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Chapter 1
Questionable Research Practices 
in Clinical Psychology

William O’Donohue and Akihiko Masuda

Abstract  Research into fundamental questions such as psychotherapy outcome 
and process forms a fundamental component of clinical science. At a broader level, 
the aim of this volume is to present useful, practical information—for both consum-
ing current research and improving one’s own research—for researchers, instruc-
tors, and trainees (e.g., doctoral students) in clinical psychology. Simultaneously, at 
a more specific level, it is also our thesis that an improved understanding of ques-
tionable research practices (QRPs) derived from this book offers students and 
researchers to more accurately and deeply understand psychological science and 
clinical psychology and to learn to avoid errors in their own research. While taking 
these aims into consideration, we have organized this book into three major sec-
tions. The first section of this volume (i.e., Chaps. 1, 2, 3, and 4) offers a general 
introduction to the issues of QRPs, setting them into a historical and current land-
scape in psychological science and clinical psychology. The second section of this 
volume (Chaps. 5, 6, 7, 8, 9, 10, 11, 12, and 13) introduces some of the notable 
exemplars of QRPs and QRPs in various research contexts. Finally, in the third and 
last section of this volume (Chaps. 14, 15, 16, 17, 18, and 19), newly emerging 
models for minimizing the impact of QRPs in research are presented.

Keywords  Questionable research practices · Clinical psychology · 
Clinical science

�Background

Research into fundamental questions such as psychotherapy outcome and process 
forms a fundamental component of clinical science (McFall, 1991). For a variety of 
reasons, replications of these studies are also a key component of clinical science. 
Knowledge is thought to be reliable: A true result ought to appear again in similar 
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testing circumstances. This generalizability question is critical because practitioners 
essentially depend on the reliability of these results when they consume this research 
and use it as a basis for their clinical decision-making (e.g., choice of treatments for 
a particular client). To put it another way, practitioners want the general results to 
“replicate” with their clients. Therefore, replication studies can provide information 
about the extent to which scientific results are indeed reproducible.

When a result is found not to be reproducible, then additional key questions are 
raised that can range broadly as: “Are the original results actually spurious/artifac-
tual/false?” or “Was there some sort of error (intentional or unintentional) in con-
ducting or interpreting the replication study that showed a failure to replicate?” or 
“Because in any attempt of conducting a replication, is it simply impossible to cre-
ate identical situations (e.g., use the same participants, history effects given the 
passage of time create differences in participants, etc), and are some of the unavoid-
able differences just due to legitimate boundary conditions to the effect?” (e.g., 
Schmidt, 2009). However, even if this is the case, what exactly are these boundary 
conditions and is the situation that I want to generalize to within or outside these 
boundaries? Replication failures or even when it is unknown if a result can replicate 
can lead to very problematic consequences, such as unexpected treatment failures.

�Replication Crisis in Psychology

Social psychology has been the subfield in psychology that in the last few decades 
paid the most attention to replications and has generally been regarded as having a 
replication crisis. They should be seen not as unique but as showing leadership 
regarding these issues. Several key findings in social psychology have simply failed 
to replicate (see Chap. 4 in this volume). This of course can call into question find-
ings in which replications have not yet been attempted. The question becomes, 
“Would this finding replicate?” or relatedly, “Does this finding seem robust even 
though it has not been put to the test of replication?”

There are several types of replications (e.g., direct or literal, partial, or concep-
tual) and questions can be raised about what it means for a study to be replicated or 
not to be replicated (see Chaps. 4 and 14 in this volume). It is often the case that 
replications can be very expensive to conduct in time, effort, and money and this is 
certainly one reason why there are so few. Replicating grant research may not even 
be feasible unless one also can obtain a similar-sized grant to obtain the necessary 
resources, and granting agencies may not value replication studies sufficiently to 
award such grants. There are views that journal editors will more likely reject repli-
cations than original studies and views that conducting replications are not as career 
enhancing as conducting original research (see Chap. 10 in this volume). These 
factors can all conspire to create few replications and thus the reproducibility of 
studies in clinical science can remain an open question.

W. O’Donohue and A. Masuda
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�Replication Studies in Clinical Psychology

These reasons may have a role in the relatively low amount of published replication 
research in clinical psychology. As a crude index, the APA PsycINFO search (con-
ducted on October 29, 2021) using the following key words revealed the following 
number of citations:

•	 “Replication” (in title) and “cognitive behavior therapy” (in any text) = 40
•	 “Replication” (in title) and “psychodynamic” (in title) = 4
•	 “Replication” (in title) and “Rogerian” (in title) = 0
•	 “Replication” (in title) and “eclectic” (in title) = 0
•	 “Replication” (in title) and “cognitive therapy” (in title) = 84
•	 “Failure to replicate” (in title) and “behavior therapy” (in title) = 12
•	 “Replication” (in title) and “acceptance and commitment therapy” (in title) = 3
•	 “Replication” (in title) and “dialectical behavior therapy” (in title) = 1
•	 “Questionable research practices” (in title) and “behavior therapy” (in title) = 0.

These are admittedly crude indices and the reader is cautioned that some replica-
tion studies could be missed in these procedures, but on the other hand it is also 
important to note that these values do not mean that each citation was an actual 
replication study, as a review of the titles and abstracts revealed that some of these 
citations were commentaries, literature reviews, and types of studies other than rep-
lication studies. However, given the decades that this literature search covers, these 
numbers seem alarmingly low: it seems fair to say that there have been few replica-
tion attempts for the vast majority of results in the field of clinical psychology.

In addition, another concern is the extent to which psychologists pay attention to 
studies that report replication failures. In the social psychology literature, there is 
evidence that when studies fail to replicate, psychologists still pay more attention to 
the original study rather than the replication failure. For example, Darley and Gross 
(1983) initially published a study that showed that social class information biased 
participants’ interpersonal judgments. However, subsequently, Baron et al. (1995) 
published an article that described two experiments with much larger samples that 
not only failed to replicate the original findings but interestingly reported findings 
were in the opposite direction. However, Jussim, Crawford, Anglin, Stevens, and 
Duarte (2016) in an analysis of citations since 1996, found that the original study 
(i.e., Darley & Gross, 1983) was cited 852 times, while the failed replication had 
been cited only 38 times (according to Google Scholar searches conducted on 
September 11, 2015). It may be the case that psychologists prefer the “good news” 
of a positive finding and attempt to avoid or minimize a replication failure that casts 
doubt on a positive finding. Clinical scientists reasonably want to have tools to help 
individuals, and perhaps for them, replication failures can be seen as undermining 
the hope associated with these possible tools.

1  Questionable Research Practices in Clinical Psychology
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�Questionable Research Practices

Questionable research practices (QRPs) have been implicated by many as being 
responsible for findings that can be created by researchers that produce initially false 
results (Fiedler & Schwarz, 2016; John et al., 2012; Wicherts, 2011). False results 
would hopefully not be replicated as this would allow the science to identify and 
perhaps be cleansed of false information. QRPs can range from: the use of the “file 
drawer” to hide negative results (Rosenthal, 1979; Rotton et al., 1995), p-hacking 
(e.g., Wicherts et al., 2016), hypothesizing after results are known (HARKing; Kerr, 
1998), selective reporting of multiple outcome variables (O’Donohue et al., 2016a), 
deciding to collect more data when the results are not significant (p-hacking), and 
failing to disclose all experimental conditions (also see this whole volume for a fur-
ther explication of the different types of QRPs as well as their definitions).

John, Lowenstein, and Prelac (2012) surveyed over 2000 academic psycholo-
gists and asked them to self-disclose their usage of QRPs. Their conclusion was that 
the results indicated “surprisingly” high self-admission rates of a wide variety of 
QRPs. There was a corresponding low rate of self-admission of outright manufac-
ture of data. Thus, this seems to be consistent that the major problem in the distor-
tion of the scientific research base in psychology is not fabricating data but the use 
of QRPs to produce favored results. It must also be noted that it is likely that these 
data are still an underestimate of the use of QRPs in psychology as these values can 
be affected by the reluctance to disclose any wrongdoing. Some of the key findings 
are presented in Table 1.1.

Table 1.1  Self-admission rate of various questionable research practice (QRP) reported in John 
et al. (2012)

QRP item
Self-admission 
rate (%)

1. In a paper, failing to report all of a study’s dependent measures 66.5
2. Deciding whether to collect more data after looking to see whether the 

results were significant
58.0

3. In a paper, failing to report all of a study’s condition 27.4
4. Stopping collecting data earlier than planned because one found the 

result that one had been looking for
22.5

5. In the paper, “rounding off” a p-value (e.g., reporting that a p-value of 
0.054 is less than 0.05)

23.3

6. In a paper, selectively reporting studies that “worked” 50.0
7. Deciding whether to exclude data after looking at the impact of doing so 

on the results
43.4

8. In a paper, reporting unexpected finding as having been predicted from 
the start

35.0

9. In a paper, claiming that results are unaffected by demographic variables 
(e.g., gender) when one is actually unsure (or knows that they do)

4.5

10. Falsifying data 1.7

Note: Self-admission rates reported in the table are ones endorsed by the participants who were 
supplemented by incentives for honest reporting (i.e., Bayesian truth serum group)

W. O’Donohue and A. Masuda
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Thus there is a concern not only in clinical psychology but also in other disci-
plines that QRPs may be responsible for too many “false-positive” results. For 
example, Fanelli (2012) conducted a meta-analysis of over 4600 publications in a 
variety of scientific disciplines that were published between 1990 and 2007. His 
results found a general trend in which positive support for tested hypotheses grew 
over 22% during this time period. Of the most concern, Fanelli (2012) examined 
possible differences between disciplines in the growth of positive results and dis-
covered that the mean frequency of positive results was “significantly higher when 
moving from the physical, to the biological to the social sciences, and in applied 
versus pure disciplines” (Fanelli, 2012, p. 893). In a more direct study of practices 
in psychology, Francis (2014) demonstrated through the use of a test of excess suc-
cess (TES) that empirical studies published in two key psychology journals succeed 
at a much higher rate than should be expected given estimated effects and sam-
ple sizes.

�Questionable Research Practices in Clinical Psychology

The question arises: To what extent is there such a positive bias in the publication of 
research in clinical psychology? Perhaps a more radical question is: With sufficient 
use of QRPs, can any research manufacture a positive result? In the case of psycho-
therapy outcome research, O’Donohue, Snipes, and Soto (2016a, b) have argued 
that researchers have sufficient degrees of freedom in designing and conducting 
research that this may be the case. For example, by choosing a better therapist for 
the favored experimental condition versus the control condition, choosing a weaker 
control condition (no attention vs treatment as usual), deciding to not use blinds, 
deciding to use only statistical significance versus clinical significance in reporting 
outcomes, deciding not to include post-treatment assessment periods to examine 
possible relapse, analyzing only therapy completers instead of using an intent to 
treat analysis, using multiple dependent variables but only reporting positive ones, 
using outcome measures of problematic validity, failing to include process mea-
sures to assess if changes are due to hypothesized variables, and so on, it becomes 
relatively easy to manufacture a positive result. Perhaps there needs to be another 
sort of replication—a kind of replication that eliminates as many QRPs as possible.

In fact, these authors (O’Donohue et al., 2016a) analyzed a publication of the 
efficacy of acceptance and commitment therapy (ACT; Hayes et al., 2012) and dia-
betes self-management (Gregg et  al., 2007; see Gregg & Hayes, 2016, for a 
response). The published report was based on a dissertation and it was possible to 
analyze discrepancies between the dissertation and the published research report. 
They found the following (O’Donohue et al., 2016a p. 22):

•	 A failure to report several key negative results from the dissertation in a subse-
quent peer-reviewed journal publication.

•	 A series of overstatements and misstatements by the researchers in subsequent 
publications about the positive findings in the dissertation.

1  Questionable Research Practices in Clinical Psychology
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•	 The development of a bibliotherapeutic intervention marketed to people with 
diabetes (claiming to be “a proven program”) in which the reader is led to believe 
that the bibliotherapy intervention they are buying and using has been shown to 
be effective and safe in past research, when the bibliotherapy intervention has not 
even been studied at all. In addition, the reader is not informed of the data that 
the intervention failed to work due to the hypothesized ACT processes.

•	 In addition, the reader of the self-help book is not informed of the negative results 
of the data relating to an intensive workshop led by an ACT therapist, numerous 
serious limitations of the design of this study, the fact that these results have not 
been replicated, or about the possible efficacy of alternative treatments.

•	 The failure to accurately describe in subsequent publications, particularly in a 
peer-reviewed journal publication, what are at best equivocal findings regarding 
the role of putative ACT processes as mediating these results. Instead, the oppo-
site is found: clear, but inaccurate, statements about ACT processes producing 
clinically significant changes in diabetes self-management when the original 
data simply do not warrant this.

•	 A lack of appropriate caution and qualification in interpreting the data relating to 
the effectiveness of ACT for diabetes self-management despite numerous meth-
odological shortcomings, including, but not limited to: therapist allegiance 
effects, dependent measures with unknown psychometrics, no blinds, minimal 
follow-up, no safety measures, significant attrition, problems with alpha rate 
inflation, no comparison to key treatments as usual, and no replications.

•	 The existence of these problems sometimes occurred in a context in which the 
authors were explicitly reassuring readers that they would refrain from excessive 
claims and would point out unresolved empirical issues, thus providing readers 
with a false reassurance that good scientific practices were being followed.

The concern is that such distortions in the scientific clinical literature can pro-
duce distortions and misinformation that can ultimately harm vulnerable clients. 
There have been too few studies of self-admission rates of clinical scientists regard-
ing their usage of QRPs as well as too few analyses of such behavior. The methodol-
ogy used by O’Donohue et al. (2016a) could be used to examine the discrepancies/
consiliences between master theses and dissertations with published articles based 
on these. However, although identifying some QRPs, this method admittedly can 
still underestimate the use of QRPs because these cannot identify those used in the 
original dissertation research that are not explicated in this document.

Clinical scientists consult the research literature but if this research literature has 
key false positives—and perhaps it does not need to have that many—incorrect 
treatment decisions can be made and thus the problems of clients we ought to be 
serving well can be prolonged. The evidence-base of clinical science becomes more 
a reflection of hype, marketing tactics, and rhetoric rather than science.

A related question becomes: “To what extent are peer-reviewed scientific studies 
in the clinical psychology literature biased by personal motivations of the scien-
tist?” Interestingly, it is long recognized by many cognitive behavior therapists that 
Big Pharma has biased results in psychopharmacological research in depression as 

W. O’Donohue and A. Masuda
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well as other problem areas (see for example Antonuccio et al., 2002). In another 
problem domain, Etter, Burri, and Stapleton (Etter et  al., 2007) found that in an 
examination of all randomized controlled trials of nicotine replacement therapy for 
smoking cessation, industry-supported trials found more statistically significant 
results than non-industry trials. In addition, these studies reported larger effect sizes 
as well. But to a very large extent similar motivations have been largely ignored for 
researchers in cognitive behavioral therapy (CBT). Do proponents of some psycho-
therapy have personal incentives to use QRPs to manufacture positive results? Are 
such practices prudent and defensible? Admittedly, for cognitive behavior therapists 
the magnitude of the possible financial gain is less by order of magnitudes but sig-
nificant personal financial consequences can still be present.

Ioannidis (2005) has made a similar but broader point about the medical litera-
ture. In his article “Why most published research findings are false,” he addressed:

“The greater the financial and other interests and prejudices in a scientific field, the 
less likely the research findings are to be true. Conflicts of interest and prejudice may 
increase bias, u. Conflicts of interest are very common in biomedical research…, and typi-
cally they are inadequately and sparsely reported…. Prejudice may not necessarily have 
financial roots. Scientists in a given field may be prejudiced purely because of their belief 
in a scientific theory or commitment to their own findings. Many otherwise seemingly inde-
pendent, university-based studies may be conducted for no other reason than to give physi-
cians and researchers qualifications for promotion or tenure. Such nonfinancial conflicts 
may also lead to distorted reported results and interpretations. Prestigious investigators may 
suppress via the peer review process the appearance and dissemination of findings that 
refute their findings, thus condemning their field to perpetuate false dogma. Empirical evi-
dence on expert opinion shows that it is extremely unreliable….” (p. 0698)

�Making Sense of Questionable Research Practices 
from the Perspective of Meta-Science

Meta-scientists such as philosophers of science and sociologists of science have 
attempted to study and understand science from both an “internal” perspective—
that is, a focus on matters such as the logic of research—and an “external” perspec-
tive—that is, a focus on human and psychological factors influencing the behavior 
of the scientist. For example, the prominent philosopher of science, Sir Karl Popper 
(1972), focused on commonly observed cognitive biases such as “the craving to be 
right” (i.e., confirmation bias) as a distorting psychological influence in science.

This important distinction between logical and psychological analyses is carried 
further recently in a blog (corelab.blog; March 5, 2020) in what might be called a 
“scientist as logician” perspective versus a “scientist as human” perspective. In the 
scientist as logician perspective, the following are emphasized: (1) Scientists are 
viewed as primarily truth-seekers; (2) Scientists are seen as relying on logic to 
develop the most efficient ways of discovering truth and growing a knowledge base 
through their research; and (3) If some critic uses logic to identify flaws or errors in 
a scientist’s current knowledge-seeking process, then, to the extent that the critic’s 
logic is sound, that scientist will modify his or her scientific practices.

1  Questionable Research Practices in Clinical Psychology
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In contrast, in the “scientist as human” perspective, the following claims are 
instead emphasized: (1) Humans, including scientists, have a wide number and vari-
ety of goals (that include discovering truth and the growth of knowledge, being 
accurate and precise as possible; but in addition, scientists have other goals such as 
demonstrating that he or she is correct, career advancement, fame, financial gain, 
and so on). Scientific behavior may be associated with both sets of factors; the rela-
tive influence of each may vary across scientists; (2) In addition, all humans, includ-
ing psychological researchers, are embedded in influential social systems including 
political, economic, and professional ones; (3) Humans, including clinical scien-
tists, are sensitive and are influenced by the imperatives and incentives of these 
systems; and (4) Reformers (including those attempting to improve the quality of 
science) as well as other critics must attend to these human goals as well as social, 
political, economic, and professional imperatives that influence the clinical scientist 
if they want to successfully create lasting changes in scientific practice as well as the 
social, economic, and personal imperatives that might function to decrease the like-
lihood of clinical scientists from engaging in certain behaviors, especially behavior 
inconsistent with the scientist as logician perspective. Any reform to increase the 
quality of science then must work to align those imperatives with the desired 
behaviors.

�Possible Solutions

The chapters that follow will discuss solutions that have been proposed and even 
tried out to better deal with QRPs in science. There has been too little attention 
given to this issue at present and thus too little engagement with these procedures 
that could improve the quality of clinical science. Briefly, some of the key improve-
ments suggested include:

	 1.	 Pre-registration of studies (to decrease researcher’s degrees of freedom that 
may result in the use of QRPs because the researcher has made pre-commitments 
about key decisions).

	 2.	 Open data (this can allow others to run or rerun analyses).
	 3.	 Adversarial research projects (in order for the research to include fewer unidi-

rectional biases as well as allowing someone to crucially overview the process 
of research).

	 4.	 Decrease use of QRPs (generally, this suggestion is oriented toward increased 
education concerning QRPs, so perhaps individuals are less likely to 
employ these).

	 5.	 The development of methods to detect QRPs (some are more difficult to detect 
than others, but the ability to detect the use of these is invaluable).

	 6.	 Increase publication and other support of replications (attempt to persuade key 
individuals such as journal editors, grant administrators, and even personnel 
committees to increase their valuing of replications).

W. O’Donohue and A. Masuda
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	 7.	 Increase activities such as the Many Lab project (see Chap. 4 in this volume) to 
include non-weird participants either to initially uncover more generalizable 
effects or to more quickly see demographic/cultural boundary conditions.

	 8.	 Perhaps researchers ought to be more explicit in stating the logic of their 
research, and examine options such as the use of modus tollens in Popperian 
inspired research that emphasizes severe testing. Severe testing may be a good 
way to reduce false positives (also see Chap. 2 in this volume).

	 9.	 Increase concern about the psychometric weaknesses or unknowns (initial 
research can be less generalizable when noisy assessment instruments are 
responsible for false-positive results; see Chap. 10 in this volume).

	10.	 More clear financial disclosures especially from workshops, books sales, etc. 
The field has been pretty lax on this—it may be the case that millions of dollars 
may engender more financial influence, but individuals can also be influenced 
by thousands or even hundreds of dollars.

	11.	 Perhaps more research in psychology needs to be reported using the Cochrane 
Collaboration’s tool for assessing risk of bias in intervention outcome studies, 
which is a simple checklist for attempting to identify biases that includes six 
different types of possible bias (selection, performance, detection, attrition, 
reporting, and others; Higgins et al., 2011). It could improve the quality of clini-
cal psychological science if these and other improvements receive more 
attention.

Once again, as discussed extensively elsewhere (e.g., Melchert et al., 2019) and 
throughout this volume, research practices lie at the core of psychological science 
and clinical psychology. However, the standard view of research practices and 
methods, which unfortunately allow for extensive flexibility in data analysis on the 
part of investigators, has recently come into question as a series of QRPs (John 
et al., 2012; Swift et al., 2020). In this context, we believe that promoting our aware-
ness of and self-reflection on QRPs as well as becoming cognizant of these possible 
solutions will be a major first step to minimize harm to the public due to our QRPs 
and to advance our field as a life science.

�Overview of Chapters

At a broader level, the aim of this volume is to present useful, practical informa-
tion—for both consuming current research and improving one’s own research—for 
researchers, instructors, and trainees (e.g., doctoral students) in clinical psychology. 
Simultaneously, at a more specific level, it is also our thesis that an improved under-
standing of QRPs derived from this book offers students and researchers to more 
accurately and deeply understand psychological science and clinical psychology 
and to learn to avoid errors in their own research. While taking these aims into con-
sideration, we have organized this book into three major sections.

1  Questionable Research Practices in Clinical Psychology
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The first section of this volume (i.e., Chaps. 1, 2, 3, and 4) offers a general intro-
duction to the issues of QRPs, setting them into a historical and current landscape 
in psychological science and clinical psychology. Following the present chapter 
(i.e., Chap. 1), which offers a general overview of QRPs in our field, Dylan Wong 
of Oregon Social Learning Center and William O’Donohue of the University of 
Nevada, Reno, present several models regarding the logic of research together with 
a philosophy of science as a meta-level, providing a guiding framework for research 
practice (Chap. 2). More specifically, they present an introductory overview of the 
philosophy of science, problems with induction, and Popperian falsificationism and 
its limitations, then arguing how researchers ought to think about the logic of 
research when designing studies and avoiding QRPs.

With the logic of research in mind, in the subsequent chapter (i.e., Chap. 3), Cory 
Clark of the University of Pennsylvania and her colleagues explicate major human 
variables influencing researchers (e.g., motivational factors and cognitive biases) 
that can affect the way research is conducted. They argue that scientists and research-
ers, like many of us humans, are susceptible to well-documented cognitive biases as 
well as their idiographic motivational factors. To counter these, Clark et  al. also 
propose how intellectual humility can serve as a crucial disposition when engaging 
in research and avoiding the perils of QRPs.

The final chapter of the first section (Chap. 4) presents the historical significance 
of what is now called “Replication Crisis in Psychology” (Pashler & Wagenmakers, 
2012). The replication crisis has made painfully evident that many of our most cher-
ished findings may be considerably less robust than most scholars had assumed 
(e.g., Maxwell et al., 2015). Perhaps, it also has served as the major force in psy-
chology and allied fields that has brought our collective focus to minimize QRPs. In 
Chap. 4, Alexa Tullett of the University of Alabama and her colleagues propose 
several possible solutions (e.g., pre-registration) to offset replication crisis by mini-
mizing some forms of QRPs (e.g., p-hacking).

Some QRPs, especially data fabrication and data falsification, are blatant and 
intentional (Crocker, 2011). However, over the past decade, it has become apparent 
that many omnipresent QRPs are rather subtle and can be unintentionally practiced 
(e.g., John et al., 2012). The second section of this volume (Chaps. 5, 6, 7, 8, 9, 10, 
11, 12, and 13) introduces some of the notable exemplars of QRPs, and QRPs in 
various research contexts.

One of the most well-known QRP is p-hacking (e.g., Wicherts et al., 2016). In 
Chap. 5, Dorota Reis and Malte Friese of Saarland University introduce the myriad 
forms of p-hacking, that is, non-principled decisions during data analysis that are 
aimed at reducing the p-value of a significance test to make the data look more 
robust than they actually are. Fortunately, QRPs, including p-hacking, often leave a 
trail of evidence that indicates they were involved in producing the reported out-
comes. In Chap. 6, Gregory Francis of Purdue University and Evelina Thunell of 
Karolinska Institute present several data-detecting methods for identifying QRPs, 
such as the test for excess success (Francis, 2014) and p-curve analysis (Simonsohn 
et al., 2014).
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To date, p-hacking has been considered as a major exemplar of QRPs. This is in 
part because null hypothesis significance testing (NHST) continues to remain the 
dominant statistical analysis method in psychological science and clinical psychol-
ogy. In Chap. 7, Brian O’Connor and Nataasha Khattar of the University of British 
Columbia, Okanagan, provide an overview of NHST and of controversies and limi-
tations surrounding NHST. As noted by O’Connor and Khattar, conducting NHST 
without knowing these controversies could easily result in the engagement in QRPs 
without awareness of doing so. To minimize the risk of QRP, they also offer Bayesian 
methods (Kruschke, 2015; O’Connor, 2017) as one of the most useful alternatives 
to NHST. Following the chapter on controversies surrounding NHST, Ana Bridges 
of the University of Arkansas presents Hypothesizing After Results Are Known 
(HARKing; Kerr, 1998) as another major QRP.  Bridges argues that HARKing 
threatens a set of core values on which the scientific process rests, including objec-
tivity, honesty, openness, accountability, fairness, and stewardship, and therefore 
dampens the very spirit of science.

Once again, given psychology’s strong quantitative orientation, there are fre-
quent statistical controversies pertaining to the ways in which conclusions should be 
drawn from data. In Chap. 9, Andrew Hales and Natasha Wood of the University of 
Mississippi offer a summary overview of major statistical controversies, including 
those that are discussed in previous chapters (e.g., NHST vs Bayesian methods). 
More specifically, they focus on the controversies that are most fundamental to the 
decisions that researchers make when planning and conducting their analyses as 
well as the conclusions that consumers should draw when reviewing these.

Chapter 10 then covers publication bias (Franco et al., 2014; Rosenthal, 1979), a 
longstanding problem in the field of psychological science and clinical psychology. 
Publication bias refers to the tendency for statistically significant findings to be 
published over non-significant findings, and it is also known to unintentionally pro-
mote many forms of QRPs, including p-hacking and HARKing (e.g., Ferguson & 
Heene, 2012). In Chap. 10, Robbie van Aert of Tilburg University and Helen 
Niemeyer of the Free University of Berlin (Freie Universität Berlin) present publi-
cation bias as a major threat to the validity of meta-analyses, which is often viewed 
as the best available quantitative summary of studies on the same topic. van Aert 
and Neimeyer argue that, in clinical psychology (e.g., clinical trials), a major threat 
of publication bias to a meta-analysis is the overestimation of the effect size, which 
gives a false impression with respect to the efficacy of a treatment. To minimize this 
risk, they also offer methods to assess publication bias in a meta-analysis (e.g., van 
Aert et al., 2019).

In Chap. 11, Jolynn Pek of the Ohio State University and her colleagues provide 
statistical justifications and illustrations of whether and when statistical power can 
be used to improve the conduct of psychological science, reduce QRPs, and perhaps 
even detect QRPs. This is a very important chapter as statistical power analysis is 
regarded as one of several means to reduce QRPs (e.g., Appelbaum et al., 2018), and 
yet it continues to be misunderstood and misapplied in research (McShane 
et al., 2020).
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The last two chapters of this section discuss QRPs in the areas of research where 
they are relatively understudied. More specifically, in Chap. 12, Matt Tincani and 
Jason Travers of Temple University present how QRPs could manifest in single-
case experimental design (SCED) research (Hayes et  al., 1999; Kazdin, 2011). 
More specifically, they highlight several QRPs in the areas of (a) participant selec-
tion, (b) independent variable selection, (c) procedural fidelity documentation, (d) 
graphical depictions of behavior, and (e) effect size measures and statistics. In Chap. 
13, William O’Donohue of the University of Nevada, Reno, and Akihiko Masuda 
and Stephen Haynes of the University of Hawai‘i at Mānoa explicate QRPs in pre-
senting the psychometric evidence for psychological measure in peer-reviewed 
manuscripts, advocating for a more standardized and transparent approach to report-
ing the psychometric evidence.

Finally, in the third and last section of this volume, newly emerging models for 
minimizing the impact of QRPs in research are presented, including clearer under-
standing of replication study and meta-analyses (Chap. 14), pre-registration of 
hypotheses and analyses (Chap. 15), and adversarial collaborations (Chap. 16), in 
which investigators holding opposing positions on a scientific issue agree to work 
together on a study in an effort to counteract their respective biases.

In Chap. 14, Jacob Schauer of Northwestern University presents statistical con-
siderations for studying replication from a framework based on meta-analysis. In 
the chapter, Schauer focuses on direct replications, where studies are designed to be 
as similar as possible, as opposed to conceptual replications that (systematically or 
haphazardly) vary in at least one aspect of an experiment (Collins, 1992; Schmidt, 
2009). In Chap. 15, Angelos-Miltiadis Krypotos of Utrecht University, Gaetan 
Mertens of Tilburg University, Irene Klugkist of Utrecht University, and Iris 
Engelhard of Utrecht University present pre-registration as one key solution to the 
problems of QRPs. The pre-registration offers a time-stamped documentation that 
describes the methodology and statistical analyses of a study before the data are 
collected or inspected to minimize some of the notable QRPs (e.g., p-hacking, 
HARKing, selective reporting, file drawer problems). Furthermore, readers of the 
study’s report can evaluate whether the described research is in line with the planned 
methods and analyses or there are deviations from these.

In Chap. 16, Tim Rakov of King’s College London presents an adversarial col-
laboration (Bateman et  al., 2005; Matzke et  al., 2015), an approach to resolving 
scientific disputes, wherein researchers who have different positions on the issue at 
hand collaborate with the aim of making progress on their disputed research ques-
tion. Rokov argues that as an approach to research, adversarial collaboration sits 
squarely within the open science framework (Open Science Collaboration, 2015) 
because it puts a premium on transparency in hypothesis specification, study design, 
data analysis, study interpretation, and reporting—and supplies a framework that 
can encourage rigor in these components of the research process.

Given the recent replication crisis in psychological science and clinical psychol-
ogy, conducting more replication studies seems to be an important first step. This is 
because a series of replication studies can identify and weed out false positives over 
time and increase robustness of psychological science. Only problem is that 
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replications take considerable time and money. To respond to this dilemma, in Chap. 
17, Michèle Nuijten of Tilburg University offers her “four-step robustness check” 
for assessing and improving the robustness of psychological research findings as an 
alternative to directly diving into replication studies. Her “four-step robustness 
check” includes checking for internal inconsistencies in reported statistics (Step 1), 
reanalysis of original data (Step 2), sensitivity checks (Step 3), and replication in a 
new sample (Step 4). Subsequently, in Chap. 18, Felix Cheung of the University of 
Toronto and his colleagues discuss Reproducibility Project: Psychology (RP: P; 
Open Science Collaboration, 2015), the resulting credibility movement, and its 
implications to scientific practices in clinical psychology and beyond. The RP: P is 
a crowdsourced collaboration of over 250 contributing authors to repeat 100 differ-
ent published experimental and correlational studies. As described in detail in Chap. 
18, it has led to other replication projects and the development of improved research 
practices.

Finally, this volume ends with the chapter by Hannah Moshontz of the University 
of Madison, Wisconsin, and her colleagues on Psychological Science Accelerator 
(PSA; Chap. 19). The Psychological Science Accelerator (PSA) is an international 
collaborative network of psychological scientists that facilitates rigorous and gener-
alizable research (Moshontz et al., 2018). In this chapter, Moshontz et al. describe 
how the PSA can help clinical psychologists and clinical psychological science 
more broadly.

�A Final Note

We also want to acknowledge the contributions to this volume of our beloved col-
league Professor Scott Lilienfeld, PhD. Scott played a key role in designing this 
book and in other tasks in its inception. Tragically, he passed away on September 
30, 2020, after a struggle with pancreatic cancer. Scott was an astute critique of 
problematic science and his illuminating writings and kind guidance are missed 
tremendously. His example of astute criticisms mixed with kindness serves as an 
inspiration to many. This volume is dedicated to the loving memory of Scott.
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Chapter 2
The Logic of Research and Questionable 
Research Practices: The Role 
of Enthymemes

Dylan R. Wong and William O’Donohue

Abstract  In this chapter, we argue that poor scientific reasoning in which logical 
errors are made is another questionable research practice. We recommend that 
research psychologists and consumers of psychological research pay more attention 
to the logic of research by identifying the relevant inferential approaches, detecting 
logical errors, and constructing sound reasoning. We describe some prominent types 
of research logic: from alogical approaches such as that of Kuhn, to deductive logi-
cal approaches of Popper, to inductive approaches and abductive/Inference to the 
Best Explanation (IBE) approaches. The strength and weaknesses of each approach 
are discussed, along with the applications of these approaches in statistical methods 
and Abductive Theory of Method (ATOM).

Keywords  Logic · Logical error · Questionable research practice · Clinical 
psychology

�The Logic of Research and Questionable Research Practices: 
The Role of Enthymemes

Questionable research practices (QRPs) have been implicated in both creating sci-
entific conclusions that are seen as true but are actually false (Ioannidis, 2005) and 
in findings that fail to replicate (see Chap. 4, this volume). One construal of QRPs 
is that researchers can exploit what has been called “researcher’s degrees of free-
dom” (Simmons, Nelson, Simonsohn, 2011) that reflect choices that can shape con-
clusions in some desired direction. There have been a variety of QRPs identified 
such as selective reporting of dependent variables, p-hacking, hypothesizing after 
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the results are known, as well as the use of the file drawer for unwanted results, and 
many of these are covered in this book.

Logic can be broadly defined as the study of the principles of correct reasoning 
and how propositions relate to one another, particularly in examining the quality of 
inferences from one set of propositions to another. Logic answers the question, “if 
Propositions P, Q, and R are true, what other propositions are also true?” Valid 
deductive inference has been viewed as truth preserving. Say that Propositions P, Q, 
and R form the premise of the argument, and Propositions Y and Z are the conclu-
sions; if the argument is logically valid, then P, Q, and R all being true entails that Y 
and Z must also be true. As such logic both permits (a valid inference) and con-
strains (e.g., disallows fallacious inferences). Without being constrained by the 
limitations imposed by valid inference, researchers can infer any propositions from 
any other set of propositions (unlimited inferential degrees of freedom)—including 
making the (perhaps unwarranted) conclusion that favored views are supported. 
Failing to adhere to the constraints of logic may be the most fundamental QRPs, and 
certainly facilitates many of the other QRPs.

Scientific reasoning refers to the logical inferences made in scientific work; in 
the empirical sciences, for instance, researchers use some sort of reasoning to make 
inferences about empirical states of affairs that ought or ought not be observed 
given a certain theory; or to make inferences about what implications the data col-
lected have about the truth or falsity of tested theories and hypotheses. The design 
of one’s research can be seen as a logical exercise, that is, research design involves 
the construction of arguments that can entail the observational consequences of 
some theory, and these can then be tested to see if the propositions were valid. In 
addition, propositions capturing observations in their data can then be used in argu-
ments to reason regarding whether they support or falsify other propositions. Or 
scholars conducting a literature review can be free to conclude what they wish. 
However, the actual logic of research may be obscure for psychologists: either as a 
normative matter (what is the best or at least a sound logic of research?) or a descrip-
tive matter (what is the logic of this particular study?). Given that to date psycholo-
gists have paid little attention to the validity of inferences in their research, it seems 
fair to call any incomplete argument as enthymemes, a technical term meaning that 
the argument contains missing premises or conclusions.

Valid reasoning in sound arguments sets constraints to the researcher’s degrees 
of freedom; it allows some conclusions to be implied and disallows many others. 
However, psychologists rarely, if ever, explicate the logic of their published research. 
In this chapter we will examine the possible choices researchers have for the logic 
of their research and conclude that researchers ought to be more attentive to the 
logic of their research and explicate their arguments better, and a failure to do so is 
a QRP as valid constraints imposed by logic are abrogated. We review proposals for 
the logic of research emanating mainly from key philosophers of science and sug-
gest that there are several possibilities. Psychologists may have their choice on the 
logic of their research but should explicate these choices and be aware of their 
respective strengths and weaknesses.
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We shall argue that standard psychological research methodologies following, 
say, Cook and Campbell (1979) often involve a pragmatic kind of logic. On the 
other hand, Popper (1959) proposed a deductive logic of research. Some other 
accounts of the logic of research explicitly involve inductive or abductive inferences 
(and its related concept of “inference to the best explanation” [IBE]), such as Haig’s 
(2005) Abductive Theory of Method (ATOM). We shall then examine the logical 
inferences and errors that can also be seen in the reasoning involved in statistical 
methods psychologists often employ and in psychologists’ pragmatic application of 
these, such as null hypothesis significance testing (NHST) and Bayesian inference. 
Finally, some accounts seem to dispense with logic altogether, such as Kuhn’s 
(1962) account of scientific revolutions. However, each of these has limitations that 
must be recognized, and researchers need to be strategic in their choices for the 
logic of their research.

�The Logic of Conventional Psychological Research

The logic of conventional psychological research might be called consistent with a 
weak version of pancritical rationalism (Cook & Campbell, 1979; Bartley, 1990) in 
that it attempts to anticipate criticisms to valid inference and promotes the design 
and implementation of a corresponding methodological move to potentially address 
that criticism. For example, let us examine the logic that is employed in the conven-
tional double-blind randomly controlled clinical trial. Each methodological move 
addresses and hopefully falsifies a potential criticism/plausible rival hypothesis. For 
example:

	1.	 Why the methodological move of random assignment? This at least potentially 
addresses the criticism that the groups differed in some systematic way before 
the experimental treatment.

	2.	 Why the methodological move of including a no-treatment control group? This 
potentially addresses the criticism that due to spontaneous remission the indi-
viduals would have improved even without treatment.

	3.	 Why double-blind? This potentially addresses the criticism that either partici-
pant expectations or experimenter expectations may have altered the values on 
the dependent variable(s), such that expectation effects (and not treatment 
effects) were responsible for such values.

	4.	 Why a statement on the psychometric properties of the measures? This poten-
tially addresses the criticism that the measures do not validly measure the con-
structs under consideration.

	5.	 And so on, for each methodological move.

These methodological moves are supposed to be made for all “plausible rival 
hypotheses.” But note that plausibility is a pragmatic, not a logical matter. 
Additionally, the question of whether the methodological move is sufficient to 
negate the plausible rival hypothesis also involves pragmatic judgment. Finally, it is 
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rare that research papers in psychology explicitly formalize the pragmatic logic that 
undergirds the design.

Another problem is that there are many potential criticisms/plausible rival 
hypotheses, and each often requires an expensive methodological move (in terms of 
time, subjects, and other resources). For individual studies, there may need to be a 
“meta-argument” regarding which the relevant priority of such criticisms—which 
are elements of a very large potential set of criticisms—is the most important and 
ought to be addressed methodologically. This may be one reason why programs of 
research are so important; across a series of studies more potential criticisms can 
eventually be addressed by including the requisite design move in at least some of 
the studies across the research program. For example, the randomly controlled trial 
described above did not address the criticism of treatment effects being caused by 
placebo effects; therefore, some of the subsequent studies could include an attention 
control condition that potentially addresses this criticism. In addition, due to the 
lack of follow-ups to assess for recidivism, some subsequent studies could include 
measurement periods of 6 or 12 months and so on. Some have commented that 
research sophistication grows over time as we “learn how to learn” (Munz, 2014) 
and an example of this may be the relatively recent concerns with clinical signifi-
cance (versus statistical significance) or QRPs. This also creates a somewhat diffi-
cult problem of assessing the status of these potential criticisms across studies (e.g., 
studies out of Lab X did not carry out follow-up assessments but one study out of 
Lab Y did, however this study showed higher than desirable recidivism).

However, probably the most serious problem is that the “logic” of such research 
is not made clear, is not formal, and often is just inchoately pragmatic. It often plays 
out as an intellectual game: I would like to make a valid inference from my data to 
say something like “My treatment has caused improvement,” and if you can present 
a criticism like “You can’t say that because it is plausible that Z (e.g., the effects are 
due to placebo),” the desired causal inference is not valid. However, there are many 
potential criticisms and these can be leveled in an ad hoc and unsystematic way.

�Deductive Reasoning

Deductive reasoning is characterized by its demonstrability—the use of a valid 
deductive inference rule establishes the truth of the conclusion if the premises are 
true. Thus, the conclusions of sound deductive arguments (true premises and valid 
deductive inference rule) are necessarily true. Another way of saying this is that 
valid deductive arguments are always truth preserving, that is, if all the premises of 
the argument are true and a valid deductive inference rule used, then this reasoning 
preserves the truth of the premises because the valid deductive inference rule always 
generates only true conclusions. However, a well-recognized and significant down-
side of deductive reasoning is that it is also nonampliative—the conclusion is not 
content increasing—deductive arguments simply “unpack” content that is already 
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contained (perhaps implicitly) in the premises of the argument. For example, con-
sider the following deductive argument:

	1.	 All humans are mortal.
	2.	 Barbara is a human.
	3.	 Therefore: Barbara is mortal.

This argument is considered nonampliative because its conclusion is implicitly con-
tained in the first premise (because to establish that all humans are mortal one must 
have established that a member of this set, Barbara, is also mortal). Many early 
philosophers of science (e.g., Carnap, 1945) have taken deduction’s nonampliative 
character as a sure sign that science cannot rely on deduction because science seeks 
new information and as such it must rely on some sort of ampliative reasoning—the 
conclusion must add or increase the information in the premises. We turn first to the 
view that the logic of research is deductive; this view is best exemplified by the 
work of Sir Karl Popper (1959).

�Popperian Science

Sir Karl Popper (1959) rejected the notion coming from the logical positivists that 
the logic of research was inductive. Popper argued that there is no such thing as a 
truth-preserving ampliative inductive logic. Popper claimed that the logic of research 
was deductive—a hypothetico-deductive model—and utilized the valid logical 
inference rule of modus tollens.

In general, the logical inference rule of modus tollens has the following (valid/
truth preserving) form:

If A, then B.
Not B.
Therefore, not A.
In science, the argument may look like the following:

	1.	 If something is a piece of copper (A) then it conducts electricity (B).
	2.	 This piece of copper does not conduct electricity (not B).
	3.	 Therefore, it is not the case that all copper conducts electricity (not A).

This argument is valid because it relies on the valid logical inference rule known 
as modus tollens. To determine its soundness (i.e., the truth of its premises), the 
question simply becomes: are Premises 1 (the hypothesis) and 2 (the evidence) true?

Popper also suggested that formulating Premise 1 and Premise 2 ought to be 
guided by a few considerations: it is desirable if the conjecture being tested in 
Premise 1 has as great as possible empirical content. The empirical content of a 
statement is basically what it rules out. The more empirical states of affairs it rules 
out, the greater is a statement’s empirical content. In general, scientific laws have 
large empirical content, ruling out many states of affairs. For example, Newton’s 
gravitational law rules out all states of affairs except gravitational attraction 
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occurring in direct proportion to mass and inverse proportion to distance. As another 
example, “All folks in Reno, Nevada eat sugar” has less empirical content than “All 
Nevadans eat sugar” (i.e., empirical content increases as the number of cases it cov-
ers increases). Secondly, empirical content is increased by the precision of the state-
ment: “All Nevadans eat at least 14 grams of sugar daily” has more precision and 
empirical content than “All Nevadans eat sugar.”

There are also several key considerations for Premise 2, that is, the empirical test. 
Popper suggested it ought to be severe. The severity of a test is essentially an effi-
cient search for the existence of falsificatory instances—cases that demonstrate the 
falsity of a proposition. For example, if a researcher is testing the proposition 
“Protestant leaders never swear,” it is a more severe test to examine instances where 
people are most likely to swear (e.g., when they hit their thumbs with hammers, 
break something valuable, when someone cuts them off in traffic, etc.). It is a less 
severe test to examine the word use of religious leaders during sermons, or when 
they are teaching Sunday school, and so on, as people are generally much less likely 
to be disposed to swear in these situations. Thus, for Popper the research project 
itself should offer an argument that the test is severe. This might be such an example:

	1.	 The most likely situations for people to swear are x, y, z.
	2.	 People are also most likely to swear when they do not know they are being 

observed.
	3.	 If my research consists of nice size samples of surreptitious sampling of x, y, z, 

then it is a severe test.
	4.	 Therefore, my research project is a severe test.

Popper’s overall conception of science implies that scientific knowledge can never 
be a matter of confirmation. Since Popperian falsification can never demonstrate the 
truth of theories, but can only falsify them, science progresses by eliminating its 
theories that are in error. Theories that survive severe testing are thought to be cor-
roborated (not confirmed), for they can eventually be falsified by some future severe 
testing. Once these theories become eliminated, we are confronted with new prob-
lems and must build new tentative solutions subject to further falsification.

Popper’s conception of science has been criticized on several grounds 
(O’Donohue, 2013). First, historians of science have argued that it does not reflect 
the historical record of how science has been practiced  (Lakatos, 1970; Laudan, 
1978). If Popper’s goal had been to provide a description of how scientific research 
actually proceeds, then he has failed to do so. Second, Popper’s account does not 
appear to address the Quine-Duhem thesis. The Quine-Duhem thesis suggests that 
when the falsifying event is observed (i.e., Premise 2: Not B), the initial hypothesis 
(Premise 1) need not be falsified; instead, the failure may be attributed to any auxil-
iary hypotheses employed in the test. Auxiliary hypotheses refer to the additional 
hypotheses that are required for the initial hypothesis to entail the observation. For 
instance, the premise “if something is a piece of copper, it conducts electricity” 
includes the additional premises that “the source of electricity is properly connected 
to the piece of copper,” that “the copper is pure,” and so on. According to the Quine-
Duhem thesis, Popper’s falsification should really take the following form:
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	1.	 If Theory and Aux1 and Aux2 and Aux3… and Auxn, then Observation.
	2.	 Not Observation.
	3.	 Therefore, Not (Theory and Aux1 and Aux2 and Aux3… and Auxn).
	4.	 Therefore, Not Theory or not Aux1 or not Aux2 or not Aux3 or not Auxn.

This valid deductive argument now has an unsatisfying conclusion; along with the 
hypothesis being false, one could also conclude that any of the auxiliary hypotheses 
are also false. At least one of the hypotheses is false, but you cannot know which 
to blame.

�Kuhn’s Alogical Account of Science

Contrary to Popper, not all accounts of science claim that there is a logic of research. 
Kuhn’s account (1962, 1994) is an example of this alogical approach, and it is note-
worthy that psychologists have been particularly attentive and admiring of Kuhn’s 
account (O’Donohue, 2013). It may even be the case that the alogical nature of 
Kuhn’s account is partly what has drawn psychologists to his views, seeing as psy-
chologists usually receive very little formal training in logic.

Kuhn (1962, 1994) suggested that sciences pass through several stages. In the 
first stage, which he called “pre-paradigmatic science,” there is little progress in 
puzzle solving and those working in the field have deep disagreements about basic 
issues, for example, what constructs are important, how ought these be defined, 
what proper research methodology looks like, and so on. In Kuhn’s second stage, 
someone solves a puzzle and in this puzzle solution a paradigm is born. In Kuhn’s 
account, others in the field are impressed and influenced by this problem-solving 
exemplar and then begin to copy it to try to solve other problems. Scientists adopt 
many elements from the puzzle-solving exemplar such as its definitions, principles, 
methodological approaches, and so on. This becomes, for Kuhn, a “paradigm.”

The field then enters a stage that Kuhn called “normal science” in which scien-
tists attempt to apply this paradigm to solve other puzzles. According to Kuhn, 
sometimes these scientists are successful in puzzle solving and sometimes they are 
not. The problem-solving failures can accumulate and are generally frustrating to 
scientists. The final stage of science for Kuhn is when a scientific revolution occurs. 
According to Kuhn, a revolution occurs when someone applies a new approach to 
one or more of these failures of the old paradigm and achieves some problem-
solving success. A new period of normal science then occurs where scientists ape 
the new paradigm until it starts the cycle all over again, that is, it produces success 
and anomalies and then a new revolution occurs and so on.

One can see that for Kuhn logic is not essentially involved in science. Certainly, 
a paradigm could in principle have a kind of reasoning; however, he is not explicit 
about this, and nowhere does he say that paradigms are defined by logical rules or 
preferences. Furthermore, new paradigms are thought to have different definitions, 
principles, and methodological approaches that are frequently inconsistent with the 
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old paradigm. Since logical rules cannot contradict one another, the kinds of reason-
ing in different paradigms thus cannot all be based on logical rules. Kuhn’s model 
of research is thus alogical.

�Inductive Reasoning

Given the limitations of deductive reasoning, some have looked to inductive reason-
ing as a good candidate for the logic of research. Induction has been taken to be an 
ampliative but nondemonstrative form of reasoning, that is, the conclusions of 
inductive arguments contain more information than their premises. However, 
because inductive arguments are nondemonstrative (the truth of the premises and 
the use of an inductive inference rule do not guarantee the truth of the conclusion), 
at best these are only probably true, that is, they may still be false. In the history of 
philosophers studying induction, their key philosophical problem has been how to 
quantify how likely the conclusion of an inductive argument is, given the evidence 
contained in the premises. Unfortunately, this problem has resisted a clear solution.

For example, notice the following about the conclusion of the following induc-
tive argument: (1) the scope of the conclusion (helpfully) contains more information 
than the scope of the premises (i.e., the conclusion refers to a previously unexam-
ined individual), and (2) even if the premises are true, the conclusion of the induc-
tive argument might still be false—the argument is not truth preserving because no 
one has been able to discover a truth-preserving inductive inference rule. For 
example:

	1.	 Eighty percent of the anxious subjects were successfully treated by exposure 
therapy.

	2.	 Sam is anxious and will be treated with exposure therapy (Sam was not part of 
the anxious subjects in Premise 1, and hence was not examined to form 
Premise 1).

	3.	 Therefore, Sam’s anxiety will be successfully treated.

This is not a valid argument—the truth of the conclusion is not guaranteed by the 
truth of the premises and the inference rule used. The “problem of induction” began 
to concern philosophers in the nineteenth century, starting with the Scottish philoso-
pher David Hume (1779). Hume raises the following questions: Are inferences from 
what is observed in the research sample to the unobserved logically justifiable? Do 
observed facts give us sound evidence for conclusions about similar situations that 
are not observed? Or, more precisely: how much evidence, if any, does the existence 
of an observed regularity provide toward the claim that future observations of simi-
lar phenomena will be like these past observations? The rough idea is expressed in 
the folk narrative that although every morning thus far the farmer has always fed the 
chicken, it would be false to conclude that this invariant pattern will necessarily 
persist—as one day the farmer will slaughter, not feed, the chicken. The future may 
not always be like the past.

D. R. Wong and W. O’Donohue



27

Hume argued that there are no nondemonstrative inferences that are also truth 
preserving. Hume noted an interesting meta-paradox to his problem of induction: 
One cannot justify the inference deductively, because then the inference would be 
nonampliative. However, if one tries to justify it inductively, then it is nondemon-
strative (for example, because in the past it has worked or because the probability of 
it working is high) and therefore one is begging the question— in other words, one 
is making an appeal to the very inductive principle one wishes to justify! Hume 
attempted to save induction by extra-logical considerations, that is, by suggesting 
that although induction has no logical justification, it can be based on the “natural 
instinct” embedded in human psychology: namely, that humans tend to expect that 
observed regularities will continue to occur in the future. However, this argumenta-
tive move is called “psychologism,” as it is not an appeal to the logical quality of an 
argument, but rather it is an appeal to an alleged contingent empirical state of 
affairs—a hypothesized human tendency.

Hume also argues that any number of singular observations does not entail a 
universal statement. That is, the observation of a thousand, or even several million 
black crows does not entail the truth of the statement “all crows are black” because 
it is still at least logically possible that some yet-to-be-observed crow will turn out 
not to be black.

A common response to this problem has been that although no number of obser-
vations logically entails a universal statement, observations can allow a rational 
assignment of some degree of (increased) probability to the relevant conclusion. 
According to this view—known as enumerative induction—the degree of probabil-
ity of the conclusion is raised upon each consistent observation. Moreover, accord-
ing to this view, with many confirming instances, the inductive conclusion becomes 
probable to a degree that is indistinguishable or nearly indistinguishable from the 
certainty of a deductive conclusion.

�Problems with Inductive Reasoning

Several philosophers—particularly Sir Karl Popper (1959), a notable critic of induc-
tive reasoning and proponent of deductive reasoning in the sciences—have raised 
further problems with inductive reasoning.

Popper (1959) argued that the kind of observed repetition envisaged by Hume 
can never be perfect: the cases he has in mind cannot in principle be cases of perfect 
sameness; at best they can only be cases of (perhaps very high) similarity. For exam-
ple, the farmer does not display the exact feeding motions each time, and there can 
be numerous variations in the chicken’s eating. Popper argues that these are at best 
“repetitions” only from a certain somewhat inexact point of view. For Popper this 
signifies that there must always be a point of view—embodied perhaps in a system 
of expectations or assumptions—before there can be any perceived repetition. 
Popper argued:
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We must replace, for the purposes of a psychological theory of the origin of our beliefs, the 
naive idea of events that are similar by the idea of events to which we react by interpreting 
them as being similar … For even the first repetition-for-us must be based upon similarity-
for-us, and therefore upon expectations--precisely the kind of thing we wished to explain. 
(pp. 444–445)

Popper also disagreed with the justification of induction by enumeration. If “many” 
consistent observations increase the probability of the universal statement, how 
many do we need to raise the probability to 1.0? Popper argued that universal laws 
(such as “All P are Q”) have a large or even an infinite number of cases. Therefore, 
assessing the probability of a universal statement by comparing the number of tested 
and confirmed instances to the number of possible tests will always result in a prob-
ability of zero or near zero. Consider the proposition “All copper conducts electric-
ity.” If one estimates the number of observations of copper conducting electricity 
versus the number of possible observations of copper (all copper everywhere in the 
universe), as well as observations of observed copper but at other points in time, just 
because some copper once conducted electricity does not mean it always will, one 
can see that this fraction would essentially equal zero. Therefore, according to 
Popper, false theories and well-confirmed theories will have equal probabilities, that 
is, zero.

Induction also involves two well-known paradoxes. The first, identified by 
Kyburg (1961), concerns the “lottery paradox.” Consider the following thought 
experiment: Suppose that there are 1000 lottery tickets numbered consecutively 
from one to a thousand, and that in a fair drawing one ticket has been chosen. Now 
let us consider the likelihood that the winning ticket is the one numbered “1.” The 
probability that this particular ticket is the winner is only 1/1000. Therefore, the 
probability that some other ticket was actually drawn is 999/1000. Assuming that 
0.999 is a sufficiently high probability to justify the conclusion that “some other 
ticket was drawn,” one infers in this inductive argument that indeed some other 
ticket was in fact drawn. Next let us consider the ticket numbered “2.” By the same 
reasoning we would conclude that, again, some other ticket was drawn. But notice 
that we can use this same reasoning for tickets numbered 3, 4, 5 … 1000. In each 
case, the conclusion that some other ticket was drawn seems to be confirmed by its 
high probability, 0.999. However—and this is where the paradox emerges—this set 
of conclusions is inconsistent with our knowledge that one winning ticket was actu-
ally drawn. We are thus facing a classic dilemma. Kyburg has argued that what this 
dilemma shows is that we cannot validly argue that something is the case simply 
because it has a (very) high probability of being so. Thus, there is no logic of 
induction.

Carl Hempel’s (1965) paradox of the ravens points to another problem with 
induction. Hempel points out that the proposition “All ravens are black” is logically 
equivalent to the proposition, “All non-black things are nonravens.” The second 
proposition can be logically deduced from the first using the logical law known as 
the law of contraposition. The law of contraposition states that “All A’s are B’s” is 
logically equivalent to “All non-B’s are non-A’s.” Since these two propositions are 
logically equivalent, evidence that confirms one proposition must also confirm the 
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other proposition. Therefore, the observation of a white ribbon—a non-black thing 
that is a nonraven—would confirm the proposition that “All ravens are black.” But 
this result is regarded as an absurdity. No one expects that a research project by an 
ornithologist would involve solely examining the color of, for example, ribbons. 
Critics of induction have taken these examples to show that certain logically proper 
“confirmations” seem to be substantively irrelevant.

�Inference to the Best Explanation and Abduction

Inference to the Best Explanation (IBE), and its related concept of abduction, has 
been proposed as a noteworthy kind of inductive inference (Lipton, 2004). While 
abduction is situated in the context of discovery (the stage of generating theories 
and hypotheses) and IBE is situated in the context of appraisal (the stage of evaluat-
ing theories and hypotheses), both reference the same idea: namely, that one should 
make argumentative moves with reference to what would best explain the available 
evidence. With abduction, one should generate the hypotheses that have the poten-
tial to best explain the evidence, and with IBE one should evaluate the hypotheses 
on the basis that they best explain the evidence. We will focus primarily on IBE 
because the literature on IBE is far more extensive.

IBE gets its name from Gilbert Harman (1965), who defined it in the following 
way (p. 89):

In making [an inference to the best explanation] one infers, from the fact that a certain 
hypothesis would explain the evidence, to the truth of that hypothesis. In general, there will 
be several hypotheses which might explain the evidence, so one must be able to reject all 
such alternative hypotheses before one is warranted in making the inference. Thus one 
infers, from the premise that a given hypothesis would provide a “better” explanation for 
the evidence than would any other hypothesis, to the conclusion that the given hypothesis 
is true.

The idea is intuitively appealing for two reasons. First, we typically believe that a 
fundamental aim of science is to provide explanations for phenomena. Psychologists 
frequently ask questions that demand explanations. Why is alcohol addictive? Why 
do children who experience abuse grow up to abuse their own children? Why do we 
think of people in social outgroups as homogenous, but see people in social ingroups 
as diverse? Scientific progress seems to be driven by the pursuit of explanations to 
such questions (Lipton, 2004), and the formation of explanations is thought to be an 
essential guide to the logic of research.

Second, if we consider common examples of the thoughts we have each day, we 
can find many examples that appear to involve IBE. Imagine hearing a voice coming 
from inside your house as you approach the front door. You see your housemate’s 
car parked on the road alongside the house and notice that the door is unlocked. You 
infer, therefore, that the voice belongs to your housemate—perhaps they are talking 
on the phone. Why should you make this inference, however, and not that someone 
stole your housemate’s car and keys, unlocked the door, and placed a speaker inside 
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the house playing back your housemate’s voice? IBE would be the answer. This is 
not a deductive inference, since none of these facts necessarily logically entail that 
the voice belongs to your housemate—instead, you infer that the voice belongs to 
your housemate because it would be the best explanation of all the evidence avail-
able to you. It is nondemonstrative and ampliative like other inductive inferences. 
Lipton (2004) suggests that despite what Sherlock Holmes says he is doing in his 
detective work (i.e., “the art of deduction”), Holmes is actually using IBE to make 
his claims. He observes facts and infers to the explanation that best explains them.

Since Harman, theorists of IBE have aimed to render it in a precise analytical 
structure and come to a consensus regarding its validity. These efforts have been 
extremely challenging for two reasons. First, because IBE is an inductive kind of 
inference, it does not follow demonstrative rules like modus tollens, and as such it 
is unclear whether there can ever be clear rules for how IBE is to be applied. Second, 
it is not at all clear what is meant by best, and what is meant by explanation. While 
the literature on IBE has helped to develop some sense of the former, defining the 
latter has been extremely challenging. The history of defining explanation is quite 
convoluted and defining explanation remains an active topic of discussion among 
philosophers of science today—see Salmon’s (2006) Four Decades of Scientific 
Explanation or Woodward and Ross (2021) for a comprehensive review of this his-
tory. While we often have an intuitive grasp of what it means to explain something, 
different explanations often have different characteristics, and developing rules for 
IBE that encompass all these possibilities is a tremendously ambitious project.

Despite these difficulties, several explications of IBE have been constructed: 
Vogel (1998), Psillos (1999), and Lipton (2004) are some prominent recent exam-
ples. The next section will briefly review some of the more prominent models of 
explanation, primarily drawn from Salmon (2006). After that, we describe a concep-
tion of IBE that attempts to describe what is meant by a best explanation through 
well-defined criteria and principles: Thagard’s (1993) Theory of Explanatory 
Coherence (TEC).

�Scientific Explanation

The first prominent philosopher to discuss explanation was Aristotle; he made the 
key distinction between knowing-that and knowing-why. The former simply involves 
a description of some phenomenon—“my shadow is longer in the evening”—and 
the latter elucidates the phenomenon—“because the sun’s angle to the ground gets 
narrower as it sets, light travels in a straight line and my shadow is produced when 
my body obstructs light.” This was an important first step toward understanding 
explanation.

However, it fell to Hempel and Oppenheim (1948; henceforth referred to as 
H-O)—which was further developed by Hempel (1965)—to produce first compre-
hensive and precise notion of explanation. According to Hempel (1965), there are 
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four categories of scientific explanations, shown in the table (taken from Salmon, 
2006) below:

Particular facts General regularities

Universal scientific laws D-N (deductive-nomological) D-N (deductive-nomological)
Statistical scientific laws I-S (inductive-statistical) D-S (deductive-statistical)

The term “nomological” refers to a basic, universal scientific law. While the D-N 
model applies to both particular facts and general regularities, H-O only discusses 
the former. A D-N explanation is comprised of an explanans (the sentences that are 
to account for the phenomenon, or “the explaining sentences”) and the explanan-
dum (the sentence describing the phenomenon to be explained, or “the fact”). They 
state that an adequate D-N explanation—or a “correct answer to an explanation-
seeking question” (p. 42)—must fulfill three logical conditions and one empirical 
condition:

	1.	 The explanans must be a valid deductive argument (logical).
	2.	 The explanans must contain essentially at least one general law (logical).
	3.	 The explanans must have empirical content (logical).
	4.	 The sentences constituting the explanation must be true (empirical).

Thus, so far we see that scientific explanation for H-O is a deductive enterprise. We 
have seen that Conditions 1 and 4 combined make for a valid deductive argument 
that leads to a true conclusion. As for Condition 2, the details of how H-O consti-
tutes a general law are quite complicated and have been a notable weakness of the 
D-N model. You might notice the symmetry between the hypothetico-deductive 
model of Popper and the D-N model of explanation—the former uses (contradic-
tory) evidence to falsify the law, while the latter uses the law to account for the 
(compatible) evidence.

One major criticism of D-N explanations as a universal model for explanations 
is that many satisfactory explanations do not contain scientific laws. For instance, 
the explanandum “I slipped on the floor” has the satisfactory explanans “the floor 
was wet,” where both are particular facts. Though a defender of D-N explanations 
might suggest that the explanation is incomplete without referencing the universal 
scientific laws of friction, it seems like telling someone that “the floor was wet” 
serves as a fine explanation, and the law just serves to justify the explanation. 
Second, D-N explanations cannot be damaged by any number of additional prem-
ises—yet typical explanations do seem to become less useful when irrelevant prem-
ises are added to it. Third, D-N explanations are bidirectional, which leads to the 
absurdity of the explanandum explaining the explanans (e.g., my shadow being lon-
ger in the evening explains why the sun’s angle is narrow). Finally, that not every 
fact can be explained as a scientific necessity; rather, some facts are merely proba-
ble, or statistical. Hempel (1962) attempts to address this last problem.

Statistical explanations, according to Hempel, are split into D-S and I-S. The D-S 
explanation is a statistical law that is deductively derived from other laws, at least 

2  The Logic of Research and Questionable Research Practices: The Role of Enthymemes



32

one of which is statistical. For example, explaining the outcome of a set of dice 
throws involves arithmetically deriving the probability of the outcome using gener-
alizations about the dice (e.g., the probability of getting any particular die face is 
1/6). The explanans of D-S explanations need not contain empirical data, and hence 
they are not D-N explanations. The I-S explanation follows the structure of the D-N 
explanation, but the law being used is statistical, and hence the explanandum is 
probabilistic. In Hempel’s example, we might explain that someone recovered from 
a strep infection because they were administered penicillin, and treatment with pen-
icillin leads to a high (e.g., 90% but not 100%) chance of recovery.

One major issue with I-S explanations is that two I-S explanations could have 
compatible premises but contradictory conclusions. If an individual’s strep infec-
tion is resistant to penicillin, then the probability of the person recovering would be 
low. This would make the reference to penicillin in the explanation untenable, but 
the definition of the I-S explanation does not prevent this reference. Hempel attempts 
to correct this by, among other things, adding a further condition that the explanans 
must make the explanandum highly probable. But Salmon argues that the real prob-
lem lies with whether explanans changes the probability of the explanandum (e.g., 
whether the penicillin made the recovery from strep infection more probable). His 
later model of statistical relevance takes this as the fundamental condition of expla-
nation; however, because it was later shown that causal relationships cannot be 
reduced to statistical relevance relationships, causal theories of explanation were 
later developed. Other models of explanation developed since include unificationist 
and pragmatic theories of explanation; the pursuit of a general model of explanation 
continues today (Woodward & Ross, 2021).

In response to these difficulties, some have suggested that explanation is a primi-
tive concept; this means that the concept cannot be defined in terms of other con-
cepts, and instead appeals to intuition for its characterization. There is good reason 
to believe this is so; after all, we can explain things ordinarily without appealing to 
what we mean by an explanation (see Poston, 2014, for a fuller justification for 
defining explanation as primitive). The Theory of Explanatory Coherence considers 
explanation a primitive; hence, in applying this model practically to research, we 
have some justification in relying on our judgment to decide whether the hypotheses 
we have formulated constitute an explanation.

�Thagard’s Theory of Explanatory Coherence

The Theory of Explanatory Coherence (TEC; Thagard, 1993) suggests that the 
“best-ness” of an explanation depends on its explanatory coherence. A theory has 
explanatory coherence if the propositions in the theory have explanatory relations. 
For instance, Propositions P and Q have explanatory coherence if one or more of the 
following propositions are true (p. 65):

	1.	 P is part of the explanation of Q.
	2.	 Q is part of the explanation of P.
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	3.	 P and Q are together part of the explanation of some R.
	4.	 P and Q are analogous in the explanations they respectively give of some R and S.

As mentioned earlier, TEC considers explanation to be a primitive. However, 
Thagard also argues that TEC may be compatible with the future integration of vari-
ous strands of explanation—deductive, statistical, schematic, analogical, causal, 
and linguistic.

TEC relies on the seven principles and three criteria. The criteria of consilience, 
simplicity, and analogy are contained within the seven principles. A theory is the 
most consilient if it explains the largest range of facts; he distinguishes between 
static consilience (the theory explains all the different types of facts) and dynamic 
consilience (the theory explains more types of facts than it did when it was first 
generated). A theory is simpler if it makes fewer “special or ad hoc assumptions” 
(Haig, 2005, p. 381) than other theories; this is a “check” on the consilience crite-
rion because simpler theories tend to have lower consilience. Finally, a theory that 
is better supported by an analogy to previous theories is more coherent.

TEC’s seven principles (Thagard, 2000, p. 43) are offered below:

	1.	 Symmetry. Explanatory coherence is a symmetric relation, unlike, say, condi-
tional probability. That is, two propositions p and q cohere with each other 
equally. For example:

	2.	 Explanation. (a) A hypothesis coheres with what it explains, which can either be 
evidence or another hypothesis. (b) Hypotheses that together explain some other 
proposition cohere with each other. (c) The more hypotheses it takes to explain 
something, the lower the degree of coherence.

	3.	 Analogy. Similar hypotheses that explain similar pieces of evidence cohere.
	4.	 Data priority. Propositions that describe the results of observations have a degree 

of acceptability on their own.
	5.	 Contradiction. Contradictory propositions are incoherent with each other.
	6.	 Competition. If p and q both explain a proposition, and if p and q are not explana-

torily connected, then p and q are incoherent with each other (p and q are explan-
atorily connected if one explains the other or if together they explain something).

	7.	 Acceptance. The acceptability of a proposition in a system of propositions 
depends on its coherence with them.

As mentioned, TEC de-emphasizes prediction over explanatory coherence; instead 
of concerning itself with whether the theory has good predictive power for the future 
(i.e., it anticipates a set of data that is yet to be observed), it concerns itself with 
whether the theory has explanatory coherence now (based on past data and theoreti-
cal propositions). Although explanations clearly lead to predictions of certain 
empirical outcomes, TEC considers the latter secondary and would not abandon a 
theory if it led to failed predictions; this represents a contrast with Popperian sci-
ence, which values predictions because they allow for possible subsequent falsifica-
tion. Thagard argues that if falsification is not a good description of how the sciences 
actually operate (as Popperian science has been accused of; for example, see Kuhn, 
1962, 1994), predictions lose value in the scientific enterprise.
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A related value of explanatory coherence is that it allows one to evaluate how to 
modify a theory once it is falsified: if doing so would reduce the explanatory coher-
ence of the theory (e.g., as per principle 2 of TEC, the hypothesis goes together with 
another hypothesis to explain another proposition), then there is stronger reason not 
to modify the hypothesis. Likewise, if a hypothesis contradicts a more explanatory 
hypothesis within the theory, then there is stronger reason to modify or remove the 
former hypothesis.

TEC is directly applicable to examples in psychology; for instance, Durrant and 
Haig (2001) apply TEC to the comparative evaluation of two theories of language. 
This paper compares the adaptationist hypothesis regarding language develop-
ment—accordingly, humans developed language because of natural selection—and 
the non-adaptationist hypothesis—that it was not because of natural selection. 
Accordingly, they find that adaptationist accounts of language development have 
strong consilience (it explains many of the features of language) and simplicity (it 
can account for all the features of language with that hypothesis) and are supported 
by analogy (language resembles the development of other well-understood biologi-
cal adaptations, such as the eye). Conversely, non-adaptationist hypotheses have 
poor explanatory coherence: they have poor consilience because they cannot 
account for as many features, and they have poor simplicity because they require 
many hypotheses to explain how each feature of language arose separately.

In short, TEC is a conception of IBE that features as a method of appraising theo-
ries. Theories with greater explanatory coherence (evaluated on the criteria and 
principles described above) garner greater support, and vice versa.

�Applications of Scientific Reasoning

Scientific reasoning is ubiquitous in the methods we use to conduct and analyze our 
research. Here, we discuss one ubiquitous feature of conventional psychological 
research methods—Null Hypothesis Significance Testing (NHST)—and its logical 
flaws. We then discuss the logic of Bayesian statistics, which addresses some of the 
major flaws of NHST and its status as a possible alternative to NHST. Finally, we 
describe a recent and promising theory of science that is grounded in abductive and 
explanatory reasoning: Haig’s Abductive Theory of Method (2005).

�The Logical Flaws of Null Hypothesis Significance Testing

NHST is another ubiquitous feature of conventional psychological research, and it 
features centrally as a QRP. As noted in a chapter in this book by O’Connor and 
Khattar (Chap. 7, this volume, 2022), NHST continues to be employed by many 
psychologists despite its numerous and well-documented problems. In their chapter, 
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the authors thoroughly explore the problems associated with using NHST. In this 
section, we lay out NHST in the context of scientific reasoning and provide some 
reasons for why the use of NHST is logically flawed.

A null hypothesis is the hypothesis that the difference between two means of 
some variable in some population being compared is zero. NHST is thus defined in 
O’Connor and Khattar as follows:

Conventionally, researchers make such decisions by assuming the null hypothesis to be true 
and, given this assumption, attempting to make inferences based on the probability of 
obtaining the actual pattern of results observed. Specifically, a statistical test yields the 
probability of a given results (or one more extreme) being produced by chance if the null 
hypothesis is true. … If this (probability) is less than a threshold probability or alpha level 
(typically .05), then chance is concluded to be a sufficiently unlikely explanation of the 
outcome, and the existence of an effect is held to be supported by the data. (Pollard & 
Richardson, 1987, p. 159)

NHST also relies on the following assumptions:

1) the null hypothesis is exactly true; 2) the sampling method is random sampling; 3) all 
distributional requirements, such as normality and homoscedasticity, are met; 4) the scores 
are independent; 5) the scores are also perfectly reliable; and 6) there is no source of error 
besides sampling or measurement error. (Kline, 2013, p. 74)

Homoscedasticity means that the variance in the relation between the dependent 
and independent variables across the different values of the independent variable is 
the same. For example, the relation between age and weight is often not homosce-
dastic, because at younger ages, the variance in weight is generally much lower than 
the variance in weight at adulthood.

NHST is founded on a frequentist view of probability that takes probability to be 
“the likelihood of an outcome over repeatable events under constant conditions 
except for random error” (Kline, 2013, p. 40). In other words, the probability of an 
event is the proportion of events occurring if the same circumstances were repeated 
many times (this is called the law of large numbers). This contrasts with the subjec-
tivist view, which takes probability to be the researcher’s subjective state of belief 
regarding the likelihood of an event—this does not rely on the event being repeat-
able. Frequentists consider the probability of the data given a set parameter (in 
NHST, this parameter is a “difference of zero”); subjectivists consider the probabil-
ity of a parameter being true given that data that is set.

Conventional NHST involves both deductive and inductive reasoning. In the 
deductive portion, NHST assumes that the null hypothesis is true, and then deduc-
tively infers what the expected value of the test statistic should be under that assump-
tion; the p value then represents the probability of obtaining the test statistic with 
reference to a distribution of results from simulated hypothesis studies. This is a 
matter of deductive logic because if the null hypothesis is true, the distribution of 
simulated results necessarily follows, and the p value follows accordingly. In the 
inductive portion, the researcher generalizes the comparison of the test statistic, 
drawing an analogy from the distribution of results of the simulated hypothesis 
studies to the distribution of our sample data, and drawing conclusions accordingly. 
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This is an inductive move because there is no guarantee that our sample data are 
similar to the simulated distribution; we assume this based on the fact that our sam-
ple data exhibit the six properties mentioned earlier.

As O’Connor and Khattar suggest, most problems with NHST arise from its 
misuse. Despite its ubiquity in psychological science, NHST is frequently misinter-
preted and misapplied, and the conclusions drawn from its use are often invalid. 
What psychologists often hope to obtain from NHST are simply not produced by it. 
Some of the logical flaws in the application of NHST are listed below.

First, NHST simply tells us how likely the test statistic is likely to be obtained 
with reference to a distribution of imaginary test statistic values. The data from 
which the p value arises are drawn from an imaginary distribution, developed via 
simulation: “mathematical formulas that mimic the results from a long series of 
identical hypothetical studies in which the null hypothesis is true” (O’Connor & 
Khattar, this volume, 2022). This is problematic because the null hypothesis may 
not be true for our sample dataset. This disconnect leads us to make all sorts of 
misinterpretations regarding the p value: that is, that it represents “the probability of 
making a Type I error,” or that it tells us that “5% of all published findings are Type 
I errors,” where a Type 1 error refers to the rejection of a hypothesis when it is actu-
ally true. As O’Connor and Khattar state, if the null hypothesis is true for our sam-
ple data, then the probability of a Type I error must be zero. NHST relies on our 
assumption that the null hypothesis is true. Thus, the argument assumes that the null 
hypothesis is true, yet a conclusion is drawn about the truthfulness of the null 
hypothesis—this common misinterpretation is thus a logical error.

Second, psychological researchers can consistently violate the assumptions of 
NHST in their research: researchers may not randomly sample, sample sizes may be 
too small to achieve the distributional requirements of NHST (normality and 
homoscedasticity), and the scores obtained are never perfectly reliable (O’Connor 
& Khattar, this volume, 2022). For instance, Szucs and Ioannidis (2017), conduct-
ing an empirical assessment of published effect sizes and estimated power among 
psychology and cognitive neuroscience journals, found that the power of these stud-
ies was “unacceptably low” (p. 13). Power is defined as the probability of finding 
statistical significance when there is a real effect. Significance tests are constructed 
to produce valid results only when all the assumptions are met; as such, it is likely 
that the results obtained from many of the studies using NHST are biased. Viewing 
NHST as a form of argument, it is an invalid argument to reach the conclusion 
implied by the argument when the premises are untrue.

Third, the results of NHST would be insufficient for researchers to definitively 
attribute the difference between means to the effect that is hypothesized. The 
American Statistical Association statement on NHST notes that “by itself, a p value 
does not provide a good measure of evidence regarding a model or hypothesis” 
because it “provides limited information” (Wasserstein & Lazar, 2016, pp. 131–132). 
The results from NHST would still need to be combined with other background 
information and assumptions regarding our experiments. These assumptions may be 
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related to our experimental design (e.g., in a between-group experiment, the vari-
ables being controlled for did not systematically differ across groups) or our back-
ground knowledge (e.g., the background literature provides evidence that the effect 
being tested for in NHST is plausible). For example, consider a clinical trial inves-
tigating a novel psychotherapy for depression. If it finds that there was a significant 
difference between the treatment and control groups, the conclusions drawn regard-
ing the trial still rely on other aspects of the trial: the way in which depression out-
comes are operationalized, the timeframe for measuring outcomes, and so on. This 
idea can also be seen in the distinction between “statistically significant” and “clini-
cally significant”—a result may be statistically significant but have little to no clini-
cal implications. Yet the conclusions we draw frequently use the p value to adjudicate 
between the falsity and truth of the hypothesized effect in question without consid-
ering these other premises (O’Connor & Khattar, 2022). In the language of logic, it 
is an invalid argument to conclude that the effect is present when the truth of the 
premises is not clearly established.

A related key flaw of NHST is its failure to take background information regard-
ing the effect into account. The process of NHST begins with a “blank slate” 
assumption—no prior information regarding the effect under consideration is con-
sidered. Each experiment and its results are considered in isolation, and the conclu-
sion is taken as a definitive answer to the question (albeit technically subject to 
replication). The logical flaw underlying this problem is that prior information—
such as results from previous experiments for a related hypothesis—is part of the 
pool of evidence from which one should infer. Using only a subset of the available 
evidence would likely lead researchers to a conclusion that contradicts other aspects 
of the pool of evidence. For example, consider that high-powered experiments have 
been conducted to test Hypothesis H1, of which 1 had a positive result and 9 had a 
negative result (under NHST). This suggests that the prior probability of H1 being 
true is 1/10. If you were to ignore this prior evidence and conduct an experiment that 
yields a positive result, you might wrongly conclude that H1 is true, when it is far 
more likely to be a false positive (Szucs & Ioannidis, 2017). Techniques such as 
meta-analysis (Glass, 1976), which aggregate previous results about the effect size 
of a particular hypothesis to determine its robustness and value, have been devel-
oped to overcome this problem.

Finally, NHST results in an “all or nothing” outcome: the null hypothesis is 
either significant or not significant, and researchers often (erroneously) draw the 
conclusion that the effect in question is “true” or “false.” By collapsing the outcome 
into a “clean” binary (Gelman & Carlin, 2017, p. 901), the researcher risks obscur-
ing the uncertainty of the statistical conclusions drawn. While there is truth or fal-
sity to a hypothesized effect, there is uncertainty inherent to every psychological 
experiment—some sources of uncertainty arise in experimental error, imperfect 
reliability and validity of measurements, and uncertainty regarding the validity of 
previous experiments. As such, to come to a binary conclusion regarding an experi-
mental outcome ignores the truth that scientific methods are inherently uncertain.
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�Bayesian Inference

The Bayesian statistical approach, sometimes called Bayesian inference, addresses 
some of the flaws of NHST and has been proposed as an alternative to NHST for 
data analysis in psychological science. Bayesian statistics takes a subjectivist view 
of statistics and is founded on the mathematically precise Bayes’ theorem:
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where P(x) refers to the probability of x, H is the hypothesis, and E is the evidence. 
The notation “ | ” means “given”; hence, P(H|E) is the probability of H given E, 
which is also known as the “posterior” probability of H. P(H) is the prior probability 
of the hypothesis, P(E|H) is the probability that the data are generated given that the 
hypothesis is true—this is sometimes called the likelihood function—and P(E) is 
the probability of the data according to the model. P(E) is also known as the “nor-
malizing constant,” which simply divides the probabilities obtained across the dis-
tribution to ensure that the distribution sums to 1. Because P(E) does not figure into 
determining the relative probabilities of different hypotheses, the equation is some-
times depicted as:
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where ∝ means “proportional to.” By this formula, the probability of H, given the 
evidence, is proportional to the probability of the hypothesis multiplied by the prob-
ability of the evidence given the hypothesis. This tells us exactly how to change our 
degrees of belief in a hypothesis.

Once P(H|E) is obtained, it “updates” the model, becoming the new prior prob-
ability for the hypothesis. Upon receiving a new set of evidence, the new prior prob-
ability replaces P(H), and Bayesian updating occurs again. If P(H|E1) refers to the 
posterior probability of the hypothesis after receiving evidence E1, then upon receiv-
ing new evidence E2:
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The subsequent equation allows the researcher to update their posterior probability 
of H once again. P(H|E) is typically represented as a probability distribution, 
wherein each potential value of a given parameter implied by the hypothesis (i.e., 
the effect size) has a discrete probability attached to it, representing the subjective 
belief of the researcher in each potential value of the parameter.

The logic of Bayesian statistics is founded on the rigor of Bayes’ theorem. 
Because Bayes’ theorem holds true across any potential set of probability 
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distributions, it allows the researcher to determine the probability of any hypothesis 
so long as the probabilities corresponding to the researcher’s beliefs are input into 
the equation. As a form of argument, it is valid because the conclusion (the poste-
rior) will be true if the premises (the priors and the likelihood) are true.

Bayesian statistics thus holds several advantages over NHST. First, as a subjec-
tivist view of statistics, it is a more direct way of determining the probability of a 
hypothesis being true given the data. Second, Bayesian estimation requires the 
researcher to specify their priors, which makes the researcher’s preconceptions 
regarding the hypothesis transparent. NHST does not account for the researcher’s 
biases, which can and do influence the results obtained (see Chap. 5 on p-hacking in 
this volume). Third, the product of Bayesian estimation is a probability distribution 
of parameter values representing the degrees of belief in the effect being tested; it 
does not commit to a binary yes/no outcome. This thus allows for uncertainty to be 
represented. Fourth, Bayes’ theorem explicitly incorporates prior information in the 
estimation by requiring that prior probabilities are introduced as inputs. The infor-
mation from previous experiments regarding a hypothesized effect can thus be 
accounted for. Fifth, it provides a way of precisely updating the probabilities upon 
receiving new evidence, allowing the researcher to determine exactly how their 
degrees of belief should change considering the new evidence. Meta-analyses can 
estimate the effect size of a hypothesis, but they often rely on hundreds of studies to 
do so. Finally, the fundamental logic of Bayesian statistics implies that the posterior 
distribution found will probably change as new evidence is introduced through fur-
ther research; the researcher cannot help but be reminded that the results they obtain 
are “pending.” Results from NHST have often been presented and understood as the 
definitive answer regarding a hypothesis, despite the rhetorical emphasis on 
replication.

Here is a simple example of Bayesian inference, borrowed from Kruschke 
(2015). Suppose that you are trying to find the bias of a coin. Based on prior infor-
mation, for example, this coin came from a magician’s shop, and the shopkeeper 
tells you that the coin mostly lands on heads, you suspect that the coin is strongly 
biased toward heads. As such, you might hypothesize that the coin’s bias is 0.9, 
where 0 represents tails and 1 represents head. However, because you are not com-
pletely confident about this, you construct a prior distribution wherein the prior 
probability distribution is densest in the region around 0.9—in this example, a dis-
tribution known as the beta distribution is the most appropriate. This probability 
distribution represents your prior knowledge and your confidence in your hypothe-
sis, P(H). Subsequently, you conduct some tests—you flip the coin ten times, find-
ing that it lands on heads eight times. What should you believe about the bias of 
the coin?

Bayesian inference, through Bayes’ theorem, allows you to determine this pre-
cisely. To find P(E|H), you ask: what is the probability of obtaining eight heads in 
ten coin flips if we suspect the true bias of the coin is 0.9? For example, calculating 
the discrete probability for the point estimate of 0.9:
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The equation above represents the fact that the event with a probability of 0.9 
(heads) occurs eight times and the event with the probability of 0.1 (tails) occurs 
twice. You would then ask the same question for every discrete point estimate in the 
prior probability distribution, obtaining P(E|H) for each value. Finally, using Bayes’ 
theorem, you can input the values of P(H) and P(E|H) into the proportional relation-
ship, allowing you to find the precise probabilities for each point estimate in the 
distribution. Doing these calculations by hand is computationally intensive, but 
many statistical programs now have implementations of Bayesian statistics that are 
quite efficient at applying it.

One major criticism of Bayesian statistics is that the choice of the prior distri-
bution is arbitrary. Since the prior distribution strongly influences the effect of 
evidence on the posterior distribution, the posterior distribution obtained may be 
heavily (and incorrectly) biased. For instance, assume that a coin is strongly 
biased toward heads, that is, the coin has a true parameter value of 0.9, where 0 
represents tails and 1 represents head. If I have a strong belief that the coin has no 
bias, for example, centers the prior probability distribution narrowly around the 
parameter value of 0.5, then the appearance of nine heads among ten coin flips 
will still lead to a posterior distribution that clusters near the initial prior (e.g., 
60% biased toward heads). This strong belief is referred to as a “strongly informa-
tive prior.”

However, in practice, researchers using Bayesian estimation would choose a 
prior based on the background information available to them. For instance, if they 
had no information regarding the coin, they might choose a flat prior, making all 
possible parameter values have equal probability. Nine heads in ten coin flips would 
then lead to a posterior distribution centered around the true parameter value. 
Alternatively, being aware that the coin belonged to a magician whose trick relied 
on the coin turning up heads, I might set a prior probability distribution that clusters 
around a parameter value of 1. This is also close to the true parameter value of the 
coin. Additionally, the prior distribution becomes more likely to converge on the 
true value of the parameter over time, suggesting that there exists a sufficient num-
ber of observations for the likelihood function to overwhelm even a strongly infor-
mative prior.

There is some controversy as to the status of Bayesian inference as a deductive 
or inductive method (see Gelman, 2011; Talbott, 2008). Bayes’ theorem is clearly 
deductive since it relies on the deductive rules of mathematics. It follows the logic 
of modus ponens: namely, that so long as the premises are true, the conclusion is 
true. The truth of the conclusion is contained in the truth of the premises. So long as 
the premises are true, the deductions obtained from Bayes’ theorem are valid.

Hawthorne (1993) argues that Bayesian inference is a form of eliminative induc-
tion, or “induction by deduction.” As evidence that is deductively entailed by the 
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hypothesis builds up, some hypotheses get eliminated (probability reduced to zero) 
and one (the true hypothesis) rises to the top as all other alternatives are eliminated. 
In cases where evidence is only probabilistically related to the hypotheses, some 
hypotheses get “highly refuted” and one (the true hypothesis) becomes “highly con-
firmed” as its plausibility increases. In both cases, Bayesian inference is thought to 
result in convergence to agreement regarding the posterior probabilities of hypoth-
eses. The former may appear to be Popperian falsification, which implies that a 
potentially infinite number of hypotheses to be falsified prevents us from ever know-
ing the true hypothesis. In response, Hawthorne suggests that if hypotheses are 
“ordered” in plausibility, so long as the hypotheses above the true hypothesis in the 
order are “evidentially distinguishable” (evidence exists that can deductively show 
that one hypothesis is true and another false), the true hypothesis will eventually rise 
to the top of the order and remain there.

�IBE in Haig’s Abductive Theory of Method

Brian D. Haig is a cognitive psychologist and research methodologist who advo-
cates the use of both abduction and IBE in behavioral sciences. These feature in his 
Abductive Theory of Method (ATOM; Haig, 2005), whereby abduction is the pri-
mary tool for generating theories and IBE is the primary tool for appraising these. 
Haig’s theory is comprehensive and detailed, and space limitations prevent a com-
plete discussion of it here—as such, a quick sketch of ATOM will be laid out, focus-
ing on the place of IBE within it. ATOM uses TEC for its grounding, committing to 
its notions of explanation as a primitive and the distinctions between explanation 
and prediction.

ATOM centers on the principle that explanatory considerations play a role across 
the three stages of theory construction: theory generation, theory development, and 
theory appraisal. Theory development occurs after theory generation, and theory 
appraisal occurs throughout the generated theory’s lifespan. Unlike hypothetico-
deductive models of science such as Popper’s (1959)—that begins with a problem 
and a theory aimed at solving this problem—ATSM begins with the phenomena to 
be explained and suggests that theories are constructed based on the phenomena. 
Accordingly, “phenomena exist to be explained rather than serve as the objects of 
prediction in theory testing” (Haig, 2005, p. 371). Importantly, Haig distinguishes 
phenomena from data—data are the raw observations, while phenomena are the 
“robust empirical regularities” (p. 372) that are abstracted from the data—in ATSM, 
they are also called phenomenal laws. Haig provides some examples of phenomenal 
laws from psychology: “the matching law, the Flynn effect in intergenerational 
gains in IQ, and the recency effect in human memory” (p. 374).

In the theory generation stage, abductive inference—reasoning to underlying 
causal mechanisms to explain phenomena—is used to judge the plausibility of 
potential causal mechanisms, and the best of these are then selected as a “plausible 
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enough” theory. This judgment of plausibility is based on its explanatory value, 
which is evaluated using the criteria of explanatory coherence. Here, existential 
abduction is applied, wherein the existence of previously unknown objects and con-
structs is hypothesized. This is contrasted with analogical abduction, whereby 
models of the mechanisms are developed based on analogy to other known mecha-
nisms; this is used in the theory development stage. For instance, if it is theorized 
that anatomical and physiological patterns in different generations of animals can be 
explained by the theory of natural selection, an analogical model would be that of 
artificial selection.

Finally, theory appraisal involves the use of IBE. In contrast to the Popperian 
model of the logic of research, that evaluates the theory based on its survival from 
falsification attempts, the ATOM model judges the theory based on its “explanatory 
breadth” (p. 380), which is synonymous with Thagard’s (1993) criterion of consil-
ience. Furthermore, unlike the Bayesian model of confirmation that relies on assign-
ing probability to various hypotheses in light of evidence, the ATOM model judges 
on Thagard’s (1993) qualitative explanatory criteria, not quantitative statistical cri-
teria—note that this contrasts with the justification of IBE based on simulations 
previously explored.

ATOM is thought to be a particularly useful philosophical contribution for clini-
cal psychologists for three reasons. First, it was developed for application to the 
behavioral sciences; Popper, Kuhn, and other prominent theorists of science based 
their models on the physical sciences, especially physics (O’Donohue, 2013), and 
as such their models may not be applicable to the behavioral sciences. Second, it is 
a theory founded in the practice of science; it pays attention to all of the steps 
involved in scientific activity (theory generation, theory development, theory 
appraisal)—again, Popper and others have been accused of not basing their models 
of science on the actual practice of scientists. Finally, and quite intriguingly, Ward 
et al. (2016) have elaborated that ATOM can be integrated into the practices of clini-
cal psychologists as a conceptual framework for psychological assessment.

One criticism of the theory appraisal stage of ATOM (Romeijn, 2008) is that it is 
subject to two common objections to IBE, labeled by Lipton (2004) as “Hungerford’s 
objection” and “Voltaire’s objection.” Hungerford’s objection suggests that the 
notion of “best-ness” of explanations is too subjective and varied. However, given 
the grounding of ATOM in Thagard’s (1993) IBE, which has been naturalistically 
justified (subject to empirical testing), Romejin is willing to concede this point. 
Voltaire’s objection suggests that there is no reason to believe that the theories cho-
sen by IBE are true or approximately true, for we have no reason to believe that the 
world accords with our explanatory criteria. To that point, Haig (2008) responds that 
ATOM does not claim to be a method for revealing truths; instead, the explanatory 
criteria in TEC are guides to truth, or at least would bring us toward the goal of 
“maximizing true propositions and minimizing false ones” (p. 1042).
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�Conclusions

We argue that poor scientific reasoning in which logical errors are made is another 
questionable research practice. We recommend that research psychologists and con-
sumers of psychological research pay more attention to the logic of research by 
identifying the relevant inferential approaches, detecting logical errors, and con-
structing sound reasoning. We describe some prominent types of research logic: 
from alogical approaches such as that of Kuhn, to deductive logical approaches of 
Popper, to inductive approaches and abductive/IBE approaches. The strength and 
weaknesses of each approach are discussed, along with the applications of these 
approaches in statistical methods and ATOM.
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Chapter 3
Replicability and the Psychology of Science

Cory J. Clark, Nathan Honeycutt, and Lee Jussim

Abstract  Scholars have much to gain by forwarding flashy, socially important, 
self-promotional, group-promotional, timely results. However, in the new era of 
Open Science, such gains could be short-lived if findings are not also accurate—
replicable, with correct interpretations and conclusions. Accepting that we ourselves 
are humans who are vulnerable to unconscious motivations that influence the ways 
we conduct science and the conclusions we come to should motivate us to place 
regulations on ourselves (e.g., refusing to file drawer our own studies, searching for 
information that challenges our beliefs and hypotheses, working with scholars with 
whom we disagree). Unfortunately, even when people are presented with reason-
ably compelling evidence that they might have biases that steer their judgments 
away from accuracy, they seem unable to recognize these tendencies in themselves. 
If you wish to be the exception to the rule, start not by denying that you are human 
and prone to biases and motivations, but instead by having a conscience that bravely 
admits this to yourself.

Keywords  Clinical science · Questionable research practice · Replicability · 
Clinical psychology

They all pose as though their real opinions had been discovered and attained through the 
self-evolving of a cold, pure, divinely indifferent dialectic… whereas, in fact, a prejudiced 
proposition, idea, or ‘suggestion,’ which is generally their heart’s desire abstracted and 
refined, is defended by them with arguments sought out after the event. They are all advo-
cates who do not wish to be regarded as such, generally astute defenders, also, of their 
prejudices, which they dub ‘truths,’—and VERY far from having the conscience which 
bravely admits this to itself... (Friedrich Nietzsche, Beyond Good and Evil, p. 14, 1886/2017).
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Scientists are humans. They are smart, ambitious humans, with a peculiar desire 
to explain and understand the world and a set of principles and procedures that help 
steer them toward truth. They are humans nonetheless. Their psychology is there-
fore human psychology.

Psychological discoveries in the social sciences—human errors, heuristics, 
biases, motivations, psychological needs—all apply to scientists in similar if not 
equal (or possibly even greater) measure. For example, people with greater educa-
tion and science literacy are more polarized in their views of scientific controversies 
(such as climate change), raising the possibility that education increases the extent 
to which reasoning is influenced by preferred worldviews (Drummond & 
Fischhoff, 2017).

Although such biases and errors of reasoning are frequently investigated by sci-
entists, they are rarely applied to scientists to understand how the reasoning patterns 
discovered by scientists likely influence scientists’ own reasoning and discoveries. 
The present chapter will apply psychological science to explain why, when, and 
how scholars engage in questionable research practices (QRPs), advance dodgy or 
erroneous conclusions (sometimes for decades on end), and suppress accurate or 
useful information. Although certainly some scholars consciously and purposefully 
engage in fraud or data suppression, we suspect the vast majority of these non-
optimal truth-seeking strategies occur outside of researchers’ awareness in the sense 
that they genuinely believe their research practices are more optimal than they are 
in reality. We first review bases for concluding that scientists are vulnerable to moti-
vated research. Next, we argue that it is in the best interest of truth-seeking for sci-
entists to acknowledge these tendencies in themselves and vigilantly and proactively 
defend against them. We also suggest some concrete correctives.

�A Primer on Motivated Reasoning

Reasoning—the ways in which we approach and avoid information, evaluate infor-
mation, and construct our attitudes and beliefs about information—is motivated 
(Kunda, 1990). Sometimes it is motivated by desires to reach the most accurate 
conclusion. This is the scientific ideal. Unfortunately, however, reasoning can also 
be motivated by desires to reach particular conclusions rather than truth. This can 
undercut scientific validity.

Imagine a trial in which a defendant was accused of robbing a locally owned 
mini mart and there were numerous pieces of evidence to evaluate, including a 
slightly blurry surveillance video, an eyewitness who claims the robber was of simi-
lar height and physique as the defendant, and a suspiciously timed bank deposit 
from the defendant shortly after the robbery took place. The prosecution attorney 
would be motivated to view this as clear and conclusive evidence of the defendant’s 
guilt, the defense attorney would be motivated to view this as ambiguous and cir-
cumstantial evidence, and the judge and the jury would be motivated to make the 
most accurate evaluation of the defendant’s likely guilt. Although humans prefer to 
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see themselves as the judge—carefully weighing evidence and coming to conclu-
sions most consistent with the data—humans often reason more like the lawyers, 
evaluating evidence in ways that allow them to reach conclusions most beneficial to 
themselves (Ditto, Clark, et al., 2019; Ditto, Liu, et al., 2019; Haidt, 2001).

Humans likely evolved to reason this way because accuracy is not always the 
most important goal for reproductive success (Clark et al., 2019). Sometimes it is 
more beneficial to persuade others of one’s own greatness, to demonstrate commit-
ment and value to one’s social group, to avoid a possibly correct but risky or costly 
conclusion, to protect one’s own reputation or the reputation of one’s kin, to secure 
a mate, or to deceive an enemy than to be correct. In the social sciences, the conse-
quences that flow from many research findings are so difficult to evaluate that inac-
curacies can go undetected for decades. Popularity (of a scientific finding) can 
produce citations, grants, awards, and, therefore, career success. By the time inva-
lidities of highly popular findings are discovered, the scientists producing them will 
have had wonderful careers. Thus, the current academic system is plausibly 
described as incentivizing popularity more than accuracy.

In science, motivated reasoning, or rather, motivated research, happens when 
extraneous concerns beyond accuracy influence how scientists familiarize them-
selves with extant data, reach hypotheses, collect and analyze observations, come to 
conclusions, and report those conclusions to other scientists and the public. 
Researchers do not merely forward their own conclusions however; they are also the 
gatekeepers (the editors, the peer reviewers, the hiring committee members, the peer 
commentators, etc.) for their peers’ research, and thus motivated research can also 
happen when concerns beyond accuracy influence how scientists accept, elevate, 
reject, and suppress the work of their peers or the very peers themselves. The repli-
cation crisis has focused largely on how scholars advance erroneous conclusions by 
producing unreplicable results, but scholars may also obstruct accurate conclusions 
or useful information, which is problematic for advancing knowledge in the social 
sciences.

�Social Sciences Supply Especially Fertile Ground 
for Motivated Research

Ambiguous, noisy, and difficult information environments increase the likelihood 
of motivated reasoning (Kopko et al., 2011; Munro, Lasane, & Leary, 2010; Munro, 
Weih, & Tsai, 2010). Accuracy motivations decrease because one cannot know with 
much certainty which conclusions are accurate, and thus other motivations take 
their place (Clark & Winegard, 2020). Science, and perhaps especially social sci-
ence, generally deals with these ambiguous, noisy, and difficult information envi-
ronments. Most if not all social phenomena cannot be studied in a vacuum. There is 
rarely if ever one clear best methodological strategy for testing a social science 
question, and even when scientists discover seemingly robust and replicable data 
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patterns, there are often numerous ways of interpreting those patterns. Meehl (1990, 
p. 196) captured this state of affairs beautifully: “...theories in ‘soft areas’ of psy-
chology have a tendency to go through periods of initial enthusiasm leading to large 
amounts of empirical investigation with ambiguous over-all results.”

For example, any time some negative parenting behavior correlates with some 
negative outcome for children, did the parenting behavior have any causal influ-
ence or is there simply a genetic confound (e.g., Maranges et al., 2021)? Any time 
scholars discover an association between negative stereotypes or implicit attitudes 
and negative outcomes for the groups those stereotypes or implicit attitudes are 
about, did the stereotypes or implicit attitudes have any causal force on those 
negative outcomes, or did the negative stereotypes and implicit attitudes exist 
because people are reasonably skilled at detecting existing patterns in the world 
(e.g., Hehman et al., 2018; Payne et al., 2017; Reber, 1989)? Even best practices 
in social science require scholars to make numerous at least somewhat arbitrary 
decisions at each step of the research process, from generating hypotheses to 
drawing conclusions. These characteristics of the social sciences make it very dif-
ficult for an accuracy-motivated social scientist to reach correct conclusions and 
simultaneously make it very easy for a social scientist motivated by extraneous 
concerns to reach the conclusion they desire (Duarte et al., 2015; Simmons et al., 
2011). Consequently, social sciences as a discipline are vulnerable to motivated 
research practices.

Beyond the ambiguous information environment problem, there is even more 
reason to believe that motivated reasoning creates unique obstacles for the social 
sciences. The investigators and the objects of investigation are one and the same 
thing—humans—and humans care about human things. It likely makes little dif-
ference to the average human whether flying squirrels are fluorescent or whether 
there is a maximum speed of light, but average humans might care if middle-aged 
men are sexually attracted to 15-year-old females, if altruism is “selfish,” and if 
grandparents evolved to love their daughters’ kids more than their sons’ kids. It is 
likely impossible to eliminate human desires from an understanding of human-
kind; thus, social scientists likely have more extraneous motivations influencing 
their work than scientists who deal with amoebae, polymers, quarks, or any non-
human objects.

Moreover, morality is frequently tangled up in the social sciences, and moral 
concerns are powerful motivators of reasoning (Clark et al., 2019; Tetlock et al., 
2000). Sometimes accurate conclusions in the social sciences might cause con-
cerns about morally undesirable implications, and people and scholars may then 
wish to avoid, ignore, disparage, or censor this kind of information, even when it 
could plausibly be correct (Campbell & Kay, 2014; Clark et al., 2020; Stewart-
Williams et al., 2021; von Hippel & Buss, 2017; Winegard, Clark, et al., 2018). 
For just one recent example, a paper by AlShebli, Makovi, and Rahwan (AlShebli 
et al., 2020) collected a very large sample of mentor and protégé pairs in scientific 
collaborations and found evidence that female protégés with higher proportions of 
female mentors were less impactful later in their careers. After widespread 
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outrage among the scientific community, on November 19, 2020, the editors of the 
journal released a statement, “Readers are alerted that this paper is subject to criti-
cisms that are being considered by the editors. Those criticisms were targeted to 
the authors’ interpretation of their data that gender plays a role in the success of 
mentoring relationships between junior and senior researchers, in a way that 
undermines the role of female mentors and mentees…” (emphasis added). 
Although there are plenty of legitimate criticisms of this paper (as there are of 
probably every published article in the social sciences), the investigation by edi-
tors of the journal occurred because of concerns about undermining the role of 
female mentors and mentees. Thus, this investigation is explicitly morally moti-
vated. And these moral concerns might cause suppression of a real pattern and 
exploration into the causes of this pattern.

We are not saying that moral concerns are never a legitimate reason to suppress 
research findings (that is a difficult debate). But, in many cases, outrage mobs of 
academics bear a striking resemblance to a mob stirring up a moral panic, as they 
cause the suppression of data in the absence of evidence of harm or thoughtful con-
sideration of alternatives (Stevens, Jussim & Honeycutt, in press). Moreover, schol-
ars often assert themselves and their comrades as the authorities on such matters. 
Thus, while their intentions may be noble, such suppression is often ochlocratic and 
advances the interests of a subset of outraged scholars to the detriment of knowl-
edge accruement. Occasionally, empirical reality will lead scholars to arrive at con-
clusions that trigger our moral alarms, and because scientists are humans and 
evolved to minimize certain harms, occasionally they will wish to suppress accurate 
information by suppressing their own findings (Zigerell, 2018) or creating obstacles 
for their peers’ findings (Stevens et al., in press).

Similarly, occasionally, scientists will discover false patterns that are morally 
desirable, or real patterns but then explain these with false but morally desirable 
explanations. Such erroneous patterns or erroneous explanations may persist in the 
psychological canon for years or decades because they are morally desirable to 
scholars and thus few scholars will wish to challenge them (Jussim et al., 2019). To 
give a couple of examples, the ideas that stereotype threat could explain certain 
group disparities (e.g., Jussim et al., 2016) or that implicit bias could explain subtle 
but impactful prejudices against certain groups (Forscher et al., 2019) are arguably 
some of the most prominent social-psychological findings of all time, yet the effects 
are weak to non-existent and there is little if any evidence of their importance in the 
real world (e.g., Clark & Winegard, 2020). It seems likely that these effects were 
overblown and proper scrutiny was decades delayed because the findings were mor-
ally and thus socially desirable by scientists. Many scholars would want to forward 
such results themselves and few would want to challenge them.

Because the social sciences deal most directly with problems and questions with 
significance to humans, social scientific conclusions are vulnerable to morally moti-
vated data suppression and morally motivated data elevation. Being a purely 
accuracy-driven social scientist will occasionally require an unnatural detachment 
from normal human concerns and motivations.
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�Human Motivations

We discuss four human motivations that likely influence the ways in which scholars 
conduct their research. We also discuss how those motivations can produce severely 
biased scientific research literatures.

�Status Desires

Humans desire status and behave in ways that increase their chances of attaining 
status in social groups (e.g., Anderson & Kilduff, 2009). Scientists desire to attain 
status within their discipline—to be respected and admired by their peers—but also, 
given the relative status of scientists in society (Pew, 2020), they likely desire to use 
their roles as scientists to gain high status among society at large. Becoming a social 
scientist requires relatively high investment in education and a relatively high work-
load to attain a tenure-track position at a research institution, and the job actually 
pays relatively little compared to other degrees that require similar amounts of edu-
cation and time investment (e.g., medical doctors). Therefore, it is plausible that 
social scientists are more motivated by desires for status than even the average 
highly educated person. Thus, it seems plausible that the social sciences likely 
attract the kinds of people who are especially incentivized by status attainment and 
especially likely to engage in research behaviors that would allow them to 
attain status.

Perhaps the chief way people attain status is by creating the appearance of pro-
viding benefits for others (e.g., Durkee et al., 2020). Although actually providing 
such benefits is one route to creating this appearance, it is not necessary. One can 
engage in virtue signaling or moral grandstanding without actually doing much else 
and this can sometimes be very effective at persuading others that one is a force for 
moral good (Grubbs et al., 2019). Providing benefits to others is also not sufficient 
to increase status (e.g., if it is done in a matter where few notice).

