
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Improving Use Case Based

Feature Model Construction for

Software Product Lines

by

Asra Ishtiaq

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Computing

Department of Computer Science

2018

www.cust.edu.pk
www.cust.edu.pk
asra.ishtiaq07@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Copyright c© 2018 by Asra Ishtiaq

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

Dedication

I dedicate my dissertation work to my supervisor, family, all other teachers and

friends. A special feeling of gratitude is for my loving family for their love,

endless support and encouragement.

CAPITAL UNIVERSITY OF SCIENCE & TECHNOLOGY

ISLAMABAD

CERTIFICATE OF APPROVAL

Improving Use Case Based Feature Model Construction

for Software Product Lines

by

Asra Ishtiaq

MCS163017

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Dr. Rizwan Bin Faiz RIU, Islamabad

(b) Internal Examiner Dr. Muhammad Tanvir Afzal CUST, Islamabad

(c) Supervisor Dr. Aamer Nadeem CUST, Islamabad

Dr. Aamer Nadeem
Thesis Supervisor

October, 2018

Dr. Nayyer Masood Dr. Muhammad Abdul Qadir
Head Dean
Dept. of Computer Science Faculty of Computing
October, 2018 October, 2018

iv

Author’s Declaration

I, Asra Ishtiaq hereby state that my MS thesis titled “Improving Use Case

Based Feature Model Construction for Software Product Lines” is my

own work and has not been submitted previously by me for taking any degree

from Capital University of Science and Technology, Islamabad or anywhere else in

the country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

Asra Ishtiaq

Registration No: MCS163017

v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Improving

Use Case Based Feature Model Construction for Software Product

Lines” is solely my research work with no significant contribution from any other

person. Small contribution/help wherever taken has been dully acknowledged and

that complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

Asra Ishtiaq

Registration No: MCS163017

vi

Acknowledgements

I praise and thank ALLAH (S.W.T) for His greatness and for giving me the

strength and courage to complete this research work. I would like to thank all

who in one way or another contributed to the completion of this research work. I

would like to express my greatest gratitude to my supervisor Dr. Aamer Nadeem

for his unwavering support, encouragement, advice and patience. It is because of

his constant support that I was able to complete my thesis. Thanks to all the CSD

(Center For Software Dependability) members especially Mr. Qamar uz Zaman

for his valuable feedback which helped me in improving my thesis. I also like to

thank Dr. Muhammad Arshad Islam for introducing me to the world of research.

His guidance was quite helpful during this research work.

I am extremely thankful to my family for their endless support, encouragement,

and prayers throughout the completion of this Master of Science degree. Shout out

to my family for tolerating my mood swings for the past year and being patient

with me. To my sister for believing in me and for her constant love, support, and

care. To my sister-in-law for moral support, tea, and fries. Thank you, my dear

friend Sundus Ali, for helping me survive all the stress from this year and not

letting me give up.

Finally and without hesitation, I would like to thank coffee, Harry Potter, BTS

and Pinterest for helping me out in my darkest days.

vii

Abstract

Software Product Line (SPL) is a set of software products that share a common

set of assets known as core assets satisfying need of particular domain. Software

Product Line Engineering (SPLE) provides low cost and efficient development of

diverse highly related products. SPLE provides efficient development of products

by reusing core assets shared by the products rather than starting from the scratch.

SPL variability management is a vital part of SPLE. SPL variability management

provides information about the core assets shared by all the products of SPL as well

as about the assets that differentiate each product from other products. Feature

modeling is the most frequently used technique for managing the variability of SPL.

FM construction can be done in two ways: top-down or bottom-up. The top-down

approach is better than the bottom-up approach due to the fact that it can be

used for the construction of FM of new SPL. Top-down approach constructs FM

in the early stages of software development life cycle as compared to the bottom-

up approach. FM constructed in early stages of the software development life

cycle can be used for testing purpose. For top-down FM construction use case

based approach is better than textual requirement based techniques as it does

not require deep natural language processing (NLP) analysis which is a time-

consuming process.

The focus of this research is on the improvement of use case based FM construction.

A number of use case based FM construction techniques have been introduced.

These techniques perform well in terms of feature and hierarchy extraction but fail

to do so for constraint extraction. In addition to that existing approaches do not

cover constraints generated by sequential dependencies. To overcome deficiencies

of existing approaches, we propose an algorithm that uses an activity diagram for

the better extraction of the constraints. Using activity diagram for FM construc-

tion helps in extracting constraints for such scenarios in which existing techniques

failed to extract constraints. Using an activity diagram also helps in extracting

constraints based on sequential dependencies. We have evaluated and compared

our approach with the existing approach using different case studies. The result

viii

shows that our approach performs better than existing approaches in terms of the

number of extracted constraint and quality of constraints extracted for FM.

Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgements vi

Abstract vii

List of Figures xii

List of Tables xiii

List of Abbreviations xiv

List of Symbols xv

1 Introduction 1

1.1 Feature Model . 2

1.1.1 Basic Feature Model . 2

1.1.2 Cardinality-based Feature Model 5

Feature cardinality 5

Group cardinality . 5

1.1.3 Extended Feature Model . 5

1.2 Feature Model Construction . 6

1.2.1 Top-down Approach . 7

Textual documentation based construction 7

Use case based construction 8

1.2.2 Bottom-up Approach . 8

1.3 Anomalies in FM . 9

1.3.1 Void FM . 9

1.3.2 Dead Feature . 10

1.3.3 False Optional Feature . 10

1.3.4 Redundancies . 11

1.4 Problem Statement . 12

1.5 Research Questions . 13

ix

x

1.6 Research Methodology . 14

1.7 Thesis Organization . 15

2 Literature Review 16

2.1 Use Case Based FM Construction Techniques 17

2.1.1 FM Construction Without Constraint Extraction 17

Griss et al., 1998 . 17

Braganca and Machado, 2007 18

Wang et al., 2009 . 18

2.1.2 FM Construction With Constraint Extraction 19

Lin and Zhou, 2012 19

Casalnguida and Duran, 2012 19

Mefteh and Bouassida, 2014 20

Mefteh et al., 2015 21

2.2 Comparison . 21

2.3 Gap Analysis . 24

3 Proposed Solution 26

3.1 Activity Diagram Based Constraint Extraction 27

3.2 Algorithm for Constraint Extraction 29

3.2.1 Identification of Features and Constraints 31

3.2.1.1 Activity Diagram 31

3.2.1.2 Use Case Identification 32

3.2.1.3 Constraints Identification 34

3.2.2 Comparison of Features Extracted from Activity Diagram
and FM Features . 35

3.2.3 Dealing with Anomalies . 37

3.2.4 Inclusion of Constraints in FM 39

4 Implementation 41

4.1 Implementation Details . 42

4.1.1 FeaturesIdentifier . 44

4.1.2 ConstraintsIdentifier . 44

4.1.3 FeaturesComparison . 46

4.1.4 FMConstraintsInclusion . 46

4.2 Tool Usage . 47

5 Results and Discussion 49

5.1 Case Studies . 50

5.1.1 E-shop SPL . 50

5.1.2 Mobile Media SPL . 50

5.1.3 Social Networks SPL . 50

5.2 Evaluation and Comparison . 51

5.2.1 E-shop SPL . 51

5.2.1.1 Activity Based Constraints Extraction 51

xi

5.2.1.2 Use Case Based Constraints Extraction 54

5.2.2 Mobile Media SPL . 55

5.2.2.1 Activity Based Constraints Extraction 55

5.2.2.2 Use Case Based Constraints Extraction 57

5.2.3 Social Networks SPL . 59

5.2.3.1 Activity Based Constraints Extraction 59

5.2.3.2 Use Case Based Cnstraints Extraction 61

5.3 Comparison . 62

6 Conclusion and Future Work 65

6.1 Future Work . 66

Bibliography 68

List of Figures

1.1 Feature Model Example . 3

1.2 Example of extended feature model 6

1.3 Void FM anomaly . 9

1.4 dead feature anomaly . 10

1.5 false optional feature anomaly . 11

1.6 Redundant constraint . 12

3.1 An illustration of proposed solution 28

3.2 Activity diagram components . 32

3.3 E-shop activity diagram . 33

3.4 E-shop FM . 36

3.5 E-shop FM with anomalies . 39

3.6 E-shop FM after removing anomalies 40

4.1 Class diagram of proposed solution 43

4.2 FeatureIdentifier class . 44

4.3 ConstraintsIdentifier class . 45

4.4 FeaturesComparison class . 46

4.5 FMConstraintsInclusion class . 46

4.6 Activity diagram XML file . 47

4.7 XML file of FM . 48

4.8 Output FM generated by tool . 48

5.1 E-shop activity diagram based FM 52

5.2 E-shop FM after removing anomalies 53

5.3 E-shop use case based FM . 54

5.4 Mobile media activity diagram based FM 56

5.5 Mobile media FM after removing anomalies 57

5.6 Mobile media use case based FM 58

5.7 Social network activity diagram based FM 60

5.8 Social network FM after removing anomalies 61

5.9 Number of constraints extracted for case studies 62

xii

List of Tables

2.1 Comparison of use case based FM construction approaches 23

3.1 Identified Constraints . 35

5.1 Properties of FMs . 51

5.2 E-shop constraints removed by rules 53

5.3 Mobile media constraints removed by rules 56

5.4 Social network constraints removed by rules 59

xiii

List of Abbreviations

SPL Software Product Line

FM Feature Model

CTC Cross Tree Constraint

SPLE Software Product Line Engineering

AFT Aplication Feature Tree

DFT Domain Feature Tree

UML Unified Modeling Language

XML Extensible Markup Language

xiv

List of Symbols

⇒ Requires constraint

⇔ Excludes constraint

FMsimple FM without constraints

FMconstraint FM with constraints

xv

Chapter 1

Introduction

Software Product Line (SPL) is a set of software products that share a common

set of assets known as core assets satisfying need of particular domain. In SPL

products are derived from these core assets in a prescribed way [1]. SPL supports

mass customization by allowing generation of variable products that share core

assets. The main goal of the SPL is to speed up the process of the production and

to reduce the time to market. In previous production approaches, each product

is developed from the scratch that is a time-consuming process. SPL gives an

advantage by allowing software reuse for production of new products using core

assets [2]. Core assets refer to assets that are part of every product of SPL. When

creating a new product in SPL variable asset will be added to the core assets rather

than starting from the scratch and creating core assets again for the new product

[3]. Consider an example of Mobile phone SPL, In Mobile phone SPL the core

assets will be call function, message function, and setting function as every mobile

phone must support these functions. The variable assets in mobile phone SPL

can be Bluetooth, Wi-Fi and media option as these assets are not part of every

mobile phone. Software product line engineering (SPLE) is a paradigm for the

development of software from a common set of features satisfying need of particu-

lar domain. SPLE helps organizations in developing their products from reusable

core assets. SPLE assist proficient, high caliber and low-cost development of soft-

ware by reusing core assets [4]. SPLE concerns two concepts: commonality and

1

Introduction 2

variability. Commonality refers to characteristics that are shared by all products

of the SPL. Variability refers to differences between products of the SPL. For the

development of core assets, software engineering must exploit commonalities and

manage variability. Different variability models have been proposed for managing

SPL variability [5]. Feature modeling is the most common technique used for man-

aging the variability of SPL products. Feature modeling can be done using table or

graph [6]. The most common technique is graph based. In graph-based technique

feature models (FM) are utilized. The concept of FM was first introduced by [7]

in FODA report for modeling variability of SPLs.

