


Basic Technical 
Mathematics  
with Calculus
SI Version



O T H E R  P E A R S O N  E D U C A T I O N  T I T L E S  O F  R E L A T E D  I N T E R E S T

Basic Technical Mathematics, Tenth Edition, by Allyn J. Washington 

Basic Technical Mathematics with Calculus, Tenth Edition, by Allyn J. Washington 

Introduction to Technical Mathematics, Fifth Edition, by Allyn J. Washington, Mario F. Triola,  
and Ellena Reda



 TENTH EDITION

Basic Technical 
Mathematics 
with Calculus
SI Version
Allyn J. Washington
Dutchess Community College

Michelle Boué

Toronto



Library and Archives Canada Cataloguing in Publication

Washington, Allyn J., author 
          Basic technical mathematics with calculus : SI version / Allyn 
J. Washington, Michelle Boué. -- Tenth edition.

Includes indexes.  
ISBN 978-0-13-276283-0 (bound)

          1. Mathematics--Textbooks.  I. Boué, Michelle, author  II. Title.

QA37.3.W37 2014                        510                             C2014-900075-8

Copyright © 2010, 2005, 2000, 1995 Pearson Canada Inc., Toronto, Ontario.

Editor-in-Chief: Michelle Sartor
Executive Acquisitions Editor: Cathleen Sullivan
Marketing Manager: Michelle Bish
Program Manager: Patricia Ciardullo
Project Manager: Kimberley Blakey
Developmental Editor: Mary Wat
Media Editor: Charlotte Morrison-Reed
Media Producer: Kelly Cadet
Production Services: Heidi Allgair, Cenveo ® Publisher Services
Permissions Project Manager: Marnie Lamb
Photo Permissions Research: Chritina Simpson, Q2A/Bill Smith
Text Permissions Research: Electronic Publishing Services, Inc.
Art Director: Zena Denchik
Cover Designer: Alex Li
Interior Designer: Cenveo® Publisher Services
Cover Image: Gencho Petkov/Shutterstock

Credits and acknowledgments for material borrowed from other sources and reproduced, with permission, in this textbook appear 
on the appropriate page within the text.

Original edition published by Pearson Education, Inc., Upper Saddle River, New Jersey, USA. Copyright © 2009 Pearson 
Education, Inc. This edition is authorized for sale only in Canada.

If you purchased this book outside the United States or Canada, you should be aware that it has been imported without the  
approval of the publisher or the author.

Copyright © 2015 Pearson Canada Inc. All rights reserved. Manufactured in the United States of America. This publication is 
protected by copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a  
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.  
To obtain permission(s) to use material from this work, please submit a written request to Pearson Canada Inc., Permissions 
Department, 26 Prince Andrew Place, Don Mills, Ontario, M3C 2T8, or fax your request to 416-447-3126, or submit a request to 
Permissions Requests at www.pearsoncanada.ca.

10 9 8 7 6 5 4 3 2 1 CKV

         ISBN 978-0-13-276283-0

http://www.pearsoncanada.ca


To Douglas, Julia and Andrea ~Michelle Boué

In memory of my loving wife, Millie ~Allyn J. Washington



This page intentionally left blank 



  VII

Contents

1 Basic Algebraic Operations 1
1.1 Numbers 2
1.2 Fundamental Operations of Algebra 6
1.3 Measurement, Calculation, and  

Approximate Numbers 11
1.4 Exponents 21
1.5 Scientific Notation 26
1.6 Roots and Radicals 30
1.7 Addition and Subtraction of Algebraic 

Expressions 32
1.8 Multiplication of Algebraic Expressions 36
1.9 Division of Algebraic Expressions 38
1.10 Solving Equations 41
1.11 Formulas and Literal Equations 45
1.12 Applied Word Problems 48
Equations, Review Exercises, and Practice Test 51

2 Geometry 55
2.1 Lines and Angles 56
2.2 Triangles 60
2.3 Quadrilaterals 66
2.4 Circles 69
2.5 Measurement of Irregular Areas 74
2.6 Solid Geometric Figures 78
Equations, Review Exercises, and Practice Test 81

3 Functions and Graphs 86
3.1 Introduction to Functions 87
3.2 More about Functions 91
3.3 Rectangular Coordinates 95
3.4 The Graph of a Function 97
3.5 More about Graphs 104
3.6 Graphs of Functions Defined by  

Tables of Data 109
Review Exercises and Practice Test 112

4 The Trigonometric Functions 115
4.1 Angles 116
4.2 Defining the Trigonometric Functions 119

4.3 Values of the Trigonometric Functions 122
4.4 The Right Triangle 126
4.5 Applications of Right Triangles 131
Equations, Review Exercises, and Practice Test 136

5 Systems of Linear Equations; 
Determinants 142

5.1 Linear Equations 143
5.2 Graphs of Linear Functions 146
5.3 Solving Systems of Two Linear Equations  

in Two Unknowns Graphically 149
5.4 Solving Systems of Two Linear Equations  

in Two Unknowns Algebraically 153
5.5 Solving Systems of Two Linear Equations  

in Two Unknowns by Determinants 160
5.6 Solving Systems of Three Linear Equations  

in Three Unknowns Algebraically 166
5.7 Solving Systems of Three Linear Equations  

in Three Unknowns by Determinants 170
Equations, Review Exercises, and Practice Test 176

6 Factoring and Fractions 181
6.1 Special Products 182
6.2 Factoring: Common Factor and  

Difference of Squares 185
6.3 Factoring Trinomials 190
6.4 The Sum and Difference of Cubes 196
6.5 Equivalent Fractions 197
6.6 Multiplication and Division of Fractions 202
6.7 Addition and Subtraction of Fractions 206
6.8 Equations Involving Fractions 212
Equations, Review Exercises, and Practice Test 216

7 Quadratic Equations 220
7.1 Quadratic Equations; Solution by  

Factoring 221
7.2 Completing the Square 225
7.3 The Quadratic Formula 228
7.4 The Graph of the Quadratic Function 232
Equations, Review Exercises, and Practice Test 236

 Preface xi



VIII CONTENTS

8 Trigonometric Functions of  
Any Angle 240

8.1 Signs of the Trigonometric Functions 241
8.2 Trigonometric Functions of Any Angle 243
8.3 Radians 249
8.4 Applications of Radian Measure 253
Equations, Review Exercises, and Practice Test 260

9 Vectors and Oblique Triangles 264
9.1 Introduction to Vectors 265
9.2 Components of Vectors 269
9.3 Vector Addition by Components 273
9.4 Applications of Vectors 277
9.5 Oblique Triangles, the Law of Sines 282
9.6 The Law of Cosines 288
Equations, Review Exercises, and Practice Test 292

10 Graphs of The Trigonometric 
Functions 296

10.1 Graphs of y = a sin x and y = a cos x 297
10.2 Graphs of y = a sin bx and y = a cos bx 300
10.3 Graphs of y = a sin (bx + c) and y = a cos (bx + c) 303
10.4 Graphs of y = tan x, y = cot x, y = sec x, y = csc x 307
10.5 Applications of the Trigonometric Graphs 310
10.6 Composite Trigonometric Curves 313
Equations, Review Exercises, and Practice Test 317

11 Exponents and Radicals 320
11.1 Simplifying Expressions with  

Integral Exponents 321
11.2 Fractional Exponents 325
11.3 Simplest Radical Form 329
11.4 Addition and Subtraction of Radicals 333
11.5 Multiplication and Division of Radicals 335
Equations, Review Exercises, and Practice Test 339

12 Complex Numbers 341
12.1 Basic Definitions 342
12.2 Basic Operations with Complex Numbers 345
12.3 Graphical Representation of  

Complex Numbers 348
12.4 Polar Form of a Complex Number 350
12.5 Exponential Form of a Complex Number 352
12.6 Products, Quotients, Powers, and Roots  

of Complex Numbers 355

12.7 An Application to Alternating-Current (ac) 
Circuits 361

Equations, Review Exercises, and Practice Test 366

13 Exponential and Logarithmic 
Functions 370

13.1 Exponential Functions 371
13.2 Logarithmic Functions 373
13.3 Properties of Logarithms 377
13.4 Logarithms to the Base 10 382
13.5 Natural Logarithms 385
13.6 Exponential and Logarithmic Equations 388
13.7 Graphs on Logarithmic and  

Semilogarithmic Paper 392
Equations, Review Exercises, and Practice Test 396

14 Additional Types of Equations  
and Systems of Equations 399

14.1 Graphical Solution of Systems of Equations 400
14.2 Algebraic Solution of Systems of Equations 403
14.3 Equations in Quadratic Form 407
14.4 Equations with Radicals 410
Review Exercises and Practice Test 414

15 Equations of Higher Degree 417
15.1 The Remainder and Factor Theorems;  

Synthetic Division 418
15.2 The Roots of an Equation 423
15.3 Rational and Irrational Roots 427
Equations, Review Exercises, and Practice Test 433

16 Matrices; Systems of Linear  
Equations 435

16.1 Matrices: Definitions and Basic Operations 436
16.2 Multiplication of Matrices 439
16.3 Finding the Inverse of a Matrix 445
16.4 Matrices and Linear Equations 449
16.5 Gaussian Elimination 454
16.6 Higher-Order Determinants 457
Equations, Review Exercises, and Practice Test 463

17 Inequalities 467
17.1 Properties of Inequalities 468
17.2 Solving Linear Inequalities 472
17.3 Solving Nonlinear Inequalities 476



 CONTENTS IX

17.4 Inequalities Involving Absolute Values 482
17.5 Graphical Solution of Inequalities with  

Two Variables 485
17.6 Linear Programming 488
Equations, Review Exercises, and Practice Test 492

18 Variation 495
18.1 Ratio and Proportion 496
18.2 Variation 500
Equations, Review Exercises, and Practice Test 506

19 Sequences and The Binomial  
Theorem 510

19.1 Arithmetic Sequences 511
19.2 Geometric Sequences 516
19.3 Infinite Geometric Series 520
19.4 The Binomial Theorem 523
Equations, Review Exercises, and Practice Test 528

20 Additional Topics in Trigonometry 531
20.1 Fundamental Trigonometric Identities 532
20.2 The Sum and Difference Formulas 537
20.3 Double-Angle Formulas 542
20.4 Half-Angle Formulas 545
20.5 Solving Trigonometric Equations 548
20.6 The Inverse Trigonometric Functions 553
Equations, Review Exercises, and Practice Test 558

21 Plane Analytic Geometry 562
21.1 Basic Definitions 563
21.2 The Straight Line 567
21.3 The Circle 573
21.4 The Parabola 578
21.5 The Ellipse 582
21.6 The Hyperbola 587
21.7 Translation of Axes 593
21.8 The Second-Degree Equation 596
21.9 Rotation of Axes 599
21.10 Polar Coordinates 603
21.11 Curves in Polar Coordinates 606
Equations, Review Exercises, and Practice Test 610

22 Introduction to Statistics 615
22.1 Tabular and Graphical Representation  

of Data 616

22.2 Summarizing Data 620
22.3 Normal Distributions 628
22.4 Confidence Intervals 634
22.5 Statistical Process Control 640
22.6 Linear Regression 646
22.7 Nonlinear Regression 651
Equations, Review Exercises, and Practice Test 654

23 The Derivative 659
23.1 Limits 660
23.2 The Slope of a Tangent to a Curve 669
23.3 The Derivative 673
23.4 The Derivative as an Instantaneous  

Rate of Change 677
23.5 Derivatives of Polynomials 682
23.6 Derivatives of Products and Quotients of 

Functions 686
23.7 The Derivative of a Power of a Function 690
23.8 Differentiation of Implicit Functions 699
23.9 Higher Derivatives 702
Equations, Review Exercises, and Practice Test 706

24 Applications of the Derivative 711
24.1 Tangents and Normals 712
24.2 Newton’s Method for Solving Equations 714
24.3 Curvilinear Motion 718
24.4 Related Rates 722
24.5 Using Derivatives in Curve Sketching 727
24.6 More on Curve Sketching 732
24.7 Applied Maximum and Minimum Problems 737
24.8 Differentials and Linear Approximations 743
Equations, Review Exercises, and Practice Test 747

25 Integration 752
25.1 Antiderivatives 753
25.2 The Indefinite Integral 755
25.3 The Area Under a Curve 760
25.4 The Definite Integral 765
25.5 Numerical Integration:  

The Trapezoidal Rule 768
25.6 Simpson’s Rule 771
Equations, Review Exercises, and Practice Test 774

26 Applications of Integration 777
26.1 Applications of the Indefinite Integral 778
26.2 Areas by Integration 782



X CONTENTS

26.3 Volumes by Integration 788
26.4 Centroids 793
26.5 Moments of Inertia 799
26.6 Other Applications 804
Equations, Review Exercises, and Practice Test 809

27 Differentiation of Transcendental 
Functions 814

27.1 Derivatives of the Sine and Cosine  
Functions 815

27.2 Derivatives of the Other Trigonometric 
Functions 819

27.3 Derivatives of the Inverse Trigonometric 
Functions 822

27.4 Applications 825
27.5 Derivative of the Logarithmic Function 830
27.6 Derivative of the Exponential Function 834
27.7 L’Hospital’s Rule 837
27.8 Applications 841
Equations, Review Exercises, and Practice Test 844

28 Methods of Integration 849
28.1 The General Power Formula 850
28.2 The Basic Logarithmic Form 852
28.3 The Exponential Form 856
28.4 Basic Trigonometric Forms 859
28.5 Other Trigonometric Forms 863
28.6 Inverse Trigonometric Forms 867
28.7 Integration by Parts 871
28.8 Integration by Trigonometric  

Substitution 876
28.9 Integration by Partial Fractions:  

Nonrepeated Linear Factors 879
28.10 Integration by Partial Fractions:  

Other Cases 883
28.11 Integration by Use of Tables 888
Equations, Review Exercises, and Practice Test 891

29 Partial Derivatives and Double 
Integrals 895

29.1 Functions of Two Variables 896
29.2 Curves and Surfaces in Three Dimensions 899

29.3 Partial Derivatives 905
29.4 Double Integrals 909
Equations, Review Exercises, and Practice Test 913

30 Expansion of Functions in Series 915
30.1 Infinite Series 916
30.2 Maclaurin Series 919
30.3 Operations with Series 923
30.4 Computations by Use of Series Expansions 928
30.5 Taylor Series 931
30.6 Introduction to Fourier Series 934
30.7 More About Fourier Series 940
Equations, Review Exercises, and Practice Test 945

31 Differential Equations 949
31.1 Solutions of Differential Equations 950
31.2 Separation of Variables 952
31.3 Integrating Combinations 955
31.4 The Linear Differential Equation  

of the First Order 957
31.5 Numerical Solutions of First-Order  

Equations 960
31.6 Elementary Applications 963
31.7 Higher-Order Homogeneous Equations 969
31.8 Auxiliary Equation with Repeated  

or Complex Roots 973
31.9 Solutions of Nonhomogeneous Equations 977
31.10 Applications of Higher-Order Equations 982
31.11 Laplace Transforms 989
31.12 Solving Differential Equations by Laplace 

Transforms 994
Equations, Review Exercises, and Practice Test 998

Appendix A Solving Word Problems A.1
Appendix B A Table of Integrals A.2
Answer to Odd-Numbered Exercises B.1
Solutions to Practice Test Problems C.1
Index of Applications D.1
Index of Writing Exercises D.10
Index  D.12



  XI

Preface

Basic Technical Mathematics with Calculus, SI Version, tenth edition, is intended pri-
marily for students in technical and pre-engineering technology programs or other pro-
grams for which coverage of basic mathematics is required. Chapters 1 through 20 
provide the necessary background for further study, with an integrated treatment of 
 algebra and trigonometry. Chapter 21 covers the basic topics of analytic geometry, and 
Chapter 22 gives an introduction to statistics. Fundamental topics of calculus are cov-
ered in Chapters 23 through 31. In the examples and exercises, numerous applications 
from many fields of technology are included, primarily to indicate where and how 
mathematical techniques are used. However, it is not necessary that the student have a 
specific knowledge of the technical area from which any given problem is taken.

Most students using this text will have a background that includes some algebra and 
geometry. However, the material is presented in adequate detail for those who may 
need more study in these areas. The material presented here is sufficient for three to 
four semesters.

One of the principal reasons for the arrangement of topics in this text is to present 
material in an order that allows a student to take courses concurrently in allied technical 
areas, such as physics and electricity. These allied courses normally require a student to 
know certain mathematical topics by certain definite times; yet the traditional order of 
topics in mathematics courses makes it difficult to attain this coverage without loss of 
continuity. However, the material in this book can be rearranged to fit any appropriate 
sequence of topics. Another feature of this text is that certain topics traditionally 
 included for mathematical completeness have been covered only briefly or have been 
omitted. The approach used in this text is not unduly rigorous mathematically, although 
all appropriate terms and concepts are introduced as needed and given an intuitive or 
algebraic foundation. The aim is to help the student develop an understanding of math-
ematical methods without simply providing a collection of formulas. The text material 
has been developed with the recognition that it is essential for the student to have a 
sound background in algebra and trigonometry in order to understand and succeed in 
any subsequent work in mathematics.

Scope of the Book

New Features In this tenth edition of Basic Technical Mathematics with Calculus, SI Version, we 
have retained all the basic features of successful previous editions and have also intro-
duced a number of improvements, described here.

NEW AND REVISED COVERAGE
The topics of units and measurement covered in an appendix in the ninth edition have 
been expanded and integrated into Chapter 1, together with new discussions on round-
ing and on engineering notation. Interval notation is introduced in Chapter 3 and is 
used in several sections throughout the text. Chapter 31 includes a new subsection on 
solving nonhomogeneous differential equations using Fourier series.

Chapter 22 has been revised and expanded; a new section on summarizing data covers 
measures of central tendency, measures of spread, and new material on Chebychev’s 
theorem; the section on normal distributions now includes a subsection on sampling 
distributions. In addition, the chapter now includes a completely new section on confi-
dence intervals.

EXPANDED PEDAGOGY

-
sizes valuable warnings against common mistakes or areas where students frequently 

the previous edition.
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-
ful boxes highlight the underlying rationale of using specific mathematical functions 
and encourage students to think strategically about how and why specific mathemati-
cal concepts are needed and applied. They also focus attention on material that is of 
particular importance in understanding the topic under discussion. These boxes replace 

calculations.

FEWER CALCULATOR SCREENS
Many figures involving screens from a graphic calculator have been either removed 
from the text or replaced by regular graphs. The calculator displays that remain are, for 
the most part, related to topics that require the use of technology (such as the graphical 
solution of systems of equations) or topics where technology can greatly simplify a 
process (such as obtaining the inverse of a large matrix). The appendix on graphing cal-
culators from the previous edition dedicated to the graphing calculator will be available 
in Chapter 34 of the Study Plan in both MyMathLab and MathXL versions of this 
course. Students will also have easy access to it through the eText in MyMathLab.

FUNCTIONAL USE OF COLOUR
The new full-colour design of this edition uses colour effectively for didactical pur-
poses. Many figures and graphs have been enhanced with colour. Moreover, colour is 
used to identify and focus attention on the text’s new pedagogical features. Colour is 
also used to highlight the question numbers of writing exercises so that students and 
instructors can identify them easily.

NOTATION
Symbols used in accordance with professional Canadian standards are applied consist-
ently throughout the text.

INCREASED BREADTH OF APPLICATIONS
New examples and exercises have been added in order to increase the range of applica-
tions covered by the text. New material can be found involving statics, fluid mechanics, 
optics, acoustics, cryptography, forestry, reliability, and quality control, to name but a few.

INTERNATIONAL AND CANADIAN CONTENT
New Canadian content appears either in the form of examples within the text (some of 
which are linked to chapter openers, so they are accompanied by a full colour image), 
or as exercises at the end of a section or chapter. All material of global interest has been 
retained or updated, and some new exercises were also added.

LEARNING OUTCOMES
A list of Learning Outcomes appears on the introductory page of each chapter, replac-
ing the list of key topics for each section in the previous edition. This new learning tool 
reflects the current emphasis on learning outcomes and gives the student and instructor 
a quick way of checking that they have covered key contents of the chapter.

Continuing Features EXAMPLE DESCRIPTIONS
A brief descriptive title is given with each example number. This gives an easy refer-
ence for the example, which is particularly helpful when a student is reviewing the 
contents of the section.

PRACTICE EXERCISES
Throughout the text, there are practice exercises in the margin. Most sections have at least 
one (and up to as many as four) of these basic exercises. They are included so that a student 
is more actively involved in the learning process and can check his or her understanding of 
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the material to that point in the section. They can also be used for classroom exercises. The 
answers to these exercises are given at the end of the exercise set for the section.

NEW EXERCISES
More than 300 exercises are new or have been updated. This tenth edition contains a 
total of about 12 500 exercises.

CHAPTER INTRODUCTIONS
Each chapter introduction illustrates specific examples of how the development of 
technology has been related to the development of mathematics. These introductions 
show that past discoveries in technology led to some of the methods in mathematics, 
whereas in other cases mathematical topics already known were later very useful in 
bringing about advances in technology.

SPECIAL EXPLANATORY COMMENTS
Throughout the book, special explanatory comments in colour have been used in the 
examples to emphasize and clarify certain important points. Arrows are often used to 
indicate clearly the part of the example to which reference is made.

IMPORTANT FORMULAS
Throughout the book, important formulas are set off and displayed so that they can be 
easily referenced.

SUBHEADS AND KEY TERMS
Many sections include subheads to indicate where the discussion of a new topic starts 
within the section. Key terms are noted in the margin for emphasis and easy reference.

EXERCISES DIRECTLY REFERENCED TO TEXT EXAMPLES
The first few exercises in most of the text sections are referenced directly to a specific 
example of the section. These exercises are worded so that it is necessary for the stu-
dent to refer to the example in order to complete the required solution. In this way, the 
student should be able to review and understand the text material better before attempt-
ing to solve the exercises that follow.

WRITING EXERCISES
One specific writing exercise is included at the end of each chapter. These exercises 
give the students practice in explaining their solutions. Also, there are more than 400 
additional exercises throughout the book (at least 8 in each chapter) that require at least 
a sentence or two of explanation as part of the answer. The question numbers of writing 

at the back of the book.

WORD PROBLEMS
There are more than 120 examples throughout the text that show the complete solutions 
of word problems. There are also more than 850 exercises in which word problems are 
to be solved.

CHAPTER EQUATIONS, REVIEW EXERCISES, AND PRACTICE TESTS
At the end of each chapter, all important equations are listed together for easy reference. 
Each chapter is also followed by a set of review exercises that covers all the material in 
the chapter. Following the chapter equations and review exercises is a chapter practice 
test that students can use to check their understanding of the material. Solutions to all 
practice test problems are given in the back of the book.

APPLICATIONS
Examples and exercises illustrate the application of mathematics in all fields of tech-
nology. Many relate to modern technology such as computer design, electronics, solar 
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EXAMPLES
There are more than 1400 worked examples in this text. Of these, more than 300 illus-
trate technical applications.

FIGURES
There are more than 1300 figures in the text. Approximately 20% of the figures are 
new or have been modified for this edition.

MARGIN NOTES
Throughout the text, some margin notes briefly point out relevant historical events in 
mathematics and technology. Other margin notes are used to make specific comments 
related to the text material. Also, where appropriate, equations from earlier material are 
shown for reference in the margin.

ANSWERS TO EXERCISES
The answers to all odd-numbered exercises (except the end-of-chapter writing exercises) 
are given at the back of the book.

FLEXIBILITY OF MATERIAL COVERAGE
The order of material coverage can be changed in many places, and certain sections 
may be omitted without loss of continuity of coverage. Users of earlier editions have 
indicated the successful use of numerous variations in coverage. Any changes will de-
pend on the type of course and completeness required.

Supplements SUPPLEMENTS FOR THE STUDENT
Extensively updated by text author Michelle Boué, the Students Solutions Manual con-
tains revised solutions for every other odd-numbered exercise. These step-by-step solu-
tions have been expanded for even greater accuracy, clarity, and consistency to improve 
student problem-solving skills. The Students Solutions Manual is included in MyMathLab  
and is also available as a printed supplement via the Pearson Custom Library. (Please 
contact your local Pearson representative to learn more about this option.)

SUPPLEMENTS FOR THE INSTRUCTOR
Instructor’s resources include the following supplements.

Instructor’s Solutions Manual
The Instructor’s Solution Manual contains detailed solutions to every section exercise, 
 including review exercises. These in-depth, step-by-step solutions have been thoroughly 
 revised by text author Michelle Boué for greater clarity and consistency; note that this ex-
pansion has been carried through to the Student Solutions Manual as well. The Instruc-
tors Solutions Manual can be downloaded from Pearson’s online catalogue at www 
.pearsoned.ca. The Instructor’s Solution Manual contains solutions for all section exercises.

Animated PowerPoint Presentations
More than 150 animated slides are available for download from a protected location on 
Pearson Education’s online catalogue, at www.pearsoned.ca.

Each slide offers a step-by-step mini lesson on an individual section, or key concept, 
formula, or equation from the first 28 chapters of the book. For instance, 15 steps for 
using the “General Power Formula for Integration” are beautifully illustrated in the ani-
mated slide for Chapter 28. There are two sets of slides for “Operations with Complex 
Numbers” for section 2 of Chapter 12; the 9 steps to perform addition are shown on one 
slide, and the 13 steps to perform subtraction appear on the second slide.

These animated slides offer bite-sized chunks of key information for students to re-
view and process prior to going to the homework questions for practice. Please note 
that not every section in every chapter is accompanied by an animated slide as some 
topics lend themselves to this approach more than others. These PowerPoint slide are 
also integrated in the Pearson eText within MyMathLab.

http://www.pearsoncanada.ca
http://www.pearsoncanada.ca
http://www.pearsoncanada.ca
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TestGen with Algorithmically Generated Questions
Instructors can easily create tests from textbook section objectives. Algorithmically 
generated questions allow unlimited versions. Instructors can edit problems or create 
their own by using the built-in question editor to generate graphs; import graphics; and 
insert math notation, variable numbers, or text. Tests can be printed or administered 
online via the Web or other network.

MyMathLab® Online Course
MyMathLab delivers proven results in helping individual students succeed:

education math instruction. MyMathLab can be successfully implemented in any 
environment—lab-based, hybrid, fully online, traditional—and demonstrates the 
quantifiable difference that integrated usage has on student retention, subsequent 
success, and overall achievement.

-
sults on tests, quizzes, and homework and in the study plan. You can use the grade-
book to quickly intervene if your students have trouble or to provide positive feed-
back on a job well done. The data within MyMathLab is easily exported to a variety 
of spreadsheet programs, such as Microsoft Excel. You can determine which points 
of data you want to export and then analyze the results to determine success.

MyMathLab provides engaging experiences that personalize, stimulate, and measure 
learning for each student:

Exercises: The homework and practice exercises in MyMathLab are correlated to 
the exercises in the textbook, and they regenerate algorithmically to give students 
unlimited opportunity for practice and mastery. The software offers immediate, 
helpful feedback when students enter incorrect answers.
Multimedia learning aids: Exercises include guided solutions, sample problems, 
animations, videos, and eText clips for extra help at point-of-use.
Expert tutoring: Although many students describe the whole of MyMathLab as 

to live tutoring from Pearson, from qualified mathematics and statistics instructors 
who  provide tutoring sessions for students via MyMathLab.

And MyMathLab comes from a trusted partner with educational expertise and an eye 
on the future:

-
ity content. Our eTexts are accurate, and our assessment tools work. Whether you are 
just getting started with MyMathLab or have a question along the way, we’re here to 
help you learn about our technologies and how to incorporate them into your course.

To learn more about how MyMathLab combines proven learning applications with pow-
erful assessment, visit www.mymathlab.com or contact your Pearson representative.

MathXL® Online Course
MathXL® is the homework and assessment engine that runs MyMathLab. (MyMathLab 
is MathXL plus a learning management system.) With MathXL, instructors can:

exercises correlated at the objective level to the textbook.

flexibility.

With MathXL, students can:
-

ized homework assignments based on their test results.

objectives they need to study.

http://www.mymathlab.com
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MathXL is available to qualified adopters. For more information, visit our website, at 
www.mathxl.com, or contact your Pearson representative.

Pearson Custom Library
For enrollments of at least 25 students, you can create your own textbook by choosing 
the chapters that best suit your own course needs. To begin building your custom text, 
visit www.pearsoncustomlibrary.com. You may also work with a dedicated Pearson 
Custom editor to create your ideal text—publishing your own original content or mixing 
and matching Pearson content. Contact your local Pearson representative to get started.

CourseSmart for Instructors
CourseSmart goes beyond traditional expectations—providing instant, online access to 
textbooks and course materials. You can save time and hassle with a digital eTextbook 
that allows you to search for the most relevant content at the very moment you need it. 
Whether it’s evaluating textbooks or creating lecture notes to help students with diffi-
cult concepts, CourseSmart can make life a little easier. See how by visiting www 
.coursesmart.com/instructors.

The team at Pearson Canada—Gary Bennett, Laura Armstrong, Cathleen Sullivan, Mary 
Wat, Michelle Bish—made this new edition possible.

Also of great assistance during the production of this edition were Kimberley 
Blakey; Heidi Allgair; Kitty Wilson, copyeditor; Denne Wesolowski, proofreader; and 
Robert Brooker, tech checker.

The authors gratefully acknowledge the contributions of the following reviewers, 
whose detailed comments and many suggestions were of great assistance in preparing 
this tenth edition:

Robert Connolly
Algonquin College

David Zeng
DeVry Institute of Technology
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1

 Late in the 1800s, scientists were 
studying the nature of light. This led 
to a mathematical prediction of the 
existence of radio waves, now used in 
many types of communication. Also, 
in the 1900s and 2000s, mathematics 
has been vital to the development of 
electronics and space travel.

Basic Algebraic 
Operations

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Identify real, imaginary, 
rational, and irrational  
numbers

 Perform mathematical 
operations on integers, 
decimals, fractions, and 
radicals

 Use the fundamental laws 
of algebra in numeric and 
algebraic equations

 Employ mathematical order  
of operations

 Understand technical 
measurement and 
approximation, as well as the 
use of significant digits and 
rounding

 Use scientific and engineering 
notations

 Convert units of measurement
 Rearrange and solve basic 

algebraic expressions
 Interpret word problems using 

algebraic symbols

Interest in things such as the land on which they lived, the structures they built, and the 
motion of the planets led people in early civilizations to keep records and to create meth-
ods of counting and measuring. In turn, some of the early ideas of arithmetic, geometry, 

and trigonometry were developed. From such beginnings, mathematics has played a key role 
in the great advances in science and technology.

Often, mathematical methods were developed from studies made in sciences, such as astron-
omy and physics, to better describe, measure, and understand the subject being studied. Some 
of these methods resulted from the needs in a particular area of application.

Many people were interested in the mathematics itself and added to what was then known. 
Although this additional mathematical knowledge may not have been related to applications 
at the time it was developed, it often later became useful in applied areas.

In the chapter introductions that follow, examples of the interaction of technology and math-
ematics are given. From these examples and the text material, it is hoped you will better 
understand the important role that mathematics has had and still has in technology. In this 
text, there are applications from technologies including (but not limited to) aeronautical, busi-
ness, communications, electricity, electronics, engineering, environmental, heat and air con-
ditioning, mechanical, medical, meteorology, petroleum, product design, solar, and space. To 
solve the applied problems in this text will require a knowledge of the mathematics presented 
but will not require prior knowledge of the field of application.

We begin by reviewing the concepts that deal with numbers and symbols. This will enable us 
to develop topics in algebra, an understanding of which is essential for progress in other areas 
such as geometry, trigonometry, and calculus.

1

 The Great Pyramid at Giza in Egypt 
was built about 4500 years ago.

 In the 1500s, 1600s, and 1700s, discoveries 
in astronomy and the need for more accurate 
maps and instruments in navigation were 
very important in leading scientists and 
mathematicians to develop useful new ideas 
and methods in mathematics.
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2 CHAPTER 1 Basic Algebraic Operations

In technology and science, as well as in everyday life, we use the very familiar count-
ing numbers 1, 2, 3, and so on. They are also called natural numbers or positive 
integers. The negative integers -1, -2, -3, and so on are also very necessary and 
useful in mathematics and its applications. The integers include the positive integers 
and the negative integers and zero, which is neither positive nor negative. This means 
the integers are the numbers c, -3, -2, -1, 0, 1, 2, 3, and so on.

To specify parts of a quantity, rational numbers are used. A rational number is any 
number that can be represented by the division of one integer by another nonzero inte-
ger. Another type of number, an irrational number, cannot be written as the division 
of one integer by another.

 EXAMPLE  1  Identifying rational numbers and irrational numbers

The numbers 5 and -19 are integers. They are also rational numbers since they can be 
written as 5

1 and - 19
1 , respectively. Normally, we do not write the 1’s in the 

denominators.
The numbers 58 and - 11

3  are rational numbers because the numerator and the denomi-
nator of each are integers.

The numbers 12 and p are irrational numbers. It is not possible to find two inte-
gers, one divided by the other, to represent either of these numbers. It can be shown 
that square roots (and other roots) that cannot be expressed exactly in decimal form are 
irrational. Also, 22

7  is sometimes used as an approximation for p, but it is not equal 
exactly to p. We must remember that 22

7  is rational and p is irrational.
The decimal number 1.5 is rational since it can be written as 3

2. Any such terminat-
ing decimal is rational. The number 0.6666 c, where the 6’s continue on indefinitely, 
is rational since we may write it as 23. In fact, any repeating decimal (in decimal form, a 
specific sequence of digits is repeated indefinitely) is rational. The decimal number 
0.673 273 273 2 cis a repeating decimal where the sequence of digits 732 is repeated 
indefinitely 10.673 273 273 2 c = 1121

16652 . ■

The integers, the rational numbers, and the irrational numbers, including all such 
numbers that are positive, negative, or zero, make up the real number system (see 
Fig. 1.1). There are times we will encounter an imaginary number, the name given to 
the square root of a negative number. Imaginary numbers are not real numbers and will 
be discussed in Chapter 12. However, unless specifically noted, we will use real num-
bers. Until Chapter 12, it will be necessary to only recognize imaginary numbers when 
they occur.

Also in Chapter 12, we will consider complex numbers, which include both the real 
numbers and imaginary numbers. See Exercise 37 of this section.

 EXAMPLE  2  Identifying real numbers and imaginary numbers

The number 7 is an integer. It is also rational since 7 = 7
1, and it is a real number since 

the real numbers include all the rational numbers.
The number 3p is irrational, and it is real since the real numbers include all the irra-

tional numbers.
The numbers 1-10 and - 1-7 are imaginary numbers.
The number - 3

7  is rational and real. The number - 17 is irrational and real.
The number p6  is irrational and real. The number 1- 3

2  is imaginary. ■

A fraction may contain any number or symbol representing a number in its numer-
ator or in its denominator. The fraction indicates the division of the numerator by the 
denominator, as we previously indicated in writing rational numbers. Therefore, a frac-
tion may be a number that is rational, irrational, or imaginary. A fraction can represent 
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■ Irrational numbers were discussed by the 
Greek mathematician Pythagoras in about  
540 B.C.E.

A notation that is often used for 
repeating decimals is to place a bar 
over the digits that repeat. Using this 
notation we can write
1121
1665 = 0.6732 and 2

3 = 0.6

LEARNING T IP

Real Numbers

Rational
numbers

Integers

Irrational
numbers

Fig. 1.1 

■ Real numbers and imaginary numbers are 
both included in the complex number system. 
See Exercise 37.

■ Fractions were used by early Egyptians and 
Babylonians. They were used for calculations 
that involved parts of measurements, property, 
and possessions.
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a part of a whole, and sometimes it can represent the number of equal-sized parts that a 
whole is divided into. For example, in Fig. 1.2, a whole circle has been divided into 
eight equal pieces. The shaded portion represents five of those eight pieces, or 5/8 of 
the whole circle.

 EXAMPLE  3  Fractions

The numbers 27 and - 3
2  are fractions, and they are rational.

The numbers  12
9  and 6

p are fractions, but they are not rational numbers. It is not pos-
sible to express either as one integer divided by another integer.

The number 1- 5
6  is a fraction, and it is an imaginary number. ■

Real numbers may be represented by points on a line. We draw a horizontal line and 
designate some point on it by O, which we call the origin (see Fig. 1.3). The integer 
zero is located at this point. Equal intervals are marked to the right of the origin, and 
the positive integers are placed at these positions. The other positive rational numbers 
are located between the integers. The points that cannot be defined as rational numbers 
represent irrational numbers. We cannot tell whether a given point represents a rational 
number or an irrational number unless it is specifically marked to indicate its value.

Fig. 1.2 

The Number Line

Fig. 1.3 

−π
π2−√11 1.7− 26

5
19
4

4
9

−6 −5 −4 −3 −2 −1 10

OriginNegative direction Positive direction

2 3 4 5 6

The negative numbers are located on the number line by starting at the origin and 
marking off equal intervals to the left, which is the negative direction. As shown in 
Fig. 1.3, the positive numbers are to the right of the origin and the negative numbers 
are to the left of the origin. Representing numbers in this way is especially useful for 
graphical methods.

We next define another important concept of a number. The absolute value of a 
number is the numerical value (magnitude) of the number without regard to its sign. 
The absolute value of a positive number is the number itself, and the absolute value of 
a negative number is just the number, without the negative sign. On the number line, 
we may interpret the absolute value of a number as the distance (which is always posi-
tive) between the origin and the number. Absolute value is denoted by writing the num-
ber between vertical lines, as shown in the following example.

 EXAMPLE  4  Absolute value

The absolute value of 6 is 6, and the absolute value of -7 is 7. We write these as 0 6 0 = 6 and 0 -7 0 = 7. See Fig. 1.4.
Practice Exercises

1. 0 -4.2 0 = ? 2. - ` - 3
4
` = ?

0−4 4 8−8

6 units7 units
∣−7∣ = 7 ∣6∣ = 6

Fig. 1.4 

Other examples are 0 75 0 = 7
5, 0 - 12 0 = 12, 0 0 0 = 0, - 0p 0 = -p, 0 -5.29 0 = 5.29, 

- 0 -9 0 = -9 since 0 -9 0 = 9. ■
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On the number line, if a first number is to the right of a second number, then the first 
number is said to be greater than the second. If the first number is to the left of the sec-
ond, it is less than the second number. The symbol 7  designates “is greater than,” and the 
symbol 6  designates “is less than.” These are called signs of inequality. See Fig. 1.5.

 EXAMPLE  5  Signs of inequality

■ The symbols = , 6 , and 7  were introduced 
by English mathematicians in the late 1500s.

Practice Exercises

Place the correct sign of inequality (6  or 7 ) 
between the given numbers.
3. -5 4  4. 0 -3

 Fig. 1.5 ■

0−4 4 62−2

3 is to the
left of 6

2 is to the 
right of −4

2 > −4 3 < 6

0 > −45 < 9 −3 > −7 −1 < 0

Pointed toward smaller number

Every number, except zero, has a reciprocal. The reciprocal of a number is 1 
divided by the number.

 EXAMPLE  6  Reciprocal

The reciprocal of 7 is 17. The reciprocal of 23 is

1
2
3

= 1 * 3
2

=
3
2

  invert denominator and multiply (from arithmetic)

The reciprocal of 0.5 is 1
0.5 = 2. The reciprocal of -p is - 1

p. Note that the negative 
sign is retained in the reciprocal of a negative number.

We showed the multiplication of 1 and 3
2 as 1 * 3

2. We could also show it as 1 #  32  
or 113

22 . We will often find the form with parentheses is preferable. ■

In applications, numbers that represent a measurement and are written with units of 
measurement are called denominate numbers. The next example illustrates the use of 
units and the symbols that represent them.

 EXAMPLE  7  Denominate numbers

To show that a certain HDTV set has mass of 28 kilograms, we write the mass as 
28 kg.

To show that a giant redwood tree is 110 metres high, we write the height as 
110 m.

To show that the speed of a rocket is 1500 metres per second, we write the speed as 
1500 m>s. (Note the use of s for second. We use s rather than sec.)

To show that the area of a computer chip is 0.75 square centimetres, we write the 
area as 0.75 cm2. (We will not use sq cm.)

To show that the volume of water in a glass tube is 25 cubic centimetres, we write 
the volume as 25 cm3. (We will not use cu cm or cc.) ■

It is usually more convenient to state definitions and operations on numbers in a 
general form. To do this, we represent the numbers by letters, called literal numbers. 
For example, if we want to say “If a first number is to the right of a second number on 
the number line, then the first number is greater than the second number,” we can write 
“If a is to the right of b on the number line, then a 7 b.” Another example of using a 
literal number is “The reciprocal of n is 1>n.”

Certain literal numbers may take on any allowable value, whereas other literal num-
bers represent the same value throughout the discussion. Those literal numbers that 
may vary in a given problem are called variables, and those literal numbers that are 
held fixed are called constants.

■ For reference, see Section 1.3 for units of 
measurement and the symbols used for them.

Literal Numbers
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 EXAMPLE  8  Variables and constants

(a) The resistance of an electric resistor is R. The current I in the resistor equals the 
voltage V  divided by R, written as I = V>R. For this resistor, I and V  may take on 
various values, and R is fixed. This means I and V  are variables and R is a con-
stant. For a different resistor, the value of R may differ.

(b) The fixed cost for a calculator manufacturer to operate a certain plant is b dollars 
per day, and it costs a dollars to produce each calculator. The total daily cost C to 
produce n calculators is

C = an + b

Here, C and n are variables, and a and b are constants, and the product of a and n is 
shown as an. For another plant, the values of a and b would probably differ.

If specific numerical values of a and b are known, say a = $7 per calculator and 
b = $3000, then C = 7a + 3000. Thus, constants may be numerical or literal. ■

EXERCISES 1.1

In Exercises 1–4, make the given changes in the indicated examples of 
this section, and then answer the given questions.

 1. In the first line of Example 1, change the 5 to -3 and the -19 to 
14. What other changes must then be made in the first paragraph?

 2. In Example 4, change the 6 to -6. What other changes must then 
be made in the first paragraph?

 3. In the left figure of Example 5, change the 2 to -6. What other 
changes must then be made?

 4. In Example 6, change the 23 to 32. What other changes must then be 
made?

In Exercises 5 and 6, designate each of the given numbers as being an 
integer, rational, irrational, real, or imaginary. (More than one 
designation may be correct.)

 5. 3, 1-4, -p

6
 6. - 1-6, -2.33, 

17
3

In Exercises 7 and 8, find the absolute value of each number.

 7. 3, -4, -p

2
 8. -0.857, 12, - 19

4

In Exercises 9–16, insert the correct sign of inequality (7  or 6 ) 
between the given numbers.

 9. 6  8 10. 7  5

11. p  -3.2 12. -4  0

13. -4  - 0 -3 0  14. - 12  -1.42

15. - 1
3

  - 1
2

 16. -0.6  0.2

In Exercises 17 and 18, find the reciprocal of each number.

17. 3, - 413
, 

y

b
 18. - 1

3
, -0.25, x

In Exercises 19 and 20, locate each number on a number line, as in 
Fig. 1.3.

19. 2.5, - 12
5

, 13 20. - 12
2

, 2p, 
123
19

In Exercises 21–44, solve the given problems. Refer to Fig. 1.9 for 
units of measurement and their symbols.

21. Is an absolute value always positive? Explain.

22. Is 2.17 rational? Explain.

23. What is the reciprocal of the reciprocal of any positive or negative 
number?

24. Find a rational number between -0.9 and -1.0 that can be writ-
ten with a denominator of 11 and an integer in the numerator.

25. Find a rational number between 0.13 and 0.14 that can be written 
with a numerator of 3 and an integer in the denominator.

26. If b 7 a and a 7 0, is 0 b - a 0 6 0 b 0 - 0 a 0 ?
27. List the following numbers in numerical order, starting with the 

smallest: -1, 9, p, 15, 0 -8 0 , - 0 -3 0 , -3.5.

28. List the following numbers in numerical order, starting with the 
smallest: - 1

5 , - 110, - 0 -6 0 , -4, 0.25, 0 -p 0 .
29. If a and b are positive integers and b 7 a, what type of number is 

represented by the following?

  (a) b - a  (b) a - b   (c) 
b - a
b + a

30. If a and b represent positive integers, what kind of number is rep-
resented by (a) a + b, (b) a>b, and (c) a * b?

31. For any positive or negative integer: (a) Is its absolute value 
always an integer? (b) Is its reciprocal always a rational number?

32. For any positive or negative rational number: (a) Is its absolute 
value always a rational number? (b) Is its reciprocal always a 
rational number?

33. Describe the location of a number x on the number line when  
(a) x 7 0 and (b) x 6 -4.
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34. Describe the location of a number x on the number line when  
(a) 0 x 0 6 1 and (b) 0 x 0 7 2.

35. For a number x 7 1, describe the location on the number line of 
the reciprocal of x.

36. For a number x 6 0, describe the location on the number line of 
the number with a value of 0 x 0 .

37. A complex number is defined as a + bj, where a and b are real 
numbers and j = 1-1. For what values of a and b is the com-
plex number a + bj a real number? (All real numbers and all 
imaginary numbers are also complex numbers.)

38. A sensitive gauge measures the total weight w of a container and 
the water that forms in it as vapor condenses. It is found that 
w = c10.1t + 1, where c is the weight of the container and t is 
the time of condensation. Identify the variables and constants.

39. In an electric circuit, the reciprocal of the total capacitance of two 
capacitors in series is the sum of the reciprocals of the capaci-
tances. Find the total capacitance of two capacitances of 0.0040 F 
and 0.0010 F connected in series.

40. Alternating-current (ac) voltages change rapidly between positive 
and negative values. If a voltage of 100 V changes to -200 V, 
which is greater in absolute value?

41. The memory of a certain computer has a bits in each byte. 
Express the number N of bits in n kilobytes in an equation. (A bit 
is a single digit, and bits are grouped in bytes in order to represent 
special characters. Generally, there are 8 bits per byte. If neces-
sary, see Fig. 1.10 for the meaning of kilo.)

42. The computer design of the base of a truss is x m long. Later it is 
redesigned and shortened by y cm. Give an equation for the 
length L, in centimetres, of the base in the second design.

43. In a laboratory report, a student wrote “-20°C 7 -30°C.” Is this 
statement correct? Explain.

44. After 5 s, the pressure on a valve is less than 600 kPa. Using t to 
represent time and p to represent pressure, this statement can be 
written “for t 7 5 s, p 6 600 kPa.” In this way, write the state-
ment “when the current I in a circuit is less than 4 A, the voltage 
V is greater than 12 V.”

Answers to Practice Exercises

1. 4.2 2. - 3
4

 3. 6  4. 7

If two numbers are added, it does not matter in which order they are added. (For exam-
ple, 5 + 3 = 8 and 3 + 5 = 8, or 5 + 3 = 3 + 5.) This statement, generalized and 
accepted as being correct for all possible combinations of numbers being added, is 
called the commutative law for addition. It states that the sum of two numbers is the 
same, regardless of the order in which they are added. We make no attempt to prove 
this law in general, but accept that it is true.

In the same way, we have the associative law for addition, which states that the sum 
of three or more numbers is the same, regardless of the way in which they are grouped 
for addition. For example, 3 + 15 + 62 = 13 + 52 + 6.

The laws just stated for addition are also true for multiplication. Therefore, the prod-
uct of two numbers is the same, regardless of the order in which they are multiplied, 
and the product of three or more numbers is the same, regardless of the way in which 
they are grouped for multiplication. For example, 2 * 5 = 5 * 2, and 
5 * 14 * 22 = 15 * 42 * 2.

Another very important law is the distributive law. It states that the product of one 
number and the sum of two or more other numbers is equal to the sum of the products 
of the first number and each of the other numbers of the sum. For example,

514 + 22 = 5 * 4 + 5 * 2

In this case, it can be seen that the total is 30 on each side.
In practice, these fundamental laws of algebra are used naturally without thinking 

about them, except perhaps for the distributive law.
Not all operations are commutative and associative. For example, division is not 

commutative, since the order of division of two numbers does matter. For instance, 
6
5 ≠ 5

6 (≠  is read “does not equal”). (Also, see Exercise 50.)
Using literal numbers, the fundamental laws of algebra are as follows:

Commutative law of addition: a + b = b + a
Associative law of addition: a + (b + c) = (a + b) + c
Commutative law of multiplication: ab = ba

 1.2 Fundamental Operations of Algebra
 

Operations on Positive and Negative 
 

Operations with Zero

The Commutative and  
Associative Laws

The Distributive Law

■ Note carefully the difference:  
associative law: 5 * 14 * 22   
distributive law: 5 * 14 + 22
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Associative law of multiplication: a(bc) = (ab)c
Distributive law: a(b + c) = ab + ac

Each of these laws is an example of an identity, in that the expression to the left of  
the =  sign equals the expression to the right for any value of each of a, b, and c.

OPERATIONS ON POSITIVE AND NEGATIVE NUMBERS
When using the basic operations (addition, subtraction, multiplication, division) on 
positive and negative numbers, we determine the result to be either positive or negative 
according to the following rules.

Addition of two numbers of the same sign Add their absolute values and assign 
the sum their common sign.

 EXAMPLE  1  Adding numbers of the same sign

(a) 2 + 6 = 8 the sum of two positive numbers is positive

(b) -2 + 1 -62 = - 12 + 62 = -8 the sum of two negative numbers is negative

 The negative number -6 is placed in parentheses since it is also preceded by a plus 
sign showing addition. It is not necessary to place the -2 in parentheses. ■

Addition of two numbers of different signs Subtract the number of smaller abso-
lute value from the number of larger absolute value and assign to the result the sign 
of the number of larger absolute value. Alternatively, one can visualize addition us-
ing the number line concept discussed in Section 1.1. Start with the number line loca-
tion of the !rst number in the addition problem. Then, if you add a positive number, 
move right along the number line to the total. If you add a negative number, move left 
along the number line until you arrive at the solution.

 EXAMPLE  2  Adding numbers of different signs

(a)  2 + 1 -62 = - 16 - 22 = -4 
the negative 6 has the larger absolute value

(b)  -6 + 2 = - 16 - 22 = -4

(c)  6 + 1 -22 = 6 - 2 = 4  
the positive 6 has the larger absolute value

(d)  -2 + 6 = 6 - 2 = 4

   the subtraction of absolute values ■

Subtraction of one number from another Change the sign of the number being 
subtracted and change the subtraction to addition. Perform the addition.

 EXAMPLE  3  Subtracting positive and negative numbers

(a) 2 - 6 = 2 + 1 -62 = - 16 - 22 = -4

  Note that after changing the subtraction to addition, and changing the sign of 6 to 
make it -6, we have precisely the same illustration as Example 2(a).

(b) -2 - 6 = -2 + 1 -62 = - 12 + 62 = -8

  Note that after changing the subtraction to addition, and changing the sign of 6 to 
make it -6, we have precisely the same illustration as Example 1(b).

(c) -a - 1 -a2 = -a + a = 0

  This shows that subtracting a number from itself results in zero, even if the number 
is negative. Therefore, subtracting a negative number is equivalent to adding a 
positive number of the same absolute value. ■

Multiplication and division of two numbers The product (or quotient) of two num-
bers of the same sign is positive. The product (or quotient) of two numbers of differ-
ent signs is negative.

■ From Section 1.1, we recall that a positive 
number is preceded by no sign. Therefore, in 
using these rules, we show the “sign” of a 
positive number by simply writing the number 
itself.

Subtraction of a  
Negative Number
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 EXAMPLE  4  

(a)  31122 = 3 * 12 = 36  
12
3

= 4     
result is positive if both 
numbers are positive

(b)  -31 -122 = 3 * 12 = 36  
-12
-3

= 4     
result is positive if both 
numbers are negative

(c)  31 -122 = - 13 * 122 = -36  
-12

3
= - 12

3
= -4     

result is negative if one 
number is positive and 
the other is negative

(d)  -31122 = - 13 * 122 = -36  
12
-3

= - 12
3

= -4 ■ 

When mathematical operation symbols separate a series of numbers in an expression, it 
is important to follow an unambiguous order for completing those operations.

Order of Operations
1.  Perform operations within specific groupings first—that is, inside parentheses  

( ), brackets [ ], or absolute values % % .

2.  Exponents and roots/radicals are evaluated next.  
These will be discussed in Section 1.4 and Section 1.6, respectively.

3. Perform multiplications and divisions (from left to right).

4. Perform additions and subtractions (from left to right).

 EXAMPLE  5  Order of operations

(a) 20 , 12 + 32  is evaluated by first adding 2 + 3 and then dividing. The grouping 
of 2 + 3 is clearly shown by the parentheses. Therefore,  
20 , 12 + 32 = 20 ,  5 = 4.

(b) 20 , 2 + 3 is evaluated by first dividing 20 by 2 and then adding. No specific 
grouping is shown, and therefore the division is done before the addition. This 
means 20 , 2 + 3 = 10 + 3 = 13.

(c) 16 - 2 * 3 is evaluated by first multiplying 2 by 3 and then subtracting. We do 
not first subtract 2 from 16. Therefore, 16 - 2 * 3 = 16 - 6 = 10.

(d) 16 , 2 * 4 is evaluated by first dividing 16 by 2 and then multiplying. From left 
to right, the division occurs first. Therefore, 16 , 2 * 4 = 8 * 4 = 32.

(e) % 3 - 5 % - % -3 - 6 %  is evaluated by first performing the subtractions within the 
absolute value vertical bars, then evaluating the absolute values, and then subtracting. 
This means that % 3 - 5 % - % -3 - 6 % = % -2 % - % -9 % = 2 - 9 = -7. ■

■ Note that 20 , 12 + 32 = 20
2 + 3, whereas

20 , 2 + 3 = 20
2 + 3.

Practice Exercises

Evaluate: 1. 12 - 6 , 2
2. 16 , 12 * 42

Remember that order of operations takes precedence over perceived left-to-right sequences 
of operators.

20 + 10 , 5 is evaluated by first dividing 10 by 5, then adding the result to 20.

20 + 10 , 5 = 20 + 2 = 22 is evaluated correctly.

A common error would be to perform the addition first:

20 + 10 , 5 ≠ 30 , 5 = 6

COMMON ERROR

When evaluating expressions, it is generally more convenient to change the opera-
tions and numbers so that the result is found by the addition and subtraction of positive 
numbers. When this is done, we must remember that
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 EXAMPLE  6  Evaluating numerical expressions

(a) 7 + 1 -32 - 6 = 7 - 3 - 6 = 4 - 6 = -2 using Eq. (1.1)

(b) 
18
-6

+ 5 - 1 -22 132 = -3 + 5 - 1 -62 = 2 + 6 = 8  using Eq. (1.2)

(c) 
% 3 - 15 %

-2
- 8

4 - 6
=

12
-2

- 8
-2

= -6 - 1 -42 = -6 + 4 = -2

(d) 
-12

2 - 8
+ 5 - 1

21 -12 =
-12
-6

+ 4
-2

= 2 + 1 -22 = 2 - 2 = 0

In illustration (b), we see that the division and multiplication were done before the 
addition and subtraction. In (c) and (d), we see that the groupings were evaluated first. 
Then we did the divisions, and finally the subtraction and addition. ■

 EXAMPLE  7  Evaluating in an application

A 1500-kg van going at 40 km>h ran head-on into a 1000-kg car going at 20 km>h. An 
insurance investigator determined the velocity of the vehicles immediately after the 
collision from the following calculation. See Fig. 1.6.

 
15001402 + 110002 1 -202

1500 + 1000
=

60 000 + 1 -20 0002
1500 + 1000

=
60 000 - 20 000

2500

 =
40 000
2500

= 16 km>h

The numerator and the denominator must be evaluated before the division is per-
formed. The multiplications in the numerator are performed first, followed by the addi-
tion in the denominator and the subtraction in the numerator. ■

OPERATIONS WITH ZERO
Since operations with zero tend to cause some difficulty, we will show them here.

If a is a real number, the operations of addition, subtraction, multiplication, and 
division with zero are as follows:

 a + 0 = a
 a − 0 = a  0 − a = −a
 a : 0 = 0

 0 ÷ a =
0
a

= 0  1 if a 3 02  (≠  means “is not equal to”)

 EXAMPLE  8  Operations with zero

(a) 5 + 0 = 5  (b) -6 - 0 = -6  (c) 0 - 4 = -4

(d) 
0
6

= 0  (e) 
0

-3
= 0  (f) 

5 * 0
7

=
0
7

= 0 ■

Note that there is no result defined for division by zero. To understand the reason for 
this, consider the results for 62 and 60.

6
2

= 3 since 2 * 3 = 6

If 60 = b, then 0 * b = 6. This cannot be true because 0 * b = 0 for any value of b.

 a + 1 -b2 = a - b (1.1)
 a - 1 -b2 = a + b (1.2)

Practice Exercises

Evaluate: 3. 21 -32 - 4 - 8
2

4. 
0 5 - 15 0

2
- -9

3

Fig. 1.6 

1000 kg

20 km/h

1500 kg

40 km/h

16 km/h

Division by zero is undefined because 
no real value can be associated with 
that division.

If c =
4
0

, then c * 0 = 4, which is

not true, since c * 0 = 0 for any 
value of c.

There is a special case of division 
by zero termed indeterminate 
because no specific value can be 
determined from the division, but 
many real values are indeed possible.

If c =
0
0

, then c * 0 = 0, which is 

true, since c * 0 = 0 for any value of c.
Thus, c = 13, c = -4.76, and c = 0

are all valid solutions for the division.

LEARNING T IP
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 EXAMPLE  9  

 see bottom of page 9

 
2
5

, 0 is undefined   
8
0
 is undefined   

7 * 0
0 * 6

 is indeterminate ■

The operations with zero will not cause any difficulty if we remember never to 
divide by zero. Division by zero is the only undefined basic operation. All the other 
operations with zero may be performed as for any other number.

Division by zero is an undefined operation in mathematics. Even when trying to solve 
equations, every time you perform a division, you must specify that you are not commit-
ting a division by zero error.

For example, to solve x # x = 3 # x one might be tempted to divide both sides of the 
equation by x. This is fine as long as x ≠ 0.

 
x # x

x
=

3 # x
x

 x = 3

Notice, however, that a solution to the equation has been missed. x = 0 is also a valid 
solution (0 # 0 = 3 # 0), yet it was missed because when x = 0, an invalid division by x 
took place.

COMMON ERROR

EXERCISES 1.2

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 5(c), change 3 to 1 -32  and then evaluate.

  2. In Example 6(b), change 18 to -18 and then evaluate.

  3. In Example 6(d), interchange the 2 and 8 in the first denominator 
and then evaluate.

  4. In the rightmost illustration in Example 9, interchange the 6 and 
the 0 above the 6. Is any other change needed?

In Exercises 5–36, evaluate each of the given expressions by performing 
the indicated operations.

  5. 8 + 1 -42   6. -4 + 1 -72   7. -3 + 9

 8. 18 - 21  9. -19 - 1 -162  10. 8 - (-4)

11. 81 -32  12. -9132  13. -71 -52
14. 

-9
3

 15. 
-6120 - 102

-3
 16. 

28
-716 - 52

17. -2142 1 -52  18. 31 -42 162  19. 212 - 72 , 10

20. 
-64

-2 % 4 - 8 %
 21. -9 - % 2 - 10 %  22. 17 - 72 , 15 - 72

23. 
17 - 7
7 - 7

 24. 
7 - 7
7 - 7

 25. 8 - 31 -42
26. 20 + 8 , 4 27. -21 -62 + ` 8

-2
`   28. -10 - 1 -62 1 -82

29. 301 -62 1 -22 , 10 - 402  30. 
7 - 0 -5 0
-11 -22

31. 
24

3 + 1 -52 - 41 -92  32. 
-18

3
- 4 - 6

-1

33. -7 -
0 -14 0

212 - 32 - 3 0 6 - 8 0  34. -71 -32 + 6
-3

- 1 -92
35. 

31 -92 - 21 -32
3 - 10

 36. 
201 -122 - 401 -152

98 - 0 -98 0
In Exercises 37–44, determine which of the fundamental laws of 
algebra is demonstrated.

37. 6172 = 7162  38. 6 + 8 = 8 + 6

39. 613 + 12 = 6132 + 6112  40. 415 * p2 = 14 * 52 1p2
41. 3 + 15 + 92 = 13 + 52 + 9

42. 813 - 22 = 8132 - 8122
43. 115 * 32 * 9 = 15 * 13 * 92
44. 13 * 62 * 7 = 7 * 13 * 62
In Exercises 45–48, for numbers a and b, determine which of the 
following expressions equals the given expression.
(a) a + b (b) a - b (c) b - a (d) -a - b

45. -a + 1 -b2  46. b - 1 -a2
47. -b - 1 -a2  48. -a - 1 -b2
In Exercises 49–64, answer the given questions. Refer to Fig. 1.9 for 
units of measurement and their symbols.

49. (a) What is the sign of the product of an even number of negative 
numbers? (b) What is the sign of the product of an odd number of 
negative numbers?

50. Is subtraction commutative? Explain.
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51. Explain why the following definition of the absolute value of a 
real number x is either correct or incorrect (the symbol Ú means 
“is equal to or greater than”: If x Ú 0, then 0 x 0 = x; if x 6 0, 
then 0 x 0 = -x).

52. Explain what the error is if the expression 24 - 6 , 2 # 3 is 
evaluated as 27. What is the correct value?

53. Describe the values of x and y for which (a) -xy = 1 and

  (b) 
x - y

x - y
= 1.

54. Describe the values of x and y for which (a) 0 x + y 0 = 0 x 0 + 0 y 0  
and (b) 0 x - y 0 = 0 x 0 + 0 y 0 .

55. Some solar energy systems are used to supplement the utility 
company power supplied to a home such that the meter runs 
backward if the solar energy being generated is greater than the 
energy being used. With such a system, if the solar power aver-
ages 1.5 kW for a 3.0-h period and only 2.1 kW # h is used during 
this period, what will be the change in the meter reading for this 
period?

56. A baseball player’s batting average (total number of hits divided 
by total number of at-bats) is expressed in decimal form from 
0.000 (no hits for all at-bats) to 1.000 (one hit for each at-bat). A 
player’s batting average is often shown as 0.000 before the first 
at-bat of the season. Is this a correct batting average? Explain.

57. The daily high temperatures (in °C) in the Falkland Islands in the 
southern Atlantic Ocean during the first week in July were 
recorded as 7, 3, -2, -3, -1, 4, and 6. What was the average 
daily temperature for the week? (Divide the algebraic sum of the 
readings by the number of readings.)

58. A flare is shot up from the top of a tower. Distances above the 
flare gun are positive and those below it are negative. After 5 s 
the vertical distance (in m) of the flare from the flare gun is found 
by evaluating 1202 152 + 1 -52 1252 . Find this distance.

59. Find the sum of the voltages of the batteries shown in Fig. 1.7. 
Note the directions in which they are connected.

6 V −2 V 8 V −5 V 3 V

+ −+ −+ +− − +−

Fig. 1.7 

60. The electric current was measured in a given ac circuit at equal 
intervals as 0.7 mA, -0.2 mA, -0.9 mA, and -0.6 mA. What 
was the change in the current between (a) the first two readings, 
(b) the middle two readings, and (c) the last two readings?

 61. One oil-well drilling rig drills 100 m deep the first day and 200 m 
deeper the second day. A second rig drills 200 m deep the first 
day and 100 m deeper the second day. In showing that the total 
depth drilled by each rig was the same, state what fundamental 
law of algebra is illustrated.

 62. A water tank leaks 12 L each hour for 7 h, and a second tank leaks 
7 L each hour for 12 h. In showing that the total amount leaked is 
the same for the two tanks, what fundamental law of algebra is 
illustrated?

 63. Each of four persons spends 8 min browsing one website and 6 
min browsing a second website. Set up the expression for the total 
time these persons spent browsing these websites. What funda-
mental law of algebra is illustrated?

 64. A jet travels 600 km>h relative to the air. The wind is blowing at 
50 km>h. If the jet travels with the wind for 3 h, set up the expres-
sion for the distance travelled. What fundamental law of algebra 
is illustrated?

Answers to Practice Exercises

1. 9  2. 2  3. -4  4. 8

You will be doing many of your calculations on a calculator, and a graphing calculator 
can be used for these calculations and many other operations. In this text, we will 
restrict our coverage of calculator use to graphing calculators because a scientific cal-
culator cannot perform many of the required operations we will cover.

A discussion regarding the use of a graphing calculator can be found at the text’s 
companion web site. Since there are many models of graphing calculators, the notation 
and screen appearance for many operations will differ from one model to another. 
Therefore, although we include some calculator screens throughout the book, not 
every calculator discussion will be accompanied by a sample screen.

You should practice using your calculator and review its manual to be sure how it 
is used. Following is an example of a basic calculation done on a graphing calculator.

 EXAMPLE  1  Calculating on a graphing calculator

In order to calculate the value of 38.3 - 12.91 -3.582 , the numbers are entered as fol-
lows. The calculator will perform the multiplication first, following the order of opera-
tions shown in Section 1.2. The sign of -3.58 is entered using the (- )  key, before 
3.58 is entered. The display on the calculator screen is shown in Fig. 1.8.

38.3 -  12.9 *  (- )  3.58 ENTER   keystrokes

 1.3 Measurement, Calculation, and  
Approximate Numbers

 
 

Results

■ The calculator screens shown with text 
material are for a TI-83 or TI-84. They are 
intended only as an illustration of a calculator 
screen for the particular operation. Screens for 
other models may differ.

Fig. 1.8 
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This means that 38.3 - 12.91 -3.582 = 84.482.
Note in the display that the negative sign of -3.58 is smaller and a little higher to 

distinguish it from the minus sign for subtraction. Also note the * shown for multiplica-
tion; the asterisk is the standard computer symbol for multiplication. ■

Looking back into Section 1.2, we see that the minus sign is used in two different 
ways: (1) to indicate subtraction and (2) to designate a negative number. This is clearly 
shown on a graphing calculator because there is a key for each purpose. The -  key 
is used for subtraction, and the (- )  key is used before a number to make it negative.

We will first use a graphing calculator for the purpose of graphing in Section 3.5. 
Before then, we will show some calculational uses of a graphing calculator.

Most scientific and technical calculations involve numbers that represent a measure-
ment or count of a specific physical quantity. A measurement represents an estimate 
of the value of the physical quantity that exists in reality, and is usually accompanied 
by an uncertainty or error in that measured value. To report a measurement in a 
meaningful way, the units of measurement, which indicate a specific size or magni-
tude of a physical measurement, have to be expressed. For example, if the length of an 
object is measured to be 12.5, it is critical to know if that is measured in centimetres, 
metres, feet, or some other unit of length.

The definition and practical use of units of measurement has spawned many differ-
ent systems of counting and units throughout human history. Many of the ancient sys-
tems invented were largely based on dimensions of the human body. Consequently, 
measurements varied from place to place, and communication of the measured values 
was inconsistent since each unit did not have a universally recognized size. The metric 
system, first adopted in France in the late 1700s, incorporated the feature of standardi-
zation of units, wherein everyone using the system agreed to a specific size for each 
unit. The SI metric system of units (International System of Units) has been agreed 
upon by international committees of scientists and engineers and was established in 
1960. Most scientific endeavours worldwide employ the SI system of units. It is impor-
tant for scientists, engineers, and technologists to be able to communicate measure-
ments to each other easily and without confusion.

The SI system consists of seven base units (from which all other units are con-
structed), supplementary units (used for measuring plane and solid angles), and derived 
units (which are formed by multiplication and division of the seven base units).

Each unit measures a specific physical quantity, has a standard symbol, and has a 
single spelling when written out in full. (Exception: The United States has different 
spellings for deca, metre, and litre, writing them as deka, meter, and liter.)

Fig. 1.9 summarizes some SI physical quantities and common variable symbols, 
their unit names and SI unit symbols, and any re-expression of a derived unit in terms 
of more fundamental base units.

Among the units for time, for which the standard unit is the second, other units like 
minute (min), hour (h), day (d), and year (y or yr) are also acceptable. For angles, divi-
sions such as the degree, minute of arc, and second of arc are also permitted.

The kilogram is the SI unit for mass (not weight). It is different because it also con-
tains an SI prefix kilo, which denotes a power of 103. Please note that weight and mass 
are different: Mass is the amount of material in an object (in kg), and weight is the 
gravitational force (in N) exerted on that mass. Weight changes with the local strength 
of the gravity field, whereas mass remains constant.

Originally the metre was defined as one ten-millionth of the length along the globe 
from the North Pole to the equator. Today it is defined as the distance travelled by light in 
a vacuum in 1>299 792 458 s. Similarly, the second was once defined as the fraction  
1>86 400 of the mean solar day. It is now defined as the time required for 9 192 631 770  
cycles of the radiation corresponding to the transition between the two lowest energy 
states of the cesium-133 atom.

■ Some calculator keys on different models 
are labelled differently. For example, on some 
models, the EXE key is equivalent to the  
ENTER key.

■ Calculator keystrokes will generally not be 
shown, except as they appear in the display 
screens. They may vary from one model to 
another.
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  Quantity
Quantity 
Symbol Unit Name Unit Symbol

In Terms of  
Other SI Units

Base Units Length s metre m  
  Mass m kilogram kg  
  Time t second s  
  Electric current I, i ampere A  
  Thermodynamic 

temperature
T kelvin K  

  Amount of substance n mole mol  
  Luminous intensity I candela cd  
Supplementary Plane angle q radian rad unitless

Units Solid angle q steradian sr unitless

Derived Units Area A   m2  
  Volume V   m3  
  Volume V litre L (1000 L = 1 m3)

  Velocity v   m/s  
  Acceleration a   m/s2  
  Force F newton N kg # m>s2

  Density r   kg>m3  
  Pressure p pascal Pa N>m2 = kg> 1m # s22
  Energy, work E, W joule J N # m = kg # m2>s2

  Power P watt W J>s = kg # m2>s3

  Frequency f hertz Hz 1/s

  Electric charge q coulomb C A # s

  Electric potential V, E volt V J> 1A # s2 = kg # m2> 1A # s32
  Capacitance C farad F s>Ω = s # A>V

  Inductance L henry H Ω # s = V # s>A

  Resistance R ohm Ω V>A

  Heat Q joule J N # m = kg # m2>s2

  Temperature T degrees Celsius °C A change of 1°C = 1 K

When writing units, there are several conventions that one must follow:

Exception: Degrees Celsius.

Isaac Newton, Pa for Blaise Pascal). Exception: The litre symbol is L, which is 
not named for a person. It used to be l or l but it was easily confused with the 
digit 1 (one) so it was altered. The l symbol still has some international accept-
ance. Both °C and L were added to the SI system due to their practical 
importance.

#  symbol appears between units that are multiplied (e.g., kg # m2>s2 
not kgm2>s2). This will prevent confusion between units and SI prefixes, some of 
which use the same symbol (e.g., mm is millimetres, but m # m is metres squared).
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>s2 not  
m>s>s).

are italicized (e.g., V is the quantity of electrical potential, and V is the unit volts).

-
tional practices of different interpretations of commas (e.g., 10 585 is accepta-
ble, while 10,585 means 10.585 in some countries).

SI PREFIXES
In science, it is common to deal with measurements that consist of very large numbers, 
or very small numbers. In order to avoid the problem of having to write many zeros in 
a decimal (whether trailing or leading zeros), one can utilize some common unit pre-
fixes allowing for a quick way to write a specific multiple of 10 applied to the unit. 
These prefixes have specific names and symbols, just like units, but are written preced-
ing the unit, as a normal prefix. There can never be more than one prefix for a single 
unit. Scientific and engineering notations, which are used to report very large or very 
small measurements using these prefixes, will be discussed in Section 1.5.

Fig. 1.10 SI Prefixes

Multiple of 10 Prefix Symbol
1012, or trillion tera T

109, or billion giga G

106, or million mega M

103, or thousand kilo k

102, or hundred hecto h

101, or ten deca da

10–1, or one tenth deci d

10–2, or one hundredth centi c

10–3, or one thousandth milli m

10–6, or one millionth micro m

10–9, or one billionth nano n

10–12, or one trillionth pico p

 EXAMPLE  2  

(a) Using SI prefixes, we can rewrite the following measurements:

  123 000 000 s  = 123 × 106 s = 123 Ms, or 0.123 Gs

  0.000 005 0 m = 5.0 × 10–6 m = 5.0 mm

  85 300 Ω = 85.3 × 103 Ω = 85.3 kΩ

(b) We also use the definitions of the SI prefixes to give the name and meaning of the 
units corresponding to the following symbols:

  ks = kiloseconds = 1000 s

  mC = millicoulombs = 0.001 C

  GHz = gigahertz  = 1 000 000 Hz ■

When using measurements, it may be necessary to convert from one set of units to 
another. To change a given set of units into another set of units, we perform mathematical 
operations with the units in the same manner as we do with any other algebraic symbol. 
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This process is more fully discussed in Sections 1.7 to 1.12, but it is important to discuss 
the principle here, since measurements and units have a fundamental role in most subse-
quent applied problems.

To convert a set of units, you multiply the measurement by a fraction equal to one, where 
the fraction represents the equivalency ratio between the two units. You put the units you 
want to eliminate on the opposite side of the fraction of the converting ratio from where they 
are in the original measurement when you multiply. By multiplying by a fraction equal to 
one, the measurement is not changing. To convert multiple units at the same time, just use 
more than one conversion fraction multiplication. This is illustrated in Example 3.

 EXAMPLE  3  Converting units

Convert the following units.

(a) 1350 m into km:

  1350 m * a 1 km
1000 m

b = 1.35 km

(b) 25.2 kg into g:

  25.2 kg * a 1000 g
1 kg

b = 25 200 g

(c) 72.0 km>h into m>s:

  72.0 
km
h

* a 1000 m
1 km

b * a 1 h
3600 s

b = 20.0 m>s

(d) 8.75 g>cm3 into kg>m3:

  8.75 
g

cm3 * a 1 kg
1000 g

b * a 100 cm
1 m

b3
= 8750 kg>m3

(e) 62.8 kPa into N>cm2:

  62.8 kPa * a 1000 N/m2

1 kPa
b * a 1 m

100 cm
b2

= 6.28 N>cm2

(f) 32 500 ft to km (1 ft = 0.3048 m):

  32 500 ft * a 0.3048 m
1 ft

b * a 1 km
1000 m

b = 9.91 km ■

Most numbers in technical and scientific work are approximate numbers, having 
been determined by some measurement. Certain other numbers are exact numbers, 
having been determined by a definition or counting process.

 EXAMPLE  4  Approximate numbers and exact numbers

If a voltage on a voltmeter is read as 116 V, the 116 is approximate. Another voltmeter 
might show the voltage as 115.7 V. However, the voltage cannot be determined exactly.

If a computer prints out the number of names on a list of 97, this 97 is exact. We 
know it is not 96 or 98. Since 97 was found from precise counting, it is exact.

By definition, 60 s = 1 min, and the 60 and the 1 are exact. ■

Significant digits are digits in a measurement or result that you can confidently esti-
mate. That is to say, those digits that are not swamped by the error or uncertainty in the 
measurement are significant. The accuracy of a measurement refers to the number of 
significant digits it has.

The measurements 5.00 m and 5.000 m may not seem to be very different, but to a 
scientist, an engineer, or a technologist, they are not the same thing. The first measure-
ment has been measured to the nearest centimetre and the second measurement to the 
nearest millimetre. The precision of a measurement is defined as the last decimal place 
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to which the measurement is expressed, or the decimal place corresponding to the last 
measured (significant) digit in the measurement. For instance, 5.00 m has precision 
0.01 m = 1 cm, and 5.000 m has precision 0.001 m = 1 mm. Therefore, the second 
measurement is more precise (it has a smaller precision). The concept of precision is 
important when finding the proper significant digits in a calculated result.

To find the number of significant digits in a single measurement, you start counting 
at the first nonzero digit, and finish counting once the precision of the measurement is 
reached. Some rules to remember are:

are significant

are significant

not significant

are significant

not significant

Measurement # Significant Digits

23.0 m 3

55.001 cm 5

0.0034 m 2

125 000 s 3  In this case, you don’t know the precision—is it 
1000 s, 100 s, 10 s, or 1 s? It is ambiguous, so 
you must assume the worst, i.e., nearest 1000 s

0.0120 s 3

120 cm 2 ambiguous again

 EXAMPLE  5  Accuracy and precision

(a) Suppose that an electric current is measured to be 0.31 A on one ammeter and 
0.312 A on another ammeter. The measurement 0.312 A is measured to the nearest 
thousandth ampere, so it is more precise than 0.31 A, which is measured to the 
nearest hundredth ampere. 0.312 A is also more accurate, since it contains three 
significant digits, whereas 0.31 A contains only two.

(b) If a concrete driveway is measured to be 135 m long and 0.1 m thick, the measurement 
0.1 m (measured to the nearest tenth metre) is more precise than the measurement 135 m 
(measured to the nearest metre). On the other hand, 135 m is more accurate, since it con-
tains three significant digits, whereas 0.1 m contains only one. ■

 EXAMPLE  6  Significant digits

All numbers in this example are assumed to be approximate.
34.7 has three significant digits.
0.039 has two significant digits. The zeros properly locate the decimal point.
706.1 has four significant digits. The zero is not used for the location of the decimal 

point. It shows the number of tens in 706.1.
5.90 has three significant digits.
1400 has two significant digits, unless information is known about the number that 

makes either or both zeros significant. (A temperature shown as 1400°C has two sig-
nificant digits. If a price list gives all costs in dollars, a price shown as $1400 has four 
significant digits.) Without such information, we assume that the zeros are placehold-
ers for proper location of the decimal point.

Other approximate numbers with the number of significant digits are 0.0005 (one), 
960 000 (two), 0.0709 (three), 1.070 (four), and 700.00 (five). ■

■ To show that zeros at the end of a whole 
number are significant, a notation that can be 
used is to place a bar over the last significant 
zero. Using this notation, 78 000 is shown to 
have four significant digits.

Do not write trailing zeros if they are not significant. The measurement 15 m is different 
from 15.0 m because the precision is different.

COMMON ERROR
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From Example 6, we see that all nonzero digits are significant. Also, zeros not used 
as placeholders (for location of the decimal point) are significant.

The last significant digit of an approximate number is not exact. It has usually been 
determined by estimating or rounding off. However, it is not off by more than one-half 
of a unit in its place value.

 EXAMPLE  7  

When we write the voltage in Example 4 as 115.7 V, we are saying that the voltage is 
more than 115.65 V and less than 115.75 V. Any such value, rounded off to tenths, 
would be expressed as 115.7 V.

In changing the fraction 2
3 to the approximate decimal value 0.667, we are saying 

that the value is strictly between 0.6665 and 0.6675. ■

The method of unbiased rounding (also known as round half to even) for rounding 
off any measurement to a specific precision, or a number to a specified number of sig-
nificant digits, consists of three simple rules. Locate the last significant digit (the digit 
to be rounded). Then:

round up (increase the rounded digit by one, discard the rest);

round down (leave the rounded digit as is, dis-
card the rest);

round to the 
nearest even (make the rounded digit the nearest even number and discard 
the rest).

This last rule ensures proper statistical treatment of all the measurements falling 
in this category, as half will round up, and half will round down. This technique 
will not statistically bias your measurements to be consistently larger upon 
rounding.

We will use unbiased rounding throughout the text. However, there are many differ-
ent rules that can be followed when rounding. For example, in the common method of 
round half up, if the first discarded digit is 5, then the number is always rounded up. It 
can be seen that the two methods are identical except for their treatment of those num-
bers where the digit following the rounding digit is a five and has no nonzero digits 
after it.

 EXAMPLE  8  Rounding off

70 360 rounded off to three significant digits is 70 400. Here, 3 is the third significant 
digit, and the next digit is 6. Since 6 7 5, we add 1 to 3 and the result, 4, becomes the 
third significant digit of the approximation. The 6 is then replaced with a zero in order 
to keep the decimal point in the proper position.

70 430 rounded off to three significant digits, or to the nearest hundred, is 70 400. 
Here the 3 is replaced with a zero.

187.35 rounded off to four significant digits, or to tenths, is 187.4, because 4 is the 
nearest even to 3.5.

187.349 rounded off to four significant digits is 187.3. We do not round up the 4 and 
then round up the 3.

35.003 rounded off to four significant digits is 35.00. We do not discard the 
zeros since they are significant and are not used only to properly place the decimal 
point.

187.45 rounded off to four significant digits is 187.4 since 4 is the nearest even  
to 4.5. ■

■ On graphing calculators, it is possible to set 
the number of decimal places (to the right of 
the decimal point) to which results will be 
rounded off. Note that calculators round  
half up.

Practice Exercises

Round off each number to three significant 
digits.
1. 2015 2. 0.3004
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When performing operations on approximate numbers or measurements, we must not 
express the result to an accuracy or precision that is not valid. Measurement uncertainty 
restricts how many significant digits can exist in a calculated result.

COMMON ERROR

Consider the following examples.

 EXAMPLE  9  Application of precision

A pipe is made in two sections. One is measured as 16.3 m long and the other as 
0.927 m long. What is the total length of the two sections together?

It may appear that we simply add the numbers as shown at the left. However, both 
numbers are approximate, and adding the smallest possible values and the largest pos-
sible values, the result differs by 0.1 (17.2 and 17.3) when rounded off to tenths. 
Rounded off to hundredths (17.18 and 17.28), they do not agree at all since the tenths 
digit is different. Thus, we get a good approximation for the total length if it is rounded 
off to tenths, the precision of the least precise length, and it is written as 17.2 m. ■

 EXAMPLE  10  Application of accuracy

We find the area of the rectangular piece of land in Fig. 1.11 by multiplying the length, 
207.54 m, by the width, 81.4 m. Using a calculator, we find that 1207.542181.42 = 16 893.756. This apparently means the area is 16 893.756 m2.

However, the area should not be expressed with this accuracy. Since the length and 
width are both approximate, we have

 1207.535 m2 181.35 m2 = 16 882.972 25 m2   least possible area

 1207.545 m2 181.45 m2 = 16 904.540 25 m2   greatest possible area

These values agree when rounded off to three significant digits (16 900 m2) but do not 
agree when rounded off to a greater accuracy. Thus, we conclude that the result is accu-
rate only to three significant digits, the accuracy of the least accurate measurement, and 
that the area is written as 16 900 m2. ■

Following are the rules used in expressing the result when we perform basic opera-
tions on approximate numbers. They are based on reasoning similar to that shown in 
Examples 9 and 10.

  smallest values largest values
16.3     m 16.25     m 16.35     m
  0.927 m   0.9265 m   0.9275 m
17.227 m 17.1765 m 17.2775 m

Fig. 1.11 

16 900 m2

0.005 m

81.4 m

0.05 m207.54 m

Operations with Approximate Numbers
1.  When approximate numbers are added or subtracted, the result is expressed 

with the precision of the least precise number.

2.  When approximate numbers are multiplied or divided, the result is expressed 
with the accuracy of the least accurate number.

3.  When the root of an approximate number is found, the result is expressed 
with the accuracy of the number.

4.  When approximate numbers and exact numbers are involved, the accuracy of 
the result is limited only by the approximate numbers.

Always express the result of a calculation with the proper accuracy or precision. 
When using a calculator, if additional digits are displayed, round off the final result 
(do not round off in any of the intermediate steps).

LEARNING T IP
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 EXAMPLE  11  Adding approximate numbers

Find the sum of the approximate numbers 73.2, 8.0627, and 93.57.
Showing the addition in the standard way and using a calculator, we have

 73.2  least precise number (expressed to tenths)
 8.0627

 93.57
 174.8327 final display must be rounded to tenths

Therefore, the sum of these approximate numbers is 174.8. ■

 EXAMPLE  12  Combined operations

In finding the product of the approximate numbers 2.4832 and 30.5 on a calculator, the 
final display shows 75.7376. However, since 30.5 has only three significant digits, the 
product is 75.7.

In Example 1, we calculated that 38.3 - 12.91 -3.582 = 84.482. We know that 
38.3 - 12.91 -3.582 = 38.3 + 46.182 = 84.482. If these numbers are approximate, 
we must round off the result to tenths, which means the sum is 84.5. We see that when 
there is a combination of operations, we must examine the individual steps of the calcula-
tion and determine how many significant digits can carry through to the final result. ■

 EXAMPLE  13  Operations with exact numbers and approximate numbers

Using the exact number 600 and the approximate number 2.7, we express the result to 
tenths if the numbers are added or subtracted. If they are multiplied or divided, we 
express the result to two significant digits. Since 600 is exact, the accuracy of the result 
depends only on the approximate number 2.7.

 600 + 2.7 = 602.7   600 - 2.7 = 597.3

  600 * 2.7 = 1600    600 , 2.7 = 220  ■

You should make a rough estimate of the result when using a calculator. An estima-
tion may prevent accepting an incorrect result after using an incorrect calculator 
sequence, particularly if the calculator result is far from the estimated value.

 EXAMPLE  14  Estimating results

In Example 1, we found that

38.3 - 12.91 -3.582 = 84.482  using exact numbers

When using the calculator, if we forgot to make 3.58 negative, the display would be 
-7.882, or if we incorrectly entered 38.3 as 83.3, the display would be 129.482.

However, if we estimate the result as

40 - 101 -42 = 80

we know that a result of -7.882 or 129.482 cannot be correct.
When estimating, we can often use one-significant-digit approximations. If the cal-

culator result is far from the estimate, we should do the calculation again. ■

■ When rounding off a number, it may seem 
difficult to discard the extra digits. However, if 
you keep those digits, you show a number with 
too great an accuracy, and it is incorrect to  
do so.

Practice Exercises

Evaluate using a calculator.

3. 40.5 + 3275
-60.041

   
(Numbers are 
approximate.)

A note regarding the equal sign (= ) 
is in order. We will use it for its 
defined meaning of “equals exactly” 
and when the result is an approxi-
mate number that has been properly 
rounded off. Although 127.8 ≈ 5.27, 
where ≈ means “equals approxi-
mately,” we write 127.8 = 5.27, since 
5.27 has been properly rounded off.

LEARNING T IP

EXERCISES 1.3

In Exercises 1–4, make the given changes in the indicated examples of 
this section, and then solve the given problems.

 1. In Example 6, change 0.039 (the second number discussed) to 
0.390. Is there any change in the conclusion?

 2. In the next-to-last paragraph of Example 8, change 35.003 to 
35.303 and then find the result.

  3. In the first paragraph of Example 12, change 2.4832 to 2.483 and 
then find the result.

 4. In Example 14, change 12.9 to 21.9 and then find the estimated 
value.
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In Exercises 5–8, give the symbol and the meaning for the given unit.

 5. megahertz  6. kilowatt  7. millimetre  8. picosecond

In Exercises 9–12, give the name and the meaning for the units whose 
symbols are given.

 9. kV     10. GΩ    11. mA     12. pF

In Exercises 13–44, make the indicated changes in units.

13. 1 km to centimetres.

14. 1 kg to milligrams.

15. 20 s to megaseconds.

16. 800 Pa to kilopascals.

17. 250 mm2 to square metres.

18. 1.75 m2 to square centimetres.

19. 80.0 m3 to L.

20. 0.125 L to millilitres.

21. 45.0 m>s to centimetres per second.

22. 1.32 km>h to metres per second.

23. 9.80 m>s2 to centimetres per minute squared.

24. 5.10 g>cm3 to kilograms per cubic metre.

25. 25 h to milliseconds.

26. 5.25 mV to watts per ampere.

27. 15.0 mF to millicoulombs per volt.

28. Determine how many metres light travels in one year.

29. Determine the speed (in km>h) of the earth moving around the 
sun. Assume it is a circular path of radius 150 000 000 km.

30. At sea level, atmospheric pressure is about 101 300 Pa. How many 
kilopascals is this?

31. A car’s gasoline tank holds 56 L. What is this capacity in cubic 
centimetres?

32. A hockey puck has a mass of about 0.160 kg. What is its mass in 
milligrams?

33. The velocity of some seismic waves is 6800 m>s. What is this 
velocity in kilometres per hour?

34. The memory of a 1985 computer was 64 kB (B is the symbol for 
byte), and the memory of a 2012 computer is 1.50 TB. How many 
times greater is the memory of the 2012 computer?

35. The recorded surface area of a DVD is 112 cm2. What is this area 
in square metres?

36. A solar panel can generate 0.024 MW # h each day. Convert this 
to joules.

 37. The density of water is 1000 kg>m3. Change this to grams per litre.

38. Water flows from a kitchen faucet at the rate of 8500 mL>min. 
What is this rate in cubic metres per second?

39. The speed of sound is about 332 m>s. Change this speed to kilo-
metres per hour.

40. Fifteen grams of a medication are to be dissolved in 0.060 L of 
water. Express this concentration in milligrams per decilitre.

41. The earth’s surface receives energy from the sun at the rate of 
1.35 kW>m2. Reduce this to joules per second per square 
centimetre.

42. The moon travels about 2 400 000 km in about 28 d in one rota-
tion about the earth. Express its velocity in metres per second.

43. A typical electric current density in a wire is 1.2 * 106 A>m2. 
Express this in milliamperes per square centimetre.

44. A certain car travels 24 km on 2.0 L of gas. Express the fuel con-
sumption in litres per 100 kilometres.

In Exercises 45–48, determine whether the given numbers are 
approximate or exact.

45. A car with 8 cylinders travels at 55 km>h.

46. A computer chip 0.002 mm thick is priced at $7.50.

47. In 24 h there are 1440 min.

48. A calculator has 50 keys, and its battery lasted for 50 h of use.

In Exercises 49–54, determine the number of significant digits in each 
of the given approximate numbers.

49. 107; 3004 50. 3600; 730 51. 6.80; 6.08

52. 0.8735; 0.0075 53. 3000; 3000.1 54. 1.00; 0.01

In Exercises 55–60, determine which of the pair of approximate 
numbers is (a) more precise and (b) more accurate.

55. 30.8; 0.01 56. 0.041; 7.673 57. 0.1; 78.0

58. 7040; 0.004 59. 7000; 0.004 60. 50.060; 8.914

In Exercises 61–68, round off the given approximate numbers (a) to 
three significant digits and (b) to two significant digits.

61. 4.936 62. 80.53 63. 50 893 64. 7.005

65. 9549 66. 30.96 67. 0.9445 68. 0.9999

In Exercises 69–76, assume that all numbers are approximate. (a) 
Estimate the result and (b) perform the indicated operations on a 
calculator and compare with the estimate.

69. 12.78 + 1.0495 - 1.633 70. 3.64117.062
71. 0.0350 - 0.0450

1.909
 72. 

0.3275
1.096 * 0.500 85

73. 
23.962 * 0.015 37

10.965 - 8.249
 74. 

0.693 78 + 0.049 97
257.4 * 3.216

75. 
3872
503.1

- 2.056 * 309.6
395.2

 76. 
1.00

0.5926
+ 3.6957

2.935 - 1.054

In Exercises 77–80, perform the indicated operations. The first 
number is approximate, and the second number is exact.

77. 0.9788 + 14.9 78. 17.311 - 22.98

79. 3.1421652  80. 8.62 , 1728

In Exercises 81–84, answer the given questions.

81. The manual for a heart monitor lists the frequency of the ultra-
sound wave as 2.75 MHz. What are the least possible and the 
greatest possible frequencies?

82. A car manufacturer states that the engine displacement for a cer-
tain model is 2400 cm3. What should be the least possible and 
greatest possible displacements?

 83. A flash of lightning struck a tower 5.23 km from a person. The thun-
der was heard 15 s later. The person calculated the speed of sound 
and reported it as 348.7 m>s. What is wrong with this conclusion?

84. A technician records 4.4 s as the time for a robot arm to swing 
from the extreme left to the extreme right, 2.72 s as the time for 
the return swing, and 1.68 s as the difference in these times. What 
is wrong with this conclusion?
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In Exercises 85–100, perform the calculations on a calculator.

85. Evaluate: (a) 2.2 + 3.8 * 4.5 (b) 12.2 + 3.82 * 4.5

86. Evaluate: (a) 6.03 , 2.25 + 1.77 (b) 6.03 , 12.25 + 1.772
87. Evaluate: (a) 2 + 0 (b) 2 - 0 (c) 0 - 2 (d) 2 * 0 (e) 2 , 0 

Compare with operations with zero in Section 1.2.

88. Evaluate: (a) 2 , 0.0001 and 2 , 0 (b) 0.0001 , 0.0001 and 
0 , 0 (c) Explain why the displays differ.

89. Enter a positive integer x (five or six digits is suggested) and then 
rearrange the same digits to form another integer y. Evaluate 1x - y2 , 9. What type of number is the result?

90. Enter the digits in the order 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, using 
between them any of the operations 1 + , - , * , , 2  that will 
lead to a result of 100.

91. Show that p is not equal exactly to (a) 3.1416, or (b) 22>7.

92. At some point in the decimal equivalent of a rational number, 
some sequence of digits will start repeating endlessly. An irra-
tional number never has an endlessly repeating sequence of dig-
its. Find the decimal equivalents of (a) 8>33 and (b) p. Note the 
repetition for 8>33 and that no such repetition occurs for p.

93. Following Exercise 92, show that the decimal equivalents of the 
following fractions indicate they are rational: (a) 1>3 (b) 5>11 (c) 
2>5. What is the repeating part of the decimal in (c)?

94. Following Exercise 92, show that the decimal equivalent of the 
fraction 124>990 indicates that it is rational. Why is the last digit 
different?

 95.  In 3 successive days, a home solar system produced 32.4 MJ, 
26.704 MJ, and 36.23 MJ of energy. What was the total energy 
produced in these 3 days?

 96.  Two jets flew at 938 km>h and 1450 km>h, respectively. How 
much faster was the second jet?

 97.  If 1 K of computer memory has 1024 bytes, how many bytes are 
there in 256 K of memory? (All numbers are exact.)

 98.  Find the voltage in a certain electric circuit by multiplying the 
sum of the resistances 15.2 Ω, 5.64 Ω, and 101.23 Ω by the cur-
rent 3.55 A.

  99.  The percent of alcohol in a certain car engine coolant is found by

   performing the calculation 
100140.63 + 52.962

105.30 + 52.96
. Find this 

   percent of alcohol. The number 100 is exact.

 100.  The tension (in N) in a pulley cable lifting a certain crate was

    found by calculating the value of 
50.4519.802

1 + 100.9 , 23
, where the  

1 is exact. Calculate the tension.

Answers to Practice Exercises

1. 2020 2. 0.300 3. -14.0

In mathematics and its applications, we often have a number multiplied by itself sev-
eral times. To show this type of product, we use the notation an, where a is the number 
and n is the number of times it appears. In the expression an, the number a is called the 
base, and n is called the exponent; in words, an is read as “the nth power of a.”

 EXAMPLE  1  

(a) 4 * 4 * 4 * 4 * 4 = 45  the fifth power of 4

(b) 1 -22 1 -22 1 -22 1 -22 = 1 -224  the fourth power of -2

(c) a * a = a2   the second power of a, called “a squared”

(d) a1
5
b a1

5
b a1

5
b = a1

5
b3

  the third power of 1
5, called “1

5 cubed” ■

We now state the basic operations with exponents using positive integers as expo-
nents. Therefore, with m and n as positive integers, we have the following operations:

 1.4 Exponents

Expressions

■ Two forms are shown for Eq. (1.4) in order 
that the resulting exponent is a positive integer. 
We consider negative and zero exponents after 
the next three examples.

am * an = am+n (1.3)

 
am

an = am-n (m 7 n, a ≠ 0)  
am

an =
1

an-m (m 6 n, a ≠ 0) (1.4)1am2n = amn (1.5)1ab2n = anbn  aa
b
bn

=
an

bn (b ≠ 0) (1.6)
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 EXAMPLE  2  Illustrating Eqs. (1.3) and (1.4)

Using Eq. (1.3): Using the meaning of exponents:

add exponents 8 factors of a
 (3 factors of a)(5 factors of a)

 a3 * a5 = a3+5 = a8 a3 * a5 = 1a * a * a2 1a * a * a * a * a2 = a8

Using first form Eq. (1.4): Using the meaning of exponents:

5 7 3

 
a5

a3 = a5-3 = a2 
a5

a3 =
a
1 * a

1 * a
1 * a * a

a
1

* a
1

* a
1

= a2

Using second form Eq. (1.4): Using the meaning of exponents:

 
a3

a5 =
1

a5-3 =
1

a2  
a3

a5 =
a
1 * a

1 * a
1

a
1

* a
1

* a
1

* a * a
=

1

a2

5 7 3 ■

 EXAMPLE  3  Illustrating Eqs. (1.5) and (1.6)

Using Eq. (1.5): Using the meaning of exponents:

multiply exponents

 1a523 = a5132 = a15 1a523 = 1a52 1a52 1a52 = a5+5+5 = a15

Using first form Eq. (1.6): Using the meaning of exponents:

 1ab23 = a3b3 1ab23 = 1ab2 1ab2 1ab2 = a3b3

Using second form Eq. (1.6): Using the meaning of exponents:

 aa
b
b3

=
a3

b3  aa
b
b3

= aa
b
b aa

b
b aa

b
b =

a3

b3 ■

 EXAMPLE  4  Other illustrations of exponents

(a) 1 -x223 = 3 1 -12x243 = 1 -1231x223 = -x6

exponent          add exponents of a  
of 1

(b) ax21ax23 = ax21a3x32 = a4x5  add exponents of x

(c) 
13 * 22413 * 523 =

3424

3353 =
3 * 24

53

(d) 
1ry322

r1y224 =
r2y6

ry8 =
r

y2 ■

■ In a3, which equals a * a * a, each a is 
called a factor. A more general definition of 
factor is given in Section 1.7.

■ Here we are using the fact that a (not zero) 
divided by itself equals 1, or a>a = 1.

When an expression involves a prod-
uct or a quotient of different bases, 
only exponents of the same base 
may be combined.

LEARNING T IP

Practice Exercises

Use Eqs. (1.3)–(1.6) to simplify the given 
expressions.

1. ax31 -ax22 2. 
12c2513cd22

Note that ax 2 means a times the square of x and does not mean a 2x 2, whereas 1ax23 
does mean a3x3.

COMMON ERROR
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 EXAMPLE  5  Exponents in an application

In the analysis of the deflection of a beam (the amount it bends), the expression that 
follows is simplified as shown.

 
1
2

 a PL
4EI

b a2
3
b aL

2
b2

=
1
2

 a PL
4EI

b a2
3
b aL2

22 b
 =

2
1
PL(L2)

2
1
132 142 142EI

=
PL3

48EI

L is the length of the beam, and P is the force applied to it. E and I are constants related 
to the beam. In simplifying this expression, we combined exponents of L and divided 
out the 2 that was in the numerator and in the denominator. ■

ZERO AND NEGATIVE EXPONENTS
If we let n = m in Eq. (1.4), we would have am>am = am-m = a0. Also, am>am = 1, 
since any nonzero quantity divided by itself equals 1. Therefore, for Eq. (1.4) to hold, 
when m = n, we have

 a0 = 1  1a ≠ 02  (1.7)

Eq. (1.7) states that any nonzero expression raised to the zero power is 1. Zero expo-
nents can be used with any of the operations for exponents.

 EXAMPLE  6  Zero as an exponent

(a) 50 = 1  (b) 1 -320 = 1  (c) - 1 -320 = -1  (d) 12x20 = 1

(e) 1ax + b20 = 1  (f) 1a2b0c22 = a4c2  (g) 2t0 = 2112 = 2

b0 = 1

We note in illustration (g) that only t is raised to the zero power. If the quantity 2t were 
raised to the zero power, it would be written as 12t20. ■

If we apply the first form of Eq. (1.4) to the case where n 7 m, the resulting expo-
nent is negative. This leads to the definition of a negative exponent.

 EXAMPLE  7  Basis for negative exponents

Applying both forms of Eq. (1.4) to a2>a7, we have

a2

a7 = a2-7 = a-5 and 
a2

a7 =
1

a7-2 =
1

a5

If these results are to be consistent, then a-5 =
1

a5. ■

Following the reasoning of Example 7, if we define
Although positive exponents are  
generally preferred in a final result, 
there are some cases in which zero or 
negative exponents are to be used. 
Also, negative exponents are very 
useful in some operations that we 
will use later.

LEARNING T IP

 a-n =
1
an  1a ≠ 02  (1.8)

then all of the laws of exponents will hold for negative integers.
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 EXAMPLE  8  Negative exponents

(a) 3-1 =
1
3

  (b) 4-2 =
1

42 =
1
16

  (c) 
1

a-3 = a3

change signs  
of exponents

(d) a a3t

b2x
b -2

=
1a3t2 -21b2x2 -2 =

1b2x221a3t22 =
b4x2

a6t2   (e) 3x -1 = 3a1
x
b =

3
x

 ■

Practice Exercises

Simplify: 3. 
-70

c-3  4. 
13x2-1

2a-2

From the statement 3-1 =
1
3

, we see 

that the reciprocal of any number x 

different than zero is x-1 =
1
x

.
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In the statement 3x-1 =
3
x

, the exponent only applies to x, not to 3. Do not confuse this 

with the statement 13x2-1 = 3-1x-1 =
1
3x

.

COMMON ERROR

In Section 1.2, we saw that it is necessary to follow a particular order of operations 
when performing the basic operations on numbers. Since raising a number to a power is 
a form of multiplication, this operation is performed before additions and subtractions. 
In fact, it is performed before multiplications and divisions.

■ The use of exponents is taken up in more 
detail in Chapter 11.

Order of Operations
1.  Operations within specific groupings first—that is, inside parentheses ( ), 

brackets [ ], or absolute values % %
2. Exponents and roots/radicals

3. Multiplications and divisions (from left to right)

4. Additions and subtractions (from left to right)

 EXAMPLE  9  Order of operations

 8 - 1 -122 - 21 -322 = 8 - 1 - 2192
 = 8 - 1 - 18

 = -11

Since there were no specific groupings, we first squared -1 and -3. Next, we found 
the product 2192  in the last term. Finally, the subtractions were performed. Note that 
we did not change the sign of -1 before we squared it. ■

An algebraic expression is evaluated by substituting given values of the literal num-
bers in the expression and calculating the result. On a calculator, the x2  key is 
used to square numbers, and the ¿  or xy  key is used for other powers.

 EXAMPLE  10  Evaluating using exponents

The distance (in m) that an object falls in 4.2 s is found by substituting 4.2 for t in the 
expression 4.90t2. We show this as

t = 4.2 s         substituting

4.9014.222 = 86 m    estimation  51422 = 80

The result is rounded off to two significant digits (the accuracy of t). The calculator 
will square 4.2 before multiplying. See Fig. 1.12. ■

■ On many calculators, there is a specific key 
or key sequence to evaluate x3.

■ When less than half of a calculator screen 
is needed, the figure for that calculator screen 
will show only a partial screen.

Fig. 1.12 
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As stated in Section 1.3, in evaluating an expression on a calculator, we should also 
estimate its value as in Example 10.

 EXAMPLE  11  Power of a number

Using the meaning of a power of a number, we have1 -222 = 1 -22 1 -22 = 4  1 -223 = 1 -22 1 -22 1 -22 = -8

 1 -224 = 16  1 -225 = -32  1 -226 = 64  1 -227 = -128 ■

 EXAMPLE  12  Evaluating in an application

A wire made of a special alloy has an electric resistance R (in Ω) given by
R = a + 0.0115T3, where T (in °C) is the temperature (between -4°C and 4°C). Find
R for a = 0.838 Ω and T = -2.87°C.

Substituting these values, we have

 R = 0.838 + 0.01151 -2.8723  estimation:

 = 0.566 Ω  0.8 + 0.011 -323 = 0.8 + 0.011 -272 = 0.53

Note in the estimation that 1 -323 = -27. ■

Graphing calculators generally use computer symbols in the display for some of the 
operations to be performed. These symbols are as follows:

Multiplication: *  Division: >  Powers: ¿
Therefore, to calculate the value of 20 * 6 + 200>5 - 34, we use the key sequence

20 *  6 +  200 ,  5 -  3 ¿  4

with a result of 79. Note carefully that 200 is divided only by 5. If it were divided by 
5 - 34, then we would use parentheses and show the expression to be evaluated as 
20 * 6 + 200> 15 - 342 .

Note that a negative number raised 
to an even power gives a positive 
value and a negative number raised 
to an odd power gives a negative 
value.
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When using a calculator, ensure that you use brackets to indicate grouped division in a 

denominator. To evaluate the expression 
12

3 + 9
 on a calculator, use the key sequence 

12 , (3 + 9) = 1.
If you forget the brackets and write 12 , 3 + 9 = 13, an error will result (the division 

will occur before the addition).

COMMON ERROR

EXERCISES 1.4

In Exercises 1–4, make the given changes in the indicated examples  
of this section, and then simplify the resulting expression.

 1. In Example 4(a), change 1 -x223 to 1 -x322.

 2. In Example 6(d), change 12x20 to 2x0.

 3. In Example 8(d), interchange the a3 and b2.

 4. In Example 9, change 1 -122 to 1 -123.

In Exercises 5–48, simplify the given expressions. Express results with 
positive exponents only.

 5. x3x4  6. y2y7  7. 2b4b2  8. 3k5k

 9. 
m5

m3 10. 
2x6

x
 11. 

n5

7n9 12. 
3s

s4

13. 1P224 14. 1x823 15. 12p23 16. 1ax25

17. 1aT2230 18. 13r223 19. a2
b
b3

 20. aF
t
b20

21. ax2

2
b4

 22. a 3

n3 b3
 23. 18a20 24. 6v0

25. -3x0 26. - 1 -220 27. 6-1 28. -w-5

29. 
1

R-2 30. 
1

- t-48 31. 1 - t227 32. 1 -y325

33. 12v22 -6 34. - 1 -c42 -4 35. - L-3

L-5 36. 2i40i-70

37. 
2v412v24 38. 

x2x31x223 39. 
1n2241n422 40. 

13t2 -1

3t -1

41. 1p0x2a-12 -1 42. 13m-2n42 -2 43. 1 -8g-1s322
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44. ax -21 -a2x23 45. a4x -1

a-1 b -3
 46. a2b2

y5 b -2

47. 
15n2T5

3n-1T6 48. 
1nRT -2232

R-2T32

In Exercises 49–56, evaluate the given expressions. In Exercises  
51–56, all numbers are approximate.

49. 71 -42 - 1 -522 50. 6 + 1 -225 - 1 -22 182
51. - 1 -26.522 - 1 -9.8523 52. -0.7112 - 1 -0.80926

53. 
3.071 -1.8621 -1.8624 + 1.596

 54. 
15.662 - 1 -4.01724

1.0441 -3.682
55. 2.381 -60.722 - 2540>1.173 + 0.8065126.13 - 9.8842
56. 0.5131 -2.7782 - 1 -3.6723 + 0.8894> 11.89 - 1.0922
In Exercises 57–68, perform the indicated operations.

57. Does a 1

x -1 b -1
 represent the reciprocal of x?

58. Does a0.2 - 5 -1

10-2 b0
 equal 1? Explain.

59. If a3 = 5, then what does a12 equal?

60. Is a-2 6 a-1 for any negative value of a? Explain.

61. If a is a positive integer, simplify 1xa # x -a25.

62. If a and b are positive integers, simplify 1ya-b # ya+b22.

63. In developing the “big bang” theory of the origin of the universe, 
the expression 1kT> 1hc2 231GkThc22c arises. Simplify this 
expression.

 64. In studying planetary motion, the expression 1GmM2 1mr2 -11r -22  
arises. Simplify this expression.

65. In designing a cam for a pump, the expression pa r
2
b3a 4

3pr2 b  is 
used. Simplify this expression.

66. For a certain integrated electric circuit, it is necessary to simplify 

the expression 
gM

2pfC12pf M22. Perform this simplification.

67. If $2500 is invested at 4.2% interest, compounded quarterly, the 
amount in the account after 6 years is 250011 + 0.042>4224. 
Calculate this amount. (The values 1, 4, and 24 are exact.)

68. In designing a building, it was determined that the forces acting 
on an I beam would deflect the beam an amount (in cm) given by

  
x11000 - 20x2 + x32

1850
, where x is the distance (in m) from one

  end of the beam. Find the deflection for x = 6.85 m. (The 1000 
and 20 are exact.)

Answers to Practice Exercises

1. a3x5 2. 
25c3

32d2 =
32c3

9d2  3. -c3  4. 
a2

6x

In technical and scientific work, we often encounter numbers that are either very 
large or very small. Examples of such numbers are: (a) Radio and television  
signals travel at about 30 000 000 000 cm/s; (b) The mass of the earth is about  
6 000 000 000 000 000 000 000 000 kg; (c) A typical individual fibre in a fibre-optic 
communications cable has a diameter of 0.000 005 m; (d) some X-rays have a wave-
length of about 0.000 000 095 cm.

As we can see, writing numbers such as these is inconvenient in ordinary notation. 
Although calculators and computers can often handle such numbers, there is a more effi-
cient way of expressing numbers, in order to work more easily with them. A convenient and 
useful notation, called scientific notation, is used to represent these or any other numbers.

A number in scientific notation is expressed as the product of a number greater 
than or equal to 1 and less than 10, and a power of 10, and is written as

P * 10k

where 1 … P 6 10 and k is an integer. (The symbol … means “is less than or equal to.”)

 EXAMPLE  1  Scientific notation

(a) 34 000 = 3.4 * 10 000 = 3.4 * 104  (b) 6.82 = 6.82 * 1 = 6.82 * 100

between 1 and 10

(c) 0.005 03 =
5.03
1000

=
5.03

103 = 5.03 * 10-3 ■

From Example 1, we see how a number is changed from ordinary notation to scien-
tific notation. The decimal point is moved so that only one nonzero digit is to its left. 
The number of places moved is the power of 10 (k), which is positive if the decimal 
point is moved to the left and negative if moved to the right.

 1.5 Scientific Notation
 

Changing Numbers to and from Scientific 

■ Television was invented in the 1920s and 
first used commercially in the 1940s.

The use of fibre optics was developed in the 
1950s.

X-rays were discovered by Roentgen in 1895.
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 EXAMPLE  2  Changing numbers to scientific notation

(a) 34 000 = 3.4 * 104  (b) 6.82 = 6.82 * 100  (c) 0.005 03 = 5.03 * 10-3

 4 places to left 0 places  3 places to right ■

To change a number from scientific notation to ordinary notation, we reverse the 
procedure used in Example 2.

 EXAMPLE  3  Changing numbers to ordinary notation

(a) To change 5.83 * 106 to ordinary 
notation, we move the decimal point 
six places to the right, including addi-
tional zeros to properly locate the 
decimal point.

5.83 * 106 = 5 830 000

6 places to right

(b) To change 8.06 * 10-3 to ordinary 
notation, we must move the decimal 
point three places to the left, again 
including additional zeros to properly 
locate the decimal point.

8.06 * 10-3 = 0.008 06

       3 places to left ■

Scientific notation provides a practical way to handle calculations with very large or 
very small numbers, particularly products, quotients, and powers. First, all numbers are 
expressed in scientific notation. Then the calculation can be performed on numbers 
between 1 and 10, using the laws of exponents to find the power of 10 in the result. In 
this way, scientific notation gives an important application of the use of exponents.

 EXAMPLE  4  Scientific notation in calculations

In designing a computer, it was determined that it would be able to process 803 000 bits 
of data in 0.000 005 25 s. (See Exercise 41 of Exercises 1.1 for a brief note on com-
puter data.) The rate of processing the data is

5 - 1 -62 = 11

803 000
0.000 005 25

=
8.03 * 105

5.25 * 10-6 = a8.03
5.25

b * 1011 = 1.53 * 1011 bits>s

As shown, it is proper to leave the result (rounded off) in scientific notation. This 
method is useful when using a calculator and then estimating the result. In this case, the 
estimate is 18 * 1052 , 15 * 10-62 = 1.6 * 1011. ■

Another advantage of scientific notation is that the precise number of significant 
digits of a number can be shown directly, even when the final significant digit is 0.

 EXAMPLE  5  Scientific notation and significant digits

In evaluating 750 000 000 0002, if we know that 750 000 000 000 has three significant 
digits, we can show the significant digits by writing

750 000 000 0002 = 17.50 * 101122 = 7.502 * 102*11 = 56.3 * 1022

If the answer is to be written in scientific notation, we should write it as the product  
of a number between 1 and 10 and a power of 10. This means we should rewrite it as

 56.3 * 1022 = 15.63 * 102 110222 = 5.63 * 1023 ■

We can enter numbers in scientific notation on a calculator, as well as have the cal-
culator give results automatically in scientific notation. See the next example.

Practice Exercises

1.  Change 2.35 * 10-3 to ordinary notation.
2. Change 235 to scientific notation.

■ The number 7.50 * 1011 cannot be entered 
on a scientific calculator in the form 
750 000 000 000. It could be entered in this  
form on a graphing calculator.
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 EXAMPLE  6  Scientific notation on a calculator

The wavelength l (in m) of the light in a red laser beam can be found from the follow-
ing calculation. Note the significant digits in the numerator.

 l =
3 000 000

4 740 000 000 000
=

3.00 * 106

4.74 * 1012 = 6.33 * 10-7 m

The key sequence is 3 EE  6 ,  4.74 EE  12 ENTER . See Fig. 1.13. ■

When using scientific notation for SI measurements, powers of 10 might end up being 
mixed with SI prefixes. Generally, try to avoid mixing SI prefixes with scientific notation.

COMMON ERROR

Fig. 1.13 

 EXAMPLE  7  Scientific notation with SI prefixes

A measurement of a small distance is quoted in units of km as 0.000 045 km. Convert 
this unit to scientific notation and with a single SI prefix.

 0.000 045 km = 4.5 * 10-5 km

 = 4.5 * 10-5 * 103 m

 = 4.5 * 10-2 m

  = 4.5 cm  ■

A number in engineering notation is expressed as a power of 10 where the exponent 
is a multiple of 3. It is written as

P * 10k

where k is a multiple of 3 and 1 … P 6 1000, so that P can have one, two, or three 
digits to the left of the decimal point. To change a number from ordinary notation to 
engineering notation, the decimal point is moved three spaces at a time, until you have 
a number from 1 to 999. The number of places moved is the power of 10 (k), positive if 
moved to the left, negative if moved to the right.

 EXAMPLE  8  Engineering notation

(a) 19 680 000 000 = 19.68 * 109      (b) 0.45 = 450 * 10-3

9 places to the left    less than 1000       3 spaces to the right       less than 1000

(c) 5.36 * 104 = 5.36 * 10 * 103 = 53.6 * 103

 less than 1000 ■

Engineering notation, when combined with SI prefixes, allows us to replace the 
power of 10 notation altogether, as can be seen in the following example.

 EXAMPLE  9  Engineering notation and SI prefixes

Write each of the following quantities in engineering notation and replace the power of 
10 with the corresponding SI prefix.

(a) 0.000 009 F = 9 * 10-6 F = 9 mF

(b) 62 900 W = 62.9 * 103 W = 62.9 kW ■

Practice Exercises

3.  Write 0.000 053 5 in engineering 
notation.

4. Write 9.1 × 10–8 in engineering notation.
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EXERCISES 1.5

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then rewrite the number as directed.

 1. In Example 3(b), change the exponent -3 to 3 and then write the 
number in ordinary notation.

 2. In Example 5, change the exponent 2 to -1 and then write the 
result in scientific notation.

In Exercises 3–10, change the numbers from scientific notation to 
ordinary notation.

 3. 4.5 * 104  4. 6.8 * 107  5. 2.01 * 10-3  6. 9.61 * 10-5

 7. 3.23 * 100  8. 8 * 100  9. 1.86 * 10 10. 1 * 10-1

In Exercises 11–20, change the numbers from ordinary notation to 
scientific notation.

 11. 4000 12. 56 000 13. 0.0087 14. 0.7

15. 6.09 16. 100 17. 0.063 18. 0.000 090 8

19. 1 20. 10

In Exercises 21–24, perform the indicated calculations using a 
calculator and by first expressing all numbers in scientific notation.

21. 28 00012 000 000 0002  22. 50 00010.0062
23. 

88 000
0.0004

 24. 
0.000 03
6 000 000

In Exercises 25–28, perform the indicated calculations and then check 
the result using a calculator. Assume that all numbers are exact.

25. 2 * 10-35 + 3 * 10-34 26. 5.3 * 1012 - 3.7 * 1010

27. 11.2 * 102923 28. 12 * 10-162 -5

In Exercises 29–36, perform the indicated calculations using a 
calculator. All numbers are approximate.

29. 12801865 0002 143.82  30. 0.000 056 913 190 0002
31. 

0.0732167102
0.001 3410.02312  32. 

0.004 52
2430197 1002

33. 13.642 * 10-82 12.736 * 1052  34. 
17.309 * 10-122

5.984312.5036 * 10-202
35. 

13.69 * 10-72 14.61 * 10212
0.0504

36. 
19.907 * 1072 11.08 * 10122213.603 * 10-52 120542

In Exercises 37–44, change numbers in ordinary notation to scientific 
notation or change numbers in scientific notation to ordinary notation.

37. The Sir Adam Beck Generating Stations in Niagara Falls produce 
2 000 000 kW of power.

38. A certain computer has 85 000 000 000 bytes (85 gigabytes) of 
memory.

39. A fibre-optic system requires 0.000 003 W of power.

40. A red blood cell measures 0.0075 mm across.

41. The frequency of a certain TV signal is 2 000 000 000 Hz.

42. A parsec, a unit used in astronomy, is about 3.086 * 1016 m.

43. The power of the signal of a laser beam probe is 1.6 * 10-12 W.

44. The electrical force between two electrons is about 2.4 * 10-43 
times the gravitational force between them.

In Exercises 45–49, write the numbers from Exercises 37–41 in 
engineering notation and replace the power of 10 with the 
corresponding SI prefix.

In Exercises 50–53, solve the given problems.

50. Write the following numbers in engineering notation. (a) 2300  
(b) 0.23 (c) 23

51. Write the following numbers in engineering notation.  
(a) 8 090 000 (b) 809 000 (c) 0.0809

52. A googol is defined as 1 followed by 100 zeros. (a) Write this 
number in scientific notation. (b) A googolplex is defined as 10 to 
the googol power. Write this number using powers of 10, and not 
the word googol. (Note the name of the Internet company.)

53. The number of electrons in the universe has been estimated at 
1079. How many times greater is a googol than the estimated 
number of electrons in the universe? (See Exercise 52.)

In Exercises 54–57, perform the indicated calculations.

54. A computer can do an addition in 7.5 * 10-15 s. How long does 
it take to perform 5.6 * 106 additions?

55. Uranium is used in nuclear reactors to generate electricity. About 
0.000 000 039% of the uranium disintegrates each day. How 
much of 0.085 mg of uranium disintegrates in a day?

56. A TV signal travels at 3.00 * 105 km>s for a total of 
7.37 * 104 km from the station transmitter to a satellite and then 
to a receiver dish. How long does it take the signal to go from the 
transmitter to the dish?

57. (a) Determine the number of seconds in a day in scientific nota-
tion. (b) Using the result of part (a), determine the number of 
seconds in a century (assume 365.25 days>year).

In Exercises 58–61, perform the indicated calculations by first 
expressing all numbers in scientific notation.

58. One atomic mass unit (amu) is 1.66 * 10-27 kg. If one oxygen 
atom has 16 amu (an exact number), what is the mass of 125 000 000 
oxygen atoms?

59. The rate of energy radiation (in W) from an object is found by 
evaluating the expression kT 4, where T  is the thermodynamic 
temperature. Find this value for the human body, for which 
k = 0.000 000 057 W>K4 and T = 303 K.

60. In a microwave receiver circuit, the resistance R of a wire 1 m 
long is given by R = k>d2, where d is the diameter of the wire. 
Find R if k = 0.000 000 021 96 Ω # m2 and d = 0.000 079 98 m.

 61. The average distance between the sun and earth is about  
149 600 000 km, and this distance is called an astronomical unit 
(AU). It takes light about 499.0 s to travel 1 AU. What is the speed of 
light? Compare this with the speed of the TV signal in Exercise 56.

Answers to Practice Exercises

1. 0.002 35 2. 2.35 * 102 3. 53.5 * 10-6 4. 91 * 10-9
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At times, we have to find the square root of a number, or maybe some other root of a 
number, such as a cube root. This means we must find a number that when squared, or 
cubed, and so on equals some given number. For example, to find the square root of 9, 
we must find a number that when squared equals 9. In this case, either 3 or -3 is an 
answer. Therefore, either 3 or -3 is a square root of 9 since 32 = 9 and 1 -322 = 9.

To have a general notation for the square root and have it represent one number, we 
define the principal square root of a to be positive if a is positive and represent it by 1a. This means 19 = 3 and not -3.

The general notation for the principal nth root of a is 2n
a. (When n = 2, do not 

write the 2 for n.) The 1  sign is called a radical sign.

 EXAMPLE  1  Roots of numbers

(a) 12 (the square root of 2) (b) 23 2 (the cube root of 2)

(c) 24 2 (the fourth root of 2) (d) 27 6 (the seventh root of 6) ■

To have a single defined value for all roots (not just square roots) and to consider 
only real-number roots, we define the principal nth root of a to be positive if a is posi-
tive and to be negative if a is negative and n is odd. (If a is negative and n is even, the 
roots are not real.)

 EXAMPLE  2  Principal nth root

(a) 1169 = 13 11169 ≠ -132  (b) - 164 = -8

(c) 23 27 = 3 since 33 = 27 (d) 10.04 = 0.2 since 0.22 = 0.04
odd

(e) - 24 256 = -4 (f) 23 -27 = -3 (g) - 23 27 = -(+3) = -3 ■

Another property of square roots is developed by noting illustrations such as 136 = 14 * 9 = 14 * 19 = 2 * 3 = 6. In general, this property states that 
the square root of a product of positive numbers is the product of their square roots.

 1.6 Roots and Radicals
Principal n  

■ Unless we state otherwise, when we refer 
to the root of a number, it is the principal root.

 1ab = 1a1b (a and b positive real numbers) (1.9)

This property is used in simplifying radicals. It is most useful if either a or b is a per-
fect square, which is the square of a rational number.

 EXAMPLE  3  

(a) 18 = 1142 122 = 1412 = 212

perfect squares      simplest form

(b)     175 = 11252 132 = 12513 = 513

(c) 24 * 102 = 142102 = 21102 = 20

  (Note that the square root of the square of a positive number is that number.) ■
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In order to represent the square root of a number exactly, use Eq. (1.9) to write it in 
simplest form. However, a decimal approximation is often acceptable, and we  
use the 1x  key on a calculator. (We will show another way of finding the root of a 
number in Chapter 11.)

 EXAMPLE  4  

After reaching its greatest height, the time (in s) for a rocket to fall h m is found by 
evaluating 0.451h. Find the time for the rocket to fall 360 m.

We calculate 0.451360 = 8.5. Therefore, the rocket takes 8.5 s to fall 360 m. The 
result is rounded off to two significant digits, the accuracy of 0.45 (an approximate 
number). ■

In simplifying a radical, all operations under a radical sign must be done before 
finding the root. The horizontal bar groups the numbers under it.

 EXAMPLE  5  

(a)  116 + 9 = 125  first perform the addition 16 + 9

   = 5

■ Try this one on your calculator: 112345678987654321

However, 116 + 9 is not 116 + 19 = 4 + 3 = 7.COMMON ERROR

(b) 222 + 62 = 14 + 36 = 140 = 14110 = 2110, but

  222 + 62 is not 222 + 262 = 2 + 6 = 8. ■

In defining the principal square root, we did not define the square root of a negative 
number. However, in Section 1.1, we defined the square root of a negative number to 
be an imaginary number. More generally, the even root of a negative number is an 
imaginary number, and the odd root of a negative number is a negative real number.

 EXAMPLE  6  Imaginary roots and real roots

even even odd

 1-64 is imaginary 24 -243 is imaginary 23 -64 = -4 (a real number) ■

A much more detailed coverage of imaginary numbers, roots, and radicals is taken 
up in Chapters 11 and 12.

Practice Exercises

Simplify:
1. 112 2. 136 + 144

EXERCISES 1.6

In Exercises 1–4, make the given changes in the indicated examples  
of this section and then solve the given problems.

 1. In Example 2(b), change the square root to a cube root and then 
evaluate.

 2. In Example 3(b), change 21252 132  to 21152 152  and 
explain whether or not this would be a better expression to use.

 3. In Example 5(a), change the +  to *  and then evaluate.

 4. In the first illustration of Example 6, place a -  sign before the 
radical. Is there any other change in the statement?

In Exercises 5–36, simplify the given expressions. In each of 5–9 and 
12–21, the result is an integer.

 5. 181  6. 1225  7. - 1121  8. - 136

 9. - 149 10. 10.25 11. 10.09 12. - 1900

13. 23 125 14. 24 16 15. 23 -216 16. 25 -32

17. 11522 18. 123 3123 19. 1 - 23 -4723 20. 1 25 -2325

21. 1 - 24  5324 22. - 132 23. 11200 24. 150

25. 2184 26. 
1108

2
 27. A 80

7 - 3
 28. 281 * 102

29. 23 82 30. 24 92 31. 
72181

32149
 32. 

2525 243
31144



32 CHAPTER 1 Basic Algebraic Operations

33. 136 + 64 34. 125 + 144

35. 232 + 92 36. 282 - 42

In Exercises 37–44, find the value of each square root by use of a 
calculator. Each number is approximate.

37. 185.4 38. 13762 39. 10.4729 40. 10.0627

41. (a) 11296 + 2304 (b) 11296 + 12304

42. (a) 110.6276 + 2.1609 (b) 110.6276 + 12.1609

43. (a) 20.04292 - 0.01832 (b) 20.04292 - 20.01832

44. (a) 23.6252 + 0.6142  (b) 23.6252 + 20.6142

In Exercises 45–56, solve the given problems.

45. The speed (in km>h) of a car that skids to a stop on dry pavement 
is often estimated by 1207s, where s is the length (in m) of the 
skid marks. Estimate the speed if s = 46 m.

46. The resistance in an amplifier circuit is found by evaluating 
  2Z2 - X2. Find the resistance for Z = 5.362 Ω and 

X = 2.875 Ω.

47. The speed (in m>s) of sound in seawater is found by evaluating 1B>d for B = 2.18 * 109 Pa and d = 1.03 * 103 kg>m3. Find 
this speed, which is important in locating underwater objects 
using sonar.

48. The terminal speed (in m>s) of a skydiver can be approximated 
by 140m, where m is the mass (in kg) of the skydiver. Calculate 
the terminal speed (after reaching this speed, the skydiver’s speed 

remains fairly constant before opening the parachute) of a 75-kg 
skydiver.

49. An HDTV screen is 93.0 cm wide and 52.1 cm high. The length 
of a diagonal (the dimension used to describe it—from one corner 
to the opposite corner) is found by evaluating 2w2 + h2, where 
w is the width and h is the height. Find the diagonal.

50. A car costs $22 000 new and is worth $15 000 2 years later. The 
annual rate of depreciation is found by evaluating 
10011 - 2V>C2 , where C is the cost and V is the value after 2 
years. At what rate did the car depreciate? (100 and 1 are exact.)

51. Is it always true that 2a2 = a? Explain.

52. For what values of x is (a) x 7 1x, (b) x = 1x, and  
(c) x 6 1x?

53. A graphing calculator has a specific key sequence to find cube
  roots. Using a calculator, find 23 2140 and 23 -0.214.

54. A graphing calculator has a specific key sequence to find nth

   roots. Using a calculator, find 27 0.382 and 27 -382.

55. Determine if the following numbers are real or imaginary:
  (a) 24 -81 (b) 27 -128

56. Determine if the following numbers are real or imaginary: 
  (a) 25 -32 (b) 24 -64

Answers to Practice Exercises

1. 213 2. 615

Since we use letters to represent numbers, we can see that all operations that can be 
used on numbers can also be used on literal numbers. In this section, we discuss the 
methods for adding and subtracting literal numbers.

Addition, subtraction, multiplication, division, and taking of roots are known as 
algebraic operations. Any combination of numbers and literal symbols that results 
from algebraic operations is known as an algebraic expression.

When an algebraic expression consists of several parts connected by plus signs and 
minus signs, each part (along with its sign) is known as a term of the expression. If a 
given expression is made up of the product of a number of quantities, each of these 
quantities, or any product of them, is called a factor of the expression.

 1.7 Addition and Subtraction of  
Algebraic Expressions

 
 

It is very important to distinguish clearly between terms and factors, because some 
operations that are valid for terms are not valid for factors, and conversely. Some of 
the common errors in handling algebraic expressions occur because these operations 
are not handled properly.

COMMON ERROR

 EXAMPLE  1  Terms and factors

In the study of the motion of a rocket, the following algebraic expression may be used.
terms

gt2 - 2vt + 2s
factors

This expression has three terms: gt2, -2vt, and 2s. The first term, gt2, has a factor of g 
and two factors of t. Any product of these factors is also a factor of gt2. This means 
other factors are gt, t2, and gt2 itself. ■
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 EXAMPLE  2  Terms and factors

7a1x2 + 2y2 - 6x15 + x - 3y2  is an expression with terms 71x2 + 2y2  and 
-6x15 + x - 3y2 .

The term 7a1x2 + 2y2  has individual factors of 7, a, and 1x2 + 2y2 , as well as 
products of these factors. The factor x2 + 2y has two terms, x2 and 2y.

The term -6x15 + x - 3y2  has factors 2, 3, x, and 15 + x - 3y2 . The negative 
sign in front can be treated as a factor of -1. The factor 5 + x - 3y has three terms, 5, 
x, and -3y. ■

A polynomial is an algebraic expression with only nonnegative integer exponents 
on one or more variables, and has no variable in a denominator. The degree of a term 
is the sum of the exponents of the variables of that term, and the degree of the polyno-
mial is the degree of the term of highest degree.

A multinomial is any algebraic expression of more than one term. Terms like 1>x 
and 1x can be included in a multinomial, but not in a polynomial. (Since 1>x = x -1, 
the exponent is negative.)

 EXAMPLE  3  Polynomials

Some examples of polynomials are as follows:

(a) 4x2 - 5x + 3 (degree 2)  (b) 2x6 - x (degree 6)  (c) 3x (degree 1)

(d) xy3 + 7x - 3 (degree 4) (add exponents of x and y)

(e) -6 1degree 02 1 -6 = -6x02
From (c), note that a single term can be a polynomial, and from (e), note that a constant 
can be a polynomial. The expressions in (a), (b), and (d) are also multinomials.

The expression x2 + 1y + 2 - 8 is a multinomial, but not a polynomial because 
of the square root term. ■

A polynomial with one term is called a monomial. A polynomial with two terms is 
called a binomial, and one with three terms is called a trinomial. The numerical fac-
tor is called the numerical coefficient (or simply coefficient) of the term. All terms 
that differ at most in their numerical coefficients are known as similar or like terms. 
That is, similar terms have the same variables with the same exponents.

 EXAMPLE  4  

(a) 7x4 is a monomial. The numerical coefficient is 7.

(b) 3ab - 6a is a binomial. The numerical coefficient of the first term is 3, and the 
numerical coefficient of the second term is -6. Note that the sign is attached to 
the coefficient.

(c) 8cx3 - x + 2 is a trinomial. The coefficients of the first two terms are 8 and -1.

(d) x2y2 - 2x + 3y - 9 is a polynomial with four terms (no special name). ■

 EXAMPLE  5  Similar terms

(a) 8b - 6ab + 81b is a trinomial. The first and third terms are similar since they  
differ only in their numerical coefficients. The middle term is not similar to the 
others since it has a factor of a.

(b) 4x2 - 3x is a binomial. The terms are not similar since the first term has two fac-
tors of x, and the second term has only one factor of x.

(c) 3x2y3 - 5y3x2 + x2 - 2y3 is a polynomial. The commutative law tells us that 
x2y3 = y3x2, which means the first two terms are similar. ■

■ In Chapter 11, we will see that roots are 
equivalent to noninteger exponents.

■ In practice, the numerical coefficient is 
usually called the coefficient. However, a more 
general definition is: any factor of a product is 
the coefficient of the other factors.

In adding and subtracting algebraic 
expressions, we combine similar 
terms into a single term. The  
simplified expression will contain 
only terms that are not similar.

LEARNING T IP
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 EXAMPLE  6  Simplifying expressions

(a) 3x + 2x - 5y = 5x - 5y  Add similar terms—result has unlike terms

(b) 6a2 - 7a + 8ax cannot be simplified since there are no like terms.

(c) 6a + 5c + 2a - c = 6a + 2a + 5c - c  commutative law

   = 8a + 4c   add like terms ■

To group terms in an algebraic expression, we use symbols of grouping. In this text, 
we use parentheses, (), brackets, [ ], and braces, {}. The bar, which is used with radi-
cals and fractions, also groups terms. In earlier sections, we used parentheses and the bar.

When adding and subtracting algebraic expressions, it may be necessary to remove 
symbols of grouping. To do so, we must change the sign of every term within the sym-
bols if the grouping is preceded by a minus sign. If the symbols of grouping are pre-
ceded by a plus sign, each term within the symbols retains its original sign. This is a 
result of the distributive law, a1b + c2 = ab + ac.

■ Some calculators can display algebraic 
expressions and perform algebraic operations.

Do not forget to multiply using the distributive law if there is a minus sign in front 
of a factor with multiple terms.

2b + 6a - (3a - 4b) = 2b + 6a - 3a + 4b = 3a + 6b

A common error is to forget to change the signs to all the terms in the factor.

2b + 6a - (3a - 4b) ≠ 2b + 6a - 3a - 4b = 3a - 2b

COMMON ERROR

 EXAMPLE  7  Symbols of grouping

(a)  21a + 2x2 = 2a + 212x2    use distributive law

   = 2a + 4x

(b)  - 1 +a - 3c2 = 1 -12 1 +a - 3c2    treat -  sign as -1

   = 1 -12 1 +a2 + 1 -12 1 -3c2
   = -a + 3c note change of signs

Normally, +a would be written simply as a. ■

In Example 7(a), we see that 21a + 2x2 = 2a + 4x. This is true for any values of  
a and x, and is therefore an identity (see Section 1.2). In fact, an expression and any proper 
form to which it may be changed form an identity when they are shown to be equal.

 EXAMPLE  8  Simplifying: signs before parentheses

        +  sign before parentheses

(a) 3c + 12b - c2 = 3c + 2b - c = 2b + 2c   use distributive law

2b = +2b            signs retained

      -  sign before parentheses

(b) 3c - 12b - c2 = 3c - 2b + c = -2b + 4c     use distributive law

2b = +2b            signs changed

(c) 3c - 1 -2b + c2 = 3c + 2b - c = 2b + 2c    use distributive law

                        signs changed ■

Practice Exercises

Use the distributive law.
1. 312a + y) 2. -31 -2r + s2

Practice Exercise

3. Simplify: 2x - 314y - x2
■ Note in each case that the parentheses are 
removed and the sign before the parentheses is 
also removed.
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 EXAMPLE  9  Simplifying in an application

In designing a certain machine part, it is necessary to perform the following simplification.

 1618 - x2 - 218x - x22 - 164 - 16x + x22 = 128 - 16x - 16x + 2x2 - 64 + 16x - x2

 = 64 - 16x + x2 ■

 EXAMPLE  10  Several symbols of grouping

(a)  3ax - 3ax - 15s - 2ax2 4 = 3ax - 3ax - 5s + 2ax4   remove parentheses

   = 3ax - ax + 5s - 2ax     remove brackets

   = 5s

  remove parentheses

(b)  3a2b - 5 3a - 12a2b - a2 4 + 2b6 = 3a2b - 5 3a - 2a2b + a4 + 2b6
   = 3a2b - 5a - 2a2b + a + 2b6  

   = 3a2b - a + 2a2b - a - 2b  

   = 5a2b - 2a - 2b remove brackets

                                    remove braces ■

Calculators use only parentheses for grouping symbols, and we often need to use 
one set of parentheses within another set. These are called nested parentheses. In the 
next example, note that the innermost parentheses are removed first.

 EXAMPLE  11  Nested parentheses

 2 - 13x - 215 - 17 - x2 2 2 = 2 - 13x - 215 - 7 + x2 2
 = 2 - 13x - 10 + 14 - 2x2
 = 2 - 3x + 10 - 14 + 2x

 = -x - 2 ■

At times, we have expressions in 
which more than one symbol of 
grouping is to be removed in the  
simplification. Normally, when  
several symbols of grouping are to  
be removed, it is more convenient to 
remove the innermost symbols first.

LEARNING T IP

EXERCISES 1.7

In Exercises 1–4, make the given changes in the indicated examples of 
this section, and then solve the resulting problems.

 1. In Example 6(a), change 2x to 2y.

  2. In Example 8(a), change the sign before 12b - c2  from + to - .

  3. In Example 10(a), change 3ax - 15s - 2ax2 4  to 3 1ax - 5s2 - 2ax4 .

  4. In Example 10(b), change 5 3a - 12a2b - a2 4 + 2b6  to 5a - 32a2b - 1a + 2b2 4 6 .

In Exercises 5–46, simplify the given algebraic expressions.

  5. 5x + 7x - 4x 6. 6t - 3t - 4t

 7. 2y - y + 4x 8. 4C + L - 6C

 9. 2F - 2T - 2 + 3F - T  10. x - 2y + 3x - y + z

11. a2b - a2b2 - 2a2b 12. xy2 - 3x2y2 + 2xy2

13. s + 13s - 4 - s2  14. 5 + 13 - 4n + p2
15. v - 14 - 5x + 2v2  16. 2a - 1b - a2
17. 2 - 3 - 14 - 5a2  18. 1A + 1h - 21A2 - 31A

19. 1a - 32 + 15 - 6a2  20. 14x - y2 - 1 -2x - 4y2
 21. - 1 t - 2u2 + 13u - t2  22. 21x - 2y2 + 15x - y2

23. 312r + s2 - 1 -5s - r2  24. 31a - b2 - 21a - 2b2
25. -716 - 3j2 - 21 j + 42  26. - 15t + a22 - 213a2 - 2st2
27. - 3 16 - n2 - 12n - 32 4  28. - 3 1A - B2 - 1B - A2 4
29. 234 - 1 t2 - 52 4  30. 33 -3 - 1a - 42 4
31. -23 -x - 2a - 1a - x2 4  32. -23 -31x - 2y2 + 4y4
33. aZ - 33 - 1aZ + 42 4
34. 9v - 36 - 1v - 42 + 4v4
35. 8c - 55 - 32 - 13 + 4c2 4 6
36. 7y - 5y - 32y - 1x - y2 4 6
37. 5p - 1q - 2p2 - 33q - 1p - q2 4
38. - 14 - 1LC2 - 3 151LC - 72 - 161LC + 22 4
39. -25 - 14 - x22 - 33 + 14 - x22 4 6
40. - 5 - 3 - 1x - 2a2 - b4 - 1a - x2 6
41. 5V2 - 16 - 12V2 + 32 2  42. -2F + 21 12F - 12 - 52
43. - 13t - 17 + 2t - 15t - 62 2 2
44. a2 - 21x - 5 - 17 - 21a2 - 2x2 - 3x2 2
45. -434R - 2.51Z - 2R2 - 1.512R - Z2 4
46. 352.1e - 1.33 f - 21e - 5f2 4 6
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47. In determining the size of a V belt to be used with an engine, the 
expression 3D - 1D - d2  is used. Simplify this expression.

48. When finding the current in a transistor circuit, the expression 
i1 - 12 - 3i22 + i2 is used. Simplify this expression. (The 
numbers below the i’s are subscripts. Different subscripts denote 
different variables.)

49. Research on a plastic building material leads to
  3 1B + 4

3 a2 +  21B - 2
3 a2 4 - 3 1B + 4

3 a2 - 1B - 2
3 a2 4 .

  Simplify this expression.

50. One car goes 30 km>h for t - 1 hours, and a second car goes 
40 km>h for t + 2 hours. Find the expression for the sum of the 
distances travelled by the two cars.

 51. A shipment contains x film cartridges for 15 exposures each and 
x + 10 cartridges for 25 exposures each. What is the total number 
of photographs that can be taken with the film from this shipment?

 52. Each of two stores has 2n + 1 mouse pads costing $3 each and 
n - 2 mouse pads costing $2 each. How much more is the total 

value of the $3 mouse pads than the $2 mouse pads in the two 
stores?

 53. For the expressions 2x2 - y + 2a and 3y - x2 - b find (a) the 
sum, and (b) the difference if the second is subtracted from the first.

54. For the following expressions, subtract the third from the sum of 
the first two: 3a2 + b - c3, 2c3 - 2b - a2, 4c3 - 4b + 3.

In Exercises 55 and 56, answer the given questions.

55. For any real numbers a and b, is it true that 0 a - b 0 = 0 b - a 0 ? 
Explain.

56. Is subtraction associative? That is, in general, does 1a - b2 - c 
equal a - 1b - c2? Explain.

Answers to Practice Exercises

1. 6a + 3y 2. 6r - 3s 3. 5x - 12y

To find the product of two or more monomials, we use the laws of exponents as given 
in Section 1.4 and the laws for multiplying signed numbers as stated in Section 1.2. We 
first multiply the numerical coefficients to find the numerical coefficient of the prod-
uct. Then we multiply the literal numbers, remembering that the exponents may be 
combined only if the base is the same.

 EXAMPLE  1  

(a) 3c51 -4c22 = -12c7    multiply numerical coefficients  
and add exponents of c

(b) 1 -2b2y32 1 -9aby52 = 18ab3y8   add exponents of same base

(c) 2xy1 -6cx22 13xcy22 = -36c2x4y3 ■

If a product contains a monomial that is raised to a power, we must first raise it to 
the indicated power before proceeding with the multiplication.

 EXAMPLE  2  Product containing a power of a monomial

(a) 312a2x231 -ax2 = 318a6x32 1 -ax2 = -24a7x4

(b) 2s31 -st42214s2t2 = 2s31s2t82 14s2t2 = 8s7t9 ■

We find the product of a monomial and a polynomial by using the distributive law, 
which states that we multiply each term of the polynomial by the monomial. In doing 
so, we must be careful to give the correct sign to each term of the product.

 EXAMPLE  3  Product of a monomial and a polynomial

(a) 2ax13ax2 - 4yz2 = 2ax13ax22 + 12ax2 1 -4yz2 = 6a2x3 - 8axyz

(b) 5cy21 -7cx - ac2 = 15cy22 1 -7cx2 + 15cy22 1 -ac2 = -35c2xy2 - 5ac2y2 ■

 1.8 Multiplication of Algebraic Expressions

Polynomials

Practice Exercises

Perform the indicated multiplications.
1. 2a3b1 -6ab22  2. -5x2y312xy - y42
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It is generally not necessary to write out the middle step as it appears in the preced-
ing example. We write the answer directly. For instance, Example 3(a) would appear as 
2ax13ax2 - 4yz2 = 6a2x3 - 8axyz.

We find the product of two polynomials by using the distributive law. The result is 
that we multiply each term of one polynomial by each term of the other and add the 
results. Again we must be careful to give each term of the product its correct sign.

 EXAMPLE  4  Product of polynomials

 1x - 22 1x + 32 = x1x2 + x132 + 1 -22 1x2 + 1 -22 132
 = x2 + 3x - 2x - 6

  = x2 + x - 6  ■

Finding the power of a polynomial is equivalent to using the polynomial as a factor 
the number of times indicated by the exponent. It is sometimes convenient to write the 
power of a polynomial in this form before multiplying.

 EXAMPLE  5  Power of a polynomial

two factors

(a)  1x + 522 = 1x + 52 1x + 52 = x2 + 5x + 5x + 25
   = x2 + 10x + 25

(b)  12a - b23 = 12a - b2 12a - b2 12a - b2  the exponent 3 indicates three factors

   = 12a - b2 14a2 - 2ab - 2ab + b22
   = 12a - b2 14a2 - 4ab + b22
   = 8a3 - 8a2b + 2ab2 - 4a2b + 4ab2 - b3

   = 8a3 - 12a2b + 6ab2 - b3  ■

■ Note that, using the distributive law, 1x - 22 1x + 32 = 1x - 22 1x2 +1x - 22 132  leads to the same result.

Practice Exercises

Perform the indicated multiplications.
3. 12s - 5t2 1s + 4t2  4. 13u + 2v22

(x + 5)2 ≠ x2 + 25

A common error is to forget to include the middle term of 10x. By following proper 
procedure, you must expand the relation as

 1x + 522 = 1x + 52 1x + 52
 = x # x + x # 5 + 5 # x + 5 # 5
 = x2 + 10x + 25

Thus, you cannot simply square each of the terms within the parentheses.

COMMON ERROR

 EXAMPLE  6  Products in an application

An expression used with a lens of a certain telescope is simplified as shown.

a1a + b22 + a3 - 1a + b2 12a2 - s22
 = a1a + b2 1a + b2 + a3 - 12a3 - as2 + 2a2b - bs22
 = a1a2 + ab + ab + b22 + a3 - 2a3 + as2 - 2a2b + bs2

 = a3 + a2b + a2b + ab2 - a3 + as2 - 2a2b + bs2

  = ab2 + as2 + bs2  ■
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EXERCISES 1.8

In Exercises 1–4, make the given changes in the indicated examples of 
this section, and then solve the resulting problems.

 1. In Example 2(b), change the factor 1 -st422 to 1 -st423.

  2. In Example 3(a), change the factor 2ax to -2ax.

  3. In Example 4, change the factor 1x + 32  to 1x - 32 .

  4. In Example 5(b), change the exponent 3 to 2.

In Exercises 5–50, perform the indicated multiplications.

 5. 1a22 1ax2   6. 12xy2 1x2y32   7. -ac21acx32
 8. -2cs21 -4cs22  9. 12ax2221 -2ax2  10. 6pq313pq222

11. i21R + 2r2  12. 2x1p - q2  13. -3s1s2 - 5t2
14. -3b12b2 - b2  15. 5m1m2n + 3mn2  16. a2bc12ac - 3b2c2
17. 3M1 -M - N + 22  18. -4c21 -9gc - 2c + g22
19. ax1cx22 1x + y32  20. -21 -3st32 13s - 4t2
21. 1x - 32 1x + 52  22. 1a + 72 1a + 12
23. 1x + 52 12x - 12  24. 14t1 + t22 12t1 - 3t22
25. 12a - b2 13a - 2b2  26. 14w2 - 32 13w2 - 12
27. 12s + 7t2 13s - 5t2  28. 15p - 2q2 1p + 8q2
29. 1x2 - 12 12x + 52  30. 13y2 + 22 12y - 92
31. 1x - 2y - 42 1x - 2y + 42
32. 12a + 3b + 12 12a + 3b - 12
33. 21a + 12 1a - 92  34. -51y - 32 1y + 62
35. -313 - 2T2 13T + 22  36. 2n15 - n2 16n + 52
37. 2L1L + 12 14 - L2  38. ax1x + 42 17 - x22
39. 12x - 522 40. 1x - 3y22 41. 1x1 + 3x222

 42. 17m + 122 43. 1xyz - 222 44. 1b - 6x222

45. 21x + 822 46. 313R + 422

47. 12 + x2 13 - x2 1x - 12  48. 13x - c223

49. 3T1T + 22 12T - 12  50. 3 1x - 2221x + 22 42

51. Let x = 3 and y = 4 to show that (a) 1x + y22 ≠ x2 + y2 and 
(b) 1x - y22 ≠ x2 - y2. 1 ≠  means “does not equal.”2

52. Evaluate the product 1982 11022  by expressing it as 1100 - 221100 + 22 .

53. Square an integer between 1 and 9 and subtract 1 from the result. 
Explain why the result is the product of the integer before and the 
integer after the one you chose.

54. Explain how, by appropriate grouping, the product 1x - 221x + 32 1x + 22 1x - 32  is easier to find. Find the product.

55. By multiplication, show that 1x + y23 is not equal to x3 + y3.

 56. By multiplication, show that 1x + y2 1x2 - xy + y22
= x3 + y3.

57. In finding the value of a certain savings account, the expression 
P11 + 0.01r22 is used. Multiply out this expression.

58. The force due to the liquid in a parabolic container leads to the 
expression w11 - x2 14 - x22 . Multiply out this expression.

59. In using aircraft radar, the expression 12R - X22 - 1R2 + X22  
arises. Simplify this expression.

60. In calculating the temperature variation of an industrial area, the 
expression 12T3 + 32 1T2 - T - 32  arises. Perform the indi-
cated multiplication.

61. In a particular computer design containing n circuit elements, n2 
switches are needed. Find the expression for the number of 
switches needed for n + 100 circuit elements.

62. Simplify the expression 1T2 - 1002 1T - 102 1T + 102 , 
which arises when analysing the energy radiation from an object.

63. In finding the maximum power in part of a microwave transmitter 
circuit, the expression 1R1 + R222 - 2R21R1 + R22  is used. 
Multiply and simplify.

64. In determining the deflection of a certain steel beam, the expres-
sion 27x2 - 241x - 622 - 1x - 1223 is used. Multiply and 
simplify.

Answers to Practice Exercises

1. -12a4b3 2. -10x3y4 + 5x2y7

3. 2s2 + 3st - 20t2 4. 9u2 + 12uv + 4v2

To find the quotient of one monomial divided by another, we use the laws of exponents 
and the laws for dividing signed numbers. Again, the exponents may be combined only 
if the base is the same.

 EXAMPLE  1  

(a) 
3c7

c2 = 3c7-2 = 3c5 (b) 
16x3y5

4xy2 =
16
4
1x3-12 1y5-22 = 4x2y3

(c) 
-6a2xy2

2axy4 = - a6
2
b a2-1x1-1

y4-2 = - 3a

y2              
divide  
coefficients

subtract  
exponents

As shown in illustration (c), we use only positive exponents in the final result unless 
there are specific instructions otherwise. ■

 1.9 Division of Algebraic Expressions

Another
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From arithmetic, we may show how a multinomial is to be divided by a monomial.

When adding fractions 1say 27 and 372 , we have 
2
7

+ 3
7

=
2 + 3

7
.

Looking at this from right to left, we see that the quotient of a multinomial divided by a 
monomial is found by dividing each term of the multinomial by the monomial and add-
ing the results. This can be shown as

a + b
c

=
a
c

+ b
c

■ This is an identity and is valid for all values 
of a and b, and all values of c except zero 
(which would make it undefined).

Be careful: Although 
a + b

c
=

a
c

+ b
c

, we must note that 
c

a + b
 is not 

c
a

+
c
b

.
COMMON ERROR

 EXAMPLE  2  

(a)  
4a2 + 8a

2a
=

4a2

2a
+ 8a

2a
= 2a + 4

(b)  
4x3y - 8x3y2 + 2x2y

2x2y
=

4x3y

2x2y
-

8x3y2

2x2y
+

2x2y

2x2y
   

each term of 
numerator divided 
by denominator

   = 2x - 4xy + 1

We usually do not write out the middle step as shown in these illustrations. The divi-
sions of the terms of the numerator by the denominator are usually done by inspection 
(mentally), and the result is shown as it appears in the next example. ■

 EXAMPLE  3  Application of dividing by a monomial

The expression 
2p + v2d + 2ydg

2dg
 is used when analysing the operation of an irrigation 

pump. Performing the indicated division, we have

 
2p + v2d + 2ydg

2dg
=

p
dg

+ v2

2g
+ y ■

To divide one polynomial by another, use the following steps.

Practice Exercise

Divide: 1. 
4ax2 - 6a2x

2ax

■ Until you are familiar with the method, it is 
recommended that you do write out the middle 
step.

1.  Arrange the dividend (the polynomial to be divided) and the divisor in 
descending powers of the variable.

2.  Divide the first term of the dividend by the first term of the divisor. The 
result will be the first term in the quotient.

3.  Multiply the entire divisor by the first term of the quotient and subtract this 
product from the dividend.

4.  Divide the first term of this remainder by the first term of the divisor. This 
gives the second term of the quotient.

5.  Multiply the entire divisor by the second term of the quotient and subtract 
this product from the remainder.

6.  Repeat this process until the remainder is zero or until a term of lower degree 
than the divisor is found.

7.  Write the quotient solution as the quotient terms obtained plus any remainder 
divided by the divisor.

■ This is similar to long division of numbers.
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 EXAMPLE  4  

Perform the division 16x2 + x - 22 , 12x - 12 .aThis division can also be indicated in the fractional form 
6x2 + x - 2

2x - 1
.b

We set up the division as we would for long division in arithmetic. Then, following 
the procedure outlined above, we have the following:

                          3x + 2 

 2x - 1 6x2 + x - 2

 subtract 6x2 - 3x  3x12x - 12
 6x2 - 6x2 = 0 4x - 2

 x - 1 -3x2 = 4x 4x - 2 subtract

 0

The remainder is zero and the quotient is 3x + 2. Note that when we subtracted -3x 

from x, we obtained 4x. Therefore, 
6x2 + x - 2

2x - 1
= 3x + 2. ■

 EXAMPLE  5  Quotient with a remainder

Perform the division 
8x3 + 4x2 + 3

4x2 - 1
. Since there is no x-term in the dividend, we 

should leave space for any x-terms that might arise (which we will show as 0x).

 2x + 1

divisor 4x2 - 1 8x3 + 4x2 + 0x + 3 dividend

 8x3 - 2x subtract

 4x2 + 2x + 3
 0x - 1 -2x2 = 2x

 4x2 - 1 subtract

 2x + 4 remainder

Since the degree of the remainder 2x + 4 is less than that of the divisor, we now show 

the result in this case as 
8x3 + 4x2 + 3

4x2 - 1
= 2x + 1 + 2x + 4

4x2 - 1
. ■

6x2

2x

divide first term of dividend 
by first term of divisor

8x3

4x2 = 2x

4x2

4x2 = 1

Practice Exercise

Divide: 2. 16x2 + 7x - 32 , 13x - 12

EXERCISES 1.9

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then perform the indicated divisions.

 1. In Example 1(c), change the denominator to -2a2xy5.

 2. In Example 2(b), change the denominator to 2xy2.

 3. In Example 4, change the dividend to 6x2 - 7x + 2.

 4. In Example 5, change the sign of the middle term of the numera-
tor from +  to - .

In Exercises 5–24, perform the indicated divisions.

 5. 
8x3y2

-2xy
 6. 

-18b7c3

bc2  7. 
-16r3t5

-4r5t
 8. 

51mn5

17m2n2

 9. 
115x22 14bx2 12y2

30bxy
 10. 

15sT2 18s2T32
10s3T2  11. 

61ax22

-ax2

12. 
12a2b13ab222 13. 

3a2x + 6xy

3x
 14. 

2m2n - 6mn
2m

15. 
3rst - 6r2st2

3rs
 16. 

-5a2n - 10an2

5an

17. 
4pq3 + 8p2q2 - 16pq5

4pq2  18. 
a2x1x2

2 + ax3
1 - ax1

ax1

19. 
2pf L - pf R2

pf R
 20. 

91aB24 - 6aB4

3aB3
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21. 
3ab2 - 6ab3 + 9a2b2

9a2b2  22. 
2xn+2 + 4axn

2xn

23. 
6y2n - 4ayn+1

2yn  24. 
3a1F + T2b2 - 1F + T2

a1F + T2
In Exercises 25–42, perform the indicated divisions. Express the 
answer as shown in Example 5 when applicable.

25. 12x2 + 7x + 32 , 1x + 32  26. 13t2 - 7t + 42 , 1 t - 12
27. 1x2 - 3x + 22 , 1x - 22  28. 12x2 - 5x - 72 , 1x + 12
29. 1x - 14x2 + 8x32 , 12x - 32
30. 16 + 7y + 6y22 , 12y + 12
31. 14Z2 - 5Z - 72 , 14Z + 32
32. 16x2 - 5x - 92 , 13x - 42
33. 

x3 + 3x2 - 4x - 12
x + 2

 34. 
3x3 + 19x2 + 13x - 20

3x - 2

35. 
2a4 + 4a2 - 16

a2 - 2
 36. 

6T3 + T2 + 2

3T2 - T + 2

37. 
x3 + 8
x + 2

 38. 
D3 - 1
D - 1

39. 
x2 - 2xy + y2

x - y
 40. 

3r2 - 5rR + 2R2

r - 3R

41. 
x2 - y2 + 2yz - z2

x + y - z
 42. 

a4 + b4

a2 - 2ab + 2b2

In Exercises 43–52, perform the indicated divisions.

43. When 2x2 - 9x - 5 is divided by x + c, the quotient is 2x + 1. 
Find c.

44. When 6x2 - x + k is divided by 3x + 4, the remainder is zero. 
Find k.

45. By division show that 
x4 + 1
x + 1

 is not equal to x3.

46. By division show that 
x3 + y3

x + y
 is not equal to x2 + y2.

47. In the optical theory dealing with lasers, the following expression 

  arises: 
8A5 + 4A3m2E2 - Am4E4

8A4 . (m is the Greek letter mu.)

  Perform the division.

48. In finding the total resistance of the 
resistors shown in Fig. 1.14, the fol-
lowing expression is used.

  
6R1 + 6R2 + R1R2

6R1R2

  Perform the division.

49. When analysing the potential energy associated with gravitational

  forces, the expression 
GMm3 1R + r2 - 1R - r2 4

2rR
 arises. 

  Perform the indicated division.

 50. A computer model shows that the temperature change T in a certain 

  freezing unit is found by using the expression 
3T3 - 8T2 + 8

T - 2
. 

Perform the indicated division.

51. In analysing the displacement of a certain valve, the expression 
s2 - 2s - 2

s4 + 4
 is used. Find the reciprocal of this expression and 

  then perform the indicated division.

52. The voltage and resistance in a certain electric circuit vary with 
time such that the current is given by the expression 
2t3 + 94t2 - 290t + 500

2t + 100
. By performing the indicated division, 

  find the expression for the current.

Answers to Practice Exercises

1. 2x - 3a 2. 2x + 3

R2

R1

6 Ω

Fig. 1.14 

In this section, we show how algebraic operations are used in solving equations. In the 
following sections, we show some of the important applications of equations.

An equation is an algebraic statement that two algebraic expressions are equal. 
Any value of the literal number representing the unknown that produces equality when 
substituted in the equation is said to satisfy the equation.

 EXAMPLE  1  

The equation 3x - 5 = x + 1 is true only if x = 3. Substituting 3 for x in the equa-
tion, we have 3132 - 5 = 3 + 1, or 4 = 4; substituting x = 2, we have 1 = 3, 
which is not correct.

This equation is valid for only one value of the unknown. An equation valid only for 
certain values of the unknown is a conditional equation. In this section, nearly all 
equations we solve will be conditional equations that are satisfied by only one value of 
the unknown. ■

 1.10 Solving Equations
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 EXAMPLE  2  Identity and contradiction

(a) The equation x2 - 4 = 1x - 22 1x + 22  is true for all values of x. For example, 
substituting x = 3 in the equation, we have 32 - 4 = 13 - 22 13 + 22 , or 
5 = 5. Substituting x = -1, we have 1 -122 - 4 = 1 -1 - 22 1 -1 + 22 , or 
-3 = -3. An equation valid for all values of the unknown is an identity.

(b) The equation x + 5 = x + 1 is not true for any value of x. For any value of x we 
try, we find that the left side is 4 greater than the right side. Such an equation is 
called a contradiction. ■

To solve an equation, we find the values of the unknown that satisfy it. There is one 
basic rule to follow when solving an equation:

Perform the same operation on both sides of the equation.

We do this to isolate the unknown and thus to find its value.
By performing the same operation on both sides of an equation, the two sides 

remain equal. Thus,

we may add the same number to both sides, subtract the same number from both 
sides, multiply both sides by the same number, or divide both sides by the same num-
ber (not zero).

 EXAMPLE  3  

In each of the following equations, we may isolate x, and thereby solve the equation, by 
performing the indicated operation.

 x - 3 = 12 x + 3 = 12 
x
3

= 12 3x = 12

 add 3 to both sides subtract 3 from multiply both divide both 
  both sides sides by 3 sides by 3

 x - 3 + 3 = 12 + 3 x + 3 - 3 = 12 - 3 3ax
3
b = 31122  

3x
3

=
12
3

         x = 15       x = 9  x = 36 x = 4 ■

■ We have previously noted identities on 
pages 6, 7 and 30.

■ Equations can be solved on most graphing 
calculators. An estimate (or guess) of the 
answer may be required to find the solution. 
See Exercises 43 and 44.

■ Although we may multiply both sides of an 
equation by zero, this produces 0 = 0, which 
is not useful in finding the solution.

■ The word algebra comes from Arabic and 
means “a restoration.” It refers to the fact that 
when a number has been added to one side of 
an equation, the same number must be added 
to the other side to maintain equality.

The solution to any equation can be 
checked by substitution into the orig-
inal equation.

LEARNING T IP

■ Note that the solution generally requires a 
combination of basic operations.

1. Remove grouping symbols (distributive law).

2. Combine any like terms on each side.

3.  Perform the same operations on both sides to simplify, with the goal of  
isolating x.

4. Repeat Steps 1–3 until x = result is obtained.

5. Check the solution in the original equation.

 EXAMPLE  4  

Solve the equation 2t - 7 = 9.
We are to perform basic operations to both sides of the equation to finally isolate t 

on one side. The steps to be followed are suggested by the form of the equation.

 2t - 7 = 9    original equation

 2t - 7 + 7 = 9 + 7   add 7 to both sides

 2t = 16    combine like terms

 
2t
2

=
16
2

   divide both sides by 2

 t = 8    simplify
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Therefore, we conclude that t = 8. Checking in the original equation, we have

2t - 7 = 9
2(8) - 7 = 9

16 - 7 = 9
9 = 9

.

The solution checks. ■

 EXAMPLE  5  First remove parentheses

Solve the equation x - 7 = 3x - 16x - 82 .

 x - 7 = 3x - 6x + 8   parentheses removed

 x - 7 = -3x + 8    x-terms combined on right

 4x - 7 = 8    3x added to both sides   —by inspection

 4x = 15    7 added to both sides    —by inspection

 x = 15
4    both sides divided by 4 —by inspection

Checking in the original equation, we obtain (after simplifying) -13
4 = -13

4 . ■

Note that we always check in the original equation. This is done since errors may 
have been made in finding the later equations.

If an equation contains numbers not easily combined by inspection, the best proce-
dure is to first solve for the unknown algebraically and then perform the calculation.

 EXAMPLE  6  

When finding the current i (in A) in a certain radio circuit, the following equation and 
solution are used.

 0.0595 - 0.525i - 8.851 i + 0.003 162 = 0

 0.0595 - 0.525i - 8.85i - 8.8510.003 162 = 0

 1 -0.525 - 8.852 i = 8.8510.003 162 - 0.0595

 i =
8.8510.003 162 - 0.0595

- 0.525 - 8.85
  evaluate

 = 0.003 36 A

When doing the calculation indicated above in the solution for i, be careful to group the 
numbers in the denominator for the division. Also, be sure to round off the result as 
shown above, but do not round off values before the final calculation. ■

The quotient a>b is also called the ratio of a to b. An equation stating that two ratios are 
equal is called a proportion. Since a proportion is an equation, if one of the numbers is 
unknown, we can solve for its value as with any equation. Usually, this is done by noting 
the denominators and multiplying each side by a number that will clear the fractions.

 EXAMPLE  7  Ratio

If the ratio of x to 8 equals the ratio of 3 to 4, we have the proportion

x
8

=
3
4

We can solve this equation by multiplying both sides by 8. This gives

 8ax
8
b = 8a3

4
b

 x =
24
4

= 6

note how 
the above 
procedure 
is followed

■ With simpler numbers, many basic steps are 
done by inspection and not actually written 
down.

Practice Exercises

Solve for x.
1. 3x + 4 = x - 6
2. 215 - x2 = x - 8

■ Many other types of equations require more 
advanced methods for solving. These are 
considered in later chapters.

Practice Exercise

3.  If the ratio of 2 to 5 equals the ratio of x 
to 30, find x.
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Substituting x = 6 into the original proportion gives the proportion 68 = 3
4. Since these 

ratios are equal, the solution checks. ■

 EXAMPLE  8  Applied proportion

The ratio of electric current I (in A) to the voltage V  across a resistor is constant. If 
I = 1.52 A for V = 60.0 V, find I for V = 82.0 V.

Since the ratio of I and V  is constant, we have the following solution.

 
1.52 A
60.0 V

=
I

82.0 V

 82.0 Va1.52 A
60.0 V

b = 82.0 Va I
82.0 V

b
 2.08 A = I

 I = 2.08 A

Checking in the original equation, we have 0.0253 A>V = 0.0254 A>V. Since the 
value of I is rounded up, the solution checks. ■

We will use the terms ratio and proportion (particularly ratio) when studying trigonom-
etry in Chapter 4. A detailed discussion of ratio and proportion is found in Chapter 18.  
A general method of solving equations involving fractions is given in Chapter 6.

■ Generally, units of measurement will not be 
shown in intermediate steps. The proper units 
will be shown with the data and final result.

EXERCISES 1.10

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 3, change 12 to -12 in each of the four illustrations 
and then solve.

 2. In Example 4, change 2t - 7 to 7 - 2t and then solve.

 3. In Example 5, change 16x - 82  to 18 - 6x2  and then solve.

 4. In Example 8, for the same given values of I and V, find I for 
V = 48.0 V.

In Exercises 5–40, solve the given equations.

 5. x - 2 = 7  6. x - 4 = -1  7. x + 5 = 4

 8. s + 6 = -3  9. 
t
2

= -5 10. 
x

-4
= 2

11. 4E = -20 12. 2x = 12 13. 3t + 5 = -4

14. 5D - 2 = 13 15. 5 - 2y = -3 16. 8 - 5t = 18

17. 3x + 7 = x 18. 6 + 4L = 5 - 3L

19. 21s - 42 = s 20. 314 - n2 = -n

21. 6 - 1r - 42 = 2r 22. 5 - 1x + 22 = 5x

23. 21x - 32 = -x 24. 417 - F2 = -7

25. 0.1x - 0.51x - 22 = 2 26. 1.5x - 0.31x - 42 = 6

27. 7 - 311 - 2p2 = 4 + 2p 28. 3 - 612 - 3t2 = t - 5

29. 
4x - 21x - 42

3
= 8 30. 2x =

3 - 517 - 3x2
4

31. 0 x 0 - 1 = 8 32. 2 - 0 x 0 = 4

In Exercises 33–40, all numbers are approximate.

33. 5.8 - 0.31x - 6.02 = 0.5x 34. 1.9t = 0.514.0 - t2 - 0.8

35. -0.241C - 0.502 = 0.63 36. 27.515.17 - 1.44x2 = 73.4

37. 
x

2.0
=

17
6.0

 38. 
3.0
7.0

=
R
42

39. 
165
223

=
13V
15

 40. 
276x
17.0

=
1360
46.4

In Exercises 41–52, solve the given problems.

41. Identify each of the following equations as a conditional equa-
tion, an identity, or a contradiction.

  (a) 2x + 3 = 3 + 2x (b) 2x - 3 = 3 - 2x

42. For what values of a is the equation 2x + a = 2x a conditional 
equation? Explain.

43. Solve the equation of Example 5 by using the Equation Solver of 
a graphing calculator.

44. Solve the equation of Example 6 by using the Equation Solver of 
a graphing calculator.

45. In finding the speed v (in km>h) at which a certain person was 
travelling, the equation 2.0v + 40 = 2.51v + 5.02  is to be 
solved. Find the speed.

46. In finding the rate v (in km>h) at which a polluted stream is flow-
ing, the equation 1515.5 + v2 = 2415.5 - v2  is used. Find v.

47. In finding the maximum operating temperature T  (in °C) for a 
computer integrated circuit, the equation 1.1 = 1T - 762 >40 is 
used. Find the temperature.

48. To find the voltage V in a circuit in a TV remote-control unit, the 
equation 1.12V - 0.67110.5 - V2 = 0 is used. Find V.

49. In blending two gasolines of different octanes, in order to find  
the number n of litres of one octane needed, the equation  
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0.14n +  0.0612000 - n2 = 0.09120002  is used. Find n, given 
that 0.06 and 0.09 are exact and the first zero of 2000 is significant.

50. In order to find the distance x such that the weights are balanced 
on the lever shown in Fig. 1.15, the equation 21513x2 = 55.3x +  
38.518.25 - 3x2  must be solved. Find x. (3 is exact.)

51. The manufacturer of a certain car powered partly by gas and 
partly by batteries (a hybrid car) claims it can go 2050 km on one 
full tank of 55 L. How far can the car go on 22 L?

52. A person 1.8 m tall is photographed with a 35-mm camera, and 
the film image is 20 mm. Under the same conditions, how tall is a 
person whose film image is 16 mm?

Answers to Practice Exercises

1. -5 2. 6 3. 12

Fig. 1.15 

3x x
8.25 m

215 N 55.3 N 38.5 N

An important application of equations is in the use of formulas that are found in geom-
etry and nearly all fields of science and technology. A formula is an equation that 
expresses the relationship between two or more related quantities. For example, 
Einstein’s famous formula E = mc2 shows the equivalence of energy E to the mass m 
of an object and the speed of light squared, c2.

 EXAMPLE  1  Solving for a symbol in a formula

In Einstein’s formula E = mc2, solve for m.

 
E

c2 = m   divide both sides by c2

 m =
E

c2  switch sides to place m at left

The required symbol is usually placed on the left, as shown. ■

 EXAMPLE  2  Symbol with subscript in a formula

A formula relating acceleration a, velocity v, initial velocity v0, and time t is v = v0 + at. 
Solve for t.

 v - v0 = at   v0 subtracted from both sides

 t =
v - v0

a
  both sides divided by a and then sides switched ■

 EXAMPLE  3  Symbol in capital and in lowercase

In the study of the forces on a certain beam, the equation W =
L1wL + 2P2

8
 is used.

Solve for P.

 8W =
8L1wL + 2P2

8
 multiply both sides by 8

 8W = L1wL + 2P2  simplify right side

 8W = wL2 + 2LP  remove parentheses

 8W - wL2 = 2LP  subtract wL2 from both sides

 P =
8W - wL2

2L
 divide both sides by 2L and switch sides ■

 1.11 Formulas and Literal Equations
 

Substituting Numerical Values

■ Einstein published his first paper on 
relativity in 1905.

We can solve a formula for a particu-
lar symbol just as we solve any equa-
tion. That is, we isolate the required 
symbol by using algebraic operations 
on literal numbers.

LEARNING T IP

■ The subscript 0 makes v0 a different literal 
symbol from v. (We have used subscripts in a 
few of the earlier exercises.)
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 EXAMPLE  4  Formula with groupings

The effect of temperature upon measurements is important when measurements must 
be made with great accuracy. The volume V  of a special precision container at temper-
ature T  in terms of the volume V0 at temperature T0 is given by V = V031 + b1T - T02 4 , 
where b depends on the material of which the container is made. Solve for T .

Since we are to solve for T , we must isolate the term containing T . This can be done 
by first removing the grouping symbols.

 V = V031 + b1T - T02 4    original equation

 V = V031 + bT - bT04    remove parentheses

 V = V0 + bTV0 - bT0V0    remove brackets

 V - V0 + bT0V0 = bTV0    subtract V0 and add bT0V0 to both sides

 T =
V - V0 + bT0V0

bV0
   divide both sides by bV0 and switch sides ■

 EXAMPLE  5  Solve for a symbol before substituting

The electric resistance R (in Ω) of a resistor changes with the temperature T  (in °C) 
according to R = R0 + R0aT , where R0 is the resistance at 0°C. For a given resistor, 
R0 = 712 Ω and a = 0.004 55>°C. Find the value of T  for R = 825 Ω.

We first solve for T  and then substitute the given values.

 R = R0 + R0aT

 R - R0 = R0aT

 T =
R - R0

aR0

Now substituting, we have

 T =
825 - 71210.004 552 17122        estimation:

 = 34.9°C  rounded off 
800 - 700

0.00517002 =
1

0.035
= 30 ■

Be careful! Just as subscripts can indicate different literal numbers, a capital letter and 
the same letter in lowercase are different literal numbers. In Example 3, W  and w are 
different. This is shown in several of the exercises for this section.

COMMON ERROR

Practice Exercises

Solve for the indicated letter. Each comes 
from the indicated area of study.
1. u = kA + l, for l (robotics)
2. P = n1p - c2 , for p (economics)

To determine the values of any literal 
number in an expression for which 
we know values of the other literal 
numbers, we should first solve for the 
required symbol and then evaluate. It 
is also a good engineering practice to 
solve equations algebraically before 
substituting in variable values for 
two reasons:

(1)  it generates a general formula, 
and

(2)  algebra is easier to troubleshoot 
than numbers.

LEARNING T IP

EXERCISES 1.11

In Exercises 1–4, solve for the given letter from the indicated example 
of this section.

 1. For the formula in Example 2, solve for a.

 2. For the formula in Example 3, solve for w.

 3. For the formula in Example 4, solve for T0.

 4. For the formula in Example 5, solve for a. (Do not evaluate.)

In Exercises 5–40, each of the given formulas arises in the technical 
or scientific area of study shown. Solve for the indicated letter.

 5. E = IR, for R (electricity)

 6. pV = nRT , for T  (chemistry)

 7. rL = g2 - g1, for g1 (surveying)

 8. W = SdT - Q, for Q (air conditioning)

 9. Q = SLd2, for L (machine design)

10. P = 2pT f , for T  (mechanics)

11. p = pa + dgh, for h (hydrodynamics)

12. 2Q = 2I + A + S, for I (nuclear physics)

13. A =
Rt
PV

, for t (jet engine design)

14. u = - eL
2m

, for L (spectroscopy)

15. ct2 = 0.3t - ac, for a (medical technology)

16. 2p + dv2 = 2d(C - W), for C (fluid flow)

17. T =
c + d

v
, for d (traffic flow)
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18. L =
NΦ

i
, for Φ (electricity)

19. 
K1

K2
=

m1 + m2

m1
, for m2 (kinetic energy)

20. f =
F

d - F
, for d (photography)

21. a =
2mg

M + 2m
, for M (pulleys)

22. v =
V1m + M2

m
, for M (ballistics)

23. C2
0 = C2

111 + 2V2 , for V (electronics)

24. A1 = A1M + 12 , for M (photography)

25. N = r1A - s2 , for s (engineering)

26. T = 31T2 - T12 , for T1 (oil drilling)

27. T2 = T1 - h
100

, for h (air temperature)

28. p2 = p1 + rp111 - p12 , for r (population growth)

29. Q1 = P1Q2 - Q12 , for Q2 (refrigeration)

30. p - pa = dg1y2 - y12 , for y2 (pressure gauges)

31. N = N1T - N211 - T2 , for N1 (machine design)

32. ta = tc + 11 - h2 tm, for h (computer access time)

33. L = p1r1 + r22 + 2x1 + x2, for r1 (pulleys)

34. I =
VR2 + VR111 + m2

R1R2
, for m (electronics)

35. P =
V11V2 - V12

gJ
, for V2 (jet engine power)

36. W = T1S1 - S22 - Q, for S2 (refrigeration)

37. C =
2EAk1k2

d1k1 + k22 , for E (electronics)

38. d =
3LPx2 - Px3

6EI
, for L (beam deflection)

39. V = Ca1 - n
N
b , for n (property depreciation)

40. 
p

P
=

AI
B + AI

, for B (atomic theory)

In Exercises 41–46, rearrange the equation for the indicated values 
and then solve.

41. The efficiency h (in ,) of a certain engine is given by the for-
mula h = T2> 1T1 + T22 . Find T1 if h = 45.0 and T2 = 875 K.

42. A formula used in determining the total transmitted power Pt in 
an AM radio signal is Pt = Pc11 + 0.500 m22 . Find Pc if 
Pt = 685 W and m = 0.925.

43. A formula relating the Fahrenheit temperature F and the Celsius 
temperature C is F = 9

5C + 32. Find the Celsius temperature that 
corresponds to 90.2°F. (32 and 95 are exact.)

44. In forestry, a formula used to determine the volume V of a log is 
V = 1

2L1B + b2 , where L is the length of the log and B and b are 
the areas of the ends. Find b (in m2) if V = 1.09 m3, L = 4.91 m, 
and B = 0.244 m2. See Fig. 1.16.

Fig. 1.16 

L

b B

45. The voltage V1 across resistance R1 is V1 =
VR1

R1 + R2
, where V is 

the voltage across resistances R1 and R2. See Fig. 1.17. Find R2 
  (in Ω) if R1 = 3.56 Ω, V1 = 6.30 V, and V = 12.0 V.

Fig. 1.17 

R1
V1

V

R2

I

 46. The efficiency h of a computer multiprocessor compilation is given 

by h =
1

q + p11 - q2 , where p is the number of processors 

  and q is the fraction of the compilation that can be performed by 
the available parallel processors. Find p for h = 0.66 and 
q = 0.83.

In Exercises 47 and 48, set up the required formula and solve for the 
indicated letter.

47. One missile travels at a speed of v2 km>h for 4 h, and another 
missile travels at a speed of v1 for t + 2 hours. If they travel a 
total of d km, solve the resulting formula for t.

48. A microwave transmitter can handle x telephone communica-
tions, and 15 separate cables can handle y connections each. If the 
combined system can handle C connections, solve for y.

Answers to Practice Exercises

1. u - kA 2. 
P + nc

n
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Many applied problems are at first word problems, and we must put them into mathe-
matical terms for solution. Usually, the most difficult part in solving a word problem is 
identifying the information needed for setting up the equation that leads to the solution. 
To do this, you must read the problem carefully to be sure that you understand all of the 
terms and expressions used. Following is an approach you should use.

 1.12 Applied Word Problems
 

 
 

Examples of Solving Word Problems

■ See Appendix A, page A-1, for a variation to 
the method outlined in these steps. You might 
find it helpful.

Procedure for Solving Word Problems
1.  Read the statement of the problem. First, read it quickly for a general over-

view. Then reread slowly and carefully, listing the information given.

2.  Clearly identify the unknown quantities and then assign an appropriate letter 
to represent one of them, stating this choice clearly.

3. Specify the other unknown quantities in terms of the one in step 2.

4. If possible, make a sketch using the known and unknown quantities.

5.  Analyse the statement of the problem and write the necessary equation. This 
is often the most difficult step because some of the information may be 
implied and not explicitly stated. Again, a very careful reading of the state-
ment is necessary.

6. Solve the equation, clearly stating the solution.

7. Check the solution with the original statement of the problem.

Read the following examples very carefully and note just how the outlined proce-
dure is followed.

 EXAMPLE  1  Sum of forces on a beam

A 78-N beam is supported at each end. The supporting force at one end is 10 N more 
than at the other end. Find the forces.

Since the force at each end is required, we write

 let F = the smaller force (in N) step 2

as a way of establishing the unknown for the equation. Any appropriate letter could be 
used, and we could have let it represent the larger force.

Also, since the other force is 10 N more, we write

F + 10 = the larger force (in N)  step 3

We now draw the sketch in Fig. 1.18. step 4
Since the forces at each end of the beam support the weight of the beam, we have 

the equation

 F + 1F + 102 = 78 step 5

This equation can now be solved:   2F = 68

  F = 34 N step 6

Thus, the smaller force is 34 N, and the larger force is 44 N. This checks with the origi-
nal statement of the problem. step 7 ■

 EXAMPLE  2  Total resistance of electric resistors

In designing an electric circuit, it is found that 34 resistors in series with a total resist-
ance of 56 Ω are required. Two different resistances, 1.5 Ω and 2.0 Ω, are used. How 
many of each are in the circuit?

■ Be sure to carefully identify your choice for 
the unknown. In most problems, there is really 
a choice. Using the word let clearly shows that 
a specific choice has been made.

■ The statement after “let x (or some other 
appropriate letter) = ” should be clear. It 
should completely define the chosen unknown.

Fig. 1.18 

F 78 N F + 10
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Since we want to find the number of each resistance, we

let x = number of 1.5@Ω resistors

Also, since there are 34 resistors in all,

34 - x =  number of 2.0@Ω resistors

We also know that the total resistance of all resistors is 56 Ω. This means that

1.5 Ω  number                             2.0 Ω 
each               each  number

1.5x + 2.0134 - x2 = 56   total resistance of all resistors 

 total resistance  total resistance 
 of 1.5@Ω resistors of 2.0@Ω resistors

 1.5x + 68 - 2.0x = 56

 -0.5x = -12

 x = 24

Therefore, there are 24 1.5-Ω resistors and 10 2.0-Ω resistors. The total resistance of 
these is 2411.52 + 1012.02 = 36 + 20 = 56 Ω. We see that this checks with the 
statement of the problem. ■

 EXAMPLE  3  Number of medical slides

A medical researcher finds that a given sample of an experimental drug can be divided 
into 4 more slides with 5 mg each than with 6 mg each. How many slides with 5 mg 
each can be made up?

We are asked to find the number of slides with 5 mg, and therefore we

let x = number of slides with 5 mg

Since the sample may be divided into 4 more slides with 5 mg each than with 6 mg 
each, we know that

x - 4 = number of slides with 6 mg

Since it is the same sample that is to be divided, the total mass of the drug on each 
type is the same. This means

 5 mg  number 6 mg  number
 each each

 5x =  61x - 42
 total mass total mass
 5-mg slides 6-mg slides

  5x = 6x - 24

  -x = -24 or x = 24

Therefore, the sample can be divided into 24 slides with 5 mg each, or 20 slides with 6 
mg each. Since the total mass, 120 mg, is the same for each set of slides, the solution 
checks with the statement of the problem. ■

 EXAMPLE  4  

A space shuttle maneuvers so that it may “capture” an already orbiting satellite that is 
6000 km ahead. If the satellite is moving at 27 000 km>h and the shuttle is moving at 
29 500 km>h, how long will it take the shuttle to reach the satellite? (All digits shown 
are significant.)

First, we let t = the time for the shuttle to reach the satellite. Then, using the fact that 
the shuttle must go 6000 km farther in the same time, we draw the sketch in Fig. 1.19.  

■ “Let x = 1.5@Ω resistors” is incomplete. 
We want to find out how many of them there 
are.

■ See Appendix A, page A-1, for a “sketch” 
that might be used with this example.

Practice Exercise

1. Solve the problem in Example 3 by  
letting y =  number of slides with 6 mg.

Shuttle

6000 km

Satellite

Fig. 1.19 
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Next, we use the formula distance = rate * time 1d = rt2 . This leads to the follow-
ing equation and solution.

speed of speed of 
shuttle    time  satellite      time

 29 500t =  6000 +  27 000t

distance travelled distance between distance travelled 
  by shuttle at beginning by satellite

 2500t = 6000

 t = 2.400 h

This means that it will take the shuttle 2.400 h to reach the satellite. In 2.400 h, the 
shuttle will travel 70 800 km, and the satellite will travel 64 800 km. We see that the 
solution checks with the statement of the problem. ■

 EXAMPLE  5  

A refinery has 7250 L of a gasoline-methanol blend that is 6.00% methanol. How much 
pure methanol must be added so that the resulting blend is 10.0% methanol?

First, let x = the number of litres of methanol to be added. The total volume of 
methanol in the final blend is the volume in the original blend plus that which is added. 
This total volume is to be 10.0% of the final blend. See Fig. 1.20.

6.00, original volume 10, final volume

 0.0600172502  +  x =  0.10017250 + x2
 methanol in  methanol  methanol in 
 original mixture  added  final mixture

 435 + x = 725 + 0.100x

 0.900x = 290, x = 322 L to be added

Checking (to three sig. digits), there would be 757 L of methanol of a total 7570 L. ■

■ A maneuver similar to the one in this 
example was used to repair the Hubble space 
telescope in 1994 and 2001.

■ “Let x = methanol” is incomplete. We want 
to find out the volume (in L) that is to be added.

Fig. 1.20 

7250
6.00%

7250 + x
10.0%

x
100%

Litres of methanol

+ =

EXERCISES 1.12

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 2, in the second line, change 2.0 Ω to 2.5 Ω.

 2. In Example 3, in the second line, change “4 more slides” to “3 
more slides.”

 3. In Example 4, in the second line, change 27 000 km>h to 
27 500 km>h.

 4. In Example 5, change “pure methanol” to “of a blend with 50.0% 
methanol.”

In Exercises 5–32, set up an appropriate equation and solve. Data are 
accurate to two sig. digits unless greater accuracy is given.

 5. A certain new car costs $5000 more than the same model new car 
cost 6 years ago. Together a new model today and six years ago 
cost $49 000. What was the cost of each?

 6. The flow of one stream into a lake is 45 m3>s more than the flow 
of a second stream. In 1 h, 4.14 * 105 m3 flow into the lake from 
the two streams. What is the flow rate of each?

 7. Approximately 4.5 million wrecked cars are recycled in two con-
secutive years. There were 700 000 more recycled the second 
year than the first year. How many are recycled each year?

 8. A business website was accessed as often on the first day of a 
promotion as on the next two days combined. The first day hits 
were four times those on the third. The second day hits were 4000 
more than the third. How many were there each day?

 9. Petroleum rights to 140 hectares of land are leased for $37 000. 
Part of the land leases for $200 per hectare, and the remainder for 
$300 per hectare. How much is leased at each price?

10. A vial contains 2000 mg, which is to be used for two dosages. 
One patient is to be administered 660 mg more than another. How 
much should be administered to each?

11. After installing a pollution control device, a car’s exhaust con-
tained the same amount of pollutant after 5.0 h as it had in 3.0 h. 
Before the installation the exhaust contained 150 ppm>h (parts 
per million per hour) of the pollutant. By how much did the 
device reduce the emission?
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12. Three meshed spur gears have a total of 107 teeth. If the second 
gear has 13 more teeth than the first and the third has 15 more 
teeth than the second, how many teeth does each have?

13. In the design of a bridge, an engineer determines that four fewer 
18-m girders are needed for the span length than 15-m girders. 
How many 18-m girders are needed?

 14. A fuel oil storage depot had an 8-week supply on hand. However, cold  
weather caused the supply to be used in 6 weeks when 20 kL extra  
were used each week. How many litres were in the original supply?

15. The sum of three electric currents that come together at a point in 
a circuit is zero. If the second current is twice the first and the 
third current is 9.2 mA more than the first, what are the currents? 
(The sign indicates the direction of flow.)

16. A delivery firm uses one fleet of trucks on daily routes of 8 h. A 
second fleet, with five more trucks than the first, is used on daily 
routes of 6 h. Budget allotments allow for 198 h of daily delivery 
time. How many trucks are in each fleet?

17. A natural gas pipeline feeds into three smaller pipelines, each of 
which is 2.6 km longer than the main pipeline. The total length of 
the four pipelines is 35.4 km. How long is each section?

18. At 100% efficiency two generators would produce 750 MW of 
power. At efficiencies of 65% and 75%, they produce 530 MW. 
At 100% efficiency, what power would each produce?

19. A person has a total of 54 CDs and DVDs, which cost a total of 
$876. Each CD cost $15 and each DVD cost $18. How many of 
each does the person have?

20. A person won a lottery prize of $20 000, from which 25% was 
deducted for taxes. The remainder was invested, partly for a 40% 
gain, and the rest for a 10% loss. How much was each investment 
if there was a $2000 net investment gain?

21. A ski lift takes a skier up a slope at 50 m>min. The skier then skis 
down the slope at 150 m>min. If a round trip takes 24 min, how 
long is the slope?

22. Before being put out of service, the supersonic jet Concorde made 
a trip averaging 100 km>h less than the speed of sound for 1.00 h, 
and 400 km>h more than the speed of sound for 3.00 h. If the trip 
covered 5740 km, what is the speed of sound?

23. Trains at each end of the 50.0-km-long Eurotunnel under the 
English Channel start at the same time into the tunnel. Find their 
speeds if the train from France travels 8.0 km>h faster than the 
train from England and they pass in 17.0 min. See Fig. 1.21.

Fig. 1.21 

17.0 min 50.0 km

English Channel
England France

24. An executive would arrive 10.0 min early for an appointment if 
travelling at 60 km>h, or 5.0 min early if travelling at 45.0 km>h. 
How much time is there until the appointment?

25. One lap at the Canadian Grand Prix in Montreal is 4.36 km. In a 
race, a car stalls and then starts 30.0 s after a second car. The first 
car travels at 79.0 m>s, and the second car travels at 73.0 m>s. 
How long does it take the first car to overtake the second, and 
which car will be ahead after eight laps?

26. A computer chip manufacturer produces two types of chips. In 
testing a total of 6100 chips of both types, 0.50% of one type and 
0.80% of the other type were defective. If a total of 38 defective 
chips were found, how many of each type were tested?

27. Two gasoline distributors, A and B, are 367 km apart on a high-
way. A charges $1.80>L and B charges $1.68>L. Each charges 
0.16.>L per kilometre for delivery. Where on this highway is the 
cost to the customer the same?

28. An outboard engine uses a gasoline-oil fuel mixture in the ratio of 
15 to 1. How much gasoline must be mixed with a gasoline-oil 
mixture, which is 75% gasoline, to make 8.0 L of the mixture for 
the outboard engine?

29. A car’s radiator contains 12.0 L of antifreeze at a 25% concentra-
tion. How many litres must be drained and then replaced by pure 
antifreeze to bring the concentration to 50% (the manufacturer’s 
“safe” level)?

30. How much sand must be added to 250 kg of a cement mixture 
that is 22% sand to have a mixture that is 25% sand?

 31. To pass a 20-m long semitrailer travelling at 70 km>h in 10 s, how 
fast must a 5.0-m long car go?

32. An earthquake emits primary waves moving at 8.0 km>s and sec-
ondary waves moving at 5.0 km>s. How far from the epicentre of 
the earthquake is the seismic station if the two waves arrive at the 
station 2.0 min apart?

 CHAPTER 1

Commutative law of addition: a + b = b + a 

Associative law of addition: a + 1b + c2 = 1a + b2 + c 

Commutative law of multiplication: ab = ba 

Associative law of multiplication: a1bc2 = 1ab2c 

Distributive law: a1b + c2 = ab + ac  

a + 1 -b2 = a - b   (1.1)
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a - 1 -b2 = a + b   (1.2)

am * an = am+n   (1.3)

am

an = am-n (m 7 n, a ≠ 0), 
am

an =
1

an-m (m 6 n, a ≠ 0)  (1.4)1am2n = amn   (1.5)1ab2n = anbn, aa
b
bn

=
an

bn (b ≠ 0)  (1.6)

a0 = 1 (a ≠ 0)   (1.7)

a-n =
1
an (a ≠ 0)   (1.8)1ab = 1a1b (a and b positive real numbers)  (1.9)

 CHAPTER 1   REVIEW EXERCISES

In Exercises 1–12, evaluate the given expressions.

 1. 1 -22 + 1 -52 - 3 2. 6 - 8 - 1 -42
 3. 

1 -52 162 1 -421 -22 132  4. 
1 -92 1 -122 1 -42

24

 5. -5 - 0 21 -62 0 + -15
3

 6. 3 - 5 0 -3 - 2 0 - 12
-4

 7. 
18

3 - 5
- 1 -422 8. - 1 -322 - -81 -22 - 0 -4 0

 9. 116 - 164 10. - 181 + 144

 11. 11722 - 23 8 12. - 24 16 + 11622

In Exercises 13–20, simplify the given expressions. Where appropri-
ate, express results with positive exponents only.

 13. 1 -2rt222 14. 13a0b-223 15. -3mn-5t18m-3n42
 16. 

15p4q2r

5pq5r
 17. 

-16N -21NT22
-2N0T -1  18. 

-35x -1y1x2y2
5xy-1

 19. 145 20. 19 + 36

In Exercises 21–24, for each number, (a) determine the number of sig-
nificant digits and (b) round off each to two significant digits.

 21. 8840 22. 21 450 23. 9.040 24. 0.700

In Exercises 25–28, evaluate the given expressions. All numbers are 
approximate.

 25. 37.3 - 16.9211.06722 26. 
8.896 * 10-12

3.5954 + 6.0449

 27. 
10.1958 + 2.844

3.14216522  28. 
1

0.035 68
+

37,466

29.632

In Exercises 29–60, perform the indicated operations.

 29. a - 3ab - 2a + ab 30. xy - y - 5y - 4xy

 31. 6LC - 13 - LC2  32. - 12x - b2 - 31 -x - 5b2
 33. 12x - 12 1x + 52  34. 1C - 4D2 12C - D2
 35. 1x + 822 36. 12r - 9s22

 37. 
2h3k2 - 6h4k5

2h2k
 38. 

4a2x3 - 8ax4

-2ax2

 39. 4R - 32r - 13R - 4r2 4
 40. 3b - 33a - 1a - 3b2 4 + 4a

 41. 2xy - 53z - 35xy - 17z - 6xy2 4 6
 42. x2 + 3b + 3 1b - y2 - 312b - y + z2 4
 43. 12x + 12 1x2 - x - 32  44. 1x - 32 12x2 - 3x + 12
 45. -3y1x - 4y22 46. -s14s - 3t22

 47. 3p3 1q - p2 - 2p11 - 3q2 4
 48. 3x32y - r - 41s - 2r2 4
 49. 

