence 
together and places autonomy under “respect for persons”), the moral 
framework tends to be the same (The Belmont report, 1978). These 
basic principles lay the foundation on which Western medical ethics are 
built and are at the heart of the ethical codes held by many medical 
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associations, organizations, and boards (Skourou et al., 2019; Donaldson, 
2017; Riddick, 2003). As we explore the ethics of AI in radiation oncol-
ogy in this chapter, we will draw on these four principles, so we will first 
give a brief description of each.

1.1. Respect for autonomy

The principle of respect for autonomy holds that there is a moral obliga-
tion to “foster autonomous decision-making” (Beauchamp & Childress, 
2009). For a patient’s decision to be autonomous, it must be adequately 
free of coercive influence (e.g., from the attending physician) and be 
based on an adequate understanding of the facts pertinent to that decision. 
Since patients’ level of understanding and freedom from coercive influ-
ence both come in degrees, the autonomy of patients’ decisions also 
comes in degrees. As we understand it, the principle of respect for auton-
omy implies that healthcare providers have a moral duty to perform those 
actions that would increase the level of autonomy of patients’ medical 
decisions. This would include actions that enhance the patient’s under-
standing of relevant medical facts. The principle also implies that health-
care providers have a moral duty to refrain from those actions that would 
decrease the level of autonomy of a patient’s medical decisions, such as 
actions that are aimed at coercing the patient to make a specific medical 
decision.

1.2. Beneficence and nonmaleficence

The principle of beneficence states that healthcare providers have a moral 
duty to act for the benefit of their patients. The principle of nonmalefi-
cence, which stems from the Hippocratic Oath to “do no harm,” states that 
healthcare providers have a moral duty to refrain from performing acts 
that harm their patients. These two principles are sometimes combined 
into a single ethical principle because the risk of harm must be considered 
alongside potential benefits of a treatment or research study. In general, 
providers and researchers should aim to maximize benefits and minimize 
harm to patients or research subjects. 
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1.3. Justice

The final principle, that of justice, is the most complex to apply in medi-
cine. According to Beauchamp and Childress’s influential account, justice 
is multifaceted: multiple principles of justice “arguably merit accept-
ance,” and each of these principles identifies an approach to distributing 
benefits that there is at least some moral reason to follow (Beauchamp & 
Childress, 2009). An egalitarian principle of justice that Beauchamp and 
Childress (2009) call the “fair-opportunity rule” will be especially rele-
vant in what follows. This principle states “that no persons should receive 
social benefits on the basis of undeserved advantageous properties 
(because no persons are responsible for having these properties) and that 
no persons should be denied social benefits on the basis of undeserved 
disadvantageous properties (because they also are not responsible for 
these properties).” 

To illustrate, suppose that a society provides healthcare only to citi-
zens with a high IQ. Having natural intelligence is an advantageous prop-
erty that is undeserved, for those who have this property aren’t responsible 
for having it. And healthcare is an example of a social benefit. So, the 
society that we are imagining has a policy that brings it about that some 
people receive a certain type of social benefit on the basis of their having 
a certain type of undeserved advantageous property. As we understand it, 
then, the fair-opportunity rule implies that there is a moral duty to change 
this policy. 

It is important to note that the moral duties identified by these four 
principles are prima facie moral duties. A prima facie moral duty to per-
form an action is a moral consideration in favor of doing that action that 
has some weight, but that may be outweighed by competing moral consid-
erations. To illustrate, suppose that a doctor knows that a patient is likely 
to make an imprudent medical decision if they are provided with some 
pertinent information about the possible treatments available to them. Out 
of concern for the patient’s well-being, the doctor refrains from sharing 
this information with the patient. It may be that the principle of benefi-
cence implies that the doctor had a prima facie duty to behave as they did, 
for their choice to conceal the information resulted in the patient having 
the benefit of making the prudent medical decision. This means that there 
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is something to be said in favor of the doctor’s act of concealment, from 
the moral point of view. But this prima facie moral duty conflicts with 
another prima facie moral duty to refrain from this act of concealment. 
This competing prima facie moral duty derives from the principle of 
respect for autonomy, for the patient’s medical decision is less autono-
mous as a result of the doctor’s act of concealment. 

A prima facie moral duty should be distinguished from what we may 
call an all-things-considered moral duty. It is one’s all-things-considered 
moral duty to perform a certain action when that action is favored by one’s 
weightiest prima facie moral duties. In the example in the previous para-
graph, it seems plausible upon reflection that the prima facie moral duty 
against concealing the pertinent information from the patient is stronger 
than the prima facie moral duty in favor of concealing it. So, it seems 
plausible that the doctor failed to do that which they had an all-things-
considered moral duty to do despite the fact that they acted in accordance 
with one of their prima facie moral duties. 

When we are trying to solve a difficult moral dilemma using 
Beauchamp and Childress’s moral framework (2009), the first step is to 
identify all of the significant prima facie moral duties that are in play. The 
second step is to consider which of these prima facie moral duties is 
weightiest or ought to take priority in the context at hand. 

2.  Ethical Concerns for AI in Medicine and Radiation 
Oncology

In the bioethics literature, many authors have considered the implications 
of current and potential future use of AI in medicine, and we will overview 
these considerations before delving into some issues relevant to radiation 
oncology in particular. However, we must first draw an important distinc-
tion between ethical and legal considerations, which are often conflated. 
Ethical considerations relate to what is right and wrong in AI research or 
its applications in medicine, and the prima facie duties and responsibili-
ties of researchers and providers according to the ethical framework we 
laid out in Section 1. These considerations may have legal ramifications 
when it comes to existing laws or future laws that ought to be put in place, 
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but we will focus only on the application of the ethical framework. We 
will bracket legal considerations in this chapter, but we encourage readers 
to consider and read further on the legal ramifications of the ethics dis-
cussed here.