1.1 Feature Model

FM represents commonalities and variability of SPL in terms of features and re-

lationships between them. A feature is referred to increment in product function-

ality. In FM, a feature may have one or more child features. The top feature

of the FM is called root feature and this feature usually represent the concept of

FM [8]. FM represents a hierarchical and structural relationship between features

[9]. A legal combination of features forms a product of SPL. FM is a hierarchical

structure that represents all valid products or legal combinations of features. Mod-

eling variability with FM helps in Construction of new SPL as well as derivation

of new products for already existing SPLs. FMs can be broadly categorized into

Basic FMs, Cardinality-based FMs and extended FMs. All these three FMs are

discussed below.

1.1.1 Basic Feature Model

According to Benavides et al. in basic FM, two kinds of relationships exist between

features [10].

• relationship between parent-child features

Introduction 3

• cross-tree constraints between features

In basic FM, root feature represents the concept of the FM. All other features in

the FM can be either optional or mandatory. All child features can have “Alterna-

tive” or “OR” relationship with the parent feature. Basic FM also has cross-tree

constraints (CTCs) between features. CTCs models feature dependencies. CTCs

avoid generation of invalid products for SPL.

Figure 1.1: Feature Model Example

Parent-Child relationships between feature and sub features in basic FM are cat-

egorized as [11]:

1. Mandatory child feature has a mandatory relationship with its parent fea-

ture if child feature must be included in every product that contains parent

feature [11]. Calls and screen are mandatory features so every mobile phone

product generated by FM shown in Figure 1.1 must contain feature calls and

screen.

Introduction 4

2. Optional child feature has an optional relationship with its parent feature

when it is not required to include child feature in every product in which

parent feature is included [12]. GPS and Media are optional features in FM

shown in Figure 1.1 so, GPS and Media can be optionally included in each

generated mobile phone product.

3. Alternative set of child features has an alternative relationship with its

parent feature when only one of the child feature can be included in a product

in which parent feature is selected [13]. Basic, Color and High-resolution

features have an alternative relationship with parent feature Screen as shown

in Figure 1.1 so, whenever feature Screen is selected only one of the child

features: basic, Color, High resolution can be selected for each product.

4. OR set of child features has an or-relationship with parent feature when

at least one of the child features must be selected when parent feature is

included in a product [14]. Camera and MP3 has OR relation with parent

feature Media in FM shown in Figure 1.1. Feature MP3, camera or both can

be selected when feature media is selected in a product.

In addition to parent-child relationships, there are also CTCs between features.

CTCs are used to avoid generation of invalid configurations. CTCs between fea-

tures are recognized as:

1. Requires if feature A requires feature B then selection of feature A in prod-

uct implies selection of feature B in such product [15]. Feature Camera

requires feature High resolution in FM shown in Figure 1.1 so whenever

camera feature is selected in a product then feature high resolution must be

selected in that product.

2. Excludes feature A excludes feature B implies that both features cannot be

included in the same product [16]. Feature GPS and Basic has an exclusion

relationship as shown in Figure 1.1 so, If feature GPS is selected in a product

then feature Basic should not be selected in that product and vice versa.

Introduction 5

1.1.2 Cardinality-based Feature Model

Cardinality-based FM is basically an extension of original FODA FM [17, 18]. In

cardinality-based FM, FM relationships are expressed in the form of UML multi-

plicities. In cardinality-based FM relationships are divided into feature cardinality

and group cardinality.

Feature cardinality shows the optionality of the feature, weather feature is

optional or mandatory. Feature cardinality is represented by [n..m] where n rep-

resents lower bound and m represents upper bound. The optional feature is rep-

resented by [0..1] and mandatory by [1..1] [19].

Group cardinality represent or and alternative relationships of FM. Group

cardinalities are represented by <n..m> where n is lower bound and m is up-

per bound that gives information about the number of features that are selected

whenever a parent is chosen for the product. Or relationship is represented by

<1..N> where N is the number of child features so, it shows that a minimum 1

and maximum N number of child features can be selected for or relationship. An

alternative relationship is represented by <1..1> so one and only one child feature

must be selected for an Alternative relationship.

1.1.3 Extended Feature Model

Another FM notation that has been proposed is extended feature models. In

extended feature models, feature attributes are added in the FM that gives extra

information about the features. Example of feature attributes includes: memory,

space and speed. Different feature attribute element has been used by proposed

approaches [20, 21]. Benavides et al. argue that the attribute must consist of name,

domain and value [10]. In the FM in Figure 1.2 attribute Memory and speed for

each feature: USB, Bluetooth and Wi-Fi are included in FM. Each attribute has

a name, domain, and a value. For feature Wi-Fi, there are two attributes Memory

Introduction 6

and Speed as indicated by the name of the attributes. Domain of all two attributes

for Wi-Fi feature is Real and value for each attribute of Wi-Fi is also given. For

the Wi-Fi feature, a value of memory attribute is 725 and value of Max speed is

3.6 as shown in Figure 1.2.

Figure 1.2: Example of extended feature model

1.2 Feature Model Construction

FM play important role in modeling variability of SPL. FM presents all the possi-

ble configurations of the SPL with the help of features and relationships between

them. Each valid configuration presented by FM refers to product of SPL. FM

gives information about all the valid products that can be generated for SPL

so, helps in generation of new product of SPL. FM construction also helps in

SPL testing process. FM construction process can be divided in to three main

steps: features identification, Features organization and constraints identification.

Feature is a product functionality that is used for capturing commonality and

variability between products of SPL. In feature identification step, features of dif-

ferent SPL products are extracted either from requirements of the products or

configurations of products [22] depending upon the FM construction approach

Introduction 7

used. In feature organization step, hierarchy of features and parent-child relation-

ships between features are determined. In constraints identification step, cross tree

constraints between features are determined. FM can be constructed from unde-

veloped products of SPL as well as developed products of SPL. These two feature

model construction approaches use different input assets for FM construction and

has been discussed below:

1.2.1 Top-down Approach

In top-down approach, FM is constructed by exploring functional requirements of

undeveloped products of SPL. This approach is used when creating new SPL. In

top-down approach, FM is constructed from the functional requirements and then

products are derived from the constructed FM [23]. Using requirements for FM

construction is really helpful because requirements are radially available. Using

top down approach for FM construction results in development of FM in early

stages of Software Development Life Cycle (SDLC). FM created in early stages of

SDLC can be used in designing and testing phase. Different input artifacts can

be used for the construction of FM by top-down approach. On the basis of input

artifacts top-down approach can be categorized as:

Textual documentation based construction approach use requirements of

product variants for the construction of FM. Features and hierarchy of FM is ex-

tracted by analyzing textual documents that contains requirements. Requirements

or product descriptions written in Natural language (NL) are given as input for

construction of FM. In this approach natural language processing (NLP) tech-

niques are used for extraction of FM from textual documents. FM construction

from Textual documents usually requires documentation of requirements in some

standard format for accurate extraction of features. For FM construction from this

approach requires transformation of extracted requirements in to some standard

format without which features extraction is not possible. Apart from that deep

Introduction 8

NLP is required in this technique for the extraction of features which is usually

quite expensive.

Use case based construction approach utilize use case diagrams for the con-

struction of FM. This technique utilizes use cases and relationships between them

for extraction of features and structure of FM. Usually includes and excludes rela-

tionships of use cases are utilized for use case based construction of FM [24]. Using

use cases for FM construction makes feature extraction quite easy by mapping each

use case on to feature.

1.2.2 Bottom-up Approach

In bottom-up approach, FM is constructed by examining configurations of already

developed product variants of SPL. This approach assumes that SPL is created

after the development of several product variants of SPL [25]. This technique

cannot be used for creating new SPL. In this approach, codes or configurations of

already developed product variants are analyzed and feature model is constructed

from them [26].

Using top-down approach for FM construction has number of advantages as com-

pared to bottom-up approach. Bottom-up approach can only be used for construc-

tion of FM for already developed SPLs. Bottom-up approach will be of no help if

FM construction is required for new SPL. Apart from that in bottom-up approach

code or configurations of product variants of SPL are used which are usually not

available or hard to get hold of, on the other hand requirements are easily available

and can be easily extracted. Another important advantage of top-down approach

is that FM can be constructed in early phases of SDLC. Requirements are available

in early stages of SDLC as compared to product configurations. Using requirement

specifications rather than code or configurations will result in early construction

of FM. FM constructed in early phase of SDLC can be used for designing as well

as in testing phase for test case generation.

Introduction 9

1.3 Anomalies in FM

Anomalies refer to redundant or contradictory information presented by FM.

Anomalies can occur in FM if wrong CTCs are included in the FM [27]. Anomalies

can affect the quality of the constructed FM. FM with anomalies gives the wrong

idea of domain which is undesirable.

Most commonly four types of anomalies can occur in FM due to wrong usage of

CTCs as listed below:

1.3.1 Void FM

Void FM anomaly exists if FM does not generate any valid configuration [28]. The

void FM anomaly occurs due to wrong usage of the CTCs. FM with valid CTCs

can never be void. Void FM anomaly is very critical as no valid configuration of

SPL can be generated form FM which makes FM useless. Void FM anomaly can

occur if there is a excludes constraint between two mandatory features. In Fig-

ure 1.3 there is excludes constraint between mandatory feature A and mandatory

feature B. Due to excludes constraint between feature A and B, no valid configura-

tion can be generated by FM given in Figure 1.3 because each mandatory feature

should be part of every valid configuration of FM, whereas excludes constraint in

FM shown in Figure 1.3 implies that two mandatory features A and B cannot be

part of same product which is contradictory.

Figure 1.3: Void FM anomaly

Introduction 10

1.3.2 Dead Feature

Dead feature refers to the feature that is a part of FM but due to wrong usage

of the CTCs it is not included in any of the products generated by the FM [29].

Dead features are present in FM but are not used in any of the product. If a

mandatory feature excludes optional feature then optional feature becomes dead

feature. Mandatory feature will be a part of every product of SPL and excluded

optional constraints will not be a part of any SPL product. In Figure 1.4 feature A

is a mandatory feature and it excludes optional feature B due to this CTC feature

B will never be a part of any product of SPL and will be the dead feature.