12p3q2 - 4p4q + 6pq5

2p4q
 50. 

27s3t2 - 18s4t + 9s2t

9s2t

 51. 12x2 + 7x - 302 , 1x + 62  52. 14x2 - 412 , 12x + 72
 53. 

3x3 - 7x2 + 11x - 3
3x - 1

 54. 
w3 - 4w2 + 7w - 12

w - 3

 55. 
4x4 + 10x3 + 18x - 1

x + 3
 56. 

8x3 - 14x + 3
2x + 3

 57. -35 1r + s - t2 - 23 13r - 2s2 - 1 t - 2s2 4 6
 58. 11 - 2x2 1x - 32 - 1x + 42 14 - 3x2
 59. 

2y3 + 9y2 - 7y + 5

2y - 1
 60. 

6x2 + 5xy - 4y2

2x - y

In Exercises 61–72, solve the given equations.

 61. 3x + 1 = x - 8 62. 4y - 3 = 5y + 7

 63. 
5x
7

=
3
2

 64. 
21N - 42

3
=

5
4

 65. 6x - 5 = 31x - 42  66. -21 -4 - y2 = 3y

 67. 2s + 413 - s2 = 6 68. 2 0 x 0 - 1 = 3

 69. 3t - 217 - t2 = 512t + 12
 70. - 18 - x2 = x - 212 - x2
 71. 2.7 + 2.012.1x - 3.42 = 0.1

 72. 0.25016.721 - 2.44x2 = 2.08



In Exercises 73–82, (a) change numbers in ordinary notation to sci-
entific notation or change numbers in scientific notation to ordinary 
notation. (b) Write the numbers in engineering notation and replace 
the power of 10 with the corresponding SI prefix.

 73. A certain computer has 60 000 000 000 bytes of memory.

 74. The escape velocity (the velocity required to leave the earth’s 
gravitational field) is about 40 000 km>h.

 75. When pictures of the surface of Mars were transmitted to  
the earth from the Pathfinder mission in 1997, Mars was about 
192 000 000 km from earth.

 76. Police radar has a frequency of 1.02 * 109 Hz.

 77. Among the stars nearest the earth, Centaurus A is about 
4.05 * 1013 km away.

 78. Before its destruction in 2001, the World Trade Center had 
nearly 106 m2 of office space. (See Exercise 32, page 135.)

 79. The faintest sound that can be heard has an intensity of about 
10-12 W>m2.

 80. An optical coating on glass to reduce reflections is about  
0.000 000 15 m thick.

 81. The maximum safe level of radiation in the air of a home due to 
radon gas is 1.5 * 10-1 Bq>L. (Bq is the symbol for bequerel, 
the metric unit of radioactivity, where 1 Bq = 1 decay>s.)

 82. A certain virus was measured to have a diameter of about  
0.000 000 18 m.

In Exercises 83–96, solve for the indicated letter. Where noted, the 
given formula arises in the technical or scientific area of study.

 83. R = n2Z, for Z (electricity)

 84. R =
2GM

c2 , for G (astronomy: black holes)

 85. P =
p2EI

L2 , for E (mechanics)

 86. f = p1c - 12 - c1p - 12 , for p (thermodynamics)

 87. Pp + Qq = Rr, for q (moments of forces)

 88. V = IR + Ir, for R (electricity)

 89. d = 1n - 12A, for n (optics)

 90. mu = 1m + M2v, for M (physics: momentum)

 91. N1 = T1N2 - N32 + N3, for N2 (mechanics: gears)

 92. q =
KA1B - C2

L
, for B (solar heating)

 93. R =
A1T2 - T12

H
, for T2 (thermal resistance)

 94. Z2a1 - l

2a
b = k, for l (radar design)

 95. d = kx2331a + b2 - x4 , for a (mechanics: beams)

 96. V = V031 + 3a1T2 - T12 4 , for T2 (thermal expansion)

In Exercises 97–102, perform the indicated calculations.

 97. A computer’s memory is 5.25 * 1010 bytes, and that of a model 
20 years older is 6.4 * 104 bytes. What is the ratio of the newer 
computer’s memory to the older computer’s memory?

 98. The time (in s) for an object to fall h metres is given by the 
expression 0.451h . How long does it take a person to fall 

22 m from a sixth-floor window into a net while escaping a 
fire?

 99. The CN Tower in Toronto is 0.553 km high. The Sears Tower in 
Chicago is 443 m high. How much taller is the CN Tower than 
the Sears Tower?

 100. The time (in s) it takes a computer to check n memory cells is 
found by evaluating 1n>265022. Find the time to check 48 cells.

101. The combined electric resistance of two parallel resistors is 

found by evaluating the expression 
R1R2

R1 + R2
. Evaluate this for 

R1 = 0.0275 Ω and R2 = 0.0590 Ω.

102. The distance (in m) from the earth for which the gravitational 
force of the earth on a spacecraft equals the gravitational force 
of the sun on it is found by evaluating 1.5 * 10111m>M, where 
m and M are the masses of the earth and sun, respectively. Find 
this distance for m = 5.98 * 1024 kg and M = 1.99 * 1030 kg.

In Exercises 103–106, simplify the given expressions.

103. One transmitter antenna is 1x - 2a2  cm long, and another is 1x + 2a2  m long. What is the sum, in centimetres, of their 
lengths?

104. In finding the value of an annuity, the expression 1Ai - R211 + i22 is used. Multiply out this expression.

105. A computer analysis of the velocity of a link in an industrial 
robot leads to the expression 41 t + h2 - 21 t + h22. Simplify 
this expression.

106. When analysing the motion of a communications satellite, the

  expression 
k2r - 2h2k + h2rv2

k2r
 is used. Perform the indicated 

division.

In Exercises 107–114, solve the given problems.

107. Does the value of 3 * 18 , 19 - 62  change if the parentheses 
are removed?

108. Does the value of 13 * 182 , 9 - 6 change if the parentheses 
are removed?

109. In solving the equation x - 13 - x2 = 2x - 3, what conclu-
sion can be made?

110. In solving the equation 7 - 12 - x2 = x + 2, what conclu-
sion can be made?

111. Show that 1x - y23 = - 1y - x23.

112. Is division associative? That is, is it true 1 if b ≠ 0, c ≠ 02  
that 1a , b2 , c = a , 1b , c2?

113. What is the ratio of 8 * 10-3 to 2 * 104?

114. What is the ratio of 14 + 36 to 14?

In Exercises 115–128, solve the given problems. All data are accurate 
to two significant digits unless greater accuracy is given.

115. Two computer software programs cost $190 together. If one 
costs $72 more than the other, what is the cost of each?

116. A sponsor pays a total of $9500 to run a commercial on two dif-
ferent TV stations. One station charges $1100 more than the 
other. What does each charge to run the commercial?

 Review Exercises 53
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117. Three chemical reactions each produce oxygen. If the first pro-
duces twice that of the second, the third produces twice that of 
the first, and the combined total is 560 cm3, what volume is 
produced by each?

118. In testing the rate at which a polluted stream flows, a boat 
that travels at 5.5 km>h in still water took 5.0 h to go down-
stream between two points, and it took 8.0 h to go upstream 
between the same two points. What is the rate of flow of the 
stream?

119. The voltage across a resistor equals the current times the 
resistance. In a microprocessor series circuit, one resistor is 
1200 Ω greater than another. The sum of the voltages across 
them is 12.0 mV. Find the resistances if the current is 2.4 mA 
in each.

120. An air sample contains 4.0 ppm (parts per million) of two pollut-
ants. The concentration of one is four times the other. What are 
the concentrations?

121. One road crew constructs 450 m of road bed in 12 h. How long 
will it take them to construct another 250 m of road bed?

122. The fuel for a two-cycle motorboat engine is a mixture of gaso-
line and oil in the ratio of 15 to 1. How many litres of each are in 
6.6 L of mixture?

123. A ship enters the Red Sea from the Suez Canal, moving south at 
28.0 km>h. Two hours later, a second ship enters the Red Sea at 
the southern end, moving north at 35.0 km>h. If the Red Sea is 
2230 km long, when will the ships pass?

124. A helicopter used in fighting a forest fire travels at 175 km>h 
from the fire to a pond and 115 km>h with water from the pond 
to the fire. If a round trip takes 30 min, how long does it take 
from the pond to the fire? See Fig. 1.22.

125. One grade of oil has 0.50% of an additive, and a higher grade 
has 0.75% of the additive. How many litres of each must be used 
to have 1000 L of a mixture with 0.65% of the additive?

126. How much water must be added to 20.0 mL of a 60.0% saline 
solution in order to make a 45.0% saline solution?

127. An architect plans to have 25% of the floor area of a house in 
ceramic tile. In all but the kitchen and entry, there are 205 m2 of 
floor area, 15% of which is tile. What area can be planned for 
the kitchen and entry if each has an all-tile floor?

128. A karat equals 1>24 part of gold in an alloy (for example, 
9-karat gold is 9>24 gold). How many grams of 9-karat gold 
must be mixed with 18-karat gold to get 200 g of 14-karat gold?

Writing Exercise
129. In calculating the simple interest earned by an investment, the 

equation P = P0 + P0rt is used, where P is the value after an 
initial principal P0 is invested for t years at interest rate r. Solve 
for r, and then evaluate r for P = $7625, P0 = $6250, and 
t = 4.000 years. Write a paragraph or two explaining (a) your 
method for solving for r, and (b) the calculator steps used to 
evaluate r, noting the use of parentheses.

Fig. 1.22 

115 km/h

30 min

175 km/h

 CHAPTER 1   PRACTICE TEST

In Problems 1–5, evaluate the given expressions. In Problems 3 and 5, 
the numbers are approximate.

 1. 19 + 16 2. 
172 1 -32 1 -221 -62 102

 3. 
3.372 * 10-3

7.526 * 1012  4. 
1 +62 1 -22 - 31 -12 20 2 - 5 0

 5. 
346.4 - 23.5

287.7
- 0.944313.462 10.1092

In Problems 6–12, perform the indicated operations and simplify. 
When exponents are used, use only positive exponents in the result.

 6. 12a0b-2c32 -3 7. 12x + 322

 8. 3m21am - 2m32  9. 
8a3x2 - 4a2x4

-2ax2

 10. 
6x2 - 13x + 7

2x - 1
 11. 12x - 32 1x + 72

12. 3x - 34x - 13 - 2x2 4
13. Solve for y: 5y - 21y - 42 = 7

14. Solve for x: 31x - 32 = x - 12 - 3d2

15. Express 0.000 003 6 in scientific notation.

16. List the numbers -3, 0 -4 0 , -p, 12, and 0.3 in numerical order.

17. What fundamental law is illustrated by 315 + 82 = 3152  +  
3182?

18. (a) How many significant digits are in the number 3.0450?

  (b) Round it off to two significant digits.

19. If P dollars is deposited in a bank that compounds interest n times 
a year, the value of the account after t years is found by evaluat-
ing P11 + i>n2nt, where i is the annual interest rate. Find the 
value of an account for which P = $1000, i = 5%, n = 2, and 
t = 3 years (values are exact).

20. In finding the illuminance from a light source, the expression 
81100 - x22 + x2 is used. Simplify this expression.

21. The equation L = L031 + a1 t2 - t12 4  is used when studying 
thermal expansion. Solve for t2.

22. An alloy weighing 20 N is 30% copper. How many newtons of 
another alloy, which is 80% copper, must be added for the final 
alloy to be 60% copper?



55

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Identify perpendicular and 
parallel lines

 Identify supplementary, 
complementary, vertical,  
and corresponding angles

 Determine interior angles  
and sides in various triangles

 Use the Pythagorean theorem
 Identify and analyse different 

types of quadrilaterals and 
polygons

 Identify and analyse circles, 
arcs, and interior angles of  
a circle

 Calculate area and perimeter  
of a geometric shape

 Use an approximation method 
to estimate an irregular area

 Identify and analyse three-
dimensional geometric figures, 
including volume, angles, and 
dimensions

Massive structures like the pyramids in Egypt and Stonehenge in the United 
Kingdom were built by ancient civilizations and required the ability to measure 
the size and shape of objects, as well as an understanding of alignment to celestial 

phenomena. Today, MRI (magnetic resonance imaging) can be used to determine the loca-
tion, size, and shape of a tumour in a human being. Geometry deals with size, shape, angles, 
and surfaces, and geometric methods are important in many technological applications.

Many of the methods of measuring geometric objects were known in ancient times, and most 
of the geometry used in technology has been known for hundreds of years. In about 300 
b.c.e., the Greek mathematician Euclid (who lived and taught in Alexandria, Egypt) organ-
ized what was known in geometry. He added many new ideas in a 13-volume set of writings 
known as the Elements. Centuries later it was translated into various languages and was one 
of the earliest mathematical works to be printed in mass production with a printing press.

The study of Euclidean geometry includes the properties and measurements of angles, lines, 
surfaces, and the basic figures they form. In this chapter, we review the methods and formulas 
for calculating important geometric measures such as area and volume. Technical applica-
tions are included from architecture, construction, instrumentation, surveying and civil engi-
neering, mechanical design, product design of various types, and other areas of engineering.

Geometric figures and concepts are also fundamental to the development of many areas of 
mathematics, such as graphing and trigonometry. We will start our study of graphs in Chapter 3 
and trigonometry in Chapter 4.

2Geometry

 In Section 2.5, we see how to find 
an excellent approximation of the 
area of an irregular geometric figure, 
such as a lake. At the left is a satellite 
photograph of Lake Ontario, one of 
the Great Lakes between the United 
States and Canada.
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It is not possible to define every term we use. In geometry, the meanings of point, line, 
and plane are accepted without being defined. These terms give us a starting point for 
the definitions of other useful geometric terms. Even though we may not have an inde-
pendent definition of these fundamental concepts, it may be useful to give operational 
definitions or analogies such that they can be understood. A point is a location in space 
and does not possess any width, length, or height. Often, a point like the “origin” is 
used as a reference position for defining graphs of functions (discussed in Chapter 3). 
A “dot” is often used to represent a point. A line extends indefinitely along a single 
dimension (in both directions), having a length without limit. A line contains an infinite 
number of points. A plane is a flat surface, extending infinitely in all directions along 
its flat orientation. A plane contains an infinite number of lines and points.

The amount of rotation of a ray (or half-line) about its endpoint is called an angle. 
A ray is that part of a line to one side of a fixed point on the line. The fixed point is the 
vertex of the angle. One complete rotation of a ray is an angle with a measure of  
360 degrees, written as 360°. Some special types of angles are as follows:

 2.1 Lines and Angles

■ The use of 360 comes from the ancient 
Babylonians and their number system based on 
60 rather than 10, as we use today. However, 
the specific reason for the choice of 360 is not 
known. (One theory is that 360 is divisible by 
many smaller numbers and is also close to the 
number of days in a year.)

Name of angle Measure of angle
Right angle 90°
Straight angle 180°
Acute angle Between 0° and 90°
Obtuse angle Between 90° and 180°
Reflex angle Between 180° and 360°

 EXAMPLE  1  Basic angles

Fig. 2.1(a) shows a right angle (marked as n). The vertex of the angle is point B, and 
the ray is the half-line BA. Fig. 2.1(b) shows a straight angle. Fig. 2.1(c) shows an acute 
angle, denoted as ∠E (or ∠DEF or ∠FED). In Fig. 2.1(d), ∠G is an obtuse angle. In 
Fig. 2.1 (e), ∠H is a reflex angle.

Fig. 2.1 

(c)

E D

F

(b)

180°

C

A

(a)

B

(d)

G

(e)

H

A line segment is a line that links two points without extending beyond them. Often 
a line segment is named for the two endpoints. For example, if a line segment joins 
point A and point B, it is often named line segment AB. Another symbol might also be 
used denoting length of the line segment. For example, d might be the length of line 
segment AB. If a line passes through two points A and B, but also extends beyond them, 
it can also be named line AB. The context of the use of the name is important. If two 
lines intersect so that there is a non-zero angle between them, they cross at a single 
point. If the angle between the intersecting lines is a right angle, the lines are perpen-
dicular. Lines in the same plane that do not intersect are parallel. These concepts are 
illustrated in the following example.

 EXAMPLE  2  Parallel lines and perpendicular lines

In Fig. 2.2(a), lines AC and DE are perpendicular (which is shown as AC # DE) since 
they meet in a right angle (again, shown as n) at B.

 ■
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In Fig. 2.2(b), lines AB and CD are drawn so they do not meet, even if extended. 
Therefore, these lines are parallel (which can be shown as AB ‘  CD).

In Fig. 2.2(c), line segments AB # BC, DC # BC, and AB ‘  DC.

Fig. 2.2 

D

E

C

(a)

B
A

(b)

BA

DC

A B
(c)

CD

It will be important to recognize perpendicular sides and parallel sides in many of 
the geometric figures in later sections. ■

If the sum of the measures of two angles is 180°, then the angles are called supple-
mentary angles. Each angle is the supplement of the other. If the sum of the measures 
of two angles is 90°, the angles are called complementary angles. Each is the comple-
ment of the other.

 EXAMPLE  3  

(a) In Fig. 2.3, ∠BAC = 55° and ∠DAC = 125°. Since 55° + 125° = 180°, ∠BAC 
and ∠DAC are supplementary angles. ∠BAD is a straight angle.

(b) In Fig. 2.4, we see that ∠POQ is a right angle, or ∠POQ = 90°. Since 
∠POR + ∠ROQ = ∠POQ = 90°, ∠POR is the complement of ∠ROQ (or 
∠ROQ is the complement of ∠POR).

■ Recognizing complementary angles is 
important in trigonometry.

Fig. 2.3 
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B
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D

Supplementary
angles

55°125°

Fig. 2.4  ■
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It is often necessary to refer to certain special pairs of angles. Two angles that have 
a common vertex and a side or ray common between them are known as adjacent 
angles. If two lines cross to form equal angles on opposite sides of the point of intersec-
tion, which is the common vertex, these angles are called vertical angles, or vertically 
opposite angles.

 EXAMPLE  4  

(a) In Fig. 2.5, ∠BAC and ∠CAD have a common vertex at A and the common ray 
AC between them. This means that ∠BAC and ∠CAD are adjacent angles.

(b) In Fig. 2.6, lines AB and CD intersect at point O. Here, ∠AOC and ∠BOD are 
vertical angles, and they are equal. Also, ∠BOC and ∠AOD are vertical angles 
and are equal. ■

We should also be able to identify the sides or rays of an angle that are adjacent to 
the angle. In Fig. 2.5, rays AB and AC are adjacent to ∠BAC, and in Fig. 2.6, rays OB 
and OD are adjacent to ∠BOD. Identifying sides adjacent and opposite an angle in a 
triangle is important in trigonometry.

Practice Exercise

1.  What is the measure of the complement 
of ∠BAC in Fig. 2.3?

Fig. 2.5 

D

BA

C

Adjacent
angles

Fig. 2.6 

A

C

O
B

D

Vertical
angles
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In a plane, if a line crosses two or more parallel or nonparallel lines, it is called a 
transversal. In Fig. 2.7, AB ‘  CD, and the transversal of these two parallel lines is the 
line EF.

When a transversal crosses a pair of parallel lines, certain pairs of equal angles 
result. In Fig. 2.7, the corresponding angles are equal 1 that is, ∠1 = ∠5, ∠2 = ∠6, 
∠3 = ∠7, and ∠4 = ∠82 . Also, the alternate-interior angles are equal 1∠3 = ∠6 
and ∠4 = ∠52 , and the alternate-exterior angles are equal 1∠1 = ∠8 and  
∠2 = ∠72 .

When more than two parallel lines are crossed by two transversals, such as is shown 
in Fig. 2.8, the segments of the transversals between the same two parallel lines are 
called corresponding segments. A useful theorem is that the ratios of corresponding 
segments of the transversals are equal. In Fig. 2.8, this means that

Practice Exercise

 2.  In Fig. 2.7, if ∠2 = 42°, then ∠5 = ?

Fig. 2.7 

A B

F

E

Transversal

2
4

1
3

5 6
87

C D

Fig. 2.8 

d

b

c

a
 

a
b

=
c
d

 (2.1)

 EXAMPLE  5  

In Fig. 2.9, part of the beam structure within a building is shown. The vertical beams 
are parallel. From the distances between beams that are shown, determine the distance 
x between the middle and right vertical beams.

Using Eq. (2.1), we have

 
655
565

=
x

775

 x =
65517752

565
  x = 898 mm  ■

Fig. 2.9 

x

655 mm

565 mm 775 mm

EXERCISES 2.1

In Exercises 1–4, answer the given questions about the indicated 
examples of this section.

  1. In Example 2, what is the measure of ∠ABE in Fig. 2.2(a)?

  2. In Example 3(b), if ∠POR = 32° in Fig. 2.4, what is the measure 
of ∠QOR?

  3. In Example 4, how many different pairs of adjacent angles are 
there in Fig. 2.6?

  4. In Example 5, if the segments of 655 mm and 775 mm are inter-
changed, (a) what is the answer, and (b) is the beam along which 
x is measured more nearly vertical or more nearly horizontal?

In Exercises 5–12, identify the indicated angles and sides in Fig. 2.10. 
In Exercises 9 and 10, also find the measures of the indicated angles.

  5. Two acute angles

  6. Two right angles

  7. The straight angle

  8. The obtuse angle

  9. If ∠CBD = 65°, find its complement.

 10. If ∠CBD = 65°, find its supplement.

 11. The sides adjacent to ∠DBC

 12. The acute angle adjacent to ∠DBC

In Exercises 13–15, use Fig. 2.11. In Exercises 16–18, use Fig. 2.12. 
Find the measures of the indicated angles.

13. ∠ AOB 14. ∠ AOC 15. ∠ BOD

16. ∠3 17. ∠4 18. ∠5

Fig. 2.10 A C

E

B

D

Fig. 2.11 
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In Exercises 19–22, find the measures of the angles in Fig. 2.13.

 19. ∠1      20. ∠2     21. ∠3     22. ∠4

  34. Part of a laser beam striking a surface is reflected at the same angle 
as the original beam, and the remainder is refracted (passes into  
the new material) at a new angle (see Fig. 2.17). Find the total 
angle between the reflected beam and the refracted beam and spec-
ify the type of angle it is (acute, right, obtuse, straight, or reflex).

Fig. 2.13 
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D

62°
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Fig. 2.14 

A
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D

F

In Exercises 23–28, find the measures of the angles in the truss shown 
in Fig. 2.14. A truss is a rigid support structure that is used in the 
construction of buildings and bridges.

23. ∠ BDF  24.   ∠ ABE  25.   ∠ DEB

26. ∠ DBE 27. ∠ DFE 28. ∠ ADE

In Exercises 29–32, find the indicated distances between the straight 
irrigation ditches shown in Fig. 2.15. The vertical ditches are parallel.

29. a      30. b      31. c      32. d

Fig. 2.15

3.20 m

3.05 m

4.75 m
6.25 m

5.05 m
c

a b
d

In Exercises 33–36, solve the given problems.

33. A steam pipe is connected in sections AB, BC, and CD as shown 
in Fig. 2.16. What is the angle between BC and CD if AB ‘  CD?

Fig. 2.16 

C D

A

E

B

47°

Fig. 2.17 

A

AB ⊥ CD

D

C

B
O

34°

12°

Laser beam Re!ected beam

Refracted beam

35. Find the distance on Dundas St. W between Dufferin St. and 
Ossington Ave. in Toronto, as shown in Fig. 2.18. The north–
south streets are parallel.

Fig. 2.18 
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519 m

555 m

Dundas St. W

825 m

36. An electric circuit board has equally spaced parallel wires with 
connections at points A, B, and C, as shown in Fig. 2.19. How far 
is A from C, if BC = 2.15 cm?

Fig. 2.19 

A

B

C

In Exercises 37–40, solve the given problems related to Fig. 2.20.

37. ∠1 + ∠2 + ∠3 = ?

38. ∠4 + ∠2 + ∠5 = ?

Fig. 2.20 

39. Based on Exercise 38, what conclusion can be drawn about a 
closed geometric figure like the one with vertices at A, B, and D?

40. Based on Exercises 38 and 39, what conclusion can be drawn 
about a closed geometric figure like the one with vertices A, B,  
C, and D?

Answers to Practice Exercises

1. 35°   2. 138°
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When part of a plane is bounded and closed by straight-line segments, it is called 
a polygon, and it is named according to the number of sides it has. A triangle has 
three sides, a quadrilateral has four sides, a pentagon has five sides, a hexagon 
has six sides, and so on. The most important polygons are the triangle, which we 
consider in this section, and the quadrilateral, which we study in the next 
section.

TYPES AND PROPERTIES OF TRIANGLES
In a scalene triangle, no two sides are equal in length. In an isosceles triangle, two of 
the sides are equal in length, and the two base angles (the angles opposite the equal 
sides) are equal. In an equilateral triangle, the three sides are equal in length, and each 
of the three angles is 60°.

The most important triangle in technical applications is the right triangle. In a right 
triangle, one of the angles is a right angle. The side opposite the right angle is the 
hypotenuse, and the other two sides are called legs.

 EXAMPLE  1  Types of triangles

Fig. 2.21(a) shows a scalene triangle; each side is of a different length. Fig. 2.21(b) 
shows an isosceles triangle with two equal sides of 2 m and equal base angles of 40°. 
Fig. 2.21(c) shows an equilateral triangle with equal sides of 5 cm and equal angles of 
60°. Fig. 2.21(d) shows a right triangle. The hypotenuse is side AB.

 2.2 Triangles
 

 

■ The properties of triangles are important in 
the study of trigonometry, which we start in 
Chapter 4.

Fig. 2.21  ■

B

C A

(a)
5 cm

(b)

2 m

(c) (d)

Hypotenuse5 cm 5 cm

5 cm

2 m
4 cm6 cm

60°60°40° 40°

60°

One very important property of a triangle is that

the sum of the measures of the three interior angles of a triangle is 180°.

In the next example, we show this property by using material from Section 2.1.

 EXAMPLE  2  

In Fig. 2.22, since ∠1, ∠2, and ∠3 constitute a straight angle,

∠1 + ∠2 + ∠3 = 180°

Also, by noting alternate interior angles, we see that ∠1 = ∠4 and ∠3 = ∠5. 
Therefore, by substitution, we have

∠4 + ∠2 + ∠5 = 180°

Therefore, if two of the angles of a triangle are known, the third may be found by sub-
tracting the sum of the first two from 180°. ■

 EXAMPLE  3  

An airplane is flying north and then makes a 90° turn to the west. Later, it makes 
another left turn of 150°. What is the angle of a third left turn that will cause the plane 
to again fly north? See Fig. 2.23.

Fig. 2.22 
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From Fig. 2.23, we see that the interior angle of the triangle at A is the supple-
ment of 150°, or 30°. Since the sum of the measures of the interior angles of the tri-
angle is 180°, the interior angle at B is

∠B = 180° - 190° + 30°2 = 60°

The required angle is the supplement of 60°, which is 120°. ■

A line segment drawn from a vertex of a triangle to the midpoint of the opposite 
side is called a median of the triangle. Each median also divides the triangle into two 
smaller triangles each having the same area. A basic property of a triangle is that the 
three medians meet at a single point, called the centroid (or centre of mass) of the 
triangle. See Fig. 2.24. Centroids are calculated as an application of calculus in 
Chapter 26. Also, the three angle bisectors (lines from the vertices that divide the 
angles in two) meet at a common point. See Fig. 2.25.

Fig. 2.24 

Medians
Centroid

Fig. 2.25 

Angle bisectors

Fig. 2.26 

Altitudes

Practice Exercise

1.  If the triangle in Fig. 2.24 is isosceles and 
the vertex angle (at the left) is 30°, what 
are the base angles?

The three common points of the 
medians, angle bisectors, and  
altitudes are generally not the  
same point for a given triangle.

LEARNING T IP An altitude (or height) of a triangle is the line segment drawn from a vertex perpen-
dicular to the opposite side (or its extension), which is called the base of the triangle. 
The three altitudes of a triangle meet at a common point. See Fig. 2.26.

PERIMETER AND AREA OF A TRIANGLE
We now consider two of the most basic measures of a plane geometric figure. The first 
of these is its perimeter, which is the total length of the boundary around the figure.  
In the following example, we find the perimeter of a triangle.

 EXAMPLE  4  Perimeter of a triangle

Find the perimeter p of a triangle with sides 2.56 m, 3.22 m, and 4.89 m. See Fig. 2.27.
Using the definition of perimeter, for this triangle we have

p = 2.56 + 3.22 + 4.89 = 10.67 m

Therefore, the distance around the triangle is 10.67 m. We express the results to hun-
dredths since each side is given to hundredths. ■

The second important measure of a geometric figure is its area. Although the con-
cept of area is primarily intuitive, it is easily defined and calculated for the basic geo-
metric figures. Area gives a measure of the size of the surface of the figure, just as 
perimeter gives the measure of the distance around it.

The area A of a triangle of base b and altitude h is

Fig. 2.27 

4.89 m

3.22 m2.56 m

 A = 1
2 bh (2.2)

The following example illustrates the use of Eq. (2.2).
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 EXAMPLE  5  Area of a triangle

Find the areas of the triangles in Fig. 2.28(a) and Fig. 2.28(b).
Even though the triangles are of different shapes, the base b of each is 16.2 cm, 

and the altitude h of each is 5.75 cm. Therefore, the area of each triangle is

 A = 1
2 bh = 1

2 116.22 15.752 = 46.6 cm2 ■

Another formula for the area of a triangle that is particularly useful when we have a 
triangle with three known sides and no right angle is Hero’s formula, which isFig. 2.28 

5.75 cm

16.2 cm 16.2 cm
(a) (b)

■ Hero’s formula is named for Hero (or Heron), 
a first-century Greek mathematician.   A = 1s1s - a2 1s - b2 1s - c2 , (2.3)

where  s = 1
2 1a + b + c2

In Eq. (2.3), a, b, and c are the lengths of the sides, and s is one-half of the perimeter.

 EXAMPLE  6  

A surveyor measures the sides of a triangular parcel of land between two intersecting 
straight roads to be 206 m, 293 m, and 187 m. Find the area of this parcel (see Fig. 2.29).

To use Eq. (2.3), we first find s:

 s = 1
2 1206 + 293 + 1872

 = 1
2 16862 = 343 m

Now, substituting in Eq. (2.3), we have

 A = 13431343 - 2062 1343 - 2932 1343 - 1872
 = 19 144.968 01 m2

  = 19 100 m2  (rounded to 3 significant digits) ■

THE PYTHAGOREAN THEOREM
As we have noted, one of the most important geometric figures in technical applica-
tions is the right triangle. A very important property of a right triangle is given by the 
Pythagorean theorem, which states that

in a right triangle, the square of the length of the hypotenuse equals the sum of the 
squares of the lengths of the other two sides.

If c is the length of the hypotenuse and a and b are the lengths of the other two sides 
(see Fig. 2.30), the Pythagorean theorem is

Fig. 2.29 

206 m

187 m
293 m

Practice Exercise

2.  What is the perimeter of the triangle in 
Fig. 2.29?

■ The Pythagorean theorem is named for the 
Greek mathematician Pythagoras (sixth century 
B.C.E.)

Fig. 2.30 

ac

b

 c2 = a2 + b2 (2.4)

 EXAMPLE  7  

A pole is perpendicular to the level ground around it. A guy wire is attached 3.20 m up 
the pole and at a point on the ground 2.65 m from the pole. How long is the guy wire?

We sketch the pole and guy wire as shown in Fig. 2.31. Using the Pythagorean 
theorem, and then substituting, we have

 AC2 = AB2 + BC2

 AC2 = 2.652 + 3.202

 AC = 22.652 + 3.202 = 4.15 m

The guy wire is 4.15 m long. ■Fig. 2.31 
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SIMILAR TRIANGLES
The perimeter and area of a triangle are measures of its size. We now consider the 
shape of triangles.

Two triangles are similar if they have the same shape (but not necessarily the same 
size). There are two very important properties of similar triangles.

Properties of Similar Triangles
1. The corresponding angles of similar triangles are equal. 

2. The corresponding sides of similar triangles are proportional. 

For two triangles that are similar, if 
one property is true, then the other is 
also true. In two similar triangles, the 
corresponding sides are the sides, 
one in each triangle, that are 
between the same pair of equal  
corresponding angles.

LEARNING T IP

 EXAMPLE  8  Similar triangles

In Fig. 2.32, a pair of similar triangles are shown. They are similar even though the cor-
responding parts are not in the same position relative to the page. Using standard sym-
bols, we can write △ ABC ∼ △ A′B′C′, where △ means “triangle” and ∼  means “is 
similar to.”

The pairs of corresponding angles are A and A′, B and B′, and C and C′. This 
means A = A′, B = B′, and C = C′.

The pairs of corresponding sides are AB and A′B′, BC and B′C′, and AC and 
A′C′. In order to show that these corresponding sides are proportional, we write

 
AB

A′B′
=

BC
B′C′

=
AC

A′C′
 

 sides of △ ABC 
 sides of △ A′B′C′  ■

If we know that two triangles are similar, we can use the two basic properties of 
similar triangles to find the unknown parts of one triangle from the known parts of the 
other triangle. The next example illustrates this in a practical application.

 EXAMPLE  9  Application of similar triangles

On level ground, a silo casts a shadow 24.0 m long. At the same time, a nearby vertical 
pole 4.00 m high casts a shadow 3.00 m long. How tall is the silo? See Fig. 2.33.

The rays of the sun are essentially parallel. The two triangles in Fig. 2.33 are 
similar since each has a right angle and the angles at the tops are equal. The other 
angles must be equal since the sum of the angles is 180°. The lengths of the hypote-
nuses are of no importance in this problem, so we use only the other sides in stating 
the ratios of corresponding sides. Denoting the height of the silo as h, we have

 
h

4.00
=

24.0
3.00

 

 h = 32.0 m

We conclude that the silo is 32.0 m high. ■

One of the most practical uses of similar geometric figures is for scale drawings. 
Maps, charts, architectural blueprints, engineering sketches, and most drawings that 
appear in books (including many that have already appeared, and will appear, in this 
text) are familiar examples of scale drawings.

In any scale drawing, all distances are drawn at a certain ratio of the distances that 
they represent, and all angles are drawn equal to the angles they represent. Note the 
distances and angles shown in Fig. 2.34 in the following example.

 EXAMPLE  10  Scale drawing

In drawing a map of the area shown in Fig. 2.34, a scale of 1 cm = 200 km is used. In 
measuring the distance between Chicago and Toronto on the map, we find it to be 3.5 cm. 
The actual distance x between Chicago and Toronto is found from the proportion

Fig. 2.32 

BC A' C '

B'

A

Fig. 2.33 

24.0 m 3.00 m

4.
00

 m

h

Practice Exercise

3.  In Fig. 2.33, knowing the value of h, 
what is the distance between the top of 
the silo and the end of its shadow?
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scale

actual distance      
distance on map   

x
3.5 cm

=
200 km

1 cm
 or x = 700 km

If we did not have the scale but knew that the distance between Chicago and 
Toronto is 700 km, then by measuring distances on the map between Chicago and 
Toronto (3.5 cm) and between Toronto and Philadelphia (2.7 cm), we could find the 
distance between Toronto and Philadelphia. It is found from the following propor-
tion, determined by use of similar triangles:

 
700 km
3.5 cm

=
y

2.7 cm

 y =
2.717002

3.5
= 540 km ■

Similarity requires equal angles and proportional sides. If the corresponding angles 
and the corresponding sides of two triangles are equal, the two triangles are congru-
ent. As a result of this definition, the areas and perimeters of congruent triangles are 
also equal. Informally, we can say that similar triangles have the same shape, whereas 
congruent triangles have the same shape and same size.

 EXAMPLE  11  Similar and congruent triangles

A right triangle with legs of 2 m and 4 m is congruent to any other right triangle with 
legs of 2 m and 4 m. It is also similar to any right triangle with legs of 5 m and 10 m, or 
any other right triangle that has legs in the ratio of 1 to 2, since the corresponding sides 
are proportional. See Fig. 2.35. ■

Fig. 2.34 Chicago Philadelphia

2.7 cm3.5 cm

Toronto

Fig. 2.35 

2 m

4 m

2 m

4 m

5 m

10 m

Similar
Congruent

EXERCISES 2.2

In Exercises 1–4, answer the given questions about the indicated 
examples of this section.

 1. In Example 2, if ∠1 = 70° and ∠5 = 45° in Fig. 2.22, what is 
the measure of ∠2?

  2. In Example 5, change 16.2 cm to 61.2 cm. What is the answer?

  3. In Example 7, change 2.65 m to 6.25 m. What is the answer?

  4. In Example 9, interchange 4.00 m and 3.00 m. What is the 
answer?

In Exercises 5–8, determine ∠ A in the indicated figures.

 5. Fig. 2.36(a)

 6. Fig. 2.36(b)

 7. Fig. 2.36(c)

 8. Fig. 2.36(d)

Fig. 2.36 

(a)

84°

40°
A B

(b)

48°

A

(c)

66°

44

CB
(d)

110° 33

A B

C

A

C

B

C

(a)

84°

40°
A B

(b)

48°

A

(c)

66°

44

CB
(d)

110° 33

A B

C

A

C

B

C

This calculation can also be done 
exactly like a unit conversion  
(see Section 1.3). We are converting 
between map units and real units, 
using the scale of the drawing.

x = 3.5 cm # a200 km
1 cm

b = 700 km

Scale conversion
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34. The altitude to the hypotenuse of a right triangle divides the trian-
gle into two smaller triangles. What do you conclude about the 
original triangle and the two new triangles? Explain.

35. In Fig. 2.40, show that △ MKL ∼ △ MNO.

36. In Fig. 2.41, show that △ ACB ∼ △ ADC.

 13. Right triangle with legs 3.46 cm and 2.55 cm

 14. Right triangle with legs 234 mm and 343 mm

 15. Isosceles triangle, equal sides of 0.986 m, third side of 0.884 m

 16. Equilateral triangle of sides 322 dm

In Exercises 17–20, find the perimeter of each triangle.

 17. Fig. 2.37(c)  18. Fig. 2.37(d)

19. An equilateral triangle of sides 21.5 cm

20. Isosceles triangle, equal sides of 2.45 mm, third side of 3.22 mm

In Exercises 21–24, find the third side of the right triangle shown in 
Fig. 2.38 for the given values.

21. a = 13.8 mm, b = 22.7 mm

22. a = 2.48 m, b = 1.45 m

23. a = 175 cm, c = 551 cm

24. b = 0.474 km, c = 0.836 km

In Exercises 25–28, use the right triangle in Fig. 2.39.

25. Find ∠B.

26. Find side c.

27. Find the perimeter.

28. Find the area.

In Exercises 29–54, solve the given problems.

29. What is the angle between the bisectors of the acute angles of a 
right triangle?

30. If the midpoints of the sides of an isosceles triangle are joined, another 
triangle is formed. What do you conclude about this inner triangle?

31. For what type of triangle is the centroid the same as the intersec-
tion of altitudes and the intersection of angle bisectors?

32. Is it possible that the altitudes of a triangle meet, when extended, 
outside the triangle? Explain.

33. The altitude to the hypotenuse of a right triangle divides the trian-
gle into two smaller triangles. What do you conclude about these 
two triangles?

In Exercises 9–16, find the area of each triangle.

  9. Fig. 2.37(a)  10. Fig. 2.37(b)

 11. Fig. 2.37(c)  12. Fig. 2.37(d)

Fig. 2.37 

2.2 m

7.6 m

7.62 mm

16.0 mm

205 cm 322 cm

415 cm
23.5 m 68.4 m

86.2 m

(a) (b)

(d)(c)

Fig. 2.38 
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b
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90.5 cm

23°

38.4 cm

B

c
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N

Fig. 2.40 Fig. 2.41 
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37. In Fig. 2.40, if KN = 15, MN = 9, and MO = 12, find LM.

38. In Fig. 2.41, if AD = 9 and AC = 12, find AB.

39. The angle between the roof sections of an A-frame house is 50°. 
What is the angle between either roof section and a horizontal 
rafter?

40. A transmitting tower is supported by a wire that makes an angle 
of 52° with the level ground. What is the angle between the tower 
and the wire?

41. A wall pennant is in the shape of an isosceles triangle. If each 
equal side is 76.6 cm long and the third side is 30.6 cm, what is 
the area of the pennant?

 42. The Bermuda Triangle is sometimes defined as an equilateral trian-
gle 1600 km on a side, with vertices in Bermuda, Puerto Rico, and 
the Florida coast. Assuming it is flat, what is its approximate area?

43. The sail of a sailboat is in the shape of a right triangle with sides 
of 3.2 m, 6.0 m, and 6.8 m. What is the area of the sail?

44. An observer is 550 m horizontally from the launch pad of a 
rocket. After the rocket has ascended 750 m, how far is it from 
the observer?

45. The base of a 6.0-m ladder is 1.8 m from a wall. How far up on 
the wall does the ladder reach?

46. The beach shade shown in 
Fig. 2.42 is made of 
30°@60°@90° triangular sec-
tions. Find x. (In a 30°@60°@90° 
triangle, the side opposite the 
30° angle is one-half the 
hypotenuse.)

47. A rectangular room is 18.0 m 
long, 12.0 m wide, and 8.00 m 
high. What is the length of the 
longest diagonal from one corner to another corner of the room?

48. On a blueprint, a hallway is 45.6 cm long. The scale is 
1.20 cm = 1.00 m. How long is the hallway?

49. Two parallel guy wires are attached to a vertical pole 4.5 m and 
5.4 m above the ground. They are secured on the level ground at 
points 1.2 m apart. How long are the guy wires?

50. The two sections of a folding door, hinged in the middle, are each 
0.85 m wide. What width of the doorway is taken up when the 
sections are at right angles to each other?

Fig. 2.42 

2.00 m

x
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51. A 1.5-m wall stands 0.75 m from a building. The ends of a 
straight pole touch the building and the ground 2.0 m from the 
wall. A point on the pole touches the top of the wall. How long is 
the pole? See Fig. 2.43.

52. To find the width ED of a river, a surveyor places markers at A, 
B, C, and D, as shown in Fig. 2.44. The markers are placed such 
that AB ‘  ED, BC = 50.0 m, DC = 312 m, and AB = 80.0 m. 
How wide is the river?

53. A water pumping station is to be built on a river at point P in order 
to deliver water to points A and B. See Fig. 2.45. The design requires 
that ∠ APD = ∠ BPC so that the total length of piping that will be 
needed is a minimum. Find this minimum length of pipe.

Fig. 2.43 
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Wall B
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Fig. 2.46 

16 cm

x − 12 cm

x

54. The cross section of a drainage trough has the shape of an isosce-
les triangle whose depth is 12 cm less than its width. If the depth 
is increased by 16 cm and the width remains the same, the area of 
the cross section is increased by 160 cm2. Find the original depth 
and width. See Fig. 2.46.

Answers to Practice Exercises

1. 75° 2.  686 m 3.  40.0 m

A quadrilateral is a closed plane figure with four sides, and these four sides form four 
interior angles. A general quadrilateral is shown in Fig. 2.47.

A diagonal of a polygon is a straight line segment joining any two nonadjacent ver-
tices. The dashed line is one of two diagonals of the quadrilateral in Fig. 2.48.

TYPES OF QUADRILATERALS
A parallelogram is a quadrilateral in which opposite sides are parallel. In a parallelo-
gram, opposite sides are equal and opposite angles are equal. A rhombus is a parallel-
ogram with four equal sides.

A rectangle is a parallelogram in which intersecting sides are perpendicular, which 
means that all four interior angles are right angles. In a rectangle, the longer side is usu-
ally called the length, and the shorter side is called the width. A square is a rectangle 
with four equal sides.

A trapezoid is a quadrilateral in which two sides are parallel. The parallel sides are 
called the bases of the trapezoid.

 EXAMPLE  1  

A parallelogram is shown in Fig. 2.49(a). Opposite sides a are equal in length, as are 
opposite sides b. A rhombus with equal sides s is shown in Fig. 2.49(b). A rectangle is 
shown in Fig. 2.49(c). The length is labelled l, and the width is labelled w. A square with 
equal sides s is shown in Fig. 2.49(d). A trapezoid with bases b1 and b2 is shown in  
Fig. 2.49(e).

 2.3 Quadrilaterals

Fig. 2.47 Fig. 2.48 

Practice Exercise

1.  Develop a formula for the length d of a 
diagonal for the rectangle in Fig. 2.49(c).

Fig. 2.49  ■
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PERIMETER AND AREA OF A QUADRILATERAL
The perimeter of a quadrilateral is the sum of the lengths of the four sides.

 EXAMPLE  2  Application of perimeter

An architect designs a room with a rectangular window 920 mm high and 540 mm 
wide, with another window above in the shape of an equilateral triangle, 540 mm on a 
side. See Fig. 2.50. How much moulding is needed for these windows?

The length of moulding is the sum of the perimeters of the windows. For the rec-
tangular window, the opposite sides are equal, which means the perimeter is twice 
the length l plus twice the width w. For the equilateral triangle, the perimeter is 
three times the side s. Therefore, the length L of moulding is

 L = 2l + 2w + 3s

 L = 219202 + 215402 + 315402
  L = 4540 mm  ■

For the areas of the square, rectangle, parallelogram, and trapezoid, we have the fol-
lowing formulas:

Fig. 2.50 

920 mm

540 mm

540 mm

We could write down formulas for 
the perimeters of the different kinds 
of triangles and quadrilaterals. 
However, if we remember the mean-
ing of perimeter as being the total 
distance around a geometric figure, 
such formulas are not necessary.
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Practice Exercise

2.  If we did develop perimeter formulas, 
what would be the formula for the  
perimeter p of a rhombus of side s?

 A = s2 Square of side s (Fig. 2.51) (2.5)
 A = lw Rectangle of length l and width w (Fig. 2.52) (2.6)
 A = bh Parallelogram of base b and height h (Fig. 2.53) (2.7)
 A = 1

2 h1b1 + b22  Trapezoid of bases b1 and b2 and height h (Fig. 2.54) (2.8)

Since a rectangle, a square, and a rhombus are special types of parallelograms, the area 
of these figures can be found from Eq. (2.7). The area of a trapezoid is of importance 
when we find areas of irregular geometric figures in Section 2.5.

 EXAMPLE  3  Application of area

A city park is designed with lawn areas in the shape of a right triangle, a parallelogram, 
and a trapezoid, as shown in Fig. 2.55, with walkways between them. Find the area of 
each section of lawn and the total lawn area.

 A1 = 1
2 bh = 1

2 1722 1452 = 1600 m2

 A2 = bh = 1722 1452 = 3200 m2

 A3 = 1
2 h1b1 + b22 = 1

2 1452 172 + 352 = 2400 m2

The total lawn area is about 7200 m2. ■

 EXAMPLE  4  Perimeter in a word problem

The length of a rectangular computer chip is 2.0 mm longer than its width. Find the 
dimensions of the chip if its perimeter is 26.4 mm.

Since the dimensions, the length and the width, are required, let w = the width 
of the chip. Since the length is 2.0 mm more than the width, we know that 
w + 2.0 = the length of the chip. See Fig. 2.56.

Fig. 2.55 

35 m

45 m

72 m
72 m

45 m72 m

45 m

■ The computer microprocessor chip was first 
commercially available in 1971.

Fig. 2.51 
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Since the perimeter of a rectangle is twice the length plus twice the width, we 
have the equation

21w + 2.02 + 2w = 26.4

since the perimeter is given as 26.4 mm. This is the equation we need.
Solving this equation, we have

 2w + 4.0 + 2w = 26.4

 4w = 22.4

 w = 5.6 mm and w + 2.0 = 7.6 mm

Therefore, the length is 7.6 mm and the width is 5.6 mm. These values check with the 
statements of the original problem. ■

Fig. 2.56 

w + 2.0

w

EXERCISES 2.3

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the given problems.

 1. In Example 1, interchange the lengths of b1 and b2 in Fig. 2.49(e). 
What type of quadrilateral is the resulting figure?

 2. In Example 2, change the equilateral triangle of side 540 mm to a 
square of side 540 mm and then find the length of moulding.

 3. In Example 3, change the dimension of 45 m to 55 m in each fig-
ure and then find the area.

 4. In Example 4, change 2.0 mm to 3.0 mm, and then solve.

In Exercises 5–12, find the perimeter of each figure.

 5. Square: side of 65 m 6. Rhombus: side of 2.46 km

 7. Rectangle: l = 0.920 mm, w = 0.742 mm

 8. Rectangle: l = 142 cm, w = 126 cm

 9. Parallelogram in Fig. 2.57 10. Parallelogram in Fig. 2.58

11. Trapezoid in Fig. 2.59 12. Trapezoid in Fig. 2.60

In Exercises 21–24, set up a formula for the indicated perimeter or 
area. (Do not include dashed lines.)

21. The perimeter of the figure in Fig. 2.61 (a parallelogram and a 
square attached)

22. The perimeter of the figure in Fig. 2.62 (two trapezoids attached)

23. Area of figure in Fig. 2.61

24. Area of figure in Fig. 2.62

Fig. 2.57 

2.5 m 2.7 m

3.7 m

Fig. 2.58 

12.6 mm 14.2 mm

27.3 mm

Fig. 2.59 

29.8 dm36.2 dm 44.0 dm

73.0 dm

61.2 dm

Fig. 2.60 

201 cm272 cm 223 cm

672 cm

392 cm

In Exercises 13–20, find the area of each figure.

13. Square: s = 2.7 mm 14. Square: s = 15.6 m

15. Rectangle: l = 0.920 km, w = 0.742 km

16. Rectangle: l = 142 cm, w = 126 cm

17. Parallelogram in Fig. 2.57 18. Parallelogram in Fig. 2.58

19. Trapezoid in Fig. 2.59 20. Trapezoid in Fig. 2.60

Fig. 2.61 

a

b

h

Fig. 2.62 

a

a

b
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In Exercises 25–40, solve the given problems.

25. If the angle between adjacent sides of a parallelogram is 90°, what 
conclusion can you make about the parallelogram?

26. What conclusion can you make about the two triangles formed by 
the sides and diagonal of a parallelogram? Explain.

27. Find the area of a square whose diagonal is 24.0 cm.

28. In a trapezoid, find the angle between the bisectors of the two 
angles formed by the bases and one nonparallel side.

 29. Noting how a diagonal of a rhombus divides an interior angle, 
explain why the automobile jack in Fig. 2.63 is in the shape of a 
rhombus.

Fig. 2.64 

12 mm

16 mm

Fig. 2.63 

30. Part of an electric circuit is wired in the configuration of a rhom-
bus and one of its altitudes, as shown in Fig. 2.64. What is the 
length of wire in this part of the circuit?
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31. A walkway 3.00 m wide is constructed along the outside edge of 
a square courtyard. If the perimeter of the courtyard is 324 m, 
what is the perimeter of the square formed by the outer edge of 
the walkway?

32. An architect designs a rectangular window such that the width of 
the window is 450 mm less than the height. If the perimeter of the 
window is 4500 mm, what are its dimensions?

33. A designer plans the top of a rectangular workbench to be four 
times as long as it is wide and then determines that if the width 
were 1500 mm greater and the length were 4500 mm less, it 
would be a square. What are its dimensions?

34. A beam support in a building is in the shape of a parallelogram, as 
shown in Fig. 2.65. Find the area of the side of the beam shown.

 36. Six equal trapezoidal sections form a conference table in the shape 
of a hexagon, with a hexagonal opening in the middle. See Fig. 2.67. 
From the dimensions shown, find the area of the table top.

Fig. 2.65 

3.50 m

1.80 m

Fig. 2.66 9300 mm

4200 mm

5300 mm

3300 mm 3300 mm
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00
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m

35. Each of two walls (with rectangular windows) of an A-frame 
house has the shape of a trapezoid, as shown in Fig. 2.66. If a litre 
of paint covers 12 m2, how much paint is required to paint these 
walls? (All data are accurate to two significant digits.)

Fig. 2.67 

150 cm

75.0 cm

75.0 cm75.0 cm

 37. A fenced section of a ranch is in the shape of a quadrilateral whose 
sides are 1.74 km, 1.46 km, 2.27 km, and 1.86 km, the last two sides 
being perpendicular to each other. Find the area of the section.

38. A rectangular security area is enclosed on one side by a wall, and 
the other sides are fenced. The length of the wall is twice the 
width of the area. The total cost of building the wall and fence is 
$13 200. If the wall costs $50.00>m and the fence costs $5.00>m, 
find the dimensions of the area.

39. What is the sum of the measures of the interior angles of a quadri-
lateral? Explain.

40. Find a formula for the area of a rhombus in terms of its diagonals 
d1 and d2. (See Exercise 29.)

Answers to Practice Exercises

1. d = 2l2 + w2  2. p = 4s

The next geometric figure we consider is the circle. All points on a circle are at the 
same distance from a fixed point, the centre of the circle. The distance from the centre 
to a point on the circle is the radius of the circle. The distance between two points on 
the circle on a line through the centre is the diameter. Therefore, the diameter d is 
twice the radius r, or d = 2r. See Fig. 2.68.

There are also certain types of lines associated with a circle. A chord is a line seg-
ment having its endpoints on the circle. A tangent is a line that touches (does not pass 
through) the circle at one point. A secant is a line that passes through two points of the 
circle. See Fig. 2.69.

An important property of a tangent is that a tangent is perpendicular to the radius 
drawn to the point of contact. This is illustrated in the following example.

 EXAMPLE  1  Tangent line perpendicular to the radius

In Fig. 2.70, O is the centre of the circle, and AB is tangent at B. If ∠OAB = 25°, find 
∠ AOB.

Since the centre is O, OB is a radius of the circle. A tangent is perpendicular to a 
radius at the point of tangency, which means ∠ ABO = 90°.

 2.4 Circles

Angle

Diameter

Centre

Radius Radius

Fig. 2.68 
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Fig. 2.69 
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Since the sum of the angles of a triangle is 180°, we have

 ∠OAB + ∠ ABO + ∠ AOB = 180°
 ∠ AOB = 180° - 90° - 25°

  ∠ AOB = 65°  ■

CIRCUMFERENCE AND AREA OF A CIRCLE
The perimeter of a circle is called the circumference. The formulas for the circumfer-
ence and area of a circle are as follows:

■ The symbol p (the Greek letter pi), which 
we use as a number, was first used in this way 
as a number in the 1700s.

  c = 2pr  Circumference of a circle of radius r (2.9)
  A = pr2  Area of a circle of radius r  (2.10)

Here, p equals approximately 3.1416. In using a calculator, p can be entered to a much 
greater accuracy by using the p  key.

 EXAMPLE  2  Application of the area of a circle

A circular oil spill has a diameter of 2.4 km. It is to be enclosed within special flexible 
tubing. What is the area of the spill, and how long must the tubing be? See Fig. 2.71.

Since d = 2r, r = d>2 = 1.2 km. Using Eq. (2.10), the area is

 A = pr2 = p11.222

 A = 4.5 km2

The length of tubing needed is the circumference of the circle. Therefore,

 c = 2pr = 2p11.22
 c = 7.5 km        rounded off

Many applied problems involve a combination of geometric figures. The follow-
ing example illustrates one such combination. ■

 EXAMPLE  3  Application of perimeter and area for circles

A machine part is a square of side 3.25 cm with a quarter-circle removed (see Fig. 2.72). 
Find the perimeter and the area of one side of the part.

Setting up a formula for the perimeter, we add the two sides of length s to one-
fourth of the circumference of a circle with radius s. For the area, we subtract the 
area of one-fourth of a circle from the area of the square. This gives

bottom 
and left       

circular 
section                      square    

quarter 
circle

p = 2s + 2ps
4

= 2s + ps
2

   A = s2 - ps2

4

where s is the side of the square and the radius of the circle. Evaluating, we have

 p = 213.252 +
p13.252

2
= 11.6 cm

  A = 3.252 -
p13.2522

4
= 2.27 cm2  ■

CIRCULAR ARCS AND ANGLES
An arc is part of a circle, and an angle formed at the centre by two radii is a central 
angle. The measure of an arc is the same as the central angle between the ends of the 
radii that define the arc. A sector of a circle is the region bounded by two radii and the 

The formulas for the circumference 
and the area of a circle can also be 
written in terms of the diameter d:

 c = pd

 A =
pd2

4

The most convenient form for the 
parameter given (radius or diameter) 
can be used.
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Fig. 2.71 

Oil

Spill

Tubing

2.4 km

s = 3.25 cm

s

Fig. 2.72 

Practice Exercises

1.  Find the circumference of a circle with a 
radius of 20.0 cm.

2.  Find the area of the circle in Exercise 1.
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arc they intercept. A segment of a circle is the region bounded by a chord and its arc. 
(There are two possible segments for a given chord. The smaller region is a minor seg-
ment, and the larger region is a major segment.) These are illustrated in the following 
example.

 EXAMPLE  4  Sector and segment

In Fig. 2.73, a sector of the circle is between radii OA and OB and arc AB (denoted as 
ABµ ). If the measure of the central angle at O between the radii is 70°, the measure of 
ABµ  is 70°.

A segment of the circle is the region between chord BC and arc BC 1BCµ 2 . ■

An inscribed angle of an arc is one for which the endpoints of the arc are points on 
the sides of the angle and for which the vertex is a point (not an endpoint) on the arc. 
An important property of a circle is that the measure of an inscribed angle is one-half 
the measure of its intercepted arc.

 EXAMPLE  5  Inscribed angle

(a) In the circle shown in Fig. 2.74, ∠ ABC is inscribed in ABC¬ , and it intercepts 
ACµ . If the measure of ACµ = 60°, then ∠ ABC = 30°.

(b) In the circle shown in Fig. 2.75, PQ is a diameter, and ∠PRQ is inscribed in the 
semicircular PRQ¬ . Since the measure of PSQ¬ = 180°, ∠PRQ = 90°. From this 
we conclude that an angle inscribed in a semicircle is a right angle. ■

RADIAN MEASURE OF AN ANGLE
To this point, we have measured all angles in degrees. There is another measure of an 
angle, the radian, that is defined in terms of an arc of a circle. We will find it of impor-
tance when we study trigonometry.

If a central angle of a circle intercepts an arc equal in length to the radius of the 
circle, the measure of the central angle is defined as 1 radian. See Fig. 2.76. The 
radius can be marked off along the circumference 2p times (about 6.283 times). Thus, 
2p rad = 360° (where rad is the symbol for radian), and the basic relationship between 
radians and degrees is
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 p rad = 180° (2.11)

This ratio can be used as a unit conversion factor, as discussed in Section 1.3.

 EXAMPLE  6  Radian measure of an angle

(a) If we divide each side of Eq. (2.11) by p, we get

1 rad = 57.3°

  where the result has been rounded off.

(b) To change an angle of 118.2° to radian measure, we have

118.2° = 118.2°ap rad
180°

b = 2.06 rad

Multiplying 118.2° by p rad>180°, the unit that remains is rad since degrees “cancel.” 
We will review radian measure again when we study trigonometry. ■

Radian measure is especially useful when determining the length of an arc formed 
by a central angle in a circle. Since the arc length for 1 radian of central angle is equiva-
lent to 1 radius, any multiple of radian measure for the central angle will result in the 

Practice Exercise

3.  Express the angle 85.0° in radian measure.
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same multiple for the length of the resulting arc (see Fig. 2.77). In general, the arc 
length s (the length of ABC¬ ) can be determined from the product of the central angle u 
(if expressed in radians) and the radius r.

Fig. 2.77 

u
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r
r

C

s
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 s = ur (2.12)

 EXAMPLE  7  Arc length with radian measure

If a circle of radius 2.75 m has a central angle of 3.76 radians, determine the length of 
the arc formed by the central angle.

 s = ur

 s = (3.76)(2.75 m)

  s = 10.3 m  ■

Notice that a radian, although 
named, is “unitless.” It represents a 
multiple of a radius and possesses no 
real units of its own. For this reason, 
when multiplying the radius by the 
angle to obtain arc length, we obtain 
the same unit of length as the radius.
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EXERCISES 2.4

In Exercises 1–4, answer the given questions about the indicated 
examples of this section.

 1. In Example 1, if ∠ AOB = 72° in Fig. 2.70, then what is the 
measure of ∠OAB?

  2. In the first line of Example 2, if “diameter” is changed to “radius,” 
what are the results?

  3. In Example 3, if the machine part is the unshaded part (rather than 
the shaded part) of Fig. 2.72, what are the results?

  4. In Example 5(a), if ∠ ABC = 25° in Fig. 2.74, then what is the 
measure of ACµ ?

In Exercises 5–8, refer to the circle with centre at O in Fig. 2.78. 
Identify the following.

  5. (a) A secant line
  (b) A tangent line

  6. (a) Two chords
  (b)  An inscribed 

angle

 7. (a)  Two perpendicu-
lar line segments

  (b)  An isosceles 
triangle

  8. (a) A segment
  (b) A sector with an acute central angle

In Exercises 9–12, find the circumference of the circle with the given 
radius or diameter.

  9. r = 275 cm 10. r = 0.563 m

11. d = 23.1 mm 12. d = 8.2 dm

In Exercises 13–16, find the area of the circle with the given radius or 
diameter.

13. r = 0.0952 km 14. r = 45.8 cm

15. d = 2.33 m 16. d = 1256 mm

In Exercises 17–20, refer to Fig. 2.79, where AB is a diameter, TB is a 
tangent line at B, and ∠ABC = 65°. Determine the indicated angles.

17. ∠CBT

18. ∠ BCT

19. ∠CAB

20. ∠ BTC

Fig. 2.78 
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In Exercises 21–24, refer to Fig. 2.80. Determine the indicated arcs 
and angles.

21. BCµ  (angle measure)

22. ABµ  (angle measure)

23. ∠ ABC

24. ∠ ACB

In Exercises 25–28, change the given angles to radian measure.

25. 22.5°   26. 60.0°   27. 125.2°   28. 323.0°

In Exercises 29–32, find a formula for the indicated perimeter or area.

29. The perimeter of the quarter-circle in Fig. 2.81

30. The perimeter of the figure in Fig. 2.82. A quarter-circle is 
attached to a triangle.
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31. The area of the segment of the quarter-circle in Fig. 2.81

32. The area of the figure in Fig. 2.82

In Exercises 33–49, solve the given problems.

33. Describe the location of the midpoints of a set of parallel chords 
of a circle.

34. The measure of ABµ  on a circle of radius r is 45°. What is the 
length of the arc in terms of r and p?

35. In a circle, a chord connects the ends of two perpendicular radii of 
6.00 cm. What is the area of the minor segment?

36. In Fig. 2.83, chords AB and DE are parallel. What is the relation-
ship between △ ABC and △CDE? Explain.

45. Find the area of the room in the plan shown in Fig. 2.86.

37. The radius of the earth’s equator is 6375 km. What is the 
circumference?

38. As a ball bearing rolls along a straight track, it makes 11.0 revolu-
tions while travelling a distance of 109 mm. Find its radius.

39. The rim on a basketball hoop has an inside diameter of 45.7 cm. 
The largest cross section of a basketball has a diameter of  
30.5 cm. What is the ratio of the cross-sectional area of the bas-
ketball to the area of the hoop?

40. With no change in the speed of flow, by what factor should the 
diameter of a pipe be increased in order to double the amount of 
water that flows through the pipe?

41. Using a tape measure, the circumference of a tree is found to be 
112 cm. What is the diameter of the tree (assuming a circular 
cross section)?

42. What is the area of the largest circle that can be cut from a rectan-
gular plate 21.2 cm by 15.8 cm?

43. A window designed between semicircular regions is shown in 
Fig. 2.84. Find the area of the window.

Fig. 2.83 
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44. The cross section of a large circular conduit has seven smaller 
equal circular conduits within it. The conduits are tangent to each 
other, as shown in Fig. 2.85. What fraction of the large conduit is 
occupied by the seven smaller conduits?

Fig. 2.86 12 000 mm

8100 mm

320 m
m

46. Find the length of the pulley belt shown in Fig. 2.87 if the belt 
crosses at right angles. The radius of each pulley wheel is 5.50 cm.

Fig. 2.87 

47. The velocity of an object moving in a circular path is directed 
tangent to the circle in which it is moving. A stone on a string 
moves in a vertical circle, and the string breaks after 5.5 revolu-
tions. If the string was initially in a vertical position, in what 
direction does the stone move after the string breaks? Explain.

48. Part of a circular gear with 24 teeth is shown in Fig. 2.88. Find the 
indicated angle.

Fig. 2.88 

20°

x

49. The Natapoka Arc is a geological feature located on the eastern 
shore of Hudson Bay. It is a nearly perfect semicircular arc, cov-
ering about 2.8 radians of a circle 450 km in diameter. Determine 
the length of the arc.

Answers to Practice Exercises

1. 126 cm  2. 1260 cm2  3. 1.48 radFig. 2.84 

0.900 m
1.80 m

Fig. 2.85 
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The figures for which we have found areas are well defined, and the areas can be found 
by direct use of a specific formula. In practice, however, it may be necessary to find the 
area of a figure with an irregular perimeter or one for which there is no specific for-
mula. In this section, we show two methods of finding a very good approximation of 
such an area. These methods are particularly useful in technical areas such as survey-
ing, architecture, and mechanical design.

THE TRAPEZOIDAL RULE
The first method is based on dividing the required area into trapezoids with equal 
heights. Considering the area shown in Fig. 2.89, we draw parallel lines at n equal 
intervals between the edges of the area. We then join the ends of these parallel line 
segments to form adjacent trapezoids. The sum of the areas of the trapezoids gives 
a reasonable approximation to the required area.

Calling the lengths of the parallel lines y0, y1, y2, c, yn and the height of each 
trapezoid h (the distance between the parallel lines), the total area A is the sum of 
areas of all the trapezoids. This gives us

 2.5 Measurement of Irregular Areas

Fig. 2.89 

h h
y2y1

y0 yn−2 yn−1
yn

first 
trapezoid    

second 
trapezoid    

third 
trapezoid        

next-to-last 
trapezoid      

last 
trapezoid

 A =
h
2
1y0 + y12 + h

2
1y1 + y22 + h

2
1y2 + y32 + g +  

h
2
1yn-2 + yn-12 + h

2
1yn-1 + yn2  

 A =
h
2
1y0 + y1 + y1 + y2 + y2 + y3 + g + yn-2 + yn-1 + yn-1 + yn2

Therefore, the approximate area is

 A =
h
2

 1y0 + 2y1 + 2y2 + g + 2yn-1 + yn2  (2.13)

Note carefully that the values of y0 and yn are not multiplied by 2. All the lengths in the 
trapezoidal rule are multiplied by 2 except y0 and yn.

COMMON ERROR

 EXAMPLE  1  Application of the trapezoidal rule

A plate cam for opening and closing a valve is shown in Fig. 2.90. Widths of the face of 
the cam are shown at 2.00-cm intervals from one end of the cam. Find the area of the 
face of the cam.

From the figure, we see that

y0 = 2.56 cm  y1 = 3.82 cm  y2 = 3.25 cm

y3 = 2.95 cm  y4 = 1.85 cm  y5 = 0.00 cm

(In making such measurements, often a y-value at one end—or both ends—is zero. In 
such a case, the end “trapezoid” is actually a triangle.) From the given information in 
this example, h = 2.00 cm. Therefore, using the trapezoidal rule, Eq. (2.13), we have

 A =
2.00

2
 32.56 + 213.822 + 213.252 + 212.952 + 211.852 + 0.004

 A = 26.3 cm2

The area of the face of the cam is approximately 26.3 cm2. ■

Fig. 2.90 
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Equation (2.13) is known as the trapezoidal rule. We will encounter it again in 
Section 25.5 as an approximation for areas under curves.
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When approximating the area with trapezoids, we omit small parts of the area for 
some trapezoids and include small extra areas for other trapezoids. The omitted areas 
often approximate the extra areas, which makes the approximation better. Also, the use 
of smaller intervals improves the approximation since the total omitted area or total 
extra area is smaller.

 EXAMPLE  2  Application of the trapezoidal rule

From a satellite photograph of Lake Ontario (as shown on page 55), one of the Great 
Lakes between the United States and Canada, measurements of the width of the lake 
were made along its length, starting at the west end, at 26.0-km intervals. The widths 
are shown in Fig. 2.91 and are given in the following table.

■ See the chapter introduction.

Fig. 2.91 

Rochester
Niagara Falls

Lake OntarioToronto

Distance from 
West End (km) 0.0 26.0 52.0 78.0 104 130 156
Width (km) 0.0 46.7 52.1 59.2 60.4 65.7 73.9

Distance from 
West End (km) 182 208 234 260 286 312
Width (km) 87.0 75.5 66.4 86.1 77.0 0.0

Here, we see that y0 = 0.0 km, y1 = 46.7 km, y2 = 52.1 km, c, and yn = 0.0 km. 
Therefore, using the trapezoidal rule, the approximate area of Lake Ontario is found as 
follows:

A =
26.0

2
 30.0 + 2146.72 + 2152.12 + 2159.22 + 2160.42 + 2165.72

+ 2173.92 + 2187.02 + 2175.52 + 2166.42 + 2186.12 + 2177.02 + 0.04
 A = 19 500 km2

The area of Lake Ontario is actually 19 477 km2. ■

For an improved method of measuring an irregular area, we also draw parallel lines at 
equal intervals between the edges of the area. We then join the ends of these parallel 
lines with curved arcs. This takes into account the fact that the perimeters of most fig-
ures are curved. The arcs used in this method are not arcs of a circle, but arcs of a 
parabola. A parabola is shown in Fig. 2.92 and is discussed in detail in Chapter 21. 
(Examples of parabolas are (1) the path of a ball that has been thrown and (2) the cross 
section of a microwave satellite “dish.”)

The development of this method requires advanced mathematics. Therefore, we will 
simply state the formula to be used. It might be noted that the form of the equation is 
similar to that of the trapezoidal rule.

The approximate area of the geometric figure shown in Fig. 2.93 is given by

Practice Exercise

1.  In Example 2, use only the distances 
from west end of (in km) 0.0, 52.0, 104, 
156, 208, 260, and 312. Calculate the 
area and compare with the answer in 
Example 2.

Fig. 2.92 

Parabola

Fig. 2.93 

yn−2
y2y1y0

h
h

yn−1

yn

 A =
h
3
1y0 + 4y1 + 2y2 + 4y3 + g + 2yn-2 + 4yn-1 + yn2  (2.14)

Equation (2.14) is known as Simpson’s rule. In using Eq. (2.14), the number n of inter-
vals of width h must be even. Simpson’s rule will be encountered again in Section 25.14 
as an approximation to areas under curves.

■ Simpson’s rule is named for the English 
mathematician Thomas Simpson (1710–1761).
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 EXAMPLE  3  

A parking lot is proposed for a riverfront area in a town. The town engineer measured 
the widths of the area at 30.0-m intervals, as shown in Fig. 2.94. Find the area available 
for parking.

First, we see that there are six intervals, which means Eq. (2.14) may be used. 
With y0 = 124 m, y1 = 147 m, c, y6 = 144 m, and h = 30.0 m, we have

 A =
30.0

3
 3124 + 411472 + 211162 + 411152 + 21872 + 411172 + 1444

  A = 21 900 m2  ■

For most areas, Simpson’s rule gives a somewhat better approximation than the 
trapezoidal rule. The accuracy of Simpson’s rule is also usually improved by using 
smaller intervals.

 EXAMPLE  4  

From an aerial photograph, a cartographer determines the widths of Easter Island (in 
the Pacific Ocean) at 1.50-km intervals as shown in Fig. 2.95. The widths found are as 
follows:
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Fig. 2.95 

y0 = 0

Easter Island

1.50 km

y10

y9

y1

y2

Distance from  
South End (km) 0 1.50 3.00   4.50   6.00   7.50   9.00 10.5 12.0 13.5 15.0

Width (km) 0 4.8 5.7 10.5 15.2 18.5 18.8 17.9 11.3 8.8 3.1

Since there are 10 intervals, Simpson’s rule may be used. From the table, 
we have the following values: y0 = 0, y1 = 4.8, y2 = 5.7, c, 
y9 = 8.8, y10 = 3.1, and h = 1.5. Using Simpson’s rule, the cartogra-
pher would approximate the area of Easter Island as follows:

 A =
1.50

3
10 + 414.82 + 215.72 + 4110.52 + 2115.22 + 4118.52

+ 2118.82 + 4117.92 + 2111.32 + 418.82 + 3.12
 A = 174 km2

The actual area is around 165 km2. ■

EXERCISES 2.5

In Exercises 1 and 2, answer the given questions related to the 
indicated examples of this section.

 1. In Example 1, if widths of the face of the same cam were given at 
1.00-cm intervals (five more widths would be included), from the 
methods of this section, what is probably the most accurate way 
of finding the area? Explain.

 2. In Example 4, if you use only the data from the south end of (in 
km) 0, 3.00, 6.00, 9.00, 12.0, and 15.0, would you choose the 
trapezoidal rule or Simpson’s rule to calculate the area? Explain. 
Do not calculate the area for these data.

In Exercises 3 and 4, answer the given questions related to Fig. 2.96.

 3. Which should be more accurate for 
finding the area, the trapezoidal 
rule or Simpson’s rule? Explain.

 4. If the trapezoidal rule is used to 
find the area, will the result proba-
bly be too high, about right, or too 
little? Explain.

Fig. 2.96 
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In Exercises 5–16, calculate the indicated areas. All data are accurate 
to at least two significant digits.

 5. The widths of a kidney-shaped swimming pool were measured at 
2.0-m intervals, as shown in Fig. 2.97. Calculate the surface area 
of the pool, using the trapezoidal rule.

12. The widths of an oval-shaped floor were measured at 1.5-m inter-
vals, as shown in the following table:

  Determine the area burned by the fire by using the trapezoidal rule.

10. Find the area burned by the forest fire of Exercise 9, using 
Simpson’s rule.

11. A cartographer measured the width of 
Kruger National Park (and game 
reserve) in South Africa at 6.0-km 
intervals on a map, as shown in  
Fig. 2.99. The widths are shown in the 
list that follows. Find the area of the 
park if the scale of the map is 
1.0 mm = 6.0 km.

y0 = 7 mm  y1 = 15 mm
y2 = 7 mm  y3 = 11 mm
y4 = 13 mm y5 = 10 mm
y6 = 9 mm  y7 = 12 mm
y8 = 8 mm  y9 = 3 mm

 8. Calculate the area of the cross section of the airplane wing in  
Fig. 2.98, using the trapezoidal rule.

 9. Using aerial photography, the widths of an area burned by a forest 
fire were measured at 0.5-km intervals, as shown in the following 
table:

 6. Calculate the surface area of the swimming pool in Fig. 2.97, 
using Simpson’s rule.

 7. The widths of a cross section of an airplane wing are measured at 
0.30-m intervals, as shown in Fig. 2.98. Calculate the area of the 
cross section, using Simpson’s rule.

Fig. 2.97 
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Distance (km) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Width (km) 0.6 2.2 4.7 3.1 3.6 1.6 2.2 1.5 0.8

Fig. 2.99 

y9

y8

y1

y0

6.0 km

Distance (m) 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0

Width (m) 0.0 5.0 7.2 8.3 8.6 8.3 7.2 5.0 0.0

  Find the area of the floor by using Simpson’s rule.

13. The widths of Kejimkujik National Park (and National Historic 
Site) in Nova Scotia, measured at 2.0-km intervals, are shown in 
Fig. 2.100. Find the area of the park using the trapezoidal rule.

Fig. 2.100 
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14. Find the area of Kejimkujik National Park (see Exercise 13) using 
Simpson’s rule.

 15. Soundings taken across a river channel give the following depths, 
with the corresponding distances from one shore.

Distance (m) 0 50 100 150 200 250 300 350 400 450 500

Depth (m) 5 12 17   21   22   25   26   16   10     8     0

  Find the area of the cross section of the channel using Simpson’s 
rule.

16. The widths of a bell crank are measured at 2.0-cm intervals, as 
shown in Fig. 2.101. Find the area of the bell crank if the two con-
nector holes are each 2.50 cm in diameter.

Fig. 2.101 
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18. Find the area of the circle using the trapezoidal rule and all values 
in the table. Explain why the value found is closer to 3.14 cm2 
than the value found in Exercise 17.

19. Find the area of the circle using Simpson’s rule and the same 
table values as in Exercise 17. Explain why the value found is 
closer to 3.14 cm2 than the value found in Exercise 17.

20. Find the area of the circle using Simpson’s rule and all values in 
the table. Explain why the value found is closer to 3.14 cm2 than 
the value found in Exercise 19.

Answer to Practice Exercise

1. 18 100 km2

  Using the formula A = pr2, the area of the circle is 3.14 cm2.

17. Find the area of the circle using the trapezoidal rule and only the 
values of distance of 0.000 cm, 0.500 cm, 1.000 cm, 1.500 cm, 
and 2.000 cm with the corresponding values of the chord lengths. 
Explain why the value found is less than 3.14 cm2.

We now review the formulas for the volume and surface area of some basic solid geo-
metric figures. Just as area is a measure of the surface of a plane geometric figure,  
volume is a measure of the space occupied by a solid geometric figure.

One of the most common solid figures is the rectangular solid. This figure has six 
sides (faces), and opposite sides are rectangles. All intersecting sides are perpendicular 
to each other. The bases of the rectangular solid are the top and bottom faces. A cube is 
a rectangular solid with all six faces being equal squares.

A right circular cylinder is generated by rotating a rectangle about one of its sides. 
Each base is a circle, and the cylindrical surface is perpendicular to each of the bases. 
The height is one side of the rectangle, and the radius of the base is the other side.

A right circular cone is generated by rotating a right triangle about one of its legs. 
The base is a circle, and the slant height is the hypotenuse of the right triangle. The 
height is one leg of the right triangle, and the radius of the base is the other leg.

The bases of a right prism are equal and parallel polygons, and the sides are rectan-
gles. The height of a prism is the perpendicular distance between bases. The base of a 
pyramid is a polygon, and the other faces, the lateral faces, are triangles that meet at a 
common point, the vertex. A regular pyramid has congruent triangles for its lateral faces.

A sphere is generated by rotating a circle about a diameter. The radius is a line seg-
ment joining the centre and a point on the sphere. The diameter is a line segment 
through the centre and having its endpoints on the sphere.

In the following formulas, V  represents the volume, A represents the total surface 
area, S represents the lateral surface area (bases not included), B represents the area 
of the base, and p represents the perimeter of the base:
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h

V = lwh Rectangular solid (Fig. 2.102) (2.15)
A = 2lw + 2lh + 2wh (2.16)
V = s3 Cube (Fig. 2.103) (2.17)
A = 6s2 (2.18)
V = pr2h Right circular cylinder (Fig. 2.104) (2.19)
A = 2pr2 + 2prh (2.20)
S = 2prh (2.21)
V = Bh Right prism (Fig. 2.105) (2.22)
S = ph (2.23)

In Exercises 17–20, calculate the area of the circle by the indicated 
method.

The lengths of parallel chords of a circle that are 0.250 cm apart are 
given in the following table. The diameter of the circle is 2.000 cm. 
The distance shown is the distance from one end of a diameter.

Distance (cm) 0.000 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000

Length (cm) 0.000 1.323 1.732 1.936 2.000 1.936 1.732 1.323 0.000
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Equation (2.22) is valid for any prism, and Eq. (2.27) is valid for any pyramid. There are 
other types of cylinders and cones, but we restrict our attention to right circular cylinders 
and right circular cones, and we will often use “cylinder” or “cone” when referring to them.

The frustum of a cone or pyramid is the solid figure that remains after the top is cut 
off by a plane parallel to the base. Fig. 2.109 shows the frustum of a cone.

 EXAMPLE  1  Volume of a rectangular solid

What volume of concrete is needed for a driveway 25.0 m long, 2.75 m wide, and 
0.100 m thick?

The driveway is a rectangular solid for which l = 25.0 m, w = 2.75 m, and 
h = 0.100 m. Using Eq. (2.15), we have

 V = 125.02 12.752 10.1002
  V = 6.88 m3  ■

 EXAMPLE  2  Total surface area of a right circular cone

Calculate the total surface area of a right circular cone for which the radius is 
r = 11.9 cm and the height is h = 10.4 cm. See Fig. 2.110.

To find the total surface area using Eq. (2.25), we need the radius and the slant 
height s of the cone. Therefore, we must first find s. The radius and height are legs 
of a right triangle, and the slant height is the hypotenuse. To find s, we use the 
Pythagorean theorem:

 s2 = r2 + h2  Pythagorean theorem

 s = 2r2 + h2  solve for s

 s = 211.92 + 10.42

 s = 15.8 cm

Now, calculating the total surface area, we have

 A = pr2 + prs         Eq. (2.25)

 A = p111.922 + p111.92 115.82    substituting

  A = 1040 cm2  ■

 EXAMPLE  3  Volume of a combination of solids

A grain storage building is in the shape of a cylinder surmounted by a hemisphere (half 
a sphere). See Fig. 2.111. Find the volume of grain that can be stored if the height of 
the cylinder is 40.0 m and its radius is 12.0 m.

The total volume of the structure is the volume of the cylinder plus the volume of 
the hemisphere. By the construction we see that the radius of the hemisphere is the 
same as the radius of the cylinder. Therefore,

Fig. 2.108 

r

Fig. 2.109 

V =
1
3

 pr2h Right circular cone (Fig. 2.106) (2.24)

A = pr2 + prs (2.25)
S = prs (2.26)

V =
1
3

 Bh Regular pyramid (Fig. 2.107) (2.27)

S =
1
2

 ps (2.28)

V =
4
3

 pr3 Sphere (Fig. 2.108) (2.29)

A = 4pr2 (2.30)

Fig. 2.110 

r = 11.9 cm

h = 10.4 cm

Practice Exercise

1. Find the volume of the cone in Example 2.

Fig. 2.111 
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cylinder hemisphere

 V = pr2h + 1
2

 a4
3
pr3b

 V = pr2h + 2
3

 pr3

 V = p112.022140.02 + 2
3

 p112.023

  V = 21 700 m3  ■

EXERCISES 2.6

In Exercises 1–4, answer the given questions about the indicated 
examples of this section.

 1. In Example 1, if the length is doubled and the thickness is dou-
bled, by what factor is the volume changed?

 2. In Example 2, if the value of the slant height s = 17.5 cm is 
given instead of the height, what is the height?

 3. In Example 2, if the radius is halved and the height is doubled, 
what is the volume?

 4. In Example 3, if h is halved, what is the volume?

In Exercises 5–20, find the volume or area of each solid figure for the 
given values. See Figs. 2.102 to 2.108.

 5. Volume of cube: s = 7.15 cm

 6. Volume of right circular cylinder: r = 23.5 cm, h = 48.4 cm

 7. Total surface area of right circular cylinder: r = 689 m, h = 233 m

 8. Area of sphere: r = 0.067 mm

 9. Volume of sphere: r = 0.877 m

10. Volume of right circular cone: r = 25.1 mm, h = 5.66 mm

11. Lateral area of right circular cone: r = 78.0 cm, s = 83.8 cm

12. Lateral area of regular pyramid: p = 345 m, s = 272 m

13. Volume of regular pyramid: square base of side 76 cm, 
h = 130 cm

14. Volume of right prism: square base of side 29.0 cm, h = 11.2 cm

15. Lateral area of regular prism: equilateral triangle base of side 
1.092 m, h = 1.025 m

16. Lateral area of right circular cylinder: diameter = 250 mm, 
h = 347 mm

17. Volume of hemisphere: diameter = 0.83 cm

18. Volume of regular pyramid: square base of side 22.4 m, 
s = 14.2 m

19. Total surface area of right circular cone: r = 3.39 cm, 
h = 0.274 cm

20. Total surface area of pyramid: All faces and base are equilateral 
triangles of side 3.67 dm.

In Exercises 21–40, solve the given problems.

21. Eq. (2.29) expresses the volume V of a sphere in terms of the 
radius r. Express V in terms of the diameter d.

22. Derive a formula for the total surface area A of a hemispherical 
volume of radius r (curved surface and flat surface).

23. The radius of a cylinder is twice as long as the radius of a cone, and 
the height of the cylinder is half as long as the height of the cone. 
What is the ratio of the volume of the cylinder to that of the cone?

24. The base area of a cone is one-fourth of the total area. Find the 
ratio of the radius to the slant height.

 25. In designing a weather balloon, it is decided to double the diameter 
of the balloon so that it can carry a heavier instrument load. What 
is the ratio of the final surface area to the original surface area?

26. During a rainfall of 3.00 cm, what weight of water falls on an area 
of 1.00 km2? Each cubic metre of water weighs 9800 N.

27. A rectangular box is to be used to store radioactive materials. The 
inside of the box is 12.0 cm long, 9.50 cm wide, and 8.75 cm 
deep. What is the area of sheet lead that must be used to line the 
inside of the box?

28. A swimming pool is 15.0 m wide, 24.0 m long, 1.00 m deep at 
one end, and 2.60 m deep at the other end. How many cubic 
metres of water can it hold? (The slope on the bottom is constant.) 
See Fig. 2.112.

Fig. 2.112 

1.00 m
2.60 m

15.0 m

24.0 m

 29. The Athabasca oil pipeline in Alberta is 540 km long and has a 
diameter of 0.76 m. What is the maximum volume of the pipeline?

 30. A glass prism used in the study of optics has a right triangular base. 
The legs of the triangle are 3.00 cm and 4.00 cm. The prism is 8.50 
cm high. What is the total surface area of the prism? See Fig. 2.113.

Fig. 2.113 

8.50 cm4.00 cm

3.00 cm
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35. A special wedge in the shape of a regular pyramid has a square 
base 16.0 mm on a side. The height of the wedge is 40.0 mm. 
What is the total surface area of the wedge?

 36. A lawn roller is a cylinder 0.96 m long and 0.60 m in diameter. How 
many revolutions of the roller are needed to roll 76 m2 of lawn?

37. The circumference of a basketball is about 75.7 cm. What is its 
volume?

 38. What is the area of a paper label that is to cover the lateral surface of 
a cylindrical can 8.50 cm in diameter and 11.5 cm high? The ends of 
the label will overlap 0.50 cm. when the label is placed on the can.

39. The side view of a rivet is shown in Fig. 2.118. It is a conical part 
on a cylindrical part. Find the volume of the rivet.

33. Spaceship Earth (shown in Fig. 2.116) at Epcot Center in Florida 
is a sphere 50.3 m in diameter. What is the volume of Spaceship 
Earth?

34. A propane tank is constructed in the shape of a cylinder with a 
hemisphere at each end, as shown in Fig. 2.117. Find the volume 
of the tank.

32. A paper cup is in the shape of a cone, as shown in Fig. 2.115. 
What is the surface area of the cup?

31. The Great Pyramid of Egypt has a square base approximately  
230 m on a side. The height of the pyramid is about 150 m. What 
is its volume? See Fig. 2.114.

Fig. 2.114 

150 m

Fig. 2.115 

9.20 cm

8.90 cm

Fig. 2.116 

50.3 m

Fig. 2.117 

1.98 m

1.22 m

Fig. 2.118 

2.75 cm
0.625 cm

1.25 cm 0.625 cm

40. A dipstick is made to measure the volume remaining in the coni-
cal container shown in Fig. 2.119. How far below the full mark 
(at the top of the container) on the stick should the mark for half-
full be placed?

Fig. 2.119 

12.0 cm

18.0 cm

Answer to Practice Exercise

1. 1540 cm3

 CHAPTER 2   EQUATIONS

Line segments Fig. 2.8 
a
b

=
c
d

  (2.1)

Triangle   A = 1
2 bh  (2.2)

Hero’s formula  A = 1s1s - a2 1s - b2 1s - c2 , 

           where s = 1
2 1a + b + c2   (2.3)

Pythagorean theorem  Fig. 2.30 c2 = a2 + b2 (2.4)

Square Fig. 2.51  A = s2  (2.5)
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Rectangle Fig. 2.52 A = lw  (2.6)

Parallelogram  Fig. 2.53 A = bh  (2.7)

Trapezoid  Fig. 2.54 A = 1
2 h1b1 + b22   (2.8)

Circle   c = 2pr  (2.9) 
  A = pr2 (2.10)

Radians  Fig. 2.76 p rad = 180° (2.11) 
 Fig. 2.77   s =  ur  (2.12)

Trapezoidal rule  Fig. 2.89 A =
h
2

 1y0 + 2y1 + 2y2 + g +  2yn-1 + yn2  (2.13)

Simpson’s rule Fig. 2.93 A =
h
3

 1y0 + 4y1 + 2y2 + 4y3 + g +  2yn-2 + 4yn-1 + yn2   (2.14)

Rectangular solid  Fig. 2.102 V = lwh  (2.15) 
  A = 2lw + 2lh + 2wh  (2.16)

Cube Fig. 2.103  V = s3  (2.17) 
  A = 6s2  (2.18)

Right circular cylinder  Fig. 2.104 V = pr2h  (2.19) 
  A = 2pr2 + 2prh  (2.20) 
   S = 2prh  (2.21)

Right prism  Fig. 2.105  V = Bh  (2.22) 
   S = ph (2.23)

Right circular cone Fig. 2.106  V = 1
3 pr2h  (2.24)

  A = pr2 + prs  (2.25) 
   S = prs  (2.26)

Regular pyramid  Fig. 2.107 V = 1
3 Bh  (2.27) 

   S = 1
2 ps  (2.28)

Sphere Fig. 2.108  V = 4
3 pr3  (2.29) 

  A = 4pr2  (2.30)

 CHAPTER 2   REVIEW EXERCISES

In Exercises 1–4, use Fig. 2.120. Determine the indicated angles.

 1. ∠CGE 2. ∠EGF

 3. ∠DGH 4. ∠EGI

In Exercises 5–12, find the indicated sides of the right triangle shown 
in Fig. 2.121.

 5. a = 9, b = 40, c = ?

 6. a = 14, b = 48, c = ?

 7. a = 400, b = 580, c = ?

 8. b = 56, c = 65, a = ?

 9. a = 6.30, b = 3.80, c = ?

 10. a = 126, b = 25.1, c = ?
Fig. 2.120 

I H

D

B
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C
G

148°AB   CD

Fig. 2.121 
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 11. b = 29.3, c = 36.1, a = ?

 12. a = 0.782, c = 0.885, b = ?

In Exercises 13–20, find the perimeter or area of the indicated figure.

 13. Perimeter: equilateral triangle of side 8.5 mm

 14. Perimeter: rhombus of side 15.2 cm

 15. Area: triangle, b = 3.25 m, h = 1.88 m

 16. Area: triangle of sides 175 cm, 138 cm, 119 cm

 17. Circumference of circle: d = 98.4 mm

 18. Perimeter: rectangle, l = 2.98 dm, w = 1.86 dm

 19. Area: trapezoid, b1 = 67.2 cm, b2 = 126.7 cm, h = 34.2 cm

 20. Area: circle, d = 32.8 m

In Exercises 21–24, find the volume of the indicated solid geometric 
figure.

 21. Prism: base is right triangle with legs 26.0 cm and 34.0 cm, 
height is 14.0 cm

 22. Cylinder: base radius 36.0 cm, height 2.40 cm

 23. Pyramid: base area 3850 m2, height 125 m

 24. Sphere: diameter 22.1 mm

In Exercises 25–28, find the surface area of the indicated solid geo-
metric figure.

 25. Total area of cube of edge 0.520 m

 26. Total area of cylinder: base diameter 1.20 cm, height 5.80 cm

 27. Lateral area of cone: base radius 1.82 mm, height 11.5 mm

 28. Total area of sphere: d = 12 760 km

In Exercises 29–32, use Fig. 2.122. Line CT is tangent to the circle 
with centre at O. Find the indicated angles.

 29. ∠ BTA 30. ∠TAB

 31. ∠ BTC 32. ∠ ABT

In Exercises 37–40, find the formulas for the indicated perimeters and 
areas.

 37. Perimeter of Fig. 2.124 (a right triangle and semicircle attached)

 38. Perimeter of Fig. 2.125 (a square with a quarter circle at each end)

 39. Area of Fig. 2.124 40. Area of Fig. 2.125

In Exercises 41–46, answer the given questions.

 41. Is a square also a rectangle, a parallelogram, and a rhombus?

 42. If the measures of two angles of one triangle equal the measures 
of two angles of a second triangle, are the two triangles similar?

 43. If the dimensions of a plane geometric figure are each multiplied 
by n, by how much is the area multiplied? Explain, using a circle 
to illustrate.

 44. If the dimensions of a solid geometric 
figure are each multiplied by n, by how 
much is the volume multiplied? Explain, 
using a cube to illustrate.

 45. What is an equation relating chord seg-
ments a, b, c, and d shown in Fig. 2.126? 
The dashed chords are an aid in the 
solution.

 46. From a common point, two line segments are tangent to the 
same circle. If the angle between the lines segments is 36°, what 
is the angle between the two radii of the circle drawn from the 
points of tangency?

In Exercises 47–72, solve the given problems.

 47. A tooth on a saw is in the shape of an isosceles triangle. If the 
angle at the point is 38°, find the two base angles.

 48. A lead sphere 1.50 cm in diameter is flattened into a circular 
sheet 14.0 cm in diameter. How thick is the sheet?

 49. A ramp for the disabled is designed so that it rises 1.20 m over a 
horizontal distance of 7.80 m. How long is the ramp?

 50. An airplane is 640 m directly above one end of a 3200-m run-
way. How far is the plane from the glide-slope indicator on the 
ground at the other end of the runway?

 51. A machine part is in the shape of a square with equilateral trian-
gles attached to two sides (see Fig. 2.127). Find the perimeter of 
the machine part.

In Exercises 33–36, use Fig. 2.123. Given that AB = 4, BC = 4,
CD = 6, and ∠ ADC = 53°, find the indicated angle and lengths.

 33. ∠ ABE 34. AD

 35. BE 36. AE

Fig. 2.122 

C

T
O

A

B

50°

Fig. 2.123 
A

E

B

C

D

Fig. 2.124 

2a
b

Fig. 2.125 

s

Fig. 2.126 

a b

d
c

Fig. 2.127 

2 cm

Fig. 2.128 

4.50 m

 52. A patio is designed with semicircular areas attached to a square, 
as shown in Fig. 2.128. Find the area of the patio.
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 53. A radio transmitting tower is supported by guy wires. The tower 
and three parallel guy wires are shown in Fig. 2.129. Find the 
distance AB along the tower.

Fig. 2.129 

B

A

42 m

38 m 54 m

Fig. 2.130 

B

A

Main Street

Firs
t S
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et

 65. The Hubble space telescope is within a cylinder 4.32 m in diam-
eter and 13.2 m long. What is the volume within this cylinder?

 66. A horizontal cross section of a concrete bridge pier is a regular 
hexagon (six sides, all equal in length, and all internal angles are 
equal), each side of which is 2.50 m long. If the height of the 
pier is 6.75 m, what is the volume of concrete in the pier?

 67. A railroad track 1000.00 m long expands 0.20 m (20 cm) during 
the afternoon (due to an increase in temperature of about 17°C). 
Assuming that the track cannot move at either end and that the 
increase in length causes a bend straight up in the middle of the 
track, how high is the top of the bend?

 68. Two persons are talking to each other on cellular phones. If the 
angle between their signals at the tower is 90°, as shown in  
Fig. 2.135, how far apart are they?

 56. The metal support in the form of △ ABC shown in Fig. 2.132 is 
strengthened by brace DE, which is parallel to BC. How long is 
the brace if AB = 24.0 cm, AD = 16.0 cm, and BC = 33.0 cm?

 57. A typical scale for an aerial photograph is 1>18 450. In a 
20.0-by-25.0-cm photograph with this scale, what is the longest 
distance (in km) between two locations in the photograph?

 58. For a hydraulic press, the mechanical advantage is the ratio of 
the large piston area to the small piston area. Find the mechanical 
advantage if the pistons have diameters of 3.10 cm and 2.25 cm.

 59. The diameter of the earth is 12 700 km, and a satellite is in orbit 
at an altitude of 345 km. How far does the satellite travel in one 
rotation about the earth?

 60. BC Place Stadium in Vancouver, British Columbia, is the 
world’s largest cable-supported retractable-roof stadium. Its 
opening is rectangular, having length 15.0 m longer than its 
width, and it has a diagonal of 131 m. Determine the area of the 
roof opening. Hint: You do not need to solve a quadratic equa-
tion; the area of the opening appears in the diagonal equation.

 61. A rectangular piece of wallboard with two holes cut out for heat-
ing ducts is shown in Fig. 2.133. What is the area of the remain-
ing piece?

 54. Find the areas of lots A and B in Fig. 2.130. A has a frontage on 
Main St. of 145 m, and B has a frontage on Main St. of 84.0 m. 
The boundary between lots is 125 m.

 55. To find the height of a flagpole, a person places a mirror at M, as 
shown in Fig. 2.131. The person’s eyes at E are 160 cm above 
the ground at A. From physics, it is known that ∠AME = 
∠ BMF. If AM = 120 cm and MB = 4.5 m, find the height BF 
of the flagpole.

Fig. 2.131 
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350 mm
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Dist. (m)     0   250   500   750 1000 1250 1500 1750

Area (m2) 560 1780 4650 6730 5600 6280 2260   230

 62. The diameter of the sun is 1.38 * 106 km, the diameter of the 
earth is 1.27 * 104 km, and the distance from the earth to  
the sun (centre to centre) is 1.50 * 108 km. What is the distance 
from the centre of the earth to the end of the shadow due to the 
rays from the sun?

 63. Using aerial photography, the width of an oil spill is measured at 
250-m intervals, as shown in Fig. 2.134. Using Simpson’s rule, 
find the area of the oil spill.

Fig. 2.135 

2.4 km

3.7 km

 64. To build a highway, it is necessary to cut through a hill. A sur-
veyor measured the cross-sectional areas at 250-m intervals 
through the cut, as shown in the following table. Using the trap-
ezoidal rule, determine the volume of soil to be removed.
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 69. A hot-water tank is in the shape 
of a right circular cylinder sur-
mounted by a hemisphere, as 
shown in Fig. 2.136. How 
many litres does the tank hold? 
(1.00 m3 contains 1000 L.)

 70. A tent is in the shape of a regu-
lar pyramid surmounted on a 
cube. If the edge of the cube is 
2.50 m and the total height of 
the tent is 3.25 m, find the area 
of the material used in making 
the tent (not including any floor 
area).

 71. The diagonal of a HDTV 
screen is 107 cm. If the ratio of 
the width of the screen to the 
height of the screen is 16 to 9, 
what are the width and height?

 72. A satellite is 1590 km directly above the centre of the eye of a 
circular (approximately) hurricane that has formed in the Atlantic 
Ocean. The distance from the satellite to the edge of the hurricane 
is 1620 km. What area does the hurricane cover? Neglect the cur-
vature of the Earth and any possible depth of the hurricane.

Writing Exercise
 73. The Pentagon, headquarters of the U.S. Department of Defense, 

is the world’s largest office building. It is a regular pentagon 
(five sides, all equal in length, and all interior angles are equal) 
281 m on a side, with a diagonal of length 454 m. Using these 
data, draw a sketch and write one or two paragraphs to explain 
how to find the area covered within the outside perimeter of the 
Pentagon. (What is the area?)

 CHAPTER 2   PRACTICE TEST

 1. In Fig. 2.137, determine ∠1.

 2. In Fig. 2.137, determine ∠2.

 8. Find the surface area of a tennis ball whose circumference is 
21.0 cm.

 9. Find the volume of a right circular cone of radius 2.08 m and 
height 1.78 m.

 10. In Fig. 2.139, find ∠1.

 11. In Fig. 2.139, find ∠2.

Fig. 2.137 

2

1

52°

C D

A B
AB   CD

 3. A tree is 2.4 m high and casts a shadow 3.0 m long. At the same 
time, a telephone pole casts a shadow 7.6 m long. How tall is the 
pole?

 4. Find the area of a triangle with sides of 2.46 cm, 3.65 cm, and 
4.07 cm.

 5. What is the diagonal distance between corners of a rectangular 
room 3810 mm wide and 5180 mm long?

 6. What is the area of the trapezoid shown in Fig. 2.138?

Fig. 2.138 

23.5 mm

49.8 mm

23.5 mm15.6 mm 13.8 mm

 7. The edge of a cube is 4.50 cm. What are (a) the surface area and 
(b) the volume of the cube?

Fig. 2.139 

64°
1

2
C

BOA

Fig. 2.140 

2.25 cm

 12. In Fig. 2.140, find the perimeter of the figure shown. It is a 
square with a semicircle removed.

 13. In Fig. 2.140, find the area of the figure shown.

 14. The width of a marshy area is measured at 50-m intervals, with 
the results shown in the following table. Using the trapezoidal 
rule, find the area of the marsh. (All data accurate to two or 
more significant digits.)

Distance (m) 0 50 100 150 200 250 300

Width (m) 0 90 145 260 205 110   20

0.760 m

2.05 m

Fig. 2.136 
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LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Define a function and 
distinguish between dependent 
and independent variables

 Use mathematical functional 
notation

 Interpret a function as a 
process

 Determine domain and range 
for a function

 Graph a function using the 
rectangular coordinate system

 Use a graphing calculator to 
solve an equation graphically

 Graph and interpret sets of 
data values

Reasoning that heavier objects contain more “earth” than lighter ones, the Greek phi-
losopher Aristotle (in about 350 b.c.e.) concluded that heavier objects fall faster in 
order to return to their “natural” place upon the ground. More of a philosophical argu-

ment than a scientific one, this argument was supported by the observational evidence that 
some lighter objects (such as feathers) do fall more slowly than heavier ones (such as stones). 
Almost 2000 years later, the Italian scientist Galileo reasoned that if mass were important to 
the speed at which an object falls, then two identical objects should fall faster when they are 
connected together than when they are not, which is not the case. Instead, Galileo claimed 
that it is the interaction of an object with the medium through which it falls that is responsible 
for the different rates of motion for falling objects. Subsequent experiments showed that 
Galileo was indeed correct, including the famous 1971 experiment, during the Apollo 15 mis-
sion, when astronaut David Scott simultaneously dropped a hammer and a feather on the 
moon and observed identical motions in the absence of air resistance.

Controlled experiments and observations of natural phenomena form part of the scientific 
method. Galileo was one of the first scientists to realize that claims about how the universe 
works can be tested mathematically, using mathematical formulas to describe the phenomena. 
He realized that such formulas provide a way of showing a compact and precise relationship 
between the observed variables.

In technology and science, determining how one quantity depends on others is a primary goal. 
A rule that shows such a relation is of great importance, and in mathematics such a rule is 
called a function. The concept of a function is introduced in this chapter.

Examples of such relations in technology and science, as well as in everyday life, are numer-
ous. Plant growth depends on sunlight and rainfall; traffic flow depends on roadway design; 
the sales tax on an item depends on the cost of an item; the time to access the Internet depends 

3 Functions and 
Graphs
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 The electric power P produced by a 
wind turbine depends on the velocity v 
of the wind. In Section 3.4 we draw  
the graph of P = 0.5CPRAv3 = 1.304v3 
for a specific 3.00-m diameter turbine 
to see this type of relationship.
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on how fast a computer processes data; distance travelled depends on time and speed of travel; 
electric voltage depends on the current and resistance. These are but a few of the innumerable 
possibilities.

A way of visualizing how one quantity depends on another is by means of a graph. The basic 
method of graphing was devised by the French mathematicians Descartes and Fermat in the 
1630s from their work to combine the methods of algebra and geometry. Their work was very 
influential in later developments in mathematics and technology. In this chapter, the basic meth-
ods of graphing a function and visualizing the relationship between variables will be introduced.

 
 

Functional Notation

 3.1 Introduction to Functions
An important method of finding formulas such as those in Section 1.11 is through sci-
entific observation and experimentation, like that of Galileo. For example, if we were 
to perform an experiment to determine the relationship between the distance an object 
falls and the time it falls, we should find (approximately, at least) that s = 4.9t2, where 
s is the distance in metres and t is the time in seconds. Another example is that electri-
cal measurements of voltage V  and current I through a particular resistor would show 
that V = k I, where k is a constant.

Considerations such as these lead us to one of the basic concepts in mathematics, 
that of a function.

The first variable is called the independent variable, and the second variable is 
called the dependent variable. The first variable is termed independent since permis-
sible values can be assigned to it arbitrarily, and the second variable is termed depen-
dent since its value is determined by the choice of the independent variable. In the 
context of experimental science, the independent variable is called the manipulated 
variable, since it represents the physical quantity that is varied through choosing its 
values. The dependent variable is called the responding variable, since it represents 
the value of the measured quantity that reacts in response to changes in the value of the 
manipulated variable. The relationship between the manipulated and responding varia-
bles may be unknown in real experiments, and determining the function that describes 
such a relationship is important.

Values of the independent variable and dependent variable are to be real numbers. 
Therefore, there may be restrictions on their possible values. This is discussed in the 
following section.

 EXAMPLE  1  Examples of functions

(a) In the equation y = 2x, y is a function of x, since for each value of x there is only 
one value of y. For example, if x = 3, then y = 6 and no other value. By arbi-
trarily assigning values to x, and substituting, we see that the values of y we 
 obtain depend on the values of x. Therefore, x is the independent variable, and  
y is the dependent variable.

(b) The power P developed in a certain resistor by a current I is given by P = 4I2. 
Here, P is a function of I . The dependent variable is P and the independent 
 variable is I .  ■

Definition of a Function
Whenever a relationship exists between two variables—such that for every value 
of the first, there is only one corresponding value of the second—we say that the 
second variable is a function of the first variable.
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 EXAMPLE  2  Independent and dependent variables

Figure 3.1 shows a cube of edge s. From Chapter 2, we know that the volume V  in 
terms of the edge s is V = s  

3. Here, V  is a function of s, since for each value of s, there 
is only one value of V . The dependent variable is V , and the independent variable is s.

If the equation relating the volume and the edge of a cube is written as s = 23 V , 
that is, if the edge is expressed in terms of the volume, s is a function of V. In this 
case, s is the dependent variable, and V  is the independent variable.  ■

 EXAMPLE  3  Manipulated and responding variables

In an experiment, the distance s (in metres) that is travelled by a falling object is sus-
pected to depend on the time elapsed t (in seconds) during the fall. During the experi-
ment, measurements will be taken every 0.1 s, and the distance s will be measured at 
those times. Therefore, time t is the manipulated variable, since the values 0.0 s, 0.1 
s, 0.2s, 0.3 s, . . . are selected by the experimenter. The displacement s is the respond-
ing variable, as its value will be measured during the fall in response to the changes 
in time.  ■

There are many ways to express functions. Formulas, tables, charts, and graphs can 
also define functions. Functions will be of importance throughout the book, and we 
will use a number of different types of functions in later chapters.

FUNCTIONAL NOTATION
For convenience of notation, the phrase

“function of x” is written as f1x2 .

This means that “y is a function of x” may be written as y = f1x2 . Here, f  denotes 
dependence and does not represent a quantity or a variable.

 EXAMPLE  4  Functional notation f(x)

If y = 6x3 - 5x, we say that y is a function of x. This functional relation is 6x3 - 5x. 
It is also common to write such a function as f1x2 = 6x3 - 5x. However, y and f1x2  
represent the same expression, 6x3 - 5x. Using y, the dependent variable values are 
indicated, and using f1x2 , the functional dependence is shown. ■

One of the most important uses of functional notation is to designate the value of the 
function for a particular value of the independent variable. That is,

the value of the function f1x2  when x = a is written as f1a2 .

 EXAMPLE  5  Meaning of f(a)

For a function f1x2 , the value of f1x2  for x = 2 may be expressed as f122 . Thus, 
substituting 2 for x in f1x2 = 3x - 7, we have

 
f122 = 3122 - 7 = -1   substitute 2 for x 

The value of f1x2  for x = -1.4 is

 
     f1 -1.42 = 31 -1.42 - 7 = -11.2    substitute -1.4 for x ■

Fig. 3.1

s

f(x) does not mean f multiplied by x. f(x) describes a variable dependence, in that the 
function value returned will be determined by the value of variable x.

COMMON ERROR

■ A graphing calculator can be used to 
evaluate a function in several ways. One is to 
directly substitute the value into the function. 
A second is to enter the function as Y1 and 
evaluate. A third way, which is very useful 
when many values are to be used, is to enter 
the function as Y1 and use the table feature.



 3.1 Introduction to Functions 89

 EXAMPLE  6  Meaning of f(a)

If g1 t2 =
t2

2t + 1
, to find g1a32  we substitute a3 for t in g1 t2 :

g1a32 =
1a322

2a3 + 1
=

a6

2a3 + 1

For the same function, g132 =
32

2132 + 1
=

9
7

. In both cases, to obtain the value of

g1 t2 , we simply substitute the value within the parentheses for t. ■

 EXAMPLE  7  Application of functional notation 

The electric resistance R of a certain resistor as a function of the temperature T  (in °C) 
is given by R = 10.0 + 0.01T + 0.001T2. If a given temperature T  is increased by 
10°C, what is the value of R for the increased temperature as a function of T?

We are to determine R for a temperature of T + 10. Since

R1T2 = 10.0 + 0.10T + 0.001T2

then

R1T + 102 = 10.0 + 0.101T + 102 + 0.0011T + 1022   substitute T + 10 for T 

R1T + 102 = 10.0 + 0.10T + 1.0 + 0.001T2 + 0.02T + 0.1

R1T + 102 = 11.1 + 0.12T + 0.001T2 ■

At times, we need to define more than one function. We then use different symbols, 
such as f1x2  and g1x2 , to denote these functions.

 EXAMPLE  8  Multiple functions notation

For the functions f1x2 = 5x - 3 and g1x2 = ax2 + x, where a is a constant, we have

 
  f1 -42 = 51 -42 - 3 = -23     substitute -4 for x in f1x2
 
  g1 -42 = a1 -422 + 1 -42 = 16a - 4   substitute -4 for x in g1x2   ■

 EXAMPLE  9  Function as a set of instructions

The function f1x2 = x2 - 3x tells us to “square the value of the independent variable, 
multiply the value of the independent variable by 3, and subtract the second result from 
the first.” An analogy would be a computer that was programmed so that when a num-
ber was entered into the program, it would square the number, then multiply the num-
ber by 3, and finally subtract the second result from the first. This is diagrammed in 
Fig. 3.2.

Whatever number a may represent, in 
order to evaluate f(a), we substitute 
the value of a for x in the function 
f(x). This is true even if a is a literal 
number or is itself a function 
 composed of another variable.

LEARNING T IP

Practice Exercise

 1.  For the function in Example 6, find 
g1 -12 .

A function may be looked upon as a 
process, or set of instructions. These 
instructions tell us how to obtain the 
value of the dependent variable for a 
particular value of the independent 
variable, even if the instructions are 
expressed in literal symbols.

LEARNING T IP

Practice Exercise

2.  For the function in Example 8, find 
f1 -a2x2  and g1 -a2x2 .

The functions f1t2  =  t2 - 3t  and 
f1n2  =  n2 - 3n are the same as the 
function f1x2 = x2 - 3x, since the 
operations performed on the 
 independent variable are the same. 
Although different literal symbols 
appear, this does not change the 
processes in the function.

LEARNING T IP

Fig. 3.2 

Square
Multiply
by 3

Subtract
3

x x
x x 2xfrom

f(x) = x2 − 3x

x2 − 3xx2, 3xx2

 ■
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EXERCISES 3.1

In Exercises 1–4, solve the given problems related to the indicated 
examples of this section.

 1.  In Example 5, find the value of f1 -22 .

 2. In Example 6, evaluate g1 -a22 .

 3. In Example 7, change “increased” to “decreased” in the second 
and third lines and then evaluate the function to find the proper 
expression.

 4. In Example 9, change x2 - 3x to x3 + 4x and then determine the 
statements that should be placed in the three boxes in Fig. 3.2.

In Exercises 5–12, find the indicated functions.

 5. Express the area A of a circle as a function of (a) its radius r and 
(b) its diameter d.

 6. Express the circumference c of a circle as a function of (a) its 
radius r and (b) its diameter d.

 7. Express the diameter d of a sphere as a function of its volume V.

 8. Express the edge s of a cube as a function of its surface area A.

 9. Express the area A of a square as a function of its side s; express 
the side s of a square as a function of its area A.

 10. Express the perimeter p of a square as a function of its side s; 
express the side s of a square as a function of its perimeter p.

 11. A circle is inscribed in a square (the circle is tangent to each side 
of the square). Express the area A of the four corner regions 
bounded by the circle and the square as a function of the radius r 
of the circle.

 12. Express the area A of an equilateral triangle as a function of its 
side s.

In Exercises 13–24, evaluate the given functions.

 13. f1x2 = 2x + 1; find f112  and f1 -12 .

 14. f1x2 = 5x - 9; find f122  and f1 -22 .

 15. f1x2 = 5; find f1 -22  and f10.42 .

 16. f1T2 = 7.2 - 2.5 ! T ! ; find f12.62  and f1 -42 .

 17. f1x2 =
6 - x2

2x
; find f12p2  and f1 -22 .

 18. H1q2 =
8
q

+ 21q; find H142  and H10.162 .

 19. g1 t2 = at2 - a2t; find g1 -1
22  and g1a2 .

 20. s1y2 = 61y + 11 - 3; find s1 -22  and s1a22 .

 21. K1s2 = 3s2 - s + 6; find K1 -s2  and K12s2 .

 22. T1 t2 = 5t + 7; find T1 -2t2  and T1 t + 12 .

 23. f1x2 = 2x + 4; find f13x2 - 3f1x2 .

 24. f1x2 = 2x2 + 1; find f1x + 22 - 3 f1x2 + 24 .

In Exercises 25–28, evaluate the given functions. The values of the 
independent variable are approximate.

 25. Given f1x2 = 5x2 - 3x, find f13.862  and f1 -6.922 .

 26. Given g1 t2 = 1t + 1.0604 - 6t3, find g10.92612 .

27. Given F1H2 =
2H2

H + 36.85
, find F1 -84.4662 .

28. Given f1x2 =
x4 - 2.0965

6x
, find f11.96542 .

    In Exercises 29–36, state the instructions of the function in words 
as in Example 9.

29. f1x2 = x2 + 2 30. f1x2 = 2x - 6

31. g1y2 = 6y - y3 32. f1s2 = 8 - 5s + s2

33. R1r2 = 312r + 52 - 1 34. f1z2 =
4z

5 - z

35. p1 t2 =
2t - 3
t + 2

 36. Y1y2 = 2 +
5y

21y - 32
In Exercises 37–40, write the equation as given by the statement. Then 
write the indicated function using functional notation.

37. The surface area A of a cubical open-top aquarium equals 5 times 
the square of an edge s of the aquarium.

38. A helicopter is at an altitude of 1000 m and is x m horizontally 
from a fire. Its distance d from the fire is the square root of the 
sum of 1000 squared and x squared.

39. The area A of the Athabasca Glacier in Jasper National Park, 
Canada, given that its present area is 6.00 km2 and that it is melt-
ing at the rate of 0.25t km2 where t is the time in centuries.

40. The electrical resistance R of a certain ammeter, in which the 
resistance of the coil is Rc, is the product of 10 and Rc divided by 
the sum of 10 and Rc.

In Exercises 41–46, solve the given problems and round all results to 
3 significant digits.

41. A demolition ball is used to tear down a building. Its distance s 
(in m) above the ground as a function of time t (in s) after it is 
dropped is s = 17.5 - 4.9t2. Since s = f1 t2 , find f11.22 .

42. The length L (in m) of a cable hanging between equal supports 
100 m apart is L = 10011 + 0.0003s22 , where s is the sag (in m) 
in the middle of the cable. Since L = f1s2 , find f1152 .

43. The stopping distance d (in m) of a car going v km>h is given by 
d = 0.2v + 0.008v2. Since d = f1v2 , find f1302 ,  f12v2 , and 
f1602 , using both f1v2  and f12v2 .

44. The electric power P (in W) dissipated in a resistor of resistance

  R (in Ω) is given by the function P =
200 R1100 + R22. Since

  P = f1R2 , find f1R + 102 .

45. A motorist travels at 55 km/h for t hours. Express the distance d 
travelled as a function of t.

46. The sales tax in a city is 7%. The price tag on an item shows D 
dollars. Express the total cost C of the item as a function of D.

47. (a) Explain the meaning of f 3  f1x2 4 . (b) Find f 3  f1x2 4  for 
f1x2 = 2x2.

48. If f1x2 = x and g1x2 = x2, find (a) f 3g1x2 4 , and (b) 
g3 f1x2 4 . What does this suggest about f 3g1x2 4  and g3 f1x2 4?

Answers to Practice Exercises

1. f1 -12 = -1  2.  f1 -a2x2 = -5a2x - 3;

     g1 -a2x2 = a5x2 - a2x
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For a given function, the complete set of possible values of the independent variable is 
called the domain of the function, and the complete set of all possible resulting values 
of the dependent variable is called the range of the function.

As noted earlier, we will be using only real numbers when using functions. This 
means there may be restrictions as to the values that may be used since

values that lead to division by zero or to imaginary numbers may not be included 
in the domain or the range.

 EXAMPLE  1  Domain and range

The function f1x2 = x2 + 2 is defined for all real values of x. This means its domain is 
written as all real numbers. However, since x2 is never negative, x2 + 2 is never 
less than 2. We then write the range as all real numbers f1x2 Ú 2, where the sym-
bol Ú  means “is greater than or equal to.”

The function f1 t2 = 1
t + 2 is not defined for t = -2, for this value would  require 

division by zero. Also, no matter how large t becomes, f1 t2  will never  exactly equal 
zero. Therefore, the domain of this function is all real numbers except -2, and the 
range is all real numbers except 0. ■

 EXAMPLE  2  Domain and range

The function g1s2 = 13 - s is not defined for real numbers greater than 3, since 
such values make 3 - s negative and would result in imaginary values for g1s2 . This 
means that the domain of this function is all real numbers s … 3, where the symbol …  
means “is less than or equal to.”

Also, since 13 - s means the principal square root of 3 - s (see Section 1.6), 
we know that g1s2  cannot be negative. This tells us that the range of the function is 
all real numbers g1s2 Ú 0. ■

INTERVAL NOTATION
There is a short way to write both the domain and range of a function: using interval 
notation. Interval notation lists two values within brackets, between which the possible 
values of the variable lie. Square brackets mean “include the value in the interval,” and 
rounded brackets mean “exclude the value in the interval.”

In Example 2 above, the domain for the function was the set of all real numbers less 
than or equal to 3. This can be written out in full as in the example, or using interval nota-
tion it would be indicated as 1 - ∞ , 34 . This domain is interpreted as “all real values of s 
greater than negative infinity but less than or equal to 3.” By a similar argument, the range 
of g1s2  can be written as 30, ∞ 2 , which means “all real values of g1s2  greater than or 
equal to zero but less than positive infinity.” Remember that ∞  means “increases without 
limit” and is not an actual number. Interval notation convention always uses rounded 
brackets with infinity, since it can never really be included in the set.

In Example 1 above, the domain of the function f 1x2  was all real values of x, or 1 - ∞ , ∞ 2 . The range of f 1x2  was all real numbers f 1x2 Ú 2, or in interval  
notation, 32,∞ 2 .

In Examples 1 and 2, we found the domains by looking for values of the independ-
ent variable that cannot be used. The range was found through an inspection of the 
function. We generally use this procedure, although it may be necessary to use more 
advanced methods to find the range. Therefore, until we develop other methods, we 
will look only for the domain of some functions.

 3.2 More about Functions

■ Note that f122 = 6 and f1 -22 = 6. This is 
all right. Two different values of x  may give the 
same value of y , but there may not be two 
different values of y  for one value of x .

Practice Exercise

1.  Find the domain and range of the 
 function f1x2 = 1x + 4.

■ Later in this chapter, we will see that the 
graphing calculator is useful in finding the 
range of a function.
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 EXAMPLE  3  Find domain only

Find the domain of the function f1x2 = 161x + 1
x

.

From the term 161x, we see that x must be greater than or equal to zero in order to 
have real values. The term 1

x indicates that x cannot be zero, because of division by 
zero. Thus, putting these together, the domain is all real numbers x 7 0, or 10, ∞ 2 .

As for the range, it is all real numbers f1x2 Ú 12, or 312, ∞ 2 . More advanced 
methods are needed to determine this, however. ■

We have seen that the domain may be restricted since we do not use imaginary num-
bers or divide by zero. The domain may also be restricted by the definition of the func-
tion, or by practical considerations in an application.

 EXAMPLE  4  Restricted domain

A function defined as

f1x2 = x2 + 4  1for x 7 22
has a domain restricted to real numbers greater than 2 by definition. Thus, f152 = 29, 
but f112  is not defined, since 1 is not in the domain. Also, the range is all real numbers 
greater than 8, so domain: 12, ∞ 2 , range: 18, ∞ 2 .

The height h (in m) of a certain projectile as a function of the time t (in s) is

h = 20t - 4.9t2

Negative values of time have no real meaning in this case. Therefore, the domain is 
t Ú 0 . Also, since we know the projectile will not continue in flight indefinitely, 
there is some upper limit on the value of t . These restrictions are not usually stated 
unless it affects the solution.

There could be negative values of h  if it is possible that the projectile is below 
the launching point at some time (such as a stone thrown from the top of a cliff). ■

The following example illustrates a function that is defined differently for different 
intervals of the domain.

 EXAMPLE  5  Function defined for intervals of the domain

In a certain electric circuit, the current i (in mA) is a function of the time t (in s), which 
means i = f1 t2 . The function is

f1 t2 = e8 - 2t
0

   1for 0 … t … 4 s2
   1for t 7 4 s2

Since negative values of t are not usually meaningful, f1 t2  is not defined for t 6 0. 
Find the current for t = 3 s, t = 6 s, and t = -1 s.

We are to find f132 , f162 , and f1 -12 , and we see that values of this function are 
determined differently depending on the value of t. Since 3 is between 0 and 4,

f132 = 8 - 2132 = 2  or i = 2 mA

Since 6 is greater than 4, f162 = 0, or i = 0 mA. We see that i = 0 mA for all values 
of t that are 4 or greater.

Since f1 t2  is not defined for t 6 0,  f1 -12  is not defined.  ■

FUNCTIONS FROM VERBAL STATEMENTS
To find a mathematical function from a verbal statement, we use methods like those for 
setting up equations in Chapter 1. This is shown in the following examples.
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 EXAMPLE  6  Function from a verbal statement with cost

The fixed cost for a company to operate a certain plant is $3000 per day. It also costs $4 
for each unit produced in the plant. Express the daily cost C of operating the plant as a 
function of the number n  of units produced.

The daily total cost C equals the fixed cost of $3000 plus the cost of producing n 
units. Since the cost of producing one unit is $4, the cost of producing n units is 4n. 
Thus, the total cost C, where C = f1n2 , is

C = 3000 + 4n

Here, we know that the domain is all values of n Ú 0, with some upper limit on n 
based on the production capacity of the plant.  ■

 EXAMPLE  7  Function from a verbal statement with mixture percentage

A metallurgist melts and mixes m grams (g) of solder that is 40% tin with n grams of 
another solder that is 20% tin to get a final solder mixture that contains 200 g of tin. 
Express n as a function of m. See Fig. 3.3.

The statement leads to the following equation:
 tin in  tin in total amount 
 first solder second solder of tin 

 0.40m +  0.20n  =   200

Since we want n = f1m2 , we now solve for n:

 0.20n = 200 - 0.40m

 n = 1000 - 2m

This is the required function. Since neither m nor n can be negative, the domain is all 
values 0 … m … 500 g, which means that m is greater than or equal to 0 g and less 
than or equal to 500 g, or 30 g, 500 g4 . The range is all values 0 … n … 1000 g, or30 g, 1000 g4 . ■

 EXAMPLE  8  Function from a verbal statement with perimeter

An architect designs a window in the shape of a rectangle with a semicircle on top, as 
shown in Fig. 3.4. The base of the window is 10 cm less than the height of the rectangu-
lar part. Express the perimeter p of the window as a function of the radius r of the cir-
cular part.

The perimeter is the distance around the window. Since the top part is a semicir-
cle, the length of this top circular part is 1

2 12pr2 , and the base of the window is 2r 
because it is equal in length to the dashed line (the diameter of the circle). Finally, the 
base being 10 cm less than the height of the rectangular part tells us that each vertical 
side of the rectangle is 2r + 10. Therefore, the perimeter p, where p = p1r2 , is

 p = 1
2 12pr2 + 2r + 212r + 102

 p = pr + 2r + 4r + 20

 p = pr + 6r + 20

We see that the required function is p = pr + 6r + 20. Since the radius cannot be 
negative and there would be no window if r = 0, the domain of the function is all val-
ues 0 6 r … R, where R is a maximum possible value of r determined by design con-
siderations, or 10, R4 . ■

From the definition of a function, we know that any value of the independent varia-
ble must yield only one value of the dependent variable. If a value of the independent 
variable yields one or more values of the dependent variable, the relationship is called 
a relation. A function is a relation for which each value of the independent variable 
yields only one value of the dependent variable. Therefore, a function is a special type 
of relation. There are also relations that are not functions.

Fig. 3.3 

m
40% 200

n
20%

Grams of tin
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Fig. 3.4 

r

+ 102r
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2 π

Practice Exercise

2.  In Example 8, find p as a function of r  
if there is to be a semicircular section of 
the window at the bottom, as well as at 
the top.
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 EXAMPLE  9  Relation

For y2 = 4x2, if x = 2, then y can be either 4 or -4. Since a value of x yields more 
than one value for y, we see that y2 = 4x2 is a relation, not a function. ■

 26. A computer part costs $3 to produce and distribute. Express the 
profit p made by selling 100 of these parts as a function of the 
price of c dollars each.

 27. Upon ascending, a weather balloon ices up at the rate of 0.5 kg>m 
after reaching an altitude of 1000 m. If the mass of the balloon 
below 1000 m is 110 kg, express its mass m as a function of its 
altitude h if h 7 1000 m.

 28. A chemist adds x L of a solution that is 50% alcohol to 100 L of a 
solution that is 70% alcohol. Express the number n of litres of 
alcohol in the final solution as a function of x.

 29. A company installs underground cable at a cost of $500 for the 
first 50 m (or up to 50 m) and $5 for each metre thereafter. 
Express the cost C as a function of the length l of underground 
cable if l 7 50 m.

 30. The mechanical advantage of an inclined plane is the ratio of the 
length of the plane to its height. Express the mechanical advan-
tage MA of a plane of length 8 m as a function of its height h.

 31. The capacities (in L) of two oil-storage tanks are x and y. The 
tanks are initially full; 1200 L is removed from them by taking 
10% of the contents of the first tank and 40% of the contents of 
the second tank. (a) Express y as a function of x. (b) Find y14002 .

 32. A city does not tax the first $30 000 of a resident’s income but taxes 
any amount over $30 000 at 5%. (a) Find the tax T as a function of a 
resident’s income I and (b) find T125 0002  and T145 0002 .

 33. A company finds that it earns a profit of $15 on each cell phone 
and a profit of $25 on each DVD player that it sells. If x cell 
phones and y DVD players are sold, the profit is $2750. Express y 
as a function of x.

 34. A satellite telephone is leased at a cost C of $200 plus $10 per 
minute t the phone is used. Solve for t as a function of C and find 
t (500).

 35. For studying the electric current that is induced in wire rotating 
through a magnetic field, a piece of wire 60 cm long is cut into 
two pieces. One of these is bent into a circle and the other into a 
square. Express the total area A of the two figures as a function of 
the perimeter p of the square.

 36. The cross section of an air-conditioning duct is in the shape of a 
square with  semicircles on each side. See Fig. 3.5. Express the 
area A of this cross section as a function of the diameter d (in cm) 
of the circular part.

In Exercises 1–4, solve the given problems related to the indicated 
examples of this section.

 1. In Example 1, in the first line, change x2 to -x2. What other 
changes must be made in the rest of the paragraph?

 2. In Example 3, in the first line, change 1
x to 1

x - 1 . What other 
changes must be made in the first paragraph?

 3. In Example 5, find f122  and f152 .

 4. In Example 7, interchange 40% and 20% and then find the function.

In Exercises 5–14, find the domain and range of the given functions. 
In Exercises 11 and 12, explain your answers.

 5. f1x2 = x + 5 6. g1u2 = 3 - u2

 7. G1R2 =
3.2
R

 8. F1r2 = 1r + 4

 9. f1s2 =
2

s2 10. T1 t2 = 2t4 + t2 - 1

 11. H1h2 = 2h + 1h + 1 12. f1x2 =
-612 - x

 13. y = ! x - 3 !  14. y = x + ! x !

In Exercises 15–18, find the domain of the given functions.

 15. Y1y2 =
y + 11y - 2

 16. f1n2 =
n

6 - 2n

 17. f1D2 =
D

D - 2
+ 4

D + 4
 18. g1x2 =

1x - 2
x - 3

In Exercises 19–22, evaluate the indicated functions.

F1 t2 = 3t - t2 1 for t … 22    h1s2 = e2s
s + 1

1for s 6 -121for s Ú -12
f1x2 = e x + 11x + 3

1for x 6 121for x Ú 12  g1x2 =
1
x
0

1for x ≠ 021for x = 02
 19. Find F122  and F132 . 20. Find h1 -82  and h1 -0.52 .

 21. Find f112  and f1 -0.252 . 22. Find g10.22  and g102 .

In Exercises 23–36, determine the appropriate functions.

 23. A motorist travels at 60 km>h for 2 h and then at 80 km>h for t h. 
Express the distance d travelled as a function of t.

 24. Express the cost C of insulating a cylindrical water tank of height 
2 m as a function of its radius r, if the cost of insulation is $3 per 
square metre.

 25. A rocket burns up at the rate of 2 Mg>min after falling out of 
orbit into the atmosphere. If the rocket weighed 5500 Mg before 
reentry, express its weight w as a function of the time t, in min-
utes, of reentry.

Fig. 3.5 

d

EXERCISES 3.2
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In Exercises 37–50, solve the given problems.

 37. A helicopter 120 m from a person takes off vertically. Express the 
distance d from the person to the helicopter as a function of the 
height h of the helicopter. What are the domain and the range of 
d1h2? See Fig. 3.6.

 43. Express the mass m of the weather balloon in Exercise 27 as a 
function of any height h in the same manner as the function in 
Example 5 (and Exercises 19–22) was expressed.

 44. Express the cost C of installing any length l of the underground 
cable in Exercise 29 in the same manner as the function in 
Example 5 (and Exercises 19–22) was represented.

 45. A rectangular piece of cardboard twice as long as wide is to be 
made into an open box by cutting 5-cm squares from each corner 
and bending up the sides. (a) Express the volume V of the box as 
a function of the width w of the piece of cardboard. (b) Find the 
domain of the function.

 46. A spherical buoy 36.0 cm in diameter is floating in a lake and is 
more than half above the water. (a) Express the circumference c 
of the circle of intersection of the buoy and water surface as a 
function of the depth d to which the buoy sinks. (b) Find the 
domain and range of the function.

 47. For f1x - 12 = ! x ! , find f102 .

 48. For f1x2 = x2, find 
f1x + h2 - f1x2

h
.

 49. What is the range of the function f1x2 = ! x ! + ! x - 2 !?
 50. For f1x2 = 1x - 1 and g1x2 = x2, find the domain of 

g3   f 1x2 4 . Explain.

Answers to Practice Exercises

1.  Domain: all real numbers x Ú -4; Range: all real numbers 
f1x2 Ú 0 2. p = 2pr + 4r + 20

Fig. 3.6 

h
d

Helicopter

120 m

One of the most valuable ways of representing a function is by graphical representa-
tion. By using graphs, we can obtain a “picture” of the function; by using this picture, 
we can learn a great deal about the function.

To make a graphical representation of a function, recall from Chapter 1 that num-
bers can be represented by points on a line. For a function, we have values of the inde-
pendent variable as well as the corresponding values of the dependent variable. 
Therefore, it is necessary to use two different lines to represent the values from each of 
these sets of numbers. We do this by placing the lines perpendicular to each other.

Place one line horizontally and label it the x-axis. The values of the independent (or 
manipulated) variable are normally placed on this axis. The other line is placed verti-
cally and labelled the y-axis. Normally, the y-axis is used for values of the dependent 
(or responding) variable. The point of intersection is called the origin. This is the 
 rectangular coordinate system.

On the x-axis, positive values are to the right of the origin, and negative values are to the 
left of the origin. On the y-axis, positive values are above the origin, and negative values are 
below it. The positive direction is also indicated by an arrow on the axis line. The four parts 
into which the plane is divided are called quadrants, which are numbered as in Fig. 3.7.

A point P in the plane is designated by the pair of numbers 1x, y2 , where x is the 
value of the independent variable and y is the value of the dependent variable. The  
x-value is the perpendicular distance of P from the y-axis, and the y-value is the per-
pendicular distance of P from the x-axis. The values of x and y, written as 1x, y2 , are 
the coordinates of the point P.

 3.3 Rectangular Coordinates
Rectangular Coordinate System

■ Rectangular (Cartesian) coordinates were 
developed by the French mathematician René 
Descartes (1596–1650).

Fig. 3.7 
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 38. A computer program displays a circular image of radius 6 cm. If 
the radius is decreased by x cm, express the area of the image as a 
function of x. What are the domain and range of A1x2?

 39. A truck travels 300 km in t h. Express the average speed v of the 
truck as a function of t. What are the domain and range of v1 t2?

 40. A rectangular grazing range with an area of 8 km2 is to be fenced. 
Express the length l of the field as a function of its width w. What 
are the domain and range of l1w2?

41.  The resonant frequency f  of a certain electric circuit as a function

  of the capacitance is f =
1

2p1C
. Describe the domain.

 42. A jet is travelling directly between Calgary, Alberta, and Halifax, 
Nova Scotia, which are 3760 km apart. If the jet is x km from 
Calgary and y km from Halifax, find the domain of y = f1x2 .
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 EXAMPLE  1  Locating points

(a) Locate the points A12, 12  and B1 -4, -32  on the 
rectangular coordinate system.

The coordinates 12, 12  for A mean that the 
point is 2 units to the right of the y-axis and 1 unit 
above the x-axis, as shown in Fig. 3.8. The coordi-
nates 1 -4, -32  for B mean that the point is 4 
units to the left of the y-axis and 3 units below the 
x-axis, as shown. The x-coordinate of A is 2, and 
the y-coordinate of A is 1. For point B, the x-coor-
dinate is -4, and the y-coordinate is -3.

(b) The positions of points P14, 52 , Q1 -2, 32 , R1 -1, -52 , S14, -22 , and T10, 32  
are shown in Fig. 3.7. We see that this representation allows for one point for any 
pair of values 1x, y2 . Also note that the point T10, 32  is on the y-axis. Any such 
point that is on either axis is not in any of the four quadrants. ■

 EXAMPLE  2  Coordinates of the vertices of a rectangle

Three vertices of the rectangle in Fig. 3.9 are A1 -3, -22 , B14, -22 , and C14, 12 . 
What is the fourth vertex?

We use the fact that opposite sides of a rectangle are equal and parallel to find the 
solution. Since both vertices of the base AB of the rectangle have a y-coordinate of 
-2, the base is parallel to the x-axis. Therefore, the top of the rectangle must also be 
parallel to the x-axis. Thus, the vertices of the top must both have a y-coordinate of 
1, since one of them has a y-coordinate of 1. In the same way, the x-coordinates of 
the left side must both be -3. Therefore, the fourth vertex is D1 -3, 12 . ■

 EXAMPLE  3  Locating sets of points

(a) Where are all the points whose y-coordinates are 2?
We can see that the question could be stated as: “Where are all the points for 

which y = 2?” Since all such points are two units above the x-axis, the answer 
could be stated as “on a line 2 units above the x-axis.” See Fig. 3.10.

(b) Where are all points 1x, y2  for which x 6 0 and y 6 0?
Noting that x 6 0 means “x is less than zero,” or “x is negative,” and that 

y 6 0 means the same for y, we want to determine where both x and y are nega-
tive. Our  answer is “in the third quadrant,” since both coordinates are negative for 
all points in the third quadrant, and this is the only quadrant for which this is true. 
See Fig. 3.11. ■ 

Note very carefully that the x-coordi-
nate is always written first, and the 
y-coordinate is always written sec-
ond. It is very important to keep the 
proper order when writing the coordi-
nates of a point. This is why the coor-
dinates of a point P (x, y) are called an 
ordered pair. (The x-coordinate is also 
known as the abscissa, and the  
y-coordinate is also known as the 
ordinate.)
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Practice Exercise

1.  Where are all points for which x = 0 and 
y 7 0?

Fig. 3.10 
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EXERCISES 3.3

In Exercises 3 and 4, determine (at least 
approximately) the coordinates of the 
points shown in Fig. 3.12.

 3. A, B, C 4. D, E, F

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the resulting problems.

 1. In Example 2, change A1 -3, -22  to A1 -1, -22  and then find 
the fourth vertex.

 2. In Example 3(b), change y 6 0 to y 7 0 and then find the loca-
tion of the points 1x, y2 .
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In Exercises 5 and 6, plot the given points.

 5. A12, 72 , B1 -1, -22 , C1 -4, 22
 6. A13, 122 , B1 -6, 0), C1 -5

2, -52
In Exercises 7–10, plot the given points and then join these points, in 
the order given, by straight-line segments. Name the geometric figure 
formed.

 7. A1 -1, 42 , B13, 42 , C11, -22
 8. A10, 32 , B10, -12 , C14, -12
 9. A1 -2, -12 , B13, -12 , C13, 52 , D1 -2, 52
 10. A1 -5, -22 , B14, -22 , C16, 32 , D1 -3, 32
In Exercises 11–14, find the indicated coordinates.

 11. Three vertices of a rectangle are 15, 22 , 1 -1, 22 , and 1 -1, 42 . 
What are the coordinates of the fourth vertex?

 12. Two vertices of an equilateral triangle are 17, 12  and 12, 12 . 
What is the x-coordinate of the third vertex?

 13. P is the point 13, 22 . Locate point Q such that the x-axis is the 
perpendicular bisector of the line segment joining P and Q.

 14. P is the point 1 -4, 12 . Locate point Q such that the line segment 
joining P and Q is bisected by the origin.

In Exercises 15–34, answer the given questions.

 15. Where are all points whose x-coordinates are 1?

 16. Where are all points whose y-coordinates are -3?

 17. Where are all points such that y = 3?

 18. Where are all points such that ! x ! = 2?

 19. Where are all points whose x-coordinates equal their  
y-coordinates?

 20. Where are all points whose x-coordinates equal the negative of 
their y-coordinates?

 21. What is the x-coordinate of all points on the y-axis?

 22. What is the y-coordinate of all points on the x-axis?

 23. Where are all points for which x 7 0?

 24. Where are all points for which y 6 0?

 25. Where are all points for which x 6 -1?

 26. Where are all points for which y 7 4?

 27. Where are all points for which xy 7 0?

 28. Where are all points for which y>x 6 0?

 29. Where are all points for which xy = 0?

 30. Where are all points for which x 6 y?

 31. If the point 1a, b2  is in the second quadrant, in which quadrant is 1a, -b2?

 32. The points 13, -12 , 13, 02 , and 1x, y2  are on the same straight 
line. Describe this line.

 33. Find the distance (a) between 13, -22  and 1 -5, -22  and  
(b) between 13, -22  and 13, 42 .

 34. Find the distance between 1 -5, -22  and 13, 42 . Explain your 
method. (Hint: See Exercise 33.)

Answer to Practice Exercise

1. On the positive y-axis

Now that the concepts of a function and the rectangular coordinate system have been 
introduced, the graph of a function can be determined. In this way, a visual representa-
tion of a function will be obtained.

The graph of a function is the set of all points whose coordinates 1x, y2  satisfy the 
functional relationship y = f1x2 . Since y = f1x2 , we can write the coordinates of the 
points on the graph as 1x,  f1x2 2 . Writing the coordinates in this manner tells us 
exactly how to find them. We assume a certain value for x and then find the value of 
the function of x. These two numbers are the coordinates of the point.

Since there is no limit to the possible number of points that can be chosen, we nor-
mally select a few values of x, obtain the corresponding values of the function, plot 
these points, and then join them. Therefore, we use the following basic procedure in 
plotting a graph.

 3.4 The Graph of a Function
 

 
Vertical-Line Test

■ As to just what values of x  to choose and 
how many to choose, with a little experience 
you will usually be able to tell if you have 
enough points to plot an accurate graph.

Procedure for Plotting the Graph of a Function
1. Let x  take on several values and calculate the corresponding values of y.

2. Tabulate these values, arranging the table so that values of x  are increasing.

3.  Construct the x- and y-rectangular coordinate axes, properly labelled, with 
an appropriate scale.

4.  Plot the points and join them from left to right by a smooth curve (not short 
straight-line segments).
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 EXAMPLE  1  Graphing a function by plotting points

Graph the function f1x2 = 3x - 5.
For purposes of graphing, let y = f1x2 , or y = 3x - 5. Then, let x  have various 

values and determine the corresponding values of y . Note that once we choose a 
given value of x, we have no choice about the corresponding y -value, as it is deter-
mined by evaluating the function. If x = 0, we find that y = -5. This means that 
the point 10, -52  is on the graph of the function 3x - 5. Choosing another value of 
x, like x = 1, we find that y = -2. This means that the point 11, -22  is on the 
graph of the function 3x - 5. Continuing to choose a few other values of x, we tabu-
late the results, as shown in Fig. 3.13. It is best to arrange the table so that the values 
of x  increase; then there is no doubt how they are to be connected, for they are con-
nected in the order shown. Finally, we connect the points in Fig. 3.13 and see that 
the graph of the function 3x - 5 is a straight line.

 EXAMPLE  2  Be careful plotting with negative numbers

Graph the function f1x2 = 2x2 - 4.
First, let y = 2x2 - 4 and tabulate the values as shown in Fig. 3.14. In determin-

ing the values in the table, take particular care to obtain the correct values of y  for 
negative values of x. We must carefully use the laws for signed numbers. For exam-
ple, if x = -2, we have y = 21 -222 - 4 = 2142 - 4 = 8 - 4 = 4. Once the 
values are obtained, plot and connect the points with a smooth curve, as shown.

■ We will show how a graph is displayed on a 
graphing calculator in the next section.

■ The table of values for a graph can be seen 
on a graphing calculator using the table 
feature.

Fig. 3.13 
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f1x2 = 3x − 5

f1−12 = 31−12 − 5 = −8

f102 = 3102 − 5 = −5

f112 = 3112 − 5 = −2

f122 = 3122 − 5 = 1

f132 = 3132 − 5 = 4

■

Mistakes are common in evaluating f(x) for negative values of x. Ensure that you are 
careful!

As in Example 2, if  f (x) = 2x2 - 4, then
  f(-1) = 2(-1)2  -  4
  f(-1) = 2(1)  -  4
  f(-1) = -2

But if f(x) = -5x3 + 7x, then
  f(-2) = -5(-2)3 + 7(-2)
  f(-2) = -5(-8) -  14
  f(-2) = 40 -  14
  f(-2) = 26

COMMON ERROR
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The following examples illustrate these points.

 EXAMPLE  3  Be careful when graphing; additional points may be needed

Graph the function y = x - x2.
First, we determine the values in the table, as shown with Fig. 3.15. 

Again, we must be careful when dealing with negative values of x. For the 
value x = -1, we have y = 1 -12 - 1 -122 = -1 - 1 = -2. Once all 
values in the table have been found and plotted, note that y = 0 for both 
x = 0 and x = 1. The question arises—what happens between these val-
ues? Trying x = 1

2, we find that y = 1
4. Using this point completes the infor-

mation needed to complete an accurate graph.  ■

Note that in plotting these graphs, we do not stop the graph with the points 
we found, but indicate that the curve continues by drawing the graph past these 
points. However, this is not true for all graphs. As we will see in later examples, 
the graph should not include points for values of x not in the domain, and there-
fore may not continue past a particular point.

Fig. 3.14 
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f1x2 = 2x2 − 4

f1−22 = 21−222 − 4 = 4

f1−12 = 21−122 − 4 = −2

f102 = 21022 − 4 = −4

f112 = 21122 − 4 = −2

f122 = 21222 − 4 = 4

Special Notes on Graphing
1.  Since the graphs of most common functions are smooth, any place that the 

graph changes in a way that is not expected should be checked with care.  
It usually helps to check values of x between which the question arises.

2.  The domain of the function may not include all values of x. Remember, division 
by zero is not defined, and only real values of the variables may be used.

3.  In applications, we must use only values of the variables that have meaning. 
In particular, negative values of some variables, such as time, can have no 
meaning.

■

Fig. 3.15 
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When graphing a function, we must use extra care with certain parts of the graph. 
These include the following:
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 EXAMPLE  4  Be careful when graphing; watch for division by zero errors

Graph the function y = 1 + 1
x

.

In finding the points on this graph, as shown in Fig.  3.16, note that y is not 
defined for x = 0, due to division by zero. Thus, x = 0 is not in the domain, and we 
must be careful not to have any part of the curve cross the y-axis 1x = 02 . 
Although we cannot let x = 0, we can choose other values for x between -1 and 1 
that are close to zero. In doing so, we find that as x gets closer to zero, the points get 
closer to the y-axis, although they do not reach or touch it. In this case, the y-axis is 
called an asymptote of the curve.

We see that the curve is smooth, except when x = 0,where it is not defined. ■

Fig. 3.16 
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An asymptote is any curve or line 
that the graph of a function 
approaches but does not touch. The 
term was first introduced by 
Apollonius of Perga (262–190 B.C.E.) 
to mean any line that does not inter-
sect a given function, but the modern 
meaning is two curves that “do not 
fall together” but can be arbitrarily 
close to each other. Asymptotes for 
curves are commonly vertical asymp-
totes or horizontal asymptotes but 
can be oblique asymptotes (angled 
lines) or curvilinear asymptotes 
(where the graph of a known curved 
function is approached by that of the 
function of interest).
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■ See the chapter introduction.

 EXAMPLE  5  Be careful when graphing; watch for imaginary values

Graph the function y = 1x + 1.
When finding the points for the graph, we may not let x take 

on any value less than -1, for all such values would lead to 
imaginary values for y and are not in  the domain. Also, since 
we have the positive square root indicated, the range consists of 
all values of y that are positive or zero 1y Ú 02 . See Fig. 3.17. 
Note that the graph starts at 1 -1, 02 .

Although not defined for all values of x, the curve is smooth.  ■

 EXAMPLE  6  Graphing application with wind turbines

The electric power P (in W) produced by a wind turbine depends on the velocity v  
(in m/s) of the wind, the power coefficient CP, which is related to the efficiency of the 
turbine, the air density r (in kg>m3), and the sweep area A (in m2) of the turbine 
according to P = 0.5CPrAv3. For a specific 3.00-m diameter turbine of CP = 30, 
and A = 7.069 m2, with air density r = 1.23 kg>m3, the power produced is 
P = 1.304v3. Plot P as a function of v.

Since negative values of velocity are not relevant, we only plot values of v 7 0. 
Fig. 3.18 shows the table and the smooth curve obtained. Note on the graph how the 
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scale on the P-axis differs from that of the v-axis. Different scales are normally used 
when the variables differ in magnitudes and ranges. The power produced by the 
wind turbine increases rapidly as wind velocity increases. ■

Functions of a particular type have graphs with a certain basic shape, and many have 
been named. Three examples of this are the straight line (Example 1), the parabola 
(Examples 2 and 3), the hyperbola (Example 4), and the cubic (Example 6). We con-
sider the straight line again in Chapter 5 and the parabola in Chapter 7. All of these 
graphs and others are studied in detail in Chapter 21. Other types of graphs are found in 
many of the later chapters.

The following example illustrates an application of graphing in which a different 
scale is used for each variable.

 EXAMPLE  7  Graphing application with different scales for each variable

The electric power P (in W) delivered by a certain fuel cell as a function of the resistance

R 1 in Ω 2  in the circuit is given by P =
100R

(0.50 + R)2 . Plot P as a function of R.

Since negative values for the resistance have no physical significance, we should 
not plot any values of P for negative values of R. The following table is obtained:

Practice Exercises

Determine for what value(s) of x there are 
no points on the graph.

1. y =
2x

x + 5
 2. y = 1x - 3

■ The unit of power, the watt (W), is named for 
James Watt (1736–1819), a British engineer.

R1Ω 2 0   0.25   0.50 1.0 2.0 3.0 4.0 5.0 10.0

P1W2 0.0 44.4 50.0 44.4 32.0 24.5 19.8 16.5 9.1

The R values of 0.25 and 0.50 are used since P is less for R = 2 Ω  than for 
R = 1 Ω. The sharp change in direction should be checked by using these 
 additional points to get a smoother curve near R = 1 Ω . See Fig. 3.19.

Note the scale on the P-axis differs from that on the R-axis. The graph gives 
us information about P and R. For example, the maximum power of 50 W 
 occurs for R = 0.50 Ω . Also, P decreases as R increases beyond 0.50 Ω . 
Reading information from a graph is discussed in the next section. ■

Fig. 3.19 
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 EXAMPLE  8  Function defined for intervals of the domain

Graph the function f1x2 = e2x + 1
6 - x2

1 for x … 121for x 7 12 .

First, let y = f1x2  and then tabulate the necessary values. 
In evaluating f1x2 , we must be careful to use the proper part 
of the definition. To see where to start the curve for x 7 1, 
we evaluate 6 - x2 for x = 1, but we must realize that the 
curve does not include this point 11, 52  and starts immedi-
ately to its right. To show that it is not part of the curve, draw 
it as an open circle. See Fig. 3.20.

A function such as this one, with a “break” in it, is called 
discontinuous. Curve continuity and discontinuity will be dis-
cussed in Section 23.1. ■

A function is defined such that there is only one value of the dependent variable for 
each value of the independent variable, but a relation may have more than one such 
value of the dependent variable. The following example illustrates how to use a graph 
to see whether or not a relation is also a function by using the vertical-line test.

Fig. 3.20 
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 EXAMPLE  9  Vertical-line test for a function

In Example 9 of Section 3.2, we noted that y2 = 4x2 is a relation, but not a 
function. Since y = 4 or y = -4, normally written as y = {4, for x = 2, we 
have two values of y for x = 2. Therefore, it is not a function. Making the table 
as shown at the left, we then draw the graph in Fig. 3.21. When making the 
table, we also note that there are two values of y for every value of x, except 
x = 0.

If any vertical line that crosses the x-axis in the domain intersects the 
graph in more than one point, it is the graph of a relation that is not a func-
tion. Any such vertical line in any of the previous graphs of this section 
would intersect the graph in only one point. This shows that they are graphs 
of functions. ■

The use of graphs is extensive in mathematics and its applications. For exam-
ple, in the next section, we use graphs to solve equations. For another example, the 
parabola has applications in microwave-dish design, suspension bridge design, and the 
path (trajectory) of a baseball. We will note many more applications throughout the book.
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EXERCISES 3.4

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then plot the graphs.

 1. In Example 1, change the -  sign to + .

 2. In Example 2, change 2x2 - 4 to 4 - 2x2.

 3. In Example 4, change the x in the denominator to x - 1.

 4. In Example 5, change the +  sign to - .

In Exercises 5–36, graph the given functions.

 5. y = 3x 6. y = -2x

 7. y = 2x - 4 8. y = 3x + 5

 9. s = 7 - 2t 10. y = -3

 11. y = 1
2 x - 2 12. A = 6 - 1

3 r

 13. y = x2 14. y = -2x2

 15. y = 3 - x2 16. y = x2 - 3

 17. y = 1
2 x2 + 2 18. y = 2x2 + 1

 19. y = x2 + 2x 20. h = 20t - 5t2

 21. y = x2 - 3x + 1 22. y = 2 + 3x + x2

 23. V = s3 24. y = -2x3

 25. y = x3 - x2 26. L = 3e - e3

 27. D = v4 - 4v2 28. y = x3 - x4

 29. P =
1
V

+ 1 30. y =
2

x + 2

 31. y =
4

x2 32. p =
1

n2 + 0.5
 33. y = 1x 34. y = 14 - x

 35. v = 216 - h2 36. y = 2x2 - 16

In Exercises 37–62, graph the indicated functions.

 37. In blending gasoline, the number of litres n of 85-octane gas to be 
blended with m litres of 92-octane gas is given by the equation 
n = 0.40m. Plot n as a function of m.

 38. The consumption of fuel c (in L>h) of a certain engine is deter-
mined as a function of the number r of r>min of the engine, to be 
c = 0.011 r + 40. This formula is valid for 500 r>min to 
3000 r>min. Plot c as a function of r. (r is the symbol for 
revolution.)

 39. For a certain model of truck, its resale value V (in dollars) as  a 
function of the distance m it has been driven is V = 50 000 - 0.2m. 
Plot V as a function of m for m … 100 000 km.

 40. The resistance R (in Ω) of a resistor as a function of the tempera-
ture T  (in °C) is given by R = 25011 + 0.0032T2 . Plot R as a 
function of T .

 41. The rate H (in W) at which heat is developed in the filament of an 
electric light bulb as a function of the electric current I (in A) is 
H = 240I2. Plot H as a function of I.

 42. The total annual fraction f  of energy supplied by solar energy to a 
home as a function of the area A (in m2) of the solar collector is 
f = 0.0651A. Plot f  as a function of A.

 43. The maximum speed v (in km>h) at which a car can safely travel 
around a circular turn of radius r (in m) is given by r = 0.55v2. 
Plot r as a function of v.

 44. The height h (in m) of a rocket as a function of the time t (in s) is 
given by the function h = 1500t - 4.9t2. Plot h as a function of t, 
assuming level terrain.

 45. The power P (in W) that a certain windmill generates is given by 
P = 0.004v3, where v is the wind speed (in km>h). Plot the graph 
of P vs. v.

 46. An astronaut weighs 750 N at sea level. The astronaut’s weight  
at an altitude of x km above sea level is given by

  w = 750a 6400
6400 + x

b2
. Plot w as a function of x for x = 0 to

  x = 8000 km.
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 57. Plot the graphs of y = x and y = ! x !  on the same coordinate 
system. Explain why the graphs differ.

 58. Plot the graphs of y = 2 - x and y = ! 2 - x !  on the same 
coordinate system. Explain why the graphs differ.

 59. Plot the graph of f1x2 = e3 - x
x2 + 1

1for x 6 121for x Ú 12 .

 60. Plot the graph of f1x2 =
1

x - 11x + 1

1for x 6 021for x Ú 02 .

 61. Plot the graphs of (a) y = x + 2 and (b) y =
x2 - 4
x - 2

.   

Explain the difference between the graphs.

 62. Plot the graphs of (a) y = x2 - x + 1 and (b) y =
x3 + 1
x + 1

.

  Explain the difference between the graphs.

In Exercises 63–66, determine whether or not the indicated graph is 
that of a function.

 63. Fig. 3.24(a)

 64. Fig. 3.24(b)

 65. Fig. 3.24(c)

 66. Fig. 3.24(d)

 47. A formula used to determine the amount of lumber V (in dm3) 
that can be cut from a 2-m section of a log of diameter d (in mm) 
is V = 0.0013d2 - 0.043d. Plot V as a function of d for values 
of d from 300 mm to 1000 mm.

 48. A copper electrode with a mass of 25.0 g is placed in a solution of 
copper sulfate. An electric current is passed through the solution, 
and 1.6 g of copper is deposited on the electrode each hour. 
Express the total mass m on the electrode as a function of the time 
t and plot the graph.

 49. A land developer is considering several options of dividing a large 
tract into rectangular building lots, many of which would have 
perimeters of 200 m. For these, the minimum width would be 30 m 
and the maximum width would be 70 m. Express the areas A of 
these lots as a function of their widths w and plot the graph.

 50. The distance p (in m) from a camera with a 50-mm lens to the 
object being photographed is a function of the magnification m of 

  the camera, given by p =
0.0511 + m2

m
. Plot the graph for  

  positive values of m up to 0.50.

 51. A measure of the light beam that can be passed through an optic 
fibre is its numerical aperture N. For a particular optic fibre, N is 
a function of the index of refraction n of the glass in the fibre, 
given by N = 2n2 - 1.69. Plot the graph for n … 2.00.

 52. F = x4 - 12x3 + 46x2 - 60x + 25 is the force (in N) exerted 
by a cam on the arm of a robot, as shown in Fig. 3.22. Noting that 
x varies from 1 cm to 5 cm, plot the graph.

Fig. 3.22 
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 53. The number of times S that a certain computer can perform a com-
putation faster with a multiprocessor than with a uniprocessor

  is given by S =
5n

4 + n
, where n is the number of processors. Plot

  S as a function of n.

 54. The voltage V (in Volts) across a capacitor in a certain electric 
circuit for a 2-s interval is V = 2t during the first second and 
V = 4 - 2t during the second second. Here, t is the time (in s). 
Plot V as a function of t.

 55. Given that the point (1, 2) is on the graph of y = f1x2 , must it be 
true that f122 = 1? Explain.

Answers to Practice Exercises

1. x = -5   2. x 6 3

 56. In Fig. 3.23, part of the graph of 
y = 2x2 + 0.5 is shown. What is 
the area of the rectangle, if its ver-
tex is on the curve, as shown?

Fig. 3.23
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Practice Exercise

 1.  Use your calculator to determine good 
window settings for graphing 
y = 6 - 3 x .

■ The specific detail shown in any nongraphic 
display depends on the model. A graph with the 
same window settings should appear about the 
same on all models.

When using a graphing calculator to view a graph, it is possible that very little or no part 
of a graph can be seen with the chosen settings. Therefore, it is necessary to be careful 
when choosing the settings.

Since the settings are easily changed, to get the general location of a graph, it is usu-
ally best to begin by choosing intervals that are greater than is probably necessary. Then 
they can be reduced as needed.

COMMON ERROR

SOLVING EQUATIONS GRAPHICALLY
An equation can be solved by use of a graph. Most of the time, the solution will be 
 approximate, but with a graphing calculator, it is possible to get good accuracy in the 
result. The procedure used is as follows:

Fig. 3.25
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Procedure for Solving an Equation Graphically
1.  Collect all terms on one side of the equal sign. This gives us the equation 

f1x2 = 0.

2.  Set y = f1x2  and graph this function.

3.  Find the points where the graph crosses the x -axis. These points are called 
the x -intercepts of the graph. At these points, y = 0 .

4.  The values of x  for which y = 0  are the solutions of the equation. (These 
values are called the zeros of the function f1x2 .)

The next example illustrates the method.

GRAPHS ON A GRAPHING CALCULATOR
A graphing calculator can display a graph quickly and easily. As we have pointed out, 
to use your calculator effectively, you must know the sequence of keys for any operation 
you intend to use. The manual for any particular model should be used for a detailed 
coverage of its features.

 EXAMPLE  1  Entering the function: window settings

To graph the function y = 2x + 8, first display Y1 =  and then enter the 2x + 8. Next 
use the window (or range) feature to set the part of the domain and the range that will 
be seen in the viewing window. For this function, set

Xmin = -6, Xmax = 2, Xscl = 1, Ymin = -2, Ymax = 10, Yscl = 1

in order to get a good view of the graph. Then display the graph, using the graph (or 
exe) key. The display showing the graph of y = 2x + 8 is shown in Fig. 3.25.

Note that the calculator makes the graph just as we have been doing—by plotting 
points (square dots called pixels). It just does it a lot faster. ■

In Example 1, the window settings were chosen to give a good view of the graph of 
y = 2x + 8. However, if we had chosen Xmin = -2, Xmax = 3, Ymin = -3, and 
Ymax = 3, we would have had a view where no part of the graph can be seen. Unless 
the settings are appropriate, you may not get a good view of a graph.

 3.5 More about Graphs
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We now show the use of a graphing calculator in solving equations graphically. In 
the next example, we solve the same equation as in Example 2.

 EXAMPLE  3  Graphing calculator solution of an equation

Using a graphing calculator, solve the equation x2 - 2x = 1.
Again, rewrite the equation as x2 - 2x - 1 = 0 and set y = x2 - 2x - 1. Then 

display this function on the calculator, as shown in Fig. 3.27(a).
To get values of x  for which y = 0 , we can use the trace and zoom features or 

the zero feature. Using the trace feature, we move the cursor (the blinking pixel) 
with the arrow keys to find the value of y  closest to zero (generally not exactly 
zero). We then have the display in Fig. 3.27(b), which shows solutions of about 
x = -0.4 and x = 2.4. More accurate values can be found by using the zoom fea-
ture with which any region of the screen can be magnified. In Fig. 3.27(c), we see 
that the solutions are about x = -0.415 and x = 2.415.

In using the zero feature, it is necessary to give the part of the domain where you 
want to find the zero, and make a reasonable guess as to its value. In Fig. 3.27(d), this 
has been done, and the zero is shown to be x = -0.414 213 6. The other zero is at 
x = 2.414 213 6.

Using the value feature, we can check these solutions. In all cases, we find that 
the value of y  is very near zero, which means that these solutions check. Obviously, 
the values found using the zero feature are the most accurate.

 EXAMPLE  2  Graphical solution of an equation

Graphically solve the equation x2 - 2x = 1.
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Fig. 3.26

■ Most calculators have an intersect feature. 
The equation in Example 3 can be solved using 
this feature and finding points where the 
curves y = x2 - 2x  and y = 1 cross.

Fig. 3.27 
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Following the above procedure, first rewrite the equation as 
x2 - 2x - 1 = 0 and then set y = x2 - 2x - 1. Next, plot the graph of this 
function, as shown in Fig. 3.26.

For this curve, we see that it crosses the x -axis between x = -1  and x = 0  
and between x = 2  and x = 3 . This means that there are two solutions of the 
equation, and they can be estimated from the graph as

x = -0.5 and x = 2.5

For these values, y = 0 , which means x2 - 2x - 1 = 0, which in turn means 
x2 - 2x = 1. ■
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 EXAMPLE  4  Graphical solution of a word problem

A rectangular box whose volume is 30.0 cm3 is made with a square base and a height 
that is 2.00 cm less than the length of a side of the base. Find the dimensions of the box 
by first setting up the necessary equation and then solving it graphically.

Let x = the length of the side of the square base (see Fig. 3.28); the height is 
then x - 2.00. This means that the volume is 1x2 1x2 1x - 2.002 , or x3 - 2.00x2. 
Since the volume is 30.0 cm3, we have the equation

x3 - 2.00x2 = 30.0

To solve it graphically, first rewrite the equation as x3 - 2.00x2 - 30.0 = 0 and 
then set y = x3 - 2.00x2 - 30.0. The graph of this function is shown in Fig. 3.29. 
Note that only positive values of x have meaning in the context of the problem. On a 
graphing calculator, using the trace, zero, or intersect feature, we find that x = 3.94 
cm is the approximate solution. Therefore, the dimensions are 3.94 cm, 3.94 cm, and 
1.94 cm. Checking, these dimensions give a volume of 30.1 cm3. The difference 
from 30.0 cm3 is due to the use of the approximate value of x . A better check can be 
made by using the unrounded calculator value for x .  ■

FINDING THE RANGE OF A FUNCTION
In Section 3.2, we stated that advanced methods are often necessary to find the range of 
a function and that we would see that a graphing calculator is useful for this purpose. 
As with solving equations, we can get very good approximations of the range for most 
functions by using a graphing calculator.

The method is simply to graph the function and see for what values of y  there is a 
point on the graph. These values of y  give us the range of the function.

 EXAMPLE  5  Graphically finding the range of a function

Graphically find the range of the function y = 161x + 1>x.
If we start by using the default window settings of Xmin = -10, Xmax = 10,

Ymin = -10, Ymax = 10, we see no part of the graph. Looking back to the function, 
note that x cannot be zero because that would require dividing by zero in the 1>x term. 
Also, x 7 0 since 1x is not defined for x 6 0. Thus, we should try Xmin = 0 and 
Ymin = 0.

We also can easily see that y = 17 for x = 1. This means we should try a value 
more than 17 for Ymax. Using Ymax = 20, after two or three window settings, we use 
the settings shown in Fig. 3.30. The display shows the range to be all real numbers 
greater than about 12. (Actually, the range is all real numbers y Ú 12.) Alternatively, 
one could use the minimum feature on a graphing calculator to determine the lowest 
possible value of the function. Similarly, the maximum feature can determine the larg-
est possible value of the function (if it exists).  ■

SHIFTING A GRAPH
By adding a positive constant to the right side of the function y = f1x2 , the graph of 
the function is shifted straight up. If a negative constant is added to the right side of the 
function, the graph is shifted straight down.

 EXAMPLE  6  Shifting a graph vertically

Fig. 3.31 shows the graphs of the functions y = x2, y = x2 + 2, and y = x2 - 3. We 
see that adding 2 to the function y = x2 shifts the graph up 2 units, whereas adding −3 
shifts the graph down 3 units.  ■

By adding a constant to x in the function y = f1x2 , the graph of the function is 
shifted to the right or to the left. Adding a positive constant to x shifts the graph to the 
left, and adding a negative constant to x shifts the graph to the right.

Fig. 3.28 
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 EXAMPLE  7  Shifting a graph horizontally

For the function y = x2, if we add 2 to x, we get y = 1x + 222, or if we add -3 to x, 
we get y = 1x - 322. The graphs of these three functions are shown in Fig. 3.32.

We see that the graph of y = 1x + 222 is 2 units to the left of y = x2 and that 
the graph of y = 1x - 322 is 3 units to the right of y = x2. ■

Be very careful when shifting graphs horizontally. To check the direction and mag-
nitude of a horizontal shift, find the value of x that makes the expression in parentheses 
equal to 0. For example, in Example 7, y = 1x - 322 is 3 units to the right of y = x2 
because x = +3 makes x - 3 equal to zero. The point (3, 0) on y = 1x - 322 is 
equivalent to the point (0, 0) on y = x2. In the same way x + 2 = 0 for x = -2, and 
the graph of y = 1x + 222 is shifted 2 units to the left of y = x2.

Summarizing how a graph is shifted, we have the following:

Because an added positive constant to the function shifts the graph of the function 
upward, it is a common error to think that adding a positive constant to the variable of 
the function shifts the graph to the right (in the positive direction). However, adding a 
positive constant to the variable results in a shift to the left (to the negative direction), 
and adding a negative constant to the variable results in a shift to the right (to the posi-
tive direction).

COMMON ERROR

Fig. 3.32 
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Shifting a Graph
Vertical shifts: y = f1x2 + k shifts the graph of y = f1x2
    up k units if k 7 0 and down k units if k 6 0.

Horizontal shifts: y = f1x + k2  shifts the graph of y = f1x2
     left k units if k 7 0 and right k units if k 6 0.

 EXAMPLE  8  Shifting vertically and horizontally

The graph of a function can be shifted both vertically and horizontally. To shift the 
graph of y = x2 to the right 3 units and down two units, add –3 to x and add –2 to the 
resulting function. In this way, we get y = 1x - 322 - 2. The graph of this function 
and the graph of y = x2 are shown in Fig. 3.33.

Note that the point 13, -22  on the graph of y = 1x - 322 - 2 is equivalent to 
the point (0, 0) on the graph of y = x2. Checking, by setting x - 3 = 0, we get 
x = 3. This means the graph of y = x2 has been shifted 3 units to the right. The 
vertical shift of -2 is clear. ■
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y = (x − 3)2 − 2

(3, −2)

y = x2

Fig. 3.33

Practice Exercise

2.  Describe the graph of y = 1x + 222 + 3 
relative to the graph of y = x 2 .

EXERCISES 3.5

In Exercises 1–4, make the indicated changes in the given examples of 
this section and then solve.

 1. In Example 2, change the sign on the left side of the equation 
from -  to + .

 2. In Example 4, change 2.00 cm to 3.00 cm.

 3. In Example 5, change the denominator of the second term on the 
right side of the equation to x2.

 4. In Example 8, in the second line, change “to the right 3 units and 
down 2 units” to “to the left 2 units and down 3 units.”

In Exercises 5–18, display the graphs of the given functions on a 
graphing calculator. Use appropriate window settings.

 5. y = 3x - 1 6. y = 4 - 0.5x

 7. y = x2 - 4x 8. y = 8 - 2x2

 9. y = 6 - x3 10. y = x4 - 6x2

 11. y = x4 - 2x3 - 5 12. y = x2 - 3x5 + 3

 13. y =
2x

x - 2
 14. y =

3

x2 - 4
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 49. The length of a rectangular solar panel is 12 cm more than its 
width. If its area is 520 cm2, find its dimensions.

 50. A computer model shows that the cost (in dollars) to remove x 

percent of a pollutant from a lake is C =
8000x

100 - x
. What percent 

can be removed for $25 000?

 51. In finding the illumination at a point x m from one of two light 
sources that are 100 m apart, it is necessary to solve the equation 
9x3 - 2400x2 + 240 000x - 8 000 000 = 0. Find x.

 52. A rectangular storage bin is to be 
made from a rectangular piece of 
sheet metal 12.0 cm by 10.0 cm, 
by cutting out equal corners of 
side x and bending up the sides. 
See Fig. 3.34. Find x if the stor-
age bin is to hold 90.0 cm3.

In Exercises 53–60, solve the given problems.

 53. In Example 4, assume the data are good to five significant digits 
and then find the dimensions of the box.

 54. Explain how to show the graph of the relation y2 = 4x2 on a 
graphing calculator, and then display it on the calculator. See 
Example 9 in Section 3.4.

 55. The cutting speed s (in cm>s) of a saw in cutting a particular type 
of metal piece is given by s = 2t - 4t2, where t is the time in 
seconds. What is the maximum cutting speed in this operation (to 
three significant digits)? (Hint: Find the range.)

 56. Referring to Exercise 52, explain how to determine the maximum 
possible capacity for a storage bin constructed in this way. What 
is the maximum possible capacity (to three significant digits)?

 57. A balloon is being blown up at a constant rate. (a) Sketch a rea-
sonable graph of the radius of the balloon as a function of time. 
(b) Compare to a typical situation that can be described by

   r = 23 3t, where r is the radius (in cm) and t is the time (in s).

 58. A hot-water faucet is turned on. (a) Sketch a reasonable graph of 
the water temperature as a function of time. (b) Compare to a

  typical situation described by T =
t3 + 80

0.015t3 + 4
, where T  is the

  water temperature (in °C) and t is the time (in s).

 59. Display the graph of y = cx3 with c = -2 and with c = 2. 
Describe the effect of the value of c.

 60. Display the graph of y = cx4, with c = 4 and with c = 1>4. 
Describe the effect of the value of c.

Answers to Practice Exercises

1. x: -1 to 3; y: -2 to 8 probably best
2. shifted 2 units to the left, 3 units up

 15. y = x + 1x + 3 16. y = 23 2x + 1

 17. y = 3 + 2
x

 18. y =
x213 - x

In Exercises 19–28, solve the given equations graphically to the 
nearest 0.001.

 19. x2 + x - 5 = 0 20. v2 - 2v - 4 = 0

 21. x3 - 3 = 3x 22. x4 - 2x = 0

 23. s3 - 4s2 = 6 24. 3x2 - x4 = 2 + x

 25. 15R + 2 = 3 26. 1x + 3x = 7

 27. 
1

x2 + 1
= 0 28. T - 2 =

1
T

In Exercises 29–36, find the range of the given functions graphically. 
(The functions of Exercises 33–36 are the same as the functions of 
Exercises 15–18 of Section 3.2.)

 29. y =
4

x2 - 4
 30. y =

x + 1

x2

 31. y =
x2

x + 1
 32. y =

x

x2 - 4

 33. Y1y2 =
y + 11y - 2

 34. f1n2 =
n

6 - 2n

 35. f1D2 =
D

D - 2
+ 4

D + 4
 36. g1x2 =

1x - 2
x - 3

In Exercises 37–44, a function and how it is to be shifted is given. 
Find the shifted function and then graph both functions on the same 
coordinate system.

 37. y = 3x, up 1 38. y = x3, down 2

 39. y = 1x, right 3 40. y =
2
x

, left 4

 41. y = -2x2, down 3, left 2 42. y = -4x, up 4, right 3

 43. y = 12x + 1, up 1, left 1

 44. y = 2x2 + 4, down 2, right 2

In Exercises 45–52, solve the indicated equations graphically. Assume 
all data are accurate to three significant digits unless greater 
accuracy is given.

 45. In an electric circuit, the current i (in A) as a function of voltage v 
is given by i = 0.01v - 0.06. Find v for i = 0.

 46. For tax purposes, a corporation assumes that one of its computers 
depreciates according to the equation V = 90 000 - 12 000t, 
where V is the value (in dollars) of the computer after t years. 
According to this formula, when will the computer be fully depre-
ciated (no value)?

 47. Two cubical coolers together hold 40.0 L (40 000 cm3). If the 
inside edge of one is 5.00 cm greater than the inside edge of the 
other, what is the inside edge of each?

 48. The height h (in m) of a rocket as a function of time t (in s) of 
flight is given by h = 15 + 86t - 4.9t2. Determine when the 
rocket is at ground level.

Fig. 3.34
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We know that there is no meaning to the intervals between the month cat-
egories, since we have the total number of kilowatt-hours for each month. 
Therefore, we use straight-line segments, but only to highlight changes in the 
function. See Fig. 3.35. ■

Data from experiments in science and technology often indicate that the 
variables could have a formula relating them, although the formula may not 
be known. In this case, when plotting the graph, the points should be con-
nected by a smooth curve.

As we noted in Section 3.1, there are ways other than formulas to show functions. One 
important way to show the relationship between variables is by means of a table of val-
ues found by observation or from an experiment.

Statistical data often give values that are taken for certain intervals or are averaged 
over various intervals, and there is no meaning to the intervals between the points. Such 
points should be connected by straight-line segments only to highlight changes in the 
value of the function and to aid in visualization. See Example 1.

 EXAMPLE  1  Graph using straight-line segments

The electric energy usage (in kW∙h) for a certain all-electric house for each month of a 
year is shown in the following table. Plot these data.

 3.6 Graphs of Functions Defined by Tables of Data
 

 

Month Jan Feb Mar Apr May Jun

Energy Usage 10 504 12 363 10 168 7500 4825 3568

Month July Aug Sep Oct Nov Dec

Energy Usage 2548 2887 3301 5748 7302 9706

■ Graphs such as the one shown in Fig. 3.35 
can be obtained with a spread sheet, or by 
using the statistical plotting features of a 
graphing calculator.

Fig. 3.35
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 EXAMPLE  2  Graph using a smooth curve

Steam in a boiler was heated to 150°C and then allowed to cool. Its temperature T   
(in °C) was recorded each minute, as shown in the following table. Plot the graph.

■ The Celsius degree is named for the Swedish 
astronomer Andres Celsius (1701–1744). He 
designated 100° as the freezing point of water 
and 0° as the boiling point. These were later 
reversed. Time (min) 0.0 1.0 2.0 3.0 4.0 5.0

Temperature (°C) 150.0 142.8 138.5 135.2 132.7 130.8

Since the temperature changes in a continuous way, there is meaning to the values in 
the intervals between points. Therefore, these points are joined by a smooth curve, as in 
Fig. 3.36. Also, note that most of the data is far from the zero point on the Celsius scale, 
presented with the indicated break in the scale between 0 and 130. ■

If the graph relating two variables is known, values can be obtained directly from 
the graph. In finding such a value through the inspection of the graph, we are reading 
the graph.

■ In Chapter 22, we see how to find an 
equation that approximates the function 
relating the variables in a table of values, a 
process called curve-fitting.

Fig. 3.36 
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 EXAMPLE  3  Reading a graph

For the cooling steam in Example 2, we can estimate values of one variable for given 
values of the other variable.

If we want to know the temperature after 2.5 min, estimate 0.5 of the interval 
 between 2 and 3 on the t-axis and mark this point. See Fig. 3.37. Then draw a verti-
cal line from this point to the curve. From the point where it intersects the curve, 
draw a horizontal line to the T -axis. We now estimate that the line crosses at 
T = 136.7°C. Obviously, the number of tenths is a rough estimate.

In the same way, if we want to determine how long the steam took to cool down 
to 141.0°C, go from the 141.0 marker on the T -axis to the curve and then down to 
the t-axis. This crosses at about t = 1.4 min.

Note that we cannot read values between points on the graph in Example 1, since 
there is no real meaning to values between those listed. However, in this example 
we assume that the general trend shown by the graph is probably valid for values 
between those in the table.  ■

LINEAR INTERPOLATION
In Example 3, we see that we can estimate values from a graph. However, unless a very 
accurate graph is drawn with expanded scales for both variables, only very approxi-
mate values can be found. There is a method, called linear interpolation, that uses the 
table itself to get more accurate results.

Linear interpolation assumes that if a particular value of one variable lies between 
two of those listed in the table, then the corresponding value of the other variable is at 
the same proportional distance between the listed values. On the graph, linear interpo-
lation assumes that two points defined in the table are connected by a straight line. 
Although this is generally not correct, it is a good approximation if the values in the 
table are sufficiently close together.

 EXAMPLE  4  Linear interpolation

For the cooling steam in Example 2, we can use interpolation to find its temperature 
after 1.4 min. Since 1.4 min is 4

10 of the way from 1.0 min to 2.0 min, we will assume
that the value of T  we want is 4

10 of the way between 142.8 and 138.5, the values of T  
for 1.0 min and 2.0 min, respectively. The difference between these values is 4.3, and 
4

10 of 4.3 is 1.7 (rounded off to tenths). Subtracting (the values of T  are decreasing) 1.7 
from 142.8, we obtain 141.1. Thus, the required value of T  is about 141.1°C. (Note that 
this agrees well with the result in Example 3.)

Another method of indicating the interpolation is shown in Fig. 3.38. From the 
figure, we have the proportion

  
0.4
1.0

=
x

-4.3

  x = -1.7   rounded off
Therefore,

142.8 +  1 -1.72 = 141.1°C

is the required value of T . If the values of T  had been increasing, we would have 
added 1.7 to the value of T  for 1.0 min. ■

Fig. 3.37 

T (°C)

t (min)
0

130

140

150

1 2 3 4 5

■ Before the use of electronic calculators, 
interpolation was used extensively in 
mathematics textbooks for finding values from 
mathematics tables. It is still of use when using 
scientific, technical, and statistical tables.

Fig. 3.38 

t

2.0

0.4 x
1.0 −4.31.4

1.0

T

138.5

142.8

Practice Exercise

 1.  In Example 4, interpolate to find T   
for t = 4.2 min.
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EXERCISES 3.6

In Exercises 1–8, represent the data graphically.

 1. The diesel fuel production (in 1000’s of litres) at a certain refin-
ery during an 8-wk period was as follows:

In Exercises 9 and 10, use the graph in Fig. 3.36, which relates the 
temperature of cooling steam and the time. Find the indicated values 
by reading the graph.

 9. (a) For t = 4.3 min, find T . (b) For T = 145.0°C, find t.

 10. (a) For t = 1.8 min, find T . (b) For T = 133.5°C, find t.

In Exercises 11 and 12, use the following table, which gives the valve 
lift L (in mm) of a certain cam as a function of the angle u (in degrees) 
through which the cam is turned. Plot the values. Find the indicated 
values by reading the graph.

Week 1 2 3 4 5 6 7 8

Production 765 780 840 850 880 840 760 820

Year 1998 2000 2002 2004 2006 2008 2010 2012

Can. Dol. 1.48 1.49 1.57 1.30 1.13 1.07 1.03 1.00

Diameter (cm) 6.0 8.0 10.0 12.0 14.0 16.0

Material (cm2) 723 601 557 560 594 652

 2. The annual average exchange rate for the number of Canadian 
dollars equal to one U.S. dollar for 1998–2012 is as follows:

 3. The amount of material necessary to make a cylindrical litre con-
tainer depends on the diameter, as shown in this table:

 4. An oil burner propels air that has been heated to 90°C. The tem-
perature then drops as the distance from the burner increases, as 
shown in the following table:

Distance (m) 0.0 1.0 2.0 3.0 4.0 5.0 6.0

Temperature (°C) 90 84 76 66 54 46 41

 5. A changing electric current in a coil of wire will induce a voltage 
in a nearby coil. Important in the design of transformers, the 
effect is called mutual inductance. For two coils, the mutual 
inductance (in H) as a function of the distance between them is 
given in the following table:

Distance (cm) 0.0 2.0 4.0 6.0 8.0 10.0 12.0

M. ind. (H) 0.77 0.75 0.61 0.49 0.38 0.25 0.17

 6. The temperatures felt by the body as a result of the wind-chill 
 factor for an outside temperature of 20°F (as determined by the 
National Weather Service) are given in the following table:

Wind speed (km>h) 10 20 30 40 50 60 70

Temp. felt (°C) −4 −7 −8 −9 −10 −10 −11

 7. The time required for a sum of money to double in value, when 
compounded annually, is given as a function of the interest rate in 
the following table:

Rate (%) 4 5 6 7 8 9 10

Time (years) 17.7 14.2 11.9 10.2 9.0 8.0 7.3

 8. The torque T  of an engine, as a function of the frequency f  of 
rotation, was measured as follows:

f (r>min) 500 1000 1500 2000 2500 3000 3500

T (N # m) 175 90 62 45 34 31 27

u 1°2 0 20 40 60 80 100 120 140

L (mm) 0 1.2 2.3 3.3 3.8 3.0 1.6 0

Height (cm) 0 50 100 200 300 400 600

Rate (m3>s) 0 1.0 1.5 2.2 2.7 3.1 3.5

f 0.22 0.30 0.37 0.44 0.50 0.56 0.61

A (m 2) 20 30 40 50 60 70 80

 11. (a) For u = 25°, find L. (b) For u = 96°, find L.

 12. For L = 2.0 mm, find u.

In Exercises 13–16, find the indicated values by means of linear 
interpolation.

 13. In Exercise 5, find the inductance for d = 9.2 cm.

 14. In Exercise 6, find the temperature for s = 12 km>h.

 15. In Exercise 7, find the rate for t = 10.0 years.

 16. In Exercise 8, find the torque for t = 2300 r>min.

In Exercises 17–20, use the following table that gives the rate R of 
discharge from a tank of water as a function of the height H of water 
in the tank. For Exercises 17 and 18, plot the graph and find the 
values from the graph. For Exercises 19 and 20, find the indicated 
values by linear interpolation.

 17. (a) for R = 2.0 m3>s, find H. (b) For H = 240 cm, find R.

 18. (a) For R = 3.4 m3>s, find H. (b) For H = 320 cm, find R.

 19. Find R for H = 80 cm. 20. Find H for R = 2.5 m3>s.

In Exercises 21–24, use the following table, which gives the fraction 
(as a decimal) of the total heating load of a certain system that will be 
supplied by a solar collector of area A (in m 2 ). Find the indicated 
values by linear interpolation.
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 25. Using Fig. 3.37, estimate T  for t = 5.3 min.

 26. Using the graph for Exercise 7, estimate t for R = 10.4%.

 27. Using the graph for Exercises 17–20, estimate R for H = 700 cm.

 28. Using the graph for Exercises 17–20, estimate R for H = 800 cm.

Answer to Practice Exercise

1. T = 1 3 2 .3 °C

 21. For A = 36 m2, find f. 22. For A = 52 m2, find f.

 23. For f = 0.59, find A. 24. For f = 0.27, find A.

In Exercises 25–28, a method of finding values beyond those given is 
considered. By using a straight-line segment to extend a graph beyond 
the last known point, we can estimate values from the extension of the 
graph. The method is known as linear extrapolation. Use this method 
to estimate the required values from the given graphs.

 CHAPTER 3   REVIEW EXERCISES

 19. g1 t2 =
21t + 4

 20. F1y2 = 1 - 21y

 21. f1n2 = 1 + 21n - 522 22. F1x2 = 3 - " x "

In Exercises 23–32, plot the graphs of the given functions.

 23. y = 4x + 2  24. y = 5x - 10

 25. s = 4t - t2  26. y = x2 - 8x - 5

 27. y = 3 - x - 2x2  28. V = 3 - 0.5s3

 29. A = 2 - s4  30. y = x4 - 4x

 31. y =
x

x + 1
  32. Z = 225 - 2R2

In Exercises 33–40, solve the given equations graphically to the 
nearest 0.01.

 33. 7x - 3 = 0 34. 3x + 11 = 0

 35. x 2 + 1 = 6 x  36. 3t - 2 = t2

 37. x 3 - x 2 = 2 - x  38. 5 - x 3 = 2 x 2

 39. 
1
v

= 2 v  40. 1x = 2x - 1

In Exercises 41–44, find the range of the given function graphically.

 41. y = x4 - 5x2 42. y = x24 - x2

 43. A = w + 2
w

 44. y = 2x + 31x

In Exercises 45–62, solve the given problems.

 45. Explain how A1a, b2  and B1b, a2  may be in different 
quadrants.

 46. Determine the distance from the origin to the point 1a, b2 .

 47. Two vertices of an equilateral triangle are 10, 02  and 12, 02 . 
What is the third vertex?

 48. The points (1, 2) and 11, -32  are two adjacent vertices of a 
square. Find the other vertices.

 49. Where are all points for which " y>x " 7 0?

 50. Describe the values of x and y for which 11, -22 , 1 -1, -22 , 
and 1x, y2  are on the same straight line.

 51. Sketch the graph of a function for which the domain is 
0 … x … 4 and the range is 1 … y … 3.

 52. Sketch the graph of a function for which the domain is all values 
of x and the range is -2 6 y 6 2.

In Exercises 1–4, determine the appropriate function.

 1. The radius of a circular water wave increases at the rate of 
2 m>s. Express the area of the circle as a function of the time t 
(in s).

 2. A conical sheet-metal hood is to cover an area 6 m in diameter. 
Find the total surface area A  of the hood as a function of its 
height h .

 3. A person invests x  dollars at 5% APR (annual percentage rate) 
and y  dollars at 4% APR. If the total annual income is $2000, 
solve for y  as a function of x.

 4. Fencing around a rectangular storage depot area costs twice as 
much along the front as along the other three sides. The back 
costs $10 per metre. Express the cost C of the fencing as a func-
tion of the width w  if the length (along the front) is 20 m longer 
than the width.

In Exercises 5–12, evaluate the given functions.

 5. f1x2 = 7x - 5; find f132  and f1 -62 .

 6. g1I2 = 8 - 3I; find g11
62  and g1 -42 .

 7. H1h2 = 11 - 2h; find H1 -42  and H12h2 .

 8. f1v2 =
3v - 2
" v + 1 "

; find f1 -22  and f1v + 12 .

 9. F1x2 = x3 + 2x2 - 3x; find F13 + h2 - F132 .

 10. f1x2 = 3x2 - 2x + 4; find 
f1x + h2 - f1x2

h
.

 11. f1x2 = 3 - 2x; find f12x2 - 2f1x2 .

 12. f1x2 = 1 - x2; find 3 f1x2 42 - f1x22 .

In Exercises 13–16, evaluate the given functions. Values of the inde-
pendent variable are approximate.

 13. f1x2 = 8.07 - 2x; find f15.872  and f1 -4.292 .

 14. g1x2 = 7x - x2; find g145.812  and g1 -21.852 .

 15. G1S2 =
S - 0.087 629

3.0125S
; find G10.174 272 and G10.053 2062 .

 16. h1 t2 =
t2 - 4t

t3 + 564
; find h18.912  and h1 -4.912 .

In Exercises 17–22, determine the domain and the range of the given 
functions.

 17. f1x2 = x4 + 1 18. G1z2 =
4

z3



D (m) 0 20 40 60 80 100 120 140 160

d (m) 15 32 56 33 29 47 68 31 52

 68. The pressure loss P (in kPa per 100 m) in a fire hose is given by 
P = 0.000 12Q2 + 0.0055Q, where Q is the rate of flow (in 
L>min). Plot the graph of P as a function of Q.

 69. A thermograph measures the infrared radiation from each small 
area of a person’s skin. Since the skin over a tumor radiates more 
than skin from nearby areas, a thermograph can help detect cancer 
cells. The emissivity e (in %) of radiation as a function of skin 
temperature T  (in K) is e = f1T2 = 1001T4 - 30742 >3074, 
if nearby skin is at 34°C (307K). Find e for T = 309K.

 70. A company buys a new copier for $1000 and determines that it 
costs $10 per day to use it (for paper, toner, etc.). Plot the total 
cost C of the copier as a function of the number n of days of use.

 71. For a certain laser device, the laser output power P (in mW) is 
negligible if the drive current i is less than 80 mA. From 80 mA 
to 140 mA, P = 1.5 * 10-6i3 - 0.77. Plot the graph of 
P = f1 i2 .

 72. It is determined that a good approximation for the cost C (in 
cents>km) of operating a certain car at a constant speed v (in 
km>h) is given by C = 0.025v2 - 1.4v + 35. Plot C as a func-
tion of v for v = 10 km>h to v = 60 km>h.

 73. A medical researcher exposed a virus culture to an experimental 
vaccine. It was observed that the number of live cells N in the 
culture as a function of the time t (in h) after exposure was given 

  by N =
10001t + 1

. Plot the graph of N = f1 t2 .

 74. The electric field E (in V>m) from a certain electric charge is 
given by E = 25>r2, where r is the distance (in m) from the 
charge. Plot the graph of E = f1r2  for values of r up to 10 cm.

 75. To draw the approximate shape of an irregular shoreline, a sur-
veyor measured the distances d from a straight wall to the shore-
line at 20-m intervals along the wall, as shown in the following 
table. Plot the graph of distance d as a function of the distance D 
along the wall.

 53. If the function y = 1x - 1 is shifted left 2 and up 1, what is 
the resulting function?

 54. If the function y = 3 - 2x is shifted right 1 and down 3, what is 
the resulting function?

 55. For f1x2 = 2x3 - 3, display the graphs of f1x2  and f1 -x2  
on a graphing calculator. Describe the graphs in relation to the  
y-axis.

 56. For f1x2 = 2x3 - 3, display the graphs of f1x2  and - f1x2  on 
a graphing calculator. Describe the graphs in relation to the  
x-axis.

 57. Is it possible that the points (2, 3), 15, -12 , and 1 -1, 32  are all 
on the graph of the same function? Explain.

 58. For the functions f1x2 = ! x !  and g1x2 = 2x2, use a graph-
ing calculator to determine whether or not f1x2 = g1x2  for all 
real x.

 59. An equation used in electronics with a transformer antenna is 
I = 12.521 + 0.5m2. For I = f1m2 , find f10.5502 .

 60. The percent p of wood lost in cutting it into boards 38.0 mm

  thick due to the thickness t (in mm) of the saw blade is p =
100t

t + 38
.

  Find p if t = 5.00 mm. That is, since p = f1 t2 , find f15.002 .

 61. The angle A (in degrees) of a robot 
arm with the horizontal as a func-
tion of time t (for 0.0 s to 6.0 s) is 
given by A = 8.0 + 12t2 - 2.0t3. 
What is the greatest value of A to 
the nearest 0.1°? See Fig. 3.39. 
(Hint: Find the range.)

 62. The electric power P (in W) produced by a certain battery is

  P =
24R

R2 + 1.40R + 0.49
, where R is the resistance (in Ω) in

  the circuit. What is the maximum power produced? (Hint: Find 
the range.) See Example 7 in Section 3.4.

In Exercises 63–78, plot the graphs of the indicated functions.

 63. When El Niño, a Pacific Ocean current, moves east and warms 
the water off South America, weather patterns in many parts of 
the world change significantly. Special buoys along the equator 
in the Pacific Ocean send data via satellite to monitoring sta-
tions. If the temperature T  (in °C) at one of these buoys is 
T = 28.0 + 0.15t, where t is the time in weeks between Jan. 1 
and Aug. 1 (30 weeks), plot the graph of T = f1 t2 .

 64. The change C (in cm) in the length of a 100-m steel bridge girder 
from its length at 10°C as a function of the temperature T is given 
by C = 0.121T - 102 . Plot the graph for T =  -20°C to 
T = 40°C.

 65. The profit P (in dollars) a retailer makes in selling 50 cell 
phones is given by P = 501p - 502 , where p is the selling 
price. Plot P as a function of p for p = $30 to p = $150.

 66. There are 500 L of oil in a tank that has the capacity of 100 000 L. 
It is filled at the rate of 7000 L>h. Determine the function relat-
ing the number of litres N and the time t while the tank is being 
filled. Plot N as a function of t.

 67. The length L (in cm) of a pulley belt is 12 cm longer than the 
circumference of one of the pulley wheels. Express L as a func-
tion of the radius r of the wheel and plot L as a function of r.

Fig. 3.39

A

 76. The percent p of a computer network that is in use during a par-
ticular loading cycle as a function of the time t (in s) is given in 
the following table. Plot the graph of p = f1 t2 .

t (s) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

P (%) 0 45 85 90 85 85 60 10 0

 77. The vertical sag s (in m) at the middle of an 800-m power line as 
a function of the temperature T  (in °C) is given in the following 
table. See Fig. 3.40. For the function s = f1T2 , find f1142  by 
linear interpolation.