Two important studies provide a review of the ethics literature related 
to AI in medicine. Both studies analyzed more than 100 papers, summa-
rizing and categorizing ethical considerations raised. While extraordinar-
ily helpful, these reviews reveal the difficulty of developing ethical 
frameworks for new technologies. For example, Murphy et al. published 
their meta-analysis of 103 papers in 2021, but only looked at papers pub-
lished before 2018 (Murphy et al., 2021). In three years, additional impor-
tant ethical dilemmas may have arisen that would be missed due to the 
rapidly advancing nature of the field.

Despite the difficulty of meta-analyses keeping up with advancements 
in AI, it is still worth examining their conclusions on the pertinent ethical 
considerations for the use of AI in medicine. The uses of AI considered by 
the majority of papers analyzed by Murphy et al. (2021) include “carer” 
robots, diagnostics, and precision medicine. For these uses, the main foci 
of AI bioethics literature have been concerns related to privacy, trust, 
accountability/responsibility, and bias. Importantly, an area they note is 
largely missing in the literature at the time of publication is considerations 
related to global health, particularly low- and middle-income countries 
(LMICs). We will consider some global health concerns related specifi-
cally to radiation oncology in Section 3. 

Morley et al., in a meta-analysis of 156 papers, divided AI-health-
related ethical risks into six subcategories, including inconclusive 
evidence, inscrutable evidence, misguided evidence, unfair outcomes, 
transformative effects, and traceability concerns (Morley et al., 2020). We 
will briefly overview each of these subcategories, connecting them to 
principles from the framework in Section 1.

2.1. Inconclusive evidence

In the era of big data, techniques such as machine learning are able to 
parse large amounts of patient information much more effectively than 
human practitioners, so it stands to reason that we should be able to rely 
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on properly developed AI tools to make or support clinical decisions. 
However, the patterns detected by these algorithms do not necessarily 
indicate causality or draw meaningful conclusions. Morley et al. point to 
the prevalence of inconclusive results, lack of reproducibility, and lack of 
external validity in results in current AI health solutions (Morley et al., 
2020).

The principles of beneficence and nonmaleficence would apply to this 
category of ethical considerations. If an algorithm is poorly validated, 
does not translate to the setting of interest, or relies on a small sample size 
of training data, patients whose diagnosis or treatment is based on it could 
be harmed. Any potential benefit of the tool’s use would need to be 
weighed against this risk of harm, which may be difficult to quantify.

2.2. Inscrutable evidence

Current AI technologies used in medicine tend to be “black box” solu-
tions, especially to the patients whose care may be affected by the infor-
mation or decisions generated from them, but perhaps also to many 
clinicians who may use or rely on them. 

This concern relates to the principles of nonmaleficence and respect 
for autonomy. If the healthcare staff do not understand the algorithms or 
limitations of the AI tools they rely on, it will be difficult if not impossible 
to determine whether the tool produces an erroneous result, which could 
result in patient harm. Additionally, patient autonomy may be limited due 
to their lack of understanding. We will explore this potential lack of 
autonomy further in Section 4.

2.3. Misguided evidence

The quality of AI algorithms is heavily dependent on their underlying 
data. Morley et al. (2020) point out that current methods “suffer from 
overfitting due to small numbers of samples, meaning that the majority of 
results (e.g. patterns of disease risk factors, or presence of disease) are 
inconclusive.” Additionally, many studies suffer from lack of reproduci-
bility and translatability to other settings or populations (Morley et al., 
2020). For example, if patient data from the US is used to create a model 
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that is then applied to patients in China, there may be unintended harm 
due to differences between these patient populations.

Because this ethical concern relates to potential harm, the principles 
of beneficence and nonmaleficence will certainly apply. Practitioners 
would need to evaluate whether the potential benefits of using these tools 
when caring for their patients would outweigh the potential harm. 

2.4. Unfair outcomes

Even if efforts are made to broaden the data used to create new AI tools, 
there is a much larger volume of medical trial data for white males than 
other groups. This means that the translatability concerns we already dis-
cussed would generate prima facie duties related to justice considerations 
as well. If, out of consideration of potential harm, AI tools are limited to 
only the populations whose data informs the model (e.g., white males), 
other populations will be denied the potential benefits of these tools. We 
will explore this further in Section 3.

2.5. Transformative effects

AI has the potential to transform healthcare on multiple levels. It increases 
the importance of and reliance on large amounts of patient data, brings 
research and clinical practice into closer proximity, and may change the 
relationship between human healthcare providers and patients (Morley 
et al., 2020). These transformative effects of AI in medicine may drive 
positive changes in the field, but they also generate ethical considerations 
that span all the ethical principles we have discussed. We will consider the 
role of the human practitioner further in Section 4.

2.6. Traceability

Finally, Morley et al. (2020) identify ethical concerns relating to tracea-
bility. As healthcare is transformed by the use of AI tools, it may become 
challenging to assign responsibility or liability when a patient or group 
is harmed. For instance, consider an AI tool intended to augment a radi-
ologist’s decision-making by detecting pancreatic cancer on magnetic 
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resonance images. If this tool identifies pancreatic cancer in non-
cancerous tissue, leading the radiologist to assign an erroneous cancer 
diagnosis to a patient, who is ultimately responsible for the misdiagno-
sis? Without a clear channel of responsibility for poor outcomes, such 
errors may continue to occur, causing harm and violating the principle of 
nonmaleficence.