Figure 1.4: dead feature anomaly

1.3.3 False Optional Feature

False optional feature refers to a feature that is modeled as optional in FM but is a

part of every product derived by SPL [30]. If a mandatory feature in FM requires

an optional feature then that optional feature will be false optional feature. The

mandatory feature is a part of every product so, optional feature required by

mandatory feature will also be a part of every product hence will be modeled as

false optional feature. In Figure 1.5 Mandatory feature A requires optional feature

B. As feature A is mandatory it will be part of every product and feature B is

required by feature A so it will also be a part of every product. Feature B despite

being part of every product is modeled as optional so it is false optional feature.

Introduction 11

Figure 1.5: false optional feature anomaly

1.3.4 Redundancies

Redundancies occur in FM if same information of FM is modeled in multiple

ways. Redundancies in FM can decrease the maintainability of FM and are usually

considered as negative point. Redundant features as well as redundant constraint

can occur in FM. redundant constraints occur in FM due to improper use of CTCs.

If there is a requires constraint from optional feature to mandatory feature in a

FM then this requires constraint is redundant constraint [31]. Mandatory feature

is already a part of every product. Requires constraints from optional feature to

mandatory feature implies inclusion of mandatory feature in every product which

is already being fulfilled, there is no need for that requires constraint. In Figure

1.6 optional feature B require mandatory feature A , this requires constraint is

redundant constraint.

Introduction 12

Figure 1.6: Redundant constraint

FM with anomalies in it gives the wrong idea of the domain. Anomalies effect

the number of product derived from the SPL and even leads to null configuration

extraction from FM. FM must be free from anomalies for the correct depiction of

the domain.

1.4 Problem Statement

A number of techniques have been proposed for FM construction from use cases.

Most of the proposed techniques do not extract CTCs while constructing FM.

Some approaches that support CTCs identification deduce constraints between

features using “extend” and “include” relationships of use cases. Utilizing only

relationships between use cases for the extraction of FM constraints is not enough.

Extraction of FM constraints from use cases that does not have “extend” and

“include” relationship will not be possible if extraction only depends on these

relationships. To counter this problem such approach is required for extraction of

constraints that exploit resources other than use cases relationships. It will help in

extracting FM constraints even if relationships between use cases are not available.

Other techniques that support identification of CTCs utilize use case variability

modeling techniques. These techniques first model variability in to use case model

by using use case variability modeling techniques then use these variabilitys for

Introduction 13

extraction of CTCs. use case variability modeling is itself a complex task so using

these techniques can be very expensive. In addition to that, use case sequential

dependencies between use cases have never been exploited by any of the proposed

techniques for the extraction of CTCs.

1.5 Research Questions

In this research, we will propose use case based construction of FM for modeling

commonality and variability of SPL. However the following questions must be

taken into account.

• RQ 1: Can we extract feature model constraints for certain scenarios not

covered by existing techniques?

The literature survey is carried out and deep analysis of existing techniques is

done to find the gaps in previously proposed techniques. Through literature

survey, we identify that an algorithm should be designed that use sequential

dependencies of the use cases for extraction of CTCs.

• RQ 2: Are constraints identified by proposed approach higher than existing

techniques?

To answer this question, evaluation and comparison of proposed algorithm

with existing technique is done using different case studies. In the end, num-

ber and quality of constraints extracted by both approaches are compared.

Our research will be focused to answer these research questions

Introduction 14

1.6 Research Methodology

1. First of all, we have done the literature review to identify existing approaches

for construction of FM from use case model. After studying various tech-

niques, we have reached the conclusion that previously proposed techniques

failed in extracting constraint for certain scenarios.

2. To overcome the research gap we will implement new technique for construc-

tion of FM from use case model. Proposed technique will make use of activity

diagram of use cases to overcome gaps in previously proposed techniques.

3. Following steps will be performed for implementation of our proposed ap-

proach:

(a) In the first phase, we collect all data including use cases and FM of

SPL’s without constraints.

(b) After collecting the data, we create system level activity diagram from

use cases that model sequential dependencies of use cases.

(c) After having created the activity diagram, features are identified from

activity diagram as well as from input FM of SPL. Features identified

by both are compared and matching features are stored.

(d) After identification of the matching features, constraints between these

features are identified using constructed activity diagram. Identified

constraints are added in to the feature model.

(e) FM is checked for anomalies after adding constraints. If anomalies

are detected in FM, wrong constraints causing anomalies in FM are

removed from FM.

4. In the end, evaluation of proposed technique will be done. Use case studies

from [32] will be used for construction of FM. we will evaluate our approach

by comparing it with existing approach [33] as well as with benchmark FM.

Using selected case studies, two FMs will be constructed. One FM will be

constructed using existing approach other will be constructed using proposed

Introduction 15

approach. Comparative evaluation of number of constraints and quality of

constraints extracted by both techniques will be done to check the improve-

ment in FM construction by proposed approach.

1.7 Thesis Organization

Rest of the thesis is organized as; in Chapter two existing approaches for construc-

tion of FM from use cases are discussed. Third chapter is about proposed solution,

proposed methodology and algorithm are discussed in this chapter. Fourth chapter

is on implementation details of proposed algorithm, fifth chapter is about results

and discussion and sixth chapter is on conclusions which we have made from this

research and future work on how we can extend this research work.

Chapter 2

Literature Review

In this chapter, we discuss the related work that has been done in the field of FM

construction from use case models. We conducted a detailed survey analysis to

find the gap and comparison is performed among the existing approaches.

SPL is a set of related software’s that are created from commons set of core assets

instead of starting from the scratch. SPLE process helps in efficient development

of the software. Feature is used for differentiating products of the SPL by showing

commonalities and variabilitys of SPL products. Different variability models have

been proposed for managing commonalities and variabilitys of SPL [34]. FM is

considered as de facto standard for managing variability of SPL [35].

FM plays an important role in providing reusability information of specific domain.

FM displays information of all products of SPL with the help of features and

relationship between them. In F8M, features are arranged in hierarchy with the

help of relationships and constraints between them.

FM construction process includes three main steps: feature identification, con-

straints identification and hierarchy identification. Construction of complete FM

is quite important for derivation of all valid product configurations of domain.

Different input sources are used for FM construction including product configura-

tions and requirement specifications. Model construction is done in early phases of

SDLC. Using requirement specifications rather than product configuration makes

16

Literature Review 17

early construction of FM possible. FM constructed in early phase of SDLC can

be used for designing as well as in testing phase.

2.1 Use Case Based FM Construction Techniques

In object oriented requirements are modeled using use case diagrams and use case

descriptions. Number of techniques has been proposed for construction of FM

using use cases as input asset. Some of the existing use case based FM construction

techniques do not extract constraints of FM while other techniques construct FM

with constraints. Both FM construction techniques with and without constraints

extraction are discussed below.

2.1.1 FM Construction Without Constraint Extraction

Griss et al., 1998 introduced the idea for construction of FM from the use

case domain model [24]. Use case models are constructed for the each application

in the domain. Constructed use case models are merged to form a domain use

case model. Domain use case model is used for the construction of FM. Features

are identified from domain use case model, in domain use case model each use

case correspondent to a feature. Mandatory and optional features are identified

by frequency of use cases in domain application. If the use case of a particular

feature has higher occurrence rate in domain applications then this feature is

considered as mandatory else considered as optional. Features are decomposed in

to sub features according to the relationships (use and extend) of corresponding

use case in the domain use case model. If corresponding use case of a feature is

a variation point in use case model then sub features of that feature are created

which correspond to variation points of use case. In the end constructed FM is

restructured by analysts and CTC’s are identified by them manually.

In this approach each use case maps to feature but in reality on use case can maps

to number of features and number of use cases can form one feature. CTC’s are

Literature Review 18

also identified manually by the analysts so; quality of FM will heavily depend on

the knowledge of analyst.

Braganca and Machado, 2007 proposed automated mapping between use

case and FM [36]. For modeling variability use case Meta-model is extended. In

this technique each use case is mapped to the feature. Use case variability modeling

technique is used for modeling variability in “Include” and “extend” relationships

of use cases. Modeled variabilities are then used for identification of features and

sub features of FM. The include relationship of use cases is used for identification

of sub features. Using include relationship for identification of sub features can

result in generation of redundant constraints.

This technique does not consider inner description of use cases for FM construction.

In addition to that, it does not provide any method for identification of CTCs.

Both requires and excludes constraints are not identified by this approach.

Wang et al., 2009 extract FM relations with out considering inner descrip-

tions of use cases. Wang et al. [37] proposed semi-automatic technique for the

FM construction that use inner descriptions of use cases for arranging features in

FM. This technique takes a set of use cases that are described with use case dia-

grams and use case scenarios as input and generate DFM as output. FM for each

application called application feature model (AFM) is constructed using input use

cases. Use case descriptions are used for extraction of features and relationships

between features. Features are discovered by identifying operation and object

in an action and by identifying method of an action. After feature discovery,

refinement relationships: decomposition, characterization and specialization are

identified between features. Decomposition relationship is identified by exploring

sub flows, exploring system operations, identifying features referencing to same

object, identifying “is a ” relationship between objects and identifying “has a”

relationship between objects. Characterization/ specialization are identified be-

tween features by identifying method of an action. After identifications of features

Literature Review 19

and relationships between features AFM for each application is constructed. Af-

terwards, DFM is constructed by adjusting and merging set of AFMs generated

earlier. The Automatic construction of AFMs and DFM is done with the help of

provided rules and algorithms.

In this research, only relationships between use cases are used for FM construction.

This approach does not exploit semantics for constraint derivation. FM constraints

are also not identified by this approach.

2.1.2 FM Construction With Constraint Extraction

Lin and Zhou, 2012 FM construction technique proposed by Wang et al. [37]

does not extract FM constraints. In another study, construction of FM using sys-

tem use case models is conducted by Lin and Zhou [38] that extracts Requires con-

straint of FM. In this technique use case diagrams as well as use case descriptions

are used for FM construction. First, system use cases with specific characteristics

are selected and domain use case diagram (DUCD) is constructed by merging set

of use case diagrams (UCDs). Second, primary FM is constructed using DUCD

that involve two steps: grouping of use cases according to resources manipulated

by them and tracing relationship between use cases and features. For FM con-

struction use cases are mapped to features. Include relationship between use cases

is used to model decomposition relationship in FM. Generalize relationship from

use case diagram is used to model specialization relationship in FM.

Requires constraint in FM is captured by using extension scenario of extend rela-

tionship from use case diagrams. Extension scenario are usually not available in

use case diagrams, requires constraint will not be extracted if extension scenario

is not available. Excludes constraint is not identified by this approach.

Casalnguida and Duran, 2012 proposed construction of FMs from UML

requirement models [22]. Use case diagrams, activity diagrams and use case de-

scriptions are utilized for FM construction. First, UML models are constructed

Literature Review 20

from the requirements. Use case variability modeling technique is used for mod-

eling variability in use case diagram. Activity diagram of each use case is also

constructed and variability is modeled in to it as well. Afterwards, FM is auto-

matically constructed from use case diagram with variability. Generation of FM

involves two transformations: UCD2FM and Reqs2FM. Construction of initial

FM from use case diagrams is done using UCD2FM with the help of 8 rules. In

UCD2FM transformation use case are mapped to features and variability mod-

eled in use case diagram utilized for extraction of constraints in FM. Reqs2FM

transformation is applied on activity diagrams and initial FM for extracting extra

features to build a final FM. For evaluation of proposed approach online library

application case study is used. Results show that 15% of features are extracted by

application of UCD2FM and 40% by applying Reqs2FM transformation. Results

further illustrated that 50% of the features introduced by Reqs2FM are critical.