T 1°C2 –10 0 10 20

s (m) 3.11 3.23 3.38 3.57

Fig. 3.40

800 m

s
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 84. One ball bearing is 1.00 mm more in radius and has twice the 
volume of another ball bearing. What is the radius of each?

 85. A computer, using data from a refrigeration plant, estimates that 
in the event of a power failure, the temperature (in °C) in the

  freezers would be given by T =
4t2

t + 2
- 20, where t is the

  number of hours after the power failure. How long would it take 
for the temperature to reach 0°C?

 86. Two electrical resistors in parallel (see Fig. 3.41) have a combined

  resistance RT given by RT =
R1R2

R1 + R2
. If R2 = R1 + 2.00, 

  express RT as a function of R1 and find R1 if RT = 6.00 Ω.

 78. In an experiment measuring the pressure p (in kPa) at a given 
depth d (in m) of seawater, the results in the following table 
were found. Plot the graph of p = f1d2  and from the graph de-
termine f1102 .

d (m) 0.0 3.0 6.0 9.0 12 15

p (kPa) 101 131 161 193 225 256

In Exercises 79–86, solve the indicated equations graphically.

 79. A person 350 km from home starts toward home and travels at 
90 km>h for the first 2.0 h and then slows down to 60 km>h for 
the rest of the trip. How long does it take the person to be 80 km 
from home?

 80. One industrial cleaner contains 30% of a certain solvent, and 
another contains 10% of the solvent. To get a mixture containing 
50 L of the solvent, 120 L of the first cleaner is used. How much 
of the second must be used?

 81. The solubility s (in kg>m3 of water) of a certain type of fertilizer 
is given by s = 135 + 4.9T + 0.19T2, where T  is the tempera-
ture (in °C). Find T  for s = 500 kg>m3.

 82. A 2.00-L (2000-cm3) metal container is to be made in the shape 
of a right circular cylinder. Express the total area A of metal 
necessary as a function of the radius r of the base. Then find A 
for r = 6.00 cm, 7.00 cm, and 8.00 cm.

 83. In an oil pipeline, the velocity v (in m>s) of the oil as a function 
of the distance x (in m) from the wall of the pipe is given by 
v = 9.6x - 7.5x2. Find x for v = 2.6 m>s. The diameter of the 
pipe is 1.20 m.

Fig. 3.41 R2

R1

Writing Exercise
 87. Find the inner surface area A of a cylindrical 250.0@cm3 cup as a 

function of the radius r of the base. Then if A = 175.0 cm2, 
solve for r. Write one or two paragraphs explaining your method 
for setting up the function, and how you used a graphing calcu-
lator to solve for r with the given value of A.

 10. A window has the shape of a semicircle 
over a square, as shown in Fig. 3.42. 
Express the area of the window as a func-
tion of the radius of the circular part.

 11. The voltage V and current i (in mA) for a 
certain electrical experiment were meas-
ured as shown in the following table. Plot 
the graph of i = f1V2  and from the graph 
find f145.02 .

 CHAPTER 3   PRACTICE TEST

 1. Given f1x2 = 2x - x2 + 8
x

, find f1 -42  and f12.3852 .

 2. A rocket has a mass of 2000 Mg at liftoff. If the first-stage 
 engines burn fuel at the rate of 10 Mg>s, find the mass m of the 
rocket as a function of the time t (in s) while the first-stage 
 engines operate.

 3. Plot the graph of the function f1x2 = 4 - 2x.

 4. Solve the equation 2x2 - 3 = 3x graphically to the nearest 0.1.

 5. Plot the graph of the function y = 14 + 2x.

 6. Locate all points 1x, y2  for which x 6 0 and y = 0.

 7. Find the domain and the range of the function f1x2 = 16 - x.

 8. If the function y = 2x2 - 3 is shifted right 1 and up 3, what is 
the resulting function?

 9. Find the range of the function  y =
x2 + 2
x + 2

  graphically.

Voltage (V) 10.0 20.0 30.0 40.0 50.0 60.0

Current (mA) 145 188 220 255 285 315

Fig. 3.42 

 12. From the table in Problem 11, find the voltage for i = 200 mA.
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LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Define positive angle and 
negative angle

 Express an angle in degrees or 
radians and convert between 
the two measurements

 Determine a standard position 
angle

 Define, calculate, and use the 
six trigonometric functions

 Use the Pythagorean theorem 
and trigonometric functions to 
solve a right triangle

 Employ the inverse 
trigonometric functions to 
solve for a missing angle

 Solve application problems 
involving right triangles

One of the earliest uses of measurements with triangles was performed by the Greek 
mathematician and astronomer Eratosthenes (276–194 b.c.e.), while trying to deter-
mine the circumference and radius of earth. Mathematicians at the time were just 

developing techniques to determine a physical quantity that is impossible to measure directly. 
Eratosthenes knew that during the summer solstice, the sun is directly overhead at noon in the 
city of Syene (present-day Aswan), causing a vertical rod to cast no shadow. In Alexandria, a 
city 800 km approximately due north of Syene, an identical vertical rod cast a shadow whose 
length could be measured. Using the length of this shadow and the approximate distance 
between the two cities, Eratosthenes was able to estimate the circumference and radius of a 
presumably spherical earth.

Hipparchus (190–120 b.c.e.) was a Greek astronomer and geographer who attempted to 
determine the distance between earth and the moon. To complete this task, he expanded upon 
earlier mathematical works by collecting and developing various mathematical techniques 
that involve triangles into a coherent field of study now known as trigonometry.

Trigonometry involves measuring the sides and angles of triangles and determining and using 
the relationships between those quantities. These relationships have application to geometric 
problems and applications involving triangles directly, such as navigation, surveying, struc-
tural design, and astronomy. Further developments in mathematics have shown how trigono-
metric relationships are valuable in applications in which an actual triangle is not involved, 
including electric circuits, analysis of vibrations, acoustics, optics, seismology, and mechani-
cal engineering, to name but a few. Because trigonometry has a great number of applications 
in so many areas, it is considered one of the most practical branches of mathematics.

In this chapter, basic trigonometric functions will be introduced, and many applications from 
science and technology using right triangles will be presented. Other types of triangles and 
their applications will be studied in later chapters.

4The Trigonometric 
Functions

 Using trigonometry, it is often pos-
sible to calculate distances that may 
not be directly measured. In Section 
4.5, we show how we can measure 
the height of Horseshoe Falls on the 
Canadian side of Niagara Falls. Also in 
Section 4.5, using a method similar to 
one used by Eratosthenes, the circum-
ference and radius of earth can be 
estimated.
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In Chapter 2, we gave a basic definition of an angle. In this section, we extend this defi-
nition and also give some other important definitions related to angles.

An angle is generated by rotating a ray about its fixed endpoint from an initial 
position to a terminal position. The initial position is called the initial side of the 
angle, the terminal position is called the terminal side, and the fixed endpoint is 
the vertex. The angle itself is the amount of rotation from the initial side to the ter-
minal side.

If the rotation of the terminal side from the initial side is counterclockwise, the angle 
is defined as positive. If the rotation is clockwise, the angle is negative. In Fig. 4.1, ∠1 
is positive and ∠2 is negative.

Many symbols are used to designate angles. Among the most widely used are cer-
tain Greek letters such as u (theta), f (phi), a (alpha), and b (beta). Capital letters rep-
resenting the vertex (e.g., ∠A or simply A) and other literal symbols, such as x and y, 
are also used commonly.

In Chapter 2, we introduced two measurements of an angle. These are the degree 
and the radian. Since degrees and radians are both used on calculators and computers, 
we will briefly review the relationship between them in this section. We will make use 
of radians again in Chapter 8.

From Section 2.1, we recall that a degree is 1>360 of one complete rotation. In  
Fig. 4.2, u = 30°, f = 140°, a = 240°, and b = -120°. Note that b is drawn in a 
clockwise direction to show that it is negative. The other angles are drawn in a counter-
clockwise direction to show that they are positive angles.

In Chapter 2, we used degrees and decimal parts of a degree. Most calculators 
use degrees in this decimal form. Another traditional way is to divide a degree 
into 60 equal parts called minutes; each minute is divided into 60 equal parts 
called seconds. The symbols ′ and ″ are used to designate minutes and seconds, 
respectively.

In Fig. 4.2, we note that angles a and b have the same initial and terminal sides. 
Such angles are called coterminal angles. An understanding of coterminal angles will 
be important in the use of trigonometric concepts in later chapters.

 EXAMPLE  1  Coterminal angles

Determine the measures of two angles that are coterminal with an angle of 145.6°.
Since there are 360° in one complete rotation, we can find a coterminal angle by 

adding 360° to the given angle of 145.6° to get 505.6°. Another coterminal angle can be 
found by subtracting 360° from 145.6° to get -214.4°. See the angles in Fig. 4.3. We 
could continue to add 360°, or subtract 360°, as many times as needed to get as many 
additional coterminal angles as may be required. ■

ANGLE CONVERSIONS
We will primarily use degrees as a measure of angles in this chapter. When using a 
calculator, be sure to use the mode feature to set the calculator for degrees or radi-
ans, as is appropriate. We can change between degrees and radians by using a calcu-
lator feature or by performing a unit conversion using the definition (see Section 2.4) 
p rad = 180°.

 4.1 Angles
 

Angle

Fig. 4.1 

Terminal sid
e

Vertex

1
2

Positive
angle

Negative
angle

Initial side

Fig. 4.2 

a

b

f

u

Fig. 4.3 

145.6°

505.6°

!214.4°

When computing the values of trigonometric functions, or when solving for angles using 
inverse trigonometric functions (see Sections 4.2 and 4.3), you must know what mode 
your calculator is in to ensure that you are using or obtaining the angle with the correct 
unit. It is a common error to use the values given by a calculator without ensuring the 
proper mode is set (radians or degrees).

COMMON ERROR

■ The division of a degree (1/360 of a rotation) 
into 60 minutes of arc and each minute into 60 
seconds of arc comes from the ancient 
Sumerians, who employed a sexagesimal 
(base-60) counting system. The Babylonians 
extended this counting system to divide the 
hours of a day into 60 minutes of time, each 
minute containing 60 seconds of time.
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Before the extensive use of calculators, it was common to use degrees and minutes in 
tables, whereas calculators use degrees and decimal parts of a degree. Changing from one 
form to another can be done directly on a calculator by use of the dms (degree-minute- 
second) feature. The following examples illustrate angle conversions by using the definition.

 EXAMPLE  2  Convert radians to degrees

Express 1.36 rad in degrees.
We know that p rad = 180°, which becomes our unit conversion fraction (see 

Section 1.3). Therefore,

1.36 rad = 1.36 rada 180°
p rad

b = 77.9°  to nearest 0.1°

This angle is shown in Fig. 4.4. We again note that degrees and radians are simply two 
different ways of measuring an angle. ■

 EXAMPLE  3  Converting angles between degrees-minutes and decimal forms

To change 17°53′ to decimal form, we use the fact that 1° = 60′. Therefore, at this 
point we change the 53′ to degrees, which gives us 53′ = 153

602° = 0.88° (to the near-
est 0.01°). This means that 17°53′ = 17.88°. This angle is shown in Fig. 4.5.

To change 154.36° to an angle measured to the nearest minute, we use the definition 
1° = 60′ as our unit conversion fraction, and

0.36° = 0.36°a60′
1°

b = 22′

This means that 154.36° = 154°22′. See Fig. 4.6. ■

STANDARD POSITION OF AN ANGLE
If the initial side of the angle is the positive x-axis and the vertex is the origin, the angle 
is said to be in standard position. The angle is then determined by the position of the 
terminal side. If the terminal side is in the first quadrant, the angle is called a first-
quadrant angle. Similar terms are used when the terminal side is in the other quad-
rants. If the terminal side coincides with one of the axes, the angle is a quadrantal 
angle. For an angle in standard position, the terminal side can be determined if we 
know any point, except the origin, on the terminal side.

 EXAMPLE  4  Angles in standard position

A standard position angle of 60° is a first-quadrant angle with its terminal side 60° from 
the x-axis. See Fig. 4.7(a).

A second-quadrant angle of 130° is shown in Fig. 4.7(b).
A third-quadrant angle of 225° is shown in Fig. 4.7(c).
A fourth-quadrant angle of 340° is shown in Fig. 4.7(d).
A standard-position angle of -120° is shown in Fig. 4.7(e). Since the terminal side 

is in the third quadrant, it is a third-quadrant angle.
A standard-position angle of 90° is a quadrantal angle since its terminal side is the 

positive y@axis. See Fig. 4.7(f).

Fig. 4.4 

1.36 rad ! 77.9°

■ In some graphing calculators, functions that 
can convert radians to degrees (while in 
degree mode) and degrees to radians (while in 
radian mode) can be found under the Angle 
menu.

Fig. 4.5 

17°53' ! 17.88°

Fig. 4.6 

154.36° ! 154°22'

Practice Exercise

1.  Change 17°24′ to decimal form, to the 
nearest 0.01°.

Practice Exercise

2.  In Fig. 4.7, which terminal side is that of 
a standard position angle of 240°?

Fig. 4.7 ■ 
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 EXAMPLE  5  Standard position—terminal side

In Fig. 4.8, u is in standard position, and the terminal side is uniquely determined by 
knowing that it passes through the point 12, 12 . The same terminal side passes through 
the points 14, 22  and 111

2 , 11
4 2 , among an unlimited number of other points. Knowing 

that the terminal side passes through any one of these points makes it possible to deter-
mine the terminal side of the angle. The method to calculate this angle u is shown in 
Section 4.3. ■

Fig. 4.8 
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EXERCISES 4.1

In Exercises 1–4, find the indicated angles in the given examples of 
this section.

 1. In Example 1, find another angle that is coterminal with the given 
angle.

 2. In Example 3, change 53′ to 35′ and then find the decimal form.

 3. In Example 4, find another standard-position angle that has the 
same terminal side as the angle in Fig. 4.7(c).

 4. In Example 4, find another standard-position angle that has the 
same terminal side as the angle in Fig. 4.7(e).

In Exercises 5–8, draw the given angles.

 5. 60°, 120°, -90° 6. 330°, -150°, 450°
 7. 50°, -360°, -30° 8. 45°, 245°, -250°

In Exercises 9–16, determine one positive and one negative coterminal 
angle for each angle given.

 9. 45° 10. 73°
 11. -150° 12. 462°
 13. 70°30′ 14. 153°47′
 15. 278.1° 16. -197.6°

In Exercises 17–20, by means of the definition of a radian, change the 
given angles in radians to equal angles expressed in degrees to the 
nearest 0.01°.

 17. 0.265 rad 18. 0.838 rad

 19. 1.447 rad 20. -3.642 rad

In Exercises 21–24, use a calculator conversion sequence to change 
the given angles in radians to equal angles expressed in degrees to the 
nearest 0.01°.

21. 0.329 rad 22. 2.089 rad

23. -4.110 rad 24. 6.705 rad

In Exercises 25–28, use a calculator conversion sequence to change 
the given angles to equal angles expressed in radians to three 
significant digits.

25. 56.0° 26. 137.4°
27. 384.8° 28. -17.5°

In Exercises 29–32, change the given angles to equal angles expressed 
to the nearest minute.

29. 47.50° 30. 715.80°
31. -5.62° 32. 142.87°

In Exercises 33–36, change the given angles to equal angles expressed 
in decimal form to the nearest 0.01°.

33. 15°12′ 34. 517°39′
35. 301°16′ 36. -4°47′

In Exercises 37–44, draw angles in standard position such that the 
terminal side passes through the given point.

37. 14, 22  38. 1 -3, 82
39. 1 -3, -52  40. 16, -12
41. 1 -7, 52  42. 1 -4, -22
43. 1 -2, 02  44. 10, 62
In Exercises 45–52, the given angles are in standard position. 
Designate each angle by the quadrant in which the terminal side lies, 
or as a quadrantal angle.

45. 31°, 310° 46. 180°, 92°
47. 435°, -270° 48. -5°, 265°
49. 1 rad, 2 rad 50. 3 rad, p rad

51. 4 rad, p>3 rad  52. 12 rad, -2 rad

In Exercises 53 and 54, change the given angles to equal angles 
expressed in decimal form to the nearest 0.001°. In Exercises 55 and 
56, change the given angles to equal angles expressed to the nearest 
second.

53. 21°42′36″ 54. 7°16′23″
55. 86.274° 56. 257.019°

Answers to Practice Exercises

1. 17.40° 2. (e)
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The corresponding sides are the sides, one in each triangle, that are between the same 
pair of equal corresponding angles.

 EXAMPLE  1  Similar triangles

In Fig. 4.9, the triangles are similar and are lettered so that corresponding sides and 
angles have the same letters. That is, angles A1 and A2, angles B1 and B2, and angles C1 
and C2 are pairs of corresponding angles. The pairs of corresponding sides are a1 and 
a2, b1 and b2, and c1 and c2. From the properties of similar triangles, we know that the 
corresponding angles are equal, or

∠A1 = ∠A2  ∠B1 = ∠B2  ∠C1 = ∠C2

Also, the corresponding sides are proportional, which we can show as

 
a1

a2
=

b1

b2
  

a1

a2
=

c1

c2
  

b1

b2
=

c1

c2
 ■

In Example 1, if we multiply both sides of a1>a2 = b1>b2 by a2>b1, we get

a1

a2
aa2

b1
b =

b1

b2
aa2

b1
b , or 

a1

b1
=

a2

b2

Using this, we now proceed to the definitions of the trigonometric functions.
An angle u is placed in standard position and perpendiculars from points on the ter-

minal side are dropped to the x@axis, as shown in Fig. 4.10. In doing this, similar trian-
gles are obtained, each with one vertex at the origin and one side along the x-axis.

 EXAMPLE  2  Equality of ratios of corresponding sides

In Fig. 4.10, we can see that triangles ORP and OSQ are similar since their correspond-
ing angles are equal (each has the same angle at O, a right angle, and therefore equal 
angles at P and Q). This means ratios of the lengths of corresponding sides are equal. 
For example,

RP
OR

=
SQ
OS

, which is the same as 
y
x

=
b
a

  using the coordinates of points P and Q

For any position (except at the origin) of Q on the terminal side of u, the ratio of b>a of 
the ordinate to the abscissa will equal  y>x. ■

For an angle in standard position, we may set up six different ratios of the values of 
x, y, and r, as shown in Fig. 4.11. Because of the properties of similar triangles, for a 
given angle, any of these ratios has the same value for any point on the terminal side. 
This means the values of the ratios depend on the size of the angle, and there is only 
one value for each ratio. This means the ratios are functions of the angle, and they are 

Important to the definitions and development in this section are the right triangle, the 
Pythagorean theorem, and the properties of similar triangles. We now briefly review 
similar triangles and their properties.

As stated in Section 2.2, two triangles are similar if they have the same shape (but not 
necessarily the same size). Similar triangles have the following important properties.

 4.2 Defining the Trigonometric Functions

Trigonometric Functions

Properties of Similar Triangles
1. Corresponding angles are equal.

2. Corresponding sides are proportional.

Fig. 4.9 
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c1 a1

When two triangles are similar, the 
ratio of one side to another side in 
one triangle is the same as the ratio 
of the corresponding sides in the 
other triangle.
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called the trigonometric functions. We now define them, giving their names and the 
abbreviations that are used when using them.

Trigonometric Functions

sine of u:  sin u =
y
r
   cosecant of u:  csc u =

1
 sin u

=
r
y

cosine of u:  cos u =
x
r
   secant of u:  sec u =

1
 cos u

=
r
x

 (4.1)

tangent of u:  tan u =
y
x
   cotangent of u: cot u =

1
 tan u

=
x
y

Notice that three of the trigonometric functions (cosecant, secant, and 
cotangent) are reciprocals of the other three trigonometric functions (sine, 
cosine, and tangent, respectively).

Here, the distance r from the origin to the point (x, y) on the terminal side is called 
the radius vector, and it is assumed that r 7 0 (if r = 0, there would be no terminal 
side and therefore no angle).

A given function is not defined when the denominator is zero, and if either x = 0 or 
y = 0, this does affect the domain of some of the trigonometric functions. We will discuss 
the domains and ranges of these functions in Chapter 10, when we discuss their graphs.

In this chapter, we use the trigonometric functions of acute angles (angles between 
0° and 90°). However, the definitions above are general and may be used with angles of 
any size. We will discuss these functions in general in Chapters 8 and 20.

EVALUATING THE TRIGONOMETRIC FUNCTIONS
The definitions in Eqs. (4.1) are used in evaluating the trigonometric functions. Also, 
we often use the Pythagorean theorem, which is discussed in Section 2.2, and which 
we restate here for reference. For the right triangle in Fig. 4.12, with hypotenuse c and 
legs a and b,

Fig. 4.12 

ac

b

 c2 = a2 + b2 (4.2)

 EXAMPLE  3  Values of trigonometric functions as fractions

Find the values of the trigonometric functions of the standard-position angle u with its 
terminal side passing through the point 13, 42 .

By placing the angle in standard position, as shown in Fig. 4.13, and drawing the 
terminal side through 13, 42 , we find by use of the Pythagorean theorem that

r = 232 + 42 = 125 = 5

Using the values x = 3, y = 4, and r = 5, we find that

  sin u =
4
5
  cos u =

3
5
  tan u =

4
3

  cot u =
3
4
  sec u =

5
3
  csc u =

5
4

We have left each of these results in the form of a fraction, which is considered to be an 
exact form in that there has been no approximation made. In writing decimal values, we 
find that tan u = 1.33 and sec u = 1.67, where these values have been rounded off to 
3 significant digits and are therefore approximate. ■

Fig. 4.13 
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x
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4 (3, 4)

0 4

r = 5

Practice Exercise

1.  In Example 3, change (3, 4) to (4, 3) and 
then find tan u and sec u.
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 EXAMPLE  4  Values of trigonometric functions as decimals

Find the values of the trigonometric functions of the standard-position angle whose 
terminal side passes through 17.27, 4.492 . The coordinates are approximate.

We show the angle and the given point in Fig. 4.14. From the Pythagorean theorem, 
we have

r = 27.272 + 4.492 = 8.545

(Here, we show a rounded-off value of r. It is not actually necessary to record the value 
of r since its value can be stored in the memory of a calculator. The reason for record-
ing it here is to show the values used in the calculation of each of the trigonometric 
functions.) Therefore, we have the following values:

  sin u =
4.49
8.545

= 0.525  cos u =
7.27
8.545

= 0.851

  tan u =
4.49
7.27

= 0.618   cot u =
7.27
4.49

= 1.62

  sec u =
8.545
7.27

= 1.18   csc u =
8.545
4.49

= 1.90

Since the coordinates are approximate, the results are rounded off to 3 significant  
digits. ■

Fig. 4.14 
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When one expresses the result of a trigonometric function in form  sin u = 0.525, it is a 
common error to omit the angle and report the value as  sin = 0.525. This is a meaning-
less expression because the angle for which the trigonometric expression is evaluated 
must be given. The trigonometric function itself indicates which pair of sides in the right 
triangle to divide, but without an angle for reference, the ratio has no meaning.

COMMON ERROR

If one of the trigonometric functions is known, it is possible to find the values of the 
other functions. The following example illustrates the method.

 EXAMPLE  5  Given one trigonometric function, find others

If we know that sin u = 3>7, and that u is a first-quadrant angle, we know the ratio of 
the ordinate to the radius vector (y to r) is 3 to 7. Therefore, the point on the terminal 
side for which y = 3 can be found by use of the Pythagorean theorem. The x-value for 
this point is

x = 272 - 32 = 149 - 9 = 140 = 2110

Therefore, the point 12110, 32  is on the terminal side, as shown in Fig. 4.15.
Therefore, using the values x = 2110, y = 3, and r = 7, we have the other trigo-

nometric functions of u. They are

cos u =
2110

7
 tan u =

3
2110

 cot u =
2110

3
 sec u =

7
2110

 csc u =
7
3

These values are exact. Approximate decimal values found on a calculator are

 cos u = 0.904  tan u = 0.474  cot u = 2.11

  sec u = 1.11   csc u = 2.33  ■

Fig. 4.15 
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Practice Exercise

2.  In Example 5, change sin u = 3>7 to 
cos u = 3>7, and then find approximate 
values of sin u and cot u.
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EXERCISES 4.2

In Exercises 1 and 2, answer the given questions about the indicated 
examples of this section.

 1. In Example 3, if the point 14, 32  replaces the point 13, 42 , what 
are the values of the trigonometric functions in exact form?

 2. In Example 5, if 4>7 replaces 3>7, what are the values of the 
trigonometric functions in exact form?

In Exercises 3–16, find values of the trigonometric functions of the 
angle (in standard position) whose terminal side passes through the 
given points. For Exercises 3–14, give answers in exact form. For 
Exercises 15 and 16, the coordinates are approximate.

 3. 16, 82   4. 15, 122   5. 115, 82   6. (240, 70)

 7. 10.09, 0.402   8. 13.2, 6.02   9. 11, 1152  10. 113, 22
11. 11, 12  12. 16, 52  13. 150, 202  14. 11, 122
15. 10.687, 0.9432   16. 137.65, 21.872
In Exercises 17–24, find the values of the indicated functions. In 
Exercises 17–20, give answers in exact form. In Exercises 21–24, the 
values are approximate. Assume all angles are acute.

17. Given cos u = 12>13, find sin u and cot u.

18. Given sin u = 1>2, find cos u and csc u.

19. Given tan u = 2, find sin u and sec u.

20. Given sec u = 15>2, find tan u and cos u.

21. Given sin u = 0.750, find cot u and csc u.

22. Given cos u = 0.0326, find sin u and tan u.

23. Given cot u = 0.254, find cos u and tan u.

24. Given csc u = 1.20, find sec u and cos u.

In Exercises 25–28, each point listed is on the terminal side of an 
angle. Show that each of the indicated functions is the same for each 
of the points.

25. 13, 42 , 16, 82 , 14.5, 62 , sin u and tan u

26. 15, 122 , 115, 362 , 17.5, 182 , cos u and cot u

27. 10.3, 0.12 , 19, 32 , 133, 112 , tan u and sec u

28. (40, 30), (8, 6), (36, 27), csc u and cos u

In Exercises 29–36, answer the given questions.

29. If tan u = 3>4, what is the value of sin2 u + cos2 u? 3sin2 u = 1sin u224
30. If sin u = 2>3, what is the value of sec2 u - tan2 u?

31. If y = sin u, what is cos u in terms of y?

32. If x = cos u, what is tan u in terms of x?

33. What is x if 1x + 1, 42  and 1 -2, 62  are on the same terminal 
side of a standard-position angle?

34. What is x if 12, 52  and 17, x2  are on the same terminal side of a 
standard-position angle?

35. From the definitions of the trigonometric functions, it can be seen 
that csc u is the reciprocal of sin u. What function is the recipro-
cal of cos u?

36. Refer to the definitions of the trigonometric functions in Eqs. 
(4.1). Is the quotient of one of the functions divided by cos u 
equal to tan u? Explain.

Answers to Practice Exercises

1. tan u = 3>4, sec u = 5>4 2. sin u = 0.904, cot u = 0.474

In practice, we often need the values of the trigonometric functions for angles meas-
ured in degrees. One way to find some of these values is to use certain basic facts from 
geometry to find the functions of particular common angles. This is illustrated in the 
next two examples.

 EXAMPLE  1  Function values of 30° and 60°

From geometry, we find that the side opposite a 30° angle in a right triangle is one-half 
of the hypotenuse. Therefore, letting y = 1 and r = 2 (see Fig. 4.16), and using the
Pythagorean theorem, we have x = 222 - 12 = 13. Now, with x = 13, y = 1, 
and r = 2,

 sin 30° =
1
2

    cos 30° =
13
2

    tan 30° =
113

Using this same method, we find the functions of 60° to be

  sin 60° =
13
2
  cos 60° =

1
2
  tan 60° = 13 ■

 4.3 Values of the Trigonometric Functions
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 EXAMPLE  2  Trigonometric function values of 45°

Find  sin 45°,  cos 45°, and  tan 45°.
If we place an isosceles right triangle with one of its 45° angles in standard position 

and hypotenuse along the radius vector (see Fig. 4.17), the terminal side passes through 
(1, 1), since the legs of the triangle are equal. Using this point, x = 1, y = 1, and 
r = 12. Thus,

 sin 45° =
112

   cos 45° =
112

   tan 45° = 1 ■

In Examples 1 and 2, we have given exact values. Decimal approximations are also 
given in the following table that summarizes the results for 30°, 45°, and 60°.

Fig. 4.17 
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■ It is helpful to be familiar with these values, 
as they are used in later sections.

Trigonometric Functions of 30°, 45°, and 60°

  (exact values) (decimal approximations)

u 30° 45° 60° 30° 45° 60°
sin u 1

2
112

13
2

0.500 0.707 0.866

cos u 13
2

112
1
2

0.866 0.707 0.500

tan u 113
1 13 0.577 1.000 1.732

Another way to find values of the functions is to use a scale drawing. Measure the 
angle with a protractor, then measure directly the values of x, y, and r for some point 
on the terminal side, and finally use the proper ratios to evaluate the functions. 
However, this method is only approximate, and geometric methods work only for a 
limited number of angles. As it turns out, it is possible to find these values to any 
required accuracy through more advanced methods (using calculus and what are known 
as power series).

Values of sin u, cos u, and tan u are programmed into graphing calculators. The fol-
lowing examples illustrate using a calculator to find trigonometric values.

 EXAMPLE  3  Trigonometric values from a calculator

Using a graphing calculator to find the value of tan 67.36°, first enter the function and 
then the angle, just as it is written. The resulting display is shown in Fig. 4.18.

Therefore, tan 67.36° = 2.397 626 383. This also means the ratio y/x is approxi-
mately 2.398 for this angle. ■

Not only are we able to find values of the trigonometric functions if we know the 
angle, but we can also find the angle if we know that value of a function. In doing this, 
we are actually using another important type of mathematical function, an inverse 
function. The inverse of a function, in general, undoes the process that the function 
performs. A trigonometric function operates on an angle and returns the value of the 
ratio of two sides of a triangle. An inverse trigonometric function does the opposite: 
it operates on the ratio of sides (a number) and returns an angle (in degrees or radians, 
depending on the calculator mode). They are discussed in detail in Chapter 20. For the 
purpose of using a calculator at this point, it is sufficient to recognize and understand 
the notation that is used.

The notation for “the angle whose sine is x” is sin-1 x. This is called the inverse sine 
function. Equivalent meanings are given to cos-1 x (the angle whose cosine is x) and 
tan-1 x (the angle whose tangent is x).

Fig. 4.18 

In most examples, we will round off 
trigonometric function values to 3 
significant digits. However, if the 
angle is approximate (meaning it is a 
measured value), then we round the 
trigonometric function values to the 
same number of significant digits as 
there are in the angle.
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The following example illustrates the use of the cos-1 key.

 EXAMPLE  4  Inverse trigonometric function value from a calculator

If cos u = 0.3527, which means that u =  cos-1 0.3527 (u is the angle whose cosine is 
0.3527), we can use a graphing calculator to find u. The display is shown in Fig. 4.19.

Therefore, u = 69.35° (rounded off). ■

Although we can usually set up the solution of a problem in terms of the sine, 
cosine, or tangent, there are times when a value of the cotangent, secant, or cosecant is 
used. We now show how values of these functions are found on a calculator.

From the definitions in Eqn. (4.1), csc u = r>y and sin u = y>r. This means the 
value of csc u is the reciprocal of the value of sin u. Again, using the definitions, we 
find that the value of sec u is the reciprocal of cos u and the value of cot u is the recip-
rocal of tan u. Since the reciprocal of x equals x-1, we use the x-1 key along with the 
sin, cos, and tan keys, to find the values of csc u, sec u, and cot u.

 EXAMPLE  5  Reciprocal trigonometric function value from a calculator

To find the value of sec 27.82°, we use the fact that

sec 27.82° =
1

 cos 27.82°
 or sec 27.82° = 1cos 27.82°2-1

The right-hand side of either of these two expressions can be entered into a calculator 
to find that  sec 27.82∘ = 1.131 (rounded off).

Note that we calculated the reciprocal 1cos 27.82°2-1, and not the angle that would 
be denoted by using the cos-1 notation. ■

 EXAMPLE  6  Given a reciprocal trigonometric function, solve for U

To find the value of u if cot u = 0.354, we use the fact that

 tan u =
1

cot u
=

1
0.354

This means that u = tan-1 10.354-12 . Therefore, u = 70.5° (rounded off). ■

 EXAMPLE  7  Given one trigonometric function, find another

Find sin u if sec u = 2.504.
Since the value of sec u is known, we know that cos u = 2.504-1 (or 1>2.504).

This in turn tells us that u = cos-1 12.504-12 . Since we are to find the value of sin u, 
we can see that

sin u = sin1cos-112.504-12 2
Therefore, sin u = 0.9168 (rounded off). Instead of using compounded functions, u 
could be solved numerically first, then sin u evaluated, rounding only after the 
final step. ■

With trigonometric functions, a raised -1 shows that the inverse of the function is 
intended, it is not a negative exponent.

 sin -1 x represents an angle whose sine value is x. It is a common error to confuse this 
with cosecant, the reciprocal of sine.

 sin -1x =  inverse sine of ratio x

 sin -1x ≠
1

 sin x
=  csc x

COMMON ERROR

Fig. 4.19 

Practice Exercises

1. Find the value of sin 12.5°.
2. Find u if tan u = 1.039.

Reciprocal Trigonometric Functions

Practice Exercises

3. Find the value of cot 56.4°.
4. Find u if csc u = 1.904.

Because the use of a raised -1 in 
trigonometric function notation to 
indicate the inverse is often confused 
with reciprocal trigonometric func-
tions, a common practice to avoid 
such confusion is to use the prefix 
“arc” in front of the trigonometric 
relation instead of the -1 notation. 
For example,

arcsin x =  sin -1x
arccos x =  cos -1x
arctan x =  tan -1x

Both notations are commonly used, 
and are interchangeable.
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The following example illustrates the use of the value of a trigonometric function in 
an applied problem. We consider various types of applications later in the chapter.

 EXAMPLE  8  Applied problem with a trigonometric function

When a rocket is launched, its horizontal velocity vx is related to the velocity v with 
which it is fired by the equation vx = v cos u (which means v1cos u2 ). Here, u is the 
angle between the horizontal and the direction in which it is fired (see Fig. 4.20). Find 
vx if v = 1250 m>s and u = 36.0°.

Substituting the given values of v and u in vx = v cos u, we have

 vx = 1250 cos 36.0°
  vx = 1010 m>s

Therefore, the horizontal velocity is 1010 m>s. ■

ORDER OF OPERATIONS AND NOTATION  
WITH TRIGONOMETRIC FUNCTIONS
Some standard conventions have been adopted for trigonometric functions regarding 
order of operations and how the independent variable is written. First of all, it is cus-
tomary to write trigonometric functions without the brackets surrounding the independ-
ent variable, so that sin1x2 = sin x.

This is also acceptable when the argument of the function is an expression contain-
ing a single term. For example,  sin12x2 = sin 2x is the common shorthand conven-
tion, meaning that 2x forms the value that the sine function operates on. Similarly, 
it is understood that  sin1x22 = sin x2. However, if the argument of the function 
involves multiple terms, then the brackets must be included. For example, 
sin1x + 52 ≠ sin x + 5 = 5 + sin x. If confusion arises because of the shorthand 
convention for trigonometric arguments, the brackets around the value that the trig-
onometric function is supposed to operate upon must be included to remove the 
confusion.

For exponents of a trigonometric function, a shorthand convention is also applied. 
The expression 1sin x22 = sin2 x is useful since it allows one to avoid writing the 
extra set of brackets. Order of operations indicates that  sin x is evaluated first, and then 
the result is squared. We must be careful, however, since  sin2 x ≠ sin x2. The left  
side of this equation requires that  sin x be evaluated first, and then the result is squared. 
The right side requires that x be squared first, and then the sine function is applied to 
the result.

Fig. 4.20 

36.0°

v

vx

EXERCISES 4.3

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then find the indicated values.

 1. In Example 4, change cos u to sin u and then find the angle.

 2. In Example 5, change sec 27.82° to csc 27.82° and then find the 
value.

 3. In Example 6, change 0.354 to 0.345 and then find the angle.

 4. In Example 7, change sin u to tan u and then find the value.

In Exercises 5–8, use a protractor to draw the given angle. Measure 
off 10 units (centimetres are convenient) along the radius vector. Then 
measure the corresponding values of x and y. From these values, 
determine the trigonometric functions of the angle.

 5. 40° 6. 75° 7. 15° 8. 53°

In Exercises 9–24, find the values of the trigonometric functions.

 9. sin 22.4° 10. cos 72.5°
11. tan 57.6° 12. sin 36.0°
13. cos 15.71° 14. tan 8.653°
15. sin 89.0° 16. cos 0.700°
17. cot 67.78° 18. csc 22.81°
19. sec 50.4° 20. cot 41.8°
21. csc 0.4900° 22. sec 7.80°
23. cot 85.96° 24. csc 76.30°

In Exercises 25–40, find u for each of the given trigonometric functions.

 25. cos u = 0.3261 26. tan u = 2.470

27. sin u = 0.9114 28. cos u = 0.0427
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29. tan u = 0.207 30. sin u = 0.109

31. cos u = 0.650 07 32. tan u = 5.7706

33. csc u = 1.245 34. sec u = 2.045

35. cot u = 0.06060 36. csc u = 1.002

37. sec u = 3.65 38. cot u = 14.4

39. csc u = 8.26 40. cot u = 0.1519

In Exercises 41–44, use a calculator to verify the given relationships 
or statements. 3sin2 u = 1sin u224
41. 

 sin 43.7°
 cos 43.7°

= tan 43.7° 42. sin2 77.5° + cos2 77.5° = 1

43. tan 70° =
 tan 30° +  tan 40°

1 - 1 tan 30°2 1 tan 40°2
44. sin 78.4° = 21sin 39.2°2 1cos 39.2°2
In Exercises 45–48, explain why the given statements are true for an 
acute angle u.

45. sin u is always between 0 and 1.

46. tan u can equal any positive real number.

47. cos u decreases in value from 0° to 90°.
48. The value of sec u is never less than 1.

In Exercises 49–52, find the values of the indicated trigonometric 
functions.

49. Find sin u, given tan u = 1.936.

50. Find cos u, given sin u = 0.6725.

51. Find tan u, given sec u = 1.3698.

52. Find csc u, given cos u = 0.1063.

In Exercises 53–58, solve the given problems.

53. Find the first quadrant angle between the line y = 3x and the  
x-axis.

54. Find the angle in the first quadrant between the lines y = 3x and 
y = 2x.

55. The sound produced by a jet engine was measured at a distance of 
100 m in all directions. The loudness L of the sound (in decibels) 
was found to be L = 70.0 + 30.0 cos u, where the 0° line was 
directed in front of the engine. Calculate L for u = 54.5°.

56. A brace is used in the structure shown in Fig. 4.21. Its length is 
l = a1sec u + csc u2 . Find l if a = 28.0 cm and u = 34.5°.

Fig. 4.21 a

a

u

ul

57. The signal from an AM radio station with two antennas d metres 
apart has a wavelength l (in m). The intensity of the signal 
depends on the angle u as shown in Fig. 4.22. An angle of mini-
mum intensity is given by sin u = 1.50 l>d. Find u if l = 200 m 
and d = 400 m.

Fig. 4.22 

A1

A2

d
u

Fig. 4.23 

v

u

h

58. A submarine dives such that the horizontal distance h it moves 
and the vertical distance v it dives are related by v = h tan u. 
Here, u is the angle of the dive, as shown in Fig. 4.23. Find u if 
h = 2.35 km and v = 1.52 km.

Answers to Practice Exercises

1. 0.216 2. 46.10° 3. 0.664 4. 31.68°

We know that a triangle has three sides and three angles. If one side and any other two 
of these six parts are known, we can find the other three parts. One of the known parts 
must be a side, for if we know only the three angles, we know only that any triangle 
with these angles is similar to any other triangle with these angles.

 EXAMPLE  1  Parts of a triangle

Assume that one side and two angles are known, such as the side of 5 and the angles of 
35° and 90° in the triangle in Fig. 4.24. Then we may determine the third angle a by the 
fact that the sum of the angles of a triangle is always 180°. Of all possible similar trian-
gles having the three angles of 35°, 90°, and 55° (which is a), we have the one with the 
particular side of 5 between angles of 35° and 90°. Only one triangle with these parts is 
possible. ■

To solve a triangle means that, when we are given three parts of a triangle (at least 
one a side), we are to find the other three parts. In this section, we are going to demon-
strate the method of solving a right triangle. Since one angle of the triangle is 90°, it is 
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Fig. 4.24 
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necessary to know one side and one other part. Also, since the sum of the three angles 
is 180°, we know that the sum of the other two angles is 90°, and they are acute angles. 
It also means they are complementary angles, following the definition in Section 2.1.

For consistency, when we are labeling the parts of the right triangle, we will use the 
letters A and B to denote the acute angles and C to denote the right angle. The letters 
a, b, and c will denote the sides opposite these angles, respectively. Thus, side c is the 
hypotenuse of the right triangle. See Fig. 4.25.

In solving right triangles, we will find it convenient to express the trigonometric 
functions of the acute angles in terms of the sides. By placing the vertex of angle A at 
the origin and the vertex of right angle C on the positive x-axis, as shown in Fig. 4.26, 
we have the following ratios for angle A in terms of the sides of the triangle.

Fig. 4.25 

ac

b
A

B

C

Fig. 4.26 

x

y

c

bA C

B (b, a)

a

  sin A =
a
c
  cos A =

b
c
  tan A =

a
b

 
(4.3)

 cot A =
b
a
  sec A =

c
b
  csc A =

c
a

If we should place the vertex of B at the origin, instead of the vertex of angle A, we 
would obtain the following ratios for the functions of angle B (see Fig. 4.27):

Fig. 4.27 

x

y

c

aB

A (a, b)

b

  sin B =
b
c
  cos B =

a
c
  tan B =

b
a

 
(4.4)

 cot B =
a
b
  sec B =

c
a
  csc B =

c
b

Eqs. (4.3) and (4.4) show that we may generalize our definitions of the trigono-
metric functions of an acute angle of a right triangle (we have chosen ∠A in Fig. 4.28) 
to be as follows:

Fig. 4.28 

Side
opposite
A

A

B

Hypotenuse

Side adjacent A  

 sin A =
side opposite A

hypotenuse
  csc A =

hypotenuse
side opposite A

  cos A =
side adjacent A

hypotenuse
   sec A =

hypotenuse
side adjacent A

 (4.5)

 tan A =
side opposite A
side adjacent A

  cot A =
side adjacent A
side opposite A

Using the definitions in this form, we can solve right triangles without placing the 
angle in standard position. The angle need only be a part of any right triangle.

In general, regardless of its orientation, any triangle having a right angle and a speci-
fied angle of interest u can have its sides and angles related using the trigonometric 
function definitions. In Fig. 4.29, if we let the side adjacent to angle u be a, the side 
opposite the angle u be o, and the hypotenuse of the right triangle be h, then we have 
the following general trigonometric functions:

Which side is adjacent or opposite 
depends on the angle being consid-
ered. In Fig. 4.28, the side opposite  
A is adjacent to B, and the side adja-
cent to A is opposite B.
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hu

o
a

sin u = o>h   csc u = h>o

 cos u = a>h   sec u = h>a (4.6)
tan u = o>a   cot u = a>o
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We note from the above discussion of Fig. 4.28 that sin A = cos B, tan A = cot B, 
and sec A = csc B. From this, we conclude that cofunctions of acute complementary 
angles are equal. The sine function and cosine function are cofunctions, the tangent 
function and cotangent function are cofunctions, and the secant function and cosecant 
function are cofunctions.

 EXAMPLE  2  Cofunctions of complementary angles

Given a = 4, b = 7, and c = 165 (see Fig. 4.30), find sin A, cos A, tan A, sin B, cos B, 
and  tan B in exact form and in approximate decimal form (to three significant digits).

The first three basic trigonometric relations on the left-hand side of Eq. (4.6) are 
often remembered with a useful mnemonic, soh cah toa, where each leading letter 
in the triplet corresponds to the trigonometric function name (sine, cosine, and tan-
gent, respectively), and the other two letters in each triplet correspond to the names 
of the sides in the ratio that defines each function, i.e., soh means  sin u = o>h.

LEARNING T IP

Fig. 4.30 

C

B

A

c ! "65

b ! 7

a ! 4

 sin A =
side opposite angle A

hypotenuse
=

4165
= 0.496  sin B =

side opposite angle B
hypotenuse

=
7165

= 0.868

 cos A =
side adjacent angle A

hypotenuse
=

7165
= 0.868  cos B =

side adjacent angle B
hypotenuse

=
4165

= 0.496

 tan A =
side opposite angle A
side adjacent angle A

=
4
7

= 0.571    tan B =
side opposite angle B
side adjacent angle B

=
7
4

= 1.75

We see that A and B are complementary angles. Comparing values of the functions 
of angles A and B, we see that  sin A = cos B and cos A = sin B. ■

We are now ready to solve right triangles. See how the following procedure is used 
in the examples that follow.

Procedure for Solving a Right Triangle
1. Sketch a right triangle and label the known and unknown sides and angles.

2.  Express each of the three unknown parts in terms of the known parts and 
solve for the unknown parts.

3.  Check the results. The sum of the angles should be 180°. If only one side is 
given, check the computed side with the Pythagorean theorem. If two sides 
are given, check the angles and computed side by using appropriate trigono-
metric functions.

 EXAMPLE  3  Given angle and side—find other parts

Solve the right triangle with A = 50.0° and b = 6.70.
We first sketch the right triangle shown in Fig. 4.31. (In making the sketch, we 

should be careful to follow proper labelling of the triangle as outlined on page 127.) 
We then express unknown side a in terms of known side b and known angle A and 
solve for a. We will then do the same for unknown side c and unknown angle B.

Finding side a, we know that tan A =
a
b

, which means that a = b tan A. Thus,

a = 6.70 tan 50.0° = 7.98

Next, solving for side c, we have cos A =
b
c

, which means c =
b

 cos A
.

c =
6.70

 cos 50.0°
= 10.4Fig. 4.31 

ac

b ! 6.70

50.0°

A C

B
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Now, solving for B, we know that A + B = 90°, or

 B = 90° - A

 B = 90° - 50.0° = 40.0°

Therefore, a = 7.98, c = 10.4, and B = 40.0°.

 Checking the angles: A + B + C = 50.0° + 40.0° + 90° = 180°
 Checking the sides:   c2 = a2 + b2

 10.42 = 7.982 + 6.702

 108.16 ≃ 108.57

Since the computed values were rounded off, the values 108.16 and 108.57 show that 
the values for sides a and c check. As we calculate the values of the unknown parts, if 
we store each in the calculator memory, we can get a better check of the solution. ■

We should also point out that, by inspection, we can make a rough check on the 
sides and angles of any triangle.

The longest side is always opposite the largest angle, and the shortest side is  
always opposite the smallest angle.

In a right triangle, the hypotenuse is always the longest side. We see that this is true for 
the sides and angles for the triangle in Example 3, where c is the longest side (opposite 
the 90° angle) and b is the shortest side and is opposite the angle of 40°.

 EXAMPLE  4  Given two sides, find other parts

Solve the right triangle with b = 56.82 and c = 79.55.
We sketch the right triangle as shown in Fig. 4.32. Since two sides are given, we 

will use the Pythagorean theorem to find the third side a. Also, we will use the cosine 
to find ∠A.

Since c2 = a2 + b2,

  a2 = c2 - b2

 a = 2c2 - b2

 a = 279.552 - 56.822

 a = 55.67

Since cos A =
b
c

, we have

  cos A =
56.82
79.55

 A = cos-1a56.82
79.55

b
 A = 44.42°

It is not necessary to actually calculate the ratio 56.82>79.55. In the same way, we find 
the value of angle B:

  sin B =
56.82
79.55

 B = sin-1a56.82
79.55

b
 B = 45.58°

Although we used a different function, we did use exactly the same ratio to find B as 
we used to find A. Therefore, many texts would find B from the fact that A + B = 90°, 
or B = 90° - A = 90° - 44.42° = 45.58°. This is also acceptable since any possible 
error should be discovered when the solution is checked.

Practice Exercise

1.  In a right triangle, find a if B = 20.0° 
and c = 8.50.

In finding the unknown parts, we 
first expressed them in terms of the 
known parts. We do this because it is 
best to use given values in calcula-
tions. If we use one computed value 
to find another computed value, any 
error in the first would be carried to 
the value of the second. For instance, 
in Example 3, if we were to find the 
value of c by using the value of a, 
any error in a would cause c to be in 
error as well.
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a

56.82

79.55

A C

B

Practice Exercise

2.  In a right triangle, find B if a = 20.0  
and b = 28.0.
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We have now found that

a = 55.67  A = 44.42°  B = 45.58°

Checking the sides and angles, we first note that side a is the shortest side and is 
opposite the smallest angle, ∠A. Also, the hypotenuse is the longest side. Next, using 
the sine function (we could use the cosine or tangent) to check the sides, we have

sin 44.42° =
55.67
79.55

, or     sin 45.58° =
56.82
79.55

, or

 0.6999 ≈ 0.6998 0.7142 ≈ 0.7143

This shows that the values check. As we noted at the end of Example 3, we would get a 
more accurate check if we save the calculator values as they are found and use them for 
the check. ■

 EXAMPLE  5  Unknown parts in terms of known parts

If A and a are known, express the unknown parts of a right triangle in terms of A and a.
We sketch a right triangle as in Fig. 4.33, and then set up the required expressions.

 Since 
a
b

= tan A, we have a = b tan A, or b =
a

tan A
.

 Since 
a
c

= sin A, we have a = c sin A, or c =
a

sin A
.

Since A is known, B = 90° - A. ■

■ As we noted earlier, the symbol ≈  means 
“equals approximately.”

Fig. 4.33 
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EXERCISES 4.4

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then find the indicated values.

 1. In Example 2, interchange the values for a and b and then find the 
values.

 2. In Example 3, change 6.70 to 7.60 and then solve the triangle.

 3. In Example 4, change 56.82 to 65.82 and then solve the triangle.

 4. In Example 5, in line 1, change a to b and then find the expres-
sions for the unknown parts.

In Exercises 5–8, draw appropriate figures and verify through 
observation that only one triangle may contain the given parts (that 
is, any others which may be drawn will be congruent).

 5. A 60° angle included between sides of 3 cm and 6 cm

 6. A side of 4 cm included between angles of 40° and 50°
 7. A right triangle with a hypotenuse of 5 cm and a leg of 3 cm

 8. A right triangle with a 70° angle between the hypotenuse and a 
leg of 5 cm

In Exercises 9–32, solve the right triangles with the given parts. 
Round off results. Refer to Fig. 4.34.

 9. A = 77.8°, a = 6700

10. A = 18.4°, c = 0.0897

11. a = 153, c = 345

12. a = 932, c = 1240

13. B = 32.1°, c = 23.8

14. B = 64.3°, b = 0.652

15. b = 82, c = 88 16. a = 5920, b = 4110

17. A = 32.10°, c = 56.85 18. B = 12.60°, c = 18.42

19. a = 56.73, b = 44.09 20. a = 9.908, c = 12.63

21. B = 37.5°, a = 0.862 22. A = 87.25°, b = 8.450

23. B = 74.18°, b = 1.849 24. A = 51.36°, a = 3692

25. a = 591.87, b = 264.93 26. b = 2.9507, c = 5.0864

27. A = 2.975°, b = 14.592 28. B = 84.942°, a = 7413.5

29. B = 9.56°, c = 0.0973 30. a = 1.28, b = 16.3

31. a = 35.0, C = 90.0° 32. A = 25.7°, B = 64.3°

In Exercises 33–36, find the part of the triangle labelled either x or A 
in the indicated figure.

Fig. 4.34 

ac

bA C

B

Fig. 4.35 

x

A

(a) (b)3.92

61.7°
36.3

19.7

A
(c) 0.8742

0.6673
x

(d) 7265

22.45°

33. Fig. 4.35(a) 34. Fig. 4.35(b)

35. Fig. 4.35(c) 36. Fig. 4.35(d)
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In Exercises 41–44, refer to Fig. 4.34. In Exercises 41–43, the listed 
parts are assumed known. Express the other parts in terms of the 
known parts.

41. A, c        42. a, b        43. B, a

 44. In Fig. 4.34, is there any combination of two given parts (not includ-
ing C) that does not give a unique solution of the triangle? Explain.

Answers to Practice Exercises

1. a = 7.99 2. 54.5°

In Exercises 37–40, find the indicated part of the right triangle that 
has the given parts.

37. One leg is 25.6, and the hypotenuse is 37.5. Find the smaller 
acute angle.

38. One leg is 8.50, and the angle opposite this leg is 52.3°. Find the 
other leg.

39. The hypotenuse is 827, and one angle is 17.6°. Find the longer 
leg.

40. The legs are 0.596 and 0.842. Find the larger acute angle.

Many problems in science, technology, and everyday life can be solved by finding the 
missing parts of a right triangle. In this section, we illustrate a number of these in the 
examples and exercises.

 EXAMPLE  1  Determining the circumference and radius of earth

During the summer solstice at noon, the sun is directly straight up in the sky at loca-
tions on earth that are at the Tropic of Cancer (latitude approximately 23°26′ N). 
Therefore, any vertical stick will not cast a shadow. Assuming a spherical earth, at any 
location north of the Tropic of Cancer, the sun in the sky at noon will be at a position 
closer to the horizon, thereby causing the stick to cast a shadow (see Fig. 4.36). Since 
the sun’s rays striking earth at any location are essentially parallel, the length of the 
shadow of a vertical stick can be used to calculate the circumference and radius of 
earth. Todos Santos, Mexico, lies on the tropic of Cancer, and 3060 km directly north is 
the village of Empress, Alberta. A person in Empress, Alberta, takes a 1.00 m long 
ruler and orients it vertically at noon on the summer solstice. The shadow that it casts is 
52.3 cm long. Determine the circumference and radius of earth.

The sun’s rays are parallel and lie along the same direction as the vertical stick at 
Todos Santos. At Empress, a vertical stick makes an angle u with respect to the sun’s 
rays as shown. The angle u is a corresponding angle to the angle subtended by the two 
towns with vertex at the centre of earth. From the shadow that is cast,

tan u =
0.523 m
1.00 m

u = tan-1(0.523)   tangent of required angle =
given opposite side
given adjacent side

u = 27.6° * p  rad
180°

u = 0.482 rad 

To find earth’s radius RE, we use Eq. (2.12), which states that any distance formed 
along a circular arc if the angle is in radians is

 s = ur

 d = uRE

 RE = d>u
 RE = 3060 km>0.482

 RE = 6350 km

To find earth’s circumference cE, we use Eq. (2.9),

 c = 2pr

 cE = 2pRE

 4.5 Applications of Right Triangles
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and Angles

RE
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Empress
0.523 m
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d

U

U

U

Fig. 4.36 

■ See the chapter introduction.
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 cE = 2p16350 km2
 cE = 39 900 km

Both values are close to the average radius of earth, 6370 km, and circumference, 
40 000 km. ■

 EXAMPLE  2  Angle of elevation

Horseshoe Falls on the Canadian side of Niagara Falls can be seen from a small boat 
760 m downstream. The angle of elevation (the angle between the horizontal and the 
line of sight, when the object is above the horizontal) from the observer to the top of 
Horseshoe Falls is 4.0°. How high are the falls?

By drawing an appropriate figure, as shown in Fig. 4.37, we show 
the given information and what we are to find. Here, we let h be the 
height of the falls and label the horizontal distance from the boat to 
the base of the falls as 760 m. From the figure, we see that

 
h

760
= tan 4.0°     

required opposite side
given adjacent side

= tangent of given angle

 h = 760 tan 4.0°
 h = 53 m

 We have rounded off the result since the data are good only to two 
significant digits. (Niagara Falls is on the border between the United 
States and Canada and is divided into the American Falls and the 
Horseshoe Falls. About 500 000 tonnes of water flow over the falls 
each minute.) ■

 EXAMPLE  3  Angle of depression

A blimp is 565 m above the ground and south of Olympic Stadium in Montreal during 
a Grey Cup game. The angle of depression (the angle between the horizontal and the 
line of sight, when the object is below the horizontal) of the north goal line from the 
blimp is 58.5°. How far is the observer in the blimp from the goal line?

Again, we sketch a figure as shown in Fig. 4.38. Here, we let d be 
the distance between the blimp and the north goal line. From the fig-
ure, we see that

 
565
d

= sin 58.5°  
given opposite side
required hypotenuse

= sine of known angle

 d =
565

sin 58.5°
 d = 663 m

In this case, we have rounded off the result to three significant digits, 
which is the accuracy of the given information. (The Grey Cup games 
in 1977, 1979, 1981, 1985, 2001, and 2008 were played in the 
Olympic Stadium.) ■

Carefully note the difference between the angle of elevation and the angle of depres-
sion. The angle of elevation is the angle through which an object is observed by elevat-
ing the line of sight above the horizontal. The angle of depression is the angle through 
which the object is observed by depressing (lowering) the line of sight below the 
horizontal.

 EXAMPLE  4  Height of a missile

A missile is launched at an angle of 26.55° with respect to the horizontal. If it travels in 
a straight line over level terrain for 2.000 min and its average speed is 6355 km>h, 
what is its altitude at this time?

■ See the chapter introduction.

Fig. 4.37 

760 m
4.0°

Angle of elevation

Fig. 4.38 

58.5°
Angle of 
depression

d
565 m
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In Fig. 4.39, we let h represent the altitude of the missile after 2.000 min (altitude is 
measured on a perpendicular line). Also, we determine that in this time the missile has 
flown 211.8 km in a direct line from the launching site. This is found from the fact that

it travels at 6355 km>h for 2.000 min a 1 h
60 min

b  and distance = speed * time. We 

therefore have a6355 
km
h

b a 1
30.00

 hb = 211.8 km. This means

 
h

211.8
= sin 26.55°  

required opposite side
known hypotenuse

= sine of given angle

 h = 211.81sin 26.55°2
 h = 94.67 km  ■

 EXAMPLE  5  Measurement of an angle

A driver coming to an intersection sees the word STOP in the roadway. From the meas-
urements shown in Fig. 4.40, find the angle u that the letters make at the driver’s eye.

From the figure, we know sides BS and BE in triangle BES and sides BT  and BE in 
triangle BET . This means we can find ∠TEB and ∠SEB by use of the tangent. We then 
find u from the fact that u = ∠TEB - ∠SEB.

 tan ∠TEB =
18.0
1.20

,  ∠TEB = 86.2°

 tan ∠SEB =
15.0
1.20

,  ∠SEB = 85.4°

  u = 86.2° - 85.4° = 0.8°  ■

 EXAMPLE  6  Surveyor—indirect measurement

Using lasers, a surveyor makes the measurements shown in Fig. 4.41, where points B 
and C are in a marsh. Find the distance between B and C.

Since the distance BC = AC - AB, BC is found by finding AC and AB and 
subtracting:

 
AB

265.74
= tan 21.66°

 AB = 265.74 tan 21.66°

 
AC

265.74
= tan 121.66° + 8.85°2

 AC = 265.74 tan 30.51°
 BC = AC - AB = 265.74 tan 30.51° - 265.74 tan 21.66°

  BC = 51.06 m  ■

The indirect measurement of distances, such as the one illustrated in Examples 1 and 6, 
has been one of the most useful applications of trigonometry. Methods of indirect meas-
urement have also been used in many fields, such as surveying and navigation.

Fig. 4.39 

U S A

211.8 km h

26.55°

Practice Exercise

1.  Find u if the letters in the road are 2.0 m 
long, rather than 3.0 m long.

Fig. 4.40 

u

15.0 m

3.0 m

1.20 m

S

E

B
T

S T O P
Fig. 4.41 

8.85°

21.66°

265.74 mP
A

B

C

■ Lasers were first produced in the late 1950s.

EXERCISES 4.5

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then find the indicated values.

 1. In Example 3, in line 4, change 58.5° to 62.1° and then find the 
distance.

 2. In Example 4, in line 2, change 2.000 min to 3.000 min and then 
find the altitude.

In Exercises 3–40, solve the given problems. Sketch an appropriate 
figure, unless the figure is given.

 3. A straight 122-m culvert is built down a hillside that makes an 
angle of 54.0° with the horizontal. Find the height of the hill.
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 4. In 2000, about 70 tonnes of soil were removed from 
under the Leaning Tower of Pisa, and the angle the 
tower made with the ground was increased by about 
0.5°. Before that, a point near the top of the tower 
was 50.5 m from a point at the base (measured 
along the tower), and this top point was directly 
above a point on the ground 4.25 m from the same 
base point. See Fig. 4.42. How much did the point 
on the ground move toward the base point?

 5. A tree has a shadow 22.8 m long when the angle of elevation of 
the sun is 62.6°. How tall is the tree?

 6. The straight arm of a robot is 1.25 m long and makes an angle of 
13.0° above a horizontal conveyor belt. How high above the belt 
is the end of the arm? See Fig. 4.43.

13. From the southernmost point in Sleeping Giant Provincial Park in 
Thunder Bay, Ontario, it is found that the angle of elevation of 
the highest point on the Sleeping Giant is 3.9°.  If the horizontal 
distance between the points is 5.5 km, how much higher is the 
point on the summit?

14. What is the steepest angle between the surface of a board 3.50 cm 
thick and a nail 5.00 cm long if the nail is hammered into the 
board such that it does not go through?

15. A rectangular piece of plywood 1200 mm by 2400 mm is cut 
from one corner to an opposite corner. What are the angles 
between edges of the resulting pieces?

16. A guardrail is to be constructed around the top of a circular obser-
vation tower. The diameter of the observation area is 12.3 m. If 
the railing is constructed with 30 equal straight sections, what 
should be the length of each section?

17. The angle of inclination of a road is often expressed as percent 
grade, which is the vertical rise divided by the horizontal run 
(expressed as a percent). See Fig. 4.46. A 6.0% grade corresponds 
to a road that rises 6.0 m for every 100 m along the horizontal. 
Find the angle of inclination that corresponds to a 6.0% grade.

20. A street light is designed as shown in Fig. 4.48. How high above 
the street is the light?

18. A tabletop is in the shape of a regular octagon (eight sides). What 
is the greatest distance across the table if one side of the octagon 
is 0.750 m?

19. To get a good view of a person in front of a teller’s window, it is 
determined that a surveillance camera at a bank should be directed 
at a point 5.17 m to the right and 2.25 m below the camera. See 
Fig. 4.47. At what angle of depression should the camera be 
directed?

11. In the design of a new building, a doorway is 795 mm above the 
ground. A ramp for the disabled, at an angle of 6.00° with the 
ground, is to be built to the doorway. How long will the ramp be?

12. On a test flight, during the landing of the space shuttle, the ship 
was 105 m above the end of the landing strip. It then came in on a 
constant angle of 7.50° with the landing strip. How far from the 
end of the landing strip did it first touch ground?

 9. A robot is on the surface of Mars. The angle of depression from a 
camera in the robot to a rock on the surface of Mars is 13.33°. The 
camera is 196.0 cm above the surface. How far from the camera is 
the rock?

 10. The CN Tower in Toronto can be seen from a point on the ground 
known to be 1600 m away from the base of the tower. The angle 
of elevation from the observer to the top of the tower is 19°. How 
high is the CN Tower? See Fig. 4.45.

 7. The headlights of an automobile are set such that the beam drops 
5.10 cm for each 7.50 m in front of the car. What is the angle 
between the beam and the road?

 8. A bullet was fired such that it just grazed the top of a table. It 
entered a wall, which is 3.84 m from the graze point in the table, 
at a point 1.41 m above the tabletop. At what angle was the bullet 
fired above the horizontal? See Fig. 4.44.

Fig. 4.42 

50
.5

 m

4.25 m

Fig. 4.43 

13.0°
Belt

1.25 m

Fig. 4.44 

1.41 m

3.84 m

Fig. 4.45 

19°

1600 m

h

Horizontal run

Rise

Fig. 4.46 

Fig. 4.47 

5.17 m
2.25 m

Fig. 4.48 

20.0°

8.53 m

3.81 m
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21. A straight driveway is 85.0 m long, and the top is 12.0 m above 
the bottom. What angle does it make with the horizontal?

22. Part of the Tower Bridge in London is a drawbridge. This part of 
the bridge is 76.0 m long. When each half is raised, the distance 
between them is 8.0 m. What angle does each half make with the 
horizontal? See Fig. 4.49.

Fig. 4.49 

8.0 m

76.0 m

23. A square wire loop is rotating in the magnetic field between two 
poles of a magnet in order to induce an electric current. The axis 
of rotation passes through the centre of the loop and is midway 
between the poles, as shown in the side view in Fig. 4.50. How 
far is the edge of the loop from either pole if the side of the square 
is 7.30 cm and the poles are 7.66 cm apart when the angle between 
the loop and the vertical is 78.0°?

Fig. 4.50 

N

S

78.0°

7.30 cm
7.66 cm

27. Find the angle u in the taper shown in 
Fig. 4.52. (The front face is an isosceles 
trapezoid.)

28. What is the circumference of the Arctic 
Circle (latitude 66°32′ N)? The radius of 
the earth is 6370 km.

 29. A draftsman sets the legs of a pair of 
dividers so that the angle between them is 
32.0°. If each leg is 11.4 cm long, what is 
the distance between their ends where 
they touch the paper?

30. The ratio of the width to the height of an HDTV screen is 16 to 9. 
What is the angle between the width and a diagonal of the screen 
to the nearest 0.1°?

31. A stairway 1.0 m wide goes from the bottom of a cylindrical stor-
age tank to the top at a point halfway around the tank. The hand-
rail on the outside of the stairway makes an angle of 31.8° with 
the horizontal, and the radius of the tank is 11.8 m. Find the 
length of the handrail. See Fig. 4.53.

24. From a space probe circling Io, one of Jupiter’s moons, at an alti-
tude of 552 km, it was observed that the angle of depression of 
the horizon was 39.7°. What is the radius of Io?

25. A manufacturing plant is designed to be in the shape of a regular 
pentagon with 92.5 m on each side. A security fence surrounds 
the building to form a circle, and each corner of the building is to 
be 25.0 m from the closest point on the fence. How much fencing 
is required?

26. A traveller on a boat along the Saguenay River in Quebec wishes 
to estimate the height of the cliff at Cape Trinity. Fig. 4.51 shows 
the angle measurements she made at points 250 m apart. How 
high is the cliff? (In the 
figure, the triangle 
containing the height h 
is vertical and perpen-
dicular to the path fol-
lowed by the boat. The 
height of the boat can 
be ignored.)

70.8∘
34.1∘

250 m

h

Saguenay
River 

Fig. 4.52 

4.90 cm

4.50 cm

1.86 cm
u

32. An antenna was on the top of the World Trade Center (before it 
was destroyed in 2001). From a point on the river 2400 m from 
the Center, the angles of elevation of the top and bottom of  
the antenna were 12.1° and 9.9°, respectively. How tall was the 
antenna? (Disregard the small part of the antenna near the base 
that could not be seen.) The former World Trade Center is 
shown in Fig. 4.54. (This problem is included in memory of 
those who suffered and died as a result of the terrorist attack of 
September 11, 2001.)

33. Some of the streets of Montreal, Quebec, are shown in Fig. 4.55. 
(a) How far is it between intersections B and C? (b) How far is it 
between intersections C and D?

11.8 m

31.8°

1.0 m

Fig. 4.53 

Fig. 4.54 
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34. A supporting girder structure is shown in Fig. 4.56. Find the 
length x.

Fig. 4.56 

39.4°

27.8°

7.25 m 5.25 m

x

37. Find a formula for the area of the trapezoidal aqueduct cross sec-
tion shown in Fig. 4.59.

Answer to Practice Exercise

1. u = 0.5°

38. A communications satellite is in orbit 35 300 km directly above 
the earth’s equator. What is the greatest latitude f from which a 
signal can travel from the earth’s surface to the satellite in a 
straight line? The radius of the earth is 6370 km.

39. What is the angle between the base of a cubical glass paper-
weight and a diagonal of the cube (from one corner to the oppo-
site corner) to 3 significant digits?

40. Find the angle of view u of the camera lens (see Fig. 4.60), given 
the measurements shown in the figure.

36. The political banner shown in Fig. 4.58 is in the shape of a paral-
lelogram. Find its area.

35. The diameter d of a pipe can be determined by noting the distance 
x on the V-gauge shown in Fig. 4.57. Points A and B indicate 
where the pipe touches the gauge, and x equals either AV or VB. 
Find a formula for d in terms of x and u.

Fig. 4.57 

u

A
x

x

B

dV

Fig. 4.58 
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48 cm
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375 mm

 CHAPTER 4   EQUATIONS

 sine of u:  sin u =
y
r
   cosecant of u:  csc u =

1
 sin u

=
r
y

 cosine of u:  cos u =
x
r
   secant of u:  sec u =

1
 cos u

=
r
x

 (4.1)

 tangent of u:  tan u =
y
x
   cotangent of u: cot u =

1
 tan u

=
x
y

 

 Pythagorean theorem 
 c2 = a2 + b2  (4.2)

y

x

y
r

x

u

O

(x, y)

ac

b
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  sin A =
side opposite A

hypotenuse
  csc A =

hypotenuse
side opposite A

  cos A =
side adjacent A

hypotenuse
  sec A =

hypotenuse
side adjacent A

 (4.5)

  tan A =
side opposite A
side adjacent A

  cot A =
side adjacent A
side opposite A

  sin u = o>h   csc u = h>o

  cos u = a>h   sec u = h>a (4.6)
  tan u = o>a    cot u = a>o

Side
opposite
A

A

Hypotenuse

Side adjacent A  

hu

o
a

 CHAPTER 4   REVIEW EXERCISES

In Exercises 1–4, find the smallest positive angle and the smallest 
negative angle (numerically) coterminal with but not equal to the 
given angle.

 1. 17.0°   2. 248.3°   3. -217.5°   4. -7.6°

In Exercises 5–8, express the given angles in decimal form (to the 
nearest 0.01°).

 5. 31°54′   6. 574°45′   7. -38°6′    8. 321°27′

In Exercises 9–12, express the given angles to the nearest minute.

 9. 17.5°   10. -65.4°   11. 749.7°   12. 126.25°

In Exercises 13–16, determine the trigonometric functions of the 
angles (in standard position) whose terminal side passes through the 
given points. Give answers in exact form.

 13. 124, 72   14. 15, 42    15. 148, 482    16. 11.2, 0.52
In Exercises 17–20, find the indicated trigonometric functions. Give 
answers in decimal form, rounded off to three significant digits.

 17. Given sin u = 5
13, find cos u and cot u.

 18. Given cos u = 3
8, find sin u and tan u.

 19. Given tan u = 2, find cos u and csc u.

 20. Given cot u = 40, find sin u and sec u.

In Exercises 21–28, find the values of the trigonometric functions. 
Round off results.

 21. sin 72.1° 22. cos 40.3°
 23. tan 88.64° 24. sin 0.91°
 25. sec 18.4° 26. csc 82.4°
 27. 1cot 7.06°2 1sin 7.06°2 - cos 7.06°
 28. 1sec 79.36°2 1sin 79.36°2 - tan 79.36°

In Exercises 29–40, find u for each of the given trigonometric func-
tions. Round off results.

 29. cos u = 0.950 30. sin u = 0.630 52

 31. tan u = 1.574 32. cos u = 0.0135

 33. csc u = 4.713 34. cot u = 0.7561

 35. sec u = 25.4 36. csc u = 1.92

 37. cot u = 7.117 38. sec u = 1.006

 39. sin u = 0.9998 40. cos u = 1.402

In Exercises 41–52, solve the right triangles with the given parts. 
Refer to Fig. 4.61.

 41. A = 17.0°, b = 6.00

 42. B = 68.1°, a = 1080

 43. a = 81.0, b = 64.5

 44. a = 106, c = 382

 45. A = 37.5°, a = 12.0

 46. B = 15.7°, c = 126

 47. b = 6.508, c = 7.642 48. a = 0.721, b = 0.144

 49. A = 49.67°, c = 0.8253 50. B = 4.38°, b = 5682

 51. a = 11.652, c = 15.483 52. a = 724.39, b = 852.44

In Exercises 53–94, solve the given problems.

 53. Find the value of x for the triangle shown in Fig. 4.62.

Fig. 4.61 

ac

bA C

B

Fig. 4.62 12

25°

x

 54. Explain three ways in which the value of x can be found for the 
triangle shown in Fig. 4.63. Which of these methods is the easiest?

2
x

31°
Fig. 4.63 
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 55. Find the perimeter of a regular octagon (eight equal sides with 
equal interior angles) that is inscribed in a circle (all vertices of 
the octagon touch the circle) of radius 10.

 56. Explain why values of sin u increase as u increases from 0° to 90°.
 57. What is x if 13, 22  and 1x, 72  are on the same terminal side of 

an acute angle?

 58. Two legs of a right triangle are 2.607 and 4.517. What is the 
smaller acute angle?

59. Show that the side c of any triangle ABC is related to the perpen-
dicular h from C to side AB by the equation

c = h cot A + h cot B.

60. For the isosceles triangle shown in Fig. 4.64, show that 
c = 2a sin A2.

61. If x = tan u, what is csc u in terms of x?

62. Find the angle between the line passing through the origin and  13, 22 , and the line passing through the origin and 12, 32 .

63. A sloped cathedral ceiling is between walls that are 2.50 m high 
and 4.00 m high. If the walls are 5.00 m apart, at what angle does 
the ceiling rise?

64. A pendulum 1.25 m long swings through an angle of 5.60°. What 
is the distance between the extreme positions of the pendulum?

65. The voltage E at any instant in a coil of wire that is turning in a 
magnetic field is given by E = EM cos a, where EM is the maxi-
mum voltage and a is the angle the coil makes with the field. Find 
the acute angle a if E = 56.9 V and EM = 339 V.

66. A formula for the area of a quadrilateral is A = 1
2 d1d2 sin u, 

where d1 and d2 are the lengths of the diagonals and u is the angle 
between them. Find the area of a four-sided carpet remnant with 
diagonals 1050 mm and 1330 mm and u = 72.0°.

67. For a car rounding a curve, the road should be banked at an angle

  u according to the equation tan u =
v2

gr
. Here, v is the speed of the

  car and r is the radius of the curve in the road. See Fig. 4.65. Find 
u for v = 24.2 m>s, g = 9.80 m>s2, and r = 282 m.

Fig. 4.64 

aa A

c

Fig. 4.65 

r

u

68. The apparent power S in an electric circuit in which the power is 
P and the impedance phase angle is u is given by S = P sec u. 
Given P = 12.0 V # A and u = 29.4°, find S.

69. A surveyor measures two sides and the included angle of a trian-
gular tract of land to be a = 31.96 m, b = 47.25 m, and 
C = 64.09°. (a) Show that a formula for the area A of the tract is 
A = 1

2ab sin C. (b) Find the area of the tract.

70. A water channel has the cross section of an isosceles trapezoid. 
See Fig. 4.66. (a) Show that a formula for the area of the cross sec-
tion is A = bh + h2 cot u. (b) Find A if b = 12.6 m, h = 4.75 m, 
and u = 37.2°.

Fig. 4.66 

u

b

h

71. In tracking an airplane on radar, it is found that the plane is  
27.5 km on a direct line from the control tower, with an angle of 
elevation of 10.3°. What is the altitude of the plane?

72. A straight emergency chute for an airplane is 5.5 m long. In being 
tested, the top of the chute is 2.9 m above the ground. What angle 
does the chute make with the ground?

73. The windshield on an automobile is inclined 42.5° with respect to 
the horizontal. Assuming that the windshield is flat and rectangu-
lar, what is its area if it is 1.50 m wide and the bottom is 0.480 m 
in front of the top?

74. A water slide at an amusement park is 25.0 m long and is inclined 
at an angle of 52.0° with the horizontal. How high is the top of the 
slide above the water level?

75. Find the area of the patio shown in Fig. 4.67.

Fig. 4.67 
28.0º

76.0º

4.30 m

76. The cross section (a regular trapezoid) of a levee to be built along 
a river is shown in Fig. 4.68. What is the volume of rock and soil 
that will be needed for a 1-km length of the levee?

Fig. 4.68 
65.0º 65.0º

75.0 m

50.0 m 50.0 m

77. The vertical cross section of an attic room in a house is shown in 
Fig. 4.69. Find the distance d across the floor.

Fig. 4.69 

28.3 

1.85 m

d

78. The impedance Z and resistance R in an ac circuit may be repre-
sented by letting the impedance be the hypotenuse of a right trian-
gle and the resistance be the side adjacent to the phase angle u. If 
R = 1750 Ω and u = 17.38°, find Z.
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79. A typical aqueduct built by the Romans dropped on average at an 
angle of about 0.030° to allow gravity to move the water from the 
source to the city. For such an aqueduct of 65 km in length, how 
much higher was the source than the city?

80. The distance from the ground level to the underside of a cloud is 
called the ceiling. See Fig. 4.70. A ground observer 950 m from a 
searchlight aimed vertically notes that the angle of elevation of 
the spot of light on a cloud is 76°. What is the ceiling?

84. A Coast Guard boat 2.75 km from a straight beach can travel at 
37.5 km>h. By travelling along a line that is at 69.0° with the 
beach, how long will it take it to reach the beach? See Fig. 4.74.

85. One span of the multi-span Thousand Island International Bridge 
connecting Canada and the United States over the St. Lawrence 
River is 230 m long (see Fig. 4.75). The angle subtended by  
the span at the eye of an observer in a helicopter is 2.2°. Show that 
the distance calculated from the helicopter to the span is about the 
same if the line of sight is perpendicular to the end or to the mid-
dle of the span.

82. A person standing on a level plain hears the sound of a plane, 
looks in the direction of the sound, but the plane is not there 
(familiar?). When the sound was heard, it was coming from a 
point at an angle of elevation of 25°, and the plane was travelling 
at 720 km>h (201 m>s) at a constant altitude of 850 m along a 
straight line. If the plane later passes directly over the person, at 
what angle of elevation should the person have looked directly to 
see the plane when the sound was heard? (The speed of sound is 
340 m>s.) See Fig. 4.72.

81. The window of a house is shaded as shown in Fig. 4.71. What 
percent of the window is shaded when the angle of elevation u of 
the sun is 65°?

Fig. 4.70 950 m

76 

Ceiling

Fig. 4.71 

0.96 m
Window

0.75 m

0.60 m

u

Fig. 4.72 

720 km/h

25

850 m340 m/s

83. In the structural support shown in Fig. 4.73, find x.

31.0

21.8
14.2 cm

x

Fig. 4.73 

Fig. 4.74 

P-345

69.0°

2.75 km
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Fig. 4.75 

230 m

2.2

86. Each side piece of the trellis shown in Fig. 4.76 makes an angle of 
80.0° with the ground. Find the length of each side piece and the 
area covered by the trellis.

Fig. 4.76 

2.
25

 m

80.0

2.25 m

87. A laser beam is transmitted with a “width” of 0.002 00°. What is 
the diameter of a spot of the beam on an object 52 500 km dis-
tant? See Fig. 4.77.

Fig. 4.77 

0.002 00°
52 500 km d

88. Find the gear angle u in Fig. 4.78 if t = 0.180 cm.

Fig. 4.78 

0.355 cm
t t

t

u
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89. The surface of a soccer ball consists of 20 regular hexagons (six 
sides) interlocked around 12 regular pentagons (five sides). See 
Fig. 4.79. (a) If the side of each hexagon and pentagon is 45.0 mm, 
what is the surface area of the soccer ball? (b) Find the surface 
area, given that the diameter of the ball is 222 mm, (c) Assuming 
that the given values are accurate, account for the difference in 
the values found in parts (a) and (b).

93. A uniform strip of wood 5.0 cm wide frames a trapezoidal win-
dow, as shown in Fig. 4.82. Find the left dimension l of the out-
side of the frame.

Fig. 4.79 

C

u

P

2.10 m

1.25 m

Fig. 4.80 

90. Through what angle u must the crate shown in Fig. 4.80 be tipped 
in order that its centre of gravity C is directly above the pivot 
point P?

91. A hang glider is directly above the shore of a lake. An observer 
on a hill is 375 m along a straight line from the shore. From the 
observer, the angle of elevation of the hang glider is 42.0°, and 
the angle of depression of the shore is 25.0°. How far above the 
shore is the hang glider?

92. A ground observer sights a weather balloon to the east at an angle 
of elevation of 15.0°. A second observer 2.35 km to the east of the 
first also sights the balloon to the east at an angle of elevation of 
24.0°. How high is the balloon? See Fig. 4.81.

Fig. 4.81 

15.0° 24.0°

2.35 km

94. A crop-dusting plane flies over a level field at a height of 8.0 m. 
If the dust leaves the plane through a 30° angle and hits the 
ground after the plane travels 25 m, how wide a strip is dusted? 
See Fig. 4.83.

Fig. 4.82 

65.0 cm

22.5°
5.0 cm

l

Fig. 4.83 

30°

25 m

8.
0 

m

w

Writing Exercise
95. A patio is designed in the shape of an isosceles trapezoid with 

bases 5.0 m and 7.0 m. The other sides are 6.0 m each. Write one 
or two paragraphs explaining how to use (a) the sine and (b) the 
cosine to find the internal angles of the patio, and (c) the tangent 
in finding the area of the patio.

 CHAPTER  4   PRACTICE TEST

 1. Express 37°39′ in decimal form.

 2. Find the value of tan 73.8°.
 3. Find u if cos u = 0.3726.

 4. A ship’s captain, desiring to travel due south, discovers due to 
an improperly functioning instrument, the ship has gone 22.62 
km in a direction 4.05° east of south. How far from its course (to 
the east) is the ship?

 5. Find tan u in fractional form if sin u =
2
3

.

 6. Find csc u if tan u = 1.294.

 7. Solve the right triangle in Fig. 4.84 if A = 37.4° and b = 52.8.

 8. Solve the right triangle in Fig. 4.84 if a = 2.49 and c = 3.88.

Fig. 4.84 

ac

bA C

B

 9. The equal sides of an isosceles triangle are each 12.0, and each 
base angle is 42.0°. What is the length of the third side?

 10. If tan u = 9>40, find values of sin u and cos u. Then evaluate 
sin u>cos u.
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 11. In finding the wavelength l (the Greek letter lambda) of light, 
the equation l = d sin u is used. Find l if d = 30.05 mm and 
u = 1.167°. (m is the prefix for 10-6.)

 12. Determine the trigonometric functions of an angle in standard 
position if its terminal side passes through 15, 22 . Give answers 
in exact and decimal forms.

 13. The loading ramp at the back of a truck is 3.2 m long. What  
angle does it make with the ground if the top of the ramp is  
1.0 m above the ground?

 14. A surveyor sights two points directly ahead. Both are at an ele-
vation 18.525 m lower than the observation point. How far apart 

are the points if the angles of depression are 13.500° and 
21.375°, respectively? See Fig. 4.85.

Fig. 4.85 

21.375°

13.500°

18.525 m
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LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to: 

 Identify and solve a linear 
equation of one variable

 Identify a system of equations 
in two or three variables

 Calculate the slope of a linear 
function

 Graph a linear function
 Use the slope-intercept form of 

a line
 Solve a system of linear 

equations graphically
 Identify an inconsistent system 

of equations, and a dependent 
system of equations

 Solve a system of two or three 
linear equations algebraically

 Solve a system of two or 
three linear equations using 
determinants (Cramer’s rule)

 Solve application problems 
involving systems of linear 
equations

As knowledge about electric circuits was first developing, in 1848 the German physi-
cist Gustav Kirchhoff formulated what are now known as Kirchhoff’s current law 
and Kirchhoff’s voltage law, using principles of conservation of charge and energy. 

These laws are still widely used today, and when they are applied, more than one equation is 
usually set up. To find the needed information about the circuit, it is necessary to find solu-
tions that satisfy all equations at the same time. The solution of some circuits using 
Kirchhoff’s laws will be shown in this chapter. Although best known for these laws of elec-
tric circuits, Kirchhoff is also credited in the study of optics as a founder of the modern 
chemical identification method known as spectrum analysis.

Mathematical methods of solving such systems of equations were well known to Kirchhoff, 
and this allowed the study of electricity to progress rapidly. In fact, 100 years earlier a book 
by the English mathematician Colin Maclaurin was published (2 years after his death) in 
which many well organized topics in algebra were covered, including a general method of 
solving systems of equations. This method is now called Cramer’s rule (named for the Swiss 
mathematician Gabriel Cramer, who popularized it in a book he wrote in 1750.) Some of the 
methods of solution, including Cramer’s rule, are included in this chapter.

Two or more equations that relate variables are found in many fields of science and technol-
ogy. These include aeronautics, business, transportation, the analysis of forces on a structure, 
medical doses, and robotics, as well as electric circuits. These applications often require solu-
tions that satisfy all equations simultaneously.

In this chapter, our attention is restricted to linear equations (variables occur only to the first 
power). We will consider systems of two equations with two unknowns and systems of three 
equations with three unknowns. Systems with other kinds of equations and systems with 
more unknowns are covered in later chapters.

5 Systems of 
Linear Equations; 
Determinants

142

 Kirchhoff’s circuit laws deal with the 
concepts of conservation of electric 
charge and energy in electric circuits. 
The systems of equations generated 
from these laws for specific circuits 
will be analysed in this chapter.
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 5.1 Linear Equations

Linear Equations

Many of the equations we have encountered are examples of a very important type of 
equation, the linear equation. In general, an equation is termed linear in a given set of 
variables if each term contains only one variable, to the first power, or is a constant.

 EXAMPLE  1  linear

The equation 5x - t + 6 = 0 is linear in x and t, but 5x2 - t + 6 = 0 is not linear, 
due to the presence of x2.

The equation 4x + y = 8 is linear in x and y, but 4xy + y = 8 is not, due to the 
presence of xy.

The equation x - 6y + z - 4w = 7 is linear in x, y, z, and w, but the equation 
x - 6

y + z - 4w = 7 is not, due to the presence of 6y, where y appears in the denom-
inator (i.e., y has a power of −1).  ■

An equation that can be written in the form

■ Recall that 
1
y

= y-1. See Eq. (1.8).

 ax + b = 0 (5.1)

is known as a linear equation in one unknown. Here, a and b  are constants. We dis-
cussed this type of equation in Section 1.10. The solution, or root, of the equation is 
x = -b>a. We can also see that the solution is the same as the zero of the linear func-
tion f1x2 = ax + b.

 EXAMPLE  2  Linear equation in one unknown

The equation 2x + 7 = 0 is a linear equation of the form of Eq. (5.1), with a = 2 and 
b = 7.

The solution to the linear equation 2x + 7 = 0, or the zero of the linear function 
f1x2 = 2x + 7, is -7>2. From Chapter 3, recall that the zero of a function f1x2  is 
the value of x for which f1x2 = 0.  ■

In the next example, two specific illustrations are given of applied problems that 
involve more than one unknown.

 EXAMPLE  3  

(a) A basic law of direct-current electricity, known as Kirchhoff’s current law, may 
be stated as “The algebraic sum of the currents entering any junction in a circuit 
is zero.” If three wires are joined at a junction as in Fig. 5.1, this law leads to 
the linear equation

i1 + i2 + i3 = 0

  where i1 , i2 ,  and i3  are the currents in each of the wires. (Either one or two of 
these currents must have a negative sign, showing that it is actually leaving the 
junction.)

(b) Two forces, F1  and F2 ,  acting on a beam might be related by the equation

 2F1 + 4F2 = 200 ■

An equation that can be written in the form

Practice Exercise

1.  Find the zero of the function 
f1x2 = 3x + 9.

 ax + by = c (5.2)

Fig. 5.1

i1 i3

i2

■ See the chapter introduction.
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is a linear equation in two unknowns. For such equations, we know that for each 
value of x there is a corresponding value of y. Each of these pairs of numbers is a solu-
tion to the equation.

 EXAMPLE  4  Linear equation in two unknowns

The equation 2x - y - 4 = 0 is a linear equation in two unknowns, x and y, since we 
can write it in the form of Eq. (5.2) as 2x - y = 4. To graph this equation, we can 
write it as y = 2x - 4. From Fig. 5.2, we see that the graph is a straight line.

The coordinates of any point on the line give us a solution of this equation. For 
example, the point 11, -22  is on the line. This means that x = 1, y = -2 is a solu-
tion of the equation. We can show that these values are a solution by substituting in 
the equation 2x - y - 4 = 0. This gives us

 2112 - 1 -22 - 4 = 0

 2 + 2 - 4 = 0

 0 = 0

Since we have equality, x = 1, y = -2 is a solution. In the same way, we can show 
that x = 3, y = 2 is a solution.

If we are given the value of one variable, we find the value of the other variable, 
which gives a solution by substitution. For example, for the equation 
2x - y - 4 = 0, if x = -1, we have

 21 -12 - y - 4 = 0

 -2 - y - 4 = 0

 y = -6

Therefore, x = -1, y = -6 is a solution, and the point 1 -1, -62  is on the graph. ■

Two linear equations, each containing the same two unknowns, x and y,

A solution is any set of numbers, one 
for each variable, that satisfies the 
equation.

LEARNING T IP

Fig. 5.2 

22

26

20

y

x

24

22

(21, 26)

(1, 22)

(3, 2)2

Practice Exercise

2.  Is x = -3, y = 2 a solution to the 
 equation of Example 4?

are said to form a system of simultaneous linear equations, where a1, a2, b1, b2, c1, 
and c2 are all constants. A solution of the system is any pair of values 1x, y2  that 
satisfies both equations. Methods of finding the solutions to such systems are the prin-
cipal concern of this chapter.

 EXAMPLE  5  

The perimeter of the page on which this problem is printed (also see Fig. 5.3) is 98.2 
cm. The length is 6.1 cm more than the width.

From the two statements, we can set up two equations in the two unknown quan-
tities, the length and the width. Letting l = the length and w = the width, we have

 2l + 2w = 98.2

 l - w = 6.1

as a system of simultaneous linear equations. The solution of this system is l = 27.6 cm 
and w = 21.5 cm. These values satisfy both equations since

2127.62 + 2121.52 = 98.2 and 27.6 - 21.5 = 6.1

This is the only pair of values that satisfies both equations. Methods for finding such 
solutions are presented in later sections of this chapter. ■ 

  a1x + b1y = c1 
(5.3)

 a2x + b2y = c2

Fig. 5.3 

l

w
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EXERCISES 5.1

In Exercises 1–3, answer the given questions about the indicated 
examples of this section.

 1. In the second line of the third paragraph of Example 1, if 6
y is 

replaced by its reciprocal, is there any change in the conclusion 
drawn?

 2. In the first line of Example 2, if +  is changed to - , what changes 
result in the rest of the example?

 3. In Example 4, what is the solution if x = 4?

In Exercises 4–7, determine whether or not the given pairs of values 
are solutions of the given linear equations in two unknowns.

 4. 2x + 3y = 9; 13, 12 , 15, 132
 5. 5x + 2y = 1; 10.2, -12 ; 11, -22
 6. -3x + 5y = 13; 1 -1, 22 , 14, 52
 7. x - 4y = 10; 12, -22 , 12, 22
In Exercises 8–13, for each given value of x, determine the value of y 
that gives a solution to the given linear equation in two unknowns.

 8. 3x - 2y = 12; x = 2, x = -3

 9. -5x + 6y = 60; x = -10, x = 8

 10. x - 4y = 2; x = 3, x = -0.4

 11. 3x - 2y = 9; x = 2
3, x = -3

 12. 24x - 9y = 16; x = 2>3, x = -1>2

 13. 2.4y - 4.5x = -3.0; x = -0.4, x = 2.0

In Exercises 14–24, determine whether or not the given pair of values 
is a solution of the given system of simultaneous linear equations.

 14. x - y = 5 x = 4, y = -1

  2x + y = 7

 15. 2x + y = 8 x = -1, y = 10

  3x - y = -13

 16. A + 5B = -7 A = -2, B = 1

  3A - 4B = -4

 17. -30x + 5y = 1 x = 1
3, y = 2

  6x - 3y = -4

 18. 2x - 5y = 0 x = 1
2, y = -1

5

  4x + 10y = 4

 19. 6i1 + i2 = 5 i1 = 1, i2 = -1

  3i1 - 4i2 = -1

 20. 3x - 2y = 2.2 x = 0.6, y = -0.2

  5x + y = 2.8

 21. s - 7t = -3.2 s = -1.1, t = 0.3

  2s + t = 2.5

 22. l - w = 3.7 l =  26.4, w =  22.7

  2l + 2w = 98.2

 23. 30x - 21y = -675 x = -12, y = 15

  42x + 15y = -279

 24. 3.8a + 7.5b = -26.5 a = 2.5, b = -4.8

  2.6a - 12.6b = -51.1

In Exercises 25–30, solve the given problems.

 25. If x = -2 is a root of the equation 3x + b = 0, find b.

 26. If x = 2, y = -3 is a solution of the system of equations

ax +  y = 1

 x - ay = c

  find a and c.

 27. In planning a search pattern from an aircraft carrier, a pilot plans 
to fly at p km>h relative to a wind that is blowing at w km>h. 
Travelling with the wind, the ground speed would be 300 km>h, 
and against the wind the ground speed would be 220 km>h. This 
leads to two equations:

 p + w = 300

 p - w = 220

  Are the speeds 260 km>h and 40 km>h?

 28. The electric resistance R of a certain resistor is a function of the 
temperature T  given by the equation R = aT + b, where a and b 
are constants. If R = 1200 Ω when T = 10.0°C and 
R = 1280 Ω when T = 50.0°C, we can find the constants a and 
b by substituting and obtaining the equations

1200 = 10.0a + b

1280 = 50.0a + b

  Are the constants a = 4.00 Ω >°C and b = 1160 Ω?

 29. The forces acting on part of a structure are shown in Fig. 5.4. An 
analysis of the forces leads to the equations

0.80F1 + 0.50F2 = 50

0.60F1 - 0.87F2 = 12

  Are the forces 45 N and 28 N?

Fig. 5.4 

50 N

F
F

1
2

12 N

 30. A student earned $4000 during the summer and decided to put 
half into a Registered Retirement Savings Plan (RRSP). If the 
RRSP was invested in two accounts earning 4.0, and 5.0,, the 
total income for the first year is $92. The equations to determine 
the amounts of x and y are

x + y = 2000

 0.040x + 0.050y = 92

  Are the amounts x = $1200 and y = $800?

Answers to Practice Exercises

1. x = -3  2. No
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The first method of solving a system of equations that will be studied is a graphical 
method. Before presenting this method in the next section, additional ways of graphing 
a linear equation will be developed. We will then be able to analyse and check the 
graph of a linear equation quickly, often by inspection.

Consider the line that passes through points A, with coordinates 1x1, y12 , and B, 
with coordinates 1x2, y22 , in Fig. 5.5. Point C is horizontal from A and vertical from 
B. Thus, C has coordinates 1x2, y12 , and there is a right angle at C. One way of meas-
uring the steepness of this line is to find the ratio of the vertical distance to the hori-
zontal distance between two points. Therefore, we define the slope of the line through 
two points as the difference in the y-coordinates divided by the difference in the 
x-coordinates. For points A and B, the slope m is

 5.2 Graphs of Linear Functions
 

Slope of a Line

Practice Exercise

1.  Find the slope of the line through 1 -2, 42  and 1 -5, -62 .

Fig. 5.5 

y

x
O

B(x2, y2)

x2 2 x1

y2 2 y1

A(x1, y1)
C(x2, y1)

Fig. 5.6 

x

y

2

0 2 4 6

22
(2, 23)

(5, 3)

 m =
y2 - y1

x2 - x1
 (5.4)

The slope is often referred to as the rise (vertical change) over the run (horizontal 
change). Note that the slope of a vertical line, for which x2 = x1, is undefined (for 
x2 = x1, the denominator of Eq. 5.4 is zero).

 EXAMPLE  1  

Find the slope of the line through the points 12, -32  and 15, 32 .
In Fig. 5.6, we draw the line through the two given points. By taking 15, 32  as 1x2, y22 , then 1x1, y12  is 12, -32 . We may choose either point as 1x2, y22 , but once 

the choice is made the order must be maintained. Using Eq. (5.4), the slope is

 m =
3 - 1 -32

5 - 2

 m =
6
3

= 2

The rise is 2 units for each unit (of run) in going from left to right.  ■

 EXAMPLE  2  

Find the slope of the line through 1 -1, 22  and 13, -12 .
In Fig. 5.7, we draw the line through these two points. By taking 1x2, y22  as 13, -12  and 1x1, y12  as 1 -1, 22 , the slope is

 m =
-1 - 2

3 - 1 -12
 m =

-3
3 + 1

= - 3
4

The negative sign means the line falls 3 units for each 4 units in going from left to 
right.  ■

 EXAMPLE  3  

For each of the following lines shown in Fig. 5.8, we show the difference in the  
y-coordinates and in the x-coordinates between two points.

In Fig. 5.8(a), a line with a slope of 5 is shown. It rises sharply.

In Fig. 5.8(b), a line with a slope of 12 is shown. It rises slowly.

Fig. 5.7 

x

y

2

0 2 4

22

22

Note in Example 1 that as x increases,  
y increases and that slope is positive. In 
Example 2, as x increases, y decreases 
and that slope is negative. Also, the 
larger the absolute value of the slope, 
the steeper is the line. The closer the 
slope is to zero, the more the line 
approaches a horizontal line.
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SLOPE-INTERCEPT FORM OF THE EQUATION OF A STRAIGHT LINE
We now show how the slope is related to the equation of a straight line. In Fig. 5.9, if 
we have two points, 10, b2  and a general point 1x, y2 , the slope is

m =
y - b
x - 0

Simplifying this, we have mx = y - b, or
Fig. 5.9 

x

y

0

y 5 mx 1 b

(x, y)

(0, b)
y-intercept

 y = mx + b (5.5)

In Eq. (5.5), m is the slope, and b is the y-coordinate of the point where it crosses the  
y-axis. This point is the y-intercept of the line, and its coordinates are 10, b2 .

 EXAMPLE  4  Slope-intercept form of an equation

Find the slope and the y-intercept of the line y = 3
2  x - 3. Since the coefficient of x is 

3
2, this means that the slope is 32. Also, because we can write

 
 
slope    y@intercept ordinate

 y =
3
2

 x + 1 -32
we see that the constant is -3, which means the y-intercept is the point 10, -32 . The 
line is shown in Fig. 5.10.  ■

 EXAMPLE  5  Slope-intercept form of an equation

Find the slope and the y-intercept of the line 2x + 3y = 4.
We must first write the equation in slope-intercept form. Solving for y, we have

3y = -2x + 4

  
slope   y@intercept ordinate

y = - 2
3

 x + 4
3

Therefore, the slope is -2
3, and the y-intercept is the point 10, 432 . See Fig. 5.11.  ■

y = mx + b is the slope-intercept 
form of the equation of a straight 
line. The coefficient of x is the slope, 
and the added constant is the ordi-
nate of the y-intercept. The point 10, b2  and simply b are both referred 
to as the y-intercept.
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Fig. 5.8 ■

Fig. 5.10 
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y
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(0, 23)
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Fig. 5.11 
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y
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21

m 5 22
3

(0,  )4
3

In Fig. 5.8(c), a line with a slope of -5 is shown. It falls sharply.

In Fig. 5.8(d), a line with a slope of -1
2 is shown. It falls slowly.
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 EXAMPLE  6  

In analysing an electric current, two of the currents, i1 and i2, were related by 
i2 = 2i1 + 1. Graph this equation using the slope-intercept form.

Since the equation is solved for i2, we treat i1 as the independent variable and i2 
as the dependent variable. This means that the slope of the line is 2. Also, since the 
b-term is 1, we can see that the intercept is 10, 12 .

We can use this information to sketch the line, as shown in Fig. 5.12. Since the 
slope is 2, we know that i2 increases 2 units for each unit increase of i1. Thus, start-
ing at the i2-intercept 10, 12 , if i1 increases by 1, i2 increases by 2, and we are at the 
point 11, 32 . The line must pass through 11, 32 , as well as 10, 12 . Therefore, we 
draw the line through these points. (Negative values may be used for electric cur-
rents since the sign shows the direction of flow.)  ■

Another way of sketching the graph of a straight line is to find two points on the line 
and then draw the line through these points. Two points that are easily determined are 
those where the line crosses the y-axis and the x-axis. We already know that the point 
where it crosses the y-axis is the y-intercept. In the same way, the point where it 
crosses the x-axis is called the x-intercept, and the coordinates of the x-intercept are 1a, 02 .

The intercepts are easily found because one of the coordinates is zero. By setting 
x = 0 and y = 0, in turn, and finding the value of the other variable, we get the 
coordinates of the intercepts. This method works except when both intercepts are at 
the origin, and we must find one other point, or use the slope-intercept method. In 
using the intercept method, a third point may be found as a check. The next example 
shows how a line is sketched by finding its intercepts.

 EXAMPLE  7  

Sketch the graph of the line 2x - 3y = 6 by finding its intercepts and one check point. 
See Fig. 5.13.

First, we let x = 0. This gives us -3y = 6, or y = -2. This gives us the y-intercept, 
which is the point 10, -22 . Next, we let y = 0, which gives us 2x = 6, or x = 3. This 
means the x-intercept is the point 13, 02 .

The intercepts are enough to sketch the line as shown in Fig. 5.13. To find a 
check point, we can use any value for x other than 3 or any value of y other than -2.
Choosing x = 1, we find that y = -4

3. This means that the point 11, -4
32  should be on 

the line. In Fig. 5.13, we can see that it is on the line.

Fig. 5.12 
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Practice Exercise

2.  Write the equation 3x - 5y - 15 = 0 in 
slope-intercept form.

Practice Exercise

3.  Find the intercepts of the line 
3x - 5y - 15 = 0.

■ Further details and discussion of slope and 
the graphs of linear equations are found in 
Chapter 21.

Fig. 5.13 
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In Exercises 1–4, answer the given questions about the indicated 
examples of this section.

 1. In Example 2, if the first y-coordinate is changed to -2, what 
changes result in the example?

 2. In Example 4, if 3
2 is changed to -3

4, what changes result in the 
example?

 3. In the first line of Example 5, if +  is changed to - , what changes 
result in the example?

 4. In the first line of Example 7, if -  is changed to + , what changes 
occur in the graph?

In Exercises 5–12, find the slope of the line that passes through the 
given points.

 5. 11, 02 , 13, 82  6. 13, 12 , 12, -72
 7. 1 -1, 22 , 1 -4, 172  8. 1 -1, -22 , 12, 102
 9. 15, -32 , 1 -2, -52  10. 1 -3, 42 , 1 -7, -42  

 11. 10.4, 0.52 , 1 -0.2, 0.22  12. 1 -2.8, 3.42 , 11.2, 4.22
In Exercises 13–20, sketch the line with the given slope and y-intercept.

 13. m = 2, 10, -12  14. m = 3, 10, 12
 15. m = 0, 10, 22  16. m = -4, 10, -22
 17. m = 1

2, 10, 02  18. m = 2
3, 10, -12

 19. m = -9, 10, 202  20. m = -0.3, 10, -1.42
In Exercises 21–28, find the slope and the y-intercept of the line with 
the given equation and sketch the graph using the slope and the  
y-intercept.

 21. y = -2x + 1 22. y = -4x

 23. y = x - 4 24. y = 4
5 x + 2

 25. 5x - 2y = 40 26. -2y = 7

 27. 24x + 40y = 15 28. 1.5x - 2.4y = 3.0

In Exercises 29–36, find the x-intercept and the y-intercept of the line 
with the given equation. Sketch the line using the intercepts.

 29. x + 2y = 4 30. 3x + y = 3

 31. 4x - 3y = 12 32. 5y - x = 5

 33. y = 3x + 6 34. y = -2x - 4

 35. y = -12x + 30 36. y = 0.25x + 4.5

In Exercises 37 and 38, solve for k.

 37. Find the value of k such that the line kx - 2y = 9 has a slope of 3.

 38. Find the value of k such that the line through 10, k2  and 1 -k, -12  has a slope of 1/2.

In Exercises 39–42, sketch the indicated lines.

 39. The diameter of the large end, d (in cm), of a certain type of 
machine tool can be found from the equation d = 0.2l + 1.2, 
where l is the length of the tool. Sketch d as a function of l, for 
values of l to 10 cm. See Fig. 5.14.

Since a solution of a system of simultaneous linear equations in two unknowns is any 
pair of values 1x, y2  that satisfies both equations, graphically the solution would be the 
coordinates of the point of intersection of the two lines. This must be the case, for the 
coordinates of this point constitute the only pair of values to satisfy both equations. (In 
some special cases, there may be no solution; in others, there may be many solutions. 
See Examples 5 and 6.)

Therefore, when we solve two simultaneous linear equations in two unknowns graphi-
cally, we must graph each line and determine the point of intersection. This may, of course, 
lead to approximate results if the lines cross at points not used to determine the graph.

 5.3 Solving Systems of Two Linear Equations 
in Two Unknowns Graphically

 
 

 40. In mixing 85-octane gasoline and 93-octane gasoline to produce 
91-octane gasoline, the equation 0.85x + 0.93y = 910 is used. 
Sketch the graph.

 41. Two electric currents, I1 and I2 (in mA), in part of a circuit in a 
computer are related by the equation 4I1 - 5I2 = 2. Sketch I2 as 
a function of I1. These currents can be negative.

 42. In 2010, there were 2.93 * 109 email accounts worldwide, and in 
2012, there were 3.38 * 109 email accounts worldwide. Assuming 
that the growth in the number of email accounts is linear, set up a 
function relating the number N of email accounts and the time  
t (in years). Let t = 0 be the year 2010. Sketch the graph.

Answers to Practice Exercises

1. 10>3 2. y = 3
5 x - 3 3. 15, 02  and 10, -32

l

d1.2 cm

Fig. 5.14 
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 EXAMPLE  1  Determine the point of intersection

Solve the system of equations

 y  =   x - 3

 y = -2x + 1

Since each of the equations is in slope-intercept form, note that m = 1 and b = -3 for 
the first line and that m = -2 and b = 1 for the second line. Using these values, we 
sketch the lines, as shown in Fig. 5.15.

From the figure, it can be seen that the lines cross at about the point 11.3, -1.72 . 
This means that the solution is approximately

x = 1.3  y = -1.71The exact solution is x = 4
3, y = -5

3.2
Fig. 5.15 

x

y

1

1

1 Point of
intersection

(1.3, 21.7)

2

0 2 4

22

22

When checking the solution, ensure that you substitute the values into both equations.  
It is a common error to substitute the values into only one equation, which, even if it 
checks, may not illustrate a valid solution for both equations simultaneously. 

COMMON ERROR

Substituting these solutions gives

 -1.7 =? 1.3 - 3 and -1.7 =? -2(1.3) + 1

  -1.7 = -1.7  -1.7 ≈ -1.6

These values show that the solution checks. (The point 11.3, -1.72  is on the first line 
and almost on the second line. The difference in values when checking the values for 
the second line is due to the fact that the solution is approximate.)  ■

 EXAMPLE  2  Determine the point of intersection

Solve the system of equations

 2x + 5y = 10

 3x - y = 6

We could write each equation in slope-intercept form in order to sketch the lines. 
Also, we could use the form in which they are written to find the intercepts. 
Choosing to find the intercepts and draw lines through them, let y = 0; then x = 0. 
Therefore, the intercepts of the first line are the points 15, 02  and 10, 22 . A third 
point is 1 -1, 12

5 2 . The intercepts of the second line are 12, 02  and 10, -62 . A third 
point is 11, -32 . Plotting these points and drawing the proper straight lines, we see 
that the lines cross at about (2.3, 1.1). 3The exact values are 140

17, 18
172 .4  The solution 

of the system of equations is approximately x = 2.3, y = 1.1 (see Fig. 5.16).
Checking, we have

 212.32 + 511.12 =? 10 and  312.32 - 1.1 =? 6

          10.1 ≈ 10          5.8 ≈ 6

This shows the solution is correct to the accuracy we can get from the graph.  ■

SOLVING SYSTEMS OF EQUATIONS USING A GRAPHING CALCULATOR
A graphing calculator can be used to find the point of intersection with much greater 
accuracy than is possible by hand-sketching the lines. Once we locate the point of inter-
section, the features of the calculator allow us to get the accuracy we need.

 EXAMPLE  3  Using a graphing calculator to solve a system of equations

Using a graphing calculator, we can solve the systems of equations in Examples 1 and 2.
Solving the system for Example 1, let y1 = x - 3 and y2 = -2x + 1. After dis-

playing the graphs in the proper window settings, we use the intersect feature to find 
(rounded to the nearest 0.001) that the solution is x = 1.333, y = -1.667. ■

Fig. 5.16 
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25
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Practice Exercise

1.  In Example 2, change the 6 to 3, and then 
solve. (Can be done using Fig. 5.16.)

■ We could use the trace and zoom features, 
but the intersect feature is meant for this type 
of problem, and is more accurate.
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WORD PROBLEMS INVOLVING TWO LINEAR EQUATIONS
Linear equations in two unknowns are often useful in solving word problems. Just as in 
Section 1.12, we must read the statement carefully in order to identify the unknowns 
and the information for setting up the equations.

 EXAMPLE  4  Application of solving a system

A driver travelled for 1.5 h at a constant speed along a highway. Then, through a con-
struction zone, the driver reduced the car’s speed by 40 km>h for 30 min. If 200 km 
were covered in the 2.0 h, what were the two speeds?

First, let vh = the highway speed and vc = the speed in the construction zone. 
Two equations are found by using

 1. distance = rate * time 3 for units, km = 1km
h 2h4 , and

 2.  the fact that “the driver reduced the car’s speed by 40 km>h for 30 min.”

 time on highway 30 min speed in
 highway  speed   = 0.5 h construction zone

First equation: 1.5 vh  +   0.5 vc  = 200 total distance
 distance distance in  
 on highway  construction zone
Second equation:   vc = vh - 40

 speed reduced by 40 km/h

Using vh as the independent variable and vc as the dependent variable, the sketch is 
shown in Fig. 5.17.

We see that the point of intersection is 1110, 702 , which means that the solution 
is vh = 110 km>h and vc = 70 km>h. Checking in the statement of the problem, we 
have 11.5 h2 1110 km>h2 + 10.5 h2 170 km>h2 = 200 km and 70 km!h = 110 
km!h – 40 km!h.  ■

INCONSISTENT AND DEPENDENT SYSTEMS
The lines of each system in the previous examples intersect in a single point, and each 
system has one solution. Such systems are called consistent and independent. Most 
systems that we will encounter have just one solution. However, as we now show, not 
all systems have just one such solution. The following examples illustrate a system that 
has no solution and a system that has an infinite number of solutions.

 EXAMPLE  5  Inconsistent system

Solve the system of equations

 x = 2y + 6

 6y = 3x - 6

Writing each of these equations in slope-intercept form (Eq. 5.5), we have for the first 
equation

y = 1
2 x - 3

For the second equation, we have

y = 1
2 x - 1

From these, we see that each line has a slope of 12 and that the y-intercepts are 10, -32  
and 10, -12 . Therefore, we know that the y-intercepts are different, but the slopes are 
the same. Since the slope indicates that each line rises 1

2 unit for y for each unit x 
increases, the lines are parallel and do not intersect, as shown in Fig. 5.18. This means 
that there are no solutions for this system of equations. Such a system is called  
inconsistent.  ■

Fig. 5.17 

80

80

0

v

v

(110, 70)

(km/h)

160

240

320

400

160

(km/h)

v 5 23v 1 400

m 5 23, b 5 400

v 5 v 2 40

m 5 1, b 5  240

c

c h

c h

h

Fig. 5.18 

Lines
parallel

No point of
intersection

x

y

0

5

1
2

24

2

1
2



152 CHAPTER 5 Systems of Linear Equations; Determinants

 EXAMPLE  6  Dependent system

Solve the system of equations

 x - 3y = 9

 -2x + 6y = -18

We find that the intercepts and a third point for the first line are 19, 02 , 10, -32 , 
and 13, -22 . For the second line, we then find that the intercepts are the same as for 
the first line. We also find that the check point 13, -22  also satisfies the equation of 
the second line. This means that the two lines are really the same line.

Another check is to write each equation in slope-intercept form. This gives us the 
equation y = 1

3 x - 3 for each line. See Fig. 5.19.
Since the lines are the same, the coordinates of any point on this common line con-

stitute a solution of the system—that is to say, there are an infinite number of solutions. 
Since no unique solution can be determined, the system is called dependent.  ■

Later in the chapter, we will show algebraic ways of finding out whether a given 
system is consistent, inconsistent, or dependent.

In Exercises 1 and 2, answer the given questions about the indicated 
examples of this section.

 1. In the second equation of Example 2, if -  is replaced with + , 
what is the solution?

 2. In Example 6, by changing what one number in the first equation 
does the system become (a) inconsistent? (b) consistent?

In Exercises 3–20, solve each system of equations by sketching the 
graphs. Use the slope and the y-intercept or both intercepts. Estimate 
each result to the nearest 0.1 if necessary.

Fig. 5.19 

Same line for
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 3. y = -x + 4

  y = x - 2
 4. y = 1

2 x - 1

  y = -x + 8

 5. y = 2x - 6

  y = -1
3 x + 1

 7. 3x + 2y = 6

  x - 3y = 3

 9. 2x - 5y = 10

  3x + 4y = -12

 11. s - 4t = 8

  2s = t + 4

 13. y = -x + 3

  y = -2x + 3

 15. x - 4y = 6

  2y = x + 4

 17. -2r1 + 2r2 = 7

  4r1 - 2r2 = 1

 6. y = 1
2 x - 4

  y = 2x + 2

 8. 4R - 3V = -8

  6R + V = 6

 10. -5x + 3y = 15

  2x + 7y = 14

 12. y = 4x - 6

  y = 2x + 4

 14. p - 6 = 6v

  v = 3 - 3p

 16. x + y = 3

  3x - 2y = 14

 18. 2x - 3y = -5

  3x + 2y = 12

 19. 15y = 20x - 48

  32x + 21y = 60

 20. 7A = 8B + 17

  5B = 12A - 22

In Exercises 21–32, solve each system of equations graphically to the 
nearest 0.001 for each variable.

 21. x = 4y + 2

  3y = 2x + 3

 22. 1.2x - 2.4y = 4.8

  3.0x = -2.0y + 7.2

 23. 4.0x - 3.5y = 1.5

  0.7y + 0.1x = 0.7

 24. 5F - 2T = 7

  3F + 4T = 8

 25. x - 5y = 10

  2x - 10y = 20

 26. 18x - 3y = 7

  2y = 1 + 12x

 27. 1.9v = 3.2t

  1.2t - 2.6v = 6

 28. 3y = 14x - 9

  12x + 23y = 0

 29. 5x = y + 3

  4x = 2y - 3

 30. 0.75u + 0.67v = 5.9

  2.1u - 3.9v = 4.8

 31. 7R = 18V + 13

  -1.4R + 3.6V = 2.6

 32. y = 6x + 2

  12x - 2y = -4

In Exercises 33–38, graphically solve the given problems.

 33. Chains support a crate, as shown in Fig. 5.20. The equations relat-
ing tensions T1 and T2 are given below. Determine the tensions to 
the nearest 1 N from the graph.

 0.8T1 - 0.6T2 = 12

 0.6T1 + 0.8T2 = 68

 34. The equations relating the 
currents i1 and i2 shown in 
Fig. 5.21 are given below. 
Find the currents to the 
nearest 0.1 A.

 2i1 + 61 i1 + i22 = 12

 4i2 + 61 i1 + i22 = 12

Fig. 5.20 
68 N

12 N
T2T1
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an effective ground speed of 240 km>h. Find the speed p of the 
plane in still air, and the speed w of the wind (to the nearest   
1 km!h).

 37. One alloy is 70, lead and 30, zinc, and another alloy is 40, lead 
and 60, zinc. Find the amount of each alloy needed to make 120 kg 
of an alloy that is 50, lead and 50, zinc (to the nearest kg).

 38. A certain car uses 7.2 L>100 km in city driving and 5.4 L>100 km 
in highway driving. If 36 L of gas are used in travelling 598 km, 
how many kilometres were driven in the city, and how many were 
driven on the highway (assuming that only the given rates of 
usage were actually used, to the nearest km)?

Answer to Practice Exercise

1. x = 1.5, y = 1.4

 35. An architect designing a parking lot has a row 62.0 m wide to 
divide into spaces for compact cars and full-size cars. The archi-
tect determines that 16 compact car spaces and 6 full-size car 
spaces use the width, or that 12 compact car spaces and 9 full-size 
car spaces use all but 0.2 m of the width. What are the widths (to 
the nearest 0.1 m) of the spaces being planned? See Fig. 5.22.

The graphical method of solving two linear equations in two unknowns is good for get-
ting a “picture” of the solution. One problem is that graphical methods usually give 
approximate results, although the accuracy obtained when using a graphing calculator 
is excellent. If exact solutions are required, we turn to other methods. In this section, 
we present two algebraic methods of solution.

The first method involves the substitution of one equation into the other. The basic 
idea of this method is to solve one of the equations for one of the unknowns and substi-
tute this into the other equation. The result is an equation with only one unknown, and 
this equation can then be solved for the unknown. Following is the basic procedure to 
be used.

 5.4 Solving Systems of Two Linear Equations  
in Two Unknowns Algebraically

Fig. 5.22 

62.0 m

16 compact ! 6 full-size

12 compact ! 9 full-size ! 0.2 m

 36. An airplane flies into a headwind with an effective ground speed 
of 140 km>h. On the return trip it flies with the tailwind and has 

1. Solve one equation for one of the unknowns.

2.  Substitute this solution into the other equation and simplify. At this point, we 
have a linear equation in one unknown.

3. Solve the resulting equation for the value of the unknown it contains.

4.  Substitute this value into the equation of step 1 and solve for the other 
unknown.

5. Check the values in both original equations.

In following the substitution tech-
nique, you must first choose an 
unknown for which to solve. Often it 
makes little difference, but if it is 
easier to solve a particular equation 
for one of the unknowns, that is the 
one to use.

LEARNING T IP

 EXAMPLE  1  

Solve the following system of equations by substitution.

 x - 3y = 6

 2x + 3y = 3



154 CHAPTER 5 Systems of Linear Equations; Determinants

step 1  x = 3y + 6   (A1)
   in second equation, x replaced by 3y + 6

step 2  213y + 62 + 3y = 3 substituting

step 3  6y + 12 + 3y = 3  solving for y

  9y = -9

  y = -1

Now, substitute the value y = -1 into the first of the original equations. Since this 
equation is already solved for x in terms of y, Eq. (A1), we obtain

 x = 31 -12 + 6 = 3   solving for x

Therefore, the solution of the system is x = 3, y = -1. As a check, substitute these 
values into each of the original equations. This gives us 3 - 31 -12 = 6 and 
2132 + 31 -12 = 3, which verifies the solution.  ■

 EXAMPLE  2  Solution by substitution

Solve the following system of equations by substitution.

 -5x + 2y = -4

 10x + 6y = 3

It makes little difference which equation or which unknown is chosen. Therefore,

step 4

step 5

Practice Exercise

1.  Solve the system in Example 2 by first 
solving for x and then substituting.

 2y = 5x - 4   solving first equation for y

 y =
5x - 4

2
  (B1)

 in second equation, y replaced by 5x - 4
2

 10x + 6a5x - 4
2

b = 3   substituting

 10x + 315x - 42 = 3   solving for x

 10x + 15x - 12 = 3

25x = 15

x =
3
5

Substituting this value into the expression for y, Eq. (B1), we obtain

y =
513>52 - 4

2
=

3 - 4
2

= - 1
2

     solving for y

Therefore, the solution of this system is x = 3
5, y = -1

2. Substituting these values in 
both original equations shows that the solution checks.  ■

SOLUTION BY ELIMINATION
The method of substitution is useful if one of the equations can easily be solved for one 
of the unknowns. However, often a fraction results (such as in Example 2), and this 
leads to additional algebraic steps to find the solution. Even worse, if the coefficients 
are themselves decimals or fractions, the algebraic steps are even more involved.

Here, it is easiest to solve the first equation for x:
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Therefore, we now present another algebraic method of solving a system of equa-
tions, elimination of a variable by addition or subtraction (also called the addition or 
subtraction method). Following is the basic procedure to be used.

■ For reference, Eq. (5.3) is
 a1x + b1y = c1
 a2x + b2y = c2

■ Some prefer always to use addition of the 
terms of the resulting equations. This method is 
appropriate because it avoids possible errors 
that may be caused when subtracting. 
However, it may require that all signs of one 
equation be changed.

Solution of Two Linear Equations by Elimination
1.  Write the equations in the form of Eq. (5.3), if they are not already in this 

form.

2.  If necessary, multiply all terms of each equation by a constant chosen so that 
the coefficients of one unknown will be numerically the same in both 
equations. (They can have the same or different signs.)

3.  (a)  If the numerically equal coefficients have different signs, add the terms 
on each side of the resulting equations.

  (b)  If the numerically equal coefficients have the same sign, subtract the 
terms on each side of one equation from the terms of the other equation.

4. Solve the resulting linear equation in the other unknown.

5.  Substitute this value into one of the original equations to find the value of the 
other unknown.

6. Check by substituting both values into both original equations.

The addition or subtraction of any 
two equations produces another 
statement of equality. For example, 
1 + 4 = 5 and 6 - 4 = 2 are two 
equations.

If we add them
 1 + 4 = 5

 + 6 - 4 = 2
1 + 4 + 6 - 4 = 5 + 2

 7 = 7

If we subtract them
 1 + 4 = 5

 - 6 - 4 = 2
1 + 4 - (6 - 4) = 5 - 2

 3 = 3

LEARNING T IP

 EXAMPLE  3  Solution by elimination, using addition

Use the method of elimination by addition or subtraction to solve the system of 
equations:

 x - 3y = 6    already in the form of Eq. (5.3)

  2x + 3y = 3

We look at the coefficients to determine the best way to eliminate one of the 
unknowns. Since the coefficients of the y-terms are numerically the same and oppo-
site in sign, we may immediately add terms of the two equations together to eliminate 
y. Adding the terms of the left sides and adding terms of the right sides, we obtain

  (x - 3y) + (2x + 3y) = 6 + 3  the terms with y cancel (they are eliminated)

  3x = 9

  x = 3

Substituting this value into the first equation, we obtain

 3 - 3y = 6

 -3y = 3

 y = -1

The solution x = 3, y = -1 agrees with the results obtained for the same problem 
illustrated in Example 1.  ■

 EXAMPLE  4  Solution by elimination, using subtraction

Use the method of addition or subtraction to solve the following system of equations:

 3x - 2y = 4

 x + 3y = 2

Looking at the coefficients of x and y, we see that we must multiply the second 
equation by 3 to make the coefficients of x the same. To make the coefficients of y 
numerically the same, we must multiply the first equation by 3 and the second equa-
tion by 2. Thus, the best method is to multiply the second equation by 3 and elimi-
nate x. Doing this, the coefficients of x have the same sign. Therefore, we subtract 
terms of the second equation from those of the first equation:

■ Some calculators have a specific feature for 
solving simultaneous linear equations. It is 
necessary only to enter the coefficients and 
constants to get the solution.

Practice Exercise

2.  Solve the system in Example 3 by first 
multiplying the terms of the first equation 
by 2, and then subtracting.
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  3x - 2y = 4

  3x + 9y = 6  each term of second equation multiplied by 3

 3x - 3x = 0  -11y = -2    subtract

-2y - 1 +9y2 = -11y  y =
2
11

  4 - 6 = -2

In order to find the value of x, substitute y = 2
11 into one of the original equa-

tions. Choosing the second equation (its form is somewhat simpler), we have

 x + 3a 2
11

b = 2

 11x + 6 = 22  multiply each term by 11

 x =
16
11

Therefore, the solution is x = 16
11, y = 2

11 (see Fig. 5.23). Substituting these values into 
both of the original equations shows that the solution checks.  ■

 EXAMPLE  5  System of Example 4 solved by elimination, using addition

As noted in Example 4, we can solve that system of equations by first multiplying the 
terms of the first equation by 3 and those of the second equation by 2, and thereby 
eliminating y. Doing this, we have

  9x - 6y = 12  each term of first equation multiplied by 3

  2x + 6y = 4  each term of second equation multiplied by 2

  11x = 16  add

9x + 2x = 11x  

  -6y + 6y = 0 x =
16
11
  12 + 4 = 16

  3116
112 - 2y = 4  substituting x = 16>11 in the first original equation

  48 - 22y = 44  multiply each term by 11

 -22y = -4

 y =
2
11

Therefore, the solution is x = 16
11, y = 2

11, as found in Example 4 (see Fig. 5.23). ■

 EXAMPLE  6  Application – solution by elimination, using subtraction

By weight, one alloy is 70, copper and 30, zinc. Another alloy is 40, copper and 
60, zinc. How many grams of each are required to make 300 g of an alloy that is 60, 
copper and 40, zinc?

Let A = the required number of grams of the first alloy and B = the required 
number of grams of the second alloy. Our equations are determined from:

 1.  The total weight of the final alloy is 300 g: A + B = 300.

 2.   The final alloy will have 180 g of copper (60, of 300 g), and this comes from 
70, of A (0.70A) and 40, of B (0.40B): 0.70A + 0.40B = 180.

When multiplying any equation by a constant, ensure that you multiply the con-
stant with the terms on both sides of the equation. It is a common error to forget 
to multiply the value on the right.

COMMON ERROR

Fig. 5.23 

x

y

1

0.5

0.5 1 1.5 2

20.5

21

21.5

22

y 5 x 223
2

y 5 2 x 11
3

2
3

16 2
11 11

,~     !

■ The second equation is based on the 
amount of copper. We could have used the 
amount of zinc, which would have led to the 
equation 0.30A + 0.60B = 0.4013002 . Since 
we need only two equations, we may use any 
two of these three equations to find the 
solution. In fact, if the system has a unique 
solution, this third equation is not independent 
of the other two. It could be obtained through 
adding or subtracting multiples of the two 
equations used.
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These two equations can now be solved simultaneously:

 A + B = 300  sum of weights is 300 g

 copper  0.70A + 0.40B = 180  60, of 300 g

 70% weight  40%  weight of 
  of first   second 
  alloy  alloy

 4A + 4B = 1200  multiply each term of first equation by 4

 7A + 4B = 1800  multiply each term of second equation by 10

 3A = 600      subtract first equation from second equation

 A = 200 g

 B = 100 g  by substituting into first equation

Checking with the statement of the problem, using the percentages of zinc, we have 
0.3012002 + 0.6011002 = 0.4013002 , or 60 g + 60 g = 120 g. We use zinc here 
since we used the percentages of copper for the equation. ■

 EXAMPLE  7  Inconsistent system with elimination

In solving the system of equations

 4x = 2y + 3

 -y + 2x - 2 = 0

first note that the equations are not in the correct form. Therefore, writing them in the 
form of Eq. (5.3), we have

 4x - 2y = 3

 2x - y = 2

Now, multiply the second equation by 2 and subtract to get

 4x - 2y = 3

 4x - 2y = 4

  4x - 4x = 0   0 = -1  3 - 4 = -1

  -2y - 1 -2y2 = 0  

Since 0 does not equal -1, we conclude that there is no solution. See Fig. 5.24, which 
shows that the lines representing the equations are parallel and do not intersect.

0 = a 1a ≠ 02 , 
the system is inconsistent. From 
Section 5.3, we know this means 
the lines representing the equa-
tions are parallel.

0 = 0, the system is dependent. As 
shown in Section 5.3, this means 
there is an unlimited number of 
solutions, and the lines that  
represent the equations are really 
the same line.

LEARNING T IP
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In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 1, change the +  to -  in the second equation and then 
solve the system of equations.

 2. In Example 3, change the +  to -  in the second equation and then 
solve the system of equations.

 3. In Example 4, change x to 2x in the second equation and then 
solve the system of equations.

 4. In Example 7, change 3 to 4 in the first equation and then find if 
there is any change in the conclusion that is drawn.

In Exercises 5–14, solve the given systems of equations by the method 
of substitution.

 33. 44A = 1 - 15B

  5B = 22 + 7A

 34. 3.0x - 2.0y = 4.0

  2.9x - 2.0y = 8.0

 5. x = y + 3

  x - 2y = 5

 6. x = 2y + 1

  2x - 3y = 4

 7. p = V - 4

  V + p = 10

 8. y = 2x + 10

  2x + y = -2

 9. x + y = -5

  2x - y = 2

 10. 3x + y = 1

  3x - 2y = 16

 11. 2x + 3y = 7

  6x - y = 1

 12. 2s + 2t = 1

  4s - 2t = 17

 13. 33x + 2y = 34

  40y = 9x + 11

 14. 3A + 3B = -1

  5A = -6B - 1

In Exercises 15–24, solve the given systems of equations by the 
method of elimination by addition or subtraction.

 15. x + 2y = 5

  x - 2y = 1

 16. x + 3y = 7

  2x + 3y = 5

 17. 2x - 3y = 4

  2x + y = -4

 18. R - 4r = 17

  3R + 4r = 3

 19. 12t + 9y = 14

  6t = 7y - 16

 20. 3x - y = 3

  4x = 3y + 14

 21. v + 2t = 7

  2v + 4t = 9

 22. 3x - y = 5

  -9x + 3y = -15

 23. 2x - 3y - 4 = 0

  3x + 2 = 2y

 24. 3i1 + 5 = -4i2
  3i2 = 5i1 - 2

In Exercises 25–36, solve the given systems of equations by either 
method of this section.

 25. 2x - y = 5

  6x + 2y = -5

 26. 3x + 2y = 4

  6x - 6y = 13

 27. 6x + 3y + 4 = 0

  5y = -9x - 6

 28. 1 + 6q = 5p

  3p - 4q = 7

 29. 15x + 10y = 11

  20x - 25y = 7

 30. 2x + 6y = -3

  -6x - 18y = 5

 31. 12V + 108 = -84C

  36C + 48V + 132 = 0

 32. 66x + 66y = -77

  33x - 132y = 143

 35. 2b = 6a - 16

  33a = 4b + 39

 36. 30P = 55 - Q

  19P + 14Q + 32 = 0

In Exercises 37–40, in order to make the coefficients easier to work 
with, first multiply each term of the equation or divide each term of 
the equation by a number selected by inspection. Then proceed with 
the solution of the system by an appropriate algebraic method.

 37. 0.3x - 0.7y = 0.4

  0.2x + 0.5y = 0.7

 38. 250R + 225Z = 400

  375R - 675Z = 325

 39. 40s - 30t = 60

  20s - 40t = -50

 40. 0.060x + 0.048y = -0.084

  0.013x - 0.065y = -0.078

In Exercises 41–44, solve the given systems of equations by an 
appropriate algebraic method.

 41. Find the voltages V1 and V2 of the batteries shown in Fig. 5.25. 
The terminals are aligned in the same direction in Fig. 5.25(a) and 
in the opposite directions in Fig. 5.25(b).

Fig. 5.25 

(a)

(b)

V  ! V " 15 V1 2

V     V  1 2

V  # V " 3 V1 2

 42. A spring of length L is stretched x cm for each newton of weight 
hung from it. Weights of 3 N and then 5 N are hung from the 
spring, leading to the equations

   L + 3x = 18

   L + 5x = 22

  Solve for L and x.

 43. Two grades of gasoline are mixed to make a blend with 1.50, of 
a special additive. Combining x litres of a grade with 1.80, of 
the additive to y litres of a grade with 1.00, of the additive gives 
10 000 L of the blend. The equations relating x and y are

  x + y = 10 000

  0.0180x + 0.0100y = 0.0150110 0002
  Find x and y (to three significant digits).

 44. A 6.0, solution and a 15.0, solution of a drug are added to 
200 mL of a 20.0, solution to make 1200 mL of a 12.0, solu-
tion for a proper dosage. The equations relating the number of 
millilitres of the added solutions are

  x + y + 200 = 1200

  0.060x + 0.150y + 0.20012002 = 0.120112002
  Find x and y (to three significant digits).
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In Exercises 45–56, set up appropriate systems of two linear equations 
and solve the systems algebraically. All data are accurate to at least 
two significant digits.

 45. A person’s email for a week contained a total of 79 messages. 
The number of spam messages was four more than twice the 
number of other messages. How many were spam?

 46. A 150-m cable is cut into two pieces such that one piece is four 
times as long as the other. How long is each piece?

 47. The weight Wf  supported by the front wheels of a certain car and 
the weight Wr supported by the rear wheels together equal the 
weight of the car, 17 700 N. See Fig. 5.26. Also, the ratio of Wr to 
Wf  is 0.847. What are the weights supported by each set of wheels 
(to 3 significant digits)?

 52. An underwater (but near the surface) explosion is detected by 
sonar on a ship 30 s before it is heard on the deck. If sound travels 
at 1500 m>s in water and 330 m>s in air, how far is the ship from 
the explosion (to 3 significant digits)? See Fig. 5.28.

Fig. 5.26 Wr Wf

17 700 N

 48. A sprinkler system is used to water two areas. If the total water 
flow is 980 L>h and the flow through one sprinkler is 65, as 
much as the other, what is the flow in each?

 49. In a test of a heat-seeking rocket, a first rocket is launched at 
600 m>s, and the heat-seeking rocket is launched along the same 
flight path 12 s later at a speed of 960 m>s. Find the times t1 and 
t2 of flight of the rockets until the heat-seeking rocket destroys the 
first rocket.

 50. The moment of a force (also called torque) is the product of the 
force and the perpendicular distance from a specified axis of rota-
tion. If a lever is supported at only one point (called the fulcrum) 
and is in balance, the sum of the torques (about the support) of 
forces acting on one side of the support must equal the sum of the 
torques of the forces acting on the other side. Find the forces F1 
and F2 that are in the positions shown in Fig. 5.27(a) and then 
move to the positions in Fig. 5.27(b). The lever weighs 20 N and 
is in balance in each case.

Fig. 5.27 

1 m 4 m3 m F2F1

(a)

1 m 2 m2 m F2F1

(b)

20 N

20 N

 Fig. 5.28 

330 m/s

1500 m/s

30 s

 51. There are two types of offices in an office building, and a total of 
54 offices. One type rents for $900>month and the other type 
rents for $1250>month. If all offices are occupied and the total 
rental income is $55 600>month, how many of each type  
are there?

 53. A small isolated farm uses a windmill and a gas generator for 
power. During a 10-day period, they produced 3010 kW # h of 
energy with the windmill operating at 45.0, of capacity and the 
generator at capacity. During the following 10-day period, they 
produced 2900 kW # h with the windmill at 72.0, of capacity 
and the generator down 60 h for repairs (at capacity otherwise). 
What is the power capacity (in kW) of each?

 54. In mixing a weed-killing chemical, a 40, solution of the chemi-
cal is mixed with an 85, solution to get 20 L of a 60, solution. 
How much of each solution is needed?

 55.  What conclusion can you draw from a sales report that states that 
“sales this month were $8000 more than last month, which means 
that total sales for both months are $4000 more than twice the 
sales last month”?

 56.  For an electric circuit, a report stated that current i1 is twice cur-
rent i2 and that twice the sum of the two currents less 6 times i2 is 
6 mA. Explain your conclusion about the values of the currents 
found from this report.

In Exercises 57–60, answer the given questions.

 57. What condition(s) must be placed on the constants of the system 
of equations

  ax + y = c

  bx + y = d

  such that there is a unique solution for x and y?

 58. What conditions must be placed on the constants of the system of 
equations in Exercise 57 such that the system is (a) inconsistent? 
(b) dependent?

 59. For the dependent system of Example 6 of Section 5.3, both equa-
tions can be written as y = 1

3 x - 3. The solution for the system 
can then be shown in terms of a general point on the graph as 1x, 13 x - 32 . This is referred to as the solution with arbitrary x. 
Find the solutions in this form for this system for x = -3, and 
x = 9.

 60. For the dependent system of Example 6 of Section 5.3, write the 
form for the solution with arbitrary y. See Exercise 59.

Answers to Practice Exercises

1. x = 3>5, y = -1>2 2. x = 3, y = -1
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Consider two linear equations in two unknowns, as given in Eq. (5.3):

 5.5 Solving Systems of Two Linear Equations  
in Two Unknowns by Determinants

 
 

 a1x + b1 y = c1 (5.3)
a2x + b2 y = c2

Note that a1 and a2 are constants and represent the coefficients of the first variable x 
in the two equations. b1 and b2 are constants and represent the coefficients of the sec-
ond variable y in the two equations. c1 and c2 are also constants in the system of equa-
tions. In Section 16.4, these sets of coefficients and constants will be used again as 
systems of equations are solved using matrices.

If we multiply the first of the equations in Eq. (5.3) by b2 and the second by b1, we 
obtain

■ Determinants were invented by the German 
mathematician Gottfried Wilhelm Leibniz 
(1646–1716).

We see that the coefficients of y are the same. Thus, subtracting the second equation 
from the first, we can solve for x. The solution can be shown to be

In the same manner, we may show that

  a1b2x + b1b2 y = c1b2 (5.6)
 a2b1x + b2b1 y = c2b1

 x =
c1b2 - c2b1

a1b2 - a2b1
 (5.7)

 y =
a1c2 - a2c1

a1b2 - a2b1
 (5.8)

The expression a1b2 - a2b1, which appears in each of the denominators of  
Eqs. (5.7) and (5.8), is an example of a special kind of expression called a determinant 
of the second order. The determinant a1b2 - a2b1 is denoted by` a1

a2

b1

b2
`

Therefore, by definition, a determinant of the second order is

 ` a1

a2

b1

b2
` = a1b2 - a2b1 (5.9)

The numbers a1 and b1 are called the elements of the first row of the determinant. The 
numbers a1 and a2 are the elements of the first column of the determinant. In the same 
manner, the numbers a2 and b2 are the elements of the second row, and the numbers b1 
and b2 are the elements of the second column. The numbers a1 and b2 are the elements 

Second-Order Determinant
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of the principal diagonal, and the numbers a2 and b1 are the elements of the second-
ary diagonal. Thus, one way of stating the definition indicated in Eq. (5.9) is that the 
value of a determinant of the second order is found by taking the product of the ele-
ments of the principal diagonal and subtracting the product of the elements of the sec-
ondary diagonal.

A diagram that is often helpful for remembering the expansion of a second-order 
determinant is shown in Fig. 5.29. The following examples illustrate how we carry out 
the evaluation of determinants.

 EXAMPLE  1  Evaluating a second-order determinant

` -5
3

8
7
` = 1 -52 172 - 3182 = -35 - 24 = -59

 EXAMPLE  2  Evaluating second-order determinants

 (a) ` 4
3

6
17

` = 41172 - 132 162 = 68 - 18 = 50

 (b) ` 4
-3

6
17

` = 41172 - 1 -32 162 = 68 + 18 = 86

 (c) ` 3.6
-3.2

6.1
-17.2

` = 3.61 -17.22 - 1 -3.22 16.12 = -42.4

Note the signs of the terms being combined.  ■

We note that the numerators and denominators of Eqs. (5.7) and (5.8) may be 
written as determinants. The numerators of the equations are` c1

c2

b1

b2
`   and  ` a1

a2

c1

c2
`

Therefore, the solutions for x and y of the system of equations

Fig. 5.29

a1 b1

a2 b2

! "

Practice Exercise

1. Evaluate the determinant: ` 2
3

-4
5
`

 a1x + b1 y = c1 
(5.3)

a2x + b2 y = c2

may be written directly in terms of determinants, without algebraic operations, as

Note Carefully the  
Location of c1 and c2

 x =
` c1

c2

b1

b2
`

` a1

a2

b1

b2
`   and  y =

` a1

a2

c1

c2
`

` a1

a2

b1

b2
`  (5.10)

For this reason, determinants provide a quick and easy method of solution of systems 
of equations. Again, the denominator of each of the equations in Eq. (5.10) is the same.

The determinant of the denominator is made up of the coef!cients of x and y. Also, 
the determinant of the numerator of the solution for x is obtained from the determi-
nant of the denominator by replacing the column of a’s by the column of c’s. The 
determinant of the numerator of the solution for y is obtained from the determinant 
of the denominator by replacing the column of b’s by the column of c’s.

■
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This result is referred to as Cramer’s rule. In using Cramer’s rule, we must be 
sure that the equations are written in the form of Eq. (5.3) before setting up the 
determinants.

The following examples illustrate the method of solving systems of equations by 
determinants.

 EXAMPLE  3  Solving a system using Cramer’s rule

Solve the following system of equations by determinants:

2x + y = 1

5x - 2y = -11

First, note that the equations are in the proper form of Eq. (5.3) for solution by determi-
nants. Next, set up the determinant for the denominator, which consists of the four 
coefficients in the system, written as shown. It is

             x-coefficients    ` 2
5

1
-2

`    y-coefficients  

For finding x, the determinant in the numerator is obtained from this determinant by 
replacing the first column by the constants that appear on the right sides of the equa-
tions. Thus, the numerator for the solution for x is

` 1
-11

1
-2

`    replace x-coefficients with the constants

For finding y, the determinant in the numerator is obtained from the determinant of the 
denominator by replacing the second column by the constants that appear on the right 
sides of the equations. Thus, the numerator for the solution for y is

` 2
5

1
-11

`   replace y-coefficients with the constants

Now, set up the solutions for x and y using the determinants above:

 x =
` 1
-11

1
-2

`
` 2
5

1
-2

` =
11 -22 - 1 -112 112

21 -22 - 152 112 =
-2 + 11
-4 - 5

=
9

-9
= -1

 y =
` 2
5

1
-11

`
` 2
5

1
-2

` =
21 -112 - 152 112

-9
=

-22 - 5
-9

= 3

Therefore, the solution to the system of equations is x = -1, y = 3.
Substituting these values into the equations to check, we have

 21 -12 + 3 =? 1 and 51 -12 - 2132 =? -11

  1 = 1 -11 = -11

which shows the solutions are correct. ■

■ Cramer’s rule is named for the Swiss 
mathematician Gabriel Cramer (1704–1752).

Practice Exercise

2.  Solve the following system by 
determinants.
x + 2y = 4
3x - y = -9

■ Determinants can be evaluated on a graph-
ing calculator. This is described on page 171.

Since the same determinant appears 
in each denominator, it needs to be 
evaluated only once. This means that 
three determinants are to be evalu-
ated in order to solve the system. 

LEARNING T IP
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 EXAMPLE  4  Solving a system using Cramer’s rule

Solve the following system of equations by determinants. Numbers are approximate.

 5.3x + 7.2y = 4.5

 3.2x - 6.9y = 5.7
   constants 

   x =
` 4.5
5.7

7.2
-6.9

`
` 5.3
3.2

7.2
-6.9

` =
4.51 -6.92 - 5.717.22
5.31 -6.92 - 3.217.22 =

-72.09
-59.61

= 1.2

  constants

     y =
` 5.3
3.2

4.5
5.7

`
` 5.3
3.2

7.2
-6.9

` =
5.315.72 - 3.214.52

-59.61
=

15.81
-59.61

= -0.27

The calculations can all be done on a calculator, using the following procedure:  
(1) Evaluate the denominator and store this value; (2) divide the value of each numera-
tor by the value of the denominator, storing the values of x and y; (3) use the stored 
values of x and y to check the solution; (4) round off results (if the numbers are approx-
imate). For this system, we store the value of the denominator, D = -59.61, in order 
to calculate x and y, stored as X and Y.  ■

 EXAMPLE 5 Solving a system using Cramer’s rule—investment application

Two investments totalling $18 000 yield an annual income of $700. If the first invest-
ment has an interest rate of 5.5, and the second a rate of 3.0,, what is the value of 
each?

Let x = the value of the first investment and y = the value of the second invest-
ment. We know that the total of the two investments is $18 000. This leads to the 
equation x + y = $18 000. The first investment yields 0.055x dollars annually, and 
the second yields 0.030y dollars annually. This leads to the equation 
0.055x + 0.030y = 700. These two equations are then solved simultaneously:

x + y = 18 000   sum of investments

  0.055x + 0.030y = 700  income

 5.5% value 3.0% value

x =
` 18 000

700
1
0.030

`
` 1
0.055

1
0.030

` =
540 - 700

0.030 - 0.055
=

-160
-0.025

= 6400

The value of y can be found most easily by substituting this value of x into the first 
equation, y = 18 000 - x = 18 000 - 6400 = 11 600.

Therefore, the values invested are $6400 and $11 600. Checking, the total income 
is $640010.0552 + $11 60010.0302 = $700, which agrees with the statement of 
the problem.  ■

INCONSISTENT OR DEPENDENT SOLUTIONS WITH DETERMINANTS
If the determinant of the denominator is zero, we do not have a unique solution since 
this would require division by zero. If the determinant of the denominator is zero and 
that of the numerator is not zero, the system is inconsistent. If the determinants of both 
numerator and denominator are zero, the system is dependent.

coefficients

coefficients

Determinants are often easier to use 
than other algebraic methods when 
the coefficients for the variables in 
the equations are decimals.

LEARNING T IP

The equations must be in the form of 
Eq. (5.3) before the determinants are 
set up. The specific positions of the 
values in the determinants are based 
on that form of writing the system. If 
either unknown is missing from an 
equation, a zero must be placed in 
the proper position.

LEARNING T IP
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 EXAMPLE  6  Inconsistent and dependent systems using determinants

 (a) Solve the following system of equations using determinants.

 x - 4y = 6

 -3x + 12y = -6

 x =
` 6 -4
-6 12

`
` 1 -4
-3 12

` =
72 - 24
12 - 12

=
48
0

 y =
` 1 6
-3 -6

`
` 1 -4
-3 12

` =
-6 - 1 -182

12 - 12
=

12
0

     Both solutions yield a division by zero error, so the system is inconsistent. 
(There are no solutions.)

 (b) Solve the following system of equations using determinants.

 5x + 2y = -3

 15x + 6y = -9

 x =
` -3 2
-9 6

`
` 5 2
15 6

` =
-18 - 1 -182

30 - 30
=

0
0

 y =
` 5 -3
15 -9

`
` 1 -4
-3 12

` =
-45 - 1 -452

30 - 30
=

0
0

     Both solutions yield an indeterminate 0!0 division, so the system is depend-
ent. (There are an infinite number of intersections since the two lines are the 
same line.)  ■

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 2(a), change the 6 to -6 and then evaluate.

 2. In Example 2(a), change the 4 to -4 and the 6 to -6 and then 
evaluate.

 3. In Example 3, change the +  to -  in the first equation and then 
solve the system of equations.

 4. In Example 5, change $700 to $830 and then solve for the values 
of the investments.

In Exercises 5–16, evaluate the given determinants.

 5. ` 2
3

4
1
`  6. ` -1

2
3
6
`  7. ` 3

7
-5
-2

`
 8. ` -4

1
7

-3
`  9. ` 8

0
-10

4
`  10. ` -4

-8
-3
-6

`

 11. ` -20
-70

110
-80

`   12. ` -6.5
-15.5

12.2
34.6

`   13. ` 0.75
0.15

-1.32
1.18

`
 14. ` 0.20

0.28
-0.05

0.09
`   15. ` 16

42
-8

-15
`   16. ` 43

-81
-7
16

`
In Exercises 17–26, solve the given systems of equations by 
determinants. (These are the same as those for Exercises 15–24 of 
Section 5.4.)

 17. x + 2y = 5

  x - 2y = 1

 18. x + 3y = 7

  2x + 3y = 5

 19. 2x - 3y = 4

  2x + y = -4

 20. R - 4r = 17

  3R + 4r = 3

 21. 12t + 9y = 14
6t = 7y - 16

 22. 3x - y = 3

  4x = 3y + 14
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 35. What is the value of the determinant if c =  d =  0?

 36. What change in value occurs if rows and columns are inter-
changed (b and c are interchanged)?

 37. What is the value of the determinant if a = kb and c = kd?

 38. How does the value change if a and c are doubled?

In Exercises 39–42, solve the given systems of equations by 
determinants. All numbers are accurate to at least two significant 
digits.

 39. The forces acting on a link of an 
industrial robot are shown in 
Fig. 5.30. The equations for finding 
forces F1 and F2 are

  F1 + F2 = 21

  2F1 = 5F2

  Find F1 and F2.

 40. The area of a quadrilateral is

  A =
1
2

 a ` x0

y0

x1

y1
` + ` x1

y1

x2

y2
` + ` x2

y2

x3

y3
` + ` x3

y3

x0

y0
` b

  where 1x0, y02 , 1x1, y12 , 1x2, y22 , and 1x3, y32  are the rectangu-
lar coordinates of the vertices of the quadrilateral, listed counter-
clockwise. (This surveyor’s formula can be generalized to find 
the area of any polygon.)

   A surveyor records the locations of the vertices of a quadrilateral 
building lot on a rectangular coordinate system as 112.79, 0.002 ,
 167.21, 12.302 , 153.05, 47.122 , and 110.09, 53.112 , where dis-
tances are in metres. Find the area of the lot.

 41. An airplane begins a flight with a total of 144 L of fuel stored in 
two separate wing tanks. During the flight, 25.0, of the fuel in 
one tank is used, and in the other tank 37.5, of the fuel is used. 
If the total fuel used is 44.8 L, the amounts x and y used from 
each tank can be found by solving the system of equations

  x + y = 144

  0.250x + 0.375y = 44.8

  Find x and y.

 42. In applying Kirchhoff’s laws (see the chapter introduction; for the 
equations, see, for example, Beiser, Modern Technical Physics, 6th 
ed., p. 550) to the electric circuit shown in Fig. 5.31, the following 
equations are found. Find the indicated currents I1 and I2 (in A).

  52I1 - 27I2 = -420

  -27I1 + 76I2 = 210In Exercises 27–34, solve the given systems of equations by 
determinants. All numbers are approximate. (Exercises 27–30 are the 
same as Exercises 37–40 of Section 5.4.)

Fig. 5.31 

49 V

210 V

27 V
25 V

420 V

I2

I1

 23. v + 2t = 7

  2v + 4t = 9

 24. 3x - y = 5

  -9x + 3y = -15

 25. 2x - 3y - 4 = 0

  3x + 2 = 2y

 26. 3i1 + 5 = -4i2
  3i2 = 5i1 - 2

 27. 0.3x - 0.7y = 0.4

  0.2x + 0.5y = 0.7

 28. 250R + 225Z = 400

  375R - 675Z = 325

 29. 40s - 30t = 60

  20s - 40t = -50

 30. 0.060x + 0.048y = -0.084

  0.013x - 0.065y = -0.078

 31. 301x - 529y = 1520

  385x - 741y = 2540

32. 0.25d + 0.63n = -0.37

  -0.61d - 1.80n = 0.55

 33. 1.2y + 10.8 = -8.4x

  3.5x + 4.8y + 12.9 = 0

 34. 6541x + 4397y = -7732

  3309x - 8755y = 7622

In Exercises 35–38, answer the given 
questions about the determinant to  
the right.

Fig. 5.30 

F1 F2

21 N

In Exercises 43–52, set up appropriate systems of two linear equations 
in two unknowns and then solve the systems by determinants. All 
numbers are accurate to at least two significant digits.

 43. A developer built twice as many three-bedroom homes as four-
bedroom homes in a new development. The profit from each 
three-bedroom home was $25 000, and the profit from each four-
bedroom home was $35 000. If the total profit was $6 800 000, 
how many of each were built?

 44. Two joggers are 2.0 km apart. If they jog toward each other, they 
will meet in 12 min. If they jog in the same direction, the faster one 
will overtake the slower one in 2.0 h. At what rate does each jog?

 45. A shipment of 320 cell phones and radar detectors was destroyed due 
to a truck accident. On the insurance claim, the shipper stated that 
each phone was worth $110, each detector was worth $160, and their 
total value was $40 700. How many of each were in the shipment?

 46. Two types of electromechanical carburetors are being assembled 
and tested. Each of the first type requires 15 min of assembly time 
and 2 min of testing time. Each of the second type requires 12 min 
of assembly time and 3 min of testing time. If 222 min of assem-
bly time and 45 min of testing time are available, how many of 
each type can be assembled and tested, if all the time is used?

 47. A machinery sales representative receives a fixed salary plus a 
sales commission each month. If $6200 is earned on sales of 
$70 000 in one month and $4700 is earned on sales of $45 000 
in the following month, what are the fixed salary and the com-
mission percent?

 48. A moving walkway at an airport is 65.0 m long. A child running 
at a constant speed takes 20.0 s to run along the walkway in the 
direction it is moving, and then 52.0 s to run all the way back. 
What are the speed of the walkway and the speed of the child?

 49. A boat carrying illegal drugs leaves a port and travels at 63 km>h. 
A Coast Guard cutter leaves the port 24 min later and travels at 
75 km>h in pursuit of the boat. Find the times each has travelled 
when the cutter overtakes the boat with drugs. See Fig. 5.32.

Fig. 5.32 

75 km/h

Leaves 24 min later

Port

63 km/h

` a
c

b
d
`
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instrument at the other end measures the time it takes for the 
sound to reach it. The sound in the bar takes 0.0120 s, and the 
sound in the air takes 0.180 s. What are the velocities of sound in 
air and in steel?

Answers to Practice Exercises

1. 22 2.  x = -2, y = 3

 50. Sterling silver is 92.5, silver and 7.5, copper. One silver- 
copper alloy is 94.0, silver, and a second silver-copper alloy is 
85.0% silver. How much of each should be used in order to make 
100 g of sterling silver?

 51. In an experiment, a variable voltage V is in a circuit with a fixed 
voltage V0 and a resistance R. The voltage V is related to the cur-
rent i in the circuit by V = Ri - V0. If V = 5.8 V for i = 2.0 A 
and V = 24.7 V for i = 6.2 A, find V as a function of i.

 52. The velocity of sound in steel is 4850 m>s faster than the velocity 
of sound in air. One end of a long steel bar is struck, and an 

Many technical problems involve systems of linear equations with more than two 
unknowns. In this section, we solve systems with three unknowns, and later we will 
show how systems with even more unknowns are solved.

Solving such systems is very similar to solving systems in two unknowns. In this 
section, we will show the algebraic method, and in the next section we will show how 
determinants are used. Graphical solutions are not typically used since a linear equation 
in three unknowns represents a plane in space, and drawing the intersection of three 
such planes is difficult to visualize. Nevertheless, graphical interpretations of systems 
of three linear equations will be briefly shown at the end of this section.

A system of three linear equations in three unknowns written in the form

 5.6 Solving Systems of Three Linear Equations  
in Three Unknowns Algebraically

Algebraic Method Using Addition or 

a1x + b1y + c1z = d1

 a2x + b2y + c2z = d2 (5.11)

a3x + b3y + c3z = d3

has as its solution the set of values x, y, and z that satisfy all three equations simultane-
ously. The method of solution involves multiplying two of the equations by the proper 
numbers to eliminate one of the unknowns between these equations. We then repeat 
this process, using a different pair of the original equations, being sure that we elimi-
nate the same unknown as we did between the first pair of equations. At this point we 
have two linear equations in two unknowns that can be solved by any of the methods 
previously discussed.

 EXAMPLE  1  Algebraically solving a system

Solve the following system of equations:

 (1)   4x + y + 3z = 1

 (2)  2x - 2y + 6z =  11

 (3)  -6x + 3y + 12z = -4

 (4)  8x + 2y + 6z = 2  (1) multiplied by 2

  2x - 2y + 6z =  11 (2)

 (5)  10x + 12z =  13 adding

 (6) 12x + 3y + 9z = 3  (1) multiplied by 3

   -6x + 3y + 12z = -4  (3)

 (7) 18x - 3z = 7  subtracting

■ We can choose to first eliminate any one of 
the three unknowns. We have chosen y .

■ At this point we could have used Eqs. (1) 
and (3) or Eqs. (2) and (3), but we must set them 
up to eliminate y .
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■ Some graphing calculators have a specific 
feature for solving simultaneous linear 
equations. It is necessary only to enter the 
coefficients and constants to get the solution.

Practice Exercise

1.  Solve the system in Example 1 by first 
eliminating x.

   10x + 12z =  13 (5)

 (8)  72x - 12z =  28  (7) multiplied by 4

 (9) 82x =  41 adding

(10) x = 1
2

(11)  1811
22 - 3z = 7  substituting (10) in (7)

(12)  -3z = -2

(13)  z = 2
3

(14)  411
22 + y + 312

32 = 1   substituting (13) and (10) in (1)

(15)  2 + y + 2 = 1

(16)  y = -3

Thus, the solution is x = 1
2, y = -3, z = 2

3. Substituting in the equations, we have

 411
22 + 1 -32 + 312

32 =? 1  211
22 - 21 -32 + 612

32 =? 11  - 611
22 + 31 -32 + 1212

32 =? -4

  1 = 1  11 = 11  -4 = -4
We see that the solution checks. If we had first eliminated x or z, we would have com-
pleted the solution in a similar manner.  ■

 EXAMPLE  2  Solving a system—application

An industrial robot and the forces acting on its main link are shown in Fig. 5.33. An 
analysis of the forces leads to the following equations relating the forces. Determine 
the forces.

 (1) A + 60 = 0.8T

 (2)  B = 0.6T                  choose 5 to

 (3)   8A + 6B + 80 = 5T         clear decimals

 (4)   5A - 4T = -300  (1) multiplied by 5 and rewritten

 (5)   5B - 3T = 0  (2) multiplied by 5 and rewritten

 (6)   8A + 6B - 5T = -80  (3) rewritten

 (7)   40A - 32T = -2400  (4) multiplied by 8

 (8)   40A + 30B - 25T = -400  (6) multiplied by 5

 (9)   -30B - 7T = -2000  subtracting

(10)   30B - 18T = 0  (5) multiplied by 6

(11)   -25T = -2000  adding

(12)   T = 80 N

(13)   A + 60 = 64    (12) substituted in (1)

(14)   A = 4 N

(15)   B = 48 N   (12) substituted in (2)

Therefore, the forces are A = 4 N, B = 48 N, and T = 80 N. The solution checks 
when substituted into the original equations. Note that we could have started the 
solution by substituting Eq. (2) into Eq. (3), thereby first eliminating B.  ■

 EXAMPLE  3  Setting up and solving a system—voltages in series application

Three voltages, V1, V2, and V3, where V3 is three times V1, are in series with the same 
polarity (see Fig. 5.34(a)) and have a total voltage of 85 mV. If V2 is reversed in polar-
ity (see Fig. 5.34(b)), the voltage is 35 mV. Find the voltages.

Since the voltages are in series with the same polarity, V1 + V2 + V3 = 85. 
Then, since V3 is three times V1, we have V3 = 3V1. Then, with the reversed polarity 
of V2, we have V1 - V2 + V3 = 35. Writing these equations in standard form, we 
have the following solution:

Fig. 5.33 

A

T

20 N
B

40 N
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 (1)  V1 + V2 + V3 = 85

 (2)  3V1 - V3 = 0   rewriting second equation

 (3)  V1 - V2 + V3 = 35

 (4)  2V1 + 2V3 = 120   adding (1) and (3)

 (5)  6V1 - 2V3 = 0   (2) multiplied by 2

 (6)  8V1 = 120   adding

 (7)  V1 = 15 mV

 (8)  31152 - V3 = 0    substituting (7) in (2)

 (9)  V3 = 45 mV

(10)  15 + V2 + 45 = 85       substituting (7) and (9) in (1)

(11)  V2 = 25 mV

Therefore, the three voltages are 15 mV, 25 mV, and 45 mV.
Checking the solution, the sum of the three voltages is 85 mV, V3 is three times V1, 

and the sum of V1 and V3 less V2 is 35 mV.  ■

Systems with four or more unknowns are solved in a manner similar to that used 
for three unknowns. With four unknowns, one is eliminated between three different 
pairs of equations, and the resulting three equations are then solved.

Linear systems with more than two unknowns may have an unlimited number of 
solutions or be inconsistent. After eliminating unknowns, if we have 0 = 0, there is 
an unlimited number of solutions. If we have 0 = a 1a ≠ 02 , the system is incon-
sistent, and there is no solution. (See Exercises 29–32.)

As noted earlier, a linear equation in three unknowns represents a plane in space. 
For three linear equations in three unknowns, if the planes intersect at a point, there 
is a unique solution (Fig. 5.35(a)); if they intersect in a line, there is an unlimited 
number of solutions (Fig. 5.35(b)). If the planes do not have a common intersection, 
the system is inconsistent. The planes can be parallel (Fig. 5.36(a)), two can be par-
allel (Fig. 5.36(b)), or they can intersect in three parallel lines (Fig. 5.36(c)). If one 
plane is coincident with another plane, the system has an unlimited number of solu-
tions if they intersect, or it is inconsistent.

Fig. 5.35 

(a)

(b)

Fig. 5.36 (a) (b) (c)

In Exercises 1 and 2, make the given changes in Example 1 of this 
section and then solve the resulting system of equations.

 1. In the second equation, change the constant to the right of the =  
sign from 11 to 12, and in the third equation, change the constant 
to the right of the = sign from -4 to -14.

 2. Change the second equation to 8x + 9z = 10 (no y-term).

In Exercises 3–16, solve the given systems of equations.

 3. x + y + z = 2

  x - z = 1

  x + y = 1

 4. x + y - z = -3

  x + z = 2

  2x - y + 2z = 3

 5. 2x + 3y + z = 2

  -x + 2y + 3z = -1

  -3x - 3y + z = 0

 6. 2x + y - z = 4

  4x - 3y - 2z = -2

  8x - 2y - 3z = 3

Fig. 5.34 

V1 V2

(a)

V3

V1 V2

(b)

V3
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 22. Using Kirchhoff’s laws (see the chapter introduction; for the 
equations, see, for example, Beiser, Modern Technical Physics, 
6th ed., p. 550) with the electric circuit shown in Fig. 5.38, the 
following equations are found. Find the indicated currents (in A) 
I1, I2, and I3.

  1.0I1 + 3.01I1 - I32 = 12

  2.0I2 + 4.01I2 + I32 = 12

  1.0I1 - 2.0I2 + 3.0I3 = 0

 7. 5l + 6w - 3h = 6

  4l - 7w - 2h = -3

  3l + w - 7h = 1

 8. 3r + s - t = 2

  r - 2s + t = 0

  4r - s + t = 3

 9. 2x - 2y + 3z = 5

  2x + y - 2z = -1

  4x - y - 3z = 0

 10. 2u + 2v + 3w = 0

  3u + v + 4w = 21

  -u - 3v + 7w = 15

 11. 3x - 7y + 3z = 6

  3x + 3y + 6z = 1

  5x - 5y + 2z = 5

 12. 18x + 24y + 4z = 46

  63x + 6y - 15z = -75

  -90x + 30y - 20z = -55

 13. 10x + 15y - 25z = 35

  40x - 30y - 20z = 10

  16x - 2y + 8z = 6

 14. 2i1 - 4i2 - 4i3 = 3

  3i1 + 8i2 + 2i3 = -11

  4i1 + 6i2 - i3 = -8

 15. r - s - 3t - u = 1

  2r + 4s - 2u = 2

  3r + 4s - 2t = 0

  r + 2t - 3u = 3

 16. 3x + 2y - 4z + 2t = 3

  5x - 3y - 5z + 6t = 8

  2x - y + 3z - 2t = 1

  -2x + 3y + 2z - 3t = -2

In Exercises 17 and 18, three solutions of the equation
Ax + By + Cz = D are given, along with the value of D.  
Find the constants A, B, and C, and write the equation.

 17. x = 2, y = 4, z = 4

  x = 3, y = -2, z = 8

  x = -1, y = 8, z = 6

  D = 12

 18. x = 4, y = 1, z = 1

  x = -1, y = 2, z = 3

  x = 2, y = -1, z = 0

  D = 5

In Exercises 19–28, solve the systems of equations. In Exercises 23–28, 
it is necessary to set up the appropriate equations. All numbers are 
accurate to at least three significant digits.

 19. A medical supply company has 1150 worker-hours for produc-
tion, maintenance, and inspection. Using this and other factors, 
the number of hours used for each operation, P, M, and I, respec-
tively, is found by solving the following system of equations:

  P + M + I = 1150

  P = 4I - 100

  P = 6M + 50

 20. Three oil pumps fill three different tanks. The pumping rates of 
the pumps (in L>h) are r1, r2, and r3, respectively. Because of 
malfunctions, they do not operate at capacity each time. Their 
rates can be found by solving the following system of equations:

   r1 + r2 + r3 = 14 000

   r1 + 2r2 = 13 000

   3r1 + 3r2 + 2r3 = 36 000

 21. The forces acting on a certain girder, as shown in Fig. 5.37, can 
be found by solving the following system of equations:

   0.707F1 - 0.800F2 = 0

   0.707F1 + 0.600F2 - F3 = 10.0

   3.00 F2 - 3.00 F3 = 20.0

  Find the forces, in newtons.

Fig. 5.37 
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 23. Find angles A, B, and C in the roof truss shown in Fig. 5.39.

 24. Under certain conditions, the cost per kilometre C of operating a 
car is a function of the speed v (in km>h) of the car, given by

  C = av2 + bv + c. If C = 28 .>km for v = 10 km>h,

  C = 22 .>km for v = 50 km>h, amp C = 24 .>km for 

  v = 80 km>h, find C as a function of v.

 25. The angle u (in degrees) between two links of a robot arm is given 
by u = at3 + bt2 + ct, where t is the time during an 11.8-s 
cycle. If u = 19.0° for t = 1.00 s, u = 30.9° for t = 3.00 s, and 
u = 19.8° for t = 5.00 s, find the equation u = f1 t2 . See  
Fig. 5.40.

Fig. 5.40 

u

 26. The computer systems at three weather bureaus have a combined 
hard-disk memory capacity of 8.0 TB (terabytes). The memory 
capacity of systems A and C have 0.2 TB more memory than 
twice that of system B, and twice the sum of the memory capaci-
ties of systems A and B is three times that of system C. What are 
the memory capacities of each of these computer systems?
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In Exercises 29–32, show that the given systems of equations have 
either an unlimited number of solutions or no solution. If there is an 
unlimited number of solutions, find one of them.

 27. By weight, one fertilizer is 20, potassium, 30, nitrogen, and 
50, phosphorus. A second fertilizer has percents of 10, 20, and 
70, respectively, and a third fertilizer has percents of 0, 30,  
and 70, respectively. How much of each must be mixed to get  
200 kg of fertilizer with percents of 12, 25, and 63, respectively?

 28. The average traffic flow (number of vehicles) from noon until 
1 p.m. in a certain section of one-way streets in a city is shown in 
Fig. 5.41. Explain why an analysis of the flow through these inter-
sections is not sufficient to obtain unique values for x, y, and z.

Fig. 5.41 
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 29. x - 2y - 3z = 2

  x - 4y - 13z = 14

  -3x + 5y + 4z = 0

 30. x - 2y - 3z = 2

  x - 4y - 13z = 14

  -3x + 5y + 4z = 2

 31. 3x + 3y - 2z = 2

  2x - y + z = 1

  x - 5y + 4z = -3

 32. 3x + y - z = -3

  x + y - 3z = -5

  -5x - 2y + 3z = -7

Answer to Practice Exercise

1. x = 1>2, y = -3, z = 2>3

Just as systems of two linear equations in two unknowns can be solved by determi-
nants, so can systems of three linear equations in three unknowns. The system

 5.7 Solving Systems of Three Linear Equations  
in Three Unknowns by Determinants

Calculator

a1x + b1y + c1z = d1

 a2x + b2y + c2z = d2 (5.11)
a3x + b3y + c3z = d3

can be solved in general terms by the method of elimination by addition or subtraction. 
This leads to the following solutions for x, y, and z.

 x =
d1b2c2 + d3b1c2 + d2b3c1 - d3b2c1 - d1b3c2 - d2b1c3

a1b2c3 + a3b1c2 + a2b3c1 - a3b2c1 - a1b3c2 - a2b1c3

  y =
a1d2c3 + a3d1c2 + a2d3c1 - a3d2c1 - a1d3c2 - a2d1c3

a1b2c3 + a3b1c2 + a2b3c1 - a3b2c1 - a1b3c2 - a2b1c3
 (5.12)

 z =
a1b2d3 + a3b1d2 + a2b3d1 - a3b2d1 - a1b3d2 - a2b1d3

a1b2c3 + a3b1c2 + a2b3c1 - a3b2c1 - a1b3c2 - a2b1c3

The expressions that appear in the numerators and denominators of Eq. (5.12) are 
examples of a determinant of the third order. This determinant is defined by

 3 a1

a2

a3

b1

b2

b3

c1

c2

c3

3 = a1b2c3 + a3b1c2 + a2b3c1 - a3b2c1 - a1b3c2 - a2b1c3 (5.13)

The elements, rows, columns, and diagonals of a third-order determinant are defined 
just as are those of a second-order determinant. For example, the principal diagonal is 
made up of the elements a1, b2, and c3.
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■ This rewriting method is used only for third-
order determinants. It does not work for 
determinants of order higher than three.

Probably the easiest way of remembering the method of finding the value of a third-
order determinant is as follows: Rewrite the first two columns to the right of the deter-
minant. The products of the elements of the principal diagonal and the two parallel 
diagonals to the right of it are then added. The products of the elements of the second-
ary diagonal and the two parallel diagonals to the right of it are subtracted from the 
first sum. The algebraic sum of these six products gives the value of the determinant. 
These products are indicated in Fig. 5.42.

Fig. 5.42 
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Examples 1 and 2 illustrate this method of evaluating third-order determinants.

 EXAMPLE  1  Evaluating a third-order determinant3 1
-2

2

5
3

-1

4
-1

5

3 1
-2

2

5
3

-1
=

 p1     p2   p3

15 + (-10) + (+8) -  
(24) - (1) - (-50) = 38
 p4   p5   p6

 EXAMPLE  2  Evaluating a determinant on a calculator3 3
-5

4

-2
5
9

8
0

-6

3 3
-5

4

-2
5
9

= 1 -902 + 0 + 1 -3602 - 160 - 0 - 1 -602 = -550

Inspection of Eq. (5.12) reveals that the numerators of these solutions may also be 
written in terms of determinants. Thus, we may write the general solution to a system 
of three equations in three unknowns as

■

■

■ Determinants can be evaluated on a 
calculator using the matrix feature. The 
numbers are entered into a matrix (an array of 
numbers; see Section 16.1), and the 
determinant is calculated using the det 
instruction.

 x =

3 d1

d2

d3

b1

b2

b3

c1

c2

c3

33 a1

a2

a3

b1

b2

b3

c1

c2

c3

3   y =

3 a1

a2

a3

d1

d2

d3

c1

c2

c3

33 a1

a2

a3

b1

b2

b3

c1

c2

c3

3   z =

3 a1

a2

a3

b1

b2

b3

d1

d2

d3

33 a1

a2

a3

b1

b2

b3

c1

c2

c3

3  (5.14)

As in Section 5.5, if the determinant of the denominator is not zero, there is a unique 
solution to the system of equations. If all determinants are zero, there is an unlimited 
number of solutions. If the determinant of the denominator is zero and any of the deter-
minants of the numerators is not zero, the system is inconsistent, and there is no 
solution.

Practice Exercise

1. Evaluate the determinant

 † 2 -2 0
-1 5 1

3 4 5
† .
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An analysis of Eq. (5.14) shows that the situation is precisely the same as it was 
when we were using determinants to solve systems of two linear equations. That is, the 
determinants in the denominators in the expressions for x, y, and z are the same. They 
consist of elements that are the coefficients of the unknowns. The determinant of the 
numerator of the solution for x is the same as that of the denominator, except that the 
column of d’s replaces the column of a’s. The determinant in the numerator of the solu-
tion for y is the same as that of the denominator, except that the column of d’s replaces 
the column of b’s. The determinant of the numerator of the solution for z is the same as 
the determinant of the denominator, except that the column of d’s replaces the column 
of c’s. To summarize:

Cramer’s Rule for Three Equations and Three Unknowns
The determinant in the denominator of each is made up of the coefficients of x, y, 
and z. The determinants in the numerators are the same as that in the denomina-
tor, except that the column of d’s replaces the column of coefficients of the 
unknown for which we are solving.

Remember, the equations must be written in the standard form shown in Eq. (5.11) 
before the determinants are formed.

 EXAMPLE  3  Solving a system using Cramer’s rule

Solve the following system by determinants:

 3x + 2y - 5z =  -1

2x - 3y - z =  11

 5x - 2y + 7z = 9

constants

  x =

3 -1
11
9

2
-3
-2

-5
-1

7

3 -1
11
9

2
-3
-23 32

5

2
-3
-2

-5
-1

7

3 32
5

2
-3
-2

 

   x =
21 - 18 + 110 - 135 + 2 - 154
-63 - 10 + 20 - 75 - 6 - 28

=
-174
-162

=
29
27

constants

  y =

3 32
5

-1
11
9

-5
-1

7

3 32
5

-1
11
9

-162
=

231 + 5 - 90 + 275 + 27 + 14
-162

  y =
462

-162
= - 77

27
constants

  z =

3 32
5

2
-3
-2

-1
11
9

3 32
5

2
-3
-2

-162
=

-81 + 110 + 4 - 15 + 66 - 36
-162

evaluate the denominator first; 
if it is zero, there is no need to 
evaluate the numerator

coefficients 

denominator = -162 from solution for x 

denominator = -162 from solution for x 
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 z =
48

-162
= - 8

27

Substituting in each of the original equations shows that the solution checks:

3a29
27

b + 2a- 77
27

b  -  5a- 8
27

b =
87 - 154 + 40

27
=

-27
27

= -1

2a29
27

b  -  3a- 77
27

b - a- 8
27

b =
58 + 231 + 8

27
=

297
27

= 11

5a29
27

b  -  2a- 77
27

b + 7a- 8
27

b =
145 + 154 - 56

27
=

243
27

= 9

After the values of x and y were determined, we could also have evaluated z by 
substituting the values of x and y into one of the original equations.  ■

 EXAMPLE  4   Setting up and solving a system of three linear equations 
using determinants

An 8.0, solution, an 11, solution, and an 18, solution of nitric acid are to be mixed 
to get 150 mL of a 12, solution. If the volume of acid from the 8.0, solution equals 
half the volume of acid from the other two solutions, how much of each is needed?

Let x = volume of 8.0, solution needed, y = volume of 11, solution needed, 
and z = volume of 18, solution needed.

The fact that the sum of the volumes of the three solutions is 150 mL leads to  
the equation x + y + z = 150. Since there are 0.080x mL of pure acid from the  
first solution, 0.11y mL from the second solution, 0.18z mL from the third solution,  
and 0.1211502  mL in the final solution, we are led to the equation 
0.080x + 0.11y + 0.18z = 18. Finally, using the last stated condition, we have the 
equation 0.080x = 0.510.11y + 0.18z2 . These equations are then written in the 
form of Eq. (5.11) and solved.

    x + y + z = 150  sum of volumes

 0.080x + 0.11y + 0.18z = 18  volumes of pure acid

 0.080x = 0.055y + 0.090z one-half of acid in others

   x + y + z = 150

 0.080x + 0.11y + 0.18z = 18

 0.080x - 0.055y - 0.090z = 0

 x =

3 150
18
0

1
0.11

-0.055

1
0.18

-0.090

3 150
18
0

1
0.11

-0.0553 10.080
0.080

1
0.11

-0.055

1
0.18

-0.090

3 10.080
0.080

1
0.11

-0.055

 x =
-1.485 + 0 - 0.990 - 0 + 1.485 + 1.620

-0.0099 + 0.0144 - 0.0044 - 0.0088 + 0.0099 + 0.0072
=

0.630
0.0084

= 75

 y =

3 10.080
0.080

150
18
 0

1
0.18

-0.090

3 10.080
0.080

150
18
 0

0.0084

 y =
-1.620 + 2.160 + 0 - 1.440 - 0 + 1.080

0.0084
=

0.180
0.0084

= 21

acid in 8.0% solution

standard form of  
Eq. (5.11) by rewriting 
third equation
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 z =

3 10.080
0.080

1
0.11

-0.055

150
18
0

3 10.080
0.080

1
0.11

-0.055

0.0084

 z =
0 + 1.440 - 0.660 - 1.320 + 0.990 - 0

0.0084
=

0.450
0.0084

= 54

Therefore, 75 mL of the 8.0, solution, 21 mL of the 11, solution, and 54 mL of the 
18, solution are required to make the 12, solution. Results have been rounded off to 
two significant digits, the accuracy of the data. Checking with the statement of the 
problem, we see that these volumes total 150 mL.  ■

As we previously noted, the calculations can be done completely on the calcula-
tor using either the matrix feature (as illustrated with Examples 2 and 3) or using the 
method outlined after Example 4 in Section 5.5. Briefly, using this method for three 
equations is: (1) Evaluate and store the value of the denominator; (2) divide the 
value of each numerator by the value of the denominator, storing the values of x, y, 
and z; (3) use the stored values of x, y, and z to check the solution.

the value of z can also be found by  
substituting x = 75 and y = 21 into the first 
equation

In Exercises 1 and 2, make the given change in the indicated examples 
of this section and then solve the resulting problems.

 1. In Example 1, interchange the first and second rows of the deter-
minant and then evaluate it.

 2. In Example 3, change the constant to the right of the = sign in 
the first equation from -1 to -3, change the constant to the right 
of the = sign in the third equation from 9 to 11, and then solve 
the resulting system of equations.

In Exercises 3–14, evaluate the given third-order determinants.

In Exercises 15–30, solve the given systems of equations by use of 
determinants. (Exercises 17–26 are the same as Exercises 3–12 of 
Section 5.6.) Assume all numbers are accurate to 3 significant digits.

 3. 3 5
-2

7

4
-6

1

-1
8
1

3  4. 3 -7
2
1

0
4
4

0
5
2

3
 5. 3 8

-3
4

9
7

-2

-6
2
5

3  6. 3 -2
5
4

4
-10
-8

-1
4
2

3
 7. 3 -3

5
2

-4
-1
10

-8
0

-1

3  8. 3 10
-2

6

2
-3

5

-7
6

-2

3
 9. 3 4

-9
0

-3
2
1

-11
-2
-5

3  10. 3 9
-1
-4

-2
3

-6

0
-6
-2

3
 11. 3 25

-30
-20

18
40
55

-50
-12
-22

3  12. 3 20
-4

6

0
30
-1

-15
1

40

3
 13. 3 0.1

-0.5
-2

-0.2
1
0.8

0
0.4

2

3  14. 3 0.25
1.20

-0.50

-0.54
0.35
0.12

-0.42
0.28

-0.44

3

 15. 2x + 3y + z = 4

  3x - z = -3

  x - 2y + 2z = -5

 16. 4x + y + z = 2

  2x - y - z = 4

  3y + z = 2

 17. x + y + z = 2

  x - z = 1

  x + y = 1

 18. x + y - z = -3

  x + z = 2

  2x - y + 2z = 3

 19. 2x + 3y + z = 2

  -x + 2y + 3z = -1

  -3x - 3y + z = 0

 20. 2x + y - z = 4

  4x - 3y - 2z = -2

  8x - 2y - 3z = 3

 21. 5l + 6w - 3h = 6

  4l - 7w - 2h = -3

  3l + w - 7h = 1

 22. 3r + s - t = 2

  r - 2s + t = 0

  4r - s + t = 3

 23. 2x - 2y + 3z = 5

  2x + y - 2z = -1

  4x - y - 3z = 0

 24. 2u + 2v + 3w = 0

  3u + v + 4w = 21

  -u - 3v + 7w = 15

 25. 3x - 7y + 3z = 6

  3x + 3y + 6z = 1

  5x - 5y + 2z = 5

 26. 18x + 24y + 4z = 46

  63x + 6y - 15z = -75

  -90x + 30y - 20z = -55

 27. p + 2q + 2r = 0

  2p + 6q - 3r = -1

  4p - 3q + 6r = -8

 28. 9x + 12y + 2z = 23

  21x + 2y - 5z = -25

  -18x + 6y - 4z = -11

 29. 3.0x + 4.5y - 7.5z = 10.5

  4.8x - 3.6y - 2.4z = 1.2

  4.0x - 0.5y + 2.0z = 1.5

 30. 26L - 52M - 52N = 39

  45L + 96M + 40N = -80

  55L + 62M - 11N = -48
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 39. The voltage V across part of an electric circuit is a function of the 
temperature T  (in °C) given by V = a + bT + cT2, where a, b, 
and c are constants. By evaluating a, b, and c, find V = f1T2  if 
V = 6.4 V for T = 2.0°C, V = 8.6 V for T = 4.0°C, and 
V = 11.6 V for T = 6.0°C.

 40. A mail-order company charges $4 for shipping orders of less than 
$50, $6 for orders from $50 to $200, and $8 for orders over $200. 
One day the total shipping charges were $2160 for 384 orders. 
Find the number of orders shipped at each rate if the number of 
orders under $50 was 12 more than twice the number of orders 
over $200.

 41. An alloy used in electrical transformers contains nickel (Ni), iron 
(Fe), and molybdenum (Mo). The percent of Ni is 1, less than 
five times the percent of Fe. The percent of Fe is 1, more than 
three times the percent of Mo. Find the percent of each in the 
alloy.

 42. A person invests $20 000, partly at 5.00,, partly at 6.00,, and 
the remainder at 6.50,. The total annual interest is $1170. Three 
times the amount invested at 6.00, equals the amount invested 
at 5.00, and 6.50, combined. How much is invested at each 
rate?

 43. A person spent 1.10 h in a car going to an airport, 1.95 h flying in 
a jet, and 0.520 h in a taxi to reach the final destination. The jet’s 
speed averaged 12.0 times that of the car, which averaged 
15.0 km>h more than the taxi. What was the average speed of 
each if the trip covered 1140 km?

 44. An intravenous aqueous solution is made from three mixtures to 
get 500 mL with 6.0, of one medication, 8.0, of a second 
medication, and 86, water. The percents in the mixtures are, 
respectively, 5.0, 20, 75 (first), 0, 5.0, 95 (second), and 10, 5.0, 85 
(third). How much of each is used?

 45. Three unknown forces are exerted at the pin joint shown in a 
static structure (see Fig. 5.45). It is known that the sum of the 
magnitudes of the three forces is 125 N. Analysing the force com-
ponents in the horizontal and vertical directions yields two more 
equations:

-0.174F1 - 0.985F2 + 0.927F3 = 0
0.985F1 - 0.174F2 - 0.375F3 = 0

  Solve for the forces.

 31. How does the value change if the first two rows are 
interchanged?

 32. What is the value if the second row is replaced with the first row 
(the first row remains unchanged—the first and second rows are 
the same)?

 33. How does the value change if the elements of the first row are 
added to the corresponding elements of the second row (the first 
row remains unchanged)?

 34. How does value change if each element of the first row is multi-
plied by 2?

In Exercises 35–45, solve the given problems by determinants. In 
Exercises 38–45, set up appropriate systems of equations. All numbers 
are accurate to at least two significant digits.

 35. In analysing the forces on the  
bell-crank mechanism shown in 
Fig. 5.43, the following equations 
are found. Find the forces.

A - 0.60F = 80

B - 0.80F = 0

6.0A - 10F = 0

 36. Using Kirchhoff’s laws (see the chapter introduction; for the 
equations, see, for example, Beiser, Modern Technical Physics, 
6th ed., p. 550) with the electric circuit shown in Fig. 5.44, the 
following equations are found. Find the indicated currents (in A) 
I1, I2, and I3.

 19I1 -  12I2 = 60

 12I1 -  18I2 + 6.0I3 = 0

6.0I2 -  18I3 = 0

In Exercises 31–34, use the determinant at  
the right. Answer the questions about the 
determinant for the changes given in each 
exercise.

3 43
7

2
6
9

1
5
8

3 = 19

Fig. 5.43 80 N

A

B

F

Fig. 5.44 

7.0 V

12 V60 V

I1
I2

6.0 V
12 V

I3

 37. In a laboratory experiment to measure the acceleration of an 
object, the distances travelled by the object were recorded for 
three different time intervals. These data led to the following 
equations:

s0 + 2v0 + 2a = 20

s0 + 4v0 + 8a = 54

s0 + 6v0 + 18a = 104

  Here, s0 is the initial displacement (in m), v0 is the initial velocity 
(in m>s), and a is the acceleration (in m>s2). Find s0, v0, and a.

 38. A certain 18-hole golf course has par-3, par-4, and par-5 holes, 
and there are twice as many par-4 holes as par-5 holes. How 
many holes of each type are there if a golfer has par on every hole 
for a score of 70?

Fig. 5.45 

F2

F3

F1

Answer to Practice Exercise

1. 26
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 CHAPTER 5   EQUATIONS

Linear equation in one unknown ax + b = 0 (5.1)

Linear equation in two unknowns ax + by = c (5.2)

System of two linear equations a1x + b1y = c1 (5.3)
 a2x + b2y = c2

Definition of slope m =
y2 - y1

x2 - x1
 (5.4)

Slope-intercept form y = mx + b (5.5)

Second-order determinant ` a1

a2

b1

b2
` = a1b2 - a2b1 (5.9)

Cramer’s rule  x =
` c1

c2

b1

b2
`

` a1

a2

b1

b2
`   and y =

` a1

a2

c1

c2
`

` a1

a2

b1

b2
`  (5.10)

System of three linear equations  a1x + b1y + c1z = d1 
(5.11) a2x + b2y + c2z = d2

 a3x + b3y + c3z = d3

Third-order determinant  3 a1

a2

a3

b1

b2

b3

c1

c2

c3

3 = a1b2c3 + a3b1c2 + a2b3c1 - a3b2c1 - a1b3c2 - a2b1c3 (5.13)

Cramer’s rule  x =

3 d1

d2

d3

b1

b2

b3

c1

c2

c3

33 a1

a2

a3

b1

b2

b3

c1

c2

c3

3    y =

3 a1

a2

a3

d1

d2

d3

c1

c2

c3

33 a1

a2

a3

b1

b2

b3

c1

c2

c3

3    z =

3 a1

a2

a3

b1

b2

b3

d1

d2

d3

33 a1

a2

a3

b1

b2

b3

c1

c2

c3

3   (5.14)

 CHAPTER 5   REVIEW EXERCISES

In Exercises 1–4, evaluate the given determinants. In Exercises 9–12, find the slopes and the y-intercepts of the lines with 
the given equations. Sketch the graphs.

 9. y = -2x + 4 10. 2y = 2
3 x - 3

 11. 8x - 2y = 5 12. 3x = 8 + 3y

In Exercises 13–20, solve the given systems of equations  
graphically.

 1. ` -2
3

5
1
`  2. ` 40

-20
10

-60
`

 3. ` -18
-21

-33
44

`  4. ` 0.91
0.73

-1.2
-5.0

`
In Exercises 5–8, find the slopes of the lines that pass through the 
given points.

 5. 12, 02 , 14, -82  6. 1 -1, -52 , 1 -4, 42
 7. 140, -202 , 1 -30, -402  8. 1 -6, 122 , 11, -7

22  15. 4A - B = 6

  3A + 2B = 12

 16. 2x - 5y = 10

  3x + y = 6

 13. y = 2x - 4

  y = -3
2 x + 3

 14. y = -3x + 3

  y = 2x - 6



In Exercises 21–30, solve the given systems of equations by using an 
appropriate algebraic method.

 17. 7x = 2y + 14

  y = -4x + 4

 18. 5v = 15 - 3t

  t = 6v - 12

 19. 3M + 4N = 6

  2M - 3N = 2

 20. 5x + 2y = 5 

  2x - 4y = 3  49. 2x + y + z = 4

  x - 2y - z = 3

  3x + 3y - 2z = 1

 50. x + 2y + z = 2

  3x - 6y + 2z = 2

  2x - z = 8

 21. x + 2y = 5

  x + 3y = 7

 22. 2x - y = 7

  x + y = 2

 23. 4x + 3y = -4

  y = 2x - 3

 24. r = -3s - 2

  -2r - 9s = 2

 25. 10i - 27v = 29

  40i + 33v = 69

 26. 3x - 6y = 5

  7x + 2y = 4

 27. 7x = 2y - 6

  7y = 12 - 4x

 28. 3R = 8 - 5I

  6I = 8R + 11

 29. 90x - 110y = 40

  30x - 15y = 25

 30. 0.42x - 0.56y = 1.26

  0.98x - 1.40y = -0.28

In Exercises 31–40, solve the given systems of equations by determi-
nants. (These are the same as for Exercises 21–30.)

 31. x + 2y = 5

  x + 3y = 7

 32. 2x - y = 7

  x + y = 2

 33. 4x + 3y = -4

  y = 2x - 3

 34. r = -3s - 2

  -2r - 9s = 2

 35. 10i - 27v = 29

  40i + 33v = 69

 36. 3x - 6y = 5

  7x + 2y = 4

 37. 7x = 2y - 6

  7y = 12 - 4x

 38. 3R = 8 - 5I

  6I = 8R + 11

 39. 90x - 110y = 40

  30x - 15y = 25

 40. 0.42x - 0.56y = 1.26

  0.98x - 1.40y = -0.28

In Exercises 41–43, choose an exercise from among Exercises 31–40 
that you think is most easily solved by the indicated method. In Exer-
cises 41–44, explain your answers.

 41. Substitution 42. Addition or subtraction 43. Determinants

 44. Considering the slopes m and the y-intercepts b, for a system of 
two equations, with two unknowns, explain how to determine if 
there is (a) a unique solution, (b) an inconsistent solution, or  
(c) a dependent solution.

In Exercises 45–48, evaluate the given determinants.

 45. 3 4
-1

2

-1
6
1

8
-2
-1

3  46. 3 -500
250

-300

0
300
200

-500
-100

200

3
 47. 3 -2.2

1.2
-7.2

-4.1
6.4
2.4

7.0
-3.5
-1.0

3  48. 3 30
0

35

22
-34
-41

-12
44

-27

3

 51. 2r + s + 2t = 8

  3r - 2s - 4t = 5

  -2r + 3s + 4t = -3

 52. 4u + 4v - 2w = -4

  20u - 15v + 10w = -10

  24u - 12v - 9w = 39

In Exercises 55–60, solve the given systems of equations by determi-
nants. In Exercises 59 and 60, the numbers are approximate. (These 
systems are the same as for Exercises 49–54.)

 55. 2x + y + z = 4

  x - 2y - z = 3

  3x + 3y - 2z = 1

 56. x + 2y + z = 2

  3x - 6y + 2z = 2

  2x - z = 8

 57. 2r + s + 2t = 8

  3r - 2s - 4t = 5

  -2r + 3s + 4t = -3

 58. 4u + 4v - 2w = -4

  20u - 15v + 10w = -10

  24u - 12v - 9w = 39

 59. 3.6x + 5.2y - z = -2.2

  3.2x - 4.8y + 3.9z = 8.1

  6.4x + 4.1y + 2.3z = 5.1

 60. 32t + 24u + 63v = 32

  42t - 31u + 19v = 132

  48t + 12u + 11v = 0

In Exercises 61–64, solve for x. Here, we see that we can solve an 
equation in which the unknown is an element of a determinant.

 61. ` 2
1

5
x
` = 3 62. ` -1

3
x
4
` = 7

 63. 3 x
0

-2

1
-1

2

2
3
1

3 = 5 64. 3 1
-2
-1

2
3
2

-1
x

-2

3 = -3

In Exercises 65–68, let 1>x = u and 1>y = v. Solve for u and v and 
then solve for x and y. In this way, we see how to solve systems of 
equations involving reciprocals.

 65. 
1
x

- 1
y

=
1
2

  
1
x

+ 1
y

=
1
4

 66. 
1
x

+ 1
y

= 3

  
2
x

+ 1
y

= 1

 67. 
2
x

+ 3
y

= 3

  
5
x

- 6
y

= 3

 68. 
3
x

- 2
y

= 4

  
2
x

+ 4
y

= 1

In Exercises 69 and 70, determine the value of k that makes the sys-
tem dependent. In Exercises 71 and 72, determine the value of k that 
makes the system inconsistent.

 69. 3x - ky = 6

  x + 2y = 2

 70. 5x + 20y = 15

  2x + ky = 6
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 53. 3.6x + 5.2y - z = -2.2

  3.2x - 4.8y + 3.9z = 8.1

  6.4x + 4.1y + 2.3z = 5.1

 54. 32t + 24u + 63v = 32

  42t - 31u + 19v = 132

  48t + 12u + 11v = 0

In Exercises 49–54, solve the given systems of equations algebrai-
cally. In Exercises 53 and 54, the numbers are approximate, and are 
accurate to 3 significant digits.

 71. kx - 2y = 5

  4x + 6y = 1

 72. 2x - 5y = 7

  kx + 10y = 2
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In Exercises 73 and 74, solve the given systems of equations by any 
appropriate method. All numbers in 73 are accurate to two significant 
digits, and in 74 they are accurate to 3 significant digits.

 73. A 20-m crane arm with a supporting cable and with a 9000-N 
box suspended from its end has forces acting on it, as shown in 
Fig. 5.46. Find the forces (in N) from the following equations.