Therefore, regardless of whether anyone actually benefits, creating the appear-
ance of providing benefits is highly incentivized. This would create a motivation to 
produce information that can be perceived as new or novel (Baumeister et al., 2018) 
or to produce “Wow Effects” (Jussim et al., 2016) with seemingly broad implica-
tions. It may take years or even decades to do the hard work to evaluate whether the 
findings are replicable and generalizable, and then to test them in the real world; 
and, at the end of that process, the entire enterprise may be found to be worthless 
(findings unreplicable) or trivial (replicable but only with effect sizes so small no 
one cares). There are few incentives to wait 15 years for such a payoff: people have 
jobs, tenure, promotions, and grants to obtain; bestselling books to write; workshop 
fees to collect; and consulting fees to garner. Put differently, the incentives all line 
up to create the impression that one has benefited society now, not 15  years 
from now.
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Many of the most overblown findings in the social sciences fit this analysis 
exquisitely well (e.g., stereotype threat, implicit bias, growth mindset, various kinds 
of priming). We now know these findings were overblown and, in some cases, seem 
to be entirely invalid. Stereotype threat, priming, and growth mindset have all been 
subject to a series of preregistered failures to replicate and/or findings that the 
effects are plausibly viewed as trivially small (Doyen, Klein, Pichon, & Cleeremans, 
2012; Finnigan & Corker, 2016; Flore, Mulder & Wicherts, 2019; Pashler, Rohrer 
& Harris, 2013; Sisk, Burgoyne, Sun, Butler & Macnamara, 2018). After almost 
20  years of “implicit bias” and the Implicit Association Test (IAT) in particular 
being wildly overstated and oversold, in recent years, critical reviews have described 
the construct as “delusive,” identified a slew of psychometric problems with the 
IAT, and shown that its predictive validity and ability to explain racial gaps is lim-
ited at best and possibly non-existent (Blanton et  al., 2009; Corneille & Hütter, 
2020; Forscher et  al., 2019; Jussim et  al., in press; Jaccard, Oswald, Mitchell, 
Tetlock, & Blanton, 2013; Schimmack, 2021).

Although this is not the place to review all the debunking of the last five to ten 
years, one example should suffice. Blanton et  al. (2009) characterized a slew of 
studies making strong claims about racial discrimination produced by implicit bias 
as measured by the IAT as actually providing weak evidence. In a response, Jost 
et al. (2009) published a paper titled “The existence of implicit bias is beyond rea-
sonable doubt: A refutation of ideological and methodological objections and exec-
utive summary of ten studies that no manager should ignore.” In a recent review, we 
did a deep dive into those ten studies and found something quite startling: those ten 
studies supposedly refuting the “weak evidence” charge provided almost no evi-
dence of racial discrimination (Jussim et al., in press). Put differently, there was 
little or no racial bias to be explained (whether by IAT scores or anything else). 
Indeed, most of the studies did not even address racial discrimination at all.

Despite the extraordinary enthusiasm for these “discoveries” (as evidenced by 
the massive number of papers that use the terms and measures and by the eminence 
and awards given to their promoters and acolytes), the fullness of time (combined 
with the eventual emergence of vigorous scientific skepticism) has shown them to 
be far less than they were cracked up to be. This may help explain why diversity and 
implicit bias trainings based on these (nearly) non-existent or poorly understood 
measures and phenomena are rarely demonstrably effective (Paluck, Porat, Clark & 
Green, 2021). Thus, these phenomena are all exquisite examples of how scholarship 
can create the impression that AMAZING! WORLD-CHANGING! phenomena have 
been discovered that will benefit humanity, without actually providing any notice-
able benefit to humanity, and at great human cost in wasted effort, grant dollars, and 
time spent in useless trainings.

Nonetheless, selling AMAZING! WORLD-CHANGING! findings to an unsus-
pecting public and insufficiently critical scientists has been highly rewarded with 
status, promotions, grants, and consulting fees. And, to be clear, although scientists 
love to point to others (such as the media) as the culprits in overselling their find-
ings, it is usually the scientists themselves who bear primary responsibility (Mitchell, 
2018; Sumner et al., 2016). Regardless, scholars are heavily incentivized to create 
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the appearance that their findings lead to simple and easy-to-implement interven-
tions that will change the world. Unfortunately, many social problems persist in 
affluent societies precisely because they are extremely difficult or perhaps even 
impossible to fix, and so the demand for such interventions inevitably creates a low-
quality supply. Unlike behavioral genetics or personality psychology, social psy-
chology delivers simple environmental manipulations that ostensibly can create 
desirable changes in human behavior. The desire for effects that create potential for 
interventions and behavior change may even explain why social psychology is such 
an attractive discipline to normal people (McPhetres, 2019), despite its many flaws 
and embarrassments over the past decade (e.g., Nosek et al., 2015).

Scholars can also achieve media and public attention by generating findings with 
significance to current events and hot topics and so are likely motivated to study 
such topics, and to forward results quickly when they do. In a society where science 
often does and should move quite slowly and hot topics often change rather rapidly, 
this could cause scholars to draw hasty conclusions in order to be timely in their 
research. Moreover, quick movement to publicize AMAZING! WORLD-
CHANGING! findings (see Mitchell, 2018, for a review of the wild overselling of 
implicit bias after the publication of the first IAT paper, in 1998) makes it difficult 
for other scholars to check such findings before they reach the broader public.

Of course, status motives will also lead scholars to pursue accuracy in their 
work, for two reasons. First, more accurate information is more useful to other 
people, and thus accuracy is a direct route to status attainment, and second, being 
inaccurate (if detected) can be costly. Having one’s own research fail to replicate, 
or worse, being caught for outright research fraud are huge blows to status, and so 
scientists should be motivated to both appear accurate and be accurate. Given new 
developments in Open Science, it has become easier for other scholars to detect 
errors and other suspicious research practices in their peers’ work, and so the cur-
rent cohort of scholars should be more motivated to be accurate (or at least avoid 
certain types of errors) than the cohort existing a decade or more ago.

Open Science practices have made certain types of QRPs more difficult to get 
away with. For example, preregistration makes it more difficult to HARK (Kerr, 
1998) and cherrypick variables, conditions, and even entire studies. However, many 
papers still report studies that are not preregistered leaving the door wide open to 
such practices. Furthermore, if studies provide narratively or theoretically “inconve-
nient” findings, they can still be file drawered. When acting as a reviewer, it is easy 
enough to suppress others’ inconvenient findings or arguments—simply come up 
with scientifically plausible justifications for declaring the work to be sub-par.

�Ostracization Avoidance

Just as people wish to gain status within their social groups, they wish to avoid 
being ostracized (Ouwerkerk et al., 2005). People tend to punish those who violate 
group norms or generate costs to the social group (Bowles & Gintis, 2004). Scholars 
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are likely motivated to avoid these punishments, and, therefore, avoid violating 
group norms.

The extreme politically liberal homogeneity among social scientists (Duarte 
et al., 2015; Langbert, 2018) renders the entrenchment of liberal norms—such as 
support for parties, policies, candidates, and causes on the left; hostility to those on 
the right; and equalitarianism (the assumption that, but for discrimination, all demo-
graphic groups would have identical outcomes)—virtually inevitable (Clark & 
Winegard, 2020; Honeycutt & Jussim, 2020; Prentice, 2012). Thus, for either or 
both of two reasons, scientists should be motivated to avoid advancing scientific 
findings that challenge a liberal political agenda: (1) They share that agenda and do 
not wish to oppose it or (2) They correctly discern these norms and believe (proba-
bly correctly) that work challenging those norms will be more difficult to publish 
and fund than work that advances those norms. For example, some research has 
found that liberals are described more positively than conservatives in social scien-
tific research (Eitan et al., 2018), that conservative social scientists fear ostraciza-
tion and that other social scientists openly report that they would discriminate 
against conservatives (Honeycutt & Freberg, 2017; Inbar & Lammers, 2012), and 
that more liberal ideology predicts working at more prestigious universities, even 
after controlling for academic productivity, suggesting that ideological conformity 
helps one advance in their career (Rothman et al., 2005).

Another recent paper that sought to explore the relationship between ideological 
slant of research and replicability identified almost no papers at all in their analysis 
that violated liberal values, suggesting that such papers rarely come into existence 
(Reinero et  al., 2020). Similarly, Zigerell (Zigerell, 2018) discovered 17 unpub-
lished experiments with nationally representative samples finding either no anti-
Black bias among White respondents and/or anti-White bias among Black 
respondents. Although we may never know exactly why those studies were never 
published, one possibility is that they would risk violating liberal equalitarian norms 
and would, therefore, either be seen as not worth publishing, or not worth the 
(expected extraordinary) effort, and concomitant risk of being ostracized, to do so.

Arguably, these dynamics—political skew, bias and intolerance toward individu-
als or ideas that conflict with mainstream liberal views—have a direct connection to 
censorious behaviors (Honeycutt & Jussim, 2022). This connection is not inevita-
ble—bias does not automatically produce direct or indirect censorship. But when 
academic fields such as the social sciences become so heavily skewed, excluding 
ideas or data that conflict with the norms and worldview of the majority becomes an 
increasing threat to the validity of the scientific literature. This is not to say that 
scholarship can never be rejected—papers are routinely rejected for flaws and weak-
nesses that have nothing to do with political content or motivations. But ideologi-
cally motivated rejection can often be dressed up as legitimate critique, often 
manifested in selective calls for rigor, illusions of bad science, or claims of harm 
and danger (Honeycutt & Jussim, 2022). One obvious casualty is the suppression of 
otherwise legitimate scholarship (Stevens et al., 2020).

Scholars are likely motivated to reject information that could be perceived as 
opposing a politically liberal agenda both in their own research and in their peers’ 
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research. And they are likely motivated to frame their findings in ways that mislead-
ingly portray liberals in a favorable light when their findings could just as easily or 
more easily be framed in ways that portray conservatives in a favorable light. For 
example, Lilienfeld (2015) critiqued the framing and description of conservatives 
having a “negativity bias” or “motivated closed-mindedness” when the findings on 
sensitivity to threat could have just as easily been framed as a liberal “motivated 
blindness to danger.” More recently, a paper by Baltiansky, Jost, and Craig 
(Baltiansky et al., 2021) chose to highlight that high system-justifiers (correlated 
with more conservative ideology) found jokes targeting low-status groups to be fun-
nier than low system-justifiers in their abstract, portraying conservatives as being 
insensitive toward low-status groups. However, high system-justifiers found jokes 
targeting low- and high-status groups similarly funny, whereas low system-justifiers 
found jokes targeting low-status groups to be less funny than those targeting high-
status groups (Pursur & Harper, 2020). One could interpret such findings as show-
ing that conservatives treated low- and high-status groups with equal consideration, 
whereas liberals were particularly condescending toward low-status groups by sug-
gesting they need protection from jokes. Similarly, a recent paper by Brady, Wills, 
Burkart, Jost, and Van Bavel (Brady et al., 2019, p. 1802) highlighted that “conser-
vative elites (on Twitter) gained greater diffusion when using moral-emotional lan-
guage compared to liberal elites” portraying conservatives as vulnerable to 
emotional appeals. However, this effect was mainly driven by joy-related content, 
which was misleadingly labeled “moral emotion expression related to religion and 
patriotism” in the abstract.

Scholars likely know that to frame results in ways that portray conservatives 
more favorably than liberals would make the results more difficult to publish. So, 
the easier route to attaining publications (and status), and avoiding ostracization, is 
to create misleading characterizations of findings. Thus, scholars who wish to avoid 
ostracization among overwhelmingly liberal social scientists will engage in moti-
vated research to generate findings and frames palatable to their liberal peers. 
Academia operates as a social-reputational system, whereby one’s success is highly 
contingent upon the favorable evaluations and references of others at all career 
stages: to obtain admission to graduate school, publish in peer-reviewed academic 
journals, obtain grants, get a job, or obtain tenure/promotions. As such, there are 
strong incentives for doing work and staking out positions that will garner social 
approval from peers, and often strong disincentives surrounding the expression of 
ideas that colleagues reject or vehemently disagree with (Honeycutt & Jussim, 2022).

Social scientists are even more homogenous in a domain other than politics—
every last one of them is a social scientist. Thus, social scientists should be moti-
vated to avoid harming social scientists and the social scientific enterprise. The 
types of scholars who critique the field, for example, by suggesting the field is 
politically biased, or by accusing the field of shoddy methods and unreliable find-
ings, are likely to be revered by some and loathed by others. In an effort to protect 
the field and their own reputations, some scholars (likely, especially older and more 
established scholars with more to lose) might seek to create obstacles for scholars 
who forward data and arguments that challenge the field. Many scholars would 
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avoid criticizing the field, the field’s theories, and the field’s prominent scholars, 
even if they believe such criticisms are warranted, because it can be costly to them 
by virtue of incurring the hostility of colleagues on whom their success depends (via 
peer review). By writing this chapter in which we suggest that social scientists 
engage in motivated research, we risk making enemies who will dismiss us, have a 
lower opinion of us, or subtly punish us with ostracization.

�Self-Enhancement

People are motivated to self-enhance—or to perceive and portray themselves more 
positively than reality would suggest (Sedikides & Gregg, 2008). Of course, social 
science is rarely directly about the self, but it is often indirectly about the self by 
being about “people like me” (sometimes referred to, only half-jokingly, as 
“mesearch”).

Social scientists likely have some tendencies to avoid advancing data and theo-
ries that portray their own social groups unfavorably or to create obstacles for others 
who do. This will not always be the case because there may be competing motives 
for why people might want to perceive different groups in different ways (e.g., men 
might be more strongly motivated to portray women in a positive light than to por-
tray men in a positive light for ideological reasons, protective reasons, or desires to 
earn female approval), but absent competing motives, scholars are likely motivated 
to reject findings that portray their own groups in a negative light. This is one reason 
to support numerous kinds of diversity among scientists, because these preferences 
cancel out in the broader literature when numerous scientists have competing 
motives. These self-enhancement tendencies are more likely to create systematic 
biases in the field if most social scientists fall within one category (i.e., men, hetero-
sexual, liberal, etc.).

�Error Management

When faced with complicated information and a noisy environment in which truth 
cannot be confidently discerned, people have a tendency to favor less costly errors 
over costlier ones. A classic example found that men have a tendency to overesti-
mate a woman’s sexual interest in them because it is costlier to miss out on a mating 
opportunity than to make an unwanted sexual advance, whereas women have a ten-
dency to underestimate a man’s commitment to her because it is costlier for her to 
risk pregnancy from a man who will abandon her after sex than to miss out on a 
sexual opportunity from a man who might commit to and support her (Haselton & 
Buss, 2000).

This is not a motive separate from the others (desires to gain status, avoid ostra-
cization, and self-enhance), but rather one constantly interacting with the other 
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motives. Imagine, for example, that you have run two studies that found interesting 
and novel pattern X. You decide to run one more study to really solidify your set of 
studies before submitting for publication, and you fail to replicate your first two 
studies even though this third study was very similar to the first two. This is an 
ambiguous piece of new information—you do not know why the third study failed 
to replicate. Maybe the effect is not real. Or maybe, it was because you ran this third 
study late at night or toward the end of the semester or because the first two studies 
used up all the conscientious subjects in the subject pool. In the first case, you miss 
out on a publication and have wasted time and perhaps money running studies that 
will never be published. In the latter cases, you can—with justification to yourself—
file drawer your third “flawed” study and move forward with just the two. (In such 
a situation, the right thing to do would be to run a fourth study to test which of your 
hypotheses about your own findings is correct, but some scholars would not want to 
risk confirming that the first two studies were flukes.)

�Motivated Research in Practice

Thus far we have explained why the social sciences create an environment ripe for 
motivated research and why scholars will often have preferences for certain kinds of 
conclusions over others—occasionally, though not always—to the detriment of 
accuracy. But how might motivated research work in practice?

�Selective Exposure and Selective Avoidance

At the information recruitment stage, people have a tendency to seek out informa-
tion that confirms their desired conclusions and avoid information that challenges 
their desired conclusions (DeMarree et al., 2017; Frimer et al., 2017; Stroud, 2010). 
These are referred to as selective exposure and selective avoidance, respectively. 
Although such patterns are often explored in media consumption among everyday 
people (Stroud, 2010), scholars likely engage in selective exposure in selecting 
which articles to read. But people also engage in selective exposure by creating 
social information environments that are likely to deliver information that confirms 
their desired beliefs, by surrounding themselves with other people who share their 
cherished beliefs (McPherson et al., 2001) both in person (Motyl et al., 2014) and 
on social media (Bakshy et  al., 2015). In academia, scholars likely “follow” the 
scholarly and social media outputs of particular scholars whose research and 
research interests support their own research agenda. Further, one novel source of 
selective exposure among academics lies within their ability to create information 
that supports particular conclusions. By selecting certain materials and methods that 
they believe are most likely to confirm their hypotheses and avoiding the use of 
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materials and methods they have less confidence in, they can often generate their 
own confirmatory information.

Consequently, scholars will be more aware of information that supports their 
preferred hypotheses than information that challenges it, making their hypotheses 
appear more plausible and correct than perhaps a more balanced understanding of 
the literature would predict. Such tendencies would be particularly problematic for 
review papers, as scholars likely overrepresent information consistent with their 
theory and underrepresent contradictory information. These same tendencies can 
happen with editors and reviewers, who may have imbalanced information about 
the phenomenon under investigation. If the reviewers have the same blind spots as 
the authors, they will be unable to point these out. Given the aforementioned and 
discussed ideological lopsidedness of social science disciplines, blind spots are 
likely more common than many in the field are willing to concede.

Selective exposure and avoidance can therefore create biased citation patterns, 
which can continue to perpetuate biased understandings of different domains of 
research (for recent examples, see Honeycutt & Jussim, 2020). If scholars have 
preferences for certain conclusions, scholars will be more aware of those findings 
and thus more likely to cite those findings, and then those highly cited articles 
become accepted as the authority on the particular issue. Discordant findings, in 
contrast, are ignored and eventually forgotten. Ideally, the findings in these highly 
cited articles are valid, and the relevant knowledge improves theory and applica-
tions. But, if biased citation patterns result in the canonization of invalid findings, 
this can produce a reign of error (Honeycutt & Jussim, 2020) whereby socially 
desirable, but nonetheless flawed, work is propped up to reflect the field’s general 
knowledge. This, in turn, creates dynamics and crises of confidence such as those 
that have stemmed from psychology’s replication crisis. Under these dynamics, 
biased citation patterns can also contribute to ignoring valid findings, which pro-
duces a loss in understanding and deprivation of relevant knowledge. Science strives 
to be self-correcting, but if invalid findings are canonized and continue to be highly 
cited, and valid findings (e.g., failed replications) go ignored, self-correction does 
not occur.

If scholars can acknowledge these tendencies in themselves, they should be 
motivated to overcome them. A biased awareness of extant data will make it harder 
to generate hypotheses that are likely to be confirmed by data collection. Exposing 
oneself to unpalatable information will help scholars identify dead-end hypotheses 
before they sink time and money into testing them.

�Motivated Skepticism and Credulity

Once people are exposed to information (whether they sought it out or could not 
avoid it), they engage in motivated skepticism and credulity, or the tendencies to be 
highly skeptical and critical of discordant information and relatively credulous and 
uncritical of concordant information (e.g., Ditto & Lopez, 1992; Taber & Lodge, 
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2006). For example, people are more critical of the methods of a scientific study 
when the results come to an inconvenient conclusion than the same methods when 
the results come to a preferred conclusion (Lord et al., 1979). This can also be con-
ceptualized as a selective call for rigor, whereby one rejects work they do not like 
on supposedly scientific grounds, but then fail to apply those same standards to 
work they do like or agree with (Honeycutt & Jussim, 2022). People also make 
more mistakes with both numeric and logical reasoning when conclusions are dis-
cordant (Gampa et al., 2019; Kahan et al., 2017). Among scholars, this likely hap-
pens both in evaluations of one’s own findings and in evaluations of others’ findings 
in peer review, acceptance into conferences, awards, decisions to cite, and decisions 
to hire.

Running experiments on the peer review process can be difficult with tightly 
controlled methods, but there have been a couple of examinations that have found 
that reviewers tended to judge research as higher quality when the findings sup-
ported their prior beliefs and theoretical orientations than when the findings chal-
lenged their prior beliefs and theoretical orientations (Koehler, 1993; Mahoney, 
1977). This suggests scholars may evaluate research more leniently when findings 
support their own research agendas. Some research has identified how personal val-
ues interfere with the human subjects review process (Ceci et al., 1985). Similarly, 
research suggests that ideological and moral concerns influence scholars’ evalua-
tions of research (Abramowitz et al., 1975) and perhaps even their understanding of 
empirical reality. For example, von Hippel and Buss (2017) found that social psy-
chology professors were more likely to believe that women could have evolved to 
be more verbally talented than men than that men could have evolved to be more 
mathematically talented than women. To our knowledge, there is no legitimate sci-
entific reason to believe that one evolved gender difference is more plausible than 
the other, which suggests their beliefs may be partially motivated by ideological or 
moral concerns. Moreover, some scholars even openly admit that they would dis-
criminate against conservative research and conservative scholars (Honeycutt & 
Freberg, 2017; Inbar & Lammers, 2012; Peters et al., 2020).

Other extraneous concerns influence the reviewing process as well. For example, 
conference submissions from more prestigious scholars and institutions are evalu-
ated more favorably in single-blind than double-blind reviews, which suggests that 
either scholars are using a heuristic about prestige and quality or that perhaps schol-
ars are hesitant to give negative evaluations to people and institutions with high 
status (Tomkins et al., 2017). Such biases, sometimes also referred to as an emi-
nence obsession (Vazire, 2017), are likely quite common in reviews of peers and 
research because, as noted above, there is a great deal of noise and ambiguity in 
evaluating the quality of work. Some scholars have pointed out that the interrater 
reliability of peer review is barely above chance (Lee et al., 2013). On the one hand, 
this suggests the possibility that editors are selecting diverse reviewers with differ-
ent strengths and perspectives, which in many cases could help cancel out system-
atic biases. On the other hand, it is a reminder that scientific evaluations—even 
among experts—are not perfectly objective, and that features of the reviewers influ-
ence the perceived quality of science, not merely the science itself.
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One report found that reviewer agreement on funding applications was higher for 
low-scoring applications than for top-scoring applications (Gallo et  al., 2016). 
Differentiating between a handful of top candidates is likely more subjective—all 
the top candidates are high quality, so there is no clear “accurate” or “best” decision, 
and thus extraneous concerns of the individual scholars have greater influence on 
their evaluations. Given how frequently scholars are differentiating between high-
quality content for limited outcomes (journal and conference acceptances, awards, 
hiring), many of these important decisions that determine scholars’ success depend 
on the idiosyncratic motivations of the reviewers and committee members (so long 
as applicants reach a certain quality threshold to be considered in the first place). Of 
course, scholars understand this, and that is why such decisions are usually made 
among multiple people. This strategy will be more useful when the panel of 
decision-makers have diverse motivations and preferences, for example, different 
theoretical and ideological orientations.

Some scholars have contended that these biased information processes are more 
likely to occur among “experts” or the cognitively sophisticated (e.g., Kahan, 2012; 
Kahan et al., 2012). People who are more cognitively sophisticated or more knowl-
edgeable would be better able to justify their own biased reasoning processes to 
themselves and to other people, and thus could get away with more bias than less 
sophisticated people. Other scholars have challenged this hypothesis, finding that 
greater cognitive sophistication is instead associated with converging toward accu-
racy (McPhetres & Pennycook, 2019). Future research will shed more light on these 
patterns. It may be that expertise and cognitive sophistication simultaneously 
increase motivated reasoning and ability to detect accurate patterns (and perhaps 
motivation to detect accurate patterns), and so in some cases scholars will be more 
biased than the average person and in other cases, less. There also could be indi-
vidual differences in whether people tend to “use” their cognitive sophistication 
more to approach accuracy or to advance their own interests. At minimum, there is 
no strong evidence that experts and those high in cognitive sophistication are 
immune to biases.

�The Protective Powers of Science

Although scientists themselves are but mere mortals, the institution of science can 
mitigate against scientists’ human fallibilities. Peer review requires scholars to con-
vince two to five other scholars who do not (necessarily) share the same motives of 
the scientist and thus who are not particularly motivated to enhance the importance 
or quality of whatever manuscript they are reviewing. Sometimes these peers are 
actually competitors (there is only so much journal space), and so, in some cases, 
reviewers might be strongly motivated to find flaws, which requires authors to be 
particularly impressive (although, this could also incentivize p-hacking to generate 
impressive results).
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The (mostly) shared mission of seeking true and accurate information incentiv-
izes truth and accuracy-seeking in scientists. All else equal, scholars would prefer to 
forward true impressive results rather than false impressive results, because both 
contribute to status, but the latter creates reputational risk of being discovered as a 
phony. Scholars likely feel some shame and embarrassment when their own theories 
fail to hold up and their findings fail to replicate, and much more shame and humili-
ation when they are caught in outright fraud. Science has created a culture in which 
the social response to indicators of dishonest research practices likely disincentiv-
izes the most obvious transparent forms of data manipulation and fraud. However, 
it remains unclear whether that culture has disincentivized more subtle influences 
and tactics (e.g., using positions of power, such as organization leadership roles and 
journal editorships, to benefit one’s own and one’s friends’ research and careers).

The Open Science movement has also done a lot to mitigate motivated research, 
primarily through incentivizing transparency. It is now much more difficult to get 
away with certain dishonest or questionable research practices. Preregistering stud-
ies binds scholars to distinguishing transparently their initial hypotheses from post 
hoc fishing expeditions and to their methods and analysis plan, and requires them to 
indicate when they deviate. Making data publicly available is a big step toward 
transparency, and likely increases accountability for data tampering. The new “rep-
lication movement” has created an atmosphere where all scholars must consider the 
possibility or probability that some other scholar will try to replicate their findings. 
This might render scholars more hesitant to publish papers they have little confi-
dence in, because the status and esteem reward could be short-lived and the long-
term consequences of work failing to replicate or being labeled a fraud could be far 
costlier. However, it may be years before other scholars attempt to replicate one’s 
work, let alone publish it, so that the short-term rewards of publishing may still 
overwhelm the costs of others failing to replicate, which might not be felt for a very 
long time. By that time, the original researcher may be a full professor with a large 
grant portfolio, lots of graduate assistants, and a New York Times bestselling book.

�But We Can Do Better

Science has an impressive history of generating accurate information over long 
stretches of time (i.e., converging upon truth), but most of this progress was made 
by scientists being completely wrong for long periods of time (young Earth, bleed-
ing to cure illnesses, spontaneous generation of life, all of which were believed for 
centuries). Some norms of scientific practice in psychology are improving and we 
hope replication rates in the future will confirm that these new procedures are effec-
tive at minimizing researcher degrees of freedom to pursue preferred results and 
effective in generating a more reliable body of information. But, there are many 
problems these norms either do not help at all or help only very little.
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�File Drawering

Open Science practices do very little to minimize file drawering. Depending on 
preregistration platform, even preregistered studies can be file drawered without 
notice. One solution would be to ask scholars to declare in their papers that they 
have no file drawer studies or any other studies that tested the same hypothesis 
tested in the paper. Of course, scholars could still lie, but requiring an explicit, pub-
lic, and published declaration of the lie turns the act of omission into an act of com-
mission, which could create additional psychological barriers. If it is discovered that 
there were other studies, this act can be considered active fraud rather than a more 
ambiguous questionable practice. This also increases the likelihood that at least one 
co-author on a multi-authored paper would object to the outright lie.

There are also selfish reasons not to file drawer your own studies. When scholars 
file drawer, they inflate their own effect sizes. If and when there are replication 
attempts, and the findings either fail to replicate or have smaller effect sizes, this 
will raise suspicion. The more surprising findings are, the more likely it is that other 
scholars will attempt to replicate the findings, and so by exaggerating the size of 
one’s own effect, scholars likely increase the odds that they will be caught and 
viewed with suspicion by peers.

�Updated Replication Tracking

A more laborious, but perhaps beneficial, strategy would be for journals to include 
replication sections on their journal pages for each article where scholars can link 
their successful or failed replications of the published study and code their own 
replication study as failed, successful, or ambiguous/semi-successful. Published 
studies could then have a live “replication score” attached to them that is easily vis-
ible to other scholars who read those published articles. This would help scholars 
know whether they should take a particular study seriously when theorizing, devel-
oping hypotheses, and deciding whether to conduct further replication attempts.

A replication tracking system within the journals might, over the long run, influ-
ence the reputation of a journal, and, therefore, incentivize editors to publish robust 
science rather than flashy science. Such a system might also disincentivize authors 
from publishing science they have little confidence in because their publication 
could end up being flagged with a low replication score, which would be embarrass-
ing. This would also provide a greater incentive to those scholars who do fail to 
replicate a particular study to write up their failed replications. Their replications 
would be more visible to other scholars interested in the particular effect (rather 
than buried on some other website) and thus increase the chances that they will at 
least receive citations for their work (if not publications). This, in turn, would also 
make it much easier for scholars who wish to conduct meta-analyses to detect suc-
cessful and failed replications.
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�Review Papers

Review papers are often highly cited and help solidify many broader theories and 
ideas in the social sciences that are then used by other scholars to generate new 
hypotheses. Therefore, more than sets of experiments, it is important that scholars 
get review papers right so they do not waste the time and resources of their peers. 
Yet Open Science practices do little to help review papers be more accurate and 
portray the full range of relevant data (rather than a biased subset).

One corrective for review papers would be for editors and reviewers to require 
explicit and clearly labeled sections containing a mini review of findings that are 
inconsistent with the present theory or hypothesis. If the scholars know of no 
research that contradicts their hypothesis, they could be required to say this explic-
itly in their paper. This should incentivize them to do a dedicated search of incon-
sistent findings so that other scholars do not accuse them of being unfamiliar with 
the topic even after writing a review.

Such papers could also be required to include statements of falsification. If they 
present a new theory, it will be important to know not only what it explains or 
what it predicts or the conditions under which such predictions apply, it will be 
crucial to know what would falsify the theory’s predictions. If stereotypes are 
declared to be the default basis of person perception (Fiske & Neuberg, 1990), 
how would we know if this was wrong? Would it be falsified by evidence showing 
powerful individuating information effects? Weak biasing effects? Easily elimi-
nated biasing effects? Even better, scholars could be required to identify the most 
severe test of the hypothesis—that is, the test that would be most likely to detect 
the falsity of the theory or finding under investigation (O’Donohue, 2021). 
Theories that generate non-falsifiable predictions are plausibly considered non-
scientific, so that one means of elevating the scientific credibility and validity of 
psychological science would be to articulate explicit statements of what it would 
take to falsify a theory.

Evaluations of the quality of the evidence and not just the presence/absence or 
even size of some effect of phenomenon would also be valuable, as is common in 
Cochrane reviews (the gold standard in medical research). Do studies have large or 
small N’s? Are they experimental or non-experimental? Are they preregistered or 
not? If so, did they follow the preregistration closely or not? The reviews could also 
use the new forensics (p-curves, R-Index, etc.) to evaluate the quality of the evi-
dence they reviewed (Bartoš & Schimmack, 2020; Simonsohn, 2015; Simonsohn 
et al., 2014a; Simonsohn et al., 2014b). Evaluations of the quality of the evidence 
might reduce the wild overclaiming that has characterized so many conclusions in 
social psychology for decades (Jussim et al., 2016).
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�Academic Reviewing, Gatekeeping, and Data Suppression

Scholars have little ability to criticize the gatekeepers in academia. Calling attention 
to the flaws of reviewers or editors risks alienation, making it more, not less, diffi-
cult to get one’s work published and funded. Similarly, accusing a hiring committee, 
conference committee, or award committee of bias would violate norms in the field; 
and generally, it is difficult or impossible to know or prove when another scholar is 
supporting or opposing a particular finding or scholar for non-accuracy reasons. 
Consequently, there are almost no ways to hold the gatekeepers of academia 
accountable. Although accountability to reviewers constitutes a check on author 
biases, there is no comparable check on reviewers or editors’ biases.

Open peer review is, however, one way to mitigate some of those biases. Reviews, 
with or without reviewer identifying information can be publicly posted. Therefore, 
the entire scientific community at least has the opportunity to evaluate for itself 
whether a set of reviews are themselves valid and whether their evaluations of a 
paper have been fair. As public information, it might even become possible for 
authors to criticize reviews without fear of retaliation.

One growing trend in academia are mob demands to retract papers that have 
already passed peer review. Unless fraud or statistical errors that change the conclu-
sions are detected, these are data suppression attempts, usually in the service of 
some moral or political goal (Stevens et al., in press). Attempts to suppress research 
by mob can be plausibly interpretable as inability to refute the work—because if the 
work could be refuted, the solution would be to publish the supposed refutation and 
allow readers to judge for themselves which is stronger. Our view is that building 
the discussion, rather than erasing it, is far more likely to advance science. 
Nonetheless, many journals and editors may feel extreme pressure to give in to such 
demands because they fear their own reputation or the reputation of the journal. And 
numerous recent examples exist attesting to this trend (described at length in 
Honeycutt & Jussim, 2022, and Jussim, 2020).

To guard against mob retraction demands, journals should have explicit guide-
lines for when they will consider retractions. We recommend the Committee on 
Publication Ethics’ guidelines (https://publicationethics.org/retraction-guidelines), 
which include unreliable findings resulting from major errors or fabrication of data, 
plagiarism, redundant publications, unauthorized material or data, copyright 
infringement, research that violated ethics, compromised peer review, or failure to 
disclose competing interests. Journals should adhere to their guidelines without 
exception, thus disincentivizing calls for retraction based on other concerns such as 
alternate explanations, concerns about possible moral implications of the data, or 
methodological weaknesses. With the rise of retraction-by-outrage-mob proce-
dures, it would be especially useful for journals whose policy is to retract only in 
cases of fabrication or massive data errors to explicitly state in their instructions to 
authors that “under no conditions will we retract a paper that has passed peer review 
and been accepted for publication, or published, on grounds other than those 
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articulated here, no matter how many people sign petitions or open letters or send us 
outraged emails to do so.”

Journals, of course, could create their own guidelines, including, for example, 
“public concerns about the moral implications.” This would then signal that they are 
willing to retract papers that are objected to by outrage mobs, even when they have 
passed peer review. This would permit scholars to make their own decisions about 
whether to publish in journals with retraction policies that violate their own stan-
dards for science. Just as transparency will improve the work of authors, it will also 
improve the work of journals and editors.

�Use of Strong Theories

The idea that human minds and human behavior are the product of evolution and 
thus what humans think and do should generally promote reproductive success is 
one of the few broad theories within the social sciences that has withstood substan-
tial criticism and has been very useful for generating countless other more specific 
hypotheses (Lewis et al., 2017). If, for example, a particular finding seems inconsis-
tent with natural and sexual selection in human cognition and behavior, skepticism 
would be warranted. Some may contend that any hypothesis or finding could be 
made consistent with an evolutionary account, but we doubt this is so. For example, 
Freud’s Oedipus complex, or the idea that young boys would have sexual desire for 
their mothers and jealousy and hostility toward their fathers, makes almost no sense 
at all from an evolutionary perspective (e.g., Daly & Wilson, 1990). Using strong 
theories, those which we can have high confidence in, can help scholars generate 
better hypotheses, which is advantageous both for scientists and scientific progress.

�Adversarial Collaborations

Working with others with whom you disagree might be temporarily unpleasant, but 
it will make you a better scientist (see, e.g., Bateman et al., 2005; Mellers et al., 
2001). Those who disagree with you have a different perspective, and possibly dif-
ferent motives and biases, that can help cancel out systematic error in your own 
work. Adversarial collaborations require scholars to articulate their hypothesis in a 
clear and testable way, understand their adversary’s hypothesis as their adversary 
understands it (and not as a caricature), identify actual points of disagreement 
(rather than imagined ones based on caricatures), and generate methods that could 
differentiate between the two hypotheses and feasibly falsify either hypothesis. 
These kinds of collaborations constrain researcher degrees of freedom because 
adversaries will not approve of methodological approaches that provide (even if 
unintentionally) rigged tests of hypotheses or that appear designed to confirm a 
scholar’s hypothesis.
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They also have greater potential to advance debates and change minds. Because 
scholars commit to a methodological approach before testing their competing 
hypotheses, this minimizes scholars’ ability to post-hoc criticize methods, explain 
away unexpected results, and file drawer undesired results. Third parties should be 
more persuaded by results of adversarial collaborations knowing that a scholar who 
made opposite predictions stands behind the methods and findings.

Although adversarial collaborations might feel like an unnecessary constraint in 
the short term, it will likely improve research in the long run (Ellemers et al., 2020). 
If your hypothesis is correct, it likely will win out in an adversarial collaboration. If 
it is incorrect, likely it will eventually be falsified regardless of whether you dis-
cover this on your own in an adversarial collaboration or whether other scholars 
discover this in failed replications or failed conceptual replications. Delaying the 
inevitable by refusing to participate in adversarial collaborations only risks wasting 
more time and money and lowering the ratio of science that will withstand the test 
of time.

Nonetheless, adversarial collaborations can also be quite difficult. Especially if 
adversaries have been openly hostile with one another, forging the cooperative 
bonds needed to work together on a project may be a bridge too far. Even without 
personal antipathy, however, bridging differences in assumptions, perspectives, and 
motives can be a formidable and effort-intensive task. We all have only limited time 
and resources, and, sometimes, such a project may not be viewed as worth the effort.

On the other hand, we can also imagine a scientific world in which adversarial 
collaborations were incentivized, thereby rewarding researchers who succeed at 
bridging these divides. Given the higher confidence we can have in the findings 
resulting from adversarial collaborations, editors and reviewers should consider 
these a methodological strength, similar to preregistrations, large sample sizes, and 
meta-analyses. Given the self-discipline and commitment to rigor required to par-
ticipate in adversarial collaborations, such efforts should be rewarded by other 
scholars when making hiring, funding, and award decisions. Participation in these 
collaborations indicates that a scientist is committed to truth-seeking rather than in 
advancing flashy results that may not hold up to higher scrutiny.

�Reward Rigor

Grants and awards in the social sciences should prioritize scholars who produce 
robust effects—those that are reliable and replicable and stand up to severe scrutiny. 
Truth-telling and rigor should be prioritized over flash, drama, novelty, counter-
intuitiveness, and supposedly easy solutions to complex problems. By providing 
resources to researchers who produce findings that are true, powerful, and robust, 
psychology will wander down far more scientifically productive paths than if it fol-
lows every bright shiny object that shows up flashing p < 0.05 and a compelling 
narrative. Of course, sometimes, even those findings will be flashy or dramatic. But 
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flash and drama should not detract from the value of work, and might be valuable 
add-ons, if that work was conducted in such a manner as to lead to high confidence 
that it is true, powerful, and robust.

�The Case for Accuracy Motivations

Scholars have much to gain by forwarding flashy, socially important, self-
promotional, group-promotional, timely results. However, in the new era of Open 
Science, such gains could be short-lived if findings are not also accurate—replica-
ble, with correct interpretations and conclusions. Accepting that we ourselves are 
humans who are vulnerable to unconscious motivations that influence the ways we 
conduct science and the conclusions we come to should motivate us to place regula-
tions on ourselves (e.g., refusing to file drawer our own studies, searching for infor-
mation that challenges our beliefs and hypotheses, working with scholars with 
whom we disagree). Unfortunately, even when people are presented with reason-
ably compelling evidence that they might have biases that steer their judgments 
away from accuracy, they seem unable to recognize these tendencies in themselves 
(Pronin et al., 2002). If you wish to be the exception to the rule, start not by denying 
that you are human and prone to biases and motivations, but instead by having a 
conscience that bravely admits this to yourself.
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Chapter 4
History of Replication Failures 
in Psychology

Cassie M. Whitt, Jacob F. Miranda, and Alexa M. Tullett

Abstract  In this chapter, we document notable failed replications in psychology. 
According to a pioneering project conducted by the Open Science Collaboration, 
less than half of a sample of 100 studies successfully replicated. Since that time, 
other large-scale replication attempts have echoed the worrisome state of psycho-
logical science. Dubbed “the replication crisis,” this dilemma in the sciences is two-
fold; not only are replication studies rarely conducted but the results of original 
studies are often difficult to replicate. The crisis has been challenging for psycho-
logical science in many ways, but one particular quagmire it has revealed is a body 
of knowledge potentially fraught with Type I errors (i.e., rejection of a true null 
hypothesis)—a sentiment some researchers suggested before the crisis even began. 
The crisis has also functioned to highlight systemic biases and problematic incen-
tive structures in our scientific enterprise, which we will discuss in greater detail 
later in the chapter. We conclude this chapter with the hopes that learning more 
about the historical context of the replication crisis helps readers participate in dis-
course on the subject and motivates them to be active participants in improving 
psychological science.

Keywords  Psychological science · Questionable research practices · Replication 
failures

�This Chapter Starts with a Story about a Cat

In 2007, geriatrician Dr. David Dosa published an article in The New England 
Journal of Medicine titled “A Day in the Life of Oscar the Cat.” In this perspective 
piece, Dosa describes the astounding capabilities of a therapy cat named Oscar who 
lived among the residents of a nursing and rehabilitation center in Rhode Island. 
The center primarily cared for patients with end-stage illnesses like Alzheimer’s 
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disease, and according to Dosa’s report, Oscar possessed the uncanny ability to 
predict the deaths of residents living there. Stories of the cat’s ability to prophesy 
the passing of a patient began when a staff member noticed that Oscar, who was 
reportedly not an overly friendly cat, began to persistently hang around patients who 
passed soon after the cat’s appearance. The staff noticed that this happened repeat-
edly over a period of several months.

We can imagine that after the first patient passed in Oscar’s presence, the staff 
members might have thought nothing of it, or perhaps considered it a coincidence, 
but then, after it occurred a second time, a third time, and eventually, a twenty-fifth 
time, they became more confident that what they saw was not a fluke (or a false 
positive) but rather a phenomenon with some logical explanation—the cat knows 
when death is imminent. Importantly, however, we may also speculate that the staff 
members unwittingly failed to register instances in which Oscar did not accurately 
predict someone’s death; surely, not every patient with whom he came into repeated 
contact passed in his presence. In our scientific endeavors, our dealings with feline 
psychopomps are disappointingly rare, but the consequences of ignoring failed rep-
lications are serious; nevertheless, we risk maintaining beliefs that are (possibly 
wildly) false.

In this chapter, we document notable failed replications in psychology. According 
to a pioneering project conducted by the Open Science Collaboration (2015), less 
than half of a sample of 100 studies successfully replicated. Since that time, other 
large-scale replication attempts have echoed the worrisome state of psychological 
science (e.g., Klein et  al., 2018; Ebersole et  al., 2020). Dubbed “the replication 
crisis,” this dilemma in the sciences is twofold; not only are replication studies 
rarely conducted (Makel et al., 2012) but the results of original studies are often 
difficult to replicate (Open Science Collaboration, 2015). The crisis has been chal-
lenging for psychological science in many ways, but one particular quagmire it has 
revealed is a body of knowledge potentially fraught with Type I errors (i.e., rejection 
of a true null hypothesis; Funder et al., 2014)—a sentiment some researchers sug-
gested before the crisis even began (Ioannidis, 2005). The crisis has also functioned 
to highlight systemic biases and problematic incentive structures in our scientific 
enterprise (Nosek et al., 2012), which we will discuss in greater detail later in the 
chapter.

Before delving into the history of replication attempts, it behooves us to clarify 
what we mean by “replication.” Often, people label replications as either direct or 
conceptual. Direct (also called exact) replications are defined as an attempt to imple-
ment a research protocol that is as similar to an original study as possible in terms 
of materials, procedures, analyses, and sample demographics. Conceptual (also 
called indirect) replications identify the fundamental hypothesis in an original study, 
and then test the research question with a novel protocol (e.g., new operationaliza-
tions of variables, different study design, demographically distinct sample; Crandall 
& Sherman, 2016). Although some have contested this distinction and noted that 
truly “direct” replications are strictly impossible (Brandt et al., 2014; Crandall & 
Sherman, 2016; Nosek & Errington, 2020), evaluating the implications of a 
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replication often depends on an assessment of the differences between the replica-
tion and the original study.

Replication failures are the clear focus of this chapter; however, what scholars 
mean by “failure” is less clear. Failure to replicate has been defined in a variety of 
ways, with some scholars noting that the “success/failure” dichotomy obscures the 
fact that replications may provide inconclusive results (Nelson et al., 2018). Later in 
this chapter, we will elaborate on different ways one can evaluate a replication.

The replication crisis is a critical topic in the field of psychology across varied 
sub-disciplines and occupations. Because science is cumulative, and inherently 
requires psychologists to possess some level of dependence on the expertise of their 
peers (Oreskes, 2014), addressing the state of the field is imperative for the work 
that we all do. This is perhaps most apparent for those who work as career research-
ers but is still at play for those psychologists in applied or clinically based positions. 
After all, the implementation of evidence-based practices requires trust in the 
research that goes into developing clinical procedures, and while the replication 
crisis is often linked most closely to the field of social psychology (Earp & Trafimow, 
2015; Open Science Collaboration, 2015), it is important to keep in mind that social 
psychology’s issues are not isolated. Difficulty with replicability, and many of the 
underlying causes of the problem, are shared with clinical psychology (Tackett 
et al., 2017, 2019). We assert that there are important lessons to be learned from 
examining these problems more closely. In particular, one problem that has signifi-
cantly contributed to the replication crisis is the propensity of researchers to engage 
in Questionable Research Practices, also referred to as QRPs (John et al., 2012). 
Broadly, the present chapter will focus on the history of replication failures in psy-
chology and how questionable research practices have contributed to issues with 
replicability. A relative lack of replications (and possible failures to replicate) may 
lead to a false belief that clinical psychology has less of a problem compared to 
other sub-fields.

�Psi, Fraud, and the Many Labs to Follow

There are good reasons to be highly skeptical that humans—or felines—can predict 
the future (Wagenmakers et al., 2011). However, in a paper published in the Journal 
of Personality and Social Psychology (JPSP), Bem (2011) reported a series of nine 
experiments providing empirical evidence for psi—the ability to predict a future 
event. In response, many psychologists and journalists asked, “What went wrong?” 
How could a researcher use the tried-and-true research and statistical methods of the 
times, yet draw such implausible conclusions (Engber, 2017)?

It is not hard to imagine the ripples Bem’s claims caused across the psychologi-
cal discipline. Other papers in related fields, such as one documenting “voodoo” 
correlations within neuroscience, questioned if most associations found were spuri-
ous (Vul et al., 2009). Meanwhile, Diederek Stapel’s famous fraud case—in which 
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he fabricated data for several widely disseminated studies—prompted further scru-
tiny of the kinds of counter-intuitive findings that were commonplace on the pages 
of social psychology journals (Borsboom & Wagenmakers, 2012; Verfaellie & 
McGwin, 2011). For example, Stapel was exposed for faking data corresponding to 
a study published in Science that concluded that trash-filled environments lead to 
racist tendencies (Bhattacharjee, 2013). Questions started to arise: Does a problem 
exist in our field? If so, what’s the extent of the problem? Should I be worried about 
my research? What does it even mean for an effect to successfully replicate?

�Ways of Evaluating Replications

When evaluating the success of a replication effort, one could simply assess whether 
the replication yields a significant effect in the same direction as the original. 
According to this approach, if an original study showed that a meditation interven-
tion reduced self-reported stress, a successful replication would be one that yields 
any significant reduction in stress, regardless of effect size. There are some short-
comings of this approach: If the original study reported that the effect size of their 
intervention was extremely large (e.g., Cohen’s d = 0.9), and the replication found a 
statistically significant effect that is very small (e.g., d = 0.1), would we say that we 
have successfully replicated the effect? The answer may depend on the kinds of 
conclusions one is interested in drawing. If seeing any reduction in stress would be 
considered a success, then this approach is appropriate. More probable, there is 
some point at which the reduction in stress is so small that it does not justify the 
time and money invested in the intervention. In this case, significance would be an 
overly simplistic metric of replication success.

Alternatively, rather than a focus on p-values, one could look at the uncertainty 
surrounding the point estimates of the effect size to see if the replication’s estimated 
magnitude significantly differs from the original. One could do this by calculating a 
95% confidence interval around the replication study’s point estimate and seeing if 
the original effect size estimate was “captured” in that range. If so, this could be 
interpreted as a successful replication in that the original effect size was not signifi-
cantly different from that observed in the replication. There are limitations with this 
approach as well. Replication studies (i.e., the subsequent studies, not the original) 
are usually extremely well powered, collecting sample sizes in the 1000s (e.g., 
Klein et al., 2018). With greater power, the more precise and narrower the confi-
dence intervals will be. Thus, even slight deviations between the original effect size 
and the replication’s estimate would be considered significantly different, even 
though they could be conceptually comparable.

A third way researchers have commonly evaluated and used replication studies 
is in the form of a meta-analysis. Specifically, one could combine both the original 
and replication studies estimated magnitudes together to have an aggregated pre-
dicted effect size. This combination of multiple studies together may at first glance 
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seem strong, especially with the recent advocation of meta-analytic thinking 
(Cumming, 2014). Unfortunately, meta-analyses are not immune to bias; the old 
adage of “garbage in-garbage out” captures concerns that meta-analyses cannot cor-
rect for systematic biases in a sample of studies (Nelson et al., 2018). If the original 
studies have inflated effect sizes, then meta-analysis will still provide a bloated 
aggregate not reflecting reality. Nelson et al. (2018) described this with the meta-
phor of combining glasses of juice into a pitcher: if even one of the contributing 
glasses has been poisoned, the resulting mixture will also be tainted.

These three common markers are not the only approaches to evaluate a replica-
tion. In more recent years, a variety of different methods of evaluation have been 
proposed focusing on detectability capacity of the original study as well as Bayesian 
inferential analyses (Verhagen & Wagenmakers, 2014; Simonsohn, 2015). There is 
not currently, and likely will never be, a one-size-fits-all for what counts as a dichot-
omous success or failure to replicate. Rather, we encourage readers to assess each 
large-scale replication attempt holistically, using multiple indicators and critically 
thinking about how (or if) the original and replication studies inform the underlying 
theory of what is being proposed (Stroebe, 2019; Nosek & Errington, 2020). 
Ultimately, scientists are not interested in any single study, or protocol, but rather, 
in developing frameworks for understanding the world. Uri Simonsohn (2016) per-
haps stated it best, “Each reader decides if a replication counts.”

�A History of Notable Replication Projects

�Many Labs 1

Many Labs based projects consist of crowdsourcing a large number of researchers, 
who have access to different samples, and orchestrating them to conduct replica-
tions using similar procedures. By running identical studies in numerous contexts, a 
greater amount of information can be gleaned regarding the factors that influence 
the effect of interest, and the meta-factors that influence effect sizes generally. Many 
Labs 1 (ML1) was one of the first large-scale replications conducted concurrently 
with the Open Science Collaboration’s Reproducibility Project: Psychology, or RP: 
P (Klein et al., 2014; OSC, 2015).

The main contribution of ML1 has little to do with the 13 specific effects that 
were selected as a target for replication. Instead ML1 accomplished the extraordi-
narily difficult task of getting hundreds of researchers to work together. ML1 set a 
precedent for subsequent large-scale initiatives (e.g., Many Labs 2 through 5) and 
collaborations such as the Psychological Science Accelerator (Moshontz et  al., 
2018). ML1 serves as a proof of concept that experts could come together, isolate a 
research question of interest, set parameters for selecting a study to replicate, and 
coordinate a global research endeavor. Notably, ML1 also served as a catalyst for 
the growing interest in the field of meta-science. Researchers began asking 
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empirical questions regarding the influence of various methodological characteris-
tics of research studies on replicability. For example, researchers began to investi-
gate the roles of factors, such as lab setting, mode of instruction (e.g., lab vs. online), 
and the language stimuli were presented in. Arguably, these meta-scientific ques-
tions, and the unique insights they can provide, are two of the great strengths of this 
project.

Ten out of the 13 (77%) effects investigated in ML1 were labeled by the project’s 
authors as “successful” replications of the original work. However, we must con-
sider that the Many Labs projects all explicitly stated that the original studies used 
were chosen selectively—not randomly. As an example, ML2 studies were chosen 
based on criteria such as feasibility of implementation through web browser, length 
(shorter procedures were preferred), number of citations the original study had 
received (more citations were desired), and general interest in the effect. In order for 
any study to generalize beyond its sample, random selection that is representative of 
a population is a key feature that is necessary. Thus, even if all 13 effects had been 
replicated, we could not conclude that the field of psychology is in an ideal state 
because the studies replicated were not randomly chosen nor are they representative 
of the field as a whole. Likewise, even if not a single study replicated in a Many 
Labs project, we could not generalize that the field is in shambles. In other words, it 
is important that psychologists do not overgeneralize beyond the scope of the 
project.

�Reproducibility Project: Psychology (RP: P)

Many Labs projects were not designed to provide an estimate of replicability for the 
field of psychological research. Some researchers posit that this estimate is impos-
sible to calculate, as one is unlikely to obtain a truly random representative sample 
of all studies across the disciplines in the field (Stroebe, 2019). However, the 2015 
RP: P effort aspired to provide at least a rough estimate (Open Science 
Collaboration, 2015).

Beginning in November 2011, the project began recruitment of 270 authors to 
attempt to replicate 100 studies. These 100 studies were chosen from three influen-
tial journals, with two-thirds having either a social psychology or cognitive science 
scope and all from the year 2008: Journal of Experimental Psychology: Learning, 
Memory, and Cognition (JEP: LMC), Journal of Personality and Social Psychology 
(JPSP), and Psychological Science (PSCI). Although these journals are not repre-
sentative of the field of psychology as a whole, nor is the work done in 2008 neces-
sarily indicative of later work, this selection of studies was intended to provide at 
least some insight into the health of the field as a whole.

RP: P was a leading initiative that contributed to our understanding of how to 
evaluate replication studies. As such, they provided several operationalizations of 
what counts as successful replication described in the previous section. Across the 
three journals they sampled from, 35 out of 97 showed a significant effect in the 
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original direction (36%), 47% of the original effect sizes were within the 95% CIs 
of the replication, and the meta-analytic mean of effect sizes (all transformed to a 
standardized correlation coefficient) was an r  =  0.31. The average effect size 
reported in the original studies was equal r = 0.40, whereas the average effect size 
reported in the replications was an r of 0.20. This led the authors to conclude: “The 
present results suggest that there is room to improve reproducibility in psychology” 
(Open Science Collaboration, 2015, p. aac4716-7). Regardless of the replicability 
estimate used (36% and 47%), these initial rates were seen as cause for concern.

�Many Labs 2 and 5

Although some of the criticisms of the RP: P have been described as “completely 
invalid” (Lakens, 2016), one common point of discussion was the possibility that 
failed replications might actually be reflecting “hidden moderators” rather than 
challenging the strength of original effects (e.g., Van Bavel et al., 2016). It is impos-
sible to do a complete replication of an original study; if the replications were 
implemented using the same staff, in the same lab, using the exact same procedure, 
there would still be differences between the original study and the replication 
attempt. For example, college students in the mid-2000s might possess different 
cultural beliefs and values than college students in the early 2020s. Some other 
moderators that have been attributed to failed replications include temperature, time 
of day, and weather. There are also considerations such as demographic composi-
tion of the sample or individual differences among research assistants. In short, a 
prominent critique of the RP: P, and indeed, a recurring argument of almost every 
unsuccessful replication attempt is: did you consider X moderator?

Fortunately, these concerns can be addressed empirically by putting the scientists 
under the microscope—one example of the broader practice of scientifically study-
ing scientific practices, or “meta-science.” Many Labs 2 and 5 provide some initial 
answers to these questions (Klein et al., 2018; Ebersole et al., 2020).

Many Labs 2 attempted replications on 28 findings across 125 collected samples 
with a total of 15,305 research participants covering over 30 countries. Meta-
scientific variables were collected from the 125 samples: both traditional demo-
graphics (e.g., gender, political ideology, education level, and socioeconomic 
status), commonly referenced individual differences as potential hidden moderators 
(e.g., cognitive reflection capacity, Big 5 personality traits, self-esteem, and mood), 
as well as characteristics of the labs conducting the replication (e.g., some labs con-
ducted the study online only while others had participants come in-person).

What they found was surprising; initial evidence suggested that most of the 
potential “hidden moderators” that were investigated explained little variation in 
replicability. In other words, studies had similar replication outcomes regardless of 
lab characteristics, demographics, and other individual differences. For example, if 
one lab found weak evidence of an effect, it was likely that other labs, did too, 
regardless of the sample. Likewise, if one lab found little to no evidence of an effect, 
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then other labs, with different types of demographics, also found little to no effect. 
Moreover, 27 of the 28 studies had statistically equivalent results regardless of 
whether surveys were conducted completely remotely (self-administered) or had 
participants come in person. As mentioned earlier, it is fortunate that the Many Labs 
projects are well-equipped to address such meta-science questions; less fortunately 
is that it seems failures to replicate cannot simply be dismissed as replicators not 
successfully achieving the impossible ideal of a truly “direct” replication.

Many Labs 5 goes one step further and attempts to answer: Does including the 
original author’s input when creating the design of a replication protocol improve 
replicability? The goal was to address the critique that replicators don’t consult the 
original authors or lack expertise in the content of the original work (Gilbert et al., 
2016). This project does not have as clear-cut an answer. Within the RP: P, eleven 
studies were flagged by the original authors as having potential design flaws in the 
replication protocol. Many Labs 5 worked with ten of those protocols and randomly 
assigned labs to one of two conditions: in-house protocols vs. original-author-
approved protocols. The goal was to examine if the protocol that was intensively 
reviewed by the original authors significantly improved the replicability rate com-
pared to protocols whose designs were left up to the replicating labs. These ten were 
also thought to be a good selection because in the first replication attempt (RP: P), 
the chosen studies showed supportive evidence of the original study.

What makes the results of Many Labs 5 difficult to interpret is this: Out of the 20 
protocols (10 studies × 2 versions)), only 2 found evidence of a significant effect in 
the same direction as the original. Both of the studies that found supportive evi-
dence of the original effect were in the original-author-approved condition. One 
could argue that including original authors does improve replicability rates, if we 
simply compare scores: 2 vs. 0. On the other hand, 2 out of 10 successful replica-
tions is not particularly encouraging support for the effects more broadly. This 
investigation provides ambiguous evidence about the extent to which replication 
studies benefit from the original authors’ input. It also demonstrates that an initial 
single large-scale replication attempt, such as the RP: P, cannot provide the final 
word on a topic.

�Social Sciences Replication Project

Meta-scientific introspection is not limited to psychology. Many large-scale replica-
tions have been conducted in the fields of economics (Camerer et al. 2016), cancer 
biology (Nosek & Errington, 2020), and experimental philosophy (Cova et  al. 
2018). As such, we can now consider a more recent evaluation on the overall repli-
cability of social science experiments in the journals of Science and Nature from 
2010 to 2015. Between these two journals 13 out of 21 showed a significant effect 
in the original direction (62%), 14 out of 21 (66.7%) of the original effect sizes were 
within the 95% CIs of the replication, and the mean effect size in a replication study 
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was on average half the size of the original study (identical to the effect size reduc-
tion reported in RP: P).

Camerer et  al.’s (2016) prevalence estimate faces the same limitations of not 
being generalizable to the field as a whole due to its small sample of replicated stud-
ies and the selective, non-random criteria used. Nevertheless, their replication initia-
tive as a whole is contributing information on some of the highest impact journals 
that should be representative of the most rigorous social science published.

�Registered Replication Reports (RRRs)

A registered report (RR) is a relatively new publishing format that runs counter to 
traditional publishing (Simons et al., 2014; Nosek et al., 2018). Historically, pub-
lishing involves researchers conducting a study, writing everything up into a manu-
script, and sending that finished manuscript to journals for peer review. At that 
point, peer reviewers decide whether to accept it for publication or not. RRs repre-
sent an alternative in that they require researchers to first develop an idea and study 
design which they then submit to a journal for peer review. These submitted proto-
cols, which include a literature review, hypotheses, methods, and an analysis plan 
are known as stage 1 manuscripts. If a stage 1 manuscript is approved, the authors 
will receive what is called “in-principle acceptance.” This means they are guaran-
teed a publication in the journal, as long as they run the study and write up a final 
report (known as the stage 2 manuscript).

This general format served as the template for Registered Replication Reports 
(RRRs), formally defined by the Association for Psychological Science (APS) as, 
“... a collection of independently conducted, direct replications of an original study, 
all of which follow a shared, predetermined protocol.” These RRRs target impor-
tant, cornerstone effects (e.g., ego-depletion effects) and explicitly address the con-
cerns that replication attempts are “destructive.” The journal Advances in Methods 
and Practices in Psychological Science (AMPPS) publishes RRRs and highlights 
that RRRs aid in understanding the true size of a selected effect, as well as if it is 
replicable, robust, and generalizable. AMPPS’ acceptance of RRRs creates an 
incentive for researchers to engage in more replications with the guarantee of pub-
lication regardless of the outcome.

All published RRRs involved consulting subject matter experts (typically the 
original authors) to vet the replication protocol. This engagement creates a culture 
where scientists are coming together to build knowledge and a shared goal to get at 
the truth, without accusations of malice or “destructive” intent being attributed to 
the replicators. Another strength of conducting large-scale replications in an RRR 
format is that it allows researchers to investigate an effect without the influence of 
publication bias from the picture. Recall that one way to evaluate replications is 
through a meta-analytic approach, in which one could aggregate multiple estimates 
of an effect size to get a more precise idea of how large an effect is. Also recall the 
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main limitation of the meta-analytic approach was “garbage-in, garbage out.” The 
beauty of an RRR is that it meta-analyses all point estimates provided across the 
participating labs, not including the original study. With the guarantee of publica-
tion, the poison of bias has not contaminated the water; thus, RRRs report the meta-
analytic criterion of their replication attempts.

As of June 2021, a list of 9 published RRRs (10 including Many Labs 2) are 
available to the public (Association for Psychological Science, 2014). We provide a 
table, starting in the year 2014, that lists these RRRs, along with the general conclu-
sions drawn by the replicators (Table 4.1). Readers will note that only the first pub-
lished report (Alogna et  al., 2014) provided a meta-analyzed effect size for the 
verbal overshadowing effect in the same direction as the original but at only a mod-
est size. The other RRRs have the modal outcome of not being significant (i.e., hav-
ing zero included in the meta-analyzed confidence interval), or if significant, in the 
opposite direction the original study found. For example, in 2018, an RRR was 
conducted of Mazar, Amir, & Ariely’s (Mazar et al., 2008) study that found that 
people who were primed with the 10 biblical commandments were less likely to 
cheat on a task (Verschuere et al., 2018). The RRR which includes 25 labs and a 
total of 5786 participants found a meta-analytic effect that priming with the 10 com-
mandments lead to a (modest) increase in cheating.

Recognizing that most of the published RRRs suggest null to opposite findings 
for well-known effects, what should we take away? One positive consideration is 
that this is a clear demonstration of psychology engaging in self-correction. 
Psychologists are taking the time to pause and evaluate our body of knowledge and 
consequently losing confidence in effects that do not seem to replicate. From that 
perspective, we are also cleaning up our literature so future research can be built 
upon a more solid foundation. Furthermore, RRRs are helping to change how 
researchers approach replication by incentivizing replications via publication 
opportunities and dispelling misperceptions that replications are destructive or done 
with malicious intent. Original authors have the opportunity to respond to any con-
clusions the replicators report, showcasing the constructive, collaborative nature of 
RRRs (e.g., Strack, 2016).

That being said, we also cannot ignore the significant number of failures to rep-
licate cornerstone effects. When extremely influential effects such as ego-depletion 
fail to replicate (Hagger et al., 2016), the results compel us to adopt a more skeptical 
stance on “classic,” popular findings, especially when educating students and com-
municating to the public. Perhaps the greatest takeaway from the RRRs is that they 
motivate the community to continue checking in on the health of our field. We will 
soon take a closer look at the root causes, and possible solutions, to the replication 
problems that ail us. Before we do though, we will briefly explore the case of one of 
the most popular effects shared with the public and its failure to replicate: 
power posing.
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Table 4.1  Summary of registered replication reports (RRRs)

Original study RRR authors Theory/effect of interest
Conclusions drawn from 
RRR

Schooler and 
Engstler-Schooler 
(1990), Study 4 
(RRR1) and Study 1 
(RRR2)a

Editors of the 
Association for 
Psychological 
Science (2014)

Verbal overshadowing 
effect on eye-witness 
testimony

Clear, but weaker 
evidence effect

Hart & Albarracin 
(Hart & Albarracín, 
2011), Study 3

Eerland et al. 
(2016)

Influence of grammar on 
perceived intentionality

Little evidence of 
original effect, with 
significant results in the 
opposite direction

Sripada et al. (2014) Hagger et al. 
(2016)

Ego-depletion effect Little evidence of 
original effect (as 
operationalized in the 
study)

Finkel et al. (2002), 
Study 1

Cheung et al. 
(2016)

Priming “commitment” 
influences forgiveness 
responses

Little evidence of 
original effect, with 
significant results in the 
opposite direction

Strack et al. (1988), 
Study 1

Wagenmakers 
et al. (2016)

Facial feedback 
hypothesis: Forcing a 
smile with pen in mouth 
increase perceived 
funniness of cartoons

Little evidence of 
original effect (as 
operationalized in the 
study)

Rand et al. (2012), 
Study 7

Bouwmeester et al. 
(2017)

Social heuristics 
hypothesis: People under 
time constraints are more 
generous

Little evidence of 
original effect, with 
significant results in the 
opposite direction

Dijksterhuis and 
van Knippenberg 
(1998), Study 4

Nelson & 
O’Donnell et al. 
(2018)

Priming of professor 
(compared to “soccer 
hooligan”) improves trivia 
quiz perform

Little evidence of 
original effect (as 
operationalized in the 
study)

Srull and Wyer 
(1979), Study 1

Verschuere et al. 
(2018)

Priming of “hostility” 
increases perceived 
hostility of vignette 
protagonist

Inconclusive evidence, 
with modest significant 
effects in similar/
opposite directions of 
the original

Mazar et al. (2008), 
Study 1

Verschuere et al. 
(2018)

People provided the 
opportunity to cheat are 
less likely to do so if 
reminded of the 10 
biblical commandments

Little evidence of 
original effect, with 
significant results in the 
opposite direction

aThe first published RRR unintentionally implemented the original study similar to Study 4, and 
thus has two parts RRR1/RRR2, with the second attempt in the intended presentation of study 
materials to the order described in Study 1
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�Power Posing

TED (Technology, Entertainment, and Design) is a nonprofit organization that pro-
vides a wide-reaching platform for speakers, including researchers, to share ideas to 
the lay public. Among the thousands of talks and events, the second most viewed 
TED talk in the history of the organization, with nearly 62 million views as of 2021, 
is on power posing (Cuddy, 2012). In this talk, social psychologist Amy Cuddy 
shares her research on the power posing effect, based in part on a paper she co-
authored in 2010 (Carney et al., 2010). In the original power posing study, the idea 
was that, if one changes their body language to an expansive (open) posture, the 
physical change leads to increased feelings of power. In turn, these feelings have a 
downstream effect, which leads to psychological, physiological, and behavioral 
changes. The crux of the effect is that even if we do not feel confident, there are 
simple actions capable of providing agency in our lives. This notion captivated 
the public.

Ranehill et  al. (2015) conducted an independent conceptual replication of the 
power posing effect with a larger sample than the original. Ranehill’s group found 
that the open, expansive poses did increase self-reported feelings of power. However, 
they failed to replicate the effect on hormonal levels or behavioral tasks. In 2016, 
Dana Carney, the first author of the original 2010 study, wrote an open letter in 
which she explicitly stated, “I do not believe that ‘power pose’ effects are real.” She 
also stated that she does not teach the concept in her classes and encourages fellow 
researchers to stop pursuing embodied effects (Carney, 2016).

Carney likely did not change her confidence in power posing because of the 
single attempt by Ranehill’s group. Instead, it was likely a revision of her beliefs in 
the face of mounting evidence. For example, Simmons and Simonsohn (2015) con-
ducted a p-curve analysis, a method of detecting bias in a group of studies and found 
red flags of a compromised literature. Garrison, Tang, and Schmeichel (Garrison 
et al., 2016) also attempted an independent replication and failed to find an effect on 
risk-taking behaviors. Comprehensive Results in Social Psychology (CRSP) released 
a special issue on power posing in an attempt to directly replicate and test possible 
moderators through seven transparent, pre-registered studies (Cesario et al., 2017). 
Gronau et al. (2017) published an evaluation in the CRSP issue utilizing a novel 
Bayesian model-averaged meta-analysis method. Specifically, Gronau’s analysis 
investigated the effect of posing on felt power (not the downstream effects those 
feelings have on hormones) tested in six of the seven studies and found evidence 
supporting the original effect. Exploring this further, one variable also measured 
was the participant’s familiarity of power posing, and when excluded, the evidence 
becomes modest at best. This could suggest that the replicated effect may be a 
demand characteristic of what participants think they should report based on what 
they have previously heard.

Interestingly, in Carney’s (2016) reflection sharing her updated position, she 
noted some details about the original study: data from 25 subjects were initially 
analyzed, then re-analyzed as more participants were collected. She also 
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self-disclosed that they selectively reported only some p-values but not others and 
that participants were excluded as outliers in only specific analyses. The practices 
Carney described were not unique to her. Rather, they are the same commonplace 
practices that gave rise to Bem’s (2011) previously cited claim of psychic abili-
ties: QRPs.

�How Do QRPs Influence Reported Findings?

Considering the reported instances of replication failures discussed above, one 
question inevitably arises: What causes a failed replication? One potential origin of 
the problem harkens back to maladaptive incentive structures in the scientific com-
munity. For example, scientists are often rewarded for pursuing and publishing 
“sexy” findings. That is, researching novel, counter-intuitive effects (e.g., washing 
your hands will wash away guilt; Zhong & Liljenquist, 2006) are often very benefi-
cial for individual researchers. These kinds of attractive studies are more likely to 
get funded (e.g., the National Health Institute assigns grant applications an “innova-
tion score”), published (Giner-Sorolla, 2012), and disseminated to lay circles via 
media outlets (e.g., many of the studies that failed to replicate in the Open Science 
Collaboration (2015) project were widely reported in the media).

This deeply ingrained preference for what is counter-intuitive and trendy has two 
primary consequences. One consequence is that replication studies, as non-novel 
forms of research, are rarely incentivized; if the system favors novel findings, why 
would a career researcher waste time and resources running replication studies that 
probably won’t result in publications? A second consequence is that we have ended 
up with a body of literature filled with fun, novel effects may not be robust. It is 
impossible to measure the exact type I error rate in psychology (as previously dis-
cussed), but it is reasonable to assume that many of the effects we consider “real” or 
empirically supported could be statistical flukes. Thus, this problematic incentive, 
combined with psychology’s preoccupation with obtaining statistically significant 
results, means that researchers face a persistent and ubiquitous pressure to produce 
novel, significant work. It also means that studies that do not meet these qualifica-
tions are deemed less important for the field (e.g., replication studies and studies 
with null results). We suggest that attempting to achieve research results that pos-
sess these qualities is also capable of pushing researchers to engage in QRPs.

Discussion about the issue of QRPs has been ongoing for decades (Crocker, 
2011; Marshall, 2000; Sovacool, 2008; Wicherts, 2011), but for psychology, the 
discussion largely gained attention when John et al. (2012) published a paper outlin-
ing some common, but problematic, practices that researchers engage in. Specifically, 
they investigated the rates of self-reported QRPs among psychologists. Some exam-
ples of QRPs the authors asked participants to admit to blatant falsification of data, 
deciding whether to exclude data after looking at the impact of doing so on the 
results, failing to report all of a study’s dependent measures, and deciding to collect 
more data after looking to see whether the results were significant. Notably, for 
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most of these QRPs, rates of self-admission were high, and some statistically 
inferred estimates were close to 100%. For obvious reasons, these results were con-
cerning to the collective field.

It is important to keep in mind when considering QRP rates that most researchers 
are likely motivated to do good science and want replicability rates to be higher than 
current estimates indicate. However, QRPs often happen unintentionally. Certain 
practices, such as continuing to collect data until a significant result was obtained, 
were arguably the norm as well. However, in light of our new knowledge about the 
impact of, and varied forms of QRPs, this kind of ignorance has become difficult to 
defend. We assume that most researchers are probably now aware of QRPs like 
p-hacking (flexibly analyzing data until the results are significant), data peeking, 
and HARKing (Hypothesizing After Results are Known). Still, in many cases, 
QRPs may also be rare (or even singular) occurrences rather than regular practices 
among researchers (Fiedler & Schwarz, 2015).

Addressing QRPs is important for the pragmatic reason that these practices can 
cause researchers to waste time and money exploring effects that are not real. The 
bigger concern is that QRPs forestall replicability by inflating the type I error rate in 
our literature. That is, QRPs make it much more likely that false positives are per-
vading the literature, and this has serious consequences for the science of psychol-
ogy. As alluded to in the introduction of this chapter, a conventional perspective in 
the philosophy of science is that science is a cumulative enterprise that requires 
researchers to work together. Consequently, this places psychologists in a position 
where we must depend on other researchers and experts to provide us with informa-
tion necessary to help us build theory and generate meaningful hypotheses. Simply 
put, researchers are required to place trust in their intellectual peers—trust that 
those peers are producing replicable work.

�Examples of QRPs in a Failed Replication

Beyond simply stating that QRPs can lead to failed replication studies, we offer a 
brief analysis of a psychological effect that is thought to have been influenced by 
QRPs. Specifically, we will use the ego depletion effect (the idea that self-control is 
a limited mental resource) to showcase how QRPs work to diminish replicability. 
Ego depletion is an effect that comes from the social psychology literature and has 
been the subject of various large-scale replication attempts (see Dang et al., 2021; 
Hagger et al., 2016). The consensus reached from these studies was that ego deple-
tion effects fail to replicate across multiple operationalizations of the construct 
(Dang et al., 2021 and Hagger et al., 2016). Metascience experts looking at these 
replication results have offered the explanation that part of the reason ego depletion 
effects are declining is because of the way that researchers have attempted to depict 
the construct in the literature. Researching ego depletion has become an endeavor 
mostly likely fraught with QRPs (Vadillo, 2019). As a result, some researchers have 
attempted to use metascience to better understand the extent to which QRPs 
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contributed to an inability to reproduce such a widely studied and well-funded line 
of research.

One such metascience study conducted by Wolff et al. (2018) investigated rates 
of both QRPs and replication in ego depletion work. The authors surveyed 1721 ego 
depletion researchers (i.e., individuals who had previously published work on ego 
depletion) and found 39.2% were aware that their peers engaged in QRPs (i.e., 
selectively reporting subgroups, dropping data points based on a gut feeling, reject-
ing “outliers” without statistical support, excluding data after looking at their impact 
on results, and selectively reporting outcomes). Furthermore, 37.7% of participants 
self-admitted to having engaged in those same QRPs themselves. These data pro-
vide evidence that failures to replicate ego-depletion effects may reflect the fact that 
the ego-depletion literature has a high prevalence of false-positives as a conse-
quence of QRPs.

�Can Pre-registration Combat QRPs?

�What Is Pre-registration?

Looking at the information we have presented on the replication crisis can easily 
prompt one to become disheartened with psychological science. There are many 
examples of replication failures and evidence of QRPs is not difficult to spot in 
many papers. However, we maintain the optimistic perspective that the influence of 
QRPs can potentially be overcome. Indeed, one positive outcome of intensely high-
lighting replicability problems in psychological science has been the resulting 
“credibility revolution” it spurred. This movement, which focuses on improving the 
methods of psychological science and pushing for more open science practices 
(Vazire, 2018), has the central aim of addressing—and correcting—issues that con-
tributed to the replication crisis—like QRPs. Some suggestions for accomplishing 
this include establishing norms for, and promoting, activities like making data and 
materials publicly available on data repository sites, publishing replication studies, 
and publishing studies with statistically non-significant results.

Another suggestion that has gained increasing popularity is the idea of public 
pre-registration. This practice refers to creating an open, time-stamped document 
that outlines a researcher’s a priori predictions and hypotheses prior to data collec-
tion, or in the case of secondary data analysis, pre-registration statements are pre-
pared prior to viewing or analyzing data. Essentially, pre-registration represents a 
scientific record that allows for an easy comparison between a study’s original plan 
and subsequent reports of that same study (e.g., a published manuscript). For the 
interested reader who is motivated to create a pre-registration document themselves, 
templates and recommendations are available for general social science research 
(e.g., Christensen et al., 2019; Simmons et al., 2021), social psychology research, 
(e.g., van’t & Ginger-Sorolla, 2016), and psychopathology research (e.g., Krypotos 
et al., 2019).
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Broadly, pre-registration also helps to establish clear boundaries for what is 
confirmatory research and what is exploratory research. In other words, one pur-
pose of pre-registration is to “distinguish prediction from postdiction” (Nosek 
et al., 2018). This distinction is important to make because prediction represents 
a situation in which data are collected to test a particular idea; specifically, data 
are used to test if a prediction can be falsified. Postdiction, however, is “character-
ized by the use of data to generate hypotheses about why something occurred” 
(Nosek et al., 2018). Both are critical to scientific progress. Predictions obviously 
provide scientists with information about the validity of explanatory claims, and 
postdictions allow for the detection of previously unexplored, and often unex-
pected, effects. The distinction between these two forms of research is important 
to make at the very beginning of the research process, however, because without 
it, researchers may exhibit overconfidence in postdictions, consequently inflating 
the likelihood of a false positive. Essentially, presenting postdictions as predic-
tions can cause us to falsely reduce uncertainty, and this decreases reproducibility 
(Nosek et al., 2018).

�Pre-registration and QRPs

The type of QRP most likely to be combated by pre-registration is p-hacking. One 
example of how p-hacking takes place was demonstrated in a paper by Simmons, 
Nelson, and Simonsohn (Simmons et al., 2011), in which the authors describe an 
experiment in which the central hypothesis was that listening to a song by the 
Beatles would make the listener younger. By changing the way data were analyzed, 
they were able to show how it was possible to obtain statistical evidence for this 
ludicrous effect. Some specific examples of p-hacking include collecting partici-
pants until statistically significant effects are obtained (i.e., having no set stop crite-
ria for data collection). Another common example of p-hacking takes the form of 
cherry picking, in which researchers highlight evidence that supports their hypoth-
eses and conceal results that are inconsistent. Notably, as with most QRPs, these 
things can happen with explicit intent, but more than likely they occur without the 
researcher meaning for them to. Pre-registration offers an easy opportunity for 
researchers to reduce the likelihood that they will engage in such practices (Mellor 
& Nosek, 2018). By recording a specific hypothesis and the specific statistical anal-
ysis that will be used to test it, a researcher is willingly tying their own hands, so to 
speak, in order to prevent themselves from manipulating data until statistically sig-
nificant results are ascertained.

HARKing also represents a common QRP that can be mitigated through pre-
registration. This practice occurs when a researcher generates hypotheses after data 
collection has already ceased and the results of the study are already known. In 
other words, it means that a researcher has already analyzed their data and is now 
generating hypotheses consistent with the results. By coming up with post-hoc pre-
dictions for certain findings researchers are leaving themselves quite vulnerable to 
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a type I error. By stating predictions a priori, however, researchers leave little room 
to concoct hypotheses consistent with their results.

�Some Recommendations for Pre-registering a Scientific Study

For someone new to pre-registration, we understand that the practice can seem 
intimidating. Thus, we aim to provide some explicit recommendations for how to 
pre-register a scientific study, in hopes that it will make the practice seem more 
accessible and less daunting.

One of the first considerations when pre-registering a study is the basic issue of 
where to do it. Since pre-registrations are meant to be public, accessible scientific 
records, it is important to find a space where these features are available. Luckily, 
several online platforms host pre-registration, which makes it incredibly easy to 
make a registration reachable to others in the scientific community (and lay audi-
ences, too). One of the most popular pre-registration websites is Open Science 
Framework (OSF; osf.io/). It is a flagship product of the non-profit organization 
Center for Open Science—a technology startup focused on increasing the replica-
bility of science. Some of the advantages of using OSF are that it is free to use and 
is structured so that researchers can easily collaborate, archive, and pre-register 
projects. The website also lists a variety of different pre-registration templates for 
researchers to use, in order to take some of the guesswork out of what to include. 
Some templates are simple, while others are more involved, but there are plenty of 
accessible options depending on the scope of the project. Finally, OSF also has the 
advantage of being well-known. As of 2018, OSF pre-registration rates have been 
doubling every year, and from 2012 to 2018, the site registered 18,000 unique 
research projects. This means that if you are looking to pre-register in a commonly 
used and established web location, OSF is a good option.

As an alternative to OSF, some researchers use AsPredicted (aspredicted.org). 
This platform has the primary advantages of being succinct and standardized. All 
pre-registrations on the platform require a researcher to answer the same nine ques-
tions, and this generates a time-stamped PDF document with the responses that 
comes attached with its own URL for sharing purposes. The website also includes a 
pre-registration practice feature that allows one to create a pre-registration docu-
ment that self-destructs 24 hours after its creation.

�Registered Reports: A Unique Form of Pre-registration

Earlier in the chapter we introduced the concept of RRs and specifically discussed 
examples of them. Here, we want to note that registered reports help to prevent 
QRPs in two major ways. One way is through pre-registration; the stage 1 manu-
script represents a record of hypotheses and planned analyses, which has all the 
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benefits of pre-registration outlined above. The second way is that by providing in-
principle acceptance, journals are removing the pressure to reach statistically sig-
nificant results. Researchers are given the freedom to conduct their research without 
the pressure to obtain certain results, and we argue that removing this problematic 
incentive also removes some of the motivation to engage in QRPs. Promisingly, 
over 250 journals (Center for Open Science, n.d.) have begun to use the registered 
report format and this hypothetico-deductive approach is becoming increasingly 
encouraged for the field (Mellor, 2021).

�Limitations to Pre-registration

We argue that pre-registration is a beneficial practice that should be normalized and 
incentivized, however, we also recognize the importance of calibrating our expecta-
tions about what pre-registration can reasonably accomplish. While it is beneficial 
for decreasing QRPs, the practice is not a panacea for QRPs—or the totality of 
consequences that stem from engaging in them. Below we outline some concluding 
considerations for utilizing pre-registration as a means to mitigate the prevalence of 
QRPs in our science.

One important consideration for pre-registration is that it is not required. This 
means that the efficacy of this practice for reducing rates of QRPs is significantly 
limited. While some journals are beginning to explicitly recommend and support 
pre-registration (e.g., Nature Human Behaviour and Psychological Science), the 
majority do not. This likely means that pre-registrations represent an added step to 
the already lengthy research process with little incentive to write and post them.

Another important consideration is that pre-registration (and other open science 
practices) functions under the assumption that others in the scientific community 
will hold individual researchers accountable. In the case of pre-registration, it spe-
cifically means that other researchers will help to ensure that pre-registration docu-
ments provide the necessary information and match what is reported in published 
manuscripts. In practice, however, we do not know how common this system of 
peer-checks is. We speculate that for most papers, it is rare for other scientists to do 
this extra work unless they have a self-motivated reason for viewing the open mate-
rials posted by an independent research team (e.g., they plan to conduct a replication 
study). Even when studies link pre-registrations in their manuscripts during the 
peer-review process, it is unclear how often reviewers do quality checks on pre-
registration documents. Thus, in considering making pre-registration a normative 
practice, we must also consider where the onus of checking for their quality, and 
utility in holding other researchers accountable, lies.

A third consideration is that not everyone—even those who support the open sci-
ence movement—supports the practice of pre-registration. In these circles, the pri-
mary argument for pushing back against the practice is that it inherently discourages 
people from conducting exploratory research (Coffman & Niederle, 2015). 
Hypothesis generating research, conducted without strong a priori predictions, is an 
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important component of scientific inquiry, and some psychologists have expressed 
concern that by requiring pre-registration, we may inadvertently cause researchers 
to be afraid to explore their data and look for potential, unknown relationships 
between investigated constructs. There are several arguments used to dispel the mis-
conception that pre-registration cripples exploratory research (e.g., Nosek et  al., 
2018); notably, pre-registration does not prohibit exploratory research, but instead 
prevent researchers from presenting exploratory research as confirmatory.

A fourth consideration is that pre-registration does not make a study method-
ologically sound. Even studies with registered hypotheses can have weak theoreti-
cal accounts and methodological flaws such as using unvalidated measures or failing 
to randomly assign. Pre-registration can be used to combat QRPs, but it is important 
to remember that it is not an index of a study’s overall quality. It is also important to 
remember that pre-registration is limited in terms of the specific QRPs it can 
address. For example, it can be quite useful in preventing HARKing, but it cannot 
do much for faking data, and in its simplest form (i.e., a list of hypotheses), it also 
cannot prevent actions like selectively reporting outcomes. Bigger picture QRPs, 
such as sweeping generalizations to different populations and settings also cannot 
be prevented with pre-registration.

In sum, adding pre-registration to our current research process cannot, by itself, 
bring us out of the replication crisis and usher us into a world free of QRPs. However, 
we do believe it is a step in the right direction, and pre-registration offers the clear 
benefit of reducing the occurrence of certain QRPs. Significantly reducing QRPs 
and reducing the number of replication failures will require additional changes to 
the way science is currently conducted, especially changes that tackle larger, insti-
tutionalized incentive structures.

�Including Clinical Psychology in the Conversation

We have briefly reviewed the history of major replication attempts in psychological 
science, and connected failed replications to QRPs. Astute readers may have noticed 
that many of these large-scale replications have been conducted within the subfields 
of social and cognitive psychology. But what about clinical psychology? Why have 
they not been more prominent in discussions about the replication crisis when, argu-
ably, the consequences of replication failures in their research have the most direct, 
potentially disastrous effects of any other subfield (e.g., advocating for an ineffec-
tive therapeutic approach)?

In recent years, clinical practitioners and researchers have called for a broaden-
ing of the replicability conversation to include clinical psychology and the unique 
challenges clinicians face (Leichsenring et  al., 2016; Tackett et  al., 2017, 2019; 
Hengartner, 2018). Tackett and colleagues (2017) delve into the different reasons 
for clinical psychologists’ apparent exclusion from major discussions about the rep-
lication crisis and open science movement, pointing out that core features advocated 
to remedy low replicability rates are often at odds with the research culture within 
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the discipline of clinical psychology. Open science initiatives call for the use of 
large samples, specific forms of data analysis, and being transparent with data and 
materials, and for the many clinical psychologists, these recommendations are not 
easy to adopt for several reasons.

One reason current open science initiatives are challenging is that clinical scien-
tists often rely on data that are difficult to collect. The populations they work with 
are rarer than most accessible to social psychology researchers, who are historically 
reliant on undergraduate samples. Additionally, access to clinical patients is often 
limited by geographic and community resources. As such, tiny samples that provide 
“noisy, messy” data are the norm. Another related concern is that access to patients 
may change rapidly when working within a community, and committing to any 
specific sample size without the flexibility to modify such a commitment is not 
desirable. The nature of the samples is also unique for clinicians; they work with 
people who are dealing with private health issues. To share all data with the public 
would violate HIPAA guidelines and their clients’ right to privacy. It is not hard to 
imagine that if you are working in a small, rural clinic with a hyper-specific popula-
tion, any demographic information can be used to identify people seeking help. 
Thus, a lot of data collected in clinical research are not easily anonymized or ethi-
cally appropriate to post to public data repositories.

Do these challenges mean that clinical psychologists should be left out of the 
conversation? We do not think so. The same incentive structures that gave rise to 
questionable research practices in other fields of psychology also exist within clini-
cal psychology, and there is no reason to think that the field is immune to replication 
issues. So, what can be done? It has been advocated that clinical psychology 
researchers should stay educated on the replicability crisis going on in other fields; 
again, there are many parallels and important lessons to be shared. We also suggest 
that clinical psychologists start thinking creatively about potential versions of pre-
registrations that more appropriately fit the needs of the discipline (e.g., more adapt-
ability to modify data collection). It has also been suggested that clinical researchers 
should consider working collaboratively with other labs to collect larger samples 
together, and start addressing the concern of power and small samples (Tackett 
et al., 2017; Hengartner, 2018).

We conclude this chapter with the hopes that learning more about the historical 
context of the replication crisis helps readers participate in discourse on the subject 
and motivates them to be active participants in improving psychological science. 
We also hope that the history we have discussed prompts readers to think about the 
abstract enterprise of science, recognizing that, in the purest sense, science is a pro-
cess to discover truths about our world, but unfortunately, that goal can become 
perverted with other incentives. We do not believe the current state of the field of 
psychology is healthy, but we also don’t believe Oscar the cat has come to take us 
away. We believe there is room for improvement and a growing community of 
researchers from a range of subfields committed to progressing our science. 
Ultimately, a healthy psychological science is not one devoid of replication failures, 
but one that acknowledges those failures and incorporates them into our understand-
ing of human behavior.
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Chapter 5
The Myriad Forms of p-Hacking

Dorota Reis and Malte Friese

Abstract  In the present chapter, we are going to discuss several p-hacking prac-
tices as part of the broader category of questionable research practices. It has 
become clear that p-hacking can have detrimental consequences—particularly an 
increase in false-positive rates—that ultimately damage the trustworthiness and 
robustness of psychological science. What can any researchers do to confirm that 
they did not engage in questionable research practices? The solution is surprisingly 
simple. It lies in the transparent distinction between a priori planned, confirmatory 
steps of data analysis and exploratory, additional steps. The line between the two 
can be drawn easily by adhering to the open science practices outlined in this chap-
ter, particularly the detailed preregistration of all measures, manipulations, hypoth-
eses, and planned analysis steps. Open science practices are surely not the solution 
to all challenges psychological science currently faces, but they are a pretty good 
and easy-to-implement solution to prevent p-hacking. Let’s do it.

Keywords  Meta science · p-hacking · Questionable research practices

�Credibility Concerns about (Clinical) Psychological Science

Alice is an experienced psychotherapist. For many years, she has worked in an out-
patient facility specializing in the treatment of chronic pain. Being a passionate 
practitioner, Alice is continuously educating herself on how to use state-of-the-art 
treatment methods to best benefit her patients. Therefore, Alice is thrilled when she 
reads about a new therapy and its impressive treatment response in a prestigious 
scientific clinical journal. “With this new approach,” Alice feels, “I will be able to 

D. Reis (*) · M. Friese (*) 
Saarland University, Saarbrücken, Germany
e-mail: dorota.reis@uni-saarland.de; malte.friese@uni-saarland.de

Dorota Reis and Malte Friese are contributed equally to this work.

© Springer Nature Switzerland AG 2022
W. O’Donohue et al. (eds.), Avoiding Questionable Research Practices  
in Applied Psychology, https://doi.org/10.1007/978-3-031-04968-2_5

mailto:dorota.reis@uni-saarland.de
mailto:malte.friese@uni-saarland.de
https://doi.org/10.1007/978-3-031-04968-2_5


102

have a substantial additional impact on the well-being of my patients!” She invests 
time and money to be certified as a specialist in this new approach and starts imple-
menting the new intervention strategy in her clinical work.

A few months later, Alice receives the treatment evaluations. They are sobering. 
Although she closely adhered to the therapy manual, the desired reduction of symp-
toms remains far behind her expectations. Even more, the new therapy appears to be 
less effective than the conventional “gold standard” treatment previously applied in 
the facility. Although the evaluations confirm the subjective impressions she 
obtained during the therapy sessions and match those reported by colleagues who 
have also implemented the new technique, Alice is frustrated. Instead of improving 
the treatment for her patients, the changes to the protocol appear to have backfired. 
The success rate even falls below that of previous treatments. Some patients begin 
dropping out early, whereas others begin to take even longer than before to attain 
noticeable treatment results. What happened here?

In the last decade, scientific psychology has seen a multitude of scenarios similar 
to the one described in the opening paragraphs. Large-scale replication projects 
(Klein et al., 2014; Open Science Collaboration, 2015, see also Chap. 18, this vol-
ume) and countless primary studies have shown disturbingly low replication rates 
(see also Chap. 4, this volume). Psychology is not alone. Other disciplines have 
reported similar problems, including the neurosciences (Button et al., 2013), eco-
nomics (Camerer et al., 2016), cancer research (Begley & Ellis, 2012), and drug 
research (Prinz et al., 2011), to just name a few. Although some disciplines are more 
affected than others, low replicability appears to be a problem in many fields.

In psychology, what began as a “replication crisis” has quickly become a more 
general “credibility crisis.” As a result, psychological science is under scrutiny 
(Lilienfeld & Waldman, 2017). This is not just academic ivory tower talk. The cred-
ibility of psychological research has profound real-world consequences. Particularly 
in clinical research and practice, unreliable findings can affect the (mental) health of 
people who rely on the trustworthiness of the science that informed their treatments. 
Interventions that were believed to be effective but actually are not imply that 
patients and clients will experience less symptom reduction and need more time to 
reduce distress than necessary.

Various issues have been discussed as undermining the credibility of psychologi-
cal science. These include low statistical power (Bertamini & Munafò, 2012), an 
over-reliance on p-values (Wasserstein & Lazar, 2016, see also Chap. 7, this vol-
ume), maladaptive incentives (Lilienfeld, 2017; Nosek et al., 2012), hypothesizing 
after the results are known (HARKing, Kerr, 1998, see also Chap. 8, this volume), 
publication bias (Bakker et al., 2012, see also Chap. 10, this volume), and p-hacking 
(John et al., 2012; Simmons et al., 2011), among others.

We cannot know why the new treatment that Alice was so enthusiastic about in 
our fictitious introductory example was less effective in Alice’s facility than what 
seemed to be realistic on the basis of the associated scientific publication. In the 
present chapter, we will focus on one specific issue that jeopardizes the credibility 
and robustness of psychological science: p-hacking. We will discuss what p-hacking 
is, which scientific practices are subsumed under this umbrella term, its prevalence 
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and detection (see also Chap. 6, this volume), its consequences, and how it can be 
prevented. We will close by making a case for open science practices that we argue 
are an effective remedy for several of the challenges that scientific psychology cur-
rently faces.

If you are a clinical psychologist, you may wonder why you should go on read-
ing. Isn’t the replication crisis and the associated use of problematic research prac-
tices something for other psychological subdisciplines to worry about? It is true that 
the extent of replicability problems and the use of problematic research practices 
vary across subdisciplines (John et al., 2012), but this does not mean that clinical 
psychology is free of concerns (Leichsenring et al., 2017; Tackett et al., 2019). In 
fact, there are a few weak spots that endanger the replicability and robustness of 
clinical research as well. (For an overview of research biases in psychotherapy 
research, in particular, see Leichsenring et al., 2017.)

For example, statistical power is often low, particularly for treatment/interven-
tion research and clinical neuroscience (Button et al., 2013; Cuijpers, 2016; Reardon 
et al., 2019; Sakaluk et al., 2019). One reason for low power is small sample sizes. 
As later sections of this chapter will clarify, some p-hacking practices are particu-
larly “effective” in small samples, making such studies vulnerable to considerable 
bias. In addition, in a scientific culture that values novel, statistically significant 
findings so much more than less novel and/or statistically nonsignificant findings, 
incentives to “find” something in the data of a given study are high, and this is par-
ticularly true when the study cannot be easily repeated or extended because it is very 
resource-intensive or relies on a difficult-to-reach sample. This applies to a lot of 
clinical psychology intervention studies, which is one reason why a lot of important 
studies cannot be easily replicated in single studies or in large-scale replication 
projects (Tackett & Miller, 2019). Based on novel evidential value metrics, such as 
rates of misreported statistics, power, and Bayes Factors, the replicability of empiri-
cally supported treatments seems to be remarkably low (Sakaluk et al., 2019). Thus, 
it cannot be assumed that actual therapy results will achieve the effectiveness that 
could be assumed on the basis of the scientific articles the interventions were pub-
lished in. On the basis of their analysis, Sakaluk et al. (2019) concluded that whereas 
there is strong evidence behind a few therapies, “the evidence is mixed or consis-
tently weak for many, including some classified by Division 12 of the APA as 
‘Strong’” (p. 500). Finally, there is evidence for considerable publication bias (also) 
in clinical psychology, another factor that undermines the robustness of published 
findings (Cuijpers et al., 2010; Rapport et al., 2013). Thus, yes, we are afraid the 
credibility crisis in general, and p-hacking in particular, are topics that should also 
be of interest to clinical psychologists.1

1 We were initially invited to contribute a chapter that focuses on the implications of p-hacking for 
clinical psychology specifically. This is why most of our examples in this chapter come from this 
area of research. However, the general issues covered in this chapter also apply to other areas of 
(applied) psychology.

5  The Myriad Forms of p-Hacking



104

�What Is p-Hacking?

When researchers collect and analyze data, they have many decisions to make. 
Unless they commit a priori to a specified and exhaustive set of decision outcomes, 
they have many so-called researchers’ degrees of freedom (Wicherts et al., 2016). 
These degrees of freedom invite p-hacking. The term p-hacking (also called data 
dredging or inflation bias) refers to a family of practices that can be responsible for 
substantial biases. It is an umbrella term that “refers to nonprincipled decisions dur-
ing data analysis that are aimed at reducing the p-value of a significance test and 
thus make the data look more robust than they actually are” (Friese & Frankenbach, 
2020, p. 457). Researchers have known about such nonprincipled decisions for a 
long time: As early as 1956, De Groot described this approach as an “attempt to let 
the material speak [that] leads to ad hoc decisions in terms of processing” (de Groot, 
1956/2014, p. 191). p-Hacking can take various forms (also known as “p-hacks”) 
and can occur at various points during the data analysis process, even before formal 
data analysis has even begun (see Fig.  5.1 for a schematic overview). The main 
characteristic of these practices is that they are selectively employed to bring an 
originally nonsignificant p-value below the alpha level of 5%.

p-Hacking can occur intentionally and with full awareness that one is not follow-
ing best scientific practices. However, importantly, p-hacking can also occur largely 
without awareness of the potentially detrimental consequences or even with genu-
inely honest intentions. To illustrate, we believe it is quite likely that before the 
seminal paper by Simmons et  al. (2011) demonstrated the tremendous effect of 
p-hacking on false-positive rates, many researchers were aware that playing with 
the data too much would likely increase the chances of false positives, but they 
probably had little idea about the extent of this problem. Even more, researchers 
who are convinced of the validity of a particular hypothesis may want to uncover 
what they think is hidden like a precious, but hard-to-detect signal in the data (Heene 
& Ferguson, 2017; Nelson et al., 2018). Because of confirmation and hindsight bias, 

Fig. 5.1  Schematic depiction of exemplary p-hacking practices according to when they typically 
occur during the research process
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researchers may believe that undesired outcomes result from suboptimal analyses 
(Munafò et al., 2017), so they try to optimize their analyses without any bad intent. 
Thus, the general notion of the present chapter is not to blame or denounce research-
ers for their presumably ill-intentioned behavior. Instead, we intend to provide 
information about the nature, consequences, and prevention of p-hacking, whether 
it occurs intentionally or not.

�p-Hacking Practices

Various different practices are considered p-hacking. Our overview is not exhaus-
tive. In Fig. 5.1, we arranged some exemplary strategies according to when they 
typically occur in the research process.

�p-Hacking during Data Collection

During the data collection process, two types of p-hacking can occur: first, stopping 
data collection earlier than planned because preliminary analyses appear to reveal 
the result that one is looking for, and, second, collecting additional data without 
controlling for inflated error rates.

Each of these strategies can be problematic. When stopping early (i.e., with 
lower power than planned), it is more difficult to distinguish random variation from 
a true effect. Underpowered samples not only have a reduced chance of detecting a 
true effect, but the likelihood that a statistically significant effect reflects a true 
effect is also reduced (Button et al., 2013; Ioannidis, 2005). Moreover, if the true 
effect is zero, p-values are uniformly distributed: Every possible p-value is equally 
likely (Simonsohn et al., 2014). Hence, stopping earlier than intended can lead to 
uninformative results if statistical power remains low.

Collecting more data is generally a good thing as it increases power and the 
chances of revealing a true effect. However, looking at the data multiple times (and 
deciding to continue data collection) also increases the danger of false positives if 
researchers do not statistically control for the increased Type I error rate. If the true 
effect is zero, p-values are uniformly distributed. Hence, they will zigzag endlessly, 
and as a consequence, a result that is “approaching significance” may turn signifi-
cant when a few more data points are added without actually revealing a true effect. 
Fortunately, because no p-value is more likely than another if the true effect is zero, 
in these cases, larger samples will also often reveal larger p-values. If there is a true 
effect, a larger sample increases the chance of obtaining a particularly small p-
value, not one that barely crosses the 0.05 mark.

For trial researchers, both the practices of stopping early and collecting more 
data after looking at the results are known as sequential investigation (Armitage 
et al., 2002) or the sequential stopping rule (Dienes, 2008; Lakens, 2014). Sequential 

5  The Myriad Forms of p-Hacking



106

(group) investigations are particularly important for clinical trials because it may be 
ethical to terminate the trial early when there is strong evidence in favor of, or 
against, the treatment under investigation. The determination of when data collec-
tion will end is defined as the stopping rule for a study. Problems arise if the deci-
sion of when to terminate—or collect more data—is not specified a priori. Checking 
data more often (than once) increases the actual α level because each test that is 
conducted offers a new chance to reject the null hypothesis. In the extreme, a stop-
ping rule that implies “I will continue running the experiment until the test is signifi-
cant” guarantees a significant finding even when the null hypothesis is true 
(Dienes, 2008).

�p-Hacks During Data Preprocessing

Several p-hacks can occur during data analysis. We arranged these p-hacks accord-
ing to whether they most typically happen during data preprocessing or during 
hypothesis testing. In reality, the separation between these stages is not strict. All 
strategies can be employed at any point when trying to make the data reveal the 
most about the proposed hypotheses.

We discuss two types of p-hacking that refer to data preprocessing and explor-
atory data analysis: transforming distributions and (selectively) excluding outliers. 
Data transformations can be useful for normalizing the data. For example, log-
transforming the data may give a parametric test more power and—as a result—
lower p-values. However, such transformations must be specified in advance. 
p-Hacking occurs when an analyst runs the analyses on raw data first and, after 
trying one or even several transformations, reports the results with the smallest 
p-value (Lew, 2020).

Similar problems can occur when outliers are excluded. Excluding a few data 
points that are not representative of the rest of the distribution can be useful when 
these data points exert an extraordinarily strong influence on the inferences research-
ers draw from the data. Problems arise when the decisions about whether to exclude 
data points and which ones to exclude are based on how much the various decisions 
change the p-value toward significance. Admittedly, decisions about the exclusion 
of outliers can be inherently ambiguous. There are several approaches that explain 
how to exclude outliers (e.g., standard deviations from the mean, median absolute 
deviation, Boxplot analysis), and within each approach, there are several choices 
(e.g., 2.5 or 3 standard deviations/median absolute deviations), opening up an exten-
sive array of options. It can be challenging to decide which of these paths is the best 
choice in a particular study. However, what is clear is that picking the specific path 
on the basis of the resulting p-value will increase the danger of believing that the 
effect that was found is more robust than it actually is. We will discuss the detrimen-
tal consequences of this and other p-hacking practices in a later section as well as 
how to prevent them from occurring.
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�p-Hacks During Hypothesis Testing

When researchers test confirmatory hypotheses, they may try out multiple analyti-
cal approaches (e.g., a t test for dependent measures, a robust t test such as the Yuen-
Test, and an analysis based on change scores). Again, applying diverse methods 
may happen in good faith in an attempt to identify the most adequate method for 
analyzing the particular data set. However, running a bunch of analyses and report-
ing only the method yielding the lowest p-value capitalizes on chance. Indeed, 
recent endeavors have shown that even different well-intentioned analysts can ana-
lyze the same data in widely different ways and arrive at conclusions that differ 
greatly (Silberzahn et al., 2018).

A similar reasoning applies when researchers’ decisions to selectively control for 
covariates or moderators (e.g., gender, age) are based on whether or not this reduces 
their focal p-value instead of a priori theoretical reasoning that it will be advisable 
to do so. This practice highlights the similarities between p-hacking and overfitting. 
Overfitting refers to situations in which sample-specific noise is misinterpreted as a 
true signal that can be generalized to the population. Yarkoni and Westfall (2017) 
consider p-hacking to be a form of procedural overfitting because it takes place 
either prior to or in parallel with hypothesis testing or model estimation.

�p-Hacks During the Reporting of Studies

Another subset of p-hacking practices refers to decisions about whether to exclude 
data after looking at the impact of doing so on the results. These decisions may 
pertain to single data points (e.g., outliers, see above), ghost variables (i.e., depen-
dent variables assessed during data collection but not reported in the publication 
itself; Bishop & Thompson, 2016), or experimental conditions (e.g., dropping, com-
bining, splitting groups). Conceptually, the dropping of conditions is a borderline 
case that falls between p-hacking and publication bias (i.e., dropping whole stud-
ies). Similarly, failing to disclose experimental conditions (e.g., when the results are 
inconsistent with theoretical predictions) is considered p-hacking because this may 
impact the p-value of some analyses (e.g., dropping a condition in a one-
way ANOVA).

The term ghost variables describes the situation when researchers do not specify 
in advance their hypotheses about which specific measure will differ between 
groups or will show a substantial association with a chosen predictor. If researchers 
report only the significant ones and assign a ghost status to the remaining variables, 
this is considered p-hacking (Bishop & Thompson, 2016). This type of p-hacking is 
problematic because, due to the problems that arise from multiple testing, the infer-
ential statistics reported in such cases will be misleading. Conceptually, dropping 
dependent variables is also linked to publication bias on the outcome level instead 
of the study level.
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Multiple testing refers to situations in which researchers perform a “family” of 
tests. When performing one t test, the null hypothesis can be rejected at the 5% α 
level. But when performing two t tests, the probability of making a Type I error 
increases to 9.75%. Therefore, when running more than one test on the same hypoth-
esis, researchers need to control the overall Type I error rate (i.e., the family-wise 
error). This can be done by correcting (i.e., reducing) the α level for every single test 
in the family. Researchers sometimes try to avoid having to make such a correction 
by not reporting some of the tests they ran or by dropping some of their (dependent) 
variables. Consequently, they report results as significant even when these tests 
would have missed the corrected threshold if the proper procedures had been 
followed.

A final p-hacking practice that may occur during the reporting of studies is the 
rounding off of p-values. In practice, this means reporting values slightly above 0.05 
as equal to or even less than 0.05, and hence, reporting the results as significant 
when in fact they are not. Thus, other than the previously discussed techniques, this 
p-hack does not even lead to a formally significant result. It only pretends to do so.

�The Consequences of p-Hacking

p-Hacking has a whole range of implications. In this section, we will discuss two: 
an increase in false-positive findings and an overestimation of effect sizes.

�Increase in False-Positive Findings

The most tangible consequence of p-hacking is a sharp increase in false-positive 
findings—hence, the reference to p-hacking as “inflation bias.” Put differently, 
p-hacking practices “wreak havoc with a method’s error probabilities. It becomes 
easy to arrive at findings that have not been severely tested” (Mayo, 2018, p. 439). 
p-Hacking leads researchers to believe they found a real effect when in reality there 
was none, at least not one strong enough to reach statistical significance.