This approach requires modeling of variability in to use case diagram as well as

in to activity diagrams of each use case. Modeling variability in to UML is quite

expensive. This approach uses activity diagrams of use cases which will result in

generation of low granularity features.

Mefteh and Bouassida, 2014 proposed fully automated approach for extrac-

tion of FM from documented use cases [39]. This approach deals with incomplete

use case diagrams. Incomplete use cases diagrams are completed and refined using

information from use cases documentation. Each use case is treated as feature for

FM construction. Hierarchy of features is identified using the Formal concept anal-

ysis (FCA). Relationships between features are identified using the hypernym and

synonym semantics. Or relationship is identified using “Meronymy” relationship.

XOR relationship is identified using “Synonyms” relationship, if two features name

has synonym relationship and have same parents then there is XOR relationship

between them. Afterwards, Constraints among features are identified using the

semantics criteria and “includes” relation between use cases. If name of features

are synonyms and belong to different parents, then there is “excludes” constraint

Literature Review 21

between these features. If two use cases has “include” relationship, then features

extracted from these use cases has requires relationship.

This technique requires use cases with detailed description of “goal in context”

field for extraction of features. Constraints identified in this approach use rela-

tionships of use cases, unavailability of these relationship will result in construction

of incomplete FM.

Mefteh et al., 2015 proposed implementation of their previous work [33].

UC2FM-tool is proposed for automatic construction of FM from documented use

case diagrams. For evaluation, five FMs from different domains are used. The

quality metric of FMs generated from proposed tool are compared with the FMs

constructed by experts.

2.2 Comparison

In this section use case based FM construction approaches from literature are

compared. All the above discussed techniques utilizes use cases for FM construc-

tion. Techniques proposed by Wang et al. and Braganca and Machado do not

extract constraints as no constraints extraction method is given by these tech-

niques [36, 37]. In another technique proposed by Griss et al., no method for

constraint extraction is given and CTCs are manually identified by the analysts

[24]. The output FM generated by these techniques do not have CTCs in it. Tech-

nique proposed by Lin and Zhou extracts requires constraint [38]. The excludes

constraint is not identified by the technique as well as requires constraint cannot

be identified by this technique if extension scenarios are not present in use case

diagrams. Both CTCs are identified by the technique proposed by Casalnguida

and Duran [22]. The down side of this approach is that, for constraints extraction

variability modeling technique is used to modeling variability in use case diagrams

and activity diagrams. Use of variability modeling is quite expensive in addition

to that, features generated by activity diagrams are low granularity features. The

Literature Review 22

technique proposed by Mefteh and Bouassida is the only technique that extracts

both CTCs without modeling variability [39]. Using this technique Requires con-

straint cannot be extracted if use case relationships are not present in input use

case diagrams.

Overall comparison of all the above discussed techniques is given in Table 2.1.

First column of Table 2.1 contains reference of research paper. Source asset used

for FM construction by each approach is given in second column. Type of FM

notation used by each approach is given in third column and following six columns

give information about FM features and relationships extracted by each approach.

MF stands for mandatory feature, OF for optional feature, Alt for alternative

relationship, OR for or relationship, Req for requires constraint and EX for

excludes constraint. Last two columns contain information about tool supported

by each technique and limitations of techniques respectively.

Literature Review 23

Table 2.1: Comparison of use case based FM construction approaches

Author Source
FM

notation
MFOFAltORReqEx

Tool

supp-

orted

Limitations

Griss

et al.

(1998)

[24]

Use

case

diagrams

Basic

Feature

model

yes yes yes yes no no no

Requires

and excludes

constraints

are manually

identified

Braganca

and Machado

et al.

(2007)

[36]

use

case

diagrams

Cardinality

based
yes yes yes yes no no no

Requires

and excludes

constraints are

not extracted.

Wang

et al.

(2009) [37]

use

case

diagrams

Basic

Feature

model

yes yes yes yes no no no

Requires

and excludes

constraints are

not extracted.

Lin

&

Zhou

(2009)

[38]

use case

diagrams

and

use case

discriptions

Basic

Feature

model

yes yes yes yes yes no no

Excludes

constraint

is not

identified

Casalng

-uida

&

Durn

(2012)

[22]

use case

diagrams,

use case

descriptions

and activity

diagrams

Cardina

-lity

based

yes yes yes yes yes yes no

Dependen

-cies

between

high level

features

are not

identified

Literature Review 24

Mefteh

&

Bouas

-sida

(2014)

[39]

complete

and

incomplete

documented

UC diagrams

,scenarios

in NL

Basic

Feature

model

yes yes yes yes yes yes no

Requires

constraint

can not be

identified if

include

relationship is

not present

in Input

Mefteh

et al.

(2015)

[33]

complete and

incomplete

documented

UC diagrams,

scenarios

in NL

Basic

Feature

model

yes yes yes yes yes yes yes

Requires

constraint

can not be

identified if

include

relationship is

not present

in Input

2.3 Gap Analysis

Existing use case based techniques for FM construction use different source for the

extraction of features and constraints from the use cases. Constraints are vital part

of any FM so, extraction of constraints is quite important for FM construction.

Comparison of existing techniques is shown in Table 2.1. Most of the proposed

techniques do not extracted CTCs. Some techniques utilize only “include “and

“extend” relationship between use cases for extraction of FM constraints from use

cases. Relying only on include and extend relationship for constraints extraction

adversely affects FM construction process. If the relationships between use cases

are not mentioned in source use case diagrams then extraction of constraints will

not be possible. The resulting FM will not be complete. In other techniques

variability need to be explicitly modeled in UML models for extraction of CTCs.

Literature Review 25

Activity diagram is only used by one of the existing technique for FM construc-

tion. Activity diagrams of individual use cases are used by existing approach that

results in generation of low level features. For better extraction of constraints, FM

construction using activity diagram that shows dependencies between use cases is

required. Only one of the existing techniques [33] extract both CTCs without

modeling variability in to UML models. In addition to that, it is also the only

technique that is tested and evaluated on case studies. This approach is also

compared to five other approaches.

Chapter 3

Proposed Solution

From state of the art, we have observed that most of the existing techniques either

use used case diagrams or use case descriptions for FM construction. Existing

techniques make use of “extend” and “include” relationships of use cases to de-

duce constraints between features. These techniques cannot extract constraints

when “extend” and “include” relationships of use cases are not mentioned in the

input. These techniques are also unable to extract constraint based on sequential

dependencies. In FM, constraints avoid generation of invalid configurations. As

constraints are vital part of FM so, identification of all the constraints during FM

construction process is quite important. We have proposed an approach for better

extraction of FM constraints. Our proposed approach does not rely on relation-

ships of use cases for constraint extraction and also is able to extract sequential

dependencies based constraints.

The sequential dependencies of use cases can be extracted using system activity

diagram or preconditions and postconditions of use cases. The pre conditions of

use cases can be written in natural language (NL) or object constraint language

(OCL). The extraction of use case dependencies from pre conditions of use cases

written in NL is quiet expensive as it requires deep NLP analysis. Pre conditions

of use cases written in OCL are usually not available due to the fact that experts

avoid writing pre conditions of use cases in OCL due to its unfamiliar syntax.

The most convenient way for extraction of use case dependencies is to use system

26

Proposed Solution 27

activity diagram. The use case dependencies can be easily extracted from activity

diagram using flow information from one activity to another.

Our proposed technique uses activity diagram for the better extraction of con-

straints. Using activity diagram will improve constraints extraction process by

extracting constraints even for such scenarios in which previously proposed tech-

niques failed. Using activity diagram will also extract constraints based on se-

quential dependencies of use cases which are not covered by previously proposed

techniques.

3.1 Activity Diagram Based Constraint Extrac-

tion

In activity diagram based constraints extraction, Activity diagram is used for

the extraction of features as well as constraints. As we are using system level

activity diagram that represent sequential dependencies of use cases. Each use

case in activity diagram represents the feature of FM. Constraints are extracted by

utilizing the sequential dependencies present between use cases in activity diagram.

If use case B comes after use case A in flow than use case B is considered to be

dependent on use case A.

An activity diagram of system and initial FM without constraints are given as in-

put to proposed approach. Constraints are identified using input activity diagram.

Features are identified from the input FM. After the identification of features and

constraints, features in both are compared. If identified constraints exist between

features that are present in FM, constraint will be added in FM otherwise not. In

the end identified constraints are checked for anomalies. If anomalies are found in

FM, constraints are filtered using proposed rules and constraints causing anoma-

lies are removed from FM. Output of Proposed technique is FM with remaining

constraints. Proposed solution diagram is shown in Figure 3.1.

Proposed Solution 28

Figure 3.1: An illustration of proposed solution

Proposed Solution 29

3.2 Algorithm for Constraint Extraction

Algorithm 1 Procedure-for-Constraints extraction

Require: ACT = {N,N0 ∈ N, δN i → N j}, FM simple = {F}

Ensure: FMConstraints = {F,C}

Declarations: C = φ, F target = φ, F source = φ

1: procedure ACT2FM(ACT, FM simple)

2: for all einδN i → N j do

3: for all NinACT do

4: if ei.N jisJoinNode then

5: Fsource= Fsource U Ni

6: for all einδN i → N j do

7: if ei.N iisJoinNode then

8: Ftarget= Ttarget U Nj

9: end if

10: end for

11: end if

12: if ei.N iisForkNode then

13: Ftarget= Ftarget U Nj

14: for all einδN i → N j do

15: if ei.N jisForkNode then

16: Fsource= Fsource U Ni

17: end if

18: end for

19: end if

20: if ei.N iisDecisionNode then

21: Ftarget= Ftarget U Nj

22: for all einδN i → N j do

23: if ei.N jisDecisionNode then

24: Fsource= Fsource U Ni

Proposed Solution 30

25: end if

26: end for

27: end if

28: if ei.N iisActionNode&&ei.N jisActionNode then

29: Fsource= Fsource U Ni

30: Ftarget= Ftarget U Nj

31: end if

32: end for

33: end for

34: for i=1 to Length of Fsource do

35: if FcontainsF sourcei&&FcontainsF targeti then

36: C= C U Ftargeti Requires Fsourcei

37: end if

38: end for

39: FMconstraints=FMsimple U C

40: return FMconstraints

41: end procedure

Section 3.2 describes the proposed algorithm that is built to extract constraint of

FM. Proposed algorithm takes activity diagram and initial FM without constraints

as input. Proposed algorithm extracts sequential dependencies of use cases and

maps them to constraint. Time complexity of proposed algorithm is T(n,m)=

n+(m-a)+ma where n is number of nodes in activity diagram, m is number of

edges in activity diagram and a is number of edges in activity diagram which are

not between action- action nodes. For the best case scenario time complexity of

algorithm is linear O(m) where m is number of edges in activity diagram. For

worst case scenario time complexity of algorithm is quadratic O(m2).