  F1 + 2.0F2 = 26 000

  0.87F1 - F3 = 0

  3.0F1 - 4.0F2 = 54 000

of half the radius replaces the smaller pulley and makes six more 
revolutions than the larger pulley for one revolution of the belt. 
Find the circumferences of the pulleys. See Fig. 5.48.

Fig. 5.46 

F3

F2

F1

30.0°

Cable

8 m

4000 N

12 m
9000 N

 74. In applying Kirchhoff’s laws (see Exercise 22 of Section 5.6) to 
the electric circuit shown in Fig. 5.47, the following equations 
result. Find the indicated currents (in A).

  i1 + i2 + i3 = 0

  5.20i1 - 3.25i2 = 8.33 - 6.45

  3.25i2 - 2.62i3 = 6.45 - 9.80

Fig. 5.47

i1

i2

i3

3.25 !

5.20 !

8.33 V

9.80 V

6.45 V

2.62 !

In Exercises 75–94, set up systems of equations and solve by any 
appropriate method. All numbers are accurate to at least 3 significant 
digits.

 75. A study found that the fuel consumption for transportation con-
tributes a percent p1 that is 16, less than the percent p2 of all 
other sources combined. Find p1 and p2.

 76. A certain amount of a fuel contains 150 MJ of potential heat. 
Part is burned at 80, efficiency, and the rest is burned at 70, 
efficiency, such that the total amount of heat actually delivered 
is 114 MJ. Find the amounts burned at each efficiency.

 77. The sales representatives of a company have a choice of being 
paid 10, of their sales in a month, or $2400 plus 4, of their 
sales in the month. For what monthly sales is the income the 
same, and what is that income?

 78. A person invested a total of $20 900 into two bonds, one with an 
annual interest rate of 6.00, and the other with an annual inter-
est rate of 5.00, per year. If the total annual interest from the 
bonds is $1170, how much is invested in each bond?

 79. A total of 42 tonnes of two types of ore is to be loaded into a 
smelter. The first type contains 6.0, copper, and the second 
contains 2.4, copper. Find the necessary amounts of each ore 
to produce 2 tonnes of copper.

 80. As a 40-m pulley belt makes one revolution, one of the two pul-
leys makes one more revolution than the other. Another pulley 

 81. A computer analysis showed that the temperature T  of the ocean 
water within 1000 m of a nuclear-plant discharge pipe was given 

  by T =
a

x + 100
+ b, where x is the distance from the pipe and

  a and b are constants. If T = 14°C for x = 0 and T = 10°C for 
x = 900 m, find a and b.

 82. In measuring the angles of a triangular parcel, a surveyor noted 
that one of the angles equalled the sum of the other two angles. 
What conclusion can be drawn?

 83. A satellite is to be launched from a space shuttle. It is calculated 
that the satellite’s speed will be 24 200 km>h if launched directly 
ahead of the shuttle or 21 400  km>h if launched directly to the 
rear of the shuttle. What is the speed of the shuttle and the launch-
ing speed of the satellite relative to the shuttle? See Fig. 5.49.

Fig. 5.48 

Belt length 5 40 m

C1

C1

C2

C3

Fig. 5.49 

21 400 km/h 24 200 km/h

 84. The velocity v of sound is a function of the temperature T  
according to the function v = aT + b, where a and b are con-
stants. If v = 337.5 m>s for T = 10.0°C and v = 346.6 m>s 
for T = 25.0°C, find v as a function of T .

 85. The power P (in W) dissipated in an electric resistance R (in Ω) 
equals the resistance times the square of the current I (in A). If 
1.0 A flows through resistance R1 and 3.0 A flows through 
resistance R2, the total power dissipated is 14.0 W. If 3.0 A 
flows through R1 and 1.0 A flows through R2, the total power 
dissipated is 6.0 W. Find R1 and R2.

 86. Twelve equal rectangular ceiling panels are placed as shown in 
Fig. 5.50. If each panel is 150 mm longer than it is wide and a 

Fig. 5.50 Length

Width



total of 40.0 m of edge and middle strips is used, what are the 
dimensions of the room?

 87. The weight of a lever may be considered to be at its centre. A 
10-m lever of weight w is balanced on a fulcrum 4 m from one 
end by a load L at that end. If a load of 4L is placed at that end, it 
requires a 20-N weight at the other end to balance the lever. 
What are the initial load L and the weight w of the lever? (See 
Exercise 50 of Section 5.4.) See Fig. 5.51.

and two the same memory as C, are added to a disk with A, B, 
and C, a total of 304 MB are required. How much memory is 
required for each of A, B, and C?

 92. One ampere of electric current is passed through a solution of 
sulfuric acid, silver nitrate, and cupric sulfate, releasing hydro-
gen gas, silver, and copper. A total mass of 1.750 g is released. 
The mass of silver deposited is 3.40 times the mass of copper 
deposited, and the mass of copper and 70.0 times the mass of 
hydrogen combined equals the mass of silver deposited less 
0.037 g. How much of each is released?

 93. Gold loses about 5.3,, and silver about 10,, of its weight 
when immersed in water. If a gold-silver alloy weighs 6.0 N in 
air and 5.6 N in water, find the weight in air of the gold and the 
silver in the alloy.

 94. Three unknown forces are exerted at the pin joint shown in a 
static structure (see Fig. 5.53). It is known that the sum of the 
magnitudes of forces F2 and F3 is 71.0 kN. Analysing the force 
components in the horizontal and vertical directions yields two 
more equations:

  
0.766F1 - 0.985F2 - 0.309F3 = 0
0.643F1 - 0.174F2 - 0.951F3 = 0

  Solve for the forces.

 88. Two fuel mixtures, one of 2.0, oil and 98.0, gasoline and 
another of 8.0, oil and 92.0, gasoline, are to be used to make 
10.0 L of a fuel that is 4.0, oil and 96.0, gasoline for use in a 
chain saw. How much of each mixture is needed?

 89. For the triangular truss shown in Fig. 5.52, ∠A is 55° less than 
twice ∠B, and ∠C is 25° less than ∠B. Find the measures of the 
three angles.

Fig. 5.51 

10 m
4 m

L w

4L 20 Nw

Fig. 5.52 

B

A

C

 90. A manufacturer produces three models of DVD players in a 
year. Four times as many of model A are produced as model C, 
and 7000 more of model B than model C. If the total production 
for the year is 97 000 units, how many of each are produced?

 91. Three computer programs A, B, and C, require a total of 140 MB 
(megabytes) of hard-disk memory. If three other programs, two 
requiring the same memory as B and one the same as C, are 
added to a disk with A, B, and C, a total of 236 MB are required. 
If three other programs, one requiring the same memory as A 

Fig. 5.53 

F2

F3

F1

Writing Exercise
 95. Write one or two paragraphs giving reasons for choosing a par-

ticular method of solving the following problem. If a first pump is 
used for 2.2 h and a second pump is used for 2.7 h, 32 m3 can be 
removed from a wastewater-holding tank. If the first pump is 
used for 1.4 h and the second for 2.5 h, 24 m3 can be removed. 
How much can each pump remove in 1.0 h? (What is the result to 
3 significant digits?)

 CHAPTER 5

 1. Find the slope of the line through 12, -52  and 1 -1, 42 .  4. Solve by substitution:

   x + 2y = 5

   4y = 3 - 2x

 5. Solve by determinants:

   3x - 2y = 4

   2x + 5y = -1 2. Is x = -2, y = 3 a solution 
to the system of equations

   2x + 5y = 11

   y - 5x = 12?

  Explain.

 3. Evaluate: 3 -1
4
5

3
-3
-4

-2
0
2

3
 6. By finding the slope and y-intercept, sketch the graph of 

2x + y = 4.

 Practice Test 179
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 7. The perimeter of a rectangular ranch is 24 km, and the length is 
6.0 km more than the width. Set up equations relating the length 
l and the width w and then solve for l and w.

 8. Solve by addition or subtraction:

   6N - 2P = 13

   4N + 3P = -13

 9. In testing an anticholesterol drug, it was found that each milli-
gram of drug administered reduced a person’s blood cholesterol 
level by 2 units. Set up the function relating the cholesterol level 
C as a function of the dosage d for a person whose cholesterol 
level is 310 before taking the drug. Sketch the graph.

 10. Solve the following system of equations graphically. Determine 
the values of x and y to the nearest 0.1.

   2x - 3y = 6

   4x + y = 4

 11. By volume, one alloy is 60, copper, 30, zinc, and 10, 
nickel. A second alloy has percents of 50, 30, and 20, respec-
tively. A third alloy is 30, copper and 70, nickel. How much 
of each alloy is needed to make 100 cm3 of a resulting alloy with 
percents of 40, 15, and 45, respectively?

 12. Solve for y by determinants:

   3x + 2y - z = 4

   2x - y + 3z = -2

   x + 4z = 5
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Factoring and 
Fractions

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Identify and perform various 
algebraic special products

 Factor algebraic expressions 
using common factors, 
difference of squares, sum and 
difference of cubes, and other 
techniques

 Simplify expressions involving 
algebraic fractions

 Solve equations involving 
algebraic fractions

In this chapter, we further develop operations with products, quotients, and fractions and 
show how they are used in solving equations. These additional algebraic methods are 
needed in later chapters, and they will be useful in solving many application problems.

The development of the symbols now used in algebra in itself led to advances in mathematics 
and science. Until about 1500, most problems and their solutions were stated in words, which 
made them very lengthy and often difficult to follow. For example, to solve the equation 
3x + 7 = 812x - 52 , the problem would be stated something like “find a number such that 
seven added to three times the number is equal to the product of 8 and the quantity of five 
subtracted from twice the number.” Then the solution would be written out, word by word.

As time went on, writers abbreviated some of the words in a problem, but they still essentially 
wrote out the solution in words. Some symbols did start to come into use. For example, the +  
and -  signs first appeared in a published book in the late 1400s, the square root symbol 1  
was first used in 1525, and the =  sign was introduced in 1557. Then, in the late 1500s, the 
French lawyer François Viète wrote several articles in which he used symbols, including let-
ters to represent numbers. He so improved the symbolism of algebra that he is often called 
“the father of algebra.” By the mid-1600s, the notation being used was reasonably similar to 
that we use today.

The use of symbols in algebra made it more useful in all fields of mathematics. It was impor-
tant in the development of calculus in the 1600s and 1700s. In turn, this gave scientists a 
powerful tool that allowed for much greater advancement in all areas of science and 
technology.

Although the primary purpose of this chapter is to develop additional algebraic methods, 
many technical applications of these operations will be shown. The important applications in 
optics are noted by the picture of the Hubble telescope below. Other areas of application in-
clude electronics, mechanical design, thermodynamics, and fluid mechanics.

6

 Great advances in our knowledge  
of the universe have been made 
through the use of the Hubble space 
telescope (shown at the left during 
release from the cargo bay of Space 
Shuttle Atlantis) since the mid-1990s. 
In Section 6.8, we illustrate the use of 
algebraic operations in the study of 
planetary motion and in the design of 
lenses and reflectors in telescopes.
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Certain types of algebraic products are used so often that we should be very familiar 
with them. These are shown in the following equations:

 6.1 Special Products

Products Involving Cubes

a1x + y2 = ax + ay1x + y2 1x - y2 = x2 - y21x + y22 = x2 + 2xy + y21x - y22 = x2 - 2xy + y21x + a2 1x + b2 = x2 + 1a + b2x + ab1ax + b2 1cx + d2 = acx2 + 1ad + bc2x + bd

(6.1)
(6.2)
(6.3)
(6.4)
(6.5)
(6.6)

SPECIAL ALGEBRAIC PRODUCTS

We see that Eq. (6.1) is the very important distributive law. Eqs. (6.2) to (6.6) are found 
by using the distributive law along with other basic operations that were developed in 
Chapter 1.

Eqs. (6.1) to (6.6) are important special products and should be known thoroughly. 
By carefully studying the products, you will see how they are formed, and this allows 
them to be used quickly. Eq. (6.6) looks complicated, but when you see how each of the 
terms on the right side is formed, you will not have to actually memorize it. In using 
these equations, we must realize that any of the literal numbers may represent any sym-
bol or expression that represents a number.

 EXAMPLE  1   Using special products (distributive law and difference  
of squares)

(a) Using Eq. (6.1) in the following product, we have

the 6 factor is distributed to both terms by multiplication

613r + 2s2 = 613r2 + 612s2 = 18r + 12s

(b) Using Eq. (6.2), we have13r + 2s2 13r - 2s2 = 13r22 - 12s22 = 9r2 - 4s2

■ Eqs. (6.1) to (6.6) are identities. (See page 
42.) Each is valid for all sets of values of the 
literal numbers.

sum of  
3r and 2s

difference 
of squares

difference 
of 3r  

and 2s

Difference of Squares

Using Eq. (6.1) in (a), we have a = 6. In (a) and (b), 3r = x and 2s = y. ■

 EXAMPLE  2   Using special products involving the square of a binomial

Using Eqs. (6.3) and (6.4) in the following products, we have

(a) 15a + 222 = 15a22 + 215a2 122 + 22 = 25a2 + 20a + 4 Eq. (6.3)
square twice 

product 
square

(b) 15a - 222 = 15a22 - 215a2 122 + 22 = 25a2 - 20a + 4 Eq. (6.4)

 In these illustrations, we let x = 5a and y = 2. ■

It should be emphasized that (5a + 2)2 is not (5a)2 + 22, or 25a2 + 4. Ensure that you use 
the forms of Eqs. (6.3) and (6.4) very carefully by including the middle term, 20a. 

COMMON ERROR

■ 15a + 222 = 15a + 22 15a + 22



When expanding the square of a 
binomial, three terms result: the 
square of the first term, the square of 
the last term, and a middle term of 
the products of the two terms multi-
plied by 2:13x - 2y22 = 13x22 + 213x21-2y2 + 1-2y22

LEARNING T IP

First term 
squared 

Twice 
product 

Last term 
squared

(3x - 2y)2 = 9x2 - 12xy + 4y2

 EXAMPLE  3  Using special products involving the distributive property

Using Eqs. (6.5) and (6.6) in the following products, we have

(a) 1x + 52 1x - 32 = x2 + 35 + 1 -324x + 152 1-32 = x2 + 2x - 15 Eq. (6.5)

(b) 14x + 5212x - 32 = 14x212x2 + 31421-32 + 1521224x + 152 1-32   Eq. (6.6)

 = 8x2 - 2x - 15 ■

Generally, when we use these special products, we find the middle term mentally 
and write down the result directly, as shown in the next example.

 EXAMPLE  4  Middle term often found mentally

(a) 1y - 52 1y + 52 = y2 - 25      no middle term—Eq. (6.2)

(b) 13x - 222 = 9x2 - 12x + 4      middle term = 213x2 1 -22—Eq. (6.4)

(c) 1x2 - 42 1x2 + 72 = x4 + 3x2 - 28   middle term = 17 - 42x2—Eq. (6.5)1x222 = x4 ■

At times, it is necessary to use more than one of the special products to simplify an 
algebraic expression. When this happens, it may be necessary to write down an inter-
mediate step. This is illustrated in the following examples.

 EXAMPLE  5  Applications of special products

(a) When analysing the forces on a certain type of beam, the expression 
Fa1L - a2 1L + a2  occurs. In expanding this expression, we first multiply 
L - a by L + a by use of Eq. (6.2). The expansion is completed by using  
Eq. (6.1), the distributive law.

 Fa(L - a2(L + a2 = Fa1L2 - a22  

Eq. (6.2)

 = FaL2 - Fa3  Eq. (6.1)

(b) The electrical power delivered to the resistor R in Fig. (6.1) is R1 i1 + i222. Here, 
i1 and i2 are electric currents. To expand this expression, we first perform the 
square by use of Eq. (6.3) and then complete the expansion by use of Eq. (6.1).

 R1 i1 + i222 = R1 i2
1 + 2i1i2 + i2

22 Eq. (6.3)

= Ri1
2 + 2Ri1i2 + Ri2

2 Eq. (6.1) ■

 EXAMPLE  6  Group terms then use special products

In determining the product 1x + y - 222, we may group the quantity 1x + y2  in an 
intermediate step. This leads to

 1x + y - 222 = 3 1x + y2 - 242

 = 1x + y22 - 21x + y2 122 + 22

 = x2 + 2xy + y2 - 4x - 4y + 4

In this example, we used Eqs. (6.3) and (6.4). ■

SPECIAL PRODUCTS INVOLVING CUBES
Four other special products occur less frequently. However, they are sufficiently impor-
tant that they should be readily recognized. They are shown in Eqs. (6.7) to (6.10).

each factor is distributed to 
both terms in the other factor

Practice Exercises

Find the indicated products
1. 13x + 42 13x - 42
2. 13x + 422

3. 13x + 42 1x - 22

Fig. 6.1 

R
i1

i2

 6.1 Special Products 183
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 EXAMPLE  7  Using special products involving the cube of a binomial

(a)  1x + 423 = x3 + 31x22 142 + 31x2 1422 + 43    Eq. (6.7)

 = x3 + 12x2 + 48x + 64

(b)  12x - 523 = 12x23 - 312x22152 + 312x2 1522 - 53   Eq. (6.8)

 = 8x3 - 60x2 + 150x - 125 ■

 EXAMPLE  8   Using special products involving the difference or  
sum of cubes

(a)  1x + 32 1x2 - 3x + 92 = x3 + 33   Eq. (6.9)

 = x3 + 27

(b)  1x - 22 1x2 + 2x + 42 = x3 - 23   Eq. (6.10)

 = x3 - 8 ■

1x + y23 = x3 + 3x2y + 3xy2 + y3 (6.7)1x - y23 = x3 - 3x2y + 3xy2 - y3 (6.8)1x + y2 1x2 - xy + y22 = x3 + y3  (6.9)1x - y2 1x2 + xy + y22 = x3 - y3  (6.10)

Sum of Cubes

Difference of Cubes

EXERCISES 6.1

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 1(b), interchange the +  and -  signs and then find the 
product.

 2. In Example 3(b), interchange the +  and -  signs and then find the 
product.

 3. In Example 6, group y - 2 instead of x + y and then find the 
product.

 4. In Example 7(a), change +  to -  in the original expression and 
then find the product.

In Exercises 5–36, find the indicated products directly by inspection. 
It should not be necessary to write down intermediate steps [except 
possibly when using Eq. (6.6)].

 5. 401x - y2  6. 2x1a - 32
 7. 2x21x - 42  8. 3a212a + 72
 9. 1T + 62 1T - 62  10. 1s + 2t2 1s - 2t2
 11. 13v - 22 13v + 22  12. 1ab - c2 1ab + c2
 13. 14x - 5y2 14x + 5y2  14. 17s + 2t2 17s - 2t2
 15. 112 + 5ab2 112 - 5ab2  16. 12xy - 112 12xy + 112
 17. 15f + 422 18. 1 i1 + 322

 19. 12x + 1722 20. 19a + 8b22

 21. 1L2 - 122 22. 1b2 - 622

 23. 14a + 7xy22 24. 13A + 10z22

 25. 10.6s - t22 26. 10.3p - 0.4q22

 27. 1x + 12 1x + 52  28. 1y - 82 1y + 52
 29. 13 + C22 16 + C22  30. 11 - e32 17 - e32
 31. 14x - 52 15x + 12  32. 12y - 12 13y - 12
 33. 110v - 32 14v + 152  34. 17s + 122 18s + 52
 35. 130x + 7y2 120x - 9y2  36. 124x - y2 115x + 4y2
Use the special products of this section to determine the products of 
Exercises 37–62. You may need to write down one or two intermediate 
steps.

 37. 21x - 22 1x + 22  38. 251V - 52 1V + 52
 39. 2a12a - 12 12a + 12  40. 4c12c - 32 12c + 32
 41. 6a1x + 2b22 42. 7r15r + 2b22

 43. 5n212n + 522 44. 8T1T - 722

 45. 3 12R + 3r2 12R - 3r2 42 46. 3 16t - y2 16t + y2 42

 47. 1x + y + 122 48. 1x + 2 + 3y22

 49. 13 - x - y22 50. 21x - y + 122

 51. 15 - t23 52. 12s + 323

 53. 13L + 7R23 54. 12A - 5B23

 55. 1w + h - 12 1w + h + 12
 56. 12a - c + 22 12a - c - 22
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 76. The radius of a circular oil spill is r. It then increases in radius by 
40 m before being contained. Find the area of the oil spill at the 
time it is contained in terms of r (in expanded form). See Fig. 6.2.

 57. 1x + 22 1x2 - 2x + 42
 58. 1s - 32 1s2 + 3s + 92
 59. 14 - 3x2 116 + 12x + 9x22
 60. 12x + 3a2 14x2 - 6ax + 9a22
 61. 1x + y221x - y22

 62. 1x - y2 1x + y2 1x2 + y22
In Exercises 63–72, use the special products of this section to 
determine the products. Each comes from the technical area indicated.

 63. P11P0c + G2  (computers)

 64. akT1 t2 - t12  (heat conduction)

 65. 41p + DA22 (photography)

 66. 12J + 32 12J - 12  (lasers)

 67. 1
2 p1R + r2 1R - r2  (architecture)

 68. k1T - T02 1T + T02 1T2 + T0
22  (radiation)

 69. 
L
6

 1x - a23 (mechanics: beams)

 70. 11 - z2211 + z2  (motion: gyroscope)

 71. L0 31 + a1T - T024  (thermal expansion)

 72. 1s + 1 + j2 1s + 1 - j2  (electricity)

In Exercises 73–80, solve the given problems.

 73. Multiply 49 by 51 by writing 1492 1512 = 150 - 12 150 + 12  
and using one of the special products.

 74. Multiply 82 by 78 by writing 1822 1782 = 180 + 22 180 - 22  
and using one of the special products.

 75. The length of a piece of rectangular floor tile is 3 cm more than twice 
the side x of a second square piece of tile. The width of the rectangu-
lar piece is 3 cm less than twice the side of the square piece. Find the 
area of the rectangular piece in terms of x (in expanded form).

r 40 m

Fig. 6.2 
y

y

x

x

Fig. 6.3 

 77. Referring to Fig. 6.3, find (a) an expression for the area of the 
large square (the entire figure) as the power of a binomial; (b) the 
sum of the areas of the four figures within the large square as a 
trinomial. Noting that the results of (a) and (b) should be equal, 
what special product is shown geometrically?

 78. If 1x + k21x - 12 = x2 + k1x + 22 - 1x - 32 , find the value  
of k.

 79. Find the product 12x - y - 22 12x + y + 22  by first grouping 
terms similar to Example 6, by grouping the last two terms of 
each factor.

 80. Verify Eqs. (6.8) and (6.9) by multiplication. Then explain why 
we may refer to Eqs. (6.1) to (6.10) as identities.

Answers to Practice Exercises

1. 9x2 - 16  2. 9x2 + 24x + 16  3. 3x2 - 2x - 8

 6.2  Factoring: Common Factor and Difference of Squares
At times, we want to determine which expressions can be multiplied together to equal a 
given algebraic expression. We know from Section 1.7 that when an algebraic expres-
sion is the product of two or more quantities, each of these quantities is a factor of the 
expression. Therefore, determining these factors, which is essentially reversing the 
process of finding a product, is called factoring. Factoring is very useful when you are 
determining the zeros of a function (that is, solving for values of the variable that pro-
duce 0 as the value of a function).

In our work on factoring, we will consider only the factoring of polynomials (see 
Section 1.7) that have integers as coefficients for all terms. Also, all factors will have 
integral coefficients. A polynomial or a factor is called prime if it contains no factors 
other than +1 or -1 and plus or minus itself. Also, we say that an expression is  
factored completely if it is expressed as a product of its prime factors.
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 EXAMPLE  1  Factoring completely

When we factor the expression 12x + 6x2 as

12x + 6x2 = 216x + 3x22
we see that it has not been factored completely. The factor 6x + 3x2 is not prime, 
because it may be factored as

6x + 3x2 = 3x12 + x2
Therefore, the expression 12x + 6x2 is factored completely as

12x + 6x2 = 6x12 + x2
The factors x and 12 + x2  are prime. We can factor the numerical coefficient, 6, as 
2132 , but it is standard not to write numerical coefficients in factored form. ■

To factor expressions easily, we must know how to do algebraic multiplication and 
really know the special products of the previous section. The special products also give 
us a way of checking answers and deciding whether a given factor is prime.

COMMON MONOMIAL FACTORS
Often an expression contains a monomial that is common to each term of the expression. 
Therefore, the first step in factoring any expression should be to factor out any common 
monomial factor that may exist. To do this, we note the common factor by inspection 
and then use the reverse of the distributive law, Eq. (6.1), to show the factored form. The 
following examples illustrate factoring a common monomial factor out of an 
expression.

 EXAMPLE  2  Common monomial factor

In factoring 6x - 2y, we note each term contains a factor of 2:

6x - 2y = 213x2 - 2y = 213x - y2
Here, 2 is the common monomial factor, and 213x - y2  is the required factored form 
of 6x - 2y. Once the common factor has been identified, it is not actually necessary to 
write a term like 6x as 213x2 . The result can be written directly.

In this case,

213x - y2 = 6x - 2y

Since the result of the multiplication gives the original expression, the factored form is 
correct. ■

The next example illustrates the case where the common factor is the same as one of 
the terms, and special care must be taken to complete the factoring correctly.

 EXAMPLE  3  Common factor same as term

Factor 4ax2 + 2ax.
The numerical factor 2 and the literal factors a and x are common to each term. 

Therefore, the common monomial factor of 4ax2 + 2ax is 2ax. This means that

4ax2 + 2ax = 2ax12x2 + 2ax112 = 2ax12x + 12
Note the presence of the 1 in the factored form. When we divide 4ax2 + 2ax by 2ax, 
we get

 
4ax2 + 2ax

2ax
=

4ax2

2ax
+ 2ax

2ax
 = 2x + 1

The ability to factor algebraic expres-
sions depends heavily on the proper 
recognition of the special products.

LEARNING T IP

■ For reference, Eq. (6.1) is 
a1x + y2 = ax + ay.

Usually, the factorization of common 
monomial factors is done by inspec-
tion. However, once the common fac-
tor is found, the other factor can also 
be determined by dividing the original 
expression by the common factor. For 
example, 2abc + 4ab has a common 
factor of 2ab in each term, so

2abc + 4ab = 2aba2abc
2ab

+ 4ab
2ab

b
2abc + 4ab = 2ab(c + 2)

LEARNING T IP

You can check your factoring result by 
multiplication.

LEARNING T IP

Practice Exercises

Factor: 1. 3cx3 - 9cx  2. 9cx3 - 3cx
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noting very carefully that 2ax divided by 2ax is 1 and does not simply cancel out leav-
ing nothing. Without the 1, when the factored form is multiplied out, we would not 
obtain the original expression. ■

■ FM radio was developed in the early 1930s.

■ For reference, Eq. (6.2) is 1x + y2 1x - y2 = x 2 - y 2.

Usually, in factoring an expression of 
this type, where it is very clear what 
numbers are squared, we do not actu-
ally write out the middle step as shown. 
However, if in doubt, write it out.

LEARNING T IP

When the common factor is the same as one of the terms in the expression, remember 
that the term divides to 1, so do not omit the 1 and cancel the term out to nothing!

5r  t + 5r = 5r  (t + 1)

Not

5r  t + 5r ≠ 5r  (t + 0)

COMMON ERROR

 EXAMPLE  4  Common factor by inspection

Factor 6a5x2 - 9a3x3 + 3a3x2.
After inspecting each term, we determine that each contains a factor of 3, a3, and x2. 

Thus, the common monomial factor is 3a3x2. This means that

6a5x2 - 9a3x3 + 3a3x2 = 3a3x212a2 - 3x + 12  ■

In these examples, note that factoring an expression does not actually change the 
expression, although it does change the form of the expression. In equating the expres-
sion to its factored form, we write an identity.

It is often necessary to use factoring when solving an equation. This is illustrated in 
the following example.

 EXAMPLE  5  Using factoring in solving an equation

An equation used in the analysis of FM reception is RF = a12RA + RF2 . Solve for RF.
The steps in the solution are as follows:

 RF = a12RA + RF2 original equation

 RF = 2aRA + aRF use distributive law

 RF - aRF = 2aRA      subtract aRF from both sides

 RF11 - a2 = 2aRA      factor out RF on left

 RF =
2aRA

1 - a
       divide both sides by 1 - a

We see that we collected both terms containing RF on the left so that we could factor 
and thereby solve for RF. ■

FACTORING THE DIFFERENCE OF TWO SQUARES
In Eq. (6.2), we see that the product of the sum and the difference of two numbers results 
in the difference between the squares of two numbers. Therefore, factoring the difference 
of two squares gives factors that are the sum and the difference of the numbers.

 EXAMPLE  6  Factoring the difference of two squares

In factoring x2 - 16, note that x2 is the square of x and 16 is the square of 4. Therefore,

x2 - 16 = x2 - 42 = 1x + 42 1x - 42squares

difference sum difference ■
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 EXAMPLE  7   Factoring the difference of two squares where a factor  
is itself a composite factor

(a) Since 4x2 is the square of 2x and 9 is the square of 3, we may factor 4x2 - 9 as

4x2 - 9 = 12x22 - 32 = 12x + 32 12x - 32
(b) In the same way,

 1y - 322 - 16x4 = 3 1y - 32 + 4x24 3 1y - 32 - 4x24
 = 1y - 3 + 4x22 1y - 3 - 4x22

  where we note that 16x4 = 14x222. ■

COMPLETE FACTORING
As noted before, a common monomial factor should be factored out first. However, 
we must be careful to see if the other factor can itself be factored. Be sure to include 
only prime factors in the final result.

 EXAMPLE  8  Complete factoring

(a) In factoring 20x2 - 45, note a common factor of 5 in each term. Therefore, 
20x2 - 45 = 514x2 - 92 . However, the factor 4x2 - 9 itself is the difference of 
squares. Therefore, 20x2 - 45 is completely factored as

20x2 - 45 = 514x2 - 92 = 512x + 32 12x - 32  

(b) In factoring x4 - y4, note that we have the difference of two squares. Therefore, 
x4 - y4 = 1x2 + y22 1x2 - y22 . However, the factor x2 - y2 is also the differ-
ence of squares. This means that

x4 - y4 = 1x2 + y22 1x2 - y22 = 1x2 + y22 1x + y2 1x - y2  ■

common factor

difference of squares

Practice Exercises

Factor: 3. 9c2 - 64  4. 18c2 - 128

Always factor your equations completely. It is a common error to stop before the expres-
sion involves only prime factors.

For example, 4a2 - a2x2 can be factored to a2(4 - x2), and it is a common error to 
think you are now finished. However, the second factor is a difference of squares. The 
complete factorization is

4a2 - a2x2 = a2(4 - x2)

= a2(2 + x)(2 - x)

COMMON ERROR

 

The factor x2 + y2 is prime. It is not equal to   1x + y22. (See Example 2 of Section 6.1.) COMMON ERROR

FACTORING BY GROUPING
The terms in a polynomial can sometimes be grouped such that the polynomial can then 
be factored by the methods of this section. The following example illustrates this 
method of factoring by grouping.
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 EXAMPLE  9  Factoring by grouping

Factor 2x - 2y + ax - ay.
We see that there is no common factor to all four terms, but that each of the first two 

terms contains a factor of 2, and each of the third and fourth terms contains a factor of a. 
Grouping terms this way and then factoring each group, we have

 2x - 2y + ax - ay = 12x - 2y2 + 1ax - ay2
 = 21x - y2 + a1x - y2 now note the common factor of 1x - y2
 = 1x - y2 12 + a2  ■

The general method of factoring by grouping can be used with several types of 
groupings. We will discuss another type in the following section.

EXERCISES 6.2

In Exercises 59 and 60, evaluate the given expressions by using 
factoring. The results may be checked with a calculator.

 59. 
89 - 88

7
 60. 

59 - 57

72 - 52

In Exercises 61 and 62, give the required explanations.

 61. Factor n2 + n, and then explain why it represents a positive even 
integer if n is a positive integer.

 62. Factor n3 - n, and then explain why it represents a multiple of 6 
if n is an integer greater than 1.

In Exercises 63–70, factor the expressions completely. In Exercises 69 
and 70, it is necessary to set up the proper expression. Each 
expression comes from the technical area indicated.

 63. 2prh + 2pr2 (container surface area)

 64. 4d2D2 - 4d3D - d4 (machine design)

 65. Rv + Rv2 + Rv3 (business)

 66. PbL2 - Pb3 (architecture)

 67. rR2 - r3 (pipeline flow)

 68. p1R2 - p1r2 - p2R2 + p2r2 (fluid flow)

 69. As large as possible a square is cut from a circular metal plate of 
radius r. Express in factored form the area of the metal pieces that 
are left.

 70. A pipe of outside diameter d is inserted into a pipe of inside ra-
dius r. Express in factored form the cross-sectional area within 
the larger pipe that is outside the smaller pipe.

In Exercises 71–76, solve for the indicated letter. Each equation 
comes from the technical area indicated.

 71. i1R1 = 1 i2 - i12R2, for i1 (electricity: ammeter)

 72. nV + n1v = n1V, for n1 (acoustics)

 73. 3BY + 5Y = 9BS, for B (physics: elasticity)

 74. Sq + Sp = Spq + p, for q (computer design)

 75. ER = AtT0 - AtT1, for t (energy conservation)

 76. R = kT2
4 - kT1

4, for k (factor resulting denominator) (radiation)

Answers to Practice Exercises

1. 3cx1x2 - 32   2. 3cx13x2 - 12
3. 13c - 82 13c + 82   4. 213c - 82 13c + 82

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the indicated problems.

 1. In Example 3, change the + sign to - and then factor.

 2. In Example 3, set the given expression equal to B and then solve for a.

 3. In Example 8(a), change the coefficient of the first term from 20 
to 5 and then factor.

 4. In Example 9, change both - signs to + and then factor.

In Exercises 5–44, factor the given expressions completely.

 23. x2 - 4 24. r2 - 25  25. 100 - 9A2 

26. 49 - Z4  27. 36a4 + 1 28. 324z2 - 4

 29. 162s2 - 50t2 30. 36s2 - 121t2  31. 144n2 - 169p4 

32. 36a2b2 + 169c2  33. 1x + y22 - 9 34. 1a - b22 - 1

 35. 2x2 - 8 36. 5a2 - 125  37. 300x2 - 2700z2 

38. 28x2 - 700y2  39. 21I - 322 - 8 40. a1x + 222 - ay2

 41. x4 - 16 42. y4 - 81  43. x8 - 1

 44. 2x4 - 8y4

In Exercises 45–50, solve for the indicated letter.

 5. 6x + 6y  6. 3a - 3b 7. 5a - 5

 8. 2x2 + 2  9. 3x2 - 9x 10. 4s2 + 20s

 11. 7b2h - 28b 12. 5a2 - 20ax  13. 288n2 + 24n

 14. 90p3 - 15p2  15. 2x + 4y - 8z 16. 23a - 46b + 69c

 17. 3ab2 - 6ab + 12ab3 18. 4pq - 14q2 - 16pq2

 19. 12pq2 - 8pq - 28pq3 20. 27a2b - 24ab - 9a

 21. 2a2 - 2b2 + 4c2 - 6d2 22. 5a + 10ax - 5ay - 20az

 45. 2a - b = ab + 3, for a 46. n1x + 12 = 5 - x, for x

 47. 3 - 2s = 213 - st2 , for s  48. k12 - y2 = y12k - 12 , for y

 49. 1x + 2k2 1x - 22 = x2 + 3x - 4k, for k

 50. 12x - 3k2 1x + 12 = 2x2 - x - 3, for k

In Exercises 51–58, factor the given expressions by grouping as 
illustrated in Example 9.

 51. 3x - 3y + bx - by 52. am + an + cn + cm

 53. a2 + ax - ab - bx 54. 2y - y2 - 6y4 + 12y3

 55. x3 + 3x2 - 4x - 12 56. S3 - 5S2 - S + 5

 57. x2 - y2 + x - y 58. 4p2 - q2 + 2p + q
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 6.3 Factoring Trinomials
In the previous section, we considered factoring based on the special products of  
Eqs. (6.1) and (6.2). The trinomials formed from Eqs. (6.3) to (6.6) are important 
expressions to be factored, and this section is devoted to them.

FACTORING TRINOMIALS FOR WHICH COEFFICIENT OF x2 IS 1
When factoring is based on Eq. (6.5), we start with the expression on the right and then 
find the factors on the left. By writing Eq. (6.5) with sides reversed, we have

 
 

 
Factoring by Grouping

For reference, Eq. (6.5) is 1x + a2 1x + b2 = x2 + 1a + b2x + ab. x2 + 1a + b2x + ab = 1x + a2 1x + b2coefficient = 1

product

sum 

We find integers a and b by noting that

1. the coefficient of x2 is 1,

2.  the final constant is the product of the constants a and b in the factors, and

3.  the coefficient of x is the sum of a and b.
As in Section 6.2, we consider only factors in which all terms have integral 
coefficients.

 EXAMPLE  1  Factoring the trinomial x2 + (a + b)x + ab

In factoring x2 + 3x + 2, we set it up as

x2 + 3x +  2 = 1x 2  1x 2
integerssum product

When factoring trinomials of the 
form x2 + bx + c, we may be able to 
find the two numbers that multiply 
to c, and add to b, giving the form:

x2 + bx + c = (x + number1) *
(x + number2)

LEARNING T IP

The constant 2 tells us that the product of the required integers is 2. Thus, the only pos-
sibilities are 2 and 1 (or 1 and 2). The +  sign before the 2 indicates that the sign before 
the 1 and 2 in the factors must be the same. The +  sign before the 3, the sum of the 
integers, tells us that both signs are positive. Therefore,

x2 + 3x + 2 = 1x + 22 1x + 12
In factoring x2 - 3x + 2, the analysis is the same until we note that the middle term 

is negative. This tells us that both signs are negative in this case. Therefore,

x2 - 3x + 2 = 1x - 22 1x - 12
For a trinomial with first term x2 and constant +2 to be factorable, the middle term 

must be +3x or -3x. No other middle terms are possible. This means, for example, the 
expressions x2 + 4x + 2 and x2 - x + 2 cannot be factored. ■

 EXAMPLE  2  Factoring trinomials with x2 coefficient of 1

(a) In order to factor x2 + 7x - 8, we must find two integers whose product is -8 and 
whose sum is +7. The possible factors of -8 are

-8 and +1  +8 and -1  -4 and +2  +4 and -2

  Inspecting these, we see that only +8 and -1 have the sum of +7. Therefore,

x2 + 7x - 8 = 1x + 82 1x - 12
  In choosing the correct values for the integers, it is usually fairly easy to find a 

pair for which the product is the final term. However, choosing the pair of integers 
that correctly fits the middle term is the step that often is not done properly. Special 
attention must be given to choosing the integers so that the expansion of the result-
ing factors has the correct middle term of the original expression.

Always multiply the factors together 
to check to see that you get the cor-
rect middle term.

LEARNING T IP
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(b) In the same way, we have

x2 - x - 12 = 1x - 42 1x + 32
  since -4 and +3 is the only pair of integers whose product is -12 and whose sum 

is -1.

Ensure that you have the proper signs on the two numbers chosen to make the product 
and the sum leading to the trinomial coefficients. To factor x2 - x - 6, we require two 
numbers that multiply to -6. The pairs +2 and -3 and -2 and +3 both work. However, 
only one of those pairs adds to the coefficient of the middle term (+2 and -3). Therefore,

x2 - x - 6 = 1x + 22 1x - 32
x2 - x - 6 ≠ 1x - 22 1x + 32

COMMON ERROR

(c) Also,

x2 - 5xy + 6y2 = 1x - 3y2 1x - 2y2
  since -3 and -2 is the only pair of integers whose product is +6 and whose sum is 

-5. Here, we find second terms of each factor with a product of 6y2 and sum of 
-5xy, which means that each second term must have a factor of y, as we have 
shown above. ■

In factoring a trinomial in which the first and third terms are perfect squares, we 
may find that the expression fits the form of Eq. (6.3) or Eq. (6.4), as well as the form 
of Eq. (6.5). The following example illustrates this case.

 EXAMPLE  3  Factoring perfect square trinomials

(a) To factor x2 + 10x + 25, we must find two integers whose product is +25 and 
whose sum is +10. Since 52 = 25, we note that this expression may fit the form of 
Eq. (6.3). This can be the case only if the first and third terms are perfect squares. 
Since the sum of +5 and +5 is +10, we have

x2 + 10x + 25 = 1x + 52 1x + 52
  or

x2 + 10x + 25 = 1x + 522

(b) To factor A4 - 20A2 + 100, we note that A4 = 1A222 and 100 = 102. This means 
that this expression may fit the form of Eq. (6.4). Since the sum of -10 and -10 is 
-20, we have

 A4 - 20A2 + 100 = 1A2 - 102 1A2 - 102
= 1A2 - 1022

(c) Just because the first and third terms are perfect squares, we must realize that the 
expression may be factored but does not fit the form of either Eq. (6.3) or (6.4). 
One example, using x2 and 100 for the first and third terms, is

x2 + 29x + 100 = 1x + 252 1x + 42  ■

FACTORING GENERAL TRINOMIALS
Factoring a trinomial for which the coefficient of x2 is any positive integer involves a 
slightly more challenging method. Factoring based on the special product of Eq. (6.6) 
often requires some trial and error. However, the amount of trial and error can be kept 

■ For reference, Eqs. (6.3) and (6.4) are 1x + y22 = x 2 + 2xy + y 2 and 1x - y22 = x2 - 2xy + y2.

Practice Exercises

Factor: 1. x2 - x - 2  2. x2 - 4x + 4
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to a minimum by carefully noting the coefficients of x2 and the constant. Rewriting  
Eq. (6.6) with sides reversed, we have

acx2 + 1ad + bc2x + bd = 1ax + b2 1cx + d2  

acx2 + 1ad + bc2x + bd = 1ax + b2 1cx + d2
This diagram shows us that

1. the coefficient of x2 is the product of the coefficients a and c in the factors,
2. the final constant is the product of the constants b and d in the factors, and
3. the coefficient of x is the sum of the inner and outer products.

In finding the factors, we must try possible combinations of a, b, c, and d that give

the proper inner and outer products for the middle term

of the given expression.

 EXAMPLE  4  Factoring a general trinomial

To factor 2x2 + 11x + 5, we take the factors of 2 to be +2 and +1 (we use only positive 
coefficients a and c when the coefficient of x2 is positive). We set up the factoring as

2x2 + 11x + 5 = 12x 2 1x 2
Since the product of the integers to be found is +5, only integers of the same sign need 
to be considered. Also since the sum of the outer and inner products is +11, the inte-
gers are positive. The factors of +5 are +1 and +5, and -1 and -5, which means that 
+1 and +5 is the only possible pair. Now, trying the factors12x + 52 1x + 12
we see that 7x is not the correct middle term. Therefore, we now try12x + 12 1x + 52
and we have the correct sum of +11x. Therefore,

2x2 + 11x + 5 = 12x + 12 1x + 52
For a trinomial with a first term 2x2 and a constant +5 to be factorable, we can now 

see that the middle term must be either +11x or +7x. This means that 2x2 + 7x + 5 =12x + 52 1x + 12 , but a trinomial such as 2x2 + 8x + 5 is not factorable.  ■

 EXAMPLE  5   Factoring a general trinomial with multiple leading 
coefficient factors

In factoring 4x2 + 4x - 3, the coefficient 4 in 4x2 shows that the possible coefficients 
of x in the factors are 4 and 1, or 2 and 2. The 3 shows that the only possible constants 
in the factors are 1 and 3, and the minus sign with the 3 tells us that these integers have 

product coefficients

product integers

outer product

inner product

+x + 10x = +11x
+10x

+x

■ For reference, Eq. (6.6) is 1ax + b2 1cx + d2 =  
acx2 + 1ad + bc2x + bd.

+5x
+2x

 +2x +5x = +7x
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different signs. This gives us the following possible combinations of factors, along 
with the resulting sum of the outer and inner products:

(4x + 3)(x - 1): -4x + 3x = -x

(4x + 1)(x - 3): -12x + x = -11x14x - 32 1x + 12 :  4x - 3x = +x14x - 12 1x + 32 :  12x - x = +11x12x + 32 12x - 12 :  -2x + 6x = +4x12x - 32 12x + 12 :  2x - 6x = -4x

We see that the factors that have the correct middle term of +4x are 12x + 32 12x - 12 . 
This means that

4x2 + 4x - 3 = 12x + 32 12x - 12
Expressing the result with the factors reversed is an equally correct answer. ■

 EXAMPLE  6   Factoring a general trinomial with multiple factor 
combinations on the x2-term and the last term

6s2 + 19st - 20t2 = 16s - 5t2 1s + 4t2
There are numerous possibilities for the combinations of 6 and −20. However, we must 
remember to check carefully that the middle term of the expression is the proper 
result of the factors we have chosen. ■

 EXAMPLE  7  Check the middle term carefully

(a) In factoring 9x2 - 6x + 1, note that 9x2 is the square of 3x and 1 is the square of 
1. Therefore, we recognize that this expression might fit the perfect square form of 
Eq. (6.4). This leads us to factor it tentatively as

9x2 - 6x + 1 = 13x - 122 check middle term: 213x2 1 -12 = -6x

  However, before we can be certain that this is correct, we must check to see if the 
middle term of the expansion of 13x - 122 is -6x, which is what it must be to fit 
the form of Eq. (6.4). When we expand 13x - 122, we find that the middle term 
is -6x and therefore that the factorization is correct.

(b) In the same way, we have

36x2 + 84xy + 49y2 = 16x + 7y22 check middle term: 216x217y2 = 84xy

  since the middle term of the expansion of 16x + 7y22 is 84xy. We must be careful 
to include the factors of y in the second terms of the factors. ■

+6x
-2x

-2x + 6x = +4x

+24st - 5st = +19st

Another hint given by the coeffi-
cients of the original expression is 
that the plus sign on the x-term tells 
us that the larger of the outer and 
inner product factors must be 
positive.

LEARNING T IP

Practice Exercise

Factor: 3. 4x2 + x - 5

When the last term in a trinomial is not just a constant but also has a variable depend-
ence, it is common to forget this variable when stating the factors:

2x2 + 5xy - 3y2 = 12x - y2 1x + 3y)

 2x2 + 5xy - 3y2 ≠ 12x - 12 1x + 32
COMMON ERROR
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As noted before, we must be careful to factor an expression completely. We first 
look for common monomial factors and then check each resulting factor to see if it can 
be factored when we complete each step.

 EXAMPLE  8  General trinomial with common monomial factor

When factoring 2x2 + 6x - 8, first note the common monomial factor of 2. This leads to

2x2 + 6x - 8 = 21x2 + 3x - 42
Now, notice that x2 + 3x - 4 is also factorable. Therefore,

2x2 + 6x - 8 = 21x + 42 1x - 12
Having noted the common factor of 2 prevents our having to check factors of 2 and 

8. If we had not noted the common factor, we might have arrived at12x + 82 1x - 12 or 12x - 22 1x + 42
(possibly after a number of trials). Each is correct as far as it goes, but also each of 
these is not complete. Since 2x + 8 = 21x + 42 , or 2x - 2 = 21x - 12 , we can 
arrive at the proper result shown above. In this way, we would have

 2x2 + 6x - 8 = 12x + 82 1x - 12
 = 21x + 42 1x - 12

or              2x2 + 6x - 8 = 12x - 22 1x + 42
 = 21x - 12 1x + 42

Although these factorizations are correct, it is more efficient to factor out the common 
factor first. By doing so, the number of possible factoring combinations is greatly 
reduced. ■

 EXAMPLE  9  Factoring a trinomial—application

A study of the path of a certain rocket leads to the expression 16t2 + 240t - 1600, 
where t is the time of flight. Factor this expression.

An inspection shows that there is a common factor of 16. (This might be found by 
noting successive factors of 2 or 4.) Factoring out 16 leads to

 16t2 + 240t - 1600 = 161 t2 + 15t - 1002
 = 161 t + 202 1 t - 52

Here, factors of 100 need to be checked for sums equal to 15. This might take some time, 
but it is much simpler than looking for factors of 16 and 1600 with sums of 240. ■

FACTORING BY GROUPING
Just as in Example 9 of Section 6.2, we can sometimes factor trinomials by grouping 
terms in the expression together and finding common factors between them. To factor 
the trinomial ax2 + bx + c by grouping, we use the following procedure.

numbers that multiply  
to -100 and sum to 15  
are 20 and -5

Practice Exercise

Factor: 4. 6x2 + 9x - 6

■ Liquid-fuel rockets were designed in the 
United States in the 1920s but were developed 
by German engineers. They were first used in 
the 1940s during World War II.

Method for Factoring a Trinomial by Grouping
1.  Find two numbers whose product is ac and whose sum is b.

2. Write the trinomial with two x-terms having these numbers as coefficients.

3. Complete the factorization by grouping.
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 EXAMPLE  10  Factoring by grouping

Factor the trinomial 6x2 + 7x - 20 by grouping.
We begin by finding two numbers with a product of -120 and a sum of 7. Trying 

products of numbers with different signs and a sum of 7, we find the numbers that 
work are -8 and 15. We then complete steps 2 and 3 of the above procedure as 
follows:

 6x2 + 7x - 20 = 6x2 - 8x + 15x - 20 7x = -8x + 15x

 = 16x2 - 8x2 + 115x - 202 group first two terms and last two terms

 = 2x13x - 42 + 513x - 42 find common factor of each group and

 = 13x - 42 12x + 52 note common factor of 3x - 4

Multiplication verifies that these are the correct factors. ■

 EXAMPLE  11  Factoring by grouping

Factor x2 - 4xy + 4y2 - 9.
The first three terms represent 1x - 2y22. Thus, grouping these terms, we have

 x2 - 4xy + 4y2 - 9 = 1x2 - 4xy + 4y22 - 9 group terms

 = 1x - 2y22 - 9 factor grouping (note difference of squares)

 = 3 1x - 2y2 + 34 3 1x - 2y2 - 34 factor difference of squares

 = 1x - 2y + 32 1x - 2y - 32
Not all groupings work. Noting the factorable combination 4y2 - 9, and then group-

ing the first two terms and the last two terms, would not have led to the factorization. ■

EXERCISES 6.3

In Exercises 1–6, make the given changes in the indicated examples of 
this section and then factor.

 1. In Example 1, change the 3 to 4 and the 2 to 3.

 2. In Example 2(a), change the +  before 7x to - .

 3. In Example 4, change the +  before 11x to - .

 4. In Example 6, change the coefficient 19 to 7.

 5. In Example 8, change the 8 to 36.

 6. In Example 10, change the +  before 7x to - .

In Exercises 7–56, factor the given expressions completely.

 7. x2 + 5x + 4 8. x2 - 5x - 6

 9. s2 - s - 42 10. a2 + 14a - 32

 11. t2 + 5t - 24 12. r3 - 11r2 + 18r

 13. x2 + 2x + 1 14. D2 + 8D + 16

 15. L2 - 4LK + 4K2 16. b2 - 12bc + 36c2

 17. 3x2 - 5x - 2 18. 2n2 - 13n - 7

 19. 12y2 - 32y - 12 20. 25x2 + 45x - 10

 21. 2s2 + 13s + 11 22. 7y2 - 12y + 5

 23. 3f 4 - 16f 2 + 5 24. 5R4 - 3R2 - 2

 25. 2t2 + 7t - 15 26. 3n2 - 20n + 20

 27. 3t2 - 7tu + 4u2 28. 3x2 + xy - 14y2

 29. 4x2 - 3x - 7 30. 2z2 + 13z - 5

 31. 9x2 + 7xy - 2y2 32. 4r2 + 11rs - 3s2

 33. 4m2 + 20m + 25 34. 16q2 + 24q + 9

 35. 8x2 - 24x + 18 36. 3a2c2 - 6ac + 3

 37. 9t2 - 15t + 4 38. 6t4 + t2 - 12

 39. 8b6 + 31b3 - 4 40. 12n4 + 8n2 - 15

 41. 4p2 - 25pq + 6q2 42. 12x2 + 4xy - 5y2

 43. 12x2 + 47xy - 4y2 44. 8r2 - 14rs - 9s2

 45. 2x2 - 14x + 12 46. 6y2 - 33y - 18

 47. 4x5 + 14x3 - 8x 48. 12B2 + 22BH - 4H2

 49. ax3 + 4a2x2 - 12a3x 50. 6x4 - 13x3 + 5x2

 51. a2 + 2ab + b2 - 4 52. x2 - 6xy + 9y2 - 4z2

 53. 25a2 - 25x2 - 10xy - y2 54. r2 - s2 + 2st - t2

 55. 4x2n + 13xn - 12 56. 12B2n + 19BnH - 10H2

In Exercises 57–68, factor the given expressions completely. Each is 
from the technical area indicated.

 57. 16t2 - 80t + 64 (projectile motion)

 58. 9x2 - 33Lx + 30L2 (civil engineering)

 59. 4s2 + 16s + 12 (electricity)

 60. 3h2 + 18h - 1560 (fuel efficiency)

 61. 200n2 - 2100n - 3600 (biology)

 62. bT2 - 40bT + 400b (thermodynamics)

 63. V2 - 2nBV + n2B2 (chemistry)

 64. a4 + 8a2p2f 2 + 16p4f 4 (periodic motion: energy)



196 CHAPTER 6 Factoring and Fractions

 65. wx4 - 5wLx3 + 6wL2x2 (beam design)

 66. 1 - 2r2 + r4 (lasers)

 67. 3Adu2 - 4Aduv + Adv2 (water power)

 68. k2A2 + 2klA + l2 - a2 (robotics)

In Exercises 69–75, solve the given problems.

 69. Find the integral value of k that makes 4x2 + 4x - k a perfect 
square trinomial, and express the result in factored form.

 70. Find the integral value of k that makes 49x2 - 70x + k a perfect 
square trinomial, and express the result in factored form.

 71. Often, the sum of squares cannot be factored, but x4 + 4 can be 
factored. Add and subtract 4x2 and then use factoring by grouping.

 72. Using the method of Exercise 71, factor x4 + x2 + 1. (First add 
and subtract x2.)

 73. If sum of squares 36x2 + 9 can be factored, factor it.

 74. Explain why most students would find 24x2 - 23x - 12 more 
difficult to factor than 23x2 - 18x - 5.

75. Factor the statements in Exercises 40–43 using grouping.

Answers to Practice Exercises

1. 1x - 22 1x + 12     2. 1x - 222

3. 14x + 52 1x - 12   4. 312x - 12 1x + 22
 6.4 The Sum and Difference of Cubes

We have seen that the difference of squares can be factored, but that the sum of squares 
often cannot be factored. We now turn our attention to the sum and difference of cubes, 
both of which can be factored. Writing Eqs. (6.9) and (6.10) with sides reversed,

 x3 + y3 = 1x + y2 1x2 - xy + y22  (6.9)
 x3 - y3 = 1x - y2 1x2 + xy + y22  (6.10)

In these equations, the second factors are prime, assuming x and y are themselves prime 
factors.

 EXAMPLE  1  Factoring the sum and difference of cubes

Methods of Factoring

Table of Cubes

13 = 1

23 = 8

33 = 27

43 = 64

53 = 125

63 = 216

(a)  x3 + 8 = x3 + 23

 = 1x + 22 3 1x22 - 2x + 224  

 = 1x + 22 1x2 - 2x + 42
(b)  x3 - 1 = x3 - 13

 = 1x - 1231x22 + 1121x2 + 124
 = 1x - 121x2 + x + 12

(c)  8 - 27x3 = 23 - 13x23   8 = 23  and  27x3 = 13x23

 = 12 - 3x2 322 + 213x2 + 13x224
 = 12 - 3x2 14 + 6x + 9x22  ■

 EXAMPLE  2  Factoring a difference of cubes with an initial common factor

In factoring ax5 - ax2, we first note that each term has a common factor of ax2. This is 
factored out to get ax21x3 - 12 . However, the expression is not completely factored 
since 1 = 13, which means that x3 - 1 is the difference of cubes. We complete the 
factoring by the use of Eq. (6.10). Therefore,

 ax5 - ax2 = ax21x3 - 12
 = ax21x - 12 1x2 + x + 12  ■

 EXAMPLE  3  Factoring a difference of cubes—application

The volume of material used to make a steel bearing with a hollow core is given by 
4
3 pR3 - 4

3 pr3. Factor this expression.

 
4
3

 pR3 - 4
3

 pr3 =
4
3

 p1R3 - r32 common factor of 
4
3

 p

 =
4
3

 p1R - r2 1R2 + Rr + r22 using Eq. (6.10) ■

Practice Exercises

Factor: 1. x3 + 216  2. x3 - 216

■ Note carefully the positions of the  
+ and – signs.
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Summary of Methods for Factoring
The following is a step-by-step guide to factoring algebraic expressions.

1.  Common algebraic factor. Always check for this first. Remember that this 
can be a common numeric factor, a common monomial algebraic factor, or 
even a common factor consisting of identical multiplied algebraic expressions.

2. Difference of squares

3. Factorable trinomial

4. Sum or difference of cubes

5. Factoring by grouping

6. Check. Be sure to check that each factor is factored completely.

EXERCISES 6.4

 31. QH4 + Q4H (thermodynamics)

 32. as
r
b12

- as
r
b6

 (molecular interaction)

In Exercises 33 and 34, perform the indicated operations.

 33. Perform the division 1x5 - y52 , 1x - y2 . Noting the result, 
determine the quotient 1x7 - y72 , 1x - y2 , without dividing. 
From these results, factor x5 - y5 and x7 - y7.

 34. Perform the division 1x5 + y52 , 1x + y2 . Noting the result, 
determine the quotient 1x7 + y72 , 1x + y2 , without dividing. 
From these results, factor x5 + y5 and x7 + y7.

In Exercises 35–38, solve the given problems.

 35. Factor x6 - y6 as the difference of cubes.

 36. Factor x6 - y6 as the difference of squares. Then explain how the 
result of Exercise 35 can be shown to be the same as the result in 
this exercise. (Hint: See Exercise 72 on page 196.)

 37. By factoring 1n3 + 12 , explain why this expression represents a 
number that is not prime if n is an integer greater than one.

 38. Explain how Eq. (6.9) can be used to factor the difference of cubes.

Answers to Practice Exercises

1. 1x + 62 1x2 - 6x + 362   2. 1x - 62 1x2 + 6x + 362

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then factor.

 1. In Example 1(a), change the +  before the 8 to - .

 2. In Example 2, change -ax2 to +a4x2.

In Exercises 3–26, factor the given expressions completely.

 3. x3 + 1  4. R3 + 27  5. 8 - t3  6. 8r3 - 1

 7. 27x3 - 8a6  8. 64x4 + 125x  9. 4x3 + 32

 10. 3y3 - 81  11. 6A6 - 6A3  12. 8s9 - 64

 13. 162x3y - 6x3y4  14. 12a3 + 96a3b3  15. x6y3 + x3y6

 16. 16r3 - 432  17. 3a6 - 3a3  18. x6 - 27y3

 19. 0.001R3 - 0.064r3 20. 0.027x3 + 0.125

 21. 27L6 + 216L3 22. a3s5 - 8000a3s2

 23. 1a + b23 + 64 24. 125 + 12x + y23

 25. 64 - x6 26. a6 - 27b6

In Exercises 27–32, factor the given expressions completely. Each is 
from the technical area indicated.

27. 2x3 + 250 (computer image)

 28. kT3 - kT3
0 (thermodynamics)

 29. D4 - d3D (machine design)

 30. 1h + 2t23 - h3 (container design)

 6.5 Equivalent Fractions
When we deal with algebraic expressions, we must be able to work effectively with 
fractions. Since algebraic expressions are representations of numbers, the basic opera-
tions on fractions from arithmetic form the basis of our algebraic operations. In this 
section, we demonstrate a very important property of fractions, and in the following 
two sections, we establish the basic algebraic operations with fractions.

This important property of fractions is often referred to as the fundamental princi-
ple of fractions.

 

Differ Only in Sign
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Two fractions are said to be equivalent if one can be obtained from the other by use of 
the fundamental principle.

 EXAMPLE  1  Equivalent arithmetic fractions

If we multiply the numerator and the denominator of the fraction 6
8 by 2, we obtain the 

equivalent fraction 12
16. If we divide the numerator and the denominator of 6

8 by 2, we 
obtain the equivalent fraction 34. This means that the fractions 68, 34, and 12

16 are equivalent. 
Obviously, there is an unlimited number of other fractions that are equivalent to these 
fractions. ■

 EXAMPLE  2  Equivalent algebraic fractions

We may write

ax
2

=
3a2x
6a

since we get the fraction on the right by multiplying the numerator and the denominator 
of the fraction on the left by 3a. This means that the fractions are equivalent. ■

SIMPLEST FORM, OR LOWEST TERMS, OF A FRACTION
One of the most important operations with a fraction is that of reducing it to its sim-
plest form, or lowest terms.

A fraction is said to be in its simplest form if the numerator and the denominator 
have no common factors other than +1 or -1.

In reducing a fraction to its simplest form, use the fundamental principle of fractions by 
dividing both the numerator and the denominator by all factors that are common to 
each. If any of the literal symbols were to be evaluated, numerical values must be such 
that none of the denominators would be equal to zero. Therefore, all operations will be 
done properly since the undefined operation of division by zero is avoided. This can 
also be indicated by stating explicitly which factors cannot equal zero.

 EXAMPLE  3  Reducing a fraction to its lowest terms

In order to reduce the fraction

16ab3c2

24ab2c5

to its lowest terms, note that both the numerator and the denominator contain the factor 
8ab2c2. Therefore,

16ab3c2

24ab2c5 =
2b18ab2c22
3c318ab2c22 =

2b

3c3  common factor

Here, we divided out the common factor of 8ab2c2. The resulting fraction is in its lowest 
terms, since there are no common factors in the numerator and the denominator other 
than +1 or -1. In performing this division, we also assume that neither a, b, nor c is 
equal to zero so as to avoid the possibility of dividing by zero, that is, a, b, c ≠ 0. ■

Fundamental Principle of Fractions
The value of a fraction is unchanged if both the numerator and the denominator are 
multiplied or divided by the same number, provided that this number is not zero.

Practice Exercise

1. Reduce to lowest terms: 
9xy5

15x3y2
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You cannot remove just any expression that appears in both the numerator and denomi-
nator. If a term is the same in both numerator and denominator, it cannot be cancelled. 
Only factors that are in both the numerator and denominator can be cancelled. 

COMMON ERROR

 EXAMPLE  4  Cancel factors, not terms

When simplifying the expression

x21x - 22
x2 - 4

a term, but not a factor, of the denominator

many students would “cancel” the x2 from the numerator and the denominator. This is 
incorrect, since x2 is a term only of the denominator.

In order to simplify the above fraction properly, we should factor the denominator. 
We get

x21x - 2211x - 22 1x + 22
1

=
x2

x + 2
, where x ≠ 2

Here, the common factor 1x - 22  has been divided out. ■

The following examples illustrate the proper simplification of fractions.

 EXAMPLE  5  Distinguishing between term and factor

(a) 
2a
2ax

=
1
x

   2a is a factor of the numerator and the denominator, a ≠ 0

  We divide out the common factor of 2a.

(b) 
2a

2a + x
   2a is a term, but not a factor, of the denominator

  This cannot be reduced since there are no common factors in the numerator and 
the denominator. ■

 EXAMPLE  6  Remaining factor of 1 in the denominator

 
2x2 + 8x

x + 4
=

2x1x + 4211x + 42
1

=
2x
1

, x ≠ -4

 = 2x

The numerator and the denominator were each divided by x + 4 after factoring the 
numerator. The only remaining factor in the denominator is 1, and it is generally not 
written in the final result. Another way of writing the denominator is 11x + 42 , which 
shows the factor of 1 more clearly. ■

Practice Exercise

2. Reduce to lowest terms: 
4a

4a - 2x

In the following example, we illustrate this very common error in the simplification of 
fractions. Follow it very carefully.

In simplifying a fraction, be very careful in performing the basic step of reducing 
the fraction to its simplest form, through cancellation.

Cancellation is the process of dividing both the numerator and denominator by 
the common factor.
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 EXAMPLE  7  Cancel factors only

 
x2 - 4x + 4

x2 - 4
=

1x - 22 1x - 2211x + 22 1x - 22
1

, x ≠ 2

 =
x - 2
x + 2

      x is a term but not a factor

Here, the numerator and the denominator have each been factored first and then the 
common factor x - 2 has been divided out. In the final form, neither the x’s nor the 2's 
may be cancelled, since they are not common factors.  ■

 EXAMPLE  8  Reducing a fraction—application

In the mathematical analysis of the vibrations in a certain mechanical system, the fol-
lowing expression and simplification are used:

 
8s + 12

4s2 + 26s + 30
=

412s + 32
212s2 + 13s + 152  =

4
2 12s1+ 32

2
1
12s

1
+ 32 1s + 52 , s ≠ - 3

2

 =
2

s + 5

In the third fraction, note that the factors common to both the numerator and the 
denominator are 2 and 12s + 32 . ■

FACTORS THAT DIFFER ONLY IN SIGN
In simplifying fractions, we must be able to distinguish between factors that differ only 
in sign. Since - 1y - x2 = -y + x = x - y, we have

x - y = - 1y - x2  (6.11)

Here, the factors x − y and y − x differ only in sign. The following examples illus-
trate the simplification of fractions where a change of signs is necessary.

 EXAMPLE  9  Factors that differ only in sign

x2 - 1
1 - x

=
1x - 12 1x + 12

- 1x - 12 =
x + 1

-1
= - 1x + 12 , x ≠ 1

In the second fraction, we replaced 1 − x with the equal expression − 1x − 1 2 . 
In the third fraction, the common factor x - 1 was divided out. Finally, we expressed 
the result in the more convenient form by dividing x + 1 by -1. Replacing 1 - x with 
- 1x - 12  is the same as factoring -1 from the terms of 1 - x.

It should be clear that the factors 1 - x and x - 1 differ only in sign. ■

Practice Exercise

3. Reduce to lowest terms: 
x2 - x - 2

x2 + 3x + 2

Practice Exercise

4. Reduce to lowest terms: 
y - 2

4 - y2

When simplifying fractions, it is important to look for factors that differ only in sign. 
They can provide a cancellation that often goes unnoticed, yielding a fraction which is 
not in its lowest terms.

COMMON ERROR
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 EXAMPLE  10  Factors that differ only in sign

 
2x4 - 128x

20 + 7x - 3x2 =
2x1x3 - 64214 - x2 15 + 3x2 =

2x1x - 42 1x2 + 4x + 162
- 1x - 42 13x + 52 , x ≠ 4

 = -
2x1x2 + 4x + 162

3x + 5

Again, the factor 4 - x has been replaced by the equal expression - 1x - 42 . This 
allows us to recognize the common factor of x - 4.

Also, note that the order of the terms of the factor 5 + 3x was changed in writing the 
third fraction. This was done only to write the terms in the more standard form with the 
x-term first. However, since both terms are positive, it is simply an application of  
the commutative law of addition, and the factor itself is not actually changed. ■

EXERCISES 6.5

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 3, change the numerator to 18abc6 and then reduce 
the fraction to lowest terms.

 2. In Example 4, change the -  sign in the numerator to +  and then 
simplify.

 3. In Example 7, change the -  sign in the numerator to +  and then 
simplify.

 4. In Example 10, change the numerator to 2x4 - 32x2 and then 
simplify.

In Exercises 5–12, multiply the numerator and the denominator of 
each fraction by the given factor and obtain an equivalent fraction.

 5. 
2
3

 (by 7) 6. 
7
5

 (by 9)

 7. 
ax
y

 (by 2x) 8. 
2x2y

3n
 (by 2xn2)

 9. 
2

x + 3
 (by x - 2) 10. 

7
a - 1

 (by a + 2)

 11. 
a1x - y2

x - 2y
 (by x + y) 12. 

B - 1
B + 1

 (by B - 1)

In Exercises 13–20, divide the numerator and the denominator of 
each fraction by the given factor and obtain an equivalent fraction.

 13. 
28
44

 (by 4) 14. 
25
65

 (by 5)

 15. 
4x2y

8xy2 (by 2x) 16. 
6a3b2

9a5b4 (by 3a2b2)

 17. 
21R - 121R - 12 1R + 12  (by R - 1)

 18. 
1x + 52 1x - 32

31x + 52  (by x + 5)

 19. 
s2 - 3s - 10

2s2 + 3s - 2
 (by s + 2)

 20. 
6x2 + 13x - 5

6x3 - 2x2  (by 3x - 1)

In Exercises 21–28, replace the A with the proper expression such 
that the fractions are equivalent.

 21. 
3x
2y

=
A

6y2 22. 
2R

R + T
=

2R2T
A

 23. 
7

a + 5
=

7a - 35
A

 24. 
a + 1

5a2c
=

A

5a3c - 5a2c

 25. 
2x3 + 2x

x4 - 1
=

A

x2 - 1
 26. 

n2 - 1

n3 + 1
=

A

n2 - n + 1

 27. 
x2 + 3bx - 4b2

x - b
=

x + 4b
A

 28. 
4y2 - 1

4y2 + 6y - 4
=

A
2y + 4

In Exercises 29–64, reduce each fraction to simplest form.

 29. 
2a
8a

30. 
6x
15x

31. 
18x2y

24xy

 32. 
2a2xy

6axyz2
 33. 

a + b

5a2 + 5ab
 34. 

t - a

t2 - a2

 35. 
4a - 4b
4a - 2b

 36. 
20s - 5r
10r - 5s  37. 

4x2 + 1

4x2 - 1

 38. 
x2 - y2

x2 + y2
 39. 

3x2 - 6x
x - 2

 40. 
10T2 + 15T

2T + 3

 41. 
3 + 2y

4y3 + 6y2 42. 
6 - 3t

4t3 - 8t2

 43. 
x2 - 8x + 16

x2 - 16
 44. 

4a2 + 12ab + 9b2

4a2 + 6ab
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 45. 
2w4 + 5w2 - 3

w4 + 11w2 + 24
 46. 

3y3 + 7y2 + 4y

y2 + 5y + 4

 47. 
5x2 - 6x - 8

x3 + x2 - 6x
 48. 

5s2 + 8rs - 4s2

6r2 - 17rs + 5s2

 49. 
N4 - 16
8N - 16

  50. 
3 + x14 + x2

3 + x

 51. 
t + 412t + 92 t + 4

 52. 
2A3 + 8A4 + 8A5

4A + 2

 53. 
1x - 12 13 + x213 - x2 11 - x2  54. 

12x - 12 1x + 621x - 32 11 - 2x2
 55. 

y2 - x2

2x - 2y
 56. 

x2 - y2 - 4x + 4y

x2 - y2 + 4x - 4y

 57. 
x3 + x2 - x - 1

x3 - x2 - x + 1
 58. 

3a2 - 13a - 10

5 + 4a - a2

 59. 
1x + 52 1x - 22 1x + 22 13 - x212 - x2 15 - x2 13 + x2 12 + x2

 60. 
12x - 32 13 - x2 1x - 72 13x + 1213x + 22 13 - 2x2 1x - 32 17 + x2

 61. 
x3 + y3

2x + 2y
 62. 

w3 - 8

w2 + 2w + 4

 63. 
6x2 + 2x

27x3 + 1
 64. 

24 - 3a3

a2 - 4a + 4

In Exercises 65–68, after finding the simplest form of each fraction, 
explain why it cannot be simplified more.

65. (a) 
x21x + 22

x2 + 4
 (b) 

x4 + 4x2

x4 - 16

 66. (a) 
2x + 3
2x + 6

 (b) 
21x + 62

2x + 6

 67. (a) 
x2 - x - 2

x2 - x
 (b) 

x2 - x - 2

x2 + x

 68. (a) 
x3 - x
1 - x

 (b) 
2x2 + 4x

2x2 + 4

In Exercises 69–72, reduce each fraction to simplest form. Each is 
from the indicated area of application.

 69. 
mu2 - mv

2

mu - mv

 (nuclear energy)

 70. 
161 t2 - 2tt0 + t0

22 1 t - t0 - 32
3t - 3t0

 (rocket motion)

 71. 
E2R2 - E2r21R2 + 2Rr + r222 (electricity)

 72. 
r0

3 - r3
i

r0
2 - ri

2 (machine design)

Answers to Practice Exercises

1. 
3y3

5x2  2. 
2a

2a - x
  3. 

x - 2
x + 2

, x ≠ -1  4. - 1
y + 2

, y ≠ 2

 6.6 Multiplication and Division of Fractions
 

Division of Fractions
From arithmetic, recall that the product of two fractions is a fraction whose numerator 
is the product of the numerators and whose denominator is the product of the denomi-
nators of the given fractions. Also, the quotient of two fractions is found by inverting 
the denominator and proceeding as in multiplication. Symbolically, these operations 
are shown as

 
a
b

* c
d

=
ac
bd

 
a
b

, c
d

=

a
b
c
d

=
a
b

* d
c

=
ad
bc

The rule for division may be verified by use of the fundamental principle of frac-
tions. By multiplying the numerator and the denominator of the fraction

Multiplication of Fractions

Division of Fractions
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a
b
c
d

 by 
d
c

  we obtain  

a
b

* d
c

c
d

* d
c

=

ad
bc
1

=
ad
bc

The following three examples illustrate the multiplication of fractions.

 EXAMPLE  1  Multiplying basic fractions

(a) 
3
5

* 2
7

=
132 122152 172 =

6
35

(b)  
3a
5b

* 15b2

a
=

13a2 115b2215b2 1a2
 =

45ab2

5ab
=

9b
1

 = 9b, where a, b ≠ 0

multiply numerators
multiply denominators

When multiplying fractions, since all 
the factors in the numerators and 
denominators are to be multiplied, it 
is best to factor the numerator and 
denominator and cancel any common 
factors before multiplying.

This technique will simplify the 
fraction before the multiplication 
expansion, and make it easier to see 
how to factor and simplify the result.

LEARNING T IP

(c) 16x2 a 2y

3x2 b = a6x
1
b a 2y

3x2 b  

 =
12xy

3x2 =
4y
x

, where x ≠ 0

In (b), we divided out the common factor 5ab to reduce the resulting fraction to its low-
est terms. In (c), note that we treated 6x as 6x

1 . ■ 

When multiplying fractions, we usually want to express the final result in simplest 
form, which is generally its most useful form. If we were to multiply out the numerator 
and the denominator before factoring, it is very possible that we would not see how to 
factor the result and therefore would not be able to simplify it. The following example 
illustrates this point.

 EXAMPLE  2  Factor and simplify first

In performing the multiplication

31x - y21x - y22 *
1x2 - y22
6x + 9y

if we multiplied out the numerators and the denominators before performing any fac-
toring, we would have to simplify the fraction

3x3 - 3x2y - 3xy2 + 3y3

6x3 - 3x2y - 12xy2 + 9y3

It is possible to factor the resulting numerator and denominator, but finding any com-
mon factors this way is very difficult. However, as stated above, we should first factor 
the numerator and denominator, then divide out (cancel) any common factors, and 
consequently the solution is much easier. Doing this, we have

 
31x - y21x - y22 *

1x2 - y22
6x + 9y

=
31x - y2 1x2 - y221x - y2216x + 9y2

 =
31x - y2 1x + y2 1x - y21x - y22132 12x + 3y2

 =
31x - y221x + y2

31x - y2212x + 3y2 , where x ≠ y

 =
x + y

2x + 3y

The common factor 31x - y22 is readily recognized using this procedure. ■

Practice Exercise

1. Multiply: 
2x

4x + 8
* x + 2

xy - x
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 EXAMPLE  3  Multiplying algebraic fractions

 a 2x - 4
4x + 12

b a2x2 + x - 15
3x - 1

b =
21x - 22 12x - 52 1x + 32

4
2
1x + 32 13x - 12

=
1x - 22 12x - 52

213x - 12 , where x ≠ -3

Here, the common factor is 21x + 32 . ■

The following examples illustrate the division of fractions.

 EXAMPLE  4  Dividing basic algebraic fractions

(a) 
6x
7

, 5
3

=
6x
7

* 3
5

=
18x
35

multiplications
indicated

multiply

invert

■ It is possible to factor and indicate the 
product of the factors, showing only a single 
step, as we have done here.

It is permissible to multiply out the 
final form of the numerator and 
denominator, but it is preferable to 
leave the numerator and denomina-
tor in factored form.

The factored form makes it easier 
to identify important features of a 
function, such as zeros or vertical 
asymptotes. These ideas will become 
important in later chapters.

LEARNING T IP

(b) 

3a2

5c

2c2

a

=
3a2

5c
* a

2c2 =
3a3

10c3

multiply

invert ■

 EXAMPLE  5  Division by a fraction—application

When finding the centre of mass (CM) of a uniform flat semicircular metal plate, the

equation XCM =
4pr3

3
, apr2

2
* 2pb  is derived. Simplify the right side of this equation

to find XCM as a function of r in simplest form. See Fig. 6.4.

The parentheses indicate that we should perform the multiplication first:

 XCM =
4pr3

3
, apr2

2
* 2pb =

4pr3

3
, a2p2r2

2
b   2p =

2p
1

 XCM =
4pr3

3
, 1p2r22 =

4pr3

3
* 1

p2r2

 XCM =
4pr3

3p2r2 =
4r
3p

  divide out the common factor of pr2

This is the exact solution. Approximately, XCM = 0.424r. ■

 EXAMPLE  6  Dividing algebraic fractions1x + y2 ,
2x + 2y
6x + 15y

=
x + y

1
*

6x + 15y
2x + 2y

=
1x + y213212x + 5y2

21x + y2 factor and  
cancel  

 =
312x + 5y2

2
  simplify ■

 EXAMPLE  7  Dividing compound algebraic fractions

 

4 - x2

x2 - 3x + 2
x + 2

x2 - 9

=
4 - x2

x2 - 3x + 2
* x2 - 9

x + 2
  

invert restriction  
where x ≠ -y

invert 

r

X
CM

Fig. 6.4 

Practice Exercise

2. Divide: 
3x

a + 1
, x2 + 2x

a2 + a
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=
12 - x2 12 + x2 1x - 32 1x + 321x - 22 1x - 12 1x + 22 replace 12 - x2 with - 1x - 22   

and 12 + x2  with 1x + 22
 =

- 1x - 22 1x + 22 1x - 32 1x + 321x - 22 1x - 12 1x + 22
 = -

1x - 32 1x + 32
x - 1

 or 
1x - 32 1x + 32

1 - x
simplify

Note the use of Eq. (6.11) when the factor 12 - x2  was replaced by - 1x - 22  to 
get the first form of the answer. As shown, it can also be used to get the alternate form 
of the answer, although it is not necessary to give this form. ■

factor and cancel

restriction where x ≠ {2

EXERCISES 6.6

 25. 

x2 + ax
2b - cx

a2 + 2ax + x2

2bx - cx2

 26. 

x4 - 11x2 + 28

2x2 + 6
4 - x2

2x2 + 3

 27. 
35a + 25
12a + 33

, 28a + 20
36a + 99

 28. 
2a3 + a2

2b3 + b2 , 2ab + a
2ab + b

 29. 
x2 - 6x + 5

4x2 - 17x - 15
* 6x + 21

2x2 + 5x - 7

 30. 
n2 + 5n

3n2 + 8n + 4
* 2n2 - 8

n3 + 3n2 - 10n

 31. 

6T2 - NT - N2

2V2 - 9V - 35
8T2 - 2NT - N2

20V2 + 26V - 60

 32. 

4L3 - 9L

8L2 + 10L - 3
2L3 - 3L2

 33. 
7x2

3a
, aa

x
* a2x

x2 b  34. a 3u

8v

2 , 9u2

2w

2 b * 2u4

15vw

 35. a4t2 - 1
t - 5

, 2t + 1
2t

b * 2t2 - 50

4t2 + 4t + 1

 36. 
2x2 - 5x - 3

x - 4
, a x - 3

x2 - 16
* 1

3 - x
b

 37. 
x3 - y3

2x2 - 2y2 *
y2 + 2xy + x2

x2 + xy + y2

 38. 
2M2 + 4M + 2

6M - 6
, 5M + 5

M2 - 1

 39. aax + bx + ay + by

p - q
b a3p2 + 4pq - 7q2

a + b
b

 40. 
x4 + x5 - 1 - x

x - 1
, x - 1

x

 41. 
x

2x + 4
* x2 - 4

3x2

 42. 
4x2 - 25

4x2 , 4x + 10
8

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 2, change the first numerator to 4x + 6y and do the 
multiplication.

 2. In Example 3, change the first denominator to 4x - 10 and do the 
multiplication.

 3. In Example 6, change the denominator 6x + 15y to 6x + 12y 
and then do the division.

 4. In Example 7, change the numerator x + 2 of the divisor to 
x + 3 and then simplify.

In Exercises 5–44, simplify the given expressions involving the 
indicated multiplications and divisions.

 5. 
3
8

* 2
7

 6. 11 * 13
33

 7. 
4x
3y

*
9y2

2

 8. 
18sy3

ax2 *
1ax22

3s
 9. 

2
9

, 4
7

 10. 
5
16

, 25
13

 11. 
xy

az
, bz

ay
 12. 

sr2

2t
, st

4

 13. 
4x + 12

5
* 15t

3x + 9
 14. 

2y2 + 6y

6z
* z3

y2 - 9

 15. 
u2 - v2

u + 2v
 13u + 6v2  16. 1x - y2  

x + 2y

x2 - y2

 17. 
2a + 8

15
, a2 + 8a + 16

125
 18. 

a2 - a
3a + 9

, a2 - 2a + 1

18 - 2a2

 19. 
x4 - 9

x2 , 1x2 + 322 20. 
9B2 - 16

B + 1
, 14 - 3B2

 21. 
3ax2 - 9ax

10x2 + 5x
* 2x2 + x

a2x - 3a2 22. 
4R2 - 36

R3 - 25R
* 7R - 35

3R2 + 9R

 23. a x4 - 1
8x + 16

b a2x2 - 8x

x3 + x
b

 24. a2x2 - 4x - 6

x2 - 3x
b a x3 - 4x2

4x2 - 4x - 8
b
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 43. 
2x2 + 3x - 2

2 + 3x - 2x2 , 5x + 10
4x + 2

 44. 
16x2 - 8x + 1

9x
* 12x + 3

1 - 16x2

In Exercises 45–48, simplify the given expressions. The technical 
application of each is indicated.

 45. 
d
2

,
v1d + v2d

4v1v2
 (average velocity)

 46. 
cl2 - cl0

2

l0
2 ,

l2 + l0
2

l0
2  (cosmology)

 47. 
2p
l

 aa + b
2ab

b a abl
2a + 2b

b  (optics)

 48. 1p1 - p22 , apa4p1 - pa4p2

81u
b  (hydrodynamics)

Answers to Practice Exercises

1. 
1

21y - 12 , x ≠ 0, -2  2. 
3a

x + 2
, x ≠ 0, a ≠ -1

 6.7 Addition and Subtraction of Fractions
 

 
Complex Fractions

From arithmetic, recall that the sum of a set of fractions that all have the same denomi-
nator is the sum of the numerators divided by the common denominator. Since alge-
braic expressions represent numbers, this fact is also true in algebra. Addition and 
subtraction of such fractions are illustrated in the following example.

 EXAMPLE  1  Combining basic fractions

(a) 
5
9

+ 2
9

- 4
9

=
5 + 2 - 4

9

=
3
9

=
1
3

(b)  
b
ax

+ 1
ax

- 2b - 1
ax

=
b + 1 - 12b - 12

ax
=

b + 1 - 2b + 1
ax

 =
2 - b

ax
 ■

sum of numerators
same denominators

final result in lowest terms

use parentheses to show 
subtraction of both terms

When subtracting a fraction with multiple terms in the numerator, ensure that the nega-
tive sign is applied to all terms. The signs of all the terms must be changed before they 
can be combined with other terms. It is a common error to forget to apply the subtrac-
tion to both terms.

For example,

7
5

- x + 4
5

=
7 - (x + 4)

5
=

7 - x - 4
5

=
3 - x

5

is correct.

7
5

- x + 4
5

≠
7 - x + 4

5
=

11 - x
5

is not correct.

COMMON ERROR

LOWEST COMMON DENOMINATOR
If the fractions to be combined do not all have the same denominator, we must first 
change each to an equivalent fraction so that the resulting fractions do have the same 
denominator. Normally, the denominator that is most convenient and useful is the low-
est common denominator (abbreviated as LCD).
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Following is the procedure for finding the lowest common denominator of a set of 
fractions.

The LCD is the product of all the prime 
factors that appear in the denomina-
tors, with each factor raised to the 
highest power to which it appears in 
any one of the denominators. This 
means that the lowest common denom-
inator is the simplest algebraic expres-
sion into which all given denominators 
will divide exactly.

LEARNING T IP

Procedure for Finding the Lowest Common Denominator
1. Factor each denominator into its prime factors.

2.  For each different prime factor that appears, note the highest power to which 
it is raised in any one of the denominators.

3.  Form the product of all the different prime factors, each raised to the power 
found in step 2. This product is the lowest common denominator.

The two examples that follow illustrate the method of finding the LCD.

 EXAMPLE  2  Lowest common denominator (LCD) with algebraic fractions

Find the LCD of the fractions

3

4a2b
  

5

6ab3  
1

4ab2

We now express each denominator in terms of powers of its prime factors:

4a2b = 22a2b  6ab3 = 2 * 3 * ab3  4ab2 = 22ab2

The prime factors to be considered are 2, 3, a, and b. The largest exponent of 2 that 
appears is 2. Therefore, 22 is a factor of the LCD.

What matters is that the highest power of 2 that appears is 2, not the fact that 2 ap-
pears in all three denominators with a total of !ve factors.

The largest exponent of 3 that appears is 1 (understood in the second denominator). 
Therefore, 3 is a factor of the LCD. The largest exponent of a that appears is 2, and the 
largest exponent of b that appears is 3. Thus, a2 and b3 are factors of the LCD. 
Therefore, the LCD of the fractions is

22 * 3 * a2b3 = 12a2b3

This is the simplest expression into which each of the denominators above will divide 
exactly. ■

Finding the LCD of a set of fractions can be a source of difficulty. Remember, it is 
necessary to find all of the prime factors that may be in any of the denominators, and 
then find the highest power to which each is raised in any of the denominators. The fol-
lowing example illustrates this when factoring the denominators is the first step.

 EXAMPLE  3  Lowest common denominator with factored denominators

Find the LCD of the following fractions:

x - 4

x2 - 2x + 1
  

1

x2 - 1
  

x + 3

x2 - x

Factoring each of the denominators, we find that the fractions are

x - 41x - 122  
11x - 12 1x + 12  x + 3

x1x - 12
The factor 1x - 12  appears in all the denominators. It is squared in the first fraction 
and appears only to the first power in the other two fractions. Thus, we must have 

highest powers already seen to be highest power of 2
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1x - 122 as a factor in the LCD. We do not need a higher power of 1x - 12  since, as 
far as this factor is concerned, each denominator will divide into it evenly. Next, the 
second denominator has a factor of 1x + 12 . Therefore, the LCD must also have a fac-
tor of 1x + 12 ; otherwise, the second denominator would not divide into it exactly. 
Finally, the third denominator shows that a factor of x is also needed. The LCD is 
therefore x1x + 12 1x - 122. All three denominators will divide exactly into this 
expression, and there is no simpler expression for which this is true. ■

ADDITION AND SUBTRACTION OF FRACTIONS
Once we have found the LCD for the fractions, we multiply the numerator and the 
denominator of each fraction by the proper quantity to make the resulting denominator 
in each case the lowest common denominator. After this step, it is necessary only to 
add the numerators, place this result over the common denominator, and simplify.

 EXAMPLE  4  Adding fractions using LCD

Combine: 
2

3r2 + 4

rs3 - 5
3s

.

By looking at the denominators, notice that the factors necessary in the LCD are 3, 
r , and s. The 3 appears only to the first power, the largest exponent of r is 2, and the 
largest exponent of s is 3. Therefore, the LCD is 3r2s3. Now, write each fraction with 
this quantity as the denominator.

Since the denominator of the first fraction already contains factors of 3 and r2, it is 
necessary to introduce the factor of s3. In other words, we must multiply the numera-
tor and the denominator of this fraction by s3. For similar reasons, we must multiply the 
numerators and the denominators of the second and third fractions by 3r and r2s2, 
respectively. This leads to

 
2

3r2 + 4

rs3 - 5
3s

=
21s3213r22 1s32 +

413r21rs32 13r2 -
51r2s2213s2 1r2s22

 =
2s3

3r2s3 + 12r

3r2s3 - 5r2s2

3r2s3

 =
2s3 + 12r - 5r2s2

3r2s3

Note that the minus sign for the third term is used in the numerator. ■

 EXAMPLE  5  Adding fractions using LCD, binomial factors

 
a

x - 1
+ a

x + 1
=

a1x + 121x - 12 1x + 12 +
a1x - 121x + 12 1x - 12

 =
ax + a + ax - a1x + 12 1x - 12

 =
2ax1x + 12 1x - 12

When we multiply each fraction by the quantity required to obtain the proper 
denominator, we do not actually have to write the common denominator under each 
numerator. Placing all the products that appear in the numerators over the common 

change to equivalent 
fractions with LCD

combine numerators over LCD

factors needed in each

change to equivalent  
fractions with LCD

factors needed

combine numerators 
over LCD

simplify

Practice Exercise

1.  Find the LCD of the following fractions: 
x

2x2 + 2x
, 

1

x2 + 2x + 1
, 

2x + 4

4x2
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denominator is sufficient. Hence, the illustration in this example would appear as

 
a

x - 1
+ a

x + 1
=

a1x + 12 + a1x - 121x - 12 1x + 12 =
ax + a + ax - a1x - 12 1x + 12

 =
2ax1x - 12 1x + 12  ■

 EXAMPLE  6  Adding fractions—application

The following expression is found in the analysis of the dynamics of missile firing. The 
indicated addition is performed as shown.

 
1
s

- 1
s + 4

+ 8

s2 + 8s + 16
=

1
s

- 1
s + 4

+ 81s + 422          factor third denominator

 =
11s + 422 - 11s2 1s + 42 + 8s

s1s + 422    LCD has one factor of s and two factors of 1s + 42
 =

s2 + 8s + 16 - s2 - 4s + 8s

s1s + 422      expand terms of the numerator

 =
12s + 16

s1s + 422 =
413s + 42
s1s + 422       simplify/factor

Practice Exercise

2. Combine: 
3

2x + 2
- 2

x2 + 2x + 1
+ 1

2x3 + 2x2

We factored the numerator in the final result to see whether or not there were any fac-
tors common to the numerator and the denominator. Since there are none, either form 
of the result is acceptable. ■

 EXAMPLE  7   Combining fractions, factored denominators  
with binomial factors

3x

x2 - x - 12
- x - 1

x2 - 8x + 16
- 6 - x

2x - 8
=

3x1x - 42 1x + 32 - x - 11x - 422 - 6 - x
21x - 42 factor denominators

=
3x122 1x - 42 - 1x - 12 122 1x + 32 - 16 - x2 1x - 42 1x + 32

21x - 4221x + 32 change to equivalent  
fraction with LCD

=
36x2 - 24x4 - 32x2 + 4x - 64 - 3 -x3 + 7x2 + 6x - 724

21x - 4221x + 32 expand in numerator

=
6x2 - 24x - 2x2 - 4x + 6 + x3 - 7x2 - 6x + 72

21x - 4221x + 32 =
x3 - 3x2 - 34x + 78

21x - 4221x + 32 simplify ■

COMPLEX FRACTIONS
A complex fraction is one in which the numerator, the denominator, or both the 
numerator and the denominator contain fractions. The following examples illustrate 
the simplification of complex fractions. Like in Section 6.6, when dividing algebraic 
fractions, you can multiply by the reciprocal of the divisor.
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 EXAMPLE  8  Complex fraction

 

2
x

1 - 4
x

=

2
x

x - 4
x

first, perform subtraction in denominator

 =
2
x

* x
x - 4

=
2x

x1x - 42 invert divisor and multiply

 =
2

x - 4
, where x ≠ 0 simplify ■

EXAMPLE  9  Complex fraction

1 - 2
x

1
x

+ 2

x2 + 4x

=
1 - 2

x

1
x

+ 2
x1x + 42 =

x - 2
x

x + 4 + 2
x1x + 42

perform subtraction and addition  
in numerator and denominator 
separately

 =
x - 2

x
*

x1x + 42
x + 6

invert divisor and multiply

 =
1x - 22 1x2 1x + 42

x1x + 62 show common factors

 =
1x - 22 1x + 42

x + 6
, where x ≠ 0 simplify ■

■ The original complex fraction can be written 
as a division as follows:

2
x

, a1 - 4
x
b

EXERCISES 6.7

 17. 
2
5a

+ 1
a

- a
10

 18. 
1

2A
- 6

B
- 9

4C

 19. 
x + 1

2x
-

y - 3

4y
- 2 - x

xy
 20. 5 + 1 - x

2y
- 3 + x

4y

 21. 
3

2x - 1
+ 1

4x - 2
 22. 

5
6y + 3

- a
8y + 4

 23. 
4

x1x + 12 - 3
2x

 24. 
3

ax + ay
- 1

a2

 25. 
s

2s - 6
+ 1

4
- 3s

4s - 12
 26. 

2
x + 2

- 3 - x

x2 + 2x
+ 1

x

 27. 
3R

R2 - 9
- 2

3R + 9
 28. 

2

n2 + 4n + 4
- 3

4 + 2n

 29. 
3

x2 - 8x + 16
- 2

4 - x
 30. 

2a - b
c - 3d

- b - 2a
3d - c

 31. 
v + 4

v

2 + 5v + 4
- v - 2

v

2 - 5v + 6
 32. 

N - 1

2N3 - 4N2 - 5
2 - N

 33. 
x - 1

3x2 - 13x + 4
- 3x + 1

4 - x

 34. 
x

4x2 - 12x + 5
+ 2x - 1

4x2 - 4x - 15

 35. 
t

t2 - t - 6
- 2t

t2 + 6t + 9
+ t

9 - t2

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 2, change the denominator of the third fraction to 
4a2b2 and then find the LCD.

 2. In Example 5, add the fraction 
2

x2 - 1
 to those being added and 

then find the result.

 3. In Example 7, change the denominator of the third fraction to 
2x + 6 and then find the result.

 4. In Example 8, change the fraction in the numerator to 2>x2 and 
then simplify.

In Exercises 5–44, perform the indicated operations and simplify.

 5. 
3
5

+ 6
5

 6. 
2
13

+ 6
13

 7. 
1
x

+ 7
x

 8. 
2
a

+ 3
a

 9. 
1
2

+ 3
4

 10. 
5
9

- 1
3

 11. 
3
4x

+ 7a
4

+ 2  12. 
t - 3

a
- t

2a
 13. 

a
x

- b

x2

 14. 
3

2s2 + 5
4s

 15. 
6

5x3 + a
25x

 16. 
a
6y

- 2b

3y4
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 36. 
5

2x3 - 3x2 + x
- x

x4 - x2 + 2 - x

2x2 + x - 1

 37. 
1

w

3 + 1
+ 1

w + 1
- 2 38. 

2

8 - x3 + 1

x2 - x - 2

 39. 

1
x

1 - 1
x

 40. 
x - 1

x

1 - 1
x

 41. 

x
y

-
y

x

1 +
y

x

 42. 

V2 - 9
V

1
V

- 1
3

 43. 

3
x

+ 1

x2 + x
1

x + 1
- 1

x - 1

 44. 

1
u - v

+ 1
2u + 2v

2u

2u2 - 3uv + v

2 + 2
2u - v

The expression f1x + h2 - f1x2  is frequently used in the study of 
calculus. (If necessary, refer to Section 3.1 for a review of functional 
notation.) In Exercises 45–48, determine and then simplify this 
expression for the given functions.

 45. f1x2 =
x

x + 1
 46. f1x2 =

3
2x - 1

 47. f1x2 =
1

x2 48. f1x2 =
2

x2 + 4

In Exercises 49–57, simplify the given expressions. In Exercise 58, 
answer the given question.

 49. Using the definitions of the trigonometric functions given in 
Section 4.2, find an expression that is equivalent to 
(tan u2 1cot u2  + 1sin u22 -  cos u, in terms of x, y, and r.

 50. Using the definitions of the trigonometric functions given in 
Section 4.2, find an expression that is equivalent to 
sec u - 1cot u22 +  csc u, in terms of x, y, and r.

 51. If f1x2 = 2x - x2, find f  a1
a
b .

 52. If f1x2 = x2 + x, find f aa + 1
a
b .

 53. If f1x2 = x - 2
x

, find f1a + 12 .

 54. If f1x2 = 2x - 3, find f 31>f1x24 .

 55. The sum of two numbers a and b is divided by the sum of their 
reciprocals. Simplify the expression for this quotient.

 56. Find A and B if 
2x - 9

x2 - x - 6
=

A
x - 3

+ B
x + 2

.

 57. If x =
mn

m + n
 and y =

mn
m - n

, show that 
y2 - x2

y2 + x2 =
2mn

m2 + n2.

 58. When adding fractions, explain why it is better to find the lowest 
common denominator rather than any denominator that is com-
mon to the fractions.

In Exercises 59–68, perform the indicated operations. Each expression 
occurs in the indicated area of application.

 59. 
3

4p
-

3H0

4pH
 (transistor theory)

 60. 1 + 9
128T

-
27p

64T3 (thermodynamics)

 61. 
2n2 - n - 4

2n2 + 2n - 4
+ 1

n - 1
 (optics)

 62. 
b

x2 + y2 - 2bx2

x4 + 2x2y2 + y4 (magnetic field)

 63. a3Px

2L2 b2
+ a P

2L
b2

 (force of a weld)

 64. 
a

b2h
+ c

bh2 - 1
6bh

 (strength of materials)

 65. 

L
C

+ R
sC

sL + R + 1
sC

 (electricity)

 66. 

m
c

1 -
p2

c2

 (airfoil design)

 67. 
1

R2 + avc - 1
vL

b2
 (electricity)

 68. 

x
h1

+ x - L
h2

1 +
x1L - x2

h1h2

 (optics)

Answers to Practice Exercises

1. 4x21x + 122  2. 
3x3 - x2 + x + 1

2x21x + 122
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 6.8 Equations Involving Fractions
 

 
Extraneous Solutions

Many important equations in science, engineering, and technology have fractions in 
them. Although the solution of these equations will still involve the use of the basic 
operations stated in Section 1.10, an additional procedure can be used to eliminate the 
fractions and thereby help lead to the solution. The following examples illustrate how 
to solve equations involving fractions.

 EXAMPLE  1  Multiply each term by the LCD

Solve for x: 
x

12
- 1

8
=

x + 2
6

.

First, note that the LCD of the terms of the equation is 24. Therefore, multiply each 
term by 24. This gives

241x2
12

-
24112

8
=

241x + 22
6

each term multiplied by LCD

Reduce each term to its lowest terms and solve the resulting equation:

 2x - 3 = 41x + 22 each term reduced

 2x - 3 = 4x + 8

 - 2x = 11

 x = - 11
2

When we check this solution in the original equation, we obtain -7>12 on each side of 
the equal sign. Therefore, the solution is correct. ■

 EXAMPLE  2  Solving a literal equation

Solve for x: 
x
2

- 1

b2 =
x

2b
.

First, determine that the LCD of the terms of the equation is 2b2. Then multiply each 
term by 2b2 and continue with the solution:

 
2b21x2

2
-

2b2112
b2 =

2b21x2
2b

each term multiplied by LCD

 b2x - 2 = bx each term reduced

 b2x - bx = 2
 x1b2 - b2 = 2 factor

 x =
2

b2 - b
=

2
b1b - 12

Note the use of factoring in arriving at the final result. Checking shows that each side 

of the original equation is equal to 
1

b21b - 12 . ■

To solve equations dealing with frac-
tions, multiply each term of the equation 
by the LCD. The resulting equation can 
be solved by using methods discussed 
previously and will not involve fractions.

LEARNING T IP

■ Note carefully that we are multiplying both 
sides of the equation by the LCD and not 
combining terms over a common denominator 
as when adding fractions.

Expanded Procedure for Solving Equations
The procedure for solving equations covered in Section 1.10 can now be 
expanded as:

1.  If the equation has any fractions, remove the fractions by multiplying by the LCD.

2. Remove grouping symbols (distributive law).

3. Combine like terms on each side.

4.  Perform the same operations on both sides to simplify and factor, if neces-
sary, with the goal of isolating the variable x.
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 EXAMPLE  3  Solving an equation—optics application

An equation relating the focal length f  of a lens with the object distance p and the 
image distance q is given below. See Fig. 6.5. Solve for q.

f =
pq

p + q
given equation

Since the only denominator is p + q, the LCD is also p + q. By first multiplying each 
term by p + q, the solution is completed as follows:

 f1p + q2 =
pq1p + q2

p + q
each term multiplied by LCD

 fp + fq = pq reduce term on right

 fq - pq = - fp

 q1 f - p2 = - fp factor

 q =
- fp

f - p
divide by f - p

 q = -
fp

- 1p - f2 use Eq. (6.11)

 q =
fp

p - f

The last form is preferred since there is no minus sign before the fraction. However, 
either form of the result is correct. ■

 EXAMPLE  4  Solving an equation—astrophysics application

In astronomy, when developing the equations that describe the motion of the planets, 
the equation

1
2

 v2 - GM
r

= - GM
2a

is found. Solve for M.
First, determine that the LCD of the terms of the equation is 2ar. Multiplying each 

term by 2ar and proceeding, we have

 
2ar1v

22
2

-
2ar1GM2

r
= -

2ar1GM2
2a

each term multiplied by LCD

 arv

2 - 2aGM = -rGM each term reduced

 rGM - 2aGM = -arv

2

 M1rG - 2aG2 = -arv

2 factor

 M = - arv

2

rG - 2aG

 M =
arv

2

2aG - rG

 M =
arv

2

G12a - r2
The second form of the result is obtained by using Eq. (6.11). Again, note the use of 
factoring to arrive at the final result. ■

p q
f Image

Focal
point

Object

Fig. 6.5 

■ See the chapter introduction.

■ The first telescope was invented by 
Lippershay, a Dutch lens maker, in about 1608.

■ For reference, Eq. (6.11) is 
x - y = - 1y - x2 .

■ See the chapter introduction.

■ In 1609, the Italian scientist Galileo  
(1564–1642) learned of the invention of the 
telescope and developed it for astronomical 
observations. Among his first discoveries were 
the four largest moons of the planet Jupiter.

Practice Exercise

1. Solve for x: 
x - 1

3a
=

5
6

+ x

a2
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 EXAMPLE  5  No solution

Solve for x: 
2

x + 1
- 1

x
= - 2

x2 + x
.

Note first that x = 0 and x = -1 make a denominator equal to zero, so these are 
not possible values of the solution. The solution proceeds as follows:

 
21x2 1x + 12

x + 1
-

x1x + 12
x

= -
2x1x + 12
x1x + 12 multiplying each side by the LCD 

of x1x + 12 , x ≠ 0, -1

 2x - 1x + 12 = -2 simplifying each fraction

 2x - x - 1 = -2 completing the solution

 x = -1

As we said earlier, x = -1 cannot be a solution. Therefore, there is no solution to this 
equation. ■

It is a common error to give a value that makes the denominator zero as a solution to an 
equation that involves fractions. Such an error can be avoided by stating explicitly from 
the beginning the values that are not valid solutions (because they make a denominator 
equal to zero), as we did in Example 5. Checking your solution in the original equation 
also helps identify values that cannot be solutions.

COMMON ERROR

A number of stated problems give rise to equations involving fractions. The follow-
ing examples illustrate the solution of such problems.

 EXAMPLE  6  Solving a word problem with fractions

An industrial firm uses a computer system that processes and prints out its data for an 
average day in 20 h. To process the data more rapidly and to handle increased future 
computer needs, the firm plans to add new components to the system. One set of new 
components can process the data in 12 h, without the present system. How long would 
it take the new system, a combination of the present system and the new components, 
to process the data?

First, let x = the number of hours for the new system to process the data. Next, we 
know that it takes the present system 20 h to do it. This means that it processes 1

20 of the 
data in 1 h, or 1

20 x of the data in x h. In the same way, the new components can process 
1

12 x of the data in x h. When x h have passed, the new system will have processed all of 
the data. Therefore,

part of data processed part of data processed      
by present system by new components
    one complete processing
 

x
20

 +  
x

12
 =  1 (all of data)

 
60x
20

+ 60x
12

= 60112 each term multiplied by LCD of 60

 3x + 5x = 60 each term reduced

 8x = 60

 x =
60
8

= 7.5 h

Therefore, the new system should take about 7.5 h to process the data. ■

Whenever we multiply each term by a 
common denominator that contains 
the unknown, it is possible to obtain 
a value that is not a solution of the 
original equation. Such a value is 
termed an extraneous solution. Only 
certain equations will lead to extra-
neous solutions, but we must be care-
ful to identify them when they occur.

LEARNING T IP

■ The first large-scale electronic computer 
was the ENIAC. It was constructed at the Univ. 
of Pennsylvania in the mid-1940s and used until 
1955. It had 18 000 vacuum tubes and occupied 
1400 m2 of floor space.

■ A military programmable computer called 
Colossus was used to break the German codes 
in World War II. It was developed, in secret, 
before ENIAC.
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 EXAMPLE  7  Solving a word problem with fractions

A bus averaging 80.0 km>h takes 1.50 h longer to travel from city A to city B than a 
train that averages 96.0 km>h. How far apart are the cities?

Let d = the distance from city A to city B. Since distance = rate * time, then 
distance , rate = time. Therefore, the time the train takes is d>96.0 h, and the time 
the bus takes is d>80.0 h. This means

t bus - t train = 1.50 h

 
d

80.0
- d

96.0
= 1.50

 
480d
80.0

- 480d
96.0

= 48011.502
 6.00d - 5.00d = 720

d = 720 km ■

 80 = 16152 = 1242 152
 96 = 32132 = 1252 132
 LCD = 1252 132 152 = 480

EXERCISES 6.8

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve for the indicated variable.

 1. In Example 2, change the second denominator from b2 to b and 
then solve for x.

 2. In Example 3, solve for p.

 3. In Example 4, solve for G.

 4. In Example 5, change the numerator on the right to 1 and then 
solve for x.

In Exercises 5–32, solve the given equations and check the results.

 5. 
x
2

+ 6 = 2x 6. 
x
5

+ 2 =
15 + x

10

 7. 
x
6

- 1
2

=
x
3

 8. 
3N
8

- 3
4

=
N - 4

2

 9. 1 - t - 5
6

=
3
4

 10. 
2x - 7

3
+ 5 =

1
5

 11. 
3x
7

- 5
21

=
2 - x

14
 12. 

F - 3
12

- 2
3

=
1 - 3F

2

 13. 
3
T

+ 2 =
5
3

 14. 
1
2y

- 1
2

= 4

 15. 3 - x - 2
5x

=
1
5

 16. 
1

2R
- 1

3
=

2
3R

 17. 
2y

y - 1
= 5 18. 

x
2x - 3

= 4

 19. 
2
s

=
3

s - 1
 20. 

5
n + 2

=
3
2n

 21. 
5

2x + 4
+ 3

6x + 12
= 2 22. 

3
4x - 6

+ 1
4

=
5

3 - 2x

 23. 
2

Z - 5
- 3

10 - 2Z
= 3 24. 

4
4 - x

+ 2 - 2
12 - 3x

=
1
3

 25. 
1
4x

+ 3
2x

=
2

x + 1
 26. 

3
t + 3

- 1
t

=
5

6 + 2t

 27. 
7
y

=
3

y - 4
+ 7

2y2 - 8y
 28. 

1
2x + 3

=
5
2x

- 4

2x2 + 3x

 29. 
1

x2 - x
- 1

x
=

1
x - 1

 30. 
2

x2 - 1
- 2

x + 1
=

1
x - 1

 31. 
2

B2 - 4
- 1

B - 2
=

1
2B + 4

 32. 
2

2x2 + 5x - 3
- 1

4x - 2
+ 3

2x + 6
= 0

In Exercises 33–48, solve for the indicated letter. In Exercises 37–48, 
each of the given formulas arises in the technical or scientific area of 
study listed.

  33. 2 - 1
b

+ 3
c

= 0, for c 34. 
2
3

- h
x

=
1
6x

, for x

 35. 
t - 3

b
- t

2b - 1
=

1
2

, for t

 36. 
1

a2 + 2a
-

y

2a
=

2y

a + 2
, for y

 37. 
s - s0

t
=

v + v0

2
, for v (velocity of object)

 38. S =
P
A

+ Mc
I

, for A (machine design)

 39. V = 1.2a5.0 + 8.0R
8.0 + R

b , for R (electric resistance in Fig. 6.6)

R

1.2 A

8.0 Ω

5.0 Ω

V

Fig. 6.6 

 40. C =
7p

100 - p
, for p (environmental pollution)
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 41. z =
1

gm
-

jX

gmR
, for R (FM transmission)

 42. A =
1
2

  wp - 1
2

  w2 - p

8
  w2, for p (architecture)

 43. p =
RT

V - b
- a

V2, for T  (thermodynamics)

 44. 
1
x

+ 1
nx

=
1
f

, for f  (photography)

 45. 
1
C

=
1

C2
+ 1

C1 + C3
, for C1 (electricity: capacitors)

 46. D =
wx4

24EI
- wLx3

6EI
+ wL2x2

4EI
, for w (beam design)

 47. f1n - 12 =
1

1
R1

+ 1
R2

, for R1 (optics)

 48. P =

1
1 + i

1 - 1
1 + i

, for i (business)

In Exercises 49–58, set up appropriate equations and solve the given 
stated problems. All numbers are accurate to at least 3 significant 
digits.

 49. One pump can empty an oil tanker in 5.00 h, and a second pump 
can empty the tanker in 8.00 h. How long would it take the two 
pumps working together to empty the tanker?

 50. One company determines that it will take its crew 450 h to clean 
up a chemical dump site, and a second company determines that it 
will take its crew 600 h to clean up the site. How long will it take 
the two crews working together?

 51. One automatic packaging machine can package 100 boxes of  
machine parts in 12.0 min, and a second machine can do it in  
10.0 min. A newer model machine can do it in 8.00 min. How 
long will it take the three machines working together?

 52. A painting crew can paint a structure in 12.0 h, or the crew can 
paint it in 7.20 h when working with a second crew. How long 
would it take the second crew to do the job if working alone?

 53. An elevator travelled from the first floor to the top floor of a build-
ing at an average speed of 2.00 m>s and returned to the first floor at 
2.20 m>s. If it was on the top floor for 90.0 s and the total elapsed 
time was 5.00 min, how far above the first floor is the top floor?

 54. A commuter rapid transit train travels 24.0 km farther between 
stops A and B than between stops B and C. If it averages 
60.0 km>h from A to B and 30.0 km>h between B and C, and an 
express averages 50.0 km>h between A and C (not stopping at 
B), how far apart are stops A and C?

 55. A jet takes the same time to travel 2580 km with the wind as it 
does to travel 1800 km against the wind. If its speed relative to 
the air is 450 km>h, what is the speed of the wind?

 56. An engineer travels from St. John’s, Newfoundland, to the 
Hibernia oil field in the North Atlantic Ocean on a ship that av-
erages 28.0 km>h. After spending 6.00 h at the field, the engi-
neer returns to St. John’s in a helicopter that averages 140 km>h. 
If the total trip takes 19.5 h, how far is the Hibernia oil field 
from St. John’s?

 57. The current through each of the resistances R1 and R2 in Fig. 6.7 
equals the voltage V divided by the resistance. The sum of the 
currents equals the current i in the rest of the circuit. Find the 
voltage if i = 1.20 A, R1 = 2.70 Ω, and R2 = 6.00 Ω.

i
V R2R1

Fig. 6.7 

 58. A fox, pursued by a greyhound, has a start of 60 leaps. He 
makes 9 leaps while the greyhound makes but 6; but, 3 leaps of 
the greyhound are equivalent to 7 of the fox. How many leaps 
must the greyhound make to overcome the fox? (Copied from 
Davies, Charles, Elementary Algebra, New York: A. S. Barnes 
& Burr, 1852.) (Hint: Let the unit of distance be one fox leap.)

In Exercises 59 and 60, find constants A and B such that the equation 
is true.

 59. 
x - 12

x2 + x - 6
=

A
x + 3

+ B
x - 2

 60. 
23 - x

2x2 + 7x - 4
=

A
2x - 1

- B
x + 4

Answer to Practice Exercise

1. x =
5a2 + 2a
2a - 6

 CHAPTER 6   EQUATIONS

a1x + y2 = ax + ay (6.1)1x + y2 1x - y2 = x2 - y2 (6.2)1x + y22 = x2 + 2xy + y2 (6.3)1x - y22 = x2 - 2xy + y2 (6.4)1x + a2 1x + b2 = x2 + 1a + b2x + ab (6.5)
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1ax + b2 1cx + d2 = acx2 + 1ad + bc2x + bd (6.6)1x + y23 = x3 + 3x2y + 3xy2 + y3 (6.7)1x - y23 = x3 - 3x2y + 3xy2 - y3 (6.8)1x + y2 1x2 - xy + y22 = x3 + y3 (6.9)1x - y2 1x2 + xy + y22 = x3 - y3 (6.10)
x - y = - 1y - x2  (6.11)

 CHAPTER 6  REVIEW EXERCISES

In Exercises 1–12, find the products by inspection. No intermediate 
steps should be necessary.

 1. 3a14x + 5a2  2. -7xy14x2 - 7y2
 3. 12a + 7b2 12a - 7b2  4. 1x - 4z2 1x + 4z2
 5. 12a + 122 6. 15C - 2D22

 7. 1b - 42 1b + 72  8. 1y - 52 1y - 72
 9. 12x + 52 1x - 92  10. 14ax - 32 15ax + 72
 11. 12ca + d2 12ca - d2  12. 13sn - 2t2 13sn + 2t2
In Exercises 13–44, factor the given expressions completely.

 13. 3s + 9t 14. 7x - 28y

 15. a2x2 + a2 16. 3ax - 6ax4 - 9a

 17. W2bx+2 - 144bx 18. 900na - na+4

 19. 161x + 222 - t4 20. 25s4 - 36t2

 21. 36t2 - 24t + 4 22. 4x2 - 12x + 9

 23. 25t2 + 10t + 1 24. 4c2 + 36cd + 81d2

 25. x2 + x - 56 26. x2 - 4x - 45

 27. t4 - 5t2 - 36 28. 3N4 - 33N2 + 30

 29. 2k2 - k - 36 30. 5x2 + 2x - 3

 31. 8x2 - 8x - 70 32. 27F3 + 21F2 - 48F

 33. 10b2 + 23b - 5 34. 12x2 - 7xy - 12y2

 35. 4x2 - 64y2 36. 4a2x2 + 26a2x + 36a2

 37. 250 - 16y6 38. 8a4 + 64a

 39. 8x3 + 27 40. R3 - 125r3

 41. ab2 - 3b2 + a - 3 42. axy - ay + ax - a

 43. nx + 5n - x2 + 25 44. ty - 4t + y2 - 16

In Exercises 45–68, perform the indicated operations and express  
results in simplest form.

 45. 
48ax3y6

9a3xy6  46. 
-39r2s4t8

52rs5t

 47. 
6x2 - 7x - 3

4x2 - 8x + 3
 48. 

p4 - 4p2 - 4

p4 - p2 - 12

 49. 
4x + 4y

35x2 * 28x

x2 - y2 50. a6x - 3

x2 b a4x2 - 12x
6 - 12x

b
 51. 

18 - 6L

L2 - 6L + 9
, L2 - 2L - 15

L2 - 9

 52. 
6x2 - xy - y2

2x2 + xy - y2 ,
16y2 - 4x2

2x2 + 6xy + 4y2

 53. 

3x

7x2 + 13x - 2
6x2

x2 + 4x + 4

 54. 

3x - 3y

2x2 + 3xy - 2y2

3x2 - 3y2

x2 + 4xy + 4y2

 55. 
x + 1

x
+ 1

x2 - 1
x

 56. 

4
y

- 4y

2 - 2
y

 57. 
4
9x

- 5

12x2 58. 
3

10a2 + 1

4a3

 59. 
6
x

- 7
2x

+ 3
xy

 60. 
T

T2 + 2
- 1

2T + T3

 61. 
a + 1
a + 2

- a + 3
a

 62. 
y

y + 2
- 1

y2 + 2y

 63. 
2x

x2 + 2x - 3
- 1

6x + 2x2 64. 
x

4x2 + 4x - 3
- 3

4x2 - 9

 65. 
3x

2x2 - 2
- 2

4x2 - 5x + 1
 66. 

2n - 1
4 - n

+ n + 2
5n - 20

 67. 
3x

x2 + 2x - 3
- 2

x2 + 3x
+ x

x - 1

 68. 
3

y4 - 2y3 - 8y2 +
y - 1

y2 + 2y
-

y - 3

y2 - 4y

In Exercises 69–76, factor the given expressions. In Exercises 69–72, 
disregard the restriction that coefficients and exponents must be inte-
gers. The expressions in Exercises 73–76 can be factored if they are 
first rewritten in a different form.

 69. x2 - 5 70. x - y

 71. x - 1 72. 7 - x2

 73. x + y (one of two factors is to be x)

 74. x + y (one of two factors is to be a)

 75. x - 2y (one of two factors is to be 2)

 76. x - y (one of two factors is to be -y)
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In Exercises 77–84, solve the given equations.

 77. 
x
2

- 3 =
x - 10

4
 78. 

2x
c

- 1
2c

=
3
c

- x, for x

 79. 
2
t

- 1
at

= 2 + a
t
, for t 80. 

3

a2y
- 1

ay
=

9
a

, for y

 81. 
2x

2x2 - 5x
- 3

x
=

1
4x - 10

 82. 
3

x2 + 3x
- 1

x
=

1
3 + x

 83. Given f1x2 =
1

x + 2
, solve for x if f1x + 22 = 2f1x2 .

 84. Given f1x2 =
x

x + 1
, solve for x if 3f1x2 + f a1

x
b = 2.

In Exercises 85–102, solve the given problems. Where indicated, the 
expression is found in the stated technical area.

 85. In an algebraic fraction, what effect on the result is made if the 
sign is changed of (a) an odd number of factors? (b) an even 
number of factors?

 86. Algebraically show that the reciprocal of the reciprocal of the 
number x is x.

 87. Show that xy =
1
4

 3 1x + y22 - 1x - y224 .

 88. Show that x2 + y2 =
1
2

 3 1x + y22 + 1x - y224 .

 89. Multiply: 2zS1S + 12  (solid-state physics)

 90. Expand: kr1R - r2  (blood flow)

 91. Expand: 32b + 1n - 12l42 (optics)

 92. Factor: pr1
2l - pr2

2l (jet plane fuel supply)

 93. Factor: cT2 - cT1 + RT2 - RT1 (pipeline flow)

 94. Factor: 9600t + 8400t2 - 1200t3 (solar energy)

 95. Simplify and express in factored form: 12R - r22 - 1r2 + R22  
(aircraft radar)

 96. Express in factored form: 2R1R + r2 - 1R + r22 (electric-
ity: power)

 97. Expand and simplify: 1n + 12312n + 123 (fluid flow in 
pipes)

 98. Expand and simplify: 21e1 - e222 + 21e2 - e322  
(mechanical design)

 99. Expand and simplify: 10a1T - t2 + a1T - t22 
(instrumentation)

 100. Expand the third term and then factor by grouping: pa2 +11 - p2b2 - 3pa + 11 - p2b42 (nuclear physics)

 101. A metal cube of edge x is heated and each edge increases by 4 
mm. Express the increase in volume in factored form.

 102. Express the difference in volumes of two ball bearings of radii r 
mm and 3 mm in factored form. 1r 7 3 mm2

In Exercises 103–114, perform the indicated operations and simplify 
the given expressions. Each expression is from the indicated technical 
area of application.

 103. a2wtv2

Dg
b abp2D2

n2 b a 6

bt2 b  (machine design)

 104. 
m
c

, c 1 - ap

c
b2 d  (airfoil design)

 105. 

pka
2

1R4 - r42
pka1R2 - r22  (flywheel rotation)

 106. 
V
kp

- RT

k2p2 (electric motors)

 107. 1 - d2

2
+ d4

24
- d6

120
 (aircraft emergency locator transmitter)

 108. 
wx2

2T0
+ kx4

12T0
 (bridge design)

 109. 
4k - 1
4k - 4

+ 1
2k

 (spring stress)

 110. 
Am
k

-
g

2
 am

k
b2

+ AML
k

 (rocket fuel)

 111. 1 - 3a
4r

- a3

4r3 (hydrodynamics)

 112. 
1
F

+ 1
f

- d
fF

 (optics)

 113. 

u2

2g
- x

1

2gc2 - u2

2g
+ x

 (mechanism design)

 114. 
V

1
2R

+ 1
2R + 2

 (electricity)

In Exercises 115–124, solve for the indicated letter. Each equation is 
from the indicated technical area of application.

 115. W = mgh2 - mgh1, for m (work done on object)

 116. R11V2 - V12 + R2V2 = 3R1R2, for V2 (electricity)

 117. R =
wL

H1w + L2 , for L (architecture)

 118. 
J
T

=
t

v1 - v2
, for v2 (rotational torque)

 119. E = V0 +
1m + M2V2

2
+

p2

2I
, for I (nuclear physics)

 120. 
q2 - q1

d
=

f + q1

D
, for q1 (photography)

 121. s2 + cs
m

+ kL2

mb2 = 0, for c (mechanical vibrations)

 122. I =
A

x2 + B110 - x22, for A (optics)

 123. V =
i

sC
+

V0

s
, for C (electricity)

 124. C =
k

n11 - k2 , for k (reinforced concrete design)
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In Exercises 125–132, set up appropriate equations and solve the 
given stated problems. All numbers are accurate to at least three sig-
nificant digits.

 125. If a certain car’s lights are left on, the battery will be dead in 
4.00 h. If only the radio is left on, the battery will be dead in 
24.0 h. How long will the battery last if both the lights and the 
radio are left on?

 126. Two pumps are being used to fight a fire. One pumps 5000 L in 
20 min, and the other pumps 5000 L in 25.0 min. How long will 
it take the two pumps together to pump 5000 L?

 127. A number m is the harmonic mean of number x and y if 1>m 
equals the average of 1>x and 1>y (divide 1>x + 1>y by 2). 
Find the harmonic mean of the musical notes that have frequen-
cies of 400 Hz and 1200 Hz.

 128. An auto mechanic can do a certain motor job in 3.00 h, and with 
an assistant he can do it in 2.10 h. How long would it take the 
assistant to do the job alone?

 129. The relative density, also known as specific gravity sg, of an 
object may be defined as its weight in air wa, divided by the dif-
ference of its weight in air and its weight when submerged in 
water, w

w
. For a lead weight, wa = 1.097 w

w
. Find the specific 

gravity of lead.

 130. A car travels halfway to its destination at 80.0 km>h and the re-
mainder of the distance at 60.0 km>h. What is the average speed 
of the car for the trip?

 131. For electric resistors in parallel, the reciprocal of the combined 
resistance equals the sum of the reciprocals of the individual re-
sistances. For three resistors of 12.0 Ω, R ohms, and 2R ohms, 
in parallel, the combined resistance is 6.00 Ω. Find R.

 132. An ambulance averaged 36.0 km>h going to an accident and 
48.0 km>h on its return to the hospital. If the total time for the 
round-trip was 40.0 min, including 5.00 min at the accident 
scene, how far from the hospital was the accident?

Writing Exercise
 133. In analysing a certain electric circuit, the expression

  

a1 + 1
s
b a1 + 1

s>2
b

3 + 1
s

+ 1
s>2

 is used. Simplify this expression, and

  write a paragraph describing your procedure. When you “can-
cel,” explain what basic operation is being performed.

 CHAPTER 6  PRACTICE TEST

 1. Find the product: 2x12x - 322.

 2. The following equation is used in electricity.

  Solve for R1: 
1
R

=
1

R1 + r
+ 1

R2

 3. Reduce to simplest form: 
2x2 + 5x - 3

2x2 + 12x + 18
 4. Factor: 4x2 - 16y2

 5. Factor: pb3 + 8a3p (business application)

 6. Factor: 2a - 4T - ba + 2bT

 7. Factor: 36x2 + 14x - 16

In Problems 8–10, perform the indicated operations and simplify.

 8. 
3

4x2 - 2

x2 - x
- x

2x - 2
 9. 

x2 + x
2 - x

, x2

x2 - 4x + 4

 10. 
1 - 3

2x + 2
x
5

- 1
2

 11. If one riveter can do a job in 12 days, and a second riveter can do 
it in 16 days, how long would it take for them to do it together?

 12. Solve for x: 
3

2x2 - 3x
+ 1

x
=

3
2x - 3
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 In Section 7.4 we see how a quad-
ratic function arises when analysing 
the bending moment of certain 
beams.

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Identify quadratic functions
 Solve quadratic functions 

by factoring, by completing 
the square, and by using the 
quadratic formula

 Solve engineering and 
technology problems involving 
quadratic equations

 Graph a quadratic function and 
identify important points on 
the curve

We showed earlier how to solve some basic equations, and in this chapter we develop 
methods of solving the important quadratic equation. In the first three sections, we 
present algebraic methods of solution, and in Section 7.4 we discuss graphical 

solutions.

The graph of the quadratic function is a parabola, which has many modern applications in 
science and technology (Examples 2 and 3 on page 99 illustrate the graph of a parabola). We 
will discuss the parabola more in this chapter and in detail in Chapter 21.

Satellite communications with television microwave dishes mounted on homes is an  
application of the parabola. The signal is intercepted by the entire diameter of the dish 
and is reflected to the detector located at the focus of the dish. The fact that parabolic 
surfaces have this property of reflection was first shown by the Greek mathematician 
Diocles in about 200 b.c.e. He wanted to find a mirror to reflect the rays of the sun to a 
point and cause burning. He proved that this was true for a mirror with a parabolic 
surface.

Another important application of a parabola (and thereby of quadratic functions) is that of 
a projectile, examples of which are a baseball, an artillery shell, and a rocket. When 
Galileo showed that the time an object falls does not depend on its mass, he discovered 
that the distance fallen depends on the square of the time of fall. This, in turn, was shown 
to mean that the path of a projectile is parabolic (not considering air resistance). To find 
the location of a projectile for any given time of flight requires the solution of a quadratic 
equation.

The Babylonians developed methods of solving quadratic equations nearly 4000 years ago. 
Today, in addition to those mentioned above, quadratic equations have applications in archi-
tecture, electric circuits, mechanical systems, forces on structures, product design, fluid 
mechanics, and astrophysics.

Quadratic Equations7
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Given that a, b, and c are constants 1a ≠ 02 , the equation

 7.1 Quadratic Equations; Solution by Factoring

Solving by Factoring

is called the general quadratic equation in x. The left side of Eq. (7.1) is a polyno-
mial function of degree 2. This function, f1x2 = ax2 + bx + c, is known as the 
quadratic function. Any equation that can be simplified and then written in the form 
of Eq. (7.1) is a quadratic equation in one unknown.

Among the applications of quadratic equations and functions are the following 
examples: In finding the time t of flight of a projectile, we have the equation 
s = s0 + v0t + 1

2at2; in analysing the electric current i in a circuit, the function 
f1 i2 = Ei - Ri2 is found; and in determining the forces at a distance x along a beam, 
the function f1x2 = ax2 + bLx + cL2 is used.

Since it is the term with x2 in Eq. (7.1) that distinguishes the quadratic equation from 
other types of equations, the equation is not quadratic if a = 0. However, either b or c 
(or both) may be zero, and the equation is still quadratic. No power of x higher than two 
may be present in a quadratic equation. Also, we should be able to identify a quadratic 
equation properly, even when it does not initially appear in the form of Eq. (7.1). The 
following two examples illustrate how we may recognize quadratic equations.

 EXAMPLE  1  Examples of quadratic equations

The following are quadratic equations.

 x2 -  4x -  5 = 0  To show this equation in the form of Eq. (7.1), it  
can be written as 1x2 + 1 -42x + 1 -52 = 0.

 a = 1 b = -4 c = -5

3x2 - 6 = 0 Since there is no term with x, b = 0.

 a = 3 c = -6

2x2 + 7x = 0 Since no constant appears, c = 0.

 a = 2 b = 71m - 32x2 - mx + 7 = 0  The constants in Eq. (7.1) may include literal 
expressions. In this case, m - 3 takes the place 
of a, -m takes the place of b, and c = 7.

4x2 - 2x = x2  After all nonzero terms have been collected on 
the left side, the equation becomes 
3x2 - 2x = 0.1x + 122 = 4  Expanding the left side and collecting all nonzero 
terms on the left, we have x2 + 2x - 3 = 0. ■

 EXAMPLE  2  Examples of equations that are not quadratic

The following are not quadratic equations.

bx - 6 = 0 There is no term with x2.

x3 - x2 - 5 = 0  There should be no term of degree higher than 2. Thus, 
there can be no term with x3 in a quadratic equation.

x2 + x - 7 = x2 When terms are collected, there will be no term with x2. ■

ax2 + bx + c = 0 (7.1)

■ If either (or both) the first-power term or the 
constant is missing, the quadratic is called 
incomplete.
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Recall that the solution of an equation consists of all numbers (roots) which, when 
substituted in the equation, give equality. There are two roots for a quadratic equation. 
At times, these roots are equal (see Example 3), so only one number is actually a solu-
tion. Also, the roots can be imaginary, and if this happens, all we wish to do at this 
point is to recognize that they are imaginary.

 EXAMPLE  3  Solutions (roots) of a quadratic equation

(a) The quadratic equation 3x2 - 7x + 2 = 0 has roots x = 1>3 and x = 2. This is 
seen by substituting these numbers in the equation.

 311
322 - 711

32 + 2 = 311
92 - 7

3 + 2 = 1
3 - 7

3 + 2 = 0
3 = 0

 31222 - 7122 + 2 = 3142 - 14 + 2 = 14 - 14 = 0

(b) The quadratic equation 4x2 - 4x + 1 = 0 has a double root (both roots are the 
same) of x = 1>2. Showing that this number is a solution, we have

411
222 - 411

22 + 1 = 411
42 - 2 + 1 = 1 - 2 + 1 = 0

(c) The quadratic equation x2 + 9 = 0 has the imaginary roots x = 3j and x = -3j, 
  which means x = 32-1 and x = -32-1. ■

This section deals only with quadratic equations whose quadratic expression is fac-
torable. Therefore, all roots will be rational. Using the fact that

a product is zero if any of its factors is zero

we have the following steps in solving a quadratic equation.

■ Until the 1600s, most mathematicians did not 
accept negative, irrational, or imaginary roots 
of an equation. It was also generally accepted 
that an equation had only one root.

The multiplicity of a root refers to 
how many times a particular root 
forms a solution of an equation. For 
double roots of quadratics, they are 
said to have a multiplicity of 2.

LEARNING T IP

1. Collect all terms on the left and simplify (to the form of Eq. (7.1)).

2. Factor the quadratic expression.

3. Set each factor equal to zero.

4.  Solve the resulting linear equations. These numbers are the roots of the  
quadratic equation.

5. Check the solutions in the original equation.

Quadratics are often easier to graph 
and factor if a 7 0 and the coefficients 
of the equation are integers. This can 
be accomplished by multiplying the 
entire equation by -1 if necessary to 
ensure a 7 0 and/or by multiplying the 
entire equation by the LCD if there are 
fractional coefficients.

LEARNING T IP  EXAMPLE  4  Solving a quadratic equation by factoring

 x2 - x - 12 = 0

 1x - 42 1x + 32 = 0 factor

 x - 4 = 0     x + 3 = 0  set each factor equal to zero

 x = 4     x = -3 solve

The roots are x = 4 and x = -3. We can check them in the original equation by sub-
stitution. Therefore,

 1422 - 142 - 12 =? 0   1 -322 - 1 -32 - 12 =? 0

0 = 0 0 = 0

Both roots satisfy the original equation. ■1. Solve for x: x2 + 4x - 21 = 0
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 EXAMPLE  5  Solving a quadratic equation by factoring with a 3 1

2N2 + 7N - 4 = 0

 12N - 12 1N + 42 = 0 factor

 2N - 1 = 0,   N =
1
2

 set each factor to zero and solve

 N + 4 = 0,   N = -4

Therefore, the roots are N = 1
2 and N = -4. These roots can be checked by the same 

procedure used in Example 4. ■

 EXAMPLE  6  

 x2 + 4 = 4x  equation not in form of Eq. (7.1)

 x2 - 4x + 4 = 0  subtract 4x from both sides

 1x - 222 = 0  factor

 x - 2 = 0,  x = 2 solve

Since 1x - 222 = 1x - 22 1x - 22 , both factors are the same. This means there 
is a double root of x = 2. Substitution shows that x = 2 satisfies the original 
equation. ■

A number of equations involving fractions lead to quadratic equations after the frac-
tions are eliminated. The following two examples, the second being a stated problem, 
illustrate the process of solving such equations with fractions.

 EXAMPLE  7  Fractional equation solved as a quadratic

Solve for x:
1
x

+ 3 =
2

x + 2

Note first that x ≠ 0, -2. We rearrange the fractions so there is a common de-
nominator. This can be achieved by placing every term in the equation over x1x + 22 , 
the LCD.

11x + 22 + 3x1x + 22
x1x + 22 =

2x
x1x + 22

Since the denominators are equal, the numerators must also be equal1x + 22 + 3x1x + 22 = 2x

Alternatively, we could have started by multiplying each term of the original equation 
by the LCD.

 
x1x + 22

x
+ 3x1x + 22 =

2x1x + 22
x + 2

  multiply each term by the LCD,  
x1x + 22  

 x + 2 + 3x2 + 6x = 2x  reduce each term

 3x2 + 5x + 2 = 0  collect terms on left

 13x + 22 1x + 12 = 0  factor

 3x + 2 = 0,  x = - 2
3

  set each factor equal  
to zero and solve

 x + 1 = 0,   x = -1

2. Solve for x: 9x2 + 1 = 6x

When solving a quadratic equation, it 
is important to write the equation in 
the general form as a first step, setting 
the quadratic equation to be equal to 
zero. If the product is equal to zero, 
then setting each factor equal to zero 
will lead to the roots. If the product is 
not zero, then it is likely that neither 
factor will give a correct root.

LEARNING T IP
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Checking in the original equation, we have

 
1

-2
3

+ 3 =?
2

-2
3 + 2

   
1

-1
+ 3 =?

2
-1 + 2

 - 3
2

+ 3 =?
2
4
3

        -1 + 3 =?
2
1

 
3
2

=
6
4
     2 = 2

 
3
2

=
3
2

We see that the roots check. Remember, if either value gives division by zero, the root 
is extraneous, and must be excluded from the solution. ■

 EXAMPLE  8  Solving a word problem with quadratics

A lumber truck travels 60.0 km from a sawmill to a lumber camp and then back in 7.00 h 
travel time. If the truck averages 5.00 km>h less on the return trip than on the trip to the 
camp, find its average speed to the camp. See Fig. 7.1.

Let v =  the average speed (in km>h) of the truck going to the camp. This means 
that the average speed of the return trip was 1v - 52  km>h.

We also know that d = vt (distance equals speed times time), which tells us that 
t = d>v. Thus, the time for each part of the trip is the distance divided by the speed.

 time to time from total
 camp camp time

 
60
v
 +  

60
v - 5

 = 7

 601v - 52 + 60v =  7v1v - 52  multiply each term by v1v - 52
 7v2 - 155v + 300 = 0  collect terms on the left

 17v - 152 1v - 202 = 0  factor

7v - 15 = 0,   v =
15
7

 set each factor equal to zero and solve

 v - 20 = 0

 v = 20
The value v = 15>7 km>h cannot be a solution since the return speed of 5.00 km>h 
less would be negative. Thus, the solution is v = 20.0 km>h, which means the return 
speed was 15.0 km>h. The trip to the camp took 3.00 h, and the return took 4.00 h, 
which shows the solution checks. ■

Fig. 7.1 

Total travel
time 7 h

60 km

v − 5 km/h

v km/h

EXERCISES 7.1

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the resulting quadratic equations.

 1. In Example 5, change the +  sign before 7N to -  and then solve.

  2. In Example 7, change the numerator of the first term to 2 and the 
numerator of the term on the right to 1 and then solve.

In Exercises 3–8, determine whether or not the given equations are 
quadratic. If the resulting form is quadratic, identify a, b, and c, with 
a 7 0. Otherwise, explain why the resulting form is not quadratic.

 3. x1x - 22 = 4 4. 13x - 222 = 2

 5. x2 = 1x + 222 6. x12x2 + 52 = 7 + 2x2

 7. n1n2 + n - 12 = n3 8. 1T - 722 = 12T + 322

In Exercises 9–38, solve the given quadratic equations by factoring.

 9. x2 - 4 = 0 10. B2 - 400 = 0

 11. 4x2 = 9 12. x2 = 0.16

 13. x2 - 8x - 9 = 0 14. x2 + x - 6 = 0

 15. R2 + 12 = 7R 16. x2 + 30 = 11

 17. 40x - 16x2 = 0 18. 15L = 20L2

 19. 27m2 = 3 20. a2x2 = 9

 21. 3x2 - 13x + 4 = 0 22. A2 + 8A + 16 = 0

 23. 7x2 + 3x = 4 24. 4x2 + 25 = 20x

 25. 6x2 = 13x - 6 26. 6z2 = 6 + 5x

 27. 4x1x + 12 = 3 28. 9t2 = 9 - t143 + t2
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 29. 6y2 + by = 2b2 30. 2x2 - 7ax + 4a2 = a2

 31. 8s2 + 16s = 90 32. 18t2 = 48t - 32

 33. 1x + 223 = x3 + 8 34. V1V2 - 42 = V21V - 12
 35. 1x + a22 - b2 = 0 36.  2x2 = 2b2 - 3xb

 37. x2 + 2ax = b2 - a2

 38. x21a2 + 2ab + b22 = x1a + b2
 39. In Eq. (7.1), for a = 2, b = -7, and c = 3, show that the sum of 

the roots is -b>a.

 40. For the equation of Exercise 39, show that the product of the roots 
is c>a.

 41. The voltage V across a semiconductor in a computer is given by 
V = aI + bI2, where I is the current (in A). If a 6.00-V battery 
is conducted across the semiconductor, find the current if 
a = 2.00 Ω and b = 0.500 Ω>A.

 42. The mass m (in Mg) of the fuel supply in the first-stage booster of 
a rocket is m = 135 - 6t - t2, where t is the time (in s) after 
launch. When does the booster run out of fuel? (Round to 3 signifi-
cant digits.) 

 43. The power P (in MW) produced between midnight and noon by a 
nuclear power plant is P = 4h2 - 48h + 744, where h is the 
hour of the day. At what time is the power 664 MW?

 44. In determining the speed v (in km>h) of a car while studying its 
fuel economy, the equation v2 - 16v = 3072 is used. Find v to 
the nearest km/h.

In Exercises 45 and 46, although the equations are not quadratic, 
factoring will lead to one quadratic factor and the solution can be 
completed by factoring as with a quadratic equation. Find the three 
roots of each equation.

 45. x3 - x = 0 46. x3 - 4x2 - x + 4 = 0

In Exercises 47–50, solve the given equations involving fractions.

 47. 
1

x - 3
+ 4

x
= 2 48. 2 - 1

x
=

3
x + 2

 49. 
1
2x

- 3
4

=
1

2x + 3
 50. 

x
2

+ 1
x - 3

= 3

In Exercises 51–54, set up the appropriate quadratic equations and solve.

 51. The spring constant k is the force 
F divided by the amount x the 
spring stretches 1k = F>x2 . See 
Fig. 7.2(a). For two springs in 
series (see Fig. 7.2(b)), the recip-
rocal of the spring constant kc for 
the combination equals the sum of 
the reciprocals of the individual 
spring constants. Find the spring 
constants for each of two springs 
in series if kc = 2 N>cm and one 
spring constant is 3 N>cm more 
than the other.

 52. The reciprocal of the combined resistance R of two resistances R1 
and R2 connected in parallel (see Fig. 7.3(a)) is equal to the sum 
of the reciprocals of the individual resistances. If the two resis-
tances are connected in series (see Fig. 7.3(b)), their combined 
resistance is the sum of their individual resistances. If two resis-
tances connected in parallel have a combined resistance of 3.0 Ω 
and the same two resistances have a combined resistance of 16 Ω 
when connected in series, what are the resistances?

k

k !      3

x}

(b)(a)

F

Fig. 7.2 

Fig. 7.3 

(b)(a)

R2

R1

R1 R2

 53. A hydrofoil made the round-trip of 120 km between two islands 
in 3.5 h of travel time. If the average speed going was 10 km>h 
less than the average speed returning, find these speeds.

 54. A rectangular solar panel is 20 cm by 30 cm. By adding the same 
amount to each dimension, the area is doubled. How much is added?

1. x = -7, x = 3  2. x = 1>3, x = 1>3

Most quadratic equations that arise in applications cannot be solved by factoring. 
Therefore, we now develop a method, called completing the square, that can be used 
to solve any quadratic equation. In the next section, this method is used to develop a 
general formula that can be used to solve any quadratic equation.

In the first example, we show the solution of a type of quadratic equation that arises 
while using the method of completing the square. In the examples that follow it, the 
method itself is used and described.

 EXAMPLE  1  Quadratic equation solutions

In solving x2 = 16, we may write x2 - 16 = 0, and complete the solution by factor-
ing as a difference of squares. This yields 1x + 42 1x - 42 = 0, giving solutions 
x = 4 and x = -4.

 7.2 Completing the Square
Solving a Quadratic Equation by 
Completing the Square

■ The method of completing the square is 
used later in Section 7.4 and also in Chapters 21, 
28, and 31.
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We can also solve the original equation by taking the square root of each side of the 
expression. Since x2 = 16, we have x = {216, and thus x = {4. Therefore the 
principal root of 16 and its negative both satisfy the original equation.

We may solve 1x - 322 = 16 in a similar fashion:1x - 322 = 16

x - 3 = {4

x = -1 or x = 7

Even if the number on the right side is not a perfect square, we can still use the same 
method for equations of the same form. For example, we solve 1x - 322 = 17 as1x - 322 = 17

x - 3 = {217

x = 3 + 217 or x = 3 - 217

Decimal approximations of these roots are 7.12 and -1.12. ■

 EXAMPLE  2  Method of completing the square

To find the roots of the quadratic equation

x2 - 6x - 8 = 0

first note that the left side is not factorable. However,

x2 - 6x is part of the special product 1x - 322 = x2 - 6x + 9

and this special product is a perfect square. By adding 9 to x2 - 6x, we have 1x - 322. 
Therefore, we rewrite the original equation as

 x2 - 6x = 8

 x2 - 6x + 9 = 17  add 9 to both sides

 1x - 322 = 17

 x - 3 = {217

The {  sign means that  x - 3 = {217 or x - 3 = - 217.
By adding 3 to each side, we obtain

x = 3 { 217

which means x = 3 + 217 and x = 3 - 217 are the two roots of the equation.
Therefore, by creating an expression that is a perfect square and then using the prin-

cipal square root and its negative, we were finally able to solve the equation as two 
linear equations. ■

How we determine the number to be added to complete the square is based on the 
special products in Eqs. (6.3) and (6.4). We rewrite these as

rewriting the left side  
as in third illustration of Example 1

1.  Solve by completing the square: 
x2 + 4x - 12 = 0

1x + a22 = x2 + 2ax + a2 (7.2)1x - a22 = x2 - 2ax + a2 (7.3)

We must be certain that the coefficient of the x2-term is 1 before we start to com-
plete the square. The coefficient of x in each case is numerically 2a, and the num-
ber added to complete the square is a2. Thus, if we take half the coefficient of the 
x-term and square this result, we have the number that completes the square. In our 
example, the numerical coefficient of the x-term was 6, and 9 was added to complete 
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 EXAMPLE  3  Method of completing the square

Solve 2x2 + 16x - 9 = 0 by completing the square.

 x2 + 8x - 9
2

= 0

 x2 + 8x =
9
2

1
2
182 = 4;   42 = 16

 x2 + 8x + 16 =
9
2

+ 16 =
41
2

 1x + 422 =
41
2

 x + 4 = {  A41
2

x = -4 { A41
2

Therefore, the roots are -4 + 241
2  and -4 - 241

2 . ■

The method of completing the square is useful in situations other than the solutions 
of quadratic equations. For example, writing an expression as the sum of two squares is 
an important algebraic step when computing some integrals (Section 28.6) and when 
finding inverse Laplace transforms (Section 31.11). Example 4 illustrates how the 
square is completed for such cases.

 EXAMPLE  4  Writing an expression as the sum of two squares

Write the expression x2 + 4x + 13 as the sum of two squares.
The square of one-half of the coefficient of x is 4, so 4 is the number that completes 

the square. We rewrite 13 as the sum 13 = 4 + 9, so that

x2 + 4x + 13 = x2 + 4x + 4 + 9

 = (x + 2)2 + 9

 = (x + 2)2 + 32  ■

Solving a Quadratic Equation by Completing the Square
1. Divide each side by a (the coefficient of x2).

2. Rewrite the equation with the constant on the right side.

3.  Complete the square: Add the square of one-half of the coefficient of x to 
both sides.

4. Write the left side as a square and simplify the right side.

5.  Equate the square root of the left side to the principal square root of the right 
side and to its negative.

6. Solve the two resulting linear equations.

1.  Divide each term by 2 to make  
coefficient of x2 equal to 1.

2.  Put constant on right by adding  
9>2 to each side. 

3.  Divide coefficient 8 of x by 2,  
square the 4, and add to  
both sides.

4. Write left side as1x + 422.

5.  Take the square root of each side  
and equate the x + 4 to the  
principal square root of 41>2 and  
its negative.

6. Solve for x. 

■ Quadratic equations can be solved using the 
Solver feature of some graphing calculators.

the square. Therefore, the procedure for solving a quadratic equation by completing 
the square is as follows:
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In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the resulting quadratic 
equations by completing the square.

 1. In Example 2, change the -  sign before 6x to + .

 2. In Example 3, change the coefficient of the second term from 16 
to 12.

In Exercises 3–10, solve the given quadratic equations by finding 
appropriate square roots as in Example 1.

 3. x2 = 25 4. x2 = 100

 5. x2 = 7  6. x2 = 15

  7. 1x - 222 = 25  8. 1x + 222 = 10

  9. 1x + 322 = 7  10. 1x - 5
222 = 100

In Exercises 11–30, solve the given quadratic equations by completing 
the square. Exercises 11–14 and 17–20 may be checked by factoring.

 11. x2 + 2x - 8 = 0 12. x2 - 8x - 20 = 0

 13. D2 + 3D + 2 = 0 14. t2 + 5t - 6 = 0

 15. n2 = 4n - 2 16. 1R + 92 1R + 12 = 13

 17. v1v + 22 = 15 18. Z2 + 12 = 8Z

 19. 2s2 + 5s = 3 20. 4x2 + x = 3

 21. 3y2 = 3y + 2 22. 3x2 = 3 - 4x

 23. 2y2 - y - 2 = 0 24. 9v2 - 6v - 2 = 0

 25. 5T2 - 10T + 4 = 0 26. 4V2 + 9 = 12V

 27. 9x2 + 6x + 1 = 0 28. 2x2 - 3x + 2a = 0

 29. x2 + 2bx + c = 0  30. px2 + qx + r = 0

In Exercises 31 and 32, use completing the square to write the given 
expression as the sum of two squares.

 31. x2 + 6x + 13  32. x2 - 8x + 17

In Exercises 33–36, use completing the square to solve the given problems.

 33. The voltage V across a certain electronic device is related to the 
temperature T  (in °C) by V = 4.00T - 0.200T2. For what 
temperature(s) is V = 15.0 V ?

 34. A flare is shot vertically into the air such that its distance s (in m) 
above the ground is given by s = 20.0t - 5.00t2, where t is the 
time (in s) after it was fired. Find t for s = 15.0 m.

 35. A surveillance camera is 12.0 m on a direct line from an ATM. 
The camera is 5.00 m more to the right of the ATM than it is 
above the ATM. How far above the ATM is the camera?

 36. A rectangular storage area is 8.00 m longer than it is wide. If the 
area is 28.0 m2, what are its dimensions?

1. x = -6, x = 2

We now use the method of completing the square to derive a general formula that may 
be used for the solution of any quadratic equation.

Consider Eq. (7.1), the general quadratic equation:

ax2 + bx + c = 0 1a ≠ 02
When we divide through by a, we obtain

x2 + b
a

 x + c
a

= 0

Subtracting c>a from each side, we have

x2 + b
a

 x = - c
a

Half of b>a is b>2a, which squared is b2>4a2. Adding b2>4a2 to each side gives us

x2 + b
a

 x + b2

4a2 = - c
a

+ b2

4a2

Writing the left side as a perfect square and combining fractions on the right side, 
we have ax + b

2a
b2

=
b2 - 4ac

4a2

 7.3 The Quadratic Formula
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Equating x + b
2a

 to the principal square root of the right side and its negative,

x + b
2a

=
{2b2 - 4ac

2a

When we subtract b>2a from each side and simplify the resulting expression, we obtain 
the quadratic formula:

x =
-b { 2b2 - 4ac

2a
 (7.4)

The quadratic formula gives us a quick general way of solving any quadratic equa-
tion. We need only write the equation in the standard form of Eq. (7.1), substitute these 
numbers into the formula, and simplify.

 EXAMPLE  1  Quadratic formula—rational roots

Solve: x2 - 5x +  6 =  0.

 a = 1 b = -5 c = 6

Here, using the indicated values of a, b, and c in the quadratic formula, we have

 x =
- 1 -52 { 21 -522 - 4112 162

2112 =
5 { 225 - 24

2
=

5 { 1
2

 x =
5 + 1

2
= 3 or x =

5 - 1
2

= 2

The roots x = 3 and x = 2 check when substituted in the original equation. ■

■ The quadratic formula, with the {  sign, 
means that the solutions to the quadratic 
equation

ax 2 + bx + c = 0
are

x =
-b + 2b 2 - 4ac

2a

and

x =
-b - 2b 2 - 4ac

2a

It must be emphasized that, in using the quadratic formula, the entire expression 
-b { 2b2 - 4ac is divided by 2a. It is a relatively common error to divide only the radical 2b2 - 4ac by 2a.

COMMON ERROR

 EXAMPLE  2  Quadratic formula—irrational roots

Solve: 2x2 - 7x -  5 = 0.

 a = 2 b = -7 c = -5

Substituting the values for a, b, and c in the quadratic formula, we have

 x =
- 1 -72 { 21 -722 - 4122 1 -52

2122 =
7 { 249 + 40

4
=

7 { 289
4

 x =
7 + 289

4
= 4.108 or x =

7 - 289
4

= -0.6085

The exact roots are x =
7 { 289

4
 (this form is often used when the roots are irrational). 

Approximate decimal values are x = 4.11 and x = -0.608. ■

Practice Exercise

1.  Solve using the quadratic formula: 
3x2 + x - 5 = 0
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 EXAMPLE  3  Quadratic formula—double root

Solve: 9x2 + 24x + 16 = 0.
In this example, a = 9, b = 24, and c = 16. Thus,

x =
-24 { 2242 - 4192 1162

2192 =
-24 { 2576 - 576

18
=

-24 { 0
18

= - 4
3

Here, both roots are -4
3, and we write the result as x = -4

3 and x = -4
3. We will get a 

double root when b2 = 4ac, as in this case. ■

 EXAMPLE  4  Quadratic formula—imaginary roots

Solve: 3x2 - 5x + 4 = 0.
In this example, a = 3, b = -5, and c = 4. Therefore,

x =
- 1 -52 { 21 -522 - 4132 142

2132 =
5 { 225 - 48

6
=

5 { 2-23
6

These roots contain imaginary numbers. This happens if b2 6 4ac. ■

Examples 1–4 illustrate the character of the roots of a quadratic equation. If a, b, 
and c are rational numbers (see Section 1.1), by noting the value of b2 - 4ac (called 
the discriminant), we have the following:

If b2 - 4ac is positive and a perfect 
square, ax2 + bx + c is factorable. We 
can use the value of b2 - 4ac to help 
in checking the roots or in finding 
the character of the roots without 
having to solve the equation 
completely.

LEARNING T IP

1.  If b2 - 4ac is positive and a perfect square (see Section 1.6), the roots are 
real, rational, and unequal. (See Example 1, where b2 - 4ac = 1.)

2.  If b2 - 4ac is positive but not a perfect square, the roots are real, irrational, 
and unequal. (See Example 2, where b2 - 4ac = 89.)

3.  If b2 - 4ac = 0, the roots are real, rational, and equal. (See Example 3, 
where b2 - 4ac = 0.)

4.  If b2 - 4ac 6 0, the roots contain imaginary numbers and are unequal. (See 
Example 4, where b2 - 4ac = -23.)

 EXAMPLE  5  Quadratic formula—literal numbers

The equation s = s0 + v0 t - 1
2  gt2 is used in the analysis of projectile motion (see 

Fig. 7.4). Solve for t.

gt2 - 2v0t - 21s0 - s2 = 0  multiply by -2, put in form of Eq. (7.1)

In this form, we see that a = g, b = -2v0, and c = -21s0 - s2 :

 t =
- 1-2v02 { 21-2v022 - 4g1-22 1s0 - s2

2g
=

2v0 { 241v0
2 + 2gs0 - 2gs2
2g

  t =
2v0 { 22v0

2 + 2gs0 - 2gs

2g
=

v0 { 2v0
2 + 2gs0 - 2gs

g
 

 ■

 EXAMPLE  6  Quadratic formula—word problem

A rectangular area 17.0 m long and 12.0 m wide is to be used for a patio with a rectan-
gular pool. One end and one side of the patio area around the pool (the chairs, sunning, 

Fig. 7.4 

t is the timeg is the
acceleration

due to gravity

v0

s0

s
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etc.) are to be the same width. The other end with the diving board is to be twice as 
wide, and the other side is to be three times as wide as the narrow side. The pool area is 
to be 96.5 m2. What are the widths of the patio ends and sides, and the dimensions of 
the pool? See Fig. 7.5.

First, let x = the width of the narrow end and side of the patio. The other end is then 
2x in width, and the other side is 3x in width. Since the pool area is 96.5 m2, we have

 pool length pool width pool area

 117.0 - 3x2 112.0 - 4x2 = 96.5

 204 - 68.0x - 36.0x + 12x2 = 96.5

 12x2 - 104.0x + 107.5 = 0

 x =
- 1 -104.02 { 21 -104.022 - 41122 1107.52

21122 =
104.0 { 25656

24

Evaluating, we get x = 7.47 m and x = 1.20 m. The value 7.47 m cannot be the 
required result since the width of the patio would be greater than the width of the entire 
area. For x = 1.20 m, the pool would have a length 13.4 m and width 7.20 m. These 
give an area of 96.5 m2, which checks. The widths of the patio area are then 1.20 m, 
1.20 m, 2.40 m, and 3.60 m. ■Fig. 7.5 

17.0 m

12.0 m

2x

3xx
x

Patio

Pool

96.5 m2

In Exercises 1– 4, make the given changes in the indicated examples 
of this section and then solve the resulting equations by the quadratic 
formula.

 1. In Example 1, change the -  sign before 5x to + .

 2. In Example 2, change the coefficient of x2 from 2 to 3.

 3. In Example 3, change the +  sign before 24x to - .

 4. In Example 4, change 4 to 3.

In Exercises 5–36, solve the given quadratic equations, using the 
quadratic formula. Exercises 5–8 are the same as Exercises 11–14 of 
Section 7.2.

 5. x2 + 2x - 8 = 0 6. x2 - 8x - 20 = 0

 7. D2 + 3D + 2 = 0 8. t2 + 5t - 6 = 0

 9. x2 - 4x + 2 = 0 10. x2 + 10x - 4 = 0

 11. v2 = 15 - 2v 12. 8V - 12 = V2

 13. 2s2 + 5s = 3 14. 4x2 + x = 3

 15. 3y2 = 3y + 2 16. 3x2 = 3 - 4x

 17. y + 2 = 2y2 18. 2 + 6v = 9v2

 19. 30y2 + 23y - 40 = 0  20. 40x2 - 62x - 63 = 0

 21. 8t2 + 61t = -120  22. 2d1d - 22 = -7

 23. s2 = 9 + s11 - 2s2   24. 20r2 = 20r + 1

 25. 25y2 = 121 26. 37T = T2

 27. 15 + 4z = 32z2  28. 4x2 - 12x = 7

 29. x2 - 0.200x - 0.400 = 0  30. 3.20x2 = 2.50x + 7.60

 31. 0.290Z2 - 0.180 = 0.630Z  32. 12.5x2 + 13.2x = 15.5

 33. x2 + 2cx - 1 = 0  34. x2 - 7x + 16 + a2 = 0

 35. b2x2 + 1 - a = 1b + 12x  36. c2x2 - x - 1 = x2

In Exercises 37– 40, without solving the given equations, determine 
the character of the roots.

37. 2x2 - 7x = -8  38. 3x2 + 19x = 14

 39. 3.6t2 + 2.1 = 7.7t  40. 0.45s2 + 0.33 = 0.12s

In Exercises 41–58, solve the given problems. All numbers are 
accurate to at least 3 significant digits.

 41. Find k if the equation x2 + 4x + k = 0 has a real double root.

 42. Find the smallest positive integral value of k if the equation 
x2 + 3x + k = 0 has roots with imaginary numbers.

 43. Solve the equation x4 - 5x2 + 4 = 0 for x. (Hint: The equation 
can be written as 1x222 - 51x22 + 4 = 0. First solve for x2.)

 44. Without drawing the graph or completely solving the equation, 
explain how to find the number of x-intercepts of a quadratic 
function.

 45. In machine design, in finding the outside diameter D0 of a hollow 
shaft, the equation D0

2 - DD0 - 0.250D2 = 0 is used. Solve for 
D0 if D = 3.625 cm.

 46. A missile is fired vertically into the air. The distance s (in m) 
above the ground as a function of time t (in s) is given by 
s = 100 + 500t - 4.9t2. (a) When will the missile hit the 
ground? (b) When will the missile be 1000 m above the ground?

 47. For a rectangle, if the ratio of the length to the width equals the 
ratio of the length plus the width to the length, the ratio is called 
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the golden ratio. Find the value of the golden ratio, which the 
ancient Greeks thought had the most pleasing properties to look at.

 48. When focusing a camera, the distance r the lens must move from 
the infinity setting is given by r = f 2> 1p - f2 , where p is the 
distance from the object to the lens, and f  is the focal length of 
the lens. Solve for f .

 49. In calculating the current in an electric circuit with an inductance 
L, a resistance R, and a capacitance C, it is necessary to solve the 
equation Lm2 + Rm + 1>C = 0. Solve for m in terms of L, R, 
and C. See Fig. 7.6.

L R C

Fig. 7.6 

 50. In finding the radius r of a circular arch of height h and span b, an 
architect used the following formula. Solve for h.

  r =
b2 + 4h2

8h

 51. A flat-screen computer monitor is 37.0 cm wide and 31.0 cm high 
with a uniform edge around the viewing screen. If the edge covers 
20.0% of the monitor front, what is the width of the edge?

 52. An investment of $2000 is deposited at a certain annual interest 
rate. One year later, $3000 is deposited in another account at the 
same rate. At the end of the second year, the accounts have a total 
value of $5319.05. What is the interest rate?

 53. The length of a tennis court is 12.8 m more than its width. If the area 
of the tennis court is 262 m2, what are its dimensions? See Fig. 7.7.

Fig. 7.7 

w ! 12.8 m

A " 262 m2

w

800 m

1.02 × 106 m2

Fig. 7.8 

 54. Two circular oil spills are tangent to each other. If the distance 
between centres is 800 m and they cover a combined area of 
1.02 * 106 m2, what is the radius of each? See Fig. 7.8.

 55. In remodeling a house, an architect finds that by adding the same 
amount to each dimension of a 3.80-m by 5.00-m rectangular 
room, the area would be increased by 11.0 m2. How much must 
be added to each dimension?

 56. Two pipes together drain a wastewater-holding tank in 6.00 h. 
If used alone to empty the tank, one takes 2.00 h longer than 
the other. How long does each take to empty the tank if used 
alone?

 57. On some highways, a car can legally travel 20.0 km>h faster than 
a truck. Travelling at maximum legal speeds, a car can travel 120 km 
in 18.0 min less than a truck. What are the maximum legal speeds 
for cars and for trucks?

 58. For electric capacitors connected in series, the sum of the 
reciprocals of the capacitances equals the reciprocal of the 
combined capacitance. If one capacitor has 5.00 mF more 
capacitance than another capacitor and they are connected in 
series, what are their capacitances if their combined capaci-
tance is 4.00 mF?

1. x =
-1 { 261

6

In this section, we discuss the graph of the quadratic function ax2 + bx + c and show 
the graphical solution of a quadratic equation. By letting y = ax2 + bx + c, we can 
graph this function, as in Chapter 3. The next example shows the graph of the qua-
dratic function.

 EXAMPLE  1  Graphing a quadratic function

Graph the function f1x2 = x2 + 2x - 3.
First, let y = x2 + 2x - 3. We can now set up a table of values and graph the func-

tion as shown in Fig. 7.9. ■

The graph of the quadratic function shown in Fig. 7.9 is that of a parabola, and the 
graph of any quadratic function y = ax2 + bx + c will have the same basic shape. (In 
Section 3.4, we briefly noted that graphs in Examples 2 and 3 were parabolas.) A 
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Solving Quadratic Equations Graphically
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parabola can open upward (as in Example 1) or downward. The location of the parab-
ola and how it opens depends on the values of a, b, and c, as we will show after 
Example 2.

In Example 1, the parabola has a minimum point at 1 -1, -42 , and the curve opens 
upward. All parabolas have an extreme point of this type. For y = ax2 + bx + c, if 
a 7 0, the parabola has a minimum point and opens upward. If a 6 0, the parabola 
has a maximum point and opens downward. The extreme point of the parabola is 
known as its vertex.

 EXAMPLE  2  

The graph of y = 2x2 - 8x + 6 is shown in Fig. 7.10(a). For this parabola, a = 2 1a 7 02  and it opens upward. The vertex (a minimum point) is 12, -22 .
The graph of y = -2x2 + 8x - 6 is shown in Fig. 7.10(b). For 

this parabola, a = -2 1a 6 02  and it opens downward. The vertex 
(a maximum point) is 12, 22 . ■

We can sketch a graph of parabolas like these by using its basic 
shape and knowing two or three points, including the vertex.

In order to find the coordinates of the extreme point, start with the 
quadratic function

y = ax2 + bx + c

Then factor a from the two terms containing x, obtaining

y = aax2 + b
a

 xb + c

Now, completing the square of the terms within parentheses, we have

Since x = - b
2a

 is the x-coordinate of 

the vertex, if we substitute this value 
into Equation 7.5, it gives

y = aa- b
2a

+ b
2a

b2
+ c - b2

4a
= c - b2

4a

Therefore, the coordinates of the vertex 
point of any parabola are:

Vertex  (x, y) = a- b
2a

, c - b2

4a
b

LEARNING T IP
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 y = aax2 + b
a

 x + b2

4a2 b + c - b2

4a
 

 y = aax + b
2a

b2
+ c - b2

4a
 (7.5)

Now, look at the factor ax + b
2a

b2
. If x = -b>2a, the term is zero. If x is any other 

value, ax + b
2a

b2
 is positive. Thus, if a 7 0, the value of y increases from the minimum 

value, where x = -b>2a, and if a 6 0, the value of y decreases from the maximum 
value, where x = -b>2a. This means that x = -b>2a is the x-coordinate of the vertex 
(extreme point). The y-coordinate is found by substituting this x-value in the function.

Another easily found point is the y-intercept. As with a linear equation, we find the 
y-intercept where x = 0. For y = ax2 + bx + c, if x = 0, then y = c. This means 
that the point 10, c2  is the y-intercept.

 EXAMPLE  3  Graphing a parabola—vertex—y-intercept

For the graph of the function y = 2x2 - 8x + 6, find the vertex and y-intercept and 
sketch the graph. (This function is also used in Example 2.)

First, a = 2 and b = -8. This means that the x-coordinate of the vertex is

-b
2a

=
- 1 -82
2122 =

8
4

= 2
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and the y-coordinate is

y = 21222 - 8122 + 6 = -2

Thus, the vertex is 12, -22 . Since a 7 0, it is a minimum point.
Since c = 6, the y-intercept is 10, 62 .
We can use the minimum point 12, -22  and the y-intercept 10, 62 , along with the 

fact that the graph is a parabola, to get an approximate sketch of the graph. Noting that 
a parabola increases (or decreases) away from the vertex in the same way on each side 
of it (it is symmetric to a vertical line through the vertex), we sketch the graph in Fig. 7.11. 
It is the same graph as that shown in Fig. 7.10(a). ■

If we are not using a graphing calculator, we may need one or two additional points 
to get a good sketch of a parabola. This would be true if the y-intercept is close to the 
vertex. Two points we can find are the x-intercepts, if the parabola crosses the x-axis 
(one point if the vertex is on the x-axis). They are found by setting y = 0 and solving 
the quadratic equation ax2 + bx + c = 0. Also, we may simply find one or two points 
other than the vertex and the y-intercept. Sketching a parabola in this way is shown in 
the following two examples.

 EXAMPLE  4   Graphing a parabola—using vertex, y-intercept, and  
x-intercepts

Sketch the graph of y = -x2 + x + 6.
We first note that a = -1 and b = 1. Therefore, the x-coordinate of the maximum 

point 1a 6 02  is - 1
2 1 - 1 2 = 1

2. The y-coordinate is - 11
222 + 1

2 + 6 = 25
4 . This means 

that the maximum point is 11
2, 25

4 2 .
The y-intercept is 10, 62 .
Using these points in Fig. 7.12, since they are close together, they do not give a 

good idea of how wide the parabola opens. Therefore, setting y = 0, we solve the 
equation

-x2 + x + 6 = 0  multiply each term by -1
or

x2 - x - 6 = 0

This equation is factorable. Thus,

 1x - 32 1x + 22 = 0

 x = 3, -2

This means that the x-intercepts are 13, 02  and 1 -2, 02 , as shown in Fig. 7.12.
Also, rather than finding the x-intercepts, we can let x = 2 (or some value to the 

right of the vertex) and then use the point 12, 42 . ■

 EXAMPLE  5  Graphing a parabola—no x-term

Sketch the graph of y = x2 + 1.
Since there is no x-term, b = 0. This means that the x-coordinate of the minimum 

point 1a 7 02  is 0 and that the minimum point and the y-intercept are both 10, 12 . 
We know that the graph opens upward, since a 7 0, which in turn means that it does 
not cross the x-axis. Now, letting x = 2 and x = -2, find the points 12, 52  and 1 -2, 52  on the graph, which is shown in Fig. 7.13. ■

We can see that the domain of the quadratic function is all x. Knowing that the 
graph has either a maximum point or a minimum point, the range of the quadratic 
function must be restricted to certain values of y. In Example 3, the range is 
f1x2 Ú -2; in Example 4, the range is f1x2 … 25

4 ; and in Example 5, the range is 
f1x2 Ú 1.

x
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4
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Practice Exercise

1. (a)  Find the vertex and y-intercept  
for the graph of the function 
y = 3x2 + 12x - 4.

 (b)  Is the vertex a minimum or a maxi-
mum point?

x

y

2

4

6

0 2!2

Fig. 7.13 
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 EXAMPLE  6  Graphing a parabola—application

The bending moment M (in kN # m) at any point along a beam is the algebraic sum of 
the moments of all the forces acting on the portion of the beam to the right or to the left 
of that point. Consider a simply supported 5 m beam that supports a uniformly distrib-
uted load of 10 kN/m, as shown in Fig. 7.14(a). For this beam, the bending moment x 
metres from one end of the beam is given by M = 25x - 5x2, where 0 … x … 5. 
Graph this function and determine where the bending moment is zero and where the 
maximum bending moment occurs.

Since  c =  0, the M-intercept is at the origin. We also have that  a = -5 and 
b =  25. Therefore, the parabola opens downward and the x coordinate of the maximum 

point is - b
2a

= - 25
2(-5)

=
5
2

. Substituting into the function, the M-coordinate of 

the maximum is 25a5
2
b - 5a5

2
b2

=
125
4

.

Because of symmetry, this is enough information to obtain the graph, as shown in 
Fig. 7.14(b). From this graph we see that the bending moment is zero for  x = 0 and 
x = 5 (at both ends of the beam), and that the maximum bending moment occurs at the 
centre of the beam. ■

SOLVING QUADRATIC EQUATIONS GRAPHICALLY
In Chapter 3, we showed how an equation can be solved graphically. Following that 
method, to solve the equation ax2 + bx + c = 0, let y = ax2 + bx + c and graph the 
function. The roots of the equation are the x-coordinates of the points for which y = 0 
(the x-intercepts). The following example illustrates solving quadratic equations 
graphically.

 EXAMPLE  7  Solving a quadratic equation graphically

Solve the equation 3x = x12 - x2 + 3 graphically.
First, collect all terms on the left of the equal sign. This gives x2 + x - 3 = 0. We 

then let y = x2 + x - 3 and graph this function. The minimum point is 1 -1
2, -13

4 2  
and the y-intercept is 10, -32 . Using the zero feature (or the trace and zoom features) 
of a graphing calculator, we find the roots to be

x = -2.30 and x = 1.30

The complete graph is shown in Fig. 7.15. ■

Fig. 7.14 

5 m

10 kN/m
x

(a)

5

10

15

20

25

30

5

0

M

x

( )5
2
, 125

4

(b)

y

1

2

0 2

−2

−1

−2−4
x

( )1
2
,− − 13

4

(0, −3)

(0, 1.30)(0, −2.30)

Fig. 7.15 

EXERCISES 7.4

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the resulting problems.

 1. In Example 3, change the -  sign before 8x to +  and then sketch 
the graph.

 2. In Example 7, change the coefficient of x on the left from 3 to 5 
and then find the solution graphically.

In Exercises 3–8, sketch the graph of each parabola by using only the 
vertex and the y-intercept.

  3. y = x2 - 6x + 5  4. y = -x2 - 4x - 3

  5. y = -3x2 + 10x - 4  6. s = 2t2 + 8t - 5

  7. R = v2 - 4v  8. y = -2x2 - 5x

In Exercises 9–12, sketch the graph of each parabola by using the 
vertex, the y-intercept, and the x-intercepts.

  9. y = x2 - 4  10. y = x2 + 3x

 11. y = -2x2 - 6x + 8  12. u = -3v2 + 12v - 5

In Exercises 13–16, sketch the graph of each parabola by using the 
vertex, the y-intercept, and two other points, not including the 
x-intercepts.

 13. y = 2x2 + 3  14. y = x2 + 2x + 2

 15. y = -2x2 - 2x - 6  16. y = -3x2 - x

■ See the chapter introduction
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In Exercises 17–24, solve the given equations graphically. If there are 
no real roots, state this as the answer.

 17. 2x2 - 3 = 0  18. 5 - x2 = 0

 19. -3x2 + 11x - 5 = 0  20. 2t2 = 7t + 4

 21. x12x - 12 = -3  22. 2w - 5 = w2

 23. 6R2 = 18 - 7R  24. 3x2 - 25 = 20x

 In Exercises 25–30, graph all three parabolas on the same coordinate 
system. In Exercises 25–28, describe (a) the shifts (see page 106) of 
y = x2 that occur and (b) how each parabola opens. In Exercises 29 and 
30, describe (a) the shifts and (b) how the shape of each parabola changes.

 25. (a) y = x2 (b) y = x2 + 3 (c) y = x2 - 3

 26. (a) y = x2 (b) y = 1x - 322 (c) y = 1x + 322

 27. (a) y = x2 (b) y = 1x - 222 + 3 (c) y = 1x + 222 - 3

 28. (a) y = x2 (b) y = -x2 (c) y = - 1x - 222

 29. (a) y = x2 (b) y = 3x2 (c) y = 1
3 x2 

 30. (a) y = x2 (b) y = -31x - 222 (c) y = 1
3 1x + 222

In Exercises 31–46, solve the given applied problem.

 31. A quadratic equation f1x2 = 0 has a solution x = -1. Its graph 
has its vertex at (3, 4). What is the other solution?

 32. Find c such that y = x2 - 12x + c has exactly one real root.

 33. Find the smallest integral value of c such that y = 2x2 - 4x - c 
has two real roots.

 34. Find the smallest integral value of c such that y = 3x2 - 12x + c 
has no real roots.

 35. The vertical distance d (in cm) of the end of a robot arm above a 
conveyor belt in its 8-s cycle is given by d = 2t2 - 16t + 47. 
Sketch the graph of d = f1 t2 .

 36. When mineral deposits form a uniform coating 1 mm thick on the 
inside of a pipe of radius r (in mm), the cross-sectional area A 
through which water can flow is A = p1r2 - 2r + 12 . Sketch 
A = f1r2 .

 37. An equipment company determines that the area A (in m2) cov-
ered by a rectangular tarpaulin is given by A = w18 - w2 , 
where w is the width of the tarpaulin and its perimeter is 16 m. 
Sketch the graph of A as a function of w.

 38. Under specified conditions, the pressure loss hL (in kPa per 100 m), 
in the flow of water through a water line in which the flow is 
Q L>min, is given by hL = 0.0001Q2 + 0.005Q. Sketch the 
graph of hL as a function of Q, for Q 6 400 L>min.

 39. When analysing the power P (in W) dissipated in an electric  
circuit, the equation P = 50i - 3i2 results. Here, i is the current 
(in A). Sketch the graph of P = f1 i2 .

 40. Tests show that the power P (in kW) of an automobile 
  engine as a function of r (in r>min) is given by  

P = -5.0 * 10-6r2 + 0.050r - 45 11500 6 r 6 6000 r>min2. 
  Sketch the graph of P vs. r and find the maximum power that is 

produced.

 41. A missile is fired vertically upward such that its distance s (in m) 
above the ground is given by s = 50 + 90t - 4.9t2, where t is 
the time (in s). Sketch the graph and then determine from the 
graph (a) when the missile will hit the ground (to 0.1 s), (b) how 
high it will go (to three significant digits), and (c) how long it will 
take to reach a height of 250 m (to 0.1 s).

 42. In a certain electric circuit, the resistance R (in Ω) that gives reso-
nance is found by solving the equation 25R = 31R2 + 42 . Solve 
this equation graphically (to 0.1 Ω).

 43. If the radius of a circular solar cell is increased by 1.00 cm, its 
area is 96.0 cm2. What was the original radius?

 44. The diagonal of a rectangular floor is 1.00 m less than twice the 
length of one of the sides. If the other side is 5.00 m long, what is 
the area of the floor?

 45. A security fence is to be built around a rectangular parking area of 
2000 m2. If the front side of the fence costs $60>m and the other 
three sides cost $30>m, solve graphically for the dimensions (to 1 m) 
of the parking area if the fence is to cost $7500. See Fig. 7.16.

 46. An airplane pilot could decrease the time t (in h) needed to travel 
the 5400 km from Ottawa to London by 60 min if the plane’s 
speed v is increased by 40 km>h. Set up the appropriate equation 
and solve graphically for v (to 2 significant digits).

1. (a) 1 -2, -162 , 10, -42    (b) minimum

$30/m

2000 m2

$30/m

$60/m $30/m

Total cost
$7500

Fig. 7.16 
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Quadratic equation ax2 + bx + c = 0 (7.1)

Quadratic formula x =
-b { 2b2 - 4ac

2a
 (7.4)
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 CHAPTER 7  REVIEW EXERCISES

In Exercises 1–12, solve the given quadratic equations by factoring.

 1. x2 + 3x - 4 = 0  2. x2 + 3x - 10 = 0

 3. x2 - 10x + 16 = 0  4. P2 - 27 = 6P

 5. 3x2 + 11x = 4  6. 6y2 = 11y - 3

 7. 6t2 = 13t - 5  8. 3x2 + 5x + 2 = 0

  9. 6s2 = 25s  10. 23n + 35 = 6n2

 11. 4B2 = 8B + 21  12. 6x2 = 8 - 47x

In Exercises 13–24, solve the given quadratic equations by using the 
quadratic formula.

 13. x2 - x - 110 = 0  14. x2 + 3x - 18 = 0

  15. m2 + 2m = 6  16. 1 + 7D = D2

  17. 2x2 - x = 36  18. 3x2 = 14 - x

  19. 3s + 2 = 4s2  20. 5x2 + 7x - 2 = 0

  21. 2.1x2 + 2.3x + 5.5 = 0  22. 0.30R2 - 0.42R = 0.15

  23. 6x2 = 9 - 4x  24. 24x2 = 25x + 20

In Exercises 25–36, solve the given quadratic equations by any 
appropriate algebraic method.

 25. x2 + 4x - 4 = 0  26. x2 + 3x + 1 = 0

  27. 3x2 + 8x + 2 = 0  28. 3p2 = 28 - 5p

  29. 4v2 = v + 5  30. n - 2 = 6n2

  31. 7 + 3C = -2C2  32. 4y2 - 5y = 8

  33. a2x2 + 2ax + 2 = 0  34. 16r2 = 8r - 1

  35. ay2 = a - 3y  36. 2bx = x2 - 3b

In Exercises 37– 40, solve the given quadratic equations by complet-
ing the square.

  37. x2 - x - 30 = 0  38. x2 = 2x + 5

  39. 2t2 = t + 4  40. 4x2 - 8x = 3

In Exercises 41– 44, solve the given equations.

  41. 
x - 4
x - 1

=
2
x

  42. 
V - 1

3
=

5
V

+ 1

  43. 
x2 - 3x
x - 3

=
x2

x + 2
  44. 

x - 2
x - 5

=
15

x2 - 5x

In Exercises 45– 48, sketch the graphs of the given functions by using 
the vertex, the y-intercept, and one or two other points.

 45. y = 2x2 - x - 1  46. y = -4x2 - 1

  47. y = x - 3x2  48. y = 2x2 + 8x - 10

In Exercises 49–52, solve the given equations graphically. If there are 
no real roots, state this as the answer.

 49. 2x2 + x - 4 = 0 50. -4x2 - x - 1 = 0

 51. 3x2 = -x - 2 52. x115x - 122 = 8

In Exercises 53 and 54, solve the given problems.

 53. A quadratic equation f1x2 = 0 has a solution x = 2. Its graph 
has its vertex at 1 -1, 62 . What is the other solution?

 54. Find c such that y = 2x2 + 16x + c has exactly one real root.

In Exercises 55–68, solve the given quadratic equations by any ap-
propriate method. All numbers are accurate to at least 3 significant 
digits.

 55. The bending moment M of a simply supported beam of length L 
with a uniform load of w kg>m at a distance x from one end is 
M = 0.5wLx - 0.5wx2. For what values of x is M = 0?

 56. A nuclear power plant supplies a fixed power level at a constant 
voltage. The current I (in A) is found by solving the equation 
I2 - 17I - 12 = 0. Solve for I 7 0.

 57. A computer analysis shows that the cost C (in dollars) for a 
company to make x units of a certain product is given by 
C = 0.1x2 + 0.8x + 7. How many units can be made for $50?

 58. For laminar flow of fluids, the coefficient K used to calculate 
energy loss due to sudden enlargements (where pipe size sud-
denly increases) is given by K = 1.00 - 2.67R + R2, where R 
is the ratio of cross-sectional areas. If K = 0.500, what is the 
value of R?

 59. At an altitude h (in m) above sea level, the boiling point of water 
is lower by T °C 1T 7 02  than the boiling point at sea level, 
which is 100.0°C. The difference can be approximated by solv-
ing the equation T2 + 244T - h = 0. What is the boiling point 
in Calgary, Alberta (altitude 1050 m)?

 60. In a natural gas pipeline, the velocity v (in m>s) of the gas as a 
function of the distance x (in cm) from the wall of the pipe is 
given by v = 5.20x - x2. Determine x for v = 4.80 m>s.

 61. The height h of an object shot at an angle u moving with veloc-
ity v is given by h = vt sin u - 4.9t2, where t is the time of 
flight. Find t (to the nearest 0.01 s) if v = 15.0 m>s, u = 65.0°, 
and h = 6.00 m.

 62. In studying the emission of light, in order to determine the angle 
at which the intensity is a given value, the equation 
sin 2 A - 4 sin A + 1 = 0 must be solved. Find angle A (to 
0.1°2. 1sin2 A = 1sin A222

 63. A computer analysis shows that the number n of electronic com-
ponents a company should produce for supply to equal demand 
is found by solving

  
n2

500 000
= 144 - n

500
. Find n.

 64. To determine the resistances of two resistors that are to be in  
parallel in an electric circuit, it is necessary to solve the equation 

  
20
R

+ 20
R + 10

=
1
5

. Find R (to nearest 1 Ω).

 65. In designing a cylindrical container, the formula 
  A = 2pr2 + 2prh (Eq. 2.19) is used. Solve for r.

  66. In determining the number of bytes b that can be stored on a 
hard disk, the equation b = kr1R - r2  is used. Solve for r.
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 78. Find the exact value of x that is 
defined in terms of the continu-
ing fraction at the right (the  
pattern continues endlessly). 
Explain your method of solution.

 67. In the study of population growth, the equation 
  p2 = p1 + rp1(1 - p1) occurs. Solve for p1.

 68. In the study of the velocities of deep-water waves, the equation 
v 

2 = k21 L
C + C

L 2  occurs. Solve for L.

In Exercises 69–82, set up the necessary equation where appropriate 
and solve the given problems. All numbers are accurate to at least 2 
significant digits.

  69. In testing the effects of a drug, the percent of the drug in the 
blood was given by p = 0.090t - 0.015t2, where t is the time 
(in h) after the drug was administered. Sketch the graph of 
p = f1 t2 .

  70. In an electric circuit, the voltage V as a function of the time t (in 
min) is given by V = 9.8 - 9.2t + 2.3t2. Sketch the graph of 
V = f1 t2 , for t … 5 min.

  71. By adding the same amount to its length and its width, a devel-
oper increased the area of a rectangular lot by 3000 m2 to make 
it 80 m by 100 m. What were the original dimensions of the lot? 
See Fig. 7.17.

100 m

3000 m2

80 m

x

x

w

l
Fig. 7.17 

  72. A thick-walled, cylindrical pipe of mass m, outer radius r, and 
thickness t is to be rotated along its axis of symmetry. The pipe 
possesses a resistance to a change in its rotation called moment 

  of inertia I, given by I = mr2a1 - t
r

+ t2

2r2 b . A particular pipe 

  is measured to have a mass of 8.00 kg, an outer radius of 0.250 m, 
and a moment of inertia 0.410 kg # m2. Determine the thickness 
of the wall of the pipe.

 73. Concrete contracts as it dries. If the volume of a cubical concrete 
block is 29.0 cm3 less and each edge is 0.100 cm less after dry-
ing, what was the original length of an edge of the block?

 74. A jet flew 1250 km with a tailwind of 50.0 km>h. The tailwind 
then changed to 20.0 km>h for the remaining 575 km of the 
flight. If the total time of the flight was 3.00 h, find the speed of 
the jet relative to the air.

 75. The length of one rectangular field is 400 m more than the side 
of a square field. The width is 100 m more than the side of the 
square field. If the rectangular field has twice the area of the 
square field, what are the dimensions of each field?

 76. A military jet flies directly over and at right angles to the straight 
course of a commercial jet. The military jet is flying at 200 km>h 
faster than four times the speed of the commercial jet. How fast 
is each going if they are 2050 km apart (on a direct line) after 
1.00 h?

 77. The width of a rectangular TV 
screen is 14.5 cm more than the 
height. If the diagonal is 68.6 cm, 
find the dimensions of the screen. 
See Fig. 7.18.

1.75 m2

1.35 m

r

Fig. 7.19 

x = 2 + 1

2 + 1

2 + 1
2 + g

 79. An electric utility company is placing utility poles along a road. 
It is determined that five fewer poles per kilometre would be 
necessary if the distance between poles were increased by 10 m. 
How many poles are being placed each kilometre?

 80. An architect is designing a Norman window (a semicircular part 
over a rectangular part) as shown in Fig. 7.19. If the area of the 
window is to be 1.75 m2 and the height of the rectangular part is 
1.35 m, find the radius of the circular part.

 81. A testing station found p parts per million (ppm) of sulfur diox-
ide in the air as a function of the hour h of the day to be 
p = 0.001 74110 + 24h - h22 . Sketch the graph of p = f1h2  
and, from the graph, find the time when p = 0.205 ppm.

 82. A compact disc (CD) is made such that it is 53.0 mm from the 
edge of the centre hole to the edge of the disc. Find the radius of 
the hole if 1.36% of the disc is removed in making the hole. See 
Fig. 7.20.

53.0 mm

1.36% of
orig. disc

Fig. 7.20 

68.6 cm

h + 14.5

h

Fig. 7.18 

Writing Exercise
 83. An electronics student is asked to solve the equation 

  
1
2

=
1
R

+ 1
R + 1

 for R. Write one or two paragraphs explaining 

  your procedure for the solution, including a discussion of what 
methods of the chapter may be used in completing the solution, 
assuming R 7 0.
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 CHAPTER 7

 1. Solve by factoring: 2x2 + 5x = 12

 2. Solve by using the quadratic formula: x2 = 3x + 5

 3. Solve graphically using a calculator: 4x2 - 5x - 3 = 0

 4. Solve algebraically: 2x2 - x = 6 - 2x13 - x2
 5. Solve algebraically: 3x - 2

x + 2 = 1

 6. Sketch the graph of y = 2x2 + 8x + 5 using the extreme point 
and the y-intercept.

 7. In electricity, the formula P = EI - RI2 is used. Solve for I in 
terms of E, P, and R.

 8. Solve by completing the square: x2 - 6x - 9 = 0. 

 9. The perimeter of a rectangular window is 8.4 m, and its area is 
3.8 m2. Find its dimensions.

 10. If y = x2 - 8x + 8, sketch the graph using the vertex and any 
other useful points and find graphically the values of x for which 
y = 0.
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 Gears and pulleys are common ele-
ments in the design of mechanical 
systems. In Section 8.4, we will see 
how radian measure of an angle is 
used to analyse the rotational proper-
ties of gears and pulleys.

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Determine the magnitude 
and sign of any trigonometric 
function of any angle

 Identify reference angles 
and use them to solve for 
trigonometric functions of 
angles in any quadrant

 Express an angle in degrees or 
radians and convert between 
the two measurements

 Given the value of a 
trigonometric function of an 
angle, find the angle

 Use radian measure of angle to 
find arc length

 Solve problems involving area 
of a sector of a circle

 Solve problems involving 
angular velocity

 Solve application problems 
involving trigonometric 
functions of any angle

Trigonometric functions were introduced in Chapter 4 as ratios of sides in a right trian-
gle, and although defined generally, the values of the functions were computed only for 
acute angles. In this chapter, we show how these functions are used with angles of any 

size and with angles measured in radians.

By the mid-1700s, the trigonometric functions had been used for many years as ratios. It was 
also known that they were useful in describing the behaviour of periodic functions (functions 
for which values repeat at specific intervals) without reference to actual triangles. In about 
1750, this led Swiss mathematician Leonhard Euler to include, for the first time in a textbook, 
the trigonometric functions of numbers (not angles). As will be shown in this chapter, this is 
equivalent to using these functions with arguments of angles of any size measured in radians.

Euler was one of the most prolific mathematicians in history. Although he was blind for the 
last 17 years of his life, this had little effect on his productivity. Euler wrote more than 70 
volumes in mathematics and related fields, such as astronomy, classical mechanics, music, 
optics, and fluids. Euler was the first to use the notation f(x) to signify a function f being ap-
plied to an argument x (see Chapter 3). He also introduced the modern notation for the trigo-
nometric functions (see Chapter 4), was a pioneer of the methods of calculus (see Chapters 
23–28), and is well known for his development of power series (see Chapters 19 and 30) and 
for his contributions to the study of complex numbers (see Chapter 12). Noted as one of the 
greatest mathematicians of all time, Euler’s interest in applied subjects often led him to study 
and develop topics in mathematics that were used in these applications.

Today, trigonometric functions of numbers are important to many applications, such as elec-
tric circuits, mechanical vibrations, and rotational motion. These functions developed by 
Euler and others were critical to the development of electronics in the 1900s. Some electron-
ics applications will be discussed in this chapter and in Chapter 10.

Trigonometric 
Functions of Any 
Angle
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Recall the definitions of the trigonometric functions that were given in Section 4.2. Here, the 
point (x, y) is a point on the terminal side of angle u, and r is the radius vector. See Fig. 8.1.

 Trigonometric Functions

  sin u =
y
r
    csc u =

1
 sin u

 =
r
y

   cos u =
x
r
    sec u =

1
 cos u

 =
r
x

    tan u =
y
x
   cot u =

1
 tan u

 =
x
y
 

(8.1)

As noted before, these definitions are valid for a standard-position angle of any size. 
In this section, we determine the sign of each function of angles with terminal sides in 
each of the four quadrants.

We can find the values of the functions if we know the coordinates (x, y) on the ter-
minal side and the radius vector r. Since r is always taken to be positive, the functions 
will vary in sign, depending on the values of x and y. If either x or y is zero in the 
denominator, the function is undefined. We will consider this in the next section.

Since sin u = y>r, the sign of sin u depends on the sign of y. Since y 7 0 in the first 
and second quadrants and y 6 0 in the third and fourth quadrants, sin u is positive if 
the terminal side is in the first or second quadrant, and sin u is negative if the terminal 
side is in the third or fourth quadrant. See Fig. 8.2.

 8.1 Signs of the Trigonometric Functions
Signs of the Trigonometric Functions in 

Functions Knowing Point on Terminal Side

x

y

x

r
y

u

O

(x, y)

Fig. 8.1

x   y(  ,    )

u

(a)

x   y(  ,    )

u

(b)

x   y(  ,    )

u

(c)

negative

negative negative

y

x

y y

x x

Fig. 8.2

 EXAMPLE  1  Sign of sin U in each quadrant

The value of sin 20° is positive, because the terminal side of 20° is in the first quadrant, 
where y 7 0. The value of sin 160° is positive, because the terminal side of 160° is in the 
second quadrant, where y 7 0. The values of sin 200° and sin 340° are negative, because 
the terminal sides are in the third and fourth quadrants, respectively, where y 6 0. ■

Since tan u = y>x, the sign of tan u depends on the ratio of y to x. Since x and y are 
both positive in the first quadrant, both negative in the third quadrant, and have differ-
ent signs in the second and fourth quadrants, tan u is positive if the terminal side is in 
the first or third quadrant, and tan u is negative if the terminal side is in the second or 
fourth quadrant. See Fig. 8.2.

 EXAMPLE  2  Sign of tan U in each quadrant

The values of tan 20° and tan 200° are positive, because the terminal sides of these 
angles are in the first and third quadrants, respectively. In these quadrants, the ratio of y 
to x is always positive (the ratio of two positive numbers in Quadrant I, or the ratio of 
two negative numbers in Quadrant III). The values of tan 160° and tan 340° are nega-
tive, because the terminal sides of these angles are in the second and fourth quadrants, 
respectively. In these quadrants, the ratio of y to x is always negative (the ratio of one 
positive to one negative number in both Quadrant II and Quadrant IV). ■

■ Quadrant
  I II III IV
 sin u +  +  -  -   

■ Quadrant
  I II III IV
 tan u +  -  +  -   
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Since cos u = x>r, the sign of cos u depends on the sign of x. Since x 7 0 in the 
first and fourth quadrants and x 6 0 in the second and third quadrants, cos u is positive 
if the terminal side is in the first or fourth quadrant, and cos u is negative if the termi-
nal side is in the second or third quadrant. See Fig. 8.2.

 EXAMPLE  3  Sign of cos U in each quadrant

The values of cos 20° and cos 340° are positive, because the terminal sides of these  
angles are in the first and fourth quadrants, respectively, where x 7 0. The values of 
cos 160° and cos 200° are negative, because the terminal sides of these angles are in the 
second and third quadrants, respectively, where x 6 0. ■

Since csc u is defined in terms of y and r, as in sin u, csc u has the same sign as 
sin u. For similar reasons, cot u has the same sign as tan u, and sec u has the same sign 
as cos u. Therefore, as shown in Fig. 8.3(a),

All functions of !rst-quadrant angles are positive. Sin U and csc U are positive for 
second-quadrant angles. Tan U and cot U are positive for third-quadrant angles. 
Cos U and sec U are positive for fourth-quadrant angles. All others are negative.

A useful mnemonic to remember the signs of the trigonometric functions is the word 
CAST, spelled counterclockwise from Quadrant IV. Each letter represents the basic 
trigonometric function that is positive in that quadrant. C = Cosine positive (and its 
reciprocal), A = All positive (and their reciprocals), S = Sine positive (and its recip-
rocal), and T = Tangent positive (and its reciprocal). This is shown in Fig. 8.3(b).