In an impressive demonstration of this consequence, Simmons et al. (2011) con-
vincingly showed how strongly p-hacking inflates actual false-positives rates. These 
authors simulated scenarios for four p-hacking practices: choosing from among out-
come variables, optional stopping, including covariates, and excluding experimen-
tal conditions. Also, they evaluated various combinations of these four practices by 
taking into account the possibility that several practices may occur jointly. Their 
simulations showed that applying a single p-hack can easily double the factual 
false-positive rate (under the specific conditions employed by Simmons et  al. in 
their simulation). At the same time, researchers still assume that their results are 
quite unlikely (≤0.05) under the null hypothesis. The most disturbing finding from 
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the analyses demonstrated that false-positive rates increased to 61% when the four 
p-hacking practices were combined. Consequently, in this situation, the probability 
that researchers would erroneously conclude and report a significant finding was 
higher than the probability that they would correctly reject the null hypothesis. They 
would even have been better off by flipping a coin.2

On a larger scale, one may wonder what it means if a literature is built substan-
tially on studies that, in reality, did not reveal significant findings but were false 
positives. False-positive findings may be particularly detrimental in small, emerging 
literatures with a few landmark studies that may give the impression of a robust 
effect when it is much weaker in reality. One may hope that in the long run, as a 
literature grows and matures, the weight of individual studies will decrease. Still, if 
a literature (for whatever reason) remains small, a few false-positive findings can 
bias perceptions of this literature for a long time. Obviously, the more prevalent and 
severe p-hacking is in a given literature, the more damaging the consequences.

�Overestimation of Effect Sizes

A second detrimental consequence of p-hacking involves the overestimation of 
effect sizes. p-Hacking means using any of the aforementioned practices to bring an 
originally nonsignificant p-value down to significance. For many of these practices, 
this essentially means obtaining a larger effect size estimate that will cross the sig-
nificance threshold (e.g., by including a covariate or excluding some outliers). This 
effect will be particularly pronounced in small studies with low power because only 
large effect sizes become significant in such studies.

Imagine a research group that ran a relatively small study with a striking result: 
evidence for a hitherto unknown effect Y. They published the study in a high-impact 
journal. When analyzing the data, they tried many different things (i.e., they used 
researchers’ degrees of freedom) and settled on a solution that they believed was 
most appropriate (in fact, they overfitted the analysis to the data, resulting in an 
effect size that overestimated the true effect). In addition to (in this case unintended) 
p-hacking, the study is haunted by another problem: Effect sizes are additionally 
exaggerated in small, underpowered studies such as the one our fictitious research 
group ran, a statistical phenomenon called the winner’s curse (Button et al., 2013). 
It means that the research group is “cursed” by overestimating the magnitude of the 
effect in the population due to random error that is more pronounced in underpow-
ered studies (see also Chap. 11, this volume). Other researchers trying to replicate 
the initial finding Y will then suffer from a “decline effect” (Protzko & Schooler, 
2017), indicating that attempts to replicate the effect will likely find considerably 

2 You can experience the power of p-hacking yourself by using the p-hacker Shiny app 
(Schönbrodt, 2016).
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smaller effects or even end up with a null finding. In this situation, further p-hacking 
when analyzing the replication attempt becomes more likely, particularly in a cul-
ture that incentivizes significant results. The researchers’ assumption that there 
must be a true effect and that it’s only hidden due to a suboptimal analysis will 
motivate them to dig deeper and “dredge” the data. This illustrates how nonrobust 
findings can initiate a vicious cycle that—in combination with maladaptive incen-
tive structures—motivates the continued use of p-hacking and other questionable 
research practices.

A recent large-scale simulation study examined the extent to which p-hacking 
can bias effect size estimates of whole literatures, either on its own or in combina-
tion with publication bias (Friese & Frankenbach, 2020). Publication bias is another 
questionable research practice that arises when studies that did not produce the 
desired outcomes are less likely to be published than studies that “worked” (Franco 
et al., 2014; Ioannidis et al., 2014). Hence, publication bias occurs at the level of 
studies (is a study published or not?), whereas p-hacking refers to the data collec-
tion practices and analyses used in a study.

The results of Friese and Frankenbach’s (2020) study revealed that p-hacking 
and publication bias result in different threats to the robustness of findings. Whereas 
p-hacking can dramatically increase the rate of false positives in a given literature, 
high levels of publication bias can lead to a considerable distortion of (meta-
analytic) effect size estimates. Perhaps surprisingly, in the absence of publication 
bias, p-hacking does little to distort meta-analytic effect size estimates. However, 
the two phenomena interact: p-hacking adds considerable bias to effect size esti-
mates at medium levels of publication bias—particularly in literatures where the 
true effects in question are small. At low and high levels of publication bias, p-
hacking hardly contributes any bias to meta-analytic effect size estimates. With 
increasing true effect sizes, literatures are more and more shielded against the effect 
size bias introduced by publication bias and p-hacking (Fig. 5.2).

Increased rates of false-positive findings and bias in effect size estimates have 
palpable implications for the literature’s meta-analytical record. Large numbers of 
seemingly positive (but factually false-positive) results create the impression of a 
robust and accurate literature. As the inflated effect sizes from single studies will be 
included and summarized in meta-analyses, they bias the meta-analytical effect size 
(provided that there is some publication bias). As a consequence, researchers con-
ducting new work who base their expectations on these biased estimates will inad-
vertently run underpowered studies because they believe that the effects of interest 
are more robust than they actually are. This combination of increased rates of false-
positive findings and biased meta-analytical effect size estimates impedes the accu-
mulation of knowledge. For one, it leads researchers who are trying to build upon 
previous work astray. In addition, practitioners relying on biased literature might 
not be able to provide the best solutions to those they are working with. The result 
is a lamentable waste of resources.
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Fig. 5.2  Meta-analytic effect size estimates as a function of degrees of p-hacking, publication 
bias, and true effect size
Note. In the absence of publication bias, p-hacking does little to distort meta-analytic effect size 
estimates. By contrast, high degrees of publication bias do distort these estimates even in the 
absence of p-hacking. Together, p-hacking and publication bias interact such that p-hacking adds 
considerable bias when publication bias is moderate. Bias is greatest when the true effect size is 
very small. Larger true effects act as a shield against the deleterious effects of p-hacking and pub-
lication bias on meta-analytic effect size estimates. Figure reprinted from Friese and 
Frankenbach (2020).

�The Prevalence and Detection of p-Hacking

The prevalence of p-hacking in different disciplines has been discussed repeatedly 
(Fiedler & Schwarz, 2016; John et al., 2012, see also Chap. 6, this volume). There 
are essentially three approaches that seek to determine how frequently researchers 
p-hack. One directly surveys researchers about their practices, whereas  the oth-
ers attempt to obtain statistical indicators of p-hacking based on published litera-
ture or by comparing planned with reported analyses.

�Prevalence Estimates Based on Self-Reports

John et  al. (2012) aimed to estimate the prevalence of p-hacking (and other 
Questionable Research Practices, QRPs) in a few ways (see also Chaps. 1 and 2, this 
volume). One way was to acquire self-admission rates for 10 QRPs (e.g., “rounding 
off” a p-value, deciding whether to exclude data after determining how such an 
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exclusion would impact the results, or deciding whether to collect more data after 
looking to see whether the results were significant; John et al., 2012, p. 525). The 
second way involved asking participants to estimate the percentage of other psy-
chologists who had engaged in the behavior. There was large variability across the 
10 QRPs for both indicators. For example, up to 58% of participants indicated that 
they had at least once decided “whether to collect more data after looking to see 
whether the results were significant.” Conversely, for claiming in a paper “that 
results are unaffected by demographic variables (e.g., gender) when one is actually 
unsure (or knows that they do)” (p. 525), only 4.5% indicated that they had done this 
at least once. The prevalence estimates of other psychologists engaging in these 
practices were often higher than the self-admissions. With respect to participants 
working in clinical psychology, the mean self-admission rate across all 10 QRPs 
was 27%.

The findings by John et al. (2012) have been frequently cited but also criticized 
for exaggerating actual prevalence rates because the authors used lifetime preva-
lence rates to conclude that some research practices “constitute the prevailing 
research norm” (p. 524). However, lifetime prevalence rates are unable to distin-
guish between researchers who engaged in a QRP once and only once in their life-
time and researchers who engage in the same QRP regularly. A conceptual 
replication among German psychologists decomposed the prevalence of QRPs into 
their two multiplicative components: the proportion of researchers who ever com-
mitted a given practice and, if so, how frequently (Fiedler & Schwarz, 2016). This 
survey found prevalence estimates that were a lot lower than those reported by John 
et al. (2012).

John et al. (2012) also suggested that prevalence rates of QRPs are not uniformly 
distributed across the subdisciplines of psychology. Even within subdisciplines, 
there are different subfields with potentially different research cultures that may be 
more or less susceptible to certain QRPs. Of particular relevance for the present 
purposes is a recent survey among faculty and students in clinical and counseling 
psychology doctoral programs (Swift et al., 2020). In this survey, over 64% of fac-
ulty and 48% of students indicated engaging in at least one of 12 QRPs at least once 
during their career. The p-hacking practices that participants admitted to engaging 
in included rounding off a p-value (12.8% of faculty and 8.2% of doctoral students) 
and excluding data after looking at the impact of doing so (11.8% of faculty and 
9.1% of doctoral students). These admission rates were considerably lower than the 
rates reported in other surveys (e.g., 22% for at least once rounding-off a p-value 
and 40% for at least once excluding data; Fiedler & Schwarz, 2016).

�Prevalence Estimates Based on Analyses 
of the Published Literature

Assuming that self-reported data underestimate socially undesirable behavior, other 
approaches attempt to obtain statistical indicators of p-hacking on the basis of pub-
lished literature. For example, some researchers have suggested that when looking 
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at empirical p-value distributions, clusters of p-values just below 0.05 may indicate 
that researchers engaged in p-hacking strategies until their results were (barely) 
significant. Indeed, this pattern was found by some large-scale analyses of p-value 
distributions across multiple sciences, suggesting that p-hacking is widespread 
(e.g., Head et al., 2015).

These findings have been disputed for two reasons: First, other researchers have 
argued that a bump in the number of p-values just below 0.05 is a sufficient but not 
necessary condition for the presence of specific forms of p-hacking (Hartgerink, 
2017) and that p-value distributions that reveal evidence of p-hacking likely look 
different (Lakens, 2015a). p-Value distributions depend on additional factors, such 
as power and publication bias. With some types of p-hacking (e.g., multiple testing 
and reporting the analysis that yielded the smallest p-value), the p-value distribu-
tions are not likely to reveal clusters just below 0.05 (Hartgerink, 2017; Lakens, 
2015a, b). Second, re-analyses of the data by Head et al. (2015) and other studies 
did not find convincing evidence of a bump in the number of p-values just below 
0.05 (Hartgerink, 2017; Lakens, 2015a, b).

�Prevalence Estimates Based on Planned Versus 
Reported Analyses

A third approach is somewhat broader and does not apply to all of the p-hacking 
practices we discussed, but only to a subset. It compares records of studies that were 
openly available before publication with the final published paper. Thereby, this 
approach can reveal so-called selective reporting practices because it can detect the 
omission of variables or conditions that yielded undesired results, the underreport-
ing of null results (publication bias), and HARKing (Cairo et al., 2020).

In one study, Franco et al. (2014) looked at a database of empirical studies that 
had been submitted for review at a National-Science-Foundation-sponsored pro-
gram. They found that the publication probability of null findings was remarkably 
lower than for studies that yielded the desired results (a difference of approximately 
40%). Hence, Franco et al.’s results indicate the presence of publication bias.

This approach has been further refined within organizational and management 
research (O’Boyle et al., 2017) and social psychology (Cairo et al., 2020). O’Boyle 
et al. (2017) vividly labeled the process of initial results (the ugly caterpillar) turn-
ing into a journal article (the beautiful butterfly) the “Chrysalis Effect.” The authors 
compared 1978 hypotheses proposed in dissertations with hypotheses published in 
journal articles that were based on these dissertations. They found that 1000 hypoth-
eses (!) were dropped in the process. The proportion of significant findings (the ratio 
of supported hypotheses to all contained hypotheses) increased by 21.0% (from 
44.9% in dissertations to 65.9% in published articles). This inflation happened not 
only because hypotheses that did not yield the desired (i.e., significant) result had 
been dropped but also because new hypotheses had been added, the direction of 
predicted effects had been reversed, data had been altered, or variables had been 
selectively deleted or added (O’Boyle et al., 2017).
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In social psychology, Cairo et al. (2020) looked at 100 dissertations, 373 pub-
lished studies, and 1136 hypotheses and found that selective reporting practices 
were widespread. Supported hypotheses were four times more likely to end up in 
published journal articles than unsupported hypotheses and three times more likely 
to be reported unchanged. Again, the dropping of unsupported hypotheses alone 
resulted in a 20% inflation of significant findings in the published literature. In con-
clusion, the prevalence of p-hacking has been tackled via different approaches. All 
approaches have some merits but also some unresolved issues. Therefore, the actual 
frequency of p-hacking is unknown to date.

�The Prevention of p-Hacking

Researchers have proposed, developed, and refined several solutions to prevent 
p-hacking practices. Some of them have been around for many years, for example, 
randomized controlled trials (RCTs). Others, such as preregistration, Registered 
Reports, and multiverse analyses, are more recent. In the following, we will describe 
some of the proposed solutions and discuss their good points and challenges.

�RCTs

Medicine was one of the first disciplines to use registries. Initially, registries for 
clinical trials were aimed at facilitating the recruitment of patients, speeding up the 
dissemination of information, and reducing bias in the reporting of trials (Dickersin 
& Rennie, 2003). This idea is as timely as ever. Unfortunately, evaluations of RCTs 
have suggested that they often fall short of their potential. Of all registered trials, 
only about 50–60% end up in a journal, and those that find significant results have 
a higher probability of being published (Easterbrook et  al., 1991; Tackett et  al., 
2019). This evidence of publication bias and low replication rates in registered clini-
cal trials (e.g., Begley & Ellis, 2012; Prinz et al., 2011) has led to various attempts 
to improve the registration processes. New legal regulations, official statements 
(e.g., the Declaration of Helsinki), and technical advances have promoted central-
ized registries. These developments seem to have been successful at reducing selec-
tive reporting practices. For example, Kaplan and Irvin (2015) looked at large RCTs 
in drug research published between 1970 and 2012. They showed that after making 
the registration of primary outcomes obligatory on ClinicalTrials.gov in 2000, the 
percentage of positive results in the published trials dropped from 57% to 8%. They 
argued that both the obligatory prospective declaration of outcomes and improve-
ments in transparency in the reporting standards may be responsible for this decline 
in the proportion of positive findings. Although one cannot be entirely certain that 
the inflation of positive findings before 2000 is purely due to p-hacking, it stands to 
reason that a flexible determination of the primary outcome after looking at the data 
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may have played a role here. Therefore, Kaplan and Irvin concluded that the required 
registration of studies accompanied by improvements in the transparency of the 
RCTs were the key for the sharp increase in null findings.

�Preregistration

Several clinical research questions cannot be addressed with RCTs, but alternative 
solutions can help researchers avoid p-hacking. One of them is preregistration (see 
also Chap. 15, this volume). Preregistrations state research objectives, report the 
study design, describe the planned sample (size), and detail the planned analyses. 
Thus, they allow for a comparison between the studies that have been conducted 
with the studies that have been published. For the prevention of p-hacking, prereg-
istration has numerous benefits. For one, it allows confirmatory research to be dis-
tinguished from exploratory research. Specifying which analyses were planned a 
priori and which were run post hoc helps to prevent (or at least to detect) practices 
such as including covariates or excluding or switching outcomes.

The idea of registering empirical studies a priori is itself not new. For example, 
de Groot (1956/2014) determined that “it is essential that these hypotheses have 
been precisely formulated and that the details of the testing procedure (which should 
be as objective as possible) have been registered in advance” (p. 188). Similarly, 
concerning decisions about whether to perform a one-sided versus a two-sided test, 
Bakan (1966) stated: “How should this be handled? Should there be some central 
registry in which one registers one’s decision to run a one- or two-tailed test before 
collecting the data? Should one, as one eminent psychologist once suggested to me, 
send oneself a letter so that the postmark would prove that one had pre-decided to 
run a one-tailed test?” (p. 431). Hence, the awareness that a priori predictions are 
essential in science has been around for over 60 years. But only the recent develop-
ment of online tools that allow for the time stamping and freezing of research plans, 
accompanied by the acknowledgment of an imperative change in culture, have sub-
stantially improved the feasibility of preregistrations. Researchers may now use 
platforms such as the Open Science Foundation (OSF) or AsPredicted.org to share 
their research plans openly. Moreover, several templates tailored for different pur-
poses (e.g., experimental research, longitudinal and experience sampling studies, 
analysis of existing data) may lower the threshold for undertaking a registration (see 
https://osf.io/zab38/wiki/home/).

Recently, Benning et al. (2019) and Krypotos et al. (2019) introduced helpful 
guidelines directed at clinical psychology. Benning et al. (2019) spoke of a contin-
uum of registration because study registrations may vary in the timing and their 
disclosure. Whereas preregistrations (such as clinical trial registrations, Registered 
Reports or grant proposals) occur before the data are collected, coregistrations dis-
close decisions made after researchers began collecting data but before any data 
were analyzed. Postregistrations occur after data analysis has begun but still offer 
the opportunity to disclose specific analytic choices. In all types of registrations, 
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researchers may register anything from a single specific aspect of data collection 
and analysis to complex decision trees that illustrate a series of decisions. Hence, 
Benning et al. (2019) presented registrations as a flexible framework for helping 
clinical researchers to increase the credibility of their work. To do this, Krypotos 
et al. (2019) provide a hands-on approach. They offer a step-by-step guide on pre-
registration, anonymizing data, and sharing both materials and data in psychopa-
thology studies. The authors developed an open-source application based on the 
(free) statistical software package R (R Core Team, 2020) and git (a toolkit for 
tracking and merging changes) to facilitate version control and the time stamping of 
each step during the study. Researchers may thus use the same files throughout the 
study and easily track changes throughout the project.

One final remark about preregistration strikes us as important: A preregistration 
is more useful and effective at preventing p-hacking the more clearly and precisely 
it lays out the plan for a study. At the same time, it always has to be clear that a 
preregistration is a “plan, not a prison” (DeHaven, 2017). Making a plan to the best 
of one’s ability is great, but there can always be reasons why it became necessary to 
deviate from this plan. This poses no problem as long as these deviations are trans-
parently reported and explained.

�Registered Reports

A particular type of preregistration is a Registered Report (Chambers et al., 2014). 
Registered Reports refer to a type of preregistration that is presented in an article 
format and undergoes peer review before the data are collected. In a first step, the 
authors submit a Stage 1 part of the manuscript, including the Introduction, Method, 
and pilot study results if available (Chambers et al., 2014). After revisions proposed 
by reviewers and the editor, the authors are offered an in-principle acceptance if the 
Stage 1 manuscript is sound. An in-principle acceptance guarantees the final paper’s 
publication regardless of the results as long as the authors adhere to the approved 
protocol. After collecting and analyzing the data, the authors submit their initial 
Stage 1 manuscript along with the Results and Discussion sections. This Stage 2 
manuscript may contain any unplanned, additional analyses labeled as “exploratory.”

This publishing model prevents p-hacking—in addition to HARKing, problems 
with low power (because Stage 1 manuscripts are only accepted if the planned study 
seems adequately powered), and publication bias. Registered Reports alleviate the 
pressure to produce novel and astounding results and emphasize rigor and reproduc-
ibility instead (Chambers et  al., 2014). Moreover, due to the in-principle accep-
tance, Registered Reports help (early career) researchers disseminate their ideas 
more quickly and increase the visibility of these ideas. Given these benefits, it is not 
surprising that this new submission category has been introduced in over 250 jour-
nals by now (https://www.cos.io/initiatives/registered-reports).
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�Multiverse Analyses

Whereas unreviewed and reviewed preregistration types provide a solution for dis-
tinguishing confirmatory from exploratory research, multiverse analyses (Steegen 
et al., 2016) help to prevent biases in exploratory research. They involve running the 
same analyses across all reasonable combinations of different transformations, 
exclusions, and inclusions of data and variables to examine how they affect the 
results and conclusions. Thus, multiverse analyses address all the arbitrary deci-
sions that have to be made during data processing. They demonstrate the sensitivity 
of the results to analysts’ arbitrary choices. Hence, transparent multiverse analyses 
leave it to the scientific community to gauge the fragility of the conclusions and 
their credibility.

�Concluding Remarks: A Case for Open Science

In the present chapter, we discussed several p-hacking practices as part of the 
broader category of questionable research practices. Throughout the sections, it 
became clear that p-hacking can have detrimental consequences—particularly an 
increase in false-positive rates—that ultimately damage the trustworthiness and 
robustness of psychological science. In these concluding remarks, we would like to 
add a final nuance to the previous considerations by asking: Are p-hacking prac-
tices—or any questionable research practices for that matter—necessarily blame-
worthy after all?

For some practices, the answer is clear. They are simply wrong. For example, 
there is no justification for generously rounding off a p-value to 0.05 to make the 
result look significant if the actual value is higher. The p-value should be reported 
precisely to the third decimal place (APA, 2020). However, other practices might 
not be inherently wrong. In fact, they can be quite sensible, useful, or even neces-
sary. For example, in general, more data are better than less data. So, continuing 
data collection after peeking at the data may be a good idea. Including a covariate 
can make a lot of sense. Trying many different ways to analyze a data set can be 
highly informative and a sign of conscientiousness instead of a questionable research 
practice and so on. What can make these practices bad scientific practice is not that 
they are conducted at all. Rather, researchers are engaging in bad practice when 
their actions are not transparently reported to make clear what parts of the data 
analysis were planned a priori and what parts were added as exploratory analyses. 
In addition, bad practice occurs when the increased Type I error rates that result 
from massaging the data are not controlled for.

If researchers transparently disclose their a priori data analysis plan, where they 
deviated from this plan, why they did so, and how this affected the results, there is 
nothing wrong with amply exploring the data and reporting emerging insights that 
seem interesting. In fact, we encourage all researchers to explore their data sets, run 
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unplanned analyses, and come up with post hoc reasoning and new theoretical 
ideas—as long as these steps are labeled as such: post hoc. They can then be tested 
with confirmatory analyses in future research.

When appraising what is and is not questionable about questionable research 
practices, it becomes clear that some are not questionable, they are simply indefen-
sible. Others might be better termed “questionable reporting practices,” indicating 
that the problem lies in a lack of transparency more than in engaging in these prac-
tices per se (Wigboldus & Dotsch, 2016).

What can any researchers do to confirm that they did not engage in questionable 
research practices? The solution is surprisingly simple. It lies in the transparent 
distinction between a priori planned, confirmatory steps of data analysis and explor-
atory, additional steps. The line between the two can be drawn easily by adhering to 
the open science practices outlined above, particularly the detailed preregistration 
of all measures, manipulations, hypotheses, and planned analysis steps. Preliminary 
evidence suggests that this practice is remarkably effective. A recent analysis found 
that manuscripts published in the Registered Report format outperformed compari-
son papers published in the traditional format on 19 different criteria, including 
improvements in novelty, creativity, methodological rigor, and overall paper quality, 
among others (Soderberg et al., 2020).

Open science practices are surely not the solution to all challenges psychological 
science currently faces, but they are a pretty good and easy-to-implement solution 
to prevent p-hacking. Let’s do it.
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Chapter 6
Data Detective Methods for Revealing 
Questionable Research Practices

Gregory Francis and Evelina Thunell

Abstract  There are many types of Questionable Research Practices (QRPs) that all 
tend to generate statistical information that misrepresents reality. This chapter dis-
cusses some methods for detecting the presence of QRPs, mostly by looking for 
conflicts in different sources of information. These methods typically cannot iden-
tify precisely which QRPs were used, and sometimes the conflicts are due to typos 
or simple mistakes, but either way readers should be skeptical about the validity of 
studies with inconsistent statistical information. An appropriate mindset for identi-
fying inconsistencies is that of a “data detective” who looks for patterns that do not 
make sense. We start by describing mathematical inconsistencies between sample 
sizes and the degrees of freedom in hypothesis tests, which are easy to detect and 
indicate either a QRP, unreported outlier removal, or sloppiness in reporting. A sim-
ilarly easy check is the use of the STATCHECK program to identify inconsistencies 
between reported test statistics and p-values, which may indicate sloppiness in 
reporting or improper rounding to conclude statistical significance. Similar prob-
lems can also be discovered with the GRIM test, which identifies situations where 
reported means or proportions are impossible for the given measurement and sam-
ple size(s). Two additional tests explore inconsistencies across experiments. First, 
the Test for Excess Success compares the frequency of reported successful out-
comes to the expected frequency if the tests were run properly, fully reported, and 
analyzed without QRPs. Too much success indicates a problem with the reported 
results (possibly because of QRPs). Second, the p-curve analysis examines the dis-
tribution of reported p-values for properties that indicate invalid data sets (that are 
perhaps the result of QRPs).
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�Introduction

As discussed in other chapters, questionable research practices (QRPs) and p-
hacking can turn non-conclusive data sets into seemingly interesting findings. While 
such practices might be tempting for a researcher who is desperate to publish their 
work in fancy journals, they come at the expense of the credibility and reproduc-
ibility of the findings. Examples of QRPs are publication bias (reporting significant 
findings but not reporting relevant non-significant findings), inappropriate sampling 
(e.g., adding data points until achieving statistical significance), inappropriate anal-
yses (e.g., trying various analyses and reporting only the ones that give the wanted 
result), and hypothesizing after the results are known (HARKing; inventing a new 
theory and hypothesis that matches your results). Hypothesis testing is the dominant 
statistical analysis method in clinical psychology, and it comes with strict require-
ments and rules that are violated in different ways by QRPs. The impact of using 
QRPs is a kind of bias that misrepresents reality.

QRPs can make studies appear to provide strong support for effects that do not 
exist in reality. That is, the results seem to support the alternative hypothesis, but the 
null hypothesis is actually true. How then can we distinguish scientific results that 
are valid from results that are based on QRPs? Luckily, QRPs tend to leave a pattern 
of statistical evidence that can be used to identify their presence. In this chapter, we 
show how to detect and interpret such patterns.

In many respects, revealing the patterns generated by QRPs is similar to a detec-
tive trying to crack a case. The information may not be right in front of you, but 
different clues can be combined to demonstrate problems with experimental results 
and conclusions that are based on QRPs. In this chapter, we describe a number of 
methods that help you act like a data detective and identify problems in reported 
statistics.

�Mathematical Inconsistencies and Data Gleaning

A valuable skill for a data detective is recognizing how to extract relevant informa-
tion from what the authors themselves report. Here, we review some approaches 
that have proven useful for identifying problems with reported results.

A simple approach for detecting errors in reported results is to look for numerical 
inconsistencies. For example, many statistical tests (e.g., t and F tests) are based on 
distributions with a “degrees of freedom” (df) value. For example, a one-sample 
t-test has df  = n −  1, where n is the sample size, while a two-sample t-test has 
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df = n1 + n2 − 2, where n1 and n2 are the sizes of the two samples. Likewise, an 
independent one-way ANOVA F-test has two degrees of freedom terms called dfnu-

merator = K − 1 and dfdenominator = N − K. Here, K is the number of conditions and N is 
the sum of sample sizes across all conditions. Scientific papers usually report the 
sample sizes and the number of conditions, so it is relatively easy to calculate the 
degrees of freedom. Thus, you can easily check the following text: “As predicted, 
with n1 = 35 and n2 = 27, we found a significant difference between the control and 
experimental means t(58) = 2.1, p = 0.04.” The authors report 58 degrees of free-
dom, but using the formula above for the two-sample t-test you know that the 
degrees of freedom should actually be n1 + n2 − 2 = 60. An inconsistency of this 
type might indicate that the authors removed some participants from their data set 
without reporting this, but still properly reported the degrees of freedom for the 
remaining data. Outlier removal is not necessarily a QRP, but sometimes partici-
pants are removed because their absence allows the remaining data to show a sig-
nificant (p < 0.05) result. At any rate, data removal should be fully reported and 
justified. Errors of this type are rather common. At best they indicate sloppiness, 
and regardless of their source should prompt you to feel less confident in the reported 
results and their associated conclusions. The next section describes a conceptually 
similar check for inconsistencies that often have more severe consequences.

�STATCHECK

Most statistical analyses in psychology use hypothesis testing to determine whether 
there is an “effect.” Typically, this is done by defining an “alternative hypothesis” 
that there is a true effect and a null hypothesis that indicates “no effect.” For exam-
ple, when testing whether a drug is effective at reducing the duration of a cold, the 
null hypothesis H0 might look like:

	 H0 1 2: � �� 	

where μ1 and μ2 denote the duration of the cold with and without the drug, respec-
tively. Thus, the null hypothesis states that there is no difference in the population 
mean durations with or without the drug whereas the alternative hypothesis states 
that the drug does change the duration. The goal of the hypothesis test is to decide 
whether to reject the null hypothesis. This decision is based on “statistical signifi-
cance,” which is determined by a test statistic that is derived from the experimental 
data. A two-sample t test for independent equal means has a test statistic of:
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where X1
 and X2

 are the sample means and sX X1 2−  is the standard deviation of the 

sampling distribution of the difference of means, which is a function of the standard 
deviation of each sample, s, and the sample sizes n1 and n2. If the null hypothesis is 
true, the t-value is usually close to 0. The hypothesis test will then not reject the null 
hypothesis. If the alternative hypothesis is true and the sample sizes are large 
enough, the t-value will typically deviate substantially from 0. In this case, the 
researcher rejects the null hypothesis and can argue for their alternative hypothesis. 
However, just due to random sampling, the t-value will sometimes deviate from 0 
even if the null hypothesis is true, and the researcher will then erroneously reject the 
null hypothesis. How often this so-called Type I error happens is controlled by the 
researcher through a significance criterion, α.

Oftentimes, the criterion is set to α = 0.05, meaning that the probability of con-
cluding that an effect exists when it truly does not is 5%. The decision about whether 
to reject the null hypothesis and thus conclude that an effect exists (concluding 
statistical significance) is based on the p-value (the area under the tail, beyond the 
observed t-value, of the t sampling distribution if the null hypothesis is true). If 
p < α, then the observed t-value deviates more from 0 than what should be common 
if the null hypothesis is true. Therefore, the researchers conclude that there seems to 
be an effect: they reject the null hypothesis and claim that the observed difference 
of means is “statistically significant.”

When reporting the results of a hypothesis test it is common to report the com-
puted t-value, the corresponding degrees of freedom (which depends on the sample 
size(s)), and the p-value. It often looks like: t(48) = 2.55, p = 0.014. It is actually 
redundant to report both the t- and p-values, as there is a one-to-one relationship 
between them for a given degrees of freedom. This redundancy can be used to check 
the reported statistics.

For example, suppose you read an article that reports: “As predicted we found a 
significant difference between the control and experimental conditions, t(22) = 2.00, 
p < 0.05.” For the given degrees of freedom (df = 22) and t-value, one can recom-
pute the corresponding p-value1 to discover that p = 0.058. Thus, the reported t-value 
is incompatible with the statement p < 0.05. Instead, the result is actually not statis-
tically significant (because p  > α  =  0.05). The mathematics in the original text, 
therefore, indicates that something is wrong with the numbers. p-value inconsisten-
cies can come about from simple typos (e.g., typing 0.014 instead of 0.14), or hon-
est mistakes (e.g., copying the wrong line from the output of statistical software). In 
some cases (as in the above example), p-value inconsistencies might be because 
authors “round down” a reported p-value in order to make readers believe an experi-
ment produced statistical significance. This kind of inappropriate rounding is a 
QRP. Regardless of how they appear, p-value inconsistencies should raise concerns 
about the reported results and their associated conclusions.

1 For example, with the online calculator at https://introstatsonline.com/chapters/calculators/t_
dist.shtml
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STATCHECK is an online program (http://statcheck.io) that automates this kind 
of consistency check. To use it, simply upload a copy of an article and let 
STATCHECK scan it for statistical information. Just as we did above, STATCHECK 
identifies test statistics and their accompanying degrees of freedom, recomputes the 
p-value based on these numbers, and then compares it to the reported p-values. 
STATCHECK includes some additional computations (such as checking on whether 
the recomputed p-value is close enough to the reported p-value for appropriate 
rounding to be an explanation, and identifying whether an inconsistency in p-values 
changes the decision on statistical significance). STATCHECK works for a variety 
of statistical tests.

Some limitations of STATCHECK include that it cannot process certain file for-
mats, it typically does not distinguish between one- and two-sided tests, and it can-
not parse non-standard formats for reporting statistical outcomes. These limitations 
cause STATCHECK to sometimes omit or misinterpret statistical test results, and it 
is therefore always advisable to manually check the statistics flagged by 
STATCHECK.

Errors of this type are shockingly common. Systematic investigations of scien-
tific articles have found that around half of them have at least one inconsistent 
p-value and that around 12–14% of the articles contain an inconsistency that alters 
the interpretation of statistical significance.

�GRIM Tests

Another way of identifying inconsistencies in statistical reporting is to notice a rela-
tionship between sample sizes and measured values. Let’s consider a simple case. 
Suppose you receive a marketing report for a survey to evaluate how many people 
might be interested in a new product (a macaroni-and-cheese pizza) at your restau-
rant. One of your employees runs a survey on n = 37 people and reports that 56% of 
the people expressed interest in the new product. Your first reaction might be that the 
survey seems pretty promising for your new product. A bit of data detective work, 
however, suggests that you should assign the survey task to a different employee. 
The percentage calculation is computed from the following formula

	
%Interest � �

f

n
100

	

where f is the number of survey respondents who are interested in your product and 
n = 37 is the number of people who participated in the survey. Let’s deduce the 
value for f by plugging in the values reported by your employee

	
56

37
100� �

f
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With a bit of algebra, we find that f = 20.72. We know this value for f cannot be quite 
right because there cannot be fractions of respondents. Could the reported percent-
age have been rounded from the true value? We can check by looking at nearby 
values of f. For example, if f = 21 then we would get

	
% .Interest � � �

21

37
100 56 76

	

Unfortunately, this value does not explain why your employee reported 56% because 
rounding of 56.76% would produce 57%. What if f = 20? Then we get

			 
% .Interest ,� � �

20

37
100 54 05

	
which is too small to be rounded up to 56%. In fact, with n = 37 people in the 

survey it is impossible for the percentage to equal 56%, even after rounding. So, 
either your employee misreported the number of people in the survey or simply 
made up the numbers. At any rate, you should hold off on making changes to your 
menu until you resolve the inconsistency.

Similar logic applies to reported values of means. For example, suppose a survey 
asks people to rate, on an integer scale from 1 to 7, how much interest they have in 
a macaroni-and-cheese pizza. A rating of 1 indicates no interest at all and a rating of 
7 indicates that they want it now! The employee responsible for the survey reports 
that 55 responders gave a mean value of 4.74, which indicates interest above the 
middle point of the scale. The computation of the mean, X , is based on the follow-
ing formula:

	
X

X

n
i�

�
,
	

where Xi refers to the score for responder number i, and the capital sigma indicates 
to sum the scores of all the responders. Thus, with the reported mean and sample 
size, we can solve for the sum of scores:

	
� � � � � � � �X n Xi 55 4 74 260 7. .

	

Importantly, the scores can only take integer values (1, 2, 3, 4, 5, 6, or 7) because 
that is the nature of the rating scale. This means that the sum of scores must also be 
an integer value, which it is not in the above calculation. Did we get a decimal value 
for the sum because the reported mean was rounded from its true value? We can 
check this possibility by considering nearby values for the sum of scores and seeing 
if the corresponding mean value matches what was reported. For example, using 
∑Xi = 261 (e.g., rounding up to the nearest integer) gives
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X

X

n
i�

�
� �
261

55
4 7455.

	

which would round up to 4.75 and so cannot correspond to the reported mean of 
4.74. Likewise, using a smaller value for the sum of scores such as 260 would give

	
X

X

n
i�

�
� �
260

55
4 727.

	

which would round up to 4.73, and thus is too small to match the reported mean of 
4.74. Once again, a mean value of 4.74 is mathematically impossible for a sample 
of size n = 55 when measuring ratings with this kind of 1–7 scale.

Note that this kind of inconsistency is sometimes explained by rounding of 
reported statistics. If the sample size was n  =  46, a mean of X =4.74 would be 
fine because

	
� � � � � � � �X n Xi 46 4 74 218 04. .

	

which rounds down to 218. A re-computation of the sample mean gives:

	
X

X

n
i�

�
� �
218

46
4 739.

	

which rounds up to match the reported value of 4.74. Thus, here the reported mean 
is consistent with the sample size, the nature of the scale, and a bit of rounding for 
reported values.

These types of calculations are referred to as exploring the Granularity-Related 
Inconsistency of Means (GRIM). Many of the calculations described above can be 
automated in a spreadsheet. We have provided such a spreadsheet, GrimTest.xls, at 
the Open Science Framework (https://osf.io/k8yjc/). Enter a reported mean (or pro-
portion) and a sample size, and the spreadsheet indicates whether the numbers 
make sense.

With a bit of ingenuity and algebra, one can apply the GRIM analysis also to 
other situations. For example, sometimes an article reports the combined sample 
size across two samples and proportions or means for each sample but not the spe-
cific size of each sample. A variation of the GRIM test might consider all possible 
sample size combinations that add up to the reported combined sample size and see 
if any combination is consistent with the reported means or proportions. In some 
cases, it is possible to use both means and standard deviations to identify 
inconsistencies.

GRIM inconsistencies can occur because of typos or other forms of sloppiness. 
They can also happen through QRPs such as removing data from the sum of scores 
but not taking their removal into account when reporting the sample size. In some 
cases, a GRIM inconsistency may indicate that the reported data is simply “made 
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up.” Whether based on fraud, tinkering, or a typo, readers of data with a GRIM 
inconsistency should be skeptical about the reported results and their implications.

�Data Extraction Techniques

Many GRIM inconsistencies could be easily resolved if scientists shared their data 
and analysis code. Regrettably, this is not the norm. Even though many journals 
formally require authors to share their data, it is uncommon for authors to do so, and 
the journals often do not ensure that authors follow the rules.

Data sharing also has other advantages, such as allowing a scientific field to take 
full advantage of a scientist’s empirical work by allowing other researchers to 
explore additional aspects of the data or use it to guide new experiments. Until data 
sharing becomes common, data detectives can use a variety of techniques to glean 
some statistical information from reported statistics. Here, we show how some of 
these techniques can be combined.

Figure 6.1a schematizes the stimuli in a spatial cuing experiment. On each trial, 
a participant looks at a computer screen that briefly flashes a central arrow pointing 
to the left or to the right and then shows a target letter either to the left or to the right. 
The observer’s task is to identify the target letter as quickly as possible by making a 
button-press, and the computer measures their response time. On 80% of the trials, 
the arrow points to where the target letter is about to appear, so observers learn to 
attend to the indicated location. The experiment investigates how much such 
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Fig. 6.1  Stimuli and results for a spatial cueing experiment. (a) shows stimuli for congruent and 
incongruent trials. In congruent trials the arrow points to the location of a subsequent target letter. 
In incongruent trials the arrow points to the opposite location of the target letter. (b) shows the 
results. Mean response time is shorter for congruent trials than for incongruent trials. The error 
bars indicate one standard error of the mean
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attention affects the speed of letter identification. Each observer produces a mean 
response time for congruent trials (when the arrow points to the location of the tar-
get letter) and for incongruent trials (when the arrow points to the opposite side of 
the location of the target letter). Figure 6.1b shows typical data from n = 31 observ-
ers (the data are available in a spreadsheet, SpatialCueingData.xlsx, at the Open 
Science Framework). It indicates that the mean response time is shorter for the 
congruent than for the incongruent trials. The error bars indicate the standard error 
across observers for each condition.2

It is common to present findings with a data plot (like Fig. 6.1b) along with a 
summary of a statistical test. Here, the test is a dependent t test that compares mean 
response times for congruent and incongruent conditions: t(30) = 2.13, p = 0.04. For 
a data detective, there is more quantitative information than what is directly reported. 
For example, you might want to know the standard deviations for the conditions and 
the correlation across observers. The standard error for a condition, SX ,  is related 
to the standard deviation of the data, S, by the formula:

	
S

S

n
X =

	

So if we know the standard error, we can easily solve for the standard deviation. The 
error bars in Fig. 6.1b indicate the standard error, so we just need to extract the 
information from the plot. We do this using a program called Plot Digitizer, which 
prompts the user to identify the ends of each axis and then click on points of interest 
in the plot. The program computes the position of each marked point in the plot. 
Figure 6.2 shows the two windows from Plot Digitizer that report the height of each 
bar and its associated error bar.

The values under the “Condition” column in the small window to the left indicate 
the x-value of each point, in the order they were clicked. In this bar plot, the x-values 
simply indicate the two conditions. We are more interested in the values in the 
“Response Time” column. The first two values refer to the mean and top of the error 
bar for the congruent condition, and the last two values refer to the mean and top of 
the error bar for the incongruent condition. The height of the error bar above the 
mean is the standard error, and so we can compute the standard error SX

 with the 
following formula:

	
SX � �Error bar height Mean

	

We can then easily compute the standard deviation S for each condition as:

	
S S nX=

	

2 Sometimes authors compute an error bar using the standard deviation across observers or the 
range of a 95% confidence interval; it is typical for the figure caption to indicate the basis of each 
error bar.
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Fig. 6.2  Data gleaning of spatial cueing data using the Plot Digitizer program. The yellow lines 
on the plot connect selected points

Finally, we can compute the correlation between the congruent and incongruent 
conditions by using the variance sum law, which describes how the variance of dif-
ference scores Sx y−

2  is related to the variance of each score and their correlation r:

	
S S S rS Sx y x y x y� � � �2 2 2 2

	

Here, we use variables x and y to refer to the two correlated measures (e.g., congru-
ent and incongruent response times). Some algebra shows that the correlation 
must be:

	

r
S S S

S S
x y x y

x y

�
� �

�
�
2 2 2

2
	

We can compute the variance of difference scores from the means and t-value 
because the t-value is given by:

	

t
X Y

S

X Y

S nX Y x y
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�
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�

� � /
	

A bit of algebra results in a formula for the standard deviation of the difference 
scores Sx − y:
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Table 6.1 compares the values gleaned from Fig. 6.1b and the above computations 
against the values computed directly from the raw data. One can see that the gleaned 
values are quite close to the actual values. Small discrepancies exist because it is 
difficult to place the clicks directly on the top of the bars in the plot and because the 
reported t-value is rounded to two decimal places. Using the gleaned values to esti-
mate the correlation between congruent and incongruent response times gives 
r = 0.385. The true correlation (computed from the raw data) is r = 0.391.

These extraction techniques can also be used to identify non-obvious inconsis-
tencies in a data set. For example, suppose the text describing a dependent samples 
t-test reported the following, “As predicted, there was a significant difference, 
t(30)  =  2.8, p  =  0.009, between the control ( X = 45 , s  =  7.3) and experimental 
( X = 55 , s = 7.6) conditions.” While this result might seem like convincing support 
for there being a difference in means, it actually makes no sense at all. The reported 
degrees of freedom for the dependent t-test indicates that n = 31. Combining this 
sample size with the reported mean and t-values, the standard deviation of the dif-
ference scores can be computed using the formula above, Sx − y = 19.88. Now, we can 
check whether this value is possible with the standard deviations given for each 
condition. Solving for the correlation between scores in the control and experimen-
tal conditions using the formula above gives r = −2.56, which violates the constraint 
that correlations must always be between plus and minus one. Thus, we can con-
clude that the reported numbers cannot be correct.

This section has mostly dealt with mathematical inconsistencies in statistical 
reports. Standard reporting formats include redundant information that sometimes 
allow data detectives to identify inconsistencies. With these methods, the data detec-
tive checks for inconsistencies in the reported results of a single experiment. In the 
next section we identify two methods for characterizing inconsistencies across 
experiments.

Table 6.1  True and gleaned values for the means, standard errors, and standard deviations of the 
spatial cueing data

Statistic Congruent Incongruent
True Gleaned True Gleaned

Mean 353.64 353.05 387.85 387.25
SE 12.45 12.94 16.10 15.71
SD 69.30 72.04 89.63 87.48
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�Experimental Inconsistencies

Hypothesis testing is often presented as a way of drawing conclusions within a 
single experiment. However, sometimes conclusions are based on statistical out-
comes across experiments, and the properties of hypothesis testing impose impor-
tant constraints in such situations. We will describe two analysis methods that look 
for violations of these constraints. Conceptually, identifying inconsistencies across 
experiments is similar to identifying mathematical inconsistencies within an experi-
ment. However, there are two important differences. First, mathematical inconsis-
tencies could potentially be due to typos or calculation errors rather than QRPs. The 
same interpretation is usually not plausible for inconsistencies across experiments. 
Second, mathematical inconsistencies are definitive in the sense that there is no way 
for the numbers to make logical sense. Inconsistencies across experiments, on the 
other hand, are defined as improbable (rather than impossible) inferential outcomes. 
These inconsistencies suggest the involvement of QRPs because observed outcomes 
would be very rare if QRPs were not involved.

�Test for Excess Success

In most experiments in clinical psychology, conclusions are based on hypothesis 
testing. Due to how samples are randomly selected for such tests, it sometimes hap-
pens that a test draws the wrong conclusion. For example, it is possible that a popu-
lation with a true null hypothesis produces a significant outcome simply due to the 
scientist happening to get an unusual sample of data. The hypothesis testing proce-
dure for drawing a conclusion controls the rate of making such a Type I error; and 
scientists typically set that rate to be 5%. Likewise, it is possible that a population 
with a true effect produces a non-significant outcome due to the scientist happening 
to get an unusual data sample. The probability of making such a Type II error is not 
directly controlled in hypothesis testing, unless the scientist has a good idea of the 
size of the true effect and gathers a large enough sample of data.

An important implication of drawing conclusions based on hypothesis tests is 
that mistaken conclusions are inevitable. Even when doing everything correctly (in 
terms of random sampling, analyzing the data, and reporting the results), scientists 
must sometimes make the wrong decision. Consider the power of an experiment. 
Power is the complement of Type II error, meaning that it refers to the probability 
that a hypothesis test based on a random sample of data will reject the null hypoth-
esis when this is the correct conclusion (there really is an effect). Power depends on 
the size of the effect and on the size of the sample, in that larger effects and larger 
samples give higher power. Oftentimes, scientists do not try to control power, 
because the effect size is unknown. When power is considered, scientists often aim 
for sample sizes that give at least 80% power. However, this is an arbitrary target, 
and it is sometimes inappropriate. Consider a scientist who plans two independent 
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experiments, and will draw a conclusion in favor of some theoretical conclusion 
only if both experiments show significant effects. If each experiment has 80% 
power, then the probability of both experiments producing significant results is 
0.82 = 0.64. Thus, even though the power of each experiment is acceptable when 
considered alone, the odds of the scientist finding support for their theoretical con-
clusion are only slightly better than a coin flip.

As additional successful experiments are added to the list of requirements for 
drawing a theoretical conclusion, the probability of consistent success decreases. 
Out of 20 experiments, one should expect on average 0.8 × 20 = 16 significant out-
comes. The probability of all 20 experiments producing significant outcomes is only 
0.820 ≈ 0.01. Thus, if a scientist reports that 20 out of 20 experiments each with a 
power of 0.8 produced significant outcomes, this should not be interpreted as strong 
evidence for the theoretical conclusions but instead as an indication that something 
has gone wrong; in particular it suggests that the scientist engaged in some types of 
QRPs. The absence of non-significant findings in experiments with limited power is 
a marker for flaws in the scientific process because the reported findings seem “too 
good to be true.”

These observations can be quantitatively formalized with the Test for Excess 
Success (TES). By estimating effect magnitudes from the reported experiments, this 
method estimates the success rate of future experiments that use the same sample 
sizes. The success rate is an estimate of the probability of future replication experi-
ments to produce the same degree of success as the original experiments. If this rate 
is low (0.1 is a common, if arbitrary, threshold), then the reported results of the 
original studies are deemed problematic (too good to be true).

To demonstrate how to perform a TES analysis, consider a prominent paper that 
reported six experiments investigating the impact of poverty on cognitive perfor-
mance. The main claim was that poverty-related concerns use mental resources that 
would otherwise be available for other tasks. This claim implies that poor people 
make bad choices partly because they are poor, rather than being poor because they 
make bad decisions. If true, this finding has many important policy implications. 
When deciding on how to best help poor people, one needs to consider their lower 
cognitive capabilities, which may vary with their financial situation. The paper 
describing these six experiments was published in the journal Science, which is 
widely regarded as the most prestigious scientific academic journal, and the findings 
were considered important enough to merit mention in the New York Times and 
numerous other media outlets. Below, we use a TES analysis to show that these 
results actually do not adequately support the theoretical claims. Arguably, some of 
the findings were produced with QRPs.

For each of the six studies, we can extract the statistics for the relevant hypoth-
esis tests. For most of the studies, multiple hypothesis tests were performed. 
However, to keep the current analysis simple, we estimate an upper limit of the suc-
cess rate for each experiment by considering only the statistically weakest relevant 
test. This approach is conservative, since an experiment is always less likely to 
produce multiple specific outcomes than only one of the outcomes.
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A key result from Experiment 1 was an interaction between income (rich or poor, 
defined by a median split) and condition (scenarios describing hard or easy to man-
age financial difficulties). The measurements included performance on a Raven’s 
matrices task (a measure of fluid intelligence) and a cognitive control task. To esti-
mate an upper limit of the power of Experiment 1, we used the weaker of the results 
from these two measures. The calculation of power is done in an R program 
(TESAnalysis.R) that is available for download at the Open Science Framework. 
Without going into the specific formulas, the program converts the sample sizes and 
test statistics (F- or t-value) into a standardized effect size (Hedges’ g). This stan-
dardized effect size is then used to estimate the probability that a new experiment 
with the same sample size as the original experiment would produce a significant 
outcome. As the first row of Table 6.2 indicates, the power is around 0.6. So, if the 
effect is real and similar to what was originally reported, future replication studies 
with the same sample size have around a 60% chance of producing a significant 
outcome.

Experiment 2 was similar to Experiment 1, but with nonfinancial scenarios. The 
prediction of the authors was that this design would not produce a significant differ-
ence between rich and poor participants; and that was precisely what they reported. 
The success probability for this experiment is computed as one minus power, which 
gives the probability of a random sample not producing statistical significance. As 
shown in Table 6.2, the success probability is rather high because it is easy to not 
produce a significant outcome with a small sample.

Experiment 3 added monetary incentives for correct responses and found similar 
effects as for Experiment 1. Namely, there was a significant interaction between 
income and scenario for measures of cognitive control. If the effect is similar to 
what is reported in Experiment 3, then the power of a replication experiment with 
the same sample sizes is just above 0.5.

Table 6.2  Estimated success probabilities for six experiments investigating poverty and cognition. 
The probability of all six experiments producing successful outcomes is so low (0.065) that the 
results seem too good to be true

Experiment Test Reported statistics
Success 
probability

1 Interaction for Raven’s matrices F(1,97) = 5.12, 
p = 0.03

0.602

2 Non-significant difference for rich and 
poor on cognitive control

F(1,35) = 1.69, 
p = 0.20

0.764

3 Interaction for cognitive control F(1,98) = 4.31, 
p = 0.04

0.532

4 Interaction for Raven’s matrices F(1,92) = 4.04, 
p = 0.04

0.505

Field 1 Pre- and post-harvest differences p < 0.001 ~1
Field 2 Pre- and post-harvest heart rate (stress) t(187) = 1.715, 

p = 0.088
0.523

PTES 0.065
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Experiment 4 was very similar to Experiment 1, but with a different order of 
some tasks. A key result is an interaction between income and condition for the 
Raven’s matrices task. Power for a replication experiment is barely above 0.5. We 
should note that the reported statistics for Experiment 4 show a p-value inconsis-
tency. A recalculation shows that F(1,92) = 4.04 corresponds to p = 0.047 rather 
than the reported p = 0.04. For the TES analysis, we assume that the reported F-
value is correct.

To explore the generality of the findings beyond the controlled settings of 
Experiments 1–4, two field studies were run to investigate cognitive performance 
for farmers in India. The first field study found strong differences in cognitive per-
formance for farmers pre-harvest (when they are relatively poor) compared to post-
harvest (when they are relatively wealthy). The original text does not report sufficient 
statistical information to compute power of a replication study, but the reported 
p-values are small, so the estimated power will be close to 1.

The second field study also found cognitive effects pre- and post-harvest, and 
this study concluded that the effect is not because of nutritional differences (food 
consumption was similar pre- and post-harvest) but seemed to be due to stress 
(farmers had a higher heart rate pre- compared to post-harvest). The authors of the 
study used a non-typical significance criterion of 0.1 rather than the usual 0.05. In 
our analysis, we suppose that a deviation from the norms of hypothesis testing was 
appropriate, and we calculated power with this atypical significance criterion. 
Regardless of these details, the probability of a replication study showing a signifi-
cant result is only a bit above 0.5.

The probability that six independent experiments like these should all be suc-
cessful (a non-significant test outcome for Experiment 2 and significant test out-
comes for the other studies) is the product of the probabilities in Table 6.2, which is 
0.065. Thus, if the effects are real and similar to what is reported, studies like these 
are unlikely to produce six successful outcomes. Given the rarity of the observed 
results, scientists should be skeptical that the reported experiments are representa-
tive of reality. The studies described in the original paper do not make a strong argu-
ment for poverty having the hypothesized impact on cognition, and it remains an 
open question whether this effect actually exists.

A reasonable interpretation of our TES analysis result is that the authors of the 
original study engaged in some kind of QRPs in order to produce their reported 
results. The TES analysis cannot differentiate between different types of QRPs, and 
it is possible that the authors themselves do not know what kinds of choices they 
made to produce success across their experiments. Regardless of the origins of the 
problems, the bottom line is that the reported results are unlikely to represent reality. 
We advise readers to ignore the reported findings and wait for (or plan) better 
experiments.
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�P-Curve Analysis

If the null hypothesis is true, then p-values across experiments are approximately 
uniformly distributed. That is, the p-value is equally likely to take any value between 
0 and 1. At first glance, this might seem like a very strange claim, but it is actually 
intuitive once you understand how p-values are related to Type I error control.

Remember that in hypothesis testing the scientist defines a significance criterion, 
α, to set the probability of picking a random sample that rejects a true null hypoth-
esis. The scientist then computes the p-value for their data and compares it to α. If 
p < α, then the null hypothesis is rejected. Importantly, this procedure works for any 
value of α. Thus, if α = 0.05 and the null hypothesis is true, there is a 0.05 probabil-
ity of picking a random data set that produces a p-value smaller than 0.05. If 
α = 0.10, then there is a 0.1 probability of picking a random data set that produces a 
p-value lower than 0.1. Just to continue the example, if α = 0.34294, then there is a 
probability of 0.34294 of picking a random data set that produces a p-value below 
0.34294. This property indicates that the probability of observing a p-value smaller 
than any value x is precisely x. This is the definition of a uniform probability 
distribution.3

Figure 6.3a shows the distribution of p-values for simulated one-sample t-tests 
when the null hypothesis is true (effect size equals zero). Here, simulated data were 
drawn from a standard normal distribution and then analyzed with a one-sample 
t-test for H0: μ = 0. This simulated experiment was repeated 10,000 times, and the 
histogram shows that the resulting p-values are approximately uniformly distributed 
across the interval 0 to 1. The gray vertical line indicates the 0.05 criterion for sta-
tistical significance. As intended for a true null hypothesis, about 5% of the p-values 
fall below this criterion. R code, pValues1.R, to reproduce the plots in Fig. 6.3a is 
available at the Open Science Framework.

The situation is quite different when the null hypothesis is false. When there 
really is an effect, the distribution of p-values is positively skewed, with more small 
p-values than large p-values. Figure 6.3b shows the distribution of p-values when 
the standardized effect size is 0.2 and the sample size is N = 50. The skew is intuitive 
if we consider the fact that increasing the effect size leads to increased power (the 
probability of picking a sample that rejects the null hypothesis). In this case, power 
is 0.284, and so 28.4% of the p-values must fall below the 0.05 criterion. As power 
increases, the distribution of p-values becomes more skewed with more very low 
p-values. Figures  6.3c and d show this property for larger effect sizes (and thus 
higher power). In fact, the shape of the p-value distribution for a given test is entirely 
determined by the power of the test. Figures 6.3e and f show p-value distributions 

3 There are some situations where p-values do not follow a uniform distribution even when the null 
hypothesis is true. For example, a test of proportions with a small sample size is constrained by 
combinatorics to produce some p-values and not others; therefore the p-values will not follow a 
uniform distribution. Likewise, a test of means may show a small preference for some p-values due 
to rounding characteristics of mean measurements. These issues aside, the distribution of p-values 
is close to uniform for many hypothesis tests when the null is true.
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Fig. 6.3  Histograms characterizing p-value distributions for tests with different power values. The 
vertical gray line indicates the significance criterion (0.05). The histogram interval width is 0.01
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for combinations of effect sizes and sample sizes that give the same power value as 
in Fig. 6.3c. The p-value distributions are essentially the same (small deviations are 
due to random sampling in the simulations).

Importantly, these properties hold even when considering only significant (e.g., 
p < 0.05) findings. Figure 6.4 plots p-value distributions for significant p-values 
(between 0 and 0.05). When the null hypothesis is true, the distribution is uniform 
(Fig. 6.4a). For non-zero (real) effects, the p-value distribution is skewed, with a 
preponderance of very small p-values (Fig. 6.4b–d). The code to reproduce these 
simulations, pValues2.R, is available at the Open Science Framework.

The p-values for each histogram in Figs. 6.3 and 6.4 were generated from experi-
ments that have the same effects and sample sizes (and thus the same power). Should 
experiments differ in sample sizes or effect sizes (and thus in power), the curves are 
different, but the general shape (e.g., positive skew) continues to hold. Thus, a set of 
experiments with some (different) real effects should produce a distribution of 

Fig. 6.4  Histograms characterizing p-value distributions between 0 and 0.05 for tests with differ-
ent power values. The properties are the same as for the histograms in Fig. 6.3. The vertical gray 
line indicates the significance criterion (0.05)
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p-values that has positive skew. Likewise, a set of experiments that entirely investi-
gates (maybe different) null effects should produce a distribution of p-values that is 
flat. A set of experiments that contains some true null effects and some real effects 
will produce a p-value distribution with positive skew.

As data detectives, we can make use of the p-value distribution. First, we note 
that its shape is essentially unaffected by publication bias (a bias to only report sig-
nificant outcomes): Even if only significant outcomes are published, the distribution 
of p-values below the significance criterion differs between null and real effects and 
true null effects will produce something close to a uniform distribution. Moreover, 
there are other problems that an analysis of the p-value distribution can efficiently 
identify. For example, left-skewed distributions are a sign of QRPs because such 
distribution shapes should be very unlikely if data collection and statistical analyses 
are done properly. The online app at http://p-curve.com automates analyses of the 
p-value distribution. Figure 6.5 plots the p-curve generated by a set of experiments 
that explored how the placement of calorie labels (before or after a menu item) 
influenced selection of foods with high calories. Across six studies (three in the 
main text and three in supplemental material), researchers consistently found sig-
nificant effects that indicated that placing the calorie labels before a menu item led 
people to order lower calorie foods. The test statistics for these studies are shown in 
the small window in Fig. 6.5 (note that the test statistic for one study was taken from 
a corrigendum provided by the authors to fix a small error in their data set). The 

Fig. 6.5  Results of the p-curve app for six studies investigating the impact of calorie information 
on menu choices. The solid blue curve reflects the frequency of reported p-values. It is left skewed, 
which is not how p-values should be distributed
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researchers argued that putting the calorie information in the leading position makes 
it more prominent in memory and therefore more influential than when it is placed 
after the menu item (importantly, placing the calorie information after the menu 
item is standard in the United States). However, the distribution of p-values for 
these six studies suggests that something is wrong with this set of results. The blue 
curve in Fig. 6.5 reflects the reported p-values, and there are none smaller than 0.04. 
Such a left-skewed distribution should be very unlikely if the studies are run cor-
rectly. The online app includes statistical tests for evaluating the distribution of 
p-values relative to a null (uniform) distribution and to what they refer to as an 
“inadequate” distribution (the p-value distribution for studies with power of 0.33), 
which is described by the green line in Fig.  6.5. The app also reports a test for 
whether the studies contributing to a p-value distribution contain “evidential value,” 
meaning that the distribution is right skewed. For these tests, the p-curve analysis 
indicates that the evidential value is inadequate (the empirical curve is flatter than a 
curve with power of 0.33) and it does not indicate evidential value (the empirical 
curve is not right skewed).

A reasonable interpretation of the p-value distribution in Fig. 6.5 is that some of 
the experimental results were generated with QRPs. It is not possible to identify 
precisely what QRPs were used, but we should not trust that the reported results or 
corresponding conclusions reflect reality. The conclusions may yet be correct, but 
the reported experiments do not provide appropriate support for those conclusions. 
Scientists who want to investigate this topic further need to start over with better 
experiments.

It is fairly easy to apply the p-curve analysis, but it is important to understand its 
requirements and interpretation. One requirement is that the p-values that contribute 
to the distribution must be independent. It is sometimes the case that a set of data is 
analyzed with multiple hypothesis tests (e.g., an ANOVA reports an interaction and 
specific contrasts with the same data set). The p-values from these tests are (typi-
cally) not independent, and so the tests to explore the distribution shape can be 
misleading. To address this concern, researchers using the p-curve analysis use just 
one p-value from each data set or experiment. Unfortunately, it is not always clear 
how to select a p-value from the set, and the choice can make a big difference. For 
example, choosing the smallest p-value from each experiment will often result in a 
distribution with right skew even when the null hypothesis is true. Likewise, choos-
ing the biggest significant p-value from each set will often produce a left skewed 
distribution, even when there is a real effect. To avoid this problem, some research-
ers apply an arbitrary rule, such as using the p-value from the first reported relevant 
test; but this does not really address the fundamental problem: the analysis should 
be based on the p-values that are relevant to the question of interest. It often requires 
subject matter expertise to identify such p-values, and sometimes there is not a 
unique p-value that relates to the question of interest.

For the p-curve graph in Fig. 6.5, the question of interest is, “does the location of 
caloric information influence menu choices?” and we picked the p-values that spe-
cifically investigated that question. The resulting left skewed p-curve distribution 
indicates that the six studies reported here were not produced by proper hypothesis 
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tests. Importantly, this conclusion does not mean that each of the six tests is flawed. 
The identified problem is with the set of hypothesis tests (their distribution of p-
values). Surely some of the individual studies are problematic as well (else the set 
could not be), but it is possible that some studies are flawed and some studies 
are fine.

This aspect of interpretation can matter quite a bit for other types of questions of 
interest. For example, suppose you applied a p-curve analysis to a specific researcher 
because you wonder if he engages in QRPs. You select one p-value from each of 
seven articles published by this researcher. Figure 6.6 shows the (entirely made up) 
p-curve for the selected p-values. It is right skewed, so the p-curve analysis suggests 
that there is “evidential value” in this set of p-values. Unfortunately, this conclusion 
does not really answer the question of whether the researcher engages in question-
able research practices. It could be that the researcher does not engage in QRPs, but 
it could also be the case that for some investigations the researcher does use QRPS 
and for some investigations he does not. Publishing some studies with evidential 
value means that a combination of studies with evidential value and studies without 
evidential value (e.g., a flat distribution) might produce a right skewed distribution 
of p-values. The point is that a property of the set does not necessarily apply to each 

Fig. 6.6  Results of the p-curve app for seven (hypothetical) studies investigating a researcher who 
investigates two different topics. Although the distribution is right-skewed, thereby indicating 
some “evidential value,” this finding is difficult to interpret
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member of the set. A right skewed p-curve does not mean that every study a 
researcher reports is fine, and a left skewed p-curve does not mean that every study 
a researcher reports is problematic. For this reason, it usually does not make sense 
to apply p-curve analyses to an author, a specific scientific journal, or a field of 
study. Instead, p-curve analyses should be used to evaluate specific claims or con-
clusions, when those claims or conclusions are based on a reported set of p-values. 
For the studies producing the p-values in Fig. 6.6, it might make sense to look into 
the set of studies related to specific conclusions made by the researcher, and use the 
p-curve analysis to evaluate the evidential value of the studies relative to those claims.

�Conclusions

Questionable Research Practices (QRPs) often leave a trail of evidence that indi-
cates they were involved in producing the reported outcomes. Proper experiments 
(without QRPs) have fundamental properties that can be identified across experi-
ments. One such property is how success should relate to experimental power. 
Excess success for a set of experiments indicates that the results were generated in 
a way that violates good data collection, analysis, or reporting. This discrepancy can 
be identified with the Test for Excess Success. A second such property is the distri-
bution of p-values, which should be right-skewed for proper experiments that inves-
tigate a real effect. The distribution of p-values should almost never be left-skewed 
for experiments that were generated without QRPs. A left-skewed distribution indi-
cates that the results were generated in a way that violates good data collection, 
analysis, or reporting. These problems can be identified by the p-curve analysis.

Within a single experiment, it is often useful to look for various discrepancies 
between reported statistics. Such discrepancies do not necessarily indicate the 
involvement of QRPs, but they do suggest that something has gone wrong in the 
reporting of the experiment. Thus, readers should be somewhat skeptical about the 
validity of the reported results and the associated conclusions.

As is the case for many types of detective work, a data detective may be able to 
conclude that there is something “odd” about reported results but not pinpoint 
exactly what has gone wrong. Inconsistencies between statistics might arise from 
fraud or they might be the result of simple typos. In a similar way, neither the Test 
for Excess Success nor the p-curve analysis can identify precisely how researchers 
produced results that are too-good-to-be-true or that generate a left-skewed distribu-
tion of p-values. Still, the burden of proof is on the scientists; they should always 
provide evidence to support their claims. If the reported results seem unbelievable, 
other scientists should dismiss the claims until sufficient evidence is produced.

While some scientists may deliberately set out to deceive others, we suspect that 
most scientists introduce QRPs without realizing it. Indeed, one very beneficial use 
of the various methods for detecting the impact of QRPs is for scientists to apply 
them to their own work before publishing. Hopefully, this could motivate scientists 
to examine their research methods in detail and root out QRPs. Such applications 
will greatly improve scientific work.
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Chapter 7
Controversies Regarding Null Hypothesis 
Significance Testing

Brian P. O’Connor and Nataasha Khattar

Abstract  This chapter provides an overview of null hypothesis significance testing 
(NHST) and of the problems involved with NHST.  This is followed by a non-
technical description of perhaps the most useful NHST alternative, Bayesian meth-
ods. We then provide illustrations of an unnecessary, tragic consequence of using 
NHST in a series of individual studies: The inability to incorporate previous find-
ings when analyzing a new dataset. This is accompanied by illustrations, using both 
generated data and real data from meta-analyses in clinical psychology, of the more 
coherent findings that occur when NHST is ignored and when previous findings are 
taken into account when assessing a phenomenon across a series of studies.

Keywords  Significance testing · Null hypothesis testing · Bayesian statistics · 
Meta-analysis

Null hypothesis significance testing (NHST) continues to be the primary data analy-
sis method in the vast majority of research reports in psychology (data on this fact 
for clinical psychology will be provided below). NHST usage persists despite the 
fact that most researchers have surely at least some awareness of the controversies 
and of the serious drawbacks with NHST that have been described in numerous 
books and journal articles (e.g., Bakan, 1966; Carver, 1978; Cohen, 1994; Harlow 
et al., 1997; Hunter, 1997; Kline, 2013; Nickerson, 2000; Oakes, 1986; Schmidt, 
1996; Ziliak & McCloskey, 2008). The calls for change have apparently had mini-
mal impact on research practices and on student education. Although effect sizes 
and confidence intervals are more likely to appear in research reports than they were 
in the past, the p values from NHST are still the primary focus of most investiga-
tions (Cumming & Calin-Jageman, 2017; Kline, 2013; Sharpe, 2013).

This chapter provides an overview of NHST and of the problems involved with 
NHST. This is followed by a non-technical description of perhaps the most useful 
NHST alternative, Bayesian methods. We then provide illustrations of an unneces-
sary, tragic consequence of using NHST in a series of individual studies: The inabil-
ity to incorporate previous findings when analyzing a new dataset. This is 
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accompanied by illustrations, using both generated data and real data from meta-
analyses in clinical psychology, of the more coherent findings that occur when 
NHST is ignored and when previous findings are taken into account when assessing 
a phenomenon across a series of studies.

�What Is NHST?

The now-entrenched version of NHST involves declaring what constitutes a null 
hypothesis (e.g., a zero difference between two means) and conducting a test of 
statistical significance. The test is used to make a binary decision about whether or 
not an effect exists in a population. This version of NHST is a blend of approaches 
developed by Fisher and by Neyman and Pearson, who had bitter quarrels over what 
they considered best practices (see Gigerenzer et al., 2004; Kline, 2013; Morrison 
& Henkel, 1970; and Salsburg, 2001 for historical descriptions and references). The 
conventional practice of NHST is well-captured in the following statements:

Conventionally, researchers make such decisions by assuming the null hypothesis to be true 
and, given this assumption, attempting to make inferences based on the probability of 
obtaining the actual pattern of results observed. Specifically, a statistical test yields the 
probability of a given results (or one more extreme) being produced by chance if the null 
hypothesis is true. … If this (probability) is less than a threshold probability or alpha level 
(typically 0.05), then chance is concluded to be a sufficiently unlikely explanation of the 
outcome, and the existence of an effect is held to be supported by the data (Pollard & 
Richardson, 1987, p. 159).

p actually stands for the conditional probability … which represents the likelihood of a 
result or outcomes even more extreme assuming (1) the null hypothesis is exactly true; (2) 
the sampling method is random sampling; (3) all distributional requirements, such as nor-
mality and homoscedasticity, are met; (4) the scores are independent; (5) the scores are also 
perfectly reliable; and (6) there is no source of error besides sampling or measurement 
error. In addition to the specific observed result, p values reflect outcomes never observed 
and require many assumptions about those unobserved data. If any of these assumptions are 
untenable, p values may be inaccurate (Kline, 2013, p. 74).

Statistical significance is determined by reference to the distribution of test statistic 
values that occur when the null hypothesis is true. The distribution is imaginary and 
has nothing to do with any given real dataset. To illustrate this fact, consider a study 
in which scores for two groups, for example, N = 30 for each, are randomly drawn 
from the same very large population. There is no treatment or intervention, and a t 
test value is computed for the two groups of scores. Repeat this random sampling of 
data for two N = 30 groups and the t test computation millions of times. The distri-
bution of t values from these studies would be the sampling distribution of t values 
that occur when N = 30 per group and when the null hypothesis is true. The null 
hypothesis is true because the two samples are always drawn from the same popula-
tion and there is no intervention for either of the groups, that is, there is no reason 
why they should be different. The p values from the back of statistics textbooks, or 
from software packages, are produced by mathematical formulas that mimic the 
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results from a long series of identical hypothetical studies in which the null hypoth-
esis is true. Real data (e.g., data from your study) are never involved in the produc-
tion of the sampling distribution of test statistic values that are used in NHST.

�Problems with NHST

Many of the problems with NHST stem from misinterpretations of the minimally 
satisfying information that is provided by statistical significance testing. When we 
obtain a test statistic value for which p < 0.05, all we can say is that “when the null 
hypothesis is true, a test statistic value of this magnitude is unlikely on the basis of 
sampling variability alone” (O’Connor, 2017). The p value that is produced by sta-
tistical software does not “know” anything about our data. It does not know if our 
samples were drawn from the same population or if the null hypothesis is true for 
our dataset. We are nevertheless prone to thinking that it does have such knowledge. 
One source of this mistaken belief may be that while an obtained t test value or 
regression coefficient really are values for our particular real dataset, the corre-
sponding p value is not. Yet the statistics appear side by side in the software output. 
The misinterpretations then begin (Spence & Stanley, 2018).

A p value is not the probability of committing a Type I error in any given study. 
The statistical software does not know if the null hypothesis is true for our particular 
dataset. The researcher does not know if Ho is true either, which is why the study is 
being conducted. If the null hypothesis is false, then the probability of a Type I error 
is zero and not the p value.

The common use of p < 0.05 for statistical significance does not mean that 5% of 
all published findings are Type I errors. This could only be true if researchers were 
always testing true null hypotheses, which is certainly not the case (Pollard & 
Richardson, 1987). Surely some treatments designed by psychologists really do 
work. It is not reasonable to believe that researchers only ever test population asso-
ciations that are truly zero.

The p value tells us nothing about the reliability of our findings, as in whether 
they will replicate. The p value is not an effect size. The p value is not the probabil-
ity that our particular results are due to chance because the statistical software does 
not know if the null hypothesis is true for our data.

The p value is not a probability statement about the truthfulness of the null 
hypothesis (e.g., there is only a 5% chance that the null hypothesis is true). A p 
value is based on the assumption that the null hypothesis is true. It cannot be con-
verted into a probability statement about the null hypothesis, although researchers 
and readers are prone to making such conversions (Cohen, 1994; Maxwell & 
Delaney, 2004, p. 48). For example, the probability that a population of persons 
with schizophrenia will generate a person who is on medication (high) is not the 
same as the probability that someone who is on medication was generated by a 
population of persons with schizophrenia (low). Similarly, the probability of obtain-
ing a particular test statistic value given the null hypothesis (which is what p values 
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do tell us) is not the same as the probability of the null hypothesis, given that a 
particular test statistic value was obtained (O’Connor, 2017). The p value is not a 
probability for the null hypothesis, which is often our intuitively preferred but incor-
rect belief (Cohen, 1994).

We tend to believe that p values are highly accurate, but they are accurate only in 
specific circumstances that never occur in real data. We never randomly sample 
from the populations of interest. The assumptions of statistical procedures are typi-
cally violated, at least to some degree. Scores are never perfectly reliable. Hair-
splitting decisions over p < 0.05 vs. p < 0.06 are meaningless in this context, yet 
they determine the kinds of conclusions that are made in discussion sections and 
they are often the basis of getting published or not.

In NHST, all that can be concluded when a test statistic is not significant is that 
the null hypothesis cannot be rejected. Although a failure to reach statistical signifi-
cance does not mean that the null hypothesis is true, non-significant effects are 
commonly and mistakenly considered to be evidence for the null hypothesis (Falk 
& Greenbaum, 1995; Oakes, 1986). Discussion sections commonly involve specu-
lations about why there was “no effect” for a predicted association. Searches for 
moderator variables may be recommended. Failures to replicate and growing piles 
of apparently conflicting findings may be caused solely by natural sampling vari-
ability and by the use of NHST to evaluate raw data (O’Connor, 2017; Schmidt, 1996).

Many, if not most, studies in psychology have relatively small samples and mod-
est statistical power (Button et al., 2013; Maxwell, 2004). Studies that happen to 
overestimate a true population effect size on the basis of sampling variability alone 
are more likely to find that p < 0.05 and therefore get published. Identical studies 
that obtain lower but accurate effect sizes are less likely to get published because 
they are less likely to find that p < 0.05. There are frustrating failures to replicate and 
a lack of cumulative progress. After years of research on a hypothesis, a meta-
analysis (where the focus is on effect sizes and not NHST) may be conducted that 
finally resolves the apparently conflicting conclusions that were generated by the 
use of NHST in the individual studies. The inability to take previous findings into 
account when analyzing new datasets is a serious shortcoming with NHST that is 
illustrated in detail below.

After decades of preoccupation with NHST, the American Statistical Association 
(ASA) recently published the following declarations on statistical significance test-
ing and p values:

While the p value can be a useful statistical measure, it is commonly misused and 
misinterpreted.

P values do not measure the probability that the studied hypothesis is true, or the probability 
that the data were produced by random chance alone.

Scientific conclusions and business or policy decisions should not be based only on whether 
a p value passes a specific threshold.
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A p value, or statistical significance, does not measure the size of an effect or the impor-
tance of a result.

By itself, a p value does not provide a good measure of evidence regarding a model or 
hypothesis (Wasserstein & Lazar, 2016, pp. 131–132).

�Evidence for the Ongoing Use of NHST

All articles in the 2019 and 2020 volumes of the Journal of Consulting and Clinical 
Psychology were coded for the kinds of statistical methods that were used for the 
data analyses. The results are provided in Table 7.1. NHST was used in the vast 
majority (91.4%) of the research reports. Confidence intervals were reported in 
82.8% of the articles. Bootstrapping and related methods (Good, 2010) were used 
in 15.6% of articles, and robust methods of computing statistical significance or 
standard errors (Field & Wilcox, 2017) were used in 9.7% of articles. Bayesian 
methods (excluding the reporting of BIC model fit coefficients) were used 7% of the 
time, and clinical significance statistics (Lambert & Bailey, 2012) were reported in 
14.5% of the articles. NHST clearly remains the dominant statistical analysis 
method in the two most recent volumes of the leading journal in clinical psychol-
ogy. Bootstrapping and robust methods can both be used to provide more accurate 
estimates of statistical significance than parametric methods while remaining within 
the NHST framework. But these more precise methods were not used as often as 
they could be. The use of non-NHST methods was related to the software that was 
used by the authors. The use of non-NHST methods was typically accompanied by 
references to software (e.g., MPlus) that has options for alternative analytic meth-
ods. Build it and they will use it.

Table 7.1  Statistical methods used in all articles in the 2019 and 2020 volumes of the Journal of 
Consulting and Clinical Psychology

2019
N = 97

2020
N = 89

Total
N = 186

Significance testing 87 (89.7%) 83 (93.3%) 170 (91.4%)
Confidence intervals 89 (91.8%) 65 (73.0%) 154 (82.8%)
Bootstrapping or related methods 14 (14.4%) 15 (16.9%)   29 (15.6%)
Robust methods   8 (8.3%) 10 (11.2%)   18 (9.7%)
Bayesian methods   8 (8.3%)   5 (5.6%)   13 (7.0%)
Clinical significance 15 (15.5%) 12 (13.5%)   27 (14.5%)
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�Alternatives to NHST

�“The New Statistics”

The many problems with NHST led the American Psychological Association to 
strongly recommend the reporting of effect sizes and confidence intervals as the 
primary output from statistical analyses, rather than p values (Wilkinson & the Task 
Force on Statistical Inference, 1999). In 2014, the journal Psychological Science 
began recommending, for authors, the use of “the new statistics” because “the prob-
lems that pervade NHST are avoided by the new statistics—effect sizes, confidence 
intervals, and meta-analysis” (Eich, 2014, p. 5). The emphasis on “the new statis-
tics” in recent introductory statistics textbooks (e.g., Cumming & Calin-Jageman, 
2017) is a welcome change.

Unfortunately, the revolution has been occurring in slow motion. Progress some-
times seems barely discernible. The preoccupation with p < 0.05 persists. An effect 
is considered statistically significant when a 95% confidence interval does not 
include a zero-effect size. The NHST binary decision about whether there is an 
effect or not thus lives on in the new statistics via confidence intervals. It remains 
the basis for conclusions in discussion sections and in publication decisions. An 
effect size is often merely a supplementary finding that is considered most credible 
if its confidence interval does not include a zero value. Effect sizes are commonly 
reported only if p < 0.05.

Worse, confidence intervals are prone to misinterpretation. A 95% confidence 
interval indicates that if the study were conducted many times, 95% of the confi-
dence intervals would contain the true population effect size (Cumming & Calin-
Jageman, 2017, p. 101). This accurate, precise statement is nevertheless perplexing 
and unsatisfying to our brains. We are instead prone to believing that a 95% confi-
dence interval means that there is a 95% chance that the true population effect size 
falls within the confidence interval. This interpretation is incorrect and unwarranted 
when the analyses are based on NHST (Kruschke, 2015). Fortunately, the interpre-
tation is correct when the confidence intervals are provided by Bayesian analyses. 
Our intuitive, preferred statistical reasoning about confidence intervals is Bayesian 
and is not permitted by NHST.

�Bayesian Statistics

Reverend Thomas Bayes developed his statistical methods around the year 1740. 
Although he published theological works, he kept his statistical side-interests to 
himself and did not publish his methods during his lifetime (Bellhouse, 2004). They 
remained largely neglected until about 40 years ago, when computational hardware 
and software advances made Bayesian analyses possible for all sorts of datasets, not 
just small ones. Introductions and tutorials have been provided by Kruschke (2015), 
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Kruschke et  al. (2012), Kruschke and Liddell (2018), O’Connor (2017), Pruzek 
(2016), Quintana et  al. (2017), Wagenmakers, Morey, and Lee (2016a), 
Wagenmakers, Verhagen, and Ly (2016b), and Zyphur and Oswald (2015). The 
present discussion will begin with a description of the output from Bayesian raw 
data analyses.

In Bayesian analyses, there are no comparisons of a statistical coefficient for the 
real data with any imaginary, theoretical distribution of values for a hypothesis that 
is not of direct interest (Ho) and whose values were not derived from the current 
data (O’Connor, 2017). What researchers typically most want to know is, “what is 
the most likely value for an effect size, and what are the other reasonable possibili-
ties for the effect size in case the most likely value happens to not be perfectly 
accurate?” Bayesian raw data analyses give us the answers. For each parameter of 
interest (e.g., an effect size), a distribution of the most likely values is produced. It 
is called a “posterior distribution” because it is the distribution of the most likely 
parameter values after the analyses have been conducted. It represents possible 
beliefs about a parameter. The mean, median, or mode of the posterior distribution 
may be chosen as the best estimate of a parameter.

The continuous posterior distribution is a probability density function and there 
is usually much focus on the “highest density interval” (HDI) within this function/
distribution.

Points inside an HDI have higher probability density (credibility) than points outside the 
HDI, and the points inside the 95% HDI include 95% of the distribution. Thus, the 95% 
HDI includes the most credible values of the parameter. The 95% HDI is useful both as a 
summary of the distribution and as a decision tool. Specifically, the 95% HDI can be used 
to help decide which parameter values should be deemed not credible, that is, rejected. … 
One simple decision rule is that any value outside the 95% HDI is rejected. In particular, if 
we want to decide whether the regression coefficients are nonzero, we consider whether 
zero is included in the 95% HDI (Kruschke et al., 2012, p. 730).

In other words, a 95% HDI (a credibility interval) is the range of parameter esti-
mates that captures 95% of the posterior probability distribution. Statements such as 
“There is a 95% chance that the parameter value falls between ___ and ___” are 
possible, that is, are legitimate. In contrast, NHST provides no information about 
the probability of a parameter. A kind of NHST conclusion can nevertheless be 
derived for anyone who is concerned about veering too far away from p > 0.05 in a 
research report. Ho can be rejected as improbable if the 95% HDI for a parameter 
does not contain a zero value.

The MCMC  The Markov Chain Monte Carlo (MCMC) is the computational 
breakthrough that makes Bayesian raw data analyses possible for most researchers 
(Gill, 2015; Kruschke, 2015). This advanced, complex method will here be described 
using simple analogies. One analogy is that MCMC methods are like trying to pro-
duce a heat map of a previously unexplored mountain range while being both blind 
and drunk. A map emerges after very much stumbling around and feeling one’s way.

To discover the likely parameter values for a quantitative dataset, imagine that 
the computer (the MCMC algorithm) is first told that the range of possible, true 
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population values for a correlation coefficient is −1 to 1. The actual, unknown popu-
lation value exists somewhere in this range, but it is not known where. On the first 
step, the procedure randomly selects a possible value from the range (which is the 
drunken stumbling part), and then randomly selects another possible value. It then 
determines which value is most consistent with the real raw data and the prior 
beliefs (described below) provided by the researcher. The winning value gets a tally. 
Then the procedure randomly selects another possible value and determines whether 
or not the new value is more consistent with the data and prior beliefs than the value 
from the previous step. This goes on many thousands or hundreds of thousands of 
times, with the winning values always being tallied along the way. The resulting 
frequency distribution of the winning tallies gives us the most likely values for the 
parameter, along with other reasonable but less likely possible values. These analo-
gies are over-simplifications, but they help capture the essence of what is involved 
in building a posterior distribution via MCMC methods.

To provide an example of a posterior distribution, of an HDI, and of MCMC 
stumbling around steps, a 10,000-case computer-generated dataset was created for 
two variables in which the correlation was set at 0.22. Bayesian analyses were con-
ducted on the raw data for the two variables. A trace plot of the MCMC correlation 
coefficient values for steps 1000 to 3000 is provided in the top portion of Fig. 7.1. 
Most of the values (in the black smudge) are close to the true population correlation 
value of 0.22, although more deviant values do sometimes occur. The posterior dis-
tribution from the MCMC steps, along with the 95% HDI, appears in the lower 
portion of Fig. 7.1. The peak of the distribution is right around 0.22. It can be con-
cluded from the 95% HDI that, based on the MCMC analyses, there is a 95% prob-
ability that the true population correlation coefficient value is somewhere between 
0.16 and 0.28, with 0.22 being the most likely value.

The Prior Distribution  Perhaps the most distinctive and useful feature of Bayesian 
methods is that it is possible to take previous findings into account when conducting 
the analyses for a new dataset. Imagine that someone has already begun exploring 
the new mountain range and has produced a crude, initial map. In this case, the 
explorer (the researcher) is only partially blind. Providing the procedure with previ-
ous knowledge is called “specifying the priors” or “specifying the prior distribu-
tion.” An overly simple example would be the equivalent of saying that, “based on 
previous findings, the correlation is likely somewhere between −0.5 and 0.5.” This 
will cause the procedure to stumble around the more narrow region and pay less 
attention to other possible values. More accurately though, a range is not provided. 
Instead, the priors are usually the best estimate for a parameter based on previous 
research along with a degree of certainty estimate for this parameter, which is typi-
cally its standard error (or variance). The MCMC algorithm randomly selects values 
from this distribution rather than from a specified range.

Bayesian analyses require that priors be specified, but the priors can be com-
pletely uninformative. This would be equivalent to saying, “The best guess for the 
correlation coefficient is zero, and I am as uncertain as can be about this guess. I 
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Fig. 7.1  MCMC trace plot and Bayesian posterior distribution
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have no clue.” In this case, the diffuse, noncommittal, non-informative priors will 
essentially have no influence on the analyses (uninformative priors were used for 
the above data analyses that are depicted in Fig. 7.1). In this case, the findings from 
the Bayesian analyses (e.g., the 95% HDI) will be very similar to the findings from 
traditional data analyses when the statistical assumptions of the conventional proce-
dures are met. The use of uninformative priors is a way of conducting Bayesian data 
analyses that might be more comfortable to researchers who are concerned about 
previous findings influencing their results.

But it hardly makes sense to completely ignore what has already been found. 
Should we really try mapping the mountain range without using the existing, per-
haps crude map that was provided by previous explorers? The inaccuracies can be 
worked out. Informative priors for raw data analyses can be obtained from a meta-
analysis of the studies that have been conducted to date. The estimated meta-analysis 
effect size based on previous studies would be the center of the prior distribution, 
and the corresponding prior degree of certainty value would be its standard error. 
Not using available information would be analogous to police detectives refusing to 
jointly consider all of the available clues when evaluating any single piece of infor-
mation about a crime (O’Connor, 2017, p.  169). Informed, empirical priors are 
especially helpful in making firmer inferences possible, and in avoiding Type II 
errors, in small sample research. Many additional benefits of Bayesian data analyses 
were described in the sources that were cited above.

Bayesian data analyses result in changes in beliefs about an effect from before to 
after the data collection and analyses. If an uninformative prior was used, the change 
in beliefs could be: “Before analyzing the data I had no idea what values the param-
eter might take. I conservatively assumed that the value was zero. Now that I have 
run the analyses on my data, I believe that the likely value for the parameter is 
between ___ and ___, and the most likely value is ___.” Beliefs shift in the direction 
of the evidence (O’Connor, 2017, p. 169).

The “Bayes Factor”  A version of Bayesian statistics can be used to make state-
ments about the likelihood of the null hypothesis without using the intensive MCMC 
computations. The strengths of the evidence for the null and alternative hypotheses 
can be quantified and compared via the “Bayes factor,” which is the probability of 
the researcher’s data under one hypothesis compared to the probability of the data 
under the other hypothesis (Wetzels et al., 2011). The Bayes factor is an odds ratio. 
A Bayes factor of 2.5 for the alternative hypothesis indicates that the data are 
2.5  times more likely to have occurred under the alternative than under the null 
hypothesis. Jeffreys (1961) provided conventions for comparing Bayes factor val-
ues to the conventional NHST interpretations of p values. Bayes factors above 3 or 
below 0.33 are considered “substantial” (Jeffreys, 1961; Wetzels et al., 2011).

Getting Going with Bayesian Analyses  A user-friendly, free Bayesian program 
with a GUI is JASP, available from https://jasp-stats.org.SPSS 28 now provides an 
option for Bayesian analyses. There are MPlus, Matlab, and some SAS routines, 
and an online calculator that provides Bayes factors for entered data (e.g., http://pcl.
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missouri.edu/bayesfactor). Software availability is no longer an obstacle. There are 
also numerous free R packages for conducting Bayesian analyses and a growing 
number of tutorials in books, articles, and online (Kruschke, 2015; Lee & 
Wagenmakers, 2013; O’Connor, 2017). NHST was developed in the pre-computer 
era and it served a purpose at that time. But there is no scientific justification for the 
ongoing use of a relatively crude and uninformative method that is so restricting and 
prone to misinterpretations, especially now that we have easy access to the hard-
ware and software for better methods.

An easy way to begin would be to first run one’s analyses using familiar, non-
Bayesian software in order to identify patterns in the data and to generate parameter 
estimates. Then switch to Bayesian software and output for more informative and 
definitive findings. Examples of how to describe Bayesian analyses in the Methods 
and Results sections of journal articles have been provided by Kruschke (2015) and 
O’Connor (2017). If the results from the Bayesian and from the traditional (“fre-
quentist”) NHST analyses are equivalent, if the Bayesian HDI credibility intervals 
are essentially the same as the NHST confidence intervals, then it will be possible 
to state that the data were analyzed both ways and the findings were the same. 
Bayesian statements about the credibility of the coefficients would be permitted, 
while the kinds of problematic NHST misinterpretations described at the outset of 
this chapter could be avoided.

�Illustrations of Why Not Taking Previous Findings into 
Account When Evaluating New Datasets Is a Questionable 
Research Practice

Evidence from previous studies is not, and cannot be, incorporated into the NHST 
analyses for a new dataset. Each dataset is its own separate, isolated voice. Fisher, 
Neyman, Pearson, and other influential figures in NHST history were vociferously 
opposed to letting previous findings influence one’s analyses (Lehmann, 1993; 
Salsburg, 2001, p. 133). The consequences have been tragic for all disciplines that 
got hooked by NHST.

Most studies have modest sample sizes (Button et al., 2013; Maxwell, 2004). We 
also typically seek to find evidence for phenomena with that have low-to-moderate 
effect sizes (psychological phenomena are complex and have multiple predictors). 
This can easily result in roughly as many p < 0.05 findings in favor of a hypothesis 
as there are p > 0.05 findings, solely on the basis of sampling variability. Apparently 
conflicting findings at the individual study level are common. Followers of a 
sequence of studies observe a back-and-forth ping-pong of conclusions about 
whether there is an effect or not, and sometimes also about the direction of the effect 
(Meehl, 1978; O’Connor & Ermacora, 2021). The conflicting conclusions that are 
reached in the individual studies, based on NHST, leave observers of the literature 
baffled. There is not much order in the research universe on the topic. The 
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phenomenon seems very complex. Social science research is apparently not answer-
ing important questions after all. Reviews of these issues were provided by Bakan 
(1966), Carver (1978), Harlow et  al., 1997, Hunter (1997), Kline (2013), Oakes 
(1986), and Schmidt (1996).

In this section, we illustrate how incorporating previous findings when evaluat-
ing a new dataset can reduce the ping-pong-like confusion and increase the rates of 
correct conclusions in individual studies regarding whether or not an effect exists. 
Two methods of incorporating previous findings will be used: Updating a meta-
analysis to include the new data, and Bayesian data analysis.

A new meta-analysis (MA) can be conducted every time data from an additional 
study become available. As a pool of effect sizes grows, the studies can be sorted 
into a sequence based on, for example, year of publication. A table or plot of the MA 
results that emerge as each study is added to the updating MA can reveal how the 
effect size estimate and its precision change over time (Borenstein et al., 2009). Our 
focus in this chapter will be on how updating an MA can be used to reach more 
consistent and accurate conclusions when evaluating each new, individual dataset as 
it becomes available. The effect size and confidence interval (or standard error) 
from the updated MA may often provide more solid grounds for conclusions about 
the existence and size of an effect in discussion sections (Tryon, 2016). The process 
is naturally Bayesian. The results from updating MAs and from Bayesian analyses 
are highly similar. Both computer-generated data and real data from the literature 
are used below to illustrate these points.

�Datasets

Effect sizes from four previously published meta-analyses, on a diversity of topics 
in clinical psychology, were selected and re-analyzed for illustrative purposes. The 
datasets are described below. The patterns of results across multiple studies are 
heavily determined by the effect size for a phenomenon and by the study sample 
sizes. The varying effect sizes across the four selected, previously published meta-
analyses help illustrate the different kinds of end results that can emerge when evi-
dence from previous studies is taken into account when evaluating new study data.

Additional, parallel data analyses were conducted on computer-generated datas-
ets in which the population effect sizes were set to be identical to those from the 
four real data meta-analyses from the literature. In each case, data for two variables 
with a specified correlation from a real data meta-analysis were generated for a 
population of 100,000 cases. The median sample size from each real data meta-
analysis was identified. The data analyses were then conducted on 50 random sam-
ples, each of the median sample size, that were drawn from the same population. 
Each sample thus represented a possible “study” of the variables. The results from 
these analyses of samples that were all drawn from the same computer-generated 
populations serve as useful comparison points for the findings that emerged when 
the analyses were conducted on real, previously published meta-analysis data (in 
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which case it can never be certain if the samples are from the same population 
or not).

�Analytic Methods

The meta for package in R (Viechtbauer, 2010) was used to conduct the random-
effects cumulative meta-analyses. The random-effects model assumes that there is 
possibly a variety, or mixture, of true effect sizes.

The Bayesian analyses were conducted using three different methods. First, 
when the raw data points from individual studies were available, the Bayesian anal-
yses were conducted using the MCMCglmm package in R (Hadfield, 2010). Broad, 
noninformative priors were used for the first study in each sequence. The priors for 
each subsequent analysis were the effect size estimate from a random effects MA of 
the previous effect sizes, along with the sampling error of this effect size. The sam-
pling error values thus served as credibility (or degree of confidence) weights. This 
was a conservative decision, as the error variance from a random effects MA allows 
for variation in true effects. Second, when only the effect sizes and sample sizes 
were available (as was the case for the previously published meta-analysis data), the 
just-described Bayesian analyses were conducted on generated data that had the 
exact same effect size and sample size as the real data. Third, the Bayesian analyses 
were also conducted using the computational methods described by Schmidt and 
Raju (2007). These three Bayesian methods produce essentially identical results 
(O’Connor & Ermacora, 2021). The method used for the Bayesian analyses does 
not matter, except perhaps in unusual circumstances that are not relevant to the pres-
ent concerns.

Consistency and agreement rates were computed for the NHST analyses, for the 
updating MAs, and for the Bayesian analyses. The consistency rate was the propor-
tion of times that the most common conclusion was reached for a pool of effect 
sizes. Three conclusions are possible for each effect size: a positive effect, a nega-
tive effect, and no effect. The signs of the effect sizes and the possible inclusion of 
a zero value in a confidence interval were used to make these categorizations (e.g., 
a “negative effect” conclusion was when a negative effect size had a confidence 
interval that did not include zero). The number of times each of the three possible 
conclusions occurred for a pool of effect sizes was counted, and the consistency rate 
was based on the most common conclusion. The agreement rate for a pool of effect 
sizes was the proportion of times that the conclusions for individual studies were 
identical to the conclusion (re: the same three categories) of the final, all-studies-
combined MA. More detailed descriptions of the analytic methods were provided 
by O’Connor and Ermacora (2021). All of the analyses can be conducted using the 
NO.PING.PONG package in R (O’Connor, 2021), which also contains all of the 
datasets described above.
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�Low Self-Esteem Predicting Depression: R = 0.57

Sowislo and Orth (2013, Table 7.2) reported findings from a meta-analysis of 77 
longitudinal studies that provided effect sizes for self-esteem predicting future 
depressive symptoms (median N = 224). The final effect size, in correlation coeffi-
cient metric, was 0.57, which is a large effect size. Not surprisingly, the consistency 
and agreement rates for NHST, cumulative MA, and Bayesian methods were all 
0.99 (see Table 7.2). With regard to yes-or-no decisions about an association, NHST 
works well when the effect size and sample sizes are large. The confidence intervals 
for cumulative MA, and Bayesian methods became increasingly narrow as the study 
sequence progressed, while those for NHST varied due to the sample sizes of the 
individual studies (Fig.  7.2). Very similar findings emerged for the computer-
generated data in which the population effect size was also 0.57 (Table  7.2 and 
Fig. 7.3).

Fig. 7.2  Effect sizes and confidence intervals for low self-esteem predicting depression: r = 0.57
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Fig. 7.3  Effect sizes and confidence intervals for generated data: Population r = 0.57

�Internet-Delivered CBT for Social Anxiety Disorder: R = 0.32

Kampmann, Emmelkamp, and Morina (2016, Fig.  7.4) reported findings from a 
meta-analysis of 24 studies on Internet-delivered cognitive behavior therapy (vs. 
control conditions) for social anxiety disorder (median N = 65). The final effect size, 
in correlation coefficient metric, was 0.32. The consistency and agreement levels for 
NHST (both 0.71) were lower than those for cumulative MA and for Bayesian anal-
yses (for which all of the rates were 1, or 100%; see Table 7.2). The confidence 
intervals for the NHST analyses across the sequence of studies were relatively large 
and variable. In contrast, the confidence intervals for the updating meta-analyses 
and for the Bayesian analyses were consistent, increasingly narrow, and they did not 
include a zero-effect size, even early on in the study sequence (see Fig. 7.4). Similar 
findings emerged when the analyses were conducted on computer-generated data in 
which the population effect size was 0.32 (Table 7.2 and Fig. 7.5). Conclusion error 
rates for NHST thus begin to increase when effect sizes and sample sizes are no 
longer large. In contrast, the cumulative MA and Bayesian results remained stable 
and accurate.
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Fig. 7.4  Effect sizes and confidence intervals for Internet-delivered CBT for social anxiety disor-
der: r = 0.32

�Hypomanic Personality and BIS Sensitivity: R = −0.04

Katz, Naftalovich, Matanky, and Yovel (2021) reported findings from a meta-
analysis of 19 studies on hypomanic personality tendencies and behavioral inhibi-
tion system sensitivity (median N  =  230). The final effect size, in correlation 
coefficient metric, was −0.04. The authors also reported a meta-analysis effect size 
of r = 0.34 for hypomanic personality tendencies and behavioral activation system 
sensitivity, but our focus will be on the near-zero effect size for BIS sensitivity.

For NHST, the consistency and agreement rates were low (both 0.37), whereas 
the corresponding rates for cumulative MA and Bayesian analyses were all 0.89 or 
higher. Viewers of this literature who see only the NHST findings (the left-most plot 
in Fig. 7.6) are likely to be misled and perplexed. Most studies (63%) reported a 
statistically significant effect, but the effect sizes bounced around considerably. A 
distinctly different pattern was evident when the findings from previous studies 
were incorporated in the analyses for each new study. The cumulative MA and 
Bayesian analyses indicated, early on in the study sequences and with narrow con-
fidence intervals, that the effect size is very near zero. The study conclusions did not 
bounce back and forth.
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Fig. 7.5  Effect sizes and confidence intervals for generated data: Population r = 0.32

The findings for the computer-generated data in which the population effect size 
was −0.04 were somewhat different but also informative (see Table 7.2 and Fig. 7.7). 
There was reduced bouncing around in the NHST study conclusions, as p > 0.05 
occurred 88% of the time for NHST. Conclusions about an effect were nevertheless 
thus not permitted. The null hypothesis cannot be rejected or accepted when 
p > 0.05. In contrast, the cumulative MA and Bayesian analyses revealed, correctly, 
that there was a very small but nonzero effect (the consistency and agreement rates 
were all 92%). This emerged early on in the study sequence. Viewers of this litera-
ture who see the cumulative MA and Bayesian findings would be able to reach a 
correct conclusion about a tiny effect size. They may well consider r = −0.04 to be 
a meaningless and practically negligible effect size, and they can be confident about 
the near-zero effect size that they are dismissing.

�CBT for Affective Symptoms in Autism: R = 0.11

Weston, Hodgekins, and Langdon (2016) reported findings from a meta-analysis of 
17 studies on the effectiveness of CBT on affective symptoms for people with autis-
tic spectrum disorders (median N  =  36). The final effect size, in correlation 
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Fig. 7.6  Effect sizes and confidence intervals for hypomanic personality and BIS sensitivity: 
r = −0.04

coefficient metric, was 0.11. The effect size was thus small and the sample sizes 
were modest. The NHST, cumulative MA, and Bayesian analyses all generally indi-
cated “no effect” (see Table 7.2 and Fig. 7.8). The confidence intervals nevertheless 
became increasingly narrow and close to excluding zero by the 17th study for the 
cumulative MA and Bayesian analyses. More studies were clearly needed for these 
procedures to identify the 0.11 effect size with greater confidence.

The findings for the computer-generated data, in which the population effect size 
was 0.11 and the median sample size was 36, provide context for the real-data find-
ings (see Table 7.2 and Fig. 7.9). These findings cannot be expected to parallel those 
for the real autism data wherein the sample sizes were not identical for each study 
in the sequence (the median N was used in every case for the computer-generated 
data). The findings merely indicate what would happen if the true population effect 
size was r = 0.11 and the sample size for every study was 36, and if there were data 
from 50 studies instead of just 17 studies. For NHST, there would be very high 
consistency (90%) in the study findings, but quite low agreement with the true effect 
size (10%). In contrast, the consistency and agreement rates were all 0.94 for the 
cumulative MA and Bayesian analyses. In these cases, correct conclusions were 
reached most of the time when both the effect size and sample sizes were rela-
tively modest.
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Fig. 7.7  Effect sizes and confidence intervals for generated data: Population r = −0.04

�Generated Data: R = 0.077

Cumulative MA and Bayesian analyses do not always result in high rates of consis-
tency and agreement across studies. A computer-generated population wherein 
r = 0.077 was created to further illustrate this point. The sample sizes were set to 
N = 50 for every “study.” The results are provided in Table 7.2 and Fig. 7.10. The 
consistency rates were 56% for cumulative MA and 54% for Bayesian analyses, and 
the corresponding agreement rates were 56% and 54%. The population effect size 
and the sample sizes were small. Early on in the study sequence, the confidence 
intervals for the cumulative MA and Bayesian analyses included zero, indicating 
“no effect” in NHST terminology. But about half way through the study sequences, 
the cumulative MA and Bayesian confidence intervals no longer included zero. 
Both methods began correctly detecting the small, nonzero population effect size 
and permitted correct conclusions. The low overall consistency and agreement rates 
were due to the small effect and sample sizes, in which case it took a few studies for 
the procedures to zoom in on the real effect. In contrast, for NHST, the findings 
were quite consistent (78%) and wrong (the agreement rate with the true effect was 
only 18%).
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Fig. 7.8  Effect sizes and confidence intervals for CBT for affective symptoms in autism: r = 0.11

�Heterogeneity Among Studies

The meta-analysis heterogeneity statistics are provided in Table 7.2. The heteroge-
neity levels (Q statistics) for the real data were significant whereas the Q values for 
the generated data were mostly not significant. This indicates that the variability in 
the pools of effect sizes for the real datasets was greater than what would be expected 
on the basis of sampling variability alone. The estimated standard deviations of the 
distributions of the true effect sizes (the tau values) were generally small, ranging 
from zero to 0.24, but not always negligible for the real data. The Q statistics and tau 
values together indicate that there is variation in the effect sizes for the real data that 
deserves research attention. A larger pool of studies might help reduce the apparent 
variability in the effect sizes, especially given the sometimes modest numbers of 
studies. The variability in effect sizes could also be explained by moderator vari-
ables (e.g., gender, ethnicity). Effect size variability is to be expected and is com-
mon in meta-analyses. The use of the random effects meta-analysis model, which 
assumes such variability, nevertheless produced confidence intervals for the esti-
mated effect sizes that were relatively narrow. The Q statistic can thus generate 
alarms when there is in fact little doubt about an effect.
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Fig. 7.9  Effect sizes and confidence intervals for generated data: Population r = 0.11

�Discussion

It is clearly negligent to not incorporate previous findings when attempting to reach 
a conclusion about an effect based on a new dataset (see also Quintana et al. (2017); 
Wagenmakers et al., 2016a). When previous findings are incorporated, the confi-
dence intervals around an effect size become narrow and relatively consistent as the 
pool of studies grows. This phenomenon occurred quite early in the study sequences 
(see the above Figures; and O’Connor & Ermacora, 2021). The conclusions for the 
updating MA and Bayesian analyses were usually in agreement with the final, all-
studies-combined conclusions very early on and did not change as additional stud-
ies were added to the pools of effect sizes. The NHST confidence intervals remained 
wide and variable across the study sequences. They were bounced back and forth by 
sampling variability and by the statistical power (the Ns) of the individual studies.

NHST results in consistent, accurate “Is there an effect or not?”, conclusions in 
two scenarios: When a population effect size is large, and when a population effect 
size is very close to zero. However, large population effect sizes are rare in psycho-
logical research. When a population effect size is close to zero, high power levels 
are required to reach statistical significance. Most low and moderate powered stud-
ies will produce a “no effect” conclusion. A serious shortcoming with NHST in this 
case is that the failure to reach statistical significance does not permit one to 
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Fig. 7.10  Effect sizes and confidence intervals for generated data: Population r = 0.077

conclude that the null hypothesis is true. One cannot conclude that “there is no rela-
tionship,” despite the fact that such statements are often made in discussion sections 
(Cohen, 1990, 1994; Falk & Greenbaum, 1995; Gallistel, 2009; Gigerenzer et al., 
2004; Oakes, 1986). When p > 0.05, one can only conclude that the null hypothesis 
could not be rejected, which seems like an unsatisfying, uninformative conclusion 
after going through all of the efforts to conduct a study. A further serious problem 
with NHST, both when an effect is large and when an effect is near zero, is that the 
confidence intervals remain wide and variable across the study sequences. Firm 
conclusions about the magnitude of an effect size can rarely be reached when previ-
ous findings are not incorporated into the data analyses. This is in sharp contrast 
with the narrow confidence intervals that emerged from the updating MA and 
Bayesian analyses.

The benefits of incorporating previous findings are particularly evident when an 
all-studies-combined effect size is nonzero, but small (O’Connor & Ermacora, 
2021; Rindskopf, 2016). Researchers can potentially reach accurate conclusions 
about small effect sizes relatively early on in a study sequence. Incorporating previ-
ous findings increases the likelihood reaching confident conclusions about weak 
effect sizes without having to wade through many apparently conflicting or non-
significant effects.
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Confusion about an effect is greatest when the most consistent finding in a litera-
ture occurs 50% of the time. Even worse than maximum confusion is reaching an 
incorrect conclusion more than 50% of the time. This occurred when the final effect 
sizes were weak, but not zero. The NHST conclusion error rates were 67% for the 
hypomanic personality tendencies and BIS dataset, and 82% for the r  =  0.077 
computer-generated dataset. NHST study conclusion consistency can occur simul-
taneously with a final conclusion agreement rate that is well below 50%. The agree-
ment/accuracy rates for the analyses that incorporated previous findings were 
higher. Conflicts with the final, all-studies-combined conclusion rarely occurred 
when an individual dataset was evaluated while taking previous findings into 
account. There was essentially no back and forth ping-pong of conclusions in these 
cases. There was more order in the research universe and fewer conflicting findings.