Much less has been published regarding AI in radiation oncology 
compared to AI in the wider field of medicine. However, some specific 
considerations have been raised, including the “black box problem,” the 
role of human practitioners, and bias and equity concerns (Smith & Bean, 
2019; Bridge & Bridge, 2019).

Smith and Bean (2019) argue that because of the “black box” nature 
of deep learning tools like convolutional neural networks (CNNs), clini-
cians may be reluctant to adopt these technologies due to lack of trust in 
the accuracy of the CNN or concern for liability if the AI-recommended 
clinical decision resulted in harm. They also claim that, while a number of 
tasks in the radiation sciences can be automated through AI (such as nod-
ule detection), human clinicians will continue to be needed for “clinical 
judgment,” which they say cannot be performed by AI (Smith & Bean, 
2019). Bridge and Bridge (2019) also emphasize the importance of human 
input in radiation oncology to provide creativity, innovation, and safe 
oversight. We will consider the impact of the black box problem and 
whether AI should replace human practitioners in Section 4 using the 
principles of respect for autonomy and beneficence.

Smith and Bean (2019) discuss the problem of bias and equity in the 
use of AI, noting the importance of mitigating bias in the design of 
machine learning tools in addition to carefully interpreting information 
relating to marginalized populations. We will discuss bias and distribution 
of outcomes in Section 3 using the principles of beneficence and justice.

Some suggestions have been proposed regarding how to approach 
ethical dilemmas in the use of AI in radiation oncology. Smith and Bean 
(2019) suggest both researchers and practitioners use a “life-cycle 
approach,” which iteratively integrate ethical considerations into the 
development and implementation of new technologies. One life-cycle 
tool they suggest is the Transparency, Replicability, Ethics, and 
Effectiveness (TREE) approach, which asks 20 questions spanning every 
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stage of AI development (Vollmer et al., 2020). Similar to our approach 
using the principles laid out by Beauchamp and Childress (2009), Erkal et 
al. (2021) suggest evaluating AI applications in radiotherapy using a “four 
topics” approach. This approach, proposed by Jonsen et al. (2010), reor-
ganizes the ethical principles in a way that, according to Erkal et al. 
(2021), is more understandable to radiation oncologists. The Royal 
Australian and New Zealand College of Radiologists (RANZCR) have 
proposed nine principles (Ethical principles for AI, 2019) to guide the 
development and use of AI in radiology and radiation oncology, including:

1. Safety
2. Privacy and protection of data
3. Avoidance of bias
4. Transparency and explainability
5. Application of human values
6. Decision-making on diagnosis and treatment
7. Teamwork
8. Responsibility for decisions
9. Governance.

Similarly, a joint multi-society statement published in Radiology (Geis et al., 
2019) emphasized the values of well-being, minimizing harm, just distri-
bution of benefits, and transparency. While this statement focuses on the 
use of AI in radiology, the recommendations are also highly relevant to 
radiation oncology.

Many of these suggested approaches are rooted in the same funda-
mental ethical principles laid out by Beauchamp and Childress (2009). In 
this chapter, we will model the use of these four simple principles and the 
prima facie moral duties they generate to make ethical decisions in the 
development and use of AI in radiation oncology.

3. Emerging AI Tools in Radiation Oncology

3.1. Adoption of AI tools with potential biases

AI tools depend on the data used to generate the model that is then applied 
for the potential benefit of patients (e.g., image segmentation). In many 
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cases, these data sets may include limited demographics, especially if 
the patient information comes from a single institution or region of the 
world. For example, Obermeyer et al. (2019) showed that a widely used 
algorithm — used by insurers to identify how “healthy” a patient is — 
would often erroneously identify Black patients as healthier than White 
patients who were just as sick. This type of limitation raises an ethical 
trilemma for healthcare institutions or practitioners considering using 
these tools. There are three main options: 

A. Use these tools by offering them to patients of all demographic make-
ups,

B. Use these tools by offering them only to patients matching the demo-
graphics of the data sets, or

C. Refrain from using these tools altogether. 

Each option seems morally problematic in some respect. If option A 
is chosen, then patients with demographic make-ups not represented in the 
data sets may be harmed. If option B is chosen, then the use of the tool 
seems unfair since part of the population receives a privilege despite being 
no more deserving of it than the rest of the population. And if option C is 
chosen, then there are some patients (specifically, patients matching the 
demographics of the datasets) who are deprived of a significant medical 
benefit. Since there is a downside to all three options, it can be challenging 
to know what ought to be done with AI tools that are based on data sets 
that include limited demographics.

In the absence of a relevant example from the use of AI in radiation 
oncology, let us examine an example from the field of genetics that exem-
plifies the trilemma raised above. Ambry Genetics Corporation offered 
AmbryScore, a genetic screening test that offered some patients a metric 
to assess their genetic risks related to breast or prostate cancer. The patient 
populations used to develop AmbryScore were not ethnically diverse, and 
as a result, this test is known to be reliable only for a subset of Caucasian 
patients. This example is analogous to the use of AI in radiation oncology; 
just as the development of this genetic test depends on patient data that 
may be limited (e.g., in demographic diversity), many AI tools may like-
wise draw from limited patient data sets. The decision faced by Ambry 
Genetics is similar to that which will likely be faced by radiation oncology 
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AI developers and practitioners in the near future. Considering the ethical 
implications of this genetics case will allow us to better understand issues 
of bias affecting the use of AI tools in radiation oncology.