After the extraction of constraints, proposed algorithm compares features that

have constraint between them to features of Input FM. If match is found for both

features in which constraint is present then this constraint is added in to the input

Proposed Solution 31

FM else not. In the end, FM is checked for anomalies wrong constraints causing

anomalies in FM are removed.

Listed below steps are involved to achieve our goal:

1. Identification of features and constraints

2. Comparison of features extracted from activity diagram and FM

features

3. Dealing with anomalies

4. Inclusion of constraint in FM

3.2.1 Identification of Features and Constraints

In our approach, activity diagram is used for the extraction of features and con-

straints. Use cases in activity diagram are mapped to features and sequential

dependencies of use cases are mapped to constraints between features.

3.2.1.1 Activity Diagram

Activity diagram is a UML diagram. Activity diagram is used to represent step-

wise flow of activities in a process. The flow of execution is represented as activity

nodes connected by edges. Control flows are used to represent flow form one activ-

ity to other activity. In activity diagram control flow can be sequential, branched,

or concurrent [40]. Different types of symbols are used in activity diagram for

representation of all type of control flows. Sequential flow is represented by arrow.

Fork node in activity diagram represents start of concurrent activities and join

node represent end of concurrent activities. Branched flows are represented in

activity diagram with the help of decision symbol [41]. Different activity diagram

symbols and their descriptions are mentioned in Figure 3.2

Proposed Solution 32

Figure 3.2: Activity diagram components

3.2.1.2 Use Case Identification

A list of use cases is obtained by reading activity diagram. Each use case in activity

diagram is considered as feature in FM and included in the use case list. For the

extraction of use case list, first all the nodes of activity diagram are identified. Use

cases in activity diagram are represented by activity nodes. For the extraction of

use cases list, all the activity nodes are extracted from node list and included in

the use case list.

Proposed Solution 33

For example in Figure 3.3 E-shop activity diagram is illustrated. The node list for

E-shop activity diagram in Figure 3.3 is given below.

Figure 3.3: E-shop activity diagram

Proposed Solution 34

Node List: [start node,DecisionNode1, register, login, ForkNode1, search, Deci-

sionNode2, view item, add to cart, ForkNode2, view cart, update product, JoinN-

ode1, checkout, order history, view history, logout, payment, catalogue, DecisionN-

ode3, final node]

The use case list for E-shop activity diagram in Figure 3.3 is given below.

use case list:[register, login, search, view item, add to cart, view cart, update

product, checkout, order history, view history, logout, payment, catalogue]

3.2.1.3 Constraints Identification

For the constraints, sequential dependencies between use cases are used. For each

action node in activity diagram, the action node that comes after that action node

is considered to be dependent on it. By reading edges of activity diagram, source

and target lists are generated. Source and target lists are generated in such a way

that every action node i in target list depends on action node i in source list. In

other words, each node i in target list has a requires constraint with node i in

source list. By utilizing source and target lists, requires constraints are identified.

The source list and target list generated for activity diagram in Figure 3.3 are

given below.

Source list: [register, login, search, search, view item,add to cart, add to cart, view

cart, update product, payment, login, catalogue, checkout, view history, order

history]

Target list: [login, order history, view item, search, add to cart, view cart, up-

date product,payment, payment, checkout, catalogue, search,logout,logout, view

history]

The activity nodes in source list and target list are considered as features in FM

and each target feature i has a requires constraint with source feature i. After the

generation of source list and target list, identified constraints are given in Table

3.1

Proposed Solution 35

Table 3.1: Identified Constraints

Feature Constraint Feature

login Requires register

order history Requires login

view item Requires search

search Requires search

add to cart Requires view item

view cart Requires add to cart

update product Requires add to cart

payment Requires view cart

payment Requires update product

checkout Requires payment

catalogue Requires login

search Requires catalogue

logout Requires checkout

3.2.2 Comparison of Features Extracted from Activity Di-

agram and FM Features

For the correct inclusion of the requires constraints in FM, features comparison is

required. For the comparison, first the features from the input FM are extracted.

Features from FM are extracted by reading the FM. Each feature that is read from

the FM is included in the FM feature list.

To give an example E-shop feature model is given in Figure 3.4.

Proposed Solution 36

Figure 3.4: E-shop FM

The list of features obtained from the feature model in Figure 3.4 is given below

Features List: [search, add to cart, view item, update product, view cart, open

cart, checkout, credit card, COD, bank transfer, order history, login, logout, reg-

ister, E-shop, catalogue, cart, payment]

Before including requires constraints identified during previous step in FM, we need

to make sure that identified constraint can be added in the FM. If the identified

constraint is between such features that are not present in FM then inclusion of

such constraint in FM will not be possible.

For the identification of such constraints that can be included in FM, for each

constraint both the features between which the constraint is present are compared

with FM feature list. After the comparison if both features exist in the list, con-

straint can be included otherwise not. In E-shop example the constraints identified

Proposed Solution 37

by activity diagram given in Table 3.1 contains requires constraints including fea-

tures view history. View history feature is not present in the Input FM given

in Figure 3.4. As this feature is not present in FM, constraints that involve this

feature cannot be included in the FM. Identified constraints are filtered by remov-

ing constraints that involve view history. The remaining constraints of E-shop

FM after comparison are shown in Figure 3.5. The requires constraint in FM is

represented by ⇒ symbol.

3.2.3 Dealing with Anomalies

Constraints are vital part of any FM. Constraint maps dependencies between

features and helps in avoiding generation of invalid products. Improper usage of

constraints in FM can also result in propagation of anomalies in FM. FM anomalies

include: Void FM, redundancies, false optional features and dead feature [42].

Void feature model refers to a FM which does not generate any valid product.

Redundancies in FM can be of two types: feature redundancy and constraint

redundancy. Feature redundancy exists in FM if same feature is used more than

once in FM. Redundant constraint refers to constraints which if included in FM

does not affect number of generated products. False optional feature is such a

feature in FM which is despite being part of every product of SPL is not marked

mandatory. Dead feature refers to such feature which is not used in any of the

product of SPL [43].

Using activity diagram for extraction of constraints between features can result in

extraction of redundant or wrong constraints. To avoid the problem of anomaly

that can occur due to wrong usage of CTCs. we filter the constraints extracted by

using sequential dependencies of use cases from activity diagram. Constraints are

filtered by using four restriction rules that avoid generation of wrong constraint

which in return will help in avoiding occurrence of anomalies in FM.

The used restriction rules are listed below:

• Constraint should be between two optional features

Proposed Solution 38

• Constraint should not be between parent and child feature

• Self constraints are not allowed

• One feature in OR group should not be required by all other features in the

group

Using above mentioned rules, extracted constraints are filtered to avoid generation

of anomalies in FM. Above mentioned rules remove wrong constraints that cause

anomalies in FM.

The list of constraints given in Table 3.1 is filtered using these rules. Constraints

involving mandatory feature are removed from the list, constraints indicated be-

tween parent and child feature are removed, constraint between same features is

removed and If a one feature of OR group is required by all other features of group

then all these requires constraints are removed.

If the Constraints shown in Table 3.1 are added in E-shop FM without constraints

causing anomalies, these constraints cause anomalies in FM as shown in Figure

3.5. Wrong extracted constraints results in 3 false optional features , one tautology

caused by self-constraint and 7 redundant constraints in E-shop FM as shown in

Figure 3.5 .

After removing constraints causing anomalies in FM, remaining constraints are

added in to E-shop FM.

Proposed Solution 39

Figure 3.5: E-shop FM with anomalies

3.2.4 Inclusion of Constraints in FM

After the identification of the constraints that can be added in the FM. Next step

is to include these constraints in to the FM. For the inclusion of each constraint,

FM is read and both features between which the constraint is present are identified

in the FM. After identification of these features in FM, requires constraint is added

between these features. This process is repeated until all the constraints are added

in the FM.

FM of E-shop after adding remaining constraints is given in Figure 3.6. At the end,

output FM is generated that contain all the remaining constraints after removing

anomalies. The output FM of E-shop example is shown in Figure 3.6.

Proposed Solution 40

Figure 3.6: E-shop FM after removing anomalies

After removing anomalies two requires constraints are left in E-shop FM. The

remaining two constraints are correct constraints and final generated FM is free

from anomalies. The output FM is high quality FM as no anomaly is detected by

tool for the output E-shop FM.

Chapter 4

Implementation

This chapter includes the implementation details of the proposed solution. Imple-

mentation of proposed solution is done using Eclipse and Java language. For FM,

Eclipse plugin Feature IDE [44] is used. Our implementation comprise of four main

components. First component automates the process of feature identification and

displays features . Second component automates constraints identification using

algorithm given in chapter 3 and displays identified constraints. Third compo-

nent compares features identified by FM and features that are part of constraints

and displays remaining constraints. Final component automates the process of

constraints inclusion in FM and generates complete FM with constraints.

The user gives two Extensible Markup Language(XML) files as input to system.

One input file is XML of FM without constraints and other is XML of activity

diagram. XML of FM contains information about the features and relationship

between features. XML of activity diagram contains information about the nodes

and edges of activity diagram. The two input files are given as input to algorithm

explained in previous chapter.

We have used star UML tool [45] for activity diagram construction and XML of

activity diagram is exported using extension in star UML. Star UML is a UML

modeling tool, it supports construction of almost all type of UML diagrams spec-

ified in UML 2.0. The extension used for exporting XML is XMI(XML Metadata

41

Implementation 42

Interchange) extension. XMI is a standard format for representing UML diagrams.

XMI is intended to help exchange of UML diagrams constructed in different tools

using different languages. This extension generates XML file for activity diagram

constructed in star UML and export it in XML format for further use, for feature

model construction, Feature IDE plugin of eclipse is used. Feature IDE is a fea-

ture oriented software development tool available as a plugin for eclipse. When

a feature model is constructed in feature IDE tool, XML file for that FM is au-

tomatically generated. We have generated XML for activity diagram using star

UML and for feature model using feature IDE. These two generated XML files are

given as input to our proposed algorithm.

The algorithm extracts features from FM XML file and generate list of features.

Algorithm also extracts use cases from activity diagram XML file and generate

list of use cases, Constraints identification is also done by algorithm by reading

activity diagram XML. During identification of constraints source and target lists

for constraints are maintained by algorithm. After constraints identification, al-

gorithm compares features in feature list and features involved in constraints that

are present in source and target list. After comparison, remaining constraints are

added in the FM. For inclusion of constraints in FM, constraints are written in

FM XML file by algorithm. In the end, algorithm generates complete FM with

constraints

4.1 Implementation Details

This section includes the implementation details of our Tool. It describes all the

classes and their methods used for each of the component.