Caveats and Practical Challenges  The central findings reported in this manu-
script were not meaningfully affected by publication bias. The findings from ana-
lytic methods that incorporate previous data should nevertheless always be 
considered alongside the evidence from corresponding tests for publication bias for 
the datasets.

The consistency and agreement (accuracy/error) rates for NHST and for the 
other methods will be affected by the study sample sizes and by the population 
effect sizes. As described above, larger study sample sizes will result in lower con-
clusion error rates for NHST when the population effect sizes are non-negligible. 
Larger study sample sizes will result in higher conclusion error rates for NHST 
when the population effect sizes are negligible because trivial effect sizes may be 
statistically significant in these cases. In contrast, larger study sample sizes will 
always result in more accurate conclusions for the updating MA and Bayesian 
analyses.

Effect size heterogeneity within datasets nevertheless always deserves consider-
ation when deciding on the existence, magnitude, and the degree of certainty of an 
effect. Research should be conducted on the reasons for the heterogeneity when it 
does occur. For example, the effect sizes may well vary depending on gender or 
other demographic variables.

The heterogeneity statistic values must also be considered alongside the confi-
dence intervals from the updating MA and Bayesian analyses. The confidence inter-
vals for the updating MA and Bayesian analyses were based on the random-effects 
model which assumes that there is variation in the true effect sizes. This causes the 
confidence intervals to be wider under random effects models than under other 
models, such as the fixed effects model. The overall effect size, across possible 
moderator variables, falls within the confidence interval. Although heterogeneity 
statistics may indicate that moderator variables may still be found, an overall effect 
size is not in doubt when the confidence interval for it is narrow. More generally, use 
of the error variance from a random effects MA of previous effect sizes assists 
researchers in dealing with the fact that studies of the same research questions are 
rarely completely identical to one another (O’Connor & Ermacora, 2021).
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The practical challenge, of course, is having the effect sizes from the previous 
studies. This nontrivial challenge should nevertheless be placed in context. Previous 
findings must always be reviewed when planning a new study. Why not make the 
review quantitative and precise? One might well discover that an additional study is 
not necessary. One can use either the raw data or the effect sizes from previous stud-
ies. Lip service attention to previous findings is asking for trouble. The process 
would be greatly facilitated if public repositories were maintained of all of the stud-
ies and/or datasets for a research question. Such repositories would also make it 
easier for reviewers to determine whether relevant studies were for some reason 
excluded by authors who are otherwise attempting to incorporate previous findings 
into their data analyses. Subjectivity (bias) in the selection of previous studies for 
setting the priors in Bayesian analyses was a major reason for Fisher’s resistance to 
Bayesian methods (Lehmann, 1993; Salsburg, 2001). Comprehensive, public, 
online repositories for research programs would help circumvent concerns about 
possibly biased selections of previous studies.

�Conclusions

Lack of awareness of alternative methods of data analysis and the fear of not getting 
published are perhaps the biggest reasons for the ongoing use of NHST. Software 
availability is no longer an obstacle. Substantive arguments in favor of NHST are 
difficult to imagine, especially now that better methods are available. Change would 
be greatly facilitated by explicit encouragement for non-NHST methods in journal 
editorial policies. Researchers will remain reluctant to learn and use alternative 
methods as long as they believe that it is not necessary to do so, and as long as they 
believe that their chances of getting published may be reduced if they do not use 
NHST (O’Connor, 2017). Simple statements in journal editorial policies that 
encourage alternative methods could be very influential.

The incorporation of previous findings when analyzing new data would clearly 
lead to less chaos and more coherence in studies that are conducted on the same 
phenomena. Having to endure years of apparently conflicting NHST findings while 
waiting for an eventual meta-analysis on an accumulation of studies seems like 
extended, pointless chaos. The ping-pong game goes on too long. The conclusions 
that are reached in the discussion sections of many research reports would be more 
accurate if previous findings were incorporated into the data analyses (O’Connor & 
Ermacora, 2021). The typical smaller-scale study, such as a student thesis project, is 
underpowered, which reduces the accuracy of NHST-based conclusions. The 
p < 0.05 level is often not obtained. Wishing to be cautious scientists, authors then 
feel obligated to give serious consideration to the null hypothesis or to speculate 
about the conditions or samples (moderator variables) for which there may be sig-
nificant effects. On the other hand, if findings from previous studies had been incor-
porated into the data analyses, then authors would be more likely to reach correct 
conclusions about the existence of an effect in their discussion sections. They could 
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focus on the width of the confidence intervals based on all available data, and on 
how the findings from their own individual studies affect these confidence intervals. 
Discussion sections would become more interesting to write and read, and more 
accurate. A low-risk, comfortable way forward may be to run the analyses both 
with, and without, the incorporation of previous findings and to give readers both 
sides of the picture.
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Chapter 8
Hypothesizing After Results Are Known: 
HARKing

Ana J. Bridges

Abstract  The scientific process rests on a set of core values, including objectivity, 
honesty, openness, accountability, fairness, and stewardship. Hypothesizing After 
Results Are Known (HARKing) threatens all of these values, and therefore is a 
threat to science itself. A commitment to reducing the prevalence of HARKing does 
not mean a stifling of exploration or creativity; indeed, these are at the core of dis-
covery. Instead, that commitment is about presenting discovery and exploration 
honestly and not disguising it as confirmation. A final note on this topic is that 
unpredicted findings can be powerful scientific narratives that really engage audi-
ences. Rather than seeing post-hoc findings as a pox on the study or investigator, as 
scholars and humans we should embrace the twists and turns our scholarship takes 
us, realizing that doing so is both more honest and more interesting.

Keywords  HARKing · Questionable research practices · Clinical science · 
Psychological science

�Introduction

The field of psychological science has found itself in the midst of a troubling situa-
tion known as a replication crisis (Pashler & Wagenmakers, 2012). In brief, efforts 
to replicate previously established psychological findings, such as currency primes 
make us more selfish (i.e., that being reminded of money, such as through subtle 
background images of $100 bills, makes people more likely to say they prefer soli-
tary activities and to endorse a greater sense of self-sufficiency; Caruso et al., 2017), 
have more often failed than held up (Klein et al., 2014). Many explanations exist for 
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this replication crisis—some researchers have focused on the changing nature of 
psychological phenomena (e.g., views of the American flag changing over time; 
Ferguson et al., 2014), some note the complex nature of what psychologists study 
that would lead to an expectation of failure to replicate across specific subsamples 
(Schimmack, 2020), and some note replications themselves are just as prone to 
inaccuracies as the original studies they are attempting to reproduce (Bryan et al., 
2019). However, the replication crisis is largely understood through the lens of 
questionable research practices (John et al., 2012) that call into question the accu-
racy of the original results due to problematic practices in designing and conducting 
the original research. Among these questionable practices is hypothesizing after 
results are known, or HARKing (Kerr, 1998). In this chapter, I take a deeper look 
into HARKing—situating it within research design, describing why it is problem-
atic, and suggesting solutions.

�Confirmatory Versus Exploratory Research

Research can largely be categorized as falling under two domains: exploratory tech-
niques and confirmatory techniques (de Groot, 2014). Exploratory research does not 
make a priori assumptions about findings; instead, as the name implies, it is con-
cerned with describing a phenomenon or generating hypotheses about the relations 
among constructs that can later be tested in a more rigorous manner. Statistics can 
be used to describe findings in exploratory studies, but they cannot be used as evi-
dence to adjudicate a particular hypothesis since no a priori hypotheses were offered. 
Good examples of exploratory research questions include how do homeless youth 
make meaning of their experiences (Toolis & Hammack, 2015) and what aspects of 
female governors’ communication styles were associated with fewer deaths in their 
state residents during the COVID-19 pandemic (Sergent & Stajkovic, 2020).

Confirmatory research, in contrast, is concerned with evaluating the accuracy of 
a hypothesis. This kind of research does involve making an educated prediction 
regarding the relations among constructs that can be examined in a testable hypoth-
esis. Most often, these hypotheses are subject to tests that allow researchers to dis-
confirm the claim, using rules of scientific logic well-articulated by Popper (1959). 
[In brief, Popper argues that in principle it would take an infinite number of observa-
tions to confirm a hypothesis but only one exception to disconfirm a hypothesis, and 
therefore scientific studies should be set up in such a manner that a researcher can 
eliminate one potential explanation for the observed effect or associations among 
constructs in favor of an alternative explanation.] Confirmatory techniques, there-
fore, are more powerful scientific tools because they permit, at least in the theory, 
the elimination of some explanations. Therefore, researchers can hone in on more 
likely explanations and discard those that are not useful or supported by evidence.

Because science requires confirmatory techniques to advance our understanding 
of a phenomenon, good research design emphasizes approaches that can lead to 
discarding certain theories or explanations. If scholars do not conduct a rigorous test 
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of an empirically or theoretically informed a priori hypothesis about a phenomenon, 
then all they can say is that “this is surprising,” or “this was unexpected,” but they 
cannot advance the metaphoric scientific ball down the field. The ability to falsify a 
hypothesis is a basic motivation of scientific research; without falsifiable research 
claims, a theory is nothing more than faith. This sets up a powerful motivating con-
text for scholars whose careers and livelihoods, reputations, and prestige depend on 
their ability to articulate, investigate, and falsify scientific claims (Kiai, 2019).

�Defining HARKing

HARKing, hypothesizing after results are known, is the presentation of a posteriori 
hypothesis as an a priori hypothesis (Kerr, 1998). An a priori hypothesis is a hunch 
or prediction, based on scientific theory, about the outcome of an experiment or 
study that has not yet been conducted. It is considered the “cornerstone of the scien-
tific method” (Erren, 2007). Training in psychological science is grounded in a pri-
ori hypotheses—we consider these so central to the proper conduction of scientific 
investigation that our institutions require students conducting research (e.g., honor’s 
theses, master’s theses, doctoral dissertations, and so forth) to formally propose 
their studies to a committee of scientists in advance of collecting (or analyzing, for 
already collected) data. In these proposals, young scholars are being asked to puzzle 
through theories and prior literature in order to formulate educated guesses about 
the outcomes of a particular study, and to explain their logic (the deductive reason-
ing they used) in order to arrive at these hypotheses.1 A committee is there to ensure 
that the deductive logic used by the emerging scholar is sound; that the coverage of 
the background literature and content domain is sufficient; and that the methods 
proposed to evaluate or test the a priori hypothesis are adequate (e.g., measures are 
reliable and valid indicators of the constructs; analytic tests correspond with the 
research question; participants are sufficient in number and likely to yield variable 
responses on study measures).

The improper framing of exploratory research findings as confirmatory is equiv-
alent to claiming “I knew it all along.” It is a revision of history. Kerr (1998) explains 
that HARKing is not about including unexpected findings or results of post hoc 
analyses in a scientific paper. Indeed, it is wise for scholars to explore their data and 
describe to others what associations emerged. However, in hypothetico-deductive 
research, such findings must be clearly noted as having been exploratory or post 
hoc, rather than falsely being presented as a priori. Similarly, inductive reasoning in 
response to exploratory findings is appropriate—new insights about psychological 
phenomena can be gained from such exploratory endeavors. Here again, the 
primary concern is about improperly claiming to have foreseen the outcome when 

1 Of course, there are other approaches to science, including inductive approaches that use empiri-
cal data to develop or arrive at theories; however, HARKing as a questionable research practice 
occurs in the context of hypothetico-deductive approaches to science.
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it was, in fact, not foreseen. Scientific papers that include exploratory findings post 
hoc and puzzle in the Discussion section about what these findings might mean can 
readily spur new, possibly fruitful lines of research (Erren, 2007). This clear genera-
tion of a hypothesis in the post hoc phase of study design is also called THARKing 
(transparent hypothesizing after results are known) and is not a questionable 
research practice (Vancouver, 2018)—it is the proper way for possible scientific 
discoveries to be acknowledged and tested in future confirmatory studies.

Within the realm of questionable research practices, some consider HARKing to 
be a rather minor offense (John et al., 2012). And in comparison to outright fabrica-
tion of data, of course, it probably is. However, HARKing is rather insidious in its 
harm because, even for well-intentioned researchers, it can misrepresent the proba-
bilistic association between a theory and a predicted outcome (Kerr, 1998). The 
probability of an observation given a theory are not the same as the probability of a 
theory given an observation (this is also known as the fallacy of the transposed con-
ditional or affirming the consequent; Evett, 1995). To illustrate, a scientist uses 
Theory A to derive a set of predictions. Based on that theory (and the body of 
empirical work done before this scientist’s study), some outcomes are judged to be 
more probable or likely than other outcomes. The scientist makes a prediction that 
is most likely to occur, given the theory (theory ➔ prediction). However, when 
working backward (outcome ➔ theory), the probabilities are different. Confirmatory 
research asks “Given theory A, what is the most likely outcome?” while exploratory 
research asks “What is the most likely theory, given an outcome?” These condi-
tional probabilities are typically not equivalent, but HARKing equates the two sets 
of probabilities. Perhaps a clear example of this fallacy is one familiar to most of us: 
using the Internet to search for the meaning of medical symptoms. The theory ➔ 
prediction might be that nearly everyone who has bacterial meningitis experiences 
headaches (the probability of having a headache given meningitis is approximately 
90%; van de Beek et al., 2004). However, if someone has a headache, the likelihood 
that this headache is an indication of meningitis is nowhere close to 100%; instead, 
it is much closer to 0% (CDC, 2019).

There are numerous methods used to HARK.  In its most prototypical form, 
researchers construct a hypothesis that fits the results after they have conducted 
analyses. However, HARKing can also include suppressing actual a priori hypoth-
eses (“I never believed that to be the case,” Kerr, 1998; Rubin, 2017), revising the 
introduction or background literature to a study in order to make a post-hoc hypoth-
esis appear to have been well-reasoned and suspected (Rubin, 2017), presenting a 
not-previously considered theoretical model to justify a revised hypothesis 
(Vancouver, 2018), and even revising a manuscript to change commitments to 
hypotheses but only after reviewer or editor feedback (called passive HARKing; 
Rubin, 2017).

It is rather daunting to imagine how one might go about detecting HARKing 
after the fact. If authors are prone to do it, perhaps even unconsciously (e.g., failing 
to accurately recall what were a priori hypotheses and which ones were concocted 
post hoc—part of recall bias), then even asking people to reflect on their thoughts at 
the time they were designing a study will yield unreliable and unsatisfactory 
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evidence. One way to detect this is to examine dissertation or thesis proposals and 
compare them to published papers resulting from these studies. Discrepancies 
between these two can yield strong evidence of HARKing (e.g., O’Donohue et al., 
2016). Nevertheless, approximately 25–35% of research psychologists do in fact 
openly admit to HARKing and, based on these self-reported admission rates, authors 
estimate between 54 and 90% have engaged in this practice; John et al., 2012. Some 
potential indicators of HARKing are: weak prior evidence in support of specific 
parameters in a model (e.g., weak theoretical or prior empirical evidence to suggest 
an effect may only be observed in a specific subgroup of participants or in a specific 
context, given most psychological theories are vague; Eronen & Bringmann, 2021; 
Lishner, 2021), no prior studies with similar variables showing the association, a 
selective literature review that fails to consider what the “bulk” of the evidence is 
and instead appears to cherry-pick studies that support a particular directional 
hypothesis, exclusion of participants without clear and theoretically derived justifi-
cation, measuring many variables and only reporting those that support the hypoth-
eses (suppressing variables that failed to support the hypothesis), and p-values that 
are just under conventional significance. For instance, Masicampo and Lalande 
(2012) demonstrated that published work contains a rather unusually large number 
of p-values that fall just under the 0.05 threshold compared to what might be 
expected by chance alone.

I would argue that while it may be easiest to think of HARKing as a change in 
the presentation of a predictor (X) and a criterion (Y) relation (or, said differently, 
to think of HARKing as involving a study’s main effect of X on Y), my personal 
experience in reading scholarly articles is that it tends to crop up more for mediators 
and moderators of the X ➔ Y relationship. For instance, a study may examine 
whether a pornography prime leads to sexually aggressive behavior in a laboratory 
interaction. The researchers may a priori hypothesize that a pornography prime (X) 
will result in sexually aggressive behavior (Y). However, after collecting data, the 
researchers may find that the X ➔ Y relationship is only observed for a subgroup of 
their sample (for instance, only in male participants). In this case, it may be tempt-
ing for researchers to think, “Of course- this makes perfect sense!” and then write 
up the study as though a primary study aim was to examine the moderating effect of 
gender on the X ➔ Y relationship. Certainly there is plenty of research available 
that would support such an a priori hypothesis. However, the researchers may not 
have considered this moderator ahead of time—either they failed to do due dili-
gence when reviewing prior research or they considered the prior research not to be 
sufficiently compelling so as to hypothesize a moderating effect ahead of time. The 
researchers therefore likely did not power their study for testing moderation, did not 
intentionally recruit people who varied on the moderator, and did not intend to ana-
lyze their data with interaction terms. That in the end they find moderation does not 
somehow justify their design decisions (the study may still have been inappropri-
ately designed and powered for moderation), nor does it honestly represent the state 
of the science at the time the study was designed. What would have been considered 
a weak hypothesis prior to knowing the outcome of a study is seen as much more 
probable or likely when the outcome of a study is known (something called the 
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hindsight bias; Hawkins & Hastie, 1990; Slovic & Fischhoff, 1977). And because 
there may be a nearly limitless number of mediating and moderating variables that 
are covaried with X and Y, presenting any one of these as having been foreseen is 
especially problematic (Agler & De Boeck, 2017).

In summary, HARKing involves presenting known but unforeseen findings from 
a study as the raison d’etre for conducting the study—as the central parameters of 
interest that were under investigation. Consequently, the reader of a HARKed study 
assumes that all study design and analytic decisions were guided by this central 
question or hypothesis. It is one of a long set of decisions researchers make about 
how to conduct psychological science, all of which can influence the outcome of a 
study (Wicherts et al., 2016).

�Consequences of HARKing

Like most behavior, HARKing creates a range of consequences to the individual, 
scientific community, and society at large. Like many questionable research prac-
tices, I consider HARKing to create a social dilemma. That is: what is good for the 
individual researcher in the short term creates long-standing problems for the col-
lective (Table 8.1). Failing to acknowledge the benefits of HARKing means we will 
be ineffective at creating solutions.

HARKing occurs because it benefits the individual scientist who does this (or the 
research team—I do not mean to imply that HARKing is only occurring at the indi-
vidual level). Whether intentional or not (and much of HARKing may be uninten-
tional; Kerr, 1998), the scholars who do this benefit in the short term with clear 
tangibles: more publications, which in turn lead to higher success in their careers, 

Table 8.1  Consequences of HARKing for individuals and the collective

Individual Collective

Short-term 
consequence

Higher rate of publication
Promotion/advancement
Scientific prestige (e.g., 
higher h-index)
Media attention
Increased income

Fast proliferation of scientific papers
Difficulties keeping up with the rapid 
branching of scientific findings or facts
Overconfidence in what is “established” 
scientific fact
Demoralization for young scholars who may 
attribute their lack of significance in their 
studies a sign of personal shortcomings

Long-term 
consequence

Possibly tarnished reputation 
(if studies fail to replicate)
Modeling of poor scientific 
practices for the next 
generation of scholars
Existential crisis

Waste of limited resources (e.g., federal grant 
funding, time, talent) on potentially spurious 
findings
Population mistrust of science and scientists
Inflated effect sizes
Inaccurate “facts”- a weak and poorly 
established knowledge basis in an area
Less effective treatments delivered
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job promotions, higher visibility as a scholar (e.g., higher h-index, a metric of a 
scholar’s impact on the field), media attention for “splashy” findings, and so forth. 
Journal editors and reviewers may contribute to this inadvertently too—by pointing 
to alternative theories, suggesting alternative strategies for analyzing data, and even 
directly suggesting authors revise their introduction and hypotheses, they may be 
helping mold a paper that they anticipate will be highly cited, thereby raising the 
impact factor of that publication outlet. These are indeed powerful incentives that 
may drive scientists to HARK.

However, all other quadrants of Table 8.1 show the problems with HARKing. In 
the short term, the scientific community experiences a bit of a “mixed bag” of con-
sequences. On one hand, scientific findings are proliferating at a rapid rate (if every 
study can be HARKed so that something interesting comes of it that is considered 
“publishable,” then all studies will result in deliverables and these must be placed 
somewhere... which leads to a tangential but related problem with predatory jour-
nals whose purpose is to give outlet to oftentimes weak scientific papers. But this is 
a topic for another time.). However, the rapid proliferation of publications means it 
is difficult for someone to keep track of what all is known about a topic. And since 
HARKing has a high risk of capitalizing on spurious statistical findings (that is, 
findings that occur by chance alone and not because of some underlying, consistent, 
stable or causal link between the variables), we may be overconfident in what is 
“established” scientific fact in our field. Because journals historically have been 
reluctant to publish findings that are replications, novel discoveries quickly become 
canonized with limited opportunities for building consensus in published work. 
(Just recently, I received feedback on a manuscript I submitted. One reviewer noted 
“Although the article is well written and the literature is relevant, the study does not 
contribute anything new or unique to the literature. The authors are replicating a 
study already conducted.” The manuscript was rejected.) If someone’s experiment 
turns out opposite of an “established” (but HARKed) finding, that person may be 
reluctant to even submit the paper for publication—if my study didn’t replicate this 
well-established association between X and Y, clearly there is something wrong with 
my study. That every study is flawed in some way means scholars may first make 
attributions that their own studies were erroneous, given the prior published studies 
showing a clear link between the variables. And so again, opportunities for science 
to either build scientific consensus with multiple observations of a phenomenon or 
self-correct with contradicting observations of a phenomenon are thwarted.

An insidious consequence of HARKing that I and others involved in education 
and training have observed is that young scholars develop an unrealistic expectation 
of what it means to be a good scientist (Kerr, 1998). When their own theses and dis-
sertations (more often than not) fail to provide support for their hypotheses, they 
feel science is hard (it is!) and they aren’t good at it (they are!). Even worse—for 
those who quickly understand that HARKing can lead to publication success, being 
trained to adopt questionable research practices such as HARKing means that the 
problem is prolonged for another generation.

In the long term, the consequences of HARKing tend to look dim for both the 
individual researcher and the collective. As illustrated by a recent set of studies 
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attempting to replicate previously established psychological findings (Open Science 
Collaboration, 2015), scholars who HARK risk having their reputations tarnished.2 
Perhaps the most famous case of this is Dr. Daryl Bem, who claimed to have discov-
ered evidence for extrasensory perception or, as he called it, precognition. Across 
nine studies that seemed methodologically rigorous, Bem (2011) appeared to show 
evidence that people could intuit the future. And yet, upon closer examination, there 
were numerous ways in which the decisions Dr. Bem had made about what studies 
to continue and which ones to stop prematurely, how many possible comparison 
conditions to include (and which ones to analyze, and which ones to report) were 
post hoc despite having been presented in his seminal paper as a priori or confirma-
tory (Engber, 2017). The outlandish findings from this set of nine studies are con-
sidered to be so fundamentally outside of the rigorous and committed scholar Dr. 
Bem was known to be that some have even suggested his famous publication was an 
attempt to illustrate precisely the problems with the field that we grapple with now, 
and that are the topic of this entire book (O’Donohue et al., n.d.). That empirically 
rigorous studies could provide evidence for extrasensory perception was so outland-
ish on the face of it that it threw psychology into an existential crisis.

Less dramatically, but no less important, HARKing’s consequences include 
wasting valuable and limited resources such as federal grant dollars, time, and talent 
on the pursuit of what appear to be promising avenues of discovery but in fact may 
have been simply statistical artifacts. The resource issue is further amplified by a 
focus on innovation that is often part of grant evaluations.

A bias toward publishing significant effects (Lishner, 2021) means HARKing 
can result in an inflated estimate of effect sizes since contrary findings in the null 
direction are less likely to be disseminated. With inflated effect sizes, our confi-
dence or certainty about what is “known” in our field or well-established is skewed. 
In clinical psychology, medicine, and other health disciplines, this can be especially 
problematic if it means that the efficacy of therapies or other treatments are inac-
curately presented—perhaps a therapeutic approach with evidence largely driven by 
proponents who engage in HARKing may appear more effective and therefore 
deployed more than a therapy with less impressive effect sizes but whose effect 
sizes are honest, rather than inflated in magnitude. Well-intentioned clinicians and 
policy makers may be choosing a less effective treatment because they need to dis-
cern which treatment’s evidence is most compelling without the benefit of full, 
accurate knowledge to assess bias in research findings. Finally, and not insignifi-
cantly, HARKing and other questionable research practices foment the public’s 
mistrust of science (Kerr, 1998).

2 There can clearly be cases of excellent, confirmatory research findings failing to replicate over 
time because circumstances change—early studies of sexual assault potential, for instance, often 
asked people if they would rape someone if they could be assured they would not get caught. While 
such a question might have resulted in variable responses in the past and were useful for predicting 
future behavior, for many years now this item no longer is useful and no longer can predict future 
behavior. Greater awareness of sexual assault and changing norms about sexually imposing behav-
ior have shifted what was a real and established finding in the past.
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�Remedies

As a behaviorist, I think it is fundamental to shift the incentives for HARKing. 
While these incentives typically occur for the individual and in the short term 
(Table 8.1), they are supported by organizational and institutional practices and so 
remedies must be targeted at multiple levels. In particular, strategies can be imple-
mented in the following domains: education and training, study design and prepara-
tion, scholarly products, publication outlets and grant funding agencies, and in 
high-stakes decisions such as promotion and tenure. Each is described in turn.

In Education and Training  Although knowledge alone is insufficient to motivate 
change (Rothman, 2006), it is a critical first step in remedying questionable research 
practices like HARKing. Direct discussion of HARKing is helpful, of course, but it 
may be especially helpful in the context of our typical instruction in how to dissemi-
nate research findings, which is often when HARKing rears its head. The practice 
of good story-telling has been actively encouraged in books on academic writing 
(Olson, 2016) and many offer the advice to write articles starting with Method and 
Results so that you know your story and can clearly set the stage for the hypotheses. 
Indeed, some books suggest working backward from the results in order to deduce 
your research question and hypotheses (Bem, 2004). While this advice is well-
intentioned and can help scholars avoid lengthy discussion of tangential topics in 
their literature review, it can also appear to be an implicit endorsement of HARKing 
by the scientific community. As such, discussions of good story telling and a proper 
narrative in scholarly work must include discussions of questionable research prac-
tices, including HARKing, to draw distinctions between style and substance. 
Narrative structure is style, but pretending that you “knew it all along” is a substan-
tive matter (i.e., dishonest presentation of content matter).

Education in questionable research practices need not be the sole responsibility 
of lab principal investigators, professors, or advisors. In fact, it is possible these 
experts themselves may not be well educated on the topic (I know I was not until 
years after I became a professor). Everyone, students especially, is encouraged to 
access the numerous resources available in print, in video, and online. Self-directed 
learning has never been easier than at this point in our history. Reading books such 
as this one, conceptual and empirical articles tackling these issues, listening to pod-
casts and Ted Talks addressing questionable research practices, and attending con-
ferences such as the annual meeting of the Society for the Improvement of 
Psychological Science are all good sources of education.

In addition to educating oneself about questionable research practices, better 
education about philosophy of science, logic, and strategies for comprehensive lit-
erature reviews would be beneficial (O’Donohue, 2013; Vancouver, 2018). The 
hypothetico-deductive approach to science relies on logic: using theory and/or a 
rendering of prior empirical findings and observations in order to deduce a precise, 
falsifiable prediction about the outcome of a study. However, graduate programs in 
science may not explicitly teach rules of logic or have courses dedicated to the 
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philosophy of science. Direct instruction in scholarly tasks such as how to evaluate 
the soundness of a theory, how to render a literature in a manner that is fair rather 
than selectively citing studies in support of one’s assumptions, how to use the rules 
of logic to derive predictions, and the importance of honesty for furthering science 
can help emerging researchers to recognize the diverse forms of HARKing and 
other questionable research practices and return to the core values of science (Kerr, 
1998). (This seems particularly important if we assume that questionable practices 
are dynamic and new forms that we have not yet articulated are likely to emerge 
over time.)

In Study Design and Preparation  Almost by definition, the sine qua non of rem-
edying HARKing is pre-registration (Bergkvist, 2020; Wagenmakers et al., 2012). 
Because of issues with hindsight bias and inaccuracies in recall, the ability to recon-
struct with accuracy prior hypotheses or beliefs about one’s data should not be the 
foundation for a study. By committing ahead of time to the study purpose, hypoth-
eses, measures, methods, and analyses, there is a clear record of the investigators’ 
understanding of the theory, the hypotheses that were deemed most probable/likely 
from the theory and literature at the time the study was designed, how the variables 
were best operationalized, and how the data would best be analyzed to evaluate the 
hypotheses. There is no revision of history. Furthermore, pre-registration on web 
platforms such as Open Science Framework (https://osf.io; for a description, see 
Foster & Deardorff, 2017) allow that record to be tamper-proof and, should the 
investigators want it, available to others.

In order to combat one of the temptations of HARKing (my results were null; 
null findings have a lower chance of being published; I need to find something inter-
esting in these data and restructure my manuscript to focus on that one interesting 
finding), the Center for Open Science (https://cos.io) has worked with journals to 
publish registered reports. Registered reports are peer-reviewed manuscripts where 
the review happens in two stages. At stage one, the investigators submit to the jour-
nal their study idea, including the introduction, method, hypotheses, proposed anal-
yses, and any pilot data they have. This is functionally the equivalent of a master’s 
thesis or doctoral dissertation proposal. The editor (and reviewers, if it is not desk 
rejected) provides feedback to the investigators, including possibly suggesting revi-
sions. The process, if successful, results in an in-principle acceptance by the jour-
nal. After the investigators conduct the study, they may submit again to the journal 
for a second phase of peer review that includes the full manuscript (introduction, 
method, results, discussion). Importantly, the in-principle acceptance status of the 
manuscript means that the research will not be rejected at this second phase of 
review on the basis of the study outcomes, only on the basis of failing quality 
checks, failing to follow the original procedures, and so forth. The journal publishes 
the article with a “registered report” badge, which is designed to convey clearly to 
the reader that this study was confirmatory in nature and therefore was not HARKed. 
At the time of this chapter’s writing, over 300 journals were allowing authors to 
submit registered reports.
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Outside of pre-registration, HARKing may be combatted by having collabora-
tive research teams comprised of people with diverse (and perhaps competing or 
contrary) perspectives. These adversarial research collaborations can mitigate 
HARKing because members of the team are hypothesizing different, even opposite, 
results when designing an experiment (Cowan et al., 2020). They can help reduce 
biases in all aspects of scholarship, from the framing of the study question to issues 
of design, measurement, analysis, and dissemination.

In Scholarly Products  At times HARKing may occur because, as scholars, we are 
curious to understand and explore our data. Our motivation to do so likely increases 
in cases where the outcome of our study was not as predicted. If, in our exploratory 
journey, we find something interesting in our data that may help us make sense of 
our findings, of course we will want to share that with others.3 Unfortunately, if we 
feel constrained by our circumstances (i.e., we must present these new findings as 
having been part of the plan all along; we must preview them in our introduction), 
then we will find ourselves HARKing.

In order to decrease the temptation to HARK, it would be wonderful to normal-
ize having a subsection with the Results section of a manuscript that is labeled 
“Post-Hoc Analyses” or “Exploratory Analyses” (some have gone so far as to sug-
gest that such a section be required; Erren, 2007). The ability to describe within 
scholarly products a clear demarcation of confirmatory versus exploratory findings 
would help reduce some of the temptations to HARK and it would help disseminate 
interesting scientific findings that can be subject to new, confirmatory tests. Without 
the ability to invite and encourage the labeling of exploratory hypotheses as a pos-
teriori or post hoc, we risk a continued culture of HARKing. As Erren (2007) notes:

While I would not think that anyone will need convincing that a posteriori hypotheses exist 
and that they may be even common…an examination of the numerous abstracts available in 
MEDLINE suggests that a posteriori hypotheses either do not exist or are disguised…[They] 
have such a negative connotation that scientists do not try their luck and appropriately docu-
ment such modified thinking in a manuscript submission. Thus, there may be no a posteriori 
hypotheses published as such but I think that we must take seriously the possibility that 
there are quite a few concealed or obscured via ‘politically correct’ wording. (p. 450).

3 I was attending a training recently and the lead of the training was describing a great study they 
and their team had conducted on substance use in youth. They explained how they had analyzed 
their data and found none of their predictions had panned out. When discussing this with their lab 
mates, the lab mates asked whether youth who were incarcerated (and therefore, presumably 
would not have had access to substances during the study time frame) had been filtered out of the 
data set. When they re-ran their data excluding these youth, their predictions were supported. How 
should the team have handled this? If they reported in the manuscript that they excluded these 
youth, would they be HARKing? Should they report that they first analyzed the data with all youth, 
and only afterward did they exclude some participants? I am not certain what they did, but it is easy 
to see how one might slap one’s head, say “of course! That makes sense. I should have excluded 
them all along” and then proceed to write the paper as though one had always planned on such 
exclusions.
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If he is correct and there is some sort of stigma attached to exploratory analyses that 
motivate their being presented as confirmatory, then we can bring to bear the sci-
ence of stigma reduction to solving this problem. One of the most effective methods 
for reducing stigma is to have contact with people who do the stigmatizing thing 
and who are held in high regard or are of equal status (Corrigan & Penn, 1999). 
Therefore, having journal editors, senior authors, and thought leaders in the field 
model this behavior in their own manuscripts and research talks would go a long 
way toward creating conditions that promote greater honesty in research reporting.

Because detection of HARKing can be challenging, researchers should also con-
sider: (a) making their data available (e.g., through data repositories); (b) including 
correlation matrices in their manuscripts or in online supplemental materials; (c) 
noting how many models were run on the data before the final model(s) that were 
presented in the manuscript; and (d) conducting sensitivity analyses (or testing the 
robustness of an effect). Data repositories and correlation tables allow other 
researchers to verify the results of a study. Robustness or sensitivity analyses allow 
readers to see whether the findings the authors report hold up across various con-
straints or conditions, such as when all or only a subset of people are included in the 
analyses; with and without controlling for sociodemographic or other covariates; 
when using one versus another form of model estimation, and so forth. One can be 
more confident of an effect if it is consistently present rather than an effect that 
seems only to arise under very specific and narrow circumstances (I am not suggest-
ing this is not a “real” effect, only that it is not robust and likely would not be easy 
to confirm in future studies or to have been predicted in the current study).

On the issue of consistency, replication is also important to reduce the influence 
of HARKed findings on the body of scientific knowledge in a particular content 
domain. While individual researchers can do this within a single study (e.g., con-
ducting exploratory analyses on some of the data and confirmatory analyses on a 
hold-out sample), replication is also important to do with newly collected samples/
data and by independent research teams (Shrout & Rodgers, 2018).

In Publication Outlets and Grant Funding Agencies  Journals and grant funding 
agencies have the ability to change incentives to HARK and thereby change indi-
viduals’ behavior. Above I described the use of registered reports as a way for jour-
nals to clearly denote which published studies were fully confirmatory and underwent 
a pre-study peer review process. Other things journals can do include devoting more 
space explicitly for replication and null findings (e.g., earmarking 33% of each new 
issue to replication and null studies or including a special section in each journal for 
these kinds of studies—much like journals currently include special sections on 
book reviews, commentary, brief reports, and so forth). If scholars had more confi-
dence that the likelihood of a null finding from a study had a good chance of being 
published, the desire to HARK in order to gain a publication is lowered. Journals 
may also want to leverage machine learning capabilities, which are being used to 
develop algorithms that create “credibility scores” for scientific studies (see https://
www.darpa.mil/program/systematizing-confidence-in-open-research-and-
evidence). It is too early to determine whether these efforts will be successful, but 
the promise to use computational power to help detect HARKing is exciting.
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Grant reviews often assess the quality of an investigator when determining 
whether to award funds for a proposal. Quality metrics tend to be heavily influenced 
by rate of publication (and, of course, publication rate may be in part a function of 
how success a researcher has been at HARKing). Others have discussed the flaws 
with researcher quality metrics like the h-index and even proposed alternatives 
(Schimmack, 2020). One possibility is to divide the grant review process into two 
phases: in phase 1, the quality of the research design/proposal is assessed without 
knowledge of the investigators. If a proposal is deemed of high quality after this first 
round of review, a second round can then consider whether the investigators and the 
environment are adequate to supporting the project.4

In Promotion and Tenure  A “publish or perish” environment has certainly fueled 
the use of questionable research practices, even from very well-intentioned and 
respected scholars (Kiai, 2019). Counting scholarly products like publications is 
easy and therefore many committees making important evaluative decisions (for 
awarding admissions, scholarships, internships, jobs, promotions, and so forth) will 
use quantity metrics to assist in their determinations. Considerable efforts should be 
devoted to either replacing or supplementing such easy-to-use metrics in high-
stakes evaluative situations. Until such time, the demand for publishing felt by 
young scholars will be met with an increase in predatory journals that can provide 
an outlet for all kinds of scientific products of questionable quality. Perhaps the only 
good news about this vicious cycle is that it will likely accelerated the timeline for 
when committees and organizations decide they must consider more carefully the 
quality of research being conducted.

�Conclusion

The scientific process rests on a set of core values, including objectivity, honesty, 
openness, accountability, fairness, and stewardship (National Academies of 
Sciences, Engineering, and Medicine, 2017). HARKing threatens all of these val-
ues, and therefore is a threat to science itself. A commitment to reducing the preva-
lence of HARKing does not mean a stifling of exploration or creativity; indeed, 
these are at the core of discovery. Instead, that commitment is about presenting 
discovery and exploration honestly and not disguising it as confirmation. A final 
note on this topic: unpredicted findings can be powerful scientific narratives that 
really engage audiences (Olson, 2016). Rather than seeing post-hoc findings as a 
pox on the study or investigator, as scholars and humans we should embrace the 
twists and turns our scholarship takes us, realizing that doing so is both more honest 
and more interesting.

4 This may also have the benefit of reducing gender and racial biases in grant reviews.

8  Hypothesizing After Results Are Known: HARKing



188

References

Agler, R., & De Boeck, P. (2017). On the interpretation and use of mediation: Multiple per-
spectives on mediation analysis. Frontiers in Psychology, 8, 1984. https://doi.org/10.3389/
fpsyg.2017.01984

Bem, D.  J. (2004). Writing the empirical journal article. In J.  M. Darley, M.  P. Zanna, & 
H.  L. Roediger (Eds.), The compleat academic: A career guide (pp.  185–219). American 
Psychological Association.

Bem, D. J. (2011). Feeling the future: Experimental evidence for anomalous retroactive influences 
on cognition and affect. Journal of Personality and Social Psychology, 100, 407–425. https://
doi.org/10.1037/a0021524

Bergkvist, L. (2020). Preregistration as a way to limit questionable research practice in adver-
tising research. International Journal of Advertising, 39, 1172–1180. https://doi.org/10.108
0/02650487.2020.1753441

Bryan, C. J., Yeager, D. S., & O’Brien, J. M. (2019). Replicator degrees of freedom allow publica-
tion of misleading failures to replicate. Proceedings of the National Academy of Sciences of the 
United States of America (PNAS), 116, 25535–25545. https://doi.org/10.1073/pnas.1910951116

Caruso, E. M., Shapira, O., & Landy, J. F. (2017). Show me the money: A systematic exploration 
of manipulations, moderators, and mechanisms of priming effects. Psychological Science, 8, 
1148–1159. https://doi.org/10.1177/0956797617706161

Centers for Disease Control and Prevention [CDC]. (2019). Enhanced meningococcal disease 
surveillance report, 2019. Retrieved from https://www.cdc.gov/meningococcal/downloads/
NCIRD-EMS-Report-2019.pdf

Corrigan, P. W., & Penn, D. L. (1999). Lessons from social psychology on discreditingpsychiatric 
stigma. American Psychologist, 54(9), 765–776. https://doi.org/10.1037/0003-066X.54.9.765

Cowan, N., Belletier, C., Doherty, J.  M., Jaroslawska, A.  J., Rhodes, S., Forsberg, A., Naveh-
Benjamin, M., Barrouillet, P., Camos, V., & Logie, R.  H. (2020). How do scientific views 
change? Notes from an extended adversarial collaboration. Perspectives on Psychological 
Science, 15, 1011–1025. https://doi.org/10.1177/1745691620906415

de Groot, A.  D. (2014). The meaning of “significance” for different types of research [trans-
lated and annotated by E. Wagenmakers, D. Borsboom, J. Verhagen, R. Kievit, M. Bakker, 
A. Cramer, D. Matzke, D. Mellenbergh, & H.L.J. van der Maas]. 1969. Acta Psychologica, 
148, 188–194. https://doi.org/10.1016/j.actpsy.2014.02.001

Engber, D. (2017, June). Daryl Bem proved ESP is real: Which means science is broken. Slate. 
Retrieved from www.slate.com/health-and-science/2017/06/daryl-bem-proved-esp-is-real-
showed-science-is-broken.html

Eronen, M.  I., & Bringmann, L.  F. (2021). The theory crisis in psychology: How to 
move forward. Perspectives on Psychological Science, 16, 779–788. https://doi.
org/10.1177/1745691620970586

Erren, T.  C. (2007). The case for a posteriori hypotheses to fuel scientific progress. Medical 
Hypotheses, 69, 448–453. https://doi.org/10.1016/j.mehy.2006.12.026

Evett, I. W. (1995). Avoiding the transposed conditional. Science & Justice, 35, 127–131. https://
doi.org/10.1016/S1355-0306(95)72645-4

Ferguson, M. J., Carter, T. J., & Hassin, R. R. (2014). Commentary on the attempt to replicate the 
effect of the American flag on increased Republican attitudes. Social Psychology, 45, 299–311.

Foster, E. D., & Deardorff, A. (2017). Open Science Framework (OSF). Journal of the Medical 
Library Association, 105, 203–206. https://doi.org/10.5195/jmla.2017.88

Hawkins, S. A., & Hastie, R. (1990). Hindsight: Biased judgments of past events after the outcomes 
are known. Psychological Bulletin, 107, 311–327. https://doi.org/10.1037/0033-2909.107.3.311

John, L.  K., Loewenstein, G., & Prelec, D. (2012). Measuring the prevalence of questionable 
research practices with incentives for truth telling. Psychological Science, 23, 524–532. https://
doi.org/10.1177/0956797611430953

A. J. Bridges

https://doi.org/10.3389/fpsyg.2017.01984
https://doi.org/10.3389/fpsyg.2017.01984
https://doi.org/10.1037/a0021524
https://doi.org/10.1037/a0021524
https://doi.org/10.1080/02650487.2020.1753441
https://doi.org/10.1080/02650487.2020.1753441
https://doi.org/10.1073/pnas.1910951116
https://doi.org/10.1177/0956797617706161
https://www.cdc.gov/meningococcal/downloads/NCIRD-EMS-Report-2019.pdf
https://www.cdc.gov/meningococcal/downloads/NCIRD-EMS-Report-2019.pdf
https://doi.org/10.1037/0003-066X.54.9.765
https://doi.org/10.1177/1745691620906415
https://doi.org/10.1016/j.actpsy.2014.02.001
http://www.slate.com/health-and-science/2017/06/daryl-bem-proved-esp-is-real-showed-science-is-broken.html
http://www.slate.com/health-and-science/2017/06/daryl-bem-proved-esp-is-real-showed-science-is-broken.html
https://doi.org/10.1177/1745691620970586
https://doi.org/10.1177/1745691620970586
https://doi.org/10.1016/j.mehy.2006.12.026
https://doi.org/10.1016/S1355-0306(95)72645-4
https://doi.org/10.1016/S1355-0306(95)72645-4
https://doi.org/10.5195/jmla.2017.88
https://doi.org/10.1037/0033-2909.107.3.311
https://doi.org/10.1177/0956797611430953
https://doi.org/10.1177/0956797611430953


189

Kerr, N. L. (1998). HARKing: Hypothesizing after the results are known. Personality and Social 
Psychology Review, 2, 196–217. https://doi.org/10.1207/s15327957pspr0203_4

Kiai, A. (2019). To protect credibility in science, banish “publish or perish”. Nature Human 
Behaviour, 3, 1017–1018. https://doi.org/10.1038/s41562-019-0741-0

Klein, R. A., Ratliff, K. A., Vianello, M., Adams, R. B., Jr., Bahnik, S., Bernstein, M. J., Bocian, 
K., Brandt, M. J., Brooks, B., Brumbaugh, C. C., Cemalcilar, Z., Chandler, J., Cheong, W., 
Davis, W. E., Devos, T., Eisner, M., Frankowska, N., Furrow, D., Galliani, E. M., … Nosek, 
B. A. (2014). Investigating variation in replicability: A “many labs” replication project. Social 
Psychology, 45, 142–152. https://doi.org/10.1027/1865-9335/a000178

Lishner, D.  A. (2021). HARKing: Conceptualizations, harms, and two fundamental remedies. 
Journal of Theoretical and Philosophical Psychology. https://doi.org/10.1037/teo0000182

Masicampo, E.  J., & Lalande, D. R. (2012). A peculiar prevalence of p values just below .05. 
Quarterly Journal of Experimental Psychology, 65, 2271–2279. https://doi.org/10.108
0/17470218.2012.711335

National Academies of Sciences, Engineering, and Medicine. (2017). Fostering integrity in 
research. The National Academies Press. https://doi.org/10.17226/21896

O’Donohue, W. (2013). Clinical psychology and the philosophy of science. Springer International 
Publishing.

O’Donohue, W., Masuda, A., & Lilienfeld, S.  O. (Eds.). (n.d.). Questionable research prac-
tices: Designing, conducting, and reporting sound research in clinical psychology. Springer 
Publication.

O’Donohue, W., Snipes, C., & Soto, C. (2016). A case study of overselling psychotherapy: An 
ACT intervention for diabetes management. Journal of Contemporary Psychotherapy, 46, 
15–25. https://doi.org/10.1007/s10879-015-9308-1

Olson, R. (2016). Houston, we have a narrative. While science needs story. University of Chicago 
Press. https://doi.org/10.7208/chicago/9780226270982.001.0001

Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. 
Science, 349, aac4716. https://doi.org/10.1126/science.aaac4716

Pashler, H., & Wagenmakers, E. (2012). Editors’ introduction to the special section on replicabil-
ity in psychological science: A crisis of confidence? Perspectives on Psychological Science, 7, 
528–530. https://doi.org/10.1177/1745691612465253

Popper, K. (1959). The logic of scientific discovery. Routledge.
Rothman, A. J. (2006). Initiatives to motivate change: A review of theory and practice and their 

implications for older adults. In In the National Research Council’s When I’m 64. National 
Academies Press.

Rubin, M. (2017). When does HARKing hurt? Identifying when different types of undisclosed 
post hoc hypothesizing harm scientific progress. Review of General Psychology, 21, 308–320. 
https://doi.org/10.1037/gpr0000128

Schimmack, U. (2020). A meta-psychological perspective on the decade of replication failures 
in social psychology. Canadian Psychology, 61, 364–376. https://doi.org/10.1037/cap0000246

Sergent, K., & Stajkovic, A. D. (2020). Women’s leadership is associated with fewer deaths during 
the COVID-19 crisis: Quantitative and qualitative analyses of United States governors. Journal 
of Applied Psychology. https://doi.org/10.1037/apl0000577

Shrout, P.  E., & Rodgers, J.  L. (2018). Psychology, science, and knowledge construction: 
Broadening perspectives from the replication crisis. Annual Review of Psychology, 69, 
487–510. https://doi.org/10.1146/annurev-psych-122216-011845

Slovic, P., & Fischhoff, B. (1977). On the psychology of experimental surprises. Journal of 
Experimental Psychology, 3, 544–551. https://doi.org/10.1037/0096-1523.3.4.544

Toolis, E. E., & Hammack, P. L. (2015). The lived experience of homeless youth: A narrative 
approach. Qualitative Psychology, 2, 50–68. https://doi.org/10.1037/qup0000019

van de Beek, D., de Gans, J., Spanjaard, L., Weisfelt, M., Reitsma, J. B., & Vermeulen, M. (2004). 
Clinical features and prognostic factors in adults with bacterial meningitis. New England 
Journal of Medicine, 351, 1849–1859. https://doi.org/10.1056/NEJMoa040845

8  Hypothesizing After Results Are Known: HARKing

https://doi.org/10.1207/s15327957pspr0203_4
https://doi.org/10.1038/s41562-019-0741-0
https://doi.org/10.1027/1865-9335/a000178
https://doi.org/10.1037/teo0000182
https://doi.org/10.1080/17470218.2012.711335
https://doi.org/10.1080/17470218.2012.711335
https://doi.org/10.17226/21896
https://doi.org/10.1007/s10879-015-9308-1
https://doi.org/10.7208/chicago/9780226270982.001.0001
https://doi.org/10.1126/science.aaac4716
https://doi.org/10.1177/1745691612465253
https://doi.org/10.1037/gpr0000128
https://doi.org/10.1037/cap0000246
https://doi.org/10.1037/apl0000577
https://doi.org/10.1146/annurev-psych-122216-011845
https://doi.org/10.1037/0096-1523.3.4.544
https://doi.org/10.1037/qup0000019
https://doi.org/10.1056/NEJMoa040845


190

Vancouver, J. B. (2018). In defense of HARKing. Industrial and Organizational Psychology, 11, 
73–80. https://doi.org/10.1017/iop.2017.89

Wagenmakers, E. J., Wetzels, R., Borsboom, D., van der Maas, H. L. J., & Kievit, R. A. (2012). An 
agenda for purely confirmatory research. Perspectives on Psychological Science, 7, 632–638. 
https://doi.org/10.1177/1745691612463078

Wicherts, J. M., Veldkamp, C. L. S., Augusteijn, H. E. M., Bakker, M., van Aert, R. C. M., & van 
Assen, M. A. L. M. (2016). Degrees of freedom in planning, running, analyzing, and reporting 
psychological studies: A checklist to avoid p-hacking. Frontiers in Psychology, 7, 1832. https://
doi.org/10.3389/psyg.2016.01832

A. J. Bridges

https://doi.org/10.1017/iop.2017.89
https://doi.org/10.1177/1745691612463078
https://doi.org/10.3389/psyg.2016.01832
https://doi.org/10.3389/psyg.2016.01832


191

Chapter 9
Statistical Controversies in Psychological 
Science

Andrew H. Hales and Natasha R. Wood

Abstract  In this chapter, we provide an overview of some of the major historic and 
contemporary statistical controversies, including the use of qualitative versus quan-
titative methods, the role of description/exploration in research, and the nature of 
hypothesis testing. We also consider a number of statistical non-controversies that 
we believe are generally agreed upon, yet still worthy of consideration in the current 
overview, including the condemnation of fraud, the value of sharing data, and the 
use of broader/more diverse samples. Finally, we consider reasons why statistical 
debates can be surprisingly heated and conclude that—regardless of the reasons for 
controversy, or the tone of these debates—impressive progress has been made in the 
last decade. Given the tools that researchers now have to avoid the mistakes that led 
to the replication crisis, we expect the quality of research to improve. There will 
undoubtedly continue to be statistical controversy, but as new practices take hold, 
we may see a shift in the tone of these debates to being more civil.

Keywords  Statistics · Quantitative · Qualitative · Hypothesis testing · Bayesian 
statistics · WEIRD samples

Background

Are humans blank slates, or do we have an essential nature? If humans have a 
nature, what characterizes that nature? Are people generally good and trustworthy? 
Can they change and improve? Do feelings, choices, and behaviors originate within 
a person, or do we mechanistically respond to our environment? These questions are 
at the very heart of ideological divides—both contemporary and classic. These 
questions are also at the very heart of psychological science. With such a polarizing 
and complicated subject matter, it is not surprising that the field often encounters 
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controversies both in its approaches to questions about people and in the methods it 
uses to answer those questions. Given psychology’s strong quantitative orientation, 
these are very often statistical controversies pertaining to the ways in which conclu-
sions should be drawn from data. In recent years, the amount of attention given to 
statistical best practices has ballooned in response to the replication crisis—itself a 
massive controversy composited of many specific statistical realizations, develop-
ments, and, of course, disagreements.

In this chapter, we provide an overview of some of the major statistical contro-
versies, with an emphasis on best research practices. If controversy is defined, sim-
ply, as a matter on which people strongly disagree, then the universe of statistical 
controversies ranges from the very broad (e.g., is it possible to better understand 
human nature through quantitative analysis?) to the very narrow (e.g., which post-
hoc correction is most appropriate when group variances are unequal and sample 
sizes are balanced?). We will bounce around this broad-narrow continuum, but 
focus on the controversies that are most fundamental to the decisions that research-
ers make when planning and conducting their analyses, and the conclusions con-
sumers should draw when reading reports of others’ research.

We will also consider a number of statistical non-controversies. These are areas 
that we really do believe are uncontroversial, yet still worthy of consideration in the 
current overview—either because people may incorrectly assume there is contro-
versy where none exists or simply to celebrate that progress is being made in areas 
with surprisingly little institutional/systemic resistance.

This chapter does not directly address statistical controversies surrounding par-
ticular findings of substance. These controversies certainly abound: Does exerting 
effort on one activity deplete one’s ability to perform another (Carter et al., 2015; 
Hagger et al., 2016; Vohs et al., 2020)? Does contemplating one’s own death alter 
their worldview (Greenberg et al., 1994; Klein et al., 2019)? Does standing in an 
expansive super-heroesque pose change one’s physiology and performance (Credé 
& Phillips, 2017; Cuddy et al., 2018; Simmons & Simonsohn, 2017; Ranehill et al., 
2015)? These questions—and others—have stirred up their fair share of contro-
versy. It appears that in many cases these sorts of questions generated controversy 
not because of the actual empirical claims being promoted or rebutted (though this 
certainly happens; e.g., Bauer, 2020; AlShebli et al., 2020). Rather, these controver-
sies appeared to be expressions of deep underlying statistical disagreements. Exactly 
how strong does evidence need to be in order to endorse a research claim? Why does 
it seem that stronger evidence is required to refute an already-published research 
claim than to establish that claim (Ferguson & Heene, 2012; Gelman, 2016)? What 
should become of a research claim that was introduced in a zeitgeist of looser sta-
tistical standards than what the field currently observes? If nothing else, controver-
sies of substantive research claims remind us that there are stakes to the controversies 
of statistical practices that are the focus of this chapter, sometimes with serious 
policy implications (e.g., IJzerman et al., 2020; Van Bavel et al., 2020).
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�Controversies

�Quantitative Versus Qualitative Methods

Before considering controversies of how statistics should be applied, it is necessary 
to consider the most fundamental statistical controversy of all. Namely, whether 
statistics should be used in the first place. There has long been tension between 
quantitative research methods—those focusing on numerical summaries of observa-
tions—and qualitative research methods—those focusing on narrative and linguistic 
accounts of observations—a disagreement dubbed “the paradigm wars” 
(Gage, 1989).

Despite the sharp contrast and apparent incompatibility between qualitative and 
quantitative methods (Jackson, 2015), it is easy to see how the two approaches are 
not only compatible, but symbiotic within a program of research (Landrum & 
Garza, 2015; Willig, 2019). Quantitative methods can provide somewhat objective 
and precise answers to specific questions. But insights from quantitative research 
are only as good as the questions being asked. Qualitative methods can provide rich 
insight and thick description (Ponterotto, 2006), while deftly capitalizing on unex-
pected insights as they arise in an investigation and through interaction with partici-
pants. With this approach, the answer to a research question is not necessarily bound 
by choices in experimental design or in survey content. This makes rigorous qualita-
tive studies well-suited for the generation of meaningful hypotheses, which can 
subsequently be confirmed or refuted through rigorous quantitative studies. Such 
triangulation of methods, especially with qualitative research preceding quantitative 
research, is a powerful recipe for building strong theories (and is analogous to the 
prescription in quantitative research to “explore small, confirm big”; Sakaluk, 2016).

To illustrate, this pattern appears to have played out in the scientific investigation 
of ostracism. Early inquiries embraced qualitative approaches in seeking to under-
stand the phenomenological experience of ostracism (Williams et al., 2000; Zadro, 
2004), and valued open-ended reports of when, why, and how people use and receive 
ostracism (Sommer et al., 2001; Williams et al., 1998). These investigations helped 
shape modern ostracism theory (Williams, 2009), and also informed the develop-
ment of quantitative experiments (e.g., Goodwin et al., 2010), and eventually meta-
analysis (Hartgerink et al., 2015). An analogous trajectory characterizes the theory 
of cognitive dissonance, which began with the iconic qualitative case-study of the 
doomsday cult, the Seekers (Festinger et al., 1957; incidentally, this report was the 
first known use of the term “qualitative”; Jackson, 2015). This vivid, memorable, 
and richly described qualitative study initiated decades of quantitative experimental 
research on cognitive dissonance and related consistency theories. In short, qualita-
tive and quantitative methods can not only be compatible, but actually quite comple-
mentary, resulting ultimately in a stronger scientific understanding than either 
approach would allow on its own.
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�Descriptive Analysis Versus Hypothesis Testing

Both exploratory and confirmatory data analysis deserve our attention. Both detection and 
adjudication play crucial roles - in the progress of science as in the control of crime. To 
concentrate on confirmation, to the exclusion of exploration, is an obvious mistake. Where 
does new knowledge come from? How can an undetected criminal be put on trial? … There 
really seems to be no substitute for “looking at the data.” (Tukey, 1969, p. 83)

A commitment to quantitative methods is not necessarily a commitment to conduct-
ing hypothesis tests with p-values and the other machinery that we often automati-
cally associate with statistics. Conceptually prior to this formal testing stage is an 
entire world of description, exploration, visualization, and understanding that many 
have long plead for researchers to take more seriously (Meehl, 1978; Rozin, 2001; 
Scheel et al., 2020; Tukey, 1969, 1977).

Kerr (1998, p. 201), for example, observed how it is common for mentors to ask 
a student, what are your hypotheses?, but rare for them to ask do you have any 
hypotheses? Psychologists are deeply—and often implicitly—entrenched in the 
hypothetico-deductive tradition of first positing a hypothesis and subsequently sub-
jecting it to confirmatory test. As a result, researchers reflexively employ hypothesis 
tests (usually null hypothesis tests—discussed below), even in situations where it is 
unnecessarily, or even silly to do so. This might happen, for example, when one 
conducts a t-test to show that two groups that differ by several standard deviations 
on a manipulation check are statistically significantly different, or when two groups 
created through median-split on a continuous variable are significantly different 
(Abelson, 1995, p. 76). If inferential statistics are a tool to help advance argument 
(Abelson, 1995), then invoking them in situations when no reasonable person would 
disagree dilutes their meaning, and has the potential to create an artificial precision 
to a claim (Gigerenzer, 2018).

Descriptive statistical techniques are routinely taught in undergraduate and grad-
uate statistics courses, but very often as a steppingstone on the way to the (pre-
sumed) more relevant and useful inferential statistics employed to test hypotheses. 
Despite the ubiquity and knee-jerk use of hypothesis tests (Gigerenzer, 2004), there 
have been vocal and persuasive calls for a less rigid approach that is more explor-
atory and descriptive. For example, Rozin (2001) argued that psychology (particu-
larly social psychology) is a relatively young science, and that it is prematurely 
conducting experiments and hypothesis tests. Instead, psychology should follow the 
trajectory of other more mature sciences and first spend time fully describing phe-
nomena under investigation. Psychologists are often so interested in detecting sig-
nificant differences between groups on various dimensions, that they forget to 
identify the absolute values that typically characterize the groups being studied (i.e., 
important invariances—something hypothesis testing is not well-suited to do).

One area of psychology in particular, behavior analysis, has embraced descrip-
tive and graphical analyses and has largely eschewed hypothesis testing altogether 
(though see Fox, 2018 for a potential shift in this trend). The historical suspicion 
toward hypothesis testing dates back to B.  F. Skinner who regarded large-group 
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analysis, and statistics more generally, with some apparent strong dislike (Skinner, 
1963, pp. 507–508). Modern behavior analysts favor descriptive and graphical anal-
ysis of a few individuals—ideally replicated across organisms—and reject statisti-
cal testing (e.g., Branch, 2014; Perone, 1999). Under this approach, the idea is to 
conduct an experiment involving only 3 subjects—where the 2 and 3rd are essen-
tially replications of the single subject experimental design and observe a graph of 
the results (perhaps on an ongoing basis) and interpret it intelligently. “What is 
preferred [to numerical statistical analysis] is an experimental analysis so thorough, 
so powerful in its control over the subject matter of interested, that cause-effect rela-
tions are plain to see” (Perone, 1999, p. 114; also called the “inter-ocular traumatic 
test” because the result “hits you between the eyes”; Edwards et al., 1963).

This strategy is great when it works (i.e., when the experimental result is glar-
ing), and indeed, other areas of psychology could improve their visualization prac-
tices. Ideally this would involve greater emphasis on showing raw data points rather 
than bar graph summaries of results (e.g., McCabe et al., 2018). This would serve 
the dual benefit of (1) maintaining emphasis on the individuals rather than groups as 
the unit that psychologists typically care about (Branch, 2014), and (2) avoiding 
obscuring important trends and irregularities that may be present in the data (e.g., 
nonlinear patterns or unduly influential outliers; Anscombe, 1973). However, this 
strategy also assumes that the graphical display is honestly arranged, the subjects 
were representative of the populations, and accurately represents the magnitude of 
effects (e.g., with choices in the y-axis that neither artificially magnify trivial find-
ings, nor trivialize meaningful findings; Witt, 2019).

All of this assumes that researchers are bothering to look at any graph of their 
data before running hypothesis tests. Yanai and Lercher (2020) showed, amusingly, 
that when given a dataset and asked to answer a correlational question, several ana-
lysts advanced straight to computing a coefficient, and failed to notice that the data-
set contained an “invisible gorilla.” That is, had the researchers produced a 
scatterplot, they would have seen dots producing an image of a friendly gorilla 
waving at the researchers (in a nod to the iconic “gorilla” used to document the 
change-blindness phenomenon).

A final important message to take from the various discussions of how much 
emphasis to give to exploratory/non-hypothesis driven analysis concerns the extent 
to which group-level findings can meaningfully characterize individuals. Branch 
(2014) observed that statistical hypothesis testing is essentially actuarial. These 
analyses can reveal trends and patterns in groups, but there is no guarantee that 
those group-level differences generalize to specific individuals. Just as the “aver-
age” family has 1.93 children, yet no actual family has 1.93 children, so too do the 
mean descriptions of groups not necessarily characterize the individuals within 
those groups (Grice et al., 2020). It is entirely possible to use hypothesis tests to 
draw conclusions about groups of individuals that do not actually apply to the indi-
viduals within those groups (a phenomenon sometimes referred to as “Simpson’s 
paradox” or the “ecological fallacy”; Robinson, 1950; Simpson, 1951). In fact, early 
indications worryingly suggest this may be the case for typical psychology findings 
(Fisher et  al., 2018). This is not a trivial limitation of traditional group-level 
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hypothesis testing. In fact, comparing only groups that differ on average, while 
remaining agnostic as to processes for any given case, represents a major retreat 
from the assumed goal of psychology—to explain the behavior of an individual. It 
is worthwhile for researchers to regard hypothesis testing as one tool—of many—to 
be used when the time is right.

�Fisher Versus Neyman-Pearson

The currently ubiquitous system of testing psychological theories with p-values—
null-hypothesis statistical testing—has its historical origins in two competing sys-
tems (as discussed by Gigerenzer, 2004; Salsburg, 2002). The first, developed by 
R.A. Fisher, introduced the p-value as the probability that results as or more extreme 
than that which was observed, under the assumption that a null hypothesis is true. 
The second, developed by Jerzy Neyman and Egon Pearson, also involved testing 
the plausibility of a null hypothesis, and introduced the presence of an alternative 
hypothesis, as well as the concepts of power and alpha levels, to control long-run 
error rates (see Perezgonzalez, 2015 for a comprehensive comparison of the two 
systems). Fisher vigorously opposed the Neyman-Pearson approach leading to 
longstanding and acrimonious disagreement (Salsburg, 2002). Today’s commonly 
taught and practiced system of null hypothesis testing is a merging together of ele-
ments and interpretational practices from both systems.

While Fisher’s model and the Neyman-Pearson model are based on fundamen-
tally different assumptions about the mathematical nature of probability (Schneider, 
2015), the most important consequence for the application of their models is that 
Fisher’s system treats p-values as providing gradations of evidence against a null 
hypothesis; a p-value of 0.04 is stronger than a p-value of 0.05, but not that much 
stronger. In contrast, the Neyman-Pearson approach is concerned with controlling 
error rates in the long run. This necessitates treating a pre-determined alpha level, as 
a hard cutoff. In this model, a decision must be made, and the threshold must be 
determined a priori. Evidence either meets the standard or it doesn’t. This approach 
has the advantage of putting null hypothesis testing on more solid mathematical 
grounding, by explicitly treating probability in the frequentist sense, the long-run 
frequency of events (Salsburg, 2002). In contrast, Fisher’s system is vague in regard 
to its handling of probability, treating it more as a subjective degree of confidence 
in a hypothesis (Perezgonzalez, 2015). While the Neyman-Pearson approach 
brought mathematical coherence to hypothesis testing, it can reasonably be blamed 
for the widely-recognized practice of regarding p-values below a specific threshold 
has qualitatively more convincing than those just above that threshold, which itself 
is thought to be the very source of questionable research practices to begin with 
(Giner-Sorolla, 2012; Nosek et al., 2012). Given that null hypothesis testing emerged 
out of two contradictory frameworks, it is not surprising that it has been the target 
of fierce criticism for decades (e.g., Bakan, 1966; Cohen, 1994; Lykken, 1968; 
Nickerson, 2000).
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�Null Hypothesis Statistical Testing Versus the World

In 1997, weary of the debate on the merits of null hypothesis statistical testing, 
Robert Abelson titled his defense of the practice, “On the surprising longevity of 
flogged horses.” The controversy has not calmed since. In fact, it has been revived 
with renewed urgency as the replication crisis revealed that the abuse of null hypoth-
esis testing leads not only to theoretically-prophesied false positives (Ioannidis, 
2005; Kerr, 1998; Simmons et al., 2011), but actually flesh-and-bone verification 
that rates of replicability in psychology are disappointing at best (Open Science 
Collaboration, 2015).

So what exactly is the problem with traditional null hypothesis testing? For one 
thing, people don’t seem to understand it. This is predictable, given that the system 
itself is an amalgam of two opposing and incompatible systems (Schneider, 2015). 
Numerous commenters have catalogued the many misunderstandings that are com-
mon in the null-hypothesis testing framework (Branch, 2014; Goodman, 2008; 
Greenland et al., 2016). Chief among these is the extraordinary difficulty with con-
veying the correct meaning of a p-value (Anderson, 2020; namely, the likelihood of 
the given results, given that the null hypothesis is true). This confusion appears to 
be tracible back to the original incompatibilities between Fisher’s original concept 
of the p-value as an index of the implausibility of the null hypothesis, and Neyman-
Pearson’s competing concept of the alpha level, or long-run rate of false positives 
given properties of the test situation (their system does not accommodate p-values). 
Today researchers commonly confuse one for the other (Hubbard, 2004).

But, even when properly understood, criticisms of null hypothesis testing abound. 
For example, it’s been observed that the null hypothesis is never actually true 
(Lykken, 1968), at least not when comparing two groups in a population. If one 
were omnisciently able to know the value of every unit in a population, it’s exceed-
ingly unlikely that two groups being compared would have the exact same mean. 
So, the argument goes, it is pointless to test a null hypothesis to begin with because 
it is already known to be false. There are solutions to this criticism that involve 
recasting hypothesis tests as giving information about how confident one can be that 
they have correctly identified the direction of an effect rather than just its presence 
(Jones & Tukey, 2000). Even critics grant that null hypothesis testing can be useful 
for this purpose (e.g., Cohen, 1995). It is also worthwhile to note that there are in 
fact situations in which the null hypothesis is a tenable starting point—among them, 
the research claim that sparked the replication crisis: Bem’s (2011) claim that peo-
ple can “respond” to future events at above-chance levels.

Null hypothesis testing has also been blamed for focusing attention on statistical 
significance to the exclusion of practical significance. By anointing p-values above 
the common—yet arbitrary—threshold of 0.05 as significant, researchers often 
overlook the question of how big an effect is (Cumming, 2014a, 2014b). This is 
unfortunate not only because it incites the motivation for p-hacking, but also because 
it creates difficulty for policy makers who need to know not only whether an effect 
exists, but also whether it is large enough to justify the expense of implementation. 
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And indeed, defenders of null hypothesis testing loudly acknowledge the need to 
pair p-values with indices of effect size (e.g., Abelson, 1997; Lakens, 2020).

A final criticism of null hypothesis testing worth mentioning here is the contin-
ued misinterpretation of many researchers that a p-value greater than 0.05 repre-
sents evidence in favor of a null hypothesis (Goodman, 2008), and, more generally, 
that null hypothesis testing provides no ready way to provide evidence for a null 
hypothesis. Happily, the first issue is a matter of better statistical education (Lakens, 
2020), which is difficult but possible (e.g., Nisbett, 2015). And the second issue 
actually can be addressed within the usual null hypothesis testing framework 
(Lakens, 2017). One simply has to designate as a null hypothesis an effect size that 
would be considered unmeaningful, and show that the true effect is smaller than 
this. In essence, one can’t use p-values to show a “significant null effect,” but one 
can use p-values to show that an effect is significantly smaller than “small.”

�Bayesian Statistics Versus Null Hypothesis Testing

One of the harshest complaints about null hypothesis testing is that people mistak-
enly take p-values to represent the probability of the null hypothesis. People fail to 
appreciate that the p-value is the probability of the observed data, given that the null 
hypothesis is true. Since we don’t (and can’t) know whether the null hypothesis is 
true, this is a strange thing on which to condition our test. So, many have argued, a 
better framework would be one that conditions our test on something we do have: 
our data. The Bayesian statistical framework does just this. Rather than telling the 
analyst the probability of their results, given a hypothesis, it does the reverse, and 
indicates the probability of a hypothesis, given the results that were observed. Based 
on this apparently more logical approach, many have argued that Bayesian analyses 
should be used as a default rather than the classical null hypothesis testing approach.

The Bayesian approach treats probability not as the hypothetical long run fre-
quency of events (as in the Neyman-Pearson framework), but something more like 
a well-informed personally held subjective degree of credence given to a hypothesis 
(Edwards et al., 1963; in this sense the Bayesian view is closer to Fisher’s treatment 
of p-values than Neyman-Fisher). As Edwards and colleagues put it, “The Bayesian 
approach is a common-sense approach. It is simply a set of techniques for orderly 
expression and revision of your opinions with due regard for internal consistency 
among their various aspects and for the data” (Edwards et al., 1963, p. 195).

An appealing feature of Bayesian analysis is its emphasis on the cumulative 
updating of beliefs as more and more data become available on a given issue. 
Because this is embedded into the nature of the framework, Bayesian analysts are 
relatively free to collect data and stop when satisfied (Rouder, 2014)—a practice 
that is highly problematic in the traditional frequentist framework (Wagenmakers, 
2007). The Bayesian framework also has the advantage of allowing the researcher 
to directly assess evidence in support of the null hypothesis that there is no 
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difference or relationship (Rouder et al., 2009), and to do so without the awkward 
step of identifying the smallest effect size of interest mentioned above (Dienes, 2014).

Given these advantages, one might wonder why Bayesian analysis is not ubiqui-
tous. Aside from the usual inertial/sociological forces that make change slow, the 
Bayesian approach has a key limitation: “priors.” In Bayesian analysis, the final 
outcome of a hypothesis test is highly contingent on the presumed prior probability 
of that hypothesis (i.e., the researcher’s belief in the hypothesis prior to seeing the 
data). This itself is contingent on the researcher’s beliefs or analytic choices. Daryl 
Bem may well have assigned a modest prior probability to the existence of psi/
extrasensory perception. Other researchers would have put extremely small prior 
probability on this possibility, defensibly even zero, fating the posterior probability 
to also be zero (Abelson, 1995, p. 44; Wagenmakers et al., 2011). This subjectivity 
seems undesirable in a framework for making statistical decisions, especially con-
sidering that one of the main advantages of quantitative over qualitative methods is 
relatively greater objectivity. And indeed, there does seem to be evidence that when 
researchers employ Bayesian methods their conclusions vary as a function of indi-
vidual characteristics, such as confidence in oneself and potentially even gender 
(Dunn et al., 2020). Despite all of the problems of null hypothesis testing and its 
over-use, the “sharp null hypothesis” (Edwards et al., 1963) starts to look like an 
appealing starting point in comparison to prior odds, which differ from researcher 
to researcher.

�Non-Controversies

There is danger in declaring any issue of non-controversy; one only needs to iden-
tify a single dissenting voice to create an impression that a given position is mean-
ingfully in-question. For the topics that follow, we do not deny that such dissenting 
voices may exist. But we were surprised, and sometimes pleased, to see that these 
topics have received relatively little pushback and in many cases are now taken as 
simple common practice.

�Fraud

First and foremost, fraud is fraud. It is a serious concern, but one that is separable 
from the more ubiquitous problem of questionable research practices. Because a 
highly-publicized case of fraud coincided with the beginning of the replication cri-
sis (Levelt committee, 2012), there was some possibility that people might conflate 
questionable research practices with fraud, and fail to distinguish major malfea-
sance from common and well-intentioned practices that nevertheless cause prob-
lems (i.e., undisclosed researcher degrees of freedom). Part of what made the 
original false-positive discovery so impactful was the recognition that the practices 
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described in the paper (Simmons et  al., 2011) really were widespread, and not 
something that people considered fraudulent.

Sometimes fraud is categorized as a questionable research practice. In our view 
this is a mistake. No reasonable person would question whether fraud is an accept-
able practice in science. As the replication crisis has emerged, researchers have 
generally been restrained in reserving accusations of fraud for truly fraudulent 
behavior. This is good because it is true/promotes clear thinking and preserves the 
strength of the “fraud” concept (Haslam, 2016) by reserving its use for truly fraudu-
lent cases. It is also good, because for a topic that is already rife with moralizing, it 
is wise to assure people that you are not accusing them of fraud when you are actu-
ally persuading them to take up practices to increase replicability.

�Data Sharing

In 2011 it was rare to publicize the data corresponding to a research report for a 
published empirical article. Today it is entirely common, and we predict that in a 
few short years it will be strange for a paper to be published without a link to materi-
als including an accompanying datafile. In fact, some journals now require posted 
data for publication (Grahe, 2021), while many others recognize this and other 
desiderata with badges. No doubt, a big reason for this shift in expectations is that 
new resources such as the Open Science Framework (osf.io) and ResearchBox 
(researchbox.org) have made it trivially easy for researchers to post a datafile and 
link to it in an accompanying researcher report.

This is a good thing, because making data available to other researchers pro-
motes transparency, allows for quicker detection of errors, accelerates the pace of 
science, and can increase the knowledge-yield from a given study (Perrino et al., 
2013; Simonsohn, 2013; Wicherts & Bakker, 2012). However, at the beginning of 
the replication crisis it was not at all obvious that researchers would take heed of the 
call to post their data. Journals did not require it, the infrastructure didn’t exist to 
accommodate it, and it seemed quite effortful. Moreover, some expressed reason-
able reservations that privacy concerns would not make it possible for all areas of 
social science to comply (Finkel et  al., 2015). But researchers soon learned that 
these logistical issues, while present, are easily navigable and the transparency is 
worth the effort (Meyer, 2018). Even when researchers post data, it’s not guaranteed 
to be in a form that allows for immediate reproduction of analyses by others (Obels 
et al., 2020), but the fact that people are routinely preemptively posting data is itself 
major progress. Also, readers will have to trust that this was a controversial proposal 
at the time. Today it seems hard to imagine anyone objecting to this simple 
prescription.
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�Non-WEIRD Samples

In 2010 Henrich and colleagues published a seminal article discussing social scien-
tists’ overreliance on WEIRD (Western, Educated, Industrialized, Rich, Democratic) 
samples in research. The authors argued that, modeling the physical sciences, psy-
chologists attempt to explain universals—define psychological phenomena that 
describe all of humanity—but do so with data from WEIRD people, a narrow and 
odd sample of the world population (see also Norenzayan & Heine, 2005). To be 
even more specific, most empirical work uses undergraduate subject pools from 
United States universities (Peterson, 2001; Wintre et al., 2001). However, people 
from WEIRD societies tend to be at the outlying end of the distribution on a variety 
of measures, suggesting they are highly distinguishable from other people, and thus 
findings from studies using these samples cannot, and should not, be generalized to 
humans at large (Henrich et al., 2010). The argument implies that instead of study-
ing human nature, we study the psychological processes of only WEIRD people. We 
miss important variation when samples are restricted to only WEIRD societies and 
thus limits our understanding of psychological phenomena.

Accuracy issues arise when researchers claim their findings from WEIRD sam-
ples are universal principles that generalize to a global population. Additionally, for 
applied research, it is problematic if policies that affect a diverse group of people are 
enacted based on the results of a series of studies using only WEIRD individuals. 
The overuse of WEIRD samples and the tendency to generalize from narrow popu-
lations is non-controversial and most social scientists—including not only psychol-
ogists, but also anthropologists, economists, and sociologists—would agree that our 
WEIRD-dominated data is a crisis. In the same issue of Behavioral and Brain 
Sciences as the original Henrich et al. (2010) article, dozens of commentators con-
curred and further elaborated with their argument. They suggest that in addition to 
using WEIRD samples of odd people, social scientists also rely on experimental 
designs that are culture-specifically contrived (Baumard & Sperber, 2010) and lack 
correlation with real-world situations (Rai & Fiske, 2010). It is important to note 
that some researchers disagree with the claim that WEIRD samples are problem-
atic—suggesting that while behavior might differ, humans are all the same species 
thus WEIRD samples can represent universal human processes (Gaertner et  al., 
2010)—though this argument is in the minority.

The WEIRD sample problem is exacerbated by the over-representation of 
WEIRD researchers within the field (Meadon & Spurrett, 2010). These researchers 
share cultural similarities with their participants, which hinder their ability to break 
from their intuition when theorizing and choosing research questions (Fessler, 
2010). Additionally, WEIRD researchers have a “home culture bias” of methods 
and result interpretation within cross-culture comparisons (Bennis & Medin, 2010). 
Many commentators suggest that a potential solution of the WEIRD sample reliance 
is expanding research capabilities in non-WEIRD societies.
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While the Henrich et al. (2010) article shook the psychological world, it should 
not have come as a surprise that researchers were vocalizing the issue of making 
broad generalizations based on narrow samples. Psychologists have been comment-
ing on this problem for decades (Rozin, 2001; Smart, 1966). The gap in income, 
education, and physical health (which all contribute to psychological processes) 
between WEIRD and non-WEIRD societies is widening, in turn exacerbating the 
crisis. Thus, the need to use diverse samples in psychological research is at an all-
time high, a conclusion with which most psychologists would agree (Arnett, 2008).

Interestingly, though generalizing from narrow samples is non-controversial, 
there seems to be a disconnect between admitting psychology has a problem and the 
application of solutions (Rad et al., 2018). We have known for a long time that psy-
chological research relies too heavily on WEIRD samples (and US undergraduates, 
in particular; Sears, 1986), yet decades later this issue continues (Arnett, 2008; 
Henrich et al., 2010), and abounds further even after highly cited articles kickstart 
the discussion again (Rad et al., 2018). Analyses of the top journals in the psycho-
logical subdisciplines suggest that most authors and samples are based in the United 
States (73% and 68% respectively in the mid-2000s; Arnett, 2008). The use of 
WEIRD samples is so pervasive that our implicit assumption is that research find-
ings result from a US or WEIRD sample (titles and abstracts typically only mention 
sample characteristics if the sample is non-WEIRD; Cheon et al., 2020).

While the overabundance of WEIRD samples is not a controversy among psy-
chologists, it seems that pressures from the field prohibit researchers from imple-
menting solutions to the problem. WEIRD samples are convenient, which allows for 
a greater volume of research to be produced. Due to favoritism toward multistudy 
articles in high-impact journals and publication pressure needed for job procure-
ment and career advancement, we continue to publish papers and award grants that 
allow WEIRDness to prosper in psychology (Rozin, 2009). However, many 
researchers have suggested ways to alleviate the over-representation of WEIRD 
samples. Authors should always report sample characteristics, WEIRD and non-
WEIRD samples alike (Rad et  al., 2018). Similarly, others suggest including a 
“Constraints on Generality” statement in the discussion section that emphasizes 
why the sample was chosen and justifies the generalizability of findings to the target 
population (Simons et al., 2017). Like the 21-word solution for data collection and 
analyses (Simmons et al., 2012), a Constraints on Generality statement normalizes 
the recognition of WEIRD sample limitations. One of the frequently mentioned 
solutions to expand sampling is to use internet-based data collection (Gosling et al., 
2010), though this recommendation should be taken with caution as psychology is 
experiencing an influx of online studies which limits the scope and real-world simi-
larity of experimental designs (Anderson et al., 2019). At the journal level, special 
issues focused on studies using methods with diverse samples written and edited by 
non-WEIRD researchers should become more regular (Arnett, 2008).

In sum, we should obviously be cautious about generalizing findings from a nar-
row sample, but that does not mean that studies conducted using a US 
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undergraduate subject pool or WEIRD participants are useless. To the contrary, the 
convenience provided by WEIRD sampling can allow researchers to explore new 
theories and draw tentative conclusion (Khemlani et  al., 2010). However, it is 
important to recognize the limitation of narrow samples to universal generalizability 
and thus even robust findings should continue to be explored in diverse 
populations.

�One-Tailed Tests

In the past—prior to the ability to preregister an analysis plan—a one-tailed hypoth-
esis test could be viewed with skepticism. Is the researcher just trying to scoot an 
inconvenient “marginal” p-value below 0.05? How can we know that they really 
intended to perform a one-tailed test? The choice of one- versus two-tailed tests is a 
prototypical researcher degree of freedom, and skeptics would be entirely justified 
in wondering if the result of the test affected the decision to report it as one-tailed 
instead of two-tailed.

In recent years however, many have noticed that (1) one-tailed tests are a free and 
effortless way to increase power, and (2) preregistration makes it possible and easy 
to certify that the decision to use a one-tailed test preceded the data (Hales, 2016; 
Hales et al., 2019; Lakens, 2016; Maner, 2014). We are not aware of anyone who 
has argued (at all, let along convincingly) that researchers should continue to be 
compelled to run two-tailed tests, even when they are willing to perform a risky 
preregistered one-tailed test. Our view on this matter is one of statistical libertarian-
ism; researchers who want to risk a one-tailed test should be permitted to do so. 
Reasons to do this include: a study being a direct replication (in which case, a sig-
nificant effect in the unexpected direction would be so confusing it still would prob-
ably not lead to a rejection of the null hypothesis), a study testing an intervention 
against another that is already known to be effective (in which case the decision is 
simply whether the new intervention is better than the old one), or simple confi-
dence in one’s hypothesis. Whatever the reason for the researcher’s decision, it is 
not controversial to say that a researcher who preregisters and then properly con-
ducts a one-tailed hypothesis test is playing by the rules of null hypothesis testing, 
and has not inappropriately inflated their chance of a false positive. Moreover, 
they’ve probably run a more powerful test.

Even before the widespread adoption of preregistration, there were cogent argu-
ments for one-tailed tests (Cho & Abe, 2013; Jones, 1952). Now that preregistration 
is commonplace, one-tailed tests should be as well (provided that is how a researcher 
elects to distribute their alpha, in the spirit of statistical libertarianism). While it is 
still not common to see one-tailed tests in the literature, when we do encounter pre-
registered one-tailed tests, it seems to be an unremarkable and clearly justified ana-
lytic decision (e.g., Effron, 2018). We expect to see more of these in the future.

9  Statistical Controversies in Psychological Science
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�Conclusion

Statistical disagreements have been surprisingly contentious in psychology, espe-
cially in recent years (in fact, more so than this chapter has conveyed; skeptical 
readers can google the term “methodological terrorists” for evidence). Perhaps this 
is surprising, given statistic’s reputation for being dry and mathematical. So why are 
statistical issues so controversial?

One reason for the contention relates to the unique position that statistics and 
methodology hold in the psychology curriculum. Psychologists are well-aware of 
the naturalistic fallacy (Hume, 1969/1739; Moore, 1903/1996), and are proscribed 
from directly drawing any moral conclusions from their empirically descriptive 
research, at least not in heavily-policed peer-reviewed outlets. Statistical methods 
represent an exception to this ban on prescriptive language. Psychologists writing 
on this topic are free to say that one ought to analyze their data a certain way, or that 
one ought not to engage in certain research practices. Of course, these statements 
are based on the (often) unstated premise that doing so will lead to unreliable con-
clusions which—assuming one values reliable research—“ought” to be avoided. 
Relative to other topics in psychology, in statistical debates, the taboo against 
“should” and “ought” statements is relatively thin. This has led to some unhelpful 
moralizing at times (e.g., causing people to think of preregistration as a morally 
virtuous thing to do, rather than just one way to rule out analytic flexibility as one 
potential pesky alternative explanation for findings; see Simmons et al., 2017 for 
this alternative-explanation perspective). The freedom to make prescriptive state-
ments has also likely contributed to the heated nature of debates on this topic, mak-
ing statistics, surprisingly, one of the more controversial areas of psychology.

A second potential reason for the contentiousness concerns the stakes of statisti-
cal practices. Controversies of substantial research findings are local, in that they 
affect only the theories and topics that they touch. Statistical controversies, on the 
other hand, are global, in that they affect quite literally the entire field, and raise the 
possibility that the whole enterprise could be “rotten to the core” (Motyl et  al., 
2017). This helps explain why there is much hand-wringing about the implications 
of the replication crisis not only in-house but also for how psychology is viewed by 
the public and by policy-makers (e.g., Mede et al., 2020).

Regardless of the reasons for controversy, or the tone of the debate, it is hard to 
deny that impressive progress has been made in the last decade, and this is certainly 
cause for optimism. We believe that informed researchers are now armed with the 
tools to avoid the mistakes that led to the replication crisis (Hales et  al., 2019). 
There will undoubtedly continue to be statistical controversy. But as these new prac-
tices take hold, we may see a shift in the tone of these debates to being more civil. 
Either way, scientific progress will not only continue, but, we predict, accelerate.

A. H. Hales and N. R. Wood



205

References

Abelson, R. P. (1995). Statistics as principled argument. Lawrence Erlbaum Associates.
Abelson, R.  P. (1997). On the surprising longevity of flogged horses: Why there is a case for 

the significance test. Psychological Science, 8(1), 12–15. https://doi.org/10.1111/j.1467-
9280.1997.tb00536.x

AlShebli, B., Makovi, K., & Rahwan, T. (2020). Retraction note: The association between early 
career informal mentorship in academic collaborations and junior author performance. Nature 
Communications, 11(1), 1–8.

Anderson, S. F. (2020). Misinterpreting p: The discrepancy between p values and the probability 
the null hypothesis is true, the influence of multiple testing, and implications for the replication 
crisis. Psychological Methods, 25(5), 596–609. https://doi.org/10.1037/met0000248

Anderson, C. A., Allen, J. J., Plante, C., Quigley-McBride, A., Lovett, A., & Rokkum, J. N. (2019). 
The MTurkification of social and personality psychology. Personality and Social Psychology 
Bulletin, 45(6), 842–850. https://doi.org/10.1177/0146167218798821

Anscombe, F. J. (1973). Graphs in statistical analysis. American Statistician, 27(1), 17–21.
Arnett, J. J. (2008). The neglected 95%: Why American psychology needs to become less American. 

American Psychologist, 63(7), 602–614. https://doi.org/10.1037/0003-066X.63.7.602
Bauer, P.  J. (2020). A call for greater sensitivity in the wake of a publication controversy. 

Psychological Science, 31(7), 767–769. https://doi.org/10.1177/0956797620941482
Bakan, D. (1966). The test of significance in psychological research. Psychological Bulletin, 

66(6), 423–437. https://doi.org/10.1037/h0020412
Baumard, N., & Sperber, D. (2010). Weird people, yes, but also weird experiments. Behavioral and 

Brain Sciences, 33(2–3), 84–85. https://doi.org/10.1017/S0140525X10000038
Bem, D.  J. (2011). Feeling the future: Experimental evidence for anomalous retroactive influ-

ences on cognition and affect. Journal of Personality and Social Psychology, 100(3), 407–425. 
https://doi.org/10.1037/a0021524

Bennis, W. M., & Medin, D. L. (2010). Weirdness is in the eye of the beholder. Behavioral and 
Brain Sciences, 33(2–3), 85–86. https://doi.org/10.1017/S0140525X1000004X

Branch, M. (2014). Malignant side effects of null-hypothesis significance testing. Theory & 
Psychology, 24(2), 256–277. https://doi.org/10.1177/0959354314525282

Carter, E. C., Kofler, L. M., Forster, D. E., & McCullough, M. E. (2015). A series of metaanalytic 
tests of the depletion effect: Self-control does not seem to rely on a limited resource. Journal 
of Experimental Psychology: General, 144(4), 796–815. https://doi.org/10.1037/xge0000083

Cheon, B. K., Melani, I., & Hong, Y. Y. (2020). How USA-centric is psychology? An archival 
study of implicit assumptions of generalizability of findings to human nature based on origins 
of study samples. Social Psychological and Personality Science, 11(7), 928–937. https://doi.
org/10.1177/1948550620927269

Cho, H.-C., & Abe, S. (2013). Is two-tailed testing for directional research hypotheses tests 
legitimate? Journal of Business Research, 66(9), 1261–1266. https://doi.org/10.1016/j.
jbusres.2012.02.023

Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49(12), 997–1003. https://
doi.org/10.1037/0003-066X.49.12.997

Cohen, J. (1995). The earth is round (p < .05): Rejoinder. American Psychologist, 50(12), 1103. 
https://doi.org/10.1037/0003-066X.50.12.1103

Cuddy, A. J. C., Schultz, S. J., & Fosse, N. E. (2018). P-curving a more comprehensive body of 
research on postural feedback reveals clear evidential value for power-posing effects: Reply 
to Simmons and Simonsohn (2017). Psychological Science, 29(4), 656–666. https://doi.
org/10.1177/0956797617746749

Cumming, G. (2014a). The new statistics: Why and how. Psychological Science, 25(1), 7–29. 
https://doi.org/10.1177/0956797613504966

9  Statistical Controversies in Psychological Science

https://doi.org/10.1111/j.1467-9280.1997.tb00536.x
https://doi.org/10.1111/j.1467-9280.1997.tb00536.x
https://doi.org/10.1037/met0000248
https://doi.org/10.1177/0146167218798821
https://doi.org/10.1037/0003-066X.63.7.602
https://doi.org/10.1177/0956797620941482
https://doi.org/10.1037/h0020412
https://doi.org/10.1017/S0140525X10000038
https://doi.org/10.1037/a0021524
https://doi.org/10.1017/S0140525X1000004X
https://doi.org/10.1177/0959354314525282
https://doi.org/10.1037/xge0000083
https://doi.org/10.1177/1948550620927269
https://doi.org/10.1177/1948550620927269
https://doi.org/10.1016/j.jbusres.2012.02.023
https://doi.org/10.1016/j.jbusres.2012.02.023
https://doi.org/10.1037/0003-066X.49.12.997
https://doi.org/10.1037/0003-066X.49.12.997
https://doi.org/10.1037/0003-066X.50.12.1103
https://doi.org/10.1177/0956797617746749
https://doi.org/10.1177/0956797617746749
https://doi.org/10.1177/0956797613504966


206

Credé, M., & Phillips, L. A. (2017). Revisiting the power pose effect: How robust are the results 
reported by Carney, Cuddy, and Yap (2010) to data analytic decisions? Social Psychological 
and Personality Science, 8(5), 493–499. https://doi.org/10.1177/1948550617714584

Cumming, G. (2014b). The new statistics: Why and how. Psychological Science, 25(1), 7–29. 
https://doi.org/10.1177/0956797613504966

Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in 
Psychology, 5, 781. https://doi.org/10.3389/fpsyg.2014.00781

Dunn, E.  W., Chen, L., Proulx, J.  D. E., Ehrlinger, J., & Savalei, V. (2020). Can researchers’ 
personal characteristics shape their statistical inferences? Personality and Social Psychology 
Bulletin, 47(6), 969–984. https://doi.org/10.1177/0146167220950522

Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for psychological 
research. Psychological Review, 70(3), 193–242. https://doi.org/10.1037/h0044139

Effron, D. A. (2018). It could have been true: How counterfactual thoughts reduce condemnation 
of falsehoods and increase political polarization. Personality and Social Psychology Bulletin, 
44(5), 729–745. https://doi.org/10.1177/0146167217746152

Ferguson, C. J., & Heene, M. (2012). A vast graveyard of undead theories: Publication bias and 
psychological science’s aversion to the null. Perspectives on Psychological Science, 7(6), 
555–561. https://doi.org/10.1177/1745691612459059

Fessler, D.  M. (2010). Cultural congruence between investigators and participants masks the 
unknown unknowns: Shame research as an example. Behavioral and Brain Sciences, 33(2–3), 
92. https://doi.org/10.1017/S0140525X10000087

Festinger, L., Riecken, H., & Schachter, S. (1957). When prophecy fails. University of 
Minnesota Press.

Finkel, E.  J., Eastwick, P.  W., & Reis, H.  T. (2015). Best research practices in psychology: 
Illustrating epistemological and pragmatic considerations with the case of relationship sci-
ence. Journal of Personality and Social Psychology, 108(2), 275–297. https://doi.org/10.1037/
pspi0000007

Fisher, A.  J., Medaglia, J.  D., & Jeronimus, B.  F. (2018). Lack of group-to-individual gener-
alizability is a threat to human subjects research. Proceedings of the National Academy of 
Sciences of the United States of America, 115(27), E6106–E6115. https://doi.org/10.1073/
pnas.1711978115

Fox, A. E. (2018). The future is upon us. Behavior Analysis: Research & Practice, 18(2), 144–150. 
https://doi.org/10.1037/bar0000106

Gage, N.  L. (1989). The paradigm wars and their aftermath. A “historical” sketch of research 
on teaching since 1989. Educational Researcher, 18(7), 4–10. https://doi.org/10.310
2/0013189X018007004

Gaertner, L., Sedikides, C., Cai, H., & Brown, J.  D. (2010). It’s not WEIRD, it’s WRONG: 
When Researchers Overlook uNderlying Genotypes, they will not detect universal processes. 
Behavioral and Brain Sciences, 33(2–3), 93–94. https://doi.org/10.1017/S0140525X10000105

Gelman. (2016). The time-reversal heuristic – a new way to think about a published finding that 
is followed up by a large, preregistered replication (in context of claims about power pose). 
https://statmodeling.stat.columbia.edu/2016/01/26/more-power-posing/

Gigerenzer, G. (2004). Mindless statistics. The Journal of Socio-Economics, 33(5), 587–606. 
https://doi.org/10.1016/j.socec.2004.09.033

Gigerenzer, G. (2018). Statistical rituals: The replication delusion and how we got there. 
Advances in Methods and Practices in Psychological Science, 1(2), 198–218. https://doi.
org/10.1177/2515245918771329

Giner-Sorolla, R. (2012). Science or art? How aesthetic standards grease the way through the 
publication bottleneck but undermine science. Perspectives on Psychological Science, 7(6), 
562–571. https://doi.org/10.1177/1745691612457576

Goodman, S. (2008). A dirty dozen: Twelve p-value misconceptions. Seminars in Hematology, 
45(3), 135–140. https://doi.org/10.1053/j.seminhematol.2008.04.003

A. H. Hales and N. R. Wood

https://doi.org/10.1177/1948550617714584
https://doi.org/10.1177/0956797613504966
https://doi.org/10.3389/fpsyg.2014.00781
https://doi.org/10.1177/0146167220950522
https://doi.org/10.1037/h0044139
https://doi.org/10.1177/0146167217746152
https://doi.org/10.1177/1745691612459059
https://doi.org/10.1017/S0140525X10000087
https://doi.org/10.1037/pspi0000007
https://doi.org/10.1037/pspi0000007
https://doi.org/10.1073/pnas.1711978115
https://doi.org/10.1073/pnas.1711978115
https://doi.org/10.1037/bar0000106
https://doi.org/10.3102/0013189X018007004
https://doi.org/10.3102/0013189X018007004
https://doi.org/10.1017/S0140525X10000105
https://statmodeling.stat.columbia.edu/2016/01/26/more-power-posing/
https://doi.org/10.1016/j.socec.2004.09.033
https://doi.org/10.1177/2515245918771329
https://doi.org/10.1177/2515245918771329
https://doi.org/10.1177/1745691612457576
https://doi.org/10.1053/j.seminhematol.2008.04.003


207

Goodwin, S. A., Williams, K. D., & Carter-Sowell, A. R. (2010). The psychological sting of stigma: 
The costs of attributing ostracism to racism. Journal of Experimental Social Psychology, 46(4), 
612–618. https://doi.org/10.1016/j.jesp.2010.02.002

Gosling, S. D., Sandy, C. J., John, O. P., & Potter, J. (2010). Wired but not WEIRD: The promise of 
the Internet in reaching more diverse samples. Behavioral and Brain Sciences, 33(2-3), 94–95. 
https://doi.org/10.1017/S0140525X10000300

Grahe, J. (2021). The necessity of data transparency to publish. The Journal of Social Psychology, 
161(1), 1–4. https://doi.org/10.1080/00224545.2020.1847950

Greenberg, J., Pyszczynski, T., Solomon, S., Simon, L., & Breus, M. (1994). Role of consciousness 
and accessibility of death-related thoughts in mortality salience effects. Journal of Personality 
and Social Psychology, 67(4), 627–637. https://doi.org/10.1037/0022-3514.67.4.627

Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., & Altman, 
D. G. (2016). Statistical tests, P values, confidence intervals, and power: A guide to misin-
terpretations. European journal of epidemiology, 31(4), 337–350. https://doi.org/10.1007/
s10654-016-0149-3

Grice, J. W., Medellin, E., Jones, I., Horvath, S., McDaniel, H., O’lansen, C., & Baker, M. (2020). 
Persons as effect sizes. Advances in Methods and Practices in Psychological Science, 3(4), 
443–455. https://doi.org/10.1177/2515245920922982

Hagger, M.  S., Chatzisarantis, N.  L. D., Alberts, H., Anggono, C.  O., Batailler, C., Birt, 
A.  R., Brand, R., Brandt, M.  J., Brewer, G., Bruyneel, S., Calvillo, D.  P., Campbell, 
W.  K., Cannon, P.  R., Carlucci, M., Carruth, N.  P., Cheung, T., Crowell, A., De Ridder, 
D.  T. D., Dewitte, S., … Zwienenberg, M. (2016). A multilab preregistered replication of 
the ego-depletion effect. Perspectives on Psychological Science, 11(4), 546–573. https://doi.
org/10.1177/1745691616652873

Hales, A. H. (2016). Does the conclusion follow from the evidence? Recommendations for improv-
ing research. Journal of Experimental Social Psychology, 66, 39–46. https://doi.org/10.1016/j.
jesp.2015.09.011

Hales, A. H., Wesselmann, E. D., & Hilgard, J. (2019). Improving psychological science through 
transparency and openness: An overview. Perspectives on Behavior Science, 42(1), 13–31. 
https://doi.org/10.1007/s40614-018-00186-8

Hartgerink, C. J., van Beest, I., Wicherts, J. M., & Williams, K. D. (2015). The ordinal effects of 
ostracism: A meta-analysis of 120 cyberball studies. PLoS One, 10(5), e0127002. https://doi.
org/10.1371/journal.pone.0127002

Haslam, N. (2016). Concept creep: Psychology’s expanding concepts of harm and pathology. 
Psychological Inquiry, 27, 1–17. https://doi.org/10.1080/1047840X.2016.1082418

Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral 
and Brain Sciences, 33(2-3), 61–83. https://doi.org/10.1017/S0140525X0999152X

Hubbard, R. (2004). Alphabet soup: Blurring the distinctions between p’s and α’s in psychological 
research. Theory & Psychology, 14(3), 295–327. https://doi.org/10.1177/0959354304043638

Hume, D. (1969/1739). A Treatise on Human Nature. Penguin.
Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), 

e124. https://doi.org/10.1371/journal.pmed.0020124
IJzerman, H., Lewis, N. A., Przybylski, A. K., Weinstein, N., DeBruine, L., Ritchie, S. J., Vazire, 

S., Forscher, P. S., Morey, R. D., Ivory, J. D., & Anvari, F. (2020). Use caution when applying 
behavioural science to policy. Nature Human Behavior, 4, 1092–1094.

Jackson, M. R. (2015). Resistance to qual/quant parity: Why the “paradigm” discussion can’t be 
avoided. Qualitative Psychology, 2(2), 181–198. https://doi.org/10.1037/qup0000031

Jones, L.  V. (1952). Test of hypotheses: one-sided vs two-sided alternatives. Psychological 
Bulletin, 49(1), 43–46. https://doi.org/10.1037/h0056832

Jones, L. V., & Tukey, J. W. (2000). A sensible formulation of the significance test. Psychological 
Methods, 5(4), 411–414. https://doi.org/10.1037/1082-989X.5.4.411

Kerr, N. L. (1998). HARKing: Hypothesizing after the results are known. Personality and Social 
Psychology Review, 2(3), 196–217. https://doi.org/10.1207/s15327957pspr0203_4

9  Statistical Controversies in Psychological Science

https://doi.org/10.1016/j.jesp.2010.02.002
https://doi.org/10.1017/S0140525X10000300
https://doi.org/10.1080/00224545.2020.1847950
https://doi.org/10.1037/0022-3514.67.4.627
https://doi.org/10.1007/s10654-016-0149-3
https://doi.org/10.1007/s10654-016-0149-3
https://doi.org/10.1177/2515245920922982
https://doi.org/10.1177/1745691616652873
https://doi.org/10.1177/1745691616652873
https://doi.org/10.1016/j.jesp.2015.09.011
https://doi.org/10.1016/j.jesp.2015.09.011
https://doi.org/10.1007/s40614-018-00186-8
https://doi.org/10.1371/journal.pone.0127002
https://doi.org/10.1371/journal.pone.0127002
https://doi.org/10.1080/1047840X.2016.1082418
https://doi.org/10.1017/S0140525X0999152X
https://doi.org/10.1177/0959354304043638
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1037/qup0000031
https://doi.org/10.1037/h0056832
https://doi.org/10.1037/1082-989X.5.4.411
https://doi.org/10.1207/s15327957pspr0203_4


208

Khemlani, S.  S., Lee, N.  Y., & Bucciarelli, M. (2010). Determinants of cognitive variability. 
Behavioral and Brain Sciences, 33(2-3), 97–98. https://doi.org/10.1017/S0140525X10000130

Klein, R. A., Cook, C. L., Ebersole, C. R., Vitiello, C. A., Nosek, B. A., Chartier, C. R., … Ratliff, 
K. A. (2019). Many Labs 4: Failure to replicate mortality salience effect with and without 
original author involvement. Collabra: Psychology, 8(1). https://doi.org/10.31234/osf.io/vef2c

Lakens, D. (2020). The practical alternative to the p-value is the correctly used p-value. Perspectives 
on Psychological Science, 16(3), 639–648. https://doi.org/10.31234/osf.io/shm8v

Lakens, D. (2017). Equivalence tests: A practical primer for t tests, correlations, and meta-
analyses. Social Psychological and Personality Science, 8(4), 355–362. https://doi.
org/10.1177/1948550617697177

Landrum, B., & Garza, G. (2015). Mending fences: Defining the domains and approaches of 
quantitative and qualitative research. Qualitative Psychology, 2(2), 199–209. https://doi.
org/10.1037/qup0000030

Levelt Committee. (2012). Flawed science: The fraudulent research practices of social psy-
cholo- gist Diederik Stapel. Retrieved from https://www.rug.nl/about-ug/latest-news/news/
archief2012/nieuwsberichten/stapel-eindrapport-eng.pdf

Lakens, D. (2016). One-sided tests: Efficient and underused. http://daniellakens.blogspot.
com/2016/03/one-sided-tests-efficient-and-underused.html

Lykken, D. T. (1968). Statistical significance in psychological research. Psychological Bulletin, 
70(3), 151–159. https://doi.org/10.1037/h0026141

Meadon, M., & Spurrett, D. (2010). It’s not just the subjects–there are too many WEIRD 
researchers. Behavioral and Brain Sciences, 33(2-3), 104–105. https://doi.org/10.1017/
S0140525X10000208

Maner, J. K. (2014). Let’s put our money where our mouth is: If authors are to change their ways, 
reviewers (and editors) must change with them. Perspectives on Psychological Science, 9(3), 
343–351. https://doi.org/10.1177/1745691614528215

McCabe, C. J., Kim, D. S., & King, K. M. (2018). Improving present practices in the visual dis-
play of interactions. Advances in Methods & Practices in Psychological Science, 1(2), 47–165. 
https://doi.org/10.1177/2515245917746792

Mede, N. G., Schäfer, M. S., Ziegler, R., & Weißkopf, M. (2020). The “replication crisis” in the 
public eye: Germans’ awareness and perceptions of the (ir)reproducibility of scientific research. 
Public Understanding of Science, 30(1), 91–102. https://doi.org/10.1177/0963662520954370

Meehl, P. E. (1978). Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow 
progress of soft psychology. Journal of Consulting and Clinical Psychology, 46(4), 806–834. 
https://doi.org/10.1037/0022-006X.46.4.806

Meyer, M. N. (2018). Practical tips for ethical data sharing. Advances in Methods and Practices in 
Psychological Science, 1(1), 131–144. https://doi.org/10.1177/2515245917747656

Moore, G. E. (1903/1996). Principia ethica. Cambridge University Press.
Motyl, M., Demos, A. P., Carsel, T. S., Hanson, B. E., Melton, Z. J., Mueller, A. B., Prims, J. P., 

Sun, J., Washburn, A. N., Wong, K. M., Yantis, C., & Skitka, L. J. (2017). The state of social 
and personality science: Rotten to the core, not so bad, getting better, or getting worse? Journal 
of Personality and Social Psychology, 113(1), 34–58. https://doi.org/10.1037/pspa0000084

Nickerson, R.  S. (2000). Null hypothesis significance testing: A review of an old and con-
tinuing controversy. Psychological Methods, 5(2), 241–301. https://doi.org/10.1037/ 
1082-989X.5.2.241

Nisbett, R. E. (2015). Mindware: Tools for smart thinking. Farrar, Straus and Giroux.
Nosek, B. A., Spies, J. R., & Motyl, M. (2012). Scientific utopia: II. Restructuring incentives and 

practices to promote truth over publishability. Perspectives on Psychological Science, 7(6), 
615–631. https://doi.org/10.1177/1745691612459058

Norenzayan, A., & Heine, S. J. (2005). Psychological universals: What are they and how can we 
know? Psychological Bulletin, 131(5), 763–784. https://doi.org/10.1037/0033-2909.131.5.763

A. H. Hales and N. R. Wood

https://doi.org/10.1017/S0140525X10000130
https://doi.org/10.31234/osf.io/vef2c
https://doi.org/10.31234/osf.io/shm8v
https://doi.org/10.1177/1948550617697177
https://doi.org/10.1177/1948550617697177
https://doi.org/10.1037/qup0000030
https://doi.org/10.1037/qup0000030
https://www.rug.nl/about-ug/latest-news/news/archief2012/nieuwsberichten/stapel-eindrapport-eng.pdf
https://www.rug.nl/about-ug/latest-news/news/archief2012/nieuwsberichten/stapel-eindrapport-eng.pdf
http://daniellakens.blogspot.com/2016/03/one-sided-tests-efficient-and-underused.html
http://daniellakens.blogspot.com/2016/03/one-sided-tests-efficient-and-underused.html
https://doi.org/10.1037/h0026141
https://doi.org/10.1017/S0140525X10000208
https://doi.org/10.1017/S0140525X10000208
https://doi.org/10.1177/1745691614528215
https://doi.org/10.1177/2515245917746792
https://doi.org/10.1177/0963662520954370
https://doi.org/10.1037/0022-006X.46.4.806
https://doi.org/10.1177/2515245917747656
https://doi.org/10.1037/pspa0000084
https://doi.org/10.1037/1082-989X.5.2.241
https://doi.org/10.1037/1082-989X.5.2.241
https://doi.org/10.1177/1745691612459058
https://doi.org/10.1037/0033-2909.131.5.763


209

Obels, P., Lakens, D., Coles, N. A., Gottfried, J., & Green, S. A. (2020). Analysis of open data and 
computational reproducibility in registered reports in psychology. Advances in Methods and 
Practices in Psychological Science, 3(2), 229–237. https://doi.org/10.1177/2515245920918872

Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. 
Science, 346(6251), aac4716. https://doi.org/10.1126/science.aac4716

Perezgonzalez, J. D. (2015). Fisher, Neyman-Pearson or NHST? A tutorial for teaching data test-
ing. Frontiers in Psychology, 6, 223. https://doi.org/10.3389/fpsyg.2015.00223

Perone, M. (1999). Statistical inference in behavior analysis: Experimental control is better. The 
Behavior Analyst, 22(2), 109–116. https://doi.org/10.1007/BF03391988

Perrino, T., Howe, G., Sperling, A., Beardslee, W., Sandler, I., Shern, D., … Brown, C. (2013). 
Advancing science through collaborative data sharing and synthesis. Perspectives on 
Psychological Science, 8(4), 433–444. https://doi.org/10.1177/1745691613491579

Peterson, R. A. (2001). On the use of college students in social science research: Insights from 
a second-order meta-analysis. Journal of Consumer Research, 28(3), 450–461. https://doi.
org/10.1086/323732

Ponterotto, J.  G. (2006). Brief note on the origins, evolution, and meaning of the qualitative 
research concept thick description. The Qualitative Report, 11(3), 538–549. Retrieved from 
https://nsuworks.nova.edu/tqr/vol11/iss3/6

Rad, M. S., Martingano, A. J., & Ginges, J. (2018). Toward a psychology of Homo sapiens: Making 
psychological science more representative of the human population. Proceedings of the National 
Academy of Sciences, 115(45), 11401–11405. https://doi.org/10.1073/pnas.1721165115

Ranehill, E., Dreber, A., Johannesson, M., Leiberg, S., Sul, S., & Weber, R.  A. (2015). 
Assessing the robustness of power posing: No effect on hormones and risk tolerance in 
a large sample of men and women. Psychological Science, 26(5), 653–656. https://doi.
org/10.1177/0956797614553946

Rai, T.  S., & Fiske, A. (2010). ODD (observation-and description-deprived) psychologi-
cal research. Behavioral and Brain Sciences, 33(2-3), 106–107. https://doi.org/10.1017/
S0140525X10000221

Robinson, W.  S. (1950). Ecological correlations and the behavior of individuals. American 
Sociological Review, 15, 351–357. https://doi.org/10.2307/2087176

Rouder, J.  N. (2014). Optional stopping: No problem for Bayesians. Psychonomic Bulletin & 
Review, 21(2), 301–308. https://doi.org/10.3758/s13423-014-0595-4

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for 
accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237. 
https://doi.org/10.3758/PBR.16.2.225

Rozin, P. (2001). Social psychology and science: Some lessons from Solomon Asch. Personality 
and Social Psychology Review, 5(1), 2–14. https://doi.org/10.1207/S15327957PSPR0501_1

Rozin, P. (2009). What kind of empirical research should we publish, fund, and reward? A dif-
ferent perspective. Perspectives on Psychological Science, 4(4), 435–439. https://doi.
org/10.1111/j.1745-6924.2009.01151.x

Sakaluk, J.  K. (2016). Exploring Small, Confirming Big: An alternative system to The New 
Statistics for advancing cumulative and replicable psychological research. Journal of 
Experimental Social Psychology, 66, 47–54. https://doi.org/10.1016/j.jesp.2015.09.013

Salsburg, D. (2002). The lady tasting tea: How statistics revolutionized science in the twentieth 
century. Owl Books.