Ambry Genetics faced a decision between the three options listed 
above. (A) First, it could offer the use of AmbryScore to patients of all 
demographic make-ups. (B) Second, it could offer the use of AmbryScore 
only to patients with the kind of Caucasian background for which it is 
known to be reliable. (C) Third, it could refrain from offering AmbryScore 
altogether. Initially, Ambry Genetics favored the second option (“Ambry 
Genetics”, 2018; “NorthShore University”, 2018). Recently, it started 
favoring the third option, deciding to cease offering this screening to any 
patients outside clinical trials since it has “not been validated for use in 
patients of diverse backgrounds” (“AmbryScore discontinuation notice”, 
2021). The ethical issue of what ought to be done with AmbryScore is 
challenging because there are significant moral concerns about all options 
available to Ambry Genetics. Its initial policy faced the worry that it was 
unfair to non-Caucasian patients, while its current policy faces the worry 
that it deprives Caucasian patients of a significant medical benefit. 

The moral framework presented in Section 1 helps to clarify the moral 
dimensions of the use of AmbryScore or relevantly similar AI tools.  Each 
option available to Ambry Genetics is opposed by one of the four ethical 
principles. Option A is opposed by the principle of nonmaleficence, for 
choosing this option would risk causing harm to some non-Caucasian 
patients. Since the reliability of AmbryScore is uncertain for non-
Caucasian patients, offering it to them poses two potential problems: it 
may lead some non-Caucasian patients to believe that they are not at 
increased risk of cancer when they actually are, and it may lead some non-
Causcian patients to believe that they are at increased risk of cancer when 
they are not. The former possibility may harm patients by causing them to 
be less diligent than they ought to be at taking special steps to reduce their 
risk of breast or prostate cancer and to monitor themselves for symptoms 
of these types of cancer. And the latter possibility may harm patients by 
prompting them to pursue unnecessary prophylactic treatment that leaves 
them worse off. For example, a patient who is misled to believe that they 
are at a very high risk of developing breast cancer may end up having 
an unnecessary preventative double mastectomy. Another way that   
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non-Caucasian patients may be harmed by being led to believe falsely that 
they are at increased risk of cancer is by experiencing unnecessary anxiety 
about their health.

Option B appears to be opposed by the principle of justice. Specifically, 
it seems to conflict with the fair-opportunity rule. As Beauchamp and 
Childress (2009) observe, “many studies in the United States indicate that 
blacks and women have poorer access to various forms of health care in 
comparison to white males.” It is therefore plausible that being Caucasian 
is an advantageous property in the context of our society. And since one 
does not choose one’s race, being Caucasian is an undeserved advanta-
geous property. The fair-opportunity rule therefore implies that no one in 
our society should receive social benefits on the basis of being Caucasian. 
Access to information about one’s risk of breast or prostate cancer is a 
type of social benefit. So, the fair-opportunity rule implies that no one in 
our society should receive access to information about their risk of breast 
or prostate cancer on the basis of being Caucasian. Implementing option 
B brings about that some patients receive access to this sort of information 
as a result of their being Caucasian. And so, the fair-opportunity rule 
seems to imply that there is a moral duty not to choose option B.

Finally, option C is opposed by the principle of beneficence, for 
choosing this option would involve a failure to provide some Caucasian 
patients with a significant medical benefit. Specifically, it would involve 
a failure to equip some Caucasian patients with the knowledge that they 
are at a higher risk of developing breast or prostate cancer. Having such 
knowledge would be beneficial because it would allow them to take spe-
cial steps to reduce their risk of cancer and because it alerts them of the 
importance of being particularly alert for symptoms of these types of 
cancers. 

Resolving this moral trilemma involves figuring out which of the 
prima facie moral duties identified above is the weightiest in this context. 
Let us consider an argument for the case that the weightiest prima facie 
moral duties favor option B, in which case Ambry Genetics has an all-
things-considered moral duty to reverse course. This argument would go 
as follows. 

Imagine a case in which a doctor has an interest in AmbryScore (or an 
analogous AI tool) and decides to test it out with the medical profile of a 
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Caucasian patient that the doctor is meeting with later that day. Because 
of the doctor’s use of AmbryScore, they know that the patient is at 
increased risk of prostate cancer. It seems clear that it would be wrong for 
the doctor to refrain from sharing this information with the patient. And 
notice that the doctor’s refraining from sharing this information would be 
very similar in morally relevant ways to Ambry Genetics’s decision to 
discontinue AmbryScore. The main moral reason against the doctor’s 
refraining from sharing the information (a moral reason deriving from the 
principle of beneficence) mirrors the main moral reason against Ambry 
Genetics’s decision to discontinue Ambryscore. And the main moral rea-
son in favor of the doctor’s refraining from sharing the information (a 
moral reason deriving from the principle of justice) mirrors the main 
moral reason in favor of Ambry Genetics’s decision to discontinue 
Ambryscore. In light of this moral parity, we have good reason to think 
that since the doctor’s refraining from sharing the information would be 
wrong, Ambry Genetics’s discontinuing AmbryScore is also wrong. In 
this sort of case, the weightest prima facie moral duties favor acting to 
benefit one’s Caucasian patients. 

There are ways to push back against this argument. Perhaps a defender 
of Ambry Genetics’s actions could argue that an individual doctor is rel-
evantly different from a company, such that their all-things-considered 
moral duties can diverge even when there is a lot of similarity between 
their prima facie moral duties. Or perhaps there are moral considerations 
against option B that we have not identified and factored into this delib-
eration. These suggestions are worthy of further investigation. Our main 
goal here is not to definitively resolve this moral trilemma and others like 
it, but rather to illustrate how to approach them using the moral framework 
laid out in Section 1.