Implementation 43

Figure 4.1: Class diagram of proposed solution

The class diagrams of the implementation is shown above in Figure 4.1. Figure 4.1

shows the classes and methods used for the implementation of proposed algorithm.

Class diagrams also shows relationships between different classes. Each class and

its methods are explained below:

Implementation 44

4.1.1 FeaturesIdentifier

Figure 4.2: FeatureIdentifier class

The core functionality of this class is to read the XML file of input feature model

and return the list of features extracted from it. Methods used in this class are

shown in Figure 4.2. In this class, method FMXMLparser() is used to read the

XML file of the input FM. After reading file this method extracts all the elements

from the XML that starts with tag feature, and, or and alt. The extracted ele-

ments are stored in ElementsList. This method returns ElementsList. The method

FeatureExtractor() is used for the identification of features. This method takes

ElementList as an argument and for each element in ElementList it extracts name

of element by reading Name tag. The names that are read by this method are

stored in features list and are returned by this method. FeatureaIdExtractor()

method is used for extracting id of each feature. This method takes ElementList

as an argument and extract id of each element by reading tag ID and store it

inIdList. This method returns Idlist.

4.1.2 ConstraintsIdentifier

The core functionality of this class is to read the XML file of activity diagram

and return the constraints extracted from it. Variables and functions of Con-

straintsIdentifier class is shown in Figure 4.3.

Implementation 45

Figure 4.3: ConstraintsIdentifier class

In this class, method ActivityXMLparser() is used to read the XML of activity

diagram. It extracts all the elements of XML that starts with node or edge tag and

store them in ElementList. NodeExtractor() method is used to extract name

of all the elements stored in ElementList by reading tag name of each element. It

stores extracted names of elements in Nodes list. EdgeSourceExtractor() and

EdgeTargetExtractor() methods are used to extract and store source Node

and target node of edges present in activity diagram. EdgeSourceExtractor()

method extracts source of all the edges present in activity diagram and store

them in EdgeSourceList. EdgeTargetExtractor() method extracts target of all

the edges present in activity diagram and store them in EdgeTargetList. Methods

ForkNode(),JoinNode(),DecisionNode and ActionNodes takes EdgeSourceList and

EdgeTargetList as argument. These methods extract constraints for each type of

nodes of activity diagram and each method stores extracted constraints in List,

After storing list these lists are returned by methods.

After the extraction of constraints by previous 4 methods, method Constraints()

combine all 4 lists of constraints to generate final list of constraints. Method

Constraints() returns final list of constraints.

Implementation 46

4.1.3 FeaturesComparison

The functionality of this class is to compares the features list generated by class

featuresidentifier and features including constraints present in constraint list

generated by class ConstraintsIdentifier. Methods of this class are shown in

Figure 4.4

Figure 4.4: FeaturesComparison class

In this class, method FeatureConstraintComparison() is used to compare

the features from features list and constraints list. For each constraint if both the

features involved in constraint exist in features list then the feature is added in

RemainingConstraint list. method FeatureConstraintComparison() return

RemainingConstraint list.

4.1.4 FMConstraintsInclusion

The function of this class is to include extracted constraints in to FM. This class

method are shown in Figure 4.5

Figure 4.5: FMConstraintsInclusion class

Implementation 47

In this class, method WriteFMXML() takes list of identified constraints as ar-

gument and writes identified constraints in to the FM XML file. When all the

constraints are included in the XML file of FM, complete FM with constraints is

generated using Feature IDE plugin of Eclipse tool.

4.2 Tool Usage

Implemented tool takes system activity diagram and FM without constraints as

input. The activity diagram is constructed in starUML tool and exported in XML

format. The XML of activity diagram is given as input to tool. The snapshot of

activity diagram XML that is used by tool as input is shown in Figure 4.6

Figure 4.6: Activity diagram XML file

The XML of activity diagram shown in Figure 4.6 is parsed by the tool. From

XML file, tag node is used to identify names of use cases. Elements source and

target of tag edge are used to extract dependencies between use cases. The input

Implementation 48

FM is constructed in Eclipse using Feature IDE. The XML of constructed FM is

generated by the Feature IDE. The XML of FM is shown in Figure 4.7

Figure 4.7: XML file of FM

The XML file of FM is parsed by tool and features are identified from it. Tool

writes identified constraints in to the XML file of FM. Tag imp in XML of FM

represents requires constraints. After adding all the constraints in XML of FM,

the example output FM generated by tool is shown in 4.8

Figure 4.8: Output FM generated by tool

The output FM generated by tool represents requires constraint between features

using ⇒ symbol.

Chapter 5

Results and Discussion

In this chapter, we have discussed results of experiments which we have performed

on different case studies. By using system activity diagram, we extract constraints

for FM. After extraction of constraints, constraints causing anomalies in FM are

removed. The existing technique that we have used for comparison is use case

based technique as it is considered as the strongest technique. Both activity based

and use case based techniques are compared using FM analysis.

For evaluation of our technique, we have used three case studies from different do-

mains. The constraints for FM of case studies are extracted using both techniques.

Since our approach requires FM of SPL as input we have looked for reasonable

size FM from on-line repository SPLOT [32].

FM of SPL and system activity diagram is given as input to tool described in

Chapter 4. Tool identifies constraints between features of FM using activity di-

agram of the system.Extracted constraints are then checked for anomalies and

constraints causing anomalies are removed using proposed rules. The remaining

constraints after removing anomalies are added in to the input FM. Tool gives FM

with remaining constraints as output.

49

Results and Discussion 50

5.1 Case Studies

We have used Social networks SPL, E-shop SPL and mobile media SPL as subject

case studies for evaluating our approach. These case studies are developed by

experts. Two case studies: E-shop and social network applications are available

in SPLOT repository [32]. Third case study: mobile media is taken from [33]. A

brief description of each case study is given below:

5.1.1 E-shop SPL

E-shop SPL, represents E-shop applications that are used for online shopping.

E-shop SPL case study includes FM of E-shop that represents E-shop applica-

tions domain. FM of this case study has feature related to E-shop domain and

relationships between them. This FM has total twenty two features.

5.1.2 Mobile Media SPL

Mobile media SPL, represents applications that manipulate photo, music, and

video on mobile devices, such as mobile phones. Mobile media case study includes

FM representing domain of mobile media. Mobile media FM contains features

related to mobile media SPL and relationship between them. This FM has total

twenty features.

5.1.3 Social Networks SPL

Social networking SPL, represents social networking applications. Social networks

SPL case study includes FM of Social networks SPL. This FM represents social

network applications domain. A social networking application FM has features

related to social network domain and relationship between them. This FM has

total thirty one features.

Results and Discussion 51

Table 5.1 shows properties of the FM’s used in the case studies. In Table 5.1 NF

represents number of Features, LF represent leaf features, MF represents manda-

tory features and OF represents optional feature.

Table 5.1: Properties of FMs

FM NF LF MF OF

E-shop 22 16 10 8

Mobile media 20 14 5 10

Social network 31 22 8 12

5.2 Evaluation and Comparison

Feature model of all three case studies are given as input to both proposed ap-

proach and use cased based approach. Constraints for each feature model are

extracted by both approaches and included in the FM. Output of both approaches

is FM with constraints.

5.2.1 E-shop SPL

FM of E-shop is given as input to both approaches. Both approaches extract

constraints of FM and output is complete E-shop FM with constraints.

5.2.1.1 Activity Based Constraints Extraction

Activity diagram and SPL of E-shop without constraints is given as input. Con-

straints between features of FM are extracted by identifying sequential dependen-

cies between features from activity diagram. After the identification of constraints

from activity diagram, set of extracted constraints are compared with features of

Results and Discussion 52

FM. Constraints that involve features which are not present in FM are removed.

E-shop FM after including extracted constraints is given in Figure 5.1.

The requires constraint in FM is represented by implies symbols for example A⇒

B means feature A requires features B. Excludes constraint is represented by ⇔

symbol. After adding extracted constraints, there are four false optional features,

twelve redundant constraints and one constraint tautology in E-shop FM as shown

in Figure 5.1

Figure 5.1: E-shop activity diagram based FM

After extraction of constraints from activity diagram, the constraints extracted

from the activity diagram are checked for anomalies. For removing constraints

causing anomalies four proposed rules are used. This step helps in dealing with

dead features, false optional features and redundant constraints of FM.

Results and Discussion 53

Table 5.2 shows number of constraints removed by each rule. Twelve requires con-

straints that involves mandatory features are removed using rule 1. Four requires

constraints are present between child and parent feature and are removed using

rule 2. One self requires constraint search requires search is removed using rule 3.

Table 5.2: E-shop constraints removed by rules

Rule 1 Rule 2 Rule 3 Rule 4

12 4 1 0

The remaining constraints after removing anomalies are then added in to the

FM to generate the complete FM. The output E-shop FM with constraints after

removing anomalies is shown in Figure 5.2

Figure 5.2: E-shop FM after removing anomalies

Results and Discussion 54

5.2.1.2 Use Case Based Constraints Extraction

In use case based approach [33] constraints between features of FM are identified by

using use case relationships from use case diagrams. The input for this approach is

E-shop FM and use case diagrams of products belonging to E-shop SPL. Requires

constraints are identified through include relationship of use cases.

In E-shop SPL, there was two include relations: add item to cart include view item

and confirm order include payment. Using these include relations two requires

constraints are identified for E-shop FM. Two identified requires constraints are

added in input E-shop FM. The output E-shop FM generated by use case based

approach is shown in Figure 5.3.

Figure 5.3: E-shop use case based FM

Results and Discussion 55

As evident from 5.3 both constraints extracted by use case based approach are

indicated as redundant constraints by tool. For E-shop FM both techniques ex-

tracted two requires constraints. The constraints extracted by use case based

approach are redundant whereas constraints extracted by activity based approach

are good quality constraints.

5.2.2 Mobile Media SPL

FM of mobile media is given as input to both approaches. Constraints are ex-

tracted for mobile media FM using both approaches and included in the input

mobile media FM.

5.2.2.1 Activity Based Constraints Extraction

System activity diagram of mobile media SPL and FM of that mobile media SPL

is given as input. Constraints are extracted using system activity diagram. The

extracted constraints are then compared with features. Remaining constraints are

then added in to input mobile media FM. Mobile media after adding extracted

constraints is given in Figure 5.4.

The requires constraint in FM is represented by implies symbols for example in

FM A⇒ B means feature A requires features B. Excludes constraint is represented

by⇔ symbol. Adding all the extracted constraints to FM results in generation of

anomalies in FM. FM in Figure 5.4 has one false optional feature “save media” and

eight redundant constraints that are caused due to addition of wrong constraints

in mobile media FM.

Results and Discussion 56

Figure 5.4: Mobile media activity diagram based FM

After the extraction of the constraints from the activity diagram, constraints are

added in to the FM and checked for anomalies. If extracted features cause anoma-

lies in the FM then these features are removed using four anomaly exclusion rules

used by our technique. Table 5.3 shows the number of constraints removed by

each rule.