Scheel, A. M., Tiokhin, L., Isager, P. M., & Lakens, D. (2020). Why hypothesis testers should 
spend less time testing hypotheses. Perspectives on Psychological Science, 16(4), 744–755. 
https://doi.org/10.1177/1745691620966795

Schneider, J. (2015). Null hypothesis significance tests. A mix-up of two different theories: 
The basis for widespread confusion and numerous misinterpretations. Scientometrics, 102, 
411–432. https://doi.org/10.1007/s11192-014-1251-5

9  Statistical Controversies in Psychological Science

https://doi.org/10.1177/2515245920918872
https://doi.org/10.1126/science.aac4716
https://doi.org/10.3389/fpsyg.2015.00223
https://doi.org/10.1007/BF03391988
https://doi.org/10.1177/1745691613491579
https://doi.org/10.1086/323732
https://doi.org/10.1086/323732
https://nsuworks.nova.edu/tqr/vol11/iss3/6
https://doi.org/10.1073/pnas.1721165115
https://doi.org/10.1177/0956797614553946
https://doi.org/10.1177/0956797614553946
https://doi.org/10.1017/S0140525X10000221
https://doi.org/10.1017/S0140525X10000221
https://doi.org/10.2307/2087176
https://doi.org/10.3758/s13423-014-0595-4
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.1207/S15327957PSPR0501_1
https://doi.org/10.1111/j.1745-6924.2009.01151.x
https://doi.org/10.1111/j.1745-6924.2009.01151.x
https://doi.org/10.1016/j.jesp.2015.09.013
https://doi.org/10.1177/1745691620966795
https://doi.org/10.1007/s11192-014-1251-5


210

Sears, D. O. (1986). College sophomores in the laboratory: Influences of a narrow data base on 
social psychology’s view of human nature. Journal of Personality and Social Psychology, 
51(3), 515–530. https://doi.org/10.1037/0022-3514.51.3.515

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed 
flexibility in data collection and analysis allows presenting anything as significant. Psychological 
Science, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2012). A 21 word solution. SSRN. https://doi.
org/10.2139/ssrn.2160588

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2017). How to properly preregister a study. 
http://datacolada.org/64

Simmons, J. P., & Simonsohn, U. (2017). Power posing: P-curving the evidence. Psychological 
Science, 28(5), 687–693. https://doi.org/10.1177/0956797616658563

Simons, D. J., Shoda, Y., & Lindsay, D. S. (2017). Constraints on generality (COG): A proposed 
addition to all empirical papers. Perspectives on Psychological Science, 12(6), 1123–1128. 
https://doi.org/10.1177/174569161770863

Simonsohn, U. (2013). Just post it: The lesson from two cases of fabricated data detected by statistics 
alone. Psychological Science, 24(10), 1875–1888. https://doi.org/10.1177/0956797613480366

Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal 
Statistical Society, 13(2), 238–241. https://doi.org/10.1111/j.2517-6161.1951.tb00088.x

Skinner, B.  F. (1963). Operant behavior. American Psychologist, 18(8), 503–515. https://doi.
org/10.1037/h0045185

Smart, R.  G. (1966). Subject selection bias in psychological research. Canadian Psychologist/
Psychologie canadienne, 7(2), 115–121. https://doi.org/10.1037/h0083096

Sommer, K.  L., Williams, K.  D., Ciarocco, N.  J., & Baumeister, R.  F. (2001). When silence 
speaks louder than words: Explorations into the intrapsychic and interpersonal consequences 
of social ostracism. Basic and Applied Social Psychology, 23(4), 225–243. https://doi.
org/10.1207/153248301753225694

Tukey, J. W. (1969). Analyzing data: Sanctification or detective work? American Psychologist, 
24(2), 83–91. https://doi.org/10.1037/h0027108

Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.
Van Bavel, J. J., Baiker, K., Boggio, P. S., Valerio, C., Cichocka, A., Cikara, M., Crockett, M. J., 

Crum, A. J., Douglas, K. M., Druckman, J. N., Drury, J., Oeindrila, D., Ellemers, N., Finkel, 
E. F., Fowler, J. H., Gelfand, M. J., Shihui, H., Haslam, A., Jetten, J., … Willer, R. (2020). 
Using social and behavioral science to support COVID-19 pandemic response. Nature Human 
Behavior, 4, 460–471. https://doi.org/10.1038/s41562-020-0884-z

Vohs, K. D., Schmeichel, B. J., Lohmann, S., Gronau, Q., Finley, A. J., Wagenmakers, E.-J., & 
Albarracín, D. (2020). A multi-site preregistered paradigmatic test of the ego depletion effect. 
Psychological Science, 32(10), 1566–1581.

Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic 
Bulletin & Review, 14(5), 779–804. https://doi.org/10.3758/BF03194105

Wagenmakers, E.-J., Wetzels, R., Borsboom, D., & van der Maas, H. L. J. (2011). Why psycholo-
gists must change the way they analyze their data: The case of psi: Comment on Bem (2011). 
Journal of Personality and Social Psychology, 100(3), 426–432. https://doi.org/10.1037/
a0022790

Wicherts, J. M., & Bakker, M. (2012). Publish (your data) or (let the data) perish! Why not publish 
your data too? Intelligence, 40(2), 73–76. https://doi.org/10.1016/j.intell.2012.01.004

Williams, K. D. (2009). Ostracism: Effects of being excluded and ignored. In M. P. Zanna (Ed.), 
Advances in experimental social psychology (Vol. 41, pp. 275–314). Academic Press.

Williams, K. D., Bernieri, F. J., Faulkner, S. L., Gada-Jain, N., & Grahe, J. E. (2000). The scarlet 
letter study: Five days of social ostracism. Journal of Personal and Interpersonal Loss, 5(1), 
19–63. https://doi.org/10.1080/10811440008407846

A. H. Hales and N. R. Wood

https://doi.org/10.1037/0022-3514.51.3.515
https://doi.org/10.1177/0956797611417632
https://doi.org/10.2139/ssrn.2160588
https://doi.org/10.2139/ssrn.2160588
http://datacolada.org/64
https://doi.org/10.1177/0956797616658563
https://doi.org/10.1177/174569161770863
https://doi.org/10.1177/0956797613480366
https://doi.org/10.1111/j.2517-6161.1951.tb00088.x
https://doi.org/10.1037/h0045185
https://doi.org/10.1037/h0045185
https://doi.org/10.1037/h0083096
https://doi.org/10.1207/153248301753225694
https://doi.org/10.1207/153248301753225694
https://doi.org/10.1037/h0027108
https://doi.org/10.1038/s41562-020-0884-z
https://doi.org/10.3758/BF03194105
https://doi.org/10.1037/a0022790
https://doi.org/10.1037/a0022790
https://doi.org/10.1016/j.intell.2012.01.004
https://doi.org/10.1080/10811440008407846


211

Williams, K. D., Shore, W. J., & Grahe, J. E. (1998). The silent treatment: Perceptions of its behav-
iors and associated feelings. Group Processes and Intergroup Relations, 1(2), 117–141. https://
doi.org/10.1177/1368430298012002

Willig, C. (2019). What can qualitative psychology contribute to psychological knowledge? 
Psychological Methods, 24(6), 796–804. https://doi.org/10.1037/met0000218

Wintre, M., North, C., & Sugar, L. A. (2001). Psychologists’ response to criticisms about research 
based on undergraduate participants: A developmental perspective. Canadian Psychology/
Psychologie Canadienne, 42(3), 216–225. https://doi.org/10.1037/h0086893

Witt, J.  K. (2019). Graph construction: An empirical investigation on setting the range of the 
Y-axis. Meta-Psychology, 3. https://doi.org/10.5626/MP.2018.895

Yanai, I., & Lercher, M. A. (2020). A hypothesis is a liability. Genome Biology, 21, 1–5. https://
doi.org/10.1186/s13059-020-02133-w

Zadro, L. (2004). Ostracism: Empirical studies inspired by real-world experiences of silence and 
exclusion (Unpublished doctoral dissertation). University of New South Wales, Sydney, NSW.

9  Statistical Controversies in Psychological Science

https://doi.org/10.1177/1368430298012002
https://doi.org/10.1177/1368430298012002
https://doi.org/10.1037/met0000218
https://doi.org/10.1037/h0086893
https://doi.org/10.5626/MP.2018.895
https://doi.org/10.1186/s13059-020-02133-w
https://doi.org/10.1186/s13059-020-02133-w


213

Chapter 10
Publication Bias

Robbie C. M. van Aert and Helen Niemeyer

Abstract  Meta-analysis is the statistical method for synthesizing studies on the 
same topic and is often used in clinical psychology to quantify the efficacy of treat-
ments. A major threat to the validity of meta-analysis is publication bias, which 
implies that some studies are less likely to be published and are therefore less often 
included in a meta-analysis. A consequence of publication bias is the overestimation 
of the meta-analytic effect size that may give a false impression with respect to the 
efficacy of a treatment, which might result in (avoidable) suffering of patients and 
waste of resources. Guidelines recommend to routinely assess publication bias in 
meta-analyses, but this is currently not common practice. This chapter describes 
popular and state-of-the-art methods to assess publication bias in a meta-analysis 
and summarizes recommendations for applying these methods. We also illustrate 
how these methods can be applied to two meta-analyses that are typical for clinical 
psychology such that psychologists can readily apply the methods in their own 
meta-analyses.

Keywords  Publication bias · Questionable research practices · Methods to assess 
publication biases

�Introduction

A meta-analysis provides a quantitative summary of studies on the same topic, 
and its results are seen as the best available evidence (Aguinis et al., 2011; Head 
et al., 2015). However, the quality of a meta-analysis fully depends on the quality 
of the included studies, and an important threat for the validity of a meta-analysis 
arises if the included studies are not representative for all studies conducted on 
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this topic. Publication bias is one of the possible causes of a meta-analysis con-
taining an unrepresentative set of studies (Rothstein et al., 2005), which means 
that statistically nonsignificant studies have a lower probability of being pub-
lished than significant studies. Publication bias may be caused by editors and 
reviewers who are more reluctant to positively evaluate statistically nonsignificant 
compared to significant studies or by authors who do not submit nonsignificant 
studies for publication (Cooper et al., 1997; Coursol & Wagner, 1986). The con-
sequences of publication bias are severe and hamper the progress of science, 
because it yields overestimated effect size in the individual studies and when 
combining these studies in a meta-analysis (e.g., Kraemer et al., 1998; Lane & 
Dunlap, 1978). For this reason, guidelines on how to conduct a meta-analysis such 
as the Meta-Analytic Reporting Standards (MARS, Appelbaum et  al., 2018), 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA, 
Moher et  al., 2009), and the Cochrane Handbook for Systematic Reviews of 
Interventions (Page et al., 2019) all encourage meta-analysts to routinely assess 
publication bias in their meta-analysis.

There is strong evidence for the presence of publication bias in the psychological 
literature. For example, Fanelli (2012) showed that 90% of a random sample of 
studies published in the psychological literature found support for their main 
hypothesis. This large percentage is in disagreement with the on average low statis-
tical power of studies in psychology (Bakker et al., 2012; Ellis, 2010), which is too 
low to find support for the hypothesis this often. More direct evidence of publication 
bias has been observed in Franco et al. (2014) who determined whether the publica-
tion status of studies that were awarded a grant depended on their results. They 
concluded that studies with null or mixed results remained more often unpublished 
than studies with strong results (i.e., predominantly statistically significant results). 
Publication bias has also been studied in clinical psychology. For example, Driessen 
et al. (2015) compared the publication status of studies awarded with a grant focus-
ing on research studying the efficacy of psychological treatments for patients with 
major depressive disorder. They showed that 13 out of 55 (23.6%) studies that were 
awarded with a grant were not published in the literature. Adding these unpublished 
studies to the meta-analysis of published studies resulted in a reduction in effect size 
estimate of 0.13 standardized mean difference.

If the efficacy of interventions is overestimated due to publication bias and pub-
lication bias remains undetected, this can have severe consequences. Taking the 
example of depression, efficacious treatments are essential to reduce impaired func-
tioning and risk of suicide that are caused by depression (Holma et al., 2010). If 
publication bias is present, clinical guidelines may prompt psychotherapists to 
apply interventions in routine care that may be less efficacious than assumed. This 
would not only prevent individuals from receiving the best possible treatment but 
also result in unnecessarily high costs for the health care system (Jaycox & Foa, 
1999; Maljanen et al., 2016; Margraf, 2009). Moreover, publication bias in research 
on etiological assumptions such as genetic predispositions, biological mechanisms, 
detrimental environmental exposures, cognitive distortions, or attentional biases 
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would also be hampering knowledge accumulation about the underlying mecha-
nisms that contribute to the onset and maintenance of mental disorders. Thus, 
assessing publication bias in all fields of clinical psychology is strongly recom-
mended, but it has not been routinely done in meta-analyses. For example, Niemeyer 
et al. (2013) found that in the majority (82%) of meta-analyses on the efficacy of 
(psychotherapeutic) interventions for depression publication bias was not consid-
ered in the statistical analyses. In addition, 81.2% of the meta-analyses explicitly 
did not include unpublished studies. Publication bias is also not routinely assessed 
in education research where 44% (Banks et al., 2012) did not assess publication 
bias, and industrial and organizational psychology where publication bias was not 
assessed in 92.7% (Aguinis et al., 2010) and 82.3% (Aytug et al., 2012) of a large 
number of meta-analyses.

Of note is that evidence for publication bias in psychology is, however, not 
always observed when published meta-analyses are reanalyzed using publication 
bias methods in so-called meta-meta-analyses (i.e., meta-analysis of meta-analyses). 
For example, publication bias was detected in approximately 15% of reanalyzed 
meta-analyses published on psychotherapeutic interventions for schizophrenia and 
depression (Niemeyer et al., 2012, 2013). Another study also observed only weak 
evidence for publication bias in reanalyzed meta-analyses published in Psychological 
Bulletin and the Cochrane Database of Systematic Reviews (Van Aert et al., 2019). 
A possible reason for not observing strong evidence for publication bias are the 
challenging conditions of the meta-analyses under study for publication bias meth-
ods. The publication bias methods that were available at that time could only be 
applied to a small subset of meta-analyses in these studies due to strong assump-
tions of the methods. For example, the applied publication bias methods assume 
each study in the meta-analysis to estimate the same true effect size. This implies 
that no heterogeneity in true effect size is allowed, which is especially uncommon 
in clinical psychology research where studies in psychotherapy research are, for 
instance, administered at different locations and by different therapists. Moreover, 
many disorders are heterogeneous in their symptom presentation and comorbidity is 
frequent (e.g., Deisenhofer et al., 2018).

Another complicating factor that is common for meta-analyses in clinical psy-
chology research are the small number of studies included in meta-analyses. Meta-
analyses containing less than five studies are not uncommon in medical research 
(e.g., Rhodes et al., 2015; Turner et al., 2015) in general and clinical psychology 
research in particular (Niemeyer et al., 2020). Examining publication bias based on 
such a small number of studies is challenging, because the number of data points in 
the analysis equals the number of studies in the meta-analysis. The two complicat-
ing factors (heterogeneity and small number of studies) are also not unrelated. For 
example, Schumacher et al. (2018) meta-analyzed hormonal dysregulation in post-
traumatic stress disorder (PTSD), but these data of 108 studies and more than 6000 
participants were very heterogeneous. An option was to create subgroups of more 
homogeneous studies and assessing publication bias in these subgroups, but these 
subgroups comprised a very small number of studies.
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Simulation studies tailored to characteristics of meta-analyses on clinical psy-
chology research also confirmed that the conditions were unfavorable for the avail-
able publication bias methods (Niemeyer et al., 2020). However, newly developed 
publication bias methods are better equipped to be applied to meta-analyses that are 
typical for research in clinical psychology. A clear overview of the existing methods 
and software on how to apply these methods is currently lacking in the literature. 
The goal of this chapter is to provide such an overview together with summarizing 
recommendations for applying these methods. Many different publication bias 
methods have been developed, so we focus in this chapter on the most popular 
methods and state-of-the-art methods that have shown to outperform these most 
popular methods. Methods to investigate publication bias can serve two different 
purposes: first to estimate an effect size in the presence of publication bias, and 
second to assess the degree of publication bias. Publication bias methods for both 
purposes will be illustrated using the statistical software R (R Core Team, 2020) and 
by applying these to two examples that are typical for meta-analyses in clinical 
psychology.

We continue this chapter by introducing the statistical software R. Subsequently, 
we will describe graphical methods to assess publication bias, methods to correct 
effect size estimates for publication bias, and methods to assess the presence of 
publication bias in a meta-analysis. These methods will be applied to a meta-
analysis on the efficacy of cognitive-behavior therapy (CBT) for treating pathologi-
cal and problem gambling (Cowlishaw et  al., 2012) and a meta-analysis on the 
added value of collaborative care for patients with depression or anxiety problems 
(Archer et al., 2012). Both meta-analyses provide paradigmatic examples, because 
CBT is a guideline-recommended treatment for most disorders (David et al., 2018), 
and second, depression and anxiety are among the most prevalent disorders (Alonso 
et al., 2004). The chapter ends with recommendations for clinical psychologists on 
how to deal with publication bias in meta-analyses.

�Software

The publication bias methods that are discussed in this chapter are illustrated using 
the statistical software R (Version 4.0.3; R Core Team, 2020). R is free and open-
source programming software with a primary focus on statistical computing and 
creating graphics. An important feature of R is that researchers can contribute to the 
software by developing so-called packages that can easily be loaded in R. Packages 
contain all sorts of functions to, for example, run statistical analyses and visualize 
data. After downloading R via https://cran.r-project.org/ and installing it, packages 
can be downloaded and installed by running the R code

install.packages("PACKAGE")
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where PACKAGE needs to be replaced by the name of the package you want to 
download and install. The functions in a package become available by loading it 
using the R code

library("PACKAGE")
 

A popular R package for conducting meta-analyses is metafor (Viechtbauer, 
2010). This package (Version 2.5.60) will be used throughout this chapter, because 
it contains besides functions for conducting meta-analyses also functions for apply-
ing a large number of publication bias methods. However, we sometimes have to 
rely on other packages if a particular method is not included in the metafor pack-
age, which will be introduced when explaining these methods.

Note that we make excessive use of R for applying publication bias methods in 
this chapter, but familiarity with R or programming experience is not a prerequisite. 
All R code will be provided for applying the publication bias methods such that this 
code can be easily used by interested readers who want to apply these methods to 
their own data. An annotated version of all the codes used in this chapter is also 
available at https://osf.io/qjk9b/. Readers who want to learn more about R are 
referred to https://cran.r-project.org/doc/manuals/R-intro.pdf for an elaborate intro-
duction or introductory books on R such as Matloff (2011) and Teetor (2011).

�Examples

�Example 1: Cowlishaw et al. (2012)

The publication bias methods will be applied to two meta-analyses that are typical 
for meta-analyses in clinical psychology research. The first meta-analysis synthe-
sizes seven studies on the efficacy of CBT for treating pathological and problem 
gambling (analysis 1.2 in Cowlishaw et al., 2012). For each study, a standardized 
mean difference (i.e., Hedges’ g) is computed that compares the difference in finan-
cial loss of patients who received CBT in the last three months with a control group. 
A positive standardized mean difference indicates that the financial loss was smaller 
in the group of patients who received CBT compared to those in the control group.

Cowlishaw et al. (2012) fitted a random-effects model to the included studies in 
the meta-analysis and, therefore, assumed that each study had its own unique true 
effect size (for an elaborate description of the random-effects model see Borenstein 
et  al., 2010). This random-effects model can also be fitted to the data using the 
metafor package after creating two vectors1 containing the standardized mean 

1 A vector is R terminology for a particular data structure that contains in our case seven numeric 
values with the studies’ standardized mean difference (yi) and corresponding sampling vari-
ance (vi).
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differences and corresponding sampling variances (i.e., squared standard errors). 
The vectors are named yi and vi and can be created using

yi <- c(0.587, 0.706, 0.552, 0.515, 0.566, 0.291, 0.989)

vi <- c(0.076, 0.067, 0.074, 0.217, 0.047, 0.028, 0.157)
 

the vectors are subsequently be used in the rma() function of the metafor 
package to fit the random-effects model,

res <- rma(yi = yi, vi = vi)
 

where the results are stored in the R object res. The average effect size in this 
meta-analysis was 0.519 with 95% confidence interval (CI) equal to (0.332; 0.706), 
and the null-hypothesis of no effect is rejected (z  =  5.432, two-tailed p-value 
<0.001). The estimated between-study variance in true effect size is 0 with 95% CI 
equal to (0; 0.125). The Q-test (Cochran, 1954) for testing the null-hypothesis of no 
heterogeneity is not statistically significant (Q = 3.897, one-tailed p-value is 0.691). 
To conclude, the financial loss of the group of patients who received CBT was 
smaller than in the control group, and the difference between both groups was of 
medium size according to the rules of thumb by Cohen (1988). The between-study 
variance in true effect size was estimated as zero indicating that the studies’ true 
effect size was homogeneous. However, estimation of the between-study variance 
was imprecise due to the small number of studies in the meta-analysis, which is 
apparent in the wide CI.

�Example 2: Archer et al. (2012)

The second example used in this chapter is the meta-analysis by Archer et al. (2012) 
on the added value of collaborative care measured by patient satisfaction for patients 
with depression or anxiety problems. This meta-analysis consists of 24 studies and 
patient satisfaction was reported with a dichotomous variable in each study. The 
effect size measure of interest was a risk ratio (a.k.a. relative risk). The risk ratios 
were first transformed to log risk ratios before synthesizing these, because an 
assumption of common meta-analysis models is that the effect size measure follows 
a normal distribution. This is approximately the case for log risk ratios but not for 
risk ratios.

We follow Archer et al. (2012) by also fitting a random-effects model to these 
data. The estimated average risk ratio was 1.271 (95% CI (1.180; 1.368)), and the 
null-hypothesis of no effect was rejected (z = 6.347, two-tailed p-value <0.001). The 
between-study variance was estimated as 0.021 (95% CI (0.009; 0.070)), and the 
null-hypothesis of no heterogeneity was rejected (Q = 83.580, one-tailed p-value 
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<0.001). These results show that patients receiving collaborative care were more 
satisfied than patients receiving the usual care. The true effect sizes were heteroge-
neous, so the effectiveness of collaborative care varied across studies.

We have presented the results of the two meta-analyses when using conventional 
meta-analysis methods that do not correct for publication bias in this section. We 
will compare these results to those obtained with publication bias methods later in 
this chapter. We continue by explaining the publication bias methods that are also 
summarized in Table 10.1.

�Graphical Methods to Assess Publication Bias

�Funnel Plot

A regularly reported figure for assessing publication bias in a meta-analysis is the 
funnel plot (Light & Pillemer, 1984). A funnel plot of the meta-analysis by 
Cowlishaw et a. (2012) is presented in the left panel of Fig. 10.1.2 The x-axis of a 
funnel plot shows the observed effect sizes of the studies included in the meta-
analysis, and a measure of the studies’ precision is depicted on the y-axis. The stan-
dard error is displayed on the y-axis of the funnel plot in Fig.  10.1, but other 
measures of a study’s precision can also be displayed (e.g., sampling variance, 
sample size, or the inverse of the standard error). A funnel plot can be created using 
the funnel () function incorporated in the metafor package by using the code

funnel(res)
 

where res is the object that was created earlier when conducting the random-
effects meta-analysis.

Publication bias can be assessed using a funnel plot by examining whether the 
studies resemble the shape of an inverted funnel. Some studies in the left bottom 
corner are missing in the funnel plot in the left panel of Fig. 10.1 to closely resemble 
an inverted funnel. This implies that studies with a negative observed effect size 
might be suppressed from being published in the literature, and therefore could not 
be included in the meta-analysis. It is important to emphasize that funnel plots not 
resembling an inverted funnel can also be caused by other factors than publication 
bias. An asymmetric funnel plot is indicative for larger observed effect sizes going 
along with larger imprecision (i.e., larger standard errors) of studies. These 
so-called small-study effects (Egger et al., 1997) may be caused by publication bias 
but also by other factors such as heterogeneity in true effect size. Heterogeneity is 
common for meta-analyses in clinical psychology, so prudence is in order when 

2 The funnel plot based on the data of the meta-analysis by Archer et al. (2012) is available in the 
annotated R codes (https://osf.io/qjk9b/)
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Table 10.1  Summary of the methods described in this chapter

Description
Characteristics/
Recommendations R function

Graphical methods:

Funnel plot Figure displaying the 
relation between effect 
size and their precision 
(so-called small-study 
effects).

Small-study effects can be 
caused by publication bias but 
also by other factors. Eyeballing 
a funnel plot is subjective, so 
funnel plot asymmetry tests are 
recommended instead.

funnel() in 
metafor

Meta-plot Figure displaying the 
results of cumulative 
meta-analysis with 
studies ordered by their 
precision.

The meta-plot can be used for 
assessing small-study effects 
and publication bias, and it is an 
improvement over the funnel 
plot.

meta_plot() in 
puniform

Correcting effect size for publication bias:

Top 10% and 
WAAP

Meta-analysis based on 
the 10% most precise 
and adequately powered 
studies.

Methods only perform well if 
there is no heterogeneity and 
many studies may be discarded 
from the meta-analysis.

rma() in 
metafor
after selecting 
studies

Trim-and-fill Corrects for small-study 
effects by imputing 
studies in the funnel plot 
until symmetry is 
reached.

Method is discouraged to be 
used, because it falsely imputes 
studies if heterogeneity is 
present and is outperformed by 
other methods.

trimfill() in 
metafor

PET-PEESE Estimate corrected for 
small-study effects is the 
intercept of regressing 
the effect size on either 
the standard error or 
sampling variance.

Method is discouraged to be 
applied in case of less than 10 
studies and similar precisions of 
the studies.

Regression model 
fitted with lm() 
depending on 
whether true effect 
is zero

p-uniform 
and p-curve

Estimate equals the value 
where the p-value 
distribution of only the 
significant studies is 
uniform.

Methods recommended to be 
applied when heterogeneity is 
less than moderate.

puniform() in 
puniform for 
p-uniform

p-uniform∗ Extension of p-uniform 
that does not discard 
nonsignificant studies 
and allows 
heterogeneous effects.

Method is discouraged to be 
applied if publication bias is 
extreme and there are only 
significant studies.

puni_star() in 
puniform

Weight-fun. Corrected estimates 
obtained by estimating 
and incorporating 
weights of studies that 
reflect the extent of 
publication bias.

Method is discouraged to be 
applied if publication bias is 
extreme and there are only 
significant studies. Convergence 
problems may arise in case of a 
small number of studies.

weightfunct() 
in weightr

(continued)
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Table 10.1  (continued)

Description
Characteristics/
Recommendations R function

Assessment of publication bias:

Fail-safe N Computes the number of 
studies that are needed to 
make the null-hypothesis 
of no meta-analytic 
effect nonsignificant.

Method is discouraged to be 
used due to, for example, the 
assumptions of no heterogeneity 
and missing studies having an 
effect of zero.

fsn() in 
metafor

Funnel plot 
asymmetry 
tests

Rank-correlation and 
Egger’s regression test 
for small-study effects in 
a funnel plot.

Tests for small-study effects 
rather than publication bias. 
Methods are recommended to 
be applied with at least 10 
studies in the meta-analysis.

ranktest() and 
regtest() in 
metafor

Test of excess 
significance 
(TES)

Tests whether more 
statistical significant 
studies are observed than 
expected based on their 
power.

Method is discouraged to be 
applied in case of heterogeneity 
and is known to be conservative.

tes() in 
metafor

Publication 
bias tests 
selection 
models

p-uniform and weight-
function model test 
difference between 
models corrected and not 
corrected for publication 
bias.

p-uniform’s test is conservative 
if true effect size is large. 
Properties of the test of the 
weight-function model are 
currently unknown.

puniform() in 
puniform and 
weightfunct() 
in weightr

Note: WAAP weighted average of the adequately powered studies, PET precision-effect test, 
PEESE precision-effect estimate with standard error, Weight-fun. weight-function model

Funnel plot Contour−enhanced funnel plot
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Fig. 10.1  Funnel plot (left panel) and contour-enhanced funnel plot (right panel) for the meta-
analysis by Cowlishaw et al. (2012)
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concluding that publication bias is present solely based on visually inspecting a 
funnel plot.

Another reason why meta-analysts should be cautious when drawing conclu-
sions by inspecting funnel plots is that funnel plots can be misleading. Based on a 
large number of funnel plots, researchers correctly identified publication bias in 
only 52.5% of the funnel plots (Terrin et al., 2005). Moreover, changing the study’s 
precision on the y-axis may also have a major impact on the on the shape of the fun-
nel plot. The contour-enhanced funnel plot (Peters et al., 2008) was proposed to 
counteract the drawbacks of the funnel plot. The contour-enhanced funnel plot of 
the meta-analysis by Cowlishaw et al. (2012) is presented in Fig. 10.1 and modifies 
the funnel plot in two important ways. First, the contour-enhanced funnel plot is 
always centered at an effect size of zero, whereas the funnel plot is centered at the 
meta-analytic effect size estimate. Second, contour lines are added to the plot 
reflecting the p-values of studies. That is, studies in the white area of the contour-
enhanced funnel plot have two-tailed p-values between 0.1 and 1, whereas studies 
in the dark gray, gray, and outside the funnel have two-tailed p-values in the inter-
vals 0.05 and 0.1, 0.01 and 0.05, and 0 and 0.01, respectively. These contour lines 
help evaluating whether publication bias is the cause of funnel plot asymmetry, 
because they show whether statistically nonsignificant studies are missing in the 
meta-analysis. A contour-enhanced funnel plot can also be created using the fun-
nel() function,

funnel(res, refline = 0, level = c(90, 95, 99),
shade = c("white", "gray55", "gray75"))

 

where refline = 0 is the center of the funnel, level = c(90, 95, 99) 
defines the contour lines, and shade = c("white," "gray55," "gray75") 
specifies the colors of the areas created by adding the contour lines.

�Meta-plot

Another graphical method that was recently proposed to assess publication bias in a 
meta-analysis is the meta-plot (Van Assen et al., 2022). The meta-plot of the meta-
analysis by Cowlishaw et al. (2012) is shown in Fig. 10.2. It shows the precision of 
a study (i.e., reciprocal of its standard error) on the x-axis and the effect size on the 
y-axis. The circles in the meta-plot are the average effect size estimates of a cumula-
tive random-effects meta-analysis. In a cumulative meta-analysis (Lau et al., 1992), 
multiple meta-analyses are conducted where the first meta-analysis is based on a 
single study and in each subsequent meta-analysis a study is added. The order of the 
studies being added to the cumulative meta-analysis in the meta-plot is based on 
studies’ precision. That is, the rightmost dot is the meta-analysis based on only the 
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Fig. 10.2  Meta-plot of the meta-analysis by Cowlishaw et al. (2012)

study that is most precise and the leftmost dot is the meta-analysis based on all stud-
ies. Each dot is accompanied by its 95% CI. The meta-plot in Fig. 10.2 shows a 
decreasing trend in the cumulative meta-analysis from left to right. This is indicative 
for small-study effects, because the average effect size estimate of the meta-analysis 
based on all studies is larger than meta-analyses based on more precise studies. An 
advantage of the meta-plot over the funnel plot is that small-study effects are more 
visible as the effect size in the plot refers to the results of meta-analyses rather than 
individual studies.

The meta-plot also contains other relevant information for meta-analysts. First, it 
states the percentage of statistically significant results in the meta-analysis (71.4% 
in the meta-analysis of Cowlishaw et  al. (2012)). Second, it shows information 
about the statistical power of the studies in the meta-analysis at the top of the plot. 
The leftmost percentage indicates the percentage of studies whose statistical power 
was insufficient (less than 80%) to detect a large population effect. The remaining 
three percentages at the top of the plot describe the percentages of studies with suf-
ficient statistical power to detect a large (L), medium (M), and small (S) effect, 
respectively. Finally, the asterisks in the meta-plot refer to the expected estimates in 
the cumulative meta-analysis if the population effect size is zero in combination 
with extreme publication bias (i.e., only statistically significant studies get pub-
lished). Asterisks that are larger than the dots imply that the results of the meta-
analysis can also be explained by extreme publication bias in combination with no 
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effect. This is the case for the meta-plot in Fig. 10.2, so authors are recommended 
to be cautious when interpreting the results of this meta-analysis.

Functions for creating the meta-plot are available in the R package puniform 
(Version 0.2.3; Van Aert, 2020). After installing and loading this package as 
described above, the meta-plot can be created using the code

meta_plot(m1i = m1i, m2i = m2i, n1i = n1i, n2i = n2i, sd1i = sd1i,
sd2i = sd2i, pub_bias = TRUE)

 

where m1i, n1i, and sd1i are the study’s mean, sample size, and standard 
deviation of patients receiving usual care and m2i, n2i, and sd2i are the study’s 
mean, sample size, and standard deviation of patients receiving collaborative care.3 
Setting the argument pub_bias to TRUE makes sure that the asterisks are plotted.

The above introduced funnel plot and meta-plot enable to visually inspect 
whether small-study effects or publication bias are present in a meta-analysis. For 
an applied researcher, it is usually more of interest what the impact is of these biases 
on the results of a meta-analysis. In the next section, we will introduce methods that 
can be used for this purpose.

�Methods to Estimate Effect Size in the Presence 
of Publication Bias

�WAAP and Top 10%

Two intuitive approaches to estimate the effect size in the presence of publication 
bias are the weighted average of the adequately powered (WAAP) studies (Ioannidis 
et al., 2017) and the Top 10% approach (Stanley et al., 2010). Both approaches rest 
on the idea that the effect sizes of the most precise studies (i.e., studies with the larg-
est sample size) in a meta-analysis are less overestimated due to publication bias. 
Less precise studies are more vulnerable to publication bias, because overestimation 
of effect size needs to be larger in these studies in order to be statistically significant. 
The WAAP uses this idea by meta-analyzing only the studies whose statistical 
power to reject the null hypothesis of no effect is larger than 80%.4 The Top 10% 
does not take statistical power into account, but meta-analyzes only the 10% most 
precise studies. Others have argued to not focus on the 10% most precise studies but 
interpret the study with the largest precision as the best effect size estimate if publi-
cation bias is present (Ioannidis, 2013). Although, the intuition of these approaches 

3 The study’s mean, sample size, and standard deviation of both groups are available on page 73 of 
Cowlishaw et al. (2012).
4 Statistical power of the studies is computed using the estimate of the fixed-effect model as proxy 
for the true effect size and a two-tailed hypothesis with significance level 0.05 (Stanley et al., 2017).
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is appealing, they should only be used if there is no heterogeneity in the meta-
analysis. Drawing conclusions based on only a subset of studies is ill-advised in 
case of heterogeneity, because the true effect size of studies is different, and a subset 
of studies is not a good representation of all studies in the meta-analysis.

�Trim-and-fill

The trim-and-fill method (Duval & Tweedie, 2000a, 2000b) is the most often used 
method to correct effect size for publication bias. The trim-and-fill method is an 
iterative procedure that trims the most extreme effect sizes from the right hand side 
of the funnel plot and fills these in the funnel plot until it is symmetric. The meta-
analytic estimate corrected for bias is the estimate based on the observed studies as 
well as the imputed studies. The left panel of Fig. 10.3 visually shows the procedure 
for the meta-analysis of Cowlishaw et al. (2012) where the solid and open circles 
are the observed and filled studies, respectively.

Multiple researchers have criticized the trim-and-fill method and discourage 
meta-analysts to use the method. A prevalent issue with the trim-and-fill method is 
that it is based on the funnel plot and therefore actually corrects for small-study 
effects rather than publication bias. Simulation studies have confirmed that the trim-
and-fill method yields misleading results if heterogeneity is present in a meta-
analysis (Peters et al., 2007; Terrin et al., 2003). Moreover, the trim-and-fill method 
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Fig. 10.3  Illustration of the trim-and-fill method (left panel) and the PET-PEESE method (right 
panel) when applied to the meta-analysis by Cowlishaw et al. (2012). The dashed line in the right 
panel refers to the PET analysis and the solid line to the PEESE analysis
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is outperformed by other methods (e.g., Van Assen et al., 2015; Moreno et al., 2009; 
Simonsohn et al., 2014) that will be discussed next making it a method that should 
better be avoided. Nevertheless, if researchers want to report the results of the trim-
and-fill method in their meta-analysis, they can apply the method using this 
line of code

trimfill(res)
 

�PET-PEESE

Another method that uses the relationship between studies’ effect size and precision 
is the PET-PEESE method (Moreno et al., 2009; Stanley & Doucouliagos, 2014). 
PET-PEESE is a combination of two distinct methods: the precision-effect test 
(PET) and the precision-effect estimate with standard error (PEESE). The rationale 
of this method can best be explained by the funnel plot based on the meta-analysis 
by Cowlishaw et al. (2012) in the right panel of Fig. 10.3. PET and PEESE both fit 
a regression line through the points in the funnel plot. The lines of PET (dashed line) 
and PEESE (solid line) in Fig. 10.3 are based on a linear regression with the study’s 
standard error and sampling variance as predictor, respectively. The effect size esti-
mates of PET and PEESE are the values where the slope of the regression line is 0 
(i.e., the estimate of the intercept). This occurs in the right panel of Fig. 10.3 at the 
top of the funnel plot where the lines end, because this is the point where the stan-
dard error equals zero. The rationale of both methods is that these estimates resem-
ble a study with an infinite sample size, and they are therefore expected to be closer 
to the true effect size than conventional meta-analysis.

The PET-PEESE method is a combination of PET and PEESE, because simula-
tion studies have shown that PEESE is the least biased when the true effect is differ-
ent from zero (Stanley & Doucouliagos, 2014). Hence, it was proposed to first test 
whether the null-hypothesis of no effect is rejected in PET using a one-tailed test 
and significance level of 10%, and then interpret the estimate of PET if this test is 
not statistically significant and the estimate of PEESE if it is significant (Stanley, 
2017). Limitations of the method are that it actually corrects the effect size for 
small-study effects rather than publication bias. Hence, the method becomes biased 
if there is large heterogeneity in a meta-analysis (Alinaghi & Reed, 2018). Moreover, 
applying the method is also discouraged if there are less than 10 studies in the meta-
analysis or the precision of the studies are similar, because this makes it difficult to 
fit the regression lines and results in an imprecise estimate (Niemeyer et al., 2020; 
Stanley et al., 2017; Stanley, 2017).

PET can be applied using the following line of code

lm(yi ~ I(sqrt(vi)), weights = 1/vi)
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where yi ~ I(sqrt(vi)) specifies that the effect size is regressed on the 
standard error and weights = 1/vi make sure that studies in the analysis are 
weighted by the reciprocal of their sampling variance. If the null hypothesis of no 
effect is statistically significant in PET, PEESE can be applied using the code

lm(yi ~ vi, weights = 1/vi)
 

�Selection Model Approaches

Selection model approaches are nowadays seen as the state-of-the-art methods to 
correct for publication bias in a meta-analysis (McShane et al., 2016). These selec-
tion model approaches assign weights to studies to take into account that some stud-
ies are less likely to be published than others. For example, statistical nonsignificant 
studies will most likely receive a larger weight than significant studies to compen-
sate for nonsignificant studies being less likely to be published. These weights are 
then taken into account when meta-analyzing studies using a conventional meta-
analysis model such as the random-effects model that does not correct for publica-
tion bias.

Selection model approaches were known to suffer from convergence problems if 
less than 100 studies are included in a meta-analysis (e.g., Borenstein et al., 2009; 
Terrin et al., 2003). However, these convergence problems were less of an issue in 
recent studies (Carter et al., 2019; McShane et al., 2016; Van Aert & Van Assen, 
2022), which was probably caused by the development of new selection model 
approaches in combination with improved software implementation. Many different 
selection model approaches exist (for an overview see Marks-Anglin and Chen 
(2020), Jin et  al. (2014), and the supplements of Van Aert and Van Assen et  al. 
(2022)) that mainly differ on how the weights of the studies are computed. We will 
focus in this book chapter on three selection model approaches that do not require 
the meta-analyst to make sophisticated choices and are therefore easy to implement, 
have shown to outperform the existing methods that were introduced above, or are 
regularly used in practice.

�P-uniform and p-curve

P-uniform (Van Assen et al., 2015) and p-curve (Simonsohn et al., 2014) are two 
methods based on the same methodology that slightly differ in how they are imple-
mented (for a description of the differences see Van Aert et al., 2016). Both methods 
correct for publication bias in a meta-analysis by only focusing on the statistically 
significant studies and discarding the nonsignificant studies. The methods use the 

10  Publication Bias



228

distribution of statistically significant p-values for effect size estimation. The esti-
mate of both methods equals zero if this p-value distribution is uniformly distrib-
uted under the null-hypothesis. A p-value distribution with small p-values being 
overrepresented is indicative for an effect larger than zero, whereas a distribution 
with an overrepresentation of p-values close to the significance level is evidence for 
an effect smaller than zero. The effect size estimate of p-uniform and p-curve is 
obtained by means of an iterative procedure to find the effect size where the p-
values are uniformly distributed. The methods assume that each statistically signifi-
cant study is equally likely to be published (i.e., the same weight for each study).

P-uniform and p-curve have shown to yield accurate estimates in the presence of 
publication bias and homogeneous true effect size and outperformed the trim-and-
fill method (Simonsohn et al., 2014; Van Assen et al., 2015). However, the methods 
overestimate effect size if a meta-analysis is heterogeneous (Carter et  al., 2019; 
McShane et al., 2016; Van Aert et al., 2016). For that reason, Van Aert et al. (2016) 
recommended to only interpret the effect size estimate of both methods as the esti-
mate of the population effect if the true effect sizes are homogeneous or if heteroge-
neity is less than moderate.5 Another limitation of the methods is that effect size 
estimates may become unrealistically low in case of p-uniform or peculiar in case 
of p-curve if a preponderance of studies has p-values just under the significance 
level (Van Aert et al., 2016). This may be caused by researchers having used ques-
tionable research practices (a.k.a. p-hacking or researcher degrees of freedom, 
Simmons et al., 2011; Wicherts et al., 2016) in the studies to get p-values below the 
threshold of statistical significance.

We only show how p-uniform can be applied, because there is no R package that 
contains functions for applying p-curve and, in contrast to p-curve, a publication 
bias test and 95% CIs have been developed for p-uniform. P-uniform can be applied 
by using the puniform() function in the puniform package,

puniform(yi = yi, vi = vi, side = "right")
 

where side = "right" specifies that the method should be applied to the 
studies that are statistically significant based on a right-tailed test. Specifying side 
= "left" allows applying p-uniform to studies that are based on a left-tailed test.

5 Moderate heterogeneity is defined in terms of the I2-statistic that is commonly used in meta-
analysis to quantify the heterogeneity. The I2-statistic (Higgins & Thompson, 2002) indicates the 
proportion of total variance that can be attributed to heterogeneity in true effect size. Moderate 
heterogeneity is I2 = 0.5 according to the rules-of-thumb proposed in Higgins et al. (2003).
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�P-uniform*

The p-uniform* method (Van Aert & Van Assen, 2022) is an extension of p-uniform 
that solves the problem of overestimation of effect size if there is heterogeneity in a 
meta-analysis. Furthermore, it also enables, in contrast to p-uniform and also 
p-curve, estimation of heterogeneity and testing the null-hypothesis of no heteroge-
neity. P-uniform* is based on the same rationale as p-uniform and p-curve, but also 
includes statistically nonsignificant studies. That is, the method implicitly assigns 
different weights to statistically significant and nonsignificant studies by taking into 
account the likelihood of a study getting published given its statistical (non)signifi-
cance (for technical details see Van Aert & Van Assen, 2022). An important assump-
tion of p-uniform* is that all statistically significant studies are assumed to be 
equally likely published and the same holds for all statistically nonsignificant stud-
ies. This implies that studies with statistically nonsignificant p-values of, for 
instance, 0.1 and 0.9 are assumed to be published with the same probability, but that 
this probability might differ for a study with a statistically significant p-value 
of 0.04.6

A recent simulation study (Van Aert & Van Assen, 2022) has shown that p-
uniform* is indeed an improvement over p-uniform if heterogeneity is present and 
both statistically significant and nonsignificant studies are included in a meta-
analysis. Researchers should, however, be cautious when interpreting the results of 
p-uniform* when publication bias is expected to be extreme in combination with 
only statistically significant studies in a meta-analysis. P-uniform*’s performance 
was not good in this condition and was outperformed by p-uniform if there was no 
heterogeneity. P-uniform* might also yield a very negative effect size estimate if 
many studies with p-values just below the significance threshold are included, but 
this was less of a problem than with p-uniform due to the inclusion of also statisti-
cally nonsignificant studies in p-uniform*.

P-uniform* can be applied by using the puni_star() function included in the 
puniform package,

puni_star(yi = yi, vi = vi, side = "right")
 

6 Research is currently ongoing to study whether this assumption can be relaxed by not only weigh-
ing statistically significant and nonsignificant studies differently in p-uniform* but also allow more 
complex weighting schemes. For example, marginally significant studies (i.e., studies with p-val-
ues just above the significance threshold) may have a different probability of being published than 
other nonsignificant studies. Weighing these studies differently may improve estimation and draw-
ing inferences.
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�Weight-function Model

The weight-function model (Hedges, 1992; Vevea et al., 1993) also enables estima-
tion of the average effect size as well as between-study variance in a meta-analysis. 
The method creates intervals based on p-values, and then estimates the weights for 
the studies with p-values belonging to these intervals. Studies in the same interval 
get the same weight in the weight-function model. The intervals have to be specified 
by the meta-analyst and a reasonable choice is to create two intervals such that sta-
tistically significant and nonsignificant studies are treated differently. This model 
with two intervals is sometimes also referred to as the three-parameter selection 
model, because three parameters are estimated: the average effect size, between-
study variance in true effect size (i.e., heterogeneity), and the relative weight speci-
fying how much less likely a statistically nonsignificant study is published compared 
to a significant study.

The weight-function model outperformed the trim-and-fill method, p-uniform, 
and p-curve in simulation studies (Carter et  al., 2019; McShane et  al., 2016). A 
recent study (Van Aert & Van Assen, 2022) comparing the weight-function model to 
p-uniform* revealed that the performance of both methods was comparable. 
Performance of the weight-function model was, just as of p-uniform*, not good in 
case of extreme publication bias in combination with only statistically significant 
studies in a meta-analysis, so the method is not recommended to be applied in meta-
analyses with these characteristics. The weight-function model requires, in contrast 
to p-uniform, p-curve, and p-uniform*, estimation of the weights of the studies. 
This may cause convergence problems if a small number of studies is included in 
some of the intervals. Furthermore, Hedges and Vevea (1996) showed that estima-
tion of the weights is often inaccurate, but that this hardly affected estimation of the 
average effect size and heterogeneity.

The weight-function model can be applied by using the weightfunct() 
function in the weightr package (Version 2.0.2, Coburn & Vevea, 2016),

weightfunct(effect = yi, v = vi)
 

where the study’s effect sizes and corresponding sampling variances can be sup-
plied using the arguments effect and v, respectively.

�Assessment of Publication Bias

We focused in the previous section on methods to correct for bias in the meta-
analysis. Meta-analysts might, however, also want to quantify whether publication 
bias is likely present in their meta-analysis or test whether the hypothesis of no 
publication bias is rejected. We discuss methods for these purposes in this section.
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�Fail-safe N

The most popular method to study the impact of publication bias in a meta-analysis 
is the fail-safe N method (Rosenthal, 1979). This method quantifies how many stud-
ies with an effect size of zero need to be added to a meta-analysis such that the 
meta-analytic effect size changes from being statistically significant to nonsignifi-
cant. Publication bias is unlikely if the fail-safe N is large, because many studies 
with an effect size of zero are then needed to no longer reject the null-hypothesis of 
no effect in the meta-analysis.

The fail-safe N method has been heavily criticized (e.g., Becker, 2005; Iyengar 
& Greenhouse, 1988; Orwin, 1983; Scargle, 2000; Schonemann & Scargle, 2008) 
for multiple reasons. First, the method does not take the sample size of studies into 
account by treating all studies as if they are equally precise. Second, there is no clear 
criterion defining what a large fail-safe N is. Third, only studies with an effect size 
of zero are assumed to be missing.

For this reason, Orwin (1983) extended the fail-safe N method by allowing meta-
analysts to specify an average effect size of the missing studies that may differ from 
zero, and allowing computing the number of studies needed to get a meta-analytic 
estimate smaller than a user-specified effect size. A drawback of the originally pro-
posed fail-safe N method as well as Orwin’s extension is that heterogeneity in the 
meta-analysis is not taken into account, because all missing studies are assumed to 
have a common effect size. Due to these limitations, the fail-safe N method and 
Orwin’s extension are discouraged to be used (Becker, 2005; Jin et al., 2014; Vevea 
& Woods, 2005), and meta-analysts are referred to other methods that will be dis-
cussed next. Nevertheless, the fail-safe N can be computed using

fsn(yi = yi, vi = vi)
 

�Funnel Plot Asymmetry Tests

The funnel plot introduced earlier can be used to examine visually whether small-
study effects are present in a meta-analysis. However, eyeballing a funnel plot to 
assess small-study effects is known to be difficult (Terrin et  al., 2005). Hence, 
hypothesis tests were developed to test whether a funnel plot is asymmetric and thus 
small-study effects are present in a meta-analysis. The rank-correlation test (Begg 
& Mazumdar, 1994) tests whether the Kendall’s rank correlation between the stud-
ies’ effect sizes and sampling variances differs from zero after first stabilizing the 
sampling variances by standardizing the effect sizes (for technical details see Begg 
& Mazumdar, 1994). A positive correlation implies that large effect sizes go along 
with large sampling variances and is indicative for small-study effects.

Another funnel plot asymmetry test is Egger’s regression test (Egger et al., 1997) 
that actually formed the basis of the PET-PEESE method to correct effect size 
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estimates. In Egger’s regression test, the slope of the regression line fitted by apply-
ing PET is tested for statistical significance, and evidence for small-study effects is 
observed if this slope is significantly larger than zero. Egger’s regression test has 
been modified in various ways where especially other predictors than the studies’ 
standard error are used as predictor (for an overview see Jin et al., 2014).

Simulation studies have shown that statistical power of Egger’s regression test is 
generally larger than of the rank-correlation test (Sterne et  al., 2000). However, 
statistical power of both methods is low when a small number of studies are included 
in the meta-analysis (Deeks et al., 2005; Macaskill et al., 2001). Hence, both meth-
ods are recommended to be only applied if a meta-analysis contains more than ten 
studies (Sterne et al., 2011), and a significance level of 0.1 is recommended to be 
used for hypothesis testing (Egger et al., 1997). Another limitation of funnel plot 
asymmetry tests is that these, just as the funnel plot itself and other methods based 
on the funnel plot, test whether small-study effects are present and not explicitly test 
for publication bias.

The rank-correlation test can be applied using the following code

ranktest(res)
 

Egger’s regression test is incorporated in the PET analysis when testing whether 
the slop coefficient is statistically significant and can also be obtained using the code

regtest(res)
 

�Test of Excess Significance

The test of excess significance (TES, Ioannidis & Trikalinos, 2007) tests whether 
more studies in a meta-analysis are statistically significant than expected. The 
expected number of statistically significant studies is obtained by taking the sum of 
each study’s statistical power given that the meta-analytic effect size estimate is the 
true effect size. A hypothesis test (e.g., an exact, binomial, or Pearson’s χ2-test) can 
subsequently be used to test whether the observed number of statistically significant 
studies is larger than expected.

A problem with the TES is that the expected number of statistically significant 
studies is based on the meta-analytic effect size estimate that is likely to be overes-
timated if publication bias is present. Consequently, the statistical power of the stud-
ies and, in turn, also the expected number of statistically significant studies will be 
overestimated. This has also been observed in simulation studies where the TES 
was conservative (Francis, 2013; Van Assen et  al., 2015; Vandekerckhove et  al., 
2013). Hence, it is recommended to apply the TES using 0.1 as significance level 
(Ioannidis & Trikalinos, 2007). It is important to emphasize that publication bias is 
not the only cause of an excess of significant studies. Another reason is considerable 
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heterogeneity, and the TES is therefore advised to be not applied when this is pres-
ent in a meta-analysis (Ioannidis & Trikalinos, 2007).

The TES can be applied using the code

tes(res)
 

�Publication Bias Tests Based on Selection Model Approaches

The selection model approaches p-uniform and the weight-function model also 
implemented publication bias tests. In these methods, the estimated model that cor-
rects for publication bias is compared with the conventional meta-analysis model 
that does not correct for bias. A statistically significant difference between these two 
models indicates that a selection model approach better fits the data, and that publi-
cation bias might be present.

Simulation studies have shown that p-uniform’s publication bias test is conserva-
tive if the true effect size is large, and that statistical power of p-uniform’s test was 
generally higher than of TES except for meta-analyses with a large true effect and 
more than 30 studies in the meta-analysis (Renkewitz & Keiner, 2019; Van Assen 
et al., 2015). The properties of the publication bias test of the weight-function model 
are unknown and are therefore topic for future research. These publication bias tests 
are reported in the output of p-uniform and the weight-function model that can be 
obtained by applying these methods as described in the section on correcting effect 
size estimation corrected for bias.

�Applying Methods to Examples

We apply the described methods to the earlier introduced meta-analyses of 
Cowlishaw et al. (2012) and Archer et al. (2012). Annotated R code of all analyses 
is available at to facilitate the application of these methods.

�Example 1: Cowlishaw et al. (2012)

Table 10.2 shows the earlier described results of applying the random-effects meta-
analysis to the data of Cowlishaw et al. (2012), and the results of the methods that 
correct for bias. This meta-analysis only contains seven studies and is therefore 
typical for meta-analyses in clinical psychology. All methods that estimate the 
between-study variance in true effects estimate it as zero and testing the null-
hypothesis of homogeneity is for none of the methods statistically significant. 
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Hence, the results of the methods that require homogeneous true effect size in the 
meta-analysis (WAAP, Top 10%, trim-and-fill, and p-uniform) can also be safely 
interpreted. Note that some results regarding estimation and testing the between-
study variance are missing in Table 10.2 and denoted by “-,” because these results 
could not be computed or are not reported by the methods.

The average effect size estimate of all methods was closer to zero than of the 
random-effects model. The smallest correction was by trim-and-fill that imputed 
three missing studies and the largest correction was by PET-PEESE that yielded an 
estimate close to zero. The results of WAAP and Top 10% have to be interpreted 
with caution, because estimates of these methods were only based on the most pre-
cise study in the meta-analysis. For this reason, the between-study variance in true 
effect size could also not be estimated for these methods. Only trim-and-fill, p-
uniform*, and the weight-function model rejected the null-hypothesis of no effect 
and corroborated the hypothesis test of the random-effects model. Table 10.3 shows 
in the first column the results of the tests for small-study effects and publication 
bias. No method rejected the null hypothesis of no bias in this meta-analysis. 

Table 10.2  Results of applying random-effects meta-analysis and methods to correct for bias to 
the meta-analysis by Cowlishaw et al. (2012)

Overall mean Between-study variance

k
Estimate 
(SE) (95% CI)

Test of no 
effect

Estimate 
(SE) (95% CI)

Test of 
homogeneity

RE 7 0.519 
(0.096)

(0.332;0.706) z = 5.432, 
p < .001

0 (0.035) (0;0.125) Q = 3.897, 
p = .691

WAAP 1 0.291 
(0.168)

(–0.037;0.619) z = 1.737, 
p = .082

–b –b Q = 0, p = 1

Top 10% 1 0.291 
(0.168)

(–0.037;0.619) z = 1.737, 
p = .082

–b –b Q = 0, p = 1

Trim-and-
fill

10 0.430 
(0.083)

(0.267;0.593) z = 5.162, 
p < .001

0 (0.030) (0;0.202) Q = 8.204, 
p = .514

PET-
PEESEa

7 0.084 
(0.195)

(–0.418;0.586) t = 0.430, 
p = .685

–c –c –c

p-uniform 5 0.218 
(–)

(–0.787;0.656) L0 = –0.672, 
p = .251

–c –c –c

p-uniform* 7 0.394 
(–)

(0.059;0.721) L0 = 5.414, 
p = .020

0 (−) (0;0.064) Lhet = 0, p = 1

Weight-
fun.

7 0.328 
(0.156)

(0.022;0.634) z = 2.100, 
p = .036

0 (–b) –b –c

Note: For the random-effects model and Trim-and-fill, between-study variance is estimated with 
the restricted maximum likelihood estimator (Raudenbush, 2009) and corresponding confidence 
intervals are created using the Q-profile method (Viechtbauer, 2007). RE random-effects model, 
WAAP weighted average of the adequately powered studies, PET precision-effect test, PEESE 
precision-effect estimate with standard error, Weight-fun. weight-function model, k number of 
studies in the analysis, SE standard error, CI confidence interval
aResults of PET analysis
–bCould not be computed by the method
–cEstimation or testing of the between-study variance is not included by the method
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However, this may be caused by the small number of studies resulting in low statis-
tical power of these tests. To conclude, correcting for bias yielded estimates closer 
to zero of all methods, and the null hypothesis of no effect was not rejected by some 
methods. Although the tests for bias were not statistically significant, we argue that 
the evidence for CBT resulting in less financial loss of patients is weak at best.

�Example 2: Archer et al. (2012)

Table 10.4 shows the results of effect size estimation and drawing inferences for the 
meta-analysis by Archer et al. (2012). This meta-analysis is typical for clinical psy-
chology, because there is a large amount of heterogeneity in the meta-analysis. All 
methods estimated the between-study variance as positive and rejected the null-
hypothesis of homogeneity. Hence, interpreting the results of the methods that do 
not perform well if large heterogeneity is present should best be avoided (WAAP, 
Top 10%, trim-and-fill, PET-PEESE, and p-uniform) and are only reported for com-
pleteness. The methods that allow large heterogeneity (p-uniform* and the weight-
function model) estimated a lower average effect size than the random-effects model 
that was statistically significant. Estimates of the between-study variance were simi-
lar of the random-effects model and p-uniform* and the weight-function model. 
The rank-correlation test, Egger’s test, and the publication bias test of the weight-
function model were statistically significant (second column of Table 10.3). This 
suggests that small-study effects or publication bias were present and might be the 
cause of the large effect size of the random-effects model compared to the other 
methods. To conclude, there is evidence for bias in the meta-analysis by Archer 
et al. (2012), because tests for small-study effects and publication bias were statisti-
cally significant and the corrected average effect size for bias was smaller than the 
one of the random-effects 611 meta-analysis. However, the effect was larger than 
zero after correcting for bias, so collaborative care appeared to be beneficial for 
patients with depression or anxiety problems.

Table 10.3  Results of applying tests for small-study effects and publication bias to the meta-
analyses of Cowlishaw et al. (2012) and Archer et al. (2012)

Cowlishaw et al. (2012) Archer et al. (2012)

Fail-safe N N = 75 N = 1216
Rank-cor. test τ = 0.238, p = 0.562 τ = 0.391, p = 0.007
Egger’s test z = 1.426, p = 0.154 z = 3.17, p = 0.002
TESa Exact p = 0.192 χ2 = 1.545, p = 0.107
p-uniform Lpb = 1.284, p = 0.100 Lpb = −0.552, p = 0.709
Weight-fun. χ2 = 3.292, p = 0.070 χ2 = 4.687, p = 0.030

Note: aThe default implementation of the Test of Excess Significance (TES) in the tes() function 
was used. Using this implementation an exact test was conducted for the meta-analysis by 
Cowlishaw et al. (2012) and a Pearson’s χ2-test for the meta-analysis by Archer et al. (2012)
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Table 10.4  Results of applying random-effects meta-analysis and methods to correct for bias to the 
meta-analysis by Archer et al. (2012)

Overall mean Between-study variance

k
Estimate 
(SE) (95% CI)

Test of no 
effect

Estimate 
(SE) (95% CI)

Test of 
homogeneity

RE 24 0.240 
(0.038)

(0.166;0.314) z = 6.347, 
p < 0.001

0.021 
(0.010)

(0.009;0.070) Q = 83.580, 
p < 0.001

WAAP 6 0.155 
(0.068)

(0.022;0.289) z = 2.285, 
p = 0.022

0.024 
(0.018)

(0.008;0.164) Q = 47.556, 
p < 0.001

Top 10% 2 0.287 
(0.135)

(0.023;0.550) z = 2.131, 
p = 0.033

0.034 
(0.051)

(0.005;36.862) Q = 16.416, 
p < 0.001

Trim-and-
fill

27 0.210 
(0.041)

(0.130;0.290) z = 5.136, 
p < 0.001

0.029 
(0.012)

(0.016;0.105) Q = 100.725, 
p < 0.001

PET-
PEESEa

24 0.160 
(0.042)

(0.073;0.247) t = 3.835, 
p = 0.001

–
c

–
c

–
c

p-uniform 16 0.240 
(−)

(0.154;0.374) L0 = -4.309, 
p < 0.001

–
c

–
c

–
c

p-uniform* 24 0.175 
(−)

(0.067;0.280) L0 = 9.913, 
p = 0.002

0.015 
(−)

(0.005;0.040) Lhet = 29.502, 
p < 0.001

Weight-
fun.

24 0.148 
(0.057)

(0.036;0.261) z = 2.593, 
p = 0.010

0.017 
(0.009)

(0;0.035) –
b

Note: Estimates and confidence intervals are log-transformed risk ratios. For the random-effects 
model, WAAP, Top 10%, and Trim-and-fill, between-study variance is estimated with the restricted 
maximum likelihood estimator (Raudenbush, 2009) and corresponding confidence intervals are cre-
ated using the Q-profile method (Viechtbauer, 2007). RE random-effects model, WAAP weighted 
average of the adequately powered studies, PET precision-effect test, PEESE precision-effect esti-
mate with standard error, Weight-fun. weight-function model, k number of studies in the analysis, SE 
standard error, CI confidence interval
aResults of PEESE analysis
bCould not be computed by the method
cEstimation or testing of the between-study variance is not included by the method

�Summary

It is of utmost importance to address publication bias in every meta-analysis, which 
has also been advised by MARS (Appelbaum et al., 2018), PRISMA (Moher et al., 
2009), and the Cochrane Collaboration (Page et al., 2019). We believe that publica-
tion bias should also be routinely assessed when developing and revising evidence-
based clinical guidelines, such as the NICE guidelines in the UK or the AWMF 
guidelines in Germany, and when identifying empirically supported treatments 
(ESTs) by the American Psychological Association’s (APA) Division 12 (Tolin 
et al., 2015). In this chapter, we have described methods that can be applied for this 
purpose and summarized recommendations on when to apply each method (see 
Table 10.1).

Clinical psychologists who conduct a meta-analysis often encounter difficulties 
when addressing publication bias, because meta-analyses in clinical psychology are 
usually heterogeneous and contain a small number of studies, which are 

R. C. M. van Aert and H. Niemeyer



237

unfavorable conditions for the vast majority of publication bias methods (Niemeyer 
et al., 2020). However, recent research has shown that selection model approaches 
perform reasonably well when the number of studies in the meta-analysis is at least 
ten (Van Aert et  al., 2019). Despite the promising results of selection model 
approaches, it is important that meta-analysts apply multiple publication bias meth-
ods in a so-called triangulation approach (Coburn & Vevea, 2015; Kepes et  al., 
2012), because there is no publication bias method that outperformed all other 
methods in all conditions (Carter et al., 2019; Renkewitz & Keiner, 2019). Such a 
triangulation approach should be preceded by a performance check to assess which 
methods perform well for the characteristics of the meta-analysis under study 
(Carter et al., 2019; Niemeyer et al., 2020). A performance check can be conducted 
by scrutinizing the literature 636 on publication bias methods or assessing the per-
formance of publication bias methods in a simulation study that resembles the char-
acteristics of the meta-analysis as closely as possible.

We hope that this chapter helps clinical psychologists to apply state-of-the-art 
publication bias methods in their meta-analyses. Application of these publication 
bias methods has high potential for yielding relevant scientific insights, and will 
benefit policy-making and treatment of patients that is commonly based on the con-
clusions of meta-analyses.
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Chapter 11
Avoiding Questionable Research Practices 
Surrounding Statistical Power Analysis

Jolynn Pek, Kathryn J. Hoisington-Shaw, and Duane T. Wegener

Abstract  The purposes of this chapter are to provide statistical justifications and 
illustrations of whether and when statistical power can be used to improve the con-
duct of psychological science, reduce questionable research practices (QRPs), and 
perhaps even detect QRPs. In general, the utility of power analysis in countering 
QRPs is narrower than commonly believed. We begin by reviewing concepts that 
lead to a formal definition of statistical power. We highlight the meaning of the 
probability that a power value quantifies and identify assumptions necessary for 
calculated power values to be accurate. Next, we describe how power analysis can 
be fruitfully applied in the study design phase, emphasizing that power is valid only 
as a pre-study concept (i.e., before a study is implemented). We then examine uses 
of power in the post-study phase, where power values are calculated from collected 
data to aid in the interpretation and evaluation of results. Because of inherent onto-
logical inconsistencies, post-study applications of power are unjustified and mis-
placed. Finally, we briefly note that other design features play essential roles in 
enhancing the credibility of research results.

Keywords  Questionable research practice · Psychological science · Clinical 
science · Power analysis

Statistical power analysis is regarded as one of several means to reduce questionable 
research practices (QRPs; e.g., see Appelbaum et al., 2018; Cooper, 2016; Funder 
et al., 2013; Simmons et al., 2012). According to the frequentist significance testing 
paradigm, power for a procedure is the probability of rejecting the null hypothesis 
(H0) over repeated samples, assuming that some specific effect size value under the 
alternative hypothesis (H1) is true (for a particular sample size N and Type I error 
rate, α). Despite its straightforward definition, power as a concept continues to be 
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misunderstood and misapplied in practice (e.g., see Hoenig & Heisey, 2001; Lenth, 
2001; McShane et al., 2020). Therefore, applying power analysis to research is not 
as simple as it may seem.

Applications of power have spanned the entire research process: from designing 
studies, to the interpretation of published results. Some applications are justified by 
statistical theory, whereas others are not and can result in practices that are theoreti-
cally questionable. The purposes of this chapter are to provide statistical justifica-
tions and illustrations of whether and when statistical power can be used to improve 
the conduct of psychological science, reduce QRPs, and perhaps even detect QRPs. 
In general, the utility of power analysis in countering QRPs is narrower than com-
monly believed. We begin by reviewing concepts that lead to a formal definition of 
statistical power. We highlight the meaning of the probability that a power value 
quantifies and identify assumptions necessary for calculated power values to be 
accurate. Next, we describe how power analysis can be fruitfully applied in the study 
design phase, emphasizing that power is valid only as a pre-study concept (i.e., 
before a study is implemented). We then examine uses of power in the post-study 
phase, where power values are calculated from collected data to aid in the interpreta-
tion and evaluation of results (e.g., see Appelbaum et al., 2018; Funder et al., 2013; 
Giner-Sorolla et al., 2019). Because of inherent ontological  inconsistencies, post-
study applications of power are unjustified and misplaced (Hoenig & Heisey, 2001; 
Lenth, 2001; McShane et al., 2020; Yuan & Maxwell, 2005). Finally, we briefly note 
that other design features play essential roles in enhancing the credibility of research 
results.

�Preliminaries

�Population, Model, and Data

Research can be defined as a process of discovering or understanding phenomena 
(Fox, 1958). A population and its unknown effect size formally represent the phe-
nomenon of interest. This phenomenon occurs in reality and is not theoretical. After 
data are sampled from the target population, a theoretical statistical model that 
serves as an approximation to the population (Box, 1976; MacCallum, 2003) is 
employed to summarize the data. Technically, the statistical model is an abstraction 
that parsimoniously represents the population. For example, assuming that the pop-
ulation is normally distributed with unknown effect size μ and nuisance parameter 
σ, a statistical model with the same structure is fit to sampled data. Here, the mean 
and standard deviation of the data, X  and sX, respectively, estimate the unknown 
population effect, μ, and the standard deviation, σ. In general, we denote the param-
eters of the model with θ, and the effect of interest as the focal parameter, θf. 
Parameters that are not the effect of interest but complete the model are called nui-
sance parameters, θn. Thus, for the normal distribution, θ = (μ, σ)′, θf = μ and θn = σ. 
In more complex models, there could be multiple effects and nuisance parameters.
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To make an inference about the population using collected data (i.e., to make a 
claim about μ using X ), a significance test can be conducted in which a null hypoth-
esis (H0) about the effect is rejected if the obtained data are sufficiently unlikely to 
be produced by the distribution implied by that null hypothesis. Following the logic 
of falsification (Popper, 1959), the null hypothesis typically specifies lack of an 
effect (e.g., H0 : μ = 0) in which the effect of interest would have a non-zero value. 
When a significance test rejects H0 based on data sufficiently inconsistent with H0, 
it suggests that the data support an effect (i.e., a non-zero value) in the direction of 
the obtained data. Significance tests are outputs of a statistical model fit to the col-
lected data, and these tests are the very devices that link sampled data to the 
population.

Consider influences of position justification on perceptions of source bias, where 
inferences of source bias are thought to be more likely when a position is justified 
by weak, specious arguments rather than strong, compelling arguments (Wallace 
et al., 2021). We assume that the population of differences in perceived source bias 
between strong and weak argument conditions follows a normal distribution (either 
because the bias scores are normally distributed or because sufficient data are col-
lected and the central limit theorem justifies the assumption). Thus, the specified 
model will compare two groups with normal distributions in which the focal param-
eter is the group differences in perceived source bias between strong and weak argu-
ment conditions. Parameters of this model that approximate the population 
(composed of two groups) are then estimated from data. Specifically, the mean and 
standard deviation parameters for the two groups (μS and σS versus μW and σW, with 
S and W denoting strong and weak arguments, respectively) are estimated by their 
sample means and standard deviations ( XS  and sS versus XW  and sW, respectively); 

θ = (μS, μW, σS, σW)′ and ˆ ., , ,θ
′

= ( )X X s sS W S W

An appropriate statistical test of a null hypothesis of no difference between 

the two groups uses the t-test, with t
X X

SE
S W

X XS W

=
−

−

, where X XS W−  is the observed 

difference in sample means between the strong and weak argument conditions and 
SEX XS W−  is the standard error of the difference in means estimated using the 
observed standard deviation of the bias scores within each cell and the respective 
cell sizes (nS and nW). The test statistic is deemed significant and H0 is rejected when 
the p-value is below some arbitrary but agreed-upon level of significance, say 
α = .05. α is also the Type I error rate, which will be defined in the power analysis 
section. Note that the p-value relies not only on the value of the statistic that tests 
H0 : μS − μW = 0, but also on every assumption necessary to compute the test statistic 
(e.g., the assumption of random sampling and normality for the t-test; Greenland & 
Poole, 2013). Stated differently, the hypothesis H0 about θf is embedded within a 
statistical model with parameters θ. These parameters are estimated as θ̂  from the 
data, which give rise to the p-value.

Taken together, the population represents the target phenomenon. The sample is 
an instance drawn from the population that provides imperfect information about 
the phenomenon of interest. Finally, the statistical model is an abstract and inexact 
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representation of the population and is a structure imposed onto the data for the 
purpose of obtaining estimates to infer the nature of the population. In our example, 
the population, sample, and model are assumed to have normal distributions. 
Assuming normality allows for easy derivation of the sampling distribution of the 
t-statistic. The distributions of the population, model, and sample, however, need 
not be the same. In practice, the structure (distribution) of the population is unknown, 
samples are often nonrandom (e.g., drawn with convenience sampling) and may not 
necessarily reflect the distribution of the population, and the proposed statistical 
model may not fit the data well or represent the population accurately. It has to be 
emphasized that any separation of population, model, and data has different impli-
cations for the application of statistical concepts before data are collected (in the 
pre-study design phase) versus after data have been collected (in the post-
study phase).

�Pre-study Design versus Post-study Analysis

Pre-study Design  When designing a study, decisions are made about the features 
of the study to be implemented. Study features include manipulations, measures of 
variables, random assignment, type of sampling, sample size, type of design (e.g., 
between-subjects, within-subjects, cross-sectional, and longitudinal), and planned 
statistical analyses (e.g., equal versus unequal variance t-test; see also Trochim & 
Land, 1982). It could also be argued that part of design includes the specification of 
the Type I error, α, to be used in the statistical tests (see Benjamin et  al., 2018; 
Lakens et al., 2018; Neyman, 1957). Pre-study design is distinct from the post-study 
phase because the data considered during the design are hypothetical and treated as 
random (i.e., they are not yet fixed but will vary across repeated samples).

In the pre-study phase, the underlying structure of the population, statistical 
model, and theoretical data are generally treated as equivalent in structure (e.g., all 
follow a normal distribution). Assuming equivalence of the population, model, and 
data vastly simplifies statistical derivations (e.g., formulas to compute power). To 
illustrate this equivalence, we review the decision probabilities of the Type I error 
rate  (α), Type II error rate  (β), and power (1 − β) below. These probabilities are 
theoretical abstractions because they are based on hypothetical random data. The 
key takeaway is to recognize that statistical power is derived from the unrealistic but 
simplifying assumption that the population, model, and data are equivalent in struc-
ture. When the population, model, and data are different, which routinely occurs in 
the post-study phase of research (MacCallum, 2003), calculated power values for a 
design cannot be considered accurate in relation to a completed study using 
the design.
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�Decision Probabilities

The decision probabilities of the Type I error rate (α), Type II error rate (β), and 
power (1 − β) are illustrated in Fig. 11.1. Let the effect size be scaled to follow the 
Cohen’s d metric ( d x x sS W= −[ ] / pooled , where x xs W−  is the observed mean differ-
ence between two groups and spooled is the estimated pooled standard deviation of the 
two groups) and let the sample size in each cell be n = 60. We use δ to denote the 
population effect size and d to denote the effect size estimated from data. Note that 
δ is a combination of the parameters from the normal distribution, δ = (μS − μW)/σpooled . 
In significance testing, decisions are made based on the p-value associated with the 
t-test, and the p-value is computed on the assumption that H0 : δ = 0 is true. When 
the p-value is lower than some specified significance level (i.e., the Type I error, α), 
the decision is made to reject H0. When binary decisions are made about a continu-
ous measure such as the p-value, there is some non-zero probability of making 
decisional errors over repeated samples and their respective tests. These probabili-
ties quantify how frequently decisional errors occur over the long run (i.e., over 
repeated and randomly drawn samples from the same population).

A Type I error occurs when H0 : δ = 0 is true in the population but the significance 
test leads to a decision to reject H0. In Fig. 11.1a, H0 : δ = 0 is assumed to be true in 
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Fig. 11.1  Theoretical 
decision probabilities. 
A: Sampling distribution of 
d under the null hypothesis 
where δ = 0. B: Sampling 
distribution of d under the 
alternative hypothesis 
where δ = 0.5. Note. The 
t-distribution represents the 
sampling distribution of 
theoretically observed 
t-test statistic values that 
are sampled from a 
population with Cohen’s 
δ = 0 under H0 and 
Cohen’s δ = 0.5 under H1. 
The Type I error rate, 
α = .05, and sample size 
n = 60 for each group (total 
N = 120). For a two-
sample, two-sided t-test of 
H0 : δ = 0, power is 
(1 − β) = 0.78 and the 
Type II error rate, β = 0.22
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the population.1 When a sample of size n = 60 from each group is drawn from the 
population with δ = 0 (assuming H0 is true), and Cohen’s d statistics are computed 
for each sample, these Cohen’s d values will form a sampling distribution (i.e., a 
distribution of random samples of the same size drawn from the same population). 
The curve2 in Fig.  11.1a represents the sampling distribution of hypothetically 
observed t-test statistics translated from Cohen’s d under these assumptions. 
Because the samples are drawn from a population with δ = 0, the sampling distribu-
tion is centered about d = 0 (translated to t = 0). This sampling distribution quanti-
fies sampling variability (i.e., variation from sample to sample) inherent in Cohen’s 
d or t-statistics that summarize random samples drawn from the population.

The vertical lines in Fig. 11.1 represent the threshold values that hypothetical 
t-test statistics need to exceed such that their commensurate p-values will be deemed 
significant in the correct tail of a two-tailed test with 5% level of significance, 
α = .05. Stated differently, values to the right (or left) of the vertical reference lines 
result in a decision to reject H0 : δ = 0. These thresholds are related to the critical 
value of the t-distribution that is used to compute the p-value [where the critical 

value is the 1
2

100−





∗

α
th percentile of the t-distribution].3 The light grey area 

inFig. 11.1a, located to the right of the vertical reference line, represents 2.5% of the 
sampling distribution associated with H0 : δ = 0, which is half of the Type I error 
rate, α. This area is also the probability over random data (represented by the sam-
pling distribution) of making the incorrect decision of rejecting H0 based on extreme 
t-statistic values even though the population is consistent with H0 : δ = 0. The entire 
Type I error rate (α) is the probability of rejecting H0 based on either positive or 
negative t-test statistics over repeated samples when H0 is true. Importantly, the 
uncertainty quantified by the probability α is over random data. Stated differently, α 
is a frequentist probability that measures how often a decisional error of Type I is 
made in the long run over repeated samples and is thus a pre-data concept.

A Type II error occurs when H1 is true in the population but the significance test 
leads to a decision not to reject H0. In Fig. 11.1b, H1 : δ = 0.5 (t-distribution noncen-
trality parameter λ = 2.74) is assumed true in the population. Under the assumption 
that the population δ = 0.5, the curve centered about t = 2.74 (noncentrality param-
eter λ) is the sampling distribution of hypothetical t-test statistics over repeated 
samples of data for n = 60 per group. The shaded area to the left of the vertical refer-
ence line (t = 1.98) represents the Type II error probability, β. This probability quan-
tifies the rate of making the incorrect decision (over repeated samples; i.e., random 

1 Decision probabilities in the frequentist perspective are not conditional in that there is no proba-
bility attached to the occurrence of H0 or H1. Instead, these probabilities are computed assuming 
either H0 is true or H1 is true.
2 Although the curve looks normal, this is technically the t-distribution that underlies the t-test with 
n = 60 for each group that is applied to hypothetical data.
3 In the context of power (correct rejections), we are considering only one tail of the distribution, 
though the complete α is distributed across both tails of the relevant distribution of t (or Cohen’s 
d) values.
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data) of not rejecting H0 even when H1 : δ = 0.5 is true in the population. For this 
example, 22% of decisions will be to retain H0 and will, therefore, be incorrect if 
H1 : δ = 0.5.

Power, (1 − β), is the mathematical complement of the Type II error, β. When 
β = 0.22, (1 − β) = 1 − 0.22 = 0.78. In Fig. 11.1b, power is represented by the dark 
shaded area of the sampling distribution (to the right of the vertical reference line, 
t = 1.98) associated with a population where δ = 0.5. Statistical power is the frequen-
tist probability over random data that the test correctly rejects H0, assuming 
H1 : δ = 0.5 is true in the population. Note that the concept of power is relevant only 
when the population effect size δ ≠ 0. Although we depict power as the area under 
the curve (sampling distribution) for a single point value of δ, power is better 
expressed as a function across a range of nonzero δ values (see Morey, 2020). Let 
power be expressed as a function of its inputs: (1 − β) = f(α, N, θ), where f(·) is tied 
to the form of the statistical model that yields a test. From this expression, power is 
regarded as a function of varying inputs (α, N, and θ) and is a property of a design. 
In this vein, power represents how well the procedure (test), that is tied to unique 
forms of f(·), performs under different combinations of α, N, and θ. We elaborate on 
this use of power in the section on “Uses of pre-study power for design” below. 
Taken together, the classical approach of presenting the concept of power as a single 
value obfuscates the nature of power as a function of design that applies over differ-
ent values of α, N, and θ (Morey, 2020; cf. Cohen, 1988). Because power is a prop-
erty of pre-study design, we term such pre-study calculations power for design (see 
Fig. 11.2).

Post-study Analysis  The application of a model to empirical data occurs in the 
post-data collection phase of research in which collected data are analyzed (see 
right column of Fig. 11.2). This phase of research begins after study implementa-
tion; that is, after data have been collected such that data are fixed and no longer 
considered random. The statistical model that is inspired by substantive theory 
about the unknown effect, θf, is fit to collected data such that a significance test is 
conducted to draw an inference about θf. The p-value that is used to make an infer-
ence about θf is computed using the estimated effect size, θ̂ f

. For the example on 
the normal distribution, θf = μ and ˆ .θ f X=  There are clear separations among the 
three entities in the post-study phase: (a) the population represents reality (where 
the effect size θf is unknown), (b) the statistical model (with parameters in θ, includ-
ing θf) is a formalization of an aspect of substantive theory, and (c) collected data 
are sampled from the target population (where the model parameters are estimated 
by θ̂ , including the effect size θ̂ f ). Given that statistical models are imperfect 
representations of the population (Greenland, 2017), where model assumptions are 
not entirely met, calculated statistics (e.g., effect size θ̂ f  and its accompanying 
p-value) cannot be exactly correct. According to Box (1976), useful results come 
from a statistical model that approximates the population well-enough, even though 
the model is expected not to be precisely correct (see also Cudeck & Henly, 1991; 
MacCallum, 2003).
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Pre-study Design Implementation Data Analysis Interpretation

Power for Design, (1 − ) = ( , , ) Observed Power, ( , , )

Type I error rate, p-value

Unknown effect size, Estimated effect size, 

N to be determined; theoretical random data         N fixed in implemented study; empirical data  

Select from competing procedures                         Implemented procedure used in data analysis

Before Data Collec�on A�er Data Collec�on

Fig. 11.2  Phases of research. Note. During the theoretical pre-study design phase, where data 
have yet to be collected, the population, statistical model, and data are assumed identical. However, 
after data are collected, it is assumed that the population, the statistical model, and the data are 
distinct from one another

�Pre-study versus Post-study Concepts

It is essential to recognize that the error probabilities (α and β) and power ([1 − β]) 
are theoretical entities that are independent of empirical data (Cohen, 1973; Cox, 
1958; Senn, 2002). Figure 11.1 was constructed by making the strong assumption 
that the population of differences follows a normal distribution. This assumption 
results in randomly sampled data (N = 60) that are normally distributed and Cohen’s 
d values calculated from repeated samples that follow a t-distribution. Further, the 
statistical model underlying the t-test is specified to match the assumed population 
structure and resulting sampled data so that α, β, and (1 − β) are exactly correct. The 
conceptualizations of α, β, and (1 − β) are based on speculative assumptions about 
the population, collected data, and planned analyses, and the numerical values 
assigned to these concepts are correct only when these underlying assumptions are 
met. These assumptions are treated as being fully met in the (theoretical) pre-study 
design phase.

In the post-study phase, however, there is an undeniable separation between the 
distributional forms of the population, statistical model, and collected data (Box, 
1976; MacCallum, 2003; Rodgers, 2010; Tukey, 1969). The assumptions required 
for the values carried by α, β, and (1 − β) to be accurate (i.e., equivalent distribu-
tions among the population, model, and sample) are likely unmet in the post-study 
phase. Unfortunately, there are several challenges to extending the pre-study design 
concept of power to the post-study phase. These challenges rest directly on the 
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assumptions underlying power analysis. First, in pre-study power for design, every 
data set is a random sample from the same population. However, most completed 
studies are based on convenience samples that differ from one another in various 
ways. Even if the repeated samples participate in the same lab and with the same 
materials, they almost certainly differ in time (along with any changes in current 
events encountered outside the lab). Study samples also often differ on other char-
acteristics such as different labs, different materials, different geographical loca-
tions within a country, different cultures, or simply different characteristics of the 
participants themselves (e.g., in demographic terms or across psychological vari-
ables related to the phenomenon of interest). Any of these differences across sam-
ples create a distance between the assumption of random sampling from the same 
population and the reality of how research is conducted. Second, the specified popu-
lation is represented by a single value of the population parameter underlying the 
sampled data (i.e., there is a point value for the target effect size). However, large 
replication studies of the same phenomenon have consistently observed effect size 
heterogeneity (e.g., see Hedges & Schauer, 2019; Kenny & Judd, 2019; results from 
the Many Labs project by Klein et al., 2014, 2018). That heterogeneity might ulti-
mately be related to the same variables that differ across samples and make them 
come from potentially different populations rather than one common population. 
Third, sampling distributions are made up of samples of the same size N, thus all 
studies should be of the same size N for downstream calculations such as power (see 
also definition of sampling distribution in previous section). However, replication 
efforts and meta-analyses typically contain studies with different N (e.g., see Many 
Labs Project [Klein et al., 2014] and Registered Replication Reports [Simons et al., 
2014]). Fourth, the statistical model would have to be a perfect representation of 
complex reality (i.e., the population), but it is not (see Box, 1976; MacCallum, 
2003). Taken together, assumptions underlying values of power calculated during 
the pre-study design stage are thus likely violated in the post-study phase of research. 
Because of the distance between assumptions made to compute pre-study power for 
design values and the likely violation of these assumptions in the post-study phase 
of research, pre-study power cannot be directly applied to results of a completed 
study based on the same design.

Furthermore, recall that power is a probability over random data that is a perfor-
mance measure attached to a design f(·). When analyzing data collected in a realized 
study, the data are fixed (not random), so power as a concept can no longer be 
directly applied to the realized study’s (fixed) results. This is an ontological impos-
sibility (McShane, Böckenholt, & Hansen, 2020). Consider the distinction between 
Type I error rate, α, and the p-value in that the Type I error rate applies to theoretical 
random data across samples, whereas the p-value applies to the observed data from 
a single sample relative to a sampling distribution. The level of α set before the data 
were collected does not influence the p-value that is obtained. Similarly, power, 
(1 − β), applies to theoretical random data, whereas its observed counterpart, typi-
cally called observed power (see O’Keefe, 2007), would potentially apply to fixed 
observed data. Yet, observed power is isomorphic with the p-value and no longer 
provides information about the actual power for design before the study was 
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conducted (Hoenig & Heisey, 2001; Lenth, 2001). Thus, there is an ontological 
inconsistency between the meaning of probability that is attached to pre-study 
power for design (uncertainty over random data) and that of observed power (a 
function of the p-value; see Greenwald et al., 1996; Hoenig & Heisey, 2001; Lenth, 
2001). The concepts of pre-study power for design and post-study observed power 
are fundamentally distinct. In a nutshell, as emphasized by methodologists and stat-
isticians alike, statistical power is only relevant during the pre-data design phase 
(Cohen, 1973; Cox, 1958; Senn, 2002). Indeed, after outlining pre-study power for 
design considerations, Cohen (1973, p. 226) wrote, “… nothing said thus far has 
had any bearing on the results of the research when it is completed; all of the above 
reasoning is complete prior to the examination and, in principle, prior even to the 
collection of the sample data.”

In the sections to follow, we describe how statistical power can be employed to 
facilitate the development of quantitative methods and the design of studies during 
the pre-study stage. Next, we address popular misconceptions pertaining to the 
application of the concept of power to post-study results where power calculations 
are often used to suggest QRPs (cf. statistical forensics, Morey, 2019). Finally, we 
end with a discussion on the appropriate uses of power with respect to QRPs and 
highlight the role of other design features (e.g., experimental control, construct 
validity, measurement reliability, accumulation of information across studies) that 
are important for bolstering the credibility of statistical results.

�Uses of Pre-study Power for Design

�As a Sharp Measure

Statistical power was originally formulated as a measure of performance to evalu-
ate competing statistical procedures (cf. the Neyman-Pearson’s [1933] lemma). 
Suppose that a researcher is interested in a difference between reaction times of two 
conditions, where reaction times are usually non-normally distributed (e.g., see Van 
Zandt, 2002). This difference can be evaluated using a t-test with equal variances, 
a t-test with unequal variances, a sign-test, and a likelihood ratio test (LRT), where 
the fit of each test’s underlying model to the collected data is likely imperfect. The 
relative performance of each of these tests can be compared to one another by com-
puting power for the same N and α over the same repeated samples of data while 
varying f(·) in (1 − β) = f(α, N, θ). Here, different f(·) map onto different statistical 
procedures and the inputs to f(·) are held constant. Thus, differences in (1 − β) are 
unequivocally attributed to differences between the competing tests, and it matters 
not whether the hypothetical data align with the population in reality. Any proce-
dure that preserves the nominal Type I error rate, α, and has higher power even by 
a small percentage, is quantitatively better than lower powered tests. Thus, power 
is useful for sharply distinguishing which tests are best applied in particular set-
tings, allowing the researcher to select the best test within the context of their 

J. Pek et al.



253

planned study (Neyman, 1957). In developing quantitative methods, power is an 
essential performance measure used to evaluate the robustness of statistical models 
and methods across different data conditions (e.g., assumption violation, missing 
data). For example, MacKinnon, Lockwood, Hoffman, West, and Sheets 
(MacKinnon et al., 2002) evaluated the performance of 14 different approaches to 
testing simple mediation and ultimately recommended the bootstrap of the product 
of coefficients because of its superior performance in terms of preserving α and 
optimizing power.

�As a Blunt Measure

It is common practice to use power calculations to determine N (e.g., Cohen, 
1988), where the focus is on determining a particular N to achieve a target level of 
power, expressed as N = f(α, [1 − β], θ). Recall, however, that calculated pre-study 
power for design values (i.e., values applied across random data) does not directly 
translate to completed studies (where data are fixed). The distance between a cal-
culated power for design value and any notion of power applied to a completed 
study using the same design reflects not only the departure from the frequentist 
concepts underlying power for design but also because of the distance between the 
theorized pre-study population, model, and data and the actual (post-study) popu-
lation, model, and data. Thus, recommendations for designs to achieve particular 
levels of power by varying N (e.g., 80% by Cohen, 1988; 90% by Beribisky et al., 
2019) do not translate to a single completed study using that design. Instead, 
power can be used as a blunt measure to determine ballpark requirements of sam-
ple size (i.e., it can be used by researchers as a guide to help determine feasibility 
of a study in terms of N requirements).

In fact, the discipline of psychology supports the use and reporting of statisti-
cal power as a blunt measure and a way to emphasize the importance of careful, 
thoughtful study design. Wilkinson and the Task Force for Statistical Inference 
(TFSI, 1999, p. 596) recommended reporting power because “[t]he intellectual 
exercise required to do this stimulates authors to take seriously prior research 
and theory in their field, and it gives an opportunity, with incumbent risk, for a 
few to offer the challenge that there is no applicable research behind a given 
study.” Similarly, Simmons, Nelson, and Simonsohn (2011, 2012) recommended 
reporting how a fixed sample size N was determined prior to data collection (cf. 
N-determination via power analysis) to potentially curb the QRP of conducting 
multiple tests on data as they stream in without error control. These authors did 
not focus much on specifying numerical values of pre-study power for design but 
pointed to the act of conducting power analysis as evidence against disguising 
exploratory research as hypothetico-deductive or confirmatory research. Pek and 
Park (2019) forwarded a similar argument in the context of incorporating addi-
tional sources of uncertainty in the calculation of pre-study power for design. 
These authors demonstrated that taking into account realistic sources of 
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uncertainty in power analysis only tends to increase the uncertainty of power 
estimates whereby the range of power estimates tend to cover most of the space 
between zero and 1. Therefore, the real value in engaging in power analysis is 
that it provides a systematic framework for researchers to consider possible 
effect sizes associated with possible design features and to consider issues 
related to potential statistical models and tests.

�As an Index to Interpret Results

Recent arguments that promote power analysis as part of good scientific practice, 
however, seem to imply that the value of calculated pre-study power for design is 
informative for interpreting results of completed studies. For instance, Cooper’s 
(2016) Journal of Personality and Social Psychology editorial emphasized the prob-
lems of publishing underpowered studies, seemingly attaching the concept of power 
to fixed data in the post-study phase. Similarly, the APA Publications and 
Communications Board Task Force Report recommended reporting pre-study 
power analysis not only in the methods (pre-study) section but also in the analysis 
(post-study) section (Appelbaum et  al., 2018). Additionally, the Social and 
Personality and Social Psychology Task Force on Publication and Research Practices 
emphasized the importance of sufficiently powered studies and “recommend that a 
priori statistical power be reported whenever possible and considered as one factor 
among many when interpreting results” (Funder et al., 2013, p. 7). Inherent in these 
recommendations is the implicit (mis)belief that pre-study power for design trans-
fers onto a realized study that used this design. Yet, because power is a pre-study 
concept applied to random data across samples, use of power for result interpreta-
tion is logically inconsistent with the statistical theory underlying power (Cohen, 
1973; Cox, 1958; Senn, 2002). Recognizing that pre-study power does not deter-
mine the strength of the results from a completed study, Fisher (1947, p. 24) wrote, 
“[power] contribute[s] nothing to the validity of the experiment and of the test of 
significance by which we determine its result.”

�Misuses of Power for Evaluating Completed Studies

Use of power to evaluate completed studies ignores the distance between the pre-
study design and post-study phase and treats calculated values of power as sharp 
measures even though they are blunt (cf. Fisher, 1947). Unfortunately, the popular-
ity of this use of power has also perpetuated other misconceptions that have been 
counterproductive to progress in psychological science. We describe some of these 
in the sections to follow.
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�Power of Published Studies Cannot Be Reasonably Estimated

Many reviews report low power of published studies in the literature (e.g., median 
power of .21 as reported by Button et al., 2013; see also Chan & Altman, 2005; 
Cohen, 1962; Dumas-Mallet et  al., 2017; Fraley & Vazire, 2014; Freiman et  al., 
1978; Rossi, 1990; Sedlmeier & Gigerenzer, 1989; Smaldino & McElreath, 2016; 
Stanley et al., 2018; Szucs & Ioannidis, 2017). Given that power is a pre-study con-
cept, one should question how accurate estimates of power for published studies 
are. Power for published studies is computed using the same expression as pre-study 
power for design, (1 − β) = f(N, α, θ). However, instead of using hypothetical values 
for N and θ while holding α at the nominal .05 level, these reviews compute power 
with N and θ observed from the literature. Following the convention of using the 
caret symbol “^” to represent values obtained from collected data, let N̂  and θ̂  
denote sample-based values of N and θ, respectively. By using N̂  and θ̂  to com-
pute power, the obtained value would seem to reflect a feature of the completed 
study or studies that gave rise to N̂  and θ̂ .

There are two competing interpretations tied to values computed using f Nα θ, ,ˆ ˆ( ) . 
The first is that the calculated value is a re-expression of the p-value and does not 
quantify the same uncertainty over random data as in pre-study power for design 

(cf. later discussion of observed power). The second is that the value f Nα θ, ,ˆ ˆ( )  is 
as an estimate of pre-study power for design of the studies that produced N̂  and θ̂ . 

Treating f Nα θ, ,ˆ ˆ( )  as an estimate of f(α, N, θ) implies a belief that the calculated 
value quantifies the same probability over random data as the concept of pre-study 
power for design. However, as discussed in the following sections, methodological 

research reveals that f Nα θ, ,ˆ ˆ( )  as an estimate of f(α, N, θ) cannot be interpreted 
with confidence because of its high imprecision (i.e., the estimate is highly variable 
and therefore unreliable).

When N̂  and θ̂  come from a single completed study, calculated power has been 
called observed power (O’Keefe, 2007). This value has been used to provide a rea-
son why statistical significance was not achieved in a completed study, which we 
term power for evaluation (e.g., the p-value is larger than α because the completed 
study was underpowered). However, power  for evaluation as a concept has been 
debunked because it is a mere re-expression of the p-value (Hoenig & Heisey, 2001, 
Lenth, 2001; see also prep by Killeen [2005] as debunked by Iverson, Lee, Zhang, & 
Wagenmakers [2009] and Maraun and Gabriel [2010]). The use of power for evalu-
ation to explain statistical nonsignificance is tautological. Recall that the distinction 
between α and the p-value extends to (1 − β) and power for evaluation. Whereas 
(1 − β) is the probability over random samples that the test rejects H0 if H1 is true 
for some N and α (cf. interpretation of α), power for evaluation is a statement about 
the observed (fixed) data and more extreme data relative to H1 where θ θf f= ˆ  for N̂
and some level of α (cf., interpretation of p-value). Thus, pre-study power for 
design is a statement about random (hypothetical) data whereas power for evalua-
tion is a statement about fixed (observed) data.
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For the value calculated with f Nα θ, ,ˆ ˆ( )  to be conceptually distinct from power 
for evaluation and to quantify the same concept of probability over random data in 

pre-study power for design, f Nα θ, ,ˆ ˆ( )  must adequately estimate f(α, N, θ) (target 

power of the original design). Yuan and Maxwell (2005) examined how well observed 

power f Nα θ, ,ˆ ˆ( )  based on data from a single study estimates pre-study target power 

for design behind the completed study, f Nα θ, ,( ) . From analytics and simulation 

studies, they concluded that f Nα θ, ,ˆ ˆ( )  is an extremely imprecise estimate of f(α, N, 
θ) due to the power estimate having high variability. Stated differently, confidence 

intervals (CIs) around f Nα θ, ,ˆ ˆ( )  are extremely wide when its value is not .05 or 1. 
An estimate is statistically consistent when N→∞ results in the estimate (e.g., x ) 
approaching its target—usually a model parameter (e.g., μ)—in probability. 

Statistical consistency means that when N→∞, x
p

→µ , where the p indicates that 
the convergence is in probability. Such convergence occurs when sample means are 
used to estimate the population mean, but part of the reason for this is that the value 
of the population mean does not depend on N (whereas the variability of the sample 
means does depend on N). In the case of estimating power for published studies, 
however, as N→∞, the target pre-study power for design, f[α, N, θ], is not indepen-
dent of N. Rather, as N increases, the target power value also changes, and the sam-
pling variability of its estimate f Nα θ, ,ˆ ˆ( )  hardly decreases; as N→∞, 

f N f N
p

α θ α θ, , , , .ˆ ˆ( ) → ( )  Thus, estimates of power have much poorer statistical 
properties than estimates of population parameters, such as means or regres-
sion slopes.

Consider pre-study power for design for a paired-samples two-sided t-test. We 
increase N to increase pre-study power for design while holding α = .05 and δ = 0.3. 

Table 11.1  Pre-data power for design for δ = 0.3 and α = .05 for varying levels of N

Sampling distribution of estimate f N dα , ,ˆ( )
N

Pre-study power for design
f(α, N, δ) Mean Median 95% CI

25 .30 .37 .30 [.05, .96]
56 .60 .57 .59 [.06, .99]
89 .80 .73 .80 [.13, 1.00]
117 .90 .81 .90 [.24, 1.00]
192 .99 .94 .98 [.58, 1.00]
250 ≈1 .97 1.00 [.79, 1.00]

Note. N = sample size, 95% CI = empirical confidence interval over 1000 Monte Carlo samples. 
The sampling distribution of the estimate f N dα , ,ˆ( )  is skewed as seen by the distance between the 
mean and median values of f N dα , ,ˆ( ) , and has a very wide range. Increasing N does not 
greatly shrink the variance of the sampling distribution of f N dα , ,ˆ( ) , pointing to high variability 
in the estimate
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Table 11.1 presents different levels of pre-study power for design against N and 
summary statistics of the simulated sampling distribution of the estimate f N dα , ,ˆ( )  
computed over 1000 Monte Carlo samples. From Table 11.1, increasing N system-
atically increases pre-study power for design f(α, N, δ). Given a design, 1000 Monte 
Carlo samples of size N were drawn from a standard normal population with mean 
δ = 0.3 and a Cohen’s d estimate was computed for each sample. Using these sample 

estimates of d, 1000 values of f N dα , ,ˆ( )  were computed to construct an empirical 
distribution of this estimate. With increasing N, the mean of the distribution of 

f N dα , ,ˆ( )  approaches the pre-study power for design target value, but reveals bias 
even when pre-study power for design is ≈1.00 at N = 250. Instead, the median of 

the sampling distribution of f N dα , ,ˆ( ) , reproduces pre-study power for design. The 
separation between the mean and median implies that the sampling distribution of 

f N dα , ,ˆ( )  is skewed. More importantly, high variability is evident in the very wide 
95% empirical CIs (covering most of the possible range from 0 to 1) for most values 
of pre-study power for design. When N increases from 25 to 192, the variability in 
f N dα , ,ˆ( )  remains high, implying that this estimate of pre-study power for design 

cannot be interpreted with confidence because of its imprecision. An R Shiny appli-

cation that dynamically presents the sampling distribution of d and f N dα , ,ˆ( )  in 
relation to specified δ and N is available online.4

One might imagine that the high variability in the estimate of pre-study power for 
design is due to using N̂  and θ̂  from a single study where information is limited. 

To distinguish the estimate f Nα θ, ,ˆ ˆ( )  from observed power, researchers have also 

used meta-analytic values of N̂  and θ̂  to estimate pre-study power behind a collec-
tion of studies in an area of scholarship (e.g., Button et al., 2013; Dumas-Mallet 
et al., 2017; Stanley et al., 2018). There are several advantages of using information 
from a meta-analysis in place of a single study, including the ability to incorporate 
heterogeneous effect sizes across studies, study-level moderators, publication bias, 
and other factors. The meta-analytic effect size is also likely more precise than that 
from a single study. McShane, Böckenholt, and Hansen (2020) reported on the prop-

erties of f Nα θ, ,ˆ ˆ( )  as an estimate of pre-study power for design that underlie the 

studies in the meta-analysis. Compared to single study f Nα θ, ,ˆ ˆ( ) , meta-analytic 

f Nα θ, ,ˆ ˆ( )  has a sampling distribution that is less skewed and closer to the normal 
distribution (see Fig. 11.1 in McShane et al., 2020). However, similar to a single 

study f Nα θ, ,ˆ ˆ( ) , meta-analytic f Nα θ, ,ˆ ˆ( )  estimates continue to be highly variable 
and imprecise (as communicated by large CIs), and attempts to correct for publica-
tion bias only increase this imprecision (McShane et al., 2020). Thus, regardless of 

whether single or multiple collected studies inform f Nα θ, ,ˆ ˆ( ) , this value remains 
an imprecise estimate of the pre-study target power for design f(α, N, θ) behind the 
completed study, and therefore cannot be treated as a precise estimate of pre-study 

4 https://seeing-statistics.shinyapps.io/EstimatedPower/
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power. Thus, it is unfortunate that researchers have treated values computed with 
f Nα θ, ,ˆ ˆ( )  as though they accurately reflect the power of completed studies.5 

Methodological research reveals that f Nα θ, ,ˆ ˆ( )  is an estimate of f(α, N, θ) that can-
not be interpreted with confidence because of its high imprecision (i.e., the estimate 
is highly variable with large CI). Obtaining values of the power of completed studies 
thus remains elusive, and the application of the power concept to completed data 
remains contrary to the notion that power has no influence on the strength (or weak-
ness) of the evidence conveyed by collected data (e.g., see Cohen, 1973; Cox, 1958; 
Senn, 2002).