A plausible balance between these conflicting prima facie moral 
duties may involve looking separately at the responsibilities of each party 
in the development chain. For instance, on the research end, decisions are 
made regarding how the data are collected and how the model is built. 
Perhaps at this stage, the principle of justice should win out: those who 
are developing AI tools ought to build them from data that include a broad 
range of demographics. For practitioners, however, the decisions center 
around whether to use a tool that may benefit some patients. Perhaps at 
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this implementation stage, the principle of beneficence should win out: 
the practitioner should make use of the AI tool to benefit those patients 
who are members of the demographic group for which the AI tool is 
suited. This way of thinking underscores the need identified by Bridge and 
Bridge (2019) for an ethical framework that uses a “life-cycle approach.”

3.2. AI in radiation oncology and global health

Global health considerations are largely missing from the bioethics litera-
ture on medical AI, so the radiation oncology community sorely needs to 
address the impact this technology has or may have on the world (Murphy 
et al., 2021). While filling this gap is outside the scope of this chapter, we 
can raise one potential consideration related to the principle of justice. 

Zubizarreta et al. (2015) showed that access to radiotherapy is incred-
ibly limited in low-income countries, with more than 90% of their popula-
tion lacking access to this critical component of cancer care as of 2015. 
Jaffray et al. (2015) note that, without intervention, this lack of access will 
only continue to worsen as the global cancer burden grows. It is clear that 
the global resource of radiation therapy is inequitably distributed. 

Because new technological tools are often adopted by wealthy nations 
first, the potential benefits of AI will also likely be inequitably distributed 
as it achieves more widespread use in medicine. One of the interventions 
suggested by Jaffay et al. (2015) is simplified, “fault-proof” treatment 
delivery systems that can help ensure high-quality treatment access 
around the world. If this idea of simplicity limits newly developed, com-
plex technologies such as AI tools from being implemented in low- and 
middle-income countries (LMICs), where radiation therapy is already a 
scarce resource, the use of AI in wealthy countries may widen the gap 
even further. This might suggest that there is a prima facie duty generated 
from the principle of justice for wealthier nations to refrain from adopting 
these tools until they can be more equitably distributed.

We argued in the section on bias that, even when AI tools and their 
benefits are only available for part of the population, practitioners have a 
prima facie duty to offer them to patients per the principle of beneficence. 
Similar argumentation could also be applied in this case, suggesting that 
wealthier nations (or at least practitioners within those nations) have 
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stronger moral reasons to offer new and beneficial technology than they 
do to refrain on the basis of justice. 

Additionally, it is possible that AI may actually help to close the gap 
in treatment access, which would shift the moral responsibilities gener-
ated by the principle of justice. Consider a tool like auto-segmentation, 
which can potentially improve contouring consistency between institu-
tions. This type of tool would be particularly beneficial in LMICs, where 
resources are limited and staff may be under-trained. AI tools could poten-
tially make years of accumulated experience from wealthier nations 
available in LMICs, facilitating the simplified, “fault-proof” systems 
envisioned by Jaffray et al. (2015). The main challenge is how to mitigate 
bias in data sets to allow tools to be generalizable where they are deployed. 
By our lights, it seems there are strong moral reasons, generated from the 
principles of justice and beneficence, for the global radiation oncology 
community to invest in AI tools and translate them to LMICs in a way that 
increases access to life-saving treatment and equitably distributes benefits 
around the world. 

4. Ethics and the Future of AI in Radiation Oncology

In Section 3, we have considered two ethical concerns that impact the cur-
rent or emerging use of AI in radiation oncology — namely, the issues of 
bias and global health. We will now consider the ethical implications of a 
potential future reality where AI tools may replace human practitioners for 
certain tasks in radiation oncology.

As AI technology improves, it may become possible to program an AI 
to produce reliable treatment recommendations to cancer patients. Those 
patients would then face the medical decision of whether to accept the 
AI’s recommendation. It has been plausibly suggested that this type of use 
of AI in medicine is morally problematic for the following reason having 
to do with patient autonomy (Morley et al., 2020). In order for a patient’s 
medical decisions to be autonomous, they must be based on an 
understanding of the facts relevant to those medical decisions. The worse 
the patient’s understanding of such facts is, the less autonomous their 
medical decisions are. Facts about how a treatment recommendation was 
determined seem relevant to the medical decision of whether to accept the 
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recommendation. So, any policy that makes it harder for patients to under-
stand how treatment recommendations are determined will also make it so 
that those patients’ medical decisions are less autonomous than they oth-
erwise would be. The policy of using AI-generated treatment recommen-
dations makes it more difficult for patients to understand the reasoning 
behind these recommendations. This is because many patients lack the 
ability to understand “the underlying data, processes and technical possi-
bilities” that would be involved in the generation of the AI-produced treat-
ment recommendation (Morley et al., 2020). So, such a policy makes it so 
that many patients’ medical decisions are less autonomous than they 
otherwise would be. As we understand it, the principle of respect for 
autonomy implies that there is a prima facie moral duty for a healthcare 
provider to refrain from adopting policies that would decrease the level of 
autonomy of a patient’s medical decisions. And so, the principle of respect 
for autonomy implies that there is a prima facie moral duty to refrain from 
relying on AI to produce treatment recommendations. 

However, this moral objection to the use of AI to develop treatment 
recommendations is not decisive. First, it is worth considering whether the 
facts about “the underlying data, processes, and technical possibilities” 
that are involved in the generation of AI-produced treatment recommenda-
tions really do count as “pertinent” or “relevant” to the medical decision 
of whether to accept those recommendations. This is important because 
on Beauchamp and Childress’s (2009) influential account of the principle 
of respect for autonomy, it is only understanding of facts relevant to a 
medical decision that are important for the autonomy of that medical 
decision. Central examples of facts that are relevant to the decision to 
accept a treatment recommendation are the patient’s prognosis, expected 
side effects of the proposed treatment, and risks associated with forgoing 
treatment.