If you don’t like the idea of starting in Quadrant IV, start in Quadrant I and make your 
own sentence. A common one is “All Students Take Calculus.” Use whichever method 
works for you.

This discussion does not include the quadrantal angles, those angles with terminal 
sides on one of the axes. They will be discussed in the next section.

 EXAMPLE  4  

(a) The following are positive:

sin 150° cos 290° tan 190° cot 260° sec 350° csc 100°

(b) The following are negative:

 sin 300° cos 150° tan 100° cot 300° sec 200° csc 250° ■

 EXAMPLE  5  Sign of function related to terminal side

(a) If sin u 7 0, then the terminal side of u is in either the first or second quadrant.

(b) If sec u 6 0, then the terminal side of u is in either the second or third quadrant.

(c) If cos u 7 0, and tan u 6 0, then the terminal side of u is in the fourth quad-
rant. Only in the fourth quadrant are both signs correct. ■

 EXAMPLE  6  

Determine the trigonometric functions of u to 3 significant digits if the terminal side of 
u passes through 1 -1, 132 . See Fig. 8.4.

We know that x = -1, y = 13, and from the Pythagorean theorem, we find that 
r = 2. Therefore, the trigonometric functions of u are

 sin u =
13
2

= 0.866   cos u = - 1
2

= -0.500   tan u = - 13 = -1.73

 cot u = - 113
= -0.577   sec u = -2 = -2.00   csc u =

213
= 1.16

The point 1 -1, 132  is in the second quadrant, and the signs of the functions of u 
are those of a second-quadrant angle. ■

All
Sin
Csc

u

u

Tan
Cot

u

u

Cos
Sec

u

u

Positive functions

y

x

(a)

AS

T C

y

x

(b)

Fig. 8.3

r = 2 

−2 2

2

u

0

(−1,     3 )V

y

x

Fig. 8.4 

Practice Exercise

2.  Determine the value of cos u if the termi-
nal side of u passes through 1 -1, 42 .

Practice Exercise

1.  Determine the sign of the given functions:
(a) sin 140°  (b) tan 255°  (c) sec 175°

■ Quadrant
  I II III IV
 cos u +  -  -  +   
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When dealing with negative angles, or angles greater than 360°, the sign of the 
function is still determined by the location of the terminal side of the angle. For ex-
ample, sin1 -120°2 6 0 since the terminal side of -120° is in the third quadrant. 
Also, for the same reason, sin 600° 6 0 (same terminal side as -120° or 240°).

Any negative angle or angle greater than 360° is coterminal with a positive angle less than 
360°. Since the terminal sides of coterminal angles are the same, the trigonometric func-
tions of coterminal angles are equal. Therefore, we can evaluate the functions of an angle of 
any size if we can find the trigonometric functions of 0° and positive angles less than 360°. 
Such values will be needed for vectors, oblique triangles, and graphs in Chapters 9 and 10.

 EXAMPLE  1  Coterminal angles

The following pairs of angles are coterminal:

390° and 30°  900° and 180°  -150° and 210° (see Fig. 8.5)

The trigonometric functions of both angles in each pair are equal. For example,

 sin 390° =  sin 30° and tan1 -150°2 =  tan 210° ■

The values of the functions depend on the values of x, y, and r. Therefore, the absolute 
value of a function of a second-quadrant angle equals the value of the same function of a  
first-quadrant angle. For example, in Fig. 8.6, tan u2 = -4>3, or 0 tan u2 0 = 4>3, and 
tan u1 = 4>3. This means 0 tan u2 0 = tan u1. The triangles with u1 and uref are congruent, 
which means u1 = uref. If F represents any of the trigonometric functions, knowing that the 
absolute value of a function of u2 equals the value of the same function of u1 means that

 0F1u22 0 = 0F1u12 0 = 0F1uref2 0  (8.2)

The angle labelled uref is called the reference angle. The reference angle of a given  
angle is the acute angle formed by the terminal side of the angle and the x-axis.
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210°

!150°

y

x

x

y

5

0−4 4

r = 5

uref

r = 5

(−3, 4) (3, 4)

u1

u2

In Exercises 1 and 2, answer the given questions about the indicated 
examples of this section.

 1. In Example 4, if 90° is added to each angle, what is the sign of 
each resulting function?

 2. In Example 6, if the point 1 -1, 132  is replaced with the point 11, - 132 , what are the resulting values?

In Exercises 3–14, determine the sign of the given functions.

 3. sin 36°, cos 120° 4. tan 320°, sec 185°
 5. csc 98°, cot 82° 6. cos 260°, csc 290°
 7. sec 150°, tan 220° 8. sin 335°, cot 265°
 9. cos 348°, csc 238° 10. cot 110°, sec 309°
 11. tan 460°, sin1 -110°2  12. csc1 -200°2 , cos 550°
 13. cot1 -2°2 , cos 710° 14. sin 539°, tan1 -480°2
In Exercises 15–22, find the trigonometric functions of u if the 
terminal side of u passes through the given point.

 15. 12, 12  16. 1 -1, 12  17. 1 -2, -32  18. 14, -32
 19. 1 -0.5, 1.22  20. 1 -9, -122  21. 120, -82  22. 10.9, 42

In Exercises 23–28, for the given values, determine the quadrant(s) in 
which the terminal side of the angle lies.

 23. sin u = 0.500 24. cos u = 0.866

 25. tan u = 1.50 26. sin u = -0.866

 27. cos u = -0.500 28. tan u = -0.750

In Exercises 29–38, determine the quadrant in which the terminal side 
of u lies, subject to both given conditions.

 29. sin u 7 0,  cos u 6 0 30. tan u 7 0,  cos u 6 0

 31. sec u 6 0,  cot u 6 0 32. cos u 7 0,  csc u 6 0

 33. csc u 6 0,  tan u 6 0 34. tan u 6 0,  cos u 7 0

 35. sin u 6 0,  tan u 7 0 36. sec u 7 0,  csc u 6 0

 37. sin u 7 0,  cot u 6 0 38. tan u 7 0,  csc u 6 0

In Exercises 39–42, with (x, y) in the given quadrant, determine 
whether the given ratio is positive or negative.

 39. III, 
x
r
 40. II, 

y

r
 41. IV, 

y

x
 42. III, 

x
y

1. (a) +  (b) +  (c) -   2. -1>117
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Using Eq. (8.2) and the fact that uref = 180° - u2, we may conclude that the value 
of any trigonometric function of any second-quadrant angle is found from

 F1u22 = {F1180° - u22 = {F1uref2  (8.3)

 EXAMPLE  2  Quadrant II reference angles

In Quadrant II,  sin u and  csc u are 1 + 2 , but  cos u,  sec u,  tan u, and  cot u are 1 - 2 . 
Therefore, the trigonometric functions of u2 in Fig. 8.6 are as follows (in exact form 
and to 3 significant digits): 

 sin u2 = sin1180 - u22 = sin uref = sin u1 = 4
5 = 0.800

 cos u2 = -cos1180 - u22 = -cos uref = -cos u1 = -3
5 = -0.600

 tan u2 = - tan1180 - u22 = - tan uref = - tan u1 = -4
3 = -1.33

 csc u2 = csc1180 - u22 = csc uref = csc u1 = 5
4 = 1.25

 sec u2 = -sec1180 - u22 = -sec uref = -sec u1 = -5
3 = -1.67

 cot u2 = -cot1180 - u22 = -cot uref = -cot u1 = -3
4 = -0.750 ■

In the same way, we derive the formulas for trigonometric functions of any third- or 
fourth-quadrant angle. In Fig. 8.7, the reference angle uref is found by subtracting 180° 
from u3, and the functions of uref and u1 are numerically equal. In Fig. 8.8, the reference 
angle uref is found by subtracting u4 from 360°.

  F1u32 = {F1u3 - 180°2 = {F1uref2  (8.4)
  F1u42 = {F1360° - u42 = {F1uref2  (8.5)

The sign used 1+  or − 2  depends on 
the sign the function has in the quad-
rant for the original angle. Since all 
trigonometric functions are positive 
in the first quadrant, by finding an 
acute reference angle the trigono-
metric function of the original angle 
will be the same magnitude as the 
trigonometric function evaluated at 
the reference angle, but with the 
sign appropriate to the function in 
that quadrant.

 LEARNING T IP
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 EXAMPLE  3  Quadrant III reference angles

The trigonometric functions of u3 = 210° can be expressed in terms of the reference 
angle of 30° (see Fig. 8.9), and then evaluated, as follows (to 3 significant digits):

 same function reference angle

 sin 210° = -sin1210° - 180°2 = -sin 30° = - 1
2

= -0.500

 quadrant III sin u, csc u are1 - 2  in Quadrant III
 csc 210° = -csc 30° = -2.00

 cos 210° = -cos 30° = -0.866   sec 210° = -sec 30° = -1.16

 cos u, sec u are1 - 2 in Quadrant III

 tan 210° = + tan 30° = +0.577    cot 210° = +cot 30° = +1.73

 tan u, cot u are1 + 2 in Quadrant III ■
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 EXAMPLE  4  Quadrant IV reference angles

If u4 = 315°, the functions of u4 are found to 3 significant digits by using Eq. (8.5) as 
follows. See Fig. 8.10.

  reference angle

 sin 315° = -sin1360° - 315°2 = -sin 45° = -0.707

 quadrant IV sin u, csc u are1 - 2  in Quadrant IV

 csc 315° = -csc 45° = -1.41

 cos 315° = +cos 45° = +0.707   sec 315° = +sec 45° = +1.41

 cos u, sec u are1 + 2 in Quadrant IV

 tan 315° = - tan 45° = -1.00    cot 315° = -cot 45° = -1.00

 tan u, cot u are1- 2 in Quadrant IV ■

 EXAMPLE  5  Evaluating trigonometric functions using reference angles

 same function  reference angle

 sin 160° = +sin1180° - 160°2 = sin 20° = 0.342

 tan 110° = - tan1180° - 110°2 = - tan 70° = -2.75

 cos 225° = -cos1225° - 180°2 = -cos 45° = -0.707

 cot 260° = +cot1260° - 180°2 = cot 80° = 0.176

 sec 304° = +sec1360° - 304°2 = sec 56° = 1.79

 sin 357° = -sin1360° - 357°2 = -sin 3° = -0.0523

  determines  proper sign for function in quadrant
  quadrant ■

A calculator will give values, with the proper signs, of functions like those in Examples 
3, 4, and 5. The reciprocal key is used for cot u, sec u, and csc u, as shown in Section 4.2.

 EXAMPLE  6  Quadrant II angle—application

A formula for finding the area of a triangle, knowing sides a and b and the included 
∠C, is A = 1

2 ab sin C. A surveyor uses this formula to find the area of a triangular 
tract of land for which a = 173.2 m, b = 156.3 m, and C = 112.51°. See Fig. 8.11.

 A = 1
2 1173.22 1156.32  sin 112.51°

  = 12 500 m2 rounded to four significant digits

The calculator automatically uses a positive value for sin 112.51°. ■

112.51°    
!

 1
56

.3
 m

b

a ! 173.2 m

Fig. 8.11 

45°315°

y

x

Fig. 8.10 

Practice Exercise

1.  Express each of the functions of 225° in 
terms of the reference angle.

In most examples, we will round off 
trigonometric function values to 
three significant digits (as in 
Examples 3, 4, and 5). However, if the 
angle is approximate (meaning it is a 
measured value), then we round the 
trigonometric function values to the 
same number of significant digits as 
are in the angle.

 LEARNING T IP

Knowing how to use the reference angle is important when using a calculator to solve for 
an angle, because for a given value of a trigonometric function, there are multiple solu-
tions for the angle. There will always be two solutions between 0° and 360°, but an infi-
nite number of solutions are possible for any integer number of full rotations from those 
two angles (giving identical terminal arms from each new full rotation).

The calculator will not necessarily give the required angle.

It will give an angle we can use, but whether or not it is the required angle for the 
problem will depend on the problem being solved, and upon the quadrant in which 
the desired angle lies.

COMMON ERROR
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When a value of a trigonometric function is entered into a calculator, it is pro-
grammed to solve the angle as follows:

For values of sin u, the calculator displays angles from -90° to 90°:3sin1 -90°2 = -1,  sin 0° = 0, sin 90° = 14 , u from 3 -90°, 90°4
For values of  cos u, the calculator displays angles from 0° to 180°:3cos 0° = 1, cos 90° = 0, cos 180° = -14 , u from30°, 180°4
For values of tan u, the calculator displays angles between -90° and 90°:3 tan 0° = 0, if tan u 6 0, u is between -90° and 0°4 , u from1 -90°, 90°2

This means that if sin u or tan u is negative, the displayed angle is negative. If cos u is 
negative, the displayed angle is greater than 90° and no greater than 180°.

 EXAMPLE  7  U

If sin u = 0.225, we have u = sin-110.2252 = 13.0° (rounded off).
This result is correct, but remember that

 sin1180°-13.0°2 = sin 167.0°
 = 0.225

also. If we need only an acute angle, u = 13.0° is correct. However, if a second-
quadrant angle is required, we see that u = 167.0° is the angle (see Fig. 8.12). These 
can be checked by finding the values of sin 13.0° and sin 167.0°. ■

 EXAMPLE  8  sec U

For  sec u = -2.722 and 0° … u 6 360° (this means u may equal 0° or be between 0° 
and 360°), we have u = cos-11 - 1

2.7222 = 111.6° (rounded off ).
The angle 111.6° is the second-quadrant angle, but sec u 6 0 in the third quadrant as 

well. The reference angle is uref = 180° - 111.6° = 68.4°, and the third quadrant angle 
is 180° + 68.4° = 248.4°. Therefore, the two angles between 0° and 360° for which 
sec u = -2.722 are 111.6° and 248.4° (see Fig. 8.13). These angles can be checked 
by finding sec 111.6° and sec 248.4°. ■

 EXAMPLE  9  tan U

Given that tan u = 2.05 and cos u 6 0, find u for 0° … u 6 360°.
Since tan u is positive and cos u is negative, u must be a third-quadrant angle. A 

calculator will display an angle of 64.0° (rounded off) for tan u = 2.05. However, 
since we need a third-quadrant angle, we must add 64.0° to 180°. Thus, the required 
angle is 244.0° (see Fig. 8.14). Check by finding tan 244.0°.

If tan u = -2.05 and cos u 6 0, the calculator will display an angle of -64.0° 
for tan u = -2.05. We would then have to recognize that the reference angle is 
64.0° and subtract it from 180° to get 116.0°, the required second-quadrant angle. 
This can be checked by finding tan 116.0°. ■

We can find the reference angle by entering the absolute value of the function. The 
displayed angle will be the reference angle. The required angle u is found by using the 
reference angle as described earlier and as shown in Eq. (8.6).

  u = uref      (first quadrant)

  u = 180° - uref  (second quadrant) (8.6)
  u = 180° + uref   (third quadrant)

  u = 360° - uref  (fourth quadrant)

■ The reason that the calculator displays 
these particular angles is shown in Chapter 20, 
when the inverse trigonometric functions are 
discussed in detail.

111.6°248.4°

uref

uref

y

x

Fig. 8.13   

x

y

244.0°

64.0°
0

Fig. 8.14 

x

y

167.0°

13.0°13.0°
0

Fig.  8.12 

Practice Exercise

2.  If cos u = 0.5736, find u for 
0° … u 6 360°.

The calculator gives the reference 
angle (disregarding any minus signs) 
in all cases except when cos u is nega-
tive. To avoid confusion from the 
angle displayed by the calculator, a 
good procedure is to find the refer-
ence angle first. Then it can be used 
to determine the angle required by 
the problem.

 LEARNING T IP
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 EXAMPLE  10  Using the reference angle

Given that cos u = -0.1298, find u for 0° … u 6 360°.
Since cos u is negative, u is either a second-quadrant angle or a third-quadrant 

angle. Using 0.1298, the calculator tells us that the reference angle is 82.54°.
For the second-quadrant angle, we subtract 82.54° from 180° to get 97.46°. For 

the third-quadrant angle, we add 82.54° to 180° to get 262.54°.
Using -0.1298, the calculator displays the second-quadrant angle of 97.46°. For 

the third-quadrant angle, we must subtract 97.46° from 180° to get the reference an-
gle 82.54°, which is then added to 180° to get 262.54°. ■

We use Eqs. (8.3), (8.4), and (8.5) when the terminal side is in one of the quadrants. 
A quadrantal angle has its terminal side along one of the axes. Using the definitions 
of the functions (recalling that r 7 0), we get the following values for quadrantal 
angles. These values may be verified by referring to Fig. 8.15.

x

y

0

u = 270°

(d)

x = 0
y = −r

(0, −r)

x

y

0

u = 180°

(c)

y = 0
x = −r

(−r, 0)
x

y

0

u = 90°

(b)

x = 0
y = r

(0, r)

x

y

0

u = 0°

(a)

y = 0
x = r

(r, 0)

Fig. 8.15 

 EXAMPLE  11  Quadrantal angles

Since sin u = y>r, by looking at Fig. 8.15(a), we can see that sin 0° = 0>r = 0.
Since tan u = y>x, from Fig. 8.15(b), we see that tan 90° = r>0, which is unde-

fined due to the division by zero. Using a calculator to find tan 90°, the display 
would indicate an error (due to division by zero).

Since cos u = x>r, from Fig. 8.15(c), we see that cos 180° = -r>r = -1.
Since cot u = x>y, from Fig. 8.15(d), we see that cot 270° = 0>-r = 0. ■

To evaluate functions of negative angles, we can use functions of corresponding 
positive angles, if we use the correct sign. In Fig. 8.16, note that sin u = y>r, and 
sin1 -u2 = -y>r, which means sin1 -u2 = -sin u. In the same way, we can get all 
of the relations between functions of -u and the functions of u. Therefore, using the 
definitions, we have

 sin1 -u2 = -sin u  cos1 -u2 = cos u  tan1 -u2 = - tan u

  csc1 -u2 = -csc u  sec1 -u2 = sec u  cot1 -u2 = -cot u 
(8.7)

Quadrantal Angles

Negative Angles

x

y

u

−u

(x, y)

(x, −y)r

r

O

Fig. 8.16 

u sin u cos u tan u cot u sec u csc u

  0°   0.000   1.000 0.000 undef.   1.000 undef.

 90°   1.000   0.000 undef. 0.000 undef.   1.000

180°   0.000 -1.000 0.000 undef. -1.000 undef.

270° -1.000   0.000 undef. 0.000 undef. -1.000

360° Same as the functions of 0° (same terminal side)
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 EXAMPLE  12  

Solve the following trigonometric functions of negative angles, to 3 significant digits: 

 sin1 -60°2 = -sin 60° = -0.866   cos1 -60°2 = cos 60° = 0.500

 tan1 -60°2 = - tan 60° = -1.73     cot1 -60°2 = -cot 60° = -0.577

  sec1 -60°2 = sec 60° = 2.00       csc1 -60°2 = -csc 60° = -1.16   ■

EXERCISES 8.2

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 5, add 40° to each angle, express in terms of the same 
function of a positive acute angle, and then evaluate.

 2. In Example 7, make the value of the function negative and then 
find u between 0° and 360°.

 3. In Example 9, change 2.05 to -2.05 and 6  to 7 , then find u.

 4. In Example 10, change the -  to + and then find u.

In Exercises 5–10, express the given trigonometric function in terms 
of the same function of a positive acute angle.

 5. sin 160°, cos 220° 6. tan 91°, sec 345°
 7. tan 105°, csc 302° 8. cos 190°, cot 290°
 9. cos 400°, tan1 -400°2  10. tan 920°, csc1 -550°2
In Exercises 11–44, the given angles are approximate. In Exercises 
11–18, find the values of the given trigonometric functions by finding 
the reference angle and attaching the proper sign.

 11. sin 195° 12. tan 311° 13. cos 106.3°
 14. sin 103.4° 15. sec 328.33° 16. cot 516.53°
 17. tan1 -31.5°2  18. csc1 -108.4°2
In Exercises 19–26, find the values of the given trigonometric 
functions directly from a calculator.

 19. tan 152.4° 20. cos 341.4° 21. sin 310.36°
 22. tan 242.68° 23. csc  194.82° 24. sec 441.08°
 25. cos1 -72.61°2  26. sin1 -215.5°2
In Exercises 27–40, find u for 0° … u 6 360°.

 27. sin u = -0.8480 28. tan u = -1.830 29. cos u = 0.4003

 30. sin u = 0.6374 31. cot u = -0.0122 32. csc u = -8.09

 33. sin u = 0.870, cos u 6 0 34. tan u = 0.932, sin u 6 0

 35. cos u = -0.12, tan u 7 0 36. sin u = -0.192, tan u 6 0

 37. tan u = -1.366, cos u 7 0 38. cos u = 0.0726, sin u 6 0

 39. sec u = 2.047, cot u 6 0 40. cot u = -0.3256, csc u 7 0

In Exercises 41–44, determine the function that satisfies the given 
conditions.

 41. Find tan u when sin u = -0.5736 and cos u 7 0.

 42. Find sin u when cos u = 0.422 and tan u 6 0.

 43. Find cos u when tan u = -0.809 and csc u 7 0.

 44. Find cot u when sec u = 6.122 and sin u 6 0.

In Exercises 45–48, insert the proper sign, 7  or 6  or = , between the 
given expressions. Explain your answers.

 45. sin 90° 2 sin 45° 46. cos 360° 2 cos 180°
 47. tan 180° tan 0° 48. sin 270° 3 sin 90°

In Exercises 49–52, solve the given problems. In Exercises 51 and 52, 
assume 0° 6 u 6 90°. (Hint: Review cofunctions on page 128.)

 49. Using the fact that sin 75° = 0.9659, evaluate cos 195°.
 50. Using the fact that cot 20° = 2.747, evaluate tan 290°.
 51. Express tan1270° - u2  in terms of cot u.

 52. Express cos190° + u2  in terms of sin u.

In Exercises 53–56, evaluate the given expressions.

 53. The current i in an alternating-current circuit is given by 
i = im  sin u, where im is the maximum current in the circuit. Find 
i if im = 0.0259 A and u = 495.2°.

 54. The force F that a rope 
exerts on a crate is related  
to force Fx directed along  
the x-axis by F = Fx sec u, 
where u is the standard- 
position angle for F. See 
Fig. 8.17. Find F if Fx =  
-365 N and u = 127.0°.

 55. For the slider mechanism shown in Fig. 8.18, y sin a = x sin b. 
Find y if x = 6.78 cm, a = 31.3°, and b = 104.7°.

F
Crate

x

F

y

u
x

Fig. 8.17 

y

x

a

b

Fig. 8.18 

u
a b

c

Fig. 8.19 

 56. A laser follows the path shown in Fig. 8.19. The angle u is related 
to the distances a, b, and c by 2ab cos u = a2 + b2 - c2. Find u 
if a = 12.9 cm, b = 15.3 cm, and c = 24.6 cm.

Answers to Practice Exercises

1.  sin 225° = -sin 45°  cos 225° = -cos 45°
tan 225° = tan 45°  cot 225° = cot 45°
sec 225° = -sec 45° csc 225° = -csc 45°

2. 55.00°, 305.00°



 8.3 Radians 249

For many problems in which trigonometric functions are used, particularly those  
involving the solution of triangles, degree measurements of angles are convenient and 
quite sufficient. However, division of a circle into 360 equal parts is by definition, and 
it is arbitrary and artificial (see the margin comment on page 56).

In numerous other types of applications and in more theoretical discussions, the 
radian is a more meaningful measure of an angle. We defined the radian in Chapter 2 
and reviewed it briefly in Chapter 4. In this section, we discuss the radian in detail and 
start by reviewing its definition.

A radian is the measure of an angle with its vertex at the centre of a circle and 
with an intercepted arc on the circle equal in length to the radius of the circle. See 
Fig. 8.20.

Since the circumference of any circle in terms of its radius is given by c = 2pr, the 
ratio of the circumference to the radius is 2p. This means that the radius may be laid 
out 2p (about 6.28) times along the circumference, regardless of the length of the 
radius. Therefore, note that radian measure is independent of the radius of the circle. 
The definition of a radian is based on an important property of a circle and is therefore 
a more natural measure of an angle. In Fig. 8.21, the numbers on each of the radii indi-
cate the number of radians in the angle measured in standard position. The circular 
arrow shows an angle of 6 radians.

Since the radius may be laid out 2p times along the circumference, it follows that 
there are 2p radians in one complete rotation. Also, there are 360° in one complete 
rotation. Therefore, 360° is equivalent to 2p radians. It then follows that the relation 
between degrees and radians is 2p rad = 360°, or

 p rad = 180°  (8.8)

  1° =
p

180
 rad = 0.017 45 rad  (8.9)

 1 rad =
180°
p

= 57.30°  (8.10)

From Eqs. (8.8), (8.9), and (8.10), note that we convert angle measurements from 
degrees to radians or radians to degrees using a procedure identical to that of all unit 
conversions (see Section 1.3).

 8.3 Radians

Arc length
equals
radius

r

r

u = 1
rad

Fig. 8.20 

1
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r
r

r
.28 r

Fig. 8.21 

Converting Angles

Degrees to Radians

Radians to Degrees

1.  To convert an angle measured in degrees to the same angle measured in radi-
ans, multiply the number of degrees by 1p rad

180° 2. Note the degrees in the 
multiplied factor are in the denominator, which will cancel with the degrees 
in the original angle.

2.  To convert an angle measured in radians to the same angle measured in de-
grees, multiply the number of radians by 1 180°

p rad2. Note the radians in the 
multiplied factor are in the denominator, which will cancel with the radians in 
the original angle.
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 EXAMPLE  1  Converting to and from radians

(a)

  converting degrees to radians 

 18.0° = 18.0°ap rad
180°

b =
p

10.0
 rad = 0.314 rad 

  degrees cancel  (See Fig. 8.22.)

(b)

    converting radians to degrees 

 2.000 rad = 2.000 rada 180°
p rad

b =
360.0°
p

= 114.6° (See Fig. 8.22.)

Multiplying by p>180° or 180°>p is actually multiplying by 1, because p rad = 180°. 
The unit of measurement is different, but the angle is the same. ■

Because of the definition of the radian, it is common to express radians in terms of 
p, particularly for angles whose degree measure is a fraction of 180°.

 EXAMPLE  2  Radians in terms of P

(a) Converting 30° to radian measure, we have

 30° = 30°ap rad
180°

b =
p

6
 rad (See Fig. 8.23.)

(b) Converting 3p>4 rad to degrees, we have

 
3p
4

 rad =
3p
4

 rada 180°
p rad

b = 135° (See Fig. 8.23.) ■

We wish now to make a very important point. Since p is a number (a little greater 
than 3) that is the ratio of the circumference of a circle to its diameter, it is the ratio of 
one length to another. This means radians have no units, and radian measure amounts 
to measuring angles in terms of real numbers. It is this property that makes radians useful 
in many applications. If the symbol rad is used, it is only to emphasize that the angle is 
in radians.

 EXAMPLE  3  No angle units indicates radians

(a) 60.0° = 60.0°a p 
180°

b =
p

3.00
= 1.05  1.05 = 1.05 rad

  no units indicates radian measure

(b) 3.80 = 3.80a180°
p

b = 218°

Because no units are shown for 1.05 and 3.80, they are known to be measured in ra-
dians. See Fig. 8.24. ■

We can use a calculator to find the value of a function of an angle in radians. If the 
calculator is in radian mode, it then uses values in radians directly and will consider 
any angle entered to be in radians. The mode can be changed as needed, but always be 
careful to have your calculator in the proper mode.

18.0° ! 0.314 rad

2.000 rad ! 114.6°

Fig. 8.22 

3.80 ! 218°

Fig. 8.24

rad30° = p
6

rad = 135°3p
4

Fig. 8.23

Practice Exercises

1. Convert 36° to radians in terms of p.
2. Convert 7p>9 to degrees.

When the angle is measured in radi-
ans, it is customary that no units are 
shown. The radian is understood to 
be the unit of measurement.

LEARNING T IP

■ Using the angle feature, a calculator can be 
used directly to change an angle expressed in de-
grees to an angle expressed in radians, or from an 
angle expressed in radians to an angle expressed 
in degrees (as pointed out in Section 4.1).

Check the setting in the mode feature on the calculator. When computing the values 
of trigonometric functions, or when solving for angles using inverse trigonometric 
functions, you must know what mode your calculator is in to ensure that you are 
using or obtaining the angle with the correct unit. It is a common error to use the val-
ues given by a calculator without ensuring the proper mode is set (radians or degrees).

COMMON ERROR
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 EXAMPLE  4  Calculator evaluations

(a) To find the value of sin 0.7538, put the calculator in radian mode (note that no 
units are shown with 0.7538), then evaluate

sin 0.7538 = 0.6844

(b) Similarly, tan 0.9977 is found as

 tan 0.9977 = 1.550 ■

In the following application, the resulting angle is a unitless number, and it is there-
fore in radian measure.

 EXAMPLE  5  Application of radian measure

The velocity v of an object undergoing simple harmonic motion at the end of a spring is 
given by

 v = A A k
m

 cos aA k
m
1 t2 b    the angle is aA k

m
1 t2 b

Here, m is the mass of the object (in g), k is a constant depending on the spring, A is 
the maximum distance the object moves, and t is the time (in s). Find the velocity 
(in cm>s) after 0.100 s of a 36.0-g object at the end of a spring for which 
k = 400 g>s2, if A = 5.00 cm.

Substituting, we have

v = 15.00 cm2A400 g>s2

36.0 g
 cos aA400 g>s2

36.0 g
10.100 s2 b

Using calculator memory for 2400
36.0, and with the calculator in radian mode, we have

 v = 15.7 cm>s ■

If we need a reference angle in radians, recall that p>2 = 90°, p = 180°, 3p>2 = 270°, 
and 2p = 360° (see Fig. 8.25). These and their decimal approximations are shown in 
Table 8.1.

no units 
indicates 
radian 
measure

Practice Exercise

3. Find the value of sin 3.56.

Table 8.1 Quadrantal Angles

 
Degrees

 
Radians

Radians 
(decimal)

 90° 1
2  p 1.571

180°  p 3.142

270° 3
2  p 4.712

360° 2 p 6.283

p  = 1.571
p = 3.142

1
2
_

p =  4.7123
2
_

2p  = 6.283

y

x

Fig. 8.25 

 EXAMPLE  6   Angles of any size in radians and  
reference angles in radians 

An angle of 3.402 is greater than 3.142 but less than 4.712. Thus, it is a third-quadrant  
angle, and the reference angle is 3.402 - p = 0.260. The calculator p key can be 
used. See Fig. 8.26.

An angle of 5.210 is between 4.712 and 6.283. Therefore, it is in the fourth quad-
rant, and the reference angle is 2p - 5.210 = 1.073. ■

0.260

3.402

y

x

Fig. 8.26 
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 EXAMPLE  7  

Express u in radians, such that cos u = 0.8829 and 0 … u 6 2p.
Since cos u is positive and u is between 0 and 2p, we want a first-quadrant angle 

and a fourth-quadrant angle. With the calculator in radian mode,

 cos-1 0.8829 = 0.4888 first-quadrant angle 

 2p - 0.4888 = 5.794 fourth-quadrant angle
 u = 0.4888  or  u = 5.794    see Fig. 8.27 ■

0.4888

0.4888
5.794

y

x

Fig. 8.27 

Practice Exercise

4.  If sin u = 0.4235, find the smallest  
positive u (in radians).

When one first encounters radian measure, expressions such as sin 1 and sin u = 1 are 
often confused. The first is equivalent to sin 57.30° (since 1 radian = 57.30°). The second 
means u is the angle for which the sine is 1. Since sin 90° = 1, we can say that u = 90° or 
u = p>2.

COMMON ERROR

 EXAMPLE 8 

(a) sin p>3 = 13>2 (b) cos u = 0.5, u = 60° = p>3 (smallest positive u)

(c) tan 2 = tan 114.6° (d) tan u = 2, u = 1.107 (smallest positive u) ■

EXERCISES 8.3

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 3(b), change 3.80 to 2.80.

 2. In Example 4(a), change sin to cos.

 3. In Example 7, change cos to sin.

 4. In Example 8(a), change p3  to p4 .

In Exercises 5–12, express the given angle measurements in radian 
measure in terms of p.

 5. 15°, 150° 6. 12°, 225° 7. 75°, 330° 8. 36°, 315° 
 9. 210°, 27° 10. 5°, 300° 11. 720°, -9° 12. 66°, 540°

In Exercises 13–20, the given numbers express angle measure. 
Express the measure of each angle in terms of degrees.

 13. 
2p
5

, 
3p
2

 14. 
3p
10

, 
5p
6

 15. 
p

18
, 

7p
4

 16. 
8p
15

, 
4p
3

 

 17. 
7p
18

, 
5p
3

 18. 
p

40
, 

5p
4

 19. -p

9
, 

3p
20

 20. 
9p
2

, 
4p
15

In Exercises 21–28, express the given angles in radian measure. 
Round off results to the number of significant digits in the given angle.

 21. 23.0° 22. 54.3° 23. 252° 24. 104°
25. 333.5° 26. 168.7° 27. 478.5° 28. -86.1°

In Exercises 29–36, the given numbers express the angle measure. 
Express the measure of each angle in terms of degrees, with the same 
accuracy as the given value.

 29. 0.750 30. 0.240 31. 3.407 32. 1.703

 33. 12.6 34. 34.4 35. -16.42 36. 100.00

In Exercises 37–44, evaluate the given trigonometric functions by first 
changing the radian measure to degree measure. Round off results to 
four significant digits.

 37. sin 
p

4
 38. cos 

p

6
 39. tan 

5p
12

 40. sin 
7p
36

 41. cos 
5p
6

 42. tan 
7p
3

 43. sec 4.5920 44. cot 3.2732

In Exercises 45–52, evaluate the given trigonometric functions 
directly, without first changing to degree measure.

 45. tan 0.7359 46. cos 0.9308 47. sin 4.24

 48. tan 3.47 49. sec 2.07 50. sin1 -2.342
 51. cot1 -4.862  52. csc 6.19

In Exercises 53–60, find u to four significant digits for 0 … u 6 2p.

 53. sin u = 0.3090 54. cos u = -0.9135

 55. tan u = -0.2126 56. sin u = -0.0436

 57. cos u = 0.6742 58. cot u = 1.860

 59. sec u = -1.307 60. csc u = 3.940

In Exercises 61–64, solve the given problems. (Hint: Review cofunctions 
on page 128.)

 61. Using the fact that sin p8 = 0.3827, find the value of cos 5p8 .  
(A calculator should be used only to check the result.)

 62. Using the fact that tan p6 = 0.5774, find the value of cot 5p3 .  
(A calculator should be used only to check the result.)

 63. Express tan1p2 + u2  in terms of cot u. 10 6 u 6 p
2 2

 64. Express cos13p
2 + u2  in terms of sin u. 10 6 u 6 p

2 2
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In Exercises 65–72, evaluate the given problems.

 65. A unit of angle measurement used in artillery is the mil, which is 
defined as a central angle of a circle that intercepts an arc equal in 
length to 1>6400 of the circumference. How many mils are in a 
central angle of 34.4°?

 66. Through how many radians does the minute hand of a clock move 
in 25 min?

 67. After the brake was applied, a bicycle wheel went through 1.75 
rotations. Through how many radians did a spoke rotate?

 68. Through how many radians does a Ferris wheel with 18 seats 
move when loading passengers on the first 12 seats, assuming the 
loading process started at seat 1?

 70. The charge q (in C) on a capacitor as a function of time is 
q = A  sin vt. If t is measured in seconds, in what units is v mea-
sured? Explain.

 71. The height h of a rocket launched 1200 m from an observer is 

found to be h = 1200  tan 
5t

3t + 10
 for t 6 10 s, where t is the 

time after launch. Find h for t = 8.0 s.

 72. The electric intensity I (in W>m2) from the two radio antennas in 
Fig. 8.29 is a function of u given by I = 0.023  cos21p sin u2 . 
Find I for u = 40.0°. 1cos2 a = 1cos a22.2

W

b

u

Fig. 8.28

Antenna

Antenna

u

Fig. 8.29 

Answers to Practice Exercises

1. p>5   2. 140°   3. -0.406   4. 0.4373 rad

Radian measure has numerous applications in mathematics and technology, some of 
which were illustrated in the last eight exercises of the previous section. In this section, 
several more applications are shown.

ARC LENGTH
From geometry (see Section 2.4 and Eqs. (2.9) and (2.12)), we know that the length of 
an arc on a circle is proportional to the central angle formed by the radii that intercept 
the arc. The length of arc of a complete circle is the circumference. Letting s represent 
the length of arc, we may state that s = 2pr for a complete circle. Since 2p is the cen-
tral angle (in radians) of the complete circle, we have for the length of arc

 s = ur 1u in radians2  (8.11)

for any circular arc with central angle u. Therefore, if we know the central angle u in 
radians and the radius of a circle, we can find the length of a circular arc directly by 
using Eq. (8.11). See Fig. 8.30.

 EXAMPLE  1  Arc length

Find the length of arc on a circle of radius r = 3.00 cm, for which the central angle 
u = p>6. See Fig. 8.31.
 u in radians

 s = ur

 s = ap
6
b 13.00 cm2 =

p

2.00
 cm

 s = 1.57 cm

Therefore, the length of arc s is 1.57 cm. ■
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3.00 cm

s
p/6

Fig. 8.31 

r

r

su

Fig. 8.30 

 69. A flat plate of weight W oscil-
lates as shown in Fig. 8.28. Its 
potential energy V is given by 
V = 1

2 Wbu2, where u is meas-
ured in radians. Find V if 
W = 8.75 N, b = 0.75 m, and 
u = 5.5°.
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Among the important applications of arc length are distances on the earth’s surface. 
For most purposes, the earth may be regarded as a sphere (the diameter at the equator is 
slightly greater than the distance between the poles). A great circle of the earth (or any 
other sphere) is the circle of intersection of the surface of the sphere and a plane that 
passes through the centre.

The equator is a great circle and is designated as 0° latitude. Other parallels of lati-
tude are parallel to the equator with diameters decreasing to zero at the poles, which are 
90° N and 90° S. See Fig. 8.32.

Meridians of longitude are half great circles between the poles. The prime meridian 
through Greenwich, England, is designated as 0°, with meridians to 180° measured east 
and west from Greenwich. Positions on the surface of the earth are designated by longi-
tude and latitude coordinates.

 EXAMPLE  2  Arc length—nautical mile

The traditional definition of a nautical mile is the length of arc along a great circle of 
the earth for a central angle of 1′. The modern international definition is a distance of 
1852 m. What measurement of the earth’s radius does this definition use?

Here, u = 1′ = 11>602 °, and s = 1852 m. Solving for r, we have

 r =
s
u

=
1852  ma 1

60
b °a p

180°
b = 6.367 * 106 m

 r = 6367 km

Historically, the fact that the earth is not a perfect sphere has led to many variations 
in the distance used for a nautical mile.  ■

Another application of radians is finding the area of a sector of a circle (see Fig. 8.33). 
Recall from geometry that areas of sectors of circles are proportional to their central 
angles. From Eq. (2.10), the area of a circle is A = pr2, which can be written as 
A = 1

212p2r2. Since the angle for a complete circle is 2p, the area of any sector of a 
circle in terms of the radius and central angle (in radians) is

 A =
1
2

 ur2   1u in radians2  (8.12)

 EXAMPLE  3  Area of a sector of a circle

(a) The area of a sector of a circle with central angle 218° and a radius of 5.25 cm 
(see Fig. 8.34(a)) is

 u in radians

A =
1
2

 1218°2 a p

180°
b 15.25 cm22 = 52.4 cm2

(b) Given that the area of a sector is 75.5 m2 and the radius is 12.2 m (see Fig. 8.34(b)), 
we find the central angle by solving for u and then substituting:

 no units indicates radian measure

u =
2A

r2 =
2175.5 m22112.2 m22 = 1.01

This means that the central angle is 1.01 rad, or 57.9°. ■

N

30°

40
°

S

Equator

Greenwich

Longitude 30° E

Longitude 0°

Latitude 40° SLatitude 40° S
Longitude 30° E

Fig. 8.32 

Practice Exercise

1.  Find u in degrees if s = 2.50 m and 
r = 1.75 m.

r

r

A
u

Fig. 8.33 

(a) (b)

218°
A u

75.5 m2

5.25 cm 12.2 m

Fig. 8.34 

Practice Exercise

2. Find A if r = 17.5 cm and u = 125°.
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The average velocity of a moving object is defined by v = s>t, where v is the average 
velocity, s is the distance travelled, and t is the elapsed time. For an object moving in a 
circular path with constant speed, the distance travelled is the length of arc through 
which it moves. Therefore, if we divide both sides of Eq. (8.11) by t, we obtain

s
t

=
ur
t

=
u

t
 r

where

 v = u>t  (8.13)

is defined to be the angular velocity. Therefore,

 v = vr  (8.14)

Eq. (8.14) expresses the relationship between the linear velocity v and the angular 
velocity V of an object moving around a circle of radius r. See Fig. 8.35. In the figure, 
v is shown directed tangent to the circle, for that is its direction for the position shown. 
The direction of v changes constantly.

The standard SI units for v are radians per second (rad>s). In this way, the formula 
can be used directly. However, in practice, v is often given in revolutions per minute or 
in some similar unit. In these cases, it is necessary to convert the units of v to radians 
per unit of time before substituting in Eq. (8.14).

 EXAMPLE  4  

A person on a hang glider is moving in a horizontal circular arc of radius 90.0 m with 
an angular velocity of 0.125 rad>s. The person’s linear velocity is

v = 10.125 rad>s2 190.0 m2 = 11.3 m>s

(Remember that radians are numbers and are not included in the final set of units.) 
This means that the person is moving along the circumference of the arc at 11.3 m>s 140.7 km>h2 .  ■

 EXAMPLE  5  

A communications satellite remains at an altitude of 35  920 km above a point on the 
equator. If the radius of the earth is 6370 km, what is the velocity of the satellite?

In order for the satellite to remain over a point on the equator, it must rotate ex-
actly once each day around the centre of the earth (and it must remain at an altitude 
of 35  920 km). Since there are 2p radians in each revolution, the angular velocity is

 v =
1 r

1 day
a1 day

24 h
b a2p rad

1 r
b = 0.2618 rad>h

The radius of the circle through which the satellite moves is its altitude plus the ra-
dius of the earth, or 35 920 + 6370 = 42 290 km. Thus, the velocity is

v = vr
v = 10.2618 rad>h2 142 290 km2
v = 11 070 km>h

v = 11 070 km>ha1000 m
1 km

b a 1 h
3600 s

b
v = 3075 m>s

 

■

Mechanical elements that are connected on their edges (like pulleys with a belt, or 
meshed gears) have the same linear velocity v on their edges. Mechanical elements that are 

s
v

u
r

v

u changes
with
angular
velocity v

object moves
along circle

velocity is
tangent to circle

Fig. 8.35 

■ Some of the typical units used for angular 
velocity are
rad/s rad/min rad/h
°/s °/min
r/s r/min
(r represents revolutions.)
(r/min is the same as rpm. This text does not 
use rpm.)

■ The first U.S. communications satellite was 
launched in July 1962.

Practice Exercise

3.  Find r if v = 25.0 m>s and the angular 
velocity is 6.0°>min. 
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mounted on the same shaft have the same rotational properties (same amount of rotation, 
same rate of rotation).

 EXAMPLE  6  

A pulley belt 2.00 m long takes 0.800 s to make one complete revolution around pul-
leys A and B. Pulley B and Gear C are mounted on the same shaft, and the teeth of gear 
D mesh with those of gear C. The radius of pulley A is 0.150 m, the radius of pulley B 
is 0.100 m, the radius of gear C is 0.300 m, and the radius of gear D is 0.200 m. What is 
the resulting angular velocity (in rad>s and in r>min) of gear D? See Fig. 8.36. 

Since the linear velocity of a point on the edge of pulleys A and B is the same as 
the linear velocity of the belt,

v = s>t
v = 2.00 m>0.800 s
v = 2.50 m>s

The angular velocity v for pulley B is then

vB = vB>rB

vB = 2.50 m>s>0.100 m
vB = 25.0 rad>s

Since gear C and pulley B are on the same shaft, they have the same angular velocity, 
vC = vB = 25.0 rad>s, so the linear velocity of the edge of gear C can be found.

vC = vCrC

vC = 25.0 rad>s 10.300 m2
vC = 7.50 m>s

Since gear C and gear D are meshed, the linear velocities of their edges (their teeth) must be 
the same, so vD = vC = 7.50 m/s. The angular velocity of gear D can then be found.

vD = vD>rD

vD = 7.50 m>s>0.200 m
vD = 37.5 rad>s

vD = 37.5 rad>sa 1 r
2p rad

b a 60 s
1 min

b
vD = 358 r>min

Since A, B, and C all spin counterclockwise, at the teeth connection point between 
gears C and D, the teeth will be moving vertically upward. Thus, the rotation of gear 
D must be clockwise. ■

The average acceleration of a moving object is defined by a =
vf - vi

t
, where a is the 

average acceleration, vf  and vi are the final and initial velocities respectively, and t is 
the elapsed time. For an object moving in a circular path with a changing angular 
velocity, if we divide the acceleration equation by the radius r, we obtain

 
a
r

=

vf

r
-

vi

r

t

However, from Eq. (8.14) we see that the ratio of linear velocity to radius is angular 
velocity v. We thus define

 a =
vf - vi

t
 (8.15)

A

B
C D

n

v

Fig. 8.36 

■ See the chapter introduction.
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where a is the angular acceleration. Comparing the above two equations gives

 a = ar  (8.16)

Eq. (8.16) represents the relationship between the linear acceleration a and the angular 
acceleration a of an object moving in a circle with a changing magnitude for its veloc-
ity. See Fig. 8.37. The standard SI units for a are rad>s2.

 EXAMPLE  7  Angular acceleration—application

A flywheel has a radius 40.0 cm, and its edge is accelerating at the rate of 4.25 m>s2. 
Determine its angular acceleration a.

The wheel radius expressed in metres is r = 40.0 cm = 0.400 m. Eq. (8.16) gives

 

a = ar

a =
a
r

a =
4.25 m>s2

0.400 m
a = 10.6 rad>s2

 

■

Fig. 8.37 

a

a

When dealing with arc length, area of a sector of a circle, angular velocity, or angu-
lar acceleration, the equations require that the angle u be expressed in radians. A 
common error is to use u in degrees.

COMMON ERROR

 EXAMPLE  8  Application to electric current

The current at any time in a certain alternating-current electric circuit is given by 
i = I sin 120pt, where I is the maximum current and t is the time in seconds. Given 
that I = 0.0685 A, find i for t = 0.005 00 s.

Substituting, with the calculator in radian mode, we get

 i = 10.0685 A2sin31120p2 10.005 0024
i = 0.0651 A1120p2 10.005  002  is a pure number, and therefore is an angle in radians. ■

EXERCISES 8.4

In Exercises 1–4, make the given changes in the indicated examples of 
this section, and then solve the resulting problems.

 1. In Example 1, change p>6 to p>4.

 2. In Example 3(a), change 218° to 258°.
 3. In Example 4, change 90.0 m to 115 m.

 4. In Example 6, change 0.800 s to 1.20 s.

In Exercises 5–16, for an arc length s, area of sector A, and central 
angle u of a circle of radius r, find the indicated quantity for the given 
values.

 5. r = 3.30 cm, u = p>3, s = ?

 6. r = 21.2 cm, u = 2.65, s = ?

 7. s = 1010 mm, u = 136.0°, r = ?

 8. s = 0.3456 m, u = 73.61°, A = ?

 9. s = 0.3913 km, r = 0.9449 km, A = ?

 10. s = 3.19 m, r = 2.29 m, u = ?

 11. r = 4.9 cm, u = 5.6, A = ?

 12. r = 46.3 dm, u = 2p>5, A = ?

 13. A = 0.0119 m2, u = 326.0°, r = ?

 14. A = 1200 mm2, u = 17°, s = ?

 15. A = 16.5 m2, r = 4.02 m, s = ?

 16. A = 67.8 km2, r = 67.8 km, u = ?

In Exercises 17–56, solve the given problems.

 17. In travelling three-fourths of the way 
around a traffic circle a car travels 
0.203 km. What is the radius of the 
traffic circle? See Fig. 8.38. r = ?

Fig. 8.38 
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 18. The latitude of Manila, Philippines, is 15° N, and the latitude of 
Shanghai, China, is 31° N. Both are at a longitude of 121° W. 
What is the distance between Manila and Shanghai? Explain how 
the angle used in the solution is found. The radius of the earth is 
6370 km.

 19. Of the estimated natural gas reserves in North America, 
4.59 * 109 m3 are in the United States, 2.66 * 109 m3 are in 
Canada, and 1.99 * 109 m3 are in Mexico. In making a circle 
graph (circular sectors represent percentages of the whole—a pie 
chart) with a radius of 4.00 cm for these data, what are the central 
angle and area of the sector that represents Canada’s reserves?

 20. A section of sidewalk is a circular sector of radius 1.25 m and 
central angle 50.6°. What is the area of this section of sidewalk?

 21. When between 12:00 noon and 1:00 p.m. are the minute and hour 
hands of a clock 180° apart?

 22. A cam is in the shape of a circular sector, as shown in Fig. 8.39. 
What is the perimeter of the cam?

 31. Part of a security fence is built 2.50 m from a cylindrical storage 
tank 11.2 m in diameter. What is the area between the tank and 
this part of the fence if the central angle of the fence is 75.5°? See 
Fig. 8.42.

Fig. 8.39 1.875 cm

165.58°

3.755 m 8.250 m

7.535 m

Fig. 8.40 

13.8 m

h

Fig. 8.41 

2.50 m

75.5!

11.2 m

Fig. 8.42 

1.19 m

Crate
Fig. 8.43 

 23. A lawn sprinkler can water up to a distance of 25.0 m. It turns 
through an angle of 115.0°. What area can it water?

 24. A spotlight beam sweeps through a horizontal angle of 75.0°. If 
the range of the spotlight is 115 m, what area can it cover?

 25. If a car makes a U-turn in 6.0 s, what is its average angular veloc-
ity in the turn?

 26. The roller on a computer printer makes 2200 r>min. What is its 
angular velocity (in rad>s)? 

 27. What is the floor area of the hallway shown in Fig. 8.40? The 
outside and inside of the hallway are circular arcs.

 28. The arm of a car windshield wiper is 32.4 cm long and is attached 
at the middle of a 38.1-cm blade. (Assume that the arm and blade 
are in line.) What area of the windshield is cleaned by the wiper if 
it swings through 110.0° arcs?

 29. Part of a railroad track follows a circular arc with a central angle 
of 28.0°. If the radius of the arc of the inner rail is 28.55 m and the 
rails are 1.44 m apart, how much longer is the outer rail than the 
inner rail?

 30. A wrecking ball is dropped as shown in Fig. 8.41. Its velocity at 
the bottom of its swing is v = 12gh, where g is the acceleration 
due to gravity. What is its angular velocity at the bottom if 
g = 9.80 m>s2 and h = 4.80 m?

 32. Through what angle does the drum in Fig. 8.43 turn in order to 
lower the crate 10.3 m? If the crate accelerates downward at 
3.75 m>s2, what is the angular acceleration of the drum?

 33. A section of road follows a circular arc with a central angle of 
15.6°. The radius of the inside of the curve is 285.0 m, and the 
road is 15.2 m wide. What is the volume of the concrete in the 
road if it is 0.305 m thick?

 34. The propeller of the motor on a motorboat is rotating at 133 rad>s. 
What is the linear velocity of a point on the tip of a blade if it is 
22.5 cm long?

 35. A storm causes a pilot to follow a circular-arc route, with a cen-
tral angle of 12.8°, from city A to city B rather than the straight-
line route of 185.0 km. How much farther does the plane fly due 
to the storm?

 36. A freeway interchange exit is a circular arc 335 m long with a cen-
tral angle of 79.4°. What is the radius of curvature of the exit?

 37. The paddles of a riverboat have a radius of 2.59 m and revolve at 
20.0 r>min. What is the speed of a tip of one of the paddles (in m>s)?

 38. The sweep second hand of a watch is 15.0 mm long. What is the 
linear velocity of the tip?

 39. A DVD has a diameter of 12.1 cm and rotates at 360.0 r>min. 
What is the linear velocity of a point on the outer edge? At startup 
the DVD accelerates from rest to 360.0 r>min in 0.200 s. Find the 
linear acceleration of a point on its edge.
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 40. A Ferris wheel 18.0 m in diameter makes one revolution in 3.00 min. 
Find the speed of a seat on the rim (in m>s).

 41. In 2005 a planet was found revolving about a distant sunlike star 
in 2.88 days. The radius of its orbit is 5 600 000 km. What is its 
linear velocity (in km>h) about its star?

 42. Assume that earth rotates around the sun in a circular orbit of  
radius 150 000 000 km (which is approximately correct). What is 
earth’s linear velocity (in km>h)? (Use 1 yr = 365.25 d.)

 43. The sprocket assembly for a 70.0-cm bike is shown in Fig. 8.44. 
How fast (in r>min) does the rider have to pedal in order to go 
25.0 km>h on level ground?

35.0 cm

5.00 cm

12.5 cm

Fig. 8.44 

 44. The flywheel of a car engine is 0.36 m in diameter. If it is revolv-
ing at 750 r>min, through what distance does a point on the rim 
move in 2.00 s?

 45. Two streets meet at an angle of 82.0°. What is the length of the 
piece of curved curbing at the intersection if it is constructed 
along the arc of a circle 5.50 m in radius? See Fig. 8.45.

82.0°

curbing
here

Fig. 8.45 

 46. An ammeter needle is deflected 52.00° by a current of 0.2500 A. 
The needle is 3.750 cm long, and a circular scale is used. How 
long is the scale for a maximum current of 1.500 A?

 47. A drill bit 9.53 mm in diameter rotates at 1260 r>min. What is the 
linear velocity of a point on its circumference (in mm>s)?

 48. A helicopter blade is 2.75 m long and from rest accelerates for 
5.00 s until it is rotating at 420 r>min. What is the average linear 
acceleration of the tip of the blade (in m>s2)?

 49. A waterwheel used to generate electricity has paddles 3.75 m 
long. The speed of the end of a paddle is one-fourth that of the 
water. If the water is flowing at the rate of 6.50 m>s, what is the 
angular velocity of the waterwheel?

 50. A jet is travelling westward with the sun directly overhead (the jet 
is on a line between the sun and the centre of the earth). How fast 
must the jet fly in order to keep the sun directly overhead? 
(Assume that the earth’s radius is 6370 km, the altitude of the jet 
is 11 km, and the earth rotates about its axis once in 24.0 h.)

 51. What is the linear velocity of a point in Winnipeg, Manitoba, which 
is at a latitude of 49°53′ N? The radius of the earth is 6370 km.

 52. Through what total angle does the drive shaft of a car rotate in 1.0 s 
when the tachometer reads 2400 r>min? If it starts from rest, what 
is the drive shaft’s average angular acceleration if it takes 3.25 s 
to reach 2400 r>min?

 53. A baseball field is designed such that the outfield fence is along the 
arc of a circle with its centre at second base. If the radius of the cir-
cle is 85.0 m, what is the playing area of the field? See Fig. 8.46.

27.4 m

85.0 m

Fig. 8.46 

 54. A patio is in the shape of a circular sector with a central angle of 
160.0°. It is enclosed by a railing of which the circular part is 11.6 m 
long. What is the area of the patio?

 55. An oil storage tank 4.25 m long has a flat bottom as shown in 
Fig. 8.47. The radius of the circular part is 1.10 m. What volume 
of oil does the tank hold?

1.10 m

1.48 m

4.25 m

Fig. 8.47 

2.70 m 2.70 m

4.26 m

Fig. 8.48 

 56. Two equal beams of light illuminate the area shown in Fig. 8.48. 
What area is lit by both beams?

In Exercises 57–60, another use of radians is illustrated.

 57. Use a calculator (in radian mode) to evaluate the ratios 1sin u2>u 
and 1 tan u2>u for u = 0.1, 0.01, 0.001, and 0.0001. From these 
values, explain why it is possible to say that

 sin u = tan u = u (8.17)

  approximately for very small angles.

 58. Using Eq. (8.17), evaluate tan 0.001°. Compare with a calculator 
value.
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 59. An astronomer observes that a star 12.5 light-years away moves 
through an angle of 0.2″ in 1 year. Assuming it moved in a straight 
line perpendicular to the initial line of observation, how many kilo-
metres did the star move? 11 light@year = 9.46 * 1012 km.) Use 
Eq. (8.17) and express the answer to 3 significant digits.

 60. In calculating a back line of a lot, a surveyor discovers an error of 
0.05° in an angle measurement. If the lot is 136.0 m deep, by how 
much is the back-line calculation in error? See Fig. 8.49. Use 
Eq. (8.17) and express the answer to 3 significant digits.

Answers to Practice Exercises

1. 81.9°  2. 334 cm2  3. 14 300 m

x

0.05°

90.0°

136.0 m

Fig. 8.49

 CHAPTER 8  

  sin u =
y
r
    csc u =

1
sin u

 =
r
y

  cos u =
x
r
   sec u =

1
cos u

 =
r
x
 (8.1)

   tan u =
y
x
   cot u =

1
 tan u

 =
x
y

 F1u22 = {F1180° - u22 = {F1uref2   (uref is reference angle)  (8.3)

 F1u32 = {F1u3 - 180°2 = {F1uref2  (8.4)

 F1u42 = {F1360° - u42 = {F1uref2  (8.5)

Using reference angles u = uref  (first quadrant)

 u = 180° - uref (second quadrant)
 (8.6)

 u = 180° + uref (third quadrant)

 u = 360° - uref (fourth quadrant)

Negative angles sin1 -u2 = -sin u  cos1 -u2 = cos u  tan1 -u2 = - tan u
 (8.7)

 csc1 -u2 = -csc u  sec1 -u2 = sec u  cot1 -u2 = -cot u

Radian@degree conversions p rad = 180° (8.8)

 1° =
p

180
 rad = 0.017 45 rad (8.9)

 1 rad =
180°
p

= 57.30° (8.10)

Circular arc length s = ur  1u in radians2  (8.11)

Circular sector area A =
1
2

 ur2  1u in radians2  (8.12)

Angular velocity v =
u

t
  (8.13)

Linear and angular velocity v = vr (8.14)

Angular acceleration a =
vf - vi

t
  (8.15)

Linear and angular acceleration a = ar  (8.16)

Small angle approximation sin u = tan u = u (for small u in radians) (8.17)

x

y

x

r
y

u

O

(x, y)
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 CHAPTER 8  REVIEW EXERCISES

In Exercises 1–4, find the trigonometric functions of u. The terminal 
side of u passes through the given point.

 1. 16, 82  2. 1 -12, 52
 3. 142, -122  4. 1 -2, -32
In Exercises 5–8, express the given trigonometric functions in terms of 
the same function of a positive acute angle.

 5. cos 132°, tan 194° 6. sin 243°, cot 318°
 7. sin 289°, sec1 -15°2  8. cos 463°, csc1 -100°2
In Exercises 9–12, express the given angle measurements in terms of p.

 9. 40°, 153° 10. 22.5°, 324°
 11. 408°, 202.5° 12. 12°, -162°

In Exercises 13–20, the given numbers represent angle measure.  
Express the measure of each angle in degrees.

 13. 
7p
5

, 
13p
18

 14. 
3p
8

, 
7p
20

 15. 
p

15
, 

11p
6

 16. 
27p
10

, 
5p
4

 17. 0.560 18. -1.354

 19. 36.07 20. 14.5

In Exercises 21–28, express the given angles in radians (not in terms 
of p).

 21. 102° 22. 305°
 23. 20.25° 24. 148.38°
 25. 262.05° 26. -18.72°
 27. -636.2° 28. 385.4°

In Exercises 29–48, determine the values of the given trigonometric 
functions directly on a calculator. The angles are approximate. Ex-
press answers to Exercises 41–44 to four significant digits.

 29. cos 245.5° 30. sin 141.3°
 31. cot 295° 32. tan 184°
 33. csc 247.82° 34. sec 96.17°
 35. sin 565.24° 36. cos 326.72°
 37. tan 301.4° 38. sin 703.9°
 39. tan 436.42° 40. cos1 -162.32°2
 41. sin 

9p
5

 42. sec 
5p
8

 43. cos 
7p
6

 44. tan 
23p
12

 45. sin 0.5906 46. tan 0.8035

 47. csc 2.153 48. cos1 -7.1902
In Exercises 49–52, find u in degrees for 0° … u 6 360°.

 49. tan u = 0.1817 50. sin u = -0.9323

 51. cos u = -0.4730 52. cot u = 1.196

In Exercises 53–56, find u in radians for 0 … u 6 2p.

 53. cos u = 0.8387 54. sin u = 0.1045

 55. sin u = -0.8650 56. tan u = 8.480

In Exercises 57–60, find u in degrees for 0° … u 6 360°.

 57. cos u = -0.7222, sin u 6 0

 58. tan u = -1.683, cos u 6 0

 59. cot u = 0.4291, cos u 6 0

 60. sin u = 0.2626, tan u 6 0

In Exercises 61–68, for an arc of length s, area of sector A, and cen-
tral angle u of circle of radius r, find the indicated quantity for the 
given values.

 61. s = 20.3 cm, u = 107.5°, r = ?

 62. s = 5840 m, r = 1060 m, u = ?

 63. A = 265 mm2, r = 12.8 mm, u = ?

 64. A = 0.908 km2, u = 234.5°, r = ?

 65. r = 4.62 m, A = 32.8 m2, s = ?

 66. u = 98.5°, A = 0.493 dm2, s = ?

 67. u = 0.85°, s = 7.94 cm, A = ?

 68. r = 254 cm, s = 76.1 cm, A = ?

In Exercises 69–92, solve the given problems.

 69. Show that the area A of a minor segment of a circle of radius r 
intercepted by a central angle u (in radians) (see Fig. 8.50) is

  A =
1
2

 r21u - sin u2 .

u

r

r

Fig. 8.50

20.0°

30.0 m

40.0 mFig. 8.51 

 70. The cross section of a tunnel is the major segment of a circle of 
radius 12.0 m wide. The base of the tunnel is 20.0 m wide. What 
is the area of the cross section? See Exercise 69.

 71. Find the area of the parcel of land shown in Fig. 8.51. It is a right 
triangle attached to a circle sector.

 72. The speedometer of a car is designed to be accurate with tires that 
are 35.6 cm in radius. If the tires are changed to 38.1 cm in radius, 
and the speedometer shows 88.0 km>h, how fast is the car actu-
ally going?
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 85. A circular hood is to be used over a piece of machinery. It is to be 
made from a circular piece of sheet metal 1.08 m in radius. A hole 
0.25 m in radius and a sector of central angle 80.0° are to be removed 
to make the hood. What is the area of the top of the hood?

 86. The chain on a chain saw is driven by a sprocket 7.50 cm in diam-
eter. If the chain is 108 cm long and makes one revolution in 
0.250 s, what is the angular velocity (in r>s) of the sprocket?

 87. An ultracentrifuge, used to observe the sedimentation of parti-
cles such as proteins, may rotate as fast as 80 000 r>min. If it 
rotates at this rate and is 7.20 cm in diameter, what is the linear 
velocity of a particle at the outer edge (in m/s to 3 significant 
digits)?

 88. A computer is programmed to shade in a sector of a pie chart 
2.44 cm in radius. If the perimeter of the shaded sector is 
7.32 cm, what is the central angle (in degrees) of the sector? 
See Fig. 8.54.

 73. The instantaneous power P (in W) input to a resistor in an 
alternating-current circuit is P = Pm sin2377t, where Pm is the 
maximum power input and t is the time (in s). Find P for 
Pm = 0.120 W and t = 2.00 ms. 1sin2u = 1sin u22.2

 74. The horizontal distance x through which a pendulum moves is 
given by x = a1u + sin u2 , where a is a constant and u is the 
angle between the vertical and the pendulum. Find x for 
a = 45.0 cm and u = 0.175.

 75. A sector gear with a pitch radius of 8.25 cm and a 6.60-cm arc of 
contact is shown in Fig. 8.52. What is the sector angle u1 in °2?

8.25 cm

6.60-cm
arcu

Fig. 8.52 

 76. Two pulleys have radii of 10.0 cm and 6.00 cm, and their centres 
are 40.0 cm apart. If the pulley belt is uncrossed, what must be the 
length of the belt?

 77. A special vehicle for travelling on glacial ice in Jasper National 
Park, Canada, has tires that are 1.36 m in diameter. If the vehicle 
travels at 5.60 km>h, what is the angular velocity (in r>min) of 
the tire?

 78. A rotating circular restaurant at the top of a hotel normally com-
pletes one revolution in 24.0 min. What is the angular accelera-
tion required to accelerate the restaurant from rest to normal 
speed in 5.00 min. 

 79. Find the velocity (in km>h) of the moon as it revolves about the 
earth. Assume it takes 28 days for one revolution at a distance of 
390 000 km from the earth.

 80. The stopboard of a shot-put circle is a circular arc 1.22 m in 
length. The radius of the circle is 1.06 m. What is the central 
angle (in degrees)?

 81. The longitude of Whitehorse, Yukon, is 135 W, and the longitude 
of St. Petersburg, Russia, is 30° E. Both cities are at a latitude of 
60° N. (a) Find the great circle distance (see page 254) from 
Whitehorse to St. Petersburg over the north pole. (b) Find the 
distance between them along the 60° N latitude arc. The radius of 
the earth is 6370 km. What do the results show?

 82. A piece of circular filter paper 15.0 cm in diameter is folded such 
that its effective filtering area is the same as that of a sector with 
central angle of 220°. What is the filtering area?

 83. To produce an electric current, a circular loop of wire of diameter 
25.0 cm is rotating about its diameter at 60.0 r>s in a magnetic 
field. What is the greatest linear velocity of any point on the loop 
(in m>s)?

 84. Find the area of the decorative glass panel shown in Fig. 8.53. The 
panel is made of two equal circular sectors and an isosceles triangle.

608 mm

1140 mmFig. 8.53 

2.44 cm

Fig. 8.54

15.0 mFig. 8.55 

 89. A Gothic arch, commonly used in medieval European structures, 
is formed by two circular arcs. In one type, each arc is one-sixth 
of a circle, with the centre of each at the base on the end of the 
other arc. See Fig. 8.55. Therefore, the width of the arch equals 
the radius of each arc. For such an arch, find the area of the open-
ing if the width is 15.0 m.

 90. The Trans-Alaska Pipeline was assembled in sections 12.2 m 
long and 1.22 m in diameter. If the depth of the oil in one hori-
zontal section is 0.305 m, what is the volume of oil in this 
section?

 91. A laser beam is transmitted with a “width” of 0.0008° and makes 
a circular spot of radius 2.50 km on a distant object. How far is 
the object from the source of the laser beam? Use Eq. (8.17).

 92. The planet Venus subtends an angle of 15″ to an observer on 
earth. If the distance between Venus and earth is 167 Gm, what is 
the diameter of Venus? Use Eq. (8.17).

Writing Exercise
 93. Write a paragraph explaining how you determine the units for the 

result of the following problem: An astronaut in a spacecraft cir-
cles the moon once each 1.95 h. If the altitude of the spacecraft is 
constant at 113 km, what is its velocity? The radius of the moon is 
1740 km. (What is the answer?)
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 CHAPTER 8  PRACTICE TEST

 1. Change 150° to radians in terms of p.

 2. Determine the sign of (a) sec 285°, (b) sin 245°, (c) cot 265°.
 3. Express sin 205° in terms of the sine of a positive acute angle. 

Do not evaluate.

 4. Find sin u and sec u if u is in standard position and the terminal 
side passes through 1 -9, 122 .

 5. An airplane propeller blade is 1.40 m long and rotates at 
2200 r>min. What is the linear velocity of a point on the tip of 
the blade?

 6. Given that 3.572 is the measure of an angle, express the angle in 
degrees.

 7. If  tan u = 0.2396, find u, in degrees, for 0° … u 6 360°.
 8. If  cos u = -0.8244 and  csc u 6 0, find u in radians for 

0 … u 6 2p.

 9. The floor of a sunroom is in the shape of a circular sector of arc 
length 16.0 m and radius 4.25 m. What is the area of the floor?

 10. A circular sector has an area of 38.5 cm2 and a diameter of 12.2 cm. 
What is the arc length of the sector?
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 The wind must be considered to 
find the proper heading for an air-
craft. In Section 9.5, we use vectors 
and oblique triangles to show how 
this may be done.

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Distinguish between a scalar 
and a vector

 Add vectors by the polygon 
method

 Add vectors by the 
parallelogram method

 Resolve a vector into its x- and 
y-components

 Add vectors by components
 Solve application problems 

involving vectors
 Solve oblique triangles using 

the law of sines and/or the law 
of cosines

 Solve application problems 
involving oblique triangles

In many applications, we often deal with such things as forces and velocities. To study 
them, both their magnitudes and directions must be known. In general, a quantity for 
which we must specify both magnitude and direction is called a vector.

In basic applications, a vector is usually represented by an arrow showing its magnitude and 
direction, although this was not common before the 1800s. In 1743, the French mathemati-
cian d’Alembert published a paper on dynamics in which he used some diagrams, but most of 
the text was algebraic. In 1788, the French mathematician Lagrange wrote a classic work on 
Analytical Mechanics, but the text was all algebraic and included no diagrams.

In the 1800s, calculus was used to advance the use of vectors, and in turn, these advance-
ments became very important in further developments in scientific fields such as electromag-
netic theory. Also in the 1800s, mathematicians defined a vector more generally and opened 
up study in new areas of advanced mathematics. In this text, we deal only with the basic 
meaning of a vector. However, a vector is an excellent example of a mathematical concept 
that came from a basic physics concept.

After studying vectors, we then develop methods of solving oblique triangles (triangles that 
are not right triangles). Although obviously not known in their modern forms, one of these 
methods, the law of cosines, was known to the Greek astronomer Ptolemy (90–168), and the 
other method, the law of sines, was known to Islamic mathematicians of the 1100s. In solving 
oblique triangles, we often use the trigonometric functions of obtuse angles.

Vectors are of great importance in many fields of science and technology, including physics, 
engineering, structural design, and navigation. One modern application is illustrated in the 
picture below. As with right triangles, the applications of oblique triangles are found in many 
fields of science and technology.

Vectors and 
Oblique Triangles9
©

 d
el

l/F
ot

ol
ia



 9.1 Introduction to Vectors 265

We deal with many quantities that may be described by a number that shows only the 
magnitude. These include lengths, areas, time intervals, monetary amounts, and tem-
peratures. Quantities such as these, described only by the magnitude, are known as 
scalars.

As we said on the previous page, many other quantities, called vectors, are fully 
described only when both the magnitude and direction are specified. The following 
example shows the difference between scalars and vectors.

 EXAMPLE  1  Scalars and vectors—application

A jet is travelling at 600 km>h. From this statement alone, we know only the speed of 
the jet. Speed is a scalar quantity, and it tells us only the magnitude of the rate. 
Knowing only the speed of the jet, we know the rate at which it is moving, but we do 
not know where it is headed.

If the phrase “in a direction 10° south of west” is added to the sentence about the jet, 
we specify the direction of travel as well as the speed. We then know the velocity of the 
jet; that is, the direction of travel as well as the rate at which it is moving. Velocity is a 
vector quantity. ■

 EXAMPLE  2  Action of two vectors—application

Consider a boat moving in a river. We will assume that the boat is driven by a motor 
that can move it at 8 km>h in still water and that the river’s current is going 6 km>h 
downstream, as shown in Fig. 9.1. We quickly see that the movement of the boat 
depends on the direction in which it is headed. If it heads downstream, it moves at 
14 km>h, for the water is moving at 6 km>h and the boat moves at 8 km>h with respect 
to the water. If it heads upstream, however, it moves only at 2 km>h, since the river is 
acting directly against the motor. If the boat heads directly across the river, the point it 
reaches on the other side is not directly opposite the point from which it started. This is 
so because the river is moving the boat downstream at the same time the boat moves 
across the river.

Checking this last case further, assume that the river is 0.4 km wide where the boat 
is crossing. It takes 0.05 h 10.4 km , 8 km>h = 0.05 h2  to cross. In 0.05 h, the river 
will carry the boat 0.3 km 10.05 h * 6 km>h = 0.3 km2  downstream. This means the 
boat went 0.3 km downstream as it went 0.4 km across the river. From the Pythagorean 
theorem, we see that it went 0.5 km from its starting point to its finishing point:

 d2 = 0.42 + 0.32 = 0.25
 d = 0.5 km

Since the 0.5 km was travelled in 0.05 h, the magnitude of the velocity (the speed) of 
the boat was actually

v =
d
t

=
0.5 km
0.05 h

= 10 km>h

Also, note that the direction of this velocity can be represented along a line that makes 
an angle u with the line directed directly across the river, as shown in Fig. 9.1. We can 
find this angle by noting that

 tan u =
0.3 km
0.4 km

= 0.75

 u = tan-1 0.75 = 37°

Therefore, when headed directly across the river, the boat’s velocity is 10 km>h 
directed at an angle of 37° downstream from a line directly across the river. ■

 9.1 Introduction to Vectors

0.4 km

0.3 km

d = 0.5 km

u Motor
8 km/h

River
6 km/h

Fig. 9.1 
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ADDITION OF VECTORS
We have just seen two velocity vectors being added. Note that these vectors are not 
added the way numbers are added. We must take into account their directions as well as 
their magnitudes. Reasoning along these lines, let us now define the sum of two vectors.

We will represent a vector quantity by a letter printed in boldface type. The same 
letter in italic (lightface) type represents the magnitude only. Thus, A is a vector of 
magnitude A. In handwriting, one usually places an arrow over the letter to represent a 
vector, such as A

>
.

Let A and B represent vectors directed from O to P and P to Q, respectively (see 
Fig. 9.2). The vector sum A + B is the vector R, from the initial point O to the termi-
nal point Q. Here, vector R is called the resultant. In general, a resultant is a single 
vector that is the vector sum of any number of other vectors.

There are two common methods of adding vectors by means of a diagram: the poly-
gon method and the parallelogram method. For both methods, vectors must be drawn 
with reasonable accuracy and moved to specific locations without changing their mag-
nitude and direction.

The polygon method is illustrated in Fig. 9.3. It can be described as follows.

Q

P

R

O
A

B

R = A + B

Fig. 9.2 

Since a vector is determined by its 
magnitude and direction, two vectors 
in different locations are considered 
the same if they have the same mag-
nitude and direction.

LEARNING T IP

To add two vectors A and B, move B so that its tail touches the head of A. The 
vector sum A + B is the resultant vector R, which is drawn from the tail of A to 
the head of B.

Similarly, to add three or more vectors, the initial point of the second vector is 
placed at the terminal point of the first vector, the initial point of the third vector 
is placed at the terminal point of the second vector, and so on. The resultant is the 
vector from the initial point of the first vector to the terminal point of the last 
vector.

Note that the order in which vectors are added does not matter.

Fig. 9.3 

R

R

A

B

A

B

A

B

A

A

B

B

R = A + B

(1) (2)

Tail to
head

Tail
of A

Head
of B

Magnitude and
direction of B

unchanged

(3)

+ = =

or

 EXAMPLE  3  Adding vectors—polygon method

The addition of vectors A, B, and C is shown in Fig. 9.4.

Practice Exercise

1.  For the vectors in Example 3, show that 
R = B + C + A.

Fig. 9.4 

A

B
C

A A

R RC

CB

B

R = A + B + C R = A + C + B

Tail of
!rst Tail of

!rst

Head of
last

Head of
last

Other
combinations

are also possible.

or

 ■
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The parallelogram method is illustrated in Example 4. It can be described as 
follows.

To add two vectors A and B, move both vectors tail to tail, so that they have a 
common initial point. Let the vectors be the sides of a parallelogram. The vector 
sum A + B is the resultant vector R, which corresponds to the diagonal of the 
parallelogram.

 EXAMPLE  4  Adding vectors—parallelogram method

The addition of vectors A and B is shown in Fig. 9.5.

Scalar Multiple of Vector If vector C is in the same direction as vector A and C has a magnitude n times that 
of A, then C = nA, where the vector nA is called the scalar multiple of vector A. 
This means that 2A is a vector that is twice as long as A but is in the same direction. 
Note carefully that only the magnitudes of A and 2A are different, and their directions 
are the same. The addition of scalar multiples of vectors is illustrated in the following 
example.

 EXAMPLE  5  Scalar multiple of a vector

For vectors A and B in Fig. 9.6, find vector 3A + 2B.

Subtraction of Vectors Vector B is subtracted from vector A by reversing the direction of B and proceeding 
as in vector addition. Thus, A - B = A + 1 -B2 , where the minus sign indicates 
that vector -B has the opposite direction of vector B. Vector subtraction is illustrated 
in the following example.

 EXAMPLE  6  Subtracting vectors

For vectors A and B in Fig. 9.7, find vector 2A - B.

Practice Exercise

2.  For the vectors in Example 6, find vector 
B - 3A.

Among the most important applications of vectors is that of the forces acting on a 
structure or on an object. The next example shows the addition of forces by using the 
parallelogram method.

Fig. 9.5 

A

A

B
B

R = A + B(1) (2)

Parallelogram

A

B

(3)

Diagonal

A

B R

(4)

Tail to
tail

 ■

Fig. 9.6 

A B
R = 3A + 2B

3A

R

2B

 ■

Fig. 9.7 

A B

R = 2A − B
2A + (−B)

2A

R −B

 ■
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 EXAMPLE  7  Adding vectors—application

Two persons pull horizontally on ropes attached to a car mired in mud. One person 
pulls with a force of 500 N directly to the right, while the other person pulls with a 
force of 350 N at an angle of 40° from the first force, as shown in Fig. 9.8(a). Find the 
resultant force on the car.

We make a scale drawing of the forces as shown in Fig. 9.8(b), mea-
suring the magnitudes of the forces with a ruler and the angles with a pro-
tractor. (The scale drawing of the forces is made larger and with a different 
scale than that in Fig. 9.8(a) in order to get better accuracy.) We then com-
plete the parallelogram and draw in the diagonal that represents the result-
ant force. Finally, we find that the resultant force is about 800 N and that it 
acts at an angle of about 16° from the first force. ■

Two other important vector quantities are velocity and displacement. Velocity as a 
vector is illustrated in Examples 1 and 2. The displacement of an object is the change 
in its position. Displacement is given by the distance from a reference point and the 
angle from a reference direction. The following example illustrates the difference 
between distance and displacement.

 EXAMPLE  8  Adding vectors—displacement

To avoid a storm, a jet travels at 60° north of east from Detroit for 310 km and then 
turns to a direction of 10° north of east for 450 km to Ottawa. Find the displacement of 
Ottawa from Detroit.

We make a scale drawing in Fig. 9.9 to show the route taken by the jet. Measuring 
distances with a ruler and angles with a protractor, we find that Ottawa is about 680 km 
from Detroit, at an angle of about 30° north of east. By giving both the magnitude and 
the direction, we have given the displacement.

If the jet returned directly from Ottawa to Detroit, its displacement from Detroit 
would be zero, although it travelled a distance of about 1440 km. ■

350 N 800 N

500 N

16°

Car
(b)

40°

350 N

500 N(a)

Fig. 9.8 

Fig. 9.9 

450 km

31
0 

km

680 km

Detroit

Ottawa

10°

60°
30°

EXERCISES 9.1

In Exercises 1–4, find the resultant vectors if the given changes are 
made in the indicated examples of this section.

 1. In Example 3, what is the resultant of the three vectors if the 
direction of vector A is reversed?

 2. In Example 5, for vectors A and B, what is vector 2A + 3B?

 3. In Example 6, for vectors A and B, what is vector 2B - A?

 4. In Example 7, if 20° replaces 40°, what is the resultant force?

In Exercises 5–8, determine whether a scalar or a vector is described 
in (a) and (b). Explain your answers.

 5. (a) A soccer player runs 15 m from the centre of the field.

  (b)  A soccer player runs 15 m from the centre of the field toward 
the opponents’ goal.

 6. (a) A small-craft warning reports 35 km>h winds.

  (b) A small-craft warning reports 35 km>h winds from the north.

  7. (a)  An arm of an industrial robot pushes with a 10-N force down-
ward on a part.

  (b)  A part is being pushed with a 10-N force by an arm of an 
industrial robot.

 8. (a)  A ballistics test shows that a bullet hit a wall at a speed of 
100 m>s.

  (b)  A ballistics test shows that a bullet hit a wall at a speed of 
100 m>s perpendicular to the wall.

In Exercises 9–14, add the given vectors by drawing the appropriate 
resultant.

 9.  10.  11. 

 12.  13.  14. 
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In Exercises 15–18, draw the given vectors and find their sum 
graphically. The magnitude is shown first, followed by the direction 
as an angle in standard position.

 15. 3.6 cm, 0°; 4.3 cm, 90° 16. 2.3 cm, 45°; 5.2 cm, 120°
 17. 6.0 cm, 150°; 1.8 cm, 315° 18. 7.5 cm, 240°; 2.3 cm, 30°

In Exercises 19–40, find the indicated vector sums and differences 
with the given vectors by means of diagrams. (You might find graph 
paper to be helpful.)

  19. A + B 20. B + C 21. C + D 22. D + E

  23. A + C + E 24. B + D + A 25. 2A + D + E

  26. B + E + A 27. B + 3E 28. A + 2C

  29. 3C + E 30. 2D + A  31. A - B

  32. C - D  33. E - B  34. C - 2A

  35. 3B + 1
2  A  36. 2B - 3

2 E  37. B + 2C - E

  38. A + 2D - 3B  39. C - B - 3
4 A  40. D - 2C - 1

2 E

In Exercises 41–48, solve the given problems. Use a ruler and pro-
tractor as in Examples 7 and 8.

 41. Two forces that act on an airplane 
wing are called the lift and the 
drag. Find the resultant of these 
forces acting on the airplane wing 
in Fig. 9.10.

Lift ! 4200 N

Drag ! 1600 N

Fig. 9.10 

Using diagrams is useful in developing an understanding of vectors. However, unless 
the diagrams are drawn with great care, the results we get are not too accurate. 
Therefore, other methods are needed in order to get more accurate results.

In this section, we show how a given vector can be written as the sum of two other 
vectors, with any required degree of accuracy. In the next section, we show how this 
lets us add vectors to get their sum with the required accuracy in the result.

Two vectors that, when added together, have a resultant equal to the original vector 
are called components of the original vector. In the illustration of the boat in Section 9.1, 
the velocities of 8 km>h across the river and 6 km>h downstream are components of the 
10 km>h vector directed at the angle u.

Certain components of a vector are of particular importance. If the initial point of a 
vector is placed at the origin of a rectangular coordinate system and its direction is 
given by an angle in standard position, we may find its x- and y-components. These 
components are vectors directed along the axes that, when added together, equal the 
given vector. The initial points of these components are at the origin, and the terminal 
points are at the points where perpendicular lines from the terminal point of the given 
vector cross the axes. Finding these component vectors is called resolving the vector 
into its components.
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Finding x- and y
of Sign of Component

Resolving a Vector into Components

BA C D E

 42. Two electric charges create an electric field intensity, a vector 
quantity, at a given point. The field intensity is 30 kN>C to the 
right and 60 kN>C at an angle of 45° above the horizontal to the 
right. Find the resultant electric field intensity at this point.

 43. A ski tow is moving skiers vertically upward at 24 m>min and 
horizontally at 44 m>min. What is the velocity of the tow?

 44. A small plane travels at 180 km>h in still air. It is headed due 
south in a wind of 50 km>h from the northeast. What is the resul-
tant velocity of the plane?

 45. A driver takes the wrong road at an intersection and travels 4 km 
north, then 6 km east, and finally 10 km to the southeast to reach 
the home of a friend. What is the displacement of the friend’s 
home from the intersection?

 46. A ship travels 20 km in a direction of 30° south of east and then 
turns due south for another 40 km. What is the ship’s displace-
ment from its initial position?

 47. Three ropes hold a helium-filled balloon in place, but two of the 
ropes break. The remaining rope holds the balloon with a tension of 
510 N at an angle of 80° with the ground due to a wind. The weight 
(a vertical force) of the balloon and contents is 400 N, and the 
upward buoyant force is 900 N. The wind creates a horizontal force 
of 90 N on the balloon. What is the resultant force on the balloon?

 48. While unloading a crate weighing 610 N, the chain from a crane 
supports it with a force of 650 N at an angle of 20° from the verti-
cal. What force must a horizontal rope exert on the crate so that 
the total force (including its weight) on the crate is zero?

Answers to Practice Exercises

1. Same as R in Fig. 9.4.  2. (Half scale)
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 EXAMPLE  1  Components of a first-quadrant vector

Find the x- and y-components of the vector A shown in Fig. 9.11. The magnitude of A 
is 7.25.

From the figure, we see that Ax, the magnitude of the x-component of Ax, is related 
to A by

 
Ax

A
= cos 62.0°

 Ax = A cos 62.0°

In the same way, Ay, the magnitude of the y-component of Ay, is related to A (Ay could 
be placed along the vertical dashed line) by

 
Ay

A
= sin 62.0°

 Ay = A sin 62.0°

From these relations, knowing that A = 7.25, we have

Ax = 7.25 cos 62.0° = 3.40

Ay = 7.25 sin 62.0° = 6.40

This means that the x-component is directed along the x-axis to the right and has a 
magnitude of 3.40. Also, the y-component is directed along the y-axis upward and its 
magnitude is 6.40. These two component vectors can replace vector A, since the effect 
they have is the same as A. ■

 EXAMPLE  2  Components of a second-quadrant vector

Resolve a vector 14.4 units long and directed at an angle of 126.0° into its x- and  
y-components. See Fig. 9.12.

Placing the initial point of the vector at the origin and putting the angle in standard 
position, note that the vector directed along the x-axis, Vx, is related to the vector V of 
magnitude V  by

magnitude of vector

Vx = V cos 126.0°
standard-position angle

Since the vector directed along the y-axis, Vy, could also be placed along the vertical 
dashed line, it is related to the vector V by

Vy = V sin 126.0°

Thus, the vectors Vx and Vy have the magnitudes

Vx = 14.4 cos 126.0° = -8.46  Vy = 14.4 sin 126.0° = 11.6

Therefore, we have resolved the given vector into two components: one, directed along 
the negative x-axis, of magnitude 8.46, and the other, directed along the positive y-axis, 
of magnitude 11.6.

It is also possible to use the reference angle, as long as the proper sign is attached to 
each component. In this case, the reference angle is 54.0°, and therefore

Vx = -14.4 cos 54.0° = -8.46  Vy = +14.4 sin 54.0° = 11.6

directed along negative x-axis directed along positive y-axis

The minus sign shows that the x-component is directed to the left. ■

Fig. 9.11 

y

x

Ay

Ax

A
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x

Vy

Vx

V
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54.0°
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V = 14.4

Fig. 9.12 

Practice Exercise

1.  For the vector in Example 1, change the 
angle to 25.0° and find the x- and  
y-components.

Practice Exercise

2.  For the vector in Example 2, change the 
angle to 306.0° and find the x- and  
y-components.
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From Examples 1 and 2, we can see that the steps used in finding the x- and  
y-components of a vector are as follows:

 EXAMPLE  3  Components of a third-quadrant vector

Resolve vector A, of magnitude 375.4 and direction u = 205.32°, into its x- and  
y-components. See Fig. 9.13.

By placing A such that u is in standard position, we see that

Ax = A cos 205.32° = 375.4 cos 205.32° = -339.3

and

Ay = A sin 205.32° = 375.4 sin  205.32° = -160.5

The angle 205.32° places the vector in the third quadrant, and each of the compo-
nents is directed along the negative axis. This must be the case for a third-quadrant 
angle. Also, the reference angle is 25.32°, and we see that the magnitude of Ax is 
greater than the magnitude of Ay, which must be true for a reference angle that is 
less than 45°. ■

 EXAMPLE  4  Vector components—application to tension

The tension T in a cable supporting the sign shown in Fig. 9.14(a) is 85.0 N. If the 
cable makes an angle of 53.5° with the horizontal, find the horizontal and vertical com-
ponents of the tension.

The tension is the force the cable exerts on the sign. 
Showing the tension in Fig. 9.14(b), we see that

 Ty = T sin 53.5° = 85.0 sin 53.5°
 = 68.3 N

 Tx = T cos 53.5° = 85.0 cos 53.5°
 = 50.6 N

Note that Ty 7 Tx, which should be the case for an 
acute angle greater than 45°. ■

directed along  
negative axis

Steps Used in Finding the x@ and y@Components of a Vector
1. Place vector A such that u is in standard position.

2.  Calculate Ax and Ay from Ax = A  cos u and Ay = A  sin u. We may use the 
reference angle if we note the direction of the component.

3.  Check the components to see if each is in the correct direction and has a mag-
nitude that is proper for the reference angle.

y

x

Ay

Ax
205.32°

25.32° O

A = 375.4

Fig. 9.13 
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x

Ty

T

Tx

53.5°
53.5°

(a) (b)
Sign 0

T =
 8

5.
0 

N

Fig. 9.14 

EXERCISES 9.2

In Exercises 1–4, find the component vectors if the given changes are 
made in the indicated examples of this section.

 1. In Example 2, change 126.0° to 216.0°.
 2. In Example 3, change 205.32° to 295.32°.
 3. In Example 3, change 205.32° to 270.00°.
 4. In Example 4, change 53.5° to 45.0°.

In Exercises 5–10, find the horizontal and vertical components of the 
vectors shown in the given figures. In each, the magnitude of the 
vector is 750.

 5.   6. 7. y

x28.0°
0

y

x
105.0°

0

y

x
242.3°

0
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 8.  9. 10.  27. The end of a robot arm is 1.20 m on a line 78.6° above the hori-
zontal from the point where it does a weld. What are the compo-
nents of the displacement from the end of the robot arm to the 
welding point?

 28. The tension in a rope attached to a boat is 55.0 N. The rope is 
attached to the boat 4.00 m below the level at which it is being 
drawn in. At the point where there is 12.0 m of rope out, what 
force tends to bring the boat toward the wharf, and what force 
tends to raise the boat? See Fig. 9.17.

y

x
307.6°

y

x
180º

y

x
270º

In Exercises 11–20, find the x- and y-components of the given vectors 
by use of the trigonometric functions. The magnitude is shown first, 
followed by the direction as an angle in standard position.

 11. 8.60 N, u = 68.0° 12. 9750 N, u = 243.0°
 13. 76.8 m>s, u = 145.0° 14. 0.0998 dm>s, u = 296.0°
 15. 9040 mm>s2, u = 270.0° 16. 16.4 cm>s2, u = 156.5°
 17. 2.65 mN, u = 197.3° 18. 678 N, u = 22.5°
 19. 0.8734 dm, u = 157.83° 20. 509.4 m, u = 360.0°

In Exercises 21–34, find the required horizontal and vertical 
components of the given vectors.

 21. A nuclear submarine approaches the surface of the ocean at 
25.0 km>h and at an angle of 17.3° with the surface. What are the 
components of its velocity? See Fig. 9.15.

 22. Water is flowing downhill at 8.0 m>s through a pipe that is at an 
angle of 66.4° with the horizontal. What are the components of its 
velocity?

 23. A car is being unloaded from a ship. It is supported by a cable 
from a crane and guided into position by a horizontal rope. If the 
tension in the cable is 12 400 N and the cable makes an angle of 
3.5° with the vertical, what are the weight W of the car and the 
tension T  in the rope? (The weight of the cable is negligible to 
that of the car.) See Fig. 9.16.

25.0 km/h

17.3°

Fig. 9.15 

12 400 N

3.5°

W

T

Fig. 9.16 

 24. A car travelling at 25 km>h hits a stone wall at an angle of 65° 
with the wall. What is the component of the car’s velocity that is 
perpendicular to the wall?

 25. With the sun directly overhead, a plane is taking off at 125 km>h 
at an angle of 22.0° above the horizontal. How fast is the plane’s 
shadow moving along the runway?

 26. A jet is 145 km at a position 37.5° north of east of Vancouver. 
What are the components of the jet’s displacement from 
Vancouver?

55.0 N

12.0 m
4.00 m

Fig. 9.17 

 29. A person applies a force of 210 N perpendicular to a jack handle 
that is at an angle of 25° above the horizontal. What are the hori-
zontal and vertical components of the force?

 30. A water skier is pulled up the ramp shown in Fig. 9.18 at 8.5 m>s. 
How fast is the skier rising when leaving the ramp?

2.9 m

0.76 m

Fig. 9.18 

 31. A wheelbarrow is being pushed with a force of 310 N directed along 
the handles, which are at an angle of 20° above the horizontal. What 
is the effective force for moving the wheelbarrow forward?

 32. Two upward forces are acting on a bolt. One force of 60.5 N acts 
at an angle of 82.4° above the horizontal, and the other force of 
37.2 N acts at an angle of 50.5° below the first force. What is the 
total upward force on the bolt? See Fig. 9.19.

50.5°

60.5 N

Bolt

37.2 N
82.4°

Fig. 9.19 

 33. Vertical wind shear in the lowest 100 m above the ground is of 
great importance to aircraft when taking off or landing. It is 
defined as the rate at which the wind velocity changes per metre 
above ground. If the vertical wind shear at 50 m above the ground 
is 0.75 1km>h2 >m directed at angle of 40° above the ground, 
what are its vertical and horizontal components?

 34. At one point, the Pioneer space probe was entering the gravitational 
field of Jupiter at an angle of 2.55° below the horizontal with a veloc-
ity of 29 870 km>h. What were the components of its velocity?

Answers to Practice Exercises

1. Ax = 6.57, Ay = 3.06  2. Vx = 8.46, Vy = -11.6
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Now that we have developed the meaning of the components of a vector, we are able to 
add vectors to any degree of required accuracy. To do this, we use the components of 
the vector, the Pythagorean theorem, and the tangent of the standard-position angle of 
the resultant. In the following example, two vectors at right angles are added.

 EXAMPLE  1  Adding vectors at right angles

Add vectors A and B, with A = 14.5 and B = 9.10. The vectors are at right angles, as 
shown in Fig. 9.20.

We can find the magnitude R of the resultant vector R by use of the Pythagorean 
theorem. This leads to

 R = 2A2 + B2 = 2114.522 + 19.1022

 = 17.1

We now determine the direction of the resultant vector R by specifying its direction as 
the angle u in Fig. 9.20, that is, the angle that R makes with vector A. Therefore,

  tan u =
B
A

=
9.10
14.5

 u = 32.1°

Therefore, we see that R is a vector of magnitude R = 17.1 and in a direction 32.1° 
from vector A.

Note that Fig. 9.20 shows vectors A and B as horizontal and vertical, respec-
tively. This means they are the horizontal and vertical components of the resultant 
vector R. However, we would find the resultant of any two vectors at right angles in 
the same way. ■

 9.3 Vector Addition by Components
 

Adding x-Components and  
Adding y  
Standard-Position Angle of Resultant

Fig. 9.20 

u

A

B
R

Remember, a vector is not completely specified unless both its magnitude and its direction 
are specified. A common error is to determine the magnitude, but not to find the angle u 
that is used to define its direction.

COMMON ERROR

If the vectors being added are not at right angles, the resultant is found by first finding 
the components of the given vectors and then combining components. The general proce-
dure will be illustrated in the following examples and can be summarized as follows.

Procedure for Adding Vectors by Components
1.  Place each vector with its tail at the origin.

2. Resolve each vector into its x- and y-components.

3.  Add the magnitudes of the x-components of the given vectors to obtain Rx, 
the magnitude of the x-component of the resultant.

4.  Add the magnitudes of the y-components of the given vectors to obtain Ry, 
the magnitude of the y-component of the resultant.

5.  Find the magnitude of the resultant R as

R = 2R2
x + R2

y

6.  Find the standard-position angle u for the resultant R. If the angle is not in 
the first quadrant, find the reference angle uref first as

uref = tan-1 ` Ry

Rx
`

 Depending on the quadrant, the required angle u is then found through Eq. (8.6).



274 CHAPTER 9 Vectors and Oblique Triangles

 EXAMPLE  2  Adding by first combining components

Find the resultant of two vectors A and B such that A = 1200, uA = 270.0°, B = 1750,  
and uB = 115.0°.

First, place the vectors on a coordinate system with the tail of each at the origin as 
shown in Fig. 9.21(a). Then resolve each vector into its x- and y-components, as shown 
in Fig. 9.21(b) and as calculated below. (Note that A is vertical and has no horizontal 
component.) Next, the components are combined, as in Fig. 9.21(c) and as calculated. 
Finally, the magnitude of the resultant and the angle u (to determine the direction), as 
shown in Fig. 9.21(d), are calculated.

Ax = A cos 270.0° = 1200 cos 270.0° = 0

Bx = B cos 115.0° = 1750 cos 115.0° = -739.6

Ay = A sin 270.0° = 1200 sin 270.0° = -1200

By = B sin 115.0° = 1750 sin 115.0° = 1586

Rx = Ax + Bx = 0 - 739.6 = -739.6

Ry = Ay + By = -1200 + 1586 = 386

R = 2Rx
2 + Ry

2 = 21 -739.622 + 3862 = 834

 tan uref = ` Ry

Rx
` =

386
739.6

   uref = 27.6° 

In the last line of the display, we subtracted uref from 180° because Rx is negative and 
Ry is positive, placing u in the second quadrant. Thus, the resultant has a magnitude of 
834 and is directed at a standard-position angle of 152.4°.

Note that if we obtained the tangent of u directly from Ry>Rx, the calculator would give 
us an angle of -27.6°, where we would have to recognize 27.6° as the reference angle. 
Instead, we obtain the reference angle right away by disregarding the signs of Rx and Ry.

The values in this example are shown rounded off. However, to reduce the accumu-
lation of rounding errors when using the calculator, Rx and Ry are each calculated in 
one step and stored for the calculation of R and u.

When we found Ry, we saw that we could do a vector addition as a scalar addition. 
Also, since the magnitude of the components and the resultant are much smaller than 
either of the original vectors, this vector addition would have been difficult to do accu-
rately by means of a diagram. ■

 EXAMPLE  3  Adding by first combining components

Find the resultant R of the two vectors shown in Fig. 9.22(a), A of magnitude 8.075 
and standard-position angle of 57.26° and B of magnitude 5.437 and standard-position 
angle of 322.15°.

In Fig. 9.22(b), we show the components of vectors A and B, and then in Fig. 9.22(c), 
we show the resultant and its components.

180° - 27.6° 

Fig. 9.21(b)

Fig. 9.21(c)

Fig. 9.21(d)

u = 152.4°
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x
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u
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B
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Ry

Rx

y

x

R

Fig. 9.21 

Practice Exercise

1.  In Example 2, change 270° to 90° and 
then add the vectors.
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Vector Magnitude Angle Magnitude of x-Component Magnitude of y-Component

A 8.075 57.26° Ax = 8.075 cos 57.26° = 4.367 Ay = 8.075 sin 57.26° =  6.792

B 5.437 322.15° Bx = 5.437 cos 322.15° = 4.293 By = 5.437 sin 322.15° = -3.336

R     Rx = Ax + Bx      = 8.660 Ry = Ay + By     =  3.456

 Fig. 9.22 
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 R = 2Rx
2 + Ry

2 = 218.66022 + 13.45622 = 9.324

 u = tan-1 
Ry

Rx
= tan-1a3.456

8.660
b = 21.76°

The resultant vector is 9.324 units long and is directed at a standard-position angle of 
21.76°, as shown in Fig. 9.22(c). We know that the resultant is in the first quadrant 
since both Rx and Ry are positive. Once again, the values are shown rounded, but values 
have been stored for use in the calculation of R and u. ■

Some general formulas can be derived from the previous examples. For a given 
vector A, directed at an angle u, of magnitude A, and with components of magnitude 
Ax and Ay, we have the following relations:

don’t forget the direction

 Ax = A cos u Ay = A sin u (9.1)

 A = 2Ax
2 + Ay

2  (9.2)

 uref = tan-1 
# Ay #
# Ax #

 (9.3)

The value of u is found by using the reference angle from Eq. (9.3) and the quadrant in 
which the resultant lies.

 EXAMPLE  4  Addition of three vectors

Find the resultant of the three given vectors in Fig. 9.23. The magnitudes of these vec-
tors are T = 422, U = 405, and V = 210.

Practice Exercise

2.  In Example 4, find the resultant of vectors 
U and V. (Do not include vector T.)
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Fig. 9.23 
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We could change the given angles to standard-position angles. However, we will 
use the given angles, being careful to give the proper sign to each component. In the 
following table, we show the x- and y-components of the given vectors, and the sums 
of these components give us the components of R.

Vector Magnitude Ref. Angle Magnitude of x-Component Magnitude of y-Component

T 422 0° 422 cos 0° =  422.0 422 sin 0° =     0.0

U 405 55.0° -405 cos 55.0° = -232.3 -405 sin 55.0° = -331.8

V 210 70.0° -210 cos 70.0° = -71.8 +210 sin 70.0° =   197.3

R     117.9 -134.5

From these components, we find R and uref:

R = 2R2
x + R2

y = 21117.922 + 1 -134.522 = 179

uref = tan-1 # -134.5 #
# 117.9 #

= 48.8∘

Since Rx is positive and Ry is negative, we know that u is a fourth-quadrant angle. 
Therefore, to find u, we subtract uref from 360°. This means

u = 360° - 48.8° = 311.2° ■

EXERCISES 9.3

In Exercises 1 and 2, find the resultant vectors if the given changes 
are made in the indicated examples of this section.

 1. In Example 2, find the resultant if uA is changed to 0°.
 2. In Example 3, find the resultant if uB is changed to 232.15°.

In Exercises 3–6, vectors A and B are at right angles. Find the 
magnitude and direction (the angle from vector A) of the resultant.

 3. A = 14.7 4. A = 592
  B = 19.2  B = 195

 5. A = 3.086 6. A = 1734 
  B = 7.143  B = 3297

In Exercises 7–14, with the given sets of components, find R and u.

 7. Rx = 5.18, Ry = 8.56 8. Rx = 89.6, Ry = -52.0

 9. Rx = -0.982, Ry = 2.56 10. Rx = -729, Ry = -209

 11. Rx = -646, Ry = 2030 12. Rx = -31.2, Ry = -41.2

 13. Rx = 6941, Ry = -1246 14. Rx = 7.627, Ry = -6.353

In Exercises 15–30, add the given vectors by components.

 15. A = 18.0, uA = 0.00° 16. F = 154, uF = 90.0°
  B = 12.0, uB = 27.0°  T = 128, uT = 43.0°
 17. C = 5650, uC = 76.0° 18. A = 6.89, uA = 123.0°
  D = 1280, uD = 160.0°  B = 29.0, uB = 260.0°
 19. A = 9.821, uA = 34.27° 20. E = 1653, uE = 36.37°
  B = 17.45, uB = 752.50°  F = 9807, uF = 253.06°
 21. A = 21.9, uA = 236.2° 22. R = 630, uR = 189.6°
  B = 96.7, uB = 11.5°  F = 176, uF = 320.1°
  C = 62.9, uC = 143.4°  T = 324, uT = 75.4°

 23. U = 0.364, uU = 175.7° 24. A = 6.4, uA = 126°
  V = 0.596, uV = 319.5°  B = 5.9, uB = 238°
  W = 0.129, uW = 100.6°  C = 3.2, uC = 72°
 25. The vectors in Fig. 9.24. 26. The vectors in Fig. 9.25.
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 27. The vectors in Fig. 9.26. 28. The vectors in Fig. 9.27.

Fig. 9.26 

y

x
30.8°

53.0°

45.4°

302

155

212

Fig. 9.27 

y

x

25.0°

42.2°

62.6°
22.3

41.5

51.6



 9.4 Applications of Vectors 277

 29. In order to move an ocean liner into the channel, three tugboats exert 
the forces shown in Fig. 9.28. What is the resultant of these forces?

25 000 N

29 000 N

16 000 N

15.5°
22.2°

Fig. 9.28 
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 30. A naval cruiser on maneuvers travels 54.0 km at 18.7° west of 
north, then turns and travels 64.5 km at 15.6° south of east, and 
finally turns to travel 72.4 km at 38.1° east of south. Find its dis-
placement from its original position. See Fig. 9.29.

In Exercises 31–34, solve the given problems.

 31. The angle between two forces of 17 N and 25 N is 37°. What is 
the magnitude of the resultant force?

 32. What is the magnitude of a velocity vector that makes an angle of 
18.0° with its horizontal component of 420 km>h?

 33. The angle between two equal-momentum vectors of 15.0 kg # m>s 
in magnitude is 72.0°. What is the magnitude of the resultant?

 34. The resultant R of displacements A and B is perpendicular to A. 
If A = 25 m, B = 35 m, and R = 25 m, find the angle between 
A and B.

Answers to Practice Exercises

1. R = 2880, u = 104.9°  2. R = 332, u = 203.8°

In Section 9.1, we introduced the important vector quantities of force, velocity, and 
displacement, and we found vector sums by use of diagrams. Now, we can use the 
method of Section 9.3 to find sums of these kinds of vectors and others and to use them 
in various types of applications.

 EXAMPLE  1  Forces at right angles

In centring a figurine on a table, two persons apply forces on it. These forces are at 
right angles and have magnitudes of 6.00 N and 8.00 N. The angle between their lines 
of action is 90.0°. What is the resultant of these forces on the figurine?

By means of an appropriate diagram (Fig. 9.30), we may better visualize the actual 
situation. Note that a good choice of axes (unless specified, it is often convenient to 
choose the x- and y-axes to fit the problem) is to have the x-axis in the direction of the 
6.00-N force and the y-axis in the direction of the 8.00-N force. (This is possible since 
the angle between them is 90°.) With this choice, note that the two given forces will be 
the x- and y-components of the resultant. Therefore, we arrive at the following results:

 Fx = 6.00 N, Fy = 8.00 N

 F = 216.0022 + 18.0022 = 10.0 N

 u = tan-1 
Fy

Fx
= tan-1 

8.00
6.00

 = 53.1°

The resultant has a magnitude of 10.0 N and acts at an angle of 53.1° from the 6.00-N 
force. ■
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Other Applications

Fig. 9.30 
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■ The metric unit of force, the newton (N), is 
named for the great English mathematician and 
physicist Sir Isaac Newton (1642–1727). His 
name will appear on other pages of this text, as 
some of his many accomplishments are noted.
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 EXAMPLE  2  Ship displacement

A ship sails 32.50 km due east and then turns 41.25° north of east. After sailing another 
16.18 km, where is it with reference to the starting point?

In this problem, we are to find the resultant displacement of the ship from the two 
given displacements. The problem is diagrammed in Fig. 9.31, where the first displace-
ment is labelled vector A and the second as vector B.

Since east corresponds to the positive x-direction, note that the x-component of 
the resultant is A + Bx and the y-component of the resultant is By. Therefore, we 
have the following results:

 Rx = A + Bx = 32.50 + 16.18 cos 41.25°
 = 32.50 + 12.16

 = 44.66 km

 Ry = 16.18  sin 41.25° = 10.67 km

 R = 2144.6622 + 110.6722 = 45.92 km

 u = tan-1 
10.67
44.66

 = 13.44°

Therefore, the ship is 45.92 km from the starting point, in a direction 13.44° north 
of east. ■

 EXAMPLE  3  Airplane velocity

An airplane headed due east is in a wind blowing from the southeast. What is the result-
ant velocity of the plane with respect to the surface of the earth if the velocity of the plane 
with respect to the air is 600 km>h and that of the wind is 100 km>h? See Fig. 9.32.

Let vpx be the velocity of the plane in the x-direction (east), vpy the velocity of 
the plane in the y-direction, vwx the x-component of the velocity of the wind, vwy the  
y-component of the velocity of the wind, and vpa the velocity of the plane with respect 
to the air. Therefore,

vpx = vpa + vwx = 600 - 1001cos 45.0°2 = 529 km>h

 vpy = vwy = 1001sin 45.0°2 = 70.7 km>h

 v = 2152922 + 170.722 = 534 km>h

 u = tan-1 
vpy

vpx
= tan-1 

70.7
529

 = 8°

The plane is travelling at 500 km>h and is flying in a direction 8° north of east. From this, 
we observe that a plane does not necessarily head in the direction of its destination. ■

As we have seen, an important vector quantity is the force acting on an object. One 
of the most important applications of vectors involves forces that are in equilibrium. 
For an object to be in equilibrium, the net force acting on it in any direction must be 
zero. This condition is satisfied if the sum of the x-components of the force is zero and 
the sum of the y-components of the force is also zero. The following two examples 
illustrate forces in equilibrium.

 EXAMPLE  4  Forces on a block on an inclined plane

A cement block is resting on a straight inclined plank that makes an angle of 30.0° with 
the horizontal. If the block weighs 80.0 N, what is the force of friction between the 
block and the plank?

The weight of the cement block is the force exerted on the block due to gravity. Therefore, 
the weight is directed vertically downward. The frictional force tends to oppose the motion 

Practice Exercise

1.  In Example 2, change “41.25° north of 
east” to “in the direction of 41.25° north 
of west,” and then find the resultant  
displacement of the ship.

Fig. 9.31 

R

A

B

u

32.50 km

16.18 km

41.25° 41.25°

y (N)

x (E)
O

■ An aircraft’s heading is the direction in 
which it is pointed. Its air speed is the speed at 
which it travels through the air surrounding it. 
Due to the wind, the heading and air speed, and 
its actual direction and speed relative to the 
ground, will differ.

Fig. 9.32 
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Equilibrium of Forces
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of the block and is directed upward along the plank. The frictional force must be sufficient to 
counterbalance that component of the weight of the block that is directed down the plank for 
the block to be at rest (not moving). The plank itself “holds up” that component of the 
weight that is perpendicular to the plank. A convenient set of coordinates (see Fig. 9.33) is 
one with the origin at the centre of the block and with the x-axis directed up the plank and 
the y-axis perpendicular to the plank. The magnitude of the frictional force Ff  is given by

 Ff = 80.0 cos 60.0° 
 = 40.0 N

We have used the 60.0° angle since it is the reference angle. We could have expressed 
the frictional force as Ff = 80.0 sin 30.0°.

Here, it is assumed that the block is small enough that we may calculate all forces as 
though they act at the centre of the block (although we know that the frictional force 
acts at the surface between the block and the plank). ■

 EXAMPLE  5  Forces for equilibrium

A 735-N mountain climber suspended by a rope pushes on the side of a cliff with a 
horizontal force of 112 N. What is the tension T in the rope if the climber is in equilib-
rium? See Fig. 9.34.

For equilibrium, the tension in the rope must be equal and opposite to the resultant of the 
climber’s weight and force against the cliff. This means the magnitude of the x-component 
of the tension is 112 N (the reaction force of the cliff—another illustration of Newton’s 
third law—see Example 4) and the magnitude of the y-component is 735 N (see Fig. 9.34).

 T = 21122 + 7352

 = 743 N

 u = tan-1 
735
112

= 81.3°

As with any vector, we must find the direction in which the tension acts (in this case, 
along the rope). ■

 EXAMPLE  6  Acceleration of a spacecraft

For a spacecraft moving in a circular path around the earth, the tangential component 
aT and the centripetal component aR of its acceleration are given by the expressions 
shown in Fig. 9.35. The radius of the circle through which it is moving (from the centre 
of the earth to the spacecraft) is r, its angular velocity is v, and its angular acceleration 
is a (the rate at which v is changing).

While going into orbit, at one point a spacecraft is moving in a circular path 230 km 
above the surface of the earth. At this point, r = 6.60 * 106 m, v = 1.10 * 10-3 rad>s, 
and a = 0.420 * 10-6 rad>s2. Calculate the magnitude of the resultant acceleration 
and the angle it makes with the tangential component.

 aR = rv2 = 16.60 * 1062 11.10 * 10-322

 = 7.99 m>s2

 aT = ra = 16.60 * 1062 10.420 * 10-62
 = 2.77 m>s2

Since a tangent line to a circle is perpendicular to the radius at the point of tangency, aT 
is perpendicular to aR. Thus,

 a = 2aT
2 + aR

2 = 27.992 + 2.772

 = 8.45 m>s2

 f = tan-1 
aR

aT
= tan-1 

7.99
2.77

 = 70.9° ■

component of weight down plank 
equals frictional force

Fig. 9.33 
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■ Newton’s third law of motion states that 
when an object exerts a force on another 
object, the second object exerts on the first 
object a force of the same magnitude but in the 
opposite direction. The force exerted by the 
plank on the block is an illustration of this law. 
(Sir Isaac Newton, again. See page 277.)

Fig. 9.34 
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EXERCISES 9.4

In Exercises 1 and 2, find the necessary quantities if the given changes 
are made in the indicated examples of this section.

 1. In Example 2, find the resultant location if the 41.25° angle is 
changed to 31.25°.

 2. In Example 3, find the resultant velocity if the wind is from the 
southwest, rather than the southeast.

In Exercises 3–36, solve the given problems.

 3. Two hockey players strike the puck at the same time, hitting it 
with horizontal forces of 34.5 N and 19.5 N that are perpendicular 
to each other. Find the resultant of these forces.

 4. To straighten a small tree, two horizontal ropes perpendicular to 
each other are attached to the tree. If the tensions in the ropes are 
82.3 N and 102 N, what is the resultant force on the tree?

 5. In lifting a heavy piece of equipment from the mud, a cable from 
a crane exerts a vertical force of 6500 N, and a cable from a truck 
exerts a force of 8300 N at 10.0° above the horizontal. Find the 
resultant of these forces.

 6. At a point in the plane, two electric charges create an electric field 
(a vector quantity) of 25.9 kN>C at 10.8° above the horizontal to 
the right and 12.6 kN>C at 83.4° below the horizontal to the right. 
Find the resultant electric field.

 7. A motorboat leaves a dock and travels 1580 m due west, then 
turns 35.0° to the south and travels another 1640 m to a second 
dock. What is the displacement of the second dock from the first 
dock?

 8. Regina is 530 km at 6.9° north of west from Winnipeg. Saskatoon 
is 230 km at 53° north of west from Regina. What is the displace-
ment of Saskatoon from Winnipeg?

 9. From a fixed point, a surveyor locates a pole at 215.6 m due east 
and a building corner at 358.2 m at 37.72° north of east. What is 
the displacement of the building from the pole?

 10. A rocket is launched with a vertical component of velocity of 
2840 km>h and a horizontal component of velocity of 1520 km>h. 
What is its resultant velocity?

 11. In testing the behaviour of a tire on ice, a force of 2080 N is 
exerted to the side, and a force of 3120 N is exerted to the front. 
What is the resultant force on the tire?

 12. To raise a crate, two ropes are attached to its top. If the force in 
one rope is 960 N at 25° from the vertical, what must be the force 
in the second rope at 35° from the vertical in order to lift the crate 
straight upward?

 13. A storm front is moving east at 22.0 km>h and south at 
12.5 km>h. Find the resultant velocity of the front.

 14. To move forward, a helicopter pilot tilts the helicopter forward. If 
the rotor generates a force of 14 000 N, with a horizontal compo-
nent (thrust) of 1900 N, what is the vertical component (lift)?

 15. The acceleration (a vector quantity) of gravity on a sky diver is 
9.8 m>s2. If the force of the wind also causes an acceleration of 
1.2 m>s2 at an angle of 15° above the horizontal, what is the 
resultant acceleration of the sky diver?

 16. In an accident, a truck with momentum (a vector quantity) of 
22 100 kg # m>s strikes a car with momentum of 17 800 kg # m>s 

from the rear. The angle between their directions of motion is 
25.0°. What is the resultant momentum?

 17. In an automobile safety test, a shoulder and seat belt exerts a 
force of 425 N directly backward and a force of 368 N backward 
at an angle of 20.0° below the horizontal on a dummy. If the belt 
holds the dummy from moving farther forward, what force did 
the dummy exert on the belt? See Fig. 9.36.

Fig. 9.36 

425 N

368 N

20.0°

 18. Two perpendicular forces act on a ring at the end of a chain that 
passes over a pulley and holds an automobile engine. If the forces 
have the values shown in Fig. 9.37, what is the weight of the 
engine?

2280 N

530 N

Fig. 9.37 

 19. A plane flies at 550 km>h into a head wind of 60 km>h at 78° 
with the direction of the plane. Find the resultant velocity of the 
plane with respect to the ground. See Fig. 9.38.

Wind
60 km/h

78°
550 km/h

Fig. 9.38 

 20. A ship’s navigator determines that the ship is moving through the 
water at 17.5 km>h with a heading of 26.3° north of east, but the 
ship is actually moving at 19.3 km>h in a direction of 33.7° north 
of east. What is the velocity of the current?

 21. A space shuttle is moving in orbit at 29 370 km>h. A satellite is 
launched to the rear at 190 km>h at an angle of 5.20° from the 
direction of the shuttle. Find the velocity of the satellite.

 22. A block of ice slides down a (frictionless) ramp with an accelera-
tion of 5.3 m>s2. If the ramp makes an angle of 32.7° with the 
horizontal, find g, the acceleration due to gravity. See Fig. 9.39.

5.3 m/s2
g

32.7°
Fig. 9.39 
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 23. In navigation, one method of express-
ing bearing is to give a single angle 
measured clockwise from due north.  
A radar station notes the bearing of two 
planes, one 15.5 km away on a bearing 
of 22.0°, and the other 12.0 km away 
on a bearing of 180.0°. Find the  
displacement of the second plane  
from the first. See Fig. 9.40.

 24. As a satellite travels around earth at an altitude of 35 940 km, the 
magnitude of its linear velocity (see Example 5, page 255) 
remains unchanged, but its direction changes continually, which 
means there is a change in velocity. 
Using a diagram based on  
Fig. 9.41, draw the difference in 
velocities (subtract the first velocity 
from the second) for the satellite 
as it travels (a) one-sixth, and (b) 
one-quarter of its orbit. Draw the 
vectors from the point at which 
their lines of action cross. What 
conclusion can be drawn about  
the direction of the change in 
velocity?

 25. A passenger on a cruise ship travelling due east at a speed of 
32 km>h notes that the smoke from the ship’s funnels makes an 
angle of 15° with the ship’s wake. If the wind is from the south-
west, find the speed of the wind.

 26. A mine shaft goes due west 75 m (measured horizontally) from 
the opening at an angle of 25° below the horizontal surface. It 
then becomes horizontal and turns 30° north of west and contin-
ues for another 45 m. What is the displacement of the end of the 
tunnel from the opening?

 27. A crowbar 1.5 m long is supported at a fulcrum 1.2 m from the end, 
with the other end under a boulder. If the crowbar is at an angle 
of 18° with the horizontal and a person pushes down, perpendicu-
lar to the crowbar, with a force of 240 N, what vertical force is 
applied to the boulder? See Fig. 9.42. (The forces are related by 
1.2F1 = 0.3F2. See Exercise 50 on page 159.)

 31. In searching for a boat lost at sea, a Coast Guard cutter leaves St. 
John’s and travels 75.0 km due east. It then turns 65° north of east 
and travels another 75.0 km, and finally turns another 65.0° 
toward the west and travels another 75.0 km. What is its displace-
ment from the port?

 32. A car is held stationary on a ramp by two forces. One is the force 
of 2140 N by the brakes, which hold it from rolling down the 
ramp. The other is a reaction force by the ramp of 9850 N, per-
pendicular to the ramp. This force keeps the car from going 
through the ramp. See Fig. 9.43. What is the weight of the car, 
and at what angle with the horizontal is the ramp inclined?

N

22.0°

180.0°Radar

12.0 km

15.5 km

Fig. 9.40 

Fig. 9.41 
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v

v

Earth

60°
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?

18°

F2

1.5 m

Fig. 9.42 

 28. A scuba diver’s body is directed downstream at 75° to the bank of 
a river. If the diver swims at 25 m>min, and the water is moving 
at 5.0 m>min, what is the diver’s velocity?

 29. While starting up, a circular saw blade 8.20 cm in diameter is 
rotating at 212 rad>min and has an angular acceleration of 
318 rad>min2. What is the acceleration of the tip of one of the 
teeth? (See Example 6.)

 30. A boat travels across a river, reaching the opposite bank at a point 
directly opposite that from which it left. If the boat travels 
6.00 km>h in still water and the current of the river flows at 
3.00 km>h, what was the velocity of the boat in the water?

Fig. 9.43 Weight

2140 N

9850 N

u

 33. A plane is moving at 75.0 m>s, and a package with weather 
instruments is ejected horizontally from the plane at 15.0 m>s, 
perpendicular to the direction of the plane. If the vertical velocity 
vv (in m>s), as a function of time t (in s) of fall, is given by 
vv = 9.80t, what is the velocity of the package after 2.00 s (before 
its parachute opens)?

 34. A flat rectangular barge, 48.0 m long and 20.0 m wide, is headed 
directly across a stream at 4.5 km>h. The stream flows at 
3.8 km>h. What is the velocity, relative to the riverbed, of a per-
son walking diagonally across the barge at 5.0 km>h while facing 
the opposite upstream bank?

 35. In Fig. 9.44, a long, straight conductor perpendicular to the plane 
of the paper carries an electric current i. A bar magnet having 
poles of strength m lies in the plane of the paper. The vectors Hi, 
HN, and HS represent the components of the magnetic intensity H 
due to the current and to the N and S poles of the magnet, respec-
tively. The magnitudes of the components of H are given by

  Hi =
1

2p
 
i
a

  HN =
1

4p
 
m

b2  HS =
1

4p
 
m

c2

  Given that a = 0.300 m, b = 0.400 m, c = 0.300 m, the length 
of the magnet is 0.500 m, i = 4.00 A, and m = 2.00 A # m, cal-
culate the resultant magnetic intensity H. The component Hi is 
parallel to the magnet.

Fig. 9.44 
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b
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HS

 36. Solve the problem of Exercise 35 if Hi is directed away from the 
magnet, making an angle of 10.0° with the direction of the 
magnet.

Answers to Practice Exercise

1. R = 22.96 km, u = 27.68°
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To this point, we have limited our study of triangle solution to right triangles. However, 
many triangles that require solution do not contain a right angle. Such triangles are 
called oblique triangles. We now discuss solutions of oblique triangles.

In Section 4.4, we stated that we need to know three parts, at least one of them a 
side, to solve a triangle. There are four possible such combinations of parts, and these 
combinations are as follows:

Case 1. Two angles and one side

Case 2. Two sides and the angle opposite one of them

Case 3. Two sides and the included angle

Case 4. Three sides

There are several ways in which oblique triangles may be solved, but we restrict our 
attention to the two most useful methods, the law of sines and the law of cosines. In 
this section, we discuss the law of sines and show that it may be used to solve Case 1 
and Case 2.

Let ABC be an oblique triangle with sides a, b, and c opposite angles A, B, and C, 
respectively. By drawing a perpendicular h from B to side b, as shown in Fig. 9.45(a), 
note that h>c = sin A and h>a = sin C, and therefore

h = c sin A or h = a sin C (9.4)

This relationship also holds if one of the angles is obtuse. By drawing a perpendicu-
lar h to the extension of side b, as shown in Fig. 9.45(b), we see that h>c = sin A.

Also, in Fig. 9.45(b), h>a = sin1180° - C2 , where 180° - C is also the reference 
angle for the obtuse angle C. For a second-quadrant reference angle 180° - C, we have  
sin3180° - (180° - C )4 = sin C. Putting this all together, sin1180° - C2 = sin C. 
This means that

h = c sin A or h = a sin1180° - C2 = a sin C (9.5)

The results are precisely the same in Eqs. (9.4) and (9.5). Setting the results for h equal 
to each other, we have

c sin A = a sin C

Dividing each side by sin A  multiplied by sin C and reversing sides gives us

a
sin A

=
c

sin C
 (9.6)

By dropping a perpendicular from A to a, we also derive the result

c sin B = b sin C

which, when each side is divided by sin B  multiplied by sin C, and reversing sides, 
gives us

b
 sin B

=
c

 sin C
 (9.7)

If we had dropped a perpendicular to either side a or side c, equations similar to Eqs. (9.6) 
and (9.7) would have resulted.

Combining Eqs. (9.6) and (9.7), for any triangle with sides a, b, and c, opposite 
angles A, B, and C, respectively, such as the one shown in Fig. 9.46, we have the law of 
sines:

 9.5 Oblique Triangles, the Law of Sines
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sin A

=
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c
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Another form of the law of sines can be obtained by equating the reciprocals of each of 
the fractions in Eq. (9.8). The law of sines is a statement of proportionality between the 
sides of a triangle and the sines of the angles opposite them.

Now, we see how the law of sines is used in the solution of a triangle in which two 
angles and one side are known. If two angles are known, the third may be found from 
the fact that the sum of the angles in a triangle is 180°. At this point, we must be able to 
find the ratio between the given side and the sine of the angle opposite it. Then, by use 
of the law of sines, we may find the other two sides.

 EXAMPLE  1  Case 1: Two angles and one side

Given c = 6.00, A = 60.0°, and B = 40.0°, find a, b, and C.
First, we can see that

C = 180.0° - 160.0° + 40.0°2 = 80.0°

We now know side c and angle C, which allows us to use Eq. (9.8). Therefore, using 
the equation relating a, A, c, and C, we have

a
sin 60.0°

=
6.00

sin 80.0°
 or a =

6.00 sin 60.0°
sin 80.0°

= 5.28

Now, using the equation relating b, B, c, and C, we have

b
sin 40.0°

=
6.00

sin 80.0°
 or b =

6.00 sin 40.0°
sin 80.0°

= 3.92

Thus, a = 5.28, b = 3.92, and C = 80.0°. See Fig. 9.47. We could also have used the 
form of Eq. (9.8) relating a, A, b, and B in order to find b, but any error in calculating a 
would make b in error as well. Of course, any error in calculating C would make both a 
and b in error. ■

 EXAMPLE  2  Case 1: Two angles and one side

Solve the triangle with the following given parts: a = 63.71, A = 56.29°, and 
B = 97.06°. See Fig. 9.48.

From the figure, we see that we are to find angle C and sides b and c. We first deter-
mine angle C:

C = 180° - 1A + B2 = 180° - 156.29° + 97.06°2
 = 26.65°

Noting the three angles, we know that c is the shortest side (C is the smallest angle) 
and b is the longest side (B is the largest angle). This means that the length of a is 
between c and b, or c 6 63.71 and b 7 63.71. Now using the ratio a>sin A of Eq. (9.8) 
(the law of sines) to find sides b and c, we have

b
sin 97.06°

=
63.71

sin 56.29°
 or b =

63.71 sin 97.06°
sin 56.29°

= 76.01

c
sin 26.65°

=
63.71

sin 56.29°
 or c =

63.71 sin 26.65°
sin 56.29°

= 34.35

c 

A C 

c 

B C 

a 

B A 
a 

C A 

Note that there are actually three 
equations combined in Eq. (9.8). Of 
these, we use the one with three 
known parts of the triangle, and we 
find the fourth part. In finding the 
complete solution of a triangle, it 
may be necessary to use two of the 
three equations.

LEARNING T IP

a

bA C

B

60.0°

40.0°6.00

Fig. 9.47 

Practice Exercise

1.  In Example 1, change the value of B to 
65.0°, and then find a.

The solution of a triangle can be 
checked approximately by noting 
that the smallest angle is opposite 
the shortest side, and the largest 
angle is opposite the longest side. 
Note that this is the case in Example 
1, where b (shortest side) is opposite 
B (smallest angle), and c (longest 
side) is opposite C  (largest angle).
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Thus, b = 76.01, c = 34.35, and C = 26.65°. Note that c 6 a and b 7 a, as 
expected. ■

If the given information is appropriate, the law of sines may be used to solve applied 
problems. The following example illustrates the use of the law of sines in such a 
problem.

 EXAMPLE  3  Case 1: Application

Two observers A and B sight a helicopter due east. The observers are 1540 m apart, and 
the angles of elevation they each measure to the helicopter are 32.0° and 44.0°, respec-
tively. How far is observer A from the helicopter? See Fig. 9.49.

Letting H represent the position of the helicopter, we see that angle B within the 
triangle ABH is 180° - 44.0° = 136.0°. This means that the angle at H within the 
triangle is

H = 180° - 132.0° + 136.0°2 = 12.0°

Now, using the law of sines to find required side b, we have

b
sin 136.0°

=
1540

sin 12.0°
 

or

b =
1540 sin 136.0°

sin 12.0°
= 5150 m

Thus, observer A is about 5150 m from the helicopter. ■

CASE 2: TWO SIDES AND THE ANGLE OPPOSITE ONE OF THEM
For a triangle in which we know two sides and the angle opposite one of the given 
sides, the solution will be either one triangle, or two triangles, or even possibly no tri-
angle. The following examples illustrate how each of these results is possible.

 EXAMPLE  4  Case 2: Two sides and angle opposite

Solve the triangle with the following given parts: a = 40.0, b = 60.0, and A = 30.0°.
First, make a good scale drawing (Fig. 9.50(a)) by drawing angle A and measuring 

off 60 for b. This will more clearly show that side a = 40.0 will intersect side c at 
either position B or B′. This means there are two triangles that satisfy the given values. 
Using the law of sines, we solve the case for which B is an acute angle:

60.0
sin B

=
40.0

sin 30.0°
 or sin B =

60.0 sin 30.0°
40.0

B = sin-1a60.0 sin 30.0°
40.0

b = 48.6°

C = 180° - 130.0° + 48.6°2 = 101.4°

Therefore, B = 48.6° and C = 101.4°. Using the law of sines again to find 
c, we have

c
sin 101.4°

=
40.0

sin 30.0°

 c =
40.0 sin 101.4°

sin 30.0°
 = 78.4

Thus, B = 48.6°, C = 101.4°, and c = 78.4. See Fig. 9.50(b).

required side 
opposite 
known angle

known side 
opposite 
known angle

■ The first successful helicopter was made in 
the United States by Igor Sikorsky in 1939.

Fig. 9.49 
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The other solution is the case in which B′, opposite side b, is an obtuse angle. 
Therefore,

 B′ = 180° - B = 180° - 48.6°
 = 131.4°

 C′ = 180° - 130.0° + 131.4°2
 = 18.6°

Using the law of sines to find c′, we have

 
c′

sin 18.6°
=

40.0
sin 30.0°

 c′ =
40.0 sin 18.6°

sin 30.0°
 = 25.5

This means that the second solution is B′ = 131.4°, C′ = 18.6°, and c′ = 25.5. See 
Fig. 9.50(c). ■

 EXAMPLE  5  Case 2: Possible solutions

In Example 4, if a were 60.0, only one solution would result. In this case, side a would inter-
cept side c at B. It also intercepts the extension of side c, but this would require that angle A 
not be included in the triangle (see Fig. 9.51). Thus, only one solution may result if a 7 b.

In Example 4, there would be no solution if side a were not at least 30.0. If this were 
the case, side a would not be long enough to even touch side c. It can be seen that a 
must at least equal b sin A. If it is just equal to b sin A, there is one solution, a right tri-
angle. See Fig. 9.52.

Fig. 9.51 

30.0°
   = 60.0a    > 60.0b

A
Side     reaches  
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a second  

A' B b A

A

Fig. 9.53 
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Summarizing the results for Case 2 as illustrated in Examples 4 and 5, we make the 
following conclusions. Given sides a and b and angle A (assuming here that a and A 1A 6 90°2  are corresponding parts), we have the following summary of solutions for 
Case 2.

Ambiguous Case

Fig. 9.52 

30.0

30.0°

60.0

C

B A
Just
touches ■

Summary of Solutions:  
Two Sides and the Angle Opposite One of Them
1.  No solution if a 6 b sin A. See Fig. 9.53(a).

2.  A right triangle solution if a = b sin A. See Fig. 9.53(b).

3.  Two solutions if b sin A 6 a 6 b. See Fig. 9.53(c).

4. One solution if a 7 b. See Fig. 9.53(d).

Practice Exercise

2.  Determine which of the four possible  
solution types occurs if a = 28, b = 48, 
and A = 30°.
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For the reason that two solutions may result from it, Case 2 is called the ambiguous 
case. The following example illustrates Case 2 in an applied problem.

 EXAMPLE  6  Case 2: Application

Edmonton is 35.2° north of east of Vancouver. What should be the heading of a plane 
from Vancouver to Edmonton if the wind is from the west at 40.0 km>h and the plane’s 
speed with respect to the air is 300 km>h?

The heading should be set so that the resultant of the plane’s velocity with respect to 
the air vpa and the velocity of the wind vw will be in the direction from Vancouver to 
Edmonton. This means that the resultant velocity vpg of the plane with respect to the 
ground must be at an angle of 35.2° north of east of Vancouver.

Using the given information, we draw the vector triangle shown in Fig. 9.54. In the 
triangle, we know that the angle at Edmonton is 35.2° by noting the alternate-interior 
angles (see page 58). By finding u, the required heading can be found. There can be 
only one solution, since vpa 7 vw. Using the law of sines, we have

 
40.0
sin u

=
300

sin 35.2°

  sin u =
40.0 sin 35.2°

300
,  u = 4.4°

Therefore, the heading should be 35.2° + 4.4° = 39.6° north of east. Compare this 
example with Example 3 on page 278. ■

If we try to use the law of sines for Case 3 or Case 4, we find that we do not have 
enough information to complete any of the ratios. These cases can, however, be solved 
by the law of cosines as shown in the next section.

 EXAMPLE  7  Cases 3 and 4 not solvable by the law of sines

Given (Case 3) two sides and the included the angle of a triangle a = 2, b = 3, C = 45°, 
and (Case 4) the three sides a = 5, b = 6, c = 7, we set up the ratios

(Case 3) 
2

sin A
=

3
sin B

=
c

sin 45°
, and (Case 4) 

5
sin A

=
6

sin B
=

7
sin C

The solution cannot be found since each of the three possible equations in either Case 3 
or Case 4 contains two unknowns. ■

known side  
opposite  
required angle

known side 
opposite 
known angle

Note that in order to have two solu-
tions, we must know two sides and 
the angle opposite one of the sides, 
and the shorter side must be opposite 
the known angle.

If there is no solution, the calcula-
tor will indicate an error. If the solu-
tion is a right triangle, the calculator 
will show an angle of exactly 90° (no 
extra decimal digits will be displayed).
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EXERCISES 9.5

In Exercises 1 and 2, solve the resulting triangles if the given changes 
are made in the indicated examples of this section.

 1. In Example 2, solve the triangle if the value of B is changed to 
82.94°.

 2. In Example 4, solve the triangle if the value of b is changed to 
70.0.

In Exercises 3–22, solve the triangles with the given parts.

 3. a = 45.7, A = 65.0°, B = 49.0°
 4. b = 3.07, A = 26.0°, C = 120.0°
 5. c = 4380, A = 37.4°, B = 34.6°
 6. a = 93.2, B = 0.9°, C = 82.6°

 7. a = 4.601, b = 3.107, A = 18.23°
 8. b = 362.2, c = 294.6, B = 69.37°
 9. b = 7751, c = 3642, B = 20.73°
 10. a = 150.4, c = 250.9, C = 76.43°
 11. b = 0.0742, B = 51.0°, C = 3.40°
 12. c = 729, B = 121.0°, C = 44.2°
 13. a = 63.8, B = 58.4°, C = 22.2°
 14. a = 0.130, A = 55.2°, B = 117.5°
 15. b = 4384, B = 47.43°, C = 64.56°
 16. b = 283.2, B = 13.79°, C = 76.38°
 17. a = 5.240, b = 4.446, B = 48.13°

■ See the chapter introduction



 9.5 Oblique Triangles, the Law of Sines 287

 18. a = 89.45, c = 37.36, C = 15.62°
 19. b = 2880, c = 3650, B = 31.4°
 20. a = 0.841, b = 0.965, A = 57.1°
 21. a = 450, b = 1260, A = 64.8°
 22. a = 20, c = 10, C = 30°

In Exercises 23–41, use the law of sines to solve the given problems.

 23. Two angles of a triangle measure 29.0° and 57.0°. The longest 
side is 52.0 cm long. What is the length of the shortest side?

 24. Two angles of a triangle measure 45.0° and 55.0°. The side oppo-
site the 55.0° angle is 8.75 cm long. What is the length of the 
longest side?

 25. The loading ramp at a package delivery service is 3.2 m long and 
makes a 22.5° angle with the level ground. If this ramp is replaced 
with one that is 7.5 m long, what angle does the new ramp make 
with the ground?

 26. The longest side of a triangular parcel of land is 172 m long, and 
the shortest side is 105 m long. If the largest angle is 82.0°, what 
is the length of the third side?

 27. The floor of the Bastion in Nanaimo, British Columbia, is a regu-
lar octagon, 2.3 m on each side. Find the greatest distance across 
the floor (that is, find the length of the longest diagonal).

 28. Two ropes hold a 175-N crate as shown in Fig. 9.55. Find the ten-
sions T1 and T2 in the ropes. (Hint: Move the vectors so that they 
are tail to head to form a triangle. The vector sum T1 + T2 must 
equal 175 N for equilibrium. See page 278.)

 29. Find the tension T in the left guy wire attached to the top of the 
tower shown in Fig. 9.56. (Hint: The horizontal components of 
the tensions must be equal and opposite for equilibrium. See page 
278. Thus, move the tension vectors tail to head to form a triangle 
with a vertical resultant. This resultant equals the upward force at 
the top of the tower for equilibrium. This last force is not shown 
and does not have to be calculated.)

 30. Find the distance from Golden to Radium, from Fig. 9.57. The 
route that joins these landmarks across three national parks is 
known as the Golden Triangle.

30.0°42.0°

175 N

Crate

T2
T1

Fig. 9.55 

T 850 N
105.6°

35.7°Fig. 9.56 

Fig. 9.57 Radium, BC

Lake Louise, AB
56 km

Golden, BC

90 km

66°

 31. Find the length of Cordelia St. in Brisbane, Queensland, Australia, 
from Fig. 9.58.

 32. When an airplane is landing on a an 2510-m runway, the angles 
of depression to the ends of the runway are 10.0° and 13.5°. How 
far is the plane from the near end of the runway?

 33. Find the total length of the path of the laser beam that is shown in 
Fig. 9.59.

 34. In widening a highway, it is necessary for a construction crew to 
cut into the bank along the highway. The present angle of eleva-
tion of the straight slope of the bank is 23.0°, and the new angle is 
to be 38.5°, leaving the top of the slope at its present position. If 
the slope of the present bank is 66.0 m long, how far horizontally 
into the bank at its base must they dig?

 35. A communications satellite is directly above the extension of a 
line between receiving towers A and B. It is determined from 
radio signals that the angle of elevation of the satellite from tower 
A is 89.2°, and the angle of elevation from tower B is 86.5°. See 
Fig. 9.60. If A and B are 1290 km apart, how far is the satellite 
from A? (Ignore the curvature of the earth.)

Fig. 9.58 Vulture St.

Bo
un
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ry
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810 m

Cordelia St.

49

Fig. 9.59 
31.8°

108.3°

6.25 cm
Reflectors

B A
86.5° 89.2°

Satellite

1290 kmFig. 9.60 
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 36. An astronaut on the moon drives a lunar rover 16 km in the direc-
tion 60.0° north of east from the base. (a) Through what angle 
must the rover then be turned so that by driving 12 km farther the 
astronaut can turn again to return to base along a north-south line? 
(b) How long is the last leg of the trip? (c) Can the astronaut make 
it back to base if the maximum range of the rover is 40 km?

 37. A boat owner wishes to cross a river 2.60 km wide and go directly 
to a point on the opposite side 1.75 km downstream. The boat 
goes 8.00 km>h in still water, and the stream flows at 3.50 km>h. 
What should the boat’s heading be?

 38. A motorist travelling along a level highway at 75 km>h directly 
toward a mountain notes that the angle of elevation of the moun-
tain top changes from about 20° to about 30° in a 20-min period. 
How much closer on a direct line did the mountain top become?

 39. A hillside is inclined at 23° with the horizontal. From a given point 
on the slope, it has been found that a vein of gold is 55 m directly 
below. At what point downhill and at what angle below the hillside 
slope must a straight 65-m shaft be dug to reach the vein?

 40. Point P on the mechanism shown in Fig. 9.61 is driven back and 
forth horizontally. If the minimum value of angle u is 32.0°, what 
is the distance between extreme positions of P? What is the maxi-
mum possible value of angle u?

 41. The floor of the Winnipeg Art Gallery is in the shape of a trian-
gle. Find the length of the side facing Memorial Boulevard, from 
Fig. 9.62.

Answers to Practice Exercises

1. a = 6.34  2. Two solutions

Fig. 9.62 
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As noted in the last section, the law of sines cannot be used for Case 3 (two sides and 
the included angle) and Case 4 (three sides). In this section, we develop the law of 
cosines, which can be used for Cases 3 and 4. After finding another part of the triangle 
using the law of cosines, we will often find it easier to complete the solution using the 
law of sines.

Consider any oblique triangle—for example, either triangle shown in Fig. 9.63. For 
each triangle, h>b = sin A, or h = b sin A. Also, using the Pythagorean theorem, we 
obtain a2 = h2 + x2 for each triangle. Therefore (with (sin A)2 = sin2A),

a2 = b2 sin2 A + x2 (9.9)

In Fig. 9.63(a), note that 1c - x2 >b = cos A, or c - x = b cos A. Solving for x, we 
have x = c - b cos A. In Fig. 9.63(b), c + x = b cos A, and solving for x, we have 
x = b cos A - c. Substituting these relations into Eq. (9.9), we obtain

a2 = b2 sin2 A + (c - b cos A)2 
(9.10)

and a2 = b2 sin2 A + (b cos A - c)2

respectively. When expanded, these both give

a2 = b2 sin2  A + b2 cos2  A + c2 - 2bc cos A (9.11)
= b21sin2  A + cos2  A2 + c2 - 2bc cos A

Recalling the definitions of the trigonometric functions, we know that sin u = y>r 
and  cos u = x>r. Thus,  sin2 u + cos2 u = 1y2 + x22 >r2. However, x2 + y2 = r2, 
which means

sin2 u + cos2 u = 1 (9.12)

This equation is valid for any angle u, since we have made no assumptions as to the prop-
erties of u. Thus, by substituting Eq. (9.12) into Eq. (9.11), we arrive at the law of cosines:

 9.6 The Law of Cosines

 
Summary of Solving Oblique Triangles
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a2 = b2 + c2 - 2bc cos A (9.13)Law of Cosines
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Using the method above, we may also show that

 b2 = a2 + c2 - 2ac cos B 

 c2 = a2 + b2 - 2ab cos C

If two sides and the included angle of a triangle are known, the forms of the law of 
cosines show that we may directly solve for the side opposite the given angle. Then, as 
noted earlier, the solution may be completed using the law of sines.

 EXAMPLE  1  Case 3: Two sides and included angle

Solve the triangle with a = 45.0, b = 67.0, and C = 35.0°. See Fig. 9.64.
Since angle C is known, first solve for side c, using the law of cosines in the form 

c2 = a2 + b2 - 2ab cos C. Substituting, we have

 c2 = 45.02 + 67.02 - 2145.02 167.02  cos 35.0°

 c = 245.02 + 67.02 - 2145.02 167.02  cos 35.0° = 39.7

From the law of sines, we now have

 
45.0

 sin A
=

67.0
 sin B

=
39.7

 sin 35.0°

  sin A =
45.0 sin 35.0°

39.7
,  A = 40.6°

Finally, rather than use the law of sines again, we obtain angle B by subtraction. We 
find that B = 180° - (35.0° + 40.6°) = 104.4°. Therefore, c = 39.7, A = 40.6°, 
and B = 104.4°. ■

unknown side opposite known angle

known sides

sides  
opposite  
angles

If after finding side c we had solved for angle B rather than angle A, the calculator 
would have shown 75.6°. This would have given us the value of the reference angle for 
angle B, and not the correct value for the obtuse angle B (B = 180° – 75.6° = 104.4°).

Since only the largest angle of a triangle can be greater than 90°, we can avoid this 
possible source of error if we first solve for the smaller unknown angle (the angle opposite 
the shorter known side). The larger unknown angle can then be found by subtraction.

COMMON ERROR

Practice Exercise

1.  In Example 1, change the value of a to 
95.0, and find A and B.

 EXAMPLE  2  Case 3: Application

Two forces are acting on a bolt. One is a 78.0-N force acting horizontally to the right, 
and the other is a force of 45.0 N acting upward to the right, 15.0° from the vertical. 
Find the resultant force F. See Fig. 9.65.

Moving the 45.0-N vector to the right and using the lower triangle with the 105.0° 
angle, the magnitude of F is

 F = 278.02 + 45.02 - 2178.02 145.02  cos 105.0°
 = 99.6 N

To find u, use the law of sines:

45.0
 sin u

=
99.6

 sin 105.0°
,   sin u =

45.0 sin 105.0°
99.6

This gives us u = 25.9°.
We can also solve this problem using vector components. ■

Fig. 9.64 
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CASE 4: THREE SIDES
Given the three sides of a triangle, we may solve for the angle opposite any side using 
the law of cosines.

 EXAMPLE  3  Case 4: Three sides

Solve the triangle with sides a = 49.33, b = 21.61, and c = 42.57. See Fig. 9.66.
Since the longest side is a = 49.33, first solve for angle A:

 a2 = b2 + c2 - 2bc cos A

  cos A =
b2 + c2 - a2

2bc
=

21.612 + 42.572 - 49.332

2(21.61)(42.57)

 A = 94.81°

From the law of sines, we now have

49.33
sin A

=
21.61
sin B

=
42.57
sin C

Therefore,

B = sin-121.61 sin 94.81°
49.33

= 25.88°

and C = 180° - 194.81° + 25.88°2 = 59.31°. ■

 EXAMPLE  4  Case 4: Application

A vertical radio antenna is to be built on a hillside with a constant slope. A guy wire is 
to be attached at a point 29.0 m up the antenna, and at a point 22.0 m from the base of 
the antenna up the hillside. If the guy wire is 34.0 m long, what angle does the antenna 
make with the hillside?

From Fig. 9.67, we can set up the equation necessary for the solution.

 34.02 = 22.02 + 29.02 - 2(22.0)(29.0)cos u

u = cos-1 
22.02 + 29.02 - 34.02

2(22.0)(29.0)
= 82.4° ■

The best procedure for Case 4 is to 
find the largest angle first. This avoids 
the ambiguous case if we switch to the 
law of sines and there is an obtuse 
angle. The largest angle is opposite the 
longest side. Another procedure is to use 
the law of cosines to find two angles.
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■ Summary of solving an oblique triangle 
using the law of sines or the law of cosines

Practice Exercise

2.  Using Fig. 9.67, and only the data given 
in Example 4, find the angle between the 
guy wire and the hillside.

Case 1: Two Angles and One Side
  Find the unknown angle by subtracting the sum of the known angles 

from 180°. Use the law of sines to find the unknown sides.

Case 2: Two Sides and the Angle Opposite One of Them
  Use the known side and the known angle opposite it to find the angle 

opposite the other known side. Find the third angle from the fact that 
the sum of the angles is 180°. Use the law of sines to find the third side.

  CAUTION: There may be two solutions. See page 285 for a summary 
of Case 2 and the ambiguous case.

Case 3: Two Sides and the Included Angle
  Find the third side by using the law of cosines. Find the smaller 

unknown angle (opposite the shorter side) by using the law of sines. 
Complete the solution using the fact that the sum of the angles is 180°.

Case 4: Three Sides
  Find the largest angle (opposite the longest side) by using the law of 

cosines. Find a second angle by using the law of sines. Complete the 
solution by using the fact that the sum of the angles is 180°.
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Other variations in finding the solutions can be used. For example, after finding the 
third side in Case 3 or finding the largest angle in Case 4, the solution can be completed 
by using the law of sines. All angles in Case 4 can be found by using the law of cosines. 
The methods shown above are those normally used.

EXERCISES 9.6

In Exercises 1 and 2, solve the resulting triangles if the given changes 
are made in the indicated examples of this section.

 1. In Example 1, solve the triangle if the value of C is changed to 
145°.

 2. In Example 3, solve the triangle if the value of a is changed to 
29.33.

In Exercises 3–22, solve the triangles with the given parts.

 3. a = 6.00, b = 7.56, C = 54.0°
 4. b = 87.3, c = 34.0, A = 130.0°
 5. a = 4530, b = 924, C = 98.0°
 6. a = 0.0845, c = 0.116, B = 85.0°
 7. a = 39.53, b = 45.22, c = 67.15

 8. a = 2.331, b = 2.726, c = 2.917

 9. a = 385.4, b = 467.7, c = 800.9

 10. a = 0.2433, b = 0.2635, c = 0.1538

 11. a = 320, b = 847, C = 158.0°
 12. b = 18.3, c = 27.1, A = 8.7°
 13. a = 2140, c = 428, B = 86.3°
 14. a = 1.13, b = 0.510, C = 77.6°
 15. b = 103.7, c = 159.1, C = 104.67°
 16. a = 49.32, b = 54.55, B = 114.36°
 17. a = 0.4937, b = 0.5956, c = 0.6398

 18. a = 69.72, b = 49.30, c = 22.29

 19. a = 723, b = 598, c = 158

 20. a = 1.78, b = 6.04, c = 4.80

 21. a = 1500, A = 15°, B = 140°
 22. a = 17, b = 24, c = 42. Explain your answer.

In Exercises 23–40, use the law of cosines to solve the given problems.

 23. For a triangle with sides a, b, and c opposite angles A, B, and C, 

respectively, show that 1 +  cos A =
1b + c + a2 1b + c - a2

2bc
.

 24. Set up equations (do not solve) to solve the triangle in Fig. 9.68 
by the law of cosines. Why is the law of sines easier to use?

 25. On page 285, we saw that it was possible to be given two sides 
and the angle opposite one of them, and find that there is no trian-
gle that can have those parts. Is it possible in Case 3 or in Case 4 
that there is no solution for a set of given parts?

 26. Three circles of radii 24 cm, 32 cm, and 42 cm are externally tan-
gent to each other (each is tangent to the other two). Find the larg-
est angle of the triangle formed by joining their centres.

 27. A nuclear submarine leaves its base and travels at 23.5 km>h. For 
2.00 h, it travels along a course of 32.1° north of west. It then 
turns an additional 21.5° north of west and travels for another 
1.00 h. How far from its base is it?

 28. The robot arm shown in Fig. 9.69 places packages on a conveyor 
belt. What is the distance x?

Fig. 9.68 
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 29. Find the angle between the front legs and the back legs of the 
folding chair shown in Fig. 9.70.

 30. In a baseball field, the four bases are at the vertices of a square 
90.0 ft on a side. The pitching rubber is 60.5 ft from home plate. 
See Fig. 9.71. How far is it from the pitching rubber to first base? 11 ft = 0.3048 m2
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 31. A plane leaves an airport and travels 624 km due east. It then 
turns toward the north and travels another 326 km. It then turns 
again less than 180° and travels another 846 km directly back to 
the airport. Through what angles did it turn?

 32. The apparent depth of an object submerged in water is less than 
its actual depth. A coin is actually 5.00 cm from an observer’s eye 
just above the surface, but it appears to be only 4.25 cm. The real 
light ray from the coin makes an angle with the surface that is 8.1° 
greater than the angle the apparent ray makes. How much deeper 
is the coin than it appears to be? See Fig. 9.72.

 33. A nut is in the shape of a regular hexagon (six sides). If each side 
is 9.53 mm, what opening on a wrench is necessary to tighten the 
nut? See Fig. 9.73.

 34. Two ropes support a 78.3-N crate from above. The tensions in the 
ropes are 50.6 N and 37.5 N. What is the angle between the 
ropes? (See Exercise 28 of Section 9.5.)

 35. A ferryboat travels at 11.5 km>h with respect to the water. 
Because of the river current, it is travelling at 12.7 km>h with 

8.1°

5.00 cm

4.25 cm

Coin

Apparent 
coin

Fig. 9.72 

9.53 mm

Fig. 9.73 

respect to the land in the direction of its destination. If the ferry-
boat’s heading is 23.6° from the direction of its destination, what 
is the velocity of the current?

 36. Find the distance across Georgian Bay from Nottawasaga Island 
to Christian Island, from Fig. 9.74.

22.5°

Nottawasaga Island

72 km

69 km

Cape Crocker

Christian Island

Fig. 9.74 
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Vector components Ax = A cos u  Ay = A sin u (9.1)

 A = 2A2
x + A2

y (9.2)

 uref =  tan-1 
# Ay #
# Ax #

 (9.3)

Law of sines 
a

sin A
=

b
sin B

=
c

sin C
 (9.8)

Law of cosines a2 = b2 + c2 - 2bc cos A

 b2 = a2 + c2 - 2ac cos B (9.13)

 c2 = a2 + b2 - 2ab cos C

A

A Ay

x

x

y

u

b

ac

B

CA

 37. An air traffic controller sights two planes that are due east from 
the control tower and headed toward each other. One is 15.8 km 
from the tower at an angle of elevation of 26.4°, and the other is 
32.7 km from the tower at an angle of elevation of 12.4°. How far 
apart are the planes?

 38. A ship’s captain notes that a second ship is 14.5 km away at a 
bearing (see Exercise 23 of Section 9.4) of 46.3°, and that a third 
ship was at a distance of 21.7 km at a bearing of 201.0°. How far 
apart are the second and third ships?

 39. A park is in the shape of a parallelogram with sides of 1.25 km 
and 1.90 km that meet in a 78.0° angle. The park has two diagonal 
paths. What is the length of each path?

 40. A triangular machine part has sides of 5 cm and 8 cm. Explain 
why the law of sines, or the law of cosines, is used to start the 
solution of the triangle if the third known part is (a) the third side, 
(b) the angle opposite the 8-cm side, or (c) the angle between the 
5-cm and 8-cm sides.

Answers to Practice Exercises

1.  B = 43.8°, A = 101.2°  2. 57.7°
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In Exercises 1–4, find the x- and y-components of the given vectors by 
use of the trigonometric functions.

 1. A = 65.0, uA = 28.0° 2. A = 8050, uA = 149.0°
 3. A = 0.9204, uA = 215.59° 4. A = 657.1, uA = 343.74°

In Exercises 5–8, vectors A and B are at right angles. Find the mag-
nitude and direction of the resultant.

 5. A = 327 6. A = 6.8
  B = 505  B = 2.9

 7. A = 4964 8. A = 26.52
  B = 3298  B = 89.86

In Exercises 9–16, add the given vectors by components.

 9. A = 780, uA = 28.0°  10. J = 0.0120, uJ = 370.5°
  B = 346, uB = 320.0°  K = 0.00781, uK = 260.0°
  11. A = 22.51, uA = 130.16°  12. A = 18 760, uA = 110.43°
  B = 7.604, uB = 200.09°  B = 4835, uB = 350.20°
  13. Y = 51.33, uY = 12.25°  14. A = 703.1, uA = 122.54°
  Z = 42.61, uZ = 291.77°  B = 302.9, uB = 214.82°
  15. A = 0.750, uA = 15.0° 16. S = 8120, uS = 141.9°
  B = 0.265, uB = 192.4°  T = 1540, uT = 165.2°
  C = 0.548, uC = 344.7°  U = 3470, uU = 296.0°

In Exercises 17–36, solve the triangles with the given parts.

  17. A = 48.0°, B = 68.0°, a = 145

  18. A = 132.0°, b = 7.50, C = 32.0°
  19. a = 22.8, B = 33.5°, C = 125.3°
  20. A = 71.0°, B = 48.5°, c = 8.42

  21. A = 17.85°, B = 154.16°, c = 7863

  22. a = 1.985, b = 4.189, c = 3.652

  23. b = 7607, c = 4053, B = 110.09°
  24. A = 77.06°, a = 12.07, c = 5.104

  25. b = 14.5, c = 13.0, C = 56.6°
  26. B = 40.6°, b = 7.00, c = 18.0

  27. a = 186, B = 130.0°, c = 106

  28. b = 750, c = 1100, A = 56°
  29. a = 7.86, b = 2.45, C = 2.5°
  30. a = 0.208, c = 0.697, B = 165.4°
  31. A = 67.16°, B = 96.84°, c = 532.9

  32. A = 43.12°, a = 7.893, b = 4.113

  33. a = 17, b = 12, c = 25

  34. a = 9064, b = 9953, c = 1106

  35. a = 0.530, b = 0.875, c = 1.25

  36. a = 47.4, b = 40.0, c = 45.5

In Exercises 37–71, solve the given problems.

 37. For any triangle ABC show that 

  
a2 + b2 + c2

2abc
=

 cos A
a

+  cos B
b

+  cos C
c

 38. In solving a triangle for Case 3 (two sides and the included an-
gle), explain what type of solution is obtained if the included 
angle is a right angle.

 39. Two angles of a triangle measure 22° and 112°. The shortest side 
is 54 cm. What is the longest side?

 40. Two of the angles of a triangle measure 42.0° and 59.5°. The 
longest side is 5.00 cm longer than the shortest side. What is the 
perimeter of the triangle?

 41. An architect determines the two acute angles and one of the legs 
of a right triangular wall panel. Show that the area At is 

  At =
a2 sin B
2 sin A

 42. A surveyor determines the three angles and one side of a trian-
gular tract of land. (a) Show that the area At can be found from 

  At =
a2 sin B  sin C

2 sin A
. (b) For a right triangle, show that this 

agrees with the formula in Exercise 41.

 43. Find the horizontal and vertical components of the force shown 
in Fig. 9.75.

y

x
152.48°

175.6 N

0

Fig. 9.75 

y

x
307.44°

170.5 km/h
0

Fig. 9.76 

y

x

32°

54°

35°

2100 N

1300 N

3200 N

Fig. 9.77 

 44. Find the horizontal and vertical components of the velocity 
shown in Fig. 9.76.

 45. In a ballistics test, a bullet was fired into a block of wood with a 
velocity of 670 m>s and at an angle of 71.3° with the surface of 
the block. What was the component of the velocity perpendicu-
lar to the surface?

 46. A storm cloud is moving at 15 km>h from the northwest. A tel-
evision tower is 60° south of east of the cloud. What is the com-
ponent of the cloud’s velocity toward the tower?

 47. During a 3.00-min period after taking off, the supersonic jet 
Concorde travelled at 480 km>h at an angle of 24.0° above the 
horizontal. What was its gain in altitude during this period?

 48. A rocket is launched at an angle of 42.0° with the horizontal and 
with a speed of 760 m>s. What are its horizontal and vertical 
components of velocity?

 49. Three forces of 3200 N, 1300 N, and 2100 N act on a bolt as 
shown in Fig. 9.77. Find the resultant force.
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 50. In Fig. 9.78, force F represents the total surface tension force around 
the circumference on the liquid in the capillary tube. The vertical 
component of F holds up the liquid in the tube above the liquid sur-
face outside the tube. What is the vertical component of F?

 51. A helium-filled balloon rises vertically at 3.5 m>s as the wind 
carries it horizontally at 5.0 m>s. What is the resultant velocity 
of the balloon?

 52. A shearing pin is designed to break and disengage gears before 
damage is done to a machine. In a test, a vertically upward force 
of 8250 N and a force of 7520 N at 35.0° below the horizontal 
are applied to a shearing pin. What is the resultant force?

 53. A magnetic force of 0.15 N is applied at an angle of 22.5° above 
the horizontal on an iron bar. A second magnetic force of 0.20 N 
is applied from the opposite side at an angle of 15.0° above the 
horizontal. What is the upward force on the bar?

 54. At a certain point, the angle of elevation of the cliff at Head-
Smashed-In Buffalo Jump, Alberta (a UNESCO World Heritage 
Site) is measured as 55°. Measured a distance 11.0 m farther 
away from the cliff, the angle of elevation is 29°. Find the height 
of the cliff. See Fig. 9.79.

 55. A water molecule (H2O) consists of two hydrogen atoms and 
one oxygen atom. The distance from the nucleus of each hydro-
gen atom to the nucleus of the oxygen atom is 0.96 pm, and the 
bond angle (see Fig. 9.80) is 105°. How far is one hydrogen nucleus 
from the other?

 56. A crater on the moon is 150 km in diameter. If the distance to 
the moon (to each side of the crater) from the earth is 390 000 km, 
what angle is subtended by the crater at an observer’s position 
on the earth?

= 15.0 mNF

6.00∘

Fig. 9.78 

11 m

55° 29°

Fig. 9.79

105º

O

HH

Fig. 9.80 

 57. In Fig. 9.81, a damper mechanism in an air-conditioning system 
is shown. If u = 27.5° when the spring is at its shortest and 
longest lengths, what are these lengths?

 58. A bullet is fired from the ground of a level field at an angle of 
39.0° above the horizontal. It travels in a straight line at 670 m>s 
for 0.20 s when it strikes a target. The sound of the strike is re-
corded 0.32 s later on the ground. If sound travels at 350 m>s, 
where is the recording device located?

 59. In order to get around an obstruction, an oil pipeline is con-
structed in two straight sections, one 3.756 km long and the 
other 4.675 km long, with an angle of 168.85° between the sec-
tions where they are joined. How much more pipeline was nec-
essary due to the obstruction?

 60. Three pipes of radii 2.50 cm, 3.25 cm, and 4.25 cm are welded 
together lengthwise. See Fig. 9.82. Find the angles between the 
centre-to-centre lines.

 61. Two satellites are being observed at the same observing station. 
One is 36 200 km from the station, and the other is 30 100 km 
away. The angle between their lines of observation is 105.4°. 
How far apart are the satellites?

 62. Find the side x in the truss in Fig. 9.83.

 63. The angle of depression of a fire noticed west of a fire tower is 
6.2°. The angle of depression of a pond, also west of the tower, 
is 13.5°. If the fire and pond are at the same altitude, and the 
tower is 2.25 km from the pond on a direct line, how far is the 
fire from the pond?

 64. A surveyor wishes to find the distance between two points be-
tween which there is a security-restricted area. The surveyor 
measures the distance from each of these points to a third point 
and finds them to be 226.73 m and 185.12 m. If the angle be-
tween the lines of sight from the third point to the other points is 
126.724°, how far apart are the two points?

 65. In Australia, Adelaide is 805 km and 69.0° south of east of Alice 
Springs. The pilot of an airplane due north of Adelaide radios 
Alice Springs and finds the plane is on a line 10.5° south of east 
from Alice Springs. How far is the plane from Alice Springs?

 66. In going around a storm, a plane flies 125 km south, then 140 km 
at 30.0° south of west, and finally 225 km at 15.0° north of west. 
What is the displacement of the plane from its original position?

u

1.25 m
2.70 m

Fig. 9.81 

End viewFig. 9.82 

1100 mm
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m
m

Fig. 9.83 
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 67. One end of a 725-m bridge is sighted from a distance of 1630 m. 
The angle between the lines of sight of the ends of the bridge is 
25.2°. From these data, how far is the observer from the other 
end of the bridge?

 68. A plane is travelling horizontally at 400 m>s. A missile is fired 
horizontally from it 30.0° from the direction in which the plane 
is travelling. If the missile leaves the plane at 650 m>s, what is 
its velocity 10.0 s later if the vertical component is given by 
vV = -9.80t (in m>s)?

 69. A sailboat is headed due north, and its sail is set perpendicular to 
the wind, which is from the south of west. The component of the 
force of the wind in the direction of the heading is 480 N, and 
the component perpendicular to the heading (the drift compo-
nent) is 650 N. What is the force exerted by the wind, and what 
is the direction of the wind? See Fig. 9.84.

 70. Boston is 650 km and 21.0° south of west from Halifax, Nova 
Scotia. Radio signals locate a ship 10.5° east of south from 
Halifax and 5.6° north of east from Boston. How far is the ship 
from each city?

 71. A bridge 90 m long spans a valley, as in Fig. 9.85. From one 
end, the angle of depression of a certain point at the bottom of 
the valley is 33°. From the other end, the angle of depression of 
the same point is 67°. Find the height of the bridge.

Writing Exercise
 72. The resultant of three horizontal forces, 45 N, 35 N, and 25 N, 

that act on a bolt is zero. Write a paragraph or two explaining 
how to find the angles between the forces.

480 N

650 N

Wind SailFig. 9.84 

A B

C

h

90 m

67°33°

Fig. 9.85 

 CHAPTER 9  PRACTICE TEST

In all triangle solutions, sides a, b, and c are opposite angles A, B, and 
C, respectively.

 1. By use of a diagram, find the vector sum 2A + B for the given 

vectors.

 2. For the triangle in which a = 22.5, B = 78.6°, and c = 30.9, 
find b.

 3. A surveyor locates a tree 36.50 m to the northeast of a set posi-
tion. The tree is 21.38 m north of a utility pole. What is the dis-
placement of the utility pole from the set position?

 4. For the triangle in which A = 18.9°, B = 104.2°, and a = 426, 

find c.

 5. Solve the triangle in which a = 9.84, b = 3.29, and c = 8.44.

 6. For vector R, find R and standard position u if Rx = -235 and 
Ry = 152.

 7. Find the horizontal and vertical components of a vector of mag-
nitude 871 that is directed at a standard-position angle of 284.3°.

 8. A ship leaves a port and travels due west. At a certain point it 
turns 31.5° north of west and travels an additional 42.0 km to a 
point 63.0 km on a direct line from the port. How far from the 
port is the point where the ship turned?

 9. Find the sum of the vectors for which A = 449, uA = 74.2°, 
B = 285, and uB = 208.9° by components.

A
B
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LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Graph the trigonometric 
functions y = sin x and 
y = cos x and identify their 
important values for sketching

 Define amplitude, period, and 
displacement

 Graph the functions  
y = a sin x and y = a cos x

 Graph the functions y =  
a sin bx and y = a cos bx

 Graph the functions  
y = a sin1bx + c2  and  
y = a cos1bx + c2

 Graph the functions y = tan x, 
y = cot x, y = sec x, and  
y = csc x

 Solve application problems 
involving graphs of 
trigonometric functions

 Graph composite trigonometric 
curves by addition of 
coordinates

 Graph Lissajous figures

The electronics era is thought by many to have started in the 1880s, with the discovery 
of the vacuum tube by the American inventor Thomas Edison and the discovery of 
radio waves by the German physicist Heinrich Hertz. Then, in the 1890s, the cathode-

ray tube was developed and, as an oscilloscope, has been used since that time to analyse vari-
ous types of wave forms, such as sound waves and radio waves. Since the mid-1900s, devices 
similar to a cathode-ray tube have been used in TV picture tubes and computer displays.

What is seen on the screen of an oscilloscope are electric signals that are represented by 
graphs of trigonometric functions. As noted earlier, the basic method of graphing was devel-
oped in the mid-1600s, and using trigonometric functions of numbers has been common since 
the mid-1700s. Therefore, the graphs of the trigonometric functions were well known in the 
late 1800s and became very useful in the development of electronics.

The graphs of the trigonometric functions are useful in many areas of application, particularly 
those that involve wave motion and periodic values. Filtering electronic signals in communi-
cations, mixing musical sounds on a tape in a recording studio, studying the seasonal temper-
atures of an area, and analysing ocean waves and tides are some of the many applications of 
periodic motion.

Aside from their use in applications, the graphs of the trigonometric functions give us one of 
the clearest ways of showing the properties of the various functions. Therefore, in this chapter, 
we show graphs of these functions, with emphasis on the sine and cosine functions.

Graphs of the 
Trigonometric 
Functions

10

 The graphs of electrical signals 
(including sinusoidal signals) can be 
displayed on an oscilloscope, and 
properties of the signal, such as 
period, frequency, phase, and 
amplitude, can be measured. In 
Section 10.6, we show the patterns 
that result when two signals are 
combined and displayed.
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 10.1 Graphs of y = a sin x and y = a cos x
Graphs of y = sin x and y = cos x

y = a sin x  
and y = a cos x

Recall from Section 8.3 that when angles are expressed in radian measure, both the 
independent variable and the dependent variable of trigonometric functions are real 
numbers. For this reason, we only consider angles in radians when plotting and sketch-
ing the graphs of trigonometric functions. If necessary, review Section 8.3 on radian 
measure.

In this section, we discuss the graphs of the sine and cosine functions. We begin by 
making a table of values of x and y for the function y = sin x, where x and y are used 
in the standard way as the independent variable and dependent variable. We plot the 
points to obtain the graph in Fig. 10.1.

Fig. 10.1

y

x

−1

1

0 p p 2p
2

3p
2

y = sin x

Fig. 10.2

y

x

−1

1

0 p p 2p
2

3p
2

y = cos x

x 7p
6

4p
3

3p
2

5p
3

11p
6 2p

y -0.87 -0.5 0 0.5 0.87 1

x 0 p
6

p
3

p
2

2p
3

5p
6 p

y 1 0.87 0.5 0 -0.5 -0.87 -1

x 7p
6

4p
3

3p
2

5p
3

11p
6 2p

y -0.5 -0.87 -1 -0.87 -0.5 0

x 0 p
6

p
3

p
2

2p
3

5p
6 p

y 0 0.5 0.87 1 0.87 0.5 0

The graph of y = cos x may be drawn in the same way. The next table gives values 
for plotting the graph of y = cos x, and the graph is shown in Fig. 10.2.

The graphs are continued beyond the values shown in the tables to indicate that they 
continue indefinitely in each direction. To show this more clearly, in Figs. 10.3 and 
10.4, note the graphs of y = sin x and y = cos x from x = -10 to x = 10.

y

x
!10 !5

!1

1

0 5 10

y " sin x

Fig. 10.3

y

x
!10 !5

!1

1

0 5 10

y " cos x

Fig. 10.4

From these tables and graphs, we can see that the graphs of y = sin x and y = cos x 
have the basic features listed in the following table. These features (illustrated in 
Fig. 10.5) will be especially valuable in sketching similar curves. Since some of these 
features remain the same, it will not be necessary to plot numerous points every time 
we wish to sketch such a curve.
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To obtain the graph of y = a sin x, note that all the y-values obtained for the graph of 
y = sin x are to be multiplied by the number a. In this case, the greatest value of the sine 
function is 0 a 0 , and the curve will have no value less than - 0 a 0 . Therefore, the range is 3 - 0 a 0 , 0 a 0 4 , and the amplitude of the curve is 0 a 0 . This is also true for y = a cos x.

 EXAMPLE  1  Plotting the graph of y = a sin x

Plot the graph of y = 2 sin x.
Since a = 2, the amplitude of this curve is 0 2 0 = 2. This means that the maximum 

value of y is 2 and the minimum value is y = -2. The table of values follows, and the 
curve is shown in Fig. 10.6.

Basic Features of the Graphs of y = sin x and y = cos x
1. The domain is all values of x.

2. The range is -1 … y … 1, or 3 -1, 14 .

3.  The amplitude (half the distance between the maximum value and the mini-
mum value) is 1.

4. Both graphs are exactly the same shape (called sinusoidal).
5. The graph of the cosine curve is shifted p>2 units to the left of the sine curve.

6.  For both graphs, the values of y repeat every 2p units of x. We therefore say 
that the functions are periodic with period 2p.

7.  The functions have zeros, maximum values, and minimum values when x is a 
multiple of p>2. The behaviour from 0 to 2p at these key values is summa-
rized in Table 10.1.

y

x

−1

1

0

Period = 2p

A
m

plitude

2ppp
2

shiftp
2

3p
2

y = sin x y = cos x

Fig. 10.5

Table 10.1 

Key 
values y = sin x y = cos x

0 0 1
p
2 1 0

p 0 -1
3p
2 -1 0

2p 0 1

y

x

−2

2

0

Amplitude

3p
2

p
2

2pp

Fig. 10.6

x 0 p
6

p
3

p
2

2p
3

5p
6 p

y 0 1 1.73 2 1.73 1 0

x 7p
6

4p
3

3p
2

5p
3

11p
6 2p

y -1 -1.73 -2 -1.73 -1 0 ■

y

x

−3

−2

−1

3

2

1

0

Amplitude

3p
2

p
2

2pp

Fig. 10.7

 EXAMPLE  2  Plotting the graph of y = a cos x

Plot the graph of y = -3 cos x.
In this case, a = -3, and this means that the amplitude is 0 -3 0 = 3. Therefore, the 

maximum value of y is 3, and the minimum value of y is -3. The table of values fol-
lows, and the curve is shown in Fig. 10.7.

x 0 p
6

p
3

p
2

2p
3

5p
6 p

y -3 -2.6 -1.5 0 1.5 2.6 3

x 7p
6

4p
3

3p
2

5p
3

11p
6 2p

y 2.6 1.5 0 -1.5 -2.6 -3

Note that the effect of the negative sign with the number a is to invert the curve about 
the x-axis. ■

Apart from the fact that the range of the functions y = a sin x and y = a cos x is 3 - 0 a 0 , 0 a 0 4 , we can see from the previous examples that the number a has no other 
effect on the basic features of these functions as compared to those of the functions 
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y = sin x and y = cos x. In particular, they have the same sinusoidal shape and the 
same period, and their zeros, maximum points, and minimum points are located at the 
same key values as before (see Table 10.2). It follows that by knowing the basic fea-
tures of the sine and cosine functions, we can sketch the graphs of functions of the form 
y = a sin x and y = a cos x quickly by simply using the appropriate amplitude and 
inverting the curve when necessary.

 EXAMPLE  3  Using key values to sketch a graph

Sketch the graph of y = 40 cos x.
First, we set up a table of values for the points where the curve has its zeros, maxi-

mum points, and minimum points:

Table 10.2

Key 
values

y = a sin x y = a cos x

0 0 a
p
2 a 0

p 0 -a
3p
2

-a 0

2p 0 a

x 0 p
2 p 3p

2 2p
y 40  

max.
0 -40  

min.
0 40  

max.

Now, we plot these points and join them, knowing the basic sinusoidal shape of the 
curve. See Fig. 10.8. ■

 EXAMPLE  4  Using key values to sketch a graph

Sketch the graph of y = -2 sin x.
The key values between 0 and 2p are the following:

y

x

−40

−20

40 Max. Max.

Zeros

Min.

20

0 3p
2

p
2

2pp

Fig. 10.8

Practice Exercise

1.  For the graph of y = -6 sin x, set up a 
table of key values for 0 … x … 2p.

x 0 p
2 p 3p

2 2p

y 0 -2  
min.

0 2  
max.

0

The graph from x = -5p
2  to x = 5p

2  is shown in Fig. 10.9, plotted in the 
same set of axes as the function y = sin x. The effect of the constant 
a = -2 in terms of the change in amplitude and the inversion of the curve 
can be readily seen. ■

y

x

−2

2

0 3p
2

5p
2

p
2

5p
2−

y = −2 sin x

y = sin x

Fig. 10.9

EXERCISES 10.1

In Exercises 1 and 2, graph the function if the given changes are made 
in the indicated examples of this section.

 1. In Example 2, if the sign of the coefficient of cos x is changed, 
plot the graph of the resulting function.

 2. In Example 4, if the sign of the coefficient of sin x is changed, 
display the graph of the resulting function.

In Exercises 3–6, complete the following table for the given functions 
and then plot the resulting graphs.

x -p -3p
4 -p

2 -p
4 0 p

4
p
2

3p
4 p

y                  

x 5p
4

3p
2

7p
4 2p 9p

4
5p
2

11p
4 3p

y                
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 3. y = sin x 4. y = cos x

 5. y = 3 cos x 6. y = -4 sin x

In Exercises 7–22, sketch the graphs of the given functions.

 7. y = 3 sin x 8. y = 5 sin x

 9. y = 5
2 sin x 10. y = 35 sin x

 11. y = 200 cos x 12. y = 0.25 cos x

 13. y = 0.8 cos x 14. y = 3
2 cos x

 15. y = -sin x 16. y = -300 sin x

 17. y = -1500 sin x 18. y = -0.2 sin x

 19. y = -cos x 20. y = -8 cos x

 21. y = -50 cos x 22. y = -0.4 cos x

Although units of p are convenient, we must remember that p is only 
a number. Numbers that are not multiples of p may be used. In 
Exercises 23–26, plot the indicated graphs by finding the values of y 
that correspond to values of x of 0, 1, 2, 3, 4, 5, 6, and 7 on a 
calculator. (Remember, the numbers 0, 1, 2, and so on represent 
radian measure.)

 23. y = sin x 24. y = -30 sin x

 25. y = 12 cos x 26. y = 2 cos x

In Exercises 27–32, solve the given problems.

 27. Find the function and graph it for a function of the form y = a sin x 
that passes through 1p>2, -22 .

 28. Find the function and graph it for a function of the form y = a sin x 
that passes through 13p>2, -22 .

 29. Find the function and graph it for a function of the form y = a cos x 
that passes through 1p, 22 .

 30. Find the function and graph it for a function of the form y = a cos x 
that passes through 12p, -22 .

In Exercises 37–40, find the value of a for either y = a sin x or 
y = a cos x, whichever is correct, such that the given point is on the 
graph. The amplitude of each function is 2.50. Thereby determine the 
function. (All points are located such that the x value is between -p 
and p.)

 37. 10.67, -1.552  38. 1 -1.20, 0.902
 39. (2.07, 1.20) 40. 1 -2.47, -1.552
Answers to Practice Exercise

1. 

 33. y

x

−4

4

0 2p

 34. y

x

−0.2

0.2

0 2p

 35. y

x

−1.5

1.5

0 2p

 36. y

x

−6

6

0 2p

 31. The graph displayed on an oscilloscope can be represented by 
y = -0.05 sin x. Display this curve on a graphing calculator.

 32. The displacement y (in cm) of the end of a robot arm for welding 
is y = 4.75 cos t, where t is the time (in s). Display this curve on 
a graphing calculator.

In Exercises 33–36, the graph of a function of the form y = a sin x or 
y = a cos x is shown. Determine the specific function of each.

x 0 p
2 p 3p

2 2p
y 0 -6  

min.
0 6 

max.
0

We learned in Section 10.1 that the values of the functions y = a sin x and y = a cos x 
repeat every 2p units of x, making them periodic with period 2p. More generally, we 
say that a function F has period P if F1x2 = F1x + P2  for all x in the domain of F, 
and P is the smallest such number. In other words, the period is the x-distance between 
a point and the next corresponding point after which the values of y repeat.

Let us now plot the curve y = sin 2x. This means that we choose a value of x, mul-
tiply this value by 2, and find the sine of the result. This leads to the following table of 
values for this function:

 10.2 Graphs of y = a sin bx and y = a cos bx

y = a sin bx and y = a cos bx

x 0 p
8

p
4

3p
8

p
2

5p
8

3p
4

7p
8 p 9p

8
5p
4

2x 0 p
4

p
2

3p
4 p 5p

4
3p
2

7p
4 2p 9p

4
5p
2

y 0 0.7 1 0.7 0 -0.7 -1 -0.7 0 0.7 1

Plotting these points, we have the curve shown in Fig. 10.10.
From the table and Fig. 10.10, note that y = sin 2x repeats after p units of x. The 

effect of the 2 is that the period of y = sin 2x is half the period of the curve of y = sin x.

y

x

−1

1

0

Period = p

3p
4

5p
4

p
2

p
4

p

Fig. 10.10
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 EXAMPLE  1  Finding the period of a function

(a) The period of cos 4x is 2p4 = p
2 .  (b) The period of sin 3px is 2p3p = 2

3.

(c) The period of sin 12x is 
2p

1
2

= 4p. (d) The period of cos p4x is 
2p
p
4

= 8.

In (a), the period tells us that the curve of y = cos 4x will repeat every p>2 (approximately 
1.57) units of x. In (b), we see that the curve of y = sin 3px will repeat every 2>3 of a unit. 
In (c) and (d), the periods are longer than those of y = sin x and y = cos x. ■

Combining the value of the period with the value of the amplitude from Section 
10.1, we conclude that the functions y = a sin bx and y = a cos bx have an amplitude 
of 0 a 0  and a period of 2p>b. These properties are very useful in sketching these 
functions.

 EXAMPLE  2  Sketching the graph of y = a sin bx

Sketch the graph of y = 3 sin 4x for 0 … x … p.
Since a = 3, the amplitude is 3. The 4x tells us that the period is 2p>4 = p>2. 

This means that y = 0 for x = 0 and for y = p>2. Since this sine function is zero 
halfway between x = 0 and x = p>2, we find that y = 0 for x = p>4. Also, the fact 
that the graph of the sine function reaches its maximum and minimum values halfway 
between zeros means that y = 3 for x = p>8, and y = -3 for x = 3p>8. Note that 
the values of x in the following table are those for which 4x = 0, p>2,  p,  3p>2,  2p, 
and so on, which correspond to the key values listed in Tables 10.1 and 10.2.

If the period of a function F1x2  is P, 
then the period of F1bx2  is P>b. Since 
each of the functions sin x and cos x 
has a period of 2p, each of the func-
tions sin bx and cos bx has a period of 
2p>b.

LEARNING T IP

Practice Exercise

Find the period of each function.

1. y = sin px 2. y = cos 13x

x 0 p
8

p
4

3p
8

p
2

5p
8

3p
4

7p
8 p

y 0 3 0 -3 0 3 0 -3 0

Using the values from the table and the fact that the curve is sinusoidal in form, we 
sketch the graph of this function in Fig. 10.11. We see that the key values where the 
function has zeros, maxima, and minima occur when x is a multiple of p>8, which is 
exactly one-fourth of the period. ■

Note from Example 2 that an important distance in sketching a sine curve or a 
cosine curve is one-fourth of the period. For y = a sin bx, it is one-fourth of the period 
from the origin to the first value of x where y is at its maximum (or minimum) value. 
Then we proceed another one-fourth period to a zero, another one-fourth period to the 
next minimum (or maximum) value, another to the next zero (this is where the period is 
completed), and so on.

Similarly, one-fourth of the period is useful in sketching the graph of y = cos bx. 
For this function, the maximum (or minimum) value occurs for x = 0. At the follow-
ing one-fourth-period values, there is a zero, a minimum (or maximum), a zero, and a 
maximum (or minimum) at the start of the next period. 

We now summarize the important values for sketching the graphs of y = a sin bx 
and y = a cos bx.

3

p

2

−3

0

Max. Max.

Min. Min.

p_

Period

y

x

Fig. 10.11

By finding one-fourth of the period, 
we can easily find the important values 
for sketching the curve.

LEARNING T IP

Important Values for Sketching y = a sin bx and y = a cos bx
1. The amplitude: 0 a 0
2. The period: 2p>b

3. Values of the function for each one-fourth period
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 EXAMPLE  3  Using important values to sketch a graph

Sketch the graph of y = -2 cos 3x for 0 … x … 2p.
Note that the amplitude is 2 and the period is 2p

3 . This means that one-fourth of the 
period is 14 * 2p

3 = p
6 . Since the cosine curve is at a maximum or minimum for x = 0, 

we find that y = -2 for x = 0 (the negative value is due to the minus sign before the 
function), which means it is a minimum point. The curve then has a zero at x = p

6 , a 
maximum value of 2 at x = 21p6 2 = p

3 , a zero at x = 31p6 2 = p
2 , and its next value of 

-2 at x = 41p6 2 = 2p
3 , and so on. Therefore, we have the following table:

x 0 p
6

p
3

p
2

2p
3

5p
6 p 7p

6
4p
3

3p
2

5p
3

11p
6 2p

y -2 0 2 0 -2 0 2 0 -2 0 2 0 -2

Using this table and the sinusoidal shape of the cosine curve, we sketch the function in 
Fig. 10.12. ■

For a periodic function, a cycle is any section of the graph that includes exactly one 
period. Fig. 10.11 shows two cycles, whereas Fig. 10.12 shows three.

 EXAMPLE  4  Graph of y = a cos bx—application

A generator produces a voltage V = 200 cos 50pt, where t is the time in seconds (50p 
is angular velocity, so it has units of rad>s; thus, 50pt is an angle in radians). Graph V 
as a function of t for 0 … t … 0.06 s.

The amplitude is 200 V and the period is 2p> 150p2 = 0.04 s. Since one-fourth of 
the period is 0.01 s, the function has zeros, maxima, and minima when x is a multiple of 
0.01. Thus, we have the following table of key values:

y

x

−2

2

0 4p
3

2p
3

5p
3

p
3

p 2p

Fig. 10.12

t1s2 0 0.01 0.02 0.03 0.04 0.05 0.06

V1V2 200 0 -200 0 200 0 -200

The graph is shown in Fig. 10.13. Note that between 0 and 0.06 s, the function com-
pletes 1.5 cycles. We do not consider negative values of t, for they have no real mean-
ing in this problem. ■

V

t

−200

200

0.06

Fig. 10.13

EXERCISES 10.2

In Exercises 1 and 2, graph the function if the given changes are made 
in the indicated examples of this section.

 1. In Example 2, if the coefficient of x is changed from 4 to 6, sketch 
the graph of the resulting function.

 2. In Example 3, if the coefficient of x is changed from 3 to 4, sketch 
the graph of the resulting function.

In Exercises 3–22, find the period of each function.

 3. y = 2 sin 6x 4. y = 4 sin 2x

 5. y = 3 cos 8x 6. y = 28 cos 10x

 7. y = -2 sin 12x 8. y = -1
5 sin 5x

 9. y = -cos 16x 10. y = -4 cos 2x

 11. y = 520 sin 2px 12. y = 2 sin 3px

 13. y = 3 cos 4px 14. y = 4 cos 10px

 15. y = 15 sin 13x 16. y = -25 sin 25x

 17. y = -1
2 cos 23x 18. y = 1

3 cos 14x

 19. y = 0.4 sin 
2px

3
 20. y = 1.5 cos 

px
10

 21. y = 3.3 cos p2x 22. y = -12.5 sin 2x
p

In Exercises 23–42, sketch the graphs of the given functions. (These 
are the same functions as in Exercises 3–22.)

 23. y = 2 sin 6x 24. y = 4 sin 2x

 25. y = 3 cos 8x 26. y = 28 cos 10x

 27. y = -2 sin 12x 28. y = -1
5 sin 5x

 29. y = -cos 16x 30. y = -4 cos 2x

 31. y = 520 sin 2px 32. y = 2 sin 3px

 33. y = 3 cos 4px 34. y = 4 cos 10px

 35. y = 15 sin 13x 36. y = -25 sin 25x
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 37. y = -1
2 cos 23x 38. y = 1

3 cos 14x

 39. y = 0.4 sin 
2px

3
 40. y = 1.5 cos 

px
10

 41. y = 3.3 cos p2x 42. y = -12.5 sin 2x
p

In Exercises 43–46, the period is given for a function of the form 
y = sin bx. Write the function corresponding to the given period.

 43. 
p

3
    44. 

2p
5

    45. 
1
3

    46. 6

In Exercises 47–50, graph the given functions. In Exercises 47 and 48, 
first rewrite the function with a positive angle, and then graph the 
resulting function. (Refer to Eq. 8.7 for trigonometric functions of 
negative angles.)

 47. y = 3 sin1 -2x2  48. y = -5 cos1 -4px2
 49. y = 8 " cos 1p2x2 "  50. y = 0.4 " sin 6x "

In Exercises 51–60, solve the given problems.

 51. By noting the periods of sin 2x and sin 3x, find the minimum 
period of the function y = sin 2x + sin 3x.

 52. By noting the period of cos 12x and cos 13x, find the minimum 
period of the function y = cos 12x + cos 13x.

 53. Find the function and graph it for a function of the form 
y = -2 sin bx that passes through 1p>4, -22  and for which b 
has the smallest possible positive value.

 54. Find the function and graph it for a function of the form 
y = 2 sin bx that passes through 1p>6, 22  and for which b has 
the smallest possible positive value.

 55. Find the function and graph it for a function of the form 
y = 2 cos bx that passes through 1p, 02  and for which b has the 
smallest possible positive value.

 56. Find the function and graph it for a function of the form 
y = -2 cos bx that passes through 1p>2, 22  and for which b has 
the smallest possible positive value.

 57. The standard electric voltage in a 60-Hz alternating-current cir-
cuit is given by V = 170 sin 120pt, where t is the time in sec-
onds. Sketch the graph of V as a function of t for 0 … t … 0.05 s.

 58. To tune the instruments of an orchestra before a concert, an A 
note is struck on a piano. The piano wire vibrates with a displace-
ment y (in mm) given by y = 3.2 cos 880pt, where t is in sec-
onds. Sketch the graph of y vs. t for 0 … t … 0.01 s.

 59. The velocity v (in cm>s) of a piston is v = 450  cos 3600t, where 
t is in seconds. Sketch the graph of v vs. t for 0 … t … 0.006 s.

 60. On a certain day in St. John, New Brunswick, the difference 
between high tide and low tide was 6.4 m. The period was about 
12.4 h. Find a cosine function that describes these tides if high 
tide was at midnight.

In Exercises 61–64, the graph of a function of the form y = a sin bx 
or y = a cos bx is shown. Determine the specific function of each.

 61. y

x

−0.5

0.5

0 p

 62. y

x

−8

8

0 p
4

63. y

x

!4

4

0 2

 64. y

x

!0.1

0.1

0 1
2

Answers to Practice Exercises

1. 2  2. 6p

In the function y = a sin 1bx + c2 , c represents the phase angle. It is another very 
important quantity in graphing the sine and cosine functions. Its meaning is illustrated 
in the following example.

 EXAMPLE  1  Sketch of a function with phase angle

Sketch the graph of y = sin12x + p
4 2 .

Here, c = p>4. Therefore, in order to obtain values for the table, we 
assume a value for x, multiply it by 2, add p>4 to this value, and then  
find the sine of the result. The values shown are those for which 
2x + p>4 = 0, p>4, p, 2, 3p>4, p, and so on, which are the important 
values for y = sin 2x.

 10.3 Graphs of y = a sin (bx + c) and y = a cos (bx + c)
 

Graphs of y = a sin (bx + c) and  
y = a cos (bx + c)

x -p
8 0 p

8
p
4

3p
8

p
2

5p
8

3p
4

7p
8 p

y 0 0.7 1 0.7 0 -0.7 -1 -0.7 0 0.7

Solving 2x + p>4 = 0, we get x = -p>8, which gives y = sin 0 = 0. The other 
values for y are found in the same way. See Fig. 10.14. ■

y

x

−1

1

0 3p
4

p
4

pp
2

p−8

Fig. 10.14
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Note from Example 1 that the graph of y = sin12x + p
4 2  is precisely the same as 

the graph of y = sin 2x, except that it is shifted p>8 units to the left. Fig. 10.15 shows 
the graphs of y = sin 2x and y = sin12x + p

4 2 . We see that the shapes are the same 
and that the graph of y = sin12x + p

4 2  is about 0.4 unit (p>8 ≈ 0.39) to the left of 
the graph of y = sin 2x.

In general, the effect of c in the equation y = sin1bx + c2  can be understood 
when we write bx + c = b1x + c

b2 . This means that the function y = sin1bx + c2  
is obtained as a result of adding the constant c>b to x in the function y = sin bx. As we 
discussed in Section 3.5, by adding a constant to x, the graph of y = a sin bx is shifted 
to the left or to the right. In this case, the graph is shifted to the left if c 7 0 and to the 
right if c 6 0. The direction and magnitude of the shift is called the displacement (or 
phase shift), and it is given by –c>b. Note that the displacement can be obtained by 
solving for x in the equation bx + c = 0. In Example 1, the displacement is -p>8.

We can verify that the displacement is -c>b by noting corresponding points on the graphs 
of y = sin bx and y = sin1bx + c2 . For y = sin bx, when x = 0, then y = 0. For 
y = sin1bx + c2 , when x = -c>b, then y = 0. The point 1 -c>b, 02  on the graph of 
y = sin1bx + c2  is -c>b units to the left of the point 10, 02  on the graph of y = sin bx.

We can use the displacement combined with the amplitude and the period along 
with the other information from the previous sections to sketch curves of the functions 
y = a sin1bx + c2  and y = a cos1bx + c2 , where b 7 0.

y

x

−1

1

0

Period = p

3p
4

5p
4

p
2

p
4

p
8

shift

y = sin (2x +   )p
4

y = sin 2x

p

Fig. 10.15

Note that the constant c and the dis-
placement -c>b differ in sign:

c 7 0, the graph is shifted to the 
left, and displacement is negative.

c 6 0, the graph is shifted to the 
right, and displacement is positive.

LEARNING T IP

Carefully note the difference 
between y = sin1bx + c2  and 
y = sin bx + c. Writing sin1bx + c2  
means to find the sine of the quan-
tity bx + c, whereas sin bx + c means 
to find the sine of bx and then add 
the value c.

LEARNING T IP

Important Quantities for Sketching Graphs of y = a sin (bx + c) and 
y = a cos (bx + c)

 Amplitude = 0 a 0
 Period =

2p
b

 (10.1)

 Displacement = - c
b

These quantities allow us to evaluate the function at key values each one-fourth 
period. Table 10.3 summarizes these key values for the cycle that starts at x = -c>b 
and is completed at x = -c>b + period. A general illustration of the graph of 
y = a sin1bx + c2  is shown in Fig. 10.16.