Because power of completed studies cannot be calculated with reasonable preci-

sion, arguments that make use of values of f Nα θ, ,ˆ ˆ( )  in power for evaluation can-
not be interpreted with confidence. One such argument links low statistical power to 
false findings6 (e.g., see Christley, 2010; Colquhoun, 2014; Ioannidis, 2005; Pashler 
& Harris, 2012). These researchers treat decision probabilities (α, β, and [1 − β]) as 
conditional probabilities (even though they are not conditional probabilities under 
the frequentist framework; see Morey & Lakens, 2016). They regard the Type I error 
rate (α)  as the probability of rejecting H0 conditioned on H0 true; that is, 
P[reject H0| H0 true]. Similarly, they treat the Type II error rate (β) as the probability 
of not rejecting H0 conditioned on H1 is true; that is, P[not reject  H0|  H1  true]. 
Accordingly, they treat power, (1 − β), as the probability of correctly rejecting H0 
conditioned on H1 is true; that is, P[reject H0| H1 true]. Key to this argument is the 
treatment of decision probabilities as conditional, such that there is a probability 
attached to the occurrence of H0 and H1. Let π denote the probability of H0. Then, 
π = P(H0) and 1 − π = P(H1). Given a value of π, use of Bayes’ Theorem to invert 
the Type I error rate P(reject H0| H0 true) produces the false finding rate (FFR).

	

FFR true|reject .= ( ) =
+ −( ) −( )

P H H0 0 1 1

πα
πα π β

	 (11.1)

The conditional probability in Eq. 11.1 is interpreted as the proportion of false find-
ings among all rejections of H0. For example, if π = P(H0) = .90, (1 − π) = P(H1) = .10, 

α  =  .05 and (1 − β)  =  .35, FFR =
×

× + ×
=

. .

. . . .
.

90 05

90 05 10 35
56  (e.g., see  Pashler & 

Harris, 2012). With 35% power, an alarming 56% of H0 rejections with α = .05 and 
π = .90 are false findings. Increasing power to 80% reduces the FFR to 36% (a 20% 

5 Power for completed studies have also been computed by using Cohen’s t-shirt effect sizes (small, 
medium, large) and sample sizes from observed studies, f Nα θ, ,ˆ( ) . These values also cannot 
accurately reflect power for a specific area of study because the input of θ is even less likely to 
reflect the phenomenon under study.
6 We use the term false finding rate (FFR) as coined by Mayo and Morey (2017) instead of the false 
discovery rate (e.g., see Ioannidis, 2005) to distinguish the target concept from corrections to mul-
tiple testing (e.g., see Benjamini & Hochberg, 1995). The FFR is the probability of H0 being true 
given a decision to reject H0; FFR = P(H0 true | reject H0).
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reduction), ceteris paribus. These values are taken to support the argument that 
increasing power will have a strong effect of reducing the FFR, thereby buttressing 
the importance of implementing highly powered studies. The theoretical relation 
between power and the FFR is undeniably formalized in Eq. 11.1, but for it to be 
applicable to published research, a number of assumptions inherent in those calcu-
lations must also accurately reflect conducted research. First, the value of power 
used in Eq. 11.1 must reflect the power of published studies. However, recall that 
methodological work confirms that the power for published studies is estimated 
with high imprecision. Second, reasonable values for the prior probability of the 
null hypothesis must be established. However, little justification (and no empirical 
basis) for the prior probabilities has been given, and the relation between power and 
the FFR becomes quite weak for most plausible values of P(H0). Thus, the relation 
between power and the FFR remains a theoretical abstraction. For other criticisms 
about the relations between power and FFR made by statisticians, methodologists, 
and philosophers, see Goodman and Greenland (2007a, 2007b), Mayo and Morey 
(2017), and Wegener et al. (2022).

�Statistical Forensics

The use of statistics to hunt for anomalies, termed “statistical forensics” by Morey 
(2019), has a long history that includes Fisher’s (1936) use of the χ2  test to raise 
suspicions that Mendel’s (1886) results on pea plants were “too good.” In brief, 
Mendel’s results did not exhibit enough variability relative to predictions from a 
statistical model, suggesting but not confirming that the results could have been 
selectively reported. Mendel has been deemed innocent of Fisher’s suspicions 
(Franklin et al., 2008; Hartl & Fiarbanks, 2007). However, note that, opposite from 
the usual perspective taken during data analysis in which the model is assumed to 
be in error relative to the data (cf. model diagnostics), statistical forensics assumes 
that the reported data are potentially erroneous relative to a statistical model.

With similar motivations to the Mendel-Fisher controversy, power calculations 
have been used in statistical forensic methods to uncover plausible instances of 
QRPs (i.e., publication bias, selective reporting, and p-hacking) in modern psycho-
logical research. These methods similarly assume that the investigated data or results 
are potentially erroneous relative to the model used to evaluate these data. Here, a 
statistical model is used to represent characteristics of data that have been analyzed 
without using QRPs. Then, results from analyzed data are compared to this model. 
When the distance between the model and data is large, QRPs are suspected. 
Example methods are Ioannidis and Trinkalinos’ (2007) exploratory excessive sig-
nificance test,7 Francis’ (2013) consistency test, Schimmack’s incredibility index 

7 Ioannidis and Trikalinos (2007) were extremely careful in labeling their test as an exploratory 
method. They explicitly acknowledged the possibility of assumption violation that would invali-
date their test’s results and emphasized caution in broadly applying it.
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(2012), and Brunner and Schimmack’s z-curve method (2020). In general, these 
methods incorporate statistical power to evaluate whether QRPs have occurred. 
These methods have been theoretically derived using the concept of pre-study power 
for design, f(α, N, θ) and evaluated using Monte Carlo simulations that assume 
equivalence between the population, model, and data. However, when these meth-
ods are applied to published research, the population, model, and data are undeni-
ably distinct. Currently, there are no model diagnostics to evaluate how closely these 
assumed models approximate empirical data analyzed without QRPs, leaving unan-
swered the question of whether these models are reasonable benchmarks to use in 
the post-study phase of research (cf. Box’s, 1976 position that all models are wrong 
and some are useful; see also MacCallum, 2003; Rodgers, 2010; Tukey, 1969). 
Furthermore, these methods make use of power calculations from observed data, 
f Nα θ, ,ˆ ˆ( ) , that tend to be highly imprecise estimates (cf. Table 11.1). In the follow-

ing paragraphs, we explicate these issues using one such statistical forensic method.
Consider Ioannidis and Trinkalinos’ (2007) exploratory χ2 test to detect excess 

significance among a collection of studies. Let S be the total number of completed 
studies indexed by s such that s = 1, ⋯, S. Let O be the count of observed statisti-
cally significant findings (e.g., p < .05) and E be the expected count of statistically 
significant findings. E is calculated based on power for each study

	
E f N

s

S

s= ∑ ( )
=1

α θ, , ,
	 (11.2)

where fs(α, N, θ) is power calculated for the sth study. Given that power is the prob-
ability over random data that the test will reject H0 under the assumption that H1 is 
true, the sum of (1 − β)s = fs(α, N, θ) across the S studies will give rise to the average 
number of significant findings based on the design of these studies. The test statis-

tic  is X
O E E

O E S E

2

2

2
=

−( )
−( ) −( )

/

/
 and is assumed to follow a χ2 distribution with 1 

degree of freedom. Note that O represents the data under evaluation and E repre-
sents the statistical model that is assumed to reflect data analyzed without QRPs 
(e.g., without selectivity in reporting results). A statistically significant test result 
indicates a discrepancy between O and E, which is taken to suggest that the collec-
tion of S studies has an excess of statistically significant results that imply the use of 
QRPs. Monte Carlo simulations that assume equivalence between the population, 
model, and data show that this test performs according to expectations in theory 
(Francis, 2013).

However, when this test is applied to collected data, its performance remains 
unknown because the population, model, and data are distinct. How well the test 
performs under Monte Carlo simulation is unlikely to reflect how well the test per-
forms with empirical data because of the separation between (pre-study) theory and 
(post-study) reality. We list four places of potential separation between theory and 
practice in Ioannidis and Trinkalinos’ (2007) test.
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First, O is derived from the p-value that unrealistically assumes that the model fit 
to the data is a perfect representation of the population (e.g., see Box, 1976; 
Greenland & Poole, 2013; MacCallum, 2003). When the model is an imperfect 
representation of the population, the calculated p-values will not be accurate to 
some degree. The accuracy of the p-value is moderated by how well the statistical 
model fits the sample data and distally approximates the population.

Second, power calculated using f Ns α θ, ,ˆ ˆ( )  is a re-expression of the p-value for 
the sth study (cf. observed power; Greenwald et al., 1996; Hoenig & Heisey, 2001; 

Lenth, 2001). When f Ns α θ, ,ˆ ˆ( )  is treated as a re-expression of the p-value, O 
would also be a function of E because both values are based on the same p-value. 
Then, the comparison between O and E would technically be comparing variations 
of the same statistic (i.e., the p-value). In this vein, the X2 test statistic does not com-
pare the data (O) against a model assuming no QRPs (E), but instead compares the 

data (O) to a function of the same data (E as a re-expression of O). If f Ns α θ, ,ˆ ˆ( )  is 
instead treated as an estimate of pre-study target power for design underlying the sth 
study, fs(α, N, θ), then the values of E are highly imprecise (cf. Yuan & Maxwell, 
2005, discussed earlier, and Table 11.1), and results of the χ2 test cannot be inter-
preted with confidence.

Third, the summation in Eq. 11.2 to obtain values of E assumes that the S studies 
all come from the same population (i.e., the studies are independently and identi-
cally distributed); if the studies are from different populations, then their summation 
is not justified. In empirical research, there is heterogeneity of results even in direct 
replications (Hedges & Schauer, 2019; Kenny & Judd, 2019; results from the Many 
Labs project by Klein et  al., 2014, 2018), pointing to potential violation of this 
essential assumption.

Fourth, there is currently no way to check whether the model assuming no QRPs 
approximates empirical data well (cf. model diagnostics under data analysis) 
because the data are assumed to have undergone QRPs. Thus, conclusions from this 
test are based on the strong, likely unrealistic, and a currently untestable assumption 
that the model is a perfect representation of data free from QRPs. Because it is 
unclear how tests of QRPs perform under assumption violation, conclusions made 
from results of such tests would carry much uncertainty.

Although we focus on Ioannidis and Trinkalinos’ (2007) exploratory test, the 
other tests purported to uncover QRPs (Brunner & Schimmack, 2020; Francis, 
2013; Schimmack, 2012) rely on similar assumptions and calculations of power for 
completed studies. Simulation studies validate the performance of these methods 
on hypothetical data, but the separation between theoretical and empirical data 
raises questions about the valid performance of these methods on collected data. 
Similar to Ioannidis and Trinkalinos’ (2007) position of caution, we encourage 
much care in the application of statistical forensics that rely on power values cal-

culated from collected data, f Nα θ, ,ˆ ˆ( ) , because of the unbridgeable separation 
between the pre-study and post-study phases of research. Results from such tests 
for QRPs cannot be definitive and remain, at best, exploratory (see also Fabrigar & 
Wegener, 2016, 2017).
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�Summary and Discussion

The concept of statistical power is seemingly simple. Pre-study power for design is 
just the probability (over random data) of rejecting H0 if some H1 value for θf is true 
for specific α, sample size, and θn; (1 − β) = f(α, N, θ). However, in the post-study 
phase of research, when data are no longer random but fixed, the concept of power 
is irrelevant to determining the strength or weakness of the obtained results (Cohen, 
1973; Cox, 1958; Senn, 2002). That is, just as the pre-study α value does not add to 
the informativeness of the p-value associated with obtained data, the pre-study 
power for design does not change the informativeness of the obtained data. The 
population, statistical model, and data are conveniently assumed to be equivalent in 
the pre-study phase of research to allow for easy analytical derivations (e.g., α and 
β). However, these three entities are distinct in the post-study phase of research. 
Thus, power calculations that are based on the assumed equivalence of the popula-
tion, model, and data in the pre-study phase of research cannot be automatically 
generalized to the post-study phase of research where the population, model, and 
data are recognized to be distinct (Box, 1976; MacCallum, 2003). To do so is, in 
fact, highly questionable from a statistical point of view.

Even if the population, model, and data were highly similar, there remains onto-
logical inconsistency in the meaning of the probability quantified by a value of 
power in the pre- versus the post-study phase. Pre-study power for design is a prob-
ability over random data (similar to the Type I error rate, α). In contrast, power 

calculated from collected (fixed) data, f Nα θ, ,ˆ ˆ( ) , is a probability about the 
observed data and more extreme (future and past) data relative to H1 given an 
observed effect size, θ̂ f , for observed N̂ , and some level of α (similar to the 

p-value). Attempts to address this ontological inconsistency use f Nα θ, ,ˆ ˆ( )  as an 
estimate of pre-study target power for design, f(α, N, θ). Yet, this estimate has high 
variability in that its values tend to be imprecise and relatively uninformative 
(McShane et al., 2020; Yuan & Maxwell, 2005).

Because power calculated from collected data, f Nα θ, ,ˆ ˆ( ) , has high variability 
that undermine its informativeness, claims that make use of its numerical value 
should also be interpreted with the expectation that downstream numerical values 
are equally uninformative (i.e., imprecise). Contrary to reviews on the power of 
studies in the literature, power for completed studies cannot be estimated with pre-
cision. Although power might, in concept, be linked to the FFR in the pre-study 
design phase, the strength of this link remains unknown in the post-design phase 
(see also Goodman & Greenland, 2007a, 2007b; Mayo & Morey, 2017). Finally, 
methods to detect QRPs that rely on power calculated from collected data should be 
cautiously utilized with an appreciation that many assumptions underlying these 
methods cannot be empirically evaluated and are surely violated in the post-study 
phase of research. In sum, power calculations based on collected data have limited 
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use to interpret results because this value is simply a re-expression of the p-value 
(Greenwald et al., 1996; Hoenig & Heisey, 2001; Lenth, 2001). Alternatively, power 
calculations based on collected data as an estimate of power for design tend to be 
highly imprecise and should be used with caution. As a result, any inferences about 
completed studies that rely on power calculations using the collected data should 
also be recognized as questionable because such inferences often entail heavy reli-
ance on estimated power values that have high variability.

In the pre-study phase of research, calculated values of pre-study power for 
design are useful for evaluating the performance of procedures under different data 
conditions (cf. Neyman-Pearson [1933] lemma). Such tools are often used in quan-
titative methodological research. Calculated values of pre-study power for design 
are irrelevant to collected data (Fisher, 1947). However, power analysis remains 
useful for assessing design feasibility under resource constraints as long as uncer-
tainty surrounding the calculations is taken into account. The main benefits of power 
analysis lie in the act of considering different designs and downstream data analytic 
plans (cf. Pek & Park, 2019). Initial recommendations for reporting power analysis 
emphasized the value of relating a study to previous research as evidence that the 
reported study was not presented as confirmatory if it was exploratory (Wilkinson 
& TFSI, 1999). Similarly, reporting a power analysis was recommended to justify 
the collected sample size N to discourage multiple testing without corrections 
(Simmons et al., 2012). These positive outcomes of power analysis need not be tied 
to specific values of pre-study power for design (e.g., 80% by Cohen, 1988). Rather, 
these considerations fall under the larger umbrella of research methods that is often 
tied to a much broader validity framework (Shadish et al., 2002; see also Fabrigar 
et al., 2020; Finkel et al., 2017).

Acknowledgement of that broader framework brings into sharp relief the multi-
faceted nature of research evaluation and the credibility of claims based on research 
results. That is, rather than focusing merely on the statistical results of reported 
studies, a broader evaluation of the research claims based on the results must go far 
beyond an index of research credibility based on estimated power values. Such eval-
uations also take into account the goals of the research, the design features of the 
research—including qualities of the manipulation and measurement of relevant 
variables, the use of appropriate analyses, and the fit of each of those elements to the 
claims that are ultimately advanced (for additional discussion, see Fabrigar & 
Wegener, 2016; Fabrigar et al., 2020). To put too much emphasis on estimates of 
power in such evaluations is to accept risks associated with departures from the 
statistical theory underlying the very index on which one is basing one’s claims. 
Such emphasis also incurs risks associated with reliance on estimates with high 
variability and risks associated with unknown (and potentially unbridgeable) differ-
ences between the assumed statistical model and the realities of the research setting. 
Indeed, power analysis is not so simple as it often might seem.
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Chapter 12
Questionable Research Practices 
in Single-Case Experimental Designs: 
Examples and Possible Solutions

Matt Tincani and Jason Travers

Abstract  Questionable research practices (QRPs) are a variety of research choices 
that introduce bias into the body of scientific literature. Researchers have docu-
mented widespread presence of QRPs across disciplines and promoted practices 
aimed at preventing them. More recently, Single-Case Experimental Design (SCED) 
researchers have explored how QRPs could manifest in SCED research. In the chap-
ter, we describe QRPs in participant selection, independent variable selection, pro-
cedural fidelity documentation, graphical depictions of behavior, and effect size 
measures and statistics. We also discuss QRPs in relation to the file drawer effect, 
publication bias, and meta-analyses of SCED research. We provide recommenda-
tions for researchers and the research community to promote practices for prevent-
ing QRPs in SCED.

Keywords  Single-case experimental design · Questionable research practices · 
Publication bias · Open science

�Overview of Single-Case Experimental Designs

Single-case experimental designs (SCED) are used by social and behavioral sci-
ences researchers to evaluate effects of clinical interventions on therapeutic out-
comes. Rooted in B.F. Skinner’s (1953) radical behaviorism, these designs began to 
appear widely in journals in the 1960s–1980s (Barlow & Hersen, 1984), and remain 
popular today. SCED are found in a broad array of clinical fields and specialties 
(e.g., Krasny-Pacini & Evans, 2018; Lobo et al., 2017; Tanious & Onghena, 2019). 
Whereas group designs rely on inferential statistics to determine average experi-
mental effect between groups, SCED employ visual analysis of individual 
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responding between conditions, with each subject serving as their own control. 
SCED require fewer subjects to demonstrate experimental control, typically 3–5, as 
statistical power requirements for group design samples are not applicable.

SCED employ inductive reasoning to determine functional relationships between 
independent and dependent variables. Often, following a period of baseline data (A 
condition), in which an individual’s responding is measured repeatedly in the 
absence of the intervention, an intervention (B condition) is applied, and repeated 
measurement continues. If application of the intervention corresponds with thera-
peutic changes in level, trend, and variability of targeted responses, the researcher 
concludes with some degree of confidence the intervention was effective (i.e., there 
was a functional relationship between the intervention and observed outcomes). The 
researcher’s confidence in a functional relationship increases with replications of 
experimental effect. SCED researchers employ a variety of designs that permit both 
within and between subject replication (Ledford & Gast, 2018). Two SCED are 
most common. In the reversal design, following baseline (A), an intervention (B) is 
applied, removed, and then reapplied. The multiple baseline (MB) design entails 
multiple A-B series where baseline condition lengths are staggered and intervention 
is introduced at different points in time (across different behaviors, participants, and 
settings). There are numerous variations in SCED that include combined designs 
like, for example, the MB design with a reversal. Figures 12.1 and 12.2 show hypo-
thetical examples of reversal and multiple baseline designs demonstrating experi-
mental effect as evidenced through visual inspection.

As inductive research designs, a noteworthy feature of SCED is flexibility for 
adaptation according to each subject’s response to an intervention. For example, if 
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a subject’s improvement with an intervention (B1) is insufficient to meet desired 
clinical thresholds, a therapeutic modification to the intervention (B2), or a new 
intervention (C), can be introduced, and any improvements can be evaluated accord-
ingly (e.g., Crozier & Tincani, 2005). Such inductive design adaptations mitigate 
risk of clinical treatment failure associated with more traditional group designs, and 
permit a closer examination of factors that appear to influence treatment 
responsiveness.

As with other research design traditions, contemporary SCED researchers have 
established consensus on what constitutes rigorous study features in line with key 
design elements (Horner et al., 2005; Kratochwill et al., 2010; Ledford et al., 2018). 
These include selection of target behaviors and interventions that align with con-
sumer preferences and values (i.e., social validity; Schwartz & Baer, 1991); precise 
operationalization of outcome variables with measures to establish reliability; com-
plete and replicable descriptions of treatments with documented fidelity; sufficient 
data points within conditions to establish functional relations (or non-responsiveness); 
and design features that permit replication of experimental effect. Outcomes of 
studies reflecting these collective elements are considered more trustworthy than 
those that do not.

�Questionable Research Practices

Questionable research practices (QRPs) are a variety of research choices that intro-
duce bias into the body of research literature. The most blatant QRPs include undis-
closed researcher conflicts of interest; post-hoc selection of statistical techniques to 
support a priori hypotheses (p-hacking; Head et  al., 2015); post-hoc creation of 
hypotheses in accordance with observed results (harking; Kerr, 1998); selectively 
reporting data in published articles (Piggot et al., 2013); and outright suppression of 
results (Rosenthal, 1979). However, more subtle forms of QRPs are also likely quite 
common (Gerrits et  al., 2019). Writing an article abstract to downplay non-
significant findings, interpreting findings in the results to overplay significant find-
ings, or changing the order of findings in the discussion from the aims of the study 
are examples of these more subtle QRPs. In the context of our current discussion, 
we conceive QRPs in the broadest sense to include both researcher and editorial 
behavior. For instance, a manuscript author might selectively report data in a paper 
submitted for publication to make results appear more favorable, or an editor might 
request an author to omit data in a revision of a paper, or otherwise reject a paper, 
because it contains unfavorable results.

Scientific researchers in a variety of fields have documented widespread pres-
ence of QRPs and have promoted practices aimed at preventing them. One of the 
most prominent efforts is the open science movement, which includes calls for pre-
registering studies and making all study data publicly available (Nosek et al., 2015). 
Open science practices prevent more blatant QRPs when researchers declare pub-
licly their study hypotheses, data collection procedures, and data analysis 
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techniques in a transparent manner prior to conducting a study. Similarly, publicly 
sharing of datasets prevents omission of data in research reports and enables outside 
researchers to replicate and conduct their own independent analyses of the data. 
Other measures aimed at preventing QRPs include editorial practices that promote 
publication of studies with non-significant results, and calls for publication of reg-
istered reports, a type of peer-review whereby research papers are accepted for pub-
lication with the introduction and methods only (Scheel et  al., 2021). The latter 
practice ensures authors follow methods and analysis procedures they committed to 
prior to conducting the study and prevents journal editors and reviewers from biased 
editorial decisions based on study results.

�QRPs in SCED

While QRPs have been documented in a variety of research fields, examination of 
QRPs has until recently tended to focus exclusively on mainstream group design 
approaches. Only recently have SCED researchers focused any significant attention 
on whether QRPs are present with these designs, and if so, what should be done 
about it (Tincani & Travers, 2018, 2019). Clearly, there is potential overlap between 
many QRPs in the broader researcher community and QRPs as they could manifest 
in SCED.  Given both SCED and group design studies involve formulation of 
research questions and collection of data, biases related to selective reporting of 
results or post hoc alterations of research questions could occur regardless of design. 
Nonetheless, unique features of SCED suggest certain QRPs are likely to appear 
differently within these designs, and other QRPs not present in group designs might 
appear uniquely in SCED. What follows is a description of several key QRPs that 
could manifest in SCED, and steps SCED researchers and the SCED research com-
munity can take to mitigate them. Where useful, we include hypothetical examples 
of QRPs in SCED. We acknowledge examination of QRPs in SCED is a relatively 
new area of study and this is not necessarily an exhaustive list of practices. We hope 
our tentative discussion and recommendations will inspire future research aimed at 
examining these important concerns.

�Participant Selection

Because SCED studies typically employ a small number of participants who serve 
as their own controls, often fewer than five in a given study, participant selection 
bias is a potential concern. This QRP occurs when experimenters selectively recruit 
participants whose behavior is more likely to change therapeutically with applica-
tion of an intervention (i.e., selection bias; Ledford & Gast, 2018). Of course, this is 
a potential problem with any study of a therapeutic procedure, but the threat is miti-
gated to a degree in group designs, as outcomes of an intervention are aggregated 
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across a larger number of participants within a treatment group, and one or more 
comparison groups are not exposed to the intervention.

It is typical with any SCED study for a therapeutic intervention to target a popu-
lation with a common set of characteristics. For example, interventions that improve 
functional communication skills should target participants who would most likely 
benefit from the intervention due to clinical diagnoses associated with poor func-
tional communication, such as severe autism spectrum disorder (ASD; Ganz, 2015). 
Selecting study participants from a population most likely to benefit from success-
ful intervention is an important aspect of social validity and definitely not a 
QRP. However, intentionally selecting a subset of participants within a population 
because the experimenter knows, or at least suspects they will perform better than 
the target population at large, is a QRP.

The following example illustrates participant selection bias. A hypothetical 
research team is interested in evaluating an intervention to teach basic communica-
tion skills using speech generating devices (SGDs) to children with severe ASD 
(Tincani et al., 2020). The specific intervention involves teaching children to select 
picture icons from a computer screen which activates corresponding voice output. 
As part of their participant recruitment procedures, the team interviews parents 
about their children’s current communicative skills, and while none of the children 
is currently using an SGD, they learn that one child has a history using a different 
albeit similar type of picture-based communication system. The team encourages 
the parents to consent for participation because they suspect this child will more 
easily acquire communication once the intervention is introduced, enhancing the 
appearance of experimental control (i.e., treatment effect). Consequently, it is 
impossible to tell how much of the observed results are due to the intervention 
effects or due to the participant’s reported history of exposure prior to the study.

Participant selection bias in SCED can be prevented in the following ways. First, 
the description of recruitment procedures for a study should clearly detail all criteria 
for participation, along with a thorough description of recruitment procedures, to 
make clear participants were not selectively recruited based on potential interven-
tion responsiveness. Considering the previous example, this would include screen-
ing questions that exclude participants for previous exposure to the intervention or 
highly similar interventions, or other characteristics that could selectively enhance 
intervention responsiveness. Second, researchers could employ a randomization 
procedure to recruit participants. This would begin with the researchers identifying 
a pool of participants whose characteristics match those of the study, and then ran-
domly selecting a subset of individuals for participation. A limitation of the latter 
approach is the researcher must have a sufficient participant pool for randomization, 
which may not always be the case, especially if the target population has a rare or 
low incidence condition and few potential participants are readily available.
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�Independent Variable Selection

This QRP is a type of data falsification that occurs when researchers intentionally 
select or modify independent variables to enhance the appearance of intervention 
responsiveness, or to support their a priori hypotheses (Tijdink et al., 2014). This 
includes simplifying operational definitions of target behaviors on one or more 
salient dimensions, effectively lowering the bar for a successful outcome. This also 
includes omitting key response dimensions from operational definitions to enhance 
the appearance of success.

Consider a hypothetical research team evaluating an intervention to teach voca-
tional skills to adults with intellectual and developmental disabilities in a commu-
nity work setting. After observing participants in their work setting, they select a 
work task consisting of 15 steps completed in sequential order; the task is consid-
ered learned when participants complete all 15 steps with 100% accuracy. During 
the baseline condition, researchers note that while participants complete most steps 
with poor and inconsistent accuracy, steps 1 and 2 are especially challenging and are 
almost never performed correctly. Anticipating these steps will be especially diffi-
cult to teach with intervention, the team omits them from the task analysis, so par-
ticipants must complete only 13 steps with 100% accuracy. Participant data during 
baseline and intervention are graphed as a percentage of steps completed correctly; 
therefore, omission of the two steps is not reflected in the data. A different problem-
atic example would be if researchers selected a different and easier to perform target 
behavior altogether, and then began from scratch collecting new baseline data on the 
easier-to-perform behavior.

The potential for target behavior selection bias can be mitigated as follows. First, 
researchers should provide evidence that operational definitions of target behaviors 
reflect all key dimensions of meaningful dependent variables. In the previous exam-
ple, this would include evidence that participants’ work supervisors (or other sec-
ondary consumers, as appropriate) were consulted on target behavior selection prior 
to the baseline condition, and they verified all relevant steps of the target behavior 
were included in the task analysis, which remained consistent during baseline and 
intervention. Pre-registration of the study prior to initiation, including complete 
operational definitions of each target behavior, enhance research transparency and 
prevent researchers from modifying target behaviors in ways that work against an 
unbiased approach. Finally, avoidance of graphing dependent responses using less 
dimensional measurement systems (e.g., percentage correct) in favor of more 
dimensional measurement systems (e.g., frequency correct) lessens the likelihood 
that data are depicted in a deceptive way (Johnston et al., 2010).
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�Procedural Fidelity Documentation

Thus far, our discussion of QRPs has focused on ways researchers can manipulate 
dependent variables to produce the appearance of favorable findings. Data collec-
tion on independent variables can also be manipulated in ways that enhance appear-
ance of a study’s credibility. Procedural fidelity, the degree to which experimenters 
adhere to a specified experimental protocol, is a key part of SCED intervention 
research (Ledford & Wolery, 2013). Documenting strong procedural fidelity is criti-
cal for demonstrating that changes in the dependent variable are attributable to 
changes in the independent variable. Conversely, poor or inconsistent procedural 
fidelity reduces the researcher’s confidence that observed outcomes are attributable 
to treatment.

In SCED, procedural fidelity is typically documented using a checklist of steps 
that represent adherence to the treatment protocol, often completed by a researcher 
implementing the procedure along with secondary observers to ensure reliability. If 
a treatment is particularly complex, the checklist may have many steps, including 
ones that are conditional based on participants’ response to an intervention; a study 
may have multiple checklists representing different phases of intervention. The per-
cent or number of treatment steps completed is often reported as a measure of pro-
cedural fidelity in SCED research reports. In reports published in refereed journals, 
the percent or number of completed steps reported typically is high. However, low 
fidelity to the treatment protocol usually is considered a threat to internal validity 
and reduces chances of the study’s publication (Tincani & Travers, 2018).

Maintaining high procedural fidelity can be challenging, particularly if a treat-
ment protocol is complex. In lieu of rigorous training to ensure close adherence to a 
stated protocol, researchers may simplify a protocol checklist to omit key steps of 
an intervention, or use generalized descriptions of procedural steps to increase the 
likelihood of yes responses on a checklist. For example, rather than describing the 
checklist steps consistent with the stated procedure, “The therapist delivers verbal 
praise immediately after a correct response or corrective feedback immediately 
after an incorrect response”, the checklist simply states, “The therapist delivers 
feedback.” The latter description would more readily engender a “yes” response 
regardless of whether the feedback was correctly given. In a different and more 
blatant example, if a treatment step requires particularly skillful implementation 
that is prone to error, researchers could simply omit the step when calculating fidel-
ity and bolster the apparent adherence to the protocol and chances of publication.

To prevent QRPs in procedural fidelity documentation, researchers should make 
their procedural fidelity checklists or similar forms publicly available. This level of 
transparency allows readers to compare the stated experimental procedure with the 
method of procedural fidelity documentation and the reported procedural fidelity 
data. Sharing details of procedural fidelity documentation can be accomplished 
through inclusion in a published manuscript, in a publicly available data repository 
associated with the journal’s publisher, or other public data repository like the open 
science framework (https://osf.io). Also, where possible, researchers should employ 
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secondary, blinded observers who do not implement the treatment to complete pro-
cedural fidelity checklists.

�Graphical Depictions of Behavior

SCED studies involve graphical depiction of data for visual analysis to determine 
experimental control. QRPs can manifest when researchers depict behavior on 
graphs to enhance the appearance of experimental effect. Specifically, researchers 
can modify dimensions of the Y-axis scale of a graph to enhance the appearance of 
a robust treatment effect where less treatment effect actually exists (Dart & Radley, 
2017). Consider the three hypothetical graphs depicted in Fig.  12.3. Each graph 
depicts the same results, but the scale of the Y-axis scale varies between 10, 20, and 
40. As the largest unit on the Y-axis increases, the appearance of treatment effect is 
lessened, since the vertical distance between the data paths and the floor of the 
graph decreases, and the vertical distance between the data paths in the two phases 
also decreases. Researchers may intentionally select a lower maximum Y-axis scale 
value, like the one shown in the bottom panel of Fig. 12.2, to enhance the appear-
ance of treatment effect.

Some SCED researchers have recommended use of standard graphical displays, 
which would prevent misrepresentation of SCED data by varying the Y-axis scale 
(Calkin, 2005). Currently, such standard displays are not in wide usage. Alternatively, 
two rules of thumb in scaling the Y-axis should be followed. First, where multiple 
graphs representing the same dependent variable are presented (e.g., across differ-
ent participants or settings), the Y-axis scaling should be consistent across the 
graphs. Second, the maximum value of the Y-axis should correspond with the opti-
mal level of socially significant behavior change, rather than simply defaulting to 
the highest level of behavior observed during the experiment. For example, in a 
study of a reading intervention where the goal is to teach students to read 120 words-
per-minute, the maximum Y-axis value should be at least 120 regardless of whether 
participants’ maximum reading performance fell below 120 words-per-minute. In 
this way, readers can interpret results of the experiment in relation to the established 
goals of intervention.

�Effect Size Measures and Statistics

SCED researchers rely primarily on visual analysis to determine whether changes 
in trend, level, and variability of behavior indicate experimental control for inter-
ventions. In addition to visual analysis, researchers have devised a variety of effect 
size (ES) measures and statistical tests to estimate treatment effect in SCED research 
(Parker et  al., 2011; Parker & Brossart, 2003; Shadish et  al., 2014). These tech-
niques are specific to SCED since the assumptions of statistical tests used with 
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Fig. 12.3  Variations in Y-axis scaling to alter appearance of experimental effect

group design research are often violated or not applicable to SCED datasets. The 
most commonly used procedures evaluate non-overlap of data between baseline and 
intervention conditions. Additionally, a wide variety of parametric and non-
parametric statistical techniques have been developed to quantify magnitude of 
treatment effect between baseline and intervention conditions. While these tech-
niques have become increasingly commonplace in meta-analyses of SCED studies, 
they also frequently appear in single SCED study reports (Bondy & Tincani, 2018).
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Use of statistics to quantity behavior change has long been an area of controversy 
and disagreement in the SCED research community, with some arguing these meth-
ods cannot adequately capture dynamic aspects of visual analysis and should be 
staunchly avoided (e.g., Baer, 1977). Others contend these methods are useful in 
addressing shortcomings of visual analysis (e.g., lack of precision, need for train-
ing), including when synthesizing a body of literature to determine whether an 
intervention is effective (Kratochwill & Levin, 2014). There is evidence to suggest 
inconsistent and, in some cases, poor correspondence when quantitative measures 
are compared to each other, and when quantitative measures are compared to visual 
analysis (Wolery et al., 2010; Yucesoy-Ozkan et al., 2020; Zimmerman et al., 2018). 
Furthermore, each available quantitative technique has salient limitations. For 
example, non-overlap methods provide no quantification of the magnitude of exper-
imental effect, and statistical approaches may be compromised by certain properties 
of SCED data, such as autocorrelation and trend within conditions. Although these 
techniques are continually evolving and show promise for quantifying SCED data 
in more robust ways, currently there is no single statistical analysis technique that 
captures all aspects of visual analysis.

Incorporation of ES measures and statistics in SCED research is not itself a 
QRP. However, statistical methods of analysis create the possibility of QRPs. In the 
absence of robust treatment effect as evidenced by visual analysis, researchers may 
be tempted to include a quantitative measure to bolster the appearance of treatment 
effect. This seems especially likely when researchers can find one or more measures 
that will yield a moderate to large ES estimate. This QRP is similar to p-hacking in 
the group design research literature. Given myriad quantitative metrics available, 
different assumptions and calculation procedures, and varying results, this QRP is a 
very real possibility. To prevent this, researchers should publicly report and provide 
a rationale for specific ES metrics and statistical tests (along with visual analytic 
techniques) before the experiment. Importantly, given limitations of current quanti-
tative techniques for SCED data, we strongly recommend researchers use these 
techniques for individual study datasets only after well-established visual analysis 
approaches have been used (Lane & Gast, 2014; Harrington & Velicer, 2015; 
Kratochwill & Levin, 2014). Finally, given the novelty of some techniques and lack 
of wide usage across the SCED literature, we recommend researchers provide an 
explanation for why and how a particular technique will be used, how the data 
assumptions for the technique are met with the current dataset, and any anticipated 
limitations with the technique.

�The File Drawer Effect and Publication Bias

The file drawer effect is a longstanding problem in the social and behavioral sci-
ences research literature (Rosenthal, 1979). It occurs when studies that fail to yield 
statistically significant results are not published in refereed journals. If the study is 
part of a policy report, doctoral dissertation, or master’s thesis, it will forever remain 
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as part of the grey literature, unless it is incorporated into a published research syn-
thesis that includes grey literature (e.g., Dowdy et al., 2020). Non-significant find-
ings are crucial in understanding how interventions can fail to achieve desired 
therapeutic effects (e.g., Lang et al., 2012). The file drawer effect is problematic as 
it results in a skewed research literature disproportionately represented by success-
ful outcomes (Gage et al., 2017; Scheel et al., 2021).

The file drawer effect is thought to be a manifestation of publication bias (Tincani 
& Travers, 2019). Publication bias occurs when researchers selectively submit stud-
ies showing positive effects for publication, and/or when journal reviewers and edi-
tors favor such studies when rendering editorial recommendations and decisions. 
Publication bias also occurs when researchers selectively report study data showing 
positive effects to increase the likelihood of publication. As with other QRPs, pub-
lication bias can manifest with either group design or SCED research. For example, 
researchers using any type of design who have invested substantial time and 
resources to develop an intervention might be disinclined to publish data showing 
equivocal or negative effects of the intervention. Similarly, journal reviewers and 
editors may consider non-significant or negative results uninteresting or otherwise 
indicative of a poor study. One unique aspect of SCED research is the longstanding 
view that strong experimental control is the hallmark of a good study (Tincani & 
Travers, 2018). That is, a study is worthy of dissemination only when researchers 
demonstrate control over behavior through application of an intervention. Shadish 
et al. (2016) found that SCED researchers were more likely to rate a dataset as pub-
lishable if it demonstrated strong experimental control. In contrast, since contempo-
rary SCED are used to evaluate a wide variety of behavioral, educational, 
psychosocial, and other therapeutic interventions, it is crucial that failures to pro-
duce therapeutic effects are documented in published research (Johnson & Cook, 
2019). This information is critical in facilitating consumers’ knowledge of the 
boundaries of interventions, including those in widespread usage (Leaf et al., 2021).

Journal editors can implement editorial practices that foster publication of non-
effect studies. Stated editorial policies should explicitly encourage authors to sub-
mit for publication studies that fail to yield experimental control (Kittelman et al., 
2018). Journal editors can provide instructions to reviewers as guidance on how to 
review these studies, outlining features of high quality SCED that fail to produce 
optimal therapeutic effects (Tincani & Travers, 2018). Registered reports also may 
increase publication of non-effect studies (Johnson & Cook, 2019). In registered 
reports, researchers submit the introduction (i.e., rationale) and method for conduct-
ing a study for publication prior to conducting the experiment. Assuming a solid 
rationale and adherence to registered experimental procedures, journals are obli-
gated to publish the final manuscript (with results and discussion) regardless of the 
direction of findings. The acceptance for publication based on the proposed study 
and strict adherence to the accepted method precludes the possibility of editorial 
decisions biased by study findings. Scheel et al. (2021) found that registered reports 
included substantially more studies demonstrating non-statistically significant find-
ings, compared to papers published through the typical peer review process. 
Registered reports show promise for disseminating non-effect findings of both 
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group design and SCED studies, yet they are not currently in wide usage in journals 
publishing either types of design (c.f., Cook et al., 2021).

Research funding agencies can counter publication bias by encouraging research-
ers to incorporate open science principles into their research. This includes requir-
ing research grant recipients to preregister their studies on open science platforms 
(e.g., U.S. Department of Education, 2020). Granting agencies should also encour-
age researchers to incorporate open science principles into their grant applications, 
and advise reviewers to score them accordingly. For instance, granting agencies can 
allow applicants to achieve maximum review scores only if they commit to submit-
ting at least a portion of their research for publication as registered reports, and 
otherwise demonstrate they will take explicit steps to disseminate non-effect stud-
ies, along with other open science practices.

�Meta-Analyses of SCED Research

Thus far we have restricted our discussion to QRPs to individual SCED studies, but 
QRPs can occur with syntheses and meta-analyses. Increasingly, SCED researchers 
have adapted meta-analysis techniques to aggregate findings across individual stud-
ies to specify what interventions work, for whom they are effective, and under what 
conditions effects are observed (Dowdy et al., in press; Maggin et al., 2011). Meta-
analysis is an established research methodology in the social and behavioral sci-
ences, and SCED researchers have been adopting these techniques in their work for 
decades (Allison & Gorman, 1993; Shadish et  al., 2008; Vannest et  al., 2018). 
However, many SCED researchers are unfamiliar with contemporary meta-analysis 
techniques as they apply to SCED, and lack training in requisite statistical tech-
niques used in meta-analysis (Dowdy et al., in press). Given these concerns, QRPs 
can manifest when researchers employ less-than-rigorous procedures to conduct 
meta-analyses of individual SCED studies (Jamshidi et al., 2018).

As with any research methodology, there are established standards for conduct-
ing high quality meta-analyses to which all researchers should adhere (e.g., Moher 
et al., 2009; Shea et al., 2007). These include a priori formulation of research ques-
tions, rigorous procedures for extracting targeted studies, strategies for detecting 
bias within studies, and procedures for evaluating quality of studies. Many of these 
standards are the same regardless of whether researchers are synthesizing group 
design studies, SCED studies, or both together (e.g., Gage et al., 2017). However, 
there are at least two unique considerations for SCED meta-analyses. First, as dis-
cussed, ES estimation and statistical procedures for aggregating SCED data are 
different than those for aggregating group design data, with little consensus among 
SCED researchers for which is best given a particular dataset. Therefore, as with 
individual SCED studies, we strongly recommend SCED researchers preregister 
their meta-analysis studies on an open science platform, such as PROSPERO (Booth 
et al., 2012). They should provide a rationale for and associated assumptions for 
their selected ES metric. Researchers also should describe how the assumptions are 
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likely to be met by the proposed dataset and explain the calculation procedures. 
Additionally, we strongly recommend researchers report multiple ES metrics and 
explain any differences between results obtained from the different metrics. In addi-
tion, researchers may wish to consider reporting structured visual analysis tech-
niques in tandem with ES metrics (Lane & Gast, 2014).

Second, given the possibility of publication bias, we strongly encourage SCED 
researchers to include grey literature in their meta-analyses. We recommended that 
any meta-analysis include procedures for detecting publication bias, such as the 
funnel plot technique (Duval & Tweedie, 2000). However, given differing statistical 
assumptions of SCED experiments, procedures for detecting publication bias in 
group design studies may not be appropriate for SCED studies. Alternatively, to 
detect publication bias, SCED researchers can calculate ES metrics for published 
studies and grey studies separately and compare them (Dowdy et al., 2020; Sham & 
Smith, 2014).

�Conclusion

We discussed several QRPs in SCED research and outlined tentative solutions for 
preventing them. In drawing attention to QRPs in SCED, it is not our intention to 
convey that SCED research is less rigorous or somehow more prone to these prac-
tices (though we do recognize that many researchers are unfamiliar with and have 
incorrect understandings of SCED research). In fact, some well-documented QRPs 
like p-hacking are less likely to occur in SCED given the traditional reliance on 
visual analysis over statistics to determine experimental effect. Nonetheless, QRPs 
can manifest in any research methodology or scientific discipline, and SCED 
researchers are not immune from them. Clearly, more research on questionable 
practices in SCED is needed to better understand the scope of these misguided 
research choices, and how they appear uniquely within SCED. For example, sur-
veys of researchers in other fields have revealed that QRPs are commonplace 
(Gerrits et al., 2019; Loewenstein & Prelec, 2012; Tijdink et al., 2014). We hope our 
tentative discussion in this chapter sheds light on the possibility of QRPs in our 
research, and encourages researchers, journal editors, and other members of the 
research community to embrace practices to prevent them.
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Chapter 13
Presenting the Psychometric Evidence 
for Psychological Measures: A Proposal 
and Thoughts on Questionable Research 
Practices

William O’Donohue, Akihiko Masuda, and Stephen N. Haynes

Abstract  There is little guidance and much variability regarding the description of 
psychological measures and their associated psychometric evidence in scientific 
reports in psychology. This hinders the ability of the reader to properly evaluate the 
degree to which these measures actually measure what the authors intend to mea-
sure. This chapter advocates for a more standardized approach to reporting the psy-
chometric evidence that is based on five key principles. In reference to the 
psychometric evidence of a measure used in a scientific report, the write-up should: 
(a) argue what are the most relevant psychometric dimensions; (b) acknowledge the 
multidimensional nature of psychometric evidence; (c) acknowledge any missing 
and conflicting psychometric data; (d) present quantified psychometric information; 
and (e) acknowledge the conditional nature of the psychometric evidence across 
sample characteristics, dimensions of individual differences, and assessment con-
texts. A case example is provided to exemplify the use of these principles in a sci-
entific report in psychology.
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�Background

There are significant discrepancies among researchers about how measures are 
described in reports of psychological research. Part of this variability may emanate 
from the lack of specifics in the American Psychological Association’s (APA’s) 
Publication Manual (APA, 2011), which states:

Measures and covariates. Include in the Method section information that provides defini-
tions of all primary and secondary outcome measures and covariates, including measures 
collected but not included in the report. Describe the methods used to collect the data (e.g., 
written questionnaires, interviews, observations) as well as methods used to enhance the 
quality of the measurements (e.g., the training and reliability of assessors or the use of 
multiple observations). Provide information on instruments used including psychometric 
and biometric properties and evidence of cultural validity. (p. 31)

This statement provides some guidance for certain research and clinical contexts 
(e.g., treatment outcome studies), but is short on specific guidelines and is open to 
alternative interpretations along several dimensions. An important consideration is 
the goal of clearly, accurately, and comprehensively presenting psychometric evi-
dence. What is the primary purpose of providing information about the psychomet-
ric properties of measures in a report? Is it to convince readers that the measure is 
“good enough,” or perhaps “better” than alternative measures of the same construct? 
Or is it to give clear and precise information about a measure’s strengths and weak-
nesses so that readers can better interpret results based on this information? How 
ought this psychometric information be described—with general qualitative terms 
like “good” or ought this psychometric evidence be quantified? Should the reader be 
presented with an argument regarding what are the most important dimensions of 
psychometric evidence for the particular purposes of the study? As discussed else-
where (Hunsley & Mash, 2019), the relevance of the various dimensions of psycho-
metric evidence about measures varies across the purposes for which the measures 
are being used and the inferences that are to be derived. For example, predictive 
validity evidence might be more important than internal consistency evidence when 
a measure is being used to make inferences about the future.

Discrepancies across psychology reports may also be based on confusion, uncer-
tainty, and variability regarding the dimensions, applicability, and meaning of psy-
chometric evidence. These problems can vary from elementary mistakes of 
confusing reliability information with validity information (Haynes et al., 2019), 
such as when authors present Cronbach alphas to support the validity of a measure. 
However, these confusions also can be based on an insufficient appreciation of the 
advantages of precise psychometric information and guidelines about how psycho-
metric information should be presented.

Authors may also be insensitive to the conditional and multidimensional nature 
of psychometric information, and assume that psychometric information resides in, 
and thus is a stable trait of, a measure (Haynes et al., 2019). These assumptions 
about the nature and relevance of psychometric evidence are, of course, incorrect. 
The sample characteristics from which psychometric information about a given 
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measure has been derived should be compared to the sample characteristics of those 
in the report, and statements ought to be made about the degree of generalizability 
of the evidence.

A final source of confusion may be due to the primary function of providing 
psychometric information in psychological reports. It appears that many authors 
emphasize one function of the psychometric evidence—to convince readers and 
reviewers that “this measure is good enough.” That is, the measure and its attendant 
psychometric evidence (e.g., however these are described and however few or many 
of these psychometric dimensions are described) ought not to cause sufficient con-
cern to call into question any conclusions, cast doubt on the quality of the measures 
reported, or certainly provide a reason to not publish this paper. Gross (1996) and 
other contemporary philosophers of science have written on the rhetorical functions 
of scientific writing—that is, there are persuasive burdens that must be met—and 
here the persuasive task might be to convince the reader that the measure is “good 
enough” or perhaps “worry free.”

This chapter provides principles to resolve these problems and to assist writers 
and readers of a scientific paper to understand which psychometric evidence is rel-
evant to a measure and its application. This approach allows the reader then to more 
fully understand the appropriateness of the study’s inferences and conclusions and 
the writer to select the most relevant psychometric evidence to report. We regard 
problematically communicating or understanding key psychometric information on 
the measures used in a study as a questionable research practice, because this can 
intentionally or unintentionally create a false understanding or, at a minimum, a 
misleading impression regarding the quality of the measures used. In particular, 
when a report fails to explicate missing or poor psychometric data, the reader may 
gain the false impression that the measure is better than it actually is and thus not be 
in a position to properly evaluate the study’s conclusions. The move toward 
evidence-based assessment is laudatory but some researchers may have measure-
ment interests for which sound measures for the construct of interest simply do not 
exist. All measures contain error and communications about a measure should be 
constructed so that the reader has an accurate understanding of the measure’s 
strengths and weaknesses.

�Principles of Description of Psychometric Evidence 
in Psychology Reports

Given these areas of variability in describing measures and their psychometrics 
delineated above, we propose that when authors describe the measures that are used 
in a study, they should:

	1.	 Specify the relative importance among various dimensions of psychometric 
information for each measure used in a study.
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The relevance of different forms of psychometric evidence varies across the 
behaviors and events that are being measured, the strategies and methods of assess-
ment, the goals of assessment, the inferences to be made in the study, and the char-
acteristics of the study participants. Thus, there should be an explicit argument of 
what kinds of psychometric information are particularly important for the infer-
ences to be made from the measures in the particular study.

Construct validity is almost always an important composite judgment of psycho-
metric evidence, particularly when the intent is to measure higher-level constructs 
such as intelligence, depression, rape proclivity, and so on (Haynes et al., 2019). 
However, at other times the importance of other psychometric indices can be impor-
tant. For example, in a study involving repeated measures over a 2-week interval, 
2-week test-retest reliability may be particularly important. Internal consistency is 
an important source of psychometric evidence for many self-report instruments, 
such as a multi-item depression inventory, that provide measures based on the 
aggregation of scores from multiple elements that are presumed to be correlated.

On the other hand, internal consistency is a less important source of psychomet-
ric evidence for other purposes or methods, such as some direct observation meth-
ods of discrete behaviors in which elements are not theorized to co-occur. For 
example, for a rating scale that inquiries about a client’s experience with traumatic 
life events, we would not necessarily expect experiences with events such as divorce/
separation, sexual assault, and death of a loved one to be significantly correlated. 
The number and severity of a client’s traumatic life events could be summed into an 
aggregate score as an index of life traumatic experiences, but an index of internal 
consistency would not be informative for evaluating its psychometric properties. In 
other words, a low coefficient would not necessarily mean that scores from the 
instrument are invalid. Thus, in reports describing the measures and their psycho-
metric evidence, there should be explicit arguments about the relative importance of 
the different kinds of psychometric information to aid the reader in understanding 
the assessment instrument and its measures in the context of the particular study.

	2.	 Acknowledge the multidimensional nature of psychometric evidence.

It is incorrect and misleading to talk about reliability and validity as if these are 
unidimensional. For example, the glossary in Haynes et  al. (2019) mentions 13 
forms of validity evidence. Communicating and understanding this multidimen-
sional information are challenging. For example, a measure of children’s attention 
deficit hyperactivity disorder (ADHD) symptoms that has demonstrated a high 
degree of discriminative validity may not demonstrate a high degree of discriminant 
validity. That is, it may accurately identify children who have attentional deficits but 
not discriminate well between these children and children with conduct disorders.

It cannot be assumed that a single validity index for a measure (e.g., content 
validity) is generalizable across other validity indices for that measure (e.g., conver-
gent validity, divergent validity, predictive variability).

	3.	 Describe missing psychometric data as well as conflicting psychometric data 
of a measure in all relevant psychometric domains, and the implications of 
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these gaps for understanding the measure as well as the interpretation of 
results.

Many studies do not present all relevant psychometric information that is known 
about a given measure used and few disclose important psychometric evidence that 
is missing. Additionally, some authors report only research that has generally posi-
tive psychometric information and fail to report research that has been unsupport-
ive. Instead of just burying this information, these lacunae need to be explicated and 
their implications be made clear to the reader. Scientific methods are designed in 
part to safeguard against confirmation bias (e.g., Popper, 1957). Consistent with that 
goal, studies that provide less positive psychometric evidence or show measures 
with superior relevant psychometric evidence should be acknowledged.

Disregarding conflicting evidence about the internal structure of an assessment 
device is an example of this problem. Factor structures identified during the original 
development of an instrument often fail to be satisfactorily replicated in subsequent 
studies, especially those that involve participants who differ in important ways from 
participants in the original studies. An unreliable factor structure indicates either 
problems with the content of the instrument/scale or that there are real and impor-
tant differences in the targeted construct across populations or assessment contexts. 
The unreliability of some factor structures also means that the clinician should care-
fully consider the characteristics of prior studies when making clinical judgments 
on the basis of scale scores derived from prior factor analyses.

	4.	 Present quantified psychometric information.

Psychometric information ought to be presented in ways that are precise and 
quantified. Broad statements that “The reliability of the measure is (or has been 
found to be) good” are insufficiently helpful in evaluating the psychometric strength 
of a measure for its current application. Rather, it is essential to include quantified 
statements of psychometric evidence that allow more precise understanding of the 
magnitude of the potential error of measurement in the current study, which can 
then affect the study’s inferences and conclusions.

	5.	 Avoid describing psychometric information as trait-like.

Psychometric evidence can generalize across persons, settings, or assessment 
contexts and goals, and time, but does not necessarily do so (Haynes et al., 2018). 
Thus, psychometric evidence ought not to be presented as if it is a stable, trait-like 
characteristic of a measure. Validity evidence for a measure can vary depending on 
the particular judgment to which it is applied and the cultural characteristics and 
setting of a client. For example, the validity evidence for a measure of couple adjust-
ment can vary depending on whether the measure is used for brief screening pur-
poses or for clinical case formulation, and whether it is used to measure adjustment 
in younger or older couples.

As we have noted, inferences about the psychometric characteristics of measures 
from an instrument are always conditional and these conditions should be reported 
precisely. Psychometric data and inferences depend on sample composition, 
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convergent measures used, and other conditions of the evaluation. As stated above, 
psychometric characteristics do not “reside” with an instrument—past indices of 
validity do not mean that the instrument provided valid inferences in the current 
study. When providing supporting evidence for the psychometric characteristics of 
measures, the past tense should be used and, when feasible, the characteristics of the 
psychometric study (especially sample composition and convergent measures) 
should be reported. Evidence should focus on measures rather than instruments 
because some instruments provide multiple measures that vary in terms of their 
psychometric support.

In sum, these five principles provide a template to more fully and clearly describe 
the goals, strengths, weaknesses, and unknowns regarding a measure. They provide 
a useful and a more comprehensive and valid basis upon which to make more accu-
rate evaluations of the study’s conclusions. These recommendations might also have 
the salutary effect of encouraging investigators to more carefully select measure-
ment instruments if they knew they had to report more comprehensively on the 
measures selected.

�A Case Illustration

The following example was drawn from Masuda et al. (2007), one of the second 
author’s previously published papers. To exemplify the confusion, uncertainty, and 
variability relevant to the presentation of the psychometric information of a mea-
sure, we are going to focus on the Acceptance and Action Questionnaire (AAQ; 
Bond & Bunce, 2003; Hayes, Strosahl, et al., 2004), a self-report measure used in 
Masuda et al. (2007).

In the paper, Masuda et al. (2007) presented a randomized controlled trial that 
examined whether individuals high in the construct of psychological flexibility and 
those low in psychological flexibility responded differently to two types of psycho-
social interventions designed to reduce mental-health-related stigma in a non-
clinical sample of college students. Ninety-five participants (64 women; 2 
participants failed to note their gender) attended the workshops; 52 (38 women; 2 
unidentified) assigned to the Acceptance and Commitment Training (ACT; Hayes, 
Bissett, et al., 2004; Hayes et al., 2012) intervention and 43 (26 women) to the edu-
cation intervention. The average age was 19.7 years. The majority of participants 
were non-Hispanic Caucasians (non-Hispanic Caucasian  =  70, Asian/Pacific 
Islander  =  6, Hispanic  =  7, African American  =  2, multiethnic/others  =  8, and 
unidentified = 2). To accomplish this end, a 16-item AAQ scores at pre-intervention 
were used to dichotomize the study sample (i.e., high psychological flexibility vs. 
low psychological flexibility). The study participants were recruited from a state 
university in Reno, Nevada, in the United States. In the published paper, the AAQ 
was described as follows (p. 2767):
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The Acceptance and Action Questionnaire (AAQ; Bond & Bunce, 2003; Hayes, Strosahl, 
et al., 2004) was used to categorize participants by their degree of psychological inflexibil-
ity, cognitive fusion, and experiential avoidance [in this study, we will use the term “psy-
chological inflexibility” to refer to these ACT processes]. The AAQ is a 7-point Likert scale 
with adequate reliability (α of .72–.79; Bond & Bunce, 2003; Hayes, Bissett, et al., 2004; 
Hayes, Strosahl, et  al., 2004), and inquiries about avoidance of emotions, fusion with 
thoughts, and the inability to act in the presence of difficult thoughts and feelings. The 
16-item version (Bond & Bunce, 2003) was used and scored so that higher scores corre-
spond to higher levels of psychological flexibility.

In order to categorize participants, the mean score for clinical populations (Hayes, 
Strosahl, et al., 2004) was used as a cutoff. If a participant’s pre-treatment AAQ 
score was 66 or lower, the participant was categorized as being psychologically 
inflexible; if the score was 67 or higher, the participant was categorized as being 
“psychologically flexible.” (Italics added).

�Critique

As the pre-treatment AAQ score was used to differentiate those high in psychologi-
cal inflexibility from those low in psychological inflexibility, it is safe to say that 
Masuda et al. (2007) viewed psychological inflexibility as a relatively stable trait-
like behavioral pattern. Masuda et al. (2007) used a 16-item version AAQ developed 
by Bond and Bunce (2003). It is also important to note that at the time of the study, 
there were several other versions of AAQ available, including another 16-item ver-
sion of AAQ, and that psychometric indices of these alternative AAQs were reported 
in detail in Hayes, Strosahl, et al. (2004). As described in detail below, Masuda et al. 
(2007) violated a number of the proposed principles described earlier, including 
treating psychometric properties as sample independent and thus trait-like.

Inconsistent with Principle 1 (provide explicit arguments about relative impor-
tance of psychometric evidence), Masuda et al. (2007) did not present any argument 
about the relative importance of various psychometric indices for the 16-item ver-
sion of AAQ in the context of the study. Thus, the reader had no guidance about 
which psychometric dimensions were particularly important to know. Given the 
purpose of AAQ in Masuda et al. (2007), there should have been an explicit argu-
ment about the importance of knowing its content validity, convergent validity, 
divergent validity, and factor structure. These arguments in this study needed to be 
nuanced because Masuda et  al. (2007) implied that three interrelated constructs 
were purportedly measured by this measure: psychological inflexibility, cognitive 
fusion, and experiential avoidance. In addition, arguments should have been made 
(e.g., correlations among factor/scale scores) about how these three constructs can 
be combined into a measure of one superordinate construct psychological in/flexi-
bility. Additionally, particularly relevant to the way that AAQ score was used in the 
study, arguments should have been made about the importance of the discriminative 
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validity of scores on the AAQ to using a cut score of 66 as well as the temporal 
stability of AAQ score in form of test-retest reliability.

In regard to Principle 2 (i.e., psychometric evidence is multidimensional), 
Masuda et  al. (2007) also failed to report the available psychometric data of the 
16-item version of AAQ that were particularly relevant to their study. Instead, 
Masuda et al. (2007) implied the overall adequacy of this measure by reporting only 
its internal consistency (i.e., “α of .72–.79”). As discussed extensively elsewhere 
(Haynes et al., 2019), one should not assume other validity and reliability indices of 
a scale (e.g., convergent validity, divergent validity, and predicted validity; test-
retest reliability) based on one index of that scale (e.g., internal consistency).

At the time of the study, results of internal consistency (Cronbach’s alpha of .88 
and .90), one-year test-retest reliability (r  =  .72), confirmatory factor analysis 
(CFA), and convergent validity (with mental ill-health measured by General Health 
Questionnaire-12 [GHQ-12; Goldberg, 1978]; r  = −. 61) were available for the 
16-item version of AAQ with a sample of English and Scottish employees who 
work in the customer service centers of a United Kingdom financial institution 
(N = 412, mean age = 30.87 years, 68% women, 66% working part-time; Bond & 
Bunce, 2003). The CFA found a two-factor solution was a good fit to the data of this 
study sample: χ2(101, N = 412) = 233, p = .02, comparative fit index (CFI) = .97; and 
root-mean-square error of approximation (RMSEA) = .05, with one factor appear-
ing to represent one’s “willingness to experience unwanted events” and the other 
appearing to reflect one’s “ability to take action, even in the face of unwanted inter-
nal events.” Masuda et al. (2007) could have reported these findings as well as pro-
vided how these two factors mapped onto the construct of psychological flexibility.

At the time of the study in Masuda et al. (2007), a comprehensive psychometric 
examination of the 16-item 2-factor version of AAQ had not been done. The only 
available psychometric evidence for this version of 16-item AAQ was that reported 
in Bond and Bunce (2003). More thorough psychometric evaluation had been done 
with one of the other versions of AAQ (i.e., 9-item single-factor version of AAQ; 
Hayes, Strosahl, et al., 2004) with multiple non-clinical and clinical samples in the 
United States, and, as described below, Masuda et al. (2007) appeared to assume 
wrongly that the 16-item version of AAQ was psychometrically equivalent to the 
9-item version.

With regard to Principle 3 (i.e., discuss missing psychometric data, negative psy-
chometric information, and the implications of these gaps for understanding the 
measure as well as the interpretation of results), Masuda et al. (2007) did not present 
any argument to help the reader understand the implications of key missing psycho-
metric information. As stated above regarding Principle 1 there was missing psy-
chometric information, particularly with regard to content validity, convergent 
validity, and divergent validity. As such, the readers are left to their own to under-
stand implications of other psychometric information.

Furthermore, Masuda et al. (2007) also failed to report negative psychometric 
information of the 16-item version AAQ as well as other versions of AAQ. At the 
time of the study, the 16-item 2-factor version of AAQ used in Masuda et al. (2007) 
appeared to be internally consistent with the sample of English and Scottish 
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employees who work in the customer service centers of a United Kingdom financial 
institution (Cronbach’s alpha of .88 and .90; Bond & Bunce, 2003) more so than 
other versions of AAQ (e.g., Cronbach’s alpha =  .70 for the 9-item version, and 
Cronbach’s alpha = .61 for the other 16-item version of AAQ with a sample of cli-
ents in a university counseling center in the United States; Hayes, Strosahl, et al., 
2004). However, it is also important to note that since the publication of Masuda 
et al. (2007), the 16-item AAQ used in the study has been replaced with a revised 
1-factor version of AAQ (i.e., AAQ-II) for the purpose of refining its construct 
validity. Furthermore, more recently, the measure of AAQ has come under attack for 
its questionable construct validity. Several authors have argued that the measure of 
even the most recent version of AAQ (i.e., AAQ-II) is flawed psychometrically, as 
the data indicate inadequate discriminant validity—the confounding of constructs, 
particularly with negative emotionality (Gámez et al., 2011; Tyndall et al., 2019; 
Wolgast, 2014).

Inconsistent with Principle 4 (i.e., present quantified psychometric information), 
additional quantitative psychometric information should have been presented. The 
only quantified psychometric presented was an alpha coefficient (i.e., “α of .72–
.79”) that does not provide sufficient information to fully understand the strengths 
and weaknesses of the measure, particularly in the context of what was argued as the 
most important psychometric information (e.g., content validity, convergent valid-
ity, divergent validity, and factor structure). Masuda et al. (2007) also failed to pro-
vide psychometric information regarding test-retest reliability but still described the 
measure as having “adequate reliability,” treating reliability as a trait-like character-
istic of the measure.

Furthermore, Masuda et al. (2007) failed to report that these numeric values of 
alphas as well as how the cutoff score of 66 were also drawn from the findings of 
other versions of AAQ that used quite different samples of subjects (i.e., 460 clients 
[mean age = 26; 63% women, 85% Caucasian] in an university counseling center; 
419 clients receiving a service from a large Health Maintenance Organization in 
Seattle [mean age = 38.6; 65.4% women, no information of client’s ethnic and racial 
background], and 41 adult treatment-seeking individuals [mean age = 38.0; 70.7% 
women, 100% Caucasian]). In addition, Masuda et  al. (2007) did not present a 
quantified index of the internal consistency of AAQ that could have been computed 
in their study sample. This set of information is important given the conditional 
nature of psychometric information of a measure (Haynes et al., 2019).

Principle 5 (psychometric information is conditional and not trait-like) also was 
violated in that all information about the sample and testing characteristics of the 
studies that produced psychometric information were not described. Consequently, 
it is not possible to understand how to make a detailed comparison of characteristics 
of past studies with those of the present study. These include the characteristics of 
study sample of the reported psychometric information. For example, data from the 
Bond and Bunce (2003) study were derived from 412 full-time customer service 
center workers in the United Kingdom, compared to the college student sample in 
Masuda et  al. Approximately 30% of study participants in Masuda et  al. (2007) 
were ethnic minorities, but they failed to suggest the dissimilarities of their sample 
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with the samples used to describe the psychometric properties of the scale. As 
Masuda et al. (2007) viewed psychological flexibility as a trait-like feature of an 
individual variable, data on test-retest reliability of the AAQ were particularly 
important, given the test-retest nature of the study.

�Examples of an Improved Presentation

What follows is an example of how the measure of AAQ in Masuda et al. (2007) 
could have been described in a way that is more consistent with the five principles 
described above.

“The score of 16-item 2-factor version of Acceptance and Action Questionnaire 
(AAQ; Bond & Bunce, 2003) was used to categorize participants into two groups by 
their degree of psychological flexibility. The AAQ used in this study was a 16-item 
self-report measure, and each item is rated on a 7-point Likert-like scale ranging 
from 1 (never true) to 7 (always true). Scores of all items were summed to yield the 
total score of AAQ, ranging from 16 to 112. Higher scores are interpreted to indicate 
higher levels of psychological flexibility. For the purpose of the present study, the 
most important psychometric information of AAQ are internal consistency, test-
retest reliability, convergent validity, discriminant validity, and discriminative valid-
ity. Internal consistency was regarded as an important psychometric property 
because behavioral phenomena described in the items of AAQ were theorized to 
co-occur. Test-retest reliability (i.e., one-month test-retest reliability) was important 
because the time period between pretest and follow-up test was 4 weeks so the sta-
bility of the measure in this time period would be important to allow a more valid 
interpretation of cutoff score. Convergent validity with conceptually relevant con-
structs, such as thought suppression, emotion regulation, and mindfulness, was 
thought to be particularly important in this study because the construct of psycho-
logical flexibility purported to be measured by the 16-item version of AAQ was 
relatively new and not subjected to extensive psychometric evaluation. Discriminant 
validity and discriminative validity were thought to be important because in this 
study, alternative interpretations based on social disability, therapeutic allegiance, 
and willingness to report negative emotions would need to be ruled out for valid 
interpretation.

At the time of the present study, the psychometric research of this version of 
AAQ was fairly primitive and few psychometric studies were available. To date, 
results of internal consistency (Cronbach’s alpha of .88 and .90), one-year test-retest 
reliability (r = .72), confirmatory factor analysis (CFA), convergent validity (with 
mental ill-health; r = −.61), and criterion-related validation (e.g., predicting mental 
ill-health 1 year later) were available for the 16-item version of AAQ only with a 
sample of English and Scottish employees who work in the customer service centers 
of a United Kingdom financial institution. This sample differs in age, employment 
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status, nationality, educational status, as well as other variables from the sample in 
this study. A confirmatory factor analysis found a two-factor solution was a good fit 
to the data of this study sample: χ2(101, N = 412) = 233, p = .02, comparative fit 
index (CFI) = .97; and root-mean-square error of approximation (RMSEA) = .05, 
with one factor appearing to represent one’s willingness to experience unwanted 
events (e.g., “It’s OK to feel depressed and anxious”) and the other appearing to 
reflect one’s ability to take action, even in the face of unwanted internal events (e.g., 
“Despite doubts, I feel as though I can set a course in my life and then stick to it”). 
However, the construct allegedly being measured in the paper was psychological 
flexibility and these two factors are not identical with this. Moreover, to date no 
psychometric study has been done to examine its psychometric properties with the 
US college students, the sample of present study, and it was unclear the extent to 
which the psychometric evidence of AAQ found in Bond and Bunce (2003) was 
applicable to the present sample.

Furthermore, in order to categorize participants, the mean score for clinical pop-
ulations drawn from another version of AAQ (i.e., 9-item version; Hayes, Strosahl, 
et al., 2004) was used as a cutoff. More specifically, if a participant’s pre-treatment 
AAQ score was 66 or lower, the participant was categorized as being psychologi-
cally inflexible; if the score was 67 or higher, the participant was categorized as 
being psychologically flexible.” Psychometric evidence of using a score of AAQ as 
a clinical cutoff was missing.

�Conclusions

It is the premise of this chapter that there has been too little guidance on how to 
report psychometric information in studies in psychology. This has led to a wide 
variability in reporting practices as well as reporting practices that do not allow the 
reader to fully understand the measures’ strengths and weaknesses in the context of 
the study in which they are used. In an attempt to provide increased clarity regarding 
the quality of the measures used, this paper proposed five principles to present and 
organize complex psychometric information.

If adopted, this more standardized approach ought to both give scholars more 
guidance on writing about measures and help readers to understand and better inter-
pret the inferences made in the study. This will increase the length of the Measurement 
section in journal articles but is justified by its importance. This proposal should be 
regarded as preliminary and it is hoped that others will provide improvements to 
these principles so that measures can be better understood and the data these mea-
sures produce are more validly interpreted.
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Chapter 14
Replicability and Meta-Analysis

Jacob M. Schauer

Abstract  In this chapter, I will discuss statistical considerations for studying repli-
cation. More specifically, I will approach replication from a framework based on 
meta-analysis. To do so, I will focus on direct replications, where studies are 
designed to be as similar as possible, as opposed to conceptual replications that 
(systematically or haphazardly) vary in at least one aspect of an experiment. The 
chapter starts with a brief description of recent research on replication in psychol-
ogy and uses examples from that research to highlight relevant considerations in 
defining and parametrizing “replication.” It then outlines different ways to frame 
analyses of replication and provides examples. Finally, it takes one possible defini-
tion of replication—that effects found across studies involving the same phenome-
non are consistent—and describes relevant analyses and their properties.

Keywords  Replicability · Meta-analysis · Replication research · Direct replication

�Introduction

In the first two decades of the twenty-first century, multiple research programs 
called into question the replicability of scientific findings in several fields, including 
psychology (e.g., Ioannidis, 2005; Open Science Collaboration, 2015; Camerer 
et al., 2016; Klein et al., 2014). These findings would seem to have serious implica-
tions for the evidence behind evidence-based practices, particularly in clinical and 
behavioral psychology. In response, various scientific bodies, such as the Association 
for Psychological Science (APS) and National Institute of Health (NIH), as well as 
individual researchers called for steps to improve the transparency and reproduc-
ibility of scientific research (see Pashler & Harris, 2012; Collins & Tabak, 2014; 
Perrin, 2014; Bollen et al., 2015; Head et al., 2015).
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Though enhanced transparency can improve the face validity and potential repli-
cability of research results, a critical step in establishing scientific evidence involves 
actually conducting replication studies. Yet, until the mid to late 2010s, literature on 
methods for designing and analyzing replication studies was limited (Schmidt, 
2009; Hedges & Schauer, 2019b). Methods for studying replication would seem to 
be simple: Just conduct an additional study (or several studies) and examine whether 
results are the same. But empirical research on replication has demonstrated that 
replication is anything but simple (see Bollen et al., 2015). It can be extremely dif-
ficult and time-consuming to standardize procedures to ensure that relevant factors 
are controlled across multiple studies. Moreover, emerging work on the statistical 
aspects of studying replication has revealed several key challenges for researchers.

These statistical challenges intersect everything from the definition of replication 
to analytic methods to the design and sample size considerations for replication 
studies. Precise definitions of replication, which are seldom directly specified, are 
required in order to identify a relevant analytic method for replication. Schauer and 
Hedges (2021) argue that there are several possible definitions of replication, includ-
ing agreement in the direction, interpretation, and magnitude of effects across stud-
ies. Moreover, a definitive analytic method must be specified in order to determine 
the sample size required of replication studies, or indeed, to determine how many 
studies need to be conducted.

In this chapter, I will discuss statistical considerations for studying replication. 
More specifically, I will approach replication from a framework based on meta-
analysis. To do so, I will focus on direct replications, where studies are designed to 
be as similar as possible, as opposed to conceptual replications that (systematically 
or haphazardly) vary in at least one aspect of an experiment (for discussion, see 
Collins, 1992; Schmidt, 2009). The chapter starts with a brief description of recent 
research on replication in psychology and uses examples from that research to high-
light relevant considerations in defining and parametrizing “replication.” It then out-
lines different ways to frame analyses of replication and provides examples. Finally, 
it takes one possible definition of replication—that effects found across studies 
involving the same phenomenon are consistent—and describes relevant analyses 
and their properties.

�What Does Research on Replication Look Like?

To understand what replication research looks like, it helps to look at how research-
ers have approached the study of replication, including those in psychology. Perhaps 
the most high-profile replication research projects were the Replication Project: 
Psychology (RPP; Open Science Collaboration, 2015) and the Replication Project: 
Economics (RPE; Camerer et al., 2016). Both of these projects took a series of sci-
entific findings and ran a single replication of each: The RPE focused on 18 differ-
ent experiments in behavioral economics, while the RPP looked at 100 social and 
behavioral psychology experiments, 73 of which they identified as a “meta-analytic 
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subset” for which meta-analysis methods would be appropriate. The lengths taken 
to standardize and register protocols, ensuring that the replications in question could 
be seen as direct replications (or as direct as possible), were documented by the RPP 
(Open Science Collaboration, 2012).

However, there is no reason that researchers need to stop at just one replication 
study. Depending on the finding in question, it may be possible to conduct multiple 
replication studies, as was the case with the Many Labs Replication Project (Klein 
et al., 2014). Many Labs recruited 36 laboratories to run the same set of experi-
ments. In the same year Many Labs published their results, the APS announced a 
series on the Registered Replication Reports (Simons, Holcombe, & Spellman, 
2014). These efforts have conducted several replications of a given finding, from as 
few as 13 to as many as 33 studies (see Alogna et al., 2014; Bouwmeester et al., 
2017; Cheung et al., 2016; Eerland et al., 2016; Hagger et al., 2016; Wagenmakers 
et al., 2016). Subsequent projects, including various iterations of Many Labs (e.g., 
Ebersole et al., 2016; Klein et al., 2018, 2019) and the Pre-Publication Independent 
Replication (PPIR) project (Schweinsberg., 2016) have also approached the study 
of replication as one that relies on several replication studies. This approach has 
been adopted by the Psychological Science Accelerator, an international collabora-
tion of over 500 laboratories across the globe dedicated to conducting simultaneous 
replications across several laboratories (see Moshontz et al., 2018). To date, large-
scale programs devised to study replication have seldom attempted to replicate find-
ings in clinical psychology.

To unpack what these programs imply about replication research, we can zoom 
in on a single experiment. For instance, the RPP (Open Science Collaboration, 
2015) ran a replication of an experiment first described by Payne et al. (2008). The 
original study examined the correlation between time spent awake and participant’s 
memory of negative objects or scenes. The experiment involved presenting partici-
pants with a series of negative and neutral images, randomizing participants to con-
ditions that corresponded with different sleeping conditions, and then asking them 
to respond to a set of images similar to those they were shown previously. The RPP 
conducted a single replication of this experiment. In that sense, programs, such as 
the RPP and RPE, have taken an approach of studying replication by conducting a 
single replication study for a finding, typically with a larger sample size than the 
original study.

Contrast that with a program, such as Many Labs, which replicated experiments 
like the reverse gambler’s fallacy (Oppenheimer & Monin, 2009). In the original 
experiment, participants were asked to imagine a man rolling dice at a casino. In the 
two arms of the study, participants imagined seeing the man roll three sixes versus 
seeing him rolling two sixes and a three. Participants were then asked how many 
times they thought the man had rolled the dice before they witnessed the result in 
their assigned condition. On average, participants who imagined seeing three sixes 
tended to estimate the man had rolled the dice more times than those who imagined 
seeing only two sixes. Many Labs ran this experiment 36 times across different 
laboratories at (roughly) the same time. Analyses used by Many Labs included com-
paring the original study to an average of the effects found in the replication studies, 
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as well as examining variation across the replication studies. Viewed this way, the 
study of replication may require several replication studies conducted simultane-
ously, and potentially in different laboratories or settings.

�Model and Notation

As noted above in this chapter, I adopt a model and notation to describe the data 
generated by replication studies that is commonly used in meta-analysis. Meta-
analysis is particularly germane to discussions of replication as it concerns the sta-
tistical methodology for studying the results of multiple (i.e., two or more) studies 
(Hedges & Olkin, 1985; Cooper et  al., 2019). Suppose there are k studies con-
ducted; replication research involves k ≥ 2 studies. Often, one of these studies is 
published, though it is neither infeasible nor without precedent that multiple repli-
cation studies could be conducted prior to publishing any result (see e.g., 
Schweinsberg et  al., 2016; Moshontz, et  al., 2018): For the Payne/RPP sleep-
memory study, k  =  2 (i.e., an original and a replication study), for Many Labs’ 
gambler’s fallacy study, k = 36.

In any single study, the focus of statistical analysis is a quantity known as the 
estimand. An estimand is a quantity to be estimated or evaluated in a statistical 
analysis. The term is used to more clearly distinguish the target of inference (i.e., the 
estimand) from the method used to make inferences about that target (i.e., the esti-
mator) and the specific value obtained from a given method and dataset (i.e., the 
estimate; for discussion in participant or patient outcomes, see Lawrance et  al., 
2020). An estimand could be a treatment effect in a randomized trial, such as a stan-
dardized mean difference or log odds ratio, a population parameter, or some param-
eter in a statistical model. For the sake of simplicity, the language in this chapter 
will refer to effects or treatment effects and assume that effects are one of the stan-
dard effect size indices commonly used in meta-analysis, such as the mean differ-
ence, standardized mean difference (Cohen’s d), log odds ratio, risk ratio, and 
correlation coefficient (see Cooper et al., 2019). I will present results on the scale of 
standardized mean differences; however, the statistical results presented largely 
hold for other quantities.

Within study i = 1, …, k, let θi be the effect or estimand of interest. Note that it 
may be possible (even probable) that θi ≠ θj even among direct replications if there 
are any uncontrolled sources of variation between studies (e.g., samples derived 
from different populations, potentially unknown deviations in protocols; Hedges & 
Schauer, 2019b). In later sections I will discuss an important way to conceive of the 
θi as either fixed but unknown quantities, or as random variables (referred to as the 
random effects model in meta-analysis). When the θi are treated as random vari-
ables, their distribution is assumed to have a mean μ and variance τ2.

In practice, we do not observe θi directly, but instead must estimate it from data 
collected within study i. Denote Ti as the estimate of θi and let vi be the estimation 
variance of Ti. Thus, from each study, we obtain an effect estimate Ti, and a variance 
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vi or standard error vi . The statistical results in this chapter make three assump-
tions about Ti. First, that Ti is an unbiased estimator of θi. Second, that Ti is normally 
distributed. Third, that vi is known (or estimated with very little uncertainty). Taken 
together, these assumptions imply

	
T N vi i i~ � ,� � 	

where vi is known. This will be exactly or approximately true for estimates of most 
effect size indices, including standardized mean differences (with reasonably large 
sample sizes), mean differences, log odds ratios, or z-transformed correlation coef-
ficients (Cooper et  al., 2019; Borenstein et  al., 2009). Note that in a two-armed 
experiment, the variance vi of the standardized mean difference can be expressed as
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where ni
T and ni

C are the sample size of a treatment and control groups, respectively 
(Hedges, 1982). In a balanced experiment, where ni

T = ni
C = ni/2 (i.e., ni is the total 

sample size), so long as effects are relatively small and sample sizes within groups 
ni/2 are reasonably large, we can write
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(14.2)

�Additional Notation

A key attribute of the statistical model above is that it distinguishes between an 
effect parameter θi and effect estimate Ti. Understanding this distinction will be suf-
ficient for unpacking most of the key considerations for defining and evaluating 
replicability. For readers interested in more technical aspects of analyses for replica-
tion, this section provides some other useful values that arise in analysis methods 
discussed in this chapter. These serve as a reference for subsequent equations in this 
chapter.

•	 The precision weighted average of effect parameters. This is one way to average 
the effects across replication studies, wherein effects that are more precisely esti-
mated receive more weight.
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(14.3)

14  Replicability and Meta-Analysis



306

•	 The unweighted average of effect parameters. This is an alternative to the 
weighted average in (14.3).
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(14.4)

–– Note that when all vi are equal so that vi = v, then θ  is equivalent to θ· . 
Unless there is substantial variation in sample sizes across studies, the aver-
ages in (14.3) and (14.4) will often be similar in value.

•	 The precision weighted average of effect estimates. This is typically used to sum-
marize or average effect estimates in meta-analysis, and gives greater weight to 
studies with smaller variances (i.e., more weight is given to studies with bigger 
sample sizes).
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(14.5)

–– Note that when all vi are equal so that vi = v, then T·  is equivalent to the 

unweighted mean T T k
k

i

i� �
�1

/ .

–– Among the k = 36 effect estimates and variances reported by Many Labs’ 
reverse gambler’s fallacy experiments (see Table 14.3), the weighted mean of 
effects is 0.63 and the unweighted mean is 0.61.

•	 The Q statistic is used to test heterogeneity and estimate between-study variance:
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–– For the Many Labs’ reverse gambler’s fallacy example, the Q statistics 
is 51.61.

–– For k = 2 studies, the Q statistic reduces to (T1 − T2)2/(v1 + v2).

•	 A sum of (powers of) precisions Sj is used in computing various quantities related 
to variation between studies and standard errors of meta-analytic estimates:
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–– Note that when all vi are equal so that vi = v, Sj = k/vj.

•	 The constant S is a function of the estimation error variances vi used in common 
estimators of between-study variation:
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–– Note that when all vi are equal so that vi = v, S = (k − 1)/v.

•	 An estimate of the variation between effect parameters is based on the Q statistic 
in (14.6) (DerSimonian & Laird, 1986):
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–– For the reverse gambler’s fallacy example, the estimated between-study vari-
ance is ˆ .�DL

2 0 01� .

•	 A random effects weighted average of effect estimates:
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(14.10)

–– This is analogous to the weighted average in (14.5), except the weights in 
(14.10) involve the estimated between-study variation τ̂DL

2 . In the reverse 
gambler’s fallacy example, the unweighted mean is T = 0.61, the precision 
weighted mean is T·

 = 0.63, and the random effects weighted mean 
is T·

� � 0.61.

�What We Mean When We Say “Replication”

Conventional understanding of successful replications is that they get “the same” 
result or outcome. Yet, when it comes to statistical analyses, “the same” has proven 
to be tricky to characterize precisely (see Valentine et al., 2011; Bollen et al., 2015; 
Hedges & Schauer 2019b; Schauer & Hedges, 2021; Schauer et al., 2021). Doing so 
requires some decision-making about the studies involved and how they pertain to 
the finding under scrutiny. Because of this, there are several possible definitions of 
replication success or failure, and different ways to quantify these definitions 
(Schauer & Hedges, 2021). As one might expect, an analytic method for one defini-
tion of replication may be wholly inappropriate for a different definition of replica-
tion. Thus, before conducting any analysis of replication, it is critical to formalize 
the relevant definition. In this section, I will discuss various ways in which 
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definitions of replication can be structured, and why that can matter for making 
inferences about the replicability of scientific findings.

�Definition of Replication Versus Analysis Methods

An important distinction to make in the context of replication research is between 
the underlying definition of replication and analysis methods for a given definition. 
A definition of replication ought to concern the effect parameters θi. The θi are the 
actual effects produced in an experiment or study, and hence reflect a study’s true 
results (i.e., the true effect). An analysis method uses data (i.e., the effect estimates 
Ti and variances vi) to infer something about the relationships between the θi. That 
is, an analysis method—which is a function of the Ti and vi—concerns a specific 
formal definition of replication—which is a function of the θi.

To unpack this distinction, consider a research design with k = 2 studies: an origi-
nal study (study 1) and a replication (study 2). There appear to be two commonly 
accepted definitions of replication success for two studies. First, effects could agree 
in sign/direction, so that both effects are positive or negative (e.g., a treatment 
improves outcomes in both studies). Second, effects could agree in magnitude, so 
that effects are the same size in each study. The first column of Table 14.1 shows a 
mathematical formalization of these two definitions. Note that the sign () and 1{} 
functions are as follows:
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Common analysis methods used to determine if study 2 failed to replicate study 1 
include the statistical significance criterion, the confidence interval overlap (CIO) 
procedure (Brandt et al., 2014), and the prediction interval (PI) procedure (Patil, 
Peng, & Leek, 2016). Table 14.1 describes these approaches as statistical procedures.

Table 14.1  Some definitions of replication and commonly used methods to assess those definitions

Definition of replication Some proposed analyses

Agreement in sign/direction of 
effects
sign (θ1) = sign (θ2)

Significance criterion:
sign (T1) = sign (T2) AND both are significant (or both 
nonsignificant)

Agreement in magnitude of 
effects
θ1 = θ2

Confidence interval overlap:
1{(T1 – T2)/ v2 1 96� �.

Prediction interval:

1{(T1 – T2)/ v v1 2 1 96� � . }
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•	 The statistical significance procedure concludes study 2 failed to replicate if it 
disagrees in sign or statistical significance compared to study 1 (e.g., T1 and T2 
are both positive, but T1 is statistically significant and T2 is not). Typically, statis-
tical significance is set to the α = 0.05 level for this procedure and two-sided tests 
are used where appropriate.

•	 The CIO method concludes a study failed to replicate if T1 is not contained in a 
95% confidence interval for θ2 in study 2. Note that the confidence interval for 
study 2 only accounts for estimation error variance in study 2, but not in study 1.

•	 To adjust for that, the PI approach concludes a study failed to replicate if T1 is not 
contained in a 95% prediction interval for θ2, where the prediction interval takes 
into account estimation error variance in both study 1 and study 2. This is equiva-
lent to concluding study 2 failed to replicate study 1 if 95% confidence intervals 
from the two studies do not overlap.

�Types of Agreement

An important consideration for defining replication is what we mean by “the same” 
results; that is, what type of agreement do we expect or desire out of our replication 
studies? The example above described two possible types of agreement: agreement 
in sign/direction and agreement in magnitude. These appear to be among the most 
commonly accepted types of agreement in replication research. However, they are 
not the only possible type of agreement. For instance, we might consider studies to 
agree qualitatively if their effects are all large enough to be considered clinically 
relevant, so that θi > q for some threshold value q that corresponds to a clinically 
relevant effect (see Mathur & VanderWeele, 2020).

In this chapter, I will focus on agreement in magnitude, which can be seen as a 
finer, more restrictive definition of replication. For instance, if θ1 = 0.2 in Cohen’s d 
units and θ2 = 20, this would characterize a “successful” replication if our preferred 
definition involved the direction of effects, yet few social scientists would consider 
these to be similar in size given that they differ by two orders of magnitude. In that 
sense, agreement in direction is a coarser definition of replication. In a clinical set-
ting, agreement in magnitude can provide greater confidence about the stability and 
predictability of effects and can potentially better inform decisions about imple-
menting an intervention that must weigh potential benefits against anticipated costs 
or side effects.

�Exact Versus Approximate Replication

Agreement in magnitude of effects can also be specified in different ways. An obvi-
ous way would be to require effects to be identical, so that θ1 = … = θk, a scenario 
referred to as exact replication (Hedges & Schauer, 2019b). However, one might 
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expect findings to vary slightly across repeated studies due to sampling subjects 
from slightly different populations or minor—often unknown—deviations in study 
implementation. If such differences produce small, but negligible variation between 
effects, that could still be seen as successful replication so long as the resulting 
effect parameters would warrant the same scientific or clinical interpretation. For 
instance, if θ1 = 0.2 (Cohen’s d) and θ2 = 0.201, many social and psychological 
researchers might consider those to be about the same. Thus, we may also define 
approximate replication as when differences between effect parameters are negligi-
bly small (for further discussion, see Schauer, 2018; Hedges & Schauer, 2019a,b). I 
will formalize ways to operationalize “negligibly small” in subsequent sections.

�Falsification Versus Consistency

When k > 2 studies are involved in replication research (e.g., an original study and 
multiple replications), there are at least two ways to orient an analysis of replication. 
First, the focus could be on singling out a single study (or group of studies) and 
comparing it to the others. In such analyses, the original study is typically compared 
to subsequent replication studies as a means of falsifying the original study. If mul-
tiple replication studies have been conducted, analyses of replication may aggregate 
their results, including via a meta-analysis, so that the analysis compares the effect 
from the original study and the average effect found in the replication studies. We 
refer to this type of orientation as a falsification approach. Note that analyses based 
on a falsification approach to replication need not result in yes/no conclusions about 
the original study and could instead focus on continuous metrics, such as the size of 
the difference between the original study and subsequent replications.

Because falsification definitions contrast the original effect parameter θ1 to an aver-
age of the replication study estimates, it can be seen as treating multiple replication 
studies (study 2, …, study k) as a single large study. Hence, analyses of falsification 
definitions of replication are statistically analogous to analyses for k = 2 studies, even 
when k > 2 studies (i.e., multiple replication studies) have been conducted.

Rather than singling out one specific study, a definition can focus on whether 
there is agreement across all studies. In this definition, the focus is on variation 
across all effects, rather than a comparison of one study versus an average of several 
others. If there is little or no variation among effects, then we might conclude that 
the finding is relatively consistent across all studies, and hence we refer to this fram-
ing as a consistency approach.

When there are only k  =  2 studies, consistency and falsification analyses are 
identical. A comparison between an original study and a single replication is equiva-
lent to an analysis that examines differences (i.e., variation) between the two study 
effects.
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�Fixed Versus Random Studies

Another consideration in defining and making inferences about replication is 
whether the studies and their resulting effect parameters are fixed or random 
(Hedges & Schauer, 2019b). The fixed effects model assumes that the studies and 
effect parameters are the only studies of interest. Inferences will pertain only to the 
studies that we observe and their corresponding effect parameters θi (i.e., did these 
specific studies successfully replicate?). The random effects model assumes that the 
studies observed are only a sample from a population of replication studies that 
could be observed. In this model, the θi are treated as draws from some distribution 
or putative population of effect parameters. Inferences about replication pertain to 
the population of studies, including those not observed. The distinction between 
fixed and random studies models is analogous to the fixed and random effects mod-
els in meta-analysis (Laird & Mosteller, 1990; Hedges & Vevea, 1998).

�Putting It All Together: Defining Replication

All of the considerations above are necessary for defining “replication” (i.e., defin-
ing results “being the same”) as a quantity on which we can conduct inference. 
Table 14.2 shows different ways we might define replication when we have different 
views of these considerations. These are not the only possible ways to define repli-
cation and other quantities related to replication may possibly be of interest to 
researchers.

Table 14.2 also demonstrates that the estimand that corresponds to “replication” 
will depend heavily on the considerations listed in this section. In practice, the dis-
tinction between fixed and random effects definitions and analyses is minor, and 
leads to parameters that differ in their precise statistical interpretation, but have 
roughly the same scale (see Schauer, 2018; Hedges & Schauer, 2019b). Yet, the 
framing of the definition of replication (consistency versus falsification) and the 
type of agreement (magnitude versus direction) can lead to markedly different 
parameters corresponding to “replication.” It is therefore imperative that researchers 
identify the relevant framing and agreement type in advance.

Once again, in this chapter, I highlight definitions of replication that correspond 
to consistency across all effects in magnitude. This definition of replication seeks to 
identify if (and to what degree) effects of an intervention may change over repeated 
trials. Defining replication in this way can be seen as consistent with moves toward 
evidence-based practices, as well as with conventional notions regarding the role of 
replication in the scientific method. Furthermore, it can provide researchers and 
practitioners with a clearer picture of how stable an intervention’s impact is, and 
potential conditions under which it may change.
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Table 14.2  Some possible definitions/parametrizations of replication

Studies fixed Studies random

Falsification Agreement in 
magnitude

Difference between original 
study and replication:
|θ1 – θ2| for k = 2

� �1 � ·
 for k > 2

Comparison of original study to 
distribution of effects in 
replications:
Porig = P[θ1 > θi], i > 1
dorig = (θ1 – μ)/τ

Agreement in 
direction

Replication effect parameters 
are in the same direction as 
the original:
sign (θ1) = sign (θ2) for k = 2
sign sign� �1� � � � �·  for k 
> 2

Probability that replication effects 
from population are in same 
direction as original:
P[sign (θi) = sign (θ1)], i > 1

Consistency Agreement in 
magnitude

Variation across effects from 
observed studies:

|θ1 – θ2| for k = 2
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Variation across population of 
effect parameters:
Var[θi] = τ2

Agreement in 
sign

Proportion of effects that are 
positive:
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Probability effects are positive:
P>0 = P[θi > 0]

�Considerations for Analyses of Replication

When we can precisely state a definition of replication, our next challenge involves 
formalizing analyses for replication. We can conduct statistical analyses in at least 
two ways: analyses that lead to binary conclusions about replication and analyses 
that quantify continuous metrics that correspond with a definition for replication. In 
addition, any analysis of replication that includes an extant published study must 
consider the potential impact of publication bias on the analysis (see below). In this 
section, I will describe some potential choices about how to frame an analysis for 
replication and discuss possible publication bias adjustments.
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�Categorical Decisions About Replication: Did the Finding Fail 
to or Successfully Replicate?

One class of statistical analyses is one that supports qualitative conclusions about 
replication (e.g., “the replication(s) failed”) via some decision procedure. The anal-
ysis methods discussed above (Significance, CIO, PI) can be seen as part of this 
class, as they all result in a success/failure conclusion. More broadly, this type of 
analysis is common in the null hypothesis test (NHT) framework, wherein we test a 
null hypothesis about replication and draw conclusions about replication success or 
failure based on a test of that null hypothesis. For example, each of the Significance, 
CIO, and PI methods can be seen as tests of a null hypothesis that the replication 
succeeded, and we would reject that null hypothesis and conclude a finding failed to 
replicate if a criterion was not met (see Schauer & Hedges, 2021; Schauer 
et al., 2021).

�The Burden of Proof

If using NHTs, an important consideration is the burden of proof, which dictates 
how to form the null hypothesis. The burden of proof for an NHT about replication 
can either be on replication or nonreplication (i.e., replication success or failure, 
respectively). If the burden of proof is on replication, then we would form a null 
hypothesis that corresponds to replication failure, and we would require evidence to 
reject that hypothesis and conclude replication success. Conversely, if the burden of 
proof is on nonreplication, the null hypothesis should correspond with replication 
success, and we would require evidence to reject that.

As an example, suppose we were interested in exact replication for k = 2 studies 
(i.e., θ1 = θ2). If the burden of proof was on nonreplication, we would form the null 
hypothesis H0: θ1 = θ2 and we would only conclude replication failure if our analysis 
rejected H0 (e.g., if the PI method indicated replication failure). Conversely, if the 
burden of proof is on replication, then we would need to form H0: θ1 ≠ θ2 and only 
conclude that θ1 = θ2 if we reject H0. Forming a null hypothesis of replication failure 
that is testable can be done in a manner analogous to equivalence testing, which 
involves setting H0: |θ1 − θ2| > ε for some constant ε > 0 (see Wellak et al., 2002; 
Hedges & Schauer, 2019a,b). This null hypothesis contends that the replication 
failed and the difference between θ1 and θ2 is at least as big as some nonzero value 
ε that characterizes the smallest non-negligible difference between effects consis-
tent with replication failure. We would reject that hypothesis and conclude replica-
tion success—that the difference in effects is less than the smallest non-negligible 
difference between effects ε (i.e., the difference between effects is negligible)—if 
the data provided evidence to do so.
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�Decision-Theoretic Properties/Error Rates

As with any NHT, analytic methods that produce qualitative inferences about repli-
cation can result in erroneous conclusions about replication. The rate at which these 
types of errors occur are crucial for interpreting their results. For example, if the 
burden of proof is on nonreplication, then a Type I error indicates that we conclude 
replication failure when the replication(s) was successful. If an analytic method has 
a high Type I error rate, then it has a high probability of labeling successful replica-
tions as failures.

The meaning of Type I and Type II errors depends on the burden of proof. A Type 
I error when the burden of proof is on nonreplication is the same as a Type II error 
when the burden of proof is on replication; in both cases successful replications are 
labeled as failures (or at the very least lacking evidence of success). To unify this 
nomenclature, we use the terms false failure and false success determinations 
(Schauer & Hedges, 2021). A false failure occurs when the replication succeeded 
but the analytic method does not indicate success. Conversely, a false success occurs 
when a replication failed but the analytic method does not indicate failure (for fur-
ther discussion, see Schauer & Hedges, 2021).

�Continuous Measures and Estimation

Rather than resulting in success/failure decisions about replication, analyses can 
involve estimating relevant quantities and their related uncertainty. Typically, uncer-
tainty would include standard errors of estimators or confidence or credible inter-
vals. As an example, for k = 2 studies, analyses that focus on agreement in magnitude 
may estimate θ1 − θ2 and report a standard error for that difference. If there are k > 2 
studies that are treated as random, analyses could involve estimating τ2, the between-
study variation (discussed in subsequent sections) and its standard error. Conversely, 
if agreement in direction is the preferred definition of replication, there are a variety 
of alternatives. For example, Mathur and VanderWeele (2020) propose estimating 
the proportion of effect parameters that exceed some value q, which they denote P>q. 
For agreement in direction, we can specify q = 0, and estimate P>0 as
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where T·
∗
 and τ̂DL

2
 are given in (14.10) and (14.9), respectively, and Φ is the distri-

bution function for the standard normal distribution. This has an estimated standard 
error of:
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where ϕ is the standard normal density function, the variance of τ̂DL
2 , SE DL�̂ 2�� �� , is 

described in (14.26) in later sections, and the variance Var T
vi

k

i DL
· ˆ
�

�

�

�� �� � �
�

�

�
�

�

�
�

1
2

1
1

�
.

An alternative approach proposed by Etz and Vandekerckhove (2016) involves 
examining Bayes factors of original and replication studies. Bayes factors are analo-
gous to hypothesis testing in that they evaluate the relative likelihood of competing 
hypotheses. In replication research, this often takes the form of a ratio of the likeli-
hood of replication success relative to the likelihood of replication failure. This 
approach, which is appropriate for k = 2 studies, can be seen as examining the evi-
dence provided by the replication study of a nonzero effect under competing mod-
els: that the effect in the replication study is θ2 = 0, and that the effect is equivalent 
to that estimated in study 1. Though the Etz and Vandekerckhove discuss these as 
continuous metrics, they also use their value to make qualitative inferences about 
replication success for failure. For instance, a Bayes factor at least as large as 10 is 
seen as strong support of a nonzero effect while a Bayes factor of 1/10 or less is seen 
as strong evidence of a null effect. If such inferences are made, then these methods 
can be seen as producing qualitative assessments about replication, and their prop-
erties should be discussed in terms of false failure and false success error rates 
rather than standard errors.

�Publication Bias

Both empirical and theoretical researches suggest that published findings are sub-
ject to a selection process that favors the publication of statistically significant 
results (see Dickersin, 2005; Rothstein et al., 2005; Francis, 2012). If the probability 
that a finding is published depends on its statistical significance, this can induce bias 
in the effect size estimate Ti, and can impact the sampling distribution of Ti so that 
Ti is no longer normally distributed (see Hedges, 1984; Guan & Vandekerckhove, 
2016). In the context of replication research wherein researchers conduct replica-
tions of a published study, there may be concern that the estimates reported by stud-
ies that were published prior to conducting replication studies may be affected by 
this process and could therefore be biased. This in turn can impact statistical analy-
ses of replication and their properties.

Analyses can adjust for publication bias if it is suspected (see Rothstein et al.,  
2005; McShane et al., 2016). Adjustments should be focused on effect estimates for 
which researchers have good reason to suspect publication bias. This will likely 
include only a subset of relevant studies in replication research. Because many 
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replications are pre-registered and have not yet been published, it is unlikely that 
publication selection will bias effect estimates from those studies. However, if 
extant published findings are to be included in analyses of replication, it would seem 
more likely that those effect estimates would be biased due to selection.

There are several possible relevant adjustments for publication bias. For exam-
ple, Hedges (1984) provides a maximum likelihood estimator for unbiased estima-
tion in the face of publication selection. This was one of the first approaches based 
on selection modeling, in which the process by which findings are selected for pub-
lication is based on their effect estimates Ti, variances vi, or p-values. At their most 
basic, selection models assume that we only observe a Ti conditional on it being 
published, which in turn depends on its p-value. For instance, we might expect “sta-
tistically significant” Ti with pi < 0.05 to be published with high probability (i.e., 
near 100%), but “nonsignificant” Ti with pi ≥ 0.05 to be published with a lower 
probability (e.g., near 40–50%). Thus, a published Ti has a conditional distribution 
affected by the probability of selection. To back out its unconditional distribution 
(and reduce or eliminate bias), we need to model the probability that Ti is published 
given its p-value. Selection models typically involve estimating the probability that 
Ti is published given its p-value and making relevant adjustments based on that 
probability, but such estimates typically require large numbers of studies subject to 
publication bias (Hedges & Vevea, 1996).

These models have since been extended to account for increasingly complex 
relationships between estimators Ti, variance vi, and the probability of publication 
(Hedges & Vevea, 2005). Vevea and Woods (2005) propose an adaptation to selec-
tion model approaches that would seem appropriate for cases where only one or two 
effect estimates are biased due to publication selection. This approach assumes that 
the probability that a significant Ti gets published and a nonsignificant Ti goes 
unpublished are known a priori and need not be estimated from the data. A Bayesian 
method that makes (more or less) the same set of assumptions was applied to repli-
cation studies by Etz and Vandekerckhove (2016), and a hybrid model was pre-
sented by van Aert and van Assen (2017).

Finally, for analyses of k > 2 studies that focus on consistency, if published effect 
estimates are suspected to have severe publication bias, they can be omitted from 
analyses. Omitting biased effect estimates may make sense if the assumptions made 
by publication bias adjustments (model specification and parameter values) are 
untenable or difficult to justify. However, excluding the original study limits the 
scope and sample size of the analysis.

Perhaps a more principled approach would be to conduct a series of analyses 
each based on different publication bias adjustments (including no adjustment at 
all). Results of each analysis would then be presented and interpreted in light of the 
plausibility and strength of relevant assumptions.
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�Some Limitations of Statistical Significance and Confidence 
Interval Overlap

At the time of this writing, conducting a single replication study (k = 2 designs) 
remains a popular approach to studying replication (see Camerer et  al., 2018). 
Moreover, the Significance, CIO, and PI approaches are still in common use. 
However, this approach to studying replication and these methods have some seri-
ous flaws. First, all three analysis methods are really only appropriate for k = 2 stud-
ies: the original study (study 1) and a replication study (study 2; Schauer, 2018; 
Schauer & Hedges, 2021). When multiple replication studies are conducted, these 
methods proceed by aggregating their effect estimates via meta-analysis. Thus, 
these methods are limited to designs with k = 2 studies, or if the framing of replica-
tion is falsifiability. Note that this is true of many proposed Bayesian analyses (for 
discussion see Hedges & Schauer, 2019a; Schauer & Hedges, 2021).

In addition, the statistical properties of these approaches can result in erroneous 
conclusions about replication with high probability. Previous research examined the 
false failure and false success rates of the Significance, CIO, and PI methods 
(Schauer & Hedges, 2021). For example, Schauer and Hedges (2021) found that the 
error rates of the Significance criterion depend on the power of study 1 and study 2 
to detect effects θ1 and θ2, respectively. Unless both studies have very high power 
(i.e., >90% power), the false failure rate can range from 30% to over 70%, while the 
false success rate is likely between 15 and 30%.

The error rates of the CIO method are largely a function of the ratio of v1/v2 
(Schauer & Hedges, 2021; Schauer et al., 2021). When v1/v2 is high (which occurs 
if study 2 has a larger sample size than study 1), the false failure rate can be as large 
as 20–40%. However, when v1/v2 is small, this can inflate the false success rate, 
which could be as large as 80%. In short, depending on the sample sizes and effect 
sizes of the studies involved, both Significance and CIO may be more likely to result 
in an error than in an accurate conclusion about replication.

It is worth noting that in addition to potentially high error rates, neither CIO nor 
the Significance criteria control error rates. In traditional NHTs, the procedures 
used should (and often do) limit the probability of a Type I error to be no greater 
than some a priori threshold α. The benefit of controlling the Type I error rate is that 
(so long as assumptions are met) the probability of a Type I error is (more or less) 
known and independent of other factors, such as sample size. Because of this, rejec-
tion of the null hypothesis can be seen as conclusive, since the probability that it is 
rejected in error is known (or at least bounded). However, as shown by Schauer and 
Hedges (2021), the false failure and false success rates of the CIO and Significance 
methods are functions of the vi, and hence functions of sample size, as well as the θi. 
In sum, these methods control neither the false failure nor false success rates. 
Conclusions about replication generated by these procedures may be false with 
unknown (and possibly large) probability, and therefore it is difficult to view the 
results of these methods as particularly conclusive in many settings. On a related 
note, by contrast, Schauer and Hedges (2021) show that the PI criterion is 
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equivalent to z-test for a difference in means, and therefore controls the false failure 
rate, a result we will point out in later sections of this chapter.

�Defining Replication as Consistency of Effects

As argued above, agreement in magnitude may be a more informative definition of 
replication when it comes to clinical decision-making. To that end, there may be 
interest in the clinical psychology research community to emphasize definitions of 
replication that correspond to consistency of effects across studies. Table 14.2 char-
acterizes ways we can parametrize such definitions for the fixed and random studies 
framework. If we treat the studies as random, we can quantify their consistency in 
terms of the variance of the distribution from which they were drawn, denoted τ2. If 
τ2 = 0, then all of the effect parameters drawn from that distribution will be identical, 
and replication will be exact. If τ2 > 0 but is small, then effect parameters drawn 
from that distribution will be similar in size and may be seen to replicate approxi-
mately (Hedges & Schauer, 2019b).