Technical facts about how an AI generates its treatment recommenda-
tion from the underlying data seem quite different from these paradig-
matic examples of relevant facts. Notice that if a patient has a good 
understanding of the benefits and risks of an AI-generated treatment rec-
ommendation, of the alternatives to this recommendation, etc., then we 
would not be inclined to worry that the patient’s decision to accept this 
treatment recommendation lacked autonomy by virtue of a deficiency of 
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understanding. Since it is plausible that the facts about the technical 
details of how an AI generates its recommendations aren’t relevant to the 
medical decision of whether to accept its recommendations, it is plausible 
that the principle of respect for autonomy doesn’t entail that there is 
a prima facie duty to refrain from relying on AI to produce treatment 
recommendations. 

Additionally, suppose these facts about the details of how an AI gen-
erates its recommendations actually do count as relevant to patients’ 
medical decisions. This still would not mean that the principle of respect 
for autonomy implies that we ought to refrain from using AI to produce 
treatment recommendations in radiation oncology. Rather, this principle 
would imply only that if we do use AI in this way, then we also ought to 
take steps to ensure that patients have an opportunity to acquire an appro-
priate level of understanding of these technical facts. One way to accom-
plish this might be to offer patients consultations with medical physi-
cists, as we have discussed in a previous paper (Hyun & Hyun, 2019). 
So, regardless of whether or not technical facts about the AI are relevant 
to patients’ medical decisions, it seems that using AI-generated treatment 
recommendations should not violate the principle of respect for auton-
omy.

Patient autonomy is not the only relevant principle when considering 
a possible future where AI tools may replace human practitioners for some 
radiation oncology tasks. Imagine, for example, that the AI provides not 
only the treatment recommendation, but also the patient-facing roles tra-
ditionally held by human practitioners. This example could apply to both 
the initial consultation or on-treatment visits provided by the radiation 
oncologist, or dedicated consultation with the medical physicist. 

In the book Compassionomics, Trzeciak et al. (2019) devote more 
than 100 pages to the evidence that compassion improves patient out-
comes. They argue, with a staggering amount of supporting data, that 
incorporating compassion into medical care generates physiological and 
psychological benefits for patients, motivates patient self-care, and 
improves healthcare quality. The principle of beneficence would suggest, 
then, that hospitals have a prima facie duty to ensure their patients receive 
compassionate medical care.
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Bridge and Bridge (2019) argue that, lacking a knowledge of the 
“self” and “the uniquely human viewpoint that enables us to understand 
how another person is feeling,” an AI can “never understand what it means 
to act ethically,” which “precludes the development of empathy.” Since 
empathy and the expression of compassion are closely linked, it is quite 
possible that even the most advanced AI could never achieve the same 
level of compassion as a human practitioner. This suggests that hospitals 
have a prima facie duty to refrain from using AI to replace human practi-
tioners in direct patient care.

Combining the considerations from autonomy and beneficence, it 
seems that hospitals may have strong moral reasons to adopt AI technol-
ogy for assisting with treatment recommendations (perhaps providing 
additional education to patients if understanding the technology is relevant 
to decisions about their care). Yet, based on our current understanding of 
the limitations of AI, there are also strong moral reasons to refrain from 
using AI tools to completely replace human practitioners.
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Abstract
Artificial Intelligence (AI) has a wide variety of applications in radiation 
oncology, including patient assessment, treatment planning, and outcomes 
prediction. To ensure trust and foster adoption in clinical practice, both providers 
and patients want scientific evidence that demonstrates that AI tools are safe and 
effective. This chapter describes a framework for the evaluation of AI in 
healthcare, encompassing studies of technical performance, usability, and clinical 
impact. Similarities to and important differences from phases of clinical trials for 
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drugs and medical devices are highlighted. Each phase of research is illustrated 
by examples of rigorous studies from the domain of radiation oncology. 

1. Overview of AI in Radiation Oncology

AI could have particularly transformative applications in radiation oncol-
ogy given the multifaceted and highly technical nature of this field, which 
relies heavily on digital data processing and computer software. AI plat-
forms can recognize complex and unexpected patterns in medical data and 
provide both quantitative and qualitative insights. A wide range of AI tools 
have been developed to support therapy planning, treatment delivery, and 
quality assurance, and these applications have the potential to improve the 
accuracy, precision, efficiency, and overall quality of radiation therapy for 
patients with cancer.

2. A Framework for the Evaluation of AI in Healthcare

Whenever innovations are introduced into the healthcare environment, all 
stakeholders look for scientific evidence to show that those innovations 
offer clinical benefits and limit harm. To create such evidence, rigorous 
scientific studies that evaluate both performance and impact of AI solu-
tions are needed. 

The first step in evaluating an AI solution is the testing of the technical 
aspects. Developers should demonstrate that algorithms accurately per-
form their intended tasks, such prediction, or classification. Such evalua-
tion is similar to performance testing for diagnostic tests and measures 
accuracy with metrics such as sensitivity, specificity, and area under the 
receiver operating characteristic curve. In this step, it is important to have 
clinicians involved in setting acceptable performance thresholds. Clinician 
expertise is needed to understand the consequences of false positive and 
false negative results and to determine acceptable tradeoffs. 

The next step in AI tool evaluation involves ensuring the tool can be 
used and understood by its intended users in the appropriate clinical set-
ting. This phase involves studies of usability, learnability, and satisfaction, 
and aspects of AI explainability or workflow transformation may be 
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examined. Studies in this step often require qualitative research method-
ologies and team members with expertise in psychology, sociology, 
anthropology, and human factors engineering. 