Table 5.3: Mobile media constraints removed by rules

Rule 1 Rule 2 Rule 3 Rule 4

0 8 0 3

Results and Discussion 57

As shown in Table 5.3 eight requires constraints are present between parent and

child feature and are removed by rule 2. In mobile media FM shown in 5.4 feature

save media is required by other three features present in or group. These three

requires constraints are removed using rule 4.

After removing constraints causing anomalies, remaining constraints are added in

to the FM for generating complete FM. Figure 5.5 shows the complete Mobile

media FM with constraints after removing anomalies.

Figure 5.5: Mobile media FM after removing anomalies

5.2.2.2 Use Case Based Constraints Extraction

In use case based approach [33] constraints between features of FM are identified

by using use case relationships from use case diagrams. The input for this approach

is mobile media FM and use case diagrams of products belonging to mobile media

SPL. Requires constraints are identified through include relation of use cases.

Results and Discussion 58

In Mobile media SPL, there is one include relation: Manage media include manage

album. Using identified include relation one requires constraint is identified for

mobile media FM. The output Mobile media FM generated by use case based

approach is shown in Figure 5.6.

Figure 5.6: Mobile media use case based FM

Clear from FM shown in Figure 5.6 one requires constraint extracted by use case

based approach is identified as redundant constraint by tool. For mobile media

FM activity based approach is able to extract three requires constrains whereas

only one requires constraint is extracted by use case based approach. In addition

to that, constraint extracted by use case based approach is redundant constraint.

Results and Discussion 59

5.2.3 Social Networks SPL

FM of social network is given as input to both approaches. Both approaches

identify constraints between features of FM. Identified constraints are then added

in to the input FM. The output of both approaches is FM with constraints.

5.2.3.1 Activity Based Constraints Extraction

Activity diagram of the system and social network FM without constraints is given

as input. Constraints extracted from the activity diagram for Social network FM

are added in to the FM after comparison with FM features. Extracted constraints

from activity diagram can result in identification of wrong constraints that can

cause anomalies in FM. As clear from the Social network FM given in Figure 5.7.

The requires constraint in FM is represented by implies symbols for example A

⇒ B means feature A requires features B. Excludes constraint is represented by

⇔ symbol. Addition of extracted constraints without removing constraint causing

anomalies in FM results in generation of false optional features and redundant

constraints. There are eighteen false optional features and eighteen redundant

constraints in social network FM shown in Figure 5.7 due to addition of all con-

straints.

After the extraction of constraints using activity diagram, constraints causing

anomalies in the FM are removed using proposed rules. Table 5.4 shows the

number of constraints removed by each rule.

Table 5.4: Social network constraints removed by rules

Rule 1 Rule 2 Rule 3 Rule 4

18 11 0 0

Results and Discussion 60

Figure 5.7: Social network activity diagram based FM

As shown in Table 5.4 eighteen requires constraints extracted for social network FM

involves mandatory feature and are removed by rule 1. Eleven requires constraints

are identified between parent and child feature and are removed using rule 2.

After removing anomalies, remaining constraints are added in to FM for generating

complete FM. Figure 5.8 shows the complete Social network FM with constraints

after removing anomalies.

Results and Discussion 61

Figure 5.8: Social network FM after removing anomalies

5.2.3.2 Use Case Based Cnstraints Extraction

In use case based approach [33] constraints between features of FM are identified

by using use case relationships from use case diagram. The input for this approach

is social network FM and use case diagrams of products belonging to social network

SPL. Requires constraints are identified through include relationship of use cases.

In social network use case diagrams, no include relation is present. As include

relation is not present in use case diagrams of products, no constraint is extracted

using use case based approach. The use case based approach failed to extract

constraints for social network FM as include relation is not present in use case

diagrams of the products of social network SPL.

Results and Discussion 62

5.3 Comparison

For evaluation purpose three case studies are used and constraints for each FM

are extracted using proposed technique as well as technique proposed by Mefteh

et al. [33]. Comparison of number of constraints extracted by proposed approach,

existing approach and Benchmark FM is done. Benchmark FM are the FM that are

downloaded from SPLOT repository. The benchmark FM without constranints are

taken as input by the proposed approach. After the identification of constraints by

the proposed approach, constraints extracted by proposed approach are compared

with constraint present in benchmark FM to check weather the constraints present

in benchmark FM are identified by proposed approach or not. Comparison of

constraints identified by proposed approach, existing approach and benchmark

FM for each case study are given in Figure 5.9.

Figure 5.9: Number of constraints extracted for case studies

For E-shop case study two constraints are identified using proposed approach.

Also using approach proposed by Mefteh et al. [33] two constraints are extracted

for E-shop FM whereas three constraints are present in benchmark FM . Although

Results and Discussion 63

the number of constraints extracted by both proposed and existing techniques are

same for E-shop case study but the extracted constraints are different. As proposed

approach handles constraints causing anomalies in FM, the constraint extracted

by proposed approach when added in FM does not cause any anomaly which indi-

cates that extracted constraints are correct constraints. The constraints identified

by proposed approach are same as present in benchmark FM. Both constraints

extracted by technique proposed by existing approach are redundant constraints

as shown in Figure 5.3. In constraint Confirm order requires payment both

features are mandatory features. As mandatory features are always part of every

configuration, the requires constraint between two mandatory features give redun-

dant information thats why constraint Confirm order requires payment is indicated

as redundant constraint by tool as shown in Figure 5.3. In constraint add to cart

requires view item again both features are mandatory and extracted constraints

give redundant information. The constraint constraint add to cart requires view

item is indicated as redundant constraint by tool as shown in Figure 5.3.

For Mobile media case study, three constraints are present in benchmark FM.

Three constraints are extracted by proposed approach and all of the constraints

are non-redundant and does not cause any anomaly in FM. All the constraints

identified by proposed are same to the constraints present in benchmark FM. One

constraint is extracted for mobile media case study by using approach proposed

by Mefteh et al. [33]. The number of constraint extracted by use case based

approach is less than number of constraints extracted by proposed approach; in

addition to that constraint extracted by use case based approach is redundant.

The constraint identified by use case based approach is manage media requires

manage album as shown in Figure 5.6. Both features manage media and manage

album are mandatory features. The requires constraint between two mandatory

features gives redundant information so constraint manage media requires manage

album is indicated as redundant constraint by tool as shown in Figure 5.6.

For social network case study three constraints are present in benchmark FM.

Three constraints are extracted using proposed approach. Identified constraints

are correct constraints and are same to the constraints present in benchmark

Results and Discussion 64

FM. No anomalies are identified by tool after adding these constraints. Existing

approach failed to extract constraints for social network case study as only Include

relationship of use cases is used by this approach for constraint extraction. In

social network case study no include relation is present in use case diagrams so no

requires constraint is extracted by existing approach.

The fact that existing approach is unable to extract constraints for certain sce-

narios indicates weakness approach. Proposed approach is able to extracted more

number of constraints as well as can extract constraints for such scenarios in which

existing approach failed. So over all proposed approach performed well in term of

number of extracted constraints as well as quality of extracted constraints.

Chapter 6

Conclusion and Future Work

SPL is a promising approach for providing reusability of assets. Reusability helps

in fast software production. One of the main steps of SPLE is managing variability

of SPL. In literature different techniques have been proposed for managing vari-

ability of SPL but FM is one of the most commonly used techniques. FM plays an

important role in managing variability and commonalities of SPL. In FM features

are arranged in hierarchal structure using different relationships between features.

In addition to FM relationships, CTCs are also defined between features. A lot of

work has been done in the field of FM construction. Two main approaches for FM

construction are: Top-down approach and bottom-up approach. Top-down ap-

proach is preferred for FM construction due to construction of FM in early stages

of SDLC Different assets are used for construction of FM using top-down approach

that includes, requirements, product descriptions, use case models and use case

descriptions. Through the detailed literature survey and experimentation, we are

able to answer our research questions described in Chapter 1. Following are the

answers of our research questions:

RQ 1: Can we extract feature model constraints for certain scenarios not covered

by existing techniques ?

65

Conclusion and Future Work 66

The existing use case based FM construction approaches perform well in term of

extraction of features and hierarchy. The main area that is not completely cov-

ered by proposed approaches is extraction of constraints. Most of the techniques

in literature do not extracted constraints of FM. Techniques that do extract con-

straints are unable to extract all the constraints and also the extracted constraints

are redundant in most of the cases. Already proposed techniques also do not fil-

ter constraints causing anomalies.To improve FM quality, we have used activity

diagram of system for constraint extraction. Using activity diagram helps in ex-

traction of sequential dependencies between features and constraints are extracted

using these dependencies. By using activity diagram, proposed approach can ex-

tract constraints that depends on sequential dependencies of use cases which is not

covered by existing techniques. In addition to that, proposed approach uses con-

straints avoid inclusion of wrong constraints in FM by filtering constraints causing

anomalies.

RQ 2: Are constraints identified by proposed technique higher than existing tech-

niques?

Evaluation and comparison of proposed approach is done using three case studies.

The proposed approach is compared with one of the existing technique. Con-

straints are extracted by both techniques for all the case studies. The number

of constraints identified by proposed approach, existing approach and constraints

present in benchmark FM are compared. The results show that number of con-

straints extracted by proposed approach is higher than existing approach and are

very close to number of constraints present in benchmark FM. The constraints

extracted by existing approach include redundant constraints on the other hand

no redundant constraints are generated by proposed approach.

6.1 Future Work

After the successful experimentation of proposed approach that is utilizing system

activity diagram for FM construction. We can see that extraction of requires

Conclusion and Future Work 67

constraint for FM is improved by the proposed approach. As extraction of excludes

constraint for FM is not covered by proposed approach. In future, Extraction

of excludes constraints can be done along with requires constraint for further

improvement in FM construction.

Bibliography

[1] P. Clements and L. Northrop, Software product lines: practices and patterns.

Addison-Wesley Reading, 2002, vol. 3.

[2] M. Kim, S. Park, V. Sugumaran, and H. Yang, “Managing requirements

conflicts in software product lines: A goal and scenario based approach,”

Data & Knowledge Engineering, vol. 61, no. 3, pp. 417–432, 2007.

[3] S. A. Halim, D. N. A. Jawawi, and S. Deris, “Requirements identification and

representation in software product line,” in Software Engineering Conference,

2009. APSEC’09. Asia-Pacific. IEEE, 2009, pp. 340–346.

[4] G. Bockle, P. Clements, J. D. McGregor, D. Muthig, and K. Schmid, “Cal-

culating roi for software product lines,” IEEE software, vol. 21, no. 3, pp.

23–31, 2004.

[5] A. Metzger and K. Pohl, “Variability management in software product line

engineering,” in Companion to the proceedings of the 29th International Con-

ference on Software Engineering. IEEE Computer Society, 2007, pp. 186–187.