When the studies are fixed, there are at least two ways to define agreement in 
magnitude for consistency analyses. One is with their “variance” τF

2:
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Here, θ  is the mean of the θi given in Eq. (14.4). The parameter τF
2 is a summary 

statistic of the θi akin to a sample variance, as opposed to a property of a distribution 
like τ2 (Schauer, 2018).

Alternatively, Hedges and Schauer (2019b) suggest that replication be parame-
trized by
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where θ·
 is the precision weighted mean of the θi given in Eq. (14.3). The parameter 

λ is analogous to τF
2, but differs in that it accounts for the within-study estimation 

error variance vi. When all of the studies have the same estimation error variance 
(e.g., the same sample size), then v1 = … = vk = v, and the expression for λ reduces to
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Thus, the primary difference between τF
2 and λ is that τF

2 is on the scale of the indi-
vidual θi, while λ is a ratio of between-to-within-study variance, a scale commonly 
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used in meta-analysis (Schauer, 2018). This becomes evident when k = 2, so that τF
2 

and λ reduce to expressions that depend on the magnitude of the difference |θ1 − θ2|:
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where v v v� �� �1 2 2/  is the mean within-study variance.
The difference between τF

2 and λ is analogous to methods for quantifying hetero-
geneity in a random effects meta-analysis. The parameter τ2 is on the scale of the 
individual θi. However, meta-analysts more often make judgments about between-
study heterogeneity on the scale of between-to-within study variance τ2/v, where v 
is some “typical” estimation error variance of the studies observed. Common meta-
analytic statistics, such as I2 or H2, can be seen as depending on the scale of τ2/v (see 
Higgins & Thompson, 2002).

Taken together, regardless of whether the studies are treated as fixed or random, 
a definition of replication that focuses on consistency of effects can be described as 
the variation between effect parameters. This variation can be computed on the scale 
of the θi, as with τF

2 and τ2. Alternatively, it can be quantified on the scale of between-
versus-within study variance τ2/v (for random effects models) or λ (for fixed effects 
models). We note that while parameters like τF

2 and τ2 refer to different quantities, 
in practice their scales can be interpreted in largely the same way (for discussion, 
see Hedges & Schauer, 2019b).

�Evaluating the Amount of Heterogeneity Among 
“Consistent” Effects

Specifying an amount of heterogeneity among effects that corresponds with replica-
tion success or failure requires we set specific values of τ2, τ2/v, τF

2, or λ. Moreover, 
the following sections show that properties of analyses for replication will often 
depend on these values. Thus, to understand definitions of and analyses for replica-
tion, we need to understand the different scales of heterogeneity described above. 
What is a small or negligible value of λ or τ2/v? What is a large value of τ2 or τ2/v?

The answer to such questions will be subject to scientific and clinical judgment. 
However, most researchers are used to intuiting the scale of individual effects, rather 
than variation across effects. In this section, we provide some insight into approaches 
for quantifying heterogeneity, as well as some conventions for negligible heteroge-
neity used in various scientific fields.

Hedges and Schauer (2019b) provide several ways to interpret τ2 or τF
2 as a func-

tion of differences between pairs of effect parameters θi − θj for i ≠ j. Since 2τ2 and 
2τF

2 are equal to the mean pairwise squared difference between effects E[(θi − θj)2], 
it may be easier to describe replication or replication in terms of a meaningful value 
of θi − θj and back out a value of τF

2 or τ2. As an example, if the θi are standardized 
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mean differences, so that we consider a difference of |θi −  θj|  >  0.2 to be non-
negligible, this suggests that τ2 < 0.02 could be seen as negligible. Alternatively, if 
the studies are treated as random, we might specify a form of the distribution of the 
θi (e.g., normal) and identify a value of τ2 that renders large pairwise differences 
unlikely:

	
P � � � �i j– ��� �� � 	

That is, the probability of a large difference between two effect parameters occurs 
with probability less than some desired level γ.

Using these approaches, Schauer (2018) argues that values of τ2 ≤ 0.035 would 
result in effect parameters on the scale of Cohen’s d that could be characterized as 
roughly the same size; it would characterize a distribution of parameters such that 
deviations from the mean of that distribution greater than d = 0.2 occur with prob-
ability less than 20%. See Hedges and Schauer (2019a,b) and Schauer (2018) for 
further detail.

As a matter of sound statistical practice, analyses for replication should focus on 
the parameters τ2 or τF

2 rather than on τ2/v or λ. Since τ2/v and λ depend on the 
within-study variance vi, and hence the sample size within studies ni, they are not 
(strictly speaking) parameters. However, the scale of τ2/v has been easier to work 
with, with traditional metrics of between-study variation in meta-analysis depend-
ing on that scale. For illustration, suppose that the k studies have roughly the same 
sample size so that v1 ≈ … vk ≈ v. Meta-analytic metrics typically used to quantify 
heterogeneity, such as I2 or H2, depend onτ2/v (Higgins & Thompson, 2002). If the 
vi are not similar in value, Higgins and Thompson (2002) provide an expression for 
the “typical” value v of the vi (see Eq. 14.9 in their article), and variation can be 
described on the same τ2/v scale. When studies are treated as fixed, the parameter λ 
can be thought of in the same terms, as seen in Eq. (14.16). Whether we treat the 
studies as fixed or random, a potentially useful scale for heterogeneity is τ2/v, so 
long as it is clear what a typical or normative value of v is.

Since τ2/v is a common scale in meta-analysis, it can be easier to work with. 
Several different fields that conduct meta-analyses have generated conventions for 
negligible heterogeneity on that scale. Such conventions may be of use when 
approaching design and analysis of replication studies. Hedges and Schauer 
(2019a,b) note that in high-energy physics, the Particle Data Group characterizes 
minor or unimportant variation in ways that suggest τ2/v < 1/4 would be seen as 
negligible (see Olive, et al., 2014). In personnel psychology, Hunter and Schmidt 
(1990) describe and propose v/(τ2 + v) < 0.75 as negligible, which means τ2/v < 1/3. 
In medicine, a value of I2 = 100% × τ2/(v + τ2) < 40% or τ2/v < 2/3 is seen as “not 
important” (see Higgins & Green, 2008). These are far from the only conventions of 
negligible heterogeneity (see Pigott, 2012), but they reflect ideas about heterogene-
ity that guide and inform research in these fields.

Since τ2/v ∈ [1/4, 2/3] could be seen as a range of negligible between-study 
variation, researchers would likely want to detect differences between studies at 
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least as large as these values; possibly two or three times larger. This would suggest 
that meaningful values of variation worth studying might range from τ2/v = 1/4 to 
τ2/v = 3 (I2 = 0.2–0.75).

The benefit of using the scale of τ2/v is that it does not depend on the scale of the 
θi. However, if we have a good idea of the scale of the θi, it makes more sense to 
focus on τ2 or τF

2. Based on the results above, if θi are on the scale of Cohen’s d, we 
may consider values of τ2 ∈ [0, 0.035] to be negligible and may be interested in 
studying values in the range of [0.005, 0.1] (see Schauer, 2018).

�A General Approach for Studying Replication: Magnitude 
of Effects

In this section, I will outline a framework for studying replication when the pre-
ferred definition is agreement in magnitude, and the preferred framing involves the 
consistency of effects. Though this is far from the only way to define replication, it 
is consistent with research that seeks to understand the conditions under which 
effects are stable and is in line with the type of knowledge refinement prioritized in 
various scientific fields including physics, chemistry, and medicine.

I first present results for fixed studies when k = 2, and then assume studies are 
random for k ≥ 3. The fixed effects analog of the random effects analyses presented 
here can be found in Hedges and Schauer (2019b). The key distinction between the 
properties of the fixed and random effects analyses (beyond their scope of infer-
ence) is that the random effects analyses will be slightly less powerful and efficient 
than the fixed effects studies, though the difference in power is relatively small.

�A Note aAbout Publication Bias

The analysis methods and their properties that are presented in this section do not 
include explicit adjustments for publication bias in published effect estimates. Such 
adjustments could be included in these methods, which would presumably impact 
their sensitivity. To understand the extent to which they do, note the following two 
aspects about publication bias adjustments. First, adjusting effect estimate Ti for 
bias can result in a corrected effect estimate Ti

* with variance vi
*, where vi

* ≥ vi (i.e., 
corrected estimates tend to have greater variance). Second, corrections such as 
Hedges’ (1984) maximum likelihood approach can result in adjusted effect esti-
mates that are asymptotically normally distributed. Because the statistical results 
that follow depend on the normality of effect estimates, analyses can proceed with 
Ti and vi if publication bias is not suspected, and Ti

* and vi
* if publication bias is 

likely. Subsequent sections will detail that the sensitivity (statistical power or stan-
dard errors) will be worse when the vi are larger. As a result, one impact of 
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publication bias adjustments is that they reduce the power of tests for replication or 
increase standard errors or estimates for relevant quantities.

�Fixed Effects for Two Studies

When there are k = 2 studies, the focus of analysis is on θ1 and θ2 being (about) the 
same value. Thus, analyses of replication can be viewed in terms of the difference 
θ1 − θ2. When θ1 − θ2 is large in magnitude, then there is a large difference between 
study results, but when θ1 − θ2 is small, then study results are more similar. We can 
directly estimate θ1 − θ2 with T1 − T2. Under the model it is the estimator with the 
smallest variance, and that variance is simply v1 + v2. When effect sizes are on the 
scale of standardized mean differences, the variance of the estimated difference can 
be written as approximately 4/n1 + 4/n2, where ni is the total sample size of study i; 

the standard error can be written as approximately 2
1 1

1 2n n
+ .

Example. Recall the Payne et al. study replicated by the RPP. The original study 
estimated an effect of T1 = 0.75 (Cohen’s d) with a variance v1 = 0.066. The RPP 
replication study found an estimated effect of T2 = 0.30 with variance of v2 = 0.23. 
The estimated difference between effects is T1 − T2 = 0.45, which has a standard 
error of v v1 2 0 30� � . . A 95% confidence interval for the difference in effects is 
[–0.14, 1.04].

Alternatively, there are two different ways we can test null hypotheses about 
replication for k = 2 studies.

�Tests When the Burden of Proof is on Nonreplication

If the burden of proof is on nonreplication, then we can structure a null hypothesis

	
H0 1 2: � � �� �

	
(14.18)

for some ε ≥ 0. Here, ε corresponds to the largest difference between effect param-
eters that would be considered negligible. When ε  =  0, H0 corresponds to exact 
replication, but when ε > 0 (but is still small), H0 corresponds to approximate repli-
cation. To test H0 in Eq. (14.18), we compute the test statistic
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Note that Q2 is equivalent to the Q statistic in Eq. (14.6) for k = 2 studies. Under H0, 
Q2 follows a chi-square distribution with one degree of freedom and noncentrality 
parameter
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(14.20)

An α-level test would involve rejecting H0 when Q2 > c1−α(1, λ02) where c1−α(ν, λ) is 
the 1 – α percentile of the chi-square distribution with ν degrees of freedom and 
noncentrality parameter λ. Note that when ε = 0, so that the test concerns exact rep-
lication, λ02 = 0 and Q2 follows a central chi-square distribution under H0.

The power of this test to detect a difference |θ1 – θ2| > ε is given by

	
1 1 11 02 12� � �� ��F c � � �, |, |,

	
(14.21)

where c1−α(1, λ02) is defined as above, and F(x |ν, λ) is the distribution function of a 
chi-square random variable with ν degrees of freedom and noncentrality parameter 
λ. The power depends on a number of quantities:

•	 It is decreasing in ε, so that tests of exact replication will be more powerful than 
tests of approximate replication. Tests of increasingly looser notions of approxi-
mate replications with larger ε (and hence larger differences between effects that 
are seen as negligible) will be less powerful.

•	 It is increasing as a function of the true difference between effects |θ1 – θ2|. If 
|θ1 – θ2| is larger, then tests will have more power.

•	 It is increasing as a function of the variance of each effect estimate v1 + v2. If v1 
and v2 are smaller (so that sample sizes in each study are larger), the test will 
have greater power.

•	 In practice, the power of this test for k = 2 studies is bound to be low unless both 
studies have uncommonly large sample size. Assuming effects on the scale of 
Cohen’s d and an α = 0.05 level test for exact replication, to detect a difference 
|θ1 – θ2| = 0.2 (Cohen’s d) with 80% power would imply v1 + v2 ≤ 0.0013, which 
is consistent with both studies having sample sizes of at least 1569 given Eq. 
(14.2). Detecting a difference of |θ1 – θ2| = 0.5 with 80% power would require 
v1 + v2 ≤ 0.008, which is consistent with both studies having sample sizes of at 
least 251. Detecting a difference of |θ1 – θ2| = 0.5 with 80% power would require 
v1 + v2 ≤ 0.02, which is consistent with both studies having sample sizes of at 
least 98.

It is worth noting that when ε = 0, so that the test concerns exact replication, then 
this procedure is statistically equivalent to the PI criterion. Because of this, the PI 
criterion can be seen as a test of the null hypothesis that the studies replicated 
exactly. In that case, the false failure rate is simply α, and is controlled.

Example. Consider the Payne et  al.’s memory studies referenced above 
(T1 = 0.753, v1 = 0.0662, T2 = 0.304, v2 = 0.0229, converted to Cohen’s d). A test for 
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exact replication (ε = 0) would fail to reject the null hypothesis that the studies rep-
licated. The power of this test to detect a difference as large as |θ1 – θ2| = 0.5 is 38%. 
If instead we consider a difference of |θ1 – θ2| < 0.1 to be negligible, then we might 
test for approximate replication (ε = 0.1). In doing so we would again fail to reject 
the null hypothesis that the studies replicated. The power of this test to detect a 
difference as large as |θ1 – θ2| = 0.5 is 35%. Note that the test for approximate repli-
cation is less powerful than the test of exact replication.

�Tests When the Burden of Proof Is on Replication

If the burden of proof is on replication, then the null hypothesis can be formed to 
correspond to nonreplication. As discussed previously in this chapter, forming a 
testable null hypothesis of replication can be done via approaches used in equiva-
lence testing. Concretely, let ε denote the smallest difference between effects that 
would be considered non-negligible. Then we form a null hypothesis

	 H0 1 2: � � �� � 	 (14.22)

To test H0, we compute Q2. Under the null hypothesis, Q2 follows a chi-square dis-
tribution with one degree of freedom and noncentrality parameter λ02 in Eq. (14.20). 
Since we need conclusive evidence that the studies successfully replicate, an α-level 
test involves rejecting H0 if Q2 is less than cα(1, λ02), the α-percentile of the chi-
square distribution with one degree of freedom and noncentrality parameter λ02.

The power of this test is given by

	
F c� � �1 102 12,� �� �|, |,

	 (14.23)

where F is as in Eq. (14.21) and λ12 = |θ1 – θ2|2/(v1 + v2) ≤ λ02. Note that if the studies 
replicate exactly, then λ12 = 0. However, if the studies replicate approximately, so 
that |θ1 – θ2| < ε, then 0 < λ12 < λ02.

The power of this test depends on a few quantities:

•	 It is increasing as function of ε. The bigger the difference between effects that is 
considered negligible, the greater the power of the test.

•	 It is increasing as a function of v1 + v2, so that when the variances for each study 
decrease (sample sizes within studies increase), the power of the test for replica-
tion will increase.

•	 It is decreasing as a function of |θ1 – θ2|. The smaller the actual difference between 
effects is, the greater the power. In fact, the power is greatest when the studies 
replicate exactly, so that θ1 = θ2, and λ12 = 0.

•	 In practice, unless we consider extremely large differences between effects to be 
negligible, the test when the burden of proof is on replication is lower than the 
power of the test when the burden of proof is on nonreplication. For example, 
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consider effects on the scale of Cohen’s d and a design such that v1 + v2 = 0.02 
(i.e., sample size of 98 per study). The power of the test of exact replication when 
the burden of proof is on nonreplication (H0: θ1 = θ2) has 80% power to detect a 
difference of |θ1 – θ2| = 0.8. However, a test for nonreplication assuming |θ1 – θ2| 
is at least as large as 0.8 (H0: |θ1 – θ2| ≥ 0.8) has maximum power of 75%, which 
occurs when the studies replicate exactly (i.e., when θ1 = θ2).

•	 Note that neither of these tests will be particularly well powered with k = 2 stud-
ies, as argued in the following section.

Example. Suppose we deem ε = 0.2 to be the smallest non-negligible difference 
between effects. Then with the replication of Payne et al.’s memory study, we fail to 
reject the null hypothesis that the studies failed to replicate. The power of this test 
will be greatest if θ1 = θ2, so that the studies replicate exactly. In that case, the power 
would be 30%.

�More than One Study Is Likely Necessary for Conclusive Results 
About Replication

Two key questions about the design of replication studies involve how many repli-
cations should be conducted and how large the sample size should be for each study 
in order to ensure sufficiently powerful analyses. If the design a priori sets k = 2, as 
has been common in some social science research, and if the original study has 
already been conducted and published, then the question of design involves how 
large the sample size ought to be in the replication study in order to ensure suffi-
ciently powerful analyses.

Hedges and Schauer (2019a) showed that a design with k = 2 studies where the 
original study had already been conducted will almost never support sufficiently 
sensitive analyses, and in fact the power of tests for replication will typically be 
bounded by the power of the original study to detect an effect. To see this, note that 
the power of the original study (study 1) to detect an effect as large as θ1 is given by

	
1 101 1

2
1– | /F c v� � �� �� �,

	
(14.24)

where F and c1−α are given in Eq. (14.21). The power of this test depends largely 
on θ1

2/v1.
Now consider the test for replication when the burden of proof is on nonreplica-

tion. This test has power given in Eq. (14.21). Note that the power for both the test 
for an effect in study 1, Eq. (14.24), and the test for replication in Eq. (14.21) depend 
on the chi-square distribution function with one degree of freedom, and that both are 
decreasing as the critical value c1−α increases. Further, c1−α(1, λ02) ≥ c1−α(1, 0) with 
equality holding only if λ02 = 0, so that the test involves exact replication.

The test for replication is an increasing function in |θ1 – θ2|. Yet, an upper bound 
on differences between effects we might want to detect likely occurs when 
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|θ1 – θ2| ≤ θ1. The reasoning behind this is that if |θ1 – θ2| = θ1, this would involve a 
scenario where θ1 is in one direction (e.g., θ1 > 0) and θ2 is in another direction 
(θ2 ≤ 0), which would constitute qualitative disagreement in effects (e.g., the effect 
in study 1 helps patients, the effect in study 2 does nothing for them) and run con-
trary to agreement of magnitude or direction of effects. Thus, the difference we may 
wish to detect in a test of replication is bounded above by |θ1|.

Finally, the power of the test for replication increases as v2 decreases. The small-
est v2 could possibly be is 0, which would occur if study 2 had an infinite sample 
size. Putting these pieces together, it follows that the power of study 1 to detect an 
effect is an upper bound for the test of replication:
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The power of the test for replication will likely be much smaller than the power of 
study 1, since:

	(a)	 We may wish to detect differences between effects that are themselves smaller 
than θ1.

	(b)	 Study 2 will not have an infinite sample size, and so v2 > 0.
	(c)	 We may have to adjust T1 for publication bias, which will decrease the power of 

the test for replication.

Further, Hedges and Schauer (2019a) show that similar inequalities hold for tests 
when the burden of proof is on replication, for parameter estimation, and for 
Bayesian parameter estimation.

In practice, unless both studies have very high power (>99% power to detect 
effects θ1 and θ2, respectively), the power of the test for replication will be low. This 
result holds even if we conduct multiple replication studies and aggregate their 
results via a meta-analysis. Hence, Hedges and Schauer (2019a) argue that analyses 
framed in terms of falsifiability are likely to be underpowered, and that analyses 
framed in terms of consistency require more than one replication to ensure 
high power.

In the absence of conclusive designs and analyses about replication based on 
k = 2 studies, a series of methods have been proposed to better make sense of the 
evidentiary value of k = 2 studies regarding replicability. Maxwell, Lau, and Howard 
(2015) propose using an equivalence test to analyze a replication study when the 
original study finds a statistically significant effect. The idea behind this is if the 
original effect estimate is statistically different from zero, then one way to falsify 
that is if the effect estimate in the replication study is conclusively close to zero. 
Held’s (2020) skeptical p-value is based on a Bayesian approach to prior skepticism 
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about the original effect estimate and evaluates whether that skepticism is consistent 
with the replication study effect estimate. Simonsohn’s (2015) small telescopes 
approach involves estimating the statistical power of the original study relative to 
the effect found in the replication study. All three approaches allow for prospective 
sample size calculations to ensure that their conclusions are reasonably precise. 
However, none of these methods concerns definitions of replication focused on 
similarity of effect size: the equivalence test focuses on how negligibly small the 
effect is in the replication study, the skeptical p-value concerns the prior beliefs 
required to doubt the original study results, and small telescopes largely focuses on 
the sensitivity of the original and replication studies. Because of this, none support 
inferences about the agreement of effects explicitly, but rather give insight into the 
evidentiary value of k = 2 studies regarding the existence of effect. Though they 
support conclusions about more diffuse notions of replication, either approach may 
prove useful when replication research designs cannot include more than two stud-
ies (e.g., due to practical or resource constraints).

�Random Effects Analyses for Replication (k > 2)

�Estimation

If the framing of analysis is on consistency of effects, and studies are assumed to be 
random, then the relevant parameter to estimate is τ2. There are a variety of possible 
estimators of τ2 (see Veroniki et al., 2016, for a review). A common estimator due to 
DerSimonian and Laird (1986) is given in Eq. (14.9).

The standard error of this estimator is:
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where Sj is defined in Eq. (14.7) and S in Eq. (14.8). To estimate this standard error, 
we can substitute the estimated variance component τ̂DL

2  for τ2 in the equation 
above. Note that the standard error will decrease as the vi decrease (i.e., with large 
sample sizes within studies) and as k increases, but will increase as the amount of 
variation between studies τ2 increases.

Statistical methodologists have argued that an alternative estimator due to Paule 
and Mandel (1982) tends to have slightly better properties in certain scenarios (see 
Veroniki et al., 2016; van Aert & Jackson, 2018). The Paule–Mandel estimator is 
based on the statistic Q*(τ2):
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where
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The statistic Q*(τ2) is written this way because it is a function of τ2. Note that Q*(τ2) 
and T·

* differ from Q and T·  in that they involve sums weighted by 1/(vi + τ2) as 
opposed to 1/vi. Moreover, T·

* differs from T·
∗  in Eq. (14.10) in that T.

* uses weights 
that depend on the true value of τ2, while T·

∗  uses weights that depend on an 
estimate τ̂DL

2 .
It can be shown that the expected value of Q*(τ2) is k – 1. The Paule–Mandel 

estimator is thus obtained by using an iterative program to solve the equation Q*(τ2) 
= k – 1 for τ2:
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The Paule–Mandel estimator can be used in conjunction with a method for con-
structing confidence intervals for τ2 called the Q-profile method (Viechtbauer, 
2007). If the θi are normally distributed, then Q*(τ2) follows a chi-square distribution 
with k – 1 degrees of freedom. A 1 – α confidence interval for τ2 can be obtained by 
using an iterative program to solve two equations for τ2: one equation is used to 
obtain the lower bound (L1–α) and one to obtain the upper bound (U1–α) of the confi-
dence interval. These equations set Q*(τ2) equal to c1−α/2(k – 1, 0), the 1 – α/2 per-
centile of the chi-square distribution with k – 1 degrees of freedom, and cα/2(k – 1, 
0), the α/2 percentile, respectively:
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In addition to reporting point estimates and uncertainty on the scale of τ2, research-
ers may also report statistics such as the H2 or I2 values. Both of these statistics can 
be seen as depending on the ratio of τ2/v. The statistic H2 is an estimate of 1 + τ2/v, 
while I2 is an estimate of τ2/(v + τ2) (Higgins & Thompson, 2002). Note that the 
precise value of H2 and I2 depends on an estimated variance τ2, and hence will pos-
sibly differ between the DerSimonian–Laird and Paule–Mandel estimators.
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Example. Consider the reverse gambler’s fallacy experiment replicated by the 
Many Labs project described in previous sections. The effect sizes (on the scale of 
Cohen’s d) and their variances from these replications are reported in Table 14.3. 
Based on the k = 36 replication studies, the DerSimonian and Laird estimator is τ̂DL

2  
= 0.013, which has standard error 0.010 (H2 = 1.46, I2 = 31.73%). The Paule–Mandel 
estimator is τ̂ PM

2 = 0.018 (H2 = 1.66, I2 = 39.91%), with 95% confidence interval 
[0.000, 0.060]. Thus, there is some evidence of variation between studies that could 
be considered modest to moderate (τ2/v ranging from 0.46 to 0.66, depending on the 
estimator). The uncertainty in this estimate is such that the variation between studies 
could possibly be very near zero or as large as 0.06 (τ2/v = 2.28).

�NHT: Burden of Proof on Nonreplication

A test of consistency when the burden of proof is on nonreplication would form a 
null hypothesis that the studies replicate successfully. Since the variance component 
τ2 is the parameter that characterizes “replication,” a relevant null hypothesis is

	 H0
2

0
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(14.32)

where τ0
2 constitutes the smallest amount of variation between studies considered 

non-negligible that would characterize replication failure. Note that if τ0
2 = 0, this is 

a test of exact replication, but when τ0
2  >  0, this is a test of approximate 

replication.
To test H0, we can compute the Q statistic in Eq. (14.6), which follows a some-

what complex distribution that can be expressed as a linear combination of chi-
square random variables. A reasonable approximation for that distribution is as 
follows. Denote the following moments of Q that are functions of τ2
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(14.33)

is the mean of Q where S is as in Eq. (14.8) and
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is the variance of Q where SE[τDL
2] is as in Eq. (14.26) and S is in Eq. (14.9) (for 

further details, see Hedges & Pigott, 2001).
Given these functions, 2μQ(τ2) Q/σQ

2(τ2) follows a chi-square distribution with 
2μQ

2(τ2)/σQ
2(τ2) degrees of freedom. Thus, under H0, we can use the approximation 

that 2μQ(τ0
2) Q/σQ

2(τ0
2) follows a chi-square distribution with 2μQ

2(τ0
2)/σQ

2(τ0
2) 

degrees of freedom. When all studies have the same estimation error variance vi = v 
(i.e., all studies have the same sample size), then this approximation reduces to a 
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much simpler expression that can be written as a constant (1 + τ2/v) times a chi-
square distribution with k – 1 degrees of freedom:

	
Q v k~ /1 2 1
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(14.35)

Moreover, when τ2 = 0, as in a null hypothesis of exact replication, then μQ(0) = k – 1 
and σQ

2(0) = 2(k  – 1) and Q follows a central chi-square distribution with k  – 1 
degrees of freedom.

An α-level test involves rejecting H0 if 2μQ(τ0
2) Q/σQ

2(τ0
2) exceeds c1−α(2μQ

2(τ0
2)/

σQ
2(τ0

2), 0), the 1 – α percentile of the chi-square distribution with 2μQ
2(τ0

2)/σQ
2(τ0

2) 
degrees of freedom. For brevity, we will write
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to refer to this percentile/critical value, such that we reject H0 when Q exceeds C(1 – 
α, τ0

2). The notation C(1 – α, τ0
2) denotes that it is a function of α and τ0

2. When all 
of the vi are equal, the test reduces to rejecting H0 when Q exceeds C(1  – α, 
τ0

2) = c1−α(k – 1, 0)(1 + τ0
2/v); that is, when Q exceeds a critical value from the cen-

tral chi-squared distribution multiplied by 1 + τ0
2/v. In tests of exact replication, 

τ0
2 = 0, so the critical value is simply the 1 – α percentile of the chi-squared distribu-

tion with k – 1 degrees of freedom (akin to a traditional Q-test in meta-analysis).
The power of this test to detect some value τ2 > τ0

2 is given by
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where F is the chi-square distribution function in Eq. (14.21); since the noncentral-
ity parameter in this function is set to 0, this is a central chi-square distribution 
function. When all of the vi = v, so that each study has the same estimation error 
variance, then the power reduces to:
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The power of the test for replication is increasing as a function of the number of 
studies k, as well as in τ2 in the metric of τ2/v. Because of this, the power is higher 
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when τ2/v is larger, which occurs when τ2 is larger or when v is smaller (i.e., sample 
sizes within studies are larger). In addition, power is a decreasing function of τ0

2, 
which means that tests of approximate replication have lower power than tests of 
exact replication. Power is discussed further at the end of this section.

Example. The reverse gambler’s fallacy example comprises the effect sizes of the 
k = 36 replication studies. Based on the effect estimates and variances in Table 14.3, 
the Q statistic is 51.27. For an α = 0.05 level test of exact replication (H0: τ2 = 0), the 
relevant critical value is c1−α(35, 0) = 49.8. Because Q > 49.8, we reject H0 and con-
clude the studies fail to replicate exactly (p = 0.04). This test had 85% power to 
detect variation on the order of τ2 = 0.027, or τ2/v = 1.

Consider a test of approximate replication such that we consider τ0
2 = 0.01 to be 

the largest amount of variation considered negligible. Note this would be consistent 
with roughly τ0

2/v ≈ 1/3, which is roughly the convention specified by Hunter and 
Schmidt. The relevant critical value is C(0.95, 0.01) = 69.17. Since Q < 61.17, we 
do not reject H0 and so do not conclude the studies failed to replicate approximately 
(p = 0.35). This test had 48% power to detect variation on the order of τ2 = 0.027, or 
τ2/v = 1.

�NHT: Burden of Proof on Replication

When the burden of proof is on replication, then, as in the k = 2 case, we must form 
a null hypothesis that the studies fail to replicate. With our focus on between-study 
variation, our test will involve the following null hypothesis:

	 H0
2

0
2:� �� 	 (14.39)

This can be tested with the Q statistic in Eq. (14.6). Under H0, we can use the 
approximation that 2μQ(τ0

2) Q/σQ
2(τ0

2) follows a chi-square distribution with 
2μQ

2(τ0
2)/σQ

2(τ0
2) degrees of freedom, as derived above. An α-level test involves 

rejecting H0 if 2μQ(τ0
2) Q/σQ

2(τ0
2) is less than the α-percentile of that distribution 

C(α, τ0
2), where C(α, τ0

2) is described in Eq. (14.36). In other words, the test when 
the burden of proof is on replication proceeds in a similar manner as when the bur-
den of proof is on nonreplication, except that: (1) the critical value now involves the 
α-percentile of the chi-square approximation, and (2) we reject H0 if 2μQ(τ0

2) Q/
σQ

2(τ0
2) is less than that critical value.

The power of this test to detect some value τ2 < τ0
2 is given by
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Table 14.3  Data from the Many Labs Replication Project replications of the reverse gambler’s 
fallacy experiment

Site Effect size Variance

abington 0.590 0.051
brasilia 0.355 0.036
charles 0.886 0.063
conncoll 0.622 0.050
csun 0.517 0.046
help 0.516 0.043
ithaca 0.782 0.053
jmu 0.715 0.026
ku 0.527 0.039
laurier 0.961 0.042
lse 0.645 0.016
luc 0.528 0.029
mcdaniel 0.510 0.046
msvu 0.340 0.054
mturk 0.620 0.004
osu 0.111 0.038
oxy 1.188 0.048
pi 0.724 0.004
psu 0.605 0.048
qccuny 0.419 0.044
qccuny2 0.338 0.050
sdsu 0.616 0.026
swps 0.114 0.050
swpson 0.593 0.027
tamu 0.747 0.024
tamuc 0.749 0.054
tamuon 0.592 0.020
tilburg 0.687 0.059
ufl 0.378 0.034
unipd 0.765 0.035
uva 1.108 0.059
vcu 0.712 0.040
wisc 0.785 0.045
wku 0.441 0.044
wl 0.072 0.046
wpi 0.978 0.053

Source: Open Science Framework

J. M. Schauer



333

where F is the chi-square distribution function in Eq. (14.21). When all of the vi = v, 
so that each study has the same estimation error variance, then the power reduces to:
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The power of this test will increase as we test looser notions of replication failure; 
that is, when τ0

2 is larger. It will increase when τ2/v is smaller, and will be greatest 
when τ2 = 0, so that the studies replicate exactly. As discussed in the following sec-
tion, the power of the test when the burden of proof is on replication will typically 
be lower than when the test puts the burden of proof on nonreplication.

Example. Suppose we wish to test a null hypothesis that the gambler’s fallacy 
replications failed such that τ2 = 0.027, which would characterize τ0

2/v = 1. Recall 
that the Q statistic is 51.27. The relevant critical value is C(0.95, 0.027) = 41.13. 
Because Q > 41.13, we fail to reject H0 and do not conclude the studies replicated 
successfully (p = 0.17). The power of this test will be greatest when τ2 = 0, and the 
studies actually replicate exactly, in which case the power would be 78%.

�Power and Precision of Analyses

Note that the conclusions of the test for replication can depend on how the null 
hypothesis is formed. In the gambler’s fallacy example, we rejected a null hypoth-
esis of exact replication, but failed to reject a null hypothesis of approximate repli-
cation, nor did we reject a null hypothesis of replication failure. Thus, the ultimate 
conclusions reached about replication will be sensitive to the framing of the null 
hypothesis.

The sensitivity of analytic methods is key for both planning and analyzing repli-
cation studies. Proper interpretation of these tests, however, does not mean we con-
clude H0 is true when we fail to reject it. In general, a failure to reject a null 
hypothesis is ambiguous, and must be interpreted in light of statistical power (or the 
Type II error rate). So too must interpretations of estimated variance be considered 
in light of their uncertainty. Moreover, because the power of these tests are known, 
as are the standard errors of estimators, researchers can plan replication studies 
prospectively to make sure that relevant analyses are sufficiently sensitive (i.e., have 
high power or precision). Note that the previous sections demonstrated that the sen-
sitivity analysis will depend on vi (and hence the within-study sample size ni), as 
well as the total number of studies k. Thus, prospective planning of replication stud-
ies to ensure sensitivity analyses can be seen as choosing k and ni or some minimum 
n for each study.

Understanding the sensitivity of analyses requires some idea of values of τ2 con-
sidered large and what values might be considered negligible. For instance, the 
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power of tests for replication is a function of a value of variation τ0
2 that distin-

guishes between negligible and non-negligible variations, as well as the variation 
one wishes to detect τ2. The standard error of variance component estimates is a 
function of τ2.

In a previous section, I argued that if the scale of the θi is understood, it is best 
practice to derive meaningful values of τ2 in a manner that is consistent with both 
the scale of the θi, and knowledge regarding the finding under consideration and its 
scientific and clinical implications. Alternatively, a scale-free approach might con-
ceive of these analyses and their properties as depending on τ2/v. We noted that 
when effects are on the scale of standardized mean differences, the negligible values 
of τ2 may range from 0 to as large as 0.035, and the values worth studying might 
range from 0.005 to 0.1.

Figure 14.1 shows the power of replication tests assuming v1 = v2 = 4/100, analo-
gous to each study having a total sample size of 100 (on the scale of Cohen’s d) and 
balanced two-arm designs. The first panel shows the power of a test (y-axis) for 
exact replication (H0: τ2 = 0) to detect a given value of τ2 (x-axis) for different num-
bers of studies k = 2, 5, 10, 20, and 40. The second panel shows the power of the test 
for nonreplication (H0: τ2 ≥ τ0

2) to detect exact replication (τ2 = 0) as a function of 
τ0

2 (x-axis) for different numbers of k. In addition, the third panel shows the relative 
standard error (RSE) SE[ τ̂DL

2 ]/τ2 for the DerSimonian–Laird estimator as a function 
of τ2 (x-axis) for different numbers of k. The figure shows that unless there are a 
large number of studies, a design with v = 4/100 will likely be underpowered when 
analyzing moderate levels of heterogeneity.

To get a better sense of designs with a given number of studies k and sample size 
per study n (assuming balanced designs within studies) that can give sufficiently 
sensitive analyses, consider Table 14.4. Table 14.4 shows the required sample size 
per study necessary to obtain 80% power or a relative standard error less than 50%. 
The sample sizes presented assume that each study has at least n participants, each 
study is a balanced two-armed study, results are the scale of standardized mean dif-
ferences, and the large sample approximation for vi = v ≈ 4/n in Eq. (14.2) is valid.

The first panel in Table 14.4 gives the requisite sample size per study to ensure a 
test of exact replication (H0: τ2  =  0) has 80% power for an α  =  0.05 level test. 

Fig. 14.1  Sensitivity of analyses for replication assuming v1 = v2 = 4/100
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Within-study sample sizes are reported for detecting various values of τ2 > 0 assum-
ing a given number of studies k. The second panel in Table 14.4 gives requisite 
sample sizes for tests of nonreplication (H0: τ2 ≥ τ0

2) to detect exact replications 
(τ2 = 0) with 80% power (α = 0.05) for various values of τ0

2. The third panel gives 
the requisite sample size to ensure a relative standard error (RSE) SE[ τ̂DL

2 ]/τ2 ≤ 50% 
for a given number of studies k and values of τ2. Note that cells with “―” indicate 
that no sample size large enough could generate an RSE below 50%.

For reference, a test of exact replication with k = 10 studies would need a sample 
size of n ≥ 172 per study to detect τ2 = 0.05 with 80% power. If τ2 = 0.05, and k = 10 
studies are conducted, then we would need a sample size of n ≥ 1319 to ensure a 
relative standard error less than 50% for an estimate of τ2. Large sample sizes will 
be required for small RSE when τ2 itself is small because of the relationship between 
τ2 and the RSE. Relaxing the RSE slightly in such cases may not result in vastly 
larger standard errors. For reference, a relative standard error of 50% when τ2 = 0.05 
would ensure a standard error SE[ τ̂DL

2
] ≤ 0.025. If instead we desire a standard error 

SE[ τ̂DL
2 ] ≤ 0.03, then for k = 10 studies and τ2 = 0.05, we would require just n = 294 

subjects per study, less than a quarter of the sample size indicated in the table.

�Discussion

Questions about how to define replication as an estimand, analyze replication stud-
ies to make inferences on that estimand, and how to design replication studies to 
support sensitive analyses are intrinsically linked. In this chapter, I have showed that 
there are myriad approaches to defining replication that are functions of effect 
parameters, and hence there are a variety of analysis methods (functions of effect 
estimates) that are relevant for replication.

Different definitions of replication can and will be preferred in different settings 
and fields, and for different types of findings. Determining which definition is most 
relevant is subject to scientific and clinical judgment. Here, I have focused on defi-
nitions of replication that involve the consistency of effects (i.e., effects in replica-
tion studies are about the same size). This is particularly relevant to approaches for 
enhancing evidence-based practices, which support inferences about the stability of 
an effect.

Analyses for replication can support qualitative conclusions about the replicabil-
ity of scientific findings in a manner consistent with NHT. Indeed, this chapter has 
presented a series of hypothesis tests for replication. However, recent moves by the 
American Statistical Association have urged researchers to focus on reporting point 
estimates and relevant uncertainty over p-values (see Wasserstein & Lazar, 2016). 
In keeping with those developments, I would suggest researchers studying replica-
tion to focus on estimating relevant parameters, though qualitative conclusions 
about replication may still be desired or warranted.
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Designing replication studies requires some determination of the requisite num-
ber of studies k and sample size per study n to ensure sufficiently sensitive analyses. 
If one of the studies to be included in analyses is already published, a design with 
k = 2 studies (i.e., conducting only a single replication study) is unlikely to be suf-
ficiently powered. If such k = 2 designs are unavoidable due, for instance, to budget 
or resource constraints, this chapter outlined some relevant methods (small tele-
scopes, skeptical p-value) to make sense of the evidentiary value of k = 2 studies.

That a design involving a single replication of a published study is unlikely to be 
well powered suggests a few considerations for both primary research and replica-
tion research. The most obvious is that research seeking to replicate existing find-
ings should (in most cases) have k ≥ 3 studies. However, there are two possible 
ways around the statistical limitations of the k = 2 design that do not involve increas-
ing the number of studies conducted. First, the research community could prioritize 
conducting primary studies with larger sample sizes. Sound statistical practice dic-
tates that experiments be devised so that they are well powered. This typically 
means a power of at least 80%. However, even studies with 80% power will limit the 
power of analyses for replication. Thus, seeking designs of primary studies with 
higher power (e.g., at least 90%) may reduce the resources required to replicate 
them in the future.

Second, improving transparency of primary studies and their publication can 
improve statistical analyses for replication (see Collins & Tabak, 2014; Bollen et al., 
2015; Schauer & Hedges, 2020). Recall that adjustments for publication bias will 
only reduce the sensitivity of replication analyses. Therefore, pre-registering studies 
and analysis plans, reporting all relevant effects, and reporting regardless of statisti-
cal significance may reduce the impact of selection and hence reduce bias in extant 
findings.

An alternative approach is to conduct replications prior to publishing any single 
study (e.g., Schweinsberg et al., 2016). Rather than designing a single study, the 
focus can be on designing an ensemble of replication studies. The results of these 
studies (including their consistency) can be reported as part of a single article or 
series of articles. This is analogous to the type of work done by the PPIR and to 
efforts possible under the Psychological Science Accelerator. Embedding replica-
tion into the process of primary inquiry can help improve our understanding about 
a phenomenon and the conditions under which it is studied.

�Further Reading

For discussion regarding meta-analytic approaches to studying replication, Valentine 
et  al. (2011) describe a general framework that was later refined by Hedges and 
Schauer (2019b). Finer points about fixed effects analyses were identified and dis-
cussed by Schauer (2018), including various ways for intuiting the scale of between-
study variation. A more detailed demonstration of the methods discussed in this 
chapter was done by Schauer and Hedges (2020). Hedges and Schauer (2021) 
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proposed methods for identifying cost-effective or otherwise optimal designs of 
replication studies that support powerful analyses.  In addition, Schauer (2018) 
derives some corrections to many of the analyses discussed in this chapter to account 
for small sample sizes in studies that could lead to violations of the assumption that 
the vi are known and not estimated.

Though the focus of this chapter was on the replicability of results, particularly 
as operationalized as variation between effect parameters, replication research pro-
grams can provide insight into other parameters. For instance, meta-analytic meth-
ods can support estimation of mean effects across studies, as well as prediction 
intervals of effects (see Cooper, Hedges, & Valentine, 2019). Estimates of relevant 
parameters, including variance components, are possible with most meta-analytic 
software, including with the metafor library in the R computing language 
(Viechtbauer, 2010). Similarly, the Replicate library in R can conduct inference on 
the P>q and Porig statistics (Mathur & VanderWeele, 2020).

The analyses presented here are primarily for direct replications, where studies 
are devised to be as similar as possible. Contrast that with conceptual replications, 
which may systematically vary aspects of a study to examine the potential impact of 
those variations on study results. This can be conceived of in a meta-analytic analy-
sis of variance (ANOVA) framework, where studies can be grouped according to 
how they were conducted; if we denote a variable X that is systematically varied 
across studies, then we can group studies according to their value of X. Relevant 
analyses are discussed by Schauer (2018) and Schauer and Hedges (2020), which 
also includes empirical demonstrations.

As an alternative to the frequentist analysis methods that this chapter focused on, 
there are several possible Bayesian analyses of replications. Schauer (2018) 
describes Bayesian approaches to estimating λ and τF

2, and outlines various consid-
erations for Bayesian estimation of τ2. These latter discussions have been consid-
ered thoroughly in the statistical literature (for a good discussion, see Gelman et al., 
2014). Alternatively, there have been approaches devised for k = 2 studies including 
those by Etz and Vandekerckhove (2016), van Aert and van Assen (2017), or 
Held (2020).

This chapter relied on meta-analytic notation as a matter of simplicity. This 
approach can be used even if data on individual participant are not available to the 
analyst. In programs of research regarding replication, this may not be the case; 
analysts may have access to individual participant data in all or a portion of relevant 
studies. In such cases, analyses can use multilevel models (also referred to individ-
ual participant data meta-analysis), which are analogous to the models presented in 
this chapter (see Raudenbush & Bryk, 1992; Riley et al., 2010; Tierney et al., 2015).

Finally, this chapter demonstrated that there are configurations of replication 
research programs wherein enough studies are conducted each with large enough sam-
ple sizes such that analyses are sufficiently powered. These are key design choices that 
should be made prior to collecting data. It is worth noting that there may be multiple 
configurations of study sample sizes n and number of studies k that provide sufficient 
power. Choosing between these can be as simple as what configurations can be imple-
mented. Alternatively, Schauer (2018) and Hedges and Schauer (2021) provide an 
approach for optimally allocating sample sizes and numbers of studies.
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Chapter 15
Preregistration: Definition, Advantages, 
Disadvantages, and How It Can Help 
Against Questionable Research Practices

Angelos-Miltiadis Krypotos, Gaetan Mertens, Irene Klugkist, 
and Iris M. Engelhard

Abstract  Questionable research practices (QRPs), such as p-hacking (i.e., the 
inappropriate manipulation of data analysis to find statistical significance) and post 
hoc hypothesizing, are threats to the replicability of research findings. One key solu-
tion to the problem of QRPs is preregistration. This refers to time-stamped docu-
mentation that describes the methodology and statistical analyses of a study before 
the data are collected or inspected. As such, readers of the study’s report can evalu-
ate whether the described research is in line with the planned methods and analyses 
or whether there are deviations from these (e.g., analyses performed so that the 
research hypotheses is confirmed). Here, we aim to describe what preregistration 
entails and why it is useful for psychology research. In this vein, we present the key 
elements of a sufficient preregistration file, its advantages as well as its disadvan-
tages, and why preregistration is a key, yet partially insufficient, solution against 
QRPs. By the end of this chapter, we hope that readers are convinced that there is 
little reason not to preregister their research.
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�Introduction

Credible psychological science implies that research is reproducible or replicable. 
Concerns about whether the psychology literature is reliable have been raised a long 
time ago (Babbage, 1830; Rosenthal, 1979; Stroebe et al., 2012). However, this past 
decade, a crisis in the confidence of psychology as well as other scientific fields has 
risen (Camerer et  al., 2016; National Academies of Sciences & Medicine, 2019; 
Pashler & Wagenmakers, 2012). This was primarily due to the publication of studies 
showing poor replicability (the repetition of a study’s findings with new data) of 
many important psychological findings (Open Science Collaboration, 2015; Ritchie, 
2020), as well as poor reproducibility (finding of identical results when performing 
the original analyses on the same data) of research (Hardwicke et al., 2019, 2020).

One of the proposed reasons for the low replicability and reproducibility in psy-
chology is questionable research practices (QRPs). QRPs include the formation of 
a research hypothesis after the results are known (HARKing; Kerr, 1998), the flex-
ible use of data analyses to obtain evidence for a hypothesis, even when it is not 
supported by the data (Simmons et al., 2011), and the collection of data until the 
null hypothesis is rejected in Null-Hypothesis Significance Testing (NHST; Strube, 
2006). The reported high prevalence of QRPs in psychology (John et  al., 2012) 
demands immediate changes in our research practices and the establishment of 
ways that prevent researchers from using these.

Diverse methods for eliminating QRPs have been proposed. The first method is 
to change the incentive structures in science (Bruton et al., 2020; Chambers et al., 
2015). In particular, academic success is commonly evaluated by the number of 
articles scientists have published in journals with high impact factors. Given that the 
report of significant results increases the chances that a paper will be published 
(Fanelli, 2012; Rosenthal, 1979), QRPs bias the results towards this direction 
(Fanelli, 2010). These QRPs include the deviation of data collection procedures so 
that the results would support the predictions made by the authors, the removal of 
data without a justifiable reason, or even data fabrication. Different proposals have 
been made to solve this problem, such as a training in ethics in science (Bruton 
et al., 2020) or emphasizing science quality as an indicator of academic success.

A second step towards tackling QRPs is the open sharing of data and materials 
as well as the replication of past findings. Reproduction, however, is often challeng-
ing given that researchers typically do not share their data and materials broadly 
(Alsheikh-Ali et al., 2011; Hardwicke et al., 2019, 2020; Vanpaemel et al., 2015; 
Vines et al., 2014). Replication of past findings had also been done sparingly, given 
that replication studies are traditionally harder to publish compared to original find-
ings. To date, however, more and more journals (e.g., Journal of Experimental 
Psychology: General) and funding agencies (e.g., the Netherlands Organization for 
Scientific Research) call for such studies, giving hope that this will be a way to 
reduce QRPs (Zwaan et al., 2018).

A third way to battle QRPs is the preregistration of a study before data analysis. 
Preregistration of studies is not new: the first registries were introduced in the 1960s 
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(see Wiseman et al., 2019 for a full historical review). To date, preregistration is 
routinely done in some scientific fields (e.g., for clinical trials; see clinicaltrials.gov 
in the United States of America and eudract.ema.europa.eu in Europe). However, 
there is a call for extensive preregistration in psychology for all experimental stud-
ies, meta-analyses, and literature reviews. Preregistration is increasingly used 
(Lindsay et al., 2016; Nosek & Lindsay, 2018; Simmons et al., 2021b). It is pro-
moted by journals, for instance, by providing a badge to a published article if the 
reported study was preregistered (Kidwell et al., 2016) or by not allowing a paper to 
be published unless the authors preregistered the research or explain why they did 
not. Also, more and more journals are requiring (e.g., The Journal of Politics) or at 
least encouraging (e.g., PAIN) the preregistration of experimental studies. Similar 
strategies are also encouraged for researchers and graduate students (e.g., in the 
Behavioural Science Institute of Radboud University), and the same goes for some 
grant agencies (e.g., the Dutch organization for health research and healthcare inno-
vation, ZonMw, in the Netherlands).

Preregistration is the topic of this chapter. Specifically, we aim to explain what 
preregistration is, why it is useful, what its shortcomings are, as well as why it can 
provide a shield against some QRPs.

The structure of this chapter is as follows: We first describe what preregistration 
is and the key distinctions between the types of preregistrations. Then, we discuss 
the advantages and challenges of preregistration and end by providing alternatives 
to preregistration. Furthermore, we provide key sections that are typically included 
in a preregistration document. At the end of this chapter, we hope that readers will 
be convinced that it is imperative to preregister their research.

�What Is Preregistration?

Preregistration consists of a collection of time stamped documents that typically 
describe a study’s research questions, hypotheses, methodology, and statistical anal-
yses. Although a study should be preregistered before the beginning of data collec-
tion, this is not always possible (e.g., see below about preregistration of pre-existing 
data). As such, as a general rule, a study should be preregistered at least before the 
research data are inspected (Nosek et al., 2018).

Multiple preregistration templates have been introduced (e.g., Johnson & Cook, 
2019; Krypotos et al., 2019; Mertens & Krypotos, 2019), with different criteria to 
be fulfilled depending on the type of study (e.g., meta-analysis, laboratory studies, 
single-case designs) or when the study was preregistered (e.g., prior to data collec-
tion or to the data analysis). As such, researchers should first define clearly under 
which category their study falls.

A widely accepted distinction in preregistration is between studies in which orig-
inal data are collected (e.g., laboratory research or a randomized controlled trial) 
and studies that use pre-existing data (e.g., re-analysis of an available data set). In 
the former case, researchers should define their research questions, hypotheses (if 

15  Preregistration: Definition, Advantages, Disadvantages, and How It Can Help…

http://clinicaltrials.gov


346

any), methods, and analyses. In the latter case, the preregistration of methods is 
more limited as the data have been already collected. In the case of pre-existing 
data, researchers should acknowledge that they already have, at least partial, knowl-
edge of the data set to be analyzed, which could influence their analytic choices. 
Another commonly used distinction is whether a study aims to confirm a hypothesis 
(i.e., confirmatory research) or whether its goal is to explore different data patterns, 
without having an a priori hypothesis or a computational model to confirm (i.e., 
exploratory research) (De Groot, 2014; Dirnagl, 2020). Notably, the distinction 
between the different types of studies is not qualitative, as the different types of 
studies serve different purposes. For example, exploratory studies may enable the 
development of novel computational models, whereas confirmatory studies are 
needed to provide supportive evidence or gain more confidence in the structure of a 
particular pre-specified model.

Despite different preregistration templates for different studies, there are many 
commonalities in preregistration templates. Below, we will present the common 
aspects of preregistration, and we will describe which deviations are needed for dif-
ferent types of studies. Before that, though, we present the advantages and disad-
vantages of preregistration.

�Advantages of Preregistration

There are plenty of reasons to preregister a study. Here we provide some of the key 
advantages of preregistration, before moving to a series of challenges in the next 
section.

First, preregistration allows researchers to take full credit for making an accurate 
prediction. Think, for example, of someone pulling random numbers from a bag. 
She picks one number, sees it, and claims, “It is number 4 as I had predicted.” 
Without her having mentioned her prediction publicly in advance, her claim is not 
strong enough. Preregistration allows scientists to take full credit for the accuracy of 
their predictions by providing clear evidence that these were made in advance.

Second, in line with open science (Allen & Mehler, 2019), preregistration is a 
way to show that you are conducting transparent research, with results that are not 
based on post hoc reasoning and analyses (see QRPs above) but with concrete pre-
dictions made in advance. Increasingly, science funders and journals require 
researchers to demonstrate that their research practices are in line with open science 
principles. Preregistration is one way to achieve this.

Third, from a philosophy of science standpoint, preregistration allows 
researchers to transparently evaluate the severity of their tests (Mayo, 2018). 
Dating back to the time of Sir Karl Popper (e.g., Popper, 2005), a test is argued 
to be severe when it is strong enough to falsify a theory. In this line of reasoning, 
a preregistration allows others to evaluate whether a performed test was capable 
of falsifying a tested theory (Hitzig & Stegenga, 2020; Lakens, 2020; O’Donohue, 
2021; Vanpaemel, 2019).
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From a practical point of view, preregistration allows researchers to wrap up a 
project faster compared to when they have to decide on all analytic options after 
data collection. Also, in the case of results that do not confirm someone’s hypothe-
sis, there is the temptation to abandon a project altogether. By preregistrating the 
study, researchers already have the basic material for writing their methods/analysis 
section and a specific plan for carrying out all the analyses. Lastly, preregistration 
may also help researchers in protecting themselves against unwarranted requests for 
additional data analyses by reviewers, which can delay the publication of their 
results.

Despite the advantages of preregistrating a study, there are also arguments 
against preregistration of (some) studies. We turn to these below.

�Disadvantages of Preregistration (and How to Counter Them)

No scientific practice is without its shortcomings, and as such, preregistration is not 
without its shortcomings (e.g., Rubin, 2020). We will discuss eight disadvantages 
below and will show that they are less important than the relative advantages.

First, it is not uncommon that by the end of data collection, researchers have 
thought of a different and better way to analyze their data than the way they men-
tioned in the preregistration. Also, a new statistical method may have been intro-
duced between the preregistration and the end of data collection. As mentioned 
above, in these cases, the authors may update their preregistration by providing the 
reasons for applying a new analysis and mentioning the reasons why such an analy-
sis is superior to the preregistered ones.

The second disadvantage relates to the limits of preregistration although it makes 
research design and analysis plans transparent but not necessarily correct or rele-
vant. To illustrate, even when a researcher preregisters that she is going to perform 
a paired-samples t-test for group comparisons, this does not mean that such an anal-
ysis is correct. In this specific example, a paired-samples t-test would not be the 
right option as one of its basic assumptions is that each pair of observations comes 
from the same participant/group, making the between group comparisons impossi-
ble. A solution to this disadvantage could be given in the form of registered reports 
(Chambers, 2013). This type of article includes an evaluation of the study’s intro-
duction and methods prior to the beginning of data collection. The reviewers can 
evaluate the soundness of the methodology, the statistical analyses, as well as the 
relevance of the study to the specific journal. After the paper has been accepted as a 
registered report, the authors can collect the data and resubmit the article. The reg-
istered report format also protects researchers from reviewers’ critiques after the 
results are known (Wagenmakers & Dutilh, 2016). Registered reports are currently 
adopted by almost 300 journals (see https://www.cos.io/initiatives/registered-
reports for the full list of journals).
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Third, preregistration calls for a change in the workflow of doing research, which 
could be particularly difficult, especially for seasoned researchers. In order to ensure 
that researchers use preregistration in their work, many relevant user-friendly pro-
grams have been introduced (e.g., see Krypotos et al., 2019).

Fourth, there is an ongoing discussion as to whether preregistration is worth-
while in the first place (Nosek et al., 2019; Szollosi et al., 2019). This point relates 
to the idea that preregistration improves the diagnostic value of the statistical tests 
(see also severity tests above). For example, preregistration is argued to enable an 
accurate familywise error rate (i.e., the probability of making at least one false dis-
covery when running multiple statistical tests) and to force people to think deeply 
about their theories (Nosek et  al., 2019). Still, these ideas have been challenged 
(Olken, 2015; Szollosi et al., 2019), and a call for better theories has been made 
instead of the ubiquitous adoption of preregistration.

Fifth, it has been argued that preregistration cannot really limit QRPs, as it may 
give them a different form, such as preregistration after the study has been com-
pleted (Yamada, 2018). Related to that, there has been a misuse of the badges 
awarded to some studies, with some articles reporting multiple studies and gaining 
badges for only preregistering part of the studies (Claesen, Gomes, Tuerlinckx, & 
Vanpaemel, 2019). Still, such disadvantages do not relate to the limitations of pre-
registration as a tool, but to its misuse by researchers.

Sixth, exploratory research is sometimes considered to be less strong compared 
to confirmatory research, so a concern could be that “safer” research will be pro-
moted that is focused on the confirmation of the largest effects and that exploratory 
research is put in second place (Pham & Oh, 2020). This argument relates to the 
faulty misconception that exploratory research is a second-tier research, although it 
is equally important as confirmatory research (Scheel et al., 2020). Preregistration 
just helps researchers to better separate these two types of research, but it does not 
value one as better than the other (Simmons et al., 2021a, b).

Seventh, the preregistration does not just concern the authors but also the review-
ers and editors. It is important that the reviewers and editors carefully confirm that 
the preregistration plan has been followed and, if not, that the deviations are reported 
in the manuscript. Although this may seem like a lot of work (Pham & Oh, 2020), 
in principle, it will result in less work as the reviewers or editors do not have to ques-
tion whether the results were p-hacked as preregistration plan has been shown 
(Wagenmakers & Dutilh, 2016).

Lastly, it is tempting not to follow the preregistration plan, especially when the 
research results go against the hypotheses of the study. Sadly, there is evidence that 
often the published results differ from the preregistration plan (Claesen et al., 2019). 
However, this is not a disadvantage of preregistration per se, but of the current 
incentive system in science.
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�What to Include in a Study’s Preregistration

�Research Hypotheses

Confirmatory research is conducted to prove or falsify a hypothesis (see O’Donohue, 
2021 for a discussion of this issue). As such, specific hypotheses should be deter-
mined explicitly in advance in the preregistration. General research hypotheses may 
leave too much room for flexible data analyses. In contrast, exploratory research 
does not require explicit or specific hypotheses.

�Methodology

Following the research hypotheses, the methodology for testing the hypotheses 
should be described. Although the methodology is more extensive when original 
data are collected (see below), even studies with preexisting data should include a 
methodology section, including how the data were acquired or, in case of a meta-
analysis, how these will be retrieved and extracted from the literature. Notably, in 
case the data have already been published, a link to the previous research should be 
included, and prior information about the data should be disclosed that could influ-
ence the analytic decisions (see below).

The methodology of a study includes the definition of (if applicable) stimuli that 
will be used, questionnaires and answering scales, procedures, blinding of the 
experimenters, and randomization. In line with open-science practices, it would be 
desirable if all relevant materials are uploaded into a repository, so other researchers 
would have access to all original materials in case they want to replicate the study.

�Sample

The characteristics of the (intended) sample should be described in the preregistra-
tion document. Although sex and age descriptions are standard in psychology 
research, other sample characteristics that are relevant to the research questions 
should be included as well. For example, a study regarding anxiety disorders may 
also include the anxiety levels of the sample. Notably, characteristics of the sample 
can influence the generalizability of results to other samples. This is particularly 
important, because current samples in psychology mostly include Western, edu-
cated, industrial, rich, and democratic (WEIRD) samples (Henrich et  al. (2010); 
Muthukrishna et al. (2020), which often limits the generalizability of the findings to 
other populations.

An important decision that has to be made before the beginning of the study is 
the size of the sample. There are different ways to justify the sample size of a study. 
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For example, the researcher could run a power analysis (Cohen, 1992) based on the 
effect sizes previously reported in the literature or by defining the effect size that is 
minimally interesting for a study (i.e., the minimal statistically detectable effect) 
(Albers & Lakens, 2018; Lakens, 2020). This is the minimum effect that, if present, 
would be statistically significant given the sample size of the study and the chosen 
α level (Cook et al., 2014). Importantly, the size of the sample has an important 
influence on the direction of the results, especially when the analyses are run within 
a Null-Hypothesis Significance Testing (NHST) Framework. Within a NHST frame-
work, p-values (i.e., the probability of observing the current or more extreme data 
given that the null hypothesis is true; Wagenmakers, 2007) will almost always turn 
out to be statistically significant given that enough sample data are collected. This is 
also the case when the tested effects come from the population correctly as described 
by the null-hypothesis.

As an alternative to defining the sample size in advance, it is also possible to use 
adaptive procedures. In these procedures, data collection is completed when ade-
quate evidence has been accumulated for or against a hypothesis, or it is completed 
based on other objective criteria, such as the time the lab is available. For example, 
an investigator could use sequential analyses, where the α level is divided by the 
times a test is planned to be performed (Lakens, 2014), or use a Bayesian data plan-
ning procedure (Schönbrodt & Wagenmakers, 2018). Our goal here is to make it 
explicit that no matter which stopping rule is used in the study, this should be men-
tioned clearly in advance in a preregistration document.

In the case of pre-existing data sets, the sample characteristics that need to be 
reported depend on the research question. To illustrate, in the case of a genome-
wide association study, which is conducted to test whether specific genes predict the 
development of psychopathology, the preregistration should include only the char-
acteristics of the subset of the sample. When a new model will be tested, there may 
be a distinction between the data that are used for tuning the model parameters and 
validating the model (also referred to as the training and validating data set in 
machine learning; Dwyer et al. (2018)). If this is the case, then the preregistration 
should mention how the two separate data sets will be determined.

�Data Preprocessing

Before the data analyses, scientists often transform their data, reject outliers, and 
aggregate values into sums or mean scores. For example, in the case of reaction time 
(RT) analyses, extreme values are typically removed, and the distribution of RTs is 
log transformed (Heathcote et al., 1991). It is important that all data transformations 
be also included in the preregistration given that different transformations may 
change the direction of the results. Whether each choice is defendable or not is up 
to the researcher and the scientific community. Still, the modification of the data 
may determine the direction of results, and non-specification of data 
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transformation/reduction processes leaves room for QRPs. In some research fields, 
however, exact predefining of the data reduction/transformation procedures is 
almost impossible, given that such procedures are often dictated by the data per se 
(e.g., normalize distribution of data only if they show that they are distributed nor-
mally). In such cases, researchers are advised to list the sensitivity analyses they 
will perform to ensure that the direction of the findings is not the result of the data 
reduction procedure.

�Statistical Analysis

Statistical analyses follow from the theoretical background of the study and the 
research questions. In cases of concrete formal theories, the statistical analyses fol-
low such models, and researchers have reduced flexibility in choosing which analy-
sis they should perform (van Rooij & Blokpoel, 2020). However, such formal 
models are rare in psychology, and usually generic statistical models for drawing 
inferences are selected, such as regression, t-tests and analysis of variance (ANOVA). 
Nonetheless, and due to the absence of a formal model (van Rooij & Baggio, 2021), 
the same research question can be answered with different analyses. To illustrate, 
during a fear conditioning task, in which initially neutral stimuli are paired with 
unpleasant stimuli across multiple trials, someone could run a repeated measures 
ANOVA or a multilevel model. Given that different analyses can yield different 
results, flexibility in such statistical analyses may inflate false-positive rates 
(Simmons et al., 2011).

To convince readers that the analyses were free from biases stemming from data 
inspection, a clear description of the planned statistical analyses should be included 
in the preregistration document. This description includes the inferential framework 
(e.g., NHST, Bayesian analyses) and the statistical models that will be used, with a 
clear definition of the variables in the model. Arguably, many decisions cannot be 
taken without inspecting the data, and some data reduction procedures cannot be 
predicted (e.g., a data pattern against expectations). There are at least two ways to 
solve problems with decisions that need to be made before data inspection. First, 
researchers can create a flow chart of how the data could inform the statistical deci-
sions. For instance, someone could argue that when the assumption of a normality 
in the variables is violated, a Welch’s t-test will be used instead of a Student’s t-test. 
Accounting for each possible data pattern will be daunting, especially when com-
plex statistical models are used. An alternative strategy would be to update the pre-
registration file and to argue why the newly proposed analyses are a better approach 
to the data analyses. Preregistration should be viewed as a plan, not a prison 
(DeHaven, 2017), that can be updated. Such updates should be shared timely and 
transparently with the rest of the community so they can be judged accordingly.
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�Remaining Sections

Above, we described common characteristics of current preregistration templates 
(e.g., Crüwell & Evans, 2019; Kirtley et al., 2020; Krypotos et al., 2019; Mertens & 
Krypotos, 2019; Van den Akker et al., 2019; van’t Veer & Giner-Sorolla, 2016). As 
mentioned previously, however, different types of studies need different preregistra-
tion elements, and more templates are being introduced depending on the field of 
study. We suggest that authors first inspect available templates and choose the tem-
plate that best fits their study (see https://osf.io/zab38/ for an overview).

�Where to Preregister

The completed preregistration document should be submitted to an official reposi-
tory. To date, most repositories are online. The type of repository that will be used 
also depends on the type of study. For example, clinical trials are most commonly 
registered on clinicaltrials.gov in the United States and eudract.ema.europa.eu for 
Europe. For experimental and modelling work within psychology, two databases are 
commonly used. The first one is aspredicted (aspredicted.org). It enables research-
ers to preregister a study by answering nine simple questions relating to the study’s 
research design and analyses. The second one is osf (osf.io) where researchers have 
the option to select templates in which they answer many more questions compared 
to AsPredicted and go much more in depth in their study. We urge authors to prefer 
including enough information in their study compared to vague specifications, 
something that will leave less room for misinterpretations as well as flexible data 
analyses. A limitation of the AsPredicted website is that although the preregistration 
is quite easy to complete, the website is not a formal registry, given that preregistra-
tions could be kept private forever. In contrast, on the osf, preregistrations are 
released online after a maximum of 4  years. Allowing researchers to keep their 
preregistration private could result in preregistrating multiple hypotheses and releas-
ing only the ones that support the preregistration file that supports their study.

�Alternatives to Preregistration

Preregistration is only one way to counter QRPs. In this section, we will suggest 
additional tools that could be used in combination with preregistration, although 
these are not integral parts of preregistration.

The first one is crowdsourcing analyses. This includes the sharing of a dataset 
with different groups that are allowed to analyze the data set in any desired way 
(Dutilh et al., 2019a, b; Silberzahn et al., 2018). To illustrate, in Dutilh, Annis, et al. 
(2019a), the first author shared the same set of data with different experts of the 
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diffusion model, a computational model used for decomposing reaction time perfor-
mance into different model parameters (Ratcliff & McKoon, 2008). The different 
groups then had to fit the diffusion model and report back the model parameter 
values. This allowed the different groups to use any version of the diffusion model 
they wanted, with no two groups selecting the same model, without knowing explic-
itly what the research question was. This approach can reduce the bias towards 
presenting results supporting an effect.

The second alternative is a multiverse analysis (Steegen et al., 2016). The ratio-
nale for multiverse analyses is that in the absence of a concrete background, more 
than one type of analyses seems reasonable. Let us return to the reaction time exam-
ple. Reaction time distributions are typically skewed. Typically, a summary value is 
used for a reaction time distribution (e.g., the mean). It could be argued that a given 
researcher prefers computing the median of the distribution, because it is less influ-
enced by extreme values compared to the mean. Another approach would be to 
normalize the distribution and then compute the mean. In the absence of a theory 
about the best option, both options are reasonable. In multiverse analyses, research-
ers need to conduct all reasonable analyses. Then, the distribution of results is plot-
ted. Multiverse analyses can be specified not only on the level of data reduction 
procedure (e.g., different data transformation) but also on the level of the selected 
statistical models (e.g., multilevel analyses or analyses of variance).

�Concluding Remarks

To date, preregistration of a study constitutes one of the most important tools 
towards battling QRPs. As shown above, however, it does not provide absolute 
immunity against them. Nevertheless, given the advantages presented above, there 
is little reason not to preregister a study. It is likely that in the next few years, pre-
registration of a study will become the norm, rather than an exception, and it is 
possible that over the next decade, there will be hardly any experimental study in 
our field that is not preregistered. This norm, however, can have exceptions, and as 
such, researchers can always simply argue as to why they did not preregister 
their study.

In order to achieve the goal of science being open, transparent, and replicable, 
we will need to move towards adopting better practices, such as the open sharing of 
data and materials. Ultimately, the goal of science is the collection of reliable infor-
mation that is useful for science itself and for the whole society. QRPs do not serve 
that goal and should be maximally eliminated, such as by the adoption of study 
preregistration.
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Chapter 16
Adversarial Collaboration

Tim Rakow

Abstract  Adversarial collaboration is an approach to resolving scientific disputes, 
wherein researchers who have different positions on the issue at hand collaborate 
with the aim of making progress on their disputed research question. As an approach 
to research, adversarial collaboration sits squarely within the open science frame-
work because it puts a premium on transparency in hypothesis specification, study 
design, data analysis, study interpretation and reporting, and supplies a framework 
that can encourage rigour in these components of the research process. It is, how-
ever, far less common than many other open science innovations such as open mate-
rials and data sharing or study preregistration. Therefore, this chapter will begin by 
familiarising readers with adversarial collaboration, outlining some of its key fea-
tures, and identifying potential benefits of the approach. The chapter ends with a 
discussion of what the approach can offer.

Keywords  Adversarial collaboration · Open science · Remedies for questionable 
research practices

�What is Adversarial Collaboration?

Iron sharpens iron. – Proverbs 27:17.

It was science at its best. – Latham et al. (1988, p. 767).

Adversarial collaboration is an approach to resolving scientific disputes, wherein 
researchers who have different positions on the issue at hand collaborate with the 
aim of making progress on their disputed research question. As an approach to 
research, adversarial collaboration sits squarely within the open science framework 
because it puts a premium on transparency in hypothesis specification, study design, 
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data analysis, study interpretation and reporting, and supplies a framework that can 
encourage rigour in these components of the research process. It is, however, far 
less common than many other open science innovations such as open materials and 
data sharing or study preregistration. Therefore, this chapter will begin by familia-
rising readers with adversarial collaboration, outlining some of its key features, and 
identifying potential benefits of the approach. The chapter ends with a discussion of 
what the approach can offer. As the chapter unfolds, you will see that adversarial 
collaborations vary somewhat in their form and function and are occasionally 
known by other names such as proponent-skeptic collaborations (Matzke et  al., 
2015) – or indeed may not be labelled as any specific type of investigation. To help 
you as I endeavour to build a fuller appreciation of the approach, the following brief 
quotes can function as outline definitions for adversarial collaboration:

…a project carried out by two individuals or research groups who, having proposed con-
flicting hypotheses, seek to resolve their dispute. (Bateman et al., 2005, p.1561).

…a cooperative research effort that is undertaken by two (groups of) investigators who hold 
different views on a particular empirical question.…The goal of an adversarial collabora-
tion is to reach consensus on an experimental design and the corresponding testable hypoth-
eses. (Matzke et al., 2015, p .e1).

The approach requires both parties to agree on empirical tests for resolving a dispute and to 
conduct these tests with the help of an arbiter. (Mellers et al., 2001, p. 269).

Even from such brief definitions, you will likely appreciate that adversarial collabo-
ration adds an additional level of oversight to a research study because the work of 
one researcher is open to scrutiny by another (the other investigator in the adver-
sarial collaborator). Moreover, this scrutiny is a mutual – each collaborating inves-
tigator has oversight of the other’s work. As with several other open science 
initiatives, this serves to reduce the researcher degrees of freedom (Simmons et al., 
2011) which might otherwise make the design, implementation, conduct, analysis, 
or reporting of a piece of research more likely to favour one researcher’s preferred 
views. I hope that you will also see in this chapter that the benefits of adversarial 
collaboration extend beyond those afforded by additional scrutiny. Collaborative 
design of research that involves researchers with opposing views facilitates the 
design of more severe tests of a hypothesis, thereby creating a valuable opportunity 
to move research closer to the Popperian ideal of critical testing of theory 
(Popper, 1974).

�Case Studies in Adversarial Collaboration

Through a series of case studies, presented in approximate chronological order, this 
section will illustrate the various forms that adversarial collaborations take and will 
share some of the reflections of the “adversaries” who have participated in them. 
You will see that only a few of these examples fall within the field of clinical 
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psychology. Nonetheless, the approach is applicable to any field that uses behav-
ioural research to generate new knowledge, and therefore the wisdom and lessons 
that can be gleaned from these case studies are applicable to clinical psychology 
research.

�A Trail Blazing Collaboration Applying the Joint Design 
of Crucial Experiments to Resolve a Dispute – Latham 
et al. (1988)

In this paper, Latham and Erez describe how – with the assistance of Locke serving 
as their mediator – they jointly designed a series of experiments which sought to 
resolve a scientific dispute on which they held different positions. This is a gem of 
a paper, partly because it might represent the first published adversarial collabora-
tion in the psychological sciences but also because it raises several of the concerns 
about research practices that the open science movement brought to prominence 
some 15–20 years later. But more than that, it offers constructive guidance on how 
some of those concerns can be addressed.

Latham et  al. (1988) reported four studies, for which the design of each was 
agreed upon between themselves – the two “antagonists” – and their mediator. Two 
studies were each directed by one of the antagonists and were run by research assis-
tants who were blind to the hypotheses. Work by Latham and others had indicated 
that active participation in goal setting makes little difference to goal commitment 
or task performance. However, Erez had found higher goal acceptance with partici-
pation (group discussion) and that the subsequent goal commitment predicted per-
formance. From brainstorming with the mediator present, Locke and Erez identified 
five sets of differences between their experiments, each of which generated candi-
date hypotheses that might explain the variance in their findings: task importance, 
group discussion, instructions to participants, timing of the goal setting, and cultural 
differences in personal values (e.g. collectivism). Each study used a factorial design 
to examine two or three of the candidate hypotheses for the differences in previous 
findings. The main conclusion was that participant instructions were an important 
source of difference between the antagonists’ previous sets of findings.

The Discussion included (named) comments from each author  – something 
that is not unusual in adversarial collaborations. In his comments, Latham 
described the extent of their collaboration, which extended to “…systematically 
reviewing one another’s studies, formulating hypotheses, arguing over proper pro-
cedures for testing hypotheses, implementing the procedures, re-implementing 
the procedures, analyzing the data, and reanalyzing the data…” (p.767). Erez’s 
comments focussed on some of the benefits from the process required by this kind 
of collaborative investigation. These included establishing boundary conditions 
for predictions, illuminating how contextual factors can affect research findings – 
yet do so in ways that a researcher working within one context may be blind to the 
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effects of context. For example, Latham et al. (1988) found that manipulating the 
instructions used to assign goals moderated the effect of goal participation and 
that goal commitment was affected by manipulating goal difficulty and goal 
importance. However, in their prior investigations, these factors of participant 
instructions and task importance had not been manipulated by Latham or Erez 
but, rather, had been features that differed between the studies run by each 
researcher. Consequently, these factors provided some explanation for the differ-
ences in the effects that Latham and Erez had previously observed. More gener-
ally, this highlights how methods can be important for what is found and what is 
concluded. Locke’s comments also focussed on what he had learned from the 
collaboration about the importance of methods. The antagonists had identified at 
least nine differences in the methods of their previous investigations – even though 
they were “allegedly studying the same phenomenon” (p. 769). Importantly, not 
all of these would be evident from the published Method sections, leading to the 
recommendation that fuller reporting be encouraged. The paper’s final set of con-
cluding comments emphasise that for this approach to the joint design of experi-
ments to be fruitful, the antagonists must be sufficiently aligned at the philosophical 
level that they can agree on how variables can be operationalised and that antago-
nists require the scientific curiosity necessary to invest them in the process. The 
authors also concluded that the role of the third-party mediator was important and 
that while there had been no need for them to “become heavy-handed” (p.770), 
the mediator had made important interventions to ask the antagonists to recon-
sider their opinions or conclusions. For this reason, it was felt necessary that the 
mediator had the “trust and respect” (p.770) of both antagonists.

�An Adversarial Collaboration on the Nature of Regret – Gilovich 
et al. (1998)

In three jointly designed survey studies, Gilovich et al. (1998) sought to distinguish 
between two accounts of regret, each of which aims to explain the observation that 
people tend to regret actions more than inactions in the recent past but regret inac-
tions more than actions when considering the distant past. Gilovich and Medvec 
argued that differential patterns of regret for actions and inactions arise because the 
regret associated with actions dissipates more quickly than the regret that is associ-
ated with inaction. Kahneman offered an alternative explanation. He argued that 
there are two distinct forms of regret: “hot” regret, which typically arises soon after 
the event to which it is attached, and “wistful” regret, which arises much later 
because it is often associated with consequences that occur long after the decisions 
and actions that might cause regret. Upon completing their studies, the collaborators 
agreed that – in line with Kahneman’s view – their new data point to two distinct 
forms of regret. However, Kahneman also conceded that the data also point to a 
degree of pain that can be associated with long-term regrets that he had not 
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previously acknowledged. Thus, the data appears to have moved each author 
towards some shared interpretations of the phenomenon under examination. An 
additional benefit that the article points to is the opportunity for Gilovich and 
Medvec to articulate their theoretical position in a more precise fashion, reducing 
the opportunity for misinterpretation of their position and clarifying which of their 
claims have only weak evidential support. Therefore, the collaboration seems to 
have had value in identifying next steps for empirical investigation of the research 
question. All authors agreed (p. 605) “…that the exercise was worthwhile and that 
joint research is often a better way to deal with scholarly disagreement than are 
critiques and rejoinders.”

�The Best-Known Adversarial Collaboration – Mellers 
et al. (2001)

A search of the APA Psych Info database conducted in late 2020 generated fewer 
than 300 hits for the term “adversarial collaboration”. Only a minority of the papers 
identified by this search actually report an adversarial collaboration. Rather, many 
papers that came up in this search did so because they cited this paper by Mellers 
et al. (2001) which includes the term ‘adversarial collaboration’ in its title. Most 
commonly, their paper was cited because the topic of the research was related to the 
paper’s findings – though often Mellers et al. (2001) is cited when authors define or 
discuss adversarial collaboration as an approach to research. Thus, Mellers et al. 
(2001) is a good candidate for the most prominent example of adversarial collabora-
tion. It may also be the first paper to apply the term “adversarial collaboration” to a 
joint investigation by antagonists, though – as demonstrated by the preceding case 
studies – it is not the first such collaboration.

Mellers et  al. (2001) report three studies that were jointly designed by Ralph 
Hertwig and Daniel Kahneman, with the data collected by an independent arbiter, 
Barbara Mellers. The paper also includes valuable guidance on how an adversarial 
collaboration that includes an arbiter might be approached and conducted (repro-
duced in the Appendices of this chapter). A key feature of these suggestions is an 
emphasis on agreeing and recording the rationale and conduct of the collaboration 
before embarking upon data collection. This includes recording what results from 
the initial study would lead each researcher to change their mind, agreeing on the 
principles by which any subsequent follow-up studies are to be planned and imple-
mented, and allowing the arbiter to set, in advance, how the resulting paper will be 
structured and co-authored. These suggested guidelines do not propose that an arbi-
ter is essential to an adversarial collaboration, but rather a possibility to consider in 
cases where the differences in theoretical position or research methodology between 
the adversaries are substantial. The article itself gives no explanation for why 
Barbara Mellers was invited to be the arbiter, though the fact that she collected the 
data and was the first author  – together with the focus of the paper’s 
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Introduction – suggests that, likely, both methodological and theoretical differences 
between Hertwig and Kahneman underpinned the decision to involve her as arbiter.

The investigation focussed on the conjunction fallacy, which is when the con-
junction of two events is judged more probable than one (or either) of the constitu-
ent events (e.g. Tversky & Kahneman, 1983). Hertwig and Kahneman held opposing 
positions regarding the reason why the fallacy is less common when events are 
described in a frequency format (e.g. “Of 200 instances …”) than when described 
using probabilities (e.g. “which is more likely?”). A critical point of difference was 
that Hertwig claimed that frequency formats disambiguate the term “and”, making 
it less likely that participants interpret this as a union of two sets, rather than as a 
conjunction of two sets. The experiments therefore compared probability estimates 
between event conjunctions and individual events, each of which were made in a 
frequency format, and varied the terms used to signal the conjunction of events (e.g. 
“and” vs. “and are” vs. “who are”). The paper describes each of the second and third 
studies as having been proposed by one author (Hertwig Study 2, Kahneman Study 
3) in order to clarify findings from the first study. The main difference between the 
studies was the presence/absence of filler items. The results were in line with 
Kahneman’s predictions for Studies 1 and 3, while the results of Study 2 aligned 
with Hertwig’s predictions. Most of the Discussion section is given over to separate 
interpretations of the results, first by Hertwig and then by Kahneman. Despite these 
separate discussions that reflect non-shared interpretations of the findings, the paper 
includes points of agreement, some of which include shared reflections on the value 
of adversarial collaboration. A key one of these was the conclusion that the collabo-
rating authors each came to a fuller appreciation of the limitations of their own 
claims. In line with these acknowledged limitations, each collaborator included 
explicit suggestions for the new lines of enquiry that would further test those claims.

�An Adversarial Collaboration That Advocates Eloquently 
for the Approach – Bateman et al. (2005)

Adversarial collaborations are relatively rare events, and what little prominence the 
approach has could be attributed to the fact that it has been championed by one of 
the world’s most prominent behavioural scientists, Nobel Prize winner, Daniel 
Kahneman. This is the third (and last) of the case studies in this section to involve 
Kahneman as one of the antagonists in an adversarial collaboration. The paper by 
Bateman et al. (2005) that reports this collaboration is worth reading, even if the 
scientific content holds no interest for you. This is because the paper includes a 
notable discussion of the features and potential benefits of adversarial collaboration 
and how these relate to the task of “doing science”. One such benefit is that adver-
sarial collaboration forces researchers to understand the arguments that oppose their 
preferred theoretical position. This, together with the requirement for collaborative 
design, should increase the chances that studies provide stringent tests of 
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hypotheses, thereby reducing the chance that weak tests of hypotheses serve to 
strengthen the researcher’s prior beliefs via an apparent (though perhaps trivial) 
confirmation of their hypothesis. The paper also includes this definition of adver-
sarial collaboration, which explained how Bateman et al. approached their collabo-
ration and sets out a potential roadmap for others seeking to set up an adversarial 
investigation:

In an adversarial collaboration, the two parties agree on the design of an experiment which 
they will conduct jointly. Before knowing what the experiment will find, they accept its 
validity as a test of their respective hypotheses. Each party anticipates its interpretation of 
possible outcomes of the experiment, particularly those that it does not predict. The two 
parties agree that particular outcomes of the experiment would support one hypothesis, and 
particular other outcomes would support the other. Both parties commit to publishing the 
results, whatever they may be. (p.1563).

Bateman et al. (2005) report a single experiment with a design for which the two 
collaborating parties proposed different patterns of predictions across the condi-
tions. The key idea under test relates to the status of monetary outlays (i.e. expendi-
tures) in theories of reference-dependent choice, specifically, whether or not 
monetary outlays are regarded as losses. The paper discusses several general bene-
fits of adversarial collaboration, sets out the two opposing theories in a formal fash-
ion (as is standard in experimental economics), and discusses the design of the 
experiment at length. Notably, the parties favoured different approaches to valua-
tion, and in the spirit of an adversarial collaboration, they settled on a composite 
design, which was acceptable to all, and that included both sets of methods. This 
resulted in eight treatment conditions. An additional two conditions were added to 
test an explanation for one surprising result from the original experiment. Both par-
ties agreed that the data more strongly supported the predictions of one party (the 
“Norwich group” of researchers) than those of the other party (Kahneman). 
However, the parties had some differences on the precise theoretical interpretation 
of the patterns of data that were found, both of which were presented in the paper. 
One benefit that the authors point to is the sharpening of ideas as a result of the 
discipline of designing and reporting the experiment. This arose because the need 
for an agreed design required one party (Kahneman) to formulate their hypothesis 
with greater precision.

In their discussion of the features of adversarial collaboration, Bateman et al. 
(2005) highlight that the approach requires researchers to pay particular attention to 
understanding the other side of the debate. Experiments should therefore be more 
balanced tests of opposing theories, with less chance that the design has been biased 
to favour one theory. This should produce tests that can be genuinely decisive. When 
parties disagree on the interpretation of the findings, both sides of the argument are 
given a fair airing, without one side being downplayed. This should give the readers 
greater opportunity to decide the interpretation for themselves. It also circumvents 
some of the problems of selective publication because both parties agree to publish 
irrespective of the findings.
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�Allegiance Effects in Psychotherapy: Fertile Ground 
for Adversarial Collaboration – e.g. DeRubeis et al. (2005)

Leykin and DeRubeis (2009) outline that various meta-analyses point to a relation-
ship between researcher allegiance and effect size in studies of psychotherapy, 
where allegiance is defined as belief in the superiority of an outcome. Put simply, 
clinician-researchers who favour a given therapy tend to report stronger evidence of 
that therapy’s superiority over other therapies. In the absence of experimental evi-
dence, this could be an association or a causal bias. For instance, it is possible that 
causality runs from observed outcome to belief. Thus, the clinician’s allegiance may 
follow from the treatment efficacies that they have observed in their own research 
and therefore could simply be a consequence of the variation in treatment effect 
sizes across studies that arises from sampling variability. There are, however, sev-
eral less mundane possibilities for why treatment effects increase with allegiance. 
Allegiances may generate unrepresentative results because those with allegiance are 
more likely to be experts in delivering their preferred therapy in its most effective 
form, and therefore the effect arises from “honest differences” in expertise. 
Alternatively, allegiances may motivate researchers to select inferior comparison 
treatments or could prompt selective reporting (i.e. a file drawer problem; Rosenthal, 
1979). Outlining the potential for adversarial collaboration on this question, Leykin 
and DeRubeis (2009) point to four papers from a special issue of the journal Clinical 
Psychology: Science and Practice in 1999 – all of which advocate for researchers 
with opposing allegiances and complementary expertise, to collaborate when thera-
pies are compared. Berman and Reich (2010) join this call, arguing that such adver-
sarial collaborations involving researchers with different allegiances and clinical 
competence should increase the chance that treatment delivery is comparable, that 
analyses are unbiased, and that treatment expectations bias findings or their 
interpretation.

Importantly, such adversarial collaborations have occurred (though they have 
not necessarily been labelled as such) with several multisite comparisons between 
psychotherapy and pharmacotherapy taking place from the 1990s onwards (e.g. 
Heimberg et al., 1998). Hollon (1999) describes one such collaboration between 
psychiatrists with expertise in drug treatments (including Amsterdam and 
Shelton) and cognitive therapists (including Hollon and DeRubeis). Hollon 
explains how collaboration between those with opposing allegiances can create 
“…a fair “horse race,” one in which each modality will have a reasonable chance 
of showing what it can do and one that incorporates the necessary controls to 
interpret “tie scores” should they occur” (p.108). Hollon’s assumption is that 
allegiance effects most likely arise from honest differences in expertise in treat-
ment delivery. Therefore, if each “side” looks after the effective delivery of the 
treatment for which they have expertise, this balances out allegiance effects. The 
fruits of this particular adversarial collaboration are reported in DeRubeis 
et al. (2005).

T. Rakow



367

�Adversarial Collaboration to Resolve Replication Failures – 
Matzke et al. (2015) and Kerr et al. (2018)

Matzke et al. (2015) describe their research as a “proponent-skeptic collaboration” 
(p. e1). They report the outcome of a single preregistered experiment with the design 
agreed by both parties after a referee (i.e. mediator/arbiter, van der Molen) had set 
up a collaboration agreement. The issue under test was whether horizontal eye-
movement improves episodic memory, which the “proponents” (Nieuwenhuis and 
Slagter) had previously found to be the case, while the “skeptics” (Matzke, van Rijk 
and Wagenmakers) had failed to replicate this effect in pilot work, as well as noting 
inconsistent findings in the literature. The study compared horizontal movement vs. 
vertical movement vs. no movement, with the proponents expecting that horizonal 
movement would generate better recall than the other conditions. Using Bayesian 
analyses, Matzke et  al. established that the evidence more strongly favoured the 
(skeptic’s) null predictions over the alternative predictions of the proponents. The 
paper’s Discussion includes separate discussions by the proponents, the skeptics, 
and the referee. In their discussion, the proponents still held to the validity of the 
basic result, but less strongly than before. All those involved in the collaboration 
reflected positively on the outcome, emphasising that not only did the collaboration 
bring the parties somewhat closer together but also generated new ideas for future 
testing. They also felt that their design had benefitted from bringing together the 
expertise and knowledge of both parties and that the public disclosure inherent in 
this kind of collaboration ensured that the research was confirmatory with respect to 
the hypothesis under test.

This latter benefit of adversarial collaboration – keeping researchers honest and 
precise about their predictions, thereby mitigating against the questionable practice 
of HARK-ing (hypothesising after results are known; Kerr, 1998; see Chap. 5 in 
this volume) – has been touted elsewhere as a positive feature of adversarial col-
laboration. This precision in hypothesis specification is, of course, one of the pri-
mary drivers behind the practice of study preregistration. Therefore, it is notable 
that Matzke et al. (2015) doubly bound themselves in this regard by preregistering 
their hypotheses, which would already have been known to the other party in the 
collaboration as well as to the independent referee. Other adversarial collaborations 
have undertaken this “wide open science” approach of preregistering their adver-
sarial collaboration (e.g. Van Dessel et al., 2017). This can be regarded as a safety 
net for adversarial collaborations, which might be particularly useful if undertaking 
a collaboration without an independent referee/arbiter. Matzke et al. (2015) propose 
some guidance for running a preregistered adversarial collaboration (which is repro-
duced in the Appendices of this chapter).

The adversarial collaboration reported by Kerr et al. (2018) also arose from fail-
ures to replicate. They frame their investigation in relation to social psychology’s 
replication crisis, presenting adversarial collaboration as an additional tool that can 
address some difficulties associated with replicability and the reluctance to publish 
replication studies. The agonists examined ingroup favouritism in minimal groups, 
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where a frequently replicated finding is that study participants disproportionately 
allocate rewards to or positively  evaluate performance by members of their own 
group, even though group membership is based on trivial or arbitrary characteristics 
(e.g. Mullen et al., 1992). The impetus for the adversarial collaboration was conver-
sations between Hogg and Kerr – both active researchers in this field with different 
preferred accounts of the phenomenon – after Hogg had reported several failures to 
replicate the basic effect which had been reported by Kerr.

Hogg and Kerr identified around a dozen differences between their experimental 
protocols, then set themselves the task of identifying whether one or more of these 
(e.g. the proximity of fellow study participants, delivery mode of instructions) might 
account for the non-replications. They describe this as a “bottom-up approach” 
(p. 68): determining whether a methodological feature can moderate the effect and 
using that to revise the theory, rather than testing competing predictions derived 
from different theories. Their large, collaboratively run experiment not only repli-
cated the in-group favouritism effect but also identified new moderators of the 
effect. First, in-group favouritism was reduced with greater social distancing from 
other study participants, a finding that either of the agonists’ preferred theories 
could accommodate. Second, behaviour differed between cultures, with Australians 
allocating resources more fairly than Americans, and a number of related differ-
ences in attitude being apparent. Third, there was a greater pull towards fairness 
when participant instructions were given orally rather than in writing. Each ago-
nist’s preferred theory would require amendment (e.g. additional post hoc assump-
tions) to account for these second and third findings. Moreover, the direction of the 
cultural differences ran counter to what would have been expected based on the 
previous pattern of replications and non-replications. This, therefore, opened up a 
new line of inquiry. The authors’ reflections point to the specific value of adversarial 
collaboration when replicability is an issue, in particular because it addresses some 
of the difficulty of communicating every detail of the method to support replication. 
They also point to an increase in collegiality, creating a better appreciation for each 
other’s viewpoints.

�An Adversarial Collaboration on a Topic of Public Concern – 
Lindner et al. (2020)

This is a single-experiment paper on the possible effect of character sexualisation in 
video games, which the authors describe in a footnote as “intended as an adversarial 
collaboration” because “the authors come from different traditions and beliefs 
regarding the potential impact of media on self-objectification” (p.553). The experi-
menters manipulated the representation of the female character in a video game that 
participants played for 30 minutes and assessed the effect of this character’s sexuali-
sation on a number of measures such as self-objectification, body image, and atti-
tudes towards women. No significant effects were found, and Bayesian analyses 
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suggested meaningful support for the null hypotheses of no effect on the dependent 
variables. Lindner et  al. conclude that public and academic concerns about the 
effects of sexualized video games may be greater than warranted by the data. The 
authors list adversarial collaboration as one of several recommendations for improv-
ing methodological rigour in their research field, and – helpfully – the lead authors 
describe some specific benefits of their adversarial collaboration in a separate article 
(Lindner & Trible, 2020). These include bringing together expertise in experimental 
methods and objectification theory and collaboration on the best way to operation-
alise variables.

�A Programmatic Adversarial Collaboration Between Three 
Research Groups (e.g. Cowan et al., 2020)

This final case study in this section, arguably, represents the state of the art in adver-
sarial collaboration because the collaboration extends over a series of investiga-
tions. It brings together three research groups, each working with a different model 
of working memory. The multicomponent model of memory (MCM, favoured by 
Logie and colleagues at the University of Edinburgh) posits separate storage and 
processing components and codes specific to different modalities (visual, semantic). 
The time-based resource sharing model (TBRS, favoured by Barrouillet and col-
leagues at the Universities of Geneva and Fribourg) assumes that processing and 
storage share the same attention limited resources. The embedded processes model 
(EP, favoured by Cowan and colleagues at the University of Missouri) assumes that 
features are temporarily activated in long-term memory and that memory is gov-
erned by a limited capacity domain-general controller. Importantly for the purposes 
of an extended adversarial collaboration, the three models make different sets of 
predictions across a range of memory phenomena, and the research groups can 
agree on what kinds of experiments represent legitimate tests of those predictions. 
Together, the three groups secured grant funding for their collaboration (see https://
womaac.psy.ed.ac.uk).

In one of the papers from their collaboration, Doherty et  al. (2019) discuss a 
frequently asked question in adversarial collaborations: why do findings differ 
between labs? One possibility for the kind of dual-task paradigms that these 
researchers use is that, if participant characteristics vary across labs, a given level of 
cognitive load could be “low” load for high-capacity individuals but “high” load for 
low-capacity individuals. This, therefore, confounds any experimental prediction 
that is contingent on the memory load that the research participant placed under. 
Therefore, in this and their other investigations, the parties favoured collecting data 
in more than one lab. It is notable that a suite of predictions is made for the four 
experiments in this paper, with each model making around a dozen predictions. 
These predictions vary not only according to the presence of effects across different 
main effects and interactions but also as to the predicted size (or relative size) of 

16  Adversarial Collaboration

https://womaac.psy.ed.ac.uk
https://womaac.psy.ed.ac.uk


370

those effects (Table 1, p. 1536). This is important because it means that a researcher 
cannot simply focus on the presence of one or two effects that were predicted. The 
accuracy of each model’s predictions must be examined in the round – using the full 
set of predictions – as indeed must the set of competing predictions when the mod-
els are compared. Perhaps unsurprisingly, given the number and precision of these 
predictions, none of the models predicted every effect that was observed across the 
four experiments. One of the paper’s conclusions emphasises the value of this as an 
impetus to theory revision:

There was mixed success by each framework in predicting trends in the data, but all missed 
large trends in the data. Each theory requires some reconsideration of its core assumptions, 
or at least under what circumstances expected effects should be observed. (p. 1547).

Related to this, the authors highlight that their investigation generated valuable new 
hypotheses to be tested in subsequent experiments. They also reflected on the diffi-
culty of designing experiments that generate fully contrasting predictions – a par-
ticular challenge, presumably, when three models are being compared.

Cowan et al. (2020) review and discuss their programmatic adversarial collabo-
ration in detail and outline some of the benefits of adversarial collaboration – sev-
eral of which have already been identified in this chapter. Of particular note among 
these benefits are (1) collaborative design of research increasing trust in the results, 
(2) collaborative analysis and writing ensuring balanced reporting of the data and 
conclusions, (3) enhanced theory development as different theories are amended to 
align with shared datasets, and (4) collaboratively published research providing a 
more fruitful platform for other researchers to build on because it exposits a range 
of theoretical positions. Based on their specific experiences, Cowan, Belletier, 
Doherty et al. outline benefits from adversarial collaboration for clarifying theory, 
formulating hypotheses more precisely, and generating appropriate study designs. 
They also emphasise the benefits of the parties being forced to reach consensus on 
the General Discussion section when no one model accounts for all effects, acknowl-
edging their suspicion that “…if these same results were collected by any one of our 
groups, that group’s discussion would be tilted much more in favour of the group’s 
theory” (p.  1019). Cowan Belletier, Doherty et  al. also acknowledge some chal-
lenges and the probable limits of what can be achieved by adversarial collaboration. 
For example, they conclude that the approach will not lead senior researchers to 
abandon their view but should prompt “varieties” of these views to emerge to 
account for the new data.

In addition to outlining what they see as the important characteristics of their 
adversarial collaboration, Cowan, Belletier, Doherty et al. also offer advice to others 
seeking to initiate an adversarial collaboration. This advice includes working hard 
at what the other party is meaning when they set out their position. For practical 
reasons, they recommend that two to four labs provide the optimal scope for fruitful 
discussion and planning. They argue that it is important not only to preregister pre-
dictions but also to allow time for this in order to clarify what is crucial and what is 
not critical to the theory being tested. Cowan, Belletier, Doherty et al. also counsel 
that it is valuable to have some collaborators who are not strongly committed to one 
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position. In their adversarial collaboration, this role was often taken by postdoctoral 
researchers who – perhaps unsurprisingly – had less commitment than the senior 
researchers who had developed their respective positions over many years of 
research. The benefits of this “light grip” on a particular theoretical position for 
achieving consensus are similar to the function served by including an independent 
referee (Matzke et  al., 2015) arbiter (Mellers et  al., 2001) or mediator (Latham 
et al., 1988) in some adversarial collaborations.

�Approaches Related to Adversarial Collaboration

There are notable examples of research collaborations that share aspects of the 
adversarial collaborations reviewed above (such as bringing together researchers 
with opposing positions) but that lack one or more of the key features of adversarial 
collaboration (such as the joint design of research studies). For example, Alempaki 
et al. (2019) describe their series of 14 experiments on context effects in decision-
making as a “quasi-adversarial collaboration”. The investigation shares aspects of 
adversarial collaboration in that the researchers came from different disciplines 
with somewhat different research perspectives (psychology and economics) and had 
different levels of prior commitment to the competing theoretical frameworks that 
their experiments investigated. However, there was no formal collaboration agree-
ment, nor was there collaboration on the entire set of experiments. Rather, the initial 
experiments were designed and conducted independently before the separate 
research groups learned of each other’s endeavours and began to consult with each 
other on experimental design.

Other collaborations seek consensus or some more modest degree of restoration 
between researchers with opposing positions, but involve no new empirical research. 
Finkel et al. (2015) described one such collaboration between “erstwhile adversar-
ies” (p. 3). The “Norton group” opposed the position of the “Reis group” that famil-
iarity increases interpersonal attraction. This dispute had been pursued in several 
papers from each group, objecting to the methods, analysis, or findings of the other 
group. Finkel, Norton, Reis et al. did not describe any crucial experiments arising 
from their investigation. Instead, they presented a new framework to incorporate the 
findings of the two groups and existing findings in the literature. Two major figures 
in the field of decision research, Daniel Kahneman and Gary Klein, report a some-
what similar collaboration in which they explored whether their different interpreta-
tions of research on expertise and intuition could be aligned (Kahneman & Klein, 
2009). Their article describes some alignment in their respective positions that 
might not have been apparent from their separate work, which they summarise as a 
“failure to disagree” (p. 515).

One reflection that is often made when adversarial collaborations are reported is 
the importance and benefits of seeking to understand the other party’s position 
(Bateman et al., 2005; Cowan et al., 2020; Kerr et al., 2018). Allied to this is the 
view that approaching disputes via critiques and rejoinders rarely resolves disputes 
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or advances science to a meaningful degree (Gilovich et al., 1998). In this spirit, 
many have resolved to conduct academic debate in a more measured, respectful 
manner with an element of collaboration in how the debate is structured and pre-
sented. One example of this is a special issue of the International Journal of 
Transpersonal Studies in which two scholars (Taylor and Hartelius) with distinct 
positions on the psychology of spirituality undertook an open debate via three pairs 
of articles. The editor and commentators described this as an adversarial collabora-
tion (Lancaster & Friedman, 2017; Thouin-Savard, 2017). And while these articles 
did not involve a shared programme of empirical research, as would be expected for 
adversarial collaborations as defined for this chapter, it does appear that the struc-
ture imposed by this particular special issue format made for a constructure sharing 
and advancement of ideas.

�Discussion and Conclusions

In his concluding remarks of the first case study of this chapter, Latham declared 
that his experience of adversarial collaboration was both “exciting” and “illuminat-
ing” and that the collaboration with Erez and Locke represented “science at its best” 
(Latham et al., 1988, p. 767). I think we should be forgiving of this outpouring of 
immodesty – not least because Latham and Erez had engaged in something bold and 
innovative, which stood to challenge their own strongly held ideas and to open them 
up to the potential for a form of public failure. I also think that adversarial collabora-
tion can indeed embody important aspects of what science aims for. For example, 
because it pushes the antagonists to formulate precise hypotheses that distinguish 
effectively between their positions, adversarial collaborations can move researchers 
closer to the Popperian ideal of critical testing of falsifiable hypotheses by severe 
tests (Popper, 1974). It does so by avoiding weak confirmations of hypotheses in 
which theories compete only against straw man alternatives – possibly with no real 
substance to such competition. With its emphasis on the collaborative identification 
of methods for a study, adversarial collaboration also sits well with other accounts 
of what process science should follow. Having a set of methods that are held in com-
mon by both parties in the collaboration can help to create a shared language and a 
set of rules by which their science is conducted. When researchers work in this way 
according to a shared paradigm (Kuhn, 1962), they should be less inclined to ignore 
or misunderstand each other’s viewpoint and better disposed to learn from each 
other’s data. One hopes that this then encourages research programmes that gener-
ate new findings and better explanations for those findings, in keeping with the 
notion of a progressive research programme (Lakatos, 1970). This certainly seems 
to be the sentiment expressed by many who have themselves been involved in 
adversarial collaborations.

One point of diversity across adversarial collaborations, which is illustrated in 
this chapter’s case studies, is the presence or absence of an impartial third-party 
mediator/arbiter/referee. The mediator’s agreed duties can include chairing 
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discussions (e.g. Latham et al., 1988), collecting data (e.g. Mellers et al., 2001), 
trouble-shooting issues for which the resolution had not been specified in advance 
(e.g. Matzke et  al., 2015), and carrying the responsibility to resolve disputes by 
prompting antagonists to reconsider their position or by making a binding adjudica-
tion. The reports of adversarial collaborations that have included a mediator are 
explicit that the mediator’s role was substantial and imply that they were therefore 
important to the success of the endeavour. Nonetheless, the inclusion of a mediator 
is not a defining feature of adversarial collaboration. Indeed, most published adver-
sarial collaborations have not included one, seemingly without regret that no media-
tor was involved. The reports of these “unmediated” collaborations often point to 
the importance of a mix of formal agreement (e.g. preregistration) and healthy atti-
tudes (e.g. openness, curiosity) and are therefore implicit that the functions carried 
out by the mediator can be achieved by other means. Of course, it may be that there 
are adversarial collaborations that have collapsed for lack of a mediator – or for 
other reasons – of which we are unaware. We simply do not know whether a file 
drawer of uncompleted adversarial collaborations exists – and therefore can only 
hope that the advice we can glean from apparently successful adversarial collabora-
tions provides a reliable roadmap to a successful collaboration.

I hope that the case studies reviewed above make clear the links that adversarial 
collaboration has with other open science initiatives. Sharing in the design of criti-
cal experiments and planning in advance for how hypotheses will be tested ensures 
precision in the specification of hypotheses and predictions. This embodies the 
ancient wisdom that “iron sharpens iron”  – a researcher’s theoretical ideas are 
sharpened when they must be honed alongside those of another researcher who 
takes a different theoretical position. And this sharpening of ideas can occur for both 
researchers. Sharing in the task of specifying hypotheses and predictions also makes 
these specifications public in advance of running the experiment(s). In this regard, 
adversarial collaboration is a form of advance public disclosure of study details akin 
to study preregistration or registered replication (van ‘t Veer & Giner-Sorolla, 
2016) – albeit one for which the information disclosed might have a limited distri-
bution (i.e. only among the collaborating parties).

The joint design of research studies places a premium on full disclosure of meth-
ods and procedures, because only if both parties understand each other’s methods 
can they design and implement a suitable plan of research. Indeed, several of the 
collaborations reviewed above relied heavily on bringing methodological differ-
ences into the open, as a means of designing suitable studies for the collaboration 
(e.g. Kerr et al., 2018; Latham et al., 1988). And many of these differences could not 
easily have been identified from even a close reading of the parties’ previous publi-
cations. Such transparency about methods – and supporting its ensuing benefits – is, 
of course, the main goal of open materials.

Because both parties engaged in an adversarial collaboration hold the data in 
common, data are necessarily shared beyond a single research group who might 
have a restricted set of expectations about what the data will show. This should 
reduce the chance that questionable practices in the analyses of data arise, both in 
the case where “honest expectations” inadvertently bias data analysis decisions and 
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where more sinister motives are at work (Simmons et al., 2011). In either case, there 
is another party on hand (and sometimes an independent referee) to call out such 
practices.

There have been many calls for adversarial collaborations to be more common 
than they are at present (e.g. Hobson, 2019; Nier & Campbell, 2013). And these 
calls include invitations to submit manuscripts that report adversarial collaborations 
to journals (e.g. Judgment and Decision  Making; Thinking & Reasoning) which 
include offers of practical support for the approach from journals, in terms of both 
suggesting guidelines for adversarial collaboration and supporting authors with the 
process of publishing their collaboration (Rakow et al., 2014). Indeed, sometimes it 
seems that the number of papers that call for adversarial collaboration might exceed 
the number of papers that report an adversarial collaboration. This apparent under-
utilisation of the approach may reflect that the costs of initiating and implementing 
an adversarial collaboration are quite high, in terms of time, effort, emotional 
energy, and perhaps even the fear of loss of reputation (if the results do not fit with 
one party’s position). However, what I hope to have achieved in this chapter is to 
show that there are benefits from adversarial collaboration which can outweigh 
those costs because the approach can improve the quality and impact of the science 
that researchers’ conduct. So let me encourage you, if you see an opportunity for 
adversarial collaboration, grasp that opportunity – and go do science at its best.