Key values 
(one cycle) y = a sin1bx + c2 y = a cos1bx + c2

- c
b 0 a

- c
b + period

4
a 0

- c
b + period

2
0 -a

- c
b + 3 # period

4
-a 0

- c
b + period 0 a

Table 10.3

y

x

−a

a

0

2p
b

c−b
2p
b

c +−b
2p
b

c +−b

y = a sin (bx + c), c > 0

(a)

y

x

−a

a

0

2p
b

c−b

y = a sin (bx + c), c < 0

(b)

For each

a > 0, b > 0

Since c < 0,

−c/b is positive

Fig. 10.16
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−2

0 p

3
_ 2p

3
__ p

2

Displacement Period

Amplitude

y

x

Fig. 10.17

Practice Exercise

1.  For the graph of y = 8 sin12x - p>32 , 
determine amplitude, period, and 
displacement.

 EXAMPLE  4  Graph with b < 0

Sketch the graph of the function y = sin1 -2x + p
3 2 .

We first rewrite the function with a positive angle. We use the fact that 
sin1 -x2 = -  sin x (see Eq. 8.7) to write

y = sin1 -2x + p
3 2 =  sin1 - 12x - p

3 2 2 = -sin12x - p
3 2

Therefore, we have a = -1, b = 2, c = -p
3 . We determine that the amplitude is 1, 

the period is 2p , 2 = p, and the displacement is - 1 -p
3 2 , 2 = p

6 . Also, one-
fourth of the period is p4 , so key values are p4  units apart, starting at p6  and ending at 7p

6 . 
We now make a table of important values:

x p
6

5p
12

2p
3

11p
12

7p
6

y 0 -1 0 1 0

From this table, we sketch the graph in Fig. 10.19. ■

 EXAMPLE  2  Sketching the graph of y = a sin (bx + c)

Sketch the graph of y = 2 sin13x - p2 .
First, note that a = 2, b = 3, and c = -p. Therefore, the amplitude is 2, the 

period is 2p>3, and the displacement is - 1 -p>32 = p>3. (We can also get the dis-
placement from 3x - p = 0, x = p>3.)

One-fourth of the period is 1412p
3 2 = p

6 , so key values for one full cycle start at p>3, end 
at p, and are found every p>6 units in between. This cycle is represented by the magenta 
portion of the graph in Fig. 10.17, obtained from the following table of important values.

x 0 p
6

p
3

p
2

2p
3

5p
6

p

y 0 -2 0 2 0 -2 0 ■

 EXAMPLE  3  Sketching the graph of y = a cos (bx + c)

Sketch the graph of the function y = -cos12x + p
6 2 .

x - p
12

p
6

5p
12

2p
3

11p
12

y -1 0 1 0 -1 ■

y

x

−1

1

0 2p
3

7p
6

5p
12

11p
12

p
6

Fig. 10.19

p

3
_p

6
_ 2p

3
__ p

Displacement

Period

Amplitude

−

p

12
_−

1

−1

y

x

Fig. 10.18

First, we determine that the amplitude is 1, the period is 2p2 = p, 
and the displacement is -p

6 , 2 = - p
12. Moreover, one-fourth of 

the period is p>4, so key values for one cycle are found every p>4 
units beginning at - p

12 and ending at 11p
12 . This cycle is represented 

by the magenta portion of the graph in Fig. 10.18, sketched from the 
following table:
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 EXAMPLE  5  Using a trigonometric function to model daylight hours

At 48° N latitude, the number of daylight hours during the longest day of the year 
(June 21) is 16.1 hours. During the shortest day of the year (December 21), the number of 
daylight hours is 8.31 hours. Approximate the number of hours h of daylight each day dur-
ing a year with a function of the form h = a sin 1bt + c2 + d, where time is measured 
in days. Cities at 48° N latitude include Paris, Vienna, and Victoria, British Columbia.

We determine the values of a, b, c, and d as follows:

1.  The amplitude is half the distance between the maximum and the minimum day-

light hours, so a =
16.1 - 8.31

2
= 3.90.

2.  The period is 365 days. Therefore, 
2p
b

= 365 and b =
2p
365

.

3.  The maximum of the sine function occurs at one fourth of the period, which is 
365

4 = 91.25. Since the maximum for the data at hand occurs at t = 172 (June 21), 
we must shift the sine function to the right 172 - 91.25 = 80.75 days. This gives 
- c

b = 80.75, so that c = -80.75 * 2p
365 = -1.39.

4.  Finally, the range is 38.31, 16.14  instead of 3 -3.90, 3.904 , so we must shift the 
sine function 16.1 - 3.90 = 12.2 hours vertically by setting d = 12.2.

Our sine model is

h = 3.90 sin a 2p
365

 t - 1.39b + 12.2

The graph is shown in Fig. 10.20. ■

h

t

5

10

15

20

50 100 150 200 250 300 350

(353, 8.31)

(172, 16.1)

12.2

Fig. 10.20

EXERCISES 10.3

In Exercises 1 and 2, graph the function if the given changes are made 
in the indicated examples of this section.

 1. In Example 3, if the sign before p>6 is changed, sketch the graph 
of the resulting function.

 2. In Example 4, if the sign before p>6 is changed, sketch the graph 
of the resulting function.

In Exercises 3–26, determine the amplitude, period, and displacement 
for each function. Then sketch the graphs of the functions.

 3. y = sinax - p

6
b  4. y = 3 sinax + p

4
b

 5. y = cosax + p

6
b  6. y = 2 cosax - p

8
b

 7. y = 0.2 sina2x + p

2
b  8. y = -sina3x - p

2
b

 9. y = -cos12x - p2  10. y = 0.4 cosa3x + p

3
b

 11. y =
1
2

 sina1
2

x - p

4
b  12. y = 2 sina1

4
x + p

2
b

 13. y = 30 cosa1
3

x + p

3
b  14. y =

1
3

 cosa1
2

x - p

8
b

 15. y = sinapx + p

8
b  16. y = -2 sin12px - p2

 17. y = 0.08 cosa4px - p

5
b  18. y = 25 cosa3px + p

2
b

 19. y = -0.6 sin12px - 12  20. y = 1.8 sinapx + 1
3
b

 21. y = 40 cos13px + 22  22. y = 360 cos16px - 12
 23. y = sin1p2x - p2  24. y = - 1

2
 sina2x - 1

p
b

 25. y = - 3
2

 cosapx + p2

6
b  26. y = p cosa 1

p
x + 1

3
b

In Exercises 27–30, write the equation for the given function with the 
given amplitude, period, and displacement, respectively 1a 7 02 .

 27. sine, 4, 3p, -p>4 28. cosine, 8, 2p>3, p>3

 29. cosine, 12, 1>2, 1>8 30. sine, 18, 4, -1

In Exercises 31–34, explain why the given equations are correct. The 
method using a graphing calculator is indicated in Exercise 31.

 31. By viewing the graphs of y1 = sin x and y2 = cos1x - p>22 , 
show that cos1x - p>22 = sin x.

 32. Show that cos12x - 3p>82 = cos13p>8 - 2x2 .

 33. Show that sin1x>2 - 3p>42 = -sin13p>4 - x>22 .

 34. Show that 2 ! sin1x - p>32 ! =  sin1p>3 - x2 - sin1x - p>32  
for -2p>3 6 x 6 p>3.

In Exercises 35–40, solve the given problems. In Exercises 39 and 40, 
use a graphing calculator to view the indicated curves.

 35. Find the function and graph it for a function of the form 
y = 2 sin12x + c2  that passes through 1 -p>8, 02  and for 
which c has the smallest possible positive value.
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 36. Find the function and graph it for a function of the form 
y = 2 cos12x - c2  that passes through 1p>6, 22  and for which 
c has the smallest possible positive value.

 37. A wave travelling in a string may be represented by the equation 

  y = A sin 2pa t
T

- x
l
b . Here, A is the amplitude, t is the time the 

  wave has travelled, x is the distance from the origin, and T is the 
time required for the wave to travel one wavelength l (the Greek 
letter lambda). Sketch three cycles of the wave for which 
A = 2.00 cm, T = 0.100 s, l = 20.0 cm, and x = 5.00 cm.

 38. The electric current i (in mA) in a certain circuit is given by 
i = 3.8 cos 2p1 t + 0.202 , where t is the time in seconds. Sketch 
three cycles of this function.

 39. A certain satellite circles the earth such that its distance y, in kilo-
metres north or south (altitude is not considered) from the equa-
tor, is y = 7200 cos10.025t - 0.252 , where t is the time (in 
min) after launch. View two cycles of the graph.

 40. In performing a test on a patient, a medical technician used an 
ultrasonic signal given by the equation I = A sin1vt + u2 . 
View two cycles of the graph of I vs. t if A = 5 nW>m2, 
v = 2 * 105 rad>s, and u = 0.4.

 45. In Sydney, Australia, the number of daylight hours during the short-
est day of the year (June 21) is 9.90 hours. During the longest day of 
the year (December 21), the number of daylight hours is 14.4 hours. 
Approximate the number of hours h of daylight each day during a 
year with a function of the form h = a sin 1bt + c2 + d, where 
time is measured in days.

Answers to Practice Exercise

1. amp. = 8, per. = p, disp. = p>6

 43. y = a cos1bx + c2   
Fig. 10.22

 44. y = a sin1bx + c2   
Fig. 10.22

y

x

!5

!1

5

0 15

Fig. 10.21

y

x

−0.8

0.8

0 5p
4

p
4

Fig. 10.22

 41. y = a sin1bx + c2   
Fig. 10.21

 42. y = a cos1bx + c2   
Fig. 10.21

In Exercises 41–44, give the specific form of the equation by evaluating 
a, b, and c through an inspection of the given curve. Explain how a, b, 
and c are found.

The graph of y = tan x is shown in Fig. 10.23. Then, knowing that csc x = 1>sin x, 
sec x = 1>cos x, and cot x = 1>tan x (see Eq. 4.1 in Section 4.2), we are able to find 
the values of y = csc x,  y = sec x, and y = cot x from the indicated corresponding 
reciprocal functions. Using these values, we can graph these functions, and in  
Figs. 10.24–10.26 we show the resulting graphs.

 10.4 Graphs of y = tan x, y = cot x, y = sec x, y = csc x
Graph of y = tan x  

 
of y = cot x, y = sec x, y = csc x
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Fig. 10.23
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y = cot x

Fig. 10.24
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From these graphs, note that y = tan x and y = cot x have period p and have all 
real numbers as their range. The functions y = sec x and y = csc x have period 2p, but 
their ranges do not include the real numbers between –1 and 1.

The vertical dashed lines on the graphs are vertical asymptotes (see Section 3.4). 
The curves approach these lines but never actually reach them. The values of x for 
which the curve has an asymptote are not included in the domain of the function.

As we can see from the graphs, the functions have asymptotes, zeros, and maximum 
or minimum values when x is a multiple of p>2, that is to say, at the same key values 
which allowed us to sketch the graphs of the sine and cosine functions easily. The char-
acteristics of the trigonometric functions at the key values from 0 to 2p are compared 
in Table 10.4. For example, note that when the sine is zero, its reciprocal (the cosecant) 
has an asymptote.
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y = sec x

Fig. 10.25
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−4

4
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p 2p
2

3p
2

p−2

y = csc x

Fig. 10.26

■ Repeating from above the reciprocal 
relationships that are the basis for graphing 
y = cot x, y = sec x, and y = csc x, we have

csc x =
1

sin x
  sec x =

1
cos x

cot x =
1

tan x
     (10.2)

Key  
values

y = sin x y = cos x y = tan x

0 0 1 0
p
2 1 0 asymptote

p 0 -1 0
3p
2 -1 0 asymptote

2p 0 1 0

Key  
values

y = csc x y = sec x y = cot x

0 asymptote 1 asymptote
p
2 1 asymptote 0

p asymptote -1 asymptote
3p
2 -1 asymptote 0

2p asymptote 1 asymptote

Table 10.4

To sketch functions such as y = a sec x, first sketch y = sec x and then multiply 
the y-values by a. Here, a is not an amplitude, since the ranges of these functions are 
not limited in the same way they are for the sine and cosine functions.
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 EXAMPLE  1  Sketching the graph of y = a sec x

Sketch the graph of y = 2 sec x.
First, we sketch in y = sec x, shown as the light curve in Fig. 10.27. Then we multi-

ply the y-values of this secant function by 2. Although we can only estimate these val-
ues and do this approximately, a reasonable graph can be sketched this way. The 
desired curve is shown in in Fig. 10.27. ■

 EXAMPLE  2  Graph of y = a cot bx

Sketch the graph of y = 0.5 cot 2x.
Since the period of y = cot x is p, the period of y = cot 2x is p>2. Therefore, we 

have the following table of key values:

p

y

x

−3

3

0 2p

Fig. 10.27

x 0 p
4

p
2

3p
4 p

y asymptote 0 asymptote 0 asymptote

Since a = 0.5, the function increases more slowly than y = cot x. We sketch the graph 
as shown in Fig. 10.28. ■

Using a graphing calculator, we can display the graphs of these functions more eas-
ily and more accurately than by sketching them. By knowing the general shape and 
period of the function, the values for the window settings can be determined.

 EXAMPLE  3  Calculator graph of y = a csc (bx + c)

View at least two periods of the graph of y = 2 csc12x + p>42  on a graphing 
calculator.

Since the period of csc x is 2p, the period of csc12x + p>42  is 2p>2 = p. 
Recalling that csc x = (sin x2-1, the curve will have the same displacement as 
y = sin12x + p>42 . Therefore, displacement is -p >4

2 = -p
8 . There is some flexibility 

in choosing the window settings, and as an example, we choose the following settings:

Xmin = -0.5 1 the displacement is -p>8 = -0.42
Xmax = 6 1displacement = -p>8; period = p, -p>8 + 2p = 15p>8 = 5.92
Ymin = -6, Ymax = 6 1 there is no curve between y = -2 and y = 22

With y1 = 2(sin12x + p>42 2-1, and with the calculator in radian mode, Fig. 10.29 
shows the calculator view. ■
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p

Fig. 10.28
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–6

6
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Fig. 10.29

EXERCISES 10.4

In Exercises 1 and 2, view the graphs on a graphing calculator if the 
given changes are made in the indicated examples of this section.

 1. In Example 2, change 0.5 to 5.

 2. In Example 3, change the sign before p>4.

In Exercises 3–6, fill in the following table for each function and plot 
the graph from these points.

x -p
2 -p

3 -p
4 -p

6 0 p
6

p
4

p
3

p
2

2p
3

3p
4

5p
6

p

y

 3. y = tan x 4. y = cot x

 5. y = sec x 6. y = csc x

In Exercises 7–14, sketch the graphs of the given functions by use of the 
basic curve forms (Figs. 10.23, 10.24, 10.25, and 10.26). See Example 1.

 7. y = 2 tan x 8. y = 3 cot x

 9. y = 1
2 sec x 10. y = 3

2 csc x

 11. y = -8 cot x 12. y = -0.1 tan x

 13. y = -3 csc x 14. y = -60 sec x

In Exercises 15–24, view at least two cycles of the graphs of the given 
functions on a graphing calculator.

 15. y = tan 2x 16. y = 2 cot 3x

 17. y = 1
2 sec 3x 18. y = 0.4 csc 2x

 19. y = 2 cota2x + p

6
b  20. y = tana3x - p

2
b
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 21. y = 18 csca3x - p

3
b  22. y = 12 seca2x + p

4
b

 23. y = 75 tana0.5x - p

8
b  24. y = 0.5 seca0.2x + p

25
b

In Exercises 25 and 26, solve the given problems. In Exercises 27–30, 
sketch the appropriate graphs.

 25. Write the equation of a secant function with zero displacement, a 
period of 4p, and that passes through 10, -32 .

 26. Use a graphing calculator to show that sin x 6 tan x for 
0 6 x 6 p>2, although sin x and tan x are nearly equal for the 
values near zero.

 27. Near Antarctica, an iceberg with a vertical face 200 m high is 
seen from a small boat. At a distance x from the iceberg, the angle 
of elevation u of the top of the iceberg can be found from the 
equation x = 200 cot u. Sketch x as a function of u.

 28. In a laser experiment, two mirrors move horizontally in equal and 
opposite distances from point A. The laser path from and to point 
B is shown in Fig. 10.30. From the figure, we see that x = a tan u. 
Sketch the graph of x = f1u2  for a = 5.00 cm.

 29. A mechanism with two springs is shown in Fig. 10.31, where 
point A is restricted to move horizontally. From the law of sines, 
we see that b = 1a sin B2  csc A. Sketch the graph of b as a func-
tion of A for a = 4.00 cm and B = p>4.

 30. A cantilever column of length L will buckle if too large a down-
ward force P is applied d units off centre. The horizontal deflec-
tion x (see Fig. 10.32) is x = d1sec1kL2 - 12 , where k is a 
constant depending on P, and 0 6 kL 6 p>2. For a constant d, 
sketch the graph of x as a function of kL.

A

B

a

x

u

Fig. 10.30

A
B

b
a

Fig. 10.31

L

d x

P P

Fig. 10.32

When an object moves in a circular path with constant velocity (see Section 8.4), its 
projection on a diameter moves with simple harmonic motion. For example, the 
shadow of a ball at the end of a string and moving at a constant rate moves with simple 
harmonic motion. We now consider this physical concept and some of its applications.

 10.5 Applications of the Trigonometric Graphs

y

t

y

u

(R, 0)

d

Fig. 10.33

 EXAMPLE  1  Simple harmonic motion

In Fig. 10.33, assume that a particle starts at the end of the radius 
at 1R, 02  and moves counterclockwise around the circle with 
constant angular velocity v. The displacement of the projection 
on the y-axis is d and is given by d = R sin u. The displacement 
is shown for a few different positions of the end of the radius.

Since u>t = v, or u = vt, we have

 d = R sin vt  (10.3)

as the equation for the displacement of this projection, with 
time t as the independent variable.

For the case where R = 10.0 cm and v = 4.00 rad>s, we have

d = 10.0 sin 4.00t

By sketching or viewing the graph of this function, we can 
find the displacement d of the projection for a given time t. The 
graph is shown in Fig. 10.34. ■
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Fig. 10.34
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In Example 1, note that time is the independent variable. This is motion for which 
the object (the end of the projection) remains at the same horizontal position 1x = 02  
and moves only vertically according to a sinusoidal function. In the previous sections, 
we dealt with functions in which y is a sinusoidal function of the horizontal displace-
ment x. Think of a water wave. At one point of the wave, the motion is only vertical 
and sinusoidal with time. At one given time, a picture would indicate a sinusoidal 
movement from one horizontal position to the next.

 EXAMPLE  2  Simple harmonic motion—application

A windmill is used to pump water. The radius of the blade is 2.5 m, and it is moving 
with constant angular velocity. If the vertical displacement of the end of the blade  
is timed from the point it is at an angle of 45° 1p>4 rad2  from the horizontal (see  
Fig. 10.35(a)), the displacement d is given by

d = 2.5 sinavt + p

4
b

If the blade makes an angle of 90° 1p>2 rad2  when t = 0 (see Fig. 10.35(b)), the 
displacement d is given by

d = 2.5 sinavt + p

2
b or d = 2.5 cos vt

If timing started at the first maximum for the displacement, the resulting curve for the 
displacement would be that of the cosine function. ■

Other examples of simple harmonic motion are (1) the movement of a pendulum bob 
through its arc (a very close approximation to simple harmonic motion), (2) the motion of 
an object “bobbing” in water, (3) the movement of the end of a vibrating rod (which we 
hear as sound), and (4) the displacement of a weight moving up and down on a spring. Other 
phenomena that give rise to equations like those for simple harmonic motion are found in the 
fields of optics, sound, and electricity. The equations for such phenomena have the same 
mathematical form because they result from vibratory movement or motion in a circle.

 EXAMPLE  3  Alternating current

A very important use of the trigonometric curves arises in the study of alternating cur-
rent, which is caused by the motion of a wire passing through a magnetic field. If the 
wire is moving in a circular path, with angular velocity v, the current i in the wire at 
time t is given by an equation of the form

i = Im sin1vt + a2
where Im is the maximum current attainable and a is the phase angle.

The current may be represented by a sinusoidal wave. Given that Im = 6.00 A, 
v = 120p rad>s, and a = p>6, we have the equation

i = 6.00 sin1120pt + p
6 2

From this equation, note that the amplitude is 6.00 A, the period is 1
60 s, and the dis-

placement is - 1
720 s. From these values, we draw the graph as shown in Fig. 10.36. 

Since the current takes on both positive and negative values, we conclude that it moves 
alternately in one direction and then the other. ■

It is a common practice to express the rate of rotation in terms of the frequency f, 
the number of cycles per second, rather than directly in terms of the angular velocity v, 
the number of radians per second. The unit for frequency is the hertz (Hz), and 
1 Hz = 1 cycle>s. Since there are 2p rad in one cycle, we have

 v = 2pf  (10.4)

d

d = 2.5 m

(a) (b)

2.5 m

u
u

Fig. 10.35

Practice Exercise

1.  If the windmill blade in Example 2 starts 
at an angle of 135°, what equation gives 
its displacement in terms of the cosine 
function?

−6

6

0

i(A)

t(s)

1
120

1
60

1
40

1
30

Fig. 10.36

■ The unit Hertz is named for the German 
physicist Heinrich Hertz (1857–1894).
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It is the frequency f that is referred to in electric current, on radio stations, for 
musical tones, and so on.

 EXAMPLE  4  Frequency—hertz

For the electric current in Example 3, v = 120p rad>s. The corresponding frequency f is

f =
120p
2p

= 60 Hz

This means that 120p rad>s corresponds to 60 cycles>s. This is the standard frequency 
used for alternating current. ■

EXERCISES 10.5

In Exercises 1 and 2, answer the given questions about the indicated 
examples of this section.

 1. In Example 1, what is the equation relating d and t if the end of 
the radius starts at 10, R2?

 2. In Example 2, if the blade starts at an angle of -45°, what is the 
equation relating d and t as (a) a sine function? (b) A cosine 
function?

A graphing calculator may be used in the following exercises.

In Exercises 3 and 4, sketch two cycles of the curve of the projection 
of Example 1 as a function of time for the given values.

 3. R = 2.40 cm, v = 2.00 rad>s 4. R = 1.80 m, f = 0.250 Hz

In Exercises 5 and 6, a point on a cam is 8.30 cm from the centre of 
rotation. The cam is rotating with a constant angular velocity, and the 
vertical displacement d = 8.30 cm for t = 0 s. See Fig. 10.37. Sketch 
two cycles of d as a function of t for the given values.

 5. f = 3.20 Hz

 6. v = 3.20 rad>s

In Exercises 11 and 12, refer to the wave in the string described in 
Exercise 37 of Section 10.3. For a point on the string, the displacement 

y is given by y = A sin 2pa t
T

- x
l
b . We see that each point on the 

string moves with simple harmonic motion. Sketch two cycles of y as a 
function of t for the given values.

 11. A = 3.20 cm, T = 0.050 s, l = 40.0 cm, x = 5.00 cm

 12. A = 0.750 cm, T = 0.250 s, l = 24.0 cm, x = 20.0 cm

In Exercises 13 and 14, the air pressure within a plastic container 
changes above and below the external atmospheric pressure by 
p = p0 sin 2pft. Sketch two cycles of p as a function of t for the 
given values.

 13. p0 = 280 kPa,  f = 2.30 Hz

 14. p0 = 45.0 kPa,  f = 0.450 Hz

In Exercises 15–22, sketch the required curves.

 15. The angular displacement u of a certain pendulum bob in 
terms of its initial displacement u0 is u = u0 cos vt. If 
v = 2.00 rad>s, and u0 = p>30 rad, draw two cycles for the 
resulting equation.

 16. A study found that, when breathing normally, the increase in vol-
ume V (in L) of air in a person’s lungs as a function of the time t 
(in s) is V = 0.30 sin 0.50pt. Sketch two cycles.

 17. Sketch two cycles of the radio signal V = 0.014 cos12pft +  
p>42  (V in volts, f in hertz, and t in seconds) for a station broad-
casting with f = 950 kHz (“95” on the AM radio dial).

 18. Sketch two cycles of the acoustical intensity I of the sound wave 
for which I = A cos12pft - a2 , given that t is in seconds, 
A = 0.027 W>cm2, f = 240 Hz, and a = 0.80.

 19. The rotating beacon of a parked police car is 12 m from a straight 
wall. (a) Sketch the graph of the length L of the light beam, where 
L = 12 sec pt, for 0 … t … 2.0 s. (b) Which part(s) of the graph 
show meaningful values? Explain.

 20. The motion of a piston of a car engine approximates simple har-
monic motion. Given that the stroke (twice the amplitude) is 
0.100 m, the engine runs at 2800 r>min, and the piston starts at 
the middle of its stroke, find the equation for the displacement d 
as a function of t. Sketch two cycles.

Centre

8.
30

 c
m

Fig. 10.37

In Exercises 7 and 8, a satellite is orbiting the earth such that its 
displacement D north of the equator (or south if D 6 0) is given by 
D = A sin1vt + a2 . Sketch two cycles of D as a function of t for the 
given values.

 7. A = 500 km, v = 3.60 rad>h, a = 0

 8. A = 850 km, f = 1.6 * 10-4 Hz, a = p>3

In Exercises 9 and 10, for an alternating-current circuit in which the 
voltage V is given by V = E cos1vt + a2 , sketch two cycles of the 
voltage as a function of time for the given values.

 9. E = 170 V, f = 60.0 Hz, a = -p>3

 10. E = 80 V, v = 377 rad>s, a = p>2
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 21. The paddle wheel of the S. S. Beaver, Canada’s first steamship, 
had a radius of 1.98 m and rotated at 30 r/min when moving at top 
speed. Find the equation of motion of the vertical displacement 
(from the centre of the wheel) y of the end of a paddle as a func-
tion of the time t (in s) if the paddle was initially horizontal. 
Sketch two cycles.

 22. The sinusoidal electromagnetic wave emitted by an antenna in a 
cellular phone system has a frequency of 7.5 * 109 Hz and an 
amplitude of 0.045 V>m. Find the equation representing the wave 
if it starts at the origin. Sketch two cycles.

Answer to Practice Exercise

1. d = 2.5 cos1vt + p>42

Many applications involve functions that in themselves are a combination of two or 
more simpler functions. In this section, we discuss methods by which the curve of such 
a function can be found by combining values from the simpler functions.

 EXAMPLE  1  Function that is a sum of simpler functions

Sketch the graph of y = 2 + sin 2x.
This function is the sum of the simpler functions y1 = 2 and y2 = sin 2x. We may 

find values for y by adding 2 to each important value of y2 = sin 2x.
For y2 = sin 2x, the amplitude is 1, and the period is 2p>2 = p. Therefore, we 

obtain the values in the following table and sketch the graph in Fig. 10.38.

 10.6 Composite Trigonometric Curves

x 0 p
4

p
2

3p
4 p

sin 2x 0 1 0 -1 0
2 + sin 2x 2 3 2 1 2

Note that this is a vertical shift of 2 units of the graph of y = sin 2x, in the same way as 
discussed on page 106. ■

Another way to sketch the resulting graph is to first sketch the two simpler curves and 
then add the y-values graphically. This method is called addition of ordinates and is 
illustrated in the following example.

 EXAMPLE  2  Addition of ordinates

Sketch the graph of y = 2 cos x + sin 2x.
On the same set of coordinate axes, we sketch the curves y = 2 cos x and y = sin 2x. 

These are shown as dashed and solid light curves in Fig. 10.39. For various values of x, 
we determine the distance above or below the x-axis of each curve and add these dis-

tances, noting that those above the axis are positive and those below the axis are 
negative. We thereby graphically add the y-values of these curves to get points on 
the resulting curve, shown in colour in Fig. 10.39.

At A, add the two lengths (shown side-by-side for clarity) to get the length for y. 
At B, both lengths are negative, and the value for y is the sum of these negative val-
ues. At C, one is positive and the other negative, and we must subtract the lower 
length from the upper one to get the length for y.

We combine these lengths for enough x-values to get a good curve. Some points 
are easily found. Where one curve crosses the x-axis, its value is zero, and the result-
ing curve has its point on the other curve. Here, where sin 2x is zero, the points for 
the resulting curve lie on the curve of 2 cos x.

We should also add values where each curve is at its maximum or its minimum. 
Extra care should be taken for those values of x for which one curve is positive and 
the other is negative. ■
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We have seen how a fairly complex curve can be sketched graphically. It is expected 
that a graphing calculator (or computer grapher) will generally be used to view most 
graphs, particularly ones that are difficult to sketch. A graphing calculator can display 
such curves much more easily, and with much greater accuracy. Information about the 
amplitude, period, and displacement is useful in choosing window settings. For these 
graphs, it is important that the calculator is in radian mode.

 EXAMPLE  3  Graphing calculator addition of ordinates

Use a graphing calculator to display the graph of y = x
2 - cos x.

Here, we note that the curve is a combination of the straight line y = x>2 and the 
trigonometric curve y = cos x. There are several good choices for the window settings, 
depending on how much of the curve is to be viewed. To see a little more than one 
period of cos x, we can make the following choices:

Xmin = -1 (to start to left of y-axis)

Xmax = 7 (period of cos x is 2p = 6.3)

Ymin = -2 (line passes through 10, 02 ; amplitude of y = cos x is 1)

Ymax = 4 (slope of line is 1>2)

See Fig. 10.40(a). The graphs of y = x>2 - cos x, y = x>2, and y = -cos x are 
shown in Fig. 10.40(b).

We show y = -cos x rather than y = cos x because for addition of ordinates, it is 
easier to add graphic values than to subtract them. Here we can add y1 = x>2 and 
y2 = -cos x in order to get y = x>2 - cos x. ■

 EXAMPLE  4  Graphing calculator addition of ordinates

View the graph of y = cos px - 2 sin 2x on a graphing calculator.
The combination of y = cos px and y = 2 sin 2x leads to the following choices for 

the window settings:

Xmin = -1 (to start to the left of the y-axis)

Xmax = 7 (the periods are 2 and p; this shows at least two periods of each)

Ymin = -3, Ymax = 3 (the sum of the amplitudes is 3)

There are many possible choices for Xmin and Xmax to get a good view of the graph 
on a calculator. However, since the sum of the amplitudes is 3, note that the curve can-
not be below y = -3 or above y = 3.

The graphing calculator view is shown in Fig. 10.41.
This graph can be constructed by using addition of ordinates, although it is difficult 

to do so very accurately. ■

An important application of trigonometric curves is made when they are added at right 
angles. The methods for doing this are shown in the following examples.

 EXAMPLE  5  Graphing parametric equations

Plot the graph for which the values of x and y are given by the equations y = sin 2pt 
and x = 2 cos pt. Equations given in this form, x and y in terms of a third variable, are 
called parametric equations.

Since both x and y are in terms of t, by assuming values of t, we find corresponding 
values of x and y and use these values to plot the graph. Since the periods of sin 2pt and 
2 cos pt are t = 1 and t = 2, respectively, we will use values of t = 0, 1>4, 1>2, 3>4, 1, 
and so on. These give us convenient values of 0, p>4, p>2, 3p>4, p, and so on to use in 
the table. We plot the points in Fig. 10.42.
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Since x and y are trigonometric functions of a third variable t, and since the 
x-axis is at right angles to the y-axis, values of x and y obtained in this way 
result in a combination of two trigonometric curves at right angles. Figures 
obtained in this way are called Lissajous figures. Note that the Lissajous figure 
in Fig. 10.42 is not a function since there are two values of y for each value of x 
(except x = -2, 0, 2) in the domain.

In practice, Lissajous figures can be displayed on an oscilloscope by applying an 
electric signal between a pair of horizontal plates and another signal between a pair of 
vertical plates. These signals are then seen on the screen of the oscilloscope. This type 
of screen (a cathode-ray tube) is similar to that used on most older TV sets.

y

x

1

!1

!2 2

10
2

3

75

6

1
9

84

Fig. 10.42

t 0 1
4

1
2

3
4 1 5

4
3
2

7
4 2 9

4

x 2 1.4 0 -1.4 -2 -1.4 0 1.4 2 1.4
y 0 1 0 -1 0 1 0 -1 0 1

Point number 1 2 3 4 5 6 7 8 9 10
■

■ Lissajous figures are named for the French 
physicist Jules Lissajous (1822–1880).

■ See the chapter introduction.

 EXAMPLE  6  Graphing Lissajous figures

If a circle is placed on the x-axis and another on the y-axis, we 
may represent the coordinates 1x, y2  for the curve of Example 5 
by the lengths of the projections (see Example 1 of Section 10.5) 
of a point moving around each circle. A careful study of Fig. 10.43 
will clarify this. We note that the radius of the circle giving the 
x-values is 2 and that the radius of the circle giving the y-values is 
1. This is due to the way in which x and y are defined. Also, due to 
these definitions, the point revolves around the y-circle twice as 
fast as the corresponding point around the x-circle.

■ See the chapter introduction.

■ On an oscilloscope, the curve would result when two electric signals are 
plotted against each other, one in x and the other in y. The first would have 
twice the amplitude and half the frequency of the other. ■

Most graphing calculators can be used to display a curve 
defined by parametric equations. It is necessary to use the mode 
feature and select parametric equations. Use the manual for the 
calculator, as there are some differences as to how this is done on 
various calculators.
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8484

6
6 7
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3

2
8

y = sin 2pt

x = 2 cos pt

Fig. 10.43

 EXAMPLE  7  Graphing calculator Lissajous figures

Use a graphing calculator to display the graph defined by the parametric equations 
x = 2 cos pt and y = sin 2pt. These are the same equations as those used in Examples 
5 and 6.

First, select the parametric equation option from the mode feature and enter the para-
metric equations x1T = 2 cos pt and y1T = sin 2pt. Then make the following window 
settings:

Tmin = 0 (standard default settings, and the usual choice)

Tmax = 2 (the periods are 2 and 1; the longer period is 2)

Tstep = .1047 (standard default setting; curve is smoother with 0.01)

Xmin = -2, Xmax = 2 (smallest and largest possible values of x), Xscl = 1

Ymin = -1, Ymax = 1 (smallest and largest possible values of y), Yscl = 0.5

The calculator graph is shown in Fig. 10.44. ■
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2

1

Fig. 10.44
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EXERCISES 10.6

In Exercises 1–8, sketch the curves of the given functions by addition 
of ordinates.

 1. y = 1 + sin x 2. y = 3 - 2 cos x

 3. y = 1
3 x + sin 2x 4. y = x - sin x

 5. y = 1
10 x2 - sin px 6. y = 1

4x2 + cos 3x

 7. y =  sin x + cos x 8. y =  sin x + sin 2x

In Exercises 9–20, display the graphs of the given functions on a 
graphing calculator.

 9. y = x3 + 10 sin 2x 10. y =
1

x2 + 1
- cos px

 11. y = sin x - 1.5 sin 2x 12. y = cos 3x - 3 sin x

 13. y = 20 cos 2x + 30 sin x 14. y = 1
2 sin 4x + cos 2x

 15. y = 2 sin x - cos 1.5x 16. y = 8 sin 0.5x - 12 sin x

 17. y = sin px - cos 2x

 18. y = 2 cos 4x - cosax - p

4
b

 19. y = 2 sina2x - p

6
b + cosa2x + p

3
b

 20. y = 3 cos 2px + sin p2x

In Exercises 21–24, plot the Lissajous figures.

 37. A normal person with a pulse rate of 60 beats>min has a blood 
pressure of “120 over 80.” This means the pressure is oscillating 
between a high (systolic) of 120 mm of mercury (shown as mmHg) 
and a low (diastolic) of 80 mmHg. Assuming a sinusoidal type of 
function, find the pressure p as a function of the time t if the initial 
pressure is 120 mmHg. Sketch the graph for the first 5 s.

 38. The world’s highest tides occur in the Bay of Fundy on the 
Atlantic coast of Canada. One day in August 2012, the first low 
tide at Minas Basin, Nova Scotia, occurred at 6:21 a.m. The water 
level at low tide was 1.8 m; later, at high tide, it was 14.9 m. The 
next low tide occurred at 6:45 p.m. Assuming a sinusoidal type of 
function, find the height of the water h (in m) as a function of time 
t (in hours since midnight). Sketch the graph for one day.

 39. The electric current i (in mA) in a certain circuit is given by 
i = 0.32 + 0.50 sin t - 0.20 cos 2t, where t is in milliseconds. 
Sketch two cycles of i as a function of t.

 40. The available solar energy depends on the amount of sunlight, 
and the available time in a day for sunlight depends on the time of 
the year. An approximate correction factor (in min) to standard 
time is C = 10 sin 1

291n - 802 - 7.5 cos 1
581n - 802 , where n 

is the number of the day of the year. Sketch C as a function of n.

 41. Two signals are seen on an oscilloscope as being at right angles. The 
equations for the displacements of these signals are x = 4 cos pt 
and y = 2 sin 3pt. Sketch the figure that appears on the oscilloscope.

 42. In the study of optics, light is said to be elliptically polarized if 
certain optic vibrations are out of phase. These may be repre-
sented by Lissajous figures. Determine the Lissajous figure for 
two light waves given by w1 = sin vt and w2 = sin 1vt + p

4 2 .

 43. In checking electric circuit elements, a square wave such as that 
shown in Fig. 10.45 may be displayed on an oscilloscope. Display 

  the graph of y = 1 + 4
p

 sinapx
4
b + 4

3p
 sina3px

4
b  on a graph-

  ing calculator, and compare it with Fig. 10.45. This equation gives 
the first three terms of a Fourier series. As more terms of the 
series are added, the approximation to a square wave is better.

0 12−8
x

−4 4 8

y

Fig. 10.45

0

2

−4

y

x
−2 2 4

Fig. 10.46

 44. Another type of display on an oscilloscope may be a sawtooth 
wave such as that shown in Fig. 10.46. Display the graph of 
y = 1 - 8

p21cos px
2 + 1

9 cos 3px
2 2  on a graphing calculator and 

compare it with Fig. 10.46. See Exercise 43.

 21. x = 3 sin t, y = 2 sin t 22. x = 2 cos t, y = cos 1 t + 42
 23. x = 2 cos 2pt, y = sin pt 24. x = cosat + p

4
b , y = sin 2t

In Exercises 25–32, use a graphing calculator to display the Lissajous 
figures.

 25. x = cos pat + 1
6
b , y = 2 sin pt

 26. x = sin2 pt, y = cos pt 27. x = 2 cos 3t, y = cos 2t

 28. x = 2 sin pt, y = 3 sin 3pt 29. x = sin1 t + 12 , y = sin 5t

 30. x = 5 cos t, y = 3 sin 5t

 31. x = 2 cos pt, y = 3 sin 12pt - p
4 2

 32. x = 1.5 cos 3pt, y = 0.5 cos 5pt

In Exercises 33–44, sketch the appropriate curves. A graphing 
calculator may be used.

 33. An object oscillating on a spring has a displacement (in m) given 
by y = 0.4 sin 4t + 0.3 cos 4t, where t is the time (in s). Sketch 
the graph.

 34. The voltage V in a certain electric circuit is given by V = 50  
sin 50pt + 80 sin 60pt, where t is the time (in s). Sketch the graph.

 35. An analysis of the temperature records for Montreal indicates that the 
average daily temperature T (in °C) during the year is approximately 
T = 6 - 15 cos3p6 1x - 0.52 4 , where x is measured in months 
(x = 0.5 is Jan. 15, etc.). Sketch the graph of T vs. x for one year.

 36. An analysis of data shows that the mean density d (in mg>cm3) of 
a calcium compound in the bones of women is given by 
d = 139.3 + 48.6 sin10.0674x - 0.2102 , where x represents 
the ages of women 120 … x … 80 years2 . (A woman is consid-
ered to be osteoporotic if d 6 115 mg>cm3.) Sketch the graph.
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 CHAPTER 10   EQUATIONS

For the graphs of y = a sin 1bx + c 2  Amplitude = # a #  Period =
2p
b

   Displacement = - c
b

 (10.1) 
and y = a cos 1bx + c 2

y

x

−a

a

0

2p
b

c−b

y = a sin (bx + c), c > 0

(a)

y

x

−a

a

0

2p
b

c−b

y = a sin (bx + c), c < 0

(b)

For each

a > 0, b > 0

2p
b

c +−b
2p
b

c +−b

Reciprocal relationships  csc x =
1

 sin x
  sec x =

1
 cos x

  cot x =
1

 tan x
 (10.2)

Simple harmonic motion d = R sin vt  (10.3)

Angular velocity and frequency v = 2pf   (10.4)

 CHAPTER 10  REVIEW EXERCISES

In Exercises 1–28, sketch the curves of the given trigonometric functions.

 1. y = 2
3 sin x 2. y = -4 sin x

 3. y = -2 cos x 4. y = 2.3 cos1 -x2
 5. y = 2 sin 3x 6. y = 4.5 sin 12x

 7. y = 0.4 cos 4x 8. y = 24 cos 6x

 9. y = 3 cos 13x 10. y = 3 sin1 -0.5x2
 11. y = sin px 12. y = 36 sin 4px

 13. y = 5 cos1px
2 2  14. y = -cos 6px

 15. y = -0.5 sin1 -px
6 2  16. y = 8 sin p4x

 17. y = 2 sina3x - p

2
b  18. y = 3 sinax

2
+ p

2
b

 19. y = -2 cos14x + p2  20. y = 0.8 cosax
6

- p

2
b

 21. y = -sinapx + p

6
b  22. y = 250 sin13px - p2

 23. y = 8 cosa4px - p

2
b  24. y = 3 cos12px + p2

 25. y = 0.3 tan 0.5x 26. y = 1
4 sec x

 27. y = -1
3 csc x 28. y = -5 cot px

In Exercises 29–32, sketch the curves of the given functions by addi-
tion of ordinates.

 29. y = 2 + 1
2 sin 2x 30. y = 1

2x - cos 13x

 31. y = sin 2x + 3 cos x 32. y = sin 3x + 2 cos 2x

In Exercises 33–40, display the curves of the given functions on a 
graphing calculator.

 33. y = 2 sin x - cos 2x 34. y = 10 sin 3x - 20 cos x

 35. y = cosax + p

4
b - 0.4 sin 2x

 36. y = 2 cos px + cos12px - p2
 37. y =

 sin x
x

 38. y = 1x  sin 0.5x

 39. y = sin2 x + cos2 x  1sin2 x = 1sin x222
  What conclusion can be drawn from the graph?

 40. y = sinax + p

4
b - cosax - p

4
b + 1

  What conclusion can be drawn from the graph?



318 CHAPTER 10 Graphs of the Trigonometric Functions

In Exercises 61–82, sketch the appropriate curves. A graphing calcu-
lator may be used.

 61. The range R of a rocket is given by R =
v2

0  sin 2u
g

. Sketch R as 

  a function of u for v0 = 1000 m>s 
and g = 9.8 m>s2. See Fig. 10.49.

 62. The blade of a saber saw moves vertically up and down at 18 
strokes per second. The vertical displacement y (in cm) is given 
by y = 1.2 sin 36pt, where t is in seconds. Sketch at least two 
cycles of the graph of y vs. t.

 63. The velocity v (in cm>s) of a piston in a certain engine is given 
by v = vD cos vt, where v is the angular velocity of the crank-
shaft in radians per second and t is the time in seconds. Sketch 
the graph of v vs. t if the engine is at 3000 r>min and D = 3.6 cm.

 64. A light wave for the colour yellow can be represented by the 
equation y = A sin 3.4 * 1015 t. With A as a constant, sketch 
two cycles of y as a function of t (in s).

 65. The electric current i (in A) in a circuit in which there is a full-
wave rectifier is i = 10  " sin 120pt " . Sketch the graph of 
i = f1 t2  for 0 … t … 0.05 s. What is the period of the current?

 66. A circular disc suspended by a thin wire attached to the centre of 
one of its flat faces is twisted through an angle u. Torsion in the 
wire tends to turn the disc back in the opposite direction  
(thus, the name torsion pendulum is given to this device). The 
angular displacement u (in rad) as a function of time t (in s) is 
u = u0 cos1vt + a2 , where u0 is the maximum angular displace-
ment, v is a constant that depends on the properties of the disc and 
wire, and a is the phase angle. Sketch the graph of u vs. t if 
u0 = 0.100 rad, v = 2.50 rad>s, and a = p>4. See Fig. 10.50.
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In Exercises 41–44, give the specific form of the indicated equation  
by evaluating a, b, and c through an inspection of the given curve.

 41. y = a sin1bx + c2   
(Fig. 10.47)

 42. y = a cos1bx + c2   
(Fig. 10.47)

 43. y = a cos1bx + c2   
(Fig. 10.48)

 44. y = a sin1bx + c2   
(Fig. 10.48)

In Exercises 45–48, display the Lissajous figures on a graphing 
calculator.

 45. x = -cos 2pt, y = 2 sin pt

 46. x = sinat + p

6
b , y = sin t

 47. x = 2 cosa2pt + p

4
b , y = cos pt

 48. x = cosat - p

6
b , y = cosa2t + p

3
b

In Exercises 49–60, solve the given problems.

 49. Display the function y = 2 " sin 0.2px " - " cos 0.4px "  on a 
graphing calculator.

 50. Display the function y = 0.2 " tan 2x "  on a graphing calculator.

 51. Show that cos1x + p
4 2 = sin1p4 - x2  on a graphing calculator.

 52. Show that tan1x - p
3 2 = - tan1p3 - x2  on a graphing calculator.

 53. What is the period of the function y = 2 cos 0.5x + sin 3x?

 54. What is the period of the function y =  sin px + 3 sin 0.25px?

 55. Find the function and graph it if it is of the form y = a sin x and 
passes through 15p>2, 32 .

 56. Find the function and graph it if it is of the form y = a cos x and 
passes through 14p, -32 .

 57. Find the function and graph it if it is of the form y = 3 cos bx 
and passes through 1p>3, -32  and b has the smallest possible 
positive value.

 58. Find the function and graph it if it is of the form y = 3 sin bx 
and passes through 1p>3, 02  and b has the smallest possible 
positive value.

 59. Find the function and graph it for a function of the form 
y = 3 sin1px + c2  that passes through 1 -0.25, 02  and for 
which c has the smallest possible positive value.

 60. Write the equation of the cosecant function with zero displace-
ment, a period of 2, and that passes through 10.5, 42 .

u

0v

R

Fig. 10.49

u

Fig. 10.50

 67. The vertical displacement y of a point at the end of a propeller 
blade of a small boat is y = 14.0 sin 40.0pt. Sketch two cycles 
of y (in cm) as a function of t (in s).

 68. In optics, two waves are said to interfere destructively if, when 
they both pass through a medium, the amplitude of the resulting 
wave is zero. Sketch the graph of y = sin x + cos1x + p>22  
and explain whether or not it would represent destructive inter-
ference of two waves.

 69. The vertical displacement y (in dm) of a buoy floating in water 
is given by y = 3.0 cos 0.2t + 1.0 sin 0.4t, where t is in sec-
onds. Sketch the graph of y as a function of t for the first 40 s.
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 70. The vertical motion of a rubber raft on a lake approximates simple 
harmonic motion due to the waves. If the amplitude of the motion 
is 0.250 m and the period is 3.00 s, find an equation for the verti-
cal displacement y as a function of the time t. Sketch two cycles.

 71. A drafting student draws a circle through the three vertices of a 
right triangle. The hypotenuse of the triangle is the diameter d of 
the circle, and from Fig. 10.51, we see that d = a sec u. Sketch 
the graph of d as a function of u for a = 3.00 cm.

 76. The loudness L (in decibels) of a fire siren as a function of the 
time t (in s) is approximately L = 40 - 35 cos 2t + 60 sin t. 
Sketch this function for 0 … t … 10 s.

 77. The path of a roller mechanism used in an assembly-line process 
is given by x = u - sin u and y = 1 - cos u. Sketch the path 
for 0 … u … 2p.

 78. The equations for two voltage signals that give a resulting curve 
on an oscilloscope are x = 6 sin pt and y = 4 cos 4pt. Sketch 
the graph of the curve displayed on the oscilloscope.

 79. The impedance Z (in Ω) and resistance R (in Ω) for an alternating-
current circuit are related by Z = R sec u, where u is called the 
phase angle. Sketch the graph for Z as a function of u for 
-p>2 6 u 6 p>2.

 80. For an object sliding down an inclined plane at constant speed, 
the coefficient of friction m between the object and the plane is 
given by m = tan u, where u is the angle between the plane and 
the horizontal. Sketch the graph of m vs. u.

 81. The charge q (in C) on a certain capacitor as a function of the 
time t (in s) is given by q = 0.000313 - 2 sin 100t cos 100t2 . 
Sketch two cycles of q vs. t.

 82. The instantaneous power P (in W) in an electric circuit is 
defined as the product of the instantaneous voltage V and the 
instantaneous current i (in A). If we have V = 100 cos 200t and 
i = 2 cos1200t + p

4 2 , plot the graph V vs. t and the graph of i 
vs. t on the same coordinate system. Then sketch the graph of P 
vs. t by multiplying appropriate values of V and i.

Writing Exercise
 83. A wave passing through a string can be described at any instant 

by the equation y = a sin1bx + c2 . Write one or two para-
graphs explaining the change in the wave (a) if a is doubled,  
(b) if b is doubled, and (c) if c is doubled.

d

u

a

Fig. 10.51

 72. The height h (in m) of a certain rocket ascending vertically is 
given by h = 800 tan u, where u is the angle of elevation from an 
observer 800 m from the launch pad. Sketch h as a function of u.

 73. The number of hours h of daylight each day during the 
  year in the city of Toronto, Ontario, can be approximated by 

  h = 12.2 + 3.3 sina 2p
365

t - 160p
365

b , where t is measured in days 

  (t = 15 is January 15, etc.). Sketch the graph of h vs. t for one 
year. 

 74. The equation in Exercise 73 can be used to approximate the 
number of hours of daylight in Christchurch, New Zealand—at 
approximately the same latitude as Toronto, but in the southern 
hemisphere. Explain what change is necessary and determine 
the proper equation. Sketch the graph for one year.

 75. If the upper end of a spring is not fixed and is being moved with 
a sinusoidal motion, the motion of the bob at the end of the 
spring is affected. Sketch the curve if the motion of the upper 
end of a spring is being moved by an external force and the bob 
moves according to the equation y = 4 sin 2t - 2 cos 2t.

 CHAPTER 10  PRACTICE TEST

 1. Determine the amplitude, period, and displacement of the func-
tion y = -3 sin14px - p>32 .

In Problems 2–5, sketch the graphs of the given functions.

 2. y = 0.5 cos p2x 3. y = 2 + 3 sin x

 4. y = 3 sec x 5. y = 2 sin 12x - p
3 2

 6. A wave is travelling in a string. The displacement y (in cm) as a 
function of the time t (in s) from its equilibrium position is given 
by y = A cos12p>T2 t. T is the period (in s) of the motion. If 
A = 0.200 cm and T = 0.100 s, sketch two cycles of y vs t.

 7. Sketch the graph of y = 2 sin x + cos 2x by addition of 
ordinates.

 8. Use a graphing calculator to display the Lissajous figure for 
which x = sin pt and y = 2 cos 2pt.

 9. Sketch two cycles of the curve of a projection of the end of a ra-
dius on the y-axis. The radius is of length R and it is rotating 
counterclockwise about the origin at 2.00 rad>s. It starts at an 
angle of p>6 with the positive x-axis.

 10. Find the function of the form y = 2 sin bx if its graph passes 
through 1p>3, 22  and b is the smallest possible positive value. 
Then graph the function.



LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Use the laws of exponents to 
simplify expressions

 Convert radicals to fractional 
exponents and vice versa

 Perform mathematical 
operations with exponents  
and radicals

 Simplify expressions containing 
radicals

 Rationalize a denominator 
containing radicals

Exponents and radicals are useful in many technical applications. To set the foundation 
to study these applications, further development of the connection between fractional 
exponents and radicals must be undertaken. For example, the concept 1x = x1>2 will 

be illustrated. The use of fractional exponents can be more convenient than the use of radicals 
in advanced mathematical operations.

As we noted in Chapter 6, the use of symbols led to advances in mathematics and science. As 
letters began to be used as algebraic symbols for numbers in the 1600s, it was common to 
write, for example, x3 as xxx. For larger powers, this is obviously inconvenient, and the mod-
ern use of exponents came into use. The first to use exponents consistently was the French 
mathematician René Descartes in the 1630s.

The meaning of negative and fractional exponents was first defined by the English mathema-
tician Wallis in the 1650s, although he did not write them as we do today. In the 1670s, it was 
the great English mathematician and physicist Isaac Newton who first used all exponents 
(positive, negative, and fractional) with modern notation. This improvement in notation made 
the development of many areas of mathematics, particularly calculus, easier. In this way, it 
also helped to make many advances in the applications of mathematics.

As we develop the various operations with exponents and radicals, we will show their uses in 
some technical areas of application. They are used in a number of formulas in areas such as 
electronics, hydrodynamics, optics, solar energy, and machine design.

11 Exponents and 
Radicals

320

  In finding the rate at which solar radiation changes at a solar-energy  
collector, the following expression is found:1t4 + 100 21,  2 − 2 t3 1t + 6 2 1t4 + 100 2−1,  23 1t4 + 100 21,2 42

   In Section 11.2, we show that this can be written in a much simpler form.
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Although Eqs. (11.1) to (11.4) were originally defined for positive integers as expo-
nents, we showed in Section 1.4 that, with the definitions in Eqs. (11.5) and (11.6), they 
are valid for all integral exponents. Later in the chapter, we will show how fractions are 
used as exponents. These equations are very important to the developments of this 
chapter and should be reviewed and learned thoroughly.

 EXAMPLE  1  Simplifying basic expressions

(a) Applying Eq. (11.1) and then Eq. (11.6), we have

a3 * a-5 = a3-5 = a-2 =
1

a2

Negative exponents are generally not used in the expression of the final result, 
unless specified otherwise. However, they are often used in intermediate steps.

(b) Applying Eq. (11.1), then (11.6), and then (11.4), we have

1103 * 10-422 = 1103-422 = 110-122 = a 1
10

b2
=

1

102 =
1

100

  The result is in proper form as either 1>102 or 1>100. If the exponent is large, it 
is common to leave the exponent in the answer. ■

 EXAMPLE  2  Simplifying basic expressions with multiple variables

(a) Applying Eqs. (11.2) and (11.5), we have

a2b3c0

ab7 =
a2-1112

b7-3 =
a

b4

(b) Applying Eqs. (11.4) and (11.3), and then (11.6), we have

 1x-2y23 = 1x-2231y32 = x-6y3 =
y3

x6 ■

Often, several different combinations of Eqs. (11.1) to (11.6) can be used to simplify 
an expression. This is illustrated in the next example.

The laws of exponents were given in Section 1.4. For reference, they are

 am * an = am+n (11.1)

 
am

an = am-n or 
am

an =
1

an-m 1a ≠ 02  (11.2)

 1am2n = amn (11.3)

 1ab2n = anbn,  aa
b
bn

=
an

bn 1b ≠ 02  (11.4)

 a0 = 1  1a ≠ 02  (11.5)

 a-n =
1
an  1a ≠ 02  (11.6)

 11.1  Simplifying Expressions with Integral Exponents

 
and Negative Exponents

Although negative exponents are not 
often used in the final result, if scien-
tific notation is being used, then the 
form with the negative exponent is 
indicated. For example,

0.00625 m = 6.25 * 1
1000

 m =   

 6.25 * 1

103 m = 6.25 * 10-3 m

LEARNING T IP
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 EXAMPLE  3  Simplification can be done in different ways

(a) 1x2y22a2
x
b-2

=
1x4y22a2

x
b2 =

x4y2

4

x2

=
x4y2

1
* x2

4
=

x6y2

4

(b) 1x2y22a2
x
b-2

= 1x4y22 a2-2

x-2 b = 1x4y22 ax2

22 b =
x6y2

4

In (a), we first used Eq. (11.6) and then (11.4). The simplification was completed 
by changing the division of a fraction to multiplication and using Eq. (11.1). In (b), 
we first used Eq. (11.3), then (11.6), and finally (11.1). ■

 EXAMPLE  4  Exponents and units of measurement

As in Chapters 1 through 3, when writing a denominate number, units of measurement 
can appear in the denominator. They can also be written using negative exponents. For 
example, the metric unit for pressure is the pascal, where 1 Pa = 1 N>m2. This can be 
written as

1 Pa = 1 N>m2 = 1 N # m-2

where 1>m2 = m-2.
The metric unit for energy is the joule, where 1 J = 1 kg # 1m # s-122, or

 1 J = 1 kg # m2 # s-2 = 1 kg # m2>s2 ■

Care must be taken to apply the laws of exponents properly. Certain common prob-
lems are pointed out in the following examples.

 EXAMPLE  5  Managing zero exponents

The expression 1 -5x20 equals 1, whereas the expression -5x0 equals –5. For 1 -5x20, the parentheses show that the expression -5x is raised to the zero power, 
whereas for -5x0, using proper order of operations, only x is raised to the zero 
power, and we have

 -5x0 = -5112 = -5 

Similarly, 1 -222 = 4 and -22 = -4. ■

1. Simplify: xa3
x
b-3

■ The unit joule is named for the English phys-
icist James Prescott Joule (1818–1899).

■ The unit pascal is named for the French  
mathematician and scientist Blaise Pascal 
(1623–1662).

2. Simplify: 3>x0

1 -520 = 1 but -50 = - 1502 = -1

Order of operations requires exponents to be performed before multiplication. A 
common error is to apply the exponent to all multiplied factors instead of just the 
one to which the exponent is applied.

2x-1 =
2
x

 not 2x-1 ≠
1
2x

 factors must be raised to the exponent for it to be applied to all:12x2 -1 =
1
2x

COMMON ERROR
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The special case 00 requires its own 
discussion. For many purposes, 00 can 
be defined to have a definite value. 
For example, some series notations 
and the binomial theorem (discussed 
in Chapter 19) require that 00 = 1. 
For the power rule of differential cal-
culus (discussed in Chapter 23), it is 
required that 00 = 0. But in evaluat-
ing some limits (limits are also dis-
cussed in Chapter 23), 00 can be 
treated as indeterminate (it has no 
definite value). It depends on the 
mathematical context.

LEARNING T IP EXAMPLE  6   Simplification done in different ways on a binomial  
with exponents

(a) 12a + b-12-2 =
112a + b-122 =

1a2a + 1
b
b2 =

1a2ab + 1
b

b2

  =
112ab + 122

b2

=
b212ab + 122    not necessary to  

expand the  
denominator 

(b) 12a + b-12-2 = a2a + 1
b
b-2

= a2ab + 1
b

b-2

  =
12ab + 12-2

b-2 =
b212ab + 122   positive exponents used  

in the final result  ■

■ For reference, Eq. (11.4) is 1ab2n = anbn.

A common error occurs when simplifying an expression in which multiple terms are 
raised to an exponent. Remember that12a + b-12-2 is not equal to 12a2 -2 + 1b-12 -2 or 

1

4a2 + b2

As in Section 6.1, when raising any multinomial to a power, we cannot simply raise each 
term to the power applied to obtain the result.

COMMON ERROR

Remember, when raising a product of factors to a power, we use Eq. (11.4). Thus,12ab-12-2 = 12a2-21b-12-2 =
b212a22 =

b2

4a2

We see that we must be careful to distinguish between the power of a sum of terms and 
the power of a product of factors.

3. Simplify: 13a2-1 - 3a-2

 EXAMPLE  7  Factor moved from numerator to denominator

(a)  3L-1 - 12L2-2 =
3
L

- 112L22 =
3
L

- 1

4L2 

   =
12L - 1

4L2

(b) 3-1a 4-2

3 - 3-1 b =
1
3

 a 1

42 b ° 1

3 - 1
3
¢ =

1

3 * 42 ° 1
9 - 1

3
¢ 

   =
1

3 * 42 a3
8
b =

1
128

 ■

When a factor is moved from the 
denominator to the numerator of a 
fraction (or vice versa), the sign of the 
exponent is changed. We should care-
fully note the word factor; this rule 
does not apply to moving terms in the 
numerator or the denominator.

LEARNING T IP
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 EXAMPLE  8  Simplifying complex expressions

 
1

x-1 ax-1 - y-1

x2 - y2 b =
x
1

 
° 1

x
- 1

y

x2 - y2

¢
= x 

° y - x
xy

x2 - y2

¢
 =

x1y - x2
xy1x - y2 1x + y2

 =
x1y - x2

xy
* 11x - y2 1x + y2

 =
x1y - x2

xy1x - y2 1x + y2 =
- 1x - y2

y1x - y2 1x + y2
 = - 1

y1x + y2
Note that in this example, the x−1 and y−1 in the numerator could not be moved 
directly to the denominator with positive exponents because they are only terms of the 
original numerator. ■

 EXAMPLE  9  Simplifying an expression from calculus

 31x + 4221x - 32-2 - 21x - 32-31x + 423 =
31x + 4221x - 322 -

21x + 4231x - 323  

  =
31x - 32 1x + 422 - 21x + 4231x - 323 =

1x + 422331x - 32 - 21x + 42 41x - 323

    =
1x + 4221x - 1721x - 323

Expressions like the one in this example are often found in problems in calculus. ■

terms

In Exercises 1–4, solve the resulting problems if the given changes are 
made in the indicated examples of this section.

 1. In Example 3, change the factor x2 to x-2 and then find the result.

 2. In Example 6, change the term 2a to 2a-1 and then find the result.

 3. In Example 7(b), change the 3-1 in the denominator to 3-2 and 
then find the result.

 4. In Example 8, change the sign in the numerator from -  to +  and 
then find the result.

In Exercises 5–52, express each of the given expressions in simplest 
form with only positive exponents.

 5. x7x-4 6. y9y-2 7. 2a2a-6

 8. 5ss-5 9. 5 0 * 5 -3 10. 132 * 4-323

 11. 12px-122 12. 13xy-223 13. 215an-22-1

 14. 416s2t-12-2 15. 1 -420 16. -40

 17. -7x0 18. 1 -7x20  19. 3x-2

 20. 13x2-2  21. 17a-1x2-3  22. 7a-1x-3

 23. a 2

n3 b-3
 24. a 3

x3 b-2
 25. 3 a a

b-2 b-3

 26. 5 a2n-2

D-1 b-2
 27. 1a + b2-1 28. a-1 + b-1

 29. 3x-2 + 2y-2 30. 13x + 2y2-2

 31. 12a-n22a 3
2an b-1

 32. 17 * 3-a2 a3a

7
b2

 33. a3a2

4b
b-3a4

a
b-5

  34. 12np-22-214-1p22-1

 35. aV-1

2t
b-2a t2

V-2 b-3
  36. abaa-2

b2 b-3aa-3

b5 b2

 37. 2a-2 + 12a-224  38. 31a-1z22-3 + c-2z-1

 39. 2 * 3-1 + 4 * 3-2  40. 5 * 2-2 - 3-1 * 23
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 41. 1R1
-1 + R2

-12-1 42. 212a - b-22-1  43.  1n-2 - 2n-122  

 44. 212-3 - 4-12-2 45. 
6-1

4-2 + 2
  46.  

x - y-1

x-1 - y

 47. 
x-2 - y-2

x-1 - y-1 48. 
ax-2 + a-2x

a-1 + x-1  49. 2t-2 + t-11 t + 12
 50. 3x-1 - x-31y + 22   51. 1D - 12-1 + 1D + 12-1

 52. 412x - 12 1x + 22-1 - 12x - 1221x + 22-2

In Exercises 53–70, solve the given problems.

 53. If x 6 0, is it ever true that x-2 6 x-1?

 54. Is it true that 1a + b20 = 1 for all values of a and b?

 55. Express 42 * 64 (a) as a power of 4 and (b) as a power of 2.

 56. Express 1>81 (a) as a power of 9 and (b) as a power of 3.

 57. (a) By use of Eqs. (11.4) and (11.6), show that

  aa
b
b-n

= ab
a
bn

  (b)  Verify the equation in part (a) by evaluating each side with 
a = 3.576, b = 8.091, and n = 7.

 58. For what integral values of n is 1 -32-n = -3-n? Explain.

 59. For what integral value(s) of n is np 7 pn? (Hint: Graph 
y = xp - px on a graphing calculator.)

 60. Evaluate 1819212> 1816214. What happens when you try to evaluate 
this on a calculator?

 61. Solve for x: 25x = 27122x22.

62. In analysing the tuning of an electronic circuit, the expression 3vv0
-1 - v0v

-142 is used. Expand and simplify this expression.

 63. The metric unit of energy, the joule (J), can be expressed as 
kg # s-2 # m2. Simplify these units and include newtons (see 
Section 1.3) and only positive exponents in the final result.

 64. The units for the electric quantity called permittivity are 
C2 # N-1 # m-2. Given that 1 F = 1 C2 # J-1, show that the units of 
permittivity are F>m. See Section 1.3.

 65. When studying a solar energy system, the units encountered are 
kg # s-11m # s-222. Simplify these units and include joules (see 
Example 4) and only positive exponents in the final result.

 66. The metric units for the velocity  of an object are m # s-1, and the 
units for the acceleration a of the object are m # s-2. What are the 
units for v>a?

 67. Given that v = aptr, where v is the velocity of an object, a is its 
acceleration, and t is the time, use the metric units given in 
Exercise 66 to show that p = r = 1.

 68. An idealized model of the thermodynamic process in a gasoline 
engine is the Otto cycle. The efficiency h of the process is

  h =

T1rg

r
-

T2rg

r
- T1 + T2

T1rg

r
-

T2rg

r

.   Show that h = 1 - 1

rg-1.

 69. An expression encountered in finance is

  
p11 + i2-13 11 + i2-n - 1411 + i2-1 - 1

  where n is an integer. Simplify this expression.

 70. In optics, the combined focal length F of two lenses is given by 
F = 3 f 1

-1 + f 2
-1 + d1 f1   f22-14-1, where f1 and f2 are the focal 

lengths of the lenses and d is the distance between them. Simplify 
the right side of this equation.

1. 
x4

27
  2. 3  3. 

a - 9

3a2

In Section 11.1, we reviewed the use of integral exponents, including exponents that 
are negative integers and zero. We now show how rational numbers may be used as 
exponents. With the appropriate definitions, all the laws of exponents are valid for all 
rational numbers as exponents.

Eq. (11.3) states that 1am2n = amn. If we were to let m = 1
2 and n = 2, we would 

have 1a1>222 = a1. However, we already have a way of writing a quantity that, when 
squared, equals a. This is written as 1a. To be consistent with previous definitions and 
to allow the laws of exponents to hold, we define

 a1>n = 2n
a  (11.7)

In order that Eqs. (11.3) and (11.7) may hold at the same time, we define

 am>n = 2n
am = 12n

a2m  (11.8)

These definitions are valid for all the laws of exponents. We must note that Eqs. (11.7) 
and (11.8) are valid as long as 2n

a does not involve the even root of a negative number. 
Such numbers are imaginary and are considered in Chapter 12.

 11.2  Fractional Exponents
Meaning and Interpretation of  

 



326 CHAPTER 11 Exponents and Radicals

 EXAMPLE  1  Meaning of a fractional exponent

We now verify that Eq. (11.1) holds for the above definitions:

a1>4a1>4a1>4a1>4 = a11>42+ 11>42+ 11>42+ 11>42 = a1

Now, a1>4 = 24 a by definition. Also, by definition, 24 a 24 a 24 a 24 a = a. Eq. (11.1) 
is thereby verified for n = 4 in Eq. (11.7).

Eq. (11.3) is verified by the following:

 1a1>42 1a1>42 1a1>42 1a1>42 = 1a1>424 = a1 = 124 a24 ■

 EXAMPLE  2  Interpretation of a fractional exponent

 82>3 = 123 822 = 1222 = 4 or 82>3 = 23 82 = 23 64 = 4 ■

Although both interpretations of Eq. (11.8) are possible, as indicated in Example 2, 
in evaluating numerical expressions involving fractional exponents without a calcula-
tor, it is almost always best to find the root first, as indicated by the denominator of the 
fractional exponent. This allows us to find the root of the smaller number, which is 
normally easier to find.

 EXAMPLE  3  Order of operations for fractional exponents

To evaluate 16425>2, we should proceed as follows:16425>2 = 3 16421>245 = 85 = 32 768

If we raised 64 to the fifth power first, we would have16425>2 = 164521>2 = 11 073 741 82421>2
We would now have to evaluate the indicated square root. This demonstrates why it 
is preferable to find the indicated root first. ■

 EXAMPLE  4  Evaluating fractional exponents

(a) 11623>4 = 1161>423 = 23 = 8

(b) 4-1>2 =
1

41>2 =
1
2

  (c) 93>2 = 191>223 = 33 = 27

We note in (b) that Eq. (11.6) must also hold for negative rational exponents. In 

writing 4-1>2 as 
1

41>2, the sign of the exponent is changed. ■

Fractional exponents allow us to find roots of numbers on a calculator. By use of the 
appropriate key1on most calculators xy  or ¿ 2 , we may raise any positive 
number to any power. For roots, we use the equivalent fractional exponent. Powers that 
are fractions or decimal in form are entered directly.

 EXAMPLE  5  Fractional exponents—application

The thermodynamic temperature T  (in kelvins (K)) is related to the pressure p (in kPa) 
of a gas by the equation T = 80.5p2>7. Find the value of T  for p = 750 kPa.

Substituting, we have

 T = 80.5175022>7 = 534 K ■

We may interpret am>n as the mth 
power of the nth root of a, as well as 
the nth root of the mth power of a, or

am>n = 1a1>n2m = 12n a2m

or

am>n = 1am21>n = 2n am

LEARNING T IP

The radical 2n a is the nth root of the number a. Do not confuse it with n2a, which 
is n multiplied by the root of the number a.

COMMON ERROR

■ For reference, Eq. (11.1) is am * an = am + n.

■ Eq. (11.3) is 1am2n = amn.

■ The unit kelvin is named for the Scottish  
physicist Lord Kelvin (1824–1907).

Practice Exercises

Evaluate:  1. 815>4  2. 27-4>3
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When finding powers of negative numbers, some calculators will show an error. If 
this is the case, enter the positive value of the number and then enter a negative sign for 
the result when appropriate. From Section 1.6, we recall that an even root of a negative 
number is imaginary and an odd root of a negative number is negative. If it is an inte-
gral power, the basic laws of signs are used.

 EXAMPLE  6  Fractional exponents and graphs

Plot the graph of the function y = 2x1>3.
In obtaining points for the graph, we use 11>32  as the power when using the 

calculator. If your calculator does not evaluate powers of negative numbers, enter 
positive values for the negative values of x and then make the results negative. 
Since x1>3 = 23 x, we know that x1>3 is negative for negative values of x because we 
have an odd root of a negative number. We get the following table of values:

The graph is shown in Fig. 11.1. Of course, this curve can easily be shown on a 
graphing calculator. ■

Fractional exponents are often easier to use in more complex expressions involving 
roots. This is true in algebra and in topics from more advanced mathematics. Any expres-
sion with radicals can also be expressed with fractional exponents and then simplified.

 EXAMPLE  7  Simplifying expressions with fractional exponents

(a) 18a2b421>3 = 3 181>32 1a221>31b421>34  using Eq. (11.4)

   = 2a2>3b4>3 using Eqs. (11.7) and (11.3)

(b) a3>4a4>5 = a13>42+ 14>52 = a31>20 using Eq. (11.1)

(c)  a4-3>2x2>3y-7>4
23>2x-1>3y3>4 b2>3

= a x2>3x1>3
23>243>2y3>4y7>4 b2>3

 using Eq. (11.6)

    = a x12>32+ 11>32
23>243>2y13>42+ 17>42 b2>3

 using Eq. (11.1)

   =
x11212>32

213>2212>32413>2212>32y110>4212>32   using Eq. (11.4)

   =
x2>3
8y5>3

(d) 14x42-1>2 - 3x-3 =
114x421>2 - 3

x3  using Eq. (11.6)

  =
1

2x2 - 3

x3 =
x - 6

2x3   
 using Eq. (11.7); common  
denominator ■

 EXAMPLE  8  Simplifying an expression—application

During a day, the rate R at which the radiation changes at a solar-radiation collector is

R =
1 t4 + 10021>2 - 2t31 t + 62 1 t4 + 1002-1>23 1 t4 + 10021>242

Here, R is measured in kW> 1m2 # h2 , t is the number of hours from noon, and 
-6 h … t … 8 h. Express the right side of this equation in simpler form and find R 
for t = 0 (noon) and for t = 4 h (4 p.m.).

0!2 2

2

!2

y

x

Fig. 11.1 

Simplify:  3. 164a2c322>3 
4. 2x-4 - 18x32-1>3

■ See the chapter introduction.

■ Solar collectors supply the power for most 
space satellites.

x -3 -2 -1 0 1 2 3

y -2.9 -2.5 -2.0 0 2.0 2.5 2.9
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Performing the simplification, we have the following steps:

R =
1 t4 + 10021>2 -

2t31 t + 621 t4 + 10021>21 t4 + 1002
    using  

Eq. (11.6)

   using  
Eq. (11.3)

R =

1 t4 + 10021>21 t4 + 10021>2 - 2t31 t + 621 t4 + 10021>21 t4 + 1002  

  common 
denominator

R =
1 t4 + 1002 - 2t31 t + 621 t4 + 10021>2 * 1

t4 + 100
 

   invert  
divisor and 
multiply

R =
100 - 12t3 - t41 t4 + 10021>21 t4 + 1002 =

100 - 12t3 - t41 t4 + 10023>2    using  
Eq. (11.1)

For t = 0:   R =
100 - 121032 - 04104 + 10023/2 = 0.100 kW> 1m2 # h2

For t = 4 h: R =
100 - 121432 - 44144 + 10023>2 = -0.138 kW> 1m2 # h2  

This shows that the radiation is increasing at noon and decreasing at 4 p.m. ■

■ For reference, basic forms of Eq. (11.1) to 
(11.7) are as follows:
am * an = am + n (11.1)
am

an = am - n (11.2)1am2n = amn (11.3)1ab2n = anbn (11.4)
a0 = 1 (11.5)

a-n =
1
an  (11.6)

a1>n = 2n a (11.7)

In Exercises 1–4, solve the resulting problems if the given changes are 
made in the indicated examples of this section.

 1. In Example 2, change the exponent to 4>3.

 2. In Example 4(b), change the exponent to -3>2.

 3. In Example 6, change the exponent to -1>3.

 4. In Example 7(d), change the exponent -1>2 to -3>2.

In Exercises 5–28, evaluate the given expressions.

 5. 251>2  6. 271>3  7. 811>4  8. 1252>3
 9. 10025>2 10. -165>4 11. 8-1>3 12. 16-1>4
13. 64-2>3 14. -32-4>5 15. 51>253>2 16. 14423>2
17. 13622>3 18. 

121-1>2
1001>2  19. 

10001>3
-400-1>2 20. 

-7 -1>2
6-171>2  

21. 
152>3

5215-1>3 22. 
1-2721>3

6
 23. 

1-822>3
-2

 24. 
-4-1>21-642-2>3

 25. 125 -2>3 - 100-3>2 26. 320.4 + 25 -0.5

 27. 
16-0.25

5
+ 2-0.6

20.4  28. 
4-1

36-1>2 - 5 -1>2
51>2

In Exercises 29–32, use a calculator to evaluate each expression.

 29. 17.981>4 30. 1 -750.8122>3
 31. 4.0187-4>9 32. 0.1863-1>6
In Exercises 33–56, simplify the given expressions. Express all answers 
with positive exponents.

33. B2>3B1>2  34. x5>6x-1>3  35. 
y-1>2
-y2>5

36. 
s1>4s2>3

s-1  37. 
x3>10

x-1>5x2
 38. 

R-2>5R2

R-3>10

39. 18a3b621>3 40. 18b-4c222>3 41. 116a4b32-3>4
42. 132C5D42-2>5 43. aa5>7

a2>3 b7>4
 44. a4a5>6b-1>5

a2>3b2
b-1>2

45. 
1
2

 14x2 + 12-1>218x2  46. 
1x + x1>22 1x - x1>22

x

47. 
y3>81y5>8 - y13>82
y1>21y1>2 - y-1>22  48. 

3-1a1>2
4-1>2b

, 91>2a-1>3
2b-1>4

49. 1T -1 + 2T -22-1>2 50. 1a-2 - a-42-1>4
51. 1a32-4>3 + a-2 52. 14N62-1>2 - 2N-1

53. 3 1a1>2 - a-1>222 + 441>2 54. 4x1>2 + 1
2

x-1>214x + 12
55. x212x - 12-1>2 + 2x12x - 121>2
56. 13n - 12-2>311 - n2 - 13n - 121>3
In Exercises 57–60, graph the given functions.

57. f1x2 = 3x1>2 58. f1x2 = 2x2>3
59. f1 t2 = t-4>5 60. f1V2 = 4V3>2
In Exercises 61–68, perform the indicated operations.

61. Simplify 1xn-1 , xn-321>3 and express the result as a radical.

62. (a) Simplify 1x2 - 4x + 421>2. (b) For what values of x is your 
answer in part (a) valid? Explain.
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63. A factor used in determining the performance of a solar-energy 
storage system is 1A>S2-1>4, where A is the actual storage capacity 
and S is a standard storage capacity. If this factor is 0.5, explain 
how to find the ratio A>S.

64. A factor used in measuring the loudness sensed by the human ear 
is 1I>I020.3, where I is the intensity of the sound and I0 is a refer-
ence intensity. Evaluate this factor for I = 3.20 * 10-6 W>m2 
(ordinary conversation) and I0 = 10-12 W>m2.

65. The period T  of a satellite circling earth is given by 

T2 = kR3a1 + d
R
b3

, where R is the radius of earth, d is the dis-

tance of the satellite above earth, and k is a constant. Solve for R, 
using fractional exponents in the result.

66. The withdrawal resistance R of a nail of diameter d indicates its 
holding power. One formula for R is R = k1sg25>2dh, where k is 
a constant, sg is the specific gravity of the wood, and h is the 
depth of the nail in the wood. Solve for sg using fractional expo-
nents in the result.

67. The electric current i (in A) in a circuit with a battery of voltage E, a 

resistance R, and an inductance L is i =
E
R

 11 - e-Rt>L2 , where t 

is the time after the circuit is closed. See Fig. 11.2. Find i for 
E = 6.20 V, R = 1.20 Ω, L = 3.24 H, and t = 0.001 00 s. (The 
number e is an irrational constant and can be found from the 
calculator.)

Fig. 11. 2

R

E L
d

u

Fig. 11. 3

68. For a heat-seeking rocket in pursuit of an aircraft, the distance d 

(in km) from the rocket to the aircraft is d =
5001sin u21>211 - cos u23>2, 

where u is shown in Fig. 11.3. Find d for u = 125.0°.

1. 243  2. 
1
81

   3. 16a4>3c2   4. 
4 - x3

2x4

As we have said, any expression with radicals can also be expressed with fractional 
exponents. For adding or subtracting radicals, there is little advantage to changing 
form, but with multiplication or division of radicals, fractional exponents have some 
advantages. Therefore, we now define operations with radicals so that they are consist-
ent with the laws of exponents. This will let us use the form that is more convenient for 
the operation being performed.

 11.3 Simplest Radical Form

n

Denominator

 2n
an = 12n

a2n = a (11.9)

 2n
a2n

b = 2n
ab (11.10)

 2m 1n a =
mn2a (11.11)

 
2n

a2n
b

= An a
b

  (b ≠ 0) (11.12)

The number under the radical is called the radicand, and the number indicating the 
root being taken is called the order (or index) of the radical. To avoid difficulties with 
imaginary numbers (which are considered in the next chapter), we will assume that all 
letters represent positive numbers.

 EXAMPLE  1  Operation with radicals

Following are illustrations using Eqs. (11.9) to (11.12).

(a) 25 45 = 125 425 = 4 using Eq. (11.9)

(b) 23 223 3 = 23 2 * 3 = 23 6  using Eq. (11.10)

(c) 23 15 =  25
3*2

= 26 5 using Eq. (11.11)

(d) 
1713

= A7
3

 using Eq. (11.12) ■
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 EXAMPLE  2  

In Example 5 of Section 1.6, we saw that116 + 9 is not equal to 116 + 19

However, using Eq. (11.10),

 116 * 9 = 116 * 19

  = 4 * 3 = 12 ■

Because multiplication of factors inside radicals allows separation into two factors in 
separate radicals 2n

ab = 2n
a # 2n

b, it is a common error to apply this procedure to 
addition or subtraction terms inside radicals. Remember that 2n

a + b ≠ 2n
a + 2n

b. 
Be careful to distinguish between the root of a sum of terms and the root of a 
product of factors.

COMMON ERROR

 EXAMPLE  3  

To simplify 175, we know that 75 = 1252 132  and that 125 = 5. As in Section 1.6 
and now using Eq. (11.10), we write175 = 21252 132 = 12513 = 513

  perfect square 
This illustrates one step that should always be carried out in simplifying radicals. ■

 EXAMPLE  4  nth-power factors

(a) 172 = 21362 122 = 13612 = 612

  perfect square

(b) 2a3b2 = 21a22 1a2 1b22 = 2a21a2b2 = ab1a

  perfect squares

(c) cube root  23 40 = 23 182 152 = 23 823 5 = 223 5 

  perfect cube

(d) fifth root  25 64x8y12 = 25 1322 122 1x52 1x32 1y102 1y22  

  perfect fifth powers

   = 25 1322 1x52 1y10225 2x3y2

   = 2xy225 2x3y2 ■

The next example illustrates another procedure used to simplify radicals. It is to 
reduce the order of the radical, when it is possible to do so.

 EXAMPLE  5  

(a) 26 8 = 26 23 = 23>6 = 21>2 = 12

Here, we started with a sixth root and ended with a square root, thereby reducing 
the order of the radical. Fractional exponents are often helpful for this.

(b) 28 16 = 28 24 = 24>8 = 21>2 = 12

(c) 
24 913

=
24 3213

=
32>4
31>2 = 1

(d) 
26 817

=
26 2317

=
21>2
71>2 = A2

7

(e) 29 27x6y12 = 29 33x6y9y3 = 33>9x6>9y9>9y3>9 = 31>3x2>3yy1>3
  = y23 3x2y ■

Always remove all perfect nth-power 
factors from the radicand of a radical 
of order n.

LEARNING T IP

Simplify: 1. 28x5   2. 23 16a7b2
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If a radical is to be written in its simplest form, the two operations illustrated in the 
last four examples must be performed. Therefore, we have the following:

1. Remove all perfect nth-power factors from a radical of order n.

2.  If possible, reduce the order of the radical using fractional exponents where 
necessary.

When working with fractions, it has traditionally been the practice to write a fraction 
with radicals in a form in which the denominator contains no radicals. Such a fraction 
was not considered to be in simplest form unless this was done. This step of simplifica-
tion was performed primarily for ease of calculation, but with a calculator it does not 
matter to any extent that there is a radical in the denominator. However, the procedure 
of writing a radical in this form, called rationalizing the denominator, is at times use-
ful for other purposes. Therefore, the following examples show how the process of 
rationalizing the denominator is carried out.

 EXAMPLE  6  

To write 22
5 in an equivalent form in which the denominator is not included under the 

radical sign, we create a perfect square in the denominator by multiplying the expres-

sion by the fraction 
2525

. Since this fraction is equivalent to 1, it does not change the 

expression. When multiplying the radicals, this gives us 210
25, which may be written as 

1
5110 or 110

5 . These steps are written as follows:A2
5

=
2225

* 2525
=

22 * 525 * 5
= A10

25
=

210225
=

210
5

 perfect square ■

 EXAMPLE  7  

(a) 
5118

=
5

312
=

5
312

* 2222
=

512
314

=
512

6
 

  perfect square

(b) cube root  A3   
2
3

= A3 2
3

* 23 3223 32
= A3   

18
27

=
23 1823 27

=
23 18

3

  perfect cube 

In (a), a perfect square was made by multiplying by 12'12. We can indicate this as 
we have shown or by multiplying the numerator by 12 and multiplying the 2 under the 
radical in the denominator by 2, in which case the denominator would be 312 * 2. In 
(b), we want a perfect cube, since a cube root is being found. ■

 EXAMPLE  8  

The period T  (in s) for one cycle of a simple pendulum is given by T = 2p1L>g, 
where L is the length of the pendulum and g is the acceleration due to gravity. 
Rationalize the denominator on the right side of this equation.

Rationalize the denominator:  3. 7 a
3b
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Substituting and then rationalizing, we have

 

T = 2pAL
g

T = 2pAL
g

*
2g2g

T =
2p
g
2gL

 

■

 EXAMPLE  9  Simplifying an expression with multiple terms in a radical

Simplify A 1

2a2 + 2b-2 and rationalize the denominator.

We will write the expression using only positive exponents, and then perform the 
required operations.

 A 1

2a2 + 2

b2 = Bb2 + 4a2

2a2b2 =
2b2 + 4a2

ab12

 =
2b2 + 4a2

ab12
* 2222

 =
221b2 + 4a22

2ab
 

■

first combine fractions over  
lowest common denominator 

  sum of squares—radical  
cannot be simplified

In Exercises 1–4, simplify the resulting expressions if the given changes 
are made in the indicated examples of this section.

 1. In Example 4(b), change the exponent of b to 4 and then find the 
resulting expression.

 2. In Example 5(d), change the 8 to 27 and then find the resulting 
expression.

 3. In Example 7(b), change the root to a fourth root and then find the 
resulting expression.

 4. In Example 9, replace b-2 with b-4 and then find the resulting 
expression.

In Exercises 5–64, write each expression in simplest radical form. If a 
radical appears in the denominator, rationalize the denominator.

 5. 124 6. 1150  7. 1108

 8. 198 9. 2x2y5 10. 2pq2r7

11. 2x2y4z3 12. 212ab2 13. 218R5TV4

14. 2132M2N3  15. 23 16  16. 24 48

17. 25 96  18. 23  -512  19. 23 8a2

20. 23 5a4b2  21. 24 64r3s4t5  22. 25 16x5y3z11

23. 25 825 4 24. 27 427 64  25. 23 P23 P2V

26. 26 3m5n826 9mn 27. A3
2

  28. A11
12

29. A3 3
4

  30. A4 2
25

  31. A5 1
9

32. A6 5
4

  33. 24 400 34. 28 81

35. 26 64  36. 29 27  37. 24 * 104

38. 24 * 105  39. 24 * 106  40. 23 16 * 105

41. 24 4a2  42. 26 b2c4  43. A4 1
4

44. 
24 32024 5

  45. 24 13 16  46. 25 14 9

47. 432n  48. 2b41a  49. 228u3v-5

50. 298x6y-7  51. 164 + 144  52. 19 + 81

53. A 2x

3c4  54. A n

m3  55. A5
4

- 1
8

56. A 1

a2 + 1
b

  57. 2xy-1 + x-1y  58. 2x2 + 4-1

 59. AC - 2
C + 2

  60. 2a2 + 2ab + b2  61. 2a2 + b2

62. 24x2 - 1  63. 29x2 - 6x + 1  64. A1
2

+ 2r + 2r2

In Exercises 65–72, perform the required operation.

 65. Change to radicals of the same order: 1a; 23 b; 26 c.

 66. Change to radicals of the same order: 3x2>3; 2y1>2; 15z21>4.

 67. Display the graphs of y1 = 1x + 2 and y2 = 1x + 12 on a 
calculator to show that 1x + 2 is not equal to 1x + 12.

 68. An approximate equation for the efficiency h (in percent) of an 
engine is h = 10011 - 1>25 R2 2 , where R is the compression 
ratio. Explain how this equation can be written with fractional 
exponents and then find h for R = 7.35.
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69. When analysing the velocity of an object falling through a great 
distance, the expression a12g>a arises. Show by rationalizing 
the denominator that this expression takes on a simpler form.

70. According to the Doppler effect, the observed frequency of light 
fo when the observer is moving away with a velocity v from the 
light source emitting a signal of frequency f is given by 

fo =
fc

c - vA1 - av
c
b2

, where c is the speed of light. Simplify 

the right side of the equation, leaving a radical in the 
denominator.

71. In analysing an electronic filter circuit, the expression 
8 A

p221 + 1 f0>f22
 is used. Rationalize the denominator, express-

ing the answer without the fraction f0>f.

72. The expression 
1

2LAR2 - 4L
C

 occurs in the study of electric cir-

cuits. Simplify this expression by combining terms under the rad-
ical and rationalizing the denominator.

1. 2x212x   2. 2a223 2ab2   3. 
13ab

3b

When we add or subtract algebraic expressions, we combine similar terms, those that 
differ only in numerical coefficients. This is true when adding or subtracting radicals. 
The radicals must be similar to perform the addition, rather than simply indicate the 
addition. Radicals are similar if they differ only in their numerical coefficients. This 
means they must have the same order and have the same radicand.

 11.4 Addition and Subtraction of Radicals

1. Express each radical in simplest form.

2. Rationalize any denominators.

3.  Combine any radicals that are similar. If there are radicals that are not similar, 
just indicate the addition or subtraction.

4. Factor the expression, if there are common factors.

 EXAMPLE  1  

(a) 217 - 517 + 17 = -217  all similar radicals

  This result follows the distributive law, as it should. We can write

217 - 517 + 17 = 12 - 5 + 1217 = -217

We can also see that the terms combine just as

2x - 5x + x = -2x

(b) 25 6 + 425 6 - 225 6 = 325 6 all similar radicals

(c) 15 + 213 - 515 = 213 - 415  answer contains two terms 

  similar radicals

We note in (c) that we are only able to indicate the final subtraction since the radicals 
are not similar. ■

 EXAMPLE  2  

(a)  12 + 18 = 12 + 14 * 2 = 12 + 1412

  = 12 + 212 = 312

(b) 23 24 + 23 81 = 23 8 * 3 + 23 27 * 3 = 23 823 3 + 23 2723 3

  = 223 3 + 323 3 = 523 3

Notice that 18, 23 24, and 23 81 were simplified before performing the additions. 
We also note that 12 +  18 is not equal to !2 + 8. ■
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We note in the illustrations of Example 2 that the radicals do not initially appear to 
be similar. However, after each is simplified, we are able to recognize the similar 
radicals.

 EXAMPLE  3  Simplifying each and combining similar radicals

(a)  617 - 128 + 3163 = 617 - 14 * 7 + 319 * 7

  = 617 - 217 + 313172
  = 617 - 217 + 917

  = 1317 all similar radicals

(b)  31125 - 120 + 127 = 3125 * 5 - 14 * 5 + 19 * 3

  = 315152 - 215 + 313

  = 1315 + 313 not similar to others ■

 EXAMPLE  4   Simplifying each, rationalizing denominators, and combining 
similar radicals

 124 + A3
2

= 24 * 6 + A3 * 2
2 * 2

= 1416 + A6
4

 = 216 + 16
2

=
416 + 16

2
=

5
2
16

One radical was simplified by removing the perfect square factor, and in the other, 
we rationalized the denominator. Note that we would not be able to combine the radi-
cals if we did not rationalize the denominator of the second radical. ■

Next is an example of adding radical expressions that contain literal numbers.

 EXAMPLE  5  

 B 2
3a

- 2B 3
2a

=
2223a

* 23a23a
- 2

2322a
* 22a22a

=
26a

3a
-

226a

2a

=
26a

3a
-

26a
a

=
26a - 326a

3a

=
-226a

3a

 

■

Combine:  1. 5144 - 199

Combine:  2. A8x
5y

- 110xy

In Exercises 1 and 2, simplify the resulting expressions if the given 
changes are made in the indicated examples of this section.

 1. In Example 3(b), change 127 to 145 and then find the resulting 
simplified expression.

 2. In Example 4, change 124 to 154 and then find the resulting 
simplified expression.

In Exercises 3–38, express each radical in simplest form, rationalize 
denominators, and perform the indicated operations.

 3. 213 + 513 4. 8111 - 3111

 5. 128 + 15 - 317 6. 816 - 112 - 516

 7. 15 + 116 + 4 8. 17 + 136 + 27

 9. 223t2 - 3212t2 10. 422n2 - 250n2
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600 mm

300 mm2400 mm

1200 mm

Fig. 11.5

 11. 18a - 132a 12. 127x + 2118x

 13. 2128 + 31175 14. 1100 + 25 - 7180

 15. 21200 - 11250 - 1450 16. 2144 - 199 + 12188

 17. 3175R + 2148R - 2118R 18. 2128 - 1108 - 21175

 19. 160 + 25
3 20. 3184 - 23

7

 21. 21
2 + 225

2 - 4118 22. 16 - 22
3 - 118

 23. 23 81 + 23 3000 24. 23 -16 + 23 54

 25. 24 32 - 28 4 26. 26 12 -
122213

 27. 52a3b - 24ab5 28. 22R2I + 282I3

 29. 161513 - 240a2 30. 3260b2n - b1135n

 31. 23 24a2b4 - 23 3a5b 32. 25 32a6b4 + 3a25 243ab9

 33. A a

c5 - A c

a3 34. A2x
3y

+ A27y

8x

 35. 23 ab-1 - 23 8a-2b2 36. B2xy-1

3
+ B27x-1y

8

 37. AT - V
T + V

- AT + V
T - V

 38. A16
x

+ 8 + x - A1 - 1
x

In Exercises 39–44, express each radical in simplest form, rationalize 
denominators, and perform the indicated operations. Then use a 
calculator to verify the result.

 39. 3145 + 3175 - 21500 40. 2140 + 3190 - 51250

 41. 222
3 + 124 - 523

2 42. 22
7 - 227

2 + 5156

 43. 223 16 - 23 1
4 44. 524 810 - 24 5

8

In Exercises 45–52, solve the given problems.

 45. Find the exact sum of the positive roots of x2 - 2x - 2 = 0 and 
x2 + 2x - 11 = 0.

 46. For the quadratic equation ax2 + bx + c = 0, if a, b, and c are 
integers, the sum of the roots is a rational number. Explain.

 47. Without calculating the actual value, determine whether 
10111 - 11000 is positive or negative. Explain.

 48. The adjacent sides of a parallelogram are 112 and 127 units 
long. What is the perimeter of the parallelogram?

 49. The two legs of a right triangle are 212 and 216 units long. 
What is the perimeter of the triangle?

 50. The current I (in A) passing 
through a resistor R (in Ω) 
in which P watts of power 
are dissipated is 
I = 1P>R. If the power 
dissipated in the resistors 
shown in Fig. 11.4 is W 
watts, what is the sum of the 
currents in radical form?

 51. A rectangular piece  
of plywood 1200 mm  
by 2400 mm has  
corners cut from it,  
as shown in Fig. 11.5.  
Find the perimeter of  
the remaining piece  
in exact form  
and in decimal  
form (to 3 significant digits).

 52. Three squares with areas of 150 cm2, 54 cm2, and 24 cm2 are dis-
played on a computer monitor. What is the sum (in radical form) 
of the perimeters of these squares?

Answers to Practice Exercises

1. 7111  2. 
12 - 5y2110xy

5y

5 Æ

0.2 Æ

0.05 Æ

Fig. 11.4

When multiplying expressions containing radicals, we use Eq. (11.10), along with the nor-
mal procedures of algebraic multiplication. Note that the orders of the radicals being mul-
tiplied in Eq. (11.10) are the same. The following examples illustrate the method.

 EXAMPLE  1  Multiplying monomial radicals

(a) 1512 = 15 * 2 = 110

(b)  13313 = 133 * 3 = 199 = 19 * 11 = 19111

   = 3111 perfect square

or   13313 = 133 * 3 = 111 * 3 * 3 

   = 3111

  Note that we express the resulting radical in simplest form.

(c)  23 623 4 = 23 6142 = 23 24 = 23 823 3

    = 223 3 perfect cube

(d)  25 8a3b425 8a2b3 = 25 18a3b42 18a2b32 = 25 64a5b7 = 25 32a5b525 2b2

    = 2ab25 2b2 perfect fifth power ■

 11.5 Multiplication and Division of Radicals

■ For reference, Eq. (11.10) is  1n a 1n b = 1n ab.
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 EXAMPLE  2  Multiplying binomial radicals

(a)  121315 - 4122 = 31215 - 41212 = 3110 - 414

  = 3110 - 4122 = 3110 - 8

Multiply: 1. 2151115 - 3132
2. 1216 - 132 1316 + 2132

■ For reference, Eqs. (6.3) and (6.4) are 1x + y2 2 = x2 + 2xy + y2 1x - y2 2 = x2 - 2xy + y2

Remember, to multiply radicals and 
combine them under one radical sign, 
it is necessary that the order of the 
radicals be the same. If necessary, we 
can make the order of each radical 
the same by appropriate operations 
on each radical separately. Fractional 
exponents are frequently useful for 
this purpose.
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(b) 1517 - 2132 1417 + 3132 = 15172 14172 + 15172 13132 - 12132 14172 - 12132 13132
  = 152 1421717 + 152 1321713 - 122 1421317 - 122 1321313

  = 20172 + 15121 - 8121 - 6132
  = 140 + 7121 - 18

  = 122 + 7121 ■

When raising a single-term radical expression to a power, we use the basic meaning 
of the power. When raising a binomial to a power, we proceed as with any binomial. 
We use Eqs. (6.3) and (6.4) along with Eq. (11.10) if the binomial is squared. These are 
illustrated in the next two examples.

 EXAMPLE  3  

(a) 121722 = 2211722 = 4172 = 28

(b) 121723 = 2311723 = 8117221172 = 817217

 = 5617

(c) 13 + 1522 = 32 + 213215 + 11522 = 9 + 615 + 5

   = 14 + 615

(d) 11a - 1b22 = 11a22 - 21a1b + 11b22

 = a + b - 21ab ■

 EXAMPLE  4  Use of fractional exponents

(a) 23 215 = 21>351>2 = 22>653>6 = 1225321>6 = 26 500

(b)  23 4a2b24 8a3b2 = 122a2b21>3123a3b221>4 = 122a2b24>12123a3b223>12

 = 128a8b421>12129a9b621>12 = 1217a17b1021>12

 = 2a125a5b1021>12

 = 2a
12232a5b10 ■

If a fraction involving a radical is to be changed in form, rationalizing the denominator 
or rationalizing the numerator is the principal step. Although calculators have made 
the rationalization of denominators unnecessary for calculation, this process often 
makes the form of the fraction simpler. Also, rationalizing numerators is useful at times 
in more advanced mathematics. We now consider rationalizing when the denominator 
(or numerator) to be rationalized has more than one term.

If the denominator is the sum (or difference) of two terms, at least one of which is a 
square root, the denominator is rationalized by multiplying both the numerator and 
denominator by the difference (or sum) of the same two terms. This forces the 
denominator to become a difference of squares, thus eliminating the square root(s). 
The binomial that must be multiplied in order to make a difference of squares is 
called the conjugate of the original denominator, and it consists of changing the 
sign on one term in the original denominator.

This process works whether one or both terms are radicals. The result is a denom-
inator free of radicals.

LEARNING T IP
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 EXAMPLE  5  

The fraction 
113 - 12

 can be rationalized by multiplying the numerator and the 

denominator by 13 + 12. In this way, the radicals will be removed from the 
denominator.

113 - 12
* 13 + 1213 + 12

=
13 + 1211322 - 11222 =

13 + 12
3 - 2

= 13 + 12

 change sign ■

We note that, after rationalizing the denominator, the result can have a simpler 
form than the original expression.

 EXAMPLE  6  

Rationalize the denominator of  
42x27 + 2x

  and simplify the result.

42x27 + 2x
*

27 - 2x27 - 2x
=

427x - 4x

7 - 27x + 27x - x

=
4127x - x2

7 - x

 change sign ■

As we noted earlier, in certain types of algebraic operations, it may be necessary to 
rationalize the numerator of an expression. This procedure is illustrated in the follow-
ing example.

 EXAMPLE  7  

In studying the properties of a semiconductor, the expression

C1 + C211 + 2V11 + 2V

is used. Here, C1 and C2 are constants and V  is the voltage across a junction of the 
semiconductor. Rationalize the numerator of this expression.

Multiplying numerator and denominator by the conjugate C1 - C211 + 2V, we 
have

 
C1 + C211 + 2V11 + 2V

=
1C1 + C211 + 2V2 1C1 - C211 + 2V211 + 2V1C1 - C211 + 2V2

 =
C2

1 - C2
2111 + 2V22

C111 + 2V - C211 + 2V11 + 2V

  =
C2

1 - C2
211 + 2V2

C111 + 2V - C211 + 2V2  ■

Rationalize the denominator and simplify:

3. 
3 - 213
2 + 713
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In Exercises 1–4, perform the indicated operations on the resulting 
expressions if the given changes are made in the indicated examples 
of this section.

 1. In Example 2(a), change 412 to 418 and then perform the 
multiplication.

 2. In Example 4(a), change 15 to 26 5 and then perform the 
multiplication.

 3. In Example 5, change the sign in the denominator from -  to +  
and then rationalize the denominator.

 4. In Example 6, rationalize the numerator of the given expression.

In Exercises 5–46, perform the indicated operations, expressing 
answers in simplest form with rationalized denominators.

 5. 13110 6. 12151 7. 1612 8. 17114

 9. 23 423 2 10. 25 425 16 11. 151222  12. 2131523

 13. 2825
2 14. 26

722
3

 15. 13112 - 152  16. 3151115 - 2152
 17. 12 - 152 12 + 152  18. 412 - 1722

 19. 13130 - 2132 16130 + 7132
 20. 1317a - 182 117a + 122
 21. 13111 - 1x2 12111 + 51x2
 22. 12110 + 31152 1110 - 71152
 23. 1a11ab + 2c32  24. 13x1323x - 1xy2
 25. 

16 - 316
 26. 

5 - 11024 10

 27. 112a - 1b2 112a + 31b2  28. 121mn + 31n22

 29. 1223 3 30. 25 1623 8

 31. 
117 + 13

 32. 
624 25

5 - 215

 33. 
12 - 117 - 312

 34. 
2115 - 3115 + 4

 35. 
213 - 51513 + 215

 36. 
115 - 315
2115 - 15

 37. 
21x1x - 15

 38. 
12c + 3d12c - d

 39. 125 16 - 152 125 16 + 15 2
 40. 23 5 - 11723 5 + 117

 41. aA 2
R

+ AR
2
b aA 2

R
- 2 AR

2
b

 42. 13 + 16 - 2a2 12 - 16 - 2a2
 43. 

1x + y1x - y - 1x
 44. 

11 + a

a - 11 - a

 45. 
1a + 1a - 21a - 1a - 2

 46. 
2T4 - V42V-2 - T-2

In Exercises 47–50, perform the indicated operations, expressing 
answers in simplest form with rationalized denominators. Then verify 
the result with a calculator.

 47. 1111 + 162 1111 - 2162
 48. 1215 - 172 1315 + 172

 49. 
216 - 15
316 - 415

 50. 
17 - 412

517 - 412

In Exercises 51–54, combine the terms into a single fraction, but do 
not rationalize the denominators.

 51. 21x + 11x
 52. 

3
213x - 4

- 13x - 4

 53. 
x212x + 1

+ 2x12x + 1  54. 42x2 + 1 - 4x2x2 + 1

In Exercises 55–58, rationalize the numerator of each fraction.

 55. 
15 + 212

3110
 56. 

119 - 3
5

 57. 
1x + h - 1x

h
 58. 

13x + 4 + 13x
8

In Exercises 59–72, solve the given problems.

 59. By substitution, show that x = 1 - 12 is a solution of the equa-
tion x2 - 2x - 1 = 0.

 60. For the quadratic equation ax2 + bx + c = 0, if a, b, and c are 
integers, the product of the roots is a rational number. Explain.

 61. Determine the relationship between a and c in ax2 + bx + c = 0 
if the roots of the equation are reciprocals.

 62. Evaluate r2 - s2 if r = -b + 2b2 - 4ac and 
s = -b - 2b2 - 4ac.

 63. Rationalize the denominator of 
123 x2 + 23 x + 1

. (Hint: See  
Eq. 6.10.)

 64. One leg of a right triangle is 217, and the hypotenuse is 6. What 
is the area of the triangle?

 65. For an object oscillating at the end of a spring and on which there 
is a force that retards the motion, the equation m2 + bm + k2 = 0 
must be solved. Here, b is a constant related to the retarding force, 
and k is the spring constant. By substitution, show that 
m = 1

212b2 - 4k2 - b2  is a solution.

 66. Among the products of a specialty furniture company are tables 
with tops in the shape of a regular octagon (eight sides). Express 
the area A of a table top as a function of the side s of the octagon. 
(Hint: Draw a square around the octagon.)

 67. An expression used in determining the characteristics of a spur 

gear is 
50

50 + 1V
. Rationalize the denominator.

 68. When studying the orbits of earth satellites, the expression aGM

4p2 b1>3
T2>3 arises. Express it in simplest rationalized radical 

form.

 69. In analysing a tuned amplifier circuit, the expression 
2Q212 - 1

 
is used. Rationalize the denominator.

 70. When analysing the ratio of resultant forces when forces with 
magnitudes F and T act on a structure, the expression 

  2F2 + T2>2F-2 + T-2 arises. Simplify this expression.
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 71. The resonant frequency v of a 
capacitance C in parallel with a 
resistance R and inductance L 
(see Fig. 11.6) is 

v =
12LC

 B1 - R2C
L

. 

Combine terms under the radi-
cal, rationalize the denominator, 
and simplify.

 CHAPTER 11

L

R

C

Fig. 11.6 

 72. In fluid dynamics, the expression 
a

1 + m>1r
 arises. Combine terms 

in the denominator, rationalize the denominator, and simplify.

1. 21513 - 31152   2.  3110 + 122   3.  
-48 + 2513

143

Exponents am * an = am+n (11.1)

 
am

an = am-n or 
am

an =
1

an-m  1a ≠ 02  (11.2)

 1am2n = amn (11.3)

 1ab2n = anbn,  aa
b
bn

=
an

bn   1b ≠ 02  (11.4)

 a0 = 1  1a ≠ 02  (11.5)

 a-n =
1
an  1a ≠ 02  (11.6)

Fractional  a1>n = 2n
a (11.7) 

exponents  

 am/n = 2n
am = 12n

a 2m (11.8)

Radicals 2n
an = 12n

a 2n = a (11.9)

 2n
a2n

b = 2n
ab (11.10)

 2m 1n a =
mn2a (11.11)

 
2n

a2n
b

= An a
b

  1b ≠ 02  (11.12)
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In Exercises 1–28, express each expression in simplest form with only 
positive exponents.

 1. 2a-2b0 2. 12c2-1z-2 3. 
9c-1

d-3  4. 
-5x0

3y-1

 5. 312523>2 6. 322>5 7. 400-3>2 8. 7110002-2>3
 9. a 3

t2 b-2
 10. a2x3

3
b-3

 11. 
-82>3
49-1>2 12. 

4-45

2-90

 13. 12a1>3b5>626 14. 1ax-1>2y1>428 15. 1 -32m15n1023>5
 16. 127x-6y922>3 17. 2L-2 - 4C-1 18. C4C-1 + 1C42-1

 19. 
2x-1

2x-1 + y-1 20. 
9a12a2-1 - a

 21. 1a - 3b-12-1

 22. 12s-2 + t2-2 23. 1x3 - y-321>3
 24. 18a322>31a-2 + 121>2 25. 1W2 + 2WH + H22-1>2 

 26. c 19a2014x221>313b1>2212b022 d -6

 27. 2x1x - 12-2 - 21x2 + 12 1x - 12-3

 28. 411 - T221>2 - 11 - T22-1>2
In Exercises 29–78, perform the indicated operations and express the 
result in simplest radical form with rationalized denominators.

  29. 168 30. 4196 31. 2ab5c2 32. 2x3y4z6

 33. 29a3b4 34. 28x5y2 35. 284st3u-2 36. 252L2C-5

 37. 
512s

 38. 
3a15x

 39. A11
27

 40. A 7
8V

 41. 24 8m6n9 42. 23 9a7b-3 43. 34 23 64

 44. 3a-325 b12 45. 136 + 4 - 2110

 46. 2168x - 1153x 47. 163 - 21112 - 128

 48. 7120 - 180 - 21125 49. a22x3 + 28a2 x3 

 50. 22m2n3 - 2n5 51. 23 8a4 + b23 a

 52. 24 2xy5 - 24 32xy 53. 5151615 - 1352
 54. 2181512 - 162  55. 212116 - 1102
 56. 3251215m2 + 2235m22  

 57. 12 - 3117B2 13 + 117B2
 58. 1516 - 42 1316 + 52
 59. 1217 - 31a2 1317 + 1a2
 60. 1312 - 1132 1512 + 31132
 61. 

13x

213x - 1y
 62. 

51a

21a - c
 63. 

1213 - 412

 64. 
4

3 - 217
 65. 

17 - 1515 + 317
 66. 

7 - 216
3 + 216

 67. 
21x - a

31x + 5a
 68. 

213y - 12

913y - 512
 69. 24b2 + 1

 70. x3>81x5>8 - 8x13>82
 71. 13x1>2 - 2x213x1>2 + 2x2
 72. 1x3n-1>xn-121>n
 73. 11 + 61>22 131>2 + 21>22 131>2 - 21>22
 74. Aa-2 + 1

b2
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 92. The value P of an object originally worth P0 and that appreciates 
at an annual rate of r for t years is given by P = P011 + r2 t. 
Solve for r.

 93. The expression 11 - v

2>c22-1>2 arises in the theory of relativ-
ity. Simplify, using only positive exponents in the result.

 94. The compression ratio r of a certain gasoline engine is related to 

the efficiency h (in ,) of the engine by r = a100 - h

100
b-2.5

. 

  What compression ratio is necessary to have an efficiency of 
55.0,?

 95. A square is decreasing in size on a computer screen. To find 
how fast the side of the square changes, we must rationalize the 

numerator of 
1A + h - 1A

h
. Perform this operation.

 96. A plane takes off 200 km east of its destination, and a 50 km>h 
wind is from the south. If the plane’s velocity is 250 km>h and its 
heading is always toward its destination, its path can be described 
as y = 1003 10.005x20.8 - 10.005x21.24 , 0 … x … 200 km. 
Sketch the path and check using a graphing calculator.

 97. In an experiment, a laser 
beam follows the path 
shown in Fig. 11.7. 
Express the length of the 
path in simplest radical 
form.

 98. The flow rate v (in m>s) through a storm drain pipe is found 
from v = 33.510.55022>310.0018021>2. Find the value of v.

 99. The frequency of a certain electric circuit is given by 

f =
1

2pB LC1C2

C1 + C2

. Express this in simplest rationalized radical 

  form.

 100. A computer analysis of an experiment showed that the fraction f  
of viruses surviving X-ray dosages was given by 

f =
20

d + 13d + 400
, where d is the dosage. Express this with 

the denominator rationalized.

 101. In calculating the forces on a tower by the wind, it is necessary 
to evaluate 0.0180.13. Write a paragraph explaining why this 
form is preferable to the equivalent radical form.

 75. a2 - 115
2

b2
- a2 - 115

2
b

 76. 22 + a-1b + ab-1 + 2a4b2 + 2a3b2 + a2b2

 77. 13 + n113 + n - 1n2-1

 78. 21 + 12121 + 12 + 122-1

In Exercises 79 and 80, perform the indicated operations and express 
the result in simplified radical form with rationalized denominators. 
In Exercises 81 and 82, without a calculator, show that the given 
equations are true. Then verify each result with a calculator.

 79. 117 - 21152 1317 - 1152  80. 
213 - 7114
313 + 2114

 81. 212 - 1112 + 12 = 212 + 1

 82. 213 + 1113 - 12 = 22113 - 12
In Exercises 83–100, perform the indicated operations.

 83. The legs of a right triangle are 118 and 132. Find the perime-
ter of the triangle.

 84. One of the legs of a right triangle is 315 and the hypotenuse is 
513. Find the area of the triangle.

 85. Evaluate 3x2 - 2x + 5 for x = 1
212 - 132 .

 86. Evaluate x if x-1>3 = 0.200.

 87. The average annual increase i (in ,) of the cost of living over n 
years is given by i = 1003 1C2>C121>n - 14 , where C1 is the 
cost of living index for the first year and C2 is the cost of living 
index for the last year of the period. Evaluate i if C1 = 130.7 
and C2 = 172.0 are the values for 1990 and 2000, respectively.

 88. Kepler’s third law of planetary motion may be given as 
T = kr3>2, where T  is the time for one revolution of a planet 
around the sun, r is its mean radius from the sun, and 
k = 5.46 * 10-13 year>km3>2. Find the time for one revolution 
of Venus about the sun if r = 1.08 * 108 km.

 89. The speed v of a ship of weight w whose engines produce power 
P is v = k23 P>w. Express this equation (a) with a fractional 
exponent and (b) as a radical with the denominator rationalized.

 90. In analysing the orbit of an earth satellite, the expression B1 + 2E
m

a h
GM

b2
 is used. Combine terms under the radical and 

express the result with the denominator rationalized.

 91. A square plastic sheet of side x is stretched by an amount equal 
to 1x horizontally and vertically. Find the expression for the 
percent increase in the area of the sheet.

2 cm

1 cm

3 cm

3 cm

Fig. 11.7 
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In Problems 1–14, simplify the given expressions. For those with 
exponents, express each result with only positive exponents. For the 
radicals, rationalize the denominator where applicable.

 1. -5y0 2. 13px-42-2 3. 
1003>2
8-2>3  4. 1as-1>3t3>4212

 5. 2120 - 1125 6. 12x-1 + y-22-1 7. 112x - 31y22

  8. 33 24 4 9. 
3 - 212

21x
 10. 227a4b3

 11. 21213110 - 162
 12. 12x + 321>2 + 1x + 12 12x + 32-1>2
 13. a4a-1>2b3>4

b-2 b ab-1

2a
b   14. 

2115 + 13115 - 213

 15. Express 
3-1>2

2
 in simplest radical form with a rationalized 

denominator.

 16. In the study of fluid flow in pipes, the expression 0.220N -1>6 is 
found. Evaluate this expression for N = 64 * 106.
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Complex Numbers

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Express complex numbers 
in rectangular form, polar 
form, exponential form, and 
graphically and convert from 
one form to another

 Perform mathematical 
operations on complex 
numbers in rectangular, polar, 
and exponential forms

 Add complex numbers 
graphically

 Solve algebraic equations 
involving complex numbers

 Find n th roots of a complex 
number using DeMoivre’s 
theorem

 Solve application problems 
involving complex numbers, 
including the analysis of 
alternating-current circuits

Among the important areas of research in the mid-nineteenth century was the study of 
light, which was determined to be a form of electromagnetic radiation. Today, exten-
sive use of electromagnetic waves is made in a great variety of situations. These 

include the transmission of signals for radio, television, and cell phones. Also, radar, micro-
wave ovens, and X-ray machines are among the many other applications of electromagnetic 
waves.

In the 1860s, James Clerk Maxwell, a Scottish physicist, developed a set of very important 
equations for electromagnetic radiation. In doing so, he actually predicted mathematically the 
existence of electromagnetic waves, such as radio waves, which move at the speed of light.

It was not until 1887 that Heinrich Hertz, a German physicist, produced and observed radio 
waves in the laboratory. We see that mathematics was used in predicting the existence of one 
of the most important phenomena in use today—over 20 years before it was actually observed.

Important in the study of electromagnetic waves and many areas of electricity and electronics 
are complex numbers, which we study in this chapter. Complex numbers include imaginary 
numbers as well as real numbers. Other than briefly noting imaginary numbers in Chapters 1 
and 7, we have purposely avoided discussing them until now.

Despite their names, complex numbers and imaginary numbers have very real and useful 
applications. Besides electricity and electronics, they are used in the study of mechanical 
vibrations, optics, acoustics, and fluid mechanics, as well as to generate beautiful geometric 
images called fractals.

12

 In Section 12.7, we see that tuning 
in a radio station involves a basic 
application of complex numbers to 
electricity.
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 12.1 Basic Definitions

Simplify: 1.  1-51-20 2.  - 1-48

For any positive real number a we 
have 1-a = 21 -12 1a2 = j1a, or 
simply 1-a = j1a 1a 7 02  (12.2)

Note that we write the j before the 
radical. This clearly shows that the j is 
not under the radical.

LEARNING T IP

Note that - 2-75  275.

We can avoid this common error if we keep in mind the rules for order of operations. 
The square root is performed before multiplying by –1, so writing the expression in 
terms of j is done before changing sign.

COMMON ERROR

 EXAMPLE  3  11-422 = 1141-122 = 1 j1422 = 4j2 = -4

The simplification of this expression does not follow Eq. (11.10), which states that 1ab = 1a1b for square roots. This is the reason it was noted as being valid only if a 
and b are not negative. Therefore, we see that Eq. (11.10) does not always hold for 
negative values of a and b. ■

Since the square of a positive number or a negative number is positive, it is not possible 
to square any real number and have a negative result. Therefore, we must define a num-
ber system to include square roots of negative numbers. We will find that such numbers 
can be used to great advantage in certain applications.

If the radicand in a square root is negative, we can express the indicated root as the 
product of 1-1 and the square root of a positive number. The symbol 1-1 is defined 
as the imaginary unit and is denoted by the symbol j. Therefore, we have

 j = 1-1 and j2 = -1 (12.1)

Generally, mathematicians use the symbol i for 1-1, and therefore most nontechnical 
textbooks use i. However, one of the major technical applications of complex numbers 
is in electronics, where i represents electric current. Therefore, we will use j for 1-1, 
which is also the standard symbol in electronics textbooks.

 EXAMPLE  1  j

Express the following square roots in terms of j.

(a) 1-9 = 2192 1 -12 = 191-1 = 3j

(b) 1-0.25 = 10.251-1 = 0.5j

(c) 1-5 = 151-1 = 15j = j15    the form j15 is better than 15j ■

When performing operations involving square roots of negative numbers, these must 
always be expressed in terms of j, as in the previous example. 

 EXAMPLE  2  j

(a) 1-6 = 2162 1 -12 = 161-1 = j16

 this step is correct if only  
one factor is negative, as in this case

(b) - 1-75 = - 21252 132 1 -12 = - 21252 1321-1 = -5j13 ■
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 EXAMPLE  4  j

To illustrate the method of handling square roots of negative numbers further, consider the 
difference between 1-31-12 and 21 -32 1 -122 . For these expressions, we have

 1-31-12 = 1 j132 1 j1122 = 1131122 j2 = 11362 j2

 = 61 -12 = -6

 21 -32 1 -122 = 136 = 6

For 1-31-12, we have the product of square roots of negative numbers, so the 
square root is performed first, and we use Eq. (12.2). For 21 -32 1 -122 , we have the 
product of negative numbers under the radical, so the multiplication is performed first. 
We must be careful to note the difference. ■

At times, we need to raise imaginary numbers to some power. Using the definitions 
of exponents and of j, we have the following results:

  j = j     j5 = j4j = j

  j2 = -1     j6 = j4j2 = 112 1 -12 = -1

  j3 = j2j = - j     j7 = j4j3 = 112 1 - j2 = - j

  j4 = j2j2 = 1 -12 1 -12 = 1    j8 = j4j4 = 112 112 = 1

The powers of j go through the cycle, j, -1, - j, 1, j, -1, - j, 1, and so forth. Noting 
this—and the fact that j raised to a power that is a multiple of 4 equals 1—allows us to 
raise j to any integral power easily.

 EXAMPLE  5  j

(a) j10 = j8j2 = 112 1 -12 = -1

(b) j45 = j44j = 112 1 j2 = j

(c) j531 = j528j3 = 112 1 - j2 = - j
 exponents 8, 44, 528 are multiples of 4 ■

Using real numbers and the imaginary unit j, we define a new kind of number. A 
complex number is any number that can be written in the form a + bj, where a and b 
are real numbers. If a = 0 and b ≠ 0, we have a number of the form bj, which is a 
pure imaginary number. If b = 0, then a + bj is a real number. The form a + bj is 
known as the rectangular form of a complex number, where a is known as the real 
part and b is known as the imaginary part. We see that complex numbers include all 
real numbers and all pure imaginary numbers.

A comment here about the words imaginary and complex is in order. The choice of 
the names of these numbers is historical in nature, and unfortunately it leads to some 
misconceptions about the numbers. The use of imaginary does not imply that the num-
bers do not exist. Imaginary numbers do in fact exist, as they are defined above. In the 
same way, the use of complex does not imply that the numbers are complicated and 
therefore difficult to understand. With the proper definitions and operations, we can 
work with complex numbers just as with any other type of number.

In simplifying 12-422, we can write it as 12-42 12-42 . However, we 
 21 -42 1 -42 , for this leads to an incorrect result of +4.

Once again, we can avoid this common error if we keep in mind the rules for order of 
operations. The square root is the first operation applied on -4, so we immediately write 2-4 as j24. After that, the product (or the square) can be performed, as in Example 2.

We cannot overemphasize that12-422  21 -42 1 -42

COMMON ERROR

Simplify: 3. - j25

■ Even negative numbers were not widely 
accepted by mathematicians until late in the 
sixteenth century.

■ Imaginary numbers were so named because 
the French mathematician René Descartes 
(1596–1650) referred to them as “imaginaires.” 
Most of the mathematical development of them 
occurred in the eighteenth century.

■ Complex numbers were named by the 
German mathematician Karl Friedrich Gauss 
(1777–1855).
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Since a complex number is the sum of a real number and an imaginary number, it is 
not positive or negative in the usual sense, and it is not equal in the usual way to 
another complex number. However, the real part is positive or negative (or zero), and 
the same is true of the imaginary part. Thus, two complex numbers are equal if and 
only if their real parts are equal and their imaginary parts are equal. That is,

two complex numbers, a + b j and x + yj, are equal if a = x  and b = y.

 EXAMPLE  6  

(a) a + bj = 3 + 4j if a = 3 and b = 4

  real part imaginary part

(b) x + 3j = yj - 5

  x - yj = -5 - 3j if x = -5 and y = 3 ■

 EXAMPLE  7  

What values of x and y satisfy the equation x + 31xj + y2 = 5 - j - yj?
Rewriting each side in the form a + bj, and equating real parts and equating imagi-

nary parts, we have 1x + 3y2 + 3xj = 5 + 1 -1 - y2 j

For equality, x + 3y = 5 and 3x = -1 - y. The solution of this system of equations 
is x = -1 and y = 2. ■

The conjugate of the complex number a + bj is the complex number a - bj. We 
see that the sign of the imaginary part is changed to obtain the conjugate.

 EXAMPLE  8  

(a) 3 - 2j is the conjugate of 3 + 2j. We may also say that 3 + 2j is the conjugate of 
3 - 2j. Thus, each is the conjugate of the other.

(b) -2 - 5j and -2 + 5j are conjugates.

(c) 6j and -6j are conjugates.

(d) 3 is the conjugate of 3 (imaginary part is zero). ■

Evaluate x and y:
4. 4 - 6j - x = j + yj

Conjugate

In Exercises 1–4, perform the indicated operations on the resulting 
expressions if the given changes are made in the indicated examples 
of this section.

 1. In Example 2(a), put a j in front of the radical and then simplify.

 2. In Example 4, put a -  sign before the first radical of the first 
illustration and then simplify.

 3. In Example 5(a), add 40 to the exponent and then evaluate.

 4. In Example 7, change the 5 on the right side of the equation to -5 
and then solve.

In Exercises 5–16, express each number in terms of j.

In Exercises 17–32, simplify each of the given expressions.

 17. (a) 11-722  (b) 21 -722

 18. (a) 21 -1522 (b) 11-1522

 19. (a) 21 -22 1 -82  (b) 1-21-8

 20. (a) 1-91-16 (b) 21 -92 1 -162
 21. 3- 1

153-27
5  22. - 31 -4

72 1 -49
162

 23. - 1-51-21-10 24. - 21 -32 1 -721-21

 25. (a) - j6 (b) 1 - j26 26. (a) - j21 (b) 1 - j221

 27. j2 - j6 28. 2j5 - 1>j-2 29. j15 - j13

30. 3j48 + j200 31. - 21 - j22 32. - 2- j2

In Exercises 33–44, perform the indicated operations and simplify 
each complex number to its rectangular form.

 33. 2 + 1-9 34. -26 + 1-64 35. 3j - 1-100

 5. 1-81  6. 1-121  7. - 1-4  8. - 1-49

 9. 1-0.36  10. - 1-0.01  11. 41-8  12. 31-48

 13. 2-7
4  14. - 2-5

9  15. - 2-4e2  16. 2-p4
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 36. - 11 - 1-400  37. 2-4j2 + 1-4  38. 5 - 2225j2 57. Are 8j and -8j the solutions to the equation x2 + 64 = 0?

58. Are 2j and -2j solutions to the equation x4 + 16 = 0?

59. Evaluate j + j2 + j3 + j4 + j5 + j6 + j7 + j8.

60. What is the smallest positive value of n for which j-1 = jn?

 61. Is it possible that a given complex number and its conjugate are 
equal? Explain.

 62. Is it possible that a given complex number and the negative of its 
conjugate are equal? Explain.

63. Show that the real part of x + yj equals the imaginary part of 
j1x + yj2 .

64. Explain why a real number is a complex number, but a complex 
number may not be a real number.

1. -10 2. -4j13 3. - j 4. x = 4, y = -7

 39. 2j2 + 3j  40. j3 - 6  41. 118 - 1-8

 42. 1-27 + 112 43. 11-222 + j4 44. 121222 - j6

In Exercises 45–48, find the conjugate of each complex number.

45. (a) 6 - 7j (b) 8 + j 45. (a) -3 + 2j (b) -9 - j

47. (a) 2j (b) -4 48. (a) 6 (b) -5j

In Exercises 49–54, find the values of x and y that satisfy the given 
equations.

49. 7x - 2yj = 14 + 4j 50. 2x + 3yj = -6 + 12j

51. 6j - 7 = 3 - x - yj 52. 9 - j = xj + 1 - y

53. x - 2j2 + 7j = yj + 2xj3

54. 2x - 6xj3 - 3j2 = yj - y + 7j5

In Exercises 55–64, answer the given questions.

55. How is a number changed if it is multiplied by (a) j4; (b) j2?

56. Evaluate: (a) j -8; (b) j -6.

The basic operations of addition, subtraction, multiplication, and division of complex 
numbers are based on the operations for binomials with real coefficients (see Chapters 1 
and 6). In performing these operations, we treat j as we would any other literal number, 
although we must properly handle any powers of j that might occur. However, we must 
be careful to express all complex numbers in terms of j before performing these 
operations. We have the following definitions.

 12.2 Basic Operations with Complex Numbers

Addition:

 1a + bj2 + 1c + dj2 = 1a + c2 + 1b + d2 j (12.3)

Subtraction:

 1a + bj2 - 1c + dj2 = 1a - c2 + 1b - d2 j (12.4)

Multiplication:

 1a + bj2 1c + dj2 = 1ac - bd2 + 1ad + bc2 j (12.5)

Division:

 
a + bj
c + dj

=
1a + bj2 1c - dj21c + dj2 1c - dj2 =

1ac + bd2 + 1bc - ad2 j

c2 + d2  (12.6)

Eqs. (12.3) and (12.4) show that we add and subtract complex numbers by combin-
ing the real parts and combining the imaginary parts.

 EXAMPLE  1  

(a)  13 - 2j2 + 1 -5 + 7j2 = 13 - 52 + 1 -2 + 72 j

 = -2 + 5j

(b)  17 + 9j2 - 16 - 4j2 = 17 - 62 + 19 - 1 -42 2 j

 = 1 + 13j ■

■ Compare Eq. (12.5) with Eq. (6.6).
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When complex numbers are multiplied, Eq. (12.5) indicates that we express num-
bers in terms of j, proceed as with any algebraic multiplication, and note that j2 = -1.

 EXAMPLE  2  

(a)  16 - 1-42 11-92 = 16 - 2j2 13j2  write in terms of j

 = 18j - 6j2 = 18j - 61 -12
 = 6 + 18j

(b)  1 -9.4 - 6.2j2 12.5 + 1.5j2 = 1 -9.42 12.52 + 1 -9.42 11.5j2
 + 1 -6.2j2 12.52 + 1 -6.2j2 11.5j2
 = -23.5 - 14.1j - 15.5j - 9.3j2

 = -23.5 - 29.6j - 9.31 -12
 = -14.2 - 29.6j ■

The procedure shown in Eq. (12.6) for dividing by a complex number is the same as 
that used for rationalizing the denominator of a fraction. The result is in the proper 
form of a complex number.

 EXAMPLE  3  

(a)  
7 - 2j
3 + 4j

=
17 - 2j2 13 - 4j213 + 4j2 13 - 4j2      multiply by conjugate of denominator

 =
21 - 28j - 6j + 8j2

9 - 16j2 =
21 - 34j + 81 -12

9 - 161 -12
 =

13 - 34j
25

This could be written in the form a + bj as 13
25 - 34

25 j, but this type of result is gen-
erally left as a single fraction. In decimal form, the result would be expressed as 
0.52 - 1.36j.

(b)  
1
j

+ 2
3 + j

=
13 + j2 + 2j

j13 + j2 =
3 + 3j
3j - 1

=
3 + 3j

-1 + 3j
# -1 - 3j

-1 - 3j

 =
-3 - 12j - 9j2

1 - 9j2 =
6 - 12j

10

 =
3 - 6j

5
 ■

 EXAMPLE  4  

In an alternating-current circuit, the voltage V is given by V = IZ, where I is the cur-
rent (in A) and Z is the impedance (in Ω). Each of these can be represented by complex 
numbers. Find the complex number representation for I if V = 4.20 - 3.00j volts and 
Z = 5.30 + 2.65j ohms. (This type of circuit is discussed in Section 12.7.)

Since I = V>Z, we have

 I =
4.20 - 3.00j
5.30 + 2.65j

=
14.20 - 3.00j2 15.30 - 2.65j215.30 + 2.65j2 15.30 - 2.65j2

 =
22.26 - 11.13j - 15.90j + 7.95j2

5.302 - 2.652j2 =
22.26 - 7.95 - 27.03j

5.302 + 2.652

 =
14.31 - 27.03j

35.11
= 0.408 - 0.770j amperes  ■

multiply by conjugate 
of denominator

Multiply: 1.  13 - 7j2 19 + 2j2
To divide by a complex number, 
multiply the numerator and the 
denominator by the conjugate of 
the denominator.
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■ Most calculators are programmed for 
complex numbers. They use i instead of j.

Divide: 2.  
5 - 3j

2 + 7j
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In Exercises 1–4, perform the indicated operations on the resulting 
expressions if the given changes are made in the indicated examples 
of this section.

 1. In Example 1(b), change the sign in the first parentheses from +  
to -  and then perform the addition.

 2. In Example 2(b), change the sign before 6.2j from -  to +  and 
then perform the multiplication.

 3. In Example 3(a), change the sign in the denominator from +  to -  
and then simplify.

 4. In Example 3(b), change the sign in the second denominator from 
+  to -  and then simplify.

In Exercises 5–42, perform the indicated operations, expressing all 
answers in the form a + bj.

 5. 13 - 7j2 + 12 - j2  6. 1 -4 - j2 + 1 -7 - 4j2

In Exercises 43–54, answer the given problems.

43. Show that -1 - j is a solution to the equation x2 + 2x + 2 = 0.

44. Show that 1 - j13 is a solution to the equation x2 + 4 = 2x.

45. Multiply -3 + j by its conjugate.

46. Divide 2 - 3j by its conjugate.

47. Write the reciprocal of 3 - j in rectangular form.

48. Write the reciprocal of 2 + 5j in rectangular form.

49. Write j-2 + j-3 in rectangular form.

50. Solve for x: 1x + 2j22 = 5 + 12j

51. Solve for x: 1x + 3j22 = 7 - 24j

52. For 
3
5

+ 4
5

 j, find: (a) the conjugate; (b) the reciprocal.

53. If f1x2 = x + 1
x

, find f11 + 3j2 .

 54. When finding the current in a certain electric circuit, the expression 1s + 1 + 4j2 1s + 1 - 4j2  occurs. Simplify this expression.

In Exercises 55–58, solve the given problems. Refer to Example 4.

55. If I = 0.835 - 0.427j amperes and Z = 250 + 170j ohms, find 
the complex-number representation for V.

56. If V = 5.70 - 3.65j volts and I = 0.360 - 0.525j amperes, find 
the complex-number representation for Z.

57. If V = 85 + 74j volts and Z = 2500 - 1200j ohms, find the 
complex-number representation for I.

58. In an alternating-current circuit, two impedances Z1 and Z2 have a 

  total impedance ZT of ZT =
Z1Z2

Z1 + Z2
. Find ZT for 

  Z1 = 3200 + 4800j ohms and Z2 = 4800 - 6400j ohms.

In Exercises 59–62, answer or explain as indicated.

59. What type of number is the result of (a) adding a complex number 
to its conjugate and (b) subtracting a complex number from its 
conjugate?

60. If the reciprocal of a + bj equals a - bj, what condition must a 
and b satisfy?

61. Explain why the product of a complex number and its conjugate 
is real and nonnegative.

62. Explain how to show that the reciprocal of the imaginary unit is 
the negative of the imaginary unit.

Answers to Practice Exercises

1. 41 - 57j 2. 
-11 - 41j

53

 7. 17j - 62 - 119 - 3j2  8. 15.4 - 3.4j2 - 12.9j + 5.52
 9. 0.23 - 10.46 - 0.19j2 + 0.67j

 10. 17 - j2 - 14 - 4j2 + 16 - j2
11. 112j - 212 - 115 - 18j2 - 9j

12. 10.062j - 0.0732 - 0.030j - 10.121 - 0.051j2
13. 17 - j2 17j2  14. 1 -2.2j2 11.5j - 4.02
15. 14 - j2 15 + 2j2  16. 18j - 52 17 + 4j2
17. 11-181-42 13j2  18. 1-61-12130

19. 7j3 - 71-9 20. 6j - 5j21-63

21. j1-7 - j61112 + 3j 22. j21-7 - 1-28 + 8

23. 13 - 7j22 24. 18j + 2022

25. 11 - j23 26. 11 + j2 11 - j22

27. 
6j

2 - 5j
 28. 

0.25
3.0 - 1-1.0

29. 
1 - j

3j
 30. 

6 + 5j

3 - 4j

31. 
j12 - 5

j12 + 3
 32. 

j5 - j3

3 + j

33. 
j2 - j

2j - j8 34. 
3
2j

+ 5
6 - j

35. 
4j

1 - j
-

8 + j

2 + 3j
 36. 

16j + 52 12 - 4j215 - j2 14j + 12
37. 14j5 - 5j4 + 2j3 - 3j222 38. 12j2 - 3j3 + 2j 4 - 2j526

39. 13j2 - 5j42 14j3 - 6j2  40. 15j - 4j2 + 3j72 12j12 - j132
41. 

12 - j3241 j8 - j623 + j 42. 11 + j2-312 - j2-2
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Graphically, we represent a complex number as a point, designated as a + bj, in the 
rectangular coordinate system. The real part is the x-value of the point, and the imagi-
nary part is the y-value of the point. Used in this way, the coordinate system is called 
the complex plane, the horizontal axis is the real axis, and the vertical axis is the 
imaginary axis.

 EXAMPLE  1  Complex number in complex plane

In Fig. 12.1, A represents the complex number 3 - 2j, B represents -1 + j, and C repre-
sents -2 - 3j. These complex numbers are represented by the points 13, -22 , 1 -1, 12 , 
and 1 -2, -32 , respectively, of the standard rectangular coordinate system. ■

In the complex plane, consider two complex numbers—for example, 1 + 2j and 
3 + j—and their sum 4 + 3j. Drawing lines from the origin to these points (see 
Fig. 12.2), note that if we think of the complex numbers as being vectors, their sum is 
the vector sum. Because complex numbers can be used to represent vectors, the num-
bers are particularly important. Any complex number can be thought of as representing 
a vector from the origin to its point in the complex plane. This leads to the method used 
to add complex numbers graphically. 

 12.3 Graphical Representation of Complex Numbers

Numbers Graphically

0

2
1

3

321!3 !2 !1

!2
!1

!3

Imag.

Real

A
C

B

Keep in mind that the meaning given 
to the points representing complex 
numbers in the complex plane is dif-
ferent from the meaning given to the 
points in the standard rectangular 
coordinate system. A point in the 
complex plane represents a single 
complex number, whereas a point in 
the rectangular coordinate system 
represents a pair of real numbers.
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2

1

3

10 2 3 4
Real

Imag.

1 1 2 j

Sum
4 1 3 j

3 1 j

Steps to Add Complex Numbers Graphically
1.  Find the point corresponding to one of the numbers and draw a line from the 

origin to this point.

2. Repeat step 1 for the second number.

3.  Complete a parallelogram with the lines drawn as adjacent sides. The result-
ing fourth vertex is the point representing the sum.

Note that this is equivalent to adding vectors by graphical means (see Section 9.1).

 EXAMPLE  2  Adding complex numbers graphically

(a) Add the complex numbers 5 - 2j and -2 - j graphically.

The solution is shown in Fig. 12.3. We see that the fourth vertex of the parallelo-
gram is at 3 - 3j. This is, of course, the algebraic sum of these two complex numbers.

1

21

22

23

2122 10 2 3 4 5
Real

Imag.

3 2 3 j
Sum

5 2 2j

22 2 j

0

4

2

224 22

Imag.

Real

Sum
22 1 4 j 1 1 4 j

(b) Add the complex numbers -3 and 1 + 4j.

First, note that -3 = -3 + 0j, which means that the point representing -3 is on 
the negative real axis. In Fig. 12.4, we show the numbers -3 and 1 + 4j on the graph 
and complete the parallelogram. From the graph, we see that the sum is -2 + 4j. ■
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 EXAMPLE  3  Subtracting complex numbers graphically

Subtract 4 - 2j from 2 - 3j graphically.
Subtracting 4 - 2j is equivalent to adding -4 + 2j. Therefore, we complete the solu-

tion by adding -4 + 2j and 2 - 3j, as shown in Fig. 12.5. The result is -2 - j. ■

2

1

22

23

21
10 2

Real

Imag.

222324

Sum
22 2 j

2 2 3 j

24 1 2 j

−20

−40

−20−40 0 20 40
Real

Imag.

−50 − 15 j N

−15 − 35 j N

35 − 20 j N

 EXAMPLE  4  Adding complex numbers—application

Two forces acting on an overhead bolt can be represented by 35 - 20j N and 
-50 - 15j N. Find the resultant force graphically.

The forces are shown in Fig. 12.6. From the graph, we can see that the sum of the 
forces, which is the resultant force, is -15 - 35j N. ■

In Exercises 1 and 2, perform the indicated operations for the resulting 
complex numbers if the given changes are made in the indicated 
examples of this section.

 1. In Example 2(a), change the sign of the imaginary part of the  
second complex number and then add the numbers graphically.

 2. In Example 3, change the sign of the imaginary part of the second 
complex number and do the subtraction graphically.

In Exercises 3–8, locate the given numbers in the complex plane.

In Exercises 29–32, show the given number, its negative, and its 
conjugate on the same coordinate system.

 3. 2 + 6j  4. -5 + j  5. -4 - 3j

 6. 10  7. -3j  8. 3 - 4j

In Exercises 9–28, perform the indicated operations graphically. 
Check them algebraically.

 9. 2 + 13 + 4j2  10. 2j + 1 -2 + 3j2
11. 15 - j2 + 13 + 2j2  12. 13 - 2j2 + 1 -1 - j2
13. 5j - 11 - 4j2  14. 10.2 - 0.1j2 - 0.1

15. 12 - 4j2 + 1 -2 + j2  16. 1 -1 - 2j2 + 16 - j2
 17. 13 - 2j2 - 14 - 6j2  18. 1 -25 - 40j2 - 120 - 55j2
 19. 180 + 300j2 - 1260 + 150j2  20. 1 - j - 22 - 1 -1 - 3j2
 21. 11.5 - 0.5j2 + 13.0 + 2.5j2  22. 13.5 + 2.0j2 - 11.5j - 4.02
 23. 13 - 6j2 - 1 -1 - 8j2  24. 1 -6 - 3j2 + 12 - 7j2
 25. 12j + 12 - 3j - 1 j + 12  26. 16 - j2 - 9 - 12j - 32
 27. 1 j - 62 - j + 1 j - 72  28. j - 11 - j2 + 13 + 2j2

 29. 3 + 2j  30. -2 + 4j  31. -3 - 5j  32. 5 - j

In Exercises 33 and 34, show the numbers a + bj, 31a + bj2 , and 
-31a + bj2  on the same coordinate system. The multiplication of a 
complex number by a real number is called scalar multiplication of 
the complex number.

 33. 3 - j 34. -10 - 30j

In Exercises 35–38, perform the indicated vector operations graphically 
on the complex number 2 + 4j.

35. Graph the complex number and its conjugate. Describe the rela-
tive positions.

36. Add the number and its conjugate. Describe the result.

37. Subtract the conjugate from the number. Describe the result.

38. Graph the number, the number multiplied by j, the number multi-
plied by j2, and the number multiplied by j3 on the same graph. 
Describe the result of multiplying a complex number by j.

In Exercises 39 and 40, perform the indicated vector additions graphically. 
Check them algebraically.

39. Two ropes hold a boat at a dock. The tensions in the ropes can be 
represented by 40 + 10j N and 50 - 25j N. Find the resultant 
force.

40. Relative to the air, a plane heads north of west with a velocity that 
can be represented by -480 + 210j km>h. The wind is blowing 
from south of west with a velocity that can be represented by 
60 + 210j km>h. Find the resultant velocity of the plane.
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In this section, we use the fact that a complex number can be represented by a vector to 
write complex numbers in another form. This form has advantages when multiplying and 
dividing complex numbers, and we will discuss these operations later in this chapter.

In the complex plane, by drawing a vector from the origin to the point that repre-
sents the number x + yj, an angle u in standard position is formed. The point x + yj is 
r units from the origin. In fact, we can find any point in the complex plane by knowing 
the angle u and the value of r. The equations relating x, y, r, and u are similar to those 
developed for vectors (Eqs. 9.1 to 9.3). Referring to Fig. 12.7, we see that

 x = r cos u  y = r sin u (12.7)

 r2 = x2 + y2  tan u =
y
x

 (12.8)

Note that, except for the case of applications to circuits, we will find angles that are 
not in the first quadrant by disregarding the signs of x and y and using the tangent to 
find a reference angle. Depending on the quadrant, the required angle u is then found 
through Eq. (8.6).

Substituting Eq. (12.7) into the rectangular form x + yj of a complex number, we 
have x + yj = r cos u + j1r sin u2 , or

 x + yj = r1cos u + j sin u2  (12.9)

The right side of Eq. (12.9) is called the polar form (sometimes the trigonometric form). 
The length r is the absolute value, or the modulus, and u is the argument of the complex 
number. Eq. (12.9), along with Eq. (12.8), defines the polar form of a complex number.

 EXAMPLE  1  Representing a number in polar form

Represent the complex number 3 + 4j graphically and give its polar form.
From the rectangular form 3 + 4j, we see that x = 3 and y = 4. Using Eq. (12.8), 

we have

r = 232 + 42 = 5  u = tan-1  
4
3

= 53.1°

Thus, the polar form is 51cos 53.1° + j sin 53.1°2 . See Fig. 12.8. ■

In Example 1, in expressing the polar form as 51cos 53.1° + j sin 53.1°2 , we 
rounded the angle to the nearest 0.1°, as it is not possible to express the result exactly in 
degrees. In dealing with nonexact numbers, we will express angle to the nearest 0.1°. 
Other results that cannot be written exactly will be expressed to three significant digits, 
unless a different accuracy is given in the problem. Of course, in applied situations, 
most numbers are approximate, as they are derived through measurement.

Another convenient and widely used notation for the polar form is rlu. We must 
remember in using this form that it represents a complex number and is simply a short-
hand way of writing r1cos u + j sin u2 . Therefore,

 rlu = r1cos u + j sin u2  (12.10)

 EXAMPLE  2  Polar form  rlU
(a) 31cos 40° + j sin 40°2 = 3l40°
(b) 6.261cos 217.3° + j sin 217.3°2 = 6.26l217.3°
(c) 5l120° = 51cos 120° + j sin 120°2
(d) 14.5l306.2° = 14.51cos 306.2° + j sin 306.2°2  ■

 12.4 Polar Form of a Complex Number
r 1cos U + j sin U 2

Real

Imag.
x + y j

O

u
y = r sin u

x = r cos u

r

Practice Exercise

Write in polar form: 1.  15 - 8j

2

1

4

3

10 2 3 4
Real

Imag.

3 + 4 j

u = 53.1°

r =
 5

■ If uref is a reference angle, according to  
Eq. (8.6),
u = uref  (first quadrant)
u = 180° - uref (second quadrant)
u = 180° + uref (third quadrant)
u = 360° - uref (fourth quadrant)



 12.4 Polar Form of a Complex Number 351

 EXAMPLE  3  Rectangular form to polar form

Represent the complex number -1.04 - 1.56j graphically and give its polar form.
The graphical representation is shown in Fig. 12.9. From Eq. (12.8), we have

r = 21 -1.0422 + 1 -1.5622 = 1.87

uref =  tan-1 
1.56
1.04

= 56.3°  u = 180° + 56.3° = 236.3°

Since both the real and imaginary parts are negative, u is a third-quadrant angle. 
Therefore, we found the reference angle before finding u. This means the polar forms are

1.871cos 236.3° + j sin 236.3°2 = 1.87l236.3° ■

 EXAMPLE  4  Polar form to rectangular form

The impedance Z (in Ω) in an alternating-current circuit is given by Z = 3560l-32.4°. 
Express this in rectangular form.

From the polar form, we have r = 3560 Ω and u = -32.4° (it is common to use 
negative angles in this type of application). This means that we can also write

Z = 35601cos1 -32.4°2 + j sin1 -32.4°2 2
See Fig. 12.10. This means that

 x = 3560 cos1 -32.4°2 = 3010

 y = 3560 sin1 -32.4°2 = -1910

Therefore, the rectangular form is Z = 3010 - 1910j Ω. ■

 EXAMPLE  5  Polar form—real and imaginary numbers

Represent the numbers 5, -5, 7j, and -7j in polar form.
Since a positive real number is on the positive real axis, its polar form is

a = a1cos 0° + j sin 0°2 = al0°

Negative real numbers, being on the negative real axis, are written as

a = 0 a 0 1cos 180° + j sin 180°2 = 0 a 0l180°

Thus,

5 = 51cos 0° + j sin 0°2 = 5l0°

-5 = 51cos 180° + j sin 180°2 = 5l180°

Positive pure imaginary numbers lie on the positive imaginary axis and are expressed 
in polar form by

bj = b1cos 90° + j sin 90°2 = bl90°

Similarly, negative pure imaginary numbers, being on the negative imaginary axis, are 
written as

bj = 0 b 0 1cos 270° + j sin 270°2 = 0 b 0l270°

Thus,

 7j = 71cos 90° + j sin 90°2 = 7l90°

 -7j = 71cos 270° + j sin 270°2 = 7l270°

The complex numbers 5, -5, 7j, and -7j are shown graphically in Fig. 12.11. ■
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Practice Exercise

Write in rectangular form: 2. 2.50l120°
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EXERCISES 12.4

In Exercises 1 and 2, change the sign of the real part of the complex 
number in the indicated example of this section and then perform the 
indicated operations for the resulting complex number.

 1. Example 1 2. Example 3

In Exercises 3–18, represent each complex number graphically and 
give the polar form of each.

29. 4.75l172.8° 30. 1.50l62.3°
 31. 0.9326l229.54° 32. 277.8l-342.63°
 33. 7.32l-270° 34. 18.3l540.0°
 35. 86.42l94.62° 36. 4629l182.44°

In Exercises 37–44, solve the given problems.

37. What is the argument for any negative real number?

38. For x + yj, what is the argument if x = y 6 0?

39. Show that the conjugate of rlu is rl-u.

40. Find r and  tan1uref2  for the complex number ab1a + bj2 . 1a 7 02
41. The voltage of a certain generator is represented by 2.84 - 1.06j kV. 

Write this voltage in polar form.

42. Find the magnitude and direction of a force on a bolt that is repre-
sented by 40.5 + 24.5j newtons.

43. The electric field intensity of a light wave can be described by 
12.4l78.3° V>m. Write this in rectangular form.

44. The current in a certain microprocessor circuit is represented by 
3.75l15.0° mA. Write this in rectangular form.

Answers to Practice Exercises

1. 171cos 331.9° + j sin 331.9°2  2. -1.25 + 2.17j

 3. 8 + 6j  4. -8 - 15j  5. 30 - 40j

 6. -5 + 12j  7. -2.00 + 3.00j  8. 7.00 - 5.00j

 9. -0.55 - 0.24j 10. 460 - 460j 11. 1 + j 13
12. 12 - j 12 13. 3.514 - 7.256j 14. 62.31 + 95.27j

15. -3 16. 60 17. 9j 18. -2j

In Exercises 19–36, represent each complex number graphically and 
give the rectangular form of each.

19. 5.001cos 54.0° + j sin 54.0°2  20. 61cos 180° + j sin 180°2
21. 1601cos 150.0° + j sin 150.0°2
22. 2.501cos 315.0° + j sin 315.0°2
23. 3.001cos 232.0° + j sin 232.0°2
24. 220.81cos 155.13° + j sin 155.13°2
25. 0.081cos 360° + j sin 360°2  26. 151cos 0° + j sin 0°2
 27. 1201cos 270° + j sin 270°2  28.  cos 600.0° + j sin 600.0°

Another important form of a complex number is the exponential form. It is commonly 
used in electronics, engineering, and physics applications. As we will see in the next 
section, it is also convenient for multiplication and division of complex numbers, as the 
rectangular form is for addition and subtraction.

The exponential form of a complex number is written as reju, where r and u have 
the same meanings as given in the previous section, although u is expressed in radians. 
The number e is a special irrational number and has an approximate value:

e = 2.718 281 828 459 045 2

This number e is very important in mathematics, and we will see it again in the next 
chapter. For now, it is necessary to accept the value for e, although in calculus its 
meaning is shown along with the reason it has the above value. We can find its value on 
a calculator by using the ex  key, with x = 1, or by using the e  key.

In advanced mathematics, it is shown that

 reju = r1cos u + j sin u2  (12.11)

By expressing u in radians, the expression ju is an exponent that can be shown to obey 
all the laws of exponents as discussed in Chapter 11.

 12.5 Exponential Form of a Complex Number
Exponential Form re  jU

of Important Forms

■ The number e is named for the Swiss 
mathematician Leonhard Euler (1707–1783).  
His works in mathematics and other fields filled 
about 70 volumes.

We will always express u in radians 
when using the exponential form.
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 EXAMPLE  1  

Express the number 8.50l136.3° in exponential form.
Since this complex number is in polar form, we note that r = 8.50 and that we must 

express 136.3° in radians. Changing 136.3° to radians, we have

136.3° = 136.3°ap rad
180°

b = 2.38 rad

Therefore, the required exponential form is 8.50e2.38j. This means that

 degrees to radians
8.50l136.3° = 8.50e2.38j 

 value of r

We see that the principal step in changing from polar form to exponential form is to 
change u from degrees to radians. ■

 EXAMPLE  2  

Express the number 3.07 - 7.43j in exponential form.
From the rectangular form, we have x = 3.07 and y = -7.43. Therefore, using 

Eq. (12.8), we get

r = 213.0722 + 1 -7.4322 = 8.04

uref =  tan-1 
7.43
3.07

= 67.6° u = 360° - 67.6° = 292.4° u is in the fourth quadrant

Since 292.4° = 5.10 rad, the exponential form is 8.04e5.10j. This means that

3.07 - 7.43j = 8.04e5.10j

Note that we could have used radian mode directly to obtain uref in radians and then find 
u by subtracting from 2p—that is, u = 2p - tan-117.43>3.072 = 5.10. ■

 EXAMPLE  3  

Express the complex number 2.00e4.80j in polar and rectangular forms.
We first express 4.80 rad as 275.0°. From the exponential form, we know that 

r = 2.00. Thus, the polar form is

2.001cos 275.0° + j sin 275.0°2
Using the distributive law, we rewrite the polar form and then evaluate. Thus,

 2.00e4.80j = 2.001cos 275.0° + j sin 275.0°2
= 2.00 cos 275.0° + 12.00 sin 275.0°2 j

 = 0.174 - 1.99j  ■

 EXAMPLE  4  

Express 11.846e1.229j22 in polar and rectangular forms.
First, we note that 11.846e1.229j22 = 1.8462e2.458j. Since 2.458 rad = 140.83°, the 

polar form is 1.8462l140.83° = 3.408l140.83°.
For the rectangular form, using radian mode, we have

 11.846e1.229j22 = 1.8462e2.458j = 1.84621cos 2.458 + j sin 2.4582
 = -2.642 + 2.152j  ■

As we noted earlier, an important application of the use of complex numbers is in 
alternating-current analysis. When an alternating current flows through a given circuit, 
usually the current and voltage have different phases. That is, they do not reach their 

1.  Express 25.01cos 127.0° + j sin 127.0°2  
in exponential form.

2. Express -20.5 - 16.8j in  
exponential form.

■ Calculators that operate with complex 
numbers treat the exponential and polar forms 
as being the same, since each uses r and u. 
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peak values at the same time. Therefore, one way of accounting for the magnitude as 
well as the phase of an electric current or voltage is to write it as a complex number. 
Here, the modulus is the actual magnitude of the current or voltage, and the argument u 
is a measure of the phase.

 EXAMPLE  5  Exponential form—application

A current of 2.00 - 4.00j amperes flows in a given circuit. Express this current in 
exponential form and find the magnitude of the current.

From the rectangular form, we have x = 2.00 and y = -4.00. Therefore,

 r = 212.0022 + 1 -4.0022 = 4.47 A

 u =  tan-1 
-4.00
2.00

= -63.4°

It is normal to express the phase in terms of negative angles when the imaginary part is 
negative. Therefore, 63.4° = 1.11 rad, which means the exponential form is 4.47e-1.11j. 
The modulus of 4.47 means the magnitude of the current is 4.47 A. ■

We now summarize the three important forms of a complex number. See Fig. 12.12.

Rectangular: x + yj

Polar: r1cos u + j sin u2 = rlu
Exponential: reju

It follows that

 x + yj = r1cos u + j sin u2 = rlu = reju (12.12)

where

 r2 = x2 + y2  tan u =
y
x

 (12.8)

In Eq. (12.12), the argument u is the same for exponential and polar forms. It is usually 
expressed in radians in exponential form and in degrees in polar form.

Real

Imag.
x + y j

O

u
y = r sin u

x = r cos u

r

In Exercises 1–4, perform the indicated operations for the resulting 
complex numbers if the given changes are made in the indicated 
examples of this section.

 1. In Example 1, change 136.3° to 226.3° and then find the exponen-
tial form.

 2. In Example 2, change the sign before 7.43j from -  to +  and then 
find the exponential form.

 3. In Example 3, change the exponent to 3.80j and then find the 
polar and rectangular forms.

 4. In Example 4, change the exponent 2 to 3 and then find the polar 
and rectangular forms.

In Exercises 5–24, express the given numbers in exponential form.

 8. 2.101cos 588.7° + j sin 588.7°2
 9. 375.53cos1 -95.46°2 + j sin1 -95.46°2 4
10. 16.723cos1 -7.14°2 + j sin1 -7.14°2 4

 5. 3.001cos 60.0° + j sin 60.0°2  6. 5751cos 135° + j sin 135°2
 7. 0.4501cos 282.3° + j sin 282.3°2

11. 0.515l198.3° 12. 4650l326.5° 13. 4.06l-61.4°
14. 0.0192l76.7° 15. 9245l296.3° 16. 82.76l470.1°
17. 3 - 4j 18. -1 - 5j 19. -30 + 20j

20. 600 + 100j 21. 5.90 + 2.40j 22. 47.3 - 10.9j

23. -634.6 - 528.2j 24. -8573 + 5477j

In Exercises 25–32, express the given complex numbers in polar and 
rectangular forms.

25. 3.00e0.500j 26. 20.0e1.00j 27. 464e1.85j

28. 2.50e3.84j 29. 3.20e-5.41j 30. 0.800e3.00j

31. 0.1724e2.391j 32. 820.7e-3.492j
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In Exercises 33–36, perform the indicated operations and express 
results in rectangular and polar forms.

33. 14.55e1.32j22 34. 10.926e0.253j23

35. 16.25e3.46j2 14.40e1.22j2  36. 118.0e5.13j2 125.5e0.77j2
In Exercises 37–40, perform the indicated operations.

37. The impedance in an antenna circuit is 375 + 110j ohms. Write 
this in exponential form and find the magnitude of the impedance.

38. The intensity of the signal from a radar microwave signal is 
37.03cos1 -65.3°2 + j sin1 -65.3°2 4V>m. Write this in expo-
nential form.

39. In an electric circuit, the admittance is the reciprocal of the 
impedance. If the impedance is 2800 - 1450j ohms in a certain 
circuit, find the exponential form of the admittance.

40. In dealing with the superposition of waves, the expression 
E1E21ej1a-b2 + e-j1a-b2 2  occurs. Show that it can be written as 
2E1E2 cos1a - b2 .

1. 25.0e2.22j 2. 26.5e3.83j

The operations of multiplication and division can be performed with complex numbers 
in polar and exponential forms, as well as rectangular form. Doing them in these forms 
is convenient, but also leads to finding powers and roots of complex numbers.

Using the exponential form and the laws of exponents, we multiply two complex 
numbers as 3r1e ju14 * 3r2e ju24 = r1r2e ju1 + ju2 = r1r2e j1u1 +u22
We use this equation to express the product of two complex numbers in polar form:3r1e ju14 * 3r2e ju24 = 3r11cos u1 + j sin u12 4 * 3r21cos u2 + j sin u22 4
and

r1r2e j1u1 +u22 = r1r23cos1u1 + u22 + j sin1u1 + u22 4
The polar expressions are equal, so we obtain Eq. (12.13).

 12.6  Products, Quotients, Powers, and Roots  
of Complex Numbers

The product of two complex numbers in polar form is

r11cos u1 + j sin u12r21cos u2 + j sin u22
 = r1r23cos1u1 + u22 + j sin1u1 + u22 41r1lu12 1r2lu22 = r1r2lu1 + u2

That is, the magnitudes are multiplied, and the angles are added.

LEARNING T IP

(12.13)

 EXAMPLE  1  

Multiply the complex numbers 2 + 3j and 1 - j by using the polar form of each.

For 2 + 3j:  r1 = 222 + 32 = 3.61 tan u1 =
3
2

 u1 = 56.3°

For 1 - j:  r2 = 212 + 1 -122 = 1.41 tan u2 =
-1
1

 u2 = 315.0°13.612 1cos 56.3° + j sin 56.3°2 11.412 1cos 315.0° + j sin 315.0°2
sum

= 13.612 11.412 3cos156.3° + 315.0°2 + j sin156.3° + 315.0°2 4
= 5.091cos 371.3° + j sin 371.3°2  = 5.091cos 11.3° + j sin 11.3°2

Note that in the final result, the angle is expressed as 11.3°. The angle is usually ex-
pressed between 0° and 360°, unless specified otherwise. As we have seen, in some 
applications it is common to use negative angles. ■
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 EXAMPLE  2  Multiplication in rlU form

When we use the rlu polar form to multiply the two complex numbers in Example 1, 
we have

r1 = 3.61  u1 = 56.3°

r2 = 1.41  u2 = 315.0°

 13.61l56.3°2 11.41l315.0°2 = 13.612 11.412l56.3° + 315.0°

 = 5.09l371.3°

 = 5.09l11.3°

Again, note that the angle in the final result is between 0° and 360°. ■

If we wish to divide one complex number in exponential form by another, we arrive 
at the following result:

 r1eju1 , r2eju2 =
r1

r2
 ej1u1-u22 (12.14)

Therefore, we have Eq. (12.15) for dividing in polar form.

Practice Exercise

1.  Find the polar form product: 13l50°2 15l65°2

The quotient of two complex numbers in polar form is

r11cos u1 + j sin u12
r21cos u2 + j sin u22 =

r1
r2
3cos1u1 - u22 + j sin1u1 - u22 4

r1 lu1

r2 lu2
=

r1
r2

lu1 - u2

That is, the magnitudes are divided, and the angles are subtracted.

LEARNING T IP

(12.15)

Practice Exercise

2.  Find the polar form quotient:
31cos 50° + j sin 50°2
51cos 65° + j sin 65°2

 EXAMPLE  3  Division in polar form

Divide the first complex number of Example 1 by the second.
Using the polar forms, we have

 
3.611cos 56.3° + j sin 56.3°2

1.411cos 315.0° + j sin 315.0°2 =
3.61
1.41

 3cos156.3° - 315.0°2 + j sin156.3° - 315.0°24
= 2.563cos1 -258.7°2 + j sin1 -258.7°2 4
= 2.561cos 101.3° + j sin 101.3°2  ■

 EXAMPLE  4  Division in rlU form

Repeating Example 3 using rlu polar form, we have

 
3.61l56.3°
1.41l315.0°

=
3.61
1.41

 l56.3° - 315.0° = 2.56l-258.7°

 = 2.56l101.3°  ■

We have just seen that multiplying and dividing numbers in polar form can be easily 
performed. However, if we are to add or subtract numbers in polar form, we must do 
the addition or subtraction by using rectangular form. 
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 EXAMPLE  5  

Perform the addition 1.563l37.56° + 3.827l146.23°.
In order to do this addition, we must change each number to rectangular form:

1.563l37.56° + 3.827l146.23°
= 1.5631cos 37.56° + j sin 37.56°2 + 3.8271cos 146.23° + j sin 146.23°2
= 1.2390 + 0.9528j - 3.1813 + 2.1273j

= -1.9423 + 3.0801j

Now, we change this to polar form:

r = 21 -1.942322 + 13.080122 = 3.641

 tan u =
3.0801

-1.9423
  u = 122.24°

Therefore,

 1.563l37.56° + 3.827l146.23° = 3.641l122.24° ■

To raise a complex number to a power, we may use the exponential form of the number 
in Eq. (11.3). This leads to

 1reju2n = rnejnu (12.16)

We extend this to polar form as follows.

■ For reference, Eq. (11.3) is 1am2n = amn.

The power of a complex number in polar form is3r1cos u + j sin u2 4n = rn1cos nu + j sin nu21rlu2n = rnlnu

That is, the magnitude is raised to the power, and the angle is multiplied  
by the power.

LEARNING T IP

(12.17)

Equation (12.17) is known as DeMoivre’s theorem and is valid for all real values of n. 
It is also used for !nding roots of complex numbers if n is a fractional exponent.

 EXAMPLE  6  

Using DeMoivre’s theorem, find 12 + 3j23.
From Example 1, we know r = 3.61 and u = 56.3°. Therefore,

 33.611cos 56.3° + j sin 56.3°2 43 = 13.61233cos13 * 56.3°2 + j sin13 * 56.3°2 4
 = 47.01cos 168.9° + j sin 168.9°2
 = 47.0l168.9°

Expressing u in radians, we have u = 56.3° = 0.983 rad. Therefore,

 13.61e0.983j23 = 13.6123e3*0.983j = 47.0e2.95j

 12 + 3j23 = 47.01cos 168.9° + j sin 168.9°2
 = 47.0l168.9°

 = 47.0e2.95j = -46 + 9j  ■

■ DeMoivre’s theorem is named for the 
mathematician Abraham DeMoivre (1667–1754).

3.  Find the polar form power: 13 cos 50°28
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 EXAMPLE  7  

Find the cube root of -1.
Since we know that -1 is a real number, we can find its cube root by means of the 

definition. That is, 1 -123 = -1. We check this by DeMoivre’s theorem. Writing -1 
in polar form, we have

-1 = 11cos 180° + j sin 180°2
Applying DeMoivre’s theorem, with n = 1

3, we obtain

 1 -121>3 = 11>31cos 13180° + j sin 13 180°2 = cos 60° + j sin 60°

 =
1
2

+ j 
13
2

  exact answer

 = 0.5000 + 0.8660j  decimal approximation

Observe that we did not obtain -1 as the answer. If we check the answer, in the form 
1
2 + j13

2 , by actually cubing it, we obtain -1! Therefore, it is a correct answer.
We should note that it is possible to take 13 of any angle up to 1080° and still have an 

angle less than 360°. Since 180° and 540° have the same terminal side, let us try writing 
-1 as 11cos 540° + j sin 540°2 . Using DeMoivre’s theorem, we have

1 -121>3 = 11>31cos 13 540° + j sin 13 540°2 = cos 180° + j sin 180° = -1

We have found the answer we originally anticipated.
Angles of 180° and 900° also have the same terminal side, so we try

 1 -121>3 = 11>31cos 13 900° + j sin 13 900°2 = cos 300° + j sin 300°

 =
1
2

- j 
13
2

  exact answer

 = 0.5000 - 0.8660j  decimal approximation

Checking this, we find that it is also a correct root. We may try 1260°, but 
1
3 11260°2 = 420°, which has the same functional values as 60°, and would give us the 
answer 0.5000 + 0.8660j again.

We have found, therefore, three cube roots of -1. They are

-1, 
1
2

+ j 
13
2

,  
1
2

- j 
13
2

These roots are graphed in Fig. 12.13. Note that they are equally spaced on the circum-
ference of a circle of radius 1. ■

When the results of Example 7 are generalized, it can be proved that there are n nth 
roots of a complex number. When graphed, these roots are on a circle of radius r1>n and 
are equally spaced 360°>n apart. Following is the method for finding these n roots.

Imag.

Real

!1

!1

0.5000 " 0.8660 j

0.5000 ! 0.8660 j

0 1

1

n n
1. Express the number in polar form.

2. Express the root as a fractional exponent.

3. Use Eq. (12.17) with u to find one root.

4. Use Eq. (12.17) and add 360° to u, n - 1 times, to find the other roots.
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 EXAMPLE  8  Square roots by DeMoivre’s theorem

Find the two square roots of 2j.
First, we write 2j in polar form as 2j = 21cos 90° + j sin 90°2 . To find square 

roots, we use the exponent 1>2. The first square root is12j21>2 = 21>2acos 
90°
2

+ j sin 
90°
2

b = 121cos 45° + j sin 45°2 = 1 + j

To find the other square root, we add 360° to 90°. This gives us12j21>2 = 21>2acos 
450°

2
+ j sin 

450°
2

b = 121cos 225° + j sin 225°2 = -1 - j

Therefore, the two square roots of 2j are 1 + j and -1 - j. We see in Fig. 12.14 that 
they are on a circle of radius 12 and 180° apart. ■

 EXAMPLE  9  Sixth roots by DeMoivre’s theorem

Find all the roots of the equation x6 - 64 = 0.
Solving for x, we have x6 = 64, or x = 26 64. Therefore, we have to find the six 

sixth roots of 64. Writing 64 in polar form, we have 64 = 641cos 0° + j  sin 0°2 . 
Using the exponent 1>6 for the sixth root, we have the following solutions:

First root: 641>6 = 641>6acos 
0°
6

+ j sin 
0°
6
b = 21cos 0° + j sin 0°2 = 2

 add 360°

Second root: 641>6 = 641>6acos 
0° + 360°

6
+ j sin 

0° + 360°
6

b
 = 21cos 60° + j sin 60°2 = 1 + j13

 add 2 * 360°

Third root: 641>6 = 641>6acos 
0° + 720°

6
+ j sin 

0° + 720°
6

b
 = 21cos 120° + j sin 120°2 = -1 + j13

 add 3 * 360°

Fourth root: 641>6 = 641>6acos 
0° + 1080°

6
+ j sin 

0° + 1080°
6

b
 = 21cos 180° + j sin 180°2 = -2

 add 4 * 360°

Fifth root: 641>6 = 641>6acos 
0° + 1440°

6
+ j sin 

0° + 1440°
6

b
 = 21cos 240° + j sin 240°2 = -1 - j13

 add 5 * 360°

Sixth root: 641>6 = 641>6acos 
0° + 1800°

6
+ j sin 

0° + 1800°
6

b
 = 21cos 300° + j sin 300°2 = 1 - j13

These roots are graphed in Fig. 12.15. Note that they are equally spaced 60° apart on 
the circumference of a circle of radius 2. ■

Imag.

Real

!1

!1

1 " j

!1 !  j

0

1

1

Fig. 12.14

Imag.
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!1 " j
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60°

60°
60°
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60°

!1 ! j 1 ! j
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Fig. 12.15
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From the text and examples of this and previous sections, we see the advantages for 
the various forms of writing complex numbers. The rectangular form can be used for 
all of the basic operations but lends itself best to addition and subtraction. The polar 
form is used for multiplication, division, raising to powers, and finding roots. The 
exponential form can be used for multiplication, division, and powers, and also for 
theoretical purposes (for example, deriving DeMoivre’s theorem).

In Exercises 1–4, perform the indicated operations for the resulting 
complex numbers if the given changes are made in the indicated 
examples of this section.

 1. In Example 1, change the sign of the complex part of the second 
complex number and then perform the multiplication.

 2. In Example 3, divide the first number of Exercise 1 by the second.

 3. In Example 6, change the exponent to 5 and then find the result.

 4. In Example 8, replace 2j with -2j and then find the roots.

In Exercises 5–20, perform the indicated operations. Leave the result 
in polar form.

 5. 341cos 60° + j sin 60°2 4 321cos 20° + j sin 20°2 4
 6. 331cos 120° + j sin 120°2 4 351cos 45° + j sin 45°2 4
 7. 10.5l140°2 16l110°2  8. 10.4l320°2 15.5l-150°2
 9. 

81cos 100° + j sin 100°2
41cos 65° + j sin 65°2  10. 

91cos 230° + j sin 230°2
451cos 80° + j sin 80°2

11. 
12l320°

5l-210°
 12. 

2l90°

4l75°

13. 30.21cos 35° + j sin 35°2 43

14. 331cos 120° + j sin 120°2 44

15. 12l135°28 16. 11l142°210

17. 
150l236°2 12l84°2

125l47°
 18. 

36l274°12l141°2 16l195°2
19. 

14l24°2 110l326°211l186°2 18l77°2  20. 
125l194°2 16l239°2130l17°2 110l29°2

In Exercises 21–24, perform the indicated operations. Express results 
in polar form. See Example 5.

21. 2.78l56.8° + 1.37l207.3°
22. 15.9l142.6° - 18.5l71.4°
23. 7085l115.62° - 4667l296.34°
24. 307.5l326.54° + 726.3l96.41°

In Exercises 25–36, change each number to polar form and then perform 
the indicated operations. Express the result in rectangular and polar 
forms. Check by performing the same operation in rectangular form.

25. 13 + 4j2 15 - 12j2  26. 1 -2 + 5j2 1 -1 - j2
27. 17 - 3j2 18 + j2  28. 11 + 5j2 14 + 2j2
29. 

7
1 - 3j

 30. 
40j

7 + 2j

31. 
30 + 40j

5 - 12j
 32. 

-2 + 5j

-1 - j

33. 13 + 4j24 34. 1 -1 - j28

35. 12 + 3j25 36. 11 - 2j26

In Exercises 37–42, use DeMoivre’s theorem to find all the indicated 
roots. Be sure to find all roots.

37. The two square roots of 41cos 60° + j sin 60°2
38. The three cube roots of 271cos 120° + j sin 120°2
39. The three cube roots of 3 - 4j

40. The two square roots of -5 + 12j

41. The square roots of 1 + j

42. The cube roots of 13 + j

In Exercises 43–48, find all of the roots of the given equations.

43. x4 - 1 = 0 44. x3 - 8 = 0 45. x3 + 27j = 0

46. x4 - j = 0 47. x5 + 32 = 0 48. x6 + 8 = 0

In Exercises 49–58, perform the indicated operations.

49. Using the results of Example 7, find the cube roots of -125.

50. Using the results of Example 8, find the square roots of 32j.

51. In Example 7, we showed that one cube root of -1 is 12 - 1
2 j13. 

Cube this number in rectangular form and show that the result 
is -1.

52. Explain why the two square roots of a complex number are nega-
tives of each other.
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53. The cube roots of -1 can be found by solving the equation 
x3 + 1 = 0. Find these roots by factoring x3 + 1 as the sum of 
cubes and compare with Example 7.

54. The cube roots of 8 can be found by solving the equation 
x3 - 8 = 0. Find these roots by factoring x3 - 8 as the differ-
ence of cubes and compare with Exercise 44.

55. The electric power P (in W) supplied to an element in a circuit is 
the product of the voltage V (in V) and the current I (in A). Find 
the expression for the power supplied if V = 6.80l56.3° volts 
and I = 0.0705l-15.8° amperes.

56. The displacement d (in cm) of a weight suspended on a system of 
two springs is d = 6.03l22.5° + 3.26l76.0° cm. Perform the 
addition and express the answer in polar form.

57. The voltage across a certain inductor is 

  V = 18.66l90.0°2 150.0l135.0°2 > 110.0l60.0°2  volts. Simplify 
this expression and find the magnitude of the voltage.

58. In a microprocessor circuit, the current is I = 3.75l15.0° mA and 
the impedance is Z = 2500l-35.0° ohms. Find the voltage V in 
rectangular form. (See Example 4 of Section 12.2.)

Answers to Practice Exercises

1. 15l115° 2. 0.6l345° 3. 6561l40°

We now show an application of complex numbers in a basic type of alternating-current 
circuit. We show how the voltage is measured between any two points in a circuit con-
taining a resistance, a capacitance, and an inductance. This circuit is similar to one 
noted in earlier examples and exercises in this chapter.

A resistance is any part of a circuit that tends to obstruct the flow of electric cur-
rent through the circuit. It is denoted by R (units in ohms, Ω) and in diagrams by

, as shown in Fig. 12.16. A capacitance is two nonconnected plates in a 
circuit; no current actually flows across the gap between them. In an ac circuit, an 
electric charge is continually going to and from each plate and, therefore, the current 
in the circuit is not effectively stopped. It is denoted by C (units in farads, F) and in 
diagrams by  (see Fig. 12.16). An inductance is basically a coil of wire in which 
current is induced because the current is continually changing in the circuit. It is 
denoted by L (units in henrys, H) and in diagrams by  (see Fig. 12.16). All 
these elements affect the voltage in an alternating-current circuit. We state here the 
relation each has to the voltage and current in the circuit.

In Chapter 10, we noted that the current and voltage in an ac circuit could be rep-
resented by a sine or a cosine curve. Therefore, each reaches peak values periodi-
cally. If they reach their respective peak values at the same time, they are in phase. If 
the voltage reaches its peak before the current, the voltage leads the current. If the 
voltage reaches its peak after the current, the voltage lags the current.

In the study of electricity, it is shown that the voltage across a resistance is in phase 
with the current. The voltage across a capacitor lags the current by 90°, and the voltage 
across an inductance leads the current by 90°. This is shown in Fig. 12.17, where, in a 
given circuit, I represents the current, VR is the voltage across a resistor, VC is the volt-
age across a capacitor, V L is the voltage across an inductor, and t represents time.

Each element in an ac circuit tends to offer a type of resistance to the flow of cur-
rent. The effective resistance of any part of the circuit is called the reactance, and it is 
denoted by X. The voltage across any part of the circuit whose reactance is X is given 
by V = IX, where I is the current (in amperes) and V is the voltage (in volts). 
Therefore,

the voltage V R across a resistor with resistance R,

the voltage V C across a capacitor with reactance XC, and

the voltage V L across an inductor with reactance XL

are, respectively,

 V R = IR  VC = IXC  VL = IXL (12.18)

 12.7 An Application to Alternating-Current (ac) Circuits
Basic Circuit with Resistance, Inductance, 

C LR
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with            I
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■ Eq. (12.18) is based on Ohm’s law, which 
states that the current is proportional to the 
voltage for a constant resistance. It is named 
for the German physicist Georg Ohm (1787–1854). 
The ohm (Ω) is also named for him.
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To determine the voltage across a combination of these elements of a circuit, we must 
account for the reactance, as well as the phase of the voltage across the individual ele-
ments. Since the voltage across a resistor is in phase with the current, we represent VR 
along the positive real axis as a real number. Since the voltage across an inductance 
leads the current by 90°, we represent this voltage as a positive, pure imaginary number. 
In the same way, by representing the voltage across a capacitor as a negative, pure 
imaginary number, we show that the voltage lags the current by 90°. These representa-
tions are meaningful since the positive imaginary axis is +90° from the positive real 
axis, and the negative imaginary axis is -90° from the positive real axis. See Fig. 12.18.

The circuit elements shown in Fig. 12.16 are in series, and all circuits we consider 
(except Exercises 22 and 23) are series circuits. The total voltage across a series of all 
three elements is given by VR + VL + VC, which we represent by VRLC. Therefore,

VRLC = IR + IXL  

j - IXC j = I3R + j1XL - XC2 4
This expression is also written as

 VRLC = IZ (12.19)

where the symbol Z is called the impedance of the circuit. It is the total effective resist-
ance to the flow of current by a combination of the elements in the circuit, taking into 
account the phase of the voltage in each element. From its definition, we see that Z is a 
complex number.

 Z = R + j1XL - XC2  (12.20)

with magnitude

 $ Z $ = 2R2 + 1XL - XC22 (12.21)

Also, as a complex number, it makes an angle u with the x-axis, given by

 u = tan-1 
XL - XC

R
 (12.22)

All these equations are based on phase relations of voltages with respect to the cur-
rent. Therefore, the angle u represents the phase angle between the current and the 
voltage. The standard way of expressing u is to use a positive angle if the voltage leads 
the current and use a negative angle if the voltage lags the current. Using Eq. (12.18), 
a calculator will give the correct angle even when tan u 6 0.

If the voltage leads the current, then XL 7 XC as shown in Fig. 12.19(a). If the volt-
age lags the current, then XL 6 XC as shown in Fig. 12.19(b).

In the examples and exercises of this section, the commonly used units and symbols 
for them are used. For a summary of these units and symbols, including prefixes, see 
Section 1.3.

Imag.

Real
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■ In the 1880s, it was decided that alternating 
current (favored by George Westinghouse) 
would be used to distribute electric power. 
Thomas Edison had argued for the use of  
direct current.
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 EXAMPLE  1  

In the series circuit shown in Fig. 12.20(a), R = 12.0 Ω and XL = 5.00 Ω. A current of 
2.00 A is in the circuit. Find the voltage across each element, the impedance, the voltage 
across the combination, and the phase angle between the current and the voltage.

The voltage across the resistor (between points a and b) is the product of the current 
and the resistance 1V = IR2 . This means VR = 12.002 112.02 = 24.0 V. The volt-
age across the inductor (between points b and c) is the product of the current and the 
reactance, or VL = 12.002 15.002 = 10.0 V.

To find the voltage across the combination, between points a and c, we must first 
find the magnitude of the impedance. Note that the voltage is not the arithmetic sum of 
VR and VL , as we must account for the phase.

By Eq. (12.20), the impedance is (there is no capacitor)

Z = 12.0 + 5.00j

with magnitude0 Z 0 = 2R2 + X2
L = 2112.022 + 15.0022 = 13.0 Ω

Thus, the magnitude of the voltage across the combination of the resistor and the 
inductance is 0VRL 0 = 12.002 113.02 = 26.0 V

The phase angle between the voltage and the current is found by Eq. (12.22). This gives

u = tan-1 
5.00
12.0

= 22.6°

The voltage leads the current by 22.6°, and this is shown in Fig. 12.20(b). ■

 EXAMPLE  2  

For a circuit in which R = 8.00 Ω, XL = 7.00 Ω, and XC = 13.0 Ω, find the imped-
ance and the phase angle between the current and the voltage.

By the definition of impedance, Eq. (12.20), we have

Z = 8.00 + 17.00 - 13.02 j = 8.00 - 6.00j

where the magnitude of the impedance is0 Z 0 = 218.0022 + 1 -6.0022 = 10.0 Ω

The phase angle is found by

u = tan-1 
-6.00
8.00

= -36.9°

The angle u = -36.9° is given directly by the calculator, and it is the angle we want. 
As we noted after Eq. (12.22), we express u as a negative angle if the voltage lags the 
current, as it does in this example. See Fig. 12.21.

From the values above, we write the impedance in polar form as 
Z = 10.0l-36.9° ohms. ■

Note that the resistance is represented in the same way as a vector along the positive 
x-axis. Actually, resistance is not a vector quantity but is represented in this manner in 
order to assign an angle as the phase of the current. The important concept in this anal-
ysis is that the phase difference between the current and voltage is constant, and there-
fore any direction may be chosen arbitrarily for one of them. Once this choice is made, 
other phase angles are measured with respect to this direction. A common choice, as 
above, is to make the phase angle of the current zero. If an arbitrary angle is chosen, it 
is necessary to treat the current, voltage, and impedance as complex numbers.

(a)

ba c

R = 12.0 Ω

R = 12.0 Ω

Z = 13.0 Ω

XL = 5.00 Ω

XL = 5.00 Ω
4

2

6

−2
0 2 4 6 8

(b)

10 12
Real

Imag.

u = 22.6°

R

Z

4

2

−2

−4

−6

0

2 4 6 8
Real

Imag.

u

XL − XC
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 EXAMPLE  3  

In a particular circuit, the current (I) is 2.00 - 3.00j A and the impedance (Z) is 
6.00 + 2.00j ohms. The voltage across this part of the circuit is

 V = IZ

V = 12.00 - 3.00j2 16.00 + 2.00j2
= 12.0 - 14.0j - 6.00j2

 = 12.0 - 14.0j + 6.00

 = 18.0 - 14.0j volts

The magnitude of the voltage is

 0V 0 = 2118.022 + 1 -14.022 = 22.8 V ■

Since the voltage across a resistor is in phase with the current, this voltage can be 
represented as having a phase difference of zero with respect to the current. Therefore, 
the resistance is indicated as an arrow in the positive real direction, denoting the fact 
that the current and the voltage are in phase. Such a representation is called a phasor. 
The arrow denoted by R, as in Fig. 12.20, is actually the phasor representing the volt-
age across the resistor. Remember, the positive real axis is arbitrarily chosen as the 
direction of the phase of the current.

To show properly that the voltage across an inductance leads the current by 90°, its 
reactance (effective resistance) is multiplied by j. We know that there is a positive 90° 
angle between a positive real number and a positive imaginary number. In the same 
way, by multiplying the capacitive reactance by - j, we show the 90° difference in 
phase between the voltage and the current in a capacitor, with the current leading. 
Therefore, jXL represents the phasor for the voltage across an inductor and - jXC is the 
phasor for the voltage across the capacitor. The phasor for the voltage across the com-
bination of the resistance, inductance, and capacitance is Z, where the phase difference 
between the voltage and the current for the combination is the angle u.

From this, we see that multiplying a phasor by j means to perform the operation of 
rotating it through 90°. For this reason, j is also called the j-operator.

 EXAMPLE  4  j

Multiplying a positive real number A by j, we have A * j = Aj, which is a positive 
imaginary number. In the complex plane, Aj is 90° from A, which means that by multi-
plying A by j we rotated A by 90°. Similarly, we see that Aj * j = Aj2 = -A, which 
is a negative real number, rotated 90° from Aj. Therefore, successive multiplications of 
A by j give us

 A * j = Aj   positive imaginary number

 Aj * j = Aj2 = -A  negative real number

 -A * j = -Aj   negative imaginary number

 -Aj * j = -Aj2 = A  positive real number

See Fig. 12.22. (See Exercise 38 on page 349.) ■

An alternating current is produced by a coil of wire rotating through a magnetic field. If 
the angular velocity of the wire is v, the capacitive and inductive reactances are given by

 XC =
1
vC
 and XL = vL (12.23)

Therefore, if v, C, and L are known, the reactance of the circuit can be found.

■ The ampere (A) is named for the French 
physicist André Ampère (1775–1836).

■ The volt (V) is named for the Italian physicist 
Alessandro Volta (1745–1827).

■ The farad (F) is named for the British 
physicist Michael Faraday (1791–1867).

■ The henry (H) is named for the U.S. physicist 
Joseph Henry (1797–1878).

■ The coulomb (C) is named for the French 
physicist Charles Coulomb (1736–1806).

Imag.

Real

Aj ! j " #A A ! j " Aj

#A ! j " #Aj #Aj ! j " A

#Aj

#A A

Aj
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 EXAMPLE  5  

If R = 12.0 Ω, L = 0.300 H, C = 250 mF, and v = 80.0 rad>s, find the impedance 
and the phase difference between the current and the voltage.

 XC =
1180.02 1250 * 10-62 = 50.0 Ω

 XL = 10.3002 180.02 = 24.0 Ω

 Z = 12.0 + 124.0 - 50.02 j = 12.0 - 26.0j

 0 Z 0 = 2112.022 + 1 -26.022 = 28.6 Ω

 u = tan-1 
-26.0
12.0

= -65.2°

 Z = 28.6l-65.2° Ω

The voltage lags the current (see Fig. 12.23). ■

Recall from Section 10.5 that the angular velocity v is related to the frequency f  by 
the relation v = 2pf. It is very common to use frequency when discussing alternating 
current.

An important concept in the application of this theory is resonance. For resonance, 
the impedance of any circuit is a minimum, or the total impedance is R. Thus, 
XL - XC = 0. Also, it can be seen that the current and the voltage are in phase under 
these conditions. Resonance is required for the tuning of radio and television receivers.

 EXAMPLE  6  Resonance

In the antenna circuit of a radio, the inductance is 4.20 mH, and the capacitance is vari-
able. What range of values of capacitance is necessary for the radio to receive the AM 
band of radio stations, with frequencies from 530 kHz to 1600 kHz?

For proper tuning, the circuit should be in resonance, or XL = XC. This means that

2pfL =
1

2pfC
 or C =

112pf22L

For f1 = 530 kHz = 5.30 * 105 Hz and L = 4.20 mH = 4.20 * 10-3 H,

C1 =
112p2215.30 * 1052214.20 * 10-32 = 2.15 * 10-11 F = 21.5 pF

and for f2 = 1600 kHz = 1.60 * 106 Hz and L = 4.20 * 10-3 H, we have

C2 =
112p2211.60 * 1062214.20 * 10-32 = 2.36 * 10-12 F = 2.36 pF

The capacitance should be capable of varying from 2.36 pF to 21.6 pF. ■

R

Z

u

XL − XC

■ See the chapter introduction.

■ From Section 1.3, the following prefixes are 
defined as follows:

Prefix Factor Symbol

pico 10-12 p

milli 10-3 m

kilo 103 k

In Exercises 1 and 2, perform the indicated operations if the given 
changes are made in the indicated examples of this section.

 1. In Example 1, change the value of XL to 16.0 Ω and then solve 
the given problem.

 2. In Example 5, double the values of L and C and then solve the 
given problem.

In Exercises 3–6, use the circuit shown in Fig. 12.24. The current in 
the circuit is 5.75 mA. Determine the indicated quantities.

ac voltage source
dcba

I

XL ! 1750 "R ! 2250 " XC ! 1400 "
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 3. The voltage across the resistor (between points a and b).

 4. The voltage across the inductor (between points b and c).

 5. (a)  The magnitude of the impedance across the resistor and the 
inductor (between points a and c).

  (b)  The phase angle between the current and the voltage for this 
combination.

  (c)  The voltage across this combination.

 6. (a)  The magnitude of the impedance across the resistor, inductor, 
and capacitor (between points a and d).

  (b)  The phase angle between the current and the voltage for this 
combination.

  (c) The voltage across this combination.

In Exercises 7–10, an ac circuit contains the given combination of 
circuit elements from among a resistor 1R = 45.0 Ω 2 , a capacitor 1C = 86.2 mF2 , and an inductor 1L = 42.9 mH2 . If the frequency 
in the circuit is f = 60.0 Hz, find (a) the magnitude of the impedance 
and (b) the phase angle between the current and the voltage.

 7. The circuit has the inductor and the capacitor (an LC circuit).

 8. The circuit has the resistor and the capacitor (an RC circuit).

 9. The circuit has the resistor and the inductor (an RL circuit).

10. The circuit has the resistor, the inductor, and the capacitor (an 
RLC circuit).

In Exercises 11–24, solve the given problems.

11. Given that the current in a given circuit is 3.90 - 6.04j mA and 
the impedance is 5.16 + 1.14j kΩ, find the magnitude of the 
voltage.

12. Given that the voltage in a given circuit is 8.375 - 3.140j V and 
the impedance is 2.146 - 1.114j Ω, find the magnitude of the 
current.

13. A resistance 1R = 25.3 Ω 2  and a capacitance 1C = 2.75 nF2  
are in an AM radio circuit. If f = 1200 kHz, find the impedance 
across the resistor and the capacitor.

14. A resistance 1R = 64.5 Ω 2  and an inductance 1L = 1.08 mH2  
are in a telephone circuit. If f = 8.53 kHz, find the impedance 
across the resistor and inductor.

15. The reactance of an inductor is 1200 Ω for f = 280 Hz. What is 
the inductance?

16. A resistor, an inductor, and a capacitor are connected in series 
across an ac voltage source. A voltmeter measures 12.0 V, 15.5 V, 
and 10.5 V, respectively, when placed across each element sepa-
rately. What is the voltage of the source?

17. An inductance of 12.5 mH and a capacitance of 47.0 nF are in 
series in an amplifier circuit. Find the frequency for resonance.

18. A capacitance 1C = 95.2 nF2  and an inductance are in series in 
the circuit of a receiver for navigation signals. Find the induct-
ance if the frequency for resonance is 50.0 kHz.

19. In Example 6, what should be the capacitance in order to receive 
a 680-kHz radio signal?

20. A 220-V source with f = 60.0 Hz is connected in series to an 
inductance 1L = 2.05 H2  and a resistance R in an electric-motor 
circuit. Find R if the current is 0.250 A.

21. The power P (in W) supplied to a series combination of elements 
in an ac circuit is P = VI  cos u, where V is the effective voltage, 
I is the effective current, and u is the phase angle between the cur-
rent and voltage. If V = 225 mV across the resistor, capacitor, 
and inductor combination in Exercise 10, determine the power 
supplied to these elements.

22. For two impedances Z1 and Z2 in parallel, the reciprocal of the 
combined impedance ZC is the sum of the reciprocals of Z1 and Z2. 
Find the combined impedance for the parallel circuit elements in 
Fig. 12.25 if the current in the circuit has a frequency of 60.0 Hz.

75.0 Ω

50.0 mH

75.0 Ω

50.0 mH 40.0 mF

23. Find the combined impedance of the circuit elements in  
Fig. 12.26. The frequency of the current in the circuit is 60.0 Hz. 
See Exercise 22.

24. (a) If the complex number j, in polar form, is multiplied by itself, 
what is the resulting number in polar and rectangular forms? (b) 
In the complex plane, where is the resulting complex number in 
relation to j?

Chapter Equations for Complex Numbers

Imaginary unit j = 1-1 and j2 = -1 (12.1)
 1-a = j1a 1a 7 02  (12.2)

Basic operations  1a + bj2 + 1c + dj2 = 1a + c2 + 1b + d2 j (12.3)

  1a + bj2 - 1c + dj2 = 1a - c2 + 1b - d2 j (12.4)

  1a + bj2 1c + dj2 = 1ac - bd2 + 1ad + bc2 j (12.5)

  
a + bj
c + dj

=
1a + bj2 1c - dj21c + dj2 1c - dj2 =

1ac + bd2 + 1bc - ad2 j

c2 + d2  (12.6)



 Review Exercises 367

Complex number forms Rectangular: x + yj

 Polar: r1cos u + j sin u2 = rlu
 Exponential: reju

 x = r cos u  y = r sin u (12.7)

 r2 = x2 + y2   tan u =
y
x

 (12.8)

 x + yj = r1cos u + j sin u2 = rlu = reju (12.12)

Product in polar form r11cos u1 + j sin u12r21cos u2 + j sin u22 = r1r23cos1u1 + u22 + j sin1u1 + u22 4
 1r1

lu12 1r2
lu22 = r1r2

lu1 + u2 (12.13)

Quotient in polar form  
r11cos u1 + j sin u12
r21cos u2 + j sin u22 =

r1

r2
3cos1u1 - u22 + j sin1u1 - u22 4  

(12.15)

  
r1

lu1

r2
lu2

=
r1

r2
lu1 - u2

DeMoivre’s theorem 3r1cos u + j sin u2 4n = rn1cos nu + j sin nu2  
(12.17)

  1rlu2n = rnlnu

Chapter Equations for Alternating-Current Circuits

Voltage, current, reactance VR = IR  VC = IXC  VL = IXL (12.18)

Impedance  VRLC = IZ (12.19)
 Z = R + j1XL - XC2  (12.20)

 0 Z 0 = 2R2 + 1XL - XC22 (12.21)

Phase angle  u = tan-1 
XL - XC

R
 (12.22)

Capacitive reactance  XC =
1
vC
 and XL = vL (12.23)

and inductive reactance

Real

Imag.

u

ZXL − XC

XL

XC

R

 CHAPTER 12  REVIEW EXERCISES

In Exercises 1–16, perform the indicated operations, expressing all  
answers in simplest rectangular form.