[6] K. Lee, K. C. Kang, and J. Lee, “Concepts and guidelines of feature mod-

eling for product line software engineering,” in International Conference on

Software Reuse. Springer, 2002, pp. 62–77.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,

“Feature-oriented domain analysis (foda) feasibility study,” Carnegie-Mellon

Univ Pittsburgh Pa Software Engineering Inst, Tech. Rep., 1990.

68

Bibliography 69

[8] E. Bagheri, T. D. Noia, D. Gasevic, and A. Ragone, “Formalizing interac-

tive staged feature model configuration,” Journal of Software: Evolution and

Process, vol. 24, no. 4, pp. 375–400, 2012.

[9] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated reasoning on fea-

ture models,” in International Conference on Advanced Information Systems

Engineering. Springer, 2005, pp. 491–503.

[10] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of feature

models 20 years later: A literature review,” Information Systems, vol. 35,

no. 6, pp. 615–636, 2010.

[11] G. Zhang, H. Ye, and Y. Lin, “Feature model validation: A constraint

propagation-based approach,” in Proceedings of the International Conference

on Software Engineering Research and Practice (SERP). Citeseer, 2011, p. 1.

[12] S. Bühne, K. Lauenroth, and K. Pohl, “Why is it not sufficient to model

requirements variability with feature models,” in Proceedings of Workshop:

Automotive Requirements Engineering. Citeseer, 2004, pp. 5–12.

[13] D. Beuche, H. Papajewski, and W. Schröder-Preikschat, “Variability man-

agement with feature models,” Science of Computer Programming, vol. 53,

no. 3, pp. 333–352, 2004.

[14] M. Acher, P. Collet, P. Lahire, and R. France, “Composing feature models,”

in International Conference on Software Language Engineering. Springer,

2009, pp. 62–81.

[15] D. M. Le, H. Lee, K. C. Kang, and L. Keun, “Validating consistency be-

tween a feature model and its implementation,” in International Conference

on Software Reuse. Springer, 2013, pp. 1–16.

[16] E. Bagheri, F. Ensan, D. Gasevic, M. Boskovic et al., “Modular feature mod-

els: Representation and configuration,” Journal of Research and Practice in

Information Technology, vol. 43, no. 2, p. 109, 2011.

Bibliography 70

[17] M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow, “Extending feature

diagrams with uml multiplicities,” in 6th World Conference on Integrated

Design & Process Technology (IDPT2002), vol. 23, 2002.

[18] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing cardinality-based

feature models and their specialization,” Software process: Improvement and

practice, vol. 10, no. 1, pp. 7–29, 2005.

[19] K. Czarnecki, C. Hwan, P. Kim, and K. Kalleberg, “Feature models are views

on ontologies,” in Software Product Line Conference, 2006 10th International.

IEEE, 2006, pp. 41–51.

[20] D. Batory, “Feature models, grammars, and propositional formulas,” in In-

ternational Conference on Software Product Lines. Springer, 2005, pp. 7–20.

[21] D. Batory, D. Benavides, and A. Ruiz-Cortes, “Automated analysis of feature

models: challenges ahead,” Communications of the ACM, vol. 49, no. 12, pp.

45–47, 2006.

[22] H. Casalánguida and J. E. Durán, “Automatic generation of feature mod-

els from uml requirement models,” in Proceedings of the 16th International

Software Product Line Conference-Volume 2. ACM, 2012, pp. 10–17.

[23] K. Berg, J. Bishop, and D. Muthig, “Tracing software product line variability:

from problem to solution space,” in Proceedings of the 2005 annual research

conference of the South African institute of computer scientists and infor-

mation technologists on IT research in developing countries. South African

Institute for Computer Scientists and Information Technologists, 2005, pp.

182–191.

[24] M. L. Griss, J. Favaro, and M. d’Alessandro, “Integrating feature model-

ing with the rseb,” in Software Reuse, 1998. Proceedings. Fifth International

Conference on. IEEE, 1998, pp. 76–85.

[25] T. Ziadi, L. Frias, M. A. A. da Silva, and M. Ziane, “Feature identifica-

tion from the source code of product variants,” in Software Maintenance and

Bibliography 71

Reengineering (CSMR), 2012 16th European Conference on. IEEE, 2012,

pp. 417–422.

[26] C. Kästner, S. Trujillo, and S. Apel, “Visualizing software product line vari-

abilities in source code.” in SPLC (2), 2008, pp. 303–312.

[27] T. von der Maßen and H. Lichter, “Deficiencies in feature models,” in work-

shop on software variability management for product derivation-towards tool

support, vol. 44, 2004.

[28] U. Lesta, I. Schaefer, and T. Winkelmann, “Detecting and explaining conflicts

in attributed feature models,” arXiv preprint arXiv:1504.03483, 2015.

[29] K. Czarnecki and C. H. P. Kim, “Cardinality-based feature modeling and

constraints: A progress report,” in International Workshop on Software Fac-

tories. ACM San Diego, California, USA, 2005, pp. 16–20.

[30] M. Kowal, S. Ananieva, and T. Thüm, “Explaining anomalies in feature mod-

els,” in ACM SIGPLAN Notices, vol. 52, no. 3. ACM, 2016, pp. 132–143.

[31] A. Felfernig, D. F. Benavides Cuevas, J. Á. Galindo Duarte, and F. Reinfrank,

“Towards anomaly explanation in feature models,” in ConfWS-2013: 15th

International Configuration Workshop (2013), p 117-124. CEUR-WS, 2013,

pp. 117–124.

[32] M. Mendonca, M. Branco, and D. Cowan, “Splot: software product lines on-

line tools,” in Proceedings of the 24th ACM SIGPLAN conference companion

on Object oriented programming systems languages and applications. ACM,

2009, pp. 761–762.

[33] M. Mefteh, N. Bouassida, and H. Ben-Abdallah, “Implementation and eval-

uation of an approach for extracting feature models from documented uml

use case diagrams,” in Proceedings of the 30th Annual ACM Symposium on

Applied Computing. ACM, 2015, pp. 1602–1609.

[34] L. Chen, M. Ali Babar, and N. Ali, “Variability management in software

product lines: a systematic review,” in Proceedings of the 13th International

Bibliography 72

Software Product Line Conference. Carnegie Mellon University, 2009, pp.

81–90.

[35] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed, “On extracting feature

models from sets of valid feature combinations,” in International Conference

on Fundamental Approaches to Software Engineering. Springer, 2013, pp.

53–67.

[36] A. Braganca and R. J. Machado, “Automating mappings between use case

diagrams and feature models for software product lines,” in Software Product

Line Conference, 2007. SPLC 2007. 11th International. IEEE, 2007, pp.

3–12.

[37] B. Wang, W. Zhang, H. Zhao, Z. Jin, and H. Mei, “A use case based approach

to feature models’ construction,” in Requirements Engineering Conference,

2009. RE’09. 17th IEEE International. IEEE, 2009, pp. 121–130.

[38] Y. Lin and X. Zhou, “A traceability approach to constructing feature model

from use case models,” in Computer Science & Service System (CSSS), 2012

International Conference on. IEEE, 2012, pp. 545–548.

[39] M. Mefteh, N. Bouassida, and H. Ben-Abdallah, “Feature model extraction

from documented uml use case diagrams,” ADA USER, vol. 35, no. 2, p. 107,

2014.

[40] H.-E. Eriksson and M. Penker, “Business modeling with uml,” New York, pp.

1–12, 2000.

[41] R. Eshuis, “Symbolic model checking of uml activity diagrams,” ACM Trans-

actions on Software Engineering and Methodology (TOSEM), vol. 15, no. 1,

pp. 1–38, 2006.

[42] P. Trinidad, D. Benavides, and A. Ruiz-Cortés, “A first step detecting incon-

sistencies in feature models,” in CAiSE Short Paper Proceedings, 2006.

Bibliography 73

[43] L. Rincón, G. Giraldo, R. Mazo, C. Salinesi, and D. Diaz, “Method to identify

corrections of defects on product line models,” Electronic Notes in Theoretical

Computer Science, vol. 314, pp. 61–81, 2015.

[44] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich, “Fea-

tureide: An extensible framework for feature-oriented software development,”

Science of Computer Programming, vol. 79, pp. 70–85, 2014.

[45] “Staruml,” 2011. [Online]. Available: http://staruml.sourceforge.net/en/

http://staruml.sourceforge.net/en/

	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	1 Introduction
	1.1 Feature Model
	1.1.1 Basic Feature Model
	1.1.2 Cardinality-based Feature Model
	Feature cardinality
	Group cardinality

	1.1.3 Extended Feature Model

	1.2 Feature Model Construction
	1.2.1 Top-down Approach
	Textual documentation based construction
	Use case based construction

	1.2.2 Bottom-up Approach

	1.3 Anomalies in FM
	1.3.1 Void FM
	1.3.2 Dead Feature
	1.3.3 False Optional Feature
	1.3.4 Redundancies

	1.4 Problem Statement
	1.5 Research Questions
	1.6 Research Methodology
	1.7 Thesis Organization

	2 Literature Review
	2.1 Use Case Based FM Construction Techniques
	2.1.1 FM Construction Without Constraint Extraction
	Griss et al., 1998
	Braganca and Machado, 2007
	Wang et al., 2009

	2.1.2 FM Construction With Constraint Extraction
	Lin and Zhou, 2012
	Casalnguida and Duran, 2012
	Mefteh and Bouassida, 2014
	Mefteh et al., 2015

	2.2 Comparison
	2.3 Gap Analysis

	3 Proposed Solution
	3.1 Activity Diagram Based Constraint Extraction
	3.2 Algorithm for Constraint Extraction
	3.2.1 Identification of Features and Constraints
	3.2.1.1 Activity Diagram
	3.2.1.2 Use Case Identification
	3.2.1.3 Constraints Identification

	3.2.2 Comparison of Features Extracted from Activity Diagram and FM Features
	3.2.3 Dealing with Anomalies
	3.2.4 Inclusion of Constraints in FM

	4 Implementation
	4.1 Implementation Details
	4.1.1 FeaturesIdentifier
	4.1.2 ConstraintsIdentifier
	4.1.3 FeaturesComparison
	4.1.4 FMConstraintsInclusion

	4.2 Tool Usage

	5 Results and Discussion
	5.1 Case Studies
	5.1.1 E-shop SPL
	5.1.2 Mobile Media SPL
	5.1.3 Social Networks SPL

	5.2 Evaluation and Comparison
	5.2.1 E-shop SPL
	5.2.1.1 Activity Based Constraints Extraction
	5.2.1.2 Use Case Based Constraints Extraction

	5.2.2 Mobile Media SPL
	5.2.2.1 Activity Based Constraints Extraction
	5.2.2.2 Use Case Based Constraints Extraction

	5.2.3 Social Networks SPL
	5.2.3.1 Activity Based Constraints Extraction
	5.2.3.2 Use Case Based Cnstraints Extraction

	5.3 Comparison

	6 Conclusion and Future Work
	6.1 Future Work

	Bibliography