�Appendices: Guidance for Conducting 
an Adversarial Collaboration

�Appendix A Guidance for Conducting Adversarial 
Collaboration, Including Such That Includes an Independent 
Arbiter (Mellers et al., 2001)

Reproduced verbatim from Mellers et al. (2001, Table 1, p.270).

Suggestions for adversarial collaboration
	1.	 When tempted to write a critique or to run an experimental refutation of a recent 

publication, consider the possibility of proposing joint research under an agreed 
protocol. We call the scholars engaged in such an effort participants. If theoreti-
cal differences are deep or if there are large differences in experimental routines 
between the laboratories, consider the possibility of asking a trusted colleague to 
coordinate the effort, referee disagreements, and collect the data. We call that 
person an arbiter.

	2.	 Agree on the details of an initial study, designed to subject the opposing claims 
to an informative empirical test. The participants should seek to identify results 
that would change their mind, at least to some extent, and should explicitly antic-
ipate their interpretations of outcomes that would be inconsistent with their 
theoretical expectations. These predictions should be recorded by the arbiter to 
prevent future disagreements about remembered interpretations.
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	3.	 If there are disagreements about unpublished data, a replication that is agreed to 
by both participants should be included in the initial study.

	4.	 Accept in advance that the initial study will be inconclusive. Allow each side to 
propose an additional experiment to exploit the fount of hindsight wisdom that 
commonly becomes available when disliked results are obtained. Additional 
studies should be planned jointly, with the arbiter resolving disagreements as 
they occur.

	5.	 Agree in advance to produce an article with all participants as authors. The arbi-
ter can take responsibility for several parts of the article: an introduction to the 
debate, the report of experimental results, and a statement of agreed-upon con-
clusions. If significant disagreements remain, the participants should write indi-
vidual discussions. The length of these discussions should be determined in 
advance and monitored by the arbiter. An author who has more to say than the 
arbiter allows should indicate this fact in a footnote and provide readers with a 
way to obtain the added material.

	6.	 The data should be under the control of the arbiter, who should be free to publish 
with only one of the original participants if the other refuses to cooperate. 
Naturally, the circumstances of such an event should be part of the report.

	7.	 All experimentation and writing should be done quickly, within deadlines agreed 
to in advance. Delay is likely to breed discord.

	8.	 The arbiter should have the casting vote in selecting a venue for publication, and 
editors should be informed that requests for major revisions are likely to create 
impossible problems for the participants in the exercise.

�Appendix B Guidance for Conducting a Preregistered 
Adversarial Collaboration (Matzke et al., 2015)

Reproduced verbatim from Matzke et al. (2015, Table 1, p. e2) with punctuation 
amended.

Proposed guidelines for a preregistered proponent-skeptic collaboration
First, the adversaries reach consensus on an optimal research design. This precau-
tion eliminates the possibility of later disputes regarding the execution of the study.

Second, the two parties formulate their hypotheses and expectations in advance. 
This precaution decreases the probability of the investigators falling prey to various 
cognitive biases, such as hindsight bias (i.e. judging an event as more predictable 
after it has occurred; Roese & Vohs, 2012) and confirmation bias (i.e. favouring 
information that confirms one’s own hypotheses; Nickerson, 1998).

Third, the adversaries agree to write a joint article and submit it to an academic 
journal regardless of the outcome of the study. This precaution may in the long term 
counteract publication bias and the file drawer problem (Greenwald, 1975; 
Rosenthal, 1979).

Last, as the novel but crucial ingredient, the two parties set up an adversarial col-
laboration agreement. The agreement describes the proposed research design and 
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all foreseeable aspects of the preprocessing and analysis of the data. This precaution 
secures the purely confirmatory nature of the investigation and increases the trans-
parency of scientific communication.
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Chapter 17
Assessing and Improving Robustness 
of Psychological Research Findings in Four 
Steps

Michèle B. Nuijten

Abstract  Increasing evidence indicates that many published findings in psychol-
ogy may be overestimated or even false. An often-heard response to this “replica-
tion crisis” is to replicate more: replication studies should weed out false positives 
over time and increase the robustness of psychological science. However, replica-
tions take time and money – resources that are often scarce. In this chapter, I pro-
pose an efficient alternative strategy: a four-step robustness check that first focuses 
on verifying reported numbers through reanalysis before replicating studies in a 
new sample.

Keywords  Robustness of psychological research findings · Four-step robustness 
check · Replication crisis

�Introduction

�The Replication Crisis

Around 2012, scientists started speaking of a “replication crisis” in psychology 
(Pashler & Harris, 2012; Pashler & Wagenmakers, 2012). A growing number of 
published psychological findings did not seem to hold up when the study was done 
again in a new sample (e.g., Chabris et  al., 2012; Doyen et  al., 2012; LeBel & 
Campbell, 2013; Matthews, 2012; Pashler et al., 2013). Since the 1950s, research 
consistently shows that over 90% of published psychology papers find support for 
their main hypothesis (Fanelli, 2010; Sterling, 1959; Sterling et al., 1995), whereas 
this is virtually impossible given the generally low statistical power in the field 
(Bakker et al., 2012; Francis et al., 2014). In other words, it seems that many pub-
lished findings in psychology are too good to be true.
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A possible explanation for the excess of positive results in psychology is a com-
bination of publication bias, publication pressure, and questionable research prac-
tices (QRPs). Publication bias occurs when articles with statistically significant 
results have a higher probability of being published than articles with nonsignificant 
results (Greenwald, 1975). When researchers experience the pressure to publish 
(and they often do; van Dalen & Henkens, 2012; Tijdink et al., 2014), publication 
bias provides a direct incentive to only report positive, significant results. This may 
cause researchers to (consciously or unconsciously) exploit the inherent flexibility 
in data collection, processing, and analysis until they find the desired result. When 
only the “successful” strategy is then reported, one could speak of QRPs (Gelman 
& Loken, 2013; Kerr, 1998; Simmons et al., 2011). Evidence from surveys and from 
comparisons of research plans with the resulting publications seemed to indicate a 
high prevalence of such QRPs in the psychological literature (Franco et al., 2016; 
Agnoli et al., 2017; John et al., 2012; but see Fiedler & Schwarz, 2016).

�Suggested Solution: More Replications

One reaction to the replication crisis is the call to perform more replication studies. 
See, for example, the suggestion to require researchers to perform replication stud-
ies in their research area in proportion to the number of original studies they con-
duct (LeBel, 2015) or to require undergraduate, graduate, or PhD students to 
perform replication studies (Frank & Saxe, 2012; Kochari & Ostarek, 2018). 
Journals have also taken up this sentiment by actively encouraging authors to pub-
lish replication studies (Registered Replication Reports; Association for 
Psychological Science, n.d.; Jonas et al., 2017; Nosek & Lakens, 2014), and even 
funders have set funds aside specifically for replication research (The Dutch 
Research Council, n.d.). We have also seen an increase in the number of large-scale, 
multi-lab replication attempts, in which sometimes dozens of labs across the world 
set out to replicate the same study (e.g., Alogna et  al., 2014; Klein et  al., 2014; 
ManyBabies Consortium, 2020; Moshontz et al., 2018) in order to give a (some-
what) definitive answer to a certain research question.

One of the most well-known examples of a multi-lab replication project is the 
Reproducibility Project: Psychology, a project with 270 contributing authors led by 
Prof. Brian Nosek (Open Science Collaboration, 2012, 2015). The goal of the proj-
ect was to estimate the replicability of psychology by systematically replicating a 
selection of 100 psychology studies published in prominent journals. They found 
that the mean effect size in the replication studies was much lower than the mean 
effect size of the original studies (replication: r  =  0.197, SD  =  0.257; original: 
r = 0.403, SD = 0.188). Furthermore, where the original studies found statistically 
significant results in 97% of the cases, only 36% of the replications did. There is 
some debate about how exactly these results should be interpreted (Anderson et al., 
2016; see, e.g., Bavel et  al., 2016; Etz & Vandekerckhove, 2016; Gilbert et  al., 
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2016), but the results are generally taken as a sign that the replicability rate in psy-
chology might be low.

The call to replicate more is perfectly sensible and in line with the notion that 
replication is a cornerstone of science (Lakatos & Musgrave, 1970; Meehl, 1990) . 
Already in introductory research methods classes, it is generally taught that a single 
study cannot provide definitive answers to a research question (Morling, 2020, 
p. 14). Instead, multiple studies need to convincingly show an effect before we con-
tinue to build on it any further. Unfortunately, the psychological literature does not 
seem to reflect this notion. Even though the literature contains many conceptual 
replications that investigate the boundaries and generalizability of a theory (Neuliep 
& Crandall, 1993), direct replication studies that are mainly aimed at checking 
whether an effect is robust in the first place seem to be rare (Makel et al., 2012). 
Without direct replications, researchers would have to rely on individual studies to 
build their work upon. Unfortunately, the replication crisis has shown us that the 
findings in many of these individual studies may be false positives. This means that 
many researchers may be trying to build research lines based on dead ends. By 
encouraging more replication studies, we could ideally weed out many of the false 
positives, and the foundation to build upon would be stronger.

Even though encouraging replications could in theory help in assessing and 
improving the robustness of published findings, there is a significant disadvantage: 
performing a replication study takes considerable time and money – resources that 
are usually scarce. In this chapter, I would like to suggest a more efficient way to 
assess whether a published result is robust through a four-step robustness check that 
first focuses on verification of reported numbers through reanalysis before replicat-
ing a study in a new sample.

�Statistical Reproducibility Is a Prerequisite for Replication

When replicating a study, researchers are often interested in comparing the results 
of their replication with those of the original study. There is no consensus on the 
best way to decide whether or not the original finding has been replicated (Open 
Science Collaboration, 2015; Zwaan et al., 2017), but in general, the main statistical 
results from the original study are compared to the main statistical results from the 
replication. If the two sets of results are similar enough, one could conclude that the 
original study has successfully been replicated, and if the two sets of results lie too 
far apart, one could conclude that the original study was not successfully replicated. 
One key point to keep in mind here is that, for this comparison to be meaningful, the 
reported numbers have to be correct: the reported results should not contain typos, 
calculation errors, or other mistakes. In other words, the reported results should be 
statistically reproducible: reanalysis of the original data following the reported pro-
cedures should result in the same numbers as those reported in the paper (Nuijten 
et al., 2018).
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Roughly, there can be two reasons why a result is not statistically reproducible 
(Nosek et al., 2021). First, a process reproducibility failure occurs when it is not 
possible to repeat the steps of the original analysis, for example, because of unavail-
able data or code, unclear description of the analysis steps, or unavailable software 
or tools. In psychology, raw data have been notoriously unavailable (Wicherts et al., 
2006), although there has been some improvement in recent years (Hardwicke et al., 
2018; Kidwell et al., 2016; Nuijten et al., 2017a). Furthermore, even when raw data 
are available, there are often insufficient details reported to redo the original analy-
sis (e.g., Kidwell et al., 2016). For example, the data are insufficiently documented 
(e.g., instead of informative variable names, variables still have SPSS’ default labels 
VAR0001, VAR0002 etc.), or the paper only states that “an ANOVA” has been done, 
without elaborating on any data preprocessing steps (e.g., the removal of outliers) or 
specific details about the analysis.

Second, an outcome reproducibility failure occurs when the original analysis can 
be repeated but leads to a different result than the one that is reported (Nosek et al., 
2021). In general, it is plausible to assume that reanalyzing the same data according 
to the same methods leads to the same results. Unfortunately, this is not always the 
case. For example, two recent studies reran the original analyses on the original data 
of a set of psychology studies and compared the outcomes with the reported results. 
Both studies found numerical discrepancies in over 60% of the reanalyzed studies 
(Hardwicke et al., 2018, 2020). Furthermore, evidence from over 16,000 psychol-
ogy papers showed that roughly half of the papers contained at least one p-value that 
was not consistent with the reported test statistic and degrees of freedom. In roughly 
one in eight articles, the recomputed p-value was not significant, whereas the 
reported p-value was, or vice versa (Nuijten et al., 2016).

Statistical reproducibility of results is a basic, necessary requirement for scien-
tific quality (Chambers, 2020; Peng, 2011). If a reported result cannot be linked 
back to the underlying data, it is extremely difficult (if not impossible) to meaning-
fully interpret that result. As such, if an investigator wants to know whether a certain 
result is robust or not, that investigator may not need to perform a full replication 
study: if the result is not statistically reproducible, it is not robust. I would therefore 
like to argue that verifying reported results should be the first step in assessing the 
robustness of a result (see also LeBel et al., 2018; Nuijten et al., 2018; Stark, 2018). 
To facilitate such statistical reproducibility checks, I suggest a practical four-step 
approach.

�Checking Robustness of a Finding in Four Steps

�Step 1: Check for Internal Inconsistencies in Reported Statistics

A first step when checking if a result is robust is to check if the reported statistics 
are internally consistent. To complete this step, you do not need access to the raw 
data; you only need the reported statistical results. A statistical reporting 
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inconsistency occurs when a set of numbers that belong together does not match. 
For example, consider the following sentence: “70% of patients recovered within 
three months after the first diagnosis (65/100)”. Only by looking at the reported 
numbers in this sentence, we can already see that something is wrong: 65/100 is 
65%, not 70%. At this point, it is unclear which of the reported numbers is incorrect, 
but what is clear is that this set of numbers presents an impossible combination and 
can therefore not have come from the underlying raw data. In other words: this 
result is not statistically reproducible.

Internal inconsistencies could be detected in a wide range of statistics. Other 
than percentages that have to match the accompanying fractions, examples are:

•	 Reported total sample sizes should match the subgroup sizes.
•	 Reported effect estimates should fall within the bounds of the accompanying 

confidence interval.
•	 Reported odds ratios should match the accompanying frequency table.
•	 Reported sensitivity of a diagnostic test should match the true/false positive and 

true/false negative rates.
•	 Reported t- and F-values should match the reported means and standard 

deviations.
•	 Reported p-values should match the test statistic and degrees of freedom.

Currently, several tools and algorithms are being developed to automatically (or 
semi-automatically) detect statistical reporting inconsistencies. One of these tools is 
statcheck: a free R package (Epskamp & Nuijten, 2014) and accompanying web app 
(http://statcheck.io; Rife et al., 2016) that automatically extracts Null Hypothesis 
Significant Tests (NHST) results from articles and recomputes p-values based on 
the reported test statistic and degrees of freedom. For example, say that an article 
reports the following sentence: “We found that the treatment group scored signifi-
cantly higher on well-being than the control group, t(28) = 1.46, p < .05.” If you 
scan this article with statcheck, it would recognize the reported t-test and use the 
reported test statistic (1.46) and degrees of freedom (28) to recompute the p-value. 
In this case, the recomputed p-value would be 0.155. This is not consistent with the 
reported p-value of < .05. What is more in this case is that the reported result would 
be flagged as a decision inconsistency (also sometimes called a gross inconsistency 
or gross error): based on the recomputed p-value, one would draw a different con-
clusion (i.e., the difference between groups is not significant). Statcheck currently 
only recognizes statistics reported in APA style (American Psychological 
Association, 2019), which makes the tool primarily useful for psychology papers. 
Also please see Nuijten et al. (2017b) for a full analysis of statcheck’s accuracy in 
spotting (decision) inconsistencies.

Another example of a tool to spot statistical reporting inconsistencies is the tool 
GRIM (granularity-related inconsistency of means; Brown & Heathers, 2017). 
GRIM can spot whether reported means that are based on integer data (e.g., from 
Likert-type scales) are possible in combination with a certain sample size and total 
number of items. Other examples include an algorithm to check whether reported 
effect sizes match their confidence intervals and p-values (Georgescu & Wren, 
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2018) and a semiautomated protocol to assess inconsistencies in a wide range of 
statistics (van Aert et al., 2021).

In sum, regardless of whether one can automate the process of looking for incon-
sistencies in statistical reporting or not, the abovementioned tools offer relatively 
quick procedures that do not require access to anything else but the paper itself. This 
makes it an efficient first “sanity check” in assessing whether or not a reported result 
is robust.

�Step 2: Reanalysis of Original Data

A second step when checking if a result is robust is to reanalyze the original data 
according to the reported procedure to see if one can find the same results as 
reported. As opposed to step 1, one now does need access to the original data and 
information about the original analysis.

There is not one way to approach a reanalysis, but there are some general steps 
one could follow. First, determine whether the raw data underlying the finding of 
interest are available. A quick way to do so is to search for a data availability state-
ment (a standardized short statement about whether data are available, requested by 
an increasing number of journals, incl. e.g., PLOS journals) or an Open Data Badge 
(a badge printed at the top of the paper that signals that data are available, used by 
an increasing number of psychology journals, incl. APS and APA journals; Center 
for Open Science, n.d.-a). If data are stated to be available, it is unfortunately still 
not a guarantee that they actually are. For example, 25–30% of articles published in 
Frontiers in Psychology and in several PLOS journals that stated that data were 
available did not contain or link to the raw data (Chambers, 2017, p. 86; Nuijten 
et al., 2017a). Of course, it is also possible to contact the original authors to ask for 
the data and other relevant materials, although historically, this is often not very 
successful (Wicherts et al., 2006).

Next, download the data and try to open the file. Ideally, raw data files are in a 
(relatively) standard format, such as .csv, .txt, .xlsx, or .sav, and one can open the 
data without needing expensive software. Once one can open the data, it is impor-
tant to skim through the file to see whether the data seem to be understandable and 
complete (i.e., are all variables mentioned in the paper also mentioned in the data? 
Does the number of rows correspond to the reported number of participants?). This 
step includes determining whether the authors also shared a codebook that (among 
other things) explains all variables in the data and their values, how missing data are 
coded, and whether any data preprocessing steps have already taken place (e.g., 
reverse coding of contraindicative items).

Beside the data, one also needs as much information as possible about the origi-
nal data analysis. Therefore, a good next step, once one has access to the data and 
understands the file, is to determine whether the authors also shared their analysis 
script. An analysis script is preferable to the analysis description in the methods or 
results section of the paper, because a script usually contains more explicit and 
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detailed information about the subsequent steps in the analysis. If an analysis script 
is not available, extract as much detail about the data preprocessing and analysis 
from the paper (and supplementary files) as possible.

Once an investigator has all the available data and information about the analy-
sis, the reanalysis phase itself can begin. Here, the investigator has to decide which 
reported values you want to try and reproduce: this could be all the reported num-
bers in the paper or just some key values related to the main conclusion, or some-
thing in between. In this reanalysis phase, follow the original analysis steps 
themselves as closely as possible, where possible using the same software, version, 
and operating system.

How much time it takes to reanalyze original data according to the original pro-
cedure depends for a large part on the complexity of the data and the analysis and 
on the clarity with which the original procedure was reported. For example, in one 
reanalysis project, the researchers spent between 1 and 30 hours (median = 7) on 
each reproducibility check (Hardwicke et al., 2020). Roughly speaking, a reanalysis 
will likely take more time than a check for statistical reporting inconsistencies in the 
paper, but less time than a full replication study.

�Step 3: Sensitivity Checks

Even if one were able to reproduce the same results through reanalysis of the origi-
nal data, there is no guarantee that the result is robust. Therefore, a third step when 
checking if a result is robust is to reanalyze the original data using slightly different 
but still justifiable preprocessing and analysis steps than the ones reported. This can 
shed light on whether the result is robust to alternative choices.

Say that an investigator followed the reported analytical procedures and that she 
was able to reproduce the main result from the original data. However, it could be 
the case that the original authors removed an outlier in their analysis. It may also be 
the case that if she does not remove this outlier, the result changes substantively. 
Similarly, it may happen that the removal of a seemingly arbitrary covariate can 
make the result disappear. And what if other ways of constructing the final variables 
of interest lead to different results? There are many choices involved in data prepro-
cessing and statistical analysis, and if only a very specific combination of analytical 
steps leads to a significant result, one may question its robustness (Gelman & 
Loken, 2013).

It is difficult to provide general instructions for how to do such sensitivity checks, 
because the set of justifiable analytical choices is highly dependent on the specific 
research question, type of study, available variables, and other contextual factors. 
That said, there are several general questions one could ask that could guide the 
sensitivity checks (see also Patel et al., 2015; Steegen et al., 2016).

First, one could consider the data preprocessing steps that led to the final data on 
which the analyses were performed. For example, if the original authors used ques-
tionnaire data, how did they summarize the scores on individual items to a score on 
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the construct of interest? In case not all items were included, what happens if one 
does include them all? What if instead of calculating a sum score over the items, one 
calculates a factor score? If the authors turned a continuous variable into a categori-
cal one (e.g., classifying BMI into underweight, normal weight, overweight, or 
obese), would other cutoffs to determine the categories also be justifiable? Yet other 
questions related to data preprocessing could concern inclusion/exclusion criteria; 
were participants excluded from the final analysis? What happens if one does 
include them or use slightly different exclusion criteria?

A second type of question one could ask is to what extent a finding is sensitive to 
different choices in the analysis itself. First, check if the authors did the correct 
analysis in the first place (e.g., including an interaction effect in the analysis, instead 
of erroneously comparing the p-values of two different effects; Nieuwenhuis et al., 
2011). But also within a correct analysis, different choices can be made. This could 
include questions, such as: how did the authors deal with missing values, and would 
another strategy be justifiable as well? Which (if any) covariates were included in 
the analysis, and would another selection be equally justifiable? In the case of fre-
quentist hypothesis testing, one could consider adding/removing corrections for 
multiple testing, trying other cutoffs (such as the often arbitrary a significance level 
of p  <  .05), choices for one-tailed testing, or comparisons with the outcome of 
Bayesian hypothesis testing.

�Step 4: Replication in a New Sample

A fourth and final step when checking if a result is robust could be to perform a 
replication study in a new sample (Nuijten et al., 2018). Replications come in many 
shapes and sizes, but they are usually classified along a continuum ranging from a 
direct replication (also known as exact replication or close replication) to a concep-
tual replication (LeBel et al., 2017). In a direct replication, the methods of the origi-
nal study are followed as closely as possible. The results of a direct replication (or 
preferably multiple direct replications) can be used to assess the reliability of a 
result: will the effect (or lack thereof) show up again if we repeat a study? Conceptual 
replications, on the other hand, aim to test the generalizability of a result by testing 
the original hypothesis using different methods than the original study (e.g., in a 
different setting, in a different population, or using different operationalizations). 
Arguably, it makes most sense to start with direct replications to first rule out (at 
least to some extent) that an original result is not a false positive or false negative, 
before setting out to check the generalizability of a result that might turn out to be a 
fluke (Zwaan et al., 2017).

A lot has been written about ways to conduct (or evaluate) a good direct replica-
tion study (e.g., Brandt et al., 2014; LeBel et al., 2019), and in this chapter, I mainly 
want to focus on the less-discussed statistical reproducibility checks. However, 
there are some general guidelines when doing a direct replication study that one can 
take into account. Generally speaking, a direct replication aims to study the same 
effect as the original study and should follow the original study’s procedures as 
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closely as possible, barring some inevitable differences (e.g., the actual participants 
or the point in time that the studies take place). It is also advised to have high statis-
tical power, which often means significantly increasing the sample size as compared 
to the original study (Anderson & Maxwell, 2017; Open Science Collaboration, 
2015). Furthermore, several methods have been proposed to interpret the results of 
the replication study compared to the original study, including subjective evalua-
tion, comparing p-values, effect sizes, confidence intervals, Bayes factors, and more 
(Open Science Collaboration, 2015; Simonsohn, 2015; Verhagen & Wagenmakers, 
2014; Zwaan et al., 2017). Note that several recommendations to improve the qual-
ity of replications also hold for original studies, such as transparent reporting, high 
statistical power, robust statistical methods, and sharing data and materials 
(Benjamin et al., 2018; Brandt et al., 2014; Lakens et al., 2018; Lakens & Evers, 
2014; LeBel et  al., 2019; Munafò et  al., 2017; Nosek et  al., 2012; Simmons 
et al., 2011).

�Interpreting the Outcomes of Reproducibility Checks

Strictly speaking, any failure to reproduce a reported result in any of the first three 
steps of the robustness check would allow one to conclude that a result  – as 
reported – is not robust. However, to what extent this is problematic for the overall 
conclusion and whether it is still useful to follow subsequent steps of the robustness 
checks is for a large part context-dependent. For example, it matters (a) if the origi-
nal authors can help clear up any discrepancies, (b) how big any discrepancies are 
between the reported and recalculated numbers, (c) how important the result is for 
the overall conclusion, (d) if a failure to reproduce was due to a process or outcome 
reproducibility failure, and (e) the overall goal, for which one is doing a robust-
ness check.

�Contacting the Original Authors

When encountering a reproducibility failure (process or outcome), one can consider 
contacting the original authors to ask for help and/or clarification. In previous 
reanalysis studies, original authors were often able to help resolve reproducibility 
issues (Hardwicke et al., 2018, 2020). Even though it is a positive sign that they 
were helpful in resolving these specific issues, it is far from ideal if reported results 
can only be reproduced with the help of the original authors. Especially if one wants 
to assess the robustness and reproducibility of results published several years ago, 
the authors may not be able to help anymore: they may not have access to the data 
or scripts themselves anymore, or it may not even be possible to contact them at all. 
Full statistical reproducibility can only be achieved when the published paper and 
materials contain sufficient information to independently and successfully redo the 
original analysis.
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�Size and Importance of Analytical Discrepancies

The size and context of any outcome reproducibility failure matter. In most cases, a 
rounding error in the fourth decimal of a p-value mentioned in a footnote is proba-
bly less consequential than a major discrepancy in the reported and recalculated key 
outcome of a paper.

There are several ways to judge the size and importance of a reproducibility 
failure. One option is to look at the difference between the reported and recalculated 
numbers. For example, if a reported correlation is .80, a recalculated correlation of 
.60 presents a larger discrepancy than a recalculated correlation of .78 (see e.g., 
Petrocelli et al., 2013). Instead of using absolute differences, you could also look at 
relative differences, expressed in percentages. If we stick to the same example, the 
percentage error in the first scenario is equal to (|.60 − .80|) / .80 * 100% = 25%, and 
in the second scenario, it is equal to (|.78 −  .80|) / .80 * 100%  =  2.5%. Earlier 
research defined a percentage error larger than 10% as a major numerical error 
(Hardwicke et al., 2018, 2020).

Another option to classify the size and/or importance of a discrepancy is to look 
at the statistical decision based on the reported numbers. For example, most of the 
research in psychology retains a significance level of .05, meaning that a p-value 
smaller than .05 is considered statistically significant. Several studies that recalcu-
lated p-values based on the reported test statistic and degrees of freedom used this 
cutoff to distinguish between inconsistencies and gross inconsistencies (or errors 
and decision errors, respectively). If the recalculated p-value did not match the 
reported one, but both were on the same side of the .05 threshold, e.g., reported 
p = .03 vs. recalculated p = .04, this was classified as an inconsistency. If a reported 
p-value was statistically significant, but the recalculated p-value was not (or vice 
versa), e.g., reported p = .03 vs. recalculated p = .07, this was classified as a gross 
inconsistency (see, e.g., Bakker & Wicherts, 2011; Nuijten et al., 2016).

The location of a statistical result and its importance for the main conclusion can 
also help in determining the seriousness of a reproducibility failure. With respect to 
location, results reported in the abstract of a paper can be assumed to be of more 
importance for a conclusion than results in a footnote or appendix (Georgescu & 
Wren, 2018).
Finally, it is also possible to look at the implications of a discrepancy in more depth. 
In one reanalysis study, the authors concluded that for the studies that contained 
reproducibility problems (errors in the code and small discrepancies in the number 
of participants included), the overall conclusions did not change (Naudet et al., 2018).

�Process Reproducibility Failure

When interpreting a reproducibility failure in one of the first three steps above 
(checking internal inconsistencies, reanalysis, or sensitivity analyses), it matters 
whether one encountered a process or outcome reproducibility failure. Remember 
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that a process reproducibility failure occurs when not all steps could be followed to 
redo the original analysis, whereas an outcome reproducibility failure occurs when 
the outcome of the reanalysis shows a different result than the one originally 
reported (Nosek et al., 2021). An outcome reproducibility failure is a more clear-cut 
outcome than a process reproducibility failure: in the former case, one can conclude 
that a reported result is not robust, whereas in the latter case, one cannot assess the 
robustness of a result at all.

In case of an outcome reproducibility failure, the reported numbers are not in line 
with the underlying data and reported analytical method. In such a case, trust in the 
reported results and possibly also the conclusion decreases. However, in case of a 
process reproducibility failure, it is not possible to verify the reported results. This 
is problematic, because this means that one just has to “trust” that all reported num-
bers are correct when interpreting the conclusion, and unfortunately, we know from 
previous research that this may not be the case (Hardwicke et al., 2020; Nuijten 
et al., 2016). Furthermore, if the process reproducibility failure is caused by a lack 
of access to the raw data (as opposed to unclear analytical steps), it is also not pos-
sible to assess to what extent a result is sensitive to alternative analytical choices.
If earlier steps of the four-step robustness check cannot be completed, it may be 
risky to proceed to step 4 and perform a replication anyway. After all, it is hard to 
meaningfully compare replication results to the original results, if one does not 
know if the numbers in the original study are correct in the first place. If and how a 
process reproducibility failure should affect one’s decision whether or not to do a 
replication study will depend on the reason why one wanted to assess the robustness 
of a finding in the first place.

�Reason to Assess Robustness

The four-step robustness check could help you decide whether it is worth investing 
the time and money in performing a replication study. In some cases, one may con-
clude that if the numbers in the original paper already do not add up, conducting a 
replication would not be useful. To what extent this holds depends on one’s reason 
for assessing the robustness of an original result.

One’s goal could be to say something about the robustness of a specific original 
finding (as opposed to a phenomenon in general). This is often the goal in multi-lab 
replication projects, such as the Reproducibility Project: Psychology (Open Science 
Collaboration, 2015). In these cases, the replication studies are often high-powered 
and pre-registered, arguably enhancing their evidential value compared to the origi-
nal study they are replicating (Nosek et al., 2021). They therefore attempt to provide 
a more or less definitive conclusion about the robustness of the original result.

The strict quality controls in these large-scale replication projects can make 
them very costly, so it is important that their results can be meaningfully com-
pared to the original study. Here, I would argue that following the steps of the 
four-step robustness check can be very valuable to first check the statistical 
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reproducibility of the original study and avoid “wasting” resources on a large-
scale replication project.
Contrarily, one’s goal could also be to get a step closer towards learning the truth 
about the underlying phenomenon studied in a particular paper. If one then 
encounters a reproducibility failure in the original study, it does not necessarily 
have to mean that it is useless to do a replication. It can still be valuable to gather 
more empirical evidence to answer the original question. However, in such a case, 
one should be careful when comparing the replication results to the original 
results. More specifically, one may even want to consider discarding the original 
study entirely, depending on the severity of the reproducibility failure, and only 
take the results of the replication study into account to answer the research 
question.

�Successful Robustness Check

The sections above are mainly considering scenarios in which the four-step 
robustness check fails. However, it could, of course, also be the case that all 
steps can be completed successfully. First and foremost: this is good news. It 
means that the reported results are consistently reported, can be traced back to 
the underlying data, are robust to different analytical choices, and are replicable 
in new samples. However, passing the four-step robustness check is not suffi-
cient to definitively conclude that a result is robust. As with anything in science, 
it is hard to draw such a black-and-white conclusion at all. Instead, it makes 
more sense to talk about the degree of robustness or the strength of the evidence 
that a result is robust.

Some potential problems remain unchecked after following the four-step robust-
ness check. First, the four-step check assumes that the raw data are correct. In other 
words, the procedure does not take into account errors (or fraud) in data entry. 
Similarly, these steps do not say anything about the theoretical or methodological 
quality of a study. For example, if a study uses a biased design and non-validated 
questionnaires to measure the main constructs, it could still pass all steps in the 
four-step robustness check. Finally, due to sampling error and the probabilistic 
nature of psychological research, it is possible that two studies find the same results 
(i.e., the study is successfully replicated), but in both cases, the result is a false posi-
tive or false negative.
In the end, answering a research question will likely require a long research line 
comprising of multiple independent studies (incl. direct and conceptual replica-
tions) consisting of severe tests (Mayo, 2018), and even then the answer will likely 
remain tentative (Popper, 1959; O’Donohue, 2021). The decision whether to invest 
in such a research line as opposed to another, however, can be informed by the suc-
cess rates of previous robustness checks.
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�Improving Robustness in Your Own Manuscripts

The framework of the four-step robustness check is not only useful to assess robust-
ness but also to improve robustness of a result. Below, I will outline some concrete 
actions researchers can take that are in line with the logic of the four-step robust-
ness check.

�Step 1: Report All Relevant Statistical Information

It would greatly facilitate robustness checks if relevant statistics were reported in 
full and with sufficient detail to be able to assess their internal consistency. To illus-
trate, consider the following conclusion: “All planned contrasts showed support for 
our hypotheses (all ps < .05).” There is insufficient information here to check 
whether the reported statistical results are internally consistent. In addition, in this 
specific case, reporting only p-values (and not even the exact p-values) also omits 
important information about effect size and uncertainty in the estimate.

Luckily, many psychology journals require that authors to follow the reporting 
guidelines of the American Psychological Association (APA; American 
Psychological Association, 2019), which contains specific guidelines on how to 
report statistical results. For example, they require the following information con-
cerning inferential statistics: “Results of all inferential tests conducted, including 
exact p-values if null hypothesis statistical testing (NHST) methods were employed, 
including reporting the minimally sufficient set of statistics (e.g., dfs, mean square 
[MS] effect, MSerror) needed to construct the tests” (Appelbaum et  al., 2018; 
Table 1). In addition, effect size estimates, confidence intervals, and other relevant 
details concerning data preprocessing and analysis should be reported.

�Step 2: Provide Raw Data and Analysis Scripts

Sharing data has many benefits (Wicherts, 2013; Wicherts et al., 2012). If raw data 
are available, others could reanalyze the data to detect potential errors, check the 
robustness of the conclusions to different analytical choices, or even answer entirely 
new research questions. Ideally, not only the data but also the original analysis 
scripts are shared. Methods and results sections in scientific articles often do not 
contain sufficient detail to rerun an analysis exactly according to the original proce-
dure, whereas analysis code does.

Ideally, data are fully and freely available and well-documented. In other words, 
the data should be shared according to the FAIR principles (Findable, Accessible, 
Interoperable, Reusable; Wilkinson et al., 2016). In order to achieve this, authors 
should share not only the data but also a detailed codebook that includes 
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information on the variables and other important metadata, such as where and when 
the data were collected and under which license the data are shared (for instructions 
on how to do this, see, e.g., Horstmann et al., 2020; Klein et al., 2018; Stodden, 
2010). Finally, it is important to take privacy legislation into account and protect the 
confidentiality and/or anonymity of the participants.

It is also important to provide an explicit and detailed explanation of the data 
preprocessing and analysis steps, ideally (again) in the form of an analysis script. 
Even better would be to share the data and analysis script in a “container” that 
allows others to rerun the analysis using the same software and operating system as 
used in the original study (see e.g., Klein et al., 2018).

There can be very good reasons why sharing data is not possible. For example, 
one may not be allowed to share data because of privacy reasons or because the data 
are not yours. In such cases, there may be intermediate solutions that are possible. 
It may, for instance, be possible to remove identifying data and share only the ano-
nymized part of the data. Or it may be possible to share data with someone else as 
long as certain agreements not to share the data any further are signed. A more 
advanced solution includes simulating data that have the same properties as the real 
data (see also Sweeney, 2002). Running analyses on the simulated data should lead 
to the same general conclusions as the ones reported (although here a one-on-one 
comparison of the specific numbers may be difficult). If this is not possible, sharing 
only part of the data or even only the analysis script without the accompanying data 
is useful. In sum, when considering the possibilities of sharing data, I encourage 
authors to focus on what is possible instead of what is not (see also Klein et al., 2018).

�Step 3: Perform Sensitivity Analyses

Step 3 in assessing robustness entailed running alternative, justifiable analyses to 
see whether a reported result would still hold up (see above). Such alternative analy-
ses are also known as sensitivity analyses: how sensitive is the result to different 
analytical approaches? In some scientific fields, running sensitivity analyses is a 
standard part of the research process (e.g., in economics). In psychology, however, 
this is not yet the case. There are roughly two options to fulfill this step. The first one 
is to actually perform relevant and justifiable alternative data preprocessing steps 
and statistical analyses oneself and, importantly, to report all outcomes. Such a 
multiverse analysis can give insight in how easily one’s effect “breaks” under differ-
ent circumstances and, conversely, how robust it is (Silberzahn et  al., 2018; 
Simonsohn et al., 2019; Steegen et al., 2016). The guidelines in Step 3 of assessing 
robustness can also be used to list reasonable alternative preprocessing and analyti-
cal choices for your own case.

A second option is to explicitly state that no sensitivity analyses have taken 
place, for example, when an investigator is confident that one’s own analysis is the 
only sensible analysis to perform. It can also help readers evaluate the analyses that 
the investigator conducted and conclusions that the investigator reached if the 
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investigator clearly justifies certain analytical choices (e.g., why include a certain 
covariate but not another?). Such a strategy gains in strength when the analytic plan 
was preregistered. In a preregistration, the hypotheses, methods, and analysis plans 
are publicly registered before any data collection has taken place. It ensures a clear 
division between planned, confirmatory analyses and ad hoc exploratory analyses 
that may have a higher chance of finding a false positive (Kerr, 1998; Munafò et al., 
2017; Simmons et al., 2011; Wagenmakers et al., 2012).

Whether an investigator performs sensitivity analyses or not, being transparent 
and explicit about analytical choices and the reasoning behind them will help read-
ers to evaluate the results and guide them in any reanalysis they might wish to do.

�Step 4: Share Study Materials

To facilitate replication of their studies, it is important for researchers to share as 
many study materials as possible. In theory, a Methods section in a paper should 
contain sufficient detail to allow for a replication of the study, but in practice, this is 
often not feasible. In order for other researchers to conduct a direct replication, they 
need to know the exact instruments that were used (e.g., the specific questionnaire), 
the exact procedure followed (What were the instructions that participants received? 
In what kind of setting did the study take place?), the exact population that the tested 
sample was drawn from, etc. This level of detail is usually not accepted in a manu-
script (nor beneficial for the readability of a paper), but that does not mean that this 
information cannot be shared at all. I encourage authors to create extensive supple-
mental materials for their studies, in which the specific instruments, stimuli, proce-
dural videos, and additional methodological details are shared.

�Concluding Remarks

In this chapter, I have argued for a four-step robustness check to both assess and 
improve robustness of psychological findings by first focusing on verifying reported 
numbers before replicating in a new sample. Statistical reproducibility is a neces-
sary requirement for scientific quality and deserves a place in the spotlight in the 
current discussions on how to improve psychological science.

Making the four-step robustness check common practice would require both 
bottom-up and top-down actions. Researchers themselves can use the steps described 
in this chapter to improve the robustness of their own work. This is in the best inter-
est of science but can also have direct benefits for the scientists themselves. For 
example, there is evidence that sharing data is associated with an increased citation 
rate (Christensen et al., 2019; Piwowar et al., 2007). Researchers can also play a role 
in studying whether and how the four-step robustness check and other interventions 
affect the robustness of practices and results, ideally by performing randomized 
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controlled trials. With respect to top-down actions: several journals already perform 
checks for internal consistency of submitted manuscripts (e.g., Psychological 
Science and the Journal of Experimental Social Psychology use the tool statcheck to 
scan submitted manuscripts for inconsistent p-values). Furthermore, an increasing 
number of journals require open data (see e.g., the current signatories to the 
Transparency and Openness Promotion Guidelines; Center for Open Science, n.d.-
b; Chambers, 2018) and accept new article formats focused on rigor and transpar-
ency, including registered reports (Chambers, 2013), registered replication reports 
(Association for Psychological Science, n.d.), or verification reports 
(Chambers, 2020).

It is important to keep in mind that while statistical reproducibility is necessary, 
it is not sufficient for robustness. When determining and/or improving the robust-
ness of a finding, other factors play a role as well. These factors include (but are not 
limited to) strong theory (Eronen & Bringmann, 2021), valid measurement (Flake 
& Fried, 2020), high statistical power (Button et  al., 2013), robust statistics 
(Benjamin et al., 2018; Cumming, 2014; Marsman & Wagenmakers, 2017), severe 
tests (Mayo, 2018), and transparent reporting (Aczel et al., 2020).

Improving robustness of scientific results is complex and hard work. That said, 
the scores of initiatives aimed at improving psychological science we have seen in 
recent years stem hopeful. I would like to close this chapter by encouraging research-
ers not to become overwhelmed by all these initiatives and practices. If you pick one 
initiative at a time (e.g., scan a paper with statcheck, share your data, or try out a 
Bayesian analysis in addition to a traditional frequentist analysis), the robustness of 
our field will improve. One step at a time.
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Chapter 18
Reflections on the Reproducibility Project 
in Psychology and the Insights It Offers 
for Clinical Psychology

Elizabeth W. Chan, Johnny Wong, Christian S. Chan, and Felix Cheung

Abstract  The overarching goal of this chapter is to discuss the Reproducibility 
Project in Psychology (RP:P), the resulting credibility movement, and its implica-
tions for scientific practices in clinical psychology and beyond. We start by intro-
ducing the RP:P and then describe how the RP:P led to other replication projects 
and the development of improved research practices. We conclude with a discussion 
of the replicability in clinical psychology, with attention to the challenges and 
opportunities of replicating clinical psychological findings in different places, with 
different people, and at different times.

Keywords  Reproducibility project in psychology · Clinical psychology

In the past decade, a range of scientific disciplines have witnessed a rise in recogniz-
ing the importance of replicability. Replicability is fundamental to the verification 
of empirical research. It entails repeating the same study procedure in a different 
location with a different population at a different time to examine if the results are 
consistent with the original study (Barba, 2018; Peng et  al., 2006). Despite the 
importance of replicability for science, until recently, replication studies are rarely 
done. Prior to any large-scale replications, Makel et al. (2012) documented that only 
1.07% of 500 randomly chosen articles from 100 psychology journals with high 
impact factors were replications. The replicability of research findings has long 
been speculated to be very low, particularly when researchers have flexibility in 
their methodological and analytical decisions (Ioannidis, 2005). They may be 
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incentivized to find statistically significant effects in order to increase their chances 
of getting studies published, which often influence job prospects and lead to finan-
cial gains. Furthermore, the publication of a series of parapsychological experi-
ments (Bem, 2011), its subsequent failed replications (e.g., Wagenmakers et  al., 
2011), and cases of scientific misconduct (e.g., Crocker, 2011) compelled the scien-
tific community to reflect on their research practices.

The Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 
2015) was the first major replication effort that aimed to provide an empirical esti-
mate of the replicability in psychological research. The RP:P marked the beginning 
of the “replication crisis” (also known as the “credibility movement”), which led to 
growing efforts to promote open science, transparency, and improved scientific 
practices. Since then, there have been many other large-scale replication projects in 
psychology like Many Labs (Klein et al., 2014) and ManyBabies (Frank et al., 2017).

The overarching goal of this chapter is to discuss the RP:P, the resulting credibil-
ity movement, and its implications for scientific practices in clinical psychology and 
beyond. We start by introducing the RP:P and then describe how the RP:P led to 
other replication projects and the development of improved research practices. We 
conclude with a discussion of the replicability in clinical psychology, with attention 
to the challenges and opportunities of replicating clinical psychological findings in 
different places, with different people, and at different times.

�Introducing the Reproducibility Project: Psychology

The Open Science Collaboration, led by Dr. Brian Nosek, consisted of a network of 
270 psychological researchers who collectively replicated 100 studies from three 
highly reputable psychology journals as part of the Reproducibility Project: 
Psychology (Open Science Collaboration, 2015). Participating research teams con-
ducted replications of studies from Psychological Science, the Journal of Personality 
and Social Psychology, and the Journal of Experimental Psychology: Learning, 
Memory, and Cognition. The first journal covers a wide range of articles from across 
the fields of psychology; the latter two focus on articles from social, personality, and 
cognitive psychology, respectively. Of note is that this project did not focus on arti-
cles directly related to clinical psychology. The research teams outlined a specific 
research protocol that largely followed the original study design, after having con-
tacted the original authors for study materials where possible. Each replication was 
preregistered and internally reviewed, meaning that the data collection plan and 
analytical approaches were pre-specified prior to actual data collection and such 
plans were verified to be reasonable tests of the original studies by other team 
member(s) of the Open Science Collaboration. The advantage of a preregistered 
approach is that the preregistration document makes transparent any changes one 
makes before and after conducting the analyses.

Of the 97 studies that originally found evidence for statistically significant 
results, the replication studies achieved 92% of the statistical power needed to detect 
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an effect size similar to the original studies. In other words, based on the high sta-
tistical power, one would expect around 91.2% (89) of the 97 replication studies to 
replicate the original studies. The actual results, however, were striking. Whereas 
97% of the original studies revealed statistically significant effects (p <  .05), the 
RP:P found that only 36% of studies replicated with p < .05. To complement this 
analysis and reduce the focus on null hypothesis significance testing, the RP:P fur-
ther evaluated the replication and original studies by effect sizes. The effect sizes in 
the original studies doubled those found in the replications. In sum, the large-scale 
replication effort found that fewer than half of the original studies were successfully 
replicated despite high statistical power and the use of original study materials, and 
the effect sizes substantially declined in the replications.

There were also marked differences across subdisciplines, such that 50% of cog-
nitive psychology studies replicated in contrast to only 25% of social psychology 
studies. Original studies with smaller p-values were also more likely to be repli-
cated than those with larger p-values. Specifically, 63% of original studies that 
achieved p < .001 were later replicated with p < .05; 41% of original studies with 
p <  .02 were replicated with p <  .05. In contrast, only 26% of studies that had a 
p-value between .02 to .04 were replicated with p < .05. As such, a smaller p-value 
in the original study was related to a greater likelihood that the findings would rep-
licate with p < .05.

The RP:P marked the beginning of a movement that would shape the field of 
psychology and other scientific fields. It provides the first systematic estimate of 
reproducibility in psychology, demonstrating that even among articles published in 
some of the most reputable journals, just over one-third of studies replicated with 
significant effects, and the rate of reproducibility differed by subdiscipline. Although 
the RP:P focused on social and cognitive psychology studies, the findings raise 
important questions for psychological science as a whole, as many research prac-
tices share commonality across subfields.

�Developments Since the Reproducibility Project: Psychology

�Replications Become More Mainstream

Since the RP:P, large-scale replication efforts that involved multiple labs have 
become more common, and they can be broadly categorized into three groups. First, 
the ManyLab format, which involves many labs replicating multiple original studies 
simultaneously, typically seeks to answer metascientific questions such as whether 
the quality of data obtained from college student samples is consistent throughout 
the semester (Ebersole et  al., 2016). Second, studies that take a Registered 
Replication Reports format are conducted with the targeted goal of verifying a spe-
cific phenomenon, especially those that are documented in frequently cited papers. 
Finally, similar to the RP:P itself, the Reproducibility Project: Cancer Biology, 
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Experimental Economics Replication Project, and a series of replications of Nature 
and Science articles aim to quantify the level of reproducibility of studies conducted 
within a specific discipline or published in specific outlets.

Many Labs  The initial Many Labs project consisted of 36 independent research 
teams who tried to replicate 13 well-known effects in psychology with over 6300 
participants altogether (Klein et al., 2014). All studies had a confirmatory analysis 
plan prior to data collection and were conducted through Project Implicit (www.
projectimplicit.com). The replication studies were conducted in different settings 
(27 in-lab studies and nine online studies) and geographical regions (25 in the US 
and 11 outside of the US). Aggregated across the research teams, 10 of the 13 effects 
were replicated, and there were little to no differences depending on the setting or 
sample. Thus, replicability appeared to rely more on whether an effect truly exists 
rather than the context in which the effect was tested. A subsequent Many Labs 2.0 
project found that 54% of classic psychology effects replicated with p <  .05 and 
50% replicated with p < .0001 (Klein et al., 2018). Moreover, 75% of the replication 
studies found smaller effect sizes than those seen in the original studies. In the sub-
sequent Many Labs projects, 14 of 28 effects were replicated in Many Labs 2.0, and 
3 of 10 effects replicated in Many Labs 3.0 (Ebersole et al., 2016). Similar large-
scale replications have taken place in developmental science as part of the 
ManyBabies project (https://manybabies.github.io/) (Frank et al., 2017). In general, 
developmental psychology research with infants has small sample sizes and thus 
lower statistical power. They often rely on nonverbal measures (e.g., habituation) 
when working with infants, who have limited verbal communication abilities. 
ManyBabies strives to replicate landmark developmental psychology findings in 
order to determine their robustness and replicability. The first ManyBabies replica-
tion project looked at a preference for infant-directed speech over adult-directed 
speech and successfully replicated this classic finding. Ongoing projects aim to rep-
licate findings related to theory of mind, rule learning, and social evaluations.

Registered Replication Reports  Registered Replication Reports (RRR) were 
introduced as a new article type for disseminating findings from replications 
(Simons et al., 2014). Unlike the RP:P, participating research teams in RRR attempt 
to replicate the same effects. When applying for the RRR, researchers first submit 
their proposed replication effort directly to the journal. A team of editors then 
reviews it, and if deemed appropriate, the original authors (or qualified researchers 
recommended by the original authors) will be invited to review the proposed study 
plan. Once the plan is approved by the editor, the resulting replication study will be 
published regardless of the statistical significance of the results. The first issue was 
released in Perspectives on Psychological Science, and this article type is also avail-
able in Advances in Methods and Practices in Psychological Science. An example 
of a RRR is a 17-team replication of the facial feedback hypothesis, or the idea that 
incidental facial expressions shape emotional experiences. Results from each 
individual lab and a meta-analysis synthesizing the available evidence (N = 1894; 
Wagenmakers et al., 2016) failed to replicate the original study (Strack et al., 1988).
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Replication Projects Across the Sciences  Fields outside of psychology are also 
attempting to replicate these findings. Beginning in 2013, the Reproducibility 
Project: Cancer Biology aimed to replicate 50 cancer biology studies from high 
impact-factor journals, including Science, Nature, and Cell, and there have been 
mixed results thus far (Baker & Dolgin, 2017; Morrison, 2014). Additionally, the 
results of a survey with researchers at a cancer research center revealed that half of 
them were unable to replicate a finding at least once (Mobley et al., 2013). Altogether, 
the preliminary data points to potentially low reproducibility in cancer biology 
research, which, given the potential implications of these studies, warrants careful 
consideration, especially concerning questions about whether it is related to statisti-
cal power, incentive structures, or study design (Begley & Ellis, 2012; Nosek & 
Errington, 2017).

In addition, the Experimental Economics Replication Project attempted to repli-
cate 18 studies from two top-tier economic journals, the American Economic Review 
and the Quarterly Journal of Economics (Camerer et al., 2016). Only 61% of the 
studies replicated with p < .05, and 66% achieved the same effect size, which was 
quite promising compared to RP:P. A team of researchers also attempted to replicate 
21 behavioral economic studies from Nature and Science (Camerer et al., 2018). 
Research teams were in touch with the original study authors for materials and com-
ments on their Registered Replication Reports, and they conducted the same statisti-
cal tests as those used in the original studies. Of the 21 original studies, the findings 
of 61.9% (i.e., 13 studies) were replicated. In other words, the findings of 38.1% of 
these studies that were published in two of the most highly regarded and influential 
scientific journals failed to be replicated.

�Shaping Research Practices

Many researchers have also introduced a range of open, transparent, and rigorous 
scientific practices related to conducting and evaluating empirical research. For 
practices related to producing empirical research, this includes adversarial collabo-
ration (see Chap. 16 in this volume), increased sample size, “Big Science” (i.e., 
research involving large teams of researchers), preregistration, open data, open 
materials, publications of null results, etc. Proposed practices for improving the 
evaluation of research include signed reviews, p-curve analysis, replication indices, 
and more. A p-curve analysis involves plotting the distribution of p-values for study 
findings to check for selective reporting (Simonsohn et al., 2014), and the replica-
tion index measures the likelihood that a study will replicate (R-Index; Schimmack, 
2016). We commend such efforts and refer interested readers to other chapters in 
this volume for more detailed discussions of these practices.

There is emerging evidence that these improved research practices indeed con-
tribute to greater replicability. For example, Mullinix et al. (2015) conducted a rep-
lication of 20 studies on the Time-sharing Experiments for the Social Sciences 
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(TESS) platform and successfully replicated over 80% of the studies. The TESS is 
a platform where researchers can submit proposals (including experimental stimuli) 
for conducting online experiments and, if accepted, a large sample of participants 
will be recruited to complete the experiments. When conducting the replications, 
the authors (Mullinix et al., 2015) were able to sample from existing studies from 
TESS, which, unlike the published literature, does not filter studies based on statisti-
cal significance (i.e., publication bias). All in all, the replications of studies on the 
TESS platform present a scenario where the original studies were adequately pow-
ered, the exact experimental materials were shared, and the selection of studies was 
not based on p-values. The high replicability demonstrated in this study highlights 
the promising possibility that when we do science the right way, science replicates.

�A Sociological Model of the Philosophy of Science

A key feature of the credibility movement following the RP:P is the recognition that 
the context in which research is conducted matters. This sociological model of the 
philosophy of science suggests that scientific practices are ultimately embedded 
within the context of different institutions (i.e., universities, journals, publishers, 
funding bodies, professional organizations). Researchers, journals, and institutions 
all have different goals and incentives that do not necessarily align with each other 
or with the broader goal of describing, understanding, explaining, and changing 
human thoughts and behaviors. In other words, the responsibility to produce a rep-
licable, reliable, and relevant science does not solely lie with individual researchers, 
but rather it relies also on a healthy scientific community that prioritizes and incen-
tivizes rigor and openness.

Academic Institutions  Most rankings of academic institutions put a strong empha-
sis on the number of publications by their researchers. As such, many institutions 
reward their staff based on their productivity in the form of publications. The “pub-
lish or perish” ethos inevitably pressures many to publish more in order to secure 
promotion and tenure. These incentive structures may inadvertently cultivate a cul-
ture where publishing is prioritized over scientific rigor, leading to questionable 
research practices (QRPs) as potential shortcuts for publishing more studies (John 
et al., 2012). Moreover, in recruiting new faculty members or in tenure and promo-
tion, novelty and creative thinking are often highly valued characteristics, and 
efforts invested in conducting replications may not be viewed as evidence that sup-
ports these traits. Realigning the goal of such endeavors towards the betterment of 
science will likely require giving a stronger emphasis to open, transparent, and rig-
orous scientific practices. One relatively simple change towards this goal is to value 
replication efforts, especially when they are done in accordance with the aforemen-
tioned principles.
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Journals  Given researchers’ pressure to “publish or perish,” journals (and their 
publishers) play a sizeable role in the incentive structure. For example, publication 
bias describes a tendency for researchers to file away null results because journals 
may prioritize significant results. This assumption is not entirely unfounded as jour-
nals tend to prefer significant results because these attract readership (Duyx et al., 
2017) and media attention. Both researchers and journals are responsible for this 
vicious cycle. Since the RP:P, a growing number of journals are tackling publication 
bias by either stating a preference for preregistered research (Kravitz et al., 2020) or 
offering a registered report format. For example, Nature Human Behaviour accepts 
submissions of registered reports (Editorial., 2018). The researcher first submits an 
initial manuscript that includes an introduction, preliminary data or study, methods, 
disclosures, and planned analyses. Any manuscripts that pass this screening phase 
then undergo expert peer review. Authors whose manuscripts are provisionally 
accepted after the initial review need to register the study protocol. The journal will 
then publish the final manuscript regardless of the significance of the results as long 
as the authors followed the study protocol. Furthermore, the British Medical Journal 
Open prioritizes open and transparent scientific practices in medical research. They 
publish stand-alone study protocols, which encourage more in-depth descriptions of 
complicated procedures to facilitate replication (Munro & Prendergast, 2019).

Professional Organizations  Professional organizations can also help lower the 
barriers for researchers to improve their scientific practices. For example, the Center 
for Open Science hosts a website (https://osf.io/) for researchers to preregister their 
study plan, upload and share data or other files, and share their findings in pre- and 
post-prints. All files and preregistrations are time-stamped. Authors can upload new 
preregistrations to reflect unexpected changes that occur throughout the research 
process, but individuals can still view the original, frozen preregistrations. 
Furthermore, the International Standard Randomised Controlled Trials Number 
(ISRCTN) registry is used for clinical trials and is recognized by the World Health 
Organization and the International Committee of Medical Journal Editors. This reg-
istry assigns a unique code for each clinical trial and is required to publish the paper. 
The ISRCTN is committed to transparency and makes study information publicly 
and freely available. These infrastructures provide standardized platforms for 
engaging in preregistrations and open science.

Moreover, the Society for the Improvement of Psychological Sciences (SIPS) is 
a professional organization aimed at addressing issues surrounding replicability and 
striving towards conducting better science (http://improvingpsych.org/). They held 
their inaugural meeting at the Center for Open Science in 2016 and continue to meet 
annually. Their values include enhancing transparency and open sharing to further 
encourage criticism and mutual respect. The key activities of SIPS include refining 
institutional policies to advocate for practicing proper science, evaluating current 
practices and reforms, and reaching out to parties within and beyond psychology. 
Through their outreach efforts, they may learn more about cultural or field-specific 
practices and ultimately promote better practices across the sciences. Their official 
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journal, Collabra: Psychology, is an open-access journal that welcomes articles 
across the subdisciplines of psychology and has a section dedicated to methodologi-
cal practices. Altogether, the SIPS initiatives help build a scientific community 
aimed at making science more open and transparent, and thus more valid and 
reliable.

�What Does the Reproducibility Project: Psychology 
and the Credibility Movement Mean for Clinical Psychology?

To some extent, clinical psychology concerns the testing and assessment of mental 
health as well as prevention and intervention strategies to ameliorate psychological 
abnormality or enhance psychological well-being. Replicability is central to clinical 
psychology. The prevailing approach of evidence-based practice relies on the syn-
thesis of scientific evidence to determine the reliability and validity of its tools, 
including the efficacy of psychological treatments. Much like medical interventions 
prior to receiving approval for dissemination, psychological interventions are 
expected to undergo multiple clinical trials before they are adopted by practitioners. 
An initial trial showing evidence for a new type of psychotherapy would require 
further independent replications. Specifically, it is critical to encourage openness 
and transparency in both the basic and applied sides of clinical psychology. Basic 
research attempts to understand the basic processes of psychopathology and its pos-
sible interventions. Replication studies can help determine whether the extant 
research findings are well-supported. These can strengthen the clinical psychologi-
cal research base and clarify which pieces of evidence have the strongest support. 
Furthermore, basic research often acts as the foundation for applied research which 
is geared towards practical applications (e.g., treatment). For example, evidence 
showing that a treatment is efficacious should be replicated with different patients 
and by different researchers. If the goal is to develop treatments that can be used 
beyond a highly controlled lab setting, then the treatments should be tested across 
contexts. Open science principles are crucial to both basic and applied research. 
Below, we discuss the opportunities and challenges posed by the replication crisis 
in clinical psychology.

Empirically supported treatments (ESTs) are considered the gold standard for 
determining which treatments should be used for different diagnoses (Kendall, 
1998). The American Psychological Association originally used criteria from 
Chambless and Hollon (1998) to indicate the strength of a treatment’s empirical 
support for a certain psychiatric diagnosis or mental disorder. These criteria would 
lead to a categorization of strong (well-established), modest (probably efficacious), 
or controversial research support. Treatments were deemed well-established if they 
had empirical support from at least two well-designed RCTs conducted by two 
independent research teams. Probably efficacious treatments were those that had 
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empirical support from at least one well-designed study or a few decently designed 
studies.

More recently, a new classification system was recommended by Tolin et  al. 
(2015), which labels treatments as very strong, strong, weak, or having insufficient 
evidence. To be classified as very strong, there should be high-quality evidence 
showing a clinically meaningful effect on functional outcomes and symptom reduc-
tion, and at least one of these effects should continue for no less than 3 months. In 
addition, there must be a minimum of one well-designed study supporting the effec-
tiveness of the treatment outside of the research context. As a result, many treat-
ments have a pending status according to these recommendations and thus rely on 
the older criteria.

The Tolin et  al. (2015) criteria, however, remains reliant on statistical signifi-
cance to evaluate whether a treatment should be labeled an EST despite controver-
sies related to focusing on statistical significance alone (Open Science Collaboration, 
2015). Equipped with additional evaluation tools developed since the RP:P, a meta-
analysis (Sakaluk et al., 2019) sought to evaluate ESTs using a range of metrics 
such as statistical power, Bayes Factors, Replicability-Index (Schimmack, 2016), 
and the degree to which researchers misreported inferential statistics. While there 
were generally few misreported statistics, the authors found that nearly all ESTs 
were underpowered and had low R-indices, indicating that the evidence supporting 
ESTs may not be as strong as previously thought (Sakaluk et al., 2019). A consider-
able number of ESTs that were labeled as Strong received low scores on the afore-
mentioned metrics, and several ESTs had too little information available to obtain 
scores on these metrics. The authors further noted that studies have been increas-
ingly well-powered over time, and researchers should continue to strive for highly 
powered designs.

Similar to the strong push for replicability in other domains, recently, clinical 
psychological researchers have also been joining the open science move-
ment (Tackett et al., 2019). A metascientific study (Nutu et al., 2019) reviewed 201 
articles published across 60 clinical psychology journals that have policies in favor 
of at least 4 of 5 best scientific practices: (a) preprints, (b) preregistration, (c) open 
data, (d) reporting guidelines, and (e) conflict of interest (COI) disclosure state-
ment. The study found that most of these practices were not mandated by the jour-
nals, aside from the COI disclosure statement, which has long been seen as important 
for transparency. According to the editorial policies of these 60 journals, 15 allowed 
preprints, 15 mentioned preregistrations, 40 mentioned open data, 28 had reporting 
guidelines, and 52 required COI disclosure statements. However, when reviewing 
the sampled articles published in these journals, only 3% were preregistered, 2% 
had open data, and one article had a preprint. Another study reviewed 165 random-
ized controlled trials (RCTs) published in 2013  in the 25 highest-impact clinical 
psychology journals and found that just 15% of them were preregistered (Cybulski 
et al., 2016). Of the articles that were preregistered, 58% included their registration 
information in the published article. Additionally, only 1% of them were both pre-
registered and fully outlined their main outcome variables. Mentioning the outcome 
variables of interest prior to conducting analyses increases transparency, ensures 
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that the results presented reflect the researchers’ initial analytic plan, and reduces 
the likelihood of Type I errors. Moreover, Grant et al. (2013) found that only 27.5% 
(11 of 40) of high-impact journals that publish psychological intervention trials 
(n = 239) provide reporting guidelines for their authors. Among the reviewed arti-
cles, only 20% mentioned that they conducted an RCT in the article name, and 55% 
included this in the abstract. Approximately 42% of the articles followed the jour-
nals’ recommended reporting guidelines. Overall, these studies suggest that jour-
nals should consider moving beyond merely recommending these practices and take 
concrete steps to further encourage, if not mandate, open, transparent, and rigorous 
practices.

A welcoming sight is that Clinical Psychological Science and Collabra: Clinical 
Psychology now offer a badge system in which researchers can earn badges for open 
data, open materials, and/or preregistrations. This can be considered an evidence-
based approach as Kidwell et  al. (2016) found that data sharing substantially 
increased from 3% to 40% after journals implemented badge systems, though 
researchers may be motivated to share their data for other reasons, for example, to 
allow other research teams to replicate their work. Moreover, in August of 2019, the 
Journal of Abnormal Psychology published a special issue titled Increasing 
Replicability, Transparency, and Openness in Clinical Psychological Research. 
These efforts are conducive to facilitating more widespread awareness and adoption 
of open science practices.

Given the resource-intensive nature of clinical research, replication studies may 
not always be feasible. Recall that replicability refers to conducting an identical 
procedure in a different place with a different population at a different time to test 
whether the results match the results of the initial study (Barba, 2018; Peng et al., 
2006). A starting point for clinical psychological researchers aiming to make their 
studies more replicable is to consider how replicability can vary depending on the 
context and timing in which studies are conducted, as well as the individuals 
involved. The goal of the following paragraphs is to caution against the direct appli-
cation of insights gained from social-personality and cognitive psychology to clini-
cal psychological research and call for a more careful field-specific adaptation.

�Different Place

Soon after the publication of the RP:P, a metascientific question emerges related to 
whether the replicability of studies is context-dependent. Van Bavel et al. (2016) 
reanalyzed the RP:P data and tested whether contextual factors like time, culture, 
and location were related to replication success for the 100 replication attempts. The 
authors found that contextual factors were related to replication success (r = −0.23, 
p  =  .024), even when controlling for methodological features like effect sizes. 
However, Inbar (2016) argued against this finding by pointing out how Van Bavel 
et al. (2016) failed to consider a third variable: social-personality vs. cognitive psy-
chology as a confounder. By reanalyzing the RP:P data and distinguishing the 
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cognitive psychology studies from the social-personality psychology studies, Inbar 
(2016) yielded contradicting results about the context-dependent nature of replica-
tion success. He found no significant relationship between the replicability of a 
study and its context-dependence when looking within subdisciplines. Both social-
personality psychology studies (r = −0.08, p = .54) and cognitive psychology stud-
ies (r = −0.04, p = .79) did not find an association between contextual factors and 
replication success. The context-dependent hypothesis was further informed by 
ManyLab 2.0 (Klein et al., 2018), which found low heterogeneity across replication 
studies conducted in Western, educated, industrialized, rich, and democratic 
(WEIRD) societies and non-WEIRD societies. This suggests that replication suc-
cess may be less impacted by the setting or sample than by the actual effect itself.

Therefore, at least within the social-personality and cognitive psychology litera-
ture, there is some evidence that replicability may not heavily depend on context. 
However, whether this holds true in clinical psychology remains an open empirical 
question. Indeed, with the substantial cross-cultural clinical psychology literature 
questioning even the core foundation of the science, including the presumed univer-
sality of psychopathology (e.g., on the cultural differences in the manifestation of 
depressive symptoms among Chinese and Americans; Kleinman, 2004; Ryder et al., 
2008; Yen et al., 2000), replication efforts in clinical psychology should adequately 
and explicitly account for the potential influence of cultural context. Notably, the 
pursuit of cross-cultural replicability of clinical psychology should not come at the 
cost of downplaying the importance of indigenous research. Indigenous practices 
are not presumed to work outside of the cultural context in which they were devel-
oped, but they are still a valuable area of study that can inform culture-specific 
interventions on psychopathology. Ultimately, more empirical studies are required 
to evaluate the extent to which context-dependence is associated with replication 
success in clinical psychology, while being mindful that not all findings (and prac-
tices) within clinical psychology are presumably universal.

Another aspect distinguishing social and cognitive psychology studies from clin-
ical psychology studies that may impact replication attempts is the centrality of 
self-reported measures. While social and cognitive psychology studies can employ 
reasonably standardized lab-based experimental procedures, clinical psychology 
studies rely heavily on self-reported measures of psychological phenomena (e.g., 
mental health symptoms). A major issue that results from the dominant use of self-
reports regards the translation of instruments. A poorly translated instrument in both 
linguistic and cultural terms can lead to inaccurate assessments of the construct in 
question. Even instruments that are written in the same language (e.g., Chinese) can 
use wording that has different meanings in different cultures (e.g., mainland China 
vs. Taiwan vs. Hong Kong). As such, cross-cultural replication attempts in clinical 
psychology should pay careful attention to the instruments being used. This may 
entail consulting with local experts to ensure that the linguistic translation is ade-
quate, as well as testing for factorial invariance to examine the cross-cultural com-
parability of a measurement scale across populations.
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�Different People

Individuals who are involved in clinical psychological studies also warrant attention 
when considering the replicability of studies. This includes the resource-intensive 
nature of data collection in clinical psychology. In addition, many studies point to 
the critical roles of health care providers in the success of a treatment, e.g., the 
therapist effect (Kim et al., 2006; McKay et al., 2006).

Participants  Replication studies may have become more common in cognitive and 
social-personality psychology partly because of easily accessible convenience sam-
ples (e.g., participant pool in psychology departments or the Mturk platform). The 
cost-effectiveness of these samples facilitates increasing the sample size to achieve 
greater statistical power. Given that clinical studies require substantial resources, 
including time and money, they tend to consist of smaller sample sizes. This may 
contribute to low statistical power, making it hard to detect meaningful effects 
(Button et al., 2013). In fact, Cuijpers et al. (2016) found that only up to 40% of the 
sample size needed to detect a clinically meaningful effect was achieved in a review 
of trials for depression. Moreover, when reviewing the sample sizes of studies pub-
lished in the Journal of Abnormal Psychology and the Journal of Consulting and 
Clinical Psychology from 2000 to 2015, Reardon and her colleagues (Reardon 
et  al., 2019) found limited evidence for increases in statistical power over time. 
Although it may be challenging to obtain larger clinical sample sizes, researchers in 
clinical psychology can potentially benefit from the Big Science approach pio-
neered by the RP:P and collaborate on pooling resources to achieve greater sam-
ple sizes.

Health Care Providers  Unlike social-personality and cognitive psychology, 
where studies can often be self-administered or computerized, clinical studies tend 
to involve therapeutic or otherwise specialized procedures ​​delivered by trained pro-
fessionals. This feature adds another layer of complexity because the estimation of 
treatment effects could be biased if the therapist effect is not properly accounted for. 
Studies have examined whether therapist effects (Kim et al., 2006; McKay et al., 
2006) play a role in treatment outcomes in clinical trials. For example, the therapist 
effect has been tested by reanalyzing data from the landmark Treatment of 
Depression Collaborative Research Program, commissioned by the National 
Institute of Mental Health in 1985 (McKay et al., 2006). An implicit assumption in 
the original analyses was that health care providers do not differ in terms of their 
effectiveness. When therapist effects were modeled in a multilevel model, the 
reanalysis found that although the actual treatments impacted clients’ outcomes, 
health care providers played an even larger role. In particular, 9.1% of the variance 
in clients’ depression scores was attributable to the psychiatrists (versus 3.4% attrib-
utable to the medication; McKay et al., 2006). Corroborating this finding, another 
study showed that 8% of the variance in clients’ outcomes was due to the therapist 
(versus 0% due to the specific treatment that the client received; Kim et al., 2006). 
Multilevel models have the potential to disentangle therapy and therapist effects and 
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to identify the characteristics and actions of therapists that account for therapist dif-
ferences (Kim et al., 2006). A more accurate estimation of treatment effects is nec-
essary to plan for an adequate sample size in replication studies.

�Different Time

The COVID-19 pandemic may present opportunities and challenges for the replica-
bility of clinical psychology. Although COVID-19-related studies may not be read-
ily replicable, they are still important to conduct in order to advance the research 
based on timely and pressing topics and to understand how COVID-19 is impacting 
mental health. In the future, replications may reveal the cross-temporal generaliz-
ability of findings and help capture whether certain treatments remain or are more 
efficacious during a highly unusual time, such as during a pandemic. Do well-
documented clinical psychology phenomena look substantially different in the 
COVID-19 world or post-COVID-19 world? The COVID-19 pandemic has 
increased both the physical and mental health burden in global communities. For 
example, 41% of U.S. adults have reported anxiety and/or depression symptoms in 
January of 2021, compared to 11% between January and June of 2019, according to 
the Household Pulse Survey (U.S. Census Bureau). This was more prevalent among 
18- to 29-year-olds and women. It would be of interest to examine whether current 
clinical psychology findings still hold (e.g., basic research) and whether treatments 
remain effective (e.g., applied research) in a global crisis such as the COVID-19 
pandemic.

Under the challenges of COVID-19, telehealth platforms, including emails, vid-
eoconferencing, smartphone applications, texting, and web forums, saw exponential 
growth in usage. Studies have shown that telehealth can be effective (Zhou et al., 
2020) when working with clients who have depression (García-Lizana & Muñoz-
Mayorga, 2010), anxiety (Rees & Maclaine, 2015), or post-traumatic stress disorder 
(Turgoose et al., 2018). It is critical to understand whether treatments from the pre-
COVID era will replicate today or whether they will be less effective in light of the 
mental health challenges posed by COVID-19. If treatments are less effective than 
they were in past studies, then it can be informative for the development of future 
treatments. Future replication and meta-analytic efforts should comprehensively 
consider different measures of evidential support (Anderson & Maxwell, 2016; 
Simonsohn, 2015) and take into consideration how heterogeneity in findings could 
be potentially attributable to data collected during COVID-19. Furthermore, even 
assuming a replicable treatment effect of individual therapies, given the unforeseen 
mental health burden at the population level, further reflections and a stronger 
emphasis on a public health approach towards mental health are warranted (e.g., 
Kazdin & Blase, 2011).
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�Conclusion

Situated in the historical context that featured few replication studies, fantastical 
extrasensory findings (Bem, 2011), and well-known fraud cases, the RP:P marks a 
turning point that prompts reflection on and revision in research practices. The 
resulting credibility movement contributes to making replication studies more 
mainstream, shaping transparent and verifiable research practices, and leading to a 
systemic view towards a healthy science. In this chapter, we outlined some oppor-
tunities and challenges in implementing the various open, transparent, and rigorous 
scientific practices in clinical psychological science. Perhaps more important than 
its findings, the RP:P serves as a reminder that grassroots movements can chisel 
away long-standing perverse vested interests and create lasting changes for the bet-
ter. Time would tell.
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Abstract  The Psychological Science Accelerator (PSA) is an international collab-
orative network of psychological scientists that facilitates rigorous and generaliz-
able research. In this chapter, we describe how the PSA can help clinical 
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psychologists and clinical psychological science more broadly. We first describe the 
PSA and outline how individual clinical psychologists can use the PSA as a helpful 
resource in numerous capacities: leading or contributing to clinical research or 
research with clinical relevance, building collaborative relationships, obtaining 
experience and expertise, and learning about systems and tools, particularly those 
related to open science practices, that they can adapt to their own research. We then 
describe how the PSA supports rigor and transparency at each stage of the research 
process. Finally, we discuss the challenges of the PSA’s large, collaborative approach 
to research.

Keywords  Psychological science accelerator · Clinical psychology · Clinical 
psychological science

�Clinical Psychology and the PSA

Psychological science benefits society to the extent that it produces reliable and 
generalizable knowledge about human behavior and mental processes. Valid and 
broadly generalizable empirical evidence for a claim must come from large, geo-
graphically broad, and culturally diverse samples (Simons et al., 2017). Yet, even in 
high-impact journals, researchers often make universal claims based on conve-
nience samples from Western, educated, industrialized, rich, and democratic 
(WEIRD; Henrich et al., 2010; Rad et al., 2018) populations. Typically, participants 
are White American (Cheon et al., 2020) undergraduate students (Sears, 1986).

This general tendency for psychology research to rely on samples from a single 
geographic and cultural context particularly characterizes the clinical specialty. 
Many clinical psychologists study phenomena and experiences that are uncommon 
and must recruit participants from small populations. Obtaining large, appropriately 
diverse samples from these hard-to-reach populations can be further challenging 
because participation in clinical psychology research may require people in target 
populations (e.g., people in crisis or experiencing clinical depression) to share per-
sonal, stigmatized information or engage in other tasks they may find uncomfort-
able. Additionally, inclusion criteria for clinical psychology research (e.g., 
participants cannot have certain comorbid diagnoses) further restrict the pool of 
potential participants in order to achieve internal validity or diminish the potential 
harm to participants. Because of these factors, sample sizes in clinical psychology 
research are often small (e.g., the median sample size in top clinical psychology 
journals is 179; Reardon et al., 2019). Thus, most clinical psychology studies are 
unable to provide sufficiently precise estimates of correlation coefficients (e.g., 
accurately estimating an r = .10 requires a sample of about 250 participants; 
Schönbrodt & Perugini, 2013), let alone produce sufficiently precise estimates of 
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the low-probability outcomes that clinical psychology research often seeks to pre-
dict and understand (Davison & Lazarus, 2006).

Recent methodological reforms have succeeded in improving the rigor, accessi-
bility, and transparency of psychological science (Christensen et al., 2020; Nelson 
et al., 2018), but these advances have not successfully proliferated certain subfields, 
including clinical psychology (Hopwood & Vazire, 2020; Nutu et al., 2019; Tackett 
et al., 2019; Tackett & Miller, 2019). The relative lack of methodological reform can 
have detrimental downstream effects on clinical practice and, ultimately, negatively 
affect mental health outcomes (Suliman et al., 2019; Tackett et al., 2017). For exam-
ple, insufficient description of study procedures and the use of study materials that 
are not or cannot be publicly shared prevent other researchers from building on or 
appropriately applying interventions (Premachandra & Lewis, 2020). Questionable 
research practices, like failing to report all tested outcomes, can produce false posi-
tive findings (Simmons et al., 2011) which can cause harm when they motivate the 
implementation of less effective treatments (Sakaluk et  al., 2019; Tajika et  al., 
2015). Practical constraints explain much of the slow progress towards improved 
methodology. For example, in clinical psychology research with sampling con-
straints, obtaining samples that provide 95% power to detect hypothesized effects 
(e.g., as is currently required for Registered Reports at Nature Human Behavior) can 
take an impractically long time for small research groups using even simple research 
designs.

Large-scale, crowdsourced collaborations offer clinical psychological scientists 
a way to conduct rigorous research on a scale not otherwise accessible to most 
researchers (Uhlmann et al., 2019). Individual research teams wanting to conduct a 
study in a sample that generalizes beyond a single context might not have the knowl-
edge or resources to conduct language or cultural translation of study materials and 
measures, know how and where to recruit participants at every research site, or 
know how best to model the resulting data (Leong & Kalibatseva, 2013). By pooling 
research resources together, clinical psychologists can accomplish what no single 
research group could do alone without significant outside grant funding.

The Psychological Science Accelerator (PSA) is an international collaborative 
network of psychological scientists that facilitates rigorous and generalizable 
research (Moshontz et al., 2018). In this chapter, we describe how the PSA can help 
clinical psychologists and clinical psychological science more broadly. We first 
describe the PSA and outline how individual clinical psychologists can use the PSA 
as a helpful resource in numerous capacities: leading or contributing to clinical 
research or research with clinical relevance, building collaborative relationships, 
obtaining experience and expertise, and learning about systems and tools, particu-
larly those related to open science practices, that they can adapt to their own 
research. We then describe how the PSA supports rigor and transparency at each 
stage of the research process. Finally, we discuss the challenges of the PSA’s large, 
collaborative approach to research.
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�About the PSA

The PSA was formed in 2017 as a proactive response to critical issues facing psy-
chological science such as replicability and generalizability (John et  al., 2012; 
Nelson et  al., 2018; Open Science Collaboration, 2015; Simons, 2014; Simons 
et al., 2017; Uhlmann et al., 2019). The PSA’s strategy of pooling the resources of 
individual labs together in order to conduct sufficiently powered, geographically 
distributed research was inspired by crowdsourced collaborations, including the 
Emerging Adulthood Measured at Multiple Institutions project (EAMMI; Reifman 
& Grahe, 2016) and the Reproducibility Project: Psychology (Open Science 
Collaboration, 2015). Outside of psychology, the European Organization for 
Nuclear Research (CERN) inspired the conception of the PSA as a standing col-
laborative network of researchers from different nations committed to conducting 
ambitious, novel research rather than specific projects. Within weeks of a blog post 
inviting psychology researchers to join a standing collaborative network that would 
later become the PSA, dozens around the world had joined (Chartier, 2017a). These 
early members began formalizing an organizational structure and procedures that 
were later detailed in a paper introducing the network (Moshontz et al., 2018).

As of December 2020, the PSA is a large, active organization. The network con-
tains over 1400 individual researchers, including undergraduate students, graduate 
students, professors of all ranks, staff scientists, and people in nonacademic roles 
(e.g., in industry or government). PSA members are based in over 70 countries 
spread across all six populated continents. Just under 25% of researchers in the PSA 
network are based in North America, and about 40% are based in Western Europe 
(Paris et al., 2020). Currently, clinical psychology is the reported specialty for 145 
members (~6%), relatively fewer than those who specialize in social and personality 
psychology (~20%), experimental psychology (~14%), cognitive psychology 
(~14%), and quantitative psychology (~10%).

The members of the PSA network collaboratively and transparently select, 
design, and conduct research as guided by five core principles: diversity and inclu-
sion, decentralized authority, transparency, rigor, and openness to criticism. These 
principles shape the policies and procedures of the PSA. Diversity and inclusion are 
reflected in both the collaborating researchers and the studied participants and are 
central to the plans for the future of the PSA. The network members who help pro-
pose, select, design, translate, and conduct research represent a diverse collection of 
geographic regions, research institutions, academic positions, and training areas. 
Additionally, the PSA recruits socioculturally and geographically diverse research 
samples. Although member labs in the network are globally distributed, they mostly 
have access to already well-represented samples, like undergraduate university stu-
dents and people who live in densely populated areas. With funding, the PSA can 
better promote the principle of diversity and inclusion by supporting labs to broaden 
their sampling approach into local communities and more rural areas.

The decentralized authority principle is reflected in the governance structure of 
the PSA; specifically, stages of the research process are managed by different 
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committees and decisions are made democratically, either by the entire network or 
by committee. Transparency finds expression with respect to both the internal work-
ings of the PSA (e.g., network members can view all committee meeting notes) and 
its research products. The PSA shares policy documents (e.g., Forscher, Aczel, 
et al., 2020) and the materials, analysis code, and data from all studies that it con-
ducts to the extent allowable (e.g., by ethics considerations; Meyer, 2018).

The core principle of rigor shapes the PSA research process. Proposed studies 
are selected on the basis of their rigor, and the primary purpose of a key PSA com-
mittee, the Data and Methods Committee, is to ensure the quality of study protocols 
and analyses. Finally, the PSA strives to function with an openness to criticism. 
PSA procedures involve soliciting and incorporating critical feedback from within 
and outside the network on aspects of both research projects and the PSA’s pro-
cesses for selecting and conducting research.

Although the PSA produces research projects similar to other crowdsourced, 
large-scale collaborations in psychology (Ebersole et al., 2016; Klein et al., 2018), 
it differs from these efforts in several key ways. First, rather than existing for the 
purpose of completing a particular project, the PSA is an ongoing network that runs 
multiple projects simultaneously. Second, anyone can contribute to research at the 
PSA. Membership in the network is not contingent upon professional connections, 
training, background, job title, or geographic location. Third, the PSA is flexible; 
rather than conducting research in a specific content area or population, the PSA 
selects studies that range in their focus and population of interest. Studies are not 
selected on the basis of their psychological research area or the prestige of the study 
proposers, whose identities are concealed during the review and selection process. 
However, resource availability does constrain what projects are feasible. As 
described in calls for study submissions, feasibility constraints have resulted in a 
preference for studies with samples that are fairly small and easy to reach (e.g., 
requiring fewer than 150 participants per collection site), protocols that are rather 
short (e.g., less than 90 minutes per session), and equipment that is readily available 
(e.g., using open source software and no specialized hardware) and does not pose a 
risk to participant health. Such parameters have changed over time, and, given the 
growing membership and resources of the PSA, research that targets harder-to-
reach populations or uses longer, more complex procedures may soon be feasible.

The ten completed and ongoing PSA studies use large and often international 
samples to investigate a broad range of research questions. For example, the first 
completed PSA study assessed the global generalizability of a model of face percep-
tion in 11,570 participants in 41 countries and 11 world regions (Jones et al., in 
press). One study that has yet to begin data collection will assess different opera-
tionalizations of stereotype threat among Black college students in the United States 
with an anticipated sample of 2700 students across 27 geographically distributed 
schools (Forscher, Taylor, et al., 2020). In 2021, the PSA anticipates collecting data 
from a minimum of 20,000 participants in total (Paris et al., 2020). Although most 
PSA studies follow a standard process and were proposed in response to open calls, 
special-topic projects with different foci have also been implemented; for example, 
a teaching-focused replication project invited undergraduate students in member 
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labs to collect data, conduct analyses, and contribute to the final manuscript (Hall 
et al., 2020; Wagge et al., 2019). The PSA has also successfully collected data for 
three particularly accelerated projects related to COVID-19 (Dorison et al., 2020; 
Legate et  al., 2020; Wang et  al., 2020). For these projects, which were run in a 
bundled protocol, PSA members selected and revised studies, translated materials 
into 43 languages and dialects, and collected data from over 44,000 participants 
around the world, all within only 8 months. PSA studies have been led by people at 
different career stages, including graduate students (i.e., Hall et  al., 2020; Wang 
et al., 2020).

�How Individual Clinical Psychological Scientists Can Benefit 
from the PSA

Clinical psychological scientists aiming to produce rigorous and generalizable 
research can use the PSA in several ways. First, they can lead or contribute to rigor-
ous research with potential clinical relevance; in fact, the PSA just completed a 
study on the effectiveness of brief cognitive reappraisal interventions for reducing 
people’s negative emotions during the COVID-19 pandemic (Wang et al., 2020). As 
of December 2020, the relatively small number of PSA network researchers special-
izing in clinical psychology would restrict clinical psychologists from leading stud-
ies at the PSA that require specialized equipment or clinically-trained experimenters. 
Consequently, clinical psychologists could not currently conduct research involving 
screening or treating participants with psychopathology as a PSA project, but they 
could conduct research on more easily recruited populations using widely-available 
equipment. Within these constraints, the PSA enables researchers without external 
funding to lead studies that would otherwise require large grants and specialized 
training (e.g., the ability to translate materials) to conduct. One particularly impor-
tant area of clinical psychology research that is well-suited to the PSA is research 
establishing the properties of clinical measures across cultures (i.e., assessing mea-
surement equivalence; Leong & Kalibatseva, 2013). Additionally, clinical psycho-
logical scientists could perform secondary analysis on any of the datasets collected 
by the PSA or use translated materials from completed and ongoing PSA studies for 
their own research.

Second, by joining the PSA network or contributing to a PSA study, clinical 
psychological scientists can build collaborative connections with other researchers. 
The PSA network is a community; members share research, conference and grant 
calls, and other opportunities. Members have developed collaborative projects 
beyond the primary studies selected and run by the PSA. For example, several mem-
ber labs collaborated on a study of the perceived efficacy of COVID-19 restrictions 
and their effect on mental health that collected data from over 2000 participants in 
six countries (Mækelæ et al., 2020). PSA projects have also resulted in secondary 
analysis collaborations (Adkins et  al., 2020; Batres, 2020; Chandrashekar, 2020; 
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Durkee & Ayers, 2020; Hester & Hehman, 2020; Martin et al., 2020; Oh & Todorov, 
2020; Xie & Hehman, 2020). Further, the PSA also supports collaborative discus-
sions outside of empirical projects. Network members often discuss and debate 
issues in psychological science more broadly, in informal and formal outlets 
(IJzerman et al., 2020; Onie, 2020).

Third, scientists in the PSA can use the PSA to gain experience and develop 
expertise. Many roles on PSA projects can serve as experiential learning for experi-
enced clinical psychological scientists. For example, membership in the Data and 
Methodology Committee offers opportunities to work with and learn from method-
ological experts. Members of the Project Monitoring Committee can learn about 
how to manage research projects with hundreds of research sites and thousands of 
participants. By becoming more involved in any capacity, PSA members are given 
additional opportunities to contribute to and benefit from PSA resources.

Finally, clinical psychologists can use the PSA to learn about systems and tools 
that support rigorous, transparent, collaborative research. Methodological reforms 
evolve, and researchers who do not adopt reforms may simply not know about them 
or know how to implement them (Washburn et  al., 2018). For example, some 
researchers may not know that failing to report all study outcomes can severely 
undermine a study’s evidentiary value (Nelson et al., 2018; Simmons et al., 2011). 
PSA membership can be a means by which clinical psychologists can learn about 
the need for particular methodological reforms and ways to implement them. 
Further, the PSA organizes and collaboratively produces projects using tools (e.g., 
collaboration agreements, translation protocols, project tracking templates) that can 
also benefit small groups. Many of the challenges of working in large international 
collaborations are present in other group contexts. Members can prevent and over-
come problems in their outside collaborations by using the solutions that the PSA 
has devised and tested over time.

�How the PSA Supports Rigor and Transparency at Each Stage 
of the Research Process

By design, the PSA supports rigor and transparency at every stage of the research 
process. Some challenges of conducting rigorous, transparent clinical psychological 
research are inherent to a clinical research question (e.g., researchers cannot ran-
domly assign participants to experience trauma to see what factors predict who 
develops PTSD). The PSA’s practices and procedures cannot eliminate these chal-
lenges, although they can, in some cases, lessen the impact of unavoidable chal-
lenges on the quality of the final research product. In this section, we describe the 
PSA’s current research processes, which are similar to those described in Moshontz 
et al. (2018), but reflect improvements made as the PSA has grown in membership 
and experience.
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�Selecting a Research Project

Research questions at the PSA are selected from a pool of masked protocols submit-
ted in response to an open call for proposals from all areas of psychology. Proposed 
studies may be confirmatory or exploratory, test a novel research question or pro-
pose a replication, or explore the validity of measures or stimuli. When study pro-
posals are submitted for consideration, authors are asked to explicitly address 
feasibility, implementation, and ethics concerns. Submissions requiring specialized 
samples are asked to explain and justify this requirement and elaborate on risk miti-
gation steps taken for any vulnerable populations. The study selection committee 
reviews masked submissions for quality (e.g., whether the proposal is complete and 
well-considered), feasibility (e.g., if the PSA has the capacity and resources to sup-
port the research), and appropriateness (e.g., whether the project necessitates a lab 
network). Submissions that pass this initial phase are sent to expert reviewers both 
in and outside of the PSA. Reviewers evaluate study-specific threats to inference 
(e.g., a confound unique to the paradigm), and threats to inference common to all 
cross-cultural research (e.g., measurement invariance). Submissions that reach the 
second round are also made available to the full network for members to evaluate. 
After feedback from reviewers and the network are compiled and synthesized, the 
committee votes and decides whether to provisionally accept the proposal, request 
proposal revisions, or reject the submission.

�Identifying Project Needs

Accepted proposals enter a needs assessment process, which identifies the lead (i.e., 
proposing) authors’ needs with respect to all major aspects of conducting the study: 
methodology, data management, ethics, translation, logistics, adhering to PSA poli-
cies, and writing. During this process, the lead authors provide information about 
their study that will determine which committee members and labs they will be 
paired with. In addition, they meet with the PSA Director and members of PSA 
committees that focus on each aspect of the study to ensure that they understand 
how studies are run at the PSA. For example, lead authors are asked to describe any 
special requirements for some or all participants, whether data collection teams 
need specialized knowledge or equipment, and whether the submitting authors will 
clean and analyze the data, and if so, in what programming language. The questions 
asked at this stage are designed to ensure that each project is conducted rigorously 
and transparently and that the lead authors and network contributors have appropri-
ate and clearly defined roles. For example, if lead authors propose a design that 
requires complex analyses and do not have an analytic expert on their team, after the 
needs assessment process, the lead authors would be matched with a PSA collabora-
tor with relevant expertise, who would most likely join the lead author team. During 
this stage, the lead authors and members of the expert committees identify aspects 
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of the PSA’s standard practices and procedures that need to be adjusted for that 
particular project. For example, sharing data publicly is standard practice at the 
PSA, but if a team of clinical psychological scientists led a study that involved col-
lecting sensitive data, the standard data sharing plan would be adjusted at this stage. 
Once the lead author team describes their needs, the project is matched with a mem-
ber of each expert committee accordingly to further develop the proposal before 
Registered Report submission and study implementation.

�Refining the Study Design and Analytic Approach

Regardless of the lead authors’ expertise, all accepted proposals are assigned to one 
or more members of the Data and Methods Committee. The primary goal of the 
Data and Methods Committee is to provide expertise and oversight on the method-
ological components of PSA projects. The process of ensuring the rigor of PSA 
studies begins even before a study is accepted; every submitted proposal is reviewed 
by at least one Data and Methods Committee member or external reviewer appointed 
by the committee. The Data and Methods Committee member on each project col-
laborates with the lead authors to develop an analysis plan and write statistical anal-
ysis scripts. The committee also appoints a data manager to each project to ensure 
that researchers comply with the analysis plan, archive data in a public or private 
repository in a timely manner, and correct any analytic errors that are found in 
manuscripts. More informally, the committee provides technical support as needed. 
The committee’s secondary goal is to organize or implement projects of method-
ological and meta-scientific interest. For example, the committee might examine the 
performance of a new analytic tool that has only been evaluated via simulations 

All submitting authors on Psychological Science Accelerator projects are held 
to ten expectations by default if they agree to lead a collaborative project. 
These ten expectations align with core principles and formal policies 
(Moshontz et al., 2018):

1.	� Work collaboratively with PSA member labs and committee personnel.
2.	 Create a collaboration agreement that describes authorship criteria.
3.	 Obtain a demonstration video for every data collection site.
4.	 Preregister methods, materials, and analyses.
5.	 Obtain ethics approval (or equivalent) at every data collection site.
6.	 Make all study materials open access (unless prohibited by copyright).
7.	 Make all data open access in accordance with the PSA-approved data 

management plan.
8.	 Make all analysis scripts openly accessible.
9.	 Make any final report openly accessible.
10.	 Adhere to a code of conduct.
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using PSA data; implementing a new tool will likely include many complications 
that routinely arise in collaborative projects but are glossed over in the initial vetting 
of a method.

�Submitting a Registered Report and Preregistering the Study

Once the study design and analysis plan has been refined, that plan is submitted as 
part of a Registered Report or preregistration. Registered Reports, which share simi-
larities with registered clinical trials, allow studies to be considered for publication 
before they have been conducted. Registered Reports support rigorous methodology 
(Scheel et al., 2020; Soderberg et al., 2020) and help ensure researcher resources 
and participant time are well-spent. Such concerns are critical in clinical research 
settings given the high opportunity cost of resources and the potential to influence 
practitioner behavior (Tackett et  al., 2017; Cristea & Naudet, 2019). Because 
Registered Reports are submitted before data collection or analysis, studies are 
reviewed on the basis of their rationale, writing, methods, measures, analysis plans, 
and contingent conclusions.

The evaluation of studies at this stage, rather than after results are known, pro-
tects against publication biases that result in the overrepresentation of positive 
results in the published literature and the inflation of effect size estimates (Fanelli, 
2010; Ferguson & Heene, 2012; Kühberger et al., 2014; Simonsohn et al., 2014). 
Once a Registered Report is accepted in principle (i.e., as a Stage 1 Registered 
Report), the described methods and analytic approach are preregistered. Accepted 
Stage 1 Registered Reports can provide lead authors, data collection labs, and other 
contributors peace of mind, knowing that as long as they execute the project as 
described, they will be rewarded with what is still the most important professional 
incentive for most psychological scientists: a publication.

The PSA process is particularly well-aligned with the Registered Report format. 
Lead authors submit proposals in the format of Registered Reports. Further, many 
requirements for PSA proposals are also requirements of Registered Reports, 
including the requirement to conduct a priori power analyses (Moshontz et  al., 
2018). Due to the similarity in formatting and content of PSA proposals and 
Registered Reports, many completed and ongoing PSA studies have been submitted 
as Registered Reports (Bago et al., 2020; Chen et al., 2020; Forscher, Taylor, et al., 
2020; Jones et al., in press; Wang et al., 2020) or Registered Replication Reports 
(Hall et al., 2020), which are Registered Reports focused on replication.

�Translating the Study Protocol

If an accepted study needs materials to be translated, the Translation and Cultural 
Diversity Committee provides expertise in and oversight of the translation process. 
Most PSA studies are conducted in different geographic regions, where participants 
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speak different languages, and the meaning and impact of study procedures might 
differ as a function of culture. Thus, material translation is a challenging but essen-
tial aspect of the research process.

The PSA uses a standard translation protocol, adapted from Brislin (1970), to 
standardize the translation process for all languages. A translation coordinator over-
sees the entire process, and a language-wise coordinator oversees the process for 
each target language. Language-wise coordinators work closely with the translation 
coordinator to ensure efficient and high-quality translations. To begin the translation 
process, the source material is first translated into the target language by two inde-
pendent translators. Then, these translators and language-wise coordinators com-
pare and discuss the translations to create a single forward translation (Version A). 
Two independent translators then translate Version A back to the source language 
(i.e., back-translate). The two back-translators and language-wise coordinators dis-
cuss discrepancies and create a single back-translation (Version B). The translation 
coordinator and language-wise coordinators compare Version B and Version A, 
identifying and discussing discrepancies with input from the lead authors. The 
language-wise coordinator then creates a new version of the translated materials 
(Version C), which is sent to at least two external readers who evaluate the wording 
and clarity.

Language-wise coordinators discuss the need for cultural adjustments with the 
data collection labs that will use the translated material. These cultural consider-
ations are particularly important in clinical contexts because they help establish 
linguistic (related to translation of words), functional (related to translation of 
behaviors), conceptual (related to translation of constructs) and metric equivalence 
(related to psychometric properties of instruments) across cultures (Leong & 
Kalibatseva, 2013). Psychopathology can be culturally-specific in its expression 
and effect (Henrich et al., 2010; Patel & Sumathipala, 2001), so clinical research 
that fails to use culturally heterogeneous samples or account for cultural context 
cannot ensure clinical relevance or broad generalizability and may be of limited 
value (Nagayama Hall, 2006). In the final step of the translation process, the 
language-wise coordinators (and participating labs) construct a final version of the 
materials with attention to cultural considerations and feedback from the external 
readers. All the translation materials - including all versions and notes - are stored 
publicly to allow interested researchers to investigate or otherwise make use of 
these materials.

�Ethics Review

Prior to data collection, the study protocol is subjected to ethics review, first at the 
PSA and then by ethics review boards. Every data collection site must obtain an 
ethics review exemption or approval before they begin data collection. The involve-
ment of a local ethics review, when possible, is most appropriate when the risks 
associated with a particular study procedure may differ as a function of culture. For 
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example, whereas many clinical studies pose some risk to participants (e.g., by col-
lecting sensitive data; Cristea & Naudet, 2019; Meyer, 2018), the risk and data 
sensitivity of a protocol may also vary by data collection site, as a function of cul-
tural norms and stigma associated with the focal topic. Revisions to the study pro-
cedure based on ethics review at a data collection site are not common; thus far, 
ethics reviews at each data collection site have not resulted in any major revisions to 
study procedures.

�Data Collection

Data collection labs are matched with studies based on expressed interest and match 
with study needs. Collaboration agreements that are written before data collection 
begins describe authorship criteria and expectations. After obtaining ethics review 
exemption or approval at their institution, if applicable, data collection labs practice 
the study procedure and record demonstration videos. In the videos, one researcher 
typically plays the role of a participant while another conducts the study procedure. 
Recording demonstration videos serves multiple purposes. First, demonstration vid-
eos help ensure procedural fidelity at every site. Lead authors can review the dem-
onstration videos, identify discrepancies between the protocol as written and the 
protocol as administered, and give labs feedback as needed before data collection. 
Second, recording demonstration videos documents aspects of the data collection 
context that can be examined or otherwise used in the future. Demonstration videos 
serve as a record of fidelity and of data collection site features (e.g., the physical 
space where the study was conducted). Demonstration videos can also be used by 
data collection labs to train research assistants. When data collection sites have 
completed all the requirements specified in the collaboration agreement (e.g., ethics 
review exemption or approval, demonstration video submission), they can begin 
collecting data.

�Data Analysis and Final Manuscript Submission

After data collection at all sites is complete, data are cleaned and analyzed in accor-
dance with the study preregistration. The submitting author team then drafts the 
final manuscript (e.g., a Stage 2 Registered Report) for submission with help from 
other members of the collaboration team (e.g., the Data and Methods Committee 
member who works on the project). People who meet the authorship criteria defined 
in the collaboration agreement provide feedback on the manuscript draft and 
approve the final version prior to submission.
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�Challenges

The PSA’s introductory paper outlines six challenges the PSA faces in conducting 
research (Moshontz, et al., 2018). These challenges include resource management, 
linguistic and cultural translation, inclusivity, research ethics, funding, and crediting 
contributions. Many of these challenges are particularly relevant to clinical research, 
and the increasing membership of clinicians in the PSA will proportionally increase 
the likelihood of finding suitable solutions.

A persistent challenge for the PSA is drawing on and distributing research 
resources effectively. Not all studies require large, international samples or are 
equally deserving of the participant hours and researcher time required to conduct a 
PSA study. The first fully completed PSA project collected data from 11,570 par-
ticipants and took 3 years to conclude from the initial proposal (in October 2017; 
Chartier, 2017b) to finalized publication as a Stage 2 Registered Report (in October 
2020; Jones et al., in press). The appropriate use of research resources is a challenge 
that affects individual labs and the PSA as a whole. Individual labs decide on a 
study-by-study basis what they will contribute to, ensuring no lab will spend their 
resources on projects that they do not deem valuable. PSA studies are often more 
efficient and scientifically valuable than the typical single-lab or small collaborative 
projects to which lead authors and data collection labs might otherwise contribute.

The PSA carefully considers different perspectives in deciding which studies to 
conduct. Conducting research that addresses trivial scientific questions at the scale 
of a PSA project would contribute to, rather than detract from, research waste, but 
the scientific value of research questions is often subjective. The lead authors of 
study proposals are asked to justify the required resources in their proposals, and 
data collection labs provide feedback on proposals during the study selection pro-
cess related to scientific value. In addition, for accepted studies submitted as 
Registered Reports, editors and peer-reviewers evaluate and improve the eviden-
tiary value of PSA studies and reduce the risk of wasted resources.

A second challenge is of particular relevance to clinical psychology: any interna-
tional, cross-cultural study requires the translation of stimuli and instructions into 
dozens of languages, dialects, and cultures. As described previously, PSA proce-
dures aim to address this challenge, but a perfect solution for translation often does 
not exist (Brislin, 1976). For example, translating questions about mental health and 
psychopathology requires great care, as do seemingly simple questions, like demo-
graphic questions about gender, sexuality, race, and ethnicity that are not defined or 
publicly discussed in the same way across cultures. The PSA cannot avoid transla-
tion challenges for its international studies but is well positioned to make thoughtful 
and culturally contextualized translation decisions.

A third challenge for the PSA, inclusion, remains the most difficult to address. 
Although the PSA has been successful in recruiting members across the globe, not 
all regions are equally represented in the network; over 60% of member labs are 
based in Europe and the United States (Paris et al., 2020). Because minimum sam-
ple sizes are needed to conduct cross-cultural comparisons in PSA studies, undue 
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pressure is placed on contributing labs from areas with low membership to provide 
sufficient sample sizes.

Sociocultural diversity is likewise lacking among the leadership of the PSA, and 
a minority of members have been directly involved in formulating the PSA’s poli-
cies and procedures. Though many decisions are made democratically, participation 
is not equally accessible to all members (e.g., all formal PSA communication is in 
English). Further, decision-making processes are most influenced by people who 
voice their opinions and argue on behalf of their preferences. Paralleling trends in 
psychological science more broadly, participation in the decision-making processes 
at the PSA can be inaccessible to certain PSA members, such as members of tradi-
tionally marginalized groups and researchers at institutions without research infra-
structure or support. Those who would likely benefit the most from participation in 
the PSA and whose involvement would advance the PSA’s mission to accelerate the 
accumulation of reliable and generalizable evidence in psychological science may 
be the least likely to join the network or seek out leadership roles. However, the 
PSA, through the Community Building and Network Expansion Committee and 
other means, remains focused on identifying and addressing barriers to inclusion 
(e.g., Chartier, 2020).

Another challenge of conducting research at the PSA is ensuring participant pro-
tection. Guidelines for ethical human subject research vary considerably across 
nations and institutions. The PSA’s Ethics Review Committee is well-equipped to 
help coordinate the ethics review process and ensure compliance with requirements 
at each data collection site. The PSA has thus far only conducted research that does 
not involve vulnerable populations or the collection of identified, sensitive data. 
However, PSA policies were designed to accommodate sensitive data and specify 
that research will be shared to the extent allowable due to legal (e.g., proprietary 
measures) or ethical constraints (Moshontz et al., 2018).

The biggest challenge facing the PSA is providing sufficient material and admin-
istrative support to research. The PSA largely relies on member volunteerism, which 
can take a heavy toll on people who carry the biggest load of responsibilities. This 
reliance on volunteer labor can create project delays and workload asymmetries, 
inequalities, and tensions between collaborators. However, without outside funding, 
the PSA has no alternative means of viability. A recent internal report estimated that 
the administrative support provided by the members of PSA committees alone is 
equivalent to at least 200,000 US dollars per year (Paris et al., 2020). The adminis-
trative support required for complex studies like clinical trials is even greater than 
for the single session lab studies implemented by the PSA thus far. Complex clinical 
psychology research conducted at the PSA would likely strain its volunteer work-
force and exacerbate the concomitant problems of relying upon volunteers. 
Fortunately, the PSA’s continued growth helps mitigate this challenge. As the PSA 
grows, the number of people who can share administrative duties grows, and the 
burden on individual people lessens.

A final challenge of the PSA’s crowdsourced approach to research is properly 
crediting all contributors within an authorship system that is not designed for proj-
ects with hundreds of collaborators. Large authorship lists pose logistical 
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challenges. Project leaders must document the contributions and changing affilia-
tions of the hundreds of contributing researchers and maintain communication dur-
ing the process of writing, revising, and submitting a manuscript. In addition, 
providing meaningful credit to all of a project’s contributors can be difficult when 
so many people have made contributions. Manuscripts describing PSA projects 
report how each author contributed to the research, but the labels representing 
author contributions may inadequately capture the scale or impact of the effort 
required to conduct a large-scale collaboration.

�Conclusion

By joining the PSA, clinical psychologists can help produce rigorous research while 
gaining experience and expertise, learning about new systems and tools, and advanc-
ing the improvement of clinical psychological science more broadly. Clinical psy-
chology is not a common specialization at the PSA (Paris, et al., 2020), and although 
the PSA has conducted a simple intervention study with clinical relevance (Wang 
et al., 2020), it has not yet conducted studies proposed by clinical psychological 
scientists.

The PSA welcomes submissions from clinical psychological scientists. Currently, 
study submissions using simple protocols (e.g., surveys administered with a com-
puter) are most likely to meet the PSA’s feasibility requirements. In addition, the 
PSA could easily support measurement research that involves translating and 
assessing the properties of clinical psychological surveys. Such research is both 
easy to administer and important (Flake & Fried, 2020). Looking ahead, the more 
researchers with clinical training who join the network, the more able the PSA is to 
support more complex, resource-intensive clinical research protocols.

Finally, clinical psychological scientists who join the network can shape the PSA 
to support and improve their field. By voting for studies and in leadership elections, 
providing feedback on submitted studies, and otherwise taking part in the PSA’s 
decentralized decision-making processes, clinical psychological scientists can 
broaden the PSA’s scope to include the critical questions that drive clinical psycho-
logical research. More rigorous, international, collaborative clinical psychological 
science, both at the PSA and beyond, can accelerate the discovery and refinement of 
treatments that improve people’s lives.
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