Finally, after ensuring adequate technical performance and usability, 
AI solutions should be evaluated for impact. Early evaluations may focus 
on intermediate or process outcomes, such as showing that tools influence 
clinical decisions or save time. Long-term studies are often needed to 
determine whether these systems affect clinical outcomes. Definitive stud-
ies to show clinical impact may use a randomized controlled trial design, 
and it is important to select an appropriate comparator. For AI tools that 
support clinicians, the study should compare clinicians with and without 
the assistance of the AI solution. 

Evaluation of AI solutions shares some similarities with the phases of 
evaluation used for drugs and medical devices (Park et al., 2020). 
Preclinical and phase I studies involve algorithm training, often with lim-
ited data sets, and testing of initial prototypes. Phase II studies should 
measure algorithm performance on enhanced data sets and study proto-
types with relevant clinical users in real clinical environments to support 
safety and efficacy of the solutions. At this stage, it is particularly impor-
tant to consider sources of bias in the underlying algorithm design, data 
used for training, or interface design, to ensure that AI solutions do not 
contribute to or worsen existing health disparities (Dankwa-Mullan I, 
2021). It is important to note that AI solutions used by clinicians differ 
from drugs and devices, which tend to perform in a consistent manner. By 
contrast, the output of the AI algorithm must be understood, trusted, and 
applied to a specific context by a clinician. Phase III studies are larger, 
typically randomized trials or may use a pre–post implementation study 
design to provide evidence for effects. All AI tools warrant phase IV post-
deployment surveillance to measure ongoing performance, especially 
when algorithms may learn with time (Petersen et al., 2021). 

3. AI Evaluations in Radiation Oncology

Some of the common practical applications of AI in radiation oncology 
and their performance evaluations are highlighted in what follows. 
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AI techniques have been applied to a wide variety of tasks in the Radiation 
Therapy (RT) planning process. Auto-contouring is an attractive concept 
in radiation treatment planning.  Three of the top ten high-risk and high-
severity failures in treatment planning are from “wrong” or inaccurate 
contouring, improper margins for the planning target volume, and 
“wrong” or inaccurate dosimetrist contours (Ford et al., 2020). According 
to the AAPM Task Group 275, while automation cannot entirely replace 
human decision-making, it can “improve efficiency and effectiveness and 
allow physicists to focus more attention on the review tasks that require 
human judgment” (Ford et al., 2020). Furthermore, automated tools can 
introduce standardization, a key component of error prevention. Smart 
planning tools in current clinical use can be summarized in three main 
categories: automated rule implementation and reasoning, modeling of 
prior knowledge in clinical practice, and multicriteria optimization (Wang 
et al., 2019). Recently, Convolutional Neural Network (CNN)-based auto-
segmentation models have been shown to improve consistency and effi-
ciency of this process (van der Veen et al., 2019; Lustberg et al., 2018). In 
technical performance studies, these deep learning models are now out-
performing traditional auto-contouring methods and reaching the accu-
racy range of manual delineations (Savenije et al., 2020). There are AI 
studies related to the planning steps of RT, such as dose calculation, dose 
distribution, Dose-Volume Histogram (DVH), patient-specific dose calcu-
lation, Intensity Modulated Radiotherapy (IMRT) area determination, 
beam angle determination, real-time tumor tracking, and replanning in 
adaptive RT (Zhu et al., 2020). 

Target volume contouring is a labor-intensive step in the treatment 
planning flow in RT. Differences in manual contouring result from varia-
bility between contours, differences in radiation oncology education, or 
quality differences in imaging studies. Current automatic contouring 
methods aim to reduce manual workload and increase contour consistency 
but still tend to require significant manual editing (La Macchia et al., 
2012). The first example of a commercial release of a deep learning-based 
contouring tool to gain US FDA (510k) clearance was Mirada’s DLCExpert 
(Mirada, 2020).in 2018. Other currently available solutions include Deep-
Learning Segmentation solution from RaySearch Laboratories, Ethos, 
Varian’s radiotherapy treatment system (Archambault et al., 2020), and 
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Radiation Planning Assistant (RPA), which is an AI-based treatment plan-
ning platform developed by academic researchers and clinicians at MD 
Anderson Cancer Center (Court et al., 2018). As part of the medical 
device regulatory process, both technical performance as well as work-
flow (i.e., workload) user studies are conducted. 

Computer-Aided Detection (CAD) is another technique that leverages 
AI in treatment planning. Low Dose Rate (LDR) brachytherapy is exten-
sively used in prostate cancer. The implementation and precise location of 
the implanted radioactive seeds are critical to the success of treatment. 
CAD has proven to be able to make accurate treatment plans for LDR 
brachytherapy that are comparable to those prepared by experienced treat-
ment planners and radiologists, thus assisting in treatment delivery 
(Nicolae et al., 2017).

Treatment modalities such as photon-based Volumetric Modulated 
Arc Therapy (VMAT) require a lot of planning before dose delivery, espe-
cially given the complex dose deposition. Machine learning algorithms 
have been shown to help to predict dose distribution for organs-at-risk and 
to plan target volume, enabling radiation oncologists to make better and 
more informed treatment decisions and to save significant time. One algo-
rithm’s accuracy was validated on 69 plans for lung Stereotactic Body 
Radiation Therapy (SBRT) and 121 plans for head-and-neck treatment 
with a mean error below 2.5 Gy. This shows the potential to be used as 
automated treatment plan in SBRT for lung and head and neck radio-
therapy (Valdes et al., 2017). Detection of intestinal air is critical to image 
guided radiotherapy in prostate cancer. Deep convolutional neural net-
works have been applied to this problem (Miura et al., 2019). Kajikawa 
et al. compared a 3D Convolutional Neural Network (CNN) with the 
conventional machine learning method for predicting Intensity-Modulated 
Radiation Therapy (IMRT) dose distribution using only contours in pros-
tate cancer. The CNN model could predict dose distributions that were 
superior or comparable with that generated by RapidPlan™ (Kajikawa 
et al., 2019).