 1. 16 - 2j2 + 14 + j2  2. 112 + 7j2 + 1 -8 + 6j2
 3. 118 - 3j2 - 112 - 5j2  4. 1 -4 - 2j2 - 1-49

 5. 12 + j2 14 - j2  6. 1 -5 + 3j2 18 - 4j2
 7. 12j52 16 - 3j2 14 + 3j2  8. j13 - 2j2 - 1 j32 15 + j2
 9. 

3
7 - 6j

 10. 
24j

2 + 9j

 11. 
6 - 1-161-4

 12. 
3 + 1-4

4 - j

 13. 
5j - 13 - j2

4 - 2j
 14. 

2 + 1 j - 62
1 - 2j

 15. 
j17 - 3j2

2 - j7  16. 
12 - j2 13 + 2j2

4 + 3j3

In Exercises 17–20, find the values of x and y for which the equations 
are valid.

 17. 3x - 2j = yj - 9

 18. 2xj - 2y = 1y + 32 j - 3

 19. 13 - 2j2 1x + yj2 = 4 + j9

 20. 1x + yj2 17j - 42 = j1x - 52
In Exercises 21–24, perform the indicated operations graphically. 
Check them algebraically.

 21. 1 -1 + 5j2 + 14 + 6j2  22. 17 - 2j2 + 1 -5 + 4j2
 23. 19 + 2j2 - 15 - 6j2  24. 18 + 4j2 - 111 - 3j2
In Exercises 25–32, give the polar and exponential forms of each of 
the complex numbers.

 25. 1 - j 26. 4 + 3j

 27. -22 - 77j 28. 60 - 20j

Real

Imag.
x + y j

O

u
y = r sin u

x = r cos u

r
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 29. 1.07 + 4.55j 30. -327 + 158j

 31. 5000 32. -4j5

In Exercises 33–44, give the rectangular form of each number.

 33. 21cos 225° + j sin 225°2  34. 481cos 60° + j sin 60°2
 35. 5.0111cos 123.82° + j sin 123.82°2
 36. 2.4171cos 656.26° + j sin 656.26°2
 37. 0.62l-72° 38. 20l160°
 39. 27.08l346.27° 40. 1.689l194.36°
 41. 2.00e0.25j 42. e-3.62j

 43. 135.37e1.096j22 44. 113.6e2.158j2 13.27e3.888j2
In Exercises 45–60, perform the indicated operations. Leave the  
result in polar form.

 45. 331cos 32° + j sin 32°2 4 351cos 52° + j sin 52°2 4
 46. 32.51cos 162° + j sin 162°2 4 381cos 115° + j sin 115°2 4
 47. 140l18°2 10.5l245°2
 48. 10.1254l172.38°2 127.17l204.34°2
 49. 

241cos 165° + j sin 165°2
31cos 106° + j sin 106°2  50. 

181cos 403° + j sin 403°2
41cos 192° + j sin 192°2

 51. 
245.6l326.44°

17.19l192.83°
 52. 

4l206°

100l-320°

 53. 0.983l47.2° + 0.366l95.1°
 54. 17.8l110.4° - 14.9l226.3°
 55. 7644l294.36° - 6871l17.86°
 56. 4.944l327.49° + 8.009l7.37°
 57. 321cos 16° + j sin 16°2 410 58. 331cos 36° + j sin 36°2 46

 59. 17l110.5°23 60. 1536l220.3°24

In Exercises 61–64, change each number to polar form and then per-
form the indicated operations. Express the final result in rectangular 
and polar forms. Check by performing the same operation in rectan-
gular form.

 61. 11 - j210 62. 113 + j2811 + j25

 63. 
15 + 5j241 -1 - j26 64. 113 - j2-8

In Exercises 65–68, find all the roots of the given equations.

 65. x3 + 8 = 0 66. x3 - 1 = 0

 67. x4 + j = 0 68. x5 - 32j = 0

In Exercises 69–72, determine the rectangular form and the polar 
form of the complex number for which the graphical representation is 
shown in the given figure.

 69.  70. 

  

9

0 40
Real

Imag.

  
!24

70
Real

Imag.

 71.  72. 

  

0

18.
5

36.0°
Real

Imag.

  0
3.75

51.6°
Real

Imag.

In Exercises 73–84, solve the given problems.

 73. Evaluate x2 - 2x + 4 for x = 5 - 2j.

 74. Evaluate 2x2 + 5x - 7 for x = -8 + 7j.

 75. Using the quadratic formula, solve for x: x2 + 3jx - 2 = 0.

 76. Using the quadratic formula, solve for x: jx2 - 2x - 3j = 0.

 77. Find a quadratic equation with roots 2 + j and 2 - j.

 78. Find a quadratic equation with roots -3 + 4j and -3 - 4j.

 79. Are 1 - j and -1 - j solutions to the equation 
  x2 - 2x + 2 = 0?

 80. Show that 1211 + j132  is the reciprocal of its conjugate.

 81. Solve for x: 11 + jx22 = 1 + j - x2

 82. What is the argument for any negative imaginary number?

 83. If f1x2 = 2x - 1x - 12-1, find f11 + 2j2 .

 84. If f1x2 = x-2 + 3x-1, find f14 + j2 .

In Exercises 85–96, find the required quantities.

 85. A 60-V ac voltage source is connected in series across a resistor, 
an inductor, and a capacitor. The voltage across the inductor is 
60 V, and the voltage across the capacitor is 60 V. What is the 
voltage across the resistor?

 86. In a series ac circuit with a resistor, an inductor, and a capacitor, 
R = 6.50 Ω, XC = 3.74 Ω, and Z = 7.50 Ω. Find XL.

 87. In a series ac circuit with a resistor, an inductor, and a capacitor, 
R = 6250 Ω, Z = 6720 Ω, and XL = 1320 Ω. Find the phase 
angle u.

 88. A coil of wire rotates at 120.0 r/s. If the coil generates a current 
in a circuit containing a resistance of 12.07 Ω, an inductance of 
0.1405 H, and an impedance of 22.35 Ω, what must be the value 
of a capacitor (in F) in the circuit?

 89. What is the frequency f  for resonance in a circuit for which 
L = 2.65 H and C = 18.3 mF?

 90. The displacement of an electromagnetic wave is given by 
d = A1cos vt + j sin vt2 + B1cos vt - j sin vt2 . Find the 
expressions for the magnitude and phase angle of d.

 91. Two cables lift a crate. The tensions in the cables can be repre-
sented by 2100 - 1200j N and 1200 + 5600j N. Express the 
resultant tension in polar form.

 92. A boat is headed across a river with a velocity (relative to the 
water) that can be represented as 6.5 + 1.7j km>h. The velocity 
of the river current can be represented as -1.1 - 4.3j km>h. 
Express the resultant velocity of the boat in polar form.

 93. In the study of shearing effects in the spinal column, the expres-

sion 
1

m + jvn
 is found. Express this in rectangular form.
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 94. In the theory of light reflection on metals, the expression

  
m11 - kj2 - 1

m11 - kj2 + 1

  is encountered. Simplify this expression.

 95. Show that ejp = -1.

 96. Show that 1ejp21>2 = j.

 97. A computer programmer is writing a program to determine the n 
nth roots of a real number. Part of the program is to show the 
number of real roots and the number of pure imaginary roots. 
Write one or two paragraphs explaining how these numbers of 
roots can be determined without actually finding the roots.

 CHAPTER 12  PRACTICE TEST

 1. Add, expressing the resultant in rectangular form: 
  13 - 1-42 + 151-9 - 12 .

 2. Multiply, expressing the resultant in polar form:  12l130°2 13l45°2 .

 3. Express 2 - 7j in polar form.

 4. Express in terms of j: (a) - 1-64 (b) - j15.

 5. Add graphically: 14 - 3j2 + 1 -1 + 4j2 .

 6. Simplify, expressing the result in rectangular form: 
2 - 4j

5 + 3j
.

 7. Express 2.561cos 125.2° + j sin 125.2°2  in exponential form.

 8. For an ac circuit in which R = 3.50 Ω, XL = 6.20 Ω, and 
XC = 7.35 Ω, find the impedance and the phase angle between 
the current and the voltage.

 9. Express 3.47 - 2.81j in exponential form.

 10. Find the values of x and y: x + 2j - y = yj - 3xj.

 11. What is the capacitance of the circuit in a radio that has an in-
ductance of 8.75 mH if it is to receive a station with frequency 
600 kHz?

 12. Find the cube roots of j.
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 Because the human ear is sensitive 
to a broad range of sound intensities, 
a logarithmic intensity scale is used. 
In Section 13.6 we show how loga-
rithms are used to compare the sound 
intensity of a jackhammer to the 
sound intensity of a city street.

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Evaluate and graph an 
exponential function

 Recognize the connection 
between properties of logarithms 
and laws of exponents

 Change equations from 
exponential form to logarithmic 
form and vice versa

 Evaluate and graph a 
logarithmic function

 Identify the exponential and 
logarithmic functions as inverse 
functions

 Solve logarithmic and 
exponential equations

 Change a logarithm in one base 
to a logarithm in another base

 Solve application problems 
involving logarithmic and 
exponential functions

 Graph functions on logarithmic 
or semilogarithmic paper

By the early 1600s, astronomy had progressed to the point of finding accurate information 
about the motion of the heavenly bodies. Also, navigation had led to a more systematic 
exploration of earth. In making the accurate measurements needed in astronomy and 

navigation, many lengthy calculations involving large numbers had to be performed, and all 
such calculations had to be done by hand.

Noting that astronomers’ calculations usually involved sines of angles, John Napier (1550–
1617), a Scottish mathematician, constructed a table of values that allowed multiplication of 
these sines by addition of values from the table. These tables of logarithms first appeared in 
1614. Therefore, logarithms were essentially invented to turn the more difficult operation of mul-
tiplication into the easier process of addition.

Napier’s logarithms did not really make use of a number base. It was the English mathemati-
cian Henry Briggs (1561–1630) who, recognizing the usefulness of logarithms, suggested to 
Napier that logarithms should use the base 10 in order to make the calculations even easier. 
Napier agreed, and Briggs spent many years developing the first extensive table of base 10 
logarithms, published in 1624.

Mathematicians and scientists enthusiastically received logarithms as a long-needed tool for 
lengthy calculations. The great French mathematician Pierre Laplace (1749–1827) was hardly 
exaggerating when he said that logarithms “by shortening the labors, doubled the life of the 
astronomer.” Logarithms were commonly used for calculations until the 1970s, when the scientific 
calculator came into use.

As we will learn in this chapter, logarithms are still used in some calculations and in some 
graphical displays, but they are of great importance in many scientific and technical applica-
tions and in advanced mathematics. The units used to measure the intensity of sound, the in-
tensity of earthquakes, the distinction of a base from an acid, and the power gains and losses 
in electrical transmission lines are all measured in logarithmic units. 

In this chapter we will also study the closely related exponential functions, which are crucial 
in many areas of science, mathematics, and statistics. The applications we discuss here in-
clude compound interest and population growth, as well as applications in electronics, me-
chanical systems, thermodynamics, and nuclear physics.

Exponential and 
Logarithmic Functions13
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In Chapter 11, we showed that any rational number can be used as an exponent. Now 
letting the exponent be a variable, we define the exponential function as

 13.1 Exponential Functions

Exponential Functions

y = bx (13.1)

where b 7 0, b ≠ 1, and x is any real number. The number b is called the base. More 
generally, for b 7 0, b ≠ 1, and a ≠ 0, we also refer to a function of the form 
y = abx as an exponential function.

We noted in Chapter 3 that the functions we consider must always have real values. 
That is why we impose the restriction b 7 0. If b were negative and x were a fractional 
exponent with an even-number denominator, y would be imaginary (as in (–3)1/2). 
Also, we restrict b ≠ 1 in order to exclude the constant function y = 1x (since 1 to 
any real power is 1).

 EXAMPLE  1  

From the definition, y = 3x is an exponential function, but y = 1 -32x is not because 
the base is negative. However, y = -3x is an exponential function, because it is -1 
times 3x, and any real-number multiple of an exponential function is also an exponen-
tial function.

Also, y = 1132x is an exponential function since it can be written as y = 3x>2.
As long as x is a real number, so is x>2. Therefore, the exponent of 3 is real.

The function y = 3-x is an exponential function. If x is real, so is -x.
Other exponential functions are y = -218-0.55x2  and y = 3511.00012 x. ■

 EXAMPLE  2  

Evaluate the function y = -214x2  for the given values of x.

(a) If x = 2, y = -21422 = -21162 = -32.

(b) If x = -2, y = -214-22 = -2>16 = -1>8.

(c) If x = 3>2, y = -2143>22 = -2182 = -16.

(d) If x = 12, y = -214122 = -14.206. ■

We now show some representative graphs of the exponential function.

 EXAMPLE  3  

Plot the graph of y = 2x.
For this function, we have the values in the following table:

The curve is shown in Fig. 13.1(a). The values from the table can be seen 
as enlarged points on the plot, all corresponding to integer exponents. Using 
rational exponents (introduced in Chapter 11) would fill in many points 
between those for integers, but all the points for irrational exponents would 
be missing and the curve would be dotted (see Fig. 13.1(b)). Using all real 
numbers for exponents, including the irrational numbers, results in the 
smooth curve shown in Fig. 13.1(a).
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We see that the x-axis is an asymptote of the curve. As noted on page 100, an 
asymptote is a line that the curve gets closer and closer to as values of x increase (or 
decrease) without bound, although the curve never actually touches the asymptote. We 
can also see that as we move from left to right, the graph rises, which means that the 
function increases as x increases. ■

 EXAMPLE  4  

Plot the graph of y = a1
2
b x

.

For this function, (1>2)x = 1>2x = 2-x. We have the values in the following table:

Evaluate y = 16x for:
1. x = 3>2 2. x = -0.5

x -3 -2 -1 0 1 2 3

y 8 4 2 1 1
2

1
4

1
8

The graph is shown in Fig. 13.2. Note that y becomes very large for negative values of x. 
Moreover, notice that as we move from left to right, the graph falls, which means the 
function decreases as x increases. ■

Any exponential curve where b 7 1 will be similar in shape to that shown in Fig. 13.1, 
and if b 6 1, it will be similar to the curve in Fig. 13.2. From these examples, we can 
see that exponential functions have the following basic features. 
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Basic Features of Exponential Functions of the Form y = bx

1. The domain is all values of x; the range is y 7 0.

2. The x-axis is an asymptote of the graph.

3. As x increases, the function increases if b 7 1 and decreases if b 6 1. 

Exponential functions are important in many applications. We now illustrate an 
application in the next example, and others are shown in the exercises.

 EXAMPLE  5  Exponential function—application

In an electric circuit in which there is a battery, an inductor, and a resistor, the current i 
(in A) as a function of the time t (in s) is i = 0.811 - e-4t2 . Graph this function. 
Here, e is the same number we introduced on page 352 and is equal to approximately 
2.718.

Here, e-4t = 1 for t = 0, and this means i = 0 for t = 0. Also, e-4t becomes very 
small in a very short time, and this means i cannot be greater than 0.8 A, and that 
i = 0.8 A is an asymptote. The curve is shown in Fig. 13.3. ■
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In Exercises 1 and 2, perform the indicated operations if the given 
changes are made in the indicated examples of this section.

 1. In Example 2(c), change the sign of x and then evaluate.

 2. In Example 3, change the sign of the exponent and then plot the 
graph.

In Exercises 3–6, determine if the given functions are exponential 
functions.

 3. (a) y = 5x (b) y = 5-x

 4. (a) y = -7x (b) y = 1 -72 -x

 5. (a) y = -71 -52 -x  (b) y = -715-x2
 6. (a) y = 1152 -x  (b) y = - 11-52x
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In Exercises 7–12, evaluate the exponential function y = 9x for the 
given values of x.

 7. x = 0.5  8. x = 4  9. x = -2

 10. x = -0.5 11. x = -3>2 12. x = 5>2

In Exercises 13–18, plot the graphs of the given functions.

 13. y = 4x 14. y = 0.25x 15. y = 0.2110-x2
 16. y = -511.6-x2  17. y = 0.5px 18. y = 2ex

In Exercises 19–24, display the graphs of the given functions on a 
graphing calculator.

 19. y = 0.312.552x 20. y = -1.514.152x

 21. y = 0.110.252x2  22. y = 0.410.952x

 23. i = 1.212 + 6- t2  24. y = 0.5e-x

In Exercises 25–38, solve the given problems. Where necessary, round 
results to 3 significant digits.

 25. Find the base b of the function y = bx if its graph passes through 
the point (3, 64).

 26. Find the base b of the function y = bx if its graph passes through 
the point 1 -2, 642 .

 27. For the function f1x2 = bx, show that f1c + d2 = f1c2 # f1d2 .

 28. For the function f1x2 = bx, show that f1c - d2 = f1c2 >f1d2 .

 29. Use a graphing calculator to graph the function y = 2!x!.

 30. To show the damping effect of an exponential function, use a 
graphing calculator to display the graph of y = 1x32 12-x2 . Be 
sure to use appropriate window settings.

 31. Use a graphing calculator to find the value(s) for which x2 = 2x.

 32. Use a graphing calculator to find the integral values of x for 
which x3 7 3x.

 33. The value V of a bank account in which $250 is invested at 5.00, 
interest, compounded annually, is V = 25011.05002 t, where t is 
the time in years. Find the value of the account after 4 years.

 34. The intensity I of an earthquake is given by I = I01102R, where 
I0 is a minimum intensity reference value, and R is the Richter 
scale magnitude of the earthquake. Evaluate I in terms of I0 if 
R = 5.5.

 35. The electric current i (in mA) in 
the circuit shown in Fig. 13.4 is 
i = 2.511 - e-0.10t2 , where t 
is the time (in s). Evaluate i for 
t = 5.0 ms.

 36. A projection of the annual 
growth rate p (in ,) of the 
number of users of the Internet 
is p = 8.511.2- t + 12 , where t is the number of years after 
2005. Display the graph of this function on a graphing calculator 
from 2005 to 2015.

 37. The flash unit on a camera operates by releasing the stored charge 
on a capacitor. For a particular unit, the charge q (in mC) as a 
function of the time t (in s) is q = 100e-10t. Display the graph on 
a graphing calculator.

 38. The height y (in m) of the Gateway Arch in St. Louis (see Fig. 13.5) 
is given by y = 230.9 - 19.51ex>38.9 + e-x>38.92 , where x is 
the distance (in m) from the point on the ground level directly 
below the top. Display the graph on a graphing calculator.

Answers to Practice Exercises

1. 64  2. 1>4

Fig. 13.4 
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For many uses in mathematics and for many applications, it is necessary to express the 
exponent x in the exponential function y = bx in terms of y and the base b. This is done 
by defining a logarithm. Therefore, if y = bx, the exponent x is the logarithm of the 
number y to the base b. We write this as

 13.2 Logarithmic Functions

 
 

 

If y = bx, then x = logb y. (13.2)

This means that x is the power to which the base b must be raised in order to equal the 
number y. That is, x is a logarithm, and a logarithm is an exponent. As with the expo-
nential function, for the equation x = logb y, x may be any real number, b is a positive 
number other than 1, and y is a positive real number. In Eq. (13.2),

y = bx is the exponential form, and x = logb y is the logarithmic form.

See Fig. 13.6.Fig. 13.6 

x ! logb y y ! bx

A logarithm
is

an exponent

Base
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 EXAMPLE  1  Exponential form and logarithmic form

The equation y = 2x is written as x = log2 y when written in logarithmic form. When 
we choose values of y to find corresponding values of x from this equation, we ask 
ourselves “2 raised to what power x gives y?”

This means that if y = 8, we ask “what power of 2 gives us 8?” Then knowing that 
23 = 8, we know that x = 3. Therefore, 3 = log2 8. ■

 EXAMPLE  2  

(a) 32 = 9 in logarithmic form is 2 = log3 9.

(b) 4-1 = 1>4 in logarithmic form is -1 = log411>42 . ■

 EXAMPLE  3  

(a) 16421>3 = 4 in logarithmic form is 13 = log64 4.

(b) 13223>5 = 8 in logarithmic form is 35 = log32 8.

(c) log2 32 = 5 in exponential form is 32 = 25.

(d) log6 1 1
362 = -2 in exponential form is 1

36 = 6-2. ■

 EXAMPLE  4  Solving for unknowns by changing form

(a) Find b, given that -4 = logb 1 1
812 .

   Writing this in exponential form, we have 1
81 = b-4. Thus, 1

81 = 1
b4 or 1

34 = 1
b4.  

Therefore, b = 3.

(b) Given log4 y = l>2, in exponential form it becomes y = 41>2, or y = 2. ■

We see that the exponential form is very useful for determining values written in 
logarithmic form. For this reason, it is important that you learn to transform readily 
from one form to the other.

 EXAMPLE  5  Solving for unknowns—application

The power supply P (in W) of a certain satellite is given by P = 75e-0.005t, where t is 
the time (in days) after launch. By writing this equation in logarithmic form, solve 
for t.

In order to have the equation in the exponential form of Eq. (13.1), we must have 
only e-0.005t on the right. Therefore, by dividing by 75, we have

P
75

= e-0.005t

Writing this in logarithmic form, we have loge(P>75) = -0.005t, or

t =
logea P

75
b

-0.005
= -200 loge a P

75
b   1

-0.005
= -200

We recall from Section 12.5 that e is the special irrational number equal to 
about 2.718. It is important as a base of logarithms, and this will be discussed in 
Section 13.5. ■

When we are working with functions, we must keep in mind that a function is 
defined by the operation being performed on the independent variable, and not by the 
letter chosen to represent it. However, for consistency, it is standard practice to let y 

Remember, the exponent may be 
negative. The base must be positive.

LEARNING T IP

1.  Change 1252>3 = 25 to logarithmic 
form.

2.  Change log3 11>32 = -1 to exponential 
form.

In order to change a function of the 
form y = abx into logarithmic form, 
we must first write it as y>a = bx. The 
coefficient of b x must be equal to 1, 
which is the form of Eq. (13.1). In the 
same way, the coefficient of logb y 
must be 1 in order to change it into 
exponential form.

LEARNING T IP

The Logarithmic Function
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As with the exponential function, b 7 0 and b ≠ 1.

 EXAMPLE  6  Evaluating a logarithmic function

For the logarithmic function y = log2 x, we have the standard independent variable x 
and the standard dependent variable y.

If x = 16, y = log2 16, which means that y = 4, since 24 = 16.
If x = 1

16, y = log2 1 1
162 , which means that y = -4, since 2-4 = 1

16. ■

GRAPHING LOGARITHMIC FUNCTIONS
We now show some representative graphs for the logarithmic function. From these 
graphs, we can see the basic properties of the logarithmic function.

 EXAMPLE  7  Graphing a logarithmic function

Plot the graph of y = log2 x.
We can find the points for this graph more easily if we first put the equation in expo-

nential form: x = 2y. By assuming values for y, we can find the corresponding values 
for x.

y = logb x (13.3)

represent the dependent variable and x represent the independent variable. Therefore, 
the logarithmic function is

Eqs. (13.2) and (13.3) do not repre-
sent different functions, due to the 
difference in location of the varia-
bles, since they represent the same 
operation on the independent vari-
able that appears in each. However, 
Eq. (13.3) expresses the function with 
the standard dependent and inde-
pendent variables.

LEARNING T IP

Practice Exercise

3.  For the function in Example 6, evaluate y 
for x = 8.

Using these values, we construct the graph seen in Fig. 13.7. ■

From the graph in Example 7, we can see that logarithmic functions have the fol-
lowing features. We consider only the features for b 7 1, for these are the bases of 
importance.

Fig. 13.7 
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Basic Features of Logarithmic Functions of the Form y = logb x 1b + 12
1. The domain is x 7 0; the range is all values of y.

2. The negative y-axis is an asymptote of the graph. 

3. If 0 6 x 6 1, logb x 6 0; if x = 1, logb x = 0; if x 7 1, logb x 7 0.

4. If x 7 1, logbx increases more slowly than x.

We just noted that if b 7 1 and x 7 1, logbx increases more slowly than x. It is also 
true that bx increases more rapidly than x. Actually, as x becomes larger, logb x 
increases very slowly, and bx increases very rapidly. Using log2 x and 2x and a calculator, 
we have the table of values shown to the left. This shows that we must choose values of x 
carefully when graphing these functions.

INVERSE FUNCTIONS
As we have seen, the exponential function y = bx and the logarithmic function y = logbx 
are closely related functions. In fact, the exponential and the logarithmic functions are 
inverses of each other. We first encountered inverse functions in Chapter 4, when we 
discussed inverse trigonometric functions. Recall that, in general, the inverse of a 

Table 1 

x 1  4 16 64

log2 x 0  2 4 6

2x 2 16 65 536 1.8 * 1019
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function undoes the process that the function performs. In this case, the exponential 
function operates on a base to raise it to a certain exponent and return a value, while the 
logarithmic function operates on a value and returns the exponent to which the base has 
to be raised to produce that number.

1. Solve for the independent variable as a function of the dependent variable.

2. Interchange the variables.

For a function, there is exactly one value of y in the range for each value of x in the 
domain. This must also hold for the inverse function. Thus, for a function to have an 
inverse, there must be only one x for each y. This is true for y = bx and y = logbx, as we 
have seen earlier in this section.

In the following example we use the procedure for finding an inverse to verify that 
an exponential function and a logarithmic function are inverses of each other. Other 
examples are found in the exercises.

 EXAMPLE  8  Inverse functions

The functions y = 2x and y = log2 x are inverse functions. We show this by solving 
y = 2x for x and then interchanging x and y.

Writing y = 2x in logarithmic form gives us x = log2 y. Then interchanging x and 
y, we have y = log2 x, which is the inverse function.

Making a table of values for each function, we have

Note that the x and y coordinates of 
inverse functions are interchanged. 
As a result, the graphs of inverse 
functions are mirror images of each 
other across the line y = x.

LEARNING T IP

Fig. 13.8 
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We see that the coordinates are interchanged. In Fig. 13.8, note that the graphs of 
these two functions reflect each other across the line y = x. ■

In Exercises 1–4, perform the indicated operations if the given 
changes are made in the indicated examples of this section.

 1. In Example 3(b), change the exponent to 4>5 and then make any 
other necessary changes.

 2. In Example 4(b), change the 1>2 to 5>2 and then make any other 
necessary changes.

 3. In Example 6, change the logarithm base to 4 and then make any 
other necessary changes.

 4. In Example 7, change the logarithm base to 4 and then plot the graph.

In Exercises 5–16, express the given equations in logarithmic form.

 5. 33 = 27 6. 52 = 25

 7. 44 = 256 8. 27 = 128

 9. 7-2 =
1
49

 10. 3-2 = 1
9

 11. 2-6 = 1
64 12. 11220 = 1

 13. 81>3 = 2 14. 18123>4 = 27

 15. 11
422 = 1

16 16. 11
22 -2 = 4

In Exercises 17–28, express the given equations in exponential form.

 17. log3 81 = 4 18. log11 121 = 2

 19. log9 9 = 1 20. log15 1 = 0

 21. log25 5 = 1
2 22. log8 16 = 4

3

 23. log243 3 = 0.2 24. log3211
82 = -0.6

 25. log10 0.1 = -1 26. log71 1
492 = -2

 27. log0.5 16 = -4 28. log1>3 3 = -1

In Exercises 29–44, determine the value of the unknown.

 29. log4 16 = x 30. log5 125 = x
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 31. log10 0.01 = x 32. log1611
42 = x

 33. log7 y = 3 34. log81N + 12 = 3

 35. log81A - 22 = -2
3 36. log7 y = -2

 37. logb 5 = 2 38. logb 625 = 4

 39. logb 4 = -1
3 40. logb 4 = 2

3

 41. log10 100.2 = x 42. log5 52.3 = R + 1

 43. log3 27-1 = x + 1 44. logb11
42 = -  0.5

In Exercises 45–50, plot the graphs of the given functions.

 45. y = log3 x 46. y = log4 x

 47. y = log0.5 x 48. y = 3 log2 x

 49. N = 0.2 log4 v 50. A = 2.4 log1012r2
In Exercises 51–54, display the graphs of the given functions on a 
graphing calculator.

 51. y = 3 loge x 52. y = 5 log10 ! x !
 53. y = - log101 -x2  54. y = - loge1 -2x2
In Exercises 55–72, perform the indicated operations.

 55. Evaluate log4 x for (a) x = 1>64 and (b) x = -1>2.

 56. Evaluate: (a) logb b (b) logb 1

 57. If f1x2 = log5 x, find: (a) f1152  (b) f102
 58. If f1x2 = logb x and f132 = 2, find f192 .

 59. On a graphing calculator, display the graphs of: (a) y1 = log10 x 
(b) y2 = log101x + 22 (c) y3 = log101x - 22 (See page 107.)

 60. On a graphing calculator, display the graphs of y1 = 2 log10 x 
and y2 = log10 x

2. Describe any similarities or differences.

 61. Using a graphing calculator, solve the equation log10 x = x - 2.

 62. Use a graphing calculator to display the graphs (on the same 
screen) of y = loge1x2 + c2 , with c = -4, 0, 4. Describe the 
results.

 63. The magnitudes (visual brightness), m1 and m2, of two stars are 
related to their (actual) brightnesses, b1 and b2, by the equation 
m1 - m2 = 2.5 log101b2>b12 . Solve for b2.

 64. The velocity v of a rocket when its fuel is completely burned is 
given by v = u loge1w0>w2 , where u is the exhaust velocity, w0 
is the liftoff weight, and w is the burnout weight. Solve for w.

 65. An equation relating the number N of atoms of radium at any 
time t in terms of the number N0 of atoms at t = 0 is 
loge1N>N02 = -kt, where k is a constant. Solve for N.

 66. The capacitance C of a cylindrical capacitor is given by 
C = k>loge1R2>R12 , where R1 and R2 are the inner and outer 
radii. Solve for R1.

 67. The work W done by a sample of nitrogen gas during an isother-
mal (constant temperature) change from volume V1 to volume V2 
is given by W = k loge1V2>V12 . Solve for V1.

 68. An equation used in measuring the flow of water in a channel is 
C = -a log101b>R2 . Solve for R.

 69. The time t (in ps) required for N calculations by a certain com-
puter design is t = N + log2 N. Sketch the graph of this 
function.

 70. When a tractor-trailer turns a right angle corner, its rear wheels 
follow a curve called a tractrix, the equation for which is 

  y = logea1 + 21 - x2

x
b - 21 - x2. Display the curve on a 

  graphing calculator.

 71. Graph the functions y = 11>32x and y = 3-x and then compare 
them. Explain what your comparison shows.

 72. In Exercise 47, the graph of y = log0.5 x is plotted. By inspecting 
the graph and noting the properties of log0.5 x, describe some of 
the differences between logarithms to a base less than 1 and those 
to a base greater than 1.

In Exercises 73–76, show that the given functions are inverse 
functions of each other. Then display the graphs of each function and 
the line y = x on a graphing calculator and verify that each is the 
mirror image of the other across y = x.

 73. y = 10x>2 and y = 2 log10 x

 74. y = ex and y = loge x

 75. y = 3x and y = x>3

 76. y = 2x + 4 and y = 0.5x - 2

Answers to Practice Exercises

1. 2>3 = log125  25  2. 1>3 = 3-1  3. 3

Since a logarithm is an exponent, it must follow the laws of exponents. The laws used 
in this section to derive the very useful properties of logarithms are listed here for 
reference.

 13.3 Properties of Logarithms

b

  bubv = bu+v (13.4)

  
bu

bv = bu-v (13.5)

  1bu2n = bnu  (13.6)■ A logarithm is an exponent. However, a 
historical curiosity is that logarithms were 
developed before exponents were used.
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The next example shows the reasoning used in deriving the properties of logarithms.

 EXAMPLE  1  

We know that 8 * 16 = 128. Writing these numbers as powers of 2, we have

8 = 23  16 = 24  128 = 27 = 23+4

The logarithmic forms can be written as

3 = log2 8  4 = log2 16  3 + 4 = log2 128

This means that

log2 8 + log2 16 = log2 128

where

8 * 16 = 128

The sum of the logarithms of 8 and 16 equals the logarithm of 128, where the product 
of 8 and 16 equals 128. ■

Following Example 1, if we let u = logb x and v = logb y and write these equations 
in exponential form, we have x = bu and y = bv. Therefore, forming the product of x 
and y, we obtain

xy = bubv = bu+v or xy = bu+v

Writing this last equation in logarithmic form yields

u + v = logb xy

or

■ For reference, Eqs. (13.4) to (13.6) are
 bubv = bu + v

bu

bv = bu - v1bu2n = bnu

Logarithm of a Product logb xy = logb x + logb y (13.7)

logbax
y
b = logb x - logb y (13.8)

Eq. (13.7) states the property that the logarithm of the product of two numbers is equal 
to the sum of the logarithms of the numbers.

The logarithm of a product is the sum of the logarithms. However, this property does 
not give us a way to rewrite the logarithm of a sum. For instance,

 log 2(3x) can be rewritten as log 2(3x) = log 23 +  log 2x, but
 log 2(3 + x) cannot be rewritten in terms of  log 23 and log2x.

COMMON ERROR

Using the same definitions of u and v to form the quotient of x and y, we then have

x
y

=
bu

bv = bu-v or 
x
y

= bu-v

Writing this last equation in logarithmic form, we have

u - v = logbax
y
b

or

Logarithm of a Quotient
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Eq. (13.8) states the property that the logarithm of the quotient of two numbers is equal 
to the logarithm of the numerator minus the logarithm of the denominator.

The logarithm of a quotient is the difference of the logarithms. However, this property 
does not give us a way to rewrite the logarithm of a difference. For instance,

log315
x 2  can be rewritten as log315

x 2 = log35 - log3x, but
log3(5 - x) cannot be rewritten in terms of log35  and log3x.

COMMON ERROR

If we again let u = logb x and write this in exponential form, we have x = bu. To 
find the nth power of x, we write

xn = 1bu2n = bnu

Expressing this equation in logarithmic form yields

nu = logb1xn2
or

logb1xn2 = n logb x (13.9)

Eq. (13.9) states that the logarithm of the nth power of a number is equal to n times the 
logarithm of the number. The exponent n may be any real number, which, of course, 
includes all rational and irrational numbers.

 EXAMPLE  2  Using the properties of logarithms

(a) Using Eq. (13.7), we may express log4 15 as a sum of logarithms:

log4 15 = log413 * 52 = log4 3 + log4 5

(b) Using Eq. (13.8), we may express log415
32  as the difference of logarithms:

log4a5
3
b = log4 5 - log4 3

(c) Using Eq. (13.9), we may express log41 t22  as twice log4 t:

log41 t22 = 2 log4 t

(d) Using Eq. (13.8) and then Eq. (13.7), we have

  log4axy
z
b = log41xy2 - log4 z

 = log4 x + log4 y - log4 z ■

 EXAMPLE  3  Sum of logarithms as a single quantity

We may also express a sum or difference of logarithms as the logarithm of a single 
quantity.

(a) log4 3 + log4 x = log413 * x2 = log4 3x  using Eq. (13.7)

(b) log4 3 - log4 x = log4a3
x
b   using Eq. (13.8)

(c) log4 3 + 2 log4 x = log4 3 + log41x22 = log4 3x2  using Eqs. (13.7) and (13.9)

(d) log4 3 + 2 log4 x - log4 y = log4a3x2

y
b   using Eqs. (13.7), (13.8), and (13.9) ■

logarithm of product 
is sum of logarithms

logarithm of quotient is 
difference of logarithms

logarithm of power is 
multiple of logarithm

Logarithm of a Power

■ In advanced mathematics, the logarithms of 
negative and imaginary numbers are defined.

In Section 13.2, we showed that the 
base b of logarithms must be a posi-
tive number. Since x = bu and y = bv, 
this means that x and y  are also posi-
tive numbers. Therefore, the proper-
ties of logarithms that have just been 
derived are valid only for positive  
values of x and y.

LEARNING T IP

Practice Exercises

Express as a sum or difference of logarithms.
1. log3 10 2. log3 (2a/5)
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In Section 13.2, we noted that logb 1 = 0. Also, since b = b1 in logarithmic form is 
logb b = 1, we have logb1bn2 = n logb b = n112 = n.

Summarizing these properties, we have

 3. Find the exact value of 2 log2 8.

logb 1 = 0  logb b = 1 (13.10)

logb1bn2 = n (13.11)

These equations may be used to find exact values of certain logarithms.

 EXAMPLE  4  Exact values for certain logarithms

(a) We may evaluate log3 9 using Eq. (13.11):

log3 9 = log31322 = 2

  We can establish the exact value since the base of the logarithm and the number 
being raised to the power are the same. Of course, this could have been evaluated 
directly from the definition of a logarithm.

(b) Using Eq. (13.11), we can write log3130.42 = 0.4. Although we did not evaluate 
30.4, we can evaluate log3130.42 . ■

 EXAMPLE  5  

(a) log2 6 = log212 * 32 = log2 2 + log2 3 = 1 + log2 3

(b) log5 15 = log5 1 - log5 5 = 0 - 1 = -1

(c) log717 = log7171>22 =  12
 log7 7 = 1

2 ■

 EXAMPLE  6  Evaluation of logarithms in two ways

The following illustration shows the evaluation of a logarithm in two different ways. 
Either method is appropriate.

(a) log51 1
252 = log5 1 - log5 25 = 0 - log51522 = -2

(b) log51 1
252 = log515-22 = -2 ■

 EXAMPLE  7  Solving an equation with logarithms

Use the basic properties of logarithms to solve the following equation for y in terms of 
x: logb y = 2 logb x + logb a.

Using Eq. (13.9) and then Eq. (13.7), we have

logb y = logb1x22 + logb a = logb1ax22
Since we have the logarithm to the base b of different expressions on each side of the 
resulting equation, the expressions must be equal. Therefore,

y = ax2 ■

 EXAMPLE  8  Solving an equation with logarithms—application

An equation for the current i and the time t in an electric circuit containing a resistance 
R and a capacitance C is loge i - loge I = - t>RC (where R and C are both factors in 
the denominator). Here, I is the current for t = 0. Solve for i as a function of t.



 13.3 Properties of Logarithms 381

Using Eq. (13.8), we rewrite the left side of this equation, obtaining

logea i
I
b = - t

RC

Rewriting this in exponential form, we have

i
I

= e- t>RC or i = Ie- t>RC ■

In Exercises 1–8, perform the indicated operations on the resulting 
expressions if the given changes are made in original expressions of 
the indicated examples of this section.

 1. In Example 2(a), change the 15 to 21.

 2. In Example 2(d), change the x to 2 and the z to 3.

 3. In Example 3(b), change the 3 to 5.

 4. In Example 3(c), change the 2 to 3.

 5. In Example 4(a), change the 9 to 27.

 6. In Example 5(a), change the 6 to 10.

 7. In Example 5(c), change the 7’s to 5’s.

 8. In Example 7, change the 2 to 3.

In Exercises 9–20, express each as a sum, difference, or multiple of 
logarithms. See Example 2.

 9. log533 10. log3 14

11. log7 15
32  12. log31 2

112
 13. log21a32  14. 2 log81n52
 15. log6 abc 16. log2axy

z2 b
 17. 8 log524 y 18. log4 27 x

 19. log2a1x

a2 b  20. log3a23 y

7
b

In Exercises 21–28, express each as the logarithm of a single quantity. 
See Example 3.

 21. logb a + logb c 22. log2 3 + log2 x

 23. log5 9 - log5 3 24. - log8 R + log8 V

 25. - logb 1x + logb x2 26. log4 33 + log4 9

 27. 2 loge 2 + 3 loge p 28. 1
2 logb a - 2 logb 5

In Exercises 29–36, determine the exact value of each of the given 
logarithms.

 29. log21 1
322  30. log31 1

812
 31. log2122.52  32. log5150.12
 33. 6 log7 17 34. p log623 6

 35. log3 24 27 36. log5 23 25

In Exercises 37–44, express each as a sum, difference, or multiple of 
logarithms. In each case, part of the logarithm may be determined exactly.

 37. log3 18 38. log5 75

 39. log211
62  40. log1010.052

 41. log3 16 42. log2 23 24

 43. log10 3000 44. log1014022
In Exercises 45–56, solve for y in terms of x.

 45. logb y = logb 2 + logb x 46. logb y = logb 6 - logb x

 47. log4 y = log4 x - log4 5 + log4 3

 48. log3 y = -2 log31x + 12 + log3 7

 49. log10 y = 2 log10 7 - 3 log10 x

 50. logb y = 3 logb 1x + 2 logb 10

 51. 5 log2 y - log2 x = 3 log2 4 + log2 a

 52. 4 log2 x - 3 log2 y = log2 27

 53. log2 x + log2 y = 1 54. p log4 x + log4 y = 1

 55. 
2 log5 x

log5 3
- log5 y = 2 56. log8 x = 2 log8 y + 4

In Exercises 57–68, solve the given problems.

 57. Explain why log101x + 32  is not equal to log10 x + log10 3.

 58. Evaluate 2 log212x2 - log2 x2. For what values of x is the value 
of this expression valid? Explain.

 59. Display the graphs of y = loge1e2x2  and y = 2 + loge x on a 
graphing calculator and explain why they are the same.

 60. If x = logb 2 and y = logb 3, express logb 12 in terms of x and y.

 61. If logb x = 2 and logb y = 3, find logb2x2y4.

 62. Is it true that logb 1ab2x = x logb a + x?

 63. On the same screen of a graphing calculator, display the graphs of 

  y1 = log10 x - log101x2 + 12  and  y2 = log
10  

x

x2 + 1
. What con- 

  clusion can be drawn from the display?

 64. The use of the insecticide DDT was banned in Canada in 1970. A 
computer analysis shows that an expression relating the amount A 
still present in an area, the original amount A0, and the time t (in 
years) since 1970 is log10 A = log10 A0 + 0.1t log10 0.8. Solve 
for A as a function of t.
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In Section 13.2, we stated that a base of logarithms must be a positive number, not 
equal to 1. In the examples and exercises of the previous sections, we used a number 
of different bases. There are, however, only two bases that are generally used. They 
are 10 and e, where e is the irrational number approximately equal to 2.718 that we 
introduced in Section 12.5 and have used in the previous sections of this chapter. 
We discuss logarithms to the base 10 in this section and those to the base e in the 
next section.

Logarithms to the base 10 are called common logarithms. They may be found 
directly by use of a calculator, and the log key is used for this purpose. 

 EXAMPLE  1  Base 10 logarithms

Using a calculator to find log 426, we find that

log 426 = 2.629

when the result is rounded off. Because 426 has 3 significant digits, we have retained 3 
digits in the decimal part of the logarithm.

Since 102 = 100 and 103 = 1000, and in this case

102.629 = 426

we see that the 2.629 power of 10 gives a number between 100 and 1000. ■

 EXAMPLE  2  

Finding log 0.036 54, we see that

log 0.036 54 = -1.4372

We note that the logarithm here is negative. Raising 10 to a negative power gives us a 
number between 0 and 1, and here we have

10-1.4372 = 0.036 54 ■

We may also use a calculator to find a number N if we know log N. In this case, we 
refer to N as the antilogarithm of log N. On the calculator, we use the  10x  key. We 
note that it shows the basic definition of a logarithm. (On many scientific calculators, 
the key sequence inv log is used. Note that this sequence makes it clear that the expo-
nential and logarithmic functions are inverse functions.)

no base shown means base is 10

 13.4 Logarithms to the Base 10
 

1. When no base is shown, the loga-
rithm is assumed to be to the base 10.

2. The decimal part of a logarithm is 
expressed with the same number 
of significant digits as there are in 
the number whose logarithm is 
being found.

LEARNING T IP

 65. A study of urban density shows that the population density D (in 
persons>km2) is related to the distance r (in km) from the city 
centre by loge D = loge a - br + cr2, where a, b, and c are 
positive constants. Solve for D as a function of r.

 66. When a person ingests a medication capsule, it is found that the 
rate R (in mg>min) at which it enters the bloodstream at time t (in 
min) is given by log10 R - log10 5 = t log10 0.95. Solve for R as 
a function of t.

 67. A container of water is heated to 90°C and then placed in a room 
at 0°C. The temperature T  of the water is related to the time t (in 
min) by loge T = loge 90.0 - 0.23 t. Find T  as a function of t.

 68. In analysing the power gain in an electric circuit, the equation 
N = 1012 log10 I1 - 2 log10 I2 + log10 R1 - log10 R22  is used. 
Express this with a single logarithm on the right side.

1. log3 2 + log3 5 2. log3 2 + log3 a - log3 5 3. 6
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 EXAMPLE  3  Antilogarithm—inverse logarithm

Given  log N = 1.1854, find N.
Since 1 6  log N 6 2, we know that N must be a number between 

101 = 10 and 102 = 100. We find the exact number as an antilogarithm. We have

N = 101.1854 = 15.32

where the result has been rounded off to 4 significant digits because the decimal part of 
the logarithm had 4 significant digits. ■

The following example illustrates an application in which a measurement requires 
the direct use of the value of a logarithm.

 EXAMPLE  4  Application—decibels

The power gain G (in decibels (dB)) of an electronic device is given by 
G = 10 log1P0>Pi2 , where P0 is the output power (in W) and Pi is the input power. 
Determine the power gain for an amplifier for which P0 = 15.8 W and Pi = 0.625 W.

Substituting the given values, we have

G = 10 log 
15.8
0.625

= 14.0 dB ■

As noted in the chapter introduction, logarithms were developed for calculational 
purposes. They were first used in the seventeenth century for making tedious and com-
plicated calculations that arose in astronomy and navigation. These complicated calcu-
lations were greatly simplified, since logarithms allowed them to be performed by 
means of basic additions, subtractions, multiplications, and divisions. Performing cal-
culations in this way provides an opportunity to understand better the meaning and 
properties of logarithms. Also, certain calculations cannot be done directly on a calcu-
lator but can be done by logarithms.

 EXAMPLE  5  Calculation using logarithms

A certain computer design has 64 different sequences of ten binary digits so that the 
total number of possible states is 1210264 = 102464. Evaluate 102464 using loga-
rithms. (It is very possible that your calculator cannot do this calculation directly.)

Since log xn = n log x, we know that log 102464 = 64 log 1024. Although most 
calculators will not directly evaluate 102464, we can use one to find the value of 64 log 
1024. Since 102464 is exact, we will show ten calculator digits until we round off the 
result to 3 significant digits. We therefore evaluate 102464 as follows:

Let N = 102464.

log N = log 102464 = 64 log 1024 using Eq. (13.9): logb xn = n logb x 

 = 192.659 197 2

 N = 10192.659 197 2  meaning of logarithm

 = 10192 * 100.659 197 2  using Eq. (13.4): bubv = bu+v

 = 1101922 * 14.562       antilogarithm of 0.6591972 is 4.56 
 (rounded off)

 = 4.56 * 10192

By using Eq. (13.4), 100.659 197 2 represents a number between 1 and 10 1100 = 1 and 
101 = 10), and we can write the result immediately in scientific notation.

Note that although we have used a calculator to find a logarithm and an antiloga-
rithm (in the past, this would have been done by consulting a table of logarithms), the 
only actual calculation we have done is a multiplication by 64. The use of logarithms 
has allowed us to change the calculation of a power into the simpler process of multi-
plication. ■

■ The unit of sound intensity level (used for 
power gain), the bel (B), is named for the 
inventor Alexander Graham Bell (1847–1922). 
The decibel is the commonly used unit.

Practice Exercises

Evaluate x using a calculator.
1. x = log 0.5392 2. log x = 2.2901
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Example 5 shows that calculations using logarithms are based on Eqs. (13.7), (13.8), 
and (13.9). Multiplication is performed by addition of logarithms, division is per-
formed by the subtraction of logarithms, and a power is found by a multiple of a loga-
rithm. A root of a number is found by using the fractional exponent form of the power.

EXERCISES 13.4

In Exercises 1 and 2, find the indicated values if the given changes are 
made in the indicated examples of this section.

 1. In Example 2, change 0.036 54 to 0.3654 and then find the 
required value.

 2. In Example 3, change 1.1854 to 2.1854 and then find the required 
value.

In Exercises 3–10, find the common logarithm of each of the given 
numbers by using a calculator.

 3. 567 4. 0.0640

 5. 9.24 * 106 6. 3.193

 7. 1.174-4 8. 8.043 * 10-8

 9. 1274 10. log2 16

In Exercises 11–18, find the antilogarithm of each of the given 
logarithms by using a calculator.

 11. 4.437 12. 0.929 13. -1.3045 14. -6.9788

 15. 3.301 12 16. 8.824 36 17. -2.237 46 18. -10.336

In Exercises 19–22, use logarithms to evaluate the given expressions. 
All exponents are exact.

 19. 15.982114.32 20. 
895

73.486

 21. 1210 7.32212470230 22. 
126 00020

2.632.5

In Exercises 23–26, use a calculator to verify the given values.

 23. log 14 + log 0.5 = log 7 24. log 500 - log 20 = log 25

 25. log 81 = 4 log 3 26. log 6 = 0.5 log 36

In Exercises 27–31, find the logarithms of the given numbers.

 27. The signal used by some cell phones has a frequency of 
9.00 * 108 Hz.

 28. A large sunspot may be 3.5 * 104 km in diameter.

 29. About 1.3 * 10- 14 , of carbon atoms are carbon-14, the radio-
active isotope used in determining the age of samples from 
ancient sites.

 30. In an air sample taken in an urban area, 5>106 of the air was car-
bon monoxide.

 31. The mass of an electron is 9.11 * 10-31 kg.

In Exercises 32–35, find the indicated values.

 32. Find T  (in K) if log T = 8, where T  is the temperature sufficient 
for nuclear fission.

 33. Find v (in m>s) if log v = 7.423, where v is the speed of an elec-
tron in a TV picture tube.

 34. Find h if log h = -0.35, where h is the efficiency of a certain 
gasoline engine.

 35. Find E (in J) if log E = -18.49, where E is the energy of a pho-
ton of visible light.

In Exercises 36–42, solve the given problems by evaluating the 
appropriate logarithms or antilogarithms.

 36. Simplify: 
logb x

2

log 100
 .

 37. Evaluate: log1log 101002.  (See Exercise 52 on page 29.)

 38. Evaluate: 2110log 0.12 + 3110log 0.012.

 39. A stereo amplifier has an input power of 0.750 W and an output 
power of 25.0 W. What is the power gain? (See Example 4.)

 40. The percent transmittance (%T) of a substance is related to its 
absorbance (A) by A = - log1,T>1002 . Find %T if A = 0.27.

 41. Measured on the Richter scale, the magnitude of an earthquake of 
intensity I  is defined as R = log1I>I02, where I0 is a minimum 
level for comparison. What is the Richter scale reading for the 
2007 Peruvian earthquake for which I = 79 000 000I0?

 42. The moment magnitude scale MW was devised as a successor to 
the Richter scale to measure the size of very large earthquakes 
adequately. In terms of the seismic moment of the earthquake M0 
(in N·m), it is given by MW = 1log M0 + 72>1.5 -  10.7. What 
is the moment magnitude scale reading for the 2010 Haiti earth-
quake for which M0 = 3.54 * 1019 N·m?

In Exercises 43 and 44, use logarithms to perform the indicated 
calculations.

 43. A certain type of optical switch in a fibre-optic system allows a 
light signal to continue in either of two fibres. How many possi-
ble paths could a light signal follow if it passes through 400 such 
switches? Express your answer in scientific notation.

 44. The peak current Im (in A) in an alternating-current circuit is 

  given by Im = A 2P
Z cos u

 , where P is the power developed, Z  is 

  the magnitude of the impedance, and u is the phase angle between 
the current and voltage. Evaluate Im for P = 5.25 W, Z = 320 Ω, 
and u = 35.4°.

Answers to Practice Exercises

1. -0.2683 2. 195.0
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As we have noted, another number important as a base of logarithms is the number e. 
Logarithms to the base e are called natural logarithms. Since e is an irrational num-
ber equal to about 2.718, it may appear to be a very unnatural choice as a base of loga-
rithms. However, in calculus, the reason for its choice and the fact that it is a very 
natural number for a base of logarithms are shown.

Just as log x refers to logarithms to the base 10, the notation ln x is used to denote 
logarithms to the base e. We briefly noted this in Section 13.2 in discussing the graph-
ing calculator. Due to the extensive use of natural logarithms, the notation ln x is more 
convenient than loge x, although they mean the same thing.

Since more than one base is important, at times it is useful to change a logarithm 
from one base to another. If u = logb x, then bu = x. Taking logarithms of both sides 
of this last expression to the base a, we have

 loga bu = loga x

 u loga b = loga x

 u =
loga x
loga b

However, u = logb x, which means that

 13.5 Natural Logarithms
x

logb x =
loga x
loga b

 (13.12)

Eq. (13.12) allows us to change a logarithm in one base to a logarithm in another 
base. The following examples illustrate the method of performing this operation.

 EXAMPLE  1  

Find ln 20 using only logarithms to the base 10.
Using Eq. (13.12) with a = 10, b = e, and x = 20, we have

 loge 20 =
log10 20
log10 e

or   ln 20 =
log 20
log e

= 2.996

This means that e2.996 = 20. ■

 1. Find log3 23.

A common error is to confuse Eq. (13.12), which uses a quotient of logarithms to change 
the base, with Eq. (13.8), which expresses the logarithm of a quotient as the difference of 
logarithms. Make sure that you understand the difference between these expressions:

 log 3x =
 log x
 log 3

 evaluates a logarithm to the base 3 using logarithms to the base 10

 log 1 x
3 2 =  log x -  log 3 expresses the logarithm of a quotient as the difference of 

logarithms

COMMON ERROR

 EXAMPLE  2  

Find log5 560.
In Eq. (13.12), if we let a = 10, b = 5, and x = 560, we have

log5 560 =
log 560
log 5

= 3.932
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From the definition of a logarithm, this means that

53.932 = 560 ■

Since natural logarithms are used extensively, it is often convenient to have Eq. (13.12) 
written specifically for use with logarithms to the base 10 and natural logarithms. First, 
using a = 10 and b = e, we have

  ln x =
log x
log e

 (13.13)

Then with a = e and b = 10, we have

 log x =
 ln x

 ln 10
 (13.14)

Note that we really found ln 20 in Example 1 by using Eq. (13.13).
Values of natural logarithms can be found directly on a calculator. The  ln  key is 

used for this purpose. In order to find the antilogarithm of a natural logarithm, we use 
the  ex  key. The following example illustrates finding a natural logarithm and an anti-
logarithm on a graphing calculator.

 EXAMPLE  3  Evaluating natural logarithms

(a) We evaluate ln 236.5 directly on the calculator. We find that

ln 236.5 = 5.4659

  which means that e5.4659 = 236.5.

(b) Given that ln N = -0.8729, we determine N by finding e-0.8729 on the calculator. 
This gives us

N = 0.4177 ■

Using Eq. (13.12), we can display the graph of a logarithmic function with any base 
on a graphing calculator, as we show in the next example.

 EXAMPLE  4  

Graph the function y = 3 log 2x.
The function y =  log 2x cannot be entered directly into a graphing calculator, so we 

must use the fact that

log2 x =
log x
log 2

 or log x =
ln x
ln 2

Therefore, we graph the function

y =
3 log x
log 2

  aor y =
3 ln x
ln 2

b
The curve is shown in Fig. 13.9. ■

Applications of natural logarithms are found in many fields of technology. One such 
application is shown in the next example, and others are found in the exercises.2. Use a calculator to evaluate ln 57.2.

Fig. 13.9 
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 EXAMPLE  5  Natural log—application

The electric current i in a circuit containing a resistance and an inductance (see Fig. 13.10) 
is given by ln1 i>I2 = -Rt>L, where I is the current at t = 0, R is the resistance, t is the 
time, and L is the inductance. Calculate how long (in s) it takes i to reach 0.430 A, if 
I = 0.750 A, R = 7.50 Ω, and L = 1.25 H.

Solving for t and then evaluating, we have

 t = -
L ln1 i>I2

R
= -

L1 ln i - ln I2
R

  either form can be used

 = -
1.251 ln 0.430 - ln 0.7502

7.50
= 0.0927 s   evaluating

Therefore, the current changes from 0.750 A to 0.430 A in 0.0927 s. ■

Fig. 13.10 

i

R

E L

EXERCISES 13.5

In Exercises 1 and 2, find the indicated values if the given changes are 
made in the indicated examples of this section.

 1. In Example 1, change 20 to 200 and then evaluate.

 2. In Example 2, change the base to 4 and then evaluate.

In Exercises 3–8, use logarithms to the base 10 to find the natural 
logarithms of the given numbers.

 3. 26.0 4. 631 5. 1.562

 6. 0.5017 7. 0.007 326 7 8. 0.000 443 48

In Exercises 9–14, use logarithms to the base 10 to find the indicated 
logarithms.

 9. log7 42 10. log2 86 11. logp 245

 12. log12 122 13. log40 750 14. log100 3720

In Exercises 15–22, find the natural logarithms of the given numbers.

 15. 51.4 16. 293 17. 1.394

 18. 6552 19. 0.9917 20. 0.002 086

 21. 10.012 93724 22. 10.000 060 808

In Exercises 23–26, use Eq. (13.14) to find the common logarithms of 
the given numbers.

 23. 45.17 24. 8765

 25. 0.685 28 26. 0.001 429 8

In Exercises 27–34, find the natural antilogarithms of the given 
logarithms.

 27. 2.190 28. 5.420 29. 0.008 421 0

 30. 0.632 31. -0.7429 32. -2.942 18

 33. -23.504 34. -0.008 04

In Exercises 35–38, use a graphing calculator to display the indicated 
graphs.

 35. The graph of y = log5 x 36. The graph of y = 2 log8 x

 37. Verify that y = 2x and y = log2 x are inverse functions by dis-
playing the graphs of each function and the line y = x on a graph-
ing calculator. (See Example 8 of Section 13.2.)

 38. Explain what is meant by the expression ln (ln x). Display the 
graph of y = ln 1 ln x2  on a calculator.

In Exercises 39–42, use a calculator to verify the given values.

 39. ln 5 + ln 8 = ln 40 40. 2 ln 6 - ln 3 = ln 12

 41. 4 ln 3 = ln 81 42. ln 5 - 0.5 ln 25 = ln 1

In Exercises 43–56, solve the given problems.

 43. Evaluate: 2ln e9.

 44. Solve for y in terms of x: ln y + 2 ln x = 1 + ln 5.

 45. Solve for x: ln1log x2 = 0.

 46. If ln x = 3 and ln y = 4, find 2x2y.

 47. If x = ln 4 and y = ln 5, express ln 80 in terms of x and y.

 48. On a graphing calculator, compare the graphs of y1 = ln1x2 + 12 
and y2 = ln1x2 + 12- 1.

 49. Find f  (in Hz) if ln f = 21.619, where f  is the frequency of the 
microwaves in a microwave oven.

 50. Find k (in 1>Pa) if ln k = -21.504, where k is the compressibil-
ity of water.

 51. If interest is compounded continuously (daily compounded inter-
est closely approximates this), with an interest rate i, a bank 
account will double in t years according to i = 1ln 22>t. Find i if 
the account is to double in 8.5 years. (2 is exact.)

 52. One approximate formula for world population growth is 
T = 50.0 ln 2, where T  is the number of years for the population 
to double. According to this formula, how long does it take for 
the population to double? (2 is exact.)

 53. For the electric circuit of Example 5, find how long it takes  
the current to reach 10% of the initial value of 0.750 A.

 54. The velocity v (in m>s) of a rocket increases as fuel is consumed 
and ejected. Considering fuel as part of the mass m of a rocket in 
flight and m0 as its original mass, the velocity is given by 
v = 25001ln m0 - ln m2. If 0.75 of the original mass is fuel, find 
v when all the fuel is used.
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 55. The distance x travelled by a motorboat t seconds after the engine 
is cut off is given by x = k - 1 ln1kv0 t + 12, where v0 is the 
velocity of the boat at the time the engine is cut and k is a con-
stant. Find how long it takes a boat to go 150 m if v0 = 12.0 m>s 
and k = 6.80 * 10- 3>m.

 56. The electric current i (in A) in a circuit that has a 1-H inductor, a 
10@Ω  resistor, and a 6-V battery, and the time t (in s) are related 
by the equation 10t = - ln11 - i>0.62. Solve for i.

1. 2.854 2. 4.047

An equation in which the variable occurs in an exponent is called an exponential 
equation. Although some may be solved by changing to logarithmic form, they are 
generally solved by taking the logarithm of each side and then using the properties of 
logarithms.

 EXAMPLE  1  Two ways to solve an exponential equation

Solve the equation 2x = 8.
(a) We can solve the exponential equation 2x = 8 by writing it in logarithmic form. 

This gives

x = log2 8 = 3  23 = 8

  This method is good if we can directly evaluate the resulting logarithm.

(b) Since 2x and 8 are equal, the logarithms of 2x and 8 are also equal. Therefore, we 
can also solve 2x = 8 in a more general way by taking logarithms (to any proper 
base) of both sides and equating these logarithms. This gives us

 log 2x = log 8      or ln 2x = ln 8

 x log 2 = log 8     x ln 2 = ln 8    using Eq. (13.9)

 x =
log 8
log 2

= 3     x =
ln 8
ln 2

= 3  using a calculator ■

 EXAMPLE  2  Solving an exponential equation

Solve the equation 3x-2 = 5.
Taking logarithms of each side and equating them, we have

 log 3x-2 = log 5
 1x - 22 log 3 = log 5 using Eq. (13.9)

 x = 2 +
log 5
log 3

= 3.465

This solution means that

33.465-2 = 31.465 = 5

which can be checked by a calculator. ■

 13.6 Exponential and Logarithmic Equations

Equations

■ For reference, Eqs. (13.7), (13.8), and (13.9) are

logb xy = logb x + logb y

logbax
y
b = logb x - logb y

logb1xn2 = n logb x

1. Solve for x: 2x+1 = 7
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 EXAMPLE  3  Solving an exponential equation

Solve the equation 214x-12 = 17x.
By taking logarithms of each side, we have the following:

 log 2 + 1x - 12 log 4 = x log 17   using Eqs. (13.7) and (13.9)

 x log 4 - x log 17 = log 4 - log 2

 x1 log 4 - log 172 = log 4 - log 2

 x =
log 4 - log 2
log 4 - log 17

=
log14>22

log 4 - log 17
   using Eq. (13.8)

 =
log 2

log 4 - log 17
= -0.479  ■

 EXAMPLE  4  Exponential equation—application to atmospheric pressure

At constant temperature, the atmospheric pressure p (in Pa) at an altitude h (in m) is 
given by p = p0ekh, where p0 is the pressure where h = 0 (usually taken as sea level). 
Given that p0 = 101.3 kPa (atmospheric pressure at sea level) and p = 68.9 kPa for 
h = 3050 m, find the value of k.

Since the equation is defined in terms of e, we can solve it most easily by taking 
natural logarithms of each side. By doing this, we have the following solution:

 ln p = ln1p0ekh2 = ln p0 + ln ekh   using Eq. (13.7)

 = ln p0 + kh ln e = ln p0 + kh  using Eq. (13.9), ln e = 1

 ln p - ln p0 = kh

 k =
ln p - ln p0

h

Substituting the given values, we have

k =
 ln168.9 * 1032 - ln1101.3 * 1032

3050
= -0.000 126>m ■

Some of the important measurements in scientific and technical work are defined in 
terms of logarithms. Using these formulas can lead to solving a logarithmic equation, 
which is an equation with the logarithm of an expression involving the variable. In 
solving logarithmic equations, we use the basic properties of logarithms to help change 
them into a usable form. There is, however, no general algebraic method for solving 
such equations, and we consider only some special cases.

 EXAMPLE  5  

The human ear responds to sound over a broad range of sound intensities. Therefore, a 
logarithmic intensity scale is usually used, where the intensity of sound is compared to 
a reference value. In particular, the sound intensity level SL (measured in dB) is defined 

by the equation SL = 10 loga I
I0
b , where I is the intensity of the sound and I0 is the 

minimum detectable intensity.
A jackhammer has a sound level of 100 dB, and a busy street has a sound level of 70 dB. 

To find how many times greater the intensity Ij of the sound of a jackhammer is than the 
intensity Ic of the sound of the city street, we begin by substituting the given sound levels 
and their corresponding intensities separately into the above equation. This gives

70 = 10 loga Ic

I0
b and 100 = 10 loga Ij

I0
b

■ See the chapter introduction.
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To solve for Ic and Ij, we divide each side by 10 and then use exponential form:

 7.0 = loga Ic

I0
b and 10 = loga Ij

I0
b

  
Ic

I0
= 107.0 

Ij

I0
= 1010

  Ic = I01107.02  Ij = I0110102
Since we want the number of times Ij is greater than Ic, we divide Ij by Ic:

Ij

Ic
=

I0110102
I01107.02 =

1010

107.0 = 103.0 or Ij = 103.0Ic = 1000Ic

Thus, the sound of a jackhammer is 1000 times as intense as the sound of the city street. ■

 EXAMPLE  6  

Under a medium-growth projection scenario, an analysis of the population of Canada 
from 1981 to 2008 led to the equation log2 P = log2 33.7 + 0.378, where P is the pro-
jected population (in millions) in 2036. Determine this population.

We solve the logarithmic equation as follows:

 log2 P = log2 33.7 + 0.378
log21P>33.72 = 0.378    using Eq. (13.8)

 P>33.7 = 20.378    changing to exponential form

 P = 33.7120.3782
 P = 43.8 million    projected 2036 population ■

 EXAMPLE  7  Solving a logarithmic equation

Solve the logarithmic equation 2 ln 2 + ln x = ln 3.
Using the properties of logarithms, we have the following solution:

 2 ln 2 + ln x = ln 3
 ln 22 + ln x - ln 3 = 0   using Eq. (13.9)

  ln 
4x
3

= 0   using Eqs. (13.7) and (13.8)

 
4x
3

= e0 = 1  exponential form

 4x = 3

 x = 3>4

Since ln13>42 = ln 3 - ln 4, this solution checks in the original equation. ■

 EXAMPLE  8  Solving a logarithmic equation

Solve the logarithmic equation 2 log x - 1 = log11 - 2x2 .

 log x2 - log11 - 2x2 = 1   using Eq. (13.9)

 log 
x2

1 - 2x
= 1   using Eq. (13.8)

 
x2

1 - 2x
= 101   exponential form

 x2 = 10 - 20x

 x2 + 20x - 10 = 0

 x =
-20 { 1400 + 40

2
= -10 { 1110   using the quadratic formula  

Eq. (7.4)

■ This demonstrates that sound intensities 
change much more than sound levels. (See 
Exercise 50.)

■ For reference,
logb xy = logb x + logb y  (13.7)

logbax
y
b = logb x - logb y  (13.8)

logb1xn2 = n logb x  (13.9)

Many exponential and logarithmic 
equations cannot be solved algebrai-
cally, as we have done in the exam-
ples in this section. However, they 
can be solved graphically using a 
graphing calculator as described in 
Section 3.5.

For instance, to solve the equation 
2 ln 2 + ln x = ln 3 from Example 7 
graphically, we can find the zero of 
the function y1 = 2 ln 2 + ln x - ln 3, 
or the intersection of the functions 
y1 = 2 ln 2 + ln x and y2 = ln 3.

Solutions can also be approxi-
mated numerically.

LEARNING T IP
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Since logarithms of negative numbers are not defined and -10 - 1110 is negative 
and cannot be used in the first term of the original equation, we have that the unique 
solution is

x = -10 + 1110 = 0.488 ■

In Exercises 1 and 2, find the indicated values if the given changes are 
made in the indicated examples of this section.

 1. In Example 2, change the sign in the exponent from -  to +  and 
then solve the equation.

 2. In Example 7, change ln 3 to ln 6 and then solve the equation.

In Exercises 3–30, solve the given equations. When necessary, round 
expressions involving logarithms of integers to 3 significant digits in 
their decimal part.

 3. 2x = 16  4. 3x = 1>81  5. 5x = 0.3

 6. px = 15  7. 3-x = 0.525  8. e-x = 17.54

 9. 6x+1 = 78 10. 5x-1 = 0.07 11. 3114x2 = 400

 12. 0.8x = 0.4 13. 0.6x = 2x2
 14. 15.6x+2 = 23x

 15. 3 log8 x = -2 16. 5 log32 x = -3

 17.  log x2 = (log x)2 18. x log x = 1000x2

 19. log2 x + log2 7 = log2 21 20. 2 log2 3 - log2 x = log2 45

 21. 2 log13 - x2 = 1 22. 3 log12x - 12 = 1

 23. log 12x2 - log 3x = 3 24. ln x - ln11>32 = 1

 25. 3 ln 2 + ln1x - 12 = ln 24 26. log2 x + log21x + 22 = 3

 27. 1
2 log1x + 22 + log 5 = 1 28. 2 logx 2 + log2 x = 3

 29. log12x - 12 + log1x + 42 = 1

 30. ln12x - 12 - 2 ln 4 = 3 ln 2

In Exercises 31–38, use a graphing calculator to solve the given 
equations. Round your answers to 3 significant digits.

 31. 15 -x = 1.326 32. e2x = 3.625

 33. 413x2 = 5 34. 5x + 2 = e2x

 35. 3 ln 2x = 2 36. log 4x + log x = 2

 37. 2 ln 2 - ln x = -1 38. log1x - 32 + log x = log 4

In Exercises 39–56, find the indicated quantities.

 39. Solve for x: ex + e-x = 3. (Hint: Multiply each term by ex and 
then it can be treated as a quadratic equation in ex.)

 40. Solve for x: 3x + 3-x = 4. See Exercise 39.

 41. If y = 1.5e- 0.90x, find y when x = 7.1.

 42. What values of x cannot be solutions of the equation 
y = log12x - 52 + log1x2 + 12?

 43. Use logarithms to find the x-intercept of the graph of 
y = 3 - 4x + 2.

 44. Use a graphing calculator to find the point of intersection of the 
curves of 3x + 5y = 6 and y = 1.5 ln1x + 32.

 45. In computer design, the number N  of bits of memory is often ex- 
pressed as a power of 2, or N = 2x. Find x if N = 2.68 * 108 bits.

 46. Referring to Exercise 64 on page 381, in what year will the 
amount of DDT be 25, of the original amount?

 47. Forensic scientists determine the temperature T  (in °C) of a body 
t hours after death from the equation T = T0 + 137 - T020.97t, 
where T0 is the air temperature. If a body is discovered at mid-
night with a body temperature of 27°C in a room at 22°C, at what 
time did death occur?

 48. When a camera flash goes off, the batteries recharge the flash’s 
capacitor to a charge Q according to Q = Q011 - e-kt2, where 
Q0 is the maximum charge and t is in seconds. How long does it 
take to recharge the capacitor to 90, of capacity if k = 0.5?

 49. In chemistry, the pH value of a solution is a measure of its acidity. 
The pH value is defined by pH = - log1H +2, where H +  is the 
hydrogen-ion concentration (in mol/L). If the pH of a sample of 
rainwater is 4.764, find the hydrogen-ion concentration. (If pH 6 7, 
the solution is acid. If pH 7 7, the solution is basic.) Acid rain has 
a pH between 4 and 5, and normal rain is slightly acidic with a pH of 
about 5.6.

 50. Referring to Example 5, show that if the difference in sound level 
of two sounds is d decibels, the louder sound is 10d>10 more 
intense than the quieter sound.

 51. The moment magnitude scale MW was devised as a successor to 
the Richter scale to measure the size of very large earthquakes 
adequately. In terms of the seismic moment of the earthquake M0 
(in N·m), it is given by MW = 1 log M0 + 72 >1.5 - 10.7. What 
was the seismic moment of the 2011 earthquake off the coast of 
Japan whose moment magnitude was 9.0?

 52. How many times stronger (in terms of seismic moment) was the 
2004 Indian Ocean earthquake off the coast of Sumatra 1MW = 9.12 
than the 2012 Haida Gwaii earthquake off the coast of British 
Columbia 1Mw = 7.72 ? (See Exercise 51.)

 53. Studies have shown that the concentration c (in mg>cm3 of 
blood) of aspirin in a typical person is related to the time t (in h) 
after the aspirin reaches maximum concentration by the equation 
ln c = ln 15 - 0.20t. Solve for c as a function of t.

 54. In an electric circuit containing a resistor and a capacitor with an 
initial charge q0, the charge q on the capacitor at any time t after 
closing the switch can be found by solving the equation 

  ln q = - t
RC

 +  ln q0. Here, R is the resistance and C is the 

  capacitance. Solve for q as a function of t.

 55. An earth satellite loses 0.1, of its remaining power each week. An 
equation relating the power P, the initial power P0, and the time t (in 
weeks) is ln P = t ln 0.999 + ln P0. Solve for P as a function of t.

 2. Solve for x: 3 log 2 - log1x + 12 = 1
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 56. In finding the path of a certain plane, the equation ln r = ln a 
-  ln cos u - 1v>w2 ln1sec u + tan u2 is used. Solve for r. (The 
conditions of the plane’s flight are similar to those described in 
Exercise 96, p. 340.)

In Exercises 57–60, solve the given equations graphically. Round 
your answers to 3 significant digits.

 57. 2x + 3x = 50 58. 4x + x2 = 25

 59. The curve in which a uniform wire or rope hangs under its own 
weight is called a catenary. An example of a catenary that we 
see every day is a wire strung between utility poles, as shown 
in Fig. 13.11. For a particular wire, the equation of the catenary 
it forms is y = 21ex>4 + e-x>42, where 1x, y2 is a point on the 
curve. Find x for y = 5.8 m.

 60. In finding the current i in a certain electric circuit, the equation 
i = 2 ln1t + 22 - t relates the current and the time t (in s). Find 
t for i = 0.05 A.

1. 1.8 2. -1>5

Catenary

Fig. 13.11 

When constructing the graphs of some functions, one of the variables changes much 
more rapidly than the other. We saw this in graphing the exponential and logarithmic 
functions in Sections 13.1 and 13.2. The following example illustrates this point.

 EXAMPLE  1  

Plot the graph of y = 4(3x).
Constructing the following table of values,

 13.7 Graphs on Logarithmic and Semilogarithmic Paper

x -1 0 1 2 3 4 5

y 1.3 4 12 36 108 324 972
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Fig. 13.12 

we then plot these values as shown in Fig. 13.12.
We see that as x changes from -1 to 5, y changes much more rapidly, from about 

1 to nearly 1000. Also, because of the scale that must be used, we see that it is not pos-
sible to show accurately the differences in the y-values on the graph. ■

It is possible to graph a function with a large change in values, for one or both vari-
ables, more accurately than can be done on the standard rectangular coordinate system. 
This is done by using a scale marked off in distances proportional to the logarithms of 
the values being represented. Such a scale is called a logarithmic scale. For example, 
log 1 = 0, log 2 = 0.301, and log 10 = 1. Thus, on a logarithmic scale, the 2 is placed 
0.301 unit of distance from the 1 to the 10. Fig. 13.13 shows a logarithmic scale with the 
numbers represented and the distance used for each.

On a logarithmic scale, the distances between the integers are not equal, but this 
scale does allow for a much greater range of values and much greater accuracy for 
many of the values. There is another advantage to using logarithmic scales. Many equa-
tions that would have more complex curves when graphed on the standard rectangular 
coordinate system will have simpler curves, often straight lines, when graphed using 
logarithmic scales. In many cases, this makes the analysis of the curve much easier.

Zero and negative numbers do not appear on the logarithmic scale. In fact, all num-
bers used on the logarithmic scale must be positive, since the domain of the logarithmic 
function includes only positive real numbers. Thus, the logarithmic scale must start at 
some number greater than zero. This number must be a power of 10 and can be very 
small, say, 10-6 = 0.000 001, but still positive.

If we wish to use a large range of values for only one of the variables, we use what is 
known as semilogarithmic, or semilog, graph paper. On this graph paper, only one Fig. 13.13 
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axis (usually the y-axis) uses a logarithmic scale. If we wish to use a large range of 
values for both variables, we use logarithmic, or log-log, graph paper. Both axes are 
marked with logarithmic scales.

The following examples illustrate the use of semilog and log-log graph paper.

 EXAMPLE  2  

Construct the graph of y = 413x2  on semilogarithmic graph paper.
This is the same function as in Example 1, and we repeat the table of values:

x -1 0 1 2 3 4 5

y 1.3 4 12 36 108 324 972

Again, we see that the range of y-values is large. When we plotted this curve on the rec-
tangular coordinate system in Example 1, we had to use large units along the y-axis. 
This made the values of 1.3, 4, 12, and 36 appear at practically the same level. However, 
when we use semilog graph paper, we can label each axis such that all y-values are as 
accurately plotted as the x-values.

The logarithmic scale is shown in cycles, and we must label the base line of the first 
cycle as 1 times a power of 10 (0.01, 0.1, 1, 10, 100, and so on) with the following cycle 
labelled with the next power of 10. The lines between are labelled with 2, 3, 4, and so on, 
times the proper power of 10. See the vertical scale in Fig. 13.14. The logarithmic scale in 
Fig. 13.14 has three cycles, since all values of three powers of 10 are represented.

We now plot the points in the table on the graph. The resulting graph is a straight 
line, as we see in Fig. 13.14. Taking logarithms of each side of the equation, we have

 log y = log3413x2 4 = log 4 + log 3x  using Eq. (13.7)

 = log 4 + x log 3   using Eq. (13.9)

However, since log y was plotted automatically (because we used semilogarithmic 
paper), the graph really represents

u = log 4 + x log 3

where u = log y; log 3 and log 4 are constants, and therefore this equation is of the 
form u = mx + b, which is a straight line (see Section 5.2). ■

 EXAMPLE  3  

Construct the graph of x4y2 = 1 on logarithmic paper.
First, we solve for y and make a table of values. Considering positive values of x 

and y, we have

y = A 1

x4 =
1

x2

We plot these values on log-log paper on which both scales are logarithmic, as 
shown in Fig. 13.15. We again see that we have a straight line. Taking logarithms of 
both sides of the equation, we have

 log1x4y22 = log 1

 log x4 + log y2 = 0  using Eq. (13.7)

 4 log x + 2 log y = 0  using Eq. (13.9)

If we let u = log y and v = log x, we then have

4v + 2u = 0 or u = -2v

which is the equation of a straight line, as shown in Fig. 13.15. Note, however, that not 
all graphs on logarithmic paper are straight lines. ■

x 0.5 1 2 8 20
y 4 1 0.25 0.0156 0.0025

Fig. 13.14 
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 EXAMPLE  4  Deflection of a beam graphed on log-log paper

The deflection (in m) of a certain cantilever beam as a function of the distance x (in m) 
from one end is

d = 0.0001130x2 - x32
If the beam is 20.0 m long, plot a graph of d as a function of x on log-log paper.

Constructing a table of values, we have

x (m) 1.00 1.50 2.00 3.00 4.00

d (m) 0.002 90 0.006 41 0.0112 0.0243 0.0416

x (m) 5.00 10.0 15.0 20.0

d (m) 0.0625 0.200 0.338 0.400

Since the beam is 20.0 m long, there is no meaning to values of x greater than 20.0 m. 
The graph is shown in Fig. 13.16. ■

Logarithmic and semilogarithmic paper may be useful for plotting data derived from 
experimentation. Often, the data cover too large a range of values to be plotted on ordi-
nary graph paper. The next example illustrates the use of semilogarithmic paper to plot 
data.

 EXAMPLE  5  

The vapour pressure of water depends on the temperature. The following table gives 
the vapour pressure (in kPa) for the corresponding values of temperature (in °C):

0.001
1 2 3 5 10 20
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x

d

Fig. 13.16 

These data are then plotted on semilogarithmic paper, as shown in Fig. 13.17. 
Intermediate values of temperature and pressure can then be read directly from the 
graph. ■
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T 1 °C2 10 20 40 60 80 100 120 140 160

p 1kPa2 1.19 2.33 7.34 19.9 47.3 101 199 361 617

In Exercises 1 and 2, make the given changes in the indicated examples, 
and then draw the graphs.

 1. In Example 2, change the 4 to 2 and then make the graph.

 2. In Example 3, change the 1 to 4 and then make the graph.

In Exercises 3–10, plot the graphs of the given functions on semilogarithmic 
paper.

 3. y = 2x 4. y = 5x 5. y = 514x2
 6. y = 6-x 7. y = x3 8. y = 2x4

 9. y = 2x3 + 6x 10. y = 4x3 + 2x2

In Exercises 11–18, plot the graphs of the given functions on log-log 
paper.

 11. y = 0.01x4 12. y = 1x 13. y = x2>3
 14. y = 8x0.25 15. xy = 40 16. x2y3 = 16

 17. x2y2 = 25 18. x3y = 8

In Exercises 19–26, determine the type of graph paper on which the 
graph of the given function is a straight line. Using the appropriate 
paper, sketch the graph.

 19. y = 3-x 20. y = 0.2x3 21. y = 3x6
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 22. y = 5110-x2  23. y = 4x>2 24. xy3 = 10

 25. x1y = 4 26. y12x2 = 3

In Exercises 27–38, plot the indicated graphs.

 27. On the moon, the distance s (in m) a rock will fall due to gravity 
is s = 0.81t2, where t is the time (in s) of fall. Plot the graph of s 
as a function of t for 0 … t … 10 s on (a) a regular rectangular 
coordinate system and (b) a logarithmic coordinate system.

 28. By pumping, the air pressure in a tank is reduced by 18, each 
second. Thus, the pressure p (in kPa) in the tank is given by 
p = 10110.822 t, where t is the time (in s). Plot the graph of p 
as a function of t for 0 … t … 30 s on (a) a regular rectangular 
coordinate system and (b) a semilogarithmic coordinate 
system.

 29. Strontium-90 decays according to the equation N = N0e-0.028t, 
where N is the amount present after t years and N0 is the original 
amount. Plot N as a function of t on semilog paper if N0 = 1000 g.

 30. The electric power P (in W) in a certain battery as a function of the 

  resistance R (in Ω) in the circuit is given by P =
100R10.50 + R22. 

  Plot P as a function of R on semilog paper, using the logarithmic 
scale for R and values of R from 0.01 Ω to 10 Ω. Compare the 
graph with that in Fig. 3.19 on page 101.

 31. The acceleration g (in m>s2) produced by the gravitational force 
of the earth on a spacecraft is given by g = 3.99 * 1014>r2, 
where r is the distance from the centre of the earth to the space-
craft. On log-log paper, graph g as a function of r from 
r = 6.37 * 106 m (the earth’s surface) to r = 3.91 * 108 m 
(the distance to the moon).

 32. In undergoing an adiabatic (no heat gained or lost) expansion of a 
gas, the relation between the pressure p (in kPa) and the volume v 
(in m3) is p2v3 = 850. On log-log paper, graph p as a function of 
v from v = 0.10 m3 to v = 10 m3.

 33. The number of cell phone subscribers in Canada from 1985 to 
2011 is shown in the following table. Plot N as a function of the 
year on semilog paper.

Year 1985 1990 1995 2000 2005 2010 2011

N 1*1062 0.006 0.584 2.59 8.73 17.0 25.8 27.4

Planet M V E M J S U N

d 0.39 0.72 1.00 1.52 5.20 9.54 19.2 30.1

T 0.24 0.62 1.00 1.88 11.9 29.5 84.0 165

f  (Hz) 100 200 500 1000 2000 5000 10  000

B (dB) 40 30 22 20 18 24 30

 36. The atmospheric pressure p (in kPa) at a given altitude h (in km) 
is given in the following table. On semilog paper, plot p as a 
function of h.

 37. One end of a very hot steel bar is sprayed with a stream of cool 
water. The rate of cooling R (in °C>s) as a function of the dis-
tance d (in cm) from one end of the bar is then measured, with the 
results shown in the following table. On log-log paper, plot R as a 
function of d. Such experiments are made to determine the hard-
ness of steel.

h (km) 0 10 20 30 40

p (kPa) 101 25 6.3 2.0 0.53

d (cm) 0.063 0.13 0.19 0.25

R (°C>s ) 600 190 100 72

d (cm) 0.38 0.50 0.75 1.0 1.5

R (°C>s ) 46 29 17 10 6.0

 38. The magnetic intensity H (in A>m) and flux density B (in teslas) 
of annealed iron are given in the following table. Plot H as a func-
tion of B on log-log paper.

B (T) 0.0042 0.043 0.67 1.01

H (A/m) 10 50 100 150

B (T) 1.18 1.44 1.58 1.72

H (A/m) 200 500 1000 10 000

In Exercises 39 and 40, plot the indicated semilogarithmic graphs for 
the following application.

In a particular electric circuit, called 
a low-pass filter, the input voltage Vi is 
across a resistor and a capacitor, and 
the output voltage V0 is across the 
capacitor (see Fig. 13.18). The voltage 
gain G (in dB) is given by

G = 20 log 
121 + 1vT22

where tan f = -vT.

Here, f is the phase angle of V0>Vi. For values of vT of 0.01, 0.10, 
0.30, 1.0, 3.0, 10.0, 30.0, and 100, plot the indicated graphs. These 
graphs are called a Bode diagram for the circuit.

 39. Calculate values of G for the given values of vT and plot a semi-
logarithmic graph of G vs. vT.

 40. Calculate values of f (as negative angles) for the given values of 
vT  and plot a semilogarithmic graph of f vs. vT.

Fig. 13.18 

Vi

V0C

R

 34. The period T  (in years) and mean distance d (given as a ratio of 
that of earth) from the sun to the planets (Mercury, Venus, Earth, 
Mars, Jupiter, Saturn, Uranus, Neptune) are given below. Plot T  
as a function of d on log-log paper.

 35. The intensity level B (in dB) and the frequency f  (in Hz) for a 
sound of constant loudness were measured as shown in the table 
that follows. Plot the data for B as a function of f  on semilog 
paper, using the log scale for f .
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 CHAPTER 13

Exponential function y = bx (13.1)

Logarithmic form x = logb y (13.2)

Logarithmic function y = logb x (13.3)

Laws of exponents bubv = bu+v (13.4)

 bu

bv = bu-v (13.5)

 1bu2n = bnu (13.6)

Properties of logarithms logb xy = logb x + logb y (13.7)

 logbax
y
b = logb x - logb y (13.8)

 logb1xn2 = n logb x (13.9)

 logb 1 = 0  logb b = 1 (13.10)

 logb1bn2 = n (13.11)

Changing base of logarithms logb x =
loga x
loga b

 (13.12)

 ln x =
log x
log e

 (13.13)

 log x =
 ln x
ln 10

 (13.14)

 CHAPTER 13

In Exercises 1–12, determine the value of x.

 1. log10 x = 4 2. log9 x = 3

 3. log5 x = -1 4. log41sin x2 = -0.5

 5. 2 log2 8 = x 6. log12 144 = x - 3

 7. log8 32 = x 8. log9 27 = x

 9. logx 36 = 2 10. logx11>2432 = 5

 11. logx 10 = 1
2 12. logx 8 = 0

In Exercises 13–24, express each as a sum, difference, or multiple of 
logarithms. Wherever possible, evaluate logarithms of the result.

 13. log3 2x 14. log5a7
a
b

 15. log31 t22  16. log6 15

 17. log2 28 18. log7 98

 19. log4 148 20. log224 32y

 21. log3a9
x
b  22. log6a 5

36
b

 23. log1011000x42  24. log3192 * 632

In Exercises 25–36, solve for y in terms of x.

 25. log6 y = log6 4 - log6 x 26. 2 ln y = ln e2 - 3 ln x

 27. 3 ln y = 2 + 3 ln x 28. 21 log9 y + 2 log9 x2 = 1

 29. log3 y = 1
2 log3 7 + 1

2 log3 x

 30. 1 log2 32 1 log2 y - log2 x2 = 3

 31. log5 x + log5 y = log5 3 + 1

 32. log7 y = 2 log7 5 + log7 x + 2

  33. 21 log4 y - 3 log4 x2 = 3 34. 
log7 x

log7 4
- log7 y = 1

 35. 2y = ex 36. 10y = 3x+1

In Exercises 37–44, display the graphs of the given functions on a 
graphing calculator.

 37. y = 0.515x2  38. y = 312-x2
 39. R = 0.2 log4 r 40. y = 10 log16 x

 41. y = log3.15 x 42. y = 0.1 log4.05 x

 43. y = 1 - e-$x$ 44. s = 211 - e- 0.2t2
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In Exercises 45–48, use logarithms to the base 10 to find the natural 
logarithms of the given numbers.

  45. 8.86 46. 0.303

 47. sin 2.07 48. 10.542

In Exercises 49–52, use natural logarithms to find logarithms to the 
base 10 of the given numbers.

 49. 65.89 50. 0.0781

 51. 0.11973 52. log 1000

In Exercises 53–60, solve the given equations. Round all results to 3 
significant digits.

 53. e2x = 5 54. 215x2 = 15

 55. 3x+2 = 5x 56. 2x>31-x = 12x+1

 57. log4 z + log4 6 = log4 12 58. log81x + 22 = 2 - log8 2

 59. 2 log3 2 - log31x + 12 = log3 5

 60. log1n + 22 + log n = 0.4771

In Exercises 61 and 62, plot the graphs of the given functions on 
semilogarithmic paper. In Exercises 63 and 64, plot the graphs of the 
given functions on log-log paper.

 61. y = 8x 62. y = 5x3

 63. y = 23 x 64. xy4 = 16

If x is eliminated between Eqs. (13.1) and (13.2), we have

y = blogb y (13.15)

In Exercises 65–68, evaluate the given expressions using Eq. (13.15). 

 65. 10log4 66. 2e ln7.5

 67. 3e2ln 2 68. 51102log32
In Exercises 69–104, solve the given problems. When necessary, round 
results to 3 significant digits.

 69. Use a calculator to verify that 2 log 3 - log 6 = log 1.5.

 70. Use a calculator to verify that 3 ln 2 + 0.5 ln 64 = 3 ln 4.

 71. Evaluate 23 ln e8 - 2log 104.

 72. Solve for x: 2x + 3212-x2 = 12.

 73. If f1x2 = 2 logb x and f182 = 3, find f122 .

 74. Evaluate: log12 log 10002 .

 75. Evaluate: 7110log0.12 + 60001100log0.0012 .

 76. If x = logb 7 and y = logb 2, express logb 42 in terms of x 
and y.

 77. Use a graphing calculator to solve the equation log5 x = 2x - 7.

 78. Use logarithms to find the x-intercept of the graph of 
y = 2 - 52x-3.

 79. If an amount of P dollars is invested at an annual interest rate r (ex-
pressed as a decimal), the value V of the investment after t years is 
V = P11 + r>n2nt, if interest is compounded n times a year. If 
$1000 is invested at an annual interest rate of 6,, compounded 
semiannually, express V as a function of t and solve for t.

 80. The current i (in A) in a certain electric circuit is given by 
i = 1611 - e-250t2 , where t is the time (in s). Solve for t.

 81. The formula ln1I>I02 = -bh is used in estimating the thick-
ness of the ozone layer. Here, I0 is the intensity of a wavelength 

of sunlight before reaching the earth’s atmosphere, I is the inten-
sity of the light after passing through h cm of the ozone layer, 
and b is a constant. Solve for I.

 82. The amount A of cesium-137 (a dangerous radioactive element) 
remaining after t years is given by A = A010.5t>30.32 , where A0 
is the initial amount. In what year will the cesium-137 be 10% of 
the amount released at the Fukushima Daiichi nuclear power 
plant in Japan after the March 2011 earthquake and tsunami 
damaged its cooling systems?

 83. The bending moment M (in N # m) of a particular concrete col-
umn is given by log M = 6.663. What is the value of M?

 84. A state lottery pays $500 for a $1 ticket if a person picks the cor-
rect three-digit number determined by the random draw of three 
numbered balls. The probability p of winning this lottery at least 
once in x attempts is given by p = 1 - 0.999x. How many at-
tempts are necessary for a person to have a 50% chance 1p = 0.502 
of winning this lottery at least once?

 85. An approximate formula for the population (in millions) of India 
since 1995 is P = 937e0.0137t, where t is the number of years 
since 1995. Sketch the graph of P vs. t for 1995 to 2020.

 86. A computer analysis of the luminous efficiency E (in 
lumens>W2  of a tungsten lamp as a function of its input power 
P (in W) is given by E = 22.011 - 0.65e-0.008P2 . Sketch the 
graph of E as a function of P for 0 … P … 1000 W.

 87. An original amount of 100 mg of radium radioactively decom-
poses such that N mg remain after t years. The function relating 
t and N is t = 23501 ln 100 -  ln N2 . Sketch the graph.

 88. The time t (in s) to chemically change 5 kg of a certain substance 

  into another is given by t = -5 loga5 - x
5

b , where x is the 

  number of kilograms that have been changed at any time. Sketch 
the graph.

 89. An equation that may be used for the angular velocity v of the 
slider mechanism in Fig. 13.19 is 2 ln v = ln 3g +  ln sin u - ln l, 
where g is the acceleration due to gravity. Solve for  sin u.

Fig. 13.19 

v

u

l

 90. Taking into account the weight loss of fuel, the maximum veloc-
ity vm of a rocket is vm = u1 ln m0 -  ln ms2 - gtf , where m0 is 
the initial mass of the rocket and fuel, ms is the mass of the 
rocket shell, tf  is the time during which fuel is expended, u is the 
velocity of the expelled fuel, and g is the acceleration due to 
gravity. Solve for m0.

 91. An equation used to calculate the capacity C (in bits>s) of a tel-
ephone channel is C = B log211 + R2 , where B is the band-
width of the channel (in Hz) and R is the signal-to-noise ratio. 
Solve for R.

 92. An equation used in studying the action of a protein molecule is 
ln A =  ln u -  ln11 - u2 . Solve for u.
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 93. The magnitudes (visual brightnesses), m1 and m2, of two stars 
are related to their (actual) brightnesses, b1 and b2, by the equa-
tion m1 - m2 = 2.5 log1b2>b12 . As a result of this definition, 
magnitudes may be negative, and magnitudes decrease as 
brightnesses increase. The magnitude of the brightest star, 
Sirius, is -1.4, and the magnitudes of the faintest stars observa-
ble with the naked eye are about 6.0. How much brighter is 
Sirius than these faintest stars?

 94. The power gain of an electronic device such as an amplifier is 
defined as n = 10 log1P0>Pi2 , where n is measured in decibels, 
P0 (in W) is the power output, and Pi (in W) is the power input. 
If P0 = 10.0 W and Pi = 0.125 W, calculate the power gain. 
(See Example 4 on page 383.)

 95. In studying the frictional effects on a flywheel, the revolutions 
per minute R that it makes as a function of the time t (in min) are 
given by R = 452010.75022.50t. Find t for R = 1950 r>min.

 96. The efficiency h of a gasoline engine as a function of its com-
pression ratio r is given by h = 1 - r1- g, where g is a con-
stant. Find g for h = 0.55 and r = 7.5.

 97. The intensity I of light decreases from its value I0 as it passes a 
distance x through a medium. Given that x = k1 ln I0 - ln I2 , 
where k is a constant depending on the medium, find x for 
I = 0.850I0 and k = 5.00 cm.

 98. According to Benford’s law, in lists of numbers from many real-life 
sources of data (such as tables of physical constants, accounting 
data, or scientific calculations), the leading digit 1 occurs much 
more often than the others. In particular, the probability that the 
first digit of a randomly selected number from such a list is n is 
given by

P1n2 = logan + 1
n

b
  How many times more likely is a 1 than a 9 as the leading digit 

of a number in a data set that satisfies Benford’s law?

 99. Under certain conditions, the temperature T  and pressure p are 
related by the following equation, where T0 is the temperature at 

  pressure p0: 
T
T0

= a p

p0
b k - 1

k

. Solve for k.

 100. The temperature T  of an object with an initial temperature T1 in 
water at temperature T0 as a function of the time t is given by 
T = T1 + 1T0 - T12e-kt. Solve for t.

 101. Pure water is running into a brine solution, and the same amount 
of solution is running out. The number n of kilograms of salt in 
the solution after t min is found by solving the equation 
ln n = -0.04t + ln 20. Solve for n as a function of t.

 102. For the circuit in Fig. 13.20, the current i (in mA) is given by 
i = 1.6 e-100t. Plot the graph of i as a function of t for the first 
0.05 s on semilog paper.

i

4 kΩ6 mA
3 kΩ

2 mF

2 kΩ

Fig. 13.20 

R 1Ω 2 100 200 500 1000 2000 5000 10 000

I 1mA2 81 41 16 8.2 4.0 1.6 0.8

 103. For a particular solar-energy system, the collector area A re-
quired to supply a fraction F of the total energy is given by 
A = 480 F2.2. Plot A (in m2) as a function of F, from F = 0.1 
to F = 0.9, on semilog paper.

 104. The current I (in mA) and resistance R (in Ω) were measured as 
follows in a certain microcomputer circuit:

  Plot I as a function of R on log-log paper.

Writing Exercise
 105. While checking logarithmic curves on a calculator, a machine- 

design student noted that a certain robotic arm was shaped like part 
of the graph of y = ln12x2>32 . As a check, the student re-wrote 
the equation as y = 12 ln x2 >3 + ln 4 - ln1 ln e22 . Write a 
paragraph explaining (a) whether the second equation is equivalent 
to the first, and (b) if the graphs of the two equations are identical.

 CHAPTER 13  PRACTICE TEST

In Problems 1–4, determine the value of x.

 1. log9 x = -1
2 2. log3 x - log3 2 = 2

 3. logx 64 = 3 4. 33x+1 = 8

 5. Graph the function y = 2 log4 x.

 6. Graph the function y = 213x2  on semilog paper.

 7. Express log5a4a3

7
b  as a combination of a sum, difference, and 

  multiple of logarithms, including log5 2.

 8. Solve for y in terms of x: 3 log7 x - log7 y = 2.

 9. An equation used for a certain electric circuit is 
ln i - ln I = - t>RC. Solve for i.

 10. Evaluate: 
2 ln 0.9523
log 6066

.

 11. Evaluate: log5 7.32.

 12. If A0 dollars are invested at 8,, compounded continuously for t 
years, the value A of the investment is given by A = A0e0.08t. 
Determine how long it takes for the investment to double in 
value.
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Additional Types 
of Equations 
and Systems of 
Equations

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Graph conic sections using a 
calculator

 Solve systems involving conics 
and other nonlinear equations 
graphically

 Solve systems involving 
nonlinear equations 
algebraically by the method of 
substitution or by the method 
of addition and subtraction

 Solve application problems 
involving systems of nonlinear 
equations

 Solve equations in quadratic 
form

 Solve equations with radicals
 Solve application problems 

involving equations in 
quadratic form or equations 
with radicals

In this chapter, we discuss graphical and algebraic solutions of systems of equations of 
types different from those of earlier chapters. We also consider solutions of two special 
types of equations.

One of the methods involves the use of graphs for the solutions, similar to that we used in 
Chapter 3. The intersection of curves was very much part of the basic method of solution of 
equations used in the mid-1600s by René Descartes, who developed the coordinate system. 
Since that time, graphical solutions of equations have been very common and very useful in 
science and technology.

In the study of optics in the 1800s, it was found that light travelled much faster in free space 
than in other mediums, such as glass and water. Scientists then defined n, the index of refrac-
tion, to be the ratio of the speed of light in free space to the speed of light in a particular sub-
stance. In 1836, the French mathematician Cauchy developed the equation n = A + Bl-2 + Cl-4 
that related the index of refraction with the wavelength of light l in a medium. Once the con-
stants A, B, and C were found for a particular medium (by solving three simultaneous equations, 
as in Chapter 5), this equation can be solved for l for a particular value of n, using a method 
known at the time that is used in this chapter (see Exercise 36 on page 410). Again, we see that 
an earlier mathematical method was useful in dealing with a new scientific discovery.

Applications of the types of equations and systems of equations of this chapter are found in 
many fields of science and technology. These include physics, electricity, business, and struc-
tural design.

14

 A three-dimensional holographic 
image is formed without the use of a 
lens. In Section 14.4, the dimensions 
of a holograph are determined.
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In this section, we first discuss the graphs of the circle, parabola, ellipse, and hyper-
bola, which are known as the conic sections. We discussed the parabola earlier when 
discussing quadratic functions in Chapter 7. Then we will find graphical solutions of 
systems of equations involving these and other nonlinear equations.

 EXAMPLE  1  Calculator graph—parabola

Graph the equation y = 3x2 - 6x.
We graphed equations of this form in Section 7.4. Since the general quadratic 

function is y = ax2 + bx + c, for y = 3x2 - 6x, we have a = 3, b = -6, and 
c = 0. Therefore, -b> 12a2 = 1, which means the x-coordinate of the vertex is 
- 1 -62 >6 = 1. Since y = -3 for x = 1, the vertex is 11, -32 . It is a minimum 
point since a 7 0.

Knowing the vertex and the fact that the graph goes through the origin 1c = 02 , we 
choose appropriate window settings and have the display shown in Fig. 14.1.

As we showed in Section 7.4, the curve is a parabola, and a parabola always results 
if the equation is of the form of the quadratic function y = ax2 + bx + c. ■

 EXAMPLE  2  Plotted graph—circle

Plot the graph of the equation x2 + y2 = 25.
We first solve this equation for y, and we obtain y = 225 - x2, or 

y = - 225 - x2, which we write as y = {225 - x2. We now assume values for x 
and find the corresponding values for y.

 14.1 Graphical Solution of Systems of Equations

–2

–3

4

10

Fig. 14.1

x 0 {1 {2 {3 {4 {5

y {5 {4.9 {4.6 {4 {3 0

If x 7 5, values of y are imaginary. We cannot plot these because x and y must both be 
real. When we show y = {3 for x = {4, this is a short way of representing four 
points. These points are 14, 32 , 14, -32 , 1 -4, 32 , and 1 -4, -32 .

In Fig. 14.2, the resulting curve is a circle. A circle with its centre at the origin 
results from an equation of the form x2 + y2 = r2, where r is the radius. ■

From the graph of the circle in Fig. 14.2, we see that the equation of a circle does 
not represent a function. There are two values of y for most of the values of x in the 
domain. We must take this into account when displaying the graph of such an equation 
on a graphing calculator. This is illustrated in the next example.

 EXAMPLE  3  Calculator graph—ellipse

Display the graph of the equation 2x2 + 5y2 = 10 on a graphing calculator.

First, solving for y, we get y = {  B10 - 2x2

5
 . To display the graph of this 

equation on a calculator, we must enter both functions, one as y1 = 2110 - 2x22 >5, 
and the other as y2 = - 2110 - 2x22 >5.

Trying some window settings (or noting that the domain is from - 15 to 15 and 
the range is from - 12 to 12), we get the graphing calculator display that is shown in 
Fig. 14.3.

The curve is an ellipse. An ellipse will be the resulting curve if the equation is of the 
form ax2 + by2 = c, where the constants a, b, and c have the same sign, and for which 
a ≠ b. ■

5

4
3
2
1

542

y

x
!4

!4

!5

!3
!2
!1!5 !2

Fig. 14.2

–3

–2

3

2

Fig. 14.3

■ See the vertical-line test on page 102.
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When these types of curves are displayed on the graphing calculator, it is possible 
that there are small gaps in the curve. The appearance of such gaps depends on the 
pixel width and the functional values used by the calculator.

 EXAMPLE  4  Calculator graph—hyperbola

Display the graph of 2x2 - y2 = 4 on a graphing calculator.
Solving for y, we get

y = {22x2 - 4

As in Example 3, we enter two functions in the calculator, one with the plus sign and 
the other with the minus sign, and we have the display shown in Fig. 14.4. The window 
settings are chosen by noting that the values - 12 6 x 6 12 are not in the domain of 
either y1 = 22x2 - 4 or y2 = - 22x2 - 4. These values of x would lead to imagi-
nary values of y.

The curve is a hyperbola, which results when we have an equation of the form 
ax2 + by2 = c, if a and b have different signs. ■

SOLVING SYSTEMS OF EQUATIONS
As in solving systems of linear equations, we solve any system by finding the values of 
x and y that satisfy both equations at the same time. To solve a system graphically, we 
graph the equations and find the coordinates of all points of intersection. If the curves 
do not intersect, the system has no real solutions.

 EXAMPLE  5  Calculator—solving a system

For proper ventilation, the vent for a hot-air heating system is to have a rectangular 
cross-sectional area of 2.3 m2 and is to be made from sheet metal 6.4 m wide. Find the 
dimensions of this cross-sectional area of the vent.

In Fig. 14.5, we have let l = the length and w = the width of the area. Since the 
area is 2.3 m2, we have lw = 2.3. Also, since the sheet metal is 6.4 m wide, this is the 
perimeter of the area. This gives us 2l + 2w = 6.4, or l + w = 3.2. This means that 
the system of equations to be solved is

 lw = 2.3
 l + w = 3.2

Solving each equation for l, we have

l = 2.3>w and l = 3.2 - w

We now display the graphs of these two equations on a graphing calculator, using x 
for w and y for l. Since negative values of l and w have no meaning to the solution and 
since the straight line l = 3.2 - w has intercepts of 13.2, 02  and 10, 3.22 , we choose 
the window settings as shown in Fig. 14.6.

Using the intersect feature (or the trace and zoom features) with the graph in 
Fig. 14.6, we find that the solutions are approximately 11.1, 2.12  and 12.1, 1.12 . 
Using the length as the longer dimension, we have the solution of

l = 2.1 m and w = 1.1 m

We see that this checks with the statement of the problem. ■

In Example 5, we graphed the equation xy = 2.3 (having used x for w and y for l). 
The graph of this equation is also a hyperbola, another form of which is xy = c. We 
now show the solutions of two more systems of equations.

■ A more complete discussion of the conic 
sections is found in Chapter 21.
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 EXAMPLE  6  

Graphically solve the system of equations

 9x2 + 4y2 = 36

 y = 3x

Solving the first equation for y, we have y = 1
2236 - 9x2. Since this is an ellipse, as 

shown in Example 3, its domain extends from x = -2 to x = 2 19x2 cannot be
greater than 362 . The exponential curve cannot be negative and increases rapidly, as 
discussed in Chapter 13. This means we need only graph the upper part of the ellipse 
(using the +  sign). Therefore, we choose the window settings as shown in the calcula-
tor display in Fig. 14.7.

Using the intersection feature, we find the approximate solutions of x = -2.00, 
y = 0.11 and x = 0.90, y = 2.68. ■

 EXAMPLE  7  

Graphically solve the system of equations

 x2 = 2y

 3x - y = 5

Solving the first equation for y, we get y = 1
2 x2. This parabola has its vertex at the ori-

gin, and it opens upward since a 7 0. This means there cannot be a point of intersec-
tion for y 6 0.

The straight line has intercepts of 10, -52  and 15>3, 02 . This means that any pos-
sible point of intersection must be in the first quadrant. Therefore, we have the window 
settings as shown in the calculator display in Fig. 14.8.

From the figure, we see that the two curves do not intersect. This means that there 
are no real solutions to this system of equations. The two complex solutions of the sys-
tem can be found algebraically using the methods of the next section. ■
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Fig. 14.7

0
0

5

12

Fig. 14.8

EXERCISES 14.1

In Exercises 1–4, make the given changes in the indicated examples of 
this section, and then perform the indicated operations.

 1. In Example 1, change the -  sign before 6x to + .

 2. In Example 2, change the +  sign before y2 to - .

 3. In Example 6, change the coefficient of x2 to 25.

 4. In Example 7, change the coefficient of y in the first equation to 3.

In Exercises 5–30, solve the given systems of equations graphically by 
using a graphing calculator. Find all values to the nearest 0.01.

 5. y = 2x  6. 3x - y = 4 
  x2 + y2 = 16  y = 6 - 2x2

 7. x2 + 2y2 = 8  8. y = 3x - 6 
  x - 2y = 4  xy = 6

 9. y = x2 - 2 10. 4x2 + 25y2 = 21
  4y = 12x - 17  10y = 31 - 9x

11. 8y = 11x2  12. y = -2x2

  xy = 30  y = x2 - 6

13. y = -x2 + 4 14. y = x3

  x2 + y2 = 9  x2 + 2y2 = 16

15. x2 - 4y2 = 16  16. y = 2x2 - 4x
  x2 + y2 = 1  x2y = -4

17. 2x2 + 3y2 = 19  18. x2 - y2 = 4
  x2 + y2 = 9  2x2 + y2 = 16

19. x2 + y2 = 7  20. x2 + y2 = 0.25
  y1x + 22 = 3  x2 - y2 = 0.07

21. y = x2  22. y = 3 + 2x - x2

  y = sin x  y = 2 cos 2x

23. y = e-x  24. y = 2x+1

  x + y = 2  x2 + y2 = 4

25. x2 - y2 = 7  26. x2 + 4y2 = 16
  y = 4 log

2  
x  y = 2 ln x

27. y = ln1x - 12   28. y = cos x
  y = sin 12 x  y = log

3  
x

29. 10x+y = 150  30. ex2 +y2
= 20

  y = x2  xy = 4

In Exercise 31, draw the appropriate figures. In Exercises 32–38, set 
up systems of equations and solve them graphically.

31. By drawing rough sketches, show that a parabola and an ellipse 
can have 0, 1, 2, 3, or 4 possible points of intersection.

32. A rectangular security area is to be enclosed by fencing and 
divided in two equal parts of 1600 m2 each by a fence parallel to 
the shorter sides. Find the dimensions of the security area if the 
total amount of fencing is 280 m.
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33. A helicopter is located 5.2 km north of east of a radio tower such 
that it is three times as far north as it is east from the tower. Find 
the northern and eastern components of the displacement from the 
tower.

34. A 4.60-m insulating strip is placed completely around a rectangu-
lar solar panel with an area of 1.20 m2. What are the dimensions 
of the panel?

35. The power developed in an electric resistor is i2R, where i is the 
current. If a first current passes through a 2.0@Ω resistor and a 
second current passes through a 3.0@Ω resistor, the total power 
produced is 12 W. If the resistors are reversed, the total power 
produced is 16 W. Find the currents (in A) if i 7 0.

36. A circular hot tub is located on the square deck of a home. The 
side of the deck is 7.3 m more than the radius of the hot tub, and 
there are 72.5 m2 of deck around the tub. Find the radius of the hot 
tub and the length of the side of the deck. Explain your answer.

37. Assume earth is a sphere, with x2 + y2 = 41 as the equation of a 
circumference (distance in thousands of km). If a meteorite 
approaching earth has a path described as y2 = 20x + 140, will 
the meteorite strike earth? If so, where?

38. Two people meet at the intersection of two perpendicular roads. 
Each then leaves along a different road with one walking 
1.0 km>h faster than the other. If they are 7.0 km apart (on a 
direct line) after 1.0 h, how fast is each walking?

Often, using the graphical method is the easiest way to solve a system of equations. 
With a graphing calculator, it is possible to find the result with good accuracy. 
However, the graphical method does not usually give the exact answer. Using algebraic 
methods to find exact solutions for some systems of equations is either not possible or 
quite involved. There are systems, however, for which there are relatively simple alge-
braic solutions. In this section, we consider two useful methods, both of which we dis-
cussed before when we were studying systems of linear equations.

SOLUTION BY SUBSTITUTION
The first method is substitution. If we can solve one of the equations for one of its vari-
ables, we can substitute this solution into the other equation. We then have only one 
unknown in the resulting equation, and we can then solve this equation by methods 
discussed in earlier chapters.

 EXAMPLE  1  Solution by substitution

By substitution, solve the system of equations

 2x - y = 4

 x2 - y2 = 4

We solve the first equation for y, obtaining y = 2x - 4. We now substitute 2x - 4 
for y in the second equation, getting

x2 - 12x - 422 = 4  in second equation, y replaced by 2x - 4

When simplified, this gives a quadratic equation:

 x2 - 14x2 - 16x + 162 = 4

 -3x2 + 16x - 20 = 0

 x =
-16 { 1256 - 41 -32 1 -202

-6
=

-16 { 116
-6

=
-16 { 4

-6
=

10
3

, 2

We now find the corresponding values of y by substituting into y = 2x - 4. Thus, 
we have the solutions x = 10

3 , y = 8
3, and x = 2, y = 0. As a check, we find that these 

values also satisfy the equation x2 - y2 = 4. We can check the solutions graphically 
from Fig. 14.9. ■

 14.2 Algebraic Solution of Systems of Equations

Addition or Subtraction
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x2 − y2 = 4

2x − y = 4

Fig. 14.9
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 EXAMPLE  2  Solution by substitution

By substitution, solve the system of equations

 xy = -2

 2x + y = 2

From the first equation, we have y = -2>x. Substituting this into the second equa-
tion, we have 

 
in second equation, y replaced by -  

2
x

 2x + a-  
2
x
b = 2

 2x2 - 2 = 2x

 x2 - x - 1 = 0

 x =
1 { 11 + 4

2
=

1 { 15
2

By substituting these values for x into either of the original equations, we find the cor-
responding values of y, and we have the solutions

x =
1 + 15

2
, y = 1 - 15 and x =

1 - 15
2

, y = 1 + 15

These can be checked by substituting in the original equations. In decimal form, they are

x ≈ 1.618, y ≈ -1.236 and x ≈ -0.618, y ≈ 3.236

The graphical solutions are shown in Fig. 14.10.
The solutions can also be found by first solving the second equation for y, or either 

equation for x, and then substituting in the other equation. ■

SOLUTION BY ADDITION OR SUBTRACTION
The other algebraic method is that of elimination by addition or subtraction. This 
method is most useful if both equations have only squared terms and constants.

 EXAMPLE  3  Solution by addition

By addition or subtraction, solve the system of equations

 2x2 + y2 = 9

 x2 - y2 = 3

We note that if we add the corresponding sides of each equation, y2 is eliminated. 
This leads to the solution:

 2x2 + y2 = 9

x2 - y2 = 3
3x2             = 12 add

 x2 = 4

 x = {2

For x = 2, we have two corresponding y-values, y = {1. Also, for x = -2, we have 
two corresponding y-values, y = {1. Thus, we have four solutions:

x = 2, y = 1  x = 2, y = -1  x = -2, y = 1  x = -2, y = -1

Each solution checks in the original equations. The graphical solutions are shown in 
Fig. 14.11. ■

Practice Exercise

1.  Solve by substitution: 2x2 + y2 = 3
x - y = 2

2

0

4

2

4

y

x

2x + y = 2

xy = −2
−4 −2

−2

−4

Fig. 14.10
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−3

−2

Fig. 14.11
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 EXAMPLE  4  Solution by subtraction

By addition or subtraction, solve the system of equations

 5x2 + 2y2 = 17

 x2 + y2 = 4

Multiplying the second equation by 2, and subtracting the resulting equations, we have

 5x2 + 2y2 = 17

2x2 + 2y2 = 8  each term of second equation multiplied by 2
3x2               = 9 subtract

x2 = 3,       x = {13

The corresponding values of y for each value of x are {1. Again, we have four solutions:

x = 13, y = 1      x = 13, y = -1

x = - 13, y = 1  x = - 13, y = -1

Each solution checks when substituted in the original equations. The graphical solu-
tions are shown in Fig. 14.12. ■

 EXAMPLE  5  Algebraic solution—application

A certain number of machine parts cost $1000. If they cost $5 less per part, 10 additional 
parts could be purchased for the same amount of money. What is the cost of each part?

Let c = the cost per part, and n = the number of parts. From the first statement, we 
see that cn = 1000. From the second statement, 1c - 52 1n + 102 = 1000. 
Rewriting these equations, we have

 n = 1000>c

 cn + 10c - 5n - 50 = 1000

 c a1000
c

b + 10c - 5 a1000
c

b - 50 = 1000

 1000 + 10c - 5000
c

- 50 = 1000

 10c - 5000
c

- 50 = 0

 c2 - 5c - 500 = 0

 1c + 202 1c - 252 = 0

 c = -20, 25

Since a negative answer has no significance in this particular situation, we see that the 
solution is c = $25 per part. Checking with the original statement of the problem, we 
see that this is correct. ■

Practice Exercise

2. Solve by addition or subtraction:
x2 + y2 = 6

2x2 - y2 = 6

0−3

−3

3

3

y

x

Fig. 14.12

substituting first equation in second 
equation

EXERCISES 14.2

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting systems of equations.

 1. In Example 1, change the sign before y in the first equation from 
-  to +  and then solve the system.

 2. In Example 2, change the right side of the second equation from 2 
to 3 and then solve the system.

 3. In Example 3, change the coefficient of x2 in the first equation 
from 2 to 1 and then solve the system.

 4. In Example 4, change the left side of the first equation from 
5x2 + 2y2 to 2x2 + 5y2 and then solve the system.
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In Exercises 5–28, solve the given systems of equations algebraically.

 5. y = x + 1 6. y = 2x - 1
  y = x2 + 1  y = 2x2 + 2x - 3

 7. x + 2y = 3 8. p2 + 4h2 = 4
  x2 + y2 = 26  h = p + 1

 9. x + y = 1 10. x + y = 2
  x2 - y2 = 1  2x2 - y2 = 1

11. 2x - y = 2 12. 6y - x = 6
  2x2 + 3y2 = 4  x2 + 3y2 = 36

13. wh = 1 14. xy = 100
  w + h = 2  x + y = 20

15. xy = 4 16. xy = -4
  4x - 3y = 2  2x + y = -2

17. y = x2 18. M = L2 - 1
  y = 3x2 - 50  2L2 - M2 = 2

19. x2 - y = -1 20. s2 + t2 = 8
  x2 + y2 = 5  3s - t = 2

21. D2 - 1 = R 22. 2y2 - 4x = 7
  D2 - 2R2 = 1  y2 + 2x2 = 3

23. x2 + y2 = 25 24. 3x2 - y2 = 4
  x2 - 2y2 = 7  x2 + 4y2 = 10

25. x2 + 3y2 = 37 26. 5x2 - 4y2 = 15
  2x2 - 9y2 = 14  3y2 + 4x2 = 12

27. x2 + y2 + 4x = 1 28. x2 + y2 - 4x - 2y + 4 = 0
  x2 + y2 - 2y = 9  x2 + y2 - 2x - 4y + 4 = 0

(Hint for Exercises 27 and 28: First, subtract one equation from the 
other to get an equation relating x and y. Then substitute this equation 
in either given equation.)

In Exercises 29–44, solve the indicated systems of equations 
algebraically. In Exercises 33–44, it is necessary to set up the systems 
of equations.

29. Solve for x and y: x2 - y2 = a2 - b2; x - y = a - b.

30. For what value of b are the two solutions of the system 
x2 - 2y = 5; y = 3x + b equal to each other? For this value of 
b, what is true of the graphs of the two functions?

31. A rocket is fired from behind a ship and follows the path given by 
h = 3x - 0.05x2, where h is its altitude (in km) and x is the hori-
zontal distance travelled (in km). A missile fired from the ship 
follows the path given by h = 0.8x - 15. For h 7 0 and x 7 0, 
find where the paths of the rocket and missile cross.

32. A 2-kg block collides with an 8-kg block. Using the physical laws 
of conservation of energy and conservation of momentum, along 
with given conditions, the following equations involving the 
velocities are established:

  v2
1 + 4v2

2 = 41
  2v1 + 8v2 = 12

  Find these velocities (in m>s) if v2 7 0.

33. One face of a washer has an area of 37.7 cm2. The inner radius is 
2.00 cm less than the outer radius. What are the radii?

34. A right triangular sail has a perimeter of 9.30 m and a hypotenuse 
of 4.17 m. Find the lengths of the sides of the sail.

35. A rectangular computer chip has a surface area of 2.1 cm2 and a 
perimeter of 5.8 cm. Find the length and the width of the chip.

36. On a map, the path of an underground stream can be approxi-
mated by the parabola y = x2 - 20x + 84. Wells need to be dug 
at two locations on the line y = 2x + 12. Find the coordinates of 
the points where the wells should be dug.

37. A roof truss is in the shape of a right triangle. If there are 4.60 m 
of lumber in the truss and the longest side is 2.20 m long, what 
are the lengths of the other two sides of the truss?

38. In a certain roller mechanism, the radius of one steel ball is 2.00 cm 
greater than the radius of a second steel ball. If the difference in 
their masses is 7100 g, find the radii of the balls. The density of 
steel is 7.70 g>cm3.

39. A set of equal electrical resistors in series has a total resistance 
(the sum of the resistances) of 78.0 Ω. Another set of two fewer 
equal resistors in series also has a total resistance of 78.0 Ω. If the 
resistance of each resistor in the second set is 1.3 Ω greater than 
that of each resistor in the first, how many resistors are in each set?

40. Security fencing encloses a rectangular storage area of 1600 m2 
that is divided into two sections by additional fencing parallel to 
the shorter sides. Find the dimensions of the storage area if 220 m 
of fencing are used.

41. An open liner for a box is to be made from a rectangular sheet of 
cardboard of area 216 cm2 by cutting equal 2.00-cm squares from 
each corner and bending up the sides. If the volume within the 
liner is 224 cm3, what are dimensions of the cardboard sheet?

42. Two guy wires, one 140 m long and the other 120 m long, are 
attached at the same point of a TV tower with the longer one secured 
in the (level) ground 30 m farther from the base of the tower than the 
shorter one. How high up on the tower are they attached?

43. A jet travels at 990 km>h relative to the air. It takes the jet 1.4 h 
longer to travel the 5200 km from London to Montreal, Quebec, 
against the wind than it takes from Montreal to London with the 
wind. Find the velocity of the wind.

44. In a marketing survey, a company found that the total gross 
income for selling t tables at a price of p dollars each was $35 000. 
It then increased the price of each table by $100 and found that 
the total income was only $27 000 because 40 fewer tables were 
sold. Find p and t.

Answers to Practice Exercises

1. x = 1>3, y = -5>3; x = 1, y = -1
2.  x = 2, y = 12; x = 2, y = - 12; 

x = -2, y = 12; x = -2, y = - 12
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Often, we encounter equations that can be solved by methods applicable to quadratic 
equations, even though these equations are not actually quadratic. They do have the 
property, however, that with a proper substitution they may be written in the form of 
a quadratic equation. All that is necessary is that the equation have terms including 
some variable quantity, its square, and perhaps a constant term. The following example 
illustrates these types of equations.

 EXAMPLE  1  Identifying a quadratic form

(a) The equation x - 21x - 5 = 0 is an equation in quadratic form because  
if we let y = 1x, we have x = 11x22 = y2, and the resulting equation is 
y2 - 2y - 5 = 0.

(b) t-4 - 5t-2 + 3 = 0 1 t-222

  By letting y = t-2, we have y2 - 5y + 3 = 0.

(c) t3 - 3t3>2 - 7 = 0 1 t 3>222

  By letting y = t3>2, we have y2 - 3y - 7 = 0.

(d) 1x + 124 - 1x + 122 - 1 = 0 31x + 12242

  By letting y = 1x + 122, we have y2 - y - 1 = 0.

(e) x10 - 2x5 + 1 = 0 1x522

  By letting y = x5, we have y2 - 2y + 1 = 0. ■

A method for solving equations in quadratic form is summarized as follows.

 14.3 Equations in Quadratic Form
 

 
Extraneous Roots

Procedure for Solving an Equation in Quadratic Form
1.  Identify the equation as quadratic: find a quantity involving the unknown var-

iable whose square is included in the equation. (Some algebraic manipulation 
may be necessary.) Let this quantity be y.

2.  Substitute y into the original equation to rewrite it in the  
form ay2 + by + c = 0.

3. Solve the quadratic equation for y.

4.  Substitute each of the solutions for y into the equation relating y and the orig-
inal variable, and solve for the original variable.

5.  Check all answers in the original equation. The substitution could have added 
extraneous roots (that is, roots of a subsequent equation that are not roots of the 
original equation). Extraneous roots must be identified and discarded.
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 EXAMPLE  2  

Solve the equation 2x4 + 7x2 = 4.
We first let y = x2 to write the equation in quadratic form. We will then solve the 

resulting quadratic equation for y. However, solutions for x are required, so we again 
let y = x2 to solve for x.

 2y2 + 7y - 4 = 0 let y = x2

 12y - 12 1  y + 42 = 0 factor and solve for y

 y = 1
2 or y = -4

 x2 = 1
2 or x2 = -4 y = x2 (to solve for x)

 x = {  
112

 or x = {2j

We can let y1 = 2x4 + 7x2 and y2 = 4 to solve the system on a graphing calculator. 
The display is shown in Fig. 14.13, and we see that there are two points of intersection, 
one for x = 0.7071 and the other for x = -0.7071. Since 1>12 = 0.7071, this veri-
fies the real solutions. The imaginary solutions cannot be found graphically. Substitution 
of each value in the original equation shows each value to be a solution. ■

Two of the solutions in Example 2 are complex numbers. We were able to find these 
solutions directly from the definition of the square root of a negative number. In some 
cases (see Exercise 22 of this section), it is necessary to use the method of Section 12.6 
to find such complex-number solutions.

 EXAMPLE  3  

Solve the equation x - 1x - 2 = 0.
By letting y = 1x, we have

 y2 - y - 2 = 0

 1y - 22 1y + 12 = 0

 y = 2  or y = -1

Since y = 1x, we note that y cannot be negative, and this means y = -1 cannot lead 
to a solution. For y = 2, we have x = 4. Checking, we find that x = 4 satisfies the 
original equation. Therefore, the only solution is x = 4.

The graph of y = x - 1x - 2 is shown in Fig. 14.14. Note that the only zero is at 
x = 4, confirming that y = -1 is an extraneous root and should be discarded. ■
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 EXAMPLE  4  

Solve the equation x-2 + 3x-1 + 1 = 0.
By substituting y = x-1, we have y2 + 3y + 1 = 0. To solve this equation, we use 

the quadratic formula:

y =
-3 { 19 - 4

2
=

-3 { 15
2

Since x = 1>y, we have

x =
2

-3 + 15
 or x =

2
-3 - 15

It is a common error to give an extraneous root as the solution to an equation. As we 
said earlier, it is important to check all answers in the original equation so that extrane-
ous roots can be identified and discarded.

COMMON ERROR

Practice Exercise

1.  Solve for x: x -4 - 8x -2 + 16 = 0
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These answers, to the nearest 0.001, are

x ≈ -2.618 or x ≈ -0.382

These results check when substituted in the original equation. ■

 EXAMPLE  5  Solving an equation containing grouped terms

Solve the equation 1x2 - x22 - 81x2 - x2 + 12 = 0.
By substituting y = x2 - x, we have

 y2 - 8y + 12 = 0

 1y - 22 1y - 62 = 0

 y = 2 or y = 6

x2 - x = 2 or x2 - x = 6  y = x2 - x

Solving each of these equations, we have

 x2 - x - 2 = 0 x2 - x - 6 = 0

 1x - 22 1x + 12 = 0  1x - 32 1x + 22 = 0

 x = 2 or x = -1     x = 3 or x = -2

Each value checks when substituted in the original equation. ■

 EXAMPLE  6  Quadratic form—application

A rectangular photograph has an area of 120 cm2. The diagonal of the photograph is 
17 cm. Find its length and width. See Fig. 14.15.

Let l = the length of the photograph and let w = its width. Since the area is 
120 cm2, lw = 120. Also, using the Pythagorean theorem and the fact that the diagonal 
is 17 cm, we have the equation l2 + w2 = 172 = 289. Therefore, we are to solve the 
system of equations

lw = 120  l2 + w2 = 289

Solving the first equation for l, we have l = 120>w. Substituting this into the second 
equation, we have

 a120
w

b2
+ w2 = 289

 
14 400

w2 + w2 = 289

 14 400 + w4 = 289w2

Let y = w2.

y2 - 289y + 14 400 = 0

y =
- 1 -2892 { 21 -28922 - 4112 114 4002

2112
y = 225  or  y = 64

Therefore, w2 = 225 or w2 = 64.
Solving for w, we get w = {15 or w = {8.0. Only the positive values are mean-

ingful in this problem, which means if w = 8.0 cm, then l = 15 cm, and if w = 15 cm, 
l = 8.0 cm. Therefore, the picture is 15 cm by 8.0 cm, and the solution satisfies the 
statement of the problem. ■

Note that when checking decimal 
answers in the original equation, it is 
more accurate to store values in the 
memory of the calculator and use 
them without rounding than to use 
rounded values.

LEARNING T IP

■ The solution to the problem of finding the 
length and width of a rectangle given the 
diagonal and the area was known to Old 
Babylonian mathematicians around 1770 B.C.E.

■ The first permanent photograph was taken 
in 1816 by the French inventor Joseph Niépce 
(1765–1833).

A = 120 cm2  

17 cm

Fig. 14.15
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EXERCISES 14.3

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the resulting equations.

 1. In Example 2, change the +  before the 7x2 to -  and then solve 
the equation.

 2. In Example 3, change the 2 to 6 and then solve the equation.

In Exercises 3–26, solve the given equations algebraically.

 3. x4 - 13x2 + 36 = 0 4. 4R4 + 15R2 = 4

 5. x-2 - 2x-1 - 8 = 0 6. 10x-2 + 3x-1 - 1 = 0

 7. x-4 + 2x-2 = 24 8. x -1 - x -1>2 = 2

 9. 2x - 71x + 5 = 0 10. 4x + 31x = 1

11. 313 x - 516 x + 2 = 0 12. 1x + 314 x = 28

13. x2>3 - 2x1>3 - 15 = 0 14. x3 + 2x3>2 - 80 = 0

15. 2n1>2 - 5n1>4 = 3 16. 4x4>3 + 9 = 13x2>3
17. 1x - 12 - 1x - 1 = 20

 18. 1C + 12-2>3 + 51C + 12-1>3 - 6 = 0

19. 1x2 - 2x22 - 111x2 - 2x2 + 24 = 0

 20. 1x2 - 122 + 1x2 - 12-2 = 2

21. x - 31x - 2 = 6 1Let y = 1x - 2.2
 22. x6 + 7x3 - 8 = 0

23. 
1

s2 + 1
+ 2

s2 + 3
= 1 24. 1x + 2

x 22 - 6x - 12
x = -9

25. e2x - ex = 0 26. 102x - 2110x2 = 0

In Exercises 27–32, solve the given equations algebraically and check 
the solutions with a graphing calculator.

27. x4 - 20x2 + 64 = 0 28. x -2 - x-1 - 42 = 0

29. x + 2 = 31x 30. x2>3 - 4x1>3 = 12

31. (log x)2 - 3  log x + 2 = 0 32. 2x + 3212-x2 = 12

In Exercises 33–40, solve the given problems algebraically.

33. Solve for x: log1x4 + 42 -  log15x22 = 0.

34. If f1x2 = x2 + 1, find x if f1x2 - 32 = 5.

35. The equivalent resistance RT of two resistors R1 and R2 in parallel 
is given by R-1

T = R-1
1 + R-1

2 . If RT = 1.00 Ω and R2 = 1R1, 
find R1 and R2.

36. An equation used in the study of the dispersion of light is m =
A + Bl-2 + Cl-4. Solve for l. (See the chapter introduction.)

37. In the theory dealing with optical interferometers, the equation 1F = 21p> 11 - p2  is used. Solve for p if F = 16.

38. A special washer is made from a circular disc 3.50 cm in radius 
by removing a rectangular area of 12.0 cm2 from the centre. If 
each corner of the rectangular area is 0.50 cm from the outer edge 
of the washer, what are the dimensions of the area that is removed?

39. A rectangular TV screen has an area of 2240 cm2 and a diagonal 
of 68.6 cm. Find the dimensions of the screen.

40. The impedance Z in an alternating-current circuit is 2.00 Ω. If the 
resistance R is numerically equal to the square of the reactance X, 
find R and X. See Section 12.7.

Answer to Practice Exercise

1. 1>2, 1>2, -1>2, -1>2

Equations with radicals can usually be solved using the following method.

 14.4 Equations with Radicals

Quadratic Form

1.  Isolate the radical (or one of the radicals if more than one radical is present) 
by rewriting the equation with the radical on one side and all other terms on 
the other side.

2.  Raise both sides of the equation to the order of the radical (for instance, 
square both sides when the radical is a square root). Be careful to raise the 
complete expression on each side, not just the terms separately.

3. Repeat steps 1 and 2 until the equation does not contain radicals.

4. Solve the resulting equation.

5.  Check all solutions in the original equation. Identify and discard extrane-
ous roots.
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 EXAMPLE  1  

Solve the equation 1x - 4 = 2.
By squaring both sides of the equation, we have

 11x - 422 = 22

 x - 4 = 4
 x = 8

This solution checks when put into the original equation. ■

 EXAMPLE  2  

Solve the equation 213x - 1 = 3x.
Squaring both sides of the equation gives us1213x - 122 = 13x22  don’t forget to square the 2

 413x - 12 = 9x2

 12x - 4 = 9x2

 9x2 - 12x + 4 = 0

 13x - 222 = 0

 x =
2
3

 (double root)

Checking this solution in the original equation, we have

22312
32 - 1 ≟ 312

32 ,  212 - 1 ≟ 2,  2 = 2

Therefore, the solution x = 2
3 checks.

We can check this solution graphically by letting y1 = 213x - 1 and y2 = 3x. 
The calculator display is shown in Fig. 14.16. The intersection feature shows that the 
only x-value that the curves have in common is x = 0.6667, which agrees with the 
solution of x = 2>3. This also means the line y2 is tangent to the curve of y1. ■

 EXAMPLE  3  

Solve the equation 13 x - 8 = 2.
Cubing both sides of the equation, we have

 x - 8 = 8
 x = 16

Checking this solution in the original equation, we get13 16 - 8 ≟ 2,    2 = 2

Therefore, the solution checks. ■

 EXAMPLE  4  

Solve the equation 1x - 1 + 3 = x.
We first isolate the radical by subtracting 3 from each side. This gives us1x - 1 = x - 3

We now square both sides and proceed with the solution:

 11x - 122 = 1x - 322

 x - 1 = x2 - 6x + 9

 x2 - 7x + 10 = 0

 1x - 52 1x - 22 = 0

x = 5 or x = 2

The solution x = 5 checks, but the solution x = 2 gives 4 = 2. Thus, the solution is 
x = 5. The value x = 2 is an extraneous root. ■

Practice Exercise

1.  Solve for x: 12x + 3 = x

–1

–2

3

6

Fig. 14.16

Practice Exercise

2. Solve for x: 1x + 4 + 2 = x

square the expression on each side, 
not just the terms separately
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 EXAMPLE  5  

Solve the equation 1x + 1 + 1x - 4 = 5.
We start by isolating the first radical and then squaring both sides of the resulting 

equation:

 1x + 1 = 5 - 1x - 4  two terms 

 11x + 122 = 15 - 1x - 422

 x + 1 = 25 - 101x - 4 + 11x - 422  be careful!

 = 25 - 101x - 4 + x - 4

Now, isolating the radical on one side of the equation and squaring again, we have

 101x - 4 = 20

 1x - 4 = 2  divide by 10

 x - 4 = 4  square both sides

 x = 8

This solution checks. ■

It should be emphasized that when squaring both sides of an equation, the complete 
expression is squared, and not just the terms separately.15 - 1x - 422 is not 25 + 1x - 42 . You are calculating the square of a binomial, so you 
must have three terms, including the middle term -101x - 4 (which still contains a radical).

COMMON ERROR

As we see in the following example, equations with radicals can sometimes be 
solved as equations in quadratic form.

 EXAMPLE  6  

Solve the equation 1x - 14 x = 2.
By letting y = 14 x 1y Ú 02 , we have

 y2 - y - 2 = 0

 1y - 22 1y + 12 = 0

 y = 2 or y = -1

Since y Ú 0, we discard the negative root. For the other value, y = 2, we have14 x = 2,  x = 16

This checks, because 116 - 14 16 = 4 - 2 = 2. Therefore, the only solution of the 
original equation is x = 16. ■

 EXAMPLE  7  

Each cross section of a holographic image is in the shape of a right triangle. The perim-
eter of the cross section is 60 cm, and its area is 120 cm2. Find the length of each of the 
three sides.

If we let the two legs of the triangle be x and y, as shown in Fig. 14.17, from the 
formulas for the perimeter p and the area A of a triangle, we have

p = x + y + 2x2 + y2 and A = 1
2 xy

where the hypotenuse was found by use of the Pythagorean theorem. Using the infor-
mation given in the statement of the problem, we arrive at the equations

x + y + 2x2 + y2 = 60 and xy = 240

y

x

p = 60 cm

A = 120 cm2

Vx2 + y2

Fig. 14.17
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Isolating the radical in the first equation and then squaring both sides, we have

 2x2 + y2 = 60 - x - y

 x2 + y2 = 3600 - 120x - 120y + x2 + 2xy + y2

 0 = 3600 - 120x - 120y + 2xy

Solving the second of the original equations for y, we have y = 240>x. Substituting, 
we have

 0 = 3600 - 120x - 120 a240
x

b + 2x a240
x

b
 0 = 3600x - 120x2 - 12012402 + 480x  multiply by x

 0 = 30x - x2 - 240 + 4x  divide by 120

 x2 - 34x + 240 = 0  collect terms on left

 1x - 102 1x - 242 = 0

 x = 10 cm or x = 24 cm

If x = 10 cm, then y = 24 cm, or if x = 24 cm, then y = 10 cm. Therefore, the legs 
of the holographic cross section are 10 cm and 24 cm, and the hypotenuse is 26 cm. For 
these sides, p = 60 cm and A = 120 cm2. We see that these values check with the 
statement of the problem. ■

■ See the chapter introduction.

■ Holography is a method of producing a 
three-dimensional image without the use of a 
lens. The theory of holography was developed 
in the late 1940s by the British engineer Dennis 
Gabor (1900–1979). After the invention of lasers, 
the first holographs were produced in the early 
1960s.

EXERCISES 14.4

In Exercises 1–4, make the given changes in the indicated examples of 
this section, and then solve the resulting equations.

 1. In Example 2, change the 3x on the right to 3.

 2. In Example 3, change the 8 under the radical to 19.

 3. In Example 4, change the 3 on the left to 7.

 4. In Example 5, change the 4 under the second radical to 14.

In Exercises 5–34, solve the given equations. In Exercises 19 and 20, 
explain how the extraneous root is introduced.

 5. 1x - 8 = 2 6. 1x + 4 = 3

 7. 18 - 2x = x 8. 212P + 5 = P

 9. 13x + 2 = 3x 10. 15x - 1 + 3 = x

 11. 213 - x - x = 5 12. x - 312x + 1 = -5

 13. 13 y - 5 = 3 14. 14 5 - x = 2

 15. 51s - 6 = s 16. 31x + 2 = 2x

 17. 2x2 - 9 = 4 18. t2 = 3 - 22t2 - 3

 19. 1x + 4 + 8 = x 20. 1x + 15 + 5 = x

 21. 25 + 1x = 1x - 1 22. 213 + 1x = 1x + 1

 23. 311 - 2t + 1 = 2t 24. 1 - 21y + 4 = y

 25. 21x + 2 - 13x + 4 = 1 26. 1x - 1 + 1x + 2 = 3

 27. 15x + 1 - 1 = 31x 28. 1x - 7 = 1x - 7

 29. 16x - 5 - 1x + 4 = 2 30. 15x - 4 - 1x = 2

 31. 1x - 9 =
361x - 9

- 1x 32. 14 x + 10 = 1x - 2

 33. 1x - 2 = 14 x - 2 + 12 34. 23x + 13x + 4 = 4

In Exercises 35–38, solve the given equations algebraically and check 
the solutions graphically with a graphing calculator.

 35. 13x + 4 = x 36. 1x - 2 + 3 = x

 37. 12x + 1 + 31x = 9 38. 12x + 1 - 1x + 4 = 1

In Exercises 39–52, solve the given problems.

 39. If f1x2 = 1x + 3, find x if f1x + 62 = 5.

 40. Solve 2x - 12x = 2 algebraically, and check the solution 
from the graph on a calculator.

 41. Solve 1x - 1 + x = 3 algebraically. Then compare the solu-
tion with that of Example 4. Noting that the algebraic steps after 
isolating the radical are identical, why is the solution different?

 42. The resonant frequency f in an electric circuit with an inductance 

  l and a capacitance C is given by f =
1

2p1LC
. Solve for L.

 43. A formula used in calculating the range r for radio communica-
tion is R = 22rh + h2. Solve for h.

 44. An equation used in analysing a certain type of concrete beam is 
k = 22np + 1np22 - np. Solve for p.

 45. In the study of spur gears in contact, the equation 
kC = 2R2

1 - R2
2 + 2r2

1 - r2
2 - A is used. Solve for r2

1.

 46. The focal length f of a lens, in terms of the image distance q and 
the object distance p, is given by 1

f = 1
p + 1

q. Find p and q if 
f = 4 cm and p = 1q.

 47. One section of a roof is in the shape of an isosceles triangle. Its 
perimeter is three times the height to its base of 4.0 m. What is the 
area of this section of the roof?
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 48. A smaller of two cubical boxes 
is centred on the larger box, 
and they are taped together 
with a wide adhesive that just 
goes around both boxes (see 
Fig. 14.18). If the edge of the 
larger box is 1.00 cm greater 
than that of the smaller box, 
what are the lengths of the 
edges of the boxes if 100.0 cm 
of tape is used?

 49. A freighter is 5.2 km farther from a Coast Guard station on a 
straight coast than from the closest point A on the coast. If the sta-
tion is 8.3 km from A, how far is it from the freighter?

 50. The velocity v of an object that falls through a distance h is given 
by v = 12gh, where g is the acceleration due to gravity. Two 
objects are dropped from heights that differ by 10.0 m such that 
the sum of their velocities when they strike the ground is 
20.0 m>s. Find the heights from which they are dropped if 
g = 9.80 m>s2.

 51. A point T on Thorah Island in Lake Simcoe, Ontario, is 3.8 km 
from Beaverton (B). A person in a motorboat travels straight from 

T to a point on Alsop’s Beach, x km from B, and then travels x km 
farther along the beach away from B. (Assume that the coast is 
straight, which is nearly the case.) Find x if the person travelled a 
total of 5.4 km. See Fig. 14.19.

Fig. 14.18

3.8 km 

x

x

B
T 

Fig. 14.19

x

x

3.0 m

3.0 m

Fig. 14.20

 52. The length of the roller belt in Fig. 14.20 is 28.0 m. Find x.

Answers to Practice Exercises

1. 3  2. 5

 CHAPTER 14  REVIEW EXERCISES

In Exercises 1–10, solve the given systems of equations by use of a 
graphing calculator. Find all values to the nearest 0.01.  29. 

4

r2 + 1
+ 7

2r2 + 1
= 2

 30. 1x2 + 5x22 - 51x2 + 5x2 = 6

 31. 312Z + 4 = 2Z 32. 13 x - 2 = 3

 33. 15x + 9 + 1 = x 34. 215x - 3 - 1 = 2x

 35. 1x + 1 + 1x = 2 36. 23x2 - 2 - 2x2 + 7 = 1

 37. 1n + 4 + 21n + 2 = 3 38. 13x - 2 - 1x + 7 = 1

In Exercises 39 and 40, find the value of the constant exactly. Explain 
your method. (In each, the expression on the right is called a contin-
ued radical. Also, . . . means that the pattern continues indefinitely.)
Hint: Square both sides.

 39. x = 42 + 32 + 12 + c
 40. t = 41 + 31 + 11 + c

The constant t is known as the golden ratio. It has many appli-
cations in mathematics, architecture, biology, music, and art.

In Exercises 41–46, solve the given equations algebraically and check 
the solutions graphically with a graphing calculator.

 1. x + 2y = 6
  y = 4x2

 2. x + y = 3
  x2 + y2 = 25

 3. 3x + 2y = 6
  x2 + 4y2 = 4

 4. x2 - 2y = 0
  y = 3x - 5

 5. y = x2 + 1
  4x2 + 16y2 = 29  6. 

x2

4
+ y2 = 1

  x2 - y2 = 1

 7. y = 11 - x2 8. x2y = 63
  y = 2x2-1  y = 25 - 2x2

 9. y = x2 - 2x 10. y = ln x
  y = 1 - e-x  y = sin x

In Exercises 11–20, solve each of the given systems of equations  
algebraically.

 11. y = 4x2

  y = 8x

 12. x + y = 12
  xy = 20

 13. 2R = L2

  R2 + L2 = 3

 14. y = x2

  2x2 - y2 = 1
 15. 4u2 + v = 3
  2u + 3v = 1

 16. x2 + 7y2 = 56
  2x2 - 8y2 = 90

 17. 4x2 - 7y2 = 21 18. s - t = 6
  x2 + 2y2 = 99  1s - 1t = 1

 19. 4x2 + 3xy = 4 20. 
6
x

+ 3
y

= 4
  x + 3y = 4  

36

x2 + 36

y2 = 13

In Exercises 21–38, solve the given equations.

 21. x4 - 20x2 + 64 = 0 22. t6 - 26t3 - 27 = 0

 23. x3>2 - 9x3>4 + 8 = 0 24. x1>2 + 3x1>4 - 28 = 0

 25. D-2 + 4D-1 - 21 = 0 26. 2x - 31x - 5 = 0

 27. 41 ln x22 - ln x2 = 0 28. ex + e-x = 2

 41. x3 - 2x3>2 - 48 = 0 42. 1x + 124 - 54 = 31x + 122

 43. 213x + 1 - 1x - 1 = 6 44. 31x + 1x - 9 = 11

 45. 23 x3 - 7 = x - 1 46. 2x2 + 7 + 24 x2 + 7 = 6

In Exercises 47–58, solve the given problems.

 47. Solve for x and y: x2 - y2 = 2a + 1; x - y = 1

 48. Solve for x: log11x + 382 - log x = 1

 49. Solve 21x - 1 = 2 for x. Check using the graph on a 
calculator.

 50. If f1x2 = 18 - 2x and f1x + 12 = 2, find x.
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 51. Use a graphing calculator to solve the following system of three 
equations: x2 + y2 = 13, y = x - 1, xy = 6.

 52. Algebraically solve the following system of three equations: 
y = -x2, y = x - 1, xy = 1. Explain the results.

 53. In the study of atomic structure, the equation

  L =
h

2p
 1l1 l + 12  is used. Solve for l 1 l 7 02 .

 54. The frequency v of a certain RLC circuit is given by 

  v =
2R2 + 41L>C2 + R

2L
. Solve for C.

 55. In the theory dealing with a suspended cable, the equation 
y = 2s2 - m2 - m is used. Solve for m.

 56. The equation V = e2cr-2 - e2Zr-1 is used in spectroscopy. 
Solve for r.

 57. In an experiment, an object is allowed to fall, stops, and then 
falls for twice the initial time. The total distance the object falls 
is 392 cm. The equations relating the times t1 and t2 (in s) of fall 
are 490t2

1 + 490t2
2 = 392 and t2 = 2t1. Find the times of fall.

 58. If two objects collide and the kinetic energy remains constant, 
the collision is termed perfectly elastic. Under these conditions, 
if an object of mass m1 and initial velocity u1 strikes a second 
object (initially at rest) of mass m2, such that the velocities after 
collision are v1 and v2, the following equations are found:

 m1u1 = m1v1 + m2v2

   12 m1u2
1 = 1

2 m1v2
1 + 1

2 m2v2
2

  Solve these equations for m2 in terms of u1, v1, and m1.

In Exercises 59–70, set up the appropriate equations and solve them.

 59. A wrench is dropped by a worker at a construction site. Four 
seconds later the worker hears it hit the ground below. How high 
is the worker above the ground? (The velocity of sound is 
331 m>s, and the distance the wrench falls as a function of time 
is s = 4.9t2.)

 60. The rectangular flat screen for a computer monitor has a perim-
eter of 122.6 cm, and a diagonal of 43.6 cm. Find the dimen-
sions of the screen.

 61. The perimeter of a banner in the shape of a tall isosceles triangle 
(that is, with height longer than its base) is 72 dm, and its area is 
240 dm2. Using a calculator, graphically find the lengths of the 
sides of the banner.

 62. A rectangular field is enclosed by fencing and a wall along one 
long side and half of an adjacent side. See Fig. 14.21. If the area 
of the field is 9000 m2 and 240 m of fencing are used, what are 
the dimensions of the field?

 63. A circuit on a computer chip is designed to be within the area 
shown in Fig. 14.22. If this part of the chip has an area of 9.0 mm2 
and a perimeter of 16 mm, find x and y.

Wall

A = 9000 m2

240 m of fencing

Fencing
Fig. 14.21

x

2x

2y
y

Fig. 14.22

 64. For the plywood piece shown in Fig. 14.23, find x and y.

x

x
y 1200 mm

2100 mmFig. 14.23

 65. The viewing window on a graphing calculator has an area of 
1770 mm2 and a diagonal of 62 mm. What are the length and 
width of the rectangle?

 66. A trough is made from a piece of sheet metal 12.0 cm wide. The 
cross section of the trough is shown in Fig. 14.24. Find x.

12.0 cm

x
x x

x
! x " 20

Fig. 14.24

 67. The circular solar cell and square solar cell shown in Fig. 14.25 
have a combined surface area of 40.0 cm2. Find the radius of the 
circular cell and the side of the square cell.

7.00 cmFig. 14.25

 68. A plastic band 19.0 cm long is bent into the shape of a triangle 
with sides 1x - 1, 15x - 1, and 9. Find x.

 69. A ferry travels from Digby, Nova Scotia, to St. John, New 
Brunswick, and later it returns to Digby at an average speed that 
is 3.2 km/h slower. If Digby is 72 km from St. John, and the 
total travel time is 5 hours and 42 minutes, find the average 
speed of the ferry in each direction.

 70. Two trains are approaching the same crossing on tracks that are 
at right angles to each other. Each is travelling at 60.0 km>h. If 
one is 6.00 km from the crossing when the other is 3.00 km from 
it, how much later will they be 4.00 km apart (on a direct line 
and before reaching the crossing)?

Writing Exercise
 71. Using a computer, an engineer designs a triangular support structure 

with sides (in m) of x, 1x - 1, and 4.00 m. If the perimeter is to be 
9.00 m, the equation to be solved is x + 1x - 1 + 4.00 = 9.00. 
Write one or two paragraphs explaining how to solve this equation 
by two different methods discussed in this chapter.
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 CHAPTER 14  PRACTICE TEST

 1. Solve for x: x1>2 - 2x1>4 = 3.

 2. Solve for x: 31x - 2 - 1x + 1 = 1.

 3. Solve for x: x4 - 17x2 + 16 = 0.

 4. Solve for x and y algebraically:

  x2 - 2y = 5
  2x + 6y = 1

 5. Solve for x: 13 2x + 5 = 5.

 6. The velocity v of an object falling under the influence of gravity 
in terms of its initial velocity v0, the acceleration due to gravity g, 
and the height h fallen is given by v = 2v2

0 + 2gh. Solve for h.

 7. Solve for x and y graphically:  x2 - y2 = 4
 xy = 2

 8. A rectangular desktop has a perimeter of 14.0 m and an area of 
10.0 m2. Find the length and the width of the desktop.
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LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Use the remainder theorem 
to evaluate polynomials and 
to find remainders

 Use the factor theorem to 
identify factors and zeros of 
polynomials

 Perform synthetic division
 Use the fundamental 

theorem of algebra to 
determine the number of 
roots of an equation

 Solve equations given at 
least one root

 Determine the possible 
rational roots of an equation

 Determine the maximum 
possible number of positive 
and negative roots by using 
Descartes’ rule of signs

 Solve polynomial equations 
of degree three and higher

 Solve application problems 
involving polynomial 
equations

The desire to eliminate errors in the computation of mathematical tables led the British 
mathematician Charles Babbage (1792–1871) to design a machine for solving polyno-
mial equations. Nevertheless, despite years of government financing, his difference 

engine was not realized in its entirety during his lifetime. (The first working difference engine 
was built in 1991, faithful to one of Babbage’s designs.) Babbage also designed an analytical 
engine, which he hoped would perform many kinds of calculations. Although never built, it 
did have the important features of a modern computer: input, storage, control unit, and output. 
Because of this design, Babbage is often considered the father of the computer.

We see that polynomials played an important role in the development of computers. Today, 
among many other things, computers are used to solve equations, including polynomial equa-
tions of higher degree, the topic of this chapter.

Algebraic methods for solving third- and fourth-degree polynomial equations were developed 
in the 1500s, but the search for an algebraic method for solving equations of degree five con-
tinued for a few hundred years. Although known prior to 1650, the fundamental theorem of 
algebra (which we state in this chapter) was proved in 1799 by Karl Friedrich Gauss, consid-
ered by many as the greatest mathematician of all time. The theorem guaranteed the existence 
of solutions to all polynomial equations, although it said nothing about the existence of exact 
formulas for solving them. In the early nineteenth century, it was finally established that no 
general algebraic formula exists for solving polynomials of degree higher than four.

In this chapter we study some methods for solving higher-degree polynomial equations. The 
solutions we find include all possible roots, including complex-number roots. Applications of 
higher-degree equations arise in a number of technical areas. Among them we find the calcu-
lation of resistances in an electric circuit, of the dimensions of a container or structure, and of 
various business production costs.

15Equations of 
Higher Degree

 In Section 15.3, we see how the  
design of a box to hold a product in-
volves the solution of a higher-degree 
equation.
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 15.1 The Remainder and Factor Theorems; Synthetic Division

 
Synthetic Division

In this section, we present two theorems and a simplified method for algebraic division. 
These will help us in solving polynomial equations later in the chapter. 

Any function of the form

f1x2 = a0xn + a1xn-1 + g + an  (15.1)

where a0 ≠ 0 and n is a positive integer or zero is called a polynomial function. We 
will be considering only polynomials in which the coefficients a0, a1, c, an are real 
numbers.

If we divide a polynomial by x - r, we can rewrite it in the form

f1x2 = 1x - r2q1x2 + R  (15.2)

where q1x2  is the quotient and R is the remainder.

 EXAMPLE  1  Division with remainder

Divide f1x2 = 3x2 + 5x - 8 by x - 2.
The division is shown at the left, and it shows that

3x2 + 5x - 8 = 1x - 22 13x + 112 + 14

where, for this function f1x2  with r = 2, we identify q1x2  and R as

q1x2 = 3x + 11  R = 14 ■

If we now set x = r in Eq. (15.2), we have f1r2 = q1r21r - r2 + R = q1r2 102 + R, 
which leads us to the following theorem.

■ 3x + 11
 x - 2 3x2 + 5x -   8
 3x2 - 6x
 11x -   8
 11x - 22
 14

The Remainder Theorem
If a polynomial f1x2  is divided by 1x - r2, then the remainder R is a constant 
given by f1r2 . That is,

f1r2 = R (15.3)
In other words, without having to perform the division, we can find the remainder 
by evaluating the function at x = r. Similarly, without having to evaluate the 
function, we can find f1r2  by performing the division and noting the remainder.

 EXAMPLE  2  Verifying the remainder theorem

In Example 1, f1x2 = 3x2 + 5x - 8, R = 14, and r = 2.
We find that

 f122 = 31222 + 5122 - 8

 = 12 + 10 - 8

 = 14

Therefore, f122 = 14 verifies that f1r2 = R for this example. ■

 EXAMPLE  3  Using the remainder theorem

By using the remainder theorem, determine the remainder when 3x3 - x2 - 20x + 5 
is divided by x + 4.

We start by identifying the value of r. We write x + 4 = x - 1 -42 , which means 
that r = -4. We therefore evaluate the function f1x2 = 3x3 - x2 - 20x + 5 for 
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x = -4, or find f1 -42 :

 f1 -42 = 31 -423 - 1 -422 - 201 -42 + 5

 = -192 - 16 + 80 + 5

 = -123

The remainder is -123 when 3x3 - x2 - 20x + 5 is divided by x + 4. ■

The remainder theorem allows us to establish an important connection between 
zeros of polynomials and factors of polynomials. We see in Eq. (15.2) that if the 
remainder R = 0, then f1x2 = 1x - r2q1x2 , and this shows that x - r is a factor of 
f1x2 . Therefore, we have the following theorem.

Practice Exercise

1.  Use the factor theorem to determine 
whether x - 1>2 is a factor of 
f1x2 = 2x3 + 9x2 - 11x + 3.

The Factor Theorem
If f1x2  is a polynomial and f1r2 = 0, then x - r is a factor of f1x2.

Consequently, if f1r2 = 0, then

x = r is a zero of f1x2
x - r is a factor of f1x2
x = r is a root of the equation f1x2 = 0

 EXAMPLE  4  Using the factor theorem

(a)  We determine that t + 1 is a factor of f1 t2 = t3 + 2t2 - 5t - 6 because 
f1 -12 = 0, as we now show:

f1 -12 = 1 -123 + 21 -122 - 51 -12 - 6 = -1 + 2 + 5 - 6 = 0

(b) However, t + 2 is not a factor of f1 t2  because f1 -22  is not zero, as we now show:

f1 -22 = 1 -223 + 21 -222 - 51 -22 - 6 = -8 + 8 + 10 - 6 = 4 ■

SYNTHETIC DIVISION
In the sections that follow, we will find that division of a polynomial by the factor 
x - r is also useful in solving polynomial equations. Therefore, we now develop a 
simplified form of long division, known as synthetic division. It allows us to easily 
find the coefficients of the quotient and the remainder. If the degree of the equation is 
high, it is easier to use synthetic division than to calculate f1r2 . The method for syn-
thetic division is developed in the following example.

 EXAMPLE  5  Developing synthetic division

Divide x4 + 4x3 - x2 - 16x - 14 by x - 2.
We first perform this division in the usual manner:

x3 + 6x2 + 11x + 6

x - 2 x4 + 4x3 -     x2 - 16x - 14

x4 - 2x3

6x3 - x2

6x3 - 12x2

11x2 - 16x

11x2 - 22x

6x - 14

6x - 12

-2

■            1     6       11            6
 -2 1 4 -1 -16 -14
    -2
 6
    -12
 11
    -22
 6
    -12
 -2
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In doing the division, notice that we repeat many terms and that the only important 
numbers are the coefficients. This means there is no need to write in the powers of x. 
To the left of the division, we write it without x’s and without identical terms.

All numbers below the dividend may be written in two lines. Then all coefficients of 
the quotient, except the first, appear in the bottom line. Therefore, the line above the 
dividend is omitted, and we have the table at the left.

Now, write the first coefficient (in this case, 1) in the bottom line. Also, change the -2 
to 2, which is the actual value of r. Then in the table at the left, write the 2 on the right. 
In this table, the 1, 6, 11, and 6 are the coefficients of the x3, x2, x, and constant term of 
the quotient. The -2 is the remainder.

Finally, it is easier to use addition rather than subtraction in the process, so we change 
the signs of the numbers in the middle row. Remember that originally the bottom line 
was found by subtraction. Therefore, we have the last table on the left.

In the last table at the left, we have 1 (of the bottom row) * 2 1 =  r2 = 2, the first 
number of the middle row. In the second column, 4 + 2 = 6, the second number in  
the bottom row. Then, 6 * 2 1 =  r2 = 12, the second number of the second row; 
-1 + 12 = 11; 11 * 2 = 22; 22 + 1-162 = 6; 6 * 2 = 12; and 12 + 1 -142 = -2.

We read the bottom line of the last table, the one we use in synthetic division, as

1x3 + 6x2 + 11x + 6 with a remainder of -2

The method of synthetic division shown in the last table is outlined below. ■

■ -2 1    4 -1 -16 -14
 -2 -12 -22 -12

6 11 6 -2

 1 4 -1 -16 -14 2
-2 -12 -22 -12

1     6   11   6    -2

 1 4 -1 -16 -14 2
2     12    22    12

1     6   11   6     -2

Procedure for Synthetic Division
Let f1x2  be a polynomial of degree n. To divide f1x2  by x - r:

1.  Write the coefficients of f1x2 . Be certain that the powers are in descending 
order and that zeros are inserted for missing powers.

2.  Carry down the left coefficient, then multiply it by r, and place this product 
under the second coefficient of the top line.

3.  Add the two numbers in the second column and place the result below. Multiply 
this sum by r and place the product under the third coefficient of the top line.

4.  Continue this process until the bottom row has as many numbers as the top row.

5.  Read the coefficients of xn-1, c, x, the constant term, and the remainder 
from the last line of the table.

 EXAMPLE  6  Using synthetic division

Divide x5 + 2x4 - 4x2 + 3x - 4 by x + 3 using synthetic division.
Since the powers of x are in descending order, write down the coefficients of f1x2 . 

In doing so, we must be certain to include a zero for the missing x3 term. Next, note 
that the divisor is x + 3, which means that r = -3. The -3 is placed to the right. This 
gives us a top line of

1 2 0 -4 3 -4 -3

Next, we carry the left coefficient, 1, to the bottom line and multiply it by r, -3, plac-
ing the product, -3, in the middle line under the second coefficient, 2. We then add the 
2 and the -3 and place the result, -1, below. This gives

1 2 0 -4 3  -4  -3

-3   1 * -3 = -3

1 -1

coefficients  r

add
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Now, multiply the -1 by -3 1= r2  and place the result, 3, in the middle line under the 
zero. Now, add and continue the process, obtaining the following table:

1  2  0  -4  3  -4  -3

-3  3  -9  39  -126

1  -1  3 -13  42  -130

Since the degree of the dividend is 5, the degree of the quotient is 4. This means that 
the quotient is x4 - x3 + 3x2 - 13x + 42 and the remainder is -130. In turn, this 
means that for f1x2 = x5 + 2x4 - 4x2 + 3x - 4, we have f1 -32 = -130. ■

 EXAMPLE  7  Checking a factor with synthetic division

By synthetic division, determine whether or not t + 4 is a factor of  
t4 + 2t3 - 15t2 - 32t - 16.

1 2 -15 -32 -16 -4

-4 8 28 16

1 -2 -7 -4 0

Since the remainder is zero, t + 4 is a factor. We may also conclude that

f1 t2 = 1 t + 42 1 t3 - 2t2 - 7t - 42  ■

 EXAMPLE  8  Checking a rational factor

By using synthetic division, determine whether 2x - 3 is a factor of 
2x3 - 3x2 + 8x - 12.

We first note that the coefficient of x in the divisor is not 1. Thus we write 

2x - 3 = 2ax - 3
2
b , and identify r =

3
2

 from the factorization. We have

2 -3 8 -12  3
2

3 0 12 

2 0 8 0

Since the remainder is zero, x - 3
2 is a factor. The result 2x2 + 8 can now be divided  

by 2 (the coefficient of x in the divisor) to complete the division. We obtain the quotient

x2 + 4, with remainder 0. Thus, 2ax - 3
2
b = 2x - 3 is indeed a factor of the func-

tion, and we have that

2x3 - 3x2 + 8x - 12 = 12x - 32 1x2 + 42  ■

 EXAMPLE  9  Checking a zero

Determine whether or not -12.5 is a zero of the function 
f1x2 = 6x3 + 61x2 - 171x + 100.

We use synthetic division to determine whether x - 1 -12.52  is a factor of f1x2 . 
We have

6 61 -171  100 -12.5

-75 175 -50

6 -14 4 50

Since the remainder is not zero, x - 1 -12.52  is not a factor of f1x2 , and therefore 
-12.5 is not a zero of f1x2 . ■

remainder
coefficients and constant 

of quotient

Practice Exercise

2.  Use synthetic division to determine 
whether x + 2 is a factor of 
2x3 + x2 - 12x - 8.

The procedure for synthetic division 
requires that the divisor be of the 
form x - r. If the coefficient of x in 
the divisor is not 1, the coefficient 
needs to be factored out and the 
value of r identified from the factori-
zation. The resulting quotient is then 
divided by the value of the factored 
coefficient to complete the division.

For example, if the divisor is 
3x + 1, we rewrite it as 31x - 1 -1

3 2 2 , 
and divide by 1x - 1 -1

3 2 2 . The result 
is then divided by 3 to complete the 
division.

LEARNING T IP
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EXERCISES 15.1

In Exercises 1–4, make the given changes in the indicated examples of 
this section, and then perform the indicated operations.

 1. In Example 3, change the x + 4 to x + 3 and then find the 
remainder.

 2. In Example 4(a), change the t + 1 to t - 1 and then determine if 
t - 1 is a factor.

 3. In Example 6, change the x + 3 to x + 2 and then perform the 
synthetic division.

 4. In Example 8, change the 2x - 3 to 2x + 3 and then determine 
whether 2x + 3 is a factor.

In Exercises 5–10, find the remainder by long division.

 5. 1x3 + 2x + 32 , 1x + 12
 6. 1x4 - 4x3 - x2 + x - 1002 , 1x + 32
 7. 12x5 - x2 + 8x + 442 , 1x + 22
 8. 14s3 - 9s2 - 24s - 172 , 1s - 52
 9. 12x4 - 3x3 - 2x2 - 15x - 162 , 12x - 32
 10. 12x4 - 10x2 + 30x - 602 , 1x + 42
In Exercises 11–16, find the remainder using the remainder theorem. 
Do not use synthetic division.

 11. 1R4 + R3 - 9R2 + 32 , 1R + 42
 12. 14x4 - x2 + 5x - 72 , 1x - 32
 13. 12x4 - 7x3 - x2 + 82 , 1x - 32
 14. 13n4 - 13n2 + 10n - 102 , 1n + 42
 15. 1x5 - 3x3 + 5x2 - 10x + 62 , 1x - 22
 16. 13x4 - 12x3 - 60x + 42 , 1x - 0.52
In Exercises 17–22, use the factor theorem to determine whether or 
not the second expression is a factor of the first expression. Do not 
use synthetic division.

 17. 4x3 + x2 - 16x - 4, x - 2

 18. 3x3 + 14x2 + 7x - 4, x + 4

 19. 3V4 - 7V3 + V + 8, V - 2

 20. x5 - 2x4 + 3x3 - 6x2 - 4x + 8, x - 2

 21. x61 - 1, x + 1 22. x7 - 128-1, x + 2-1

In Exercises 23–32, perform the indicated divisions by synthetic division.

 23. 1x3 + 2x2 - x - 22 , 1x - 12
 24. 1x3 - 3x2 - x + 22 , 1x - 22
 25. 1x3 + 2x2 - 3x + 42 , 1x + 12
 26. 12x3 - 4x2 + x - 12 , 1x + 22
 27. 1p6 - 6p3 - 2p2 - 62 , 1p - 22
 28. 1x5 + 4x4 - 82 , 1x + 12  29. 1x7 - 1282 , 1x - 22
 30. 120x4 + 11x3 - 89x2 + 60x - 772 , 1x + 2.752
 31. 12x4 + x3 + 3x2 - 12 , 12x - 12
 32. 16t4 + 5t3 - 10t + 42 , 13t - 22
In Exercises 33–40, use the factor theorem and synthetic division to 
determine whether or not the second expression is a factor of the first.

 33. 2x5 - x3 + 3x2 - 4; x + 1 34. t5 - 3t4 - t2 - 6; t - 3

 35. 4x3 - 6x2 + 2x - 2; x - 1
2 36. 3x3 - 5x2 + x + 1; x + 1

3

 37. 2Z4 - Z3 - 4Z2 + 1; 2Z - 1

 38. 6x4 + 5x3 - x2 + 6x - 2; 3x - 1

 39. 4x4 + 2x3 - 8x2 + 3x + 12; 2x + 3

 40. 3x4 - 2x3 + x2 + 15x + 4; 3x + 4

In Exercises 41–44, use synthetic division to determine whether or not 
the given numbers are zeros of the given functions.

 41. x4 - 5x3 - 15x2 + 5x + 14; 7

 42. r4 + 5r3 - 18r - 8; -4

 43. 85x3 + 348x2 - 263x + 120; -4.8

 44. 2x3 + 13x2 + 10x - 4; 1
2

In Exercises 45–58, solve the given problems.

 45. If f1x2 = 2x3 + 3x2 - 19x - 4, and f1x2 = 1x + 42g1x2 , 
find g1x2 .

 46. Using synthetic division, divide ax2 + bx + c by x + 1.

 47.  By division, show that 2x - 1 is a factor of 
f1x2 = 4x3 + 8x2 - x - 2. May we therefore conclude that 
f112 = 0? Explain.

 48. By division, show that x2 + 2 is a factor of 
f1x2 = 3x3 - x2 + 6x - 2. May we therefore conclude that 
f1 -22 = 0? Explain.

 49. For what value of k is x - 2 a factor of f1x2 = 2x3 + kx2 - x + 14?

 50. For what value of k is x + 1 a factor of 
f1x2 = 3x4 + 3x3 + 2x2 + kx - 4?

 51. Use synthetic division: 1x3 - 3x2 + x - 32 , 1x + j2 .

 52. Use synthetic division: 12x3 - 7x2 + 10x - 62 , [x - 11 + j2].

 53. If f1x2 = -g1x2 , do the functions have the same zeros? Explain.

 54. Do the functions f1x2  and f1 -x2  have the same zeros? Explain.

 55. In finding the electric current in a certain circuit, it is necessary to

  factor the denominator of 
2s

s3 + 5s2 + 4s + 20
. Is (a) 1s - 22

  or (b) 1s + 52  a factor?

 56. In the theory of the motion of a sphere moving through a fluid, 
the function f1r2 = 4r3 - 3ar2 - a3 is used. Is (a) r = a or 
(b) r = 2a a zero of f1r2?

 57. In finding the volume V (in cm3) of a certain gas in equilibrium 
with a liquid, it is necessary to solve the equation 
V3 - 6V2 + 12V = 8. Use synthetic division to determine if 
V = 2 cm3.

 58. An architect is designing a window in the shape of a segment of a 

circle. An approximate formula for the area is A =
h3

2w
+ 2wh

3
,

  where A is the area, w is the width, and h is the height of the seg-
ment. If the width is 1.500 m and the area is 0.5417 m2, use syn-
thetic division to show that h = 0.500 m.

Answers to Practice Exercises

1. Yes 1R = 02   2. No 1R = 42
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 15.2 The Roots of an Equation

■ The fundamental theorem of algebra was 
first proved in 1799 by the German mathemati-
cian Karl Gauss (1777–1855) for his doctoral 
thesis. During his lifetime, Gauss gave three 
other different proofs of the theorem. See the 
chapter introduction.

 
 

Remaining Quadratic Factor

In this section, we present certain theorems that are useful in determining the number 
of roots in the equation f1x2 = 0 and the nature of some of these roots. In dealing 
with polynomial equations of higher degree, it is helpful to have as much of this kind of 
information as we can find before actually solving for all of the roots, including any 
possible complex roots. A graph does not show the complex roots an equation may 
have, but we can verify the real roots, as we show in some of the examples that follow.

The first of these theorems is so important that it is called the fundamental theo-
rem of algebra. As we will see, the other two theorems are a direct consequence of the 
fundamental theorem.

The Fundamental Theorem of Algebra and Related Theorems
1.  (The fundamental theorem of algebra) Every polynomial equation has at 

least one real or complex root.

2. A polynomial of degree n can be factored into n linear factors.

3. A polynomial equation of degree n has exactly n roots.

The proof of the fundamental theorem is of an advanced nature, and therefore we 
accept its validity at this time. However, using the fundamental theorem, we can show 
the validity of the other two statements.

Let us assume that we have a polynomial equation f1x2 = 0 and that we are look-
ing for its roots. By the fundamental theorem, we know that it has at least one root. 
Assuming that we can find this root by some means (the factor theorem, for example), 
we call this root r1. Thus,

f1x2 = 1x - r12 f11x2
where f11x2  is the polynomial quotient found by dividing f1x2  by 1x - r12 . 
However, since the fundamental theorem states that any polynomial equation has at 
least one root, this must apply to f11x2 = 0 as well. Let us assume that f11x2 = 0 
has the root r2. Therefore, this means that f1x2 = 1x - r12 1x - r22 f21x2 . 
Continuing this process until one of the quotients is a constant a, we have

f1x2 = a1x - r12 1x - r22 g1x - rn2
Note that one linear factor appears each time a root is found and that the degree of the 
quotient is one less each time. Therefore, if f1x2  is of degree n, there are n linear fac-
tors, with one root associated with each of them.

 EXAMPLE  1  Illustrating the fundamental theorem

For the equation f1x2 = 2x4 - 3x3 - 12x2 + 7x + 6 = 0, we are given the factors 
that we show. In the next section, we will see how to find these factors.

For the function f1x2 , we have

 2x4 - 3x3 - 12x2 + 7x + 6 = 1x - 32 12x3 + 3x2 - 3x - 22
 2x3 + 3x2 - 3x - 2 = 1x + 22 12x2 - x - 12

 2x2 - x - 1 = 1x - 12 12x + 12
 2x + 1 = 21x + 1

22
Therefore,

2x4 - 3x3 - 12x2 + 7x + 6 = 21x - 32 1x + 22 1x - 12 1x + 1
22 = 0

The degree of f1x2  is 4. There are four linear factors: 1x - 32 , 1x + 22 , 1x - 12 , 
and 1x + 1

22 . There are four roots of the equation: 3, -2, 1, and -1
2. Thus, we have 

verified each of the theorems above for this example. ■
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It is not necessary for each root of an equation to be different from the other roots. 
For example, the equation 1x - 122 = 0 has two roots, both of which are 1. Such 
roots are referred to as multiple (or repeated) roots.

When we solve the equation x2 + 1 = 0, the roots are j and - j. In fact, for any 
quadratic equation (with real coefficients) that has a root of the form a + bj 1b ≠ 0), 
there is also a root of the form a - bj. This is so because we can find the solutions of 
an equation of the form ax2 + bx + c = 0 from the quadratic formula as

-b + 2b2 - 4ac
2a

 and 
-b - 2b2 - 4ac

2a

and the only difference between these roots is the sign before the radical. The result is 
also true for polynomial equations of any degree.

 EXAMPLE  2  Illustrating complex roots

Consider the equation f1x2 = 1x - 1231x2 + x + 12 = 0.
The factor 1x - 123 shows that there is a triple root of 1, and there is a total of five 

roots, since the highest-power term would be x5 if we were to multiply out the function. 
To find the other two roots, we use the quadratic formula on the factor 1x2 + x + 12 . 
This is permissible, since we are finding the values of x for

x2 + x + 1 = 0

For this, we have

x =
-1 { 11 - 4

2

Thus,

x =
-1 + j13

2
 and x =

-1 - j13
2

Therefore, the roots of f1x2 = 0 are 1, 1, 1, 
-1 + j13

2
, and 

-1 - j13
2

. As shown

in Fig. 15.1, the graph of f1x2  intersects the x-axis at x = 1, so that x = 1 is verified 
as a root of f1x2 = 0. However, it is not possible to tell from the graph that this is a 
triple root or that there are complex roots. ■

 EXAMPLE  3  Solving an equation given one root

Solve the equation 3x3 + 10x2 - 16x - 32 = 0; -4
3 is a root.

Using synthetic division and the given root, we have the table shown at the left. 
From this, we see that

3x3 + 10x2 - 16x - 32 = 1x + 4
32 13x2 + 6x - 242

We know that x + 4
3 is a factor from the given root and that 3x2 + 6x - 24 is a factor 

found from synthetic division. This second factor can be factored as

3x2 + 6x - 24 = 31x2 + 2x - 82 = 31x + 42 1x - 22
Therefore, we have

3x3 + 10x2 - 16x - 32 = 31x + 4
32 1x + 42 1x - 22

This means the roots are -  43, -4, and 2. The three real roots are the three intersections 
of f1x2  with the x-axis, as shown in Fig. 15.2. ■

If the coefficients of the equation 
f1x2 = 0 are real and a + bj 1b ≠ 02  
is a complex root, then its conjugate, 
a - bj, is also a root.

LEARNING T IP

From Example 2, we can see that 
whenever enough roots are known so 
that the remaining factor is quad-
ratic, it is possible to find the remain-
ing roots from the quadratic formula. 
This is true for finding real or com-
plex roots.

LEARNING T IP
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 EXAMPLE  4  Solving an equation given two roots

Solve x4 + 3x3 - 4x2 - 10x - 4 = 0; -1 and 2 are roots.
Using synthetic division and the root -1, the first table at the left shows that

x4 + 3x3 - 4x2 - 10x - 4 = 1x + 12 1x3 + 2x2 - 6x - 42
We now know that x - 2 must be a factor of x3 + 2x2 - 6x - 4, since it is a factor of 
the original function. Again, using synthetic division and this time the root 2, we have 
the second table at the left. Thus,

x4 + 3x3 - 4x2 - 10x - 4 = 1x + 12 1x - 22 1x2 + 4x + 22
Since the original equation can now be written as1x + 12 1x - 22 1x2 + 4x + 22 = 0

the remaining two roots are found by solving

x2 + 4x + 2 = 0

by the quadratic formula. This gives us

x =
-4 { 116 - 8

2
=

-4 { 212
2

= -2 { 12

Therefore, the roots are -1, 2, -2 + 12, and -2 - 12. ■

 EXAMPLE  5  Solving an equation given a double root

Solve the equation 3x4 - 26x3 + 63x2 - 36x - 20 = 0, given that 2 is a double root.
Using synthetic division, we have the first table at the left. It tells us that

3x4 - 26x3 + 63x2 - 36x - 20 = 1x - 22 13x3 - 20x2 + 23x + 102
Also, since 2 is a double root, it must be a root of 3x3 - 20x2 + 23x + 10 = 0. Using 
synthetic division again, we have the second table at the left. This second quotient 
3x2 - 14x - 5 factors into 13x + 12 1x - 52 . The roots are 2, 2, -  13, and 5.

Since the quotient of the first division is the dividend for the second division, both 
divisions can be done without rewriting the first quotient as follows:

3 -26 63 -36 -20 2

6 -40 46 20

3 -20 23 10 0 2

6 -28 -10

3 -14 -5 0 ■

 EXAMPLE  6  Solving an equation given a complex root

Solve the equation 2x4 - 5x3 + 11x2 - 3x - 5 = 0, given that 1 + 2j is a root.
Since 1 + 2j is a root, we know that 1 - 2j is also a root. Using synthetic division 

twice, we can then reduce the remaining factor to a quadratic function.

2 -5 11  -3  -5 1 + 2j

2 + 4j -11 - 2j 4 - 2j   5

2 -3 + 4j   - 2j 1 - 2j  0 1 - 2j

2 - 4j -1 + 2j -1 + 2j

2 -1 -1 0

The quadratic factor 2x2 - x - 1 factors into 12x + 12 1x - 12 . Therefore, the roots 
of the equation are 1 + 2j, 1 - 2j, 1, and -  12. As we can see, the graph in Fig. 15.3 
shows only the real roots. ■

first division

second division

■ 1  3 -4 -10 -4  -1
-1 -2 6 4

1  2 -6 -4 0

■ 1 2 -6 -4  2
2 8 4

1 4 2 0

Practice Exercise

1.  Solve x4 - x3 - 2x2 - 4x - 24 = 0, 
given that -2 and 3 are roots.

■ 3 -20 23 10  2
6 -28 -10

3 -14 -5 0

■ 3 -26 63 -36 -20  2
6 -40 46 20

3 -20 23 10 0

Fig. 15.3 
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If f1x2  is of degree n and the roots of f1x2 = 0 are real and different, the graph of 
f1x2  crosses the x-axis n times and f1x2  changes signs as it crosses. See Fig. 15.4, 
where n = 4, the equation has four changes of sign, and the graph crosses four times.

In Fig. 15.4, we see that for two points on the graph, the graph must cross the x-axis 
an odd number of times between points on the different sides of the x-axis and an even 
number of times between points on the same side of the x-axis, if at all.

For each pair of complex roots, the number of times the graph crosses the x-axis is 
reduced by two (Fig. 15.5). For multiple roots, the graph crosses the x-axis once if the 
multiple is odd, or is tangent to the x-axis if the multiple is even (Fig. 15.6).

The graph must cross the x-axis at least once if the degree of f1x2  is odd, because 
the range includes all real numbers (Figs. 15.5 and 15.6). The curve may not cross the  
x-axis if the degree of f1x2  is even, because the range is bounded at a minimum point 
or a maximum point (Fig. 15.7), as we have seen for the quadratic function.

Graphical Features Indicating  
Number and Types of Roots

Fig. 15.4 
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EXERCISES 15.2

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the resulting equation.

 1. In Example 2, change the middle term of the second factor to 2x.

 2. In Example 6, change the middle three terms to the left of the =  
sign to -3x3 + 7x2 + 7x, given the same root.

In Exercises 3–6, find the roots of the given equations by inspection.

 3. 1x - 22 1x2 - 92 = 0 4. x12x + 5221x2 - 642 = 0

 5. 1x2 + 6x + 92 1x2 + 42 = 0

 6. 14x2 + 92 14x2 + 4x + 12 = 0

In Exercises 7–26, solve the given equations using synthetic division, 
given the roots indicated.

 7. x3 + x2 - 8x - 12 = 0 1r1 = -22
 8. R3 + 1 = 0 1r1 = -12
 9. 2x3 + 11x2 + 20x + 12 = 0 1r1 = -3

22
 10. 4x3 - 20x2 - x + 5 = 0 1r1 = 1

22
 11. 3x3 + 2x2 + 3x + 2 = 0 1r1 = j2
 12. x3 + 5x2 + 9x + 5 = 0 1r1 = -2 + j2
 13. t4 + t3 - 2t2 + 4t - 24 = 0 1r1 = 2, r2 = -32
 14. x4 - 2x3 - 20x2 - 8x - 96 = 0 (r1 = 6, r2 = -4)

 15. 2x4 - 19x3 + 39x2 + 35x - 25 = 0 (5 is a double root)

 16. 4n4 + 28n3 + 61n2 + 42n + 9 = 0 (-3 is a double root)

 17. 6x4 + 5x3 - 15x2 + 4 = 0 1r1 = -1
2, r2 = 2

32

 18. 6x4 - 5x3 - 14x2 + 14x - 3 = 0 1r1 = 1
3, r2 = 3

22
 19. 2x4 - x3 - 4x2 + 10x - 4 = 0 1r1 = 1 + j2
 20. s4 - 8s3 - 72s - 81 = 0 1r1 = 3j2
 21. x5 - 3x4 + 4x3 - 4x2 + 3x - 1 = 0 (1 is a triple root)

 22. 12x5 - 7x4 + 41x3 - 26x2 - 28x + 8 = 0 1r1 = 1, r2 = 1
4, r3 = -2

32
 23. P5 - 3P4 - P + 3 = 0 1r1 = 3, r2 = j2
 24. 4x5 + x3 - 4x2 - 1 = 0 (r1 = 1, r2 = 1

2  j)

 25. 1x6 + 2x5 - 4x4 - 10x3 - 41x2 - 72x - 36 = 0  
(-1 is a double root; 2 j is a root)

 26. x6 - x5 - 2x3 - 3x2 - x - 2 = 0 ( j is a double root)

In Exercises 27 and 28, answer the given questions.

 27. Why cannot a third-degree polynomial function with real coeffi-
cients have zeros of 1, 2, and j?

 28. How can the graph of a fourth-degree polynomial equation have 
its only x-intercepts as 0, 1, and 2?

In Exercises 29 and 30, form the indicated equations.

 29. Form a polynomial equation of degree 3 and with integral coeffi-
cients, having a root of 1 + j, and for which f122 = 4.

 30. Form a polynomial equation of the smallest possible degree and 
with integral coefficients, having a double root of 3 and a root of j.

Answer to Practice Exercise

1. -2, 3, 2j, -2j
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 15.3 Rational and Irrational Roots
 
 

Roots of a Polynomial Equation

The product 1x + 22 1x - 42 1x + 32  equals x3 + x2 - 14x - 24. Note how the 
constant 24 is determined only by the 2, 4, and 3. These numbers represent the roots of the 
equation if the given function is set equal to zero. In fact, if we find all the integral roots of 
an equation with integral coefficients and represent the equation in the form

f1x2 = 1x - r12 1x - r22 g1x - rk2 fk+11x2 = 0

where all the roots indicated are integers, the constant term of f1x2  must have factors 
of r1, r2, c, rk. This leads us to the result in the Learning Tip to the left.

 EXAMPLE  1  Possible integral roots if a0 = 1

The equation x5 - 4x4 - 7x3 + 14x2 - 44x + 120 = 0 can be written as1x - 52 1x + 32 1x - 22 1x2 + 42 = 0

We now note that 5132 122 142 = 120. Thus, the roots 5, -3, and 2 are numerical 
factors of 0 120 0 . The theorem states nothing about the signs involved. ■

If the coefficient a0 of the highest-power term of f1x2  is an integer not equal to 1, 
the polynomial equation f1x2 = 0 may have rational roots that are not integers.  
We can factor a0 from every term of f1x2 . Thus, any polynomial equation 
f1x2 = a0xn + a1xn-1 + g + an = 0 with integral coefficients can be written in 
the form

f1x2 = a0axn +
a1

a0
 xn-1 + g +

an

a0
b = 0

Since an and a0 are integers, an>a0 is a rational number. Using the same reasoning as 
with integral roots applied to the polynomial within the parentheses, we see that any 
rational roots are factors of an>a0. This leads to the following theorem:

In a polynomial equation f1x2 = 0 
with integral coefficients, if the coef-
ficient of the highest power is 1, then 
any integral roots are factors of the 
constant term of f1x2 .

LEARNING T IP

Rational Roots of a Polynomial Equation
Any rational root rr of a polynomial equation (with integral coefficients)

f1x2 = a0xn + a1xn-1 + g + an = 0

is an integral factor of an divided by an integral factor of a0. Therefore,

rr =
integral factor of an

integral factor of a0
 (15.4)

 EXAMPLE  2  Possible rational roots

If f1x2 = 4x3 - 3x2 - 25x - 6, any possible rational roots must be integral factors 
of 6 divided by integral factors of 4. These factors of 6 are 1, 2, 3, and 6, and these fac-
tors of 4 are 1, 2, and 4. Forming all possible positive and negative quotients, any pos-
sible rational roots that exist will be found in the following list: {1, {1

2, {1
4, {2, {3, 

{3
2, {3

4, {6.
The roots of this equation are -2, 3, and -  14. ■

There are 16 different possible rational roots in Example 2, but we cannot tell which 
of these are the actual roots. Therefore we now present a rule, known as Descartes’ rule 
of signs, which will help us find these roots.

■ Descartes’ rule of signs is named for the 
French mathematician René Descartes  
(1596–1650). (See page 95.)
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If f1x2  has all positive terms, then any positive number substituted in f1x2  must 
give a positive value for f1x2 . This indicates that the number substituted in the func-
tion is not a root. Thus, there must be at least one negative and one positive term in the 
function for any positive number to be a root.

When the number of positive roots is less than the number of sign changes of f1x2, 
it is always less by an even number (because complex roots come in pairs). Therefore, 
for a single sign change we have the conclusion in the Learning Tip to the left.

 EXAMPLE  3  Using Descartes’ rule of signs

By Descartes’ rule of signs, determine the maximum possible number of positive and 
negative roots of 3x3 - x2 - x + 4.

Here, f1x2 = 3x3 - x2 - x + 4. The first term is positive, and the second is neg-
ative, which indicates a change of sign. The third term is also negative; there is no 
change of sign from the second to the third term. The fourth term is positive, thus giv-
ing us a second change of sign, from the third to the fourth term. Hence, there are two 
changes in sign, which we can show as follows:

f1x2 = 3x3 - x2 - x + 4

Since there are two changes of sign in f1x2 , there are no more than two positive roots 
of f1x2 = 0.

To find the maximum possible number of negative roots, we must find the number 
of sign changes in f1 -x2 . Thus,

 f1 -x2 = 31 -x23 - 1 -x22 - 1 -x2 + 4

 = -3x3 - x2 + x + 4

There is only one change of sign in f1 -x2 ; therefore, there is one negative root. ■

 EXAMPLE  4  Using Descartes’ rule of signs

For the equation 4x5 - x4 - 4x3 + x2 - 5x - 6 = 0, we write

 f1x2 = 4x5 - x4 - 4x3 + x2 - 5x - 6

 f1 -x2 = -4x5 - x4 + 4x3 + x2 + 5x - 6

Thus, there are no more than three positive and two negative roots. ■

We now summarize all the information that can be used to find the roots of a poly-
nomial equation f1x2 = 0 of degree n and with real coefficients algebraically. We 
include two rules we have not seen yet, but which will be illustrated in the examples 
that follow the summary, together with the complete method for solving polynomial 
equations.

1 2
two sign changes

one sign change

three sign changes

two sign changes

Descartes’ Rule of Signs
1.  The number of positive roots of a polynomial equation f1x2 = 0 cannot  

exceed the number of changes in sign in f1x2  in going from one term to the 
next in f1x2 .

2.  The number of negative roots cannot exceed the number of sign changes in 
f1 -x2 .

When there is just one change of sign 
in f1x2 , there is one positive root.
When there is just one change of sign 
in f1 -x2 , there is one negative root.

LEARNING T IP

Practice Exercise

1.  Determine the maximum possible num-
ber of positive and negative roots of 
9x4 - 12x3 - 5x2 + 12x - 4 = 0.
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 EXAMPLE  5  Finding all the roots of an equation

Find the roots of the equation 2x3 + x2 + 5x - 3 = 0.
Since n = 3, there are three roots. We have

f1x2 = 2x3 + x2 + 5x - 3 and f1 -x2 = -2x3 + x2 - 5x - 3

which shows there is one positive root and no more than two negative roots, which may 
or may not be rational. The possible rational roots are {1, {1

2, {3
2, {3.

First, trying the root 1 (always a possibility if there are positive roots), we have the 
synthetic division shown at the left. The remainder of 5 tells us that 1 is not a root. 
Moreover, the bottom row of the table contains all positive numbers, so that there is no 
positive root larger than 1. Indeed, if we tried any positive number larger than 1, the 
results in the last row would be larger positive numbers than the ones we now have. 
Therefore, there is no reason to try +3>2 and +3 as roots.

Now, let us try +1
2, as shown at the left. The zero remainder tells us that +1

2 is a root, 
and the remaining factor is 2x2 + 2x + 6, which itself factors to 21x2 + x + 32 .  
By the quadratic formula, we find the remaining roots by solving the equation 
x2 + x + 3 = 0. This gives us

x =
-1 { 11 - 12

2
=

-1 { j111
2

The three roots are +1
2, 

- 1 + j111
2 , and 

- 1 - j111
2 . The graph in Fig. 15.8 verifies the 

one real root at x = 1>2. ■

 EXAMPLE  6  Solving an equation—application

During a cycle of the movement of the weight on the double spring in Fig. 15.9, the 
force F (in N) on the weight by the spring is

F = x4 - 7x3 + 12x2 + 4x

where x is the displacement (in cm) of the top of the double spring. For what values of 
x is F = 16 N?

Substituting 16 for F, we see that we are to solve the equation

x4 - 7x3 + 12x2 + 4x - 16 = 0

Roots of a Polynomial Equation of Degree n
1. There are n real or complex roots.

2. Complex roots appear in conjugate pairs.

3.  Any rational roots must be factors of the constant term divided by factors of 
the coefficient of the highest-power term.

4.  The maximum number of positive roots is the number of sign changes in 
f1x2 , and the maximum number of negative roots is the number of sign 
changes in f1 -x2 .

5.  Use synthetic division to try possible roots. When a root is found, continue 
working with the quotient, which is one degree less than the degree of the 
dividend. When n - 2 roots have been found, the remaining two roots are 
found using the quadratic formula.

6.  When trying a positive root, if the bottom row of the synthetic division table con-
tains all positive numbers, then there are no roots larger than the value tried.

7.  When trying a negative root, if the bottom row of the synthetic division table 
contains alternating signs, then there are no roots less than the value tried.

■ Some calculators have a specific feature for 
solving higher-degree equations.

Practice Exercise

2.  Find the roots of the equation 
9x4 - 12x3 - 5x2 + 12x - 4 = 0.

Fig. 15.8 
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To solve this equation, we write

 f1x2 = x4 - 7x3 + 12x2 + 4x - 16

  f1 -x2 = x4 + 7x3 + 12x2 - 4x - 16

We see that there are four roots; there are no more than three positive roots, and there is 
one negative root. Since the coefficient of x4 is 1, any possible rational roots must be 
integers. These possible rational roots are {1, {2, {4, {8, and {16. Since there is 
only one negative root, we look for this one first. Trying -2, we have

1 -7 +12 +4 -16  -2

-2 +18 -60 +112

1 -9 +30 -56 +96

The remainder is not zero, so -2 is not a root. Moreover, the signs of the bottom row of 
the table alternate in sign, so if we tried any number less than -2, the numbers would still 
alternate from term to term in the quotient. Hence -4, -8, and -16 cannot be roots.

Next, we try -1, as shown at the left. The remainder of zero tells us that -1 is the 
negative root.

Now that we have found the one negative root, we look for the positive roots. Trying 
1, we have the table at the left. The remainder of -3 tells us that 1 is not a root. Next, 
we try 2, as shown at the left. We see that 2 is a root.

It is not necessary to find any more roots by trial and error. We may now use the 
quadratic formula or factoring on the equation x2 - 6x + 8 = 0. The remaining roots 
are 2 and 4. Thus, the roots are -1, 2, 2, and 4. (Note that 2 is a double root.)