Quality Assurance (QA) is a critical step in the evaluation of radio-
therapy planning and in the detection and reporting of errors. Features of 
RT QA programs such as error detection, error prevention, and treatment 
device QA have been found to be very suitable for AI applications (Valde 
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et al., 2017). This helps facilitate development of automated pretreatment 
validation workflows and provide a virtual assessment of treatment qual-
ity. For example, AI could play a role in current non-AI based steps in the 
treatment workflow as well as perform plausibility or sanity checks on the 
model outcome. For example, an independent, secondary algorithm can 
be used to benchmark the performance of the clinical (AI) model and 
point divergent behavior. Automatic case-specific QA tools can be utilized 
to facilitate the detection of outliers (Vandewinckele et al., 2020). Finally, 
uncertainty estimates of the AI output can be used as a valuable tool to 
flag outcomes that require additional verification. It is important to note 
that these methods are under investigation and that supervision is cur-
rently the main application (Bragman et al., 2018).

Radiation therapy may need to be adjusted during the treatment path-
way to ensure proper implementation of the treatment plan. This may be 
necessitated due to either online factors such as the patient’s pretreatment 
position, or longer-term factors related to anatomical changes and 
response to treatment. Images taken before treatment should be aligned 
with the images in the planning CT and kept in alignment. Based on ana-
tomical and dosimetric variations such as shrinkage of the tumor, weaken-
ing of the patient, or edema, classifiers and clustering algorithms have 
been developed to predict the patients who will benefit most from updated 
plans during fractionated RT (Guidi et al., 2016). However, it should also 
be kept in mind that these algorithms will mimic past protocols rather than 
determine the ideal time for replanning because AI learns from data about 
previous patients, their plans, and adaptive RT.

AI also has the potential to change the way radiation oncologists fol-
low patients who have chosen definitive treatment. AI algorithms can be 
used to correlate image-based features with biological observations or 
clinical outcomes. Tseng et al. investigated deep reinforcement learning 
trained on historical treatment plans for developing automated radiation 
adaptation protocols in Non-Small-Cell Lung Cancer (NSCLC) patients; 
the goal was to maximize tumor local control at reduced rates of radiation 
pneumonitis. While these and similar studies demonstrate this is a promis-
ing approach for achieving similar results to those chosen by clinicians, 
these processes require customization (Tseng et al., 2017). Furthermore, 
development of this framework into a fully credible autonomous system 
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for clinical decision support would require further validation on larger 
multi-institutional data sets. A study by Cha et al. demonstrated the feasi-
bility of radiomics-based predictive models using pre and posttreatment 
Computed Tomography (CT) images to potentially assist in assessing 
treatment response (Ha et al., 2017).

The use of AI techniques for response and survival prediction in RT 
patients presents a significant opportunity to further improve decision 
support systems and provide an objective assessment of the relative ben-
efits of various treatment options for patients (Tseng et al., 2017). 

There are several other potential applications for the use of AI in 
radiation oncology, and several studies of workflow have demonstrated 
significant time savings. CNNs and deep learning methods utilize AI- 
based methods compared to the traditional methods of creating synthetic 
CTs for optimum patient immobilization during the simulation process 
(Yakar & Etiz, 2021). Deep learning and AI can be novel game changers 
in the image registration and segmentation part of the treatment planning 
workflow, by facilitating the implementation process as well as improv-
ing accuracy in image registration. Manual segmentation of the Organs 
at Risk (OARs) is time consuming with a high degree of variability 
(Roques, 2014). Automatic segmentation using AI can reduce the inter-
clinician variability and shorten the duration of radiation oncology plan-
ning (Sharp et al., 2014). AI, particularly using CNNs, is a potential tool 
to reduce physician workload and define a standard segmentation. In 
recent years, deep learning methods have been widely used in medical 
applications such as organ segmentation in head-neck, lung, brain, and 
prostate cancers (Liang et al., 2019; Savenije et al., 2020). However, 
these methodologies will require further robust studies in real clinical 
settings and further quality assurance as well as a rigorous process of 
validation before they can be introduced into actual radiation oncology 
workflows.

Further advances of AI and deep learning will be driven by the 
availability of high-quality data, since most models in development by 
industry and academia rely on supervised learning approaches for radio-
therapy treatment planning tools. As more tools become commercially 
available, their integration into clinical practice may largely depend on 
accessibility to annotated data sets and computational power.
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4. Conclusions

AI has the potential to automate and accelerate the process of RT plan-
ning, treatment, and follow up. To deploy AI solutions safely and effec-
tively in radiation oncology settings, scientific evidence demonstrating 
solution performance and accuracy, usability in clinical workflows, and 
clinical impact are necessary. Although preliminary studies of technical 
performance and time savings show promise, few solutions have under-
gone rigorous testing in clinical settings, and impact studies on short- and 
long-term clinical outcomes are limited. In addition, many AI learning 
methods require large, annotated data sets, and these are often not avail-
able, very expensive, or protected by intellectual property rights or privacy 
regulations. Additional research is needed to build the evidence base for 
AI transformation of RT.
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