These roots now indicate that F = 16 N for displacements of -1 cm, 2 cm,  
and 4 cm. ■

By the methods we have presented, we can look for all roots of a polynomial equa-
tion. These include any possible complex roots and exact values of the rational and 
irrational roots, if they exist. These methods allow us to solve a great many polynomial 
equations for these roots, but there are numerous other equations for which these meth-
ods are not sufficient.

When a polynomial equation has more than two irrational roots, we cannot generally 
find these roots by the methods we have developed. Approximate values can be found 
on a calculator either graphically or by evaluating the function. These methods are 
illustrated in the following two examples. Another approach for approximating roots is 
discussed in Section 24.2.

 EXAMPLE  7  Finding roots with a calculator

Find the roots of the equation x3 - 2x2 - 3x + 2 = 0, using a graphing calculator.
Since the degree of the equation is 3, we know there are three roots, and since the 

degree is odd, there is at least one real root. Using Descartes’ rule of signs, we have

f1x2 = x3 - 2x2 - 3x + 2 two changes of sign

f1 -x2 = -x3 - 2x2 + 3x + 2 one change of sign

This means there is one negative root and no more than two positive roots, if any. 
Therefore, setting

y = x3 - 2x2 - 3x + 2

and using the window settings (after two or three trials) shown in the calculator display 
in Fig. 15.10, the view shows one negative and two positive roots. Using the zero fea-
ture (or the trace and zoom features), these roots are

-1.34, 0.53, 2.81 to the nearest 0.01 ■

■ 1 -8 20 -16 2
2 -12 16

1 -6 8 0

■ 1 -8 20 -16 1
1 -7 -13

1 -7 13 -3

■ 1 -7 +12 +4 -16 -1
-1 8 -20 16

1 -8 20 -16 0

Fig. 15.10 

–2

–4

4

4
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The roots of a polynomial equation can be approximated by successive evaluation of 
the function. The method can be summarized as follows.

■ See the chapter introduction.

Approximating Roots by Successive Evaluation
1. Find an interval 1a, b2  such that f1a2  and f1b2  have opposite signs.

2. Choose a point c in 1a , b2  and evaluate f1c2 .

3.  If f1c2 = 0, then c is a root. Otherwise, if f1a2  and f1c2  have opposite 
signs, then the root is in 1a , c2. If f1c2  and f1b2  have opposite signs, then 
the root is in 1c , b2.

4. Repeat steps 2 and 3 until the interval is sufficiently small.

 EXAMPLE  8  Solving an applied problem by successive evaluation

The bottom part of a box to hold a jigsaw puzzle is to be made from a rectangular piece 
of cardboard 37.0 cm by 31.0 cm by cutting out equal squares from the corners, bend-
ing up the sides, and taping the corners. See Fig. 15.11. If the volume of the bottom part 
is to be 2770 cm3, find the side of the square that is to be cut out.

Let x = the side of the square to be cut out. This means

 2770 = x137.0 - 2x2 131.0 - 2x2 volume = 2770 cm3

 = 4x3 - 136x2 + 1147x

4x3 - 136x2 + 1147x - 2770 = 0 simplify with terms on the left

We evaluate f1x2 = 4x3 - 136x2 + 1147x - 2770 for integral values of x and find 
that f142 = -102 and f152 = 65. Since f142  and f152  have opposite signs, this 
means that there is a root in 14, 52 . We pick c = 4.5 and evaluate f14.52 = 2. 
Now f142  and f14.52  have opposite signs, so there is a root in 14, 4.52 . As we con-
tinue the evaluations, we obtain the following table:Fig. 15.11 

x

x

x

x

x

x

x

x

31
.0

 c
m

37.0 cm

Interval c f 1c2 New interval14, 52 4.5 2 14, 4.5214, 4.52 4.4 -15.42 14.4, 4.5214.4, 4.52 4.48 -1.353 14.48, 4.5214.48, 4.52 4.49 0.3318 14.48, 4.492
From these values, x = 4.49 cm, to three significant digits. This value gives a volume

V = 4.49137.0 - 214.492 2 131.0 - 214.492 2 = 2770 cm3

which means that the solution checks.
Checking values greater than x = 5, we find that there is another root between 6 

and 7. Using the same procedure as above, we find that x = 6.79 cm is also a solution. 
(A third root x = 22.7 cm is obviously too large.) Therefore, there are two possible 
squares that can be cut from each corner to get a bottom part with a volume of 
2770 cm3. ■

■ Methods of evaluating functions on a  
graphing calculator are described on page 88.
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EXERCISES 15.3

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then perform the indicated operation.

 1. In Example 4, change all signs between terms.

 2. In Example 5, change the +  sign before the 5x to - .

In Exercises 3–20, solve the given equations.

 3. x3 + 2x2 - x - 2 = 0

 4. x3 + x2 - 5x + 3 = 0

 5. x3 + 2x2 - 5x - 6 = 0

 6. t3 - 12t - 16 = 0

 7. 3x3 - x - 2 = 0

 8. 3t3 + 8t2 - 1 = 0

 9. 3x3 + 11x2 + 5x - 3 = 0

 10. 4x3 - 5x2 - 23x + 6 = 0

 11. x4 - 11x2 - 12x + 4 = 0

 12. 8x4 - 32x3 - x + 4 = 0

 13. 5n4 - 2n3 + 40n - 16 = 0

 14. 4n4 - 17n2 + 14n - 3 = 0

 15. 12x4 + 44x3 + 21x2 - 11x = 6

 16. 9x4 - 3x3 + 34x2 - 12x = 8

 17. D5 + D4 - 9D3 - 5D2 + 16D + 12 = 0

 18. x6 - x4 - 14x2 + 24 = 0

 19. 4x5 - 24x4 + 49x3 - 38x2 + 12x - 8 = 0

 20. 2x5 + 5x4 - 4x3 - 19x2 - 16x = 4

In Exercises 21–24, use a graphing calculator to solve the given 
equations to the nearest 0.01.

 21. x3 - 2x2 - 5x + 4 = 0

 22. 2x4 - 15x2 - 7x + 3 = 0

 23. 8x4 + 36x3 + 35x2 - 4x - 4 = 0

 24. 2x5 - 3x4 + 8x3 - 4x2 - 4x + 2 = 0

In Exercises 25–28, find the irrational root (to the nearest 0.01) that lies 
between the given values by successive evaluation. (See Example 8.)

 25. x3 - 6x2 + 10x - 4 = 0 (0 and 1)

 26. r4 - r3 - 3r2 - r - 4 = 0 (2 and 3)

 27. 3x3 + 13x2 + 3x - 4 = 0 (-1 and 0)

 28. 3x4 - 3x3 - 11x2 - x - 4 = 0 (-2 and -1)

In Exercises 29–46, solve the given problems. Use a graphing calculator 
if necessary.

 29. Solve the following system algebraically: 
y = x4 - 11x2; y = 12x - 4

 30. Find rational values of a such that 1x - a2  will divide into 
x3 + x2 - 4x - 4 with a remainder of zero.

 31. Where does the graph of the function 
f1x2 = 4x3 + 3x2 - 20x - 15 cross the x-axis?

 32. Where does the graph of the function 
f1s2 = 2s4 - s3 - 5s2 + 7s - 6 cross the s-axis?

 33. The angular acceleration a (in rad>s2) of the wheel of a car is 
given by a = -0.2t3 + t2, where t is the time (in s). For what 
values of t is a = 2.0 rad>s2?

 34. In finding one of the dimensions d (in cm) of the support columns 
of a building, the equation 3d3 + 5d2 - 400d - 18 000 = 0 is 
found. What is this dimension?

 35. The deflection y of a beam at a horizontal distance x from one end 
is given by y = k1x4 - 2Lx3 - L3x2 , where L is the length of 
the beam and k is a constant. For what values of x is the deflec-
tion zero?

 36. The specific gravity s of a sphere of radius r that sinks to a depth

  h in water is given by s =
3rh2 - h3

4r3 . Find the depth to which a

  spherical buoy of radius 4.0 cm sinks if s = 0.50.

 37. A variable electric voltage in a circuit is given by 
V = 0.1t4 - 1.0t3 + 3.5t2 - 5.0t + 2.3, where t is the time (in 
s). If the voltage is on for 5.0 s, when is V = 0?

 38. The pressure difference p (in kPa) at a distance x (in km) from 
one end of an oil pipeline is given by p = x5 - 3x4 - x2 + 7x. 
If the pipeline is 4 km long, where is p = 0?

 39. A rectangular tray is made from a square piece of sheet metal 
10.0 cm on a side by cutting equal squares from each corner, 
bending up the sides, and then welding them together. How long 
is the side of the square that must be cut out if the volume of the 
tray is 70.0 cm3?

 40. The angle u of a robot arm with the horizontal as a function of 
time t (in s) is given by u = 15 + 20t2 - 4t3 for 0 … t … 5 s. 
Find t for u = 40°.

 41. The radii of four different-sized ball bearings differ by 1.00 mm 
in radius from one size to the next. If the volume of the largest 
equals the volumes of the other three combined, find the radii.

 42. A rectangular safe is to be made of steel of uniform thickness, in-
cluding the door. The inside dimensions are 1.20 m, 1.20 m, and 
2.00 m. If the volume of steel is 1.25 m3, find its thickness.

 43. For electrical resistors connected in parallel, the reciprocal of the 
combined resistance equals the sum of the reciprocals of the indi-
vidual resistances. If three resistors are connected in parallel such 
that the second resistance is 1400 Ω more than the first and the 
third is 5600 Ω more than the first, find the resistances for a com-
bined resistance of 1400 Ω.

 44. Each of three revolving doors has a perimeter of 6.60 m and re-
volves through a volume of 9.50 m3 in one revolution about their 
common vertical side. What are the doors’ dimensions?

 45. If a, b, and c are positive integers, find the combinations of the
  possible positive, negative, and complex roots if 

f1x2 = ax3 - bx2 + c = 0.

 46. An equation f1x2 = 0 involves only odd powers of x with posi-
tive coefficients. Explain why this equation has no real root ex-
cept x = 0.

Answers to Practice Exercises

1. 3 positive, 1 negative  2. -1, 2>3, 2>3, 1
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 CHAPTER 15   EQUATIONS

Polynomial function f1x2 = a0xn + a1xn-1 + g + an (15.1)

Remainder theorem f1x2 = 1x - r2q1x2 + R (15.2)
 f1r2 = R (15.3)

Rational roots rr =
integral factor of an

integral factor of a0
 (15.4)

 CHAPTER 15   REVIEW EXERCISES

In Exercises 1–4, find the remainder of the indicated division by the 
remainder theorem.

 1. 12x3 - 4x2 - x + 42 , 1x - 12
 2. 1x3 - 2x2 + 92 , 1x + 22
 3. 14n3 + n + 42 , 1n + 32
 4. 1x4 - 5x3 + 8x2 + 15x - 22 , 1x - 32
In Exercises 5–8, use the factor theorem to determine whether or not 
the second expression is a factor of the first.

 5. x4 + x3 + x2 - 2x - 3; x + 1

 6. 2s3 - 6s - 4; s - 2

 7. 2t4 - 10t3 - t2 - 3t + 10; t + 5

 8. 9v3 + 6v2 + 4v + 2; 3v + 1

In Exercises 9–16, use synthetic division to perform the indicated  
divisions.

 9. 1x3 + 3x2 + 6x + 12 , 1x - 12
 10. 13x3 - 2x2 + 72 , 1x - 32
 11. 12x3 - 3x2 - 4x + 32 , 1x + 22
 12. 13D3 + 8D2 - 162 , 1D + 42
 13. 1x4 + 3x3 - 20x2 - 2x + 562 , 1x + 62
 14. 1x4 - 6x3 + x - 82 , 1x - 32
 15. 12m5 - 46m3 + m2 - 92 , 1m - 52
 16. 1x6 + 63x3 + 5x2 - 9x - 82 , 1x + 42
In Exercises 17–20, use synthetic division to determine whether or not 
the given numbers are zeros of the given functions.

 17. y3 + 5y2 - 6; -3

 18. 8y4 - 32y3 - y + 4; 4

 19. 2x4 - x3 + 2x2 + x - 1; 1
2

 20. 6W4 - 7W3 + 2W2 - 9W - 6; -2
3

In Exercises 21–32, find all the roots of the given equations, using 
synthetic division and the given roots.

 21. x3 - 4x2 - 7x + 10 = 0 1r1 = 52
 22. 3B3 - B2 - 24B + 28 = 0 1r1 = 22

 23. x4 - 10x3 + 35x2 - 50x + 24 = 0 1r1 = 1, r2 = 22
 24. x4 - x3 - 5x2 - x - 6 = 0 1r1 = 3, r2 = -22
 25. 4p4 - p2 - 18p + 9 = 0 1r1 = 1

2, r2 = 3
22

 26. 15x4 + 4x3 + 56x2 + 16x - 16 = 0
  1r1 = 2>5, r2 = -2>32
 27. 4x4 + 4x3 + x2 + 4x - 3 = 0 1r1 = j2
 28. x4 + 2x3 - 4x - 4 = 0 1r1 = -1 + j2
 29. s5 + 3s4 - s3 - 11s2 - 12s - 4 = 0 1 -1 is a triple root)

 30. 24x5 + 10x4 + 7x2 - 6x + 1 = 0 
  1r1 = -1, r2 = 1

4, r3 = 1
32

 31. V5 + 4V4 + 5V3 - V2 - 4V - 5 = 0 1r1 = 1, r2 = -2 + j2
 32. 2x5 - x4 + 8x - 4 = 0 1r1 = 1

2, r2 = 1 + j2
In Exercises 33–40, solve the given equations.

 33. x3 + x2 - 10x + 8 = 0

 34. x3 - 8x2 + 20x = 16

 35. 2r3 - 3r2 + 1 = 0

 36. 2x3 - 3x2 - 11x + 6 = 0

 37. 6x3 - x2 - 12x = 5

 38. 6y3 + 19y2 + 2y = 3

 39. 4t4 - 17t2 + 14t - 3 = 0

 40. 2x4 + 5x3 - 14x2 - 23x + 30 = 0

In Exercises 41–62, solve the given problems. Where appropriate, set 
up the required equations.

 41. What are the possible numbers of real zeros (double roots count as 
two, etc.) for a polynomial with real coefficients and of degree 5?

 42. What are the possible combinations of real and complex zeros 
(double roots count as two, etc.) of a fourth-degree polynomial?

 43. If a calculator shows a real root, how many complex roots are 
possible for a sixth-degree polynomial equation f1x2 = 0?

 44. Find rational values of a such that 1x - a2  will divide into 
x3 - 13x + 3 with a remainder of -9.

 45. Explain how to find k if x + 2 is a factor of 
f1x2 = 3x3 + kx2 - 8x - 8. What is k?
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 46. Explain how to find k if x - 3 is a factor of 
f1x2 = kx4 - 15x2 - 5x - 12. What is k?

 47. Form a polynomial equation of degree 3 with integral coeffi-
cients and having roots of j and 5.

 48. If f1x2 = 3x4 - 18x3 - 2x2 + 13x - 6, and 
f1x2 = g1x2 1x - 62 , find g1x2 .

 49. Solve the following system algebraically: x2 = y + 3; xy = 2.

 50. Where does the graph of the function 
f1x2 = 2x4 - 7x3 + 11x2 - 28x + 12 cross the x-axis?

 51. Find the irrational root of the equation 3x3 - x2 - 8x - 2 = 0 
that lies between 1 and 2.

 52. A propane tank is in the shape of a cylinder with hemispheres on 
each end. The cylinder and the hemispheres have the same radius. 
If the total length of the tank is 4 m and the volume is 7.0 m3, 
what is the radius?

 53. The bending moment M (in kN # m) along a beam with a non-

  uniformly distributed load is given by M = - 25
6

x3 + 600x,

  where x is the horizontal distance from one end. For what values 
of x is the bending moment 850 kN # m?

 54. A company determined that the number s (in thousands) of com-
puter chips that it could supply at a price p of less than +5 is 
given by s = 4p2 - 25, whereas the demand d (in thousands) 
for the chips is given by d = p3 - 22p + 50. For what price is 
the supply equal to the demand?

 55. In order to find the diameter d (in cm) of a helical spring sub-
ject to given forces, it is necessary to solve the equation 
64d3 - 144d2 + 108d - 27 = 0. Solve for d.

 56. A cubical tablet for purifying water is wrapped in a sheet of foil 
0.500 mm thick. The total volume of tablet and foil is 33.1, 
greater than the volume of the tablet alone. Find the length of the 
edge of the tablet.

 57. For the mirror shown in  
Fig. 15.12, the reciprocal of the 
focal distance f  equals the sum 
of the reciprocals of the object 
distance p and image distance q 
(in cm). Find p, if q = p + 4 
and f = 1p + 12 >p.

Fig. 15.12 

p

f

q

Image

Mirror
Object

Focal point

 58. Three electric capacitors are connected in series. The capaci-
tance of the second is 1 mF more than that of the first, and the 
third is 2 mF more than the second. The capacitance of the com-
bination is 1.33 mF. The equation used to determine C, the ca-
pacitance of the first capacitor, is

  
1
C

+ 1
C + 1

+ 1
C + 3

=
3
4

  Find the values of the capacitances.

 59. The height of a cylindrical oil tank is 3.2 m more than the radius. 
If the volume of the tank is 680 m3, what are the radius and the 
height of the tank?

 60. A grain storage bin has a square base, each side of which is 
5.5 m longer than the height of the bin. If the bin holds 160 m3 
of grain, find its dimensions.

 61. A rectangular door has a diagonal brace that is 0.300 m longer 
than the height of the door. If the area of the door is 2.7 m2, find 
its dimensions.

 62. The radius of one ball bearing is 1.0 mm greater than the radius 
of a second ball bearing. If the sum of their volumes is 100 mm3, 
find the radius of each.

Writing Exercise
 63. A computer science student is to write a computer program that 

will print out the values of n for which x + r is a factor of 
xn + rn. Write a paragraph that states the values of n and  
explains how they are found.

 CHAPTER 15   PRACTICE TEST

 1. Is -3 a zero for the function 2x3 + 3x2 + 7x - 6? Explain.

 2. Find the remaining roots of the equation 
x4 - 2x3 - 7x2 + 20x - 12 = 0; 2 is a double root.

 3. Use synthetic division to perform the division 1x3 - 5x2 + 4x - 92 , 1x - 32 .

 4. Use the factor theorem and synthetic division to determine 
whether or not 2x + 1 is a factor of 2x4 + 15x3 + 23x2 - 16.

 5. Use the remainder theorem to find the remainder of the division 1x3 + 4x2 + 7x - 92 , 1x + 42 .

 6. Solve for x: 2x4 - x3 + 5x2 - 4x - 12 = 0.

 7. The ends of a 10-m beam are supported at different levels. The de-
flection y of the beam is given by y = kx21x3 + 436x - 40002 , 
where x is the horizontal distance from one end and k is a con-
stant. Find the values of x for which the deflection is zero.

 8. A cubical metal block is heated such that its edge increases by 
1.0 mm and its volume is doubled. Find the edge of the cube to 
tenths.
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of Linear Equations

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Add and subtract matrices
 Multiply a matrix by a scalar
 Solve a matrix equation
 Perform matrix multiplication
 Find the inverse of a matrix
 Solve a system of linear 

equations by using the inverse 
of the matrix of coefficients

 Solve a system of linear 
equations by using Gaussian 
elimination

 Identify a system of linear 
equations as having a unique 
solution, no solution, or an 
unlimited number of solutions

 Evaluate determinants of any 
order

 Solve a system of linear 
equations by determinants

While working with systems of linear transformations in the 1850s, the English 
mathematician Arthur Cayley developed the use of a matrix. (As we will see, a 
matrix is simply a rectangular array of numbers.) Cayley’s interests, as well as 

those of the many other mathematicians who contributed to the theory of matrices during the 
nineteenth century, were on the purely mathematical aspects of the theory, with little or no 
reference to possible applications.

It was not until the 1920s that one of the first major applications of matrices was made, when 
physicists used them in developing theories about the elementary particles within the atom. 
Their work is still very important in atomic and nuclear physics.

In the 1930s, many authors started using matrix notation to describe Gaussian elimination, an 
important method for solving systems of linear equations. (We will discuss Gaussian elimina-
tion in Section 16.5.) The matrix interpretation of Gaussian elimination became very impor-
tant after World War II, with the development of the first electronic computers. The method 
was used to study the accuracy of calculations made by the machines.

Although Gaussian elimination is named in honour of German mathematician Karl Friedrich 
Gauss, the method first appeared in a third-century b.c.e. Chinese text. Isaac Newton is 
responsible for an independent development of the method in seventeenth-century Europe. 
Thanks to his influence, the method was a standard lesson in algebra textbooks by the turn of 
the nineteenth century. Around 1800, Gauss developed his systematic version of Gaussian 
elimination in order to solve astronomical problems by the method of least squares (see 
Section 22.6).

Since about 1950, matrices have become a very important and useful tool in many other areas 
of application, such as social science and economics. They are now used extensively in busi-
ness and industry in making appropriate decisions in research, development, and production.

16

 The robotic arm Canadarm2 was 
used to assemble the International 
Space Station while in space. It is 
routinely used to move supplies, 
equipment, and even astronauts. In 
Section 16.2 we show how the 
translational and rotational 
displacements of robotic arms are 
obtained by multiplication of 
matrices.
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In this section, we introduce the definitions and some basic operations with matrices. In 
the three sections that follow, we develop additional operations and show how they are 
used in solving systems of linear equations. This is only an introduction to the use of 
matrices, and additional uses and operations with matrices are shown in other sources.

A matrix is an ordered rectangular array of numbers (called the elements of the 
matrix). If the array has n rows and m columns, it is an n * m matrix. When n = m, 
the matrix is called a square matrix. It is convenient to designate a given matrix by a 
capital letter (for example, matrix A).

 EXAMPLE  1  Illustrations of matrices

Some examples of matrices are shown here:

A = C5
1
0

0
2

-4

-1
6

-5
S   B = D9

8
1
5

T   C = [-1 6 8 9]  O = J0
0

0
0
R

Matrix A is an example of a square 3 * 3 matrix, matrix B is a 4 * 1 matrix, matrix C 
is a 1 * 4 matrix, and matrix O is a 2 * 2 matrix. Since all of the elements of O are 
zero, it is called a zero matrix. ■

To be able to refer to specific elements of a matrix and to give a general representation, 
a double-subscript notation is usually employed. That is,

A = Ca11

a21

a31

a12

a22

a32

a13

a23

a33

S
row      column

We see that the first subscript refers to the row in which the element lies and the second 
subscript refers to the column in which the element lies.

Two matrices are said to be equal if and only if they are identical. That is, they must 
have the same number of columns, the same number of rows, and the elements must 
respectively be equal.

 EXAMPLE  2  Equality of matrices

(a) c a11

a21

a12

a22

a13

a23
d = c 1

4
-5

6
0

-3
d

  if and only if a11 = 1, a12 = -5, a13 = 0, a21 = 4, a22 = 6, and a23 = -3.

(b) The matrices c 1
-1

2
-2

3
-5

d and c 1
-1

2
-2

-5
3
d

  are not equal, since the elements in the third column are reversed.

(c) The matrices c 2
-1

3
5
d and c 2

-1
3
5

0
0
d

  are not equal, since the number of columns is different. This is true despite the fact 
that both elements of the third column are zeros. ■

 16.1 Matrices: Definitions and Basic Operations
 

■ We first introduced the term matrix on  
page 171 when we described the evaluation of 
a determinant on a calculator. A determinant is 
a specific number associated with a square 
matrix. It is not a matrix.
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 EXAMPLE  3  Matrix equation

The forces acting on a bolt are in equilibrium, as shown in Fig. 16.1. Analysing the 
horizontal and vertical components as in Section 9.4, we find the following matrix 
equation. Find forces F1 and F2.c 0.98F1 - 0.88F2

0.22F1 + 0.47F2
d = c 8.0

3.5
d

From the equality of matrices, we know that 0.98F1 - 0.88F2 = 8.0 and 
0.22F1 + 0.47F2 = 3.5. Therefore, to find the forces F1 and F2, we must solve the sys-
tem of equations

 0.98F1 - 0.88F2 = 8.0

 0.22F1 + 0.47F2 = 3.5

Using determinants, we have

F1 =

2 8.0
3.5

-0.88
0.47

22 0.98
0.22

-0.88
0.47

2 =
8.010.472 - 3.51 -0.882

0.9810.472 - 0.221 -0.882 = 10.5 N

Using determinants again, or by substituting this value into either equation, we find that 
F2 = 2.6 N. These values check when substituted into the original matrix equation. ■

MATRIX ADDITION AND SUBTRACTION
If two matrices have the same number of rows and the same number of columns, their 
sum is defined as the matrix consisting of the sums of the corresponding elements. If 
the number of rows or the number of columns of the two matrices is not equal, they 
cannot be added.

 EXAMPLE  4  Adding matrices

(a) 

8.0 N

3.5 N

F2

28.1°12.7°

F1

Fig. 16.1

 J8
0

1
-2

-5
3

9
7
R + J -3

6
4

-2
6
6

0
5
R = J8 + 1 -32

0 + 6
1 + 4

-2 + 1 -22 -5 + 6
3 + 6

9 + 0
7 + 5

R
 = J5

6
5

-4
1
9

9
12

R
(b) The matrices C3

2
4

-5
9

-2

8
0
3
S and C3

2
4

-5
9

-2

8
0
3

0
0
0
S

  cannot be added since the second matrix has one more column than the first matrix. 
This is true even though the extra column contains only zeros. ■

The product of a number and a matrix (known as scalar multiplication of a matrix) 
is defined as the matrix whose elements are obtained by multiplying each element of 
the given matrix by the given number. Thus, we obtain matrix kA by multiplying the 
elements of matrix A by k. In this way, A + A and 2A are the same matrix.

Practice Exercise

1.  For matrices A and B, find A + B.

A = c 2 -4
-7 5

d B = c -9 -6
7 3

d
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 EXAMPLE  5  Scalar multiplication

For the given matrix A, find 2A:

A = c -5
3

7
0
d  2A = J21 -52

2132 2172
2102 R = c -10

6
14
0
d

By combining the definitions for the addition of matrices and for the scalar multipli-
cation of a matrix, we can define the subtraction of matrices. That is, the difference of 
matrices A and B is given by A - B = A + 1 -B2 . Therefore, we change the sign of 
each element of B, and proceed as in addition.

 EXAMPLE  6  Subtracting matrices

c 7 -4
-9 3

d - c -2 6
-8 5

d = c 7 -4
-9 3

d + c 2 -6
8 -5

d = c 9 -10
-1 -2

d
The operations of addition, subtraction, and multiplication of a matrix by a number 

are like those for real numbers. For these operations, the algebra of matrices is like the 
algebra of real numbers. We see that the following laws hold for matrices:

 A + B = B + A   (commutative law) (16.1)
 A + 1B + C2 = 1A + B2 + C  (associative law) (16.2)

 k1A + B2 = kA + kB  (16.3)
 A + O = A  (16.4)

Here, we have let O represent the zero matrix. We will find in the next section that not 
all laws for matrix operations are like those for real numbers.

■

■

Practice Exercise

2.  For matrices A and B in Practice  
Exercise 1, find A - 2B.

EXERCISES 16.1

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then perform the indicated operations.

 1. In Example 4(a), interchange the second and third columns of the 
second matrix and then add the matrices.

 2. In Example 5, find the matrix -2A.

In Exercises 3–10, determine the value of the literal numbers in each 
of the given matrix equalities.

 3. c a
c

b
d
d = c 1

4
-3

7
d  4. c x

x + y
d = c 2

5
d

 5. c x
r>4

2y
-s

z
-5t

d = c -2
12

10
-4

-9
5
d

 6. 3a + bj 2c - dj 3e + f j4 = 35j a + 6 3b + c4  1 j = 1-12
 7. C C + D

2C - D
D - 2E

S = C5
4
6
S  8. c 2x - 3y

x + 4y
d = c 13

1
d

 9. C x - 3
x - z
x + t

x + y
y + z
y - t

S = c 5
4

3
-1

d  10. c x
x + y

d = c 2 0
4 -3

d

In Exercises 11–14, find the indicated sums of matrices.

 11. c 2
-5

3
4
d + c -1

5
7

-2
d

 12. c 1
3

0
-5

9
-2

d + c 4
2

-1
0

7
-3

d
 13. £ 50

-34
-15

-82
57
62

§ + £ -55
45
26

82
14

-67
§

 14. C 4.7
-6.8
-1.9

2.1
4.8
0.7

-9.6
7.4
5.9

S + C -4.9
3.4
5.6

-9.6
0.7

10.1

-2.1
0.0

-1.6
S

In Exercises 15–34, use matrices A, B, and C to find the indicated 
matrices.

A = c -1 4 -7
2 -6 11

d B = c 7 9 -6
4 -1 -8

d C = c 3 19
7 -5

d
 15. A + B  16. A - B  17. A + C  18. B + C

 19. 2A + B  20. 2B + A  21. A - 2B  22. 3A - B

 23. -4A  24. -3B  25. -C - A  26. -1
2A + B
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 27. 3A  28. -2C  29. A + 3B  30. B - 0.5A two-car garage. The following matrix shows the number of 
houses of each type and the type of garage.

  

Type A Type B Type C Type D

£ 96 75 0 0
62 44 24 0
0 35 68 78

§Carport
1-car garage
2-car garage

  If the contractor builds two additional identical developments, 
find the matrix showing the total number of each house-garage 
type built in the three developments.

 42. The inventory of a drug supply company shows that the following 
numbers of cases of bottles of vitamins C and B3 (niacin) are in 
stock: vitamin C—25 cases of 100-mg bottles, 10 cases of 250-
mg bottles, and 32 cases of 500-mg bottles; vitamin B3—30 cases 
of 100-mg bottles, 18 cases of 250-mg bottles, and 40 cases of 
500-mg bottles. This is represented by matrix A below. After two 
shipments are sent out, each of which can be represented by 
matrix B below, find the matrix that represents the remaining 
inventory.

  A = c 25
30

10
18

32
40

d  B = c 10
12

5
4

6
8
d

 43. One serving of brand K of breakfast cereal provides the given per-
centages of the given vitamins and minerals: vitamin A, 15%; 
vitamin C, 25%; calcium, 10%; iron, 25%. One serving of brand G 
provides: vitamin A, 10%; vitamin C, 10%; calcium, 10%; iron, 
45%. One serving of tomato juice provides: vitamin A, 15%; vita-
min C, 30%; calcium, 3%; iron, 3%. One serving of orange- 
pineapple juice provides vitamin A, 0%; vitamin C, 100%; calcium, 
2%; iron, 2%. Set up a two-row, four-column matrix B to represent 
the data for the cereals and a similar matrix J for the juices.

 44.  Referring to Exercise 43, find the matrix B + J and explain the 
meaning of its elements.

Answers to Practice Exercises

1.  c -7 -10
0 8

d   2. c 20 8
-21 -1

d

 31. A - C  32. -4A - 3B  33. -6B + A  34. A - B + 2C

In Exercise 35–38, use matrices A and B to show that the indicated laws 
hold for these matrices. In Exercise 35, explain the meaning of the result.

A = C -1 2 3 7
0 -3 -1 4
9 -1 0 -2

S  B = C4 -1 -3 0
5 0 -1 1
1 11 8 2

S
 35.  A + B = B + A 36. A + O = A

 37. - 1A - B2 = B - A 38. 31A + B2 = 3A + 3B

In Exercises 39 and 40, find the unknown quantities in the given 
matrix equations.

 39. An airplane is flying in a direction 21.0° north of east at 235 km>h 
but is headed 14.5° north of east. The wind is from the southeast. 
Find the speed of the wind vw and the speed of the plane vp rela-
tive to the wind from the given matrix equation. See Fig. 16.2.

  c vp  cos  14.5° - vw  cos  45.0°
vp  sin  14.5° + vw  sin  45.0°

d = c 235  cos  21.0°
235  sin  21.0°

d
vw

vp

E
45.0 

21.0 

14.5 

235 km/h

Fig. 16.2
 40. Find the electric currents shown in Fig. 16.3 by solving the fol-

lowing matrix equation:

  C I1 + I2 + I3

-2I1 + 3I2

-3I2 + 6I3

S = C 0
24
0
S

2 ! 3 ! 6 !

I1 I2 I3

24 V

Fig. 16.3

In Exercises 41–44, perform the indicated matrix operations.

 41. The contractor of a housing development constructs four different 
types of houses, with either a carport, a one-car garage, or a 

The definition for the multiplication of matrices does not have an intuitive basis. 
However, through the solution of a system of linear equations we can, at least in part, 
show why multiplication is defined as it is. Consider Example 1.

 EXAMPLE  1  Reasoning for the definition of multiplication

If we solve the system of equations

 2x +  y = 1
 7x +  3y = 5

we get x = 2, y = -3. Checking this solution in each of the equations, we get

 2122 + 11 -32 = 1

 7122 + 31 -32 = 5

 16.2 Multiplication of Matrices
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Let us represent the coefficients of the equations by the matrix c 2
7

1
3
d  and the solu-

tions by the matrix c 2
-3

d . If we now indicate the multiplications of these matrices and 

perform it as shown c 2
7

1
3
d c 2

-3
d = c 2122 + 11 -32

7122 + 31 -32 d = c 1
5
d

we note that we obtain a matrix that properly represents the right-side values of the 
equations. (Note the products and sums in the resulting matrix.) ■

Following reasons along the lines indicated in Example 1, we now define the multi-
plication of matrices. If the number of columns in a first matrix equals the number of 
rows in a second matrix, the product of these matrices is formed as follows: The ele-
ment in a specified row and a specified column of the product matrix is the sum of the 
products formed by multiplying each element in the specified row of the first matrix by 
the corresponding element in the specific column of the second matrix. The product 
matrix will have the same number of rows as the first matrix and the same number of 
columns as the second matrix. We summarize this as follows.

Multiplication of Matrices
 If A is an n * k matrix, and B is a k * m matrix, then their product AB is an 

n * m matrix.

 The ijth element of AB is formed by multiplying each element of row i in A  
by the corresponding element of column j in B and then adding these 
products.

 The product BA requires that n = m, so just because you can form the prod-
uct AB does not mean that you can form the product BA. Clearly, AB ≠ BA 
in general, so that matrix multiplication is not commutative.

 EXAMPLE  2  Multiplying matrices

Find the product AB and the product BA, where

A = C 2
-3

1

1
0
2
S   B = c -1

3
6
0

5
1

-2
-4

d
Matrix A is 3 * 2, and matrix B is 2 * 4, so the product AB can be formed, resulting in 
a 3 * 4 matrix. The calculations are shown below, with the elements used to form the 
element AB11 and the element AB32 outlined in colour.

 C 2
-3

1

1
0
2
S J -1

3
6
0

5
1

-2
-4

R = C 21 -12 + 1132
-31 -12 + 0132

11 -12 + 2132
2162 + 1102

-3162 + 0102
1162 + 2102

2152 + 1112
-3152 + 0112

1152 + 2112
21 -22 + 11 -42

-31 -22 + 01 -42
11 -22 + 21 -42 S

 = C1
3
5

12
-18

6

11
-15

7

-8
6

-10
S

In trying to form the product BA, we see that B has four columns and A has three 
rows. Since these numbers are not the same, the product cannot be formed. ■

Practice Exercise

1. Find the product AB.

A = C -1 4
8 -2
0 12

S B = c 5 -3
-7 10

d



 16.2 Multiplication of Matrices 441

 EXAMPLE  3  Multiplying matrices

The product of two matrices below may be formed because the first matrix has four 
columns and the second matrix has four rows. The matrix is formed as shown.

■ Note that, if the second matrix had been to 
the left of the first, then the product would have 
had four rows and four columns.

 c -1
2

9
0

3
-7

-2
1
d D6

1
3
3

-2
0

-5
9

T = c -1162 + 9112 + 3132 + 1 -22 132
2162 + 0112 + 1 -72 132 + 1132 -11 -22 + 9102 + 31 -52 + 1 -22 192

21 -22 + 0102 + 1 -72 1 -52 + 1192 d
 = c -6 + 9 + 9 - 6

12 + 0 - 21 + 3
2 + 0 - 15 - 18
-4 + 0 + 35 + 9

d
 = c 6

-6
-31

40
d  

■

IDENTITY MATRIX
There are two special matrices of particular importance in the multiplication of matri-
ces. The first of these is the identity matrix I, which is a square matrix with 1’s for 
elements of the principal diagonal with all other elements zero. (The principal diagonal 
starts with the element a11.) It has the property that if it is multiplied by another square 
matrix with the same number of rows and columns, then the second matrix equals the 
product matrix.

 EXAMPLE  4  Identity matrix

Show that AI = IA = A for the matrix

A = c2
4

-3
1
d

Since A is 2 * 2, we choose I to be 2 * 2. Therefore, for this case,

I = c1
0

0
1
d   elements of principal diagonal are 1’s

Forming the indicated products, we have results as follows:

 AI = c2
4

-3
1
d  c1

0
0
1
d

 = c2112 + 1 -32 102
4112 + 1102 2102 + 1 -32 112

4102 + 1112 d = c2
4

-3
1
d

 IA = c1
0

0
1
d  c2

4
-3

1
d

 = c1122 + 0142
0122 + 1142 11 -32 + 0112

01 -32 + 1112 d = c2
4

-3
1
d  

Therefore, we see that AI = IA = A. ■

INVERSE OF A MATRIX
For a given square matrix A, its inverse A-1 is the other important special matrix. The 
matrix A and its inverse A-1 have the property that

 AA-1 = A-1A = I (16.5)



442 CHAPTER 16 Matrices; Systems of Linear Equations

If the product of two square matrices equals the identity matrix, the matrices are called 
inverses of each other. Under certain conditions, the inverse of a given square matrix 
may not exist. In the next section, we develop the procedure for finding the inverse of a 
square matrix, and the section that follows shows how the inverse is used in the solu-
tion of systems of equations. At this point, we simply show that the product of certain 
matrices equals the identity matrix and that therefore these matrices are inverses of 
each other.

 EXAMPLE  5  Inverse matrix

For the given matrices A and B, show that AB = BA = I, and therefore that B = A-1:

A = c 1
-2

-3
7
d   B = c7

2
3
1
d

Forming the products AB and BA, we have the following:

 AB = c 1
-2

-3
7
d  c7

2
3
1
d = c 7 - 6

-14 + 14
3 - 3

-6 + 7
d = c1

0
0
1
d

 BA = c7
2

3
1
d  c 1

-2
-3

7
d = c7 - 6

2 - 2
-21 + 21
-6 + 7

d = c1
0

0
1
d

Since AB = I and BA = I, B = A-1 and A = B-1. ■

 EXAMPLE  6  Matrix multiplication—application

A company makes three types of automobile parts. In one day, it produces 40 of type 
X, 50 of type Y, and 80 of type Z. Required for production are 4 units of material and 1 
worker-hour for type X, 5 units of material and 2 worker-hours for type Y, and 3 units 
of material and 2 worker-hours for type Z. By representing the number of each type 
produced as matrix A and the material and time requirements as matrix B, we have

A = 340  50  804  B = £ 4
5
3

1
2
2
§

The product AB gives the total number of units of material and the total number of 
worker-hours needed for the day’s production in a one-row, two-column matrix:

 AB = 340 50 804 £ 4
5
3

1
2
2
§

 = 3160 + 250 + 240 40 + 100 + 1604 = 3650 3004
Therefore, 650 units of material and 300 worker-hours are required. ■

 EXAMPLE  7  Multiplication of matrices—application to robotic arms

Consider the two-dimensional robotic arm in Fig. 16.4, consisting of two links, each one 
2.0 m long. The first link has been rotated 45° with respect to the x-axis, and the second 
link has been rotated 45° with respect to the first link. We can find the coordinates of the 
end of the arm by applying transformation matrices to the origin of our coordinate system.

We start by representing a point (x, y) as the vector (a 3 * 1 matrix) £ x
y
1
§ . In par-

ticular, the origin is represented by the vector £ 0
0
1
§ . If the coordinate system is rotated 

type X   type Y    type Z

                   
 type X 

 type Y 
 type Znumber of each type 

produced

units of  
material

worker-hours

material and time 
required for each

total 
units of 
material

total 
worker-hours

Practice Exercise

2.  Show that AB = BA = I.

A = c 5 -7
-2 3

d B = c 3 7
2 5

d

2 m
45∘

45∘
x

y

Fig. 16.4
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by an angle u and then translated by m units in the x-direction and n units in the y-direc-
tion, the new coordinates of the origin are found by the matrix multiplication

£  cos u -sin u m
 sin u  cos u n

0 0 1
§ £ 0

0
1
§

For our example, u = 45°, m = 2 (the length of a link), and n = 0, so the transforma-
tion matrix becomes

£  cos 45° -sin 45° 2
 sin 45°  cos 45° 0

0 0 1
§ = £ 112 - 112 2

112
112

0
0 0 1

§
Since the process is repeated twice (once for each link), the location of the end of the 
arm is given by

Some Properties of Matrix Algebra

£ 112 - 112 2
112

112 0
0 0 1

§ £ 112 - 112 2
112

112 0
0 0 1

§ £ 0
0
1
§ = £ 0 -1 2 + 22

1 0 22
0 0 1

§ £ 0
0
1
§ = £ 2 + 2222

1
§

which represents the point 12 + 22,222 .
This method can be generalized to robotic arms in three dimensions by including 

more variables. Moreover, transformation matrices are also useful for computer graph-
ics and CAD. ■

We have seen that matrix multiplication is not commutative (see Example 2); that is, 
AB ≠ BA in general. This differs from the multiplication of real numbers. Another 
difference is that it is possible that AB = O, even though neither A nor B is O. 
Moreover, the only number that does not have a multiplicative inverse is 0, yet there 
are many nonzero matrices that do not have an inverse. There are also some similari-
ties, for example, AI = A, where I and the number 1 are equivalent. Also, the distribu-
tive property A1B + C2 = AB + AC holds for matrix multiplication.

EXERCISES 16.2

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then perform the indicated multiplications.

 1. In Example 2, interchange columns 1 and 2 in matrix A and then 
do the multiplication.

 2. In Example 5, in A change -2 to 2 and -3 to 3, in B change 2 to 
-2 and 3 to -3, and then do the multiplications.

In Exercises 3–14, perform the indicated multiplications.

 3. 34 -24 c -1
2

0
6
d  4. 3 -1

2 6 -2
3 4  £ 4

1
3

0

8
-1

2

9
§

 5. c 2 -3 1
0 7 -3

d £ 90
-25

50
§  6. c 0

4
-1
11

2
2
d  £ 3

1
6

-1
2
1
§

 7. £ -8
7
2

-6

3
4

-8
4
5

§  c 1
4

2
-3

5
d  8. £ 12

43
36

-47
-18
-22

§  c 25
66

d

 9. D -1
3

10
-5

7
5

-1
12

T  c 2
5

1
-3

d  10. 35 44 c 4
-5

-4
5
d

11. c 2
5

-3
-1

d  c 3
7

0
-5

-1
8
d  12. c -7 8

5 0
d  c -90 100

10 40
d

13. c -9.2
-3.8

2.3
-2.4

0.5
9.2

d  £ 6.5
4.9

-1.8

-5.2
1.7
6.9

§
 14. c 1

-2
2
4

-6
0

6
1

1
2
d  E 1

-1
0
5
2

U

■ See the chapter introduction.
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In Exercises 15–18, find, if possible, AB and BA. If it is not possible, 
explain why.

15. A = 31 -3 84  B = £ -1
5
7
§

16. A = c -3
1

2
-4

0
5
d  B = £ -2

4
5

0
-6

1
§

17. A = c -10
42

25
-5

40
0
d  B = £ 6

-15
12

§
18. A = £ -2

3
0

1
-1

2

7
0

-1
§   B = 34 -1 54

In Exercises 19–22, show that AI = IA = A.

19. A = c 1
-2

8
2
d  20. A = c -15 28

-5 64
d

21. A = £ 1
2
1

3
0

-2

-5
1
4
§  22. A = £ -1

4
2

2
-3

1

0
1
3
§

In Exercises 23–26, determine whether or not B = A-1.

23. A = c 5
-2

-2
1
d   B = c 1

2
2
5
d

24. A = c 3
5

-4
-7

d   B = c 7
5

-4
-2

d
25. A = £ 1

2
-1

-2
-5

3

3
7

-5
§   B = £ 4

3
1

-1
-2
-1

1
-1
-1

§
26. A = £ 1

3
-2

-1
-4

3

3
8

-4
§   B = £ 8

4
-1

-5
-2

1

-4
-1

1
§

In Exercises 27–30, determine by matrix multiplication whether or not 
A is the proper matrix of solution values.

27. 3x - 2y = -1  A = c 1
2
d  

4x + y = 6

28. 4x + y = -5  A = c -2
3
d  

3x + 4y = 6

29. 3x + y + 2z = 1  
x - 3y + 4z = -3 
2x + 2y + z = 1   

A = £ -1
2
1
§

 

30. 2x - y + z = 7  
x - 3y + 2z = 6 
3x + y - z = 8   

A = £ 3
-2
-1

§
 

In Exercises 31–34, perform the indicated matrix multiplications, 
using the following matrices. For matrix A, A2 = A * A.

A = £ 2 -3 -5
-1 4 5

1 -3 -4
§  B = £ 1 -2 -6

-3 2 9
2 0 -3

§  C = £ 1 -3 -4
-1 3 4

1 -3 -4
§

31. Show that A2 = A. 32. Show that C2 = O.

 33. Show that B3 = B 34. Show that A3B3 = AB

In Exercises 35–46, perform the indicated matrix multiplications.

35. For matrices A = c a
b

b
a
d  and B = c c

d
d
c
d , show that AB = BA.

 36. For matrix A = £ 1
2
2

2
1
2

2
2
1
§ , show that A2 - 4A - 5I = O.

 37. Using two rows and columns, show that 1 - I22 = I.

 38. For J = c j
0

0
j
d , where j = 1-1, show that J2 = - I, J3 = -J, 

  and J4 = I. Explain the similarity with j2, j3, and j4.

 39. Show that A2 - I = 1A + I2 1A - I2  for A = c 2
3

4
5
d .

 40. In the study of polarized light, the matrix product 

  c 1
0

0
- j

d  c 1
1

0
- j

d  c 1
1
d  occurs 1 j = 1-12 . Find this product.

 41. In studying the motion of electrons, one of the Pauli spin matrices 

  used is sy = c 0
j

- j
0
d , where j = 1-1. Show that s2

y = I.

 42. In analysing the motion of a robotic mechanism, the following 
matrix multiplication is used. Perform the multiplication and 
evaluate each element of the result. (See Example 7.)

  £ cos 60°
sin 60°

0

-sin 60°
  cos 60°

0

0
0
1
§  £ 2

4
1
§

 43. In an ammeter, nearly all the electric current flows through a 
shunt, and the remaining known fraction of current is measured 
by the metre. See Fig. 16.5. From the given matrix equation, find 
voltage V2 and current i2 in terms of V1, i1, and resistance R, 
whichever may be applicable.

  cV2

i2
d = £ 1 0

- 1
R

1
§  cV1

i1
d

R

i1

i2V2

V1

Shunt

Fig. 16.5

 44. In the theory related to the reproduction of colour photography, 
the equation

  £X
Y
Z
§ = £ 1.0

0.5
0.3

0.1
1.0
0.4

0
0.1
1.0

§  £ x
y
z
§

  is found. The X, Y, and Z represent the red, green, and blue densi-
ties of the reproductions, respectively, and the x, y, and z repre-
sent the red, green, and blue densities, respectively, of the subject. 
Give the equations relating X, Y , and Z and x, y, and z.

 45. The path of an earth satellite can be written as

  3x y4  c 7.10
1

-1
7.23

d  c x
y
d = 35.13 * 1084

  where distances are in kilometres. What type of curve is repre-
sented? (See Section 14.1.)
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46. Using Kirchhoff’s laws on the circuit shown in Fig. 16.6, the fol-
lowing matrix equation is found. By matrix multiplication, find 
the resulting system of equations.

  £R1 + R2

-R2

0

-R2

R2 + R3 + R4

-R4

0
-R4

R4 + R5

§  £ I1

I2

I3

§ = £ V1

0
-V2

§
Answers to Practice Exercises

1. £ -33 43
54 -44

-84 120
§   2. AB = BA = c 1 0

0 1
d

R1 R3 R5

R2V1 V2

I1 I2 I3

R4

Fig. 16.6

In this section we discuss two methods for finding the inverse of a square matrix. The 
first method is straightforward, but it can only be used for 2 * 2 matrices.

 16.3 Finding the Inverse of a Matrix
Inverse of a 2 : 2

The Inverse of a 2 : 2 Matrix
1.  Evaluate the determinant of the matrix. If the determinant is zero, the inverse 

does not exist.

2. Interchange the elements on the principal diagonal.

3. Change the signs of the off-diagonal elements.

4. Divide each resulting element by the determinant.

This method is illustrated in the following example.

 EXAMPLE  1  Inverse of a 2 : 2 matrix—method 1

Find the inverse of the matrix A = c 2
4

-3
-7

d .
First, we find the determinant of the original matrix, which means we evaluate2 2

4
-3
-7

2 = -14 - 1 -122 = -2

Since the determinant is not zero, the inverse exists. Next, we interchange the elements 
on the principal diagonal and change the signs of the off-diagonal elements. This gives 
us the matrix c -7

-4
3
2
d

We now divide each element of the second matrix by -2 (the determinant). This gives

A-1 =
1

-2
c -7 3

-4  2
d = ≥ -7

-2
-4
-2

3
-2
2

-2

¥ = £ 7
2

- 3
2

2 -1
§  

 inverse

Checking by multiplication gives

AA-1 = c 2
4

-3
-7

d c 7
2

2
-3

2

-1
d = c 7 - 6

14 - 14
-3 + 3
-6 + 7

d = c 1
0

0
1
d = I

Since AA-1 = I, the matrix A-1 is the proper inverse matrix. ■

 signs changed
 elements interchanged

Practice Exercise

1. Find the inverse:

A = c 3 -8
1 -2

d
■ See Exercise 37.
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The second method, called the Gauss–Jordan method, is applicable for square 
matrices of any size.

1. Set up the given matrix and the identity matrix of the same size side by side.

2.  Transform the given matrix into the identity matrix by performing any of the 
following allowable row operations:
a. Any two rows may be interchanged.
b. Every element in any row may be multiplied by any number other than 

zero.
c. Any row may be replaced by a row whose elements are the sum of a 

nonzero multiple of itself and a nonzero multiple of another row.
Work one column at a time, transforming the columns in order from left to 
right.

3.  At every step, perform the same row operations on the identity matrix. The 
resulting matrix will be the required inverse.

■ The Gauss–Jordan method is named for the 
German mathematician Karl Gauss (1777–1855) 
and the German geodesist Wilhelm Jordan 
(1842–1899).

Note that these are row operations, not column operations, and that they are the opera-
tions used in solving a system of equations by addition and subtraction.

 EXAMPLE  2  2 : 2

Find the inverse of the matrix

A = c 2
4

-3
-7

d   this is the same matrix as in Example 1

First, we set up the given matrix with the identity matrix side by side.c 2
4

-3
-7

 `  1
0

0
1
d

The vertical line simply shows the separation of the two matrices.
We wish to transform the left matrix into the identity matrix. Therefore, the first 

requirement is a 1 for element a11. Therefore, we divide all elements of the first row 
by 2. This gives the following setup:c 1

4
-3

2

-7
 `  1

2

0
0
1
d

Next, we want to have a zero for element a21. Therefore, we subtract 4 times each ele-
ment of row 1 from the corresponding element in row 2, replacing the elements of 
row 2. This gives us the following setup:c 1

4 - 4112 -3
2

-7 - 41 -3
22  `  1

2

0 - 411
22 0

1 - 4102 d or c 1
0

-3
2

-1
 `  1

2

-2
0
1
d

Next, we want to have 1, not -1, for element a22. Therefore, we multiply each ele-
ment of row 2 by -1. This gives c 1

0
-3

2

1
 `  1

2

2
0

-1
d

Finally, we want zero for element a12. Therefore, we add 32 times each element of row 2 
to the corresponding elements of row 1, replacing row 1. This givesc 1 + 3

2102
0

-3
2 + 3

2112
1

 `  12 + 3
2122
2

0 + 3
21 -12
-1

d or c 1
0

0
1
 `  7

2

2
-3

2

-1
d

Practice Exercise

2. Find the inverse using the Gauss–Jordan

method: A = c 3 -8
1 -2

d

As in Example 2, (1) always work one 
column at a time, from left to right, 
and (2) never undo the work in a pre-
viously completed column.

LEARNING T IP
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At this point, we have transformed the given matrix into the identity matrix, and the 
identity matrix into the inverse. Therefore, the matrix to the right of the vertical bar in 
the last setup is the required inverse. Thus,

A-1 = c 7
2

2
-3

2

-1
d

As was done in Example 2, it is generally best to make the element on the principal 
diagonal for the column 1 first and then make all other elements in the column 0. Let us 
consider two more examples.

 EXAMPLE  3  2 : 2

Find the inverse of the matrix c -3
4

6
5
d .

 c -3
4

6
5
 2  1

0
0
1
d     c 1

0
-2
13

 2  -1
3
4
3

0
1
d   c 1

0
0
1
 2  - 5

39
4

39

2
13
1

13
d

c 1
4

-2
5
 `  -1

3

0
0
1
d   c 1

0
-2

1
 `  -1

3
4

39

0
1

13
d

Therefore, A-1 = c - 5
39
4

39

2
13
1

13
d , which can be checked by multiplication. ■

 EXAMPLE  4  3 : 3

Find the inverse of the matrix £ 1
3

-2

2
5

-1

-1
-1
-2

§ .

row 1 divided by -3 row 2 divided by 13 I A-1

-4 times row 1 
added to row 2

2 times row 2
added to row 1

original setup

£ 1
3

-2

2
5

-1

-1
-1
-2

 
13  0
0

0
1
0

0
0
1
§  £ 1

0
0

2
1
3

-1
-2
-4

 3  13
2

0
-1

0

0
0
1
§  £ 1

0
0

0
1
0

3
-2

1
 3 -5

3
-7

2

2
-1

3
2

0
0
1
2

§
£ 1

0
-2

2
-1
-1

-1
2

-2
 

 13  -3
 0

0
1
0

0
0
1
§  £ 1

0
0

0
1
3

3
-2
-4

 3  -5
3
2

2
-1

0

0
0
1
§  £ 1

0
0

0
1
0

3
0
1
 3 -5

-4
-7

2

2
2
3
2

0
0
1
2

§
£ 1

0
0

2
-1

3

-1
2

-4
 

 13  -3
 2

0
1
0

0
0
1
§  £ 1

0
0

0
1
0

3
-2

2
 3  -5

3
-7

2
-1

3

0
0
1
§  £ 1

0
0

0
1
0

0
0
1
 3 11

2

-4
-7

2

-5
2

2
3
2

-3
2

1
1
2

§

-3 times row 1 -2 times row 2 2 times row 3  
added to row 2 added to row 1 added to row 2

2 times row 1 -3 times row 2 -3 times row 3 
added to row 3 added to row 3 added to row 1

row 2 multiplied by -1 row 3 divided by 2 I A-1

original setup

Therefore, the required inverse matrix is

£ 11
2

-4
-7

2

-5
2

2
3
2

-3
2

1
1
2

§
which may be checked by multiplication. ■

■
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In the next example, we discuss entering a matrix, displaying it, and finding its 
inverse on a typical calculator. The manual for any particular model should be used to 
see how the various operations are done on it.

 EXAMPLE  5  4 : 4 inverse on a calculator

By using a graphing calculator, find the inverse of the matrix

A = ≥ 2
3

-2
4

-2
1
5

-5

3
5
2

-1

2
2

-3
4

¥
Using the matrix feature, in Fig. 16.7 we show the window when the elements of the 

matrix are entered. Scrolling by use of the arrow key will probably be required to enter 
all values.

To obtain the inverse, we enter [A] and then use the   x -1  key. The inverse matrix 
is found to be

A-1 = ≥ 0.435
-0.739

0.391
-1.261

-0.652
0.609

-0.087
1.391

1.652
-0.609

0.087
-2.391

1.348
-0.391
-0.087
-1.609

¥
The elements of A-1 can be checked directly on the calculator by showing that the 

product AA-1 = I (if the rounded values are used, the values of I will be approximate 
but should be sufficiently close to the necessary 1’s and 0’s). ■

Fig. 16.7

■ Note that a calculator entry such as 1E-10 
means that it is zero.

EXERCISES 16.3

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then find the matrix inverses.

 1. In Example 1, change the element -7 to -5 and then find the 
inverse using the same method.

 2. In Example 3, change the element -3 to -2 and then find the 
inverse using the same method.

In Exercises 3–10, find the inverse of each of the given matrices by the 
method of Example 1 of this section.

 17. c 25
-10

30
-14

d  18. c 1
7

-3
-5

d
 19. £ 1

-2
1

-3
7

-1

-2
3

-3
§  20. £ 1

3
-1

2
7

-2

-1
-5

0
§

 21. £ 1
-2

2

3
-5

4

2
-1

0
§  22. £ 1

-1
4

3
-4

9

4
-2
20

§
 23. £ 2

3
-1

4
4
1

0
-2

2
§  24. £ -2

0
4

6
3

-7

1
-3

3
§

In Exercises 25–34, find the inverse of each of the given matrices by 
using a graphing calculator, as in Example 5. The matrices in Exercises 
27–29 are the same as those in Exercises 21–23.

 25. c 2
-1

8
6
d  26. c 20

-12
-45

24
d

 27. £ 1
-2

2

3
-5

4

2
-1

0
§  28. £ 1

-1
4

3
-4

9

4
-2
20

§
 29. £ 2

3
-1

4
4
1

0
-2

2
§  30. £ 10

-2
20

-5
4
5

30
-5

5
§

 3. c 2
-2

-5
4
d  4. c -6

3
3

-2
d  5. c -1

4
5

10
d

 6. c 8
-4

-1
-5

d  7. c 0
2

-4
6
d  8. c 7

-6
-3

4
d

 9. c -50
26

-45
80

d  10. c 7.2
-1.3

-3.6
-5.7

d
In Exercises 11–24, find the inverse of each of the given matrices by 
transforming the identity matrix, as in Examples 2–4.

 11. c 1
2

2
3
d  12. c 1

-1
5

-4
d

 13. c 2
-1

4
-1

d  14. c -2
3

6
-4

d
 15. c 2

-1
5
2
d  16. c -2

-3
3
5
d
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 31. ≥ 1
1
0

-2

-2
-2

1
3

1
2

-1
-2

0
-3

1
3

¥  32. ≥ 3
2

-1
4

-2
0
2
1

-1
5
1
3

4
1

-2
5

¥
 33. ≥ 0.2

-0.4
1.0

-0.1

1.2
3.0

-2.4
0.4

-0.8
-1.6

3.2
0.0

-0.5
0.4
1.5
3.0

¥
 34. ≥ 12.5

-4.6
5.7
8.8

-2.6
10.0
-3.7

6.8

1.2
-4.7

7.3
14.0

7.6
-6.8
11.0
4.7

¥
In Exercises 35–42, solve the given problems.

 35. Show that the matrix c 1
1

1
1
d  has no inverse.

 36.  Find the determinant of the matrix £ 1
-2

3

-2
4

-6

0
8
6
§ . Explain what 

this tells us about its inverse.

 37. For the matrix A = c a
c

b
d
d , show that 

  
1

ad - bc
 c a

c
b
d
d c d

-c
-b

a
d = c 1

0
0
1
d

  This verifies the method of Example 1.

 38. Describe the relationship between the elements of the matrix 

  £ a
0
0

0
b
0

0
0
c
§  and the elements of its inverse.

 39. The matrix A = £ 2
-1

1

-1
4

-3

1
-3

2
§  is symmetric (note the elements 

  on opposite sides of the main diagonal are equal). Show that A-1 
is also symmetric.

 40. For the four-terminal network shown in Fig. 16.8, it can be shown 
that the voltage matrix V is related to the coefficient matrix A and 
the current matrix I by V = A-1I, where

  V = c v1

v2
d  A = c a11

a21

a12

a22
d  I = c i1

i2
d

i1
v1 v2

i2

Fig. 16.8

  Find the individual equations for v1 and v2 that give each in terms 
of i1 and i2.

 41. The rotations of a robot arm such as that shown in Fig. 16.9 are 
often represented by matrices. The values represent trigonometric 
functions of the angles of rotation. For the following rotation 
matrix R, find R-1.

  R = £ 0.8
0.0
0.6

0.0
1.0
0.0

-0.6
0.0
0.8

§
 42. In cryptography, one type of code makes use of a matrix (the 

encoding matrix) to encode a message. The receiver of the message 
decodes it using the inverse of the matrix (the decoding matrix). 
Given the following encoding matrix, find the decoding matrix.

  A = £ 6 1 1
2 1 0
1 -1 1

§
Answers to Practice Exercises

1. c -1
-1

2

4
3
2
d  2. c -1

-1
2

4
3
2
d

Fig. 16.9

As we stated at the beginning of Section 16.1, matrices can be used to solve systems of 
equations, and in this section, we show one method by which this is done. As we 
develop this method, it will be apparent that there is a great deal of numerical work 
involved. However, methods such as this one are easily programmed for use on a com-
puter, which can do the arithmetic work very rapidly. Also, most graphing calculators 
can perform these operations, and we will show an example at the end of the section in 
which a calculator is used to solve a system of four equations more readily than with 
earlier methods. It is the method of solving the system of equations that is of primary 
importance here.

Let us consider the system of equations

 a1x + b1y = c1
 a2x + b2y = c2

Recalling the definition of equality of matrices, we can write this system as

 c a1x + b1y
a2x + b2y

d = c c1

c2
d  (16.6)

 16.4 Matrices and Linear Equations

Calculator
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If we let

 A = c a1

a2

b1

b2
d   X = c x

y
d  C = c c1

c2
d  (16.7)

the left side of Eq. (16.6) can be written as the product of matrices A and X.

 AX = C (16.8)

If we now multiply (on the left) each side of this matrix equation by A-1 (assuming that 
it exists), we have

A-1AX = A-1C

Since A-1A = I, we have

IX = A-1C

However, IX = X. Therefore,

 X = A-1C (16.9)

 EXAMPLE  1  Matrix solution for a system with two equations

Use matrices to solve the system of equations

 2x - y = 7

 5x - 3y = 18

We set up the matrix of coefficients and the matrix of constants as

A = c2
5

-1
-3

d and C = c 7
18

d
By either of the methods of the previous section, we can determine the inverse of 
matrix A to be

A-1 = c3
5

-1
-2

d
We now form the matrix product A-1C.

A-1C = c3
5

-1
-2

d  c 7
18

d = c21 - 18
35 - 36

d = c 3
-1

d
Since X = A-1C, this means that c x

y
d = c 3

-1
d

Therefore, the required solution is x = 3 and y = -1, which checks when these 
values are substituted into the original equations. ■

 EXAMPLE  2  Matrix solution for two equations—application to circuits

For the electric circuit shown in Fig. 16.10, the equations used to find the currents (in 
amperes) i1 and i2 are

2.30i1 + 6.451 i1 + i22 = 15.0
1.25i2 + 6.451 i1 + i22 = 12.5

 or 
8.75i1 + 6.45i2 = 15.0
6.45i1 + 7.70i2 = 12.5

We can solve a system of linear equa-
tions by multiplying the one-column 
matrix of the constants on the right 
of the equation by the inverse of the 
matrix of the coefficients. The result 
is a one-column matrix whose ele-
ments are the required values for the 
solution. Also, note that

X = A-1C and not CA-1

as the order of matrix multiplication 
must be carefully followed.

LEARNING T IP

Practice Exercise

1.  Use matrices to solve the system of 
equations
x - 3y = 6
2x + y = 5

6.45 !

12.5 V

15.0 V

2.30 !

1.25 !

i1

i2

Fig. 16.10
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Using matrices to solve this system of equations, we set up the matrix A of coeffi-
cients, the matrix C of constants, and the matrix X of currents as

A = c8.75
6.45

6.45
7.70

d  C = c15.0
12.5

d  X = c i1
i2
d

We now find the inverse of A as

A-1 =
1

8.7517.702 - 6.4516.452 c 7.70
-6.45

-6.45
8.75

d = c 0.2988
-0.2503

-0.2503
0.3395

d
Therefore,

 X = A-1C = c 0.2988
-0.2503

-0.2503
0.3395

d  c15.0
12.5

d
 = c 0.2988115.02 - 0.2503112.52

-0.2503115.02 + 0.3395112.52 d = c1.35
0.49

d
Therefore, the required currents are i1 = 1.35 A and i2 = 0.49 A. These values check 
when substituted into the original equations. ■

 EXAMPLE  3  Matrix solution—three equations

Use matrices to solve the system of equations

 x + 4y - z = 4

 x + 3y + z = 8

 2x + 6y + z = 13

Setting up matrices A, C, and X, we have

A = £ 1
1
2

4
3
6

-1
1
1
§  C = £ 4

8
13

§  X = £ x
y
z
§

To give another example of finding the inverse of a 3 * 3 matrix, we briefly show the 
steps for finding A-1:

Thus, A-1 = £ -3
1
0

-10
3
2

7
-2
-1

§ and

X = A-1C = £ -3
1
0

-10
3
2

7
-2
-1

§   £ 4
8

13
§ = £ -12

4
0

-  80
+  24
+ 16

+  91
-  26
-  13

§ = £ -1
2
3
§

This means that x = -1, y = 2, and z = 3. ■

£ 1
1
2

4
3
6

-1
1
1
 3  1

0
0

0
1
0

0
0
1
§  £ 1

0
0

4
1

-2

-1
-2

3
 3  1

1
-2

0
-1

0

0
0
1
§  £ 1

0
0

0
1
0

7
-2

1
 3  -3

1
0

4
-1

2

0
0

-1
§

£ 1
0
2

4
-1

6

-1
2
1
 3  1

-1
0

0
1
0

0
0
1
§  £ 1

0
0

0
1

-2

7
-2

3
 3  -3

1
-2

4
-1

0

0
0
1
§  £ 1

0
0

0
1
0

7
0
1
 3  -3

1
0

4
3
2

0
-2
-1

§
£ 1

0
0

4
-1
-2

-1
2
3
 3  1

-1
-2

0
1
0

0
0
1
§  £ 1 0 7

0 1 -2
0 0 -1

 3  -3
1
0

4
-1
-2

0
0
1
§  £ 1

0
0

0
1
0

0
0
1
 3  -3

1
0

-10
3
2

7
-2
-1

§
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 EXAMPLE  4  Matrix solution—three equations

Use matrices to solve the system of equations

 x + 2y - z = -4

 3x + 5y - z = -5

 -2x - y - 2z = -5

Setting up matrices A, C, and X, we have

A = £ 1
3

-2

2
5

-1

-1
-1
-2

§   C = £ -4
-5
-5

§   X = £ x
y
z
§

Finding A-1 (see Example 3) and solving for X, we have

 A-1 = £ 11
2

-4
-7

2

-5
2

2
3
2

-3
2

1
1
2

§
 X = A-1C = £ 11

2

-4
-7

2

-5
2

2
3
2

-3
2

1
1
2

§  £ -4
-5
-3

§ = £ -2
1
4
§

This means that x = -2, y = 1, and z = 4. ■

 EXAMPLE  5  Matrix solution on a calculator—four equations

Use a calculator to perform the necessary matrix operations in solving the following 
system of equations:

2r + 4s - t + u = 5

r - 2s + 3t - u = -4

 3r + s + 2t - 4u = 8

 4r + 5s - t + 3u = -1

First, we set up matrices A, X, and C:

A = ≥2
1
3
4

4
-2

1
5

-1
3
2

-1

1
-1
-4

3

¥   X = ≥ r
s
t
u

¥   C = ≥ 5
-4

8
-1

¥
It is now necessary only to enter matrices A and C in the calculator and find the matrix 
product A-1C. (There is no need to record or display A-1.) The solution is

r = -2  s = 3  t = 0.5  u = -2.5

This solution can be checked on the calculator by storing the resulting matrix X as matrix B 
and finding the matrix product AB, which should equal matrix C. The product AB is equiva-
lent to substituting each value into the original equations, as shown in Eq. (16.8). ■
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EXERCISES 16.4

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the systems of equations.

 1. In Example 1, change the 18 to 19 and then solve the system of 
equations.

 2. In Example 3, change the 8 to 7 and the 13 to 12 and then solve 
the system of equations.

In Exercises 3–10, solve the given systems of equations by using the 
inverse of the coefficient matrix. The numbers in parentheses refer to 
exercises from Section 16.3, where the inverses may be checked.

 3. 2x - 5y = -14 132   4. -x + 5y = 4 152
  -2x + 4y = 11  4x + 10y = -4

 5. x + 2y = 7 1112   6. 2x + 4y = -9 1132
  2x + 3y = 11  -x - y = 2

 7. 2x + 5y = -6 1152   8. x - 3y - 2z = -8 1192
  -x + 2y = -6  -2x + 7y + 3z = 19 
    x - y - 3z = -3

 9. x + 3y + 2z = 5 1212   10. 2x + 4y = -2 1232
  -2x - 5y - z = -1   3x + 4y - 2z = -6 
  2x + 4y = -2  -x + y + 2z = 5

In Exercises 11–18, solve the given systems of equations by using the 
inverse of the coefficient matrix.

 11. 2x - 3y = 3  12. x + 2y = 3
  4x - 5y = 4  3x + 4y = 11

 13. 2.5x + 2.8y = -3.0  14. 12x - 5y = -400
  3.5x - 1.6y = 9.6  31x + 25y = 180

 15. x + 2y + 2z = -4 16. x - 4y - 2z = -7
  4x + 9y + 10z = -18  -x + 5y + 5z = 18
  -x + 3y + 7z = -7  3x - 7y + 10z = 38

 17. 2x + 4y + z = 5 18. 4x + y = 2
  -2x - 2y - z = -6  -2x - y + 3z = -18
  -x + 2y + z = 0  2x + y - z = 8

In Exercises 19–26, solve the given systems of equations by using the 
inverse of the coefficient matrix. You may use a calculator to perform 
the necessary matrix operations. See Example 5.

 19. 2x - y - z = 7 20. 6x + 2y + 9z = 13
  4x - 3y + 2z = 4  7x + 6y - 6z = 6
  3x + 5y + z = -10  5x - 4y + 3z = 15

 21. u - 3v - 2w = 9 22. 2x + y - z = 1
  3u + 2v + 6w = 20  3x - 2y - 8z = -3
  4u - v + 3w = 25  x + 3y + z = 10

 23. x - 5y + 2z - t = -18 24. 2p + q + 5r + s = 5
  3x + y - 3z + 2t = 17  p + q - 3r - 4s = -1
  4x - 2y + z - t = -1  3p + 6q - 2r + s = 8
  -2x + 3y - z + 4t = 11  2p + 2q + 2r - 3s = 2

 25. 2v + 3w + x - y - 2z = 6
  6v - 2w - x + 3y - z = 21
  v + 3w - 4x + 2y + 3z = -9
  3v - w - x + 7y + 4z = 5
  v + 6w + 6x - 4y - z = -4

 26. 4x - y + 2z - 2t + u = -15 
8x + y - z + 4t - 2u = 26 
2x - 6y - 2z + t - u = 10 
2x + 5y + z - 3t + 8u = -22 
4x - 3y + 2z + 4t + 2u = -4

In Exercises 27–39, solve the indicated systems of equations using the 
inverse of the coefficient matrix. In Exercises 33–38, it is necessary to 
set up the appropriate equations.

 27. For the following system of equations, solve for x2 and y using 
the matrix methods of this section, and then solve for x and y.

   x2 + y = 2
   2x2 - y = 10

 28. For the following system of equations, solve for x2 and y2 using 
the matrix methods of this section, and then solve for x and y.

   x2 - y2 = 8
   x2 + y2 = 10

 29. Solve any pair of the system of equations 2x - y = 4, 
3x + y = 1, and x - 2y = 5. Show that the solution is valid for 
any pair chosen. What conclusions can be drawn about the graphs 
of the three equations?

 30. In solving the system of equations 3x - 4y = 5, 8y - 6x = 7, 
what conclusion can be drawn?

 31. Forces F1 and F2 hold up a beam that weighs 2540 N, as shown in 
Fig. 16.11. The equations used to find the forces are

  F1 sin 47.2° + F2 sin 64.4° = 2540

  F1 cos 47.2° - F2 cos 64.4° = 0

  Find the magnitude of 
each force.

 32. In applying Kirchhoff’s laws (see Exercise 36 on page 175) to the 
circuit shown in Fig. 16.12, the following equations are found. 
Determine the indicated currents (in A).

  IA + IB + IC = 0

  2IA - 5IB = 6

  5IB - IC = -3

 33. Two batteries in an electric circuit have a combined voltage of 
18 V, and one battery produces 6 V less than twice the other. 
What is the voltage of each?

 34. An investment of $5000 is invested partly at 3.00 , and the 
remainder at 3.50 ,. If the total annual income is $167, how 
much is invested at each rate?

 35. What volume of each of a 20 , acid solution and a 50 , acid 
solution should be combined to form 48 mL of a 25 , solution?

 36. Two computer programs together require 51.8 megabytes of 
memory. If one program requires 2.0 megabytes more than twice 
the other, what are the memory requirements of each?

2540 N

64.4∘47.2∘

F1 F2

Fig. 16.11

2 ! 5 ! 1 !

IA IB IC

6 V 3 V

Fig. 16.12
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 37. A research chemist wants to make 10.0 L of gasoline containing 
2.0 , of a new experimental additive. Gasoline without additive 
and two mixtures of gasoline with additive, one with 5.0 , and 
the other with 6.0 ,, are to be used. If four times as much gaso-
line without additive as the 5.0 , mixture is to be used, how 
much of each is needed?

 38. A river tour boat takes 5.0 h to cruise downstream and 7.0 h for 
the return upstream. If the river flows at 4.0 km>h, how fast does 
the boat travel in still water, and how far downstream does the 
boat go before starting the return trip?

 39. A logging company in British Columbia harvests in four different 
regions in order to supply its clients with Douglas fir, lodgepole 
pine, western red cedar, and ponderosa pine. Considering species 

mix and yield per region, the number of hectares that must be 
logged in each region for a certain week can be found by solving 
the system of equations

324x + 240y + 224z + 274t = 3010
80y + 28z + 20t = 378

28z + 98t = 434
36x = 90

  Find x, y, z, and t.

Answer to Practice Exercise

1. x = 3, y = -1

We now show a general method that can be used to solve a system of linear equations. 
The procedure used in this method is similar to that used in finding the inverse of a 
matrix in Section 16.3. It is known as Gaussian elimination, and as noted in the chap-
ter introduction, it was developed in the early 1800s by Karl Gauss. Today, it is com-
monly used in computer programs for the solutions of systems of linear equations.

When using this method, we first rewrite the system of equations in a different form. 
In doing so, there are very specific operations that may be used on the equations. The 
following example illustrates the form that is to be obtained.

 EXAMPLE  1  

In solving the system of linear equations to the left, we see that the third equation 
directly gives us the value z = 2. Since the second equation contains only y and z, we 
can now substitute z = 2 into the second equation to get y = 1. Then we can find x by 
substituting y = 1 and z = 2 into the first equation, and get x = 6. Therefore, after 
writing the system of equations in the triangular form to the left, the solution is com-
pleted by back substitution, starting with the last equation. ■

 16.5 Gaussian Elimination

Inconsistent Systems

■  x - 3y - z = 1
 y + 2z = 5

 z = 2

1.  Transform the given system of equations into the triangular form shown in 
Example 1 by performing any of the following allowable operations:
 a. Any two equations may be interchanged.
 b. Both sides of an equation may be multiplied by a nonzero constant.
 c. A nonzero multiple of one equation may be added to another equation.

2.  If the last equation shows the value of one of the unknowns, the others are 
found by back substitution. If that is not the case, either the system has an un-
limited number of solutions (see Example 4) or the system is inconsistent and 
there is no solution (see Example 5).

Using three linear equations in three unknowns as an example, by using the above 
operations, we can change the system

  a1x + b1y + c1z = d1 
  a2x + b2y + c2z = d2 (16.10)
  a3x + b3y + c3z = d3 
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into the equivalent system

  x + b4y + c4z = d4 
 y + c5z = d5 (16.11)
 z = d6 

The solution is completed by substituting the value of z into the second equation, and 
then substituting the values of y and z into the first equation, as in Example 1.

 EXAMPLE  2  Solving a system of two equations

Solve the given system of equations by Gaussian elimination.

Given system of equations (equations and solution at left)

We want the coefficient of x in the first equation to be 1. Therefore we divide the first 
equation by 2, the coefficient of x.

We next eliminate x in the second equation by subtracting 3 times the first equation 
from the second equation.

Now, we solve the second equation for y by dividing by -7
2.

To find the value of x, we substitute the value of y = 6
7 into the first equation.

The solution is x = 11
7 , y = 6

7, which checks when substituted into the original 
equations. ■

 EXAMPLE  3  Solving a system of three equations

Solve the given system of equations by Gaussian elimination.

Given system of equations (equations and solution at left)

The coefficient of x in the first equation is already 1, so we can proceed to subtract 2 
times the first equation from the second equation and add 3 times the first equation to 
the third equation to eliminate x from the second and third equations.
To get the coefficient of y equal to 1 in the second equation, divide it by -7.

To eliminate y from the third equation, subtract 11 times the second equation from the 
third equation.

Solve for z by multiplying the third equation by 7
25 1or dividing by 25

7 2 .

The value of y is found by substituting z = 3 into the second equation.

The value of x is found by substituting y = 1 and z = 3 back into the first equation.
Thus, x = -2, y = 1, z = 3, and this solution checks in the original equations. ■

 EXAMPLE  4  Solving a system with an unlimited number of solutions

Solve the given system of equations by Gaussian elimination.

Given system of equations (equations and solution at left)

Since the first equation does not contain x, which means that a1 = 0, we cannot divide 
by a1. Therefore, interchange the first and second equations and then divide the new 
first equation by 2.

Eliminate x in the third equation by subtracting 4 times the first equation from the third 
equation.

 2x  +     y =  4
 3x  -  2y =  3
 x  +  1

2 y =  2
3x -  2y =  2
x +    1

2y =  2
-   7

2 y = -3

x +  1
2 y =  2
y = 6

7

x + 1
2 1 6

72 = 2
x =  11

7

■ This is in general  
form of Eq. (16.10).

This is in general  
form of Eq. (16.11).

x +   3y -  2z =  -5
2x -   y +  4z =   7

-3x +  2y -  3z =  -1
x +   3y -  2z =  -5

-    7y +  8z =  17
11y -  9z = -16

x +   3y -  2z =  -5
y -  8

7z =  - 17
7

11y -  9z = -16
x +   3y -  2z =  -5

y -  8
7z =  - 17

7
25
7 z =  75

7

■ This is in the  
general form of  
Eq. (16.10).

 4y + z =  2
 2x + 6y - 2z =   3
 4x + 8y - 5z =   4
x + 3y - z =   3

2
 4y + z =   2

 4x + 8y - 5z =   4
x + 3y - z =   3

2
4y + z =   2

■ This is in general  
form of Eq. (16.10).

x +    3y -  2z = -5
y -  8

7z = - 17
7

z =  3
y - 8

7132 = - 17
7

y =  1
x + 3112 - 2132 =  -5

x = -2

■ This is in  
the form of  
Eq. (16.11).
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Make the coefficient of y in the second equation equal to 1 by dividing the second 
equation by 4.

Eliminate y from the third equation by adding 4 times the second equation to the third 
equation.

Since the third equation, 0 = 0, is correct, we can continue. Although there is no spe-
cific value for z, it is possible to express both x and y in terms of z.

Solve the second equation for y. In this case, it is expressed in terms of z. We no longer 
need to include the third equation.

Substitute the solution for y in the first equation and solve for x in terms of z.

We have expressed the solution as x = 7
4 z and y = 1

2 - 1
4 z. Since both x and y are 

expressed in terms of z and there is no specific value of z, the value of z can be chosen 
arbitrarily. This means there is an unlimited number of solutions. For example, if 
z = 4, then x = 7 and y = -1

2. If z = -2, then x = -7
2 and y = 1. ■

When we solved systems of linear equations in Chapter 5, we found that not all sys-
tems have unique solutions, as they do in Examples 2 and 3. In Example 4, we illus-
trated the use of Gaussian elimination on a system of equations for which the solution 
is not unique.

In Example 4, one of the equations became 0 = 0, and there was an unlimited num-
ber of solutions. If any of the equations of a system becomes 0 = a, a ≠ 0, then the 
system is inconsistent and there is no solution. Example 5 illustrates such a system.

If a system has more unknowns than equations, or it can be written this way, as in 
Example 4, it usually has an unlimited number of solutions. It is possible, however, that 
such a system is inconsistent.

If a system has more equations than unknowns, it is inconsistent unless enough 
equations become 0 = 0 such that at least one solution is found. The following exam-
ple illustrates two systems in which there are more equations than unknowns.

 EXAMPLE  5  Consistent and inconsistent systems

Solve the following systems of equations by Gaussian elimination.

The solutions are shown at the left. We note that each system has three equations and 
two unknowns.

In the solution of the first system, the third equation becomes 0 = 0, and only two 
equations are needed to find the solution x = 1, y = 2.

In the solution of the second system, the third equation becomes 0 = -4, which 
means the system is inconsistent and there is no solution.

Graphing the systems, note that in Fig. 16.13, each of the lines passes through the 
point 11, 22 , whereas in Fig. 16.14, there is no point common to the three lines.

Possible Number of Solutions

Practice Exercise

1.  Use Gaussian elimination to solve the 
system of equations
2x - y = 7
4x + 3y = -1

First system
x + 2y =     5

3x - y =   1
4x + y =   6

x + 2y =   5
- 7y = -14
- 7y = -14

x + 2y =   5
y =   2

- 7y = -14
x + 2y =   5

y =   2
0 =  0
x = 1

Second system
x + 2y = 5

3x - y = 1
4x + y = 2

x + 2y = 5
- 7y =  -14
- 7y =  -18

x + 2y = 5
y = 2

- 7y =  -18
x + 2y = 5

y = 2
0 = - 4

6

4

2

0 2 4

(1, 2)

y

x
!2!4

x " 2y # 5

4x " y # 6

3x ! y # 1

Fig. 16.13

6

4

2

0 2 4

y

x
!2!4

x " 2y # 5

4x " y # 2
3x ! y # 1

Fig. 16.14 ■

x + 3y - z = 3
2

y = 1
2 - 1

4z
x + 31 1

2 - 1
4z2 - z = 3

2
x = 7

4z

 - 4y -  z =  -2
x + 3y - z =    3

2
y + 1

4z =   1
2

- 4y - z = -2
■ This is the form  
that Eq. (16.11) takes  
in this case.

x +   3y -  z =  3
2

y + 1
4z =  1

2
0 =  0
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EXERCISES 16.5

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section, and then solve the resulting systems using Gaussian 
elimination.

 1. In Example 2, change the signs of both coefficients of x to - .

 2. In Example 5, change the third equation of the second system to 
5x + 3y = 11.

In Exercises 3–28, solve the given systems of equations by Gaussian 
elimination. If there is an unlimited number of solutions, find two of 
them.

 3. x + 2y = 4  4. 2x + y = 1
  3x - y = 5  5x + 2y = 1

 5. 5x - 3y = 2  6. -3x + 2y = 4
  -2x + 4y = 3  4x + y = -5

  7. 2x - 3y + z = 4   8. 3s + 4t - u = -5
  6y - 4x - 2z = 9  2u - 6s - 8t = 10

 9. x + 3y + 3z = -3  10. 3x - y + 2z = 3 
  2x + 2y + z = -5   4x - 2y + z = 3
  -2x - y + 4z = 6  6x + 6y + 3z = 4

 11. w + 2x - y + 3z = 12 12. 3x - 2y = -11
  2w - 2y - z = 3  5x + y = -1
  3x - y - z = -1  2x + 3y = 10
  -w + 2x + y + 2z = 3  x - 5y = -21

 13. x - 4y + z = 2  14. 4x + z = 6
  3x - y + 4z = -4  2x - y - 2z = -2

 15. 2x - y + z = 5 16. 3u + 6v + 2w = -2
  3x + 2y - 2z = 4  u + 3v - 4w = 2
  5x + 8y - 8z = 5  2u - 3v - 2w = -2

 17. x + 3y + z = 4 18. 30x + 20y - 10z = 30
  2x - 6y - 3z = 10  4x - 2y - 6z = 4
  4x - 9y + 3z = 4  -5x + 20y - 25z = -5

 19. 2x - 4y = 7 20. 4x - y = 5
  3x + 5y = -6  2x + 2y = 3
  9x - 7y = 15  6x - 4y = 7
    2x + y = 4

 21. 3x + 5y = -2 22. x + 3y - z = 1
  24x - 18y = 13  3x - y + 4z = 4
  15x - 33y = 19  -2x + 2y + 3z = 17
  6x + 68y = -33  3x + 7y + 5z = 23

 23. 4x - 8y - 8z = 12 24. 2x - y - 2z - t = 4 
  10x + 5y + 15z = 20  4x + 2y + 3z + 2t = 3
  -6x - 3y - 3z = 15  -2x - y + 4z = -2
  3x + 3y - 2z = 2

 25. s + 2t - 3u = 2 26. x + 2y - 3z + 2t = 3
  6t + 3s - 9u = 6  4y - 6z + 4t = 1
  7s + 14t - 21u = 13

 27. r - s - 3t - u = 1 28. x + 2y - 3z = 4 
  2r + 4s - 2u = 2  2x - y - 6z + 2t = 2
  r + 5s + 3t - u = 1  x + 3y + 3z - t = 1
  3r + 4s - 2t = 0
  r + 2t - 3u = 3

In Exercises 29 and 30, solve the given problems using Gaussian 
elimination.

 29. Solve the system a1x + b1y = c1, a2x + b2y = c2 and show that 
the result is the same as that obtained using determinants as in 
Section 5.5. See page 160.

 30. Solve the system x + 2y = 6, 2x + ay = 4 and show that the 
solution depends on the value of a. What value of a does the solu-
tion show may not be used?

In Exercises 31–34, set up systems of equations and solve by Gaussian 
elimination.

 31. One computer can perform x calculations per second, and a sec-
ond computer can perform y calculations per second. If each 
operates for 0.200 s, 25.0 million calculations are performed. If 
the first operates for 0.400 s and the second for 0.300 s, 43.2 mil-
lion calculations are performed. Find x and y.

 32. The voltage across an electric resistor equals the current (in A) times 
the resistance (in Ω). If a current of 3.00 A passes through each of 
two resistors, the sum of the voltages is 10.5 V. If 2.00 A passes 
through the first resistor and 4.00 A passes through the second resis-
tor, the sum of the voltages is 13.0 V. Find the resistances.

 33. Three machines together produce 650 parts each hour. Twice the 
production of the second machine is 10 parts>h more than the 
sum of the production of the other two machines. If the first oper-
ates for 3.00 h and the others operate for 2.00 h, 1550 parts are 
produced. Find the production rate of each machine.

 34. A total of $12 000 is invested, part at 6.5%, part at 6.0%, and part 
at 5.5%, yielding a total annual interest of $726. The income from 
the 6.5% part yields $128 less than that for the other two parts 
combined. How much is invested at each rate?

Answer to Practice Exercise

1. x = 2, y = -3

In Chapter 5, we limited our discussion of determinants to those of the second and third 
orders. We now show some methods of evaluating higher-order determinants. We will 
then be able to use Cramer’s rule to solve systems of equations of higher order.

From Section 5.7, we recall the definition of a third-order determinant. Then we 
rewrite it in a form that can be generalized to determinants of any order. We have

 16.6 Higher-Order Determinants

 
Solving Systems of Equations
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 † a1 b1 c1

a2 b2 c2

a3 b3 c3

† = a1b2c3 + a3b1c2 + a2b3c1 - a3b2c1 - a1b3c2 - a2b1c3

 = a11b2c3 - b3c22 - a21b1c3 - b3c12 + a31b1c2 - b2c12
 = a1 ` b2 c2

b3 c3
` - a2 ` b1 c1

b3 c3
` + a3 ` b1 c1

b2 c2
`  (16.12)

In Eq. (16.12), the third-order determinant is expanded as products of the elements 
of the first column and second-order determinants, known as minors. In general, the 
minor of an element of a determinant is the determinant that results by deleting the 
row and column in which the element lies.

 EXAMPLE  1  Minors

this element has as its minor the minor for
this determinant the element 6

† 14
7

2
5
8

3
6
9
†     ` 5

8
6
9
`     † 14

7

2
5
8

3
6
9
†     ` 1

7
2
8
`

delete delete

The following theorem generalizes the expansion by minors expressed in Eq. (16.12) 
for a third-order determinant to determinants of any order.

 ■

Expansion of a Determinant by Minors
The value of a determinant of order n may be found by forming the n products of 
the elements of any column (or row) and their minors. A product is given a plus 
sign if the sum of the number of the column and the number of the row in which 
the element lies is even, and a minus sign if this sum is odd. The algebraic sum of 
these terms is the value of the determinant.

∞ 3
1

-3
2

-2
0
1

-1

0
-1

2
0

2
4

-2
-1

∞  = + 102 3 1
-3

2

0
1

-1

4
-2
-1

3 - 1 -12  3 3
-3

2

-2
1

-1

2
-2
-1

3 + 122  3 31
2

-2
0

-1

2
4

-1

3 - 102  3 3
1

-3

-2
0
1

2
4

-2

3
= 3 3

-3
2

-2
1

-1

2
-2
-1

3 + 2 3 31
2

-2
0

-1

2
4

-1

3
= c 3 ` 1

-1
-2
-1

` -  1 -32 ` -2
-1

2
-1

` +  2 ` -2
1

2
-2

` d  + 2 c - 1 -22 ` ` 1
2

4
-1

` + 0 ` 3
2

2
-1

` -  1 -12 ` 3
1

2
4
` d

expanding first determinant by first column expanding second determinant by second column

= 331 -1 - 22 + 312 + 22 + 214 - 22 4 + 2321 -1 - 82 + 112 - 22 4
= 3 -9 + 12 + 44 + 23 -18 + 104 = 7 + 21 -82 = -9 ■

 EXAMPLE  2  Expansion by minors

In evaluating the following determinant, note that the third column has two zeros. This 
means that expanding by the third column will require less numerical work. Therefore,
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PROPERTIES OF DETERMINANTS
We can expand any determinant by minors, but even a fourth-order determinant may 
require many calculations. We now state some properties of determinants with which 
they can be evaluated, often with less work than with minors, and not requiring a calcu-
lator or computer:

1.  If each element above or each element below the principal diagonal of a deter-
minant is zero, then the product of the elements of the principal diagonal is the 
value of the determinant.

2.  If all corresponding rows and columns of a determinant are interchanged, the 
value of the determinant is unchanged.

 EXAMPLE  3  Properties of determinants 1 and 2

(a) 3 20
0

1
-5

0

8
9

-6

3 = 21 -52 1 -62 = 60  property 1

(b) 3 1
2

-2

3
0
5

-1
4

-6

3            3 1
3

-1

2
0
4

-2
5

-6

3
3.  If two columns (or rows) of a determinant are identical, the value of the determinant is zero.
4.  If two columns (or rows) of a determinant are interchanged, the value of the 

determinant is changed in sign.

 EXAMPLE  4  Properties of determinants 3 and 4

(a) 

identical  3 3
-4
-4

5
6
6

2
9
9

3 = 0  property 3

(b) 3 31
2

0
1
1

2
5
3

3  and 3 25
3

0
1
1

3
1
2

3
5.  If all elements of a column (or row) are multiplied by the same number k, the 

value of the determinant is multiplied by k.
6.  If all the elements of any column (or row) are multiplied by the same number k, 

and the resulting numbers are added to the corresponding elements of another 
column (or row), the value of the determinant is unchanged.

 EXAMPLE  5  Properties of determinants 5 and 6
(a) 3 -1

6
0

0
3
5

6
-6

3

3 = 3 3 -1
2
0

0
1
5

6
-2

3

3  property 5  
the value of the first is 141, 
and the value of the second is 47
141 = 31472

(b) The value of the following determinant is unchanged if we multiply each element 
of the first row by 2 and add these numbers to the corresponding elements of the 
second row. The value of each determinant is -37. The great value in using prop-
erty 6 is that we can purposely place zeros in the resulting determinant.

we obtain the  
determinant

property 2  
the value of each  
determinant is -18

property 4 
the value of the first is -  8, and  
the value of the second is 8

4 * 2 = 8   -1 * 2 = -2      3 * 2 = 63 42
1

-1
2
0

3
1

-3

3 = 3 4
2 + 8

1

-1
2 + 1 -22

0

3
1 + 6

-3

3 = 3 4
10
1

-1
0
0

3
7

-3

3  or 3 4
10
1

-1
0
0

3
7

-3

3 = 3 42
1

-1
2
0

3
1

-3

3

■

■

■
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 EXAMPLE  6  

Using these properties, we evaluate the following determinant.

With the use of these six properties, 
determinants of higher order can be 
evaluated much more easily. The 
technique is to

obtain zeros in a given column (or 
row) in all positions except one.

We can then expand by this column 
(or row), thereby reducing the order 
of the determinant. Property 6 is 
probably the most valuable for 
obtaining the zeros.

LEARNING T IP

 ∞ 3
-1

2
0

2
1
2

-1

-1
2
1

-2

1
3
4
2

∞ = ∞ 0
-1

2
0

5
1
2

-1

5
2
1

-2

10
3
4
2

∞
 = ∞ 0

-1
0
0

5
1
4

-1

5
2
5

-2

10
3

10
2

∞
 = - 1 -12 † 5

4
-1

5
5

-2

10
10
2
†

 = 5 † 1
4

-1

1
5

-2

2
10
2
†

 = 5122 † 1
4

-1

1
5

-2

1
5
1
†

 = 10 † 1
0

-1

1
1

-2

1
1
1
†

 = 10 † 10
0

1
1

-1

1
1
2
†

 = 10112 ` 1
-1

1
2
`

 = 1012 + 12 = 30

Each element of the second row is multiplied by 3, and the re-
sulting numbers are added to the corresponding elements of the 
first row. Here, we have used property 6. In this way, a zero has 
been placed in column 1, row 1.

Each element of the second row is multiplied by 2, and the re-
sulting numbers are added to the corresponding elements of the 
third row. Again, we have used property 6. Also, a zero has 
been placed in the first column, third row. We now have three 
zeros in the first column.

Expand the determinant by the first column. We have now re-
duced the determinant to a third-order determinant.

Factor 5 from each element of the first row. Here, we are using 
property 5.

Factor 2 from each element of the third column. Again, we are 
using property 5. Also, by doing this, we have reduced the size 
of the numbers, and the resulting numbers are somewhat easier 
to work with.

Each element of the first row is multiplied by -  4, and the result-
ing numbers are added to the corresponding elements of the 
second row. Here, we are using property 6. We have placed a 
zero in the first column, second row.

Each element of the first row is added to the corresponding ele-
ment of the third row. Again, we have used property 6. A zero 
has been placed in the first column, third row. We now have 
two zeros in the first column.

Expand the determinant by the first column.

Expand the second-order determinant.

A somewhat more systematic method is to place zeros below the principal diagonal 
and then use property 1. ■

The methods of this section and that of expansion by minors illustrate the ways in 
which determinants were evaluated before the extensive use of computers and calcula-
tors. As we noted in Chapter 5, most graphing calculators can be used to quickly evalu-
ate determinants.

We can use the expansion of determinants by minors when solving systems of linear 
equations. Cramer’s rule for solving systems of linear equations, as stated in Section 5.7, 
is valid for any system of n equations in n unknowns.

■ To display and evaluate a determinant on a 
calculator, see page 171.
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 EXAMPLE  7  Solving a system of four equations

Solve the following system of equations:

x + 2y + z = 5

2x + z + 2t = 1

 x - y + 3z + 4t = -6

4x - y - 2t = 0
 constants expanding by fourth row

x =

∞ 5
1

-6
0

2
0

-1
-1

1
1
3
0

0
2
4

-2

∞
∞ 12
1
4

2
0

-1
-1

1
1
3
0

0
2
4

-2

∞
=

- 102 † 2
0

-1

1
1
3

0
2
4
† + 1 -12 † 5

1
-6

1
1
3

0
2
4
† - 102 † 5

1
-6

2
0

-1

0
2
4
† + 1 -22 † 5

1
-6

2
0

-1

1
1
3
†

112 † 0
-1
-1

1
3
0

2
4

-2
†  - 2 † 21

4

1
3
0

2
4

-2
† + 112 † 21

4

0
-1
-1

2
4

-2
† - 102 † 21

4

0
-1
-1

1
3
0
†

=
- 1 -262 - 21 -142

1102 - 21 -182 + 11182 =
26 + 28
36 + 18

=
54
54

= 1

expanding by first row

We could use minors or the properties of determinants for the evaluations. Noting 
the two zeros in the fourth row of the numerator, we expanded by minors. For the 
denominator, which we need to evaluate only once, we used minors of the first row, 
although we could have used the properties to create zeros in the first column.

In solving for y, we again note the two zeros in the fourth row:

 y =

∞ 12
1
4

5
1

-6
0

1
1
3
0

0
2
4

-2

∞
54

=

-4 † 5
1

-6

1
1
3

0
2
4
† + 1 -22 † 12

1

5
1

-6

1
1
3
†

54

 =
-41 -262 - 21 -292

54
=

104 + 58
54

=
162
54

= 3

Substituting x = 1 and y = 3 in the first equation gives us z = -2. Then substituting 
x = 1 and y = 3 in the fourth equation gives us t = 1>2. Therefore, the required solu-
tion is x = 1, y = 3, z = -2, t = 1>2. We can check the solution by substituting in the 
second or third equation (we used the first and fourth to find values of z and t.) ■

expanding by fourth row

EXERCISES 16.6

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section. Then evaluate the resulting determinants.

 1. In Example 4(b), change the third column of the first determinant 
to 0 0 3.

 2. In Example 5(a), change the third column of the first determinant 
to 2 -2 6.

In Exercises 3–6, evaluate each determinant by inspection. Observation 
will allow evaluation by using the properties of this section.

 3. † 40
0

-5
3
0

8
-8
-5

†  4. † 3
0

-9

0
10
-1

0
0

-5
†
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 5. ∞ 35
3
0

-2
-1
-2

3

4
2
4

-6

2
-1

2
0

∞  6. ∞ -12
12

-22
44

-24
32
18
0

-24
32
18
0

15
-35

18
-26

∞  33. x + 2y - z = 6 34. 2p + 3r + s = 4 
  y - 2z - 3t = -5  p - 2r - 3s + 4t = -1
  3x - 2y + t = 2  3p + r + s - 5t = 3
  2x + y + z - t = 0  -p + 2r + s + 3t = 2

In Exercises 35–38, solve the given systems of equations by 
determinants. Evaluate by using the properties of determinants.

 35. 2x + y + z = 2  36. 2x + y + z = 0
  3y - z + 2t = 4  x - y + 2t = 2
  y + 2z + t = 0  2y + z + 4t = 2
  3x + 2z = 4  5x + 2z + 2t = 4

 37. D + E + 2F = 1 38. 3x + y + t = 0 
  2D - E + G = -2  3z + 2t = 8
  D - E - F - 2G = 4  6x + 2y + 2z + t = 3
  2D - E + 2F - G = 0  3x - y - z - t = 0

In Exercises 7–10, use the given value 
of the determinant at the right and the 
properties of this section to evaluate 
the following determinants.

† 2
-4

1

-3
1

-3

1
3

-2
† = 40

 7. † 2
-4

1

1
3

-2

-3
1

-3
†  8. † 2

-4
2

-3
1

-6

1
3

-4
†

 9. † 2
-4

1

-3
1

-3

-1
-3

2
†  10. † 2

-3
1

-4
1
3

1
-3
-2

†
In Exercises 11–20, evaluate the given determinants by expansion  
by minors.

 11. † 3
-2

4

0
1

-2

0
4
5
†  12. † 10

-2
3

0
-4

0

-3
1
2
†

 13. † 3
-2

4

1
3
2

0
-1

5
†  14. † -40

-8
-15

30
8

75

-20
16

-45
†

 15. ∞ 43
5
2

3
0
0
1

6
0
1
1

0
4
2
7

∞  16. ∞ 6
-2
18
0

-3
1
7

-1

-6
2

-1
10

3
-1

5
10

∞
 17. ∞ 14

3
0

3
2
2
1

-3
1

-2
2

5
2
2

-1

∞  18. ∞ -2
1
4
3

2
4
3

-2

1
3

-2
1

3
1

-2
5

∞

 19. 5 1
0
1

-2
1

2
2
0
0
0

0
1

-1
-1

2

1
0
1
2

-1

0
1

-1
1

-2

5  20. 5 -1
0
5

-3
6

3
1

-2
0
2

5
7

-1
2
1

0
3
0

-1
-4

-5
-2

3
3
2

5
In Exercises 21–30, use the determinants for Exercises 11–20 and 
evaluate each using the properties of determinants. Do not evaluate 
directly more than one second-order determinant.

In Exercises 31–34, solve the given systems of equations by determinants. 
Evaluate by expansion by minors.

 31. x + t = 0  32. 2x + y + z = 4
  3x + y + z = -1  2y - 2z - t = 3
  2y - z + 3t = 1  3y - 3z + 2t = 1
  2z - 3t = 1  6x - y + t = 0

In Exercises 39–42, make the indicated 
changes in the determinant at the right, 
and then solve the indicated problem. 
Assume the elements are nonzero, 
unless otherwise specified.

† a b c
d e f
g h i

†
 39. Evaluate the determinant if a = c, d = f , and g = i.

 40. Evaluate the determinant if b = c = f = 0.

 41. By what factor is the value of the determinant changed if all ele-
ments are doubled?

 42. How is the value changed if a is added to g, b added to h, and c 
added to i?

In Exercises 43–48, solve the given problems by using determinants.

 43. In applying Kirchhoff’s laws (see Exercise 42 on page 165) to the 
circuit shown in Fig. 16.15, the following equations are found. 
Determine the indicated currents (in A).

 IA + IB + IC + ID + IE = 0

 -2IA + 3IB = 0

 3IB - 3IC = 6

 -3IC + ID = 0

 - ID + 2IE = 0

 44. In analysing the forces A, B, C, and D shown on the beam in 
Fig. 16.16, the following equations are used. Find these forces.

 A + B = 850
 A + B + 400 = 0.8C + 0.6D

 0.6C = 0.8D
 5A - 5B + 4C - 3D = 0

3 !

IB

2 !

IA

1 !

ID

3 !

IC

2 !

IE

6 V

Fig. 16.15

D

A

C

B

400 N

850 N

Fig. 16.16
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 45. In analysing the motion of four 
equally spaced particles along a 
string, the equation at the right is 
found. Here, C depends on the  
string and the mass of each object. 
Solve for C 1C 7 02 .

 47. In testing for air pollution, a given air sample contained 6.0 parts 
per million (ppm) of four pollutants, sulfur dioxide 1SO22 , nitric 
oxide (NO), nitrogen dioxide 1NO22 , and carbon monoxide (CO). 
The ppm of CO was 10 times that of SO2, which in turn equaled 
those of NO and NO2. There was a total of 0.8 ppm of SO2 and 
NO. How many ppm of each were present in the air sample?

 48. Three computer programs, A, B, and C, use 15% of a computer’s 
6.0 GB (gigabyte) hard-drive memory. If two additional programs 
are added, one requiring the same memory as A and the other half 
the memory of C, 22% of the memory will be used. However, if 
two other programs are added to A, B, and C, one requiring half 
the memory of B and the other the same memory as C, 25% of the 
memory will be used. How many megabytes of memory are 
required for each of A, B, and C?

∞ C
-1

0
0

-1
C

-1
0

0
-1

C
-1

0
0

-1
C

∞ = 0

 46. An alloy is to be made from four other alloys containing copper 
(Cu), nickel (Ni), zinc (Zn), and Iron (Fe). The first is 80% Cu 
and 20% Ni. The second is 60% Cu, 20% Ni, and 20% Zn. The 
third is 30% Cu, 60% Ni, and 10% Fe. The fourth is 20% Ni, 40% 
Zn, and 40% Fe. How much of each is needed so that the final 
alloy has 56 g Cu, 28 g Ni, 10 g Zn, and 6 g Fe?

 CHAPTER 16

Basic laws for matrices A + B = B + A  (commutative law) (16.1)
 A + 1B + C2 = 1A + B2 + C  (associative law) (16.2)
 k1A + B2 = kA + kB (16.3)
 A + O = A (16.4)

Inverse matrix AA-1 = A-1A = I (16.5)

Solving systems of equations by matrices c a1x + b1y
a2x + b2y

d = c c1

c2
d  (16.6)

 A = c a1

a2

b1

b2
d   X = c x

y
d   C = c c1

c2
d  (16.7)

 AX = C (16.8)
 X = A-1C (16.9)

Gaussian elimination a1x + b1y + c1z = d1  x + b4y + c4z = d4

 a2x + b2y + c2z = d2       y + c5z = d5 (16.10) (16.11)
 a3x + b3y + c3z = d3         z = d6

Higher-order determinants † a1

a2

a3

b1

b2

b3

c1

c2

c3

†  = a1 ` b2

b3

c2

c3
` - a2 ` b1

b3

c1

c3
` + a3 ` b1

b2

c1

c2
`  (16.12)

 CHAPTER 16   REVIEW EXERCISES

In Exercises 1–6, determine the values of the literal numbers.

 1. c 2a
a - b

d = c 8
5
d  2. £ x - y

2x + 2z
4y + z

§ = £ 1
3

-1
§

 3. c 2x
x + y

3y
2y + z

2z
z - x

d = c 4
a

-9
b

5
c
d

 4. c a + bj
aj

b
b - aj

d = c 6j
2cj

2d
ej2 d   1 j = 1-12

 5. c  cos p
x + y

 sin p6
x - y

d = c x
a

y
b
d

 6. c  ln e
a2

 log 100
b2 d = c a + b

x
a - b

y
d
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In Exercises 7–12, use the given matrices and perform the indicated 
operations.

A = ≥ 2
4

-5
2

-3
1
0

-3

¥   B = ≥ -1
4

-3
1

0
-6
-2
-7

¥   C = £ 5
2
0

-6
8

-2
§

 7. A + B 8. 2C

 9. B - A 10. 2C - B

 11. 2A - 3B 12. 21A - B2
In Exercises 13–16, perform the indicated matrix multiplications.

 13. c 2
-2

-1
1
d  c 1

2
-1
-2

d
 14. c 6

2
-4

0
1

-4
0
3
d  ≥7

4
3
9

-1
0

-2
1

6
1
5
0

¥
 15. £ -0.1

0.2
0.4

0.7
0.0

-0.1
§  c 0.1

0.5
-0.4

0.1
0.5
0.0

d
 16. £ 0

8
7

-1
1

-2

6
4

-1
§  £ 5

0
1

-1
1

-2

7
0
3

1
4
0

5
1
1
§

In Exercises 17–24, find the inverses of the given matrices.

 17. c 2
2

-5
-4

d  18. c -1
2

-6
10

d
 19. c 0.07

0.04
-0.01

0.08
d  20. c 50

42
-12
-80

d
 21. £ 1

-1
0

1
-2

3

-2
1
4
§  22. £ -1

2
1

-1
3
4

2
0
1
§

 23. £ 2
4

-2

-4
-6

1

3
5

-1
§  24. £ 3

-3
-6

1
1
0

-4
-2

3
§

In Exercises 25–32, solve the given systems of equations using the 
inverse of the coefficient matrix.

 25. 2x - 3y = -9  26. 5D - 7E = 62
  4x - y = -13  6D + 5E = -6

 27. 33x + 52y = -450  28. 0.24x - 0.26y = -3.1
  45x - 62y = 1380  0.40x + 0.34y = -1.3

 29. 2u - 3v + 2w = 7  30. 2x + 2y - z = 8 
  3u + v - 3w = -6   x + 4y + 2z = 5 
  u + 4v + w = -13  3x - 2y + z = 17

 31. x + 2y + 3z = 1  32. 3x + 2y + z = 2 
  3x - 4y - 3z = 2   2x + 3y - 6z = 3 
  7x - 6y + 6z = 2  x + 3y + 3z = 1

In Exercises 33–40, solve the given systems of equations by Gaussian 
elimination. For Exercises 33–38, use those that are indicated from 
Exercises 25–32.

 33. Exercise 25  34. Exercise 26  35. Exercise 29

 36. Exercise 30  37. Exercise 31  38. Exercise 32

 39. 2x + 3y - z = 10  40. x - 3y + 4z - 2t = 6 
  x - 2y + 6z = -6  2x + y - 2z + 3t = 7 
  5x + 4y + 4z = 14  3x - 9y + 12z - 6t = 12

In Exercises 41–44, solve the systems of equations by determinants, 
using the properties of determinants. As indicated, use the systems 
from Exercises 29–32.

 41. Exercise 29 42. Exercise 30

 43. Exercise 31 44. Exercise 32

In Exercises 45–52, solve the given systems of equations by using the 
coefficient matrix. You may use a calculator to perform the necessary 
matrix operations.

 45. 3x - 2y + z = 6 46. 7n + p + 2r = 3 
  2x + 3z = 3   4n - 2p + 4r = -2 
  4x - y + 5z = 6  2n + 3p - 6r = 3

 47. 2x - 3y + z - t = -8  48. 3x + 2y - 2z - 2t = 0 
  4x + 3z + 2t = -3  5y + 3z + 4t = 3
  2y - 3z - t = 12  6y - 3z + 4t = 9
  x - y - z + t = 3  6x - y + 2z - 2t = -3

 49. 3x - y + 6z - 2t = 8 50. A + B + 2C - 3D = 15
  2x + 5y + z + 2t = 7  3A + 3B - 8C - 2D = 9
  4x - 3y + 8z + 3t = -17  6A - 4B + 6C + D = -6
  3x + 5y - 3z + t = 8  2A + 2B - 4C - 2D = 8

 51. 4r - s + 8t - 2u + 4v = -1 
3r + 2s - 4t + 3u - v = 4 
3r + 3s + 2t + 5u + 6v = 13 
6r - s + 2t - 2u + v = 0 
r - 2s + 4t - 3u + 3v = 1

 52. v + 3w + 2x - 2y + 5z = 2  
7v + 8w + 3x + y - 4z = 7  
v - 2w - 4x - 4y - 8z = -20 
3v - w + 7x + 5y - 3z = -3 
4v + 5w + x + 3y - 6z = 14

In Exercises 53–56, use matrices A and B.

A = c 1
3

0
4
d   B = £ 0

0
1

1
0
0

0
1
0
§

 53. Find A2, A3, and A4. 54. Show that 1A222 = A4.

 55. Show that B3 = I. 56. Show that B4 = B.

In Exercises 57–60, evaluate the given determinants by expansion by 
minors.

 57. † 4 2 3
1 -5 -2

-3 4 -3

3  58. † 4 -5 -1
6 1 6

-2 4 -3

3
 59. ∞ 1 4 0 -3

3 1 2 5
-2 -2 -4 1
-1 6 3 -4

∞  60. ∞ -2 6 6 -1
1 -2 -5 2
5 -4 4 3

-3 1 -2 -3

4
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In Exercises 61–64, use the determinants for Exercises 57–60 and 
evaluate each using properties of determinants. Do not evaluate 
directly more than one second-order determinant.

In Exercises 65 and 66, use the matrix N.

N = c 0 -1
1 0

d
 65. Show that N-1 = -N. 66. Show that N2 = - I.

In Exercises 67 and 68, solve the given problems.

 67. For any real number n, show that c n
1 - n

1 + n
-n

d 2
= I.

 68. For the matrix N = c 1
1

1
1
d , find (a) N2, (b) N3, (c) N4. What is 

N20? Explain.

In Exercises 69–72, use matrices A and B.

A = c 1
0

-2
3
d   B = c -3

2
1

-1
d

 69. Show that 1A + B2 1A - B2 ≠ A2 - B2.

 70. Show that 1A + B22 ≠ A2 + 2AB + B2.

 71. Show that the inverse of 2A is A-1>2.

 72. Show that the inverse of B>2 is 2B-1.

In Exercises 73–76, solve the given systems of equations by use of matrices 
as in Section 16.4.

 73. Two electric resistors, R1 and R2, are tested with currents and 
voltages such that the following equations are found:

  2R1 + 3R2 = 26

  3R1 + 2R2 = 24

  Find the resistances R1 and R2 (in Ω).

 74. A company produces two products, each of which is processed 
in two departments. Considering the worker time available, the 
numbers x and y of each product produced each week can be 
found by solving the system of equations

  4.0x + 2.5y = 1200

  3.2x + 4.0y = 1200

  Find x and y.

 75. A beam is supported as shown in Fig. 16.17. Find the magni-
tudes of the force F and the tension T by solving the following 
system of equations:

   0.500F = 0.866T
   0.866F + 0.500T = 350

 76. To find the electric currents (in A) indicated in Fig. 16.18, it is 
necessary to solve the following equations.

  IA + IB + IC = 0
  5IA - 2IB = -4

2IB - IC = 0

  Find IA, IB, and IC.

In Exercises 77–80, solve the system of equations in Exercises 73–76 
by Gaussian elimination.

In Exercises 81–85, solve the given problems by setting up the 
necessary equations and solving them by any appropriate method of 
this chapter.

 81. A crime suspect passes an intersection in a car travelling at 
180 km>h. The police pass the intersection 3.0 min later in a car 
travelling at 225 km>h. How long is it before the police overtake 
the suspect?

 82. A contractor needs a backhoe and a generator for two different 
jobs. Renting the backhoe for 5.0 h and the generator for 6.0 h 
costs $425 for one job. On the other job, renting the backhoe for 
2.0 h and the generator for 8.0 h costs $310. What are the hourly 
charges for the backhoe and the generator?

 83. By mass, three alloys have the following percentages of lead, 
zinc, and copper:

350 N

F

T

Fig. 16.17

5 ! 2 ! 1 !
IA IB IC

4 VFig. 16.18

Lead Zinc Copper

Alloy A 60% 30% 10%

Alloy B 40% 30% 30%

Alloy C 30% 70%  

  How many grams of each of alloys A, B, and C must be mixed 
to get 100 g of an alloy that is 44% lead, 38% zinc, and 18% 
copper?

 84. On a 1014-km trip from Halifax to Ottawa that took a total of 
5.0 h, a person took a shuttle to the airport, then a plane, and 
finally a taxi to reach the final destination. The shuttle took twice 
as long as the taxi, and the time for connections was as long as all 
other legs of the trip combined. The shuttle averaged 61 km/h, 
the plane averaged 640 km/h, and the taxi averaged 40 km/h. 
How long did each leg of the trip and the connections take?

 85. In a Markov chain brand-switching model for three brands of 
detergent, the long-run market share of each brand (given as a 
proportion) is found by solving the system of equations

-0.3x + 0.5y + 0.32z = 0
0.2x - 0.8y + 0.3z = 0

0.1x + 0.3y - 0.62z = 0
x + y + z = 1

  Find x, y, and z.
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In Exercises 86–89, perform the indicated matrix operations.

 86. An automobile maker has two assembly plants at which cars 
with either 4, 6, or 8 cylinders and with either standard or auto-
matic transmission are assembled. The annual production at the 
first plant of cars with the number of cylinders–transmission 
type (standard, automatic) is as follows:

  4: 12 000, 15 000; 6: 24 000, 8000; 8: 4000, 30 000
  At the second plant the annual production is
  4: 15 000, 20 000; 6: 12 000, 3000; 8: 2000, 22 000
  Set up matrices for this production and by matrix addition, find 

the matrix for the total production by the number of cylinders 
and type of transmission.

 87. Set up a matrix representing the information given in Exercise 83. 
A given shipment contains 500 g of alloy A, 800 g of alloy B, and 
700 g of alloy C. Set up a matrix for this information. By multi-
plying these matrices, obtain a matrix that gives the total weight 
of lead, zinc, and copper in the shipment.

 88. The matrix equation

  c c R1

-R2

-R2

R1
d + R2 c 10 0

1
d d  c i1

i2
d = c 6

0
d

  may be used to represent the system of equations relating the cur-
rents and resistances of the circuit in Fig. 16.19. Find this system 
of equations by performing the indicated matrix operations.

 CHAPTER 16  PRACTICE TEST

 1. For matrices A and B, find A - 2B.

  A = c 3
2

-1
0

4
-2

d   B = c 1
-1

4
-2

5
3
d

 2. Evaluate the literal symbols.

  c 2x
x + z

x - y
2y

z
y + z

d = c 6
a

-2
b

4
c
d

 3. For matrices C and D, find CD and DC.

  C = £ 1 0 4
2 -2 1

-1 3 2
§   D = £ 2

4
6

-2 
-5S

1 
§

 4. Determine whether or not B = A-1.

  A = c 2
1

-5
-2

d   B = c -2
-1

5
2
d

 5. For matrix C of Problem 3, find C-1.

 6. Solve by using the inverse of the coefficient matrix.

  2x - 3y = 11
   x + 2y = 2

 7. Solve the system of equations in Problem 6 by Gaussian 
elimination.

 8. Evaluate the following determinant by expansion by minors.

  † 2 -4 -3
-3 6 2

5 -1 5
†

 9. Evaluate the determinant in Problem 8 by using the properties of 
determinants.

 10. Solve the following system of equations by using the inverse of 
the coefficient matrix. You may use a calculator to perform the 
necessary matrix operations.

  7x - 2y + z = 6
  2x + 3y - 4z = 6
  4x - 5y + 2z = 10

 11. Fifty shares of stock A and 30 shares of stock B cost $2600. 
Thirty shares of stock A and 40 shares of stock B cost $2000. 
What is the price per share of each stock? Solve by setting up 
the appropriate equations and then using the inverse of the coef-
ficient matrix.

R1 R1R2

i2i1

6 V

Fig. 16.19

 89. A person prepared a meal of the following items, each having 
the given number of grams of protein, carbohydrates, and fat, 
respectively. Beef stew: 25, 21, 22; coleslaw: 3, 10, 10; (light) 
ice cream: 7, 25, 6. If the kilojoule count of each gram of pro-
tein, carbohydrate, and fat is 17 kJ>g, 16 kJ>g, and 37 kJ>g, 
respectively, find the total kilojoule count of each item by matrix 
multiplication.

Writing Exercise
 90. A hardware company has 60 different retail stores in which 1500 

different products are sold. Write a paragraph or two explaining 
why matrices provide an efficient method of inventory control, 
and what matrix operations in this chapter would be of use.
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LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Distinguish between a 
conditional and an absolute 
inequality

 Graph solutions of inequalities 
on the number line

 Represent solutions of 
inequalities in interval notation

 Apply the properties of 
inequalities to solve linear 
inequalities

 Solve linear inequalities with 
three members

 Solve nonlinear inequalities 
algebraically and graphically

 Solve inequalities involving 
absolute values

 Solve inequalities and systems 
of inequalities with two 
variables graphically

 Understand the concepts of 
constraint, objective function, 
and feasible point in the 
context of linear programming

 Solve linear programs with two 
variables graphically

 Solve application problems 
involving inequalities

Having devoted a great deal of time to the solution of equations and systems of equa-
tions, we now turn our attention to solving inequalities and systems of inequalities. In 
doing so, we will find it necessary to find all values of the variable or variables that 

satisfy the inequality or system of inequalities.

There are numerous technical applications of inequalities. For example, in electricity it might 
be necessary to find the values of a current that are greater than a specified value. In design-
ing a link in a robotic mechanism, it might be necessary to find the forces that are less than a 
specified value. Computers can be programmed to switch from one part of a program to an-
other, based upon a result that is greater than (or less than) some given value.

Systems of linear equations have been studied for better than 2000 years, but almost no atten-
tion was given to systems of linear inequalities until World War II in the 1940s. Problems of 
deploying personnel and aircraft effectively and allocating supplies efficiently led the U.S. 
Air Force to have a number of scientists, economists, and mathematicians look for solutions. 
From this, a procedure for analysing such problems was devised in 1947 by George Danzig 
and his colleagues. Their system involved using systems of linear inequalities and is today 
called linear programming. We introduce the basic method of linear programming in the final 
section of this chapter.

Here, we see that a mathematical method was developed as a result of a military need. Today, 
linear programming is widely used in business and industry in order to set production levels 
for maximizing profits and minimizing costs.

17Inequalities

 In Section 17.6, we use inequalities 
to show how an airline can minimize 
operating costs when determining 
how many planes it needs.
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In Chapter 1, we first introduced the signs of inequality. To this point, only a basic 
understanding of their meanings has been necessary to show certain intervals associ-
ated with a variable. In this section, we review the meanings and develop certain basic 
properties of inequalities. We also show the meaning of the solution of an inequality 
and how it is shown on the number line.

The expression a 6 b is read as “a is less than b,” and the expression a 7 b is read 
as “a is greater than b.” These signs define what is known as the sense (indicated by the 
direction of the sign) of the inequality. Two inequalities are said to have the same sense 
if the signs of inequality point in the same direction. They are said to have the opposite 
sense if the signs of inequality point in opposite directions. The two sides of the ine-
quality are called members of the inequality.

 EXAMPLE  1  Sense of an inequality

The inequalities x + 3 7 2 and x + 1 7 0 have the same sense, as do the inequalities 
3x - 1 6 4 and x2 - 1 6 3.

The inequalities x - 4 6 0 and x 7 -4 have the opposite sense, as do the ine-
qualities 2x + 4 7 1 and 3x2 - 7 6 1. ■

The solution of an inequality consists of all values of the variable that make the 
inequality a true statement. Most inequalities with which we deal are conditional ine-
qualities, which are true for some, but not all, values of the variable. Also, some ine-
qualities are true for all values of the variable, and they are called absolute 
inequalities. A solution of an inequality consists of only real numbers, as the terms 
greater than or less than have not been defined for complex numbers.

 EXAMPLE  2  Conditional and absolute inequalities

The inequality x + 1 7 0 is true for all values of x greater than -1. Therefore, the 
values of x that satisfy this inequality are written as x 7 -1 or, using interval notation 
(as introduced in Section 3.2), as 1 -1, ∞ 2 . Considering that the inequality x + 1 7 0 
holds only for x in the interval 1 -1, ∞ 2 , it is a conditional inequality.

The inequality x2 + 1 7 0 is true for all real values of x, since x2 is never nega-
tive. It is an absolute inequality. ■

There are occasions when it is convenient to combine an inequality with an equality. 
For such purposes, the symbols … , meaning less than or equal to, and Ú , meaning 
greater than or equal to, are used.

 EXAMPLE  3  Greater (or less) than or equal to

If we wish to state that x is positive, we can write x 7 0. However, the value zero is 
not included in the solution. If we wish to state that x is not negative, we write x Ú 0. 
Here, zero is part of the solution.

In order to state that x is less than or equal to -5, we write x … -5. ■

In the sections that follow, we will solve inequalities. It is often useful to show the 
solution on the number line. The next example shows how this is done.

 EXAMPLE  4  Graphing solutions of inequalities

(a) To graph x 7 2, or 12, ∞ 2 , we draw a small open circle at 2 on the number line 
(which is equivalent to the x-axis). Then we draw a solid line to the right of the 
point and with an arrowhead pointing to the right, indicating all values greater 
than 2. See Fig. 17.1(a). The open circle shows that the point is not part of the 
indicated solution.

 17.1 Properties of Inequalities

 
Properties of Inequalities

When we have an equation like 
x - 1 = 0, we know that x is equal to 
the single numerical value of 1, so 
that 1 is the unique solution to the 
equation. In contrast, when we have 
an inequality like x + 1 7 0, then x is 
not a single number. As we have seen 
in Example 2, x can be any number in 
the interval 1 -1, ∞ 2 . Every value of x 
within this interval is a solution of 
the inequality.
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 17.1 Properties of Inequalities 469

(b) To graph x … 1, or 1 - ∞ , 14 , we follow the same basic procedure as in  
part (a), except that we use a solid circle and the arrowhead points to the left.  
See Fig. 17.1(b). The solid circle shows that the point is part of the indicated 
solution. ■

PROPERTIES OF INEQUALITIES
We now show the basic operations performed on inequalities. These are the same 
operations as those performed on equations, but in certain cases the results take on a 
different form. The following are the properties of inequalities:

 1.  The sense of an inequality is not changed when the same number is added to—
or subtracted from—both members of the inequality. Symbolically, this may be 
stated as “if a 7 b, then a + c 7 b + c and a - c 7 b - c.”

 EXAMPLE  5  Illustrations of property 1

Using property 1 on the inequality 9 7 6, we have the following results:

 9 7 6 9 7 6

 add 4 to each member     subtract 12 from each member

  9 + 4 7 6 + 4 9 - 12 7 6 - 12

  13 7 10 -3 7 -6

In Fig. 17.2, we see that 9 is to the right of 6, 13 is to the right of 10, and -3 is to the 
right of -6. ■

 2.  The sense of an inequality is not changed if both members are multiplied or di-
vided by the same positive number. Symbolically, this is stated as “if a 7 b, then 
ac 7 bc, and a>c 7 b>c, provided that c 7 0.”

 EXAMPLE  6  Illustrations of property 2

Using property 2 on the inequality 8 6 15, we have the following results:

 8 6 15 8 6 15

multiply both members by 2     divide both members by 2

 2182 6 21152  
8
2

6 15
2

  16 6 30 4 6 15
2

 ■

 3.  The sense of an inequality is reversed if both members are multiplied or 
divided by the same negative number. Symbolically, this is stated as “if a 7 b, 
then ac 6 bc, and a>c 6 b>c, provided that c 6 0.”

0

6 9

10 13!6 !3
x

Fig. 17.2 

In using this property of inequalities, be very careful to note that the inequality sign 
remains the same if both members are multiplied or divided by a positive number, 
but that the inequality sign changes if both members are multiplied or divided by a 
negative number. Most of the errors made in dealing with inequalities occur when 
using this property.

COMMON ERROR
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 EXAMPLE  7  Be careful in using property 3

Using property 3 on the inequality 4 7 -2, we have the following results:

 4 7 -2  4 7 -2

 multiply both  reversed reversed 
 members by -3 

 -3142  6  -31 -22  
4

-2
6 -2

-2

 -12 6 6 -2 6 1

In Fig. 17.3, we see that 4 is to the right of -2 but that -12 is to the left of 6 and that 
-2 is to the left of 1. This is consistent with reversing the sense of the inequality 
when it is multiplied by -3 and when it is divided by -2. ■

 4.  If both members of an inequality are positive numbers and n is a positive num-
ber, then the inequality formed by taking the nth power of each member, or the 
nth root of each member, is in the same sense as the given inequality. Symboli-
cally, this is stated as “if a 7 b, then an 7 bn, and 1n a 7 1n b, provided that 
n 7 0, a 7 0, b 7 0.”

 EXAMPLE  8  Illustrations of property 4

Using property 4 on the inequality 16 7 9, we have

 16 7 9 16 7 9
 square both members take square root of both members

  162 7 92 116 7 19

  256 7 81 4 7 3 ■

Many inequalities have more than two members. In fact, inequalities with three 
members are common, and care must be used in stating these inequalities.

 EXAMPLE  9  Inequalities with three members

(a) To state that 5 is less than 6, and also greater than 2, we may write 2 6 5 6 6, 
or 6 7 5 7 2. (Generally, the less than form is preferred.)

(b) To state that a number x may be greater than -1 and also less than or equal to  
3, we write -1 6 x … 3, or as the interval 1 -1, 34 . (It can also be written as 
x 7 -1 and x … 3.) This is shown in Fig. 17.4(a). Note the use of the open circle 
and the solid circle.

(c) By writing x … -4 or x 7 2, we state that x is less than or equal to -4, or greater 
than 2. In interval notation we write 1 - ∞ , -44  or 12, ∞ 2 . See Fig. 17.4(b). ■

divide both 
members by -2

0 1

4

6!12 !2

!2
x

Fig. 17.3

Practice Exercises

For the inequality -6 6 3, state the ine-
quality that results.

1. Multiply both members by 4.

2. Divide both members by -3.

0 2 4

(a)

!2
x

0 2 4

(b)

!2!4
x

Fig. 17.4 

If x is less than or equal to -4 or greater than 2, it may not be written as the single 
expression 2 * x " −4. This statement would say that x is less than or equal to -4, 
while at the same time being greater than 2, and no such numbers exist. Moreover, 
it would follow that -4 is greater than 2, which is absurd.

COMMON ERROR

 EXAMPLE  10  Meaning of and/or

The inequality x2 - 3x + 2 7 0 is satisfied if x is either greater than 2 or less than 1. 
This is written as x 7 2 or x 6 1, or as1 - ∞ , 12  or 12, ∞ 2 . Once again, it is incor-
rect to write the single expression 1 7 x 7 2. However, it is correct to say that the 
inequality is not satisfied for 1 … x … 2, or in 31, 24 . In other words, the inequality 
does not hold for values of x greater than or equal to 1 and less than or equal to 2. ■

Practice Exercise

3.  Graph the inequality -1 6 x … 3 on the 
number line.

Note carefully that and is used when 
the solution consists of values that make 
both statements true. The word or is 
used when the solution consists of values 
that make either statement true.
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 EXAMPLE  11  Setting up an inequality—application

The design of a rectangular solar panel shows that the length l is between 80 cm and 90 cm 
and the width w is between 40 cm and 80 cm. See Fig. 17.5. Find the values of area the 
panel may have.

Since l is to be less than 90 cm and w less than 80 cm, the area must be less than 190 cm2 180 cm2 = 7200 cm2.  Also, since l is to be greater than 80 cm and w 
greater than 40 cm, the area must be greater than 180 cm2 140 cm2 = 3200 cm2. 
Therefore, the area A is in the interval (3200 cm2, 7200 cm2), or

3200 cm2 6 A 6 7200 cm2

This means the area is greater than 3200 cm2 and less than 7200 cm2. ■

 EXAMPLE  12  Setting up an inequality—application

A semiconductor diode has the property that an electric current flows through it in only 
one direction. If it is an alternating-current circuit, the current in the circuit flows only 
during the half-cycle when the diode allows it to flow. If a source of current given by 
i = 2 sin pt (i in mA, t in seconds) is connected in series with a diode, write the inequali-
ties for the current and the time. Assume that the source is on for 3.0 s and a positive 
current passes through the diode.

We are to find the values of t that correspond to i 7 0. From the properties of the 
sine function, we know that 2 sin pt has a period of 2p>p = 2.0 s. Therefore, the 
current is zero for t = 0, 1.0 s, 2.0 s, and 3.0 s.

The source current is positive for 0 6 t 6 1.0 s and for 2.0 s 6 t 6 3.0 s.
The source current is negative for 1.0 s 6 t 6 2.0 s.
Therefore, in the circuit

i 7 0 for 0 6 t 6 1.0 s and 2.0 s 6 t 6 3.0 s

  i = 0 for t = 0, 1.0 s … t … 2.0 s

A graph of the current in the circuit as a function of time is shown in Fig. 17.6(a). In 
Fig. 17.6(b), the values of t for which i 7 0 are shown. ■

40
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EXERCISES 17.1

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then perform the indicated operations.

 1. In Example 2, in the first paragraph, change the 7  to 6  and then 
complete the meaning of the resulting inequality as in the first 
sentence. Rewrite the meaning as in the second line.

 2. In Example 4(b), change …  to 7  and then graph the resulting 
inequality.

 3. In Example 7, change the inequality to -2 7 -4 and then per-
form the two operations shown in colour.

 4. In Example 9(b), change the -1 to -3 and the 3 to 1 and then write 
the two forms in which an inequality represents the statement.

In Exercises 5–12, for the inequality 4 6 9, state the inequality that 
results when the given operations are performed on both members.

 5. Add 3.  6. Subtract 16.

 7. Multiply by 5. 8. Multiply by -2.

 9. Divide by -1. 10. Divide by 0.5.

 11. Square both. 12. Take square roots.

In Exercises 13–24, give the inequalities equivalent to the following 
statements about the number x.

 13. Greater than -2

 14. Less than 0.7

 15. Less than or equal to 45

 16. Greater than or equal to -6

 17. Greater than 1 and less than 7

 18. Greater than or equal to -200 and less than 650

 19. Less than -9, or greater than or equal to -4

 20. Less than or equal to 8, or greater than or equal to 12

 21. Less than 1, or greater than 3 and less than or equal to 5

 22. Greater than or equal to 0 and less than or equal to 2, or greater 
than 5

 23. Greater than -2 and less than 2, or greater than or equal to 3 and 
less than 4

 24. Less than -4, or greater than or equal to 0 and less than or equal 
to 1, or greater than or equal to 5
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In Exercises 25–28, give verbal statements equivalent to the given 
inequalities involving the number x.

 25. 0 6 x … 2 26. x 6 5 or x 7 7

 27. x 6 -10 or 10 … x 6 20

28. -1 … x 6 3 or 5 6 x 6 7

In Exercises 29–44, express the given inequalities in interval notation 
and graph them on the number line.

 29. x 6 3 30. x Ú -1

 31. x … 1 or x 7 3 32. x 6 -300 or x Ú 0

 33. 0 … x 6 5 34. -4 6 y 6 -2

 35. x Ú -3 and x 6 5 36. x 7 4 and x 6 3

 37. x 6 -1 or 1 … x 6 4

 38. -3 6 x 6 0 or x 7 3

 39. -3 6 x 6 -1 or 1 6 x … 3

 40. 1 6 x … 2 or 3 … x 6 4

 41. t 6 -0.3 or t 7 -0.3

 42. x 6 1 or 1 6 x … 4

 43. 1x … 5 or x Ú 82  and 13 6 x 6 102
 44. 1x 6 7 and x 7 22   or 1x 7 10 or x 6 1)

In Exercises 45–48, answer the given questions about the inequality 
0 6 a 6 b.

 45. Is a2 6 b2 a conditional inequality or an absolute inequality?

 46. Is 0 a - b 0 6 b - a?

 47. If each member of the inequality 2 7 1 is multiplied by a - b, is 
the result 21a - b2 7 1a - b2?

 48.  What is wrong with the following sequence of steps?

a 6 b,  ab 6 b2,  ab - b2 6 0,  b1a - b2 6 0,  b 6 0

In Exercises 49–52, solve the given problems.

 49. Write the relationship between 1 0 x 0 + 0 y 0 2  and 0 x + y 0  if x 7 0 
and y 6 0.

 50. Write the relationship between 0 xy 0  and 0 x 0 0 y 0  if x 7 0 and y 6 0.

 51. Explain the error in the following “proof” that 3 6 2:

  (1) 1>8 6 1>4 122  0.53 6 0.52 132  log 0.53 6 log 0.52 

  (4) 3 log 0.5 6 2 log 0.5 152  3 6 2

 52. If x ≠ y, show that x2 + y2 7 2xy.

In Exercises 53–60, some applications of inequalities are shown.

 53. An electron microscope can magnify an object from 2000 times 
to 1 000 000 times. Assuming that these values are exact, express 
these magnifications M as an inequality and graph them.

 54. A busy person glances at a digital clock that shows 9:36. Another 
glance a short time later shows the clock at 9:44. Express the 
amount of time t (in min) that could have elapsed between glances 
by use of inequalities. Graph these values of t.

 55. An earth satellite put into orbit near the earth’s surface will have 
an elliptic orbit if its velocity v is between 29 000 km>h and 
40 000 km>h. Write this as an inequality and graph these values 
of v.

 56. Fossils found in Jurassic rocks indicate that dinosaurs flourished 
during the Jurassic geological period, 140 MY (million years ago) 
to 200 MY. Write this as an inequality, with t representing past 
time. Graph the values of t.

 57. In executing a program, a computer must perform a set of calcula-
tions. Any one of the calculations takes no more than 2565 steps. 
Express the number n of steps required for a given calculation by 
an inequality. (Note that n is a positive integer.)

58. The velocity v of an ultrasound wave in soft human tissue may be 
represented as 1550 { 60 m>s, where the {60 m>s gives the 
possible variation in the velocity. Express the possible velocities 
by an inequality.

59. The electric intensity E within a charged spherical conductor is 
zero. The intensity on the surface and outside the sphere equals a 
constant k divided by the square of the distance r from the centre 
of the sphere. State these relations for a sphere of radius a by 
using inequalities, and graph E as a function of r.

60. If the current from the source in Example 12 is i = 5 cos 4pt and 
the diode allows only negative current to flow, write the inequali-
ties and draw the graph for the current in the circuit as a function 
of time for 0 … t … 1 s.

Answers to Practice Exercises

1. -24 6 12  2. 2 7 -1  3. −1 0 321  

Using the properties and definitions discussed in Section 17.1, we can now proceed to 
solve inequalities. In this section, we solve linear inequalities in one variable. Similar 
to linear functions as defined in Chapter 5, a linear inequality is one in which each 
term contains only one variable and the exponent of each variable is 1. We will con-
sider linear inequalities in two variables in Section 17.5.

 17.2 Solving Linear Inequalities

Three Members

The procedure for solving a linear inequality in one variable is the same as the one used 
for solving linear equations, with the added restriction that every time we multiply or 
divide by a negative number, we have to change the sense of the inequality. In other 
words, the objective is to isolate the variable by performing the same operations on each 
member of the inequality, keeping in mind the basic properties given in Section 17.1.

LEARNING T IP
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 EXAMPLE  1  Solutions using the basic operations

In each of the following inequalities, by performing the indicated operation, we isolate 
x and thereby solve the inequality.

 x + 2 6 4 
x
2

7 4 2x … 4

 Subtract 2 from  Multiply each Divide each 
 each member. member by 2.  member by 2.

 x 6 2 x 7 8 x … 2

 1 - ∞ , 22  18, ∞ 2  1 - ∞ , 24
Each solution can be checked by substituting any number in the indicated interval into 
the original inequality. For example, any value less than 2 will satisfy the first inequal-
ity, whereas 2 or any number less than 2 will satisfy the third inequality. ■

 EXAMPLE  2  Solving a linear inequality

Solve the following inequality: 3 - 2x Ú 15.
We have the following solution:

 3 - 2x Ú 15 original inequality

 -2x Ú 12 subtract 3 from each member

inequality reversed  
 x … -6 divide each member by -2

  1 - ∞ , -64
Again, carefully note that the sign of inequality was reversed when each number 
was divided by −2. We check the solution by substituting -7 in the original ine-
quality, obtaining 17 Ú 15. ■

 EXAMPLE  3  Solving a linear inequality

Solve the inequality 2x … 3 - x.
The solution proceeds as follows:

  2x … 3 - x original inequality

  3x … 3 add x to each member

  x … 1  divide each member by 3 

 1 - ∞ , 14
This solution checks and is represented in Fig. 17.7, as we showed in Section 17.1.

This inequality could have been solved by combining x-terms on the right. In do-
ing so, we would obtain 1 Ú x. Since this might be misread, it is best to combine the 
variable terms on the left, as we did above. ■

 EXAMPLE  4  Solving a linear inequality

Solve the inequality 3211 - x2 7 1
4 - x.

 
3
2
11 - x2 7 1

4
- x original inequality

 611 - x2 7 1 - 4x multiply each member by 4

 6 - 6x 7 1 - 4x remove parentheses

 -6x 7 -5 - 4x subtract 6 from each member

  -2x 7 -5 add 4x to each member

 x 6 5
2

 divide each member by -2

 a- ∞ , 
5
2
b

0 2!2

Part of solution

x

Fig. 17.7

Practice Exercise

1. Solve the inequality 213 - x2 7 5 + 4x.
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Note that the sense of the inequality was reversed when we divided by -2. This so-
lution is shown in Fig. 17.8. Any value of x 6 5>2 checks when substituted into the 
original inequality. ■

The following example illustrates an application that involves the solution of an 
inequality.

 EXAMPLE  5  Linear inequality—application

The velocity v (in m>s) of a missile in terms of the time t (in s) is given by 
v = 490 - 9.8t. For how long is the velocity positive? (Since velocity is a vector, this 
can also be interpreted as asking “how long is the missile moving upward?”)

In terms of inequalities, we are asked to find the values of t for which v 7 0. This 
means that we must solve the inequality 490 - 9.8t 7 0. The solution is as follows:

  490 - 9.8t 7 0 original inequality

  -9.8t 7 -490 subtract 490 from each member

  t 6 50 s  divide each member by -9.8

Negative values of t have no meaning in this problem. Checking t = 0, we find that 
v = 490 m>s. Therefore, the complete solution is 0 … t 6 50 s, or 30, 50 s2 .

In Fig. 17.9(a), we show the graph of v = 490 - 9.8t, and in Fig. 17.9(b), we show 
the solution 0 … t 6 50 s on the number line (which is really the t-axis in this case). 
Note that the values of v are above the t-axis for those values of t that are part of the 
solution. This shows the relationship of the graph of v as a function of t, and the solu-
tion as graphed on the number line (the t-axis).  ■

INEQUALITIES WITH THREE MEMBERS

 EXAMPLE  6  Solving an inequality with three members

Solve -1 6 2x + 3 6 6.
We have the following solution:

  -1 6 2x + 3 6 6  original inequality

  -4 6 2x 6 3 subtract 3 from each member

  -2 6 x 6 3
2

 divide each member by 2

 1 -2, 322
The solution is shown in Fig. 17.10. ■

 EXAMPLE  7  Solving an inequality with three members

Solve the inequality 2x 6 x - 4 … 3x + 8.
Since we cannot isolate x in the middle member (or in any member), we rewrite the 

inequality as

2x 6 x - 4 and x - 4 … 3x + 8

We then solve each of the inequalities, keeping in mind that the solution must sat-
isfy both of them. Therefore, we have

2x 6 x - 4 and   x - 4 … 3x + 8

  -2x … 12

  x 6 -4  x Ú -6

We see that the solution is x 6 -4 and x Ú -6, which can also be written as 
-6 … x 6 -4, or 3 -6, -42 . Either of these latter two forms is generally preferred 
since they are more concise and more easily interpreted. The solution checks and is 
shown in Fig. 17.11. ■
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Practice Exercise

2. Solve the inequality -2 … 4x - 3 6 5.
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 EXAMPLE  8  Inequality with three members—application

In emptying a wastewater tank, one pump can remove no more than 40 L>min. If it 
operates for 8.0 min and a second pump operates for 5.0 min, what must be the pump-
ing rate of the second pump if 480 L are to be removed?

Let x = the pumping rate of the first pump and y = the pumping rate of the sec-
ond pump. Since the first operates for 8.0 min and the second for 5.0 min to remove 
480 L, we have

 first second
 pump pump total  amounts pumped

8.0x + 5.0 y = 480

Since we know that the first pump can remove no more than 40 L>min, which means 
that 0 … x … 40 L>min, we solve for x, then substitute in this inequality:

  x = 60 - 0.625y solve for x

  0 … 60 - 0.625y … 40 substitute in inequality

  -60 … -0.625y … -20  subtract 60 from each member 

  96 Ú y Ú 32 divide each member by -0.625

  32 … y … 96 L>min use … symbol (optional step)

 332 L>min, 96 L>min4
This means that the second pump must be able to pump at least 32 L>min and no 
more than 96 L>min. See Fig. 17.12.

Although this was a three-member inequality combined with equalities, the solu-
tion was done in the same way as with a two-member inequality. ■

50 100
    L/min

0
y

Fig. 17.12

EXERCISES 17.2

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then perform the indicated operations.

 1. In Example 2, change the 3 to 21 and then solve the resulting 
inequality.

 2. In Example 4, change the 1>4 to 7>4 and then solve and display 
the resulting inequality.

 3. In Example 6, change the +  in the middle member to -  and then 
solve the resulting inequality. Graph the solution.

 4. In Example 7, change the middle member to -x + 6 and then 
solve the resulting inequality. Graph the solution.

In Exercises 5–28, solve the given inequalities. Graph each solution.

 5. x - 3 7 -4 6. x + 2 … 6

 7. 
1
2

 x 6 32 8. -4t 7 12

 9. 3x - 5 … -11 10. 
1
3

 x + 2 Ú 1

 11. 6 - y 7 8 12. 32 - 5x 6 -8

 13. 
4x - 5

2
… x

 14. 1.50 - 5.24x 7 3.75 + 2.25x

 15. 180 - 61T + 122 7 14T + 285

 16. -23x - 13 - 2x2 4 7 1 - 5x
3

+ 2

 17. 2.5011.50 - 3.40x2 6 3.84 - 8.45x

 18. 12x - 72 1x + 12 … 4 - x11 - 2x2
 19. 

1
3

- L
2

6 L + 3
2

 20. 
x
5

- 2 7 2
3

 1x + 32
21. -1 6 2x + 1 6 3

 22. 2 6 3R + 1 … 8

 23. -4 … 1 - x 6 -1

 24. 0 … 3 - 2x … 6

 25. 2x 6 x - 1 … 3x + 5

 26. x + 19 … 25 - x 6 2x

 27. 2s - 3 6 s - 5 6 3s - 3

 28. 0 6 1 - x … 3 or -1 6 2x - 3 6 5

In Exercises 29–46, solve the given problems by setting up and solving 
appropriate inequalities. Graph each solution. When necessary, round 
to 3 significant digits.

 29. Determine the values of x that are in the domain of the function 
f1x2 = 12x - 10.

 30. Determine the values of x that are in the domain of the function 
f1x2 = 1>13 - 0.5 x.

 31. Determine the values of x that are in the domain of the function 
f(x) =  log (2x + 10).

 32. Determine the values of x that are in the domain of the function 
f(x) =  ln (7x + 4).
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 33. For what values of k are the roots of the equation x2 - kx + 9 = 0 
imaginary?

 34. For what values of k are the roots of the equation 2x2 + 3x + k = 0 
real and unequal?

 35. A contractor is considering two similar jobs, each of which is 
estimated to take n hours to complete. One pays $350 plus $15 
per hour, and the other pays $25 per hour. For what values of n 
will the contractor make more at the second position?

 36. In designing plastic pipe, if the inner radius r is increased by 
5.00 cm, and the inner cross-sectional area is increased by 
between 125 cm2 and 175 cm2, what are the possible inner radii 
of the pipe?

 37. The relation between the temperature in degrees Fahrenheit F and 
degrees Celsius C is 9C = 51F - 322 . What temperatures F 
correspond to temperatures between 10° C and 20° C?

 38. The voltage drop V (in volts) across a resistor is the product of the 
current i (in A) and the resistance R (in Ω). Find the possible 
voltage drops across a variable resistor R if the minimum and 
maximum resistances are 1.6 kΩ and 3.6 kΩ, respectively, and 
the current is constant at 2.5 mA.

 39. A rectangular PV (photovoltaic) solar panel is designed to be 1.42 m 
long and supply 130 W>m2 of power. What must the width of the 
panel be in order to supply between 100 W and 150 W?

 40. A beam is supported at each 
end, as shown in Fig. 17.13. 
Analysing the forces leads to  
the equation F1 = 13 - 3d.  
For what values of d is F1 more 
than 6 N?

 41. The mass m (in g) of silver plate on a dish is increased by elec-
troplating. The mass of silver on the plate is given by 
m = 125 + 15.0 t, where t is the time (in h) of electroplating. 
For what values of t is m between 131 g and 164 g?

 42. For a ground temperature of T0 (in °C), the temperature T  (in °C) 
at a height h (in m) above the ground is given approximately by 
T = T0 - 0.010 h. If the ground temperature is 25°C, for what 
heights is the temperature above 10°C?

 43. During a given rush hour, the  
numbers of vehicles shown in 
Fig. 17.14 go in the indicated  
directions in a one-way-street  
section of a city. By finding the 
possible values of x and  
the equation relating  
x and y, find the possible  
values of y.

 44. The minimum legal speed on a certain highway is 70 km>h, and 
the maximum legal speed is 110 km>h. What legal distances can 
a motorist travel in 4 h on this highway without stopping?

 45. The route of a rapid transit train is 40 km long, and the train 
makes five stops of equal length. If the train is actually moving 
for 1 h and each stop must be at least 2 min, what are the lengths 
of the stops if the train maintains an average speed of at least 
30 km>h, including stop times?

 46. An oil company plans to install eight storage tanks, each with a 
capacity of x litres, and five additional tanks, each with a capacity of y 
litres, such that the total capacity of all tanks is 440 000 L. If capacity 
y will be at least 40 000 L, what are the possible values of capacity x?

Answers to Practice Exercises

1. x 6 1>6  2. 1>4 … x 6 2

d
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In this section, we develop methods of solving inequalities with polynomials, rational 
expressions (expressions involving fractions), and nonalgebraic expressions. To 
develop the basic method for solving these types of inequalities, we now take another 
look at a linear inequality.

In Fig. 17.15, we see that all values of the linear function f1x2 = ax + b 1a ≠ 02  
are positive on one side of the point at which f1x2 = 0, and all values of f1x2  are 
negative on the opposite side of the same point. This means that we can solve a linear 
inequality by expressing it with zero on the right and then finding the sign of the result-
ing function on either side of zero.

 EXAMPLE  1  Sign of a function with zero on the right

Solve the inequality 2x - 5 7 1.
Finding the equivalent inequality with zero on the right, we have 2x - 6 7 0. 

Setting the left member equal to zero, we have

2x - 6 = 0 for x = 3

which means f1x2 = 2x - 6 has one sign for x 6 3, and the other sign for x 7 3. 
Testing values in these intervals, we find, for example, that

f1x2 = -2 for x = 2  and  f1x2 = +2 for x = 4

 17.3 Solving Nonlinear Inequalities

Solving Inequalities Graphically

f  

  (  )f  
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x
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Therefore, the solution to the original inequality is x 7 3, or 13, ∞ 2 . The solu-
tion in Fig. 17.16(b) corresponds to the positive values of f1x2  in Fig. 17.16(a).

We could have solved this inequality by methods of the previous sec-
tion, but the important idea here is to use the sign of the function, with zero 
on the right. ■

We can extend this method to solving inequalities with polynomials of higher 
degree. We first find the equivalent inequality with zero on the right and then fac-
tor the function on the left into linear factors and any quadratic factors that lead 
to complex roots. As all values of x are considered, each linear factor can change 
sign at the value for which it is zero. The quadratic factors do not change sign.

This method is especially useful in solving inequalities involving fractions. If a linear 
factor occurs in the numerator, the function is zero at the value of x for which the linear 
factor is zero. If such a factor appears in the denominator, the function is undefined where 
the factor is zero. The values of x for which a function is zero or undefined are called the 
critical values of the function. As all negative and positive values of x are considered 
(starting with negative numbers of large absolute value, proceeding through zero, and end-
ing with large positive numbers), a function can change sign only at a critical value.

We now outline the method of solving an inequality by using the critical values of 
the function. Several examples of the method follow.
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Critical Values

Using Critical Values to Solve an Inequality
1. Determine the equivalent inequality with zero on the right.

2. Find all linear factors of the function.

3. To find the critical values, set each linear factor equal to zero and solve for x.

4.  Determine the sign of the function to the left of the leftmost critical value,  
between critical values, and to the right of the rightmost critical value.

5.  Those intervals in which the function has the proper sign satisfy the inequality.

 EXAMPLE  2  Solving a quadratic inequality

Solve the inequality x2 - 3 7 2x.
We first find the equivalent inequality with zero on the right. Therefore, we have 

x2 -  2x - 3 7 0. We then factor the left member and have1x + 12 1x - 32 7 0

Setting each factor equal to zero, we find the left critical value is -1 and the right 
critical value is 3. All values of x to the left of -1 give the same sign for the func-
tion. All values between -1 and 3 give the function the same sign. All values of x to 
the right of 3 give the same sign to the function. Therefore, we must determine the 
sign of f(x) for each of the intervals x * −1, −1 * x * 3, and x + 3.

For x 6 -1, both factors are negative, which means their product is positive, or 1x + 12 1x - 32 7 0. For -1 6 x 6 3, the left factor is positive, and the right 
factor is negative, which means their product is negative, or 1x + 12 1x - 32 6 0. 
For x 7 3, both factors are positive, which means their product is positive, or 1x + 12 1x - 32 7 0.

Summarizing these results for f1x2 = 1x + 12 1x - 32 , we have

If x 6 -1,  f 1x2  7 0; if -1 6 x 6 3, f 1x2 6 0; if x 7 3, f 1x2 7 0

Therefore, the solution to the inequality is x 6 -1 or x 7 3 or, in interval notation, 1 - ∞ , -12  or 13, ∞ 2 .
The solution that is shown in Fig. 17.17(b) corresponds to the positive values of the 

function f1x2 = x2 -  2x - 3, shown in Fig. 17.17(a). ■
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 EXAMPLE  3  Solving a cubic inequality

Solve the inequality x3 - 4x2 + x + 6 6 0.
By methods developed in Chapter 15, we factor the function on the left and obtain 1x + 12 1x - 22 1x - 32 6 0. The critical values are -1, 2, 3. We wish to deter-

mine the sign of the left member for the intervals x 6 -1, -1 6 x 6 2, 2 6 x 6 3, 
and x 7 3. The following table shows each interval, the sign of each factor in each in-
terval, and the resulting sign of the function.

f1x2 = 1x + 12 1x - 22 1x - 32
Interval 1x + 12 1x - 22 1x - 32 Sign of f1x2
x 6 -11 - ∞ , -12 - - - -

-1 6 x 6 21 -1, 22 + - - +

2 6 x 6 312, 32 + + - -

x 7 313, ∞ 2 + + + +

Since we want values for f1x2 6 0, the solution is 1 - ∞ , -12  or (2, 3), that is, 
x 6 -1 or 2 6 x 6 3. The solution shown in Fig. 17.18(b) corresponds to the val-
ues of f1x2 6 0 in Fig. 17.18(a). ■

The following example illustrates an applied situation that involves the solution of 
an inequality.

 EXAMPLE  4  Solving a quadratic inequality—application

The force F (in N) acting on a cam varies according to the time t (in s), and it is given 
by the function F = 2t2 - 12t + 20. For what values of t, 0 … t … 6 s, is the force at 
least 4 N?

For a force of at least 4 N, we know that F Ú 4 N, or 2t2 - 12t + 20 Ú 4. This 
means we are to solve the inequality 2t2 - 12t + 16 Ú 0, and the solution is as follows:

 2t2 - 12t + 16 Ú 0

 t2 - 6t + 8 Ú 0

 1 t - 22 1 t - 42 Ú 0

The critical values are t = 2 and t = 4, which lead to the following table:
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Interval 1 t - 22 1 t - 42 Sign of 1 t - 22 1 t - 42
0 … t 6 230, 22 - - +

2 6 t 6 412, 42 + - -

4 6 t … 614, 64 + + +

We see that the values of t that satisfy the greater than part of the problem are [0, 2) 
and (4, 6]. Since we know that 1 t - 22 1 t - 42 = 0 for t = 2 and t = 4, the solu-
tion is [0, 2] or [4, 6], that is,

0 … t … 2 s or 4 s … t … 6 s

The graph of f1 t2 = 2t2 - 12t + 16 is shown in Fig. 17.19(a). The solution, 
shown in Fig. 17.19(b), corresponds to the values of f1 t2  that are zero or positive or 
for which F Ú 4 N.

0 2

       4 NF

4
(b)

6

!

t

0 2 4

(a)

6
t

f (t)

"4

4

8

12

16

Fig. 17.19

Practice Exercise

1. Solve the inequality x2 - x - 42 6 0.
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We note here that if the cam rotates in 6-s intervals, the force on the cam is peri-
odic, varying from 2 N to 20 N. ■

 EXAMPLE  5  Solving a cubic inequality

Solve the inequality x3 - x2 + x - 1 7 0.
In order to factor this function, we can use the methods of Chapter 15, or we 

might note that it is factorable by grouping (see Section 6.2). Either method leads to 
the inequality 1x2 + 12 1x - 12 7 0

In this case, we have a quadratic factor x2 + 1 that leads to imaginary roots 1 j and - j2 
and is never negative. This means we have only one linear factor and therefore only 
one critical value.

Setting x - 1 = 0, we get the critical value x = 1. Since x - 1 is positive for 
x 7 1 and negative for x 6 1, the solution to the inequality is x 7 1, or (1, ∞).

The solution is shown in Fig. 17.20(b), and we see that this solution corresponds 
to the positive values of f1x2 = x3 - x2 + x - 1 shown in Fig. 17.20(a). ■

 EXAMPLE  6  Solving a rational inequality

Find the values of x for which Ax - 3
x + 4

 represents a real number.

For the expression to represent a real number, the fraction under the radical must 
be greater than or equal to zero. This means we must solve the inequality

x - 3
x + 4

Ú 0

The critical values are found from the factors that are in the numerator or in 
the denominator. Thus, the critical values are -4 and 3. Considering now the 
greater than part of the Ú sign, we set up the following table:

0 3
(b)

x

0 3

(a)

y

x
!2

!2

!10

10

20

Fig. 17.20 

0

(b)

3
x

!6 !3 6

0

(a)

4!8 !4

!4

4

y

x

Fig. 17.21 

Interval
x - 3
x + 4

Sign of  
x - 3
x + 4

x 6 -41 - ∞ , -42  - 
 - 

+

-4 6 x 6 31 -4, 32  - 
+

-

x 7 313, ∞ 2 +
+

+

Thus, the values that satisfy the greater than part of the problem are 1 - ∞ , -42  or 13, ∞ 2 . Now, considering the equality part of the Ú  sign, we note that x = 3 is 
valid, for the fraction is zero. However,

if x = −4, we have division by zero, and therefore x may not equal −4.

Therefore, the solution of the inequality is 1 - ∞ , 42  or 33, ∞ 4, that is, x 6 -4 or 
x Ú 3. This means these are the values for which the original expression represents 

a real number. The graph of f1x2 =
x - 3
x + 4

 is shown in Fig. 17.21(a), and the graph 

of the solution is shown in Fig. 17.21(b). ■

Practice Exercise

2. Solve the inequality 
x + 3
2x - 5

Ú 0.
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 EXAMPLE  7  Solving a rational inequality

Solve the inequality 
1x - 2221x + 32

4 - x
6 0.

The critical values are -3, 2, and 4. Thus, we have the following table:

Note that to solve a rational inequality, we do not start by multiplying by the least 
common denominator, as we did with equations involving fractions. Since we do not 
know the value of x, we can’t multiply both sides by anything whose sign depends 
on x. When we do not know if the denominator is positive or negative, we do not 
know if we need to change the sense of the inequality or not. It is for this reason 
that we solve rational inequalities using critical values.

Note also that to avoid division by zero, the solution never includes the critical value 
that makes the denominator zero.

COMMON ERROR

Interval
1x - 2221x + 32

4 - x
Sign of 

1x - 2221x + 32
4 - x

x 6 -31 - ∞ , -32 +    -
+

-

-3 6 x 6 21 -3, 22 +   +
+

+

2 6 x 6 412, 42 +    +
+

+

x 7 414, ∞ 2 +    +
-

-

0

(b)

3
x

!6 !3 6

0

(a)

3!6 !3

!40

!80

20

6

y

x

Fig. 17.22 

Thus, the solution is 1 - ∞ , -32  or 14, ∞ 2 , or x 6 -3  or x 7 4. The graph of the func-
tion is shown in Fig. 17.22(a), and the graph of the solution is shown in Fig. 17.22(b).  ■

 EXAMPLE  8  Solving a rational inequality

Solve the inequality 
x + 3
x - 1

7 2.

We first subtract 2 from each member and combine terms on the left. We have

  
x + 3
x - 1

  - 2 7 0 subtract 2 from both members

  
x + 3 - 21x - 12

x - 1
7 0 combine over the common denominator

  
5 - x
x - 1

7 0 this is the form to use

The critical values are 1 and 5, and we have the following table of signs:

When a rational inequality involves 
more than one nonzero term, the 
first step is to get a zero on the right 
and combine terms using the least 
common denominator so as to obtain 
a single rational expression. We can 
then proceed to use critical values as 
before, without multiplying both 
sides by the least common denomina-
tor. Example 8 illustrates the 
procedure.

LEARNING T IP

Interval 15 - x2 > 1x - 12 Sign of 15 - x2 > 1x - 12
x 6 11 - ∞ , 12 + > - -

1 6 x 6 511, 52 + > + +

x 7 515, ∞ 2 - > + -

Thus, the solution is 11, 52 , or 1 6 x 6 5. The graph of f1x2 = 15 - x2 > 1x - 12  
is shown in Fig. 17.23(a), and the graph of the solution is shown in Fig. 17.23(b). ■
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−4 40 8
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Fig. 17.23
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SOLVING INEQUALITIES GRAPHICALLY
We can get an approximate solution of an inequality from the graph of a function, 
including functions that are not factorable or not algebraic. The method follows several 
of the earlier examples. First, write the equivalent inequality with zero on the right and 
then graph this function. Those values of x corresponding to the proper values of y 
(either above or below the x-axis) are those that satisfy the inequality.

 EXAMPLE  9  Solving an inequality graphically

Use a graphing calculator to solve the inequality x3 7 x2 - 3.
Finding the equivalent inequality with zero on the right, we have x3 - x2 + 3 7 0. 

On the calculator, we then let y1 = x3 - x2 + 3 and graph this function. This gives 
us the calculator display shown in Fig. 17.24.

We can see that the curve crosses the x-axis only once, between x = -2 and 
x = -1. Using the zero feature, we find that this value is approximately x = -1.17. 
Since we want positive values of x that correspond to positive values of y, we see 
that the solution is x 7 -1.17, or 1 -1.17, ∞ 2 . ■

–3

–5

3

5

Fig. 17.24 

EXERCISES 17.3

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting inequalities.

 1. In Example 2, change the -  sign before the 3 to +  and change 2x 
to 4x, then solve the resulting inequality, and graph the solution.

 2. In Example 5, change both -  signs to + , then solve the resulting 
inequality, and graph the solution.

 3. In Example 7, change the exponent on 1x - 22  from 2 to 3, then 
solve the resulting inequality, and graph the solution.

 4. In Example 8, on the right, change the 2 to 3, then solve the 
resulting inequality, and graph the solution.

In Exercises 5–32, solve the given inequalities. Graph each solution.

 5. x2 - 16 6 0 6. x2 + 3x Ú 0

 7. 2x2 … 4x 8. x2 - 4x 7 21

 9. 2x2 - 12 … -5x 10. 9t2 + 6t 7 -1

 11. x2 + 4x … -4 12. 6x2 + 1 6 5x

 13. R2 + 4 7 0 14. x4 + 2 6 1

 15. x3 + x2 - 2x 7 0 16. x3 - 2x2 + x Ú 0

 17. s3 + 2s2 - s Ú 2 18. n4 - 2n3 + 8n + 12 … 7n2

 19. 3x2 + 5x Ú 2 20. 12x2 + x 7 1

 21. 
2x - 3
x + 6

… 0 22. 
x + 15
x - 9

7 0

 23. 
x2 - 6x - 7

x + 5
7 0 24. 

1x - 22215 - x214 - x23 … 0

 25. 
x

x + 1
7 1 26. 

2p

p - 1
7 3

 27. 
T - 8
3 - T

… 0 28. 
3x + 1
x + 3

Ú 0

 29. 
6 - x

3 - x - 4x2 Ú 0 30. 
4 - x

3 + 2x - x2 7 0

 31. 
x419 - x2 1x - 52 12 - x214 - x25 7 0 32. 

2
x - 3

6 4

In Exercises 33–36, determine the values of x for which the radicals 
represent real numbers.

 33. 21x - 12 1x + 22  34. 2x2 - 3x

 35. 2-x - x2 36. Cx3 + 6x2 + 8x
3 - x

In Exercises 37–44, solve the given inequalities graphically by using a 
graphing calculator. Approximate the critical values to the nearest 
0.01. See Example 9.

 37. x3 - x 7 2 38. 0.5x3 6 3 - 2x2

 39. x4 6 x2 - 2x - 1 40. 3x4 + x + 1 7 5x2

 41. 2x 7 x + 2 42. log x 6 1 - 2x2

 43. sin x 6 0.1x2 - 1 44. 4 cos 2x 7 2x - 3

In Exercises 45–52, use inequalities to solve the given problems. 
Where necessary, approximate the critical values to the nearest 0.01.

 45. Is x2 7 x for all x? Explain.

 46. Is x 7 1>x for all x? Explain.

 47. Find an inequality of the form ax2 + bx + c 6 0 with a 7 0 for 
which the solution is -1 6 x 6 4.

 48. Find an inequality of the form ax3 + bx 6 0 with a 7 0 for 
which the solution is x 6 -1 or 0 6 x 6 1.

 49. Algebraically find the values of x for which 2x+2 7 32x-3.

 50. Graphically find the values of x for which 2 log2 x 6 log31x + 12 .

 51. For what values of real numbers a and b does the inequality 1x - a2 1x - b2 6 0 have real solutions?

 52. Algebraically find the intervals for which f1x2 = 2x4 - 5x3 + 3x2 
is positive and those for which it is negative. Using only this infor-
mation, draw a rough sketch of the graph of the function.
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In Exercises 53–64, answer the given questions by solving the appropriate 
inequalities.

 53. The electric power P (in W) delivered to part of a circuit is given 
by P = 6i - 4i2, where i is the current (in A). For what positive 
values of i is the power greater than 2 W?

 54. The mass m (in Mg) of fuel in a rocket after launch is 
m = 2000 - t2 - 140t, where t is the time (in min). During 
what period of time is the mass of fuel greater than 500 Mg?

 55. The weekly sales S (in thousands of units) of a certain product t weeks 
after it is introduced to the market are given by S = 200t> 1 t2 + 642 . 
When will sales be at least 10 000 units per week?

 56. The object distance p (in cm) and image distance q (in cm) for a 
camera of focal length 3.00 cm is given by p = 3.00q> 1q - 3.002 . 
For what values of q is p 7 12.0 cm?

 57. The total capacitance C of capacitors C1 and C2 in series is 
C-1 = C-1

1 + C-1
2 . If C2 = 4.00 mF, find C1 if C 7 1.00 mF.

 58. A rectangular field is to be enclosed by a fence and divided down 
the middle by another fence. The middle fence costs $4/m and the 
other fence costs $8/m. If the area of the field is to be 8000 m2, 
and the cost of the fence cannot exceed $4000, what are the pos-
sible dimensions of the field?

 59. The weight w (in N) of an object h metres above the surface of 
earth is w = r2w0> 1r + h22, where r is the radius of earth and w0 
is the weight of the object at sea level. Given that r = 6380 km, 
if an object weighs 200 N at sea level, for what altitudes is its 
weight less than 100 N?

 60. One type of machine part costs $10 each, and a second type costs 
$20 each. How many of the second type can be purchased if at least 
30 of the first type are purchased and a total of $1000 is spent?

 61. The length of a rectangular microprocessor chip is 2.0 mm more 
than its width. If its area is less than 35 mm2, what values are pos-
sible for the width if it must be at least 3.0 mm?

 62. A laser source is 2.0 cm from the nearest point P on a flat mirror, 
and the laser beam is directed at a point Q that is on the mirror 
and is x cm from P. The beam is then reflected to the receiver, 
which is x cm from Q. What is x if the total length of the beam is 
greater than 6.5 cm? See Fig. 17.25.

Q

2.0 cm

Source

Receiver

P

x

x

Fig. 17.25 

8.00 cm

8.00 cm

x

x

xx
Fig. 17.26 

 63. A plane takes off from Winnipeg and flies due east at 620 km>h. 
At the same time, a second plane takes off from the surface of 
Lake Winnipeg 310 km due north of Winnipeg and flies due 
north at 560 km>h. For how many hours are the planes less than 
1000 km apart?

 64. An open box (no top) is formed from a piece of cardboard 8.00 cm 
square by cutting equal squares from the corners, turning up the 
resulting sides, and taping the edges together. Find the edges of 
the squares that are cut out in order that the volume of the box is 
greater than 32.0 cm3. See Fig. 17.26.

Answers to Practice Exercises

1.   -6 6 x 6 7, or 1 -6, 72   2.  x … -3 or x 7 5>2,  

or 1 - ∞ , -34  or a5
2

, ∞ b

Inequalities involving absolute values are often useful in later topics in mathematics 
such as calculus and in applications such as the accuracy of measurements. In this sec-
tion, we show the meaning of such inequalities and how they are solved.

If we wish to write the inequality 0 x 0 7 1 without absolute-value signs, we must 
note that we are considering values of x that are numerically larger than 1. Thus, we 
may write this inequality in the equivalent form x 6 -1 or x 7 1. We now note that 
the original inequality, with an absolute-value sign, can be written in terms of two 
equivalent inequalities, neither involving absolute values. If we are asked to write the 
inequality 0 x 0 6 1 without absolute-value signs, we write -1 6 x 6 1, since we are 
considering values of x numerically less than 1.

Following reasoning similar to this, whenever absolute values are involved in ine-
qualities, the following two relations allow us to write equivalent inequalities without 
absolute values. For n 7 0,

 17.4 Inequalities Involving Absolute Values
Absolute Value Greater Than Given 

 
Given Value

 If 0  f1x2 0 7 n, then f1x2 6 -n or f1x2 7 n. (17.1)
 If 0  f1x2 0 6 n, then -n 6 f1x2 6 n.  (17.2)
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 EXAMPLE  1  Absolute value less than a number

Solve the inequality 0 x - 3 0 6 2.
Here, we want values of x such that x - 3 is numerically smaller than 2, or the 

values of x within 2 units of x = 3. These are given by the inequality 1 6 x 6 5. 
Now, using Eq. (17.2), we have

-2 6 x - 3 6 2

By adding 3 to all three members of this inequality, we have

1 6 x 6 5

or 11, 52 , which is the proper interval. See Fig. 17.27. ■

 EXAMPLE  2  Absolute value greater than a number

Solve the inequality 0 2x - 1 0 7 5.
By using Eq. 117.12 , we have

2x - 1 6 -5 or 2x - 1 7 5

Completing the solution, we have

 2x 6 -4 or 2x 7 6 add 1 to each member

 x 6 -2 x 7 3 divide each member by 2

 1 - ∞ , -22  13, ∞ 2
This means that the given inequality is satisfied for x 6 -2 or for x 7 3, or in 1 - ∞ , -22  or 13, ∞ 2 . We must be very careful to remember that we cannot write this 
as 3 6 x 6 -2. The solution is shown in Fig. 17.28.

The meaning of this inequality is that the numerical value of 2x - 1 is greater 
than 5. By considering values in these intervals, we can see that this is true for values 
of x less than -2 or greater than 3. ■

 EXAMPLE  3  Absolute value greater than or equal to a number

Solve the inequality 2 ` 2x
3

+ 1 ` Ú 4.

The solution is as follows:

  2 ` 2x
3

+ 1 ` Ú 4 original inequality

 ` 2x
3

+ 1 ` Ú 2 divide each member by 2

  
2x
3

+ 1 … -2 or   
2x
3

+ 1 Ú 2  using Eq. (17.1)

  2x + 3 … -6 2x + 3 Ú 6

  2x … -9 2x Ú 3

  x … -  
9
2

 x Ú 3
2

  solution

 a- ∞ , -  
9
2
d  c 3

2
, ∞ b

This solution is shown in Fig. 17.29. Note that the sign of equality does not  
change the method of solution. It simply indicates that -9

2 and 3
2 are included in the 

solution.  ■

0

2 units from 3

3 6

! x 2 3 ! ,  2

Fig. 17.27

0 3
x

!6 !3 6

Fig. 17.28

Practice Exercise

1. Solve the inequality 0 2x - 9 0 7 3.

0 2
x

!4 !2

Fig. 17.29
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 EXAMPLE  4  Absolute value less than a number

Solve the inequality 0 3 - 2x 0 6 3.
We have the following solution:

  0 3 - 2x 0 6 3  original inequality

  -3 6 3 - 2x 6 3  using Eq. (17.2)

  -6 6 -2x 6 0

  3 7 x 7 0  divide by -2 and reverse signs of inequality

  0 6 x 6 3  solution

 10, 32
The meaning of the inequality is that the numerical value of 3 - 2x is less than 3. This 
is true for values of x between 0 and 3. The solution is shown in Fig. 17.30. ■

 EXAMPLE  5  Absolute value—application

A technician measures an electric current and reports that it is 0.036 A with a possible 
error of {0.002 A. Write this result for the current i, using an inequality with absolute 
values.

The statement of the problem tells us that the current is no less than 0.034 A and 
no more than 0.038 A. Another way of stating this is that the numerical difference 
between the true value of i (unknown exactly) and the measured value, 0.036 A, is 
less than or equal to 0.002 A. Using an absolute-value inequality, this is written as0 i - 0.036 0 … 0.002

where values are in amperes.
We can see that this inequality is correct by using (Eq. 17.2):

  -0.002 … i - 0.036 … 0.002

  0.034 … i … 0.038   add 0.036 to each member

This verifies that i should not be less than 0.034 A or more than 0.038 A. The solu-
tion is shown in Fig. 17.31. ■

2 4!2 0
x

Fig. 17.30 

0.032 0.040
i

Fig. 17.31 

Practice Exercise

2. Solve the inequality 0 4 - x 0 … 2.

EXERCISES 17.4

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the resulting inequalities.

 1. In Example 2, change the 7  to 6 , solve the resulting inequality, 
and graph the solution.

 2. In Example 4, change the 6  to 7 , solve the resulting inequality, 
and graph the solution.

In Exercises 3–24, solve the given inequalities. Graph each solution.

 3. 0 x - 4 0 6 1 4. 0 x + 1 0 6 3

 5. 0 5x + 4 0 7 6 6. ` 1
2

 N - 1 ` 7 1

 7. 1 + 0 6x - 5 0 … 5 8. 0 30 - 42x 0 … 0

 9. 0 3 - 4x 0 7 3 10. 3 + 0 3x + 1 0 Ú 5

 11. ` t + 1
5

` 6 5 12. ` 2x - 9
4

` 6 1

 13. 0 20x + 85 0 … 43 14. 0 2.6x - 9.1 0 7 10.4

 15. 2 0 x - 24 0 7 84 16. 3 0 4 - 3x 0 … 10

 17. 8 + 3 0 3 - 2x 0 6 11 18. 5 - 4 0 1 - 7x 0 7 13

 19. 4 0 2 - 5x 0 Ú 6 20. 2.5 0 7.1 - 2.0x 0 … 6.5

 21. ` 3R
5

+ 1 ` 6 8 22. ` 4x
3

- 5 ` Ú 7

 23. ` 6.5 - x
2
` Ú 2.3 24. ` 2w + 5

w + 1
` Ú 1

In Exercises 25–28, solve the given quadratic inequalities.

 25. 0 x2 + x - 4 0 7 2

  (After using Eq. 17.1, you will have two inequalities. The solution 
includes the values of x that satisfy either of the inequalities.)

 26. 0 x2 + 3x - 1 0 7 3 (See Exercise 25.)

 27. 0 x2 + x - 4 0 6 2

  (Use Eq. 17.2, then treat the resulting inequality as two inequali-
ties of the form f1x2 7 -n and f1x2 6 n. The solution 
includes the values of x that satisfy both of the inequalities.)

28. 0 x2 + 3x - 1 0 6 3 (See Exercise 27.)
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In Exercises 29–34, solve the given problems.

 29. Solve for x if 0 x 0 6 a and a … 0. Explain.

 30. Solve for x if 0 x - 1 0 6 4 and x Ú 0.

 31. Solve for x: a - 0 bx 0 6 c given that a - c 7 0.

 32. Solve for x: 1 6 0 x - 2 0 6 3.

 33. The thickness t (in km) of earth’s crust varies and can be 
described as 0 t - 27 0 … 23. What are the minimum and maxi-
mum values of the thickness of earth’s crust?

 34. The temperature T  (in °C) at which a certain integrated-circuit 
computer chip is designed to operate is given by the inequality 0 T - 110 0 … 10. What are the minimum and maximum tempera-
tures of this range?

In Exercises 35–41, use inequalities involving absolute values to solve 
the given problems.

 35.  The production p (in barrels) of oil at a refinery is estimated at 
2 000 000 { 200 000. Express p using an inequality with abso-
lute values and describe the production in a verbal statement.

 36. The Mach number M of a moving object is the ratio of its velocity 
v to the velocity of sound vs, and vs varies with temperature. A jet 
travelling at 1650 km>h changes its altitude from 500 m to 5500 m. 
At 500 m (with the temperature at 27°C), vs = 1250 km>h, and at 
5500 m 1 -3°C2 , vs = 1180 km>h. Express the range of M, 
using an inequality with absolute values.

 37. The diameter d of a certain type of tubing is 3.675 cm with a tol-
erance of 0.002 cm. Express this as an inequality with absolute 
values.

 38. The moon is at a maximum distance of 4.07 * 105 km from earth 
and at a minimum distance of 3.57 * 105 km. Express this as an 
inequality with absolute values.

1300 m

3000 m

1300 m h

Fig. 17.32 

 39. The Peterborough Lift Lock in Peterborough, Ontario (the highest 
hydraulic lift lock in the world), raises and lowers boats as the mass 
m of its two identical caissons changes from 1542 t to 1672.6 t. 
Express the range of m using an inequality with absolute values.

 40. The voltage V in a certain circuit is given by V = 6.0 - 200i, 
where i is the current (in A). For what values of the current is the 
absolute value of the voltage less than 2.0 V?

 41. A rocket is fired from a plane flying horizontally at 3000 m. The 
height h (in m) of the rocket above the plane is given by 
h = 190t - 4.9t2, where t is the time (in s) of flight of the 
rocket. When is the rocket more than 1300 m above or below the 
plane? Round to 3 significant digits. See Fig. 17.32.

Answers to Practice Exercises

1. x 6 3 or x 7 6, or 1 - ∞ , 32  or 16, ∞ 2   
2.  2 … x … 6, or 32, 64

To this point, we have considered inequalities with one variable and certain methods of 
solving them. We may also graphically solve inequalities involving two variables, such 
as x and y. In this section, we consider the solution of such inequalities.

Let us consider the function y = f1x2 . We know that the coordinates of points on 
the graph satisfy the equation y = f1x2 . In addition, the graph divides the plane into 
two regions. Points in the region above the graph satisfy the inequality y 7 f1x2 , 
whereas points in the region below the graph satisfy the inequality y 6 f1x2 . Consider 
the following example.

 EXAMPLE  1  Checking points above and below a line

Consider the linear function y = 2x - 1, the graph of which is shown in Fig. 17.33. 
This equation is satisfied for points on the line. For example, the point 12, 32  is on the 
line, and we have 3 = 2122 - 1 = 3. Therefore, for points on the line, we have 
y = 2x - 1, or y - 2x + 1 = 0.

The point 12, 42  is above the line, since we have 4 7 2122 - 1, or 4 7 3. 
Therefore, for points above the line, we have y 7 2x - 1, or y - 2x + 1 7 0. In 
the same way, for points below the line, y 6 2x - 1 or y - 2x + 1 6 0. We note 
this is true for the point 12, 12 , since 1 6 2122 - 1, or 1 6 3.

 17.5 Graphical Solution of Inequalities 
with Two Variables

a Dashed Curve or a Solid Curve
y

x
!2 0

2

4

2 4
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x !
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y # 2x ! 1

y $ 2x ! 1

Fig. 17.33
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The line for which y = 2x - 1 and the regions for which y 7 2x - 1 and for 
which y 6 2x - 1 are shown in Fig. 17.33.

Summarizing,

  y 7 2x - 1  for points above the line

  y = 2x - 1  for points on the line

  y 6 2x - 1  for points below the line ■

The illustration in Example 1 leads us to the graphical method of indicating the 
points that satisfy an inequality with two variables.

Procedure for Solving an Inequality with Two Variables
1. Solve the inequality for y by isolating y.

2.  Consider the equation y = f1x2  obtained by changing the inequality sign to 
an equality sign. Determine the graph of y = f1x2  and draw it as a solid or 
dashed curve, as follows:

 a. If the original inequality is strict 1 7  or 6 2 , draw f1x2  as a dashed curve. 
This indicates that the graph of f1x2 is not part of the solution.

 b. If the original inequality is not strict 1 Ú  or … 2 , draw f1x2  as a solid 
curve. This indicates that the graph of f1x2 is part of the solution.

3.  The solution to the inequality consists of all points in an entire region of the 
plane, which is shaded in as follows:

 a. Shade in the region above the curve if the inequality is of the form 
y 7 f1x2  or y Ú f1x2 .

 b. Shade in the region below the curve if the inequality is of the form 
y 6 f1x2  or y … f1x2 .

 EXAMPLE  2  Sketching an inequality of the form y * f 1x 2
Draw a sketch of the graph of the inequality y 6 x + 3.

The variable y is already isolated, so the first step is to draw the function 
y = x + 3. Since the original inequality is strict, the function is represented by a 
dashed line, as shown in Fig. 17.34. The solution to the inequality is then shaded in 
as the region below the line. ■

 EXAMPLE  3  Sketching an inequality—application

After a snowstorm, it is estimated that it will take 30 min to plow each kilometre of 
Route 15 and 45 min to plow each kilometre of Route 80. If no more than 60 plowing-
hours are available, what combinations of Route 15 and Route 80 can be plowed?

Let x = kilometres of Route 15 that can be plowed and y = kilometres of Route 
80 that can be plowed. The time to plow along each route is the product of the time 
for each kilometre and the number of kilometres to be plowed. This gives us

 time to plow Rt. 15 time to plow Rt. 80 max. available time

 10.50 h>km2 1x km2 + 10.75 h>km2 1y km2 …  60 h

 30 min 45 min

  0.50x + 0.75y … 60

  y … 80 - 0.67x

Noting that negative values of x and y do not have meaning, we have the graph in 
Fig. 17.35, shading in the region below the line since we have y 6 80 - 0.67x for that 
region. Any point in the shaded region, or on the axes or the line around the shaded region, 
gives a solution. The solid line indicates that points on it are part of the solution.
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x
!2 0

2

4Dashed line
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6
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!2
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The point 10, 802 , for example, is a solution and tells us that 80 km of Route 80 
can be plowed if none of Route 15 is plowed. In this case, all 60 h of plowing time 
are used for Route 80. Another possibility is shown by the point 160, 202 , which 
indicates that 60 km of Route 15 and 20 km of Route 80 can be plowed. In this case, 
not all of the 60 plowing hours are used. ■

 EXAMPLE  4  Sketching a nonlinear inequality with two variables 

Draw a sketch of the graph of the inequality y 7 x2 - 4. Although the graph of y = x2 - 4 
is not a straight line, the method of solution is the same. We graph the function y = x2 - 4 
as a dashed curve, since it is not part of the solution, as shown in Fig. 17.36. We then shade 
in the region above the curve to indicate the points that satisfy the inequality. ■

 EXAMPLE  5  Solution of a system of inequalities

Draw a sketch of the region that is defined by the system of inequalities y Ú -x - 2 
and y + x2 6 0.

Similar to the solution of a system of equations, the solution of a system of ine-
qualities is any pair of values 1x, y2  that satisfies both inequalities. This means we 
want the region common to both inequalities. In Fig. 17.37, we first shade in the re-
gion above the line y = -x - 2 and then shade in the region below the parabola 
y = -x2. The region defined by this system is the darkly shaded region below the 
parabola that is also above and on the line.

Note that the region defined by y Ú -x - 2 or y + x2 6 0 consists of both shaded 
regions and all points on the line since that is where either of the inequalities is true. ■

Most graphing calculators can be used to display the solution of an inequality or of a 
system of inequalities involving two variables. The manual should be consulted to deter-
mine how to do this on any particular model of calculator. Some examples can be found in 
the exercises.
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EXERCISES 17.5

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then draw the graph of the resulting inequality.

 1. In Example 2, change x + 3 to 3 - x and then draw the graph of 
the resulting inequality.

 2. In Example 4, change x2 - 4 to 4 - x2 and then draw the graph 
of the resulting inequality.

In Exercises 3–22, draw a sketch of the graph of the given inequality.

 3. y 7 x - 1 4. y 6 3x - 2

 5. y Ú 2x + 5 6. y … 15 - 3x

 7. 3x + 2y + 6 7 0 8. x + 4y - 8 6 0

 9. y 6 x2 10. y … 2x2 - 3

 11. 2x2 - 4x - y 7 0 12. y … x3 - 1

 13. y 6 32x - x4 14. y … 12x + 5

 15. y 7 10

x2 + 1
 16. y 6  ln x

 17. y 7 1 + sin 2x 18. y 7 0 x 0 - 3

 19. -4 6 y … -2 20. y 7 0 x + 3 0
 21. 0 x 0 6 0 y 0  22. 0 x - 3y 0 7 2

In Exercises 23–32, draw a sketch of the graph of the region in which 
the points satisfy the given system of inequalities.

 23. y 7 x 
y 7 1 - x

 24. y … 2x 
y Ú x - 1

 25. y … 2x2 
y 7 x - 2

 26. y 7 x2 
y 6 x + 4

 27. y 7 1
2x2 

y … 4x - x2
 28. y 6 4 - x 

y 6 216 - x2

 29. y Ú 0  
y …  sin x 
0 … x … 3p

 30. y 7 0  
y 7 1 - x 
y 6 ex

 31. 0 y + 2 0 6 5 

  0 x - 3 0 … 2 

 32. 16x + 3y - 12 7 0 
y 7 x2 - 2x - 3

  0 2x - 3 0 6 3

In Exercises 33–42, use a graphing calculator to display the solution 
of the given inequality or system of inequalities.

 33. 2x + y 6 5 34. 4x - y 7 1

 35. y Ú 1 - x2 36. y 6 0 4 - 2x 0
 37. y 7 2x - 1  

y 6 x4 - 8
 38. y 6 3 - x  

y 7 3x - x3
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A cable, and at least 200 m but no more than 400 m of type B 
cable, are needed. Graph the possible lengths of cable that are 
needed.

 50. A refinery can produce gasoline and diesel fuel, in amounts of 
any combination, except that equipment restricts total production 
to 7500 L>day. Graph the different possible production combina-
tions of the two fuels.

 51. The elements of an electric circuit dissipate P watts of power. The 
power PR dissipated by a resistor in the circuit is given by 
PR = Ri2, where R is the resistance (in Ω) and i is the current 
(in A). Graph the possible values of P and i for P 7 PR and 
R = 0.5 Ω.

 52. The cross-sectional area A (in m2) of a certain trapezoid culvert in 
terms of its depth d (in m) is A = 2d + d2. Graph the possible 
values of d and A if A is between 1 m2 and 2 m2.

 53. One pump can remove wastewater at the rate of 250 L>min, and a 
second pump works at the rate of 150 L>min. Graph the possible 
values of the time (in min) that each of these pumps operates such 
that together they pump more than 15 000 L.

 54. A rectangular computer chip is being designed such that its 
perimeter is no more than 30 mm, its width at least 3 mm, and its 
length at least 8 mm. Graph the possible values of the width w 
and the length l.

 41. y … 0 2x - 3 0   
y 7 1 - 2x2

 42. y Ú 0 4 - x2 0   
y 6 2 ln 0 x 0

In Exercises 43–48, solve the given problems.

43. By an inequality, define the region below the line 4x - 2y + 5 = 0.

 44. By an inequality, define the region that is bounded by or 
includes the parabola x2 - 2y = 0, and that contains the point 11, 0.42 .

45. For Ax + By 7 C, if B 6 0, would you shade above or below 
the line?

46. Find a system of inequalities that would describe the region 
within the triangle with vertices 10, 02, 10, 42 , and 12, 02 .

47. Draw a graph of the solution of the system y Ú 2x2 - 6 and 
y = x - 3.

48. Draw a graph of the solution of the system y 6 0 x + 2 0  and y = x2.

In Exercises 49–54, set up the necessary inequalities and sketch the 
graph of the region in which the points satisfy the indicated system of 
inequalities.

49. A telephone company is installing two types of fibre-optic 
cable in an area. It is estimated that no more than 300 m of type 

An important area in which inequalities with two or more variables are used is in the 
branch of mathematics known as linear programming (in this context, “program-
ming” does not mean computer programming). This subject, which we mentioned in 
the chapter introduction, is widely applied in industry, business, economics, and tech-
nology. The analysis of many social problems can also be made by use of linear 
programming.

Linear programming is used to analyse problems such as those related to maximiz-
ing profits, minimizing costs, or the use of materials with certain constraints of produc-
tion. We begin by introducing the basic terminology of linear programming through an 
example.

 EXAMPLE  1  Maximum value of F

Find the maximum value of F, where F = 2x + 3y and x and y are subject to the con-
ditions that

 x Ú 0, y Ú 0

 x + y … 6

 x + 2y … 8

The variables x and y are the decision variables of the problem. Their values are 
restricted by the four given inequalities, known as the constraints. The function F 
to be maximized is known as the objective function.

We now graph this set of inequalities, as shown in Fig. 17.38. Each point in the 
shaded region (including the line segments on the edges) satisfies all the constraints 
and is known as a feasible point.

 17.6 Linear Programming

■ This section is an introduction to linear pro-
gramming. Methods for applications involving 
many decision variables can be found in a lin-
ear programming or operations research text.
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The maximum value of F must be found at one of the feasible points. Testing for 
values at the vertices of the region, we have the values in the following table:

Point 10, 02 16, 02 14, 2) 10, 42
Value of F 0 12 14 12

If we evaluate F at any other feasible point, we will find that F 6 14. Therefore, the 
maximum value of F under the given constraints is 14. Since 14, 22  is the feasible 
point with the largest value of the objective function, we say that 14, 22  is the optimal 
solution. ■

In Example 1, we found the maximum value of a linear objective function, subject 
to linear constraints (thus the name linear programming). We found the maximum 
value of F, subject to the given constraints, to be at one of the vertices of the region of 
feasible points. In fact, in the theory of linear programming the following result is 
established.

Practice Exercise

1.  In Example 1, what is the maximum 
value of F if the third constraint is 
changed to x + y … 5?

Optimal Solution of a Linear Programming Problem
If a linear programming problem has an optimal solution, then it will occur at a 
vertex of the region of feasible points.

If the problem has more than one solution, all points along a line segment con-
necting two vertices will be optimal.

In either case, the value of the objective function is unique.

 EXAMPLE  2  Maximum and minimum values of F

Find the maximum and minimum values of the objective function F = 3x + y, subject 
to the constraints

x Ú 2, y Ú 0

x + y … 8

2y - x … 1

The constraints are graphed as shown in Fig. 17.39. We then locate the vertices and 
evaluate F at these vertices as follows:

Vertex 12, 02 18, 02 15, 32 12, 1.52
Value of F 6 24 18 7.5

Therefore, we see that the maximum value of F is 24, and the minimum value of F 
is 6. If we check the value of F  at any other feasible point, we will find a value 
between 6 and 24. ■

The following two examples show the use of linear programming in finding a maxi-
mum value and a minimum value in applied situations.

 EXAMPLE  3  Linear programming—application

A company makes two types of stereo speaker systems, their good-quality system and 
their highest-quality system. The production of these systems requires assembly of the 
speaker system itself and the production of the cabinets in which they are installed. The 
good-quality system requires 3 worker-hours for speaker assembly and 2 worker-hours 
for cabinet production for each complete system. The highest-quality system requires 4 
worker-hours for speaker assembly and 6 worker-hours for cabinet production for each 
complete system. Available skilled labour allows for a maximum of 480 worker-hours 
per week for speaker assembly and a maximum of 540 worker-hours per week for cabi-
net production. It is anticipated that all systems will be sold and that the profit will be 

(5, 3)
(2, 1.5)
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■ The loudspeaker was developed in the early 
1920s by the U.S. inventor Kellogg Rice.
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$30 for each good-quality system and $75 for each highest-quality system. How many 
of each system should be produced to provide the greatest profit?

First, let x =  the number of good-quality systems and y =  the number of highest-
quality systems made in one week. Thus, the profit P is given by

P = 30x + 75y

We know that negative numbers are not valid for either x or y, and therefore we 
have x Ú 0 and y Ú 0.

The number of available worker-hours per week for each part of the production 
also restricts the number of systems that can be made. In the speaker-assembly shop, 
3x worker-hours are needed for each good-quality system and 4y worker-hours are 
needed for each highest-quality system. The constraint that only 480 hours are avail-
able in the speaker-assembly shop means that 3x + 4y … 480.

In the cabinet shop, it takes 2x worker-hours for a good-quality system and 6y 
worker-hours for a highest-quality system. The constraint that only 540 hours are 
available in the cabinet shop means that 2x + 6y … 540.

Therefore, we want to maximize the profit P = 30x + 75y, which is the objec-
tive function, under the constraints

 x Ú 0, y Ú 0   number of systems produced cannot be negative

 3x + 4y … 480  worker-hours for speaker assembly

 2x + 6y … 540  worker-hours for cabinet production

The constraints are graphed as shown in Fig. 17.40. We locate the vertices and 
evaluate the profit P at these points as follows:

Vertex 10, 02 1160, 02 172, 662 10, 902
Profit 1$2 0 4800 7110 6750

Therefore, we see that the greatest profit of $7110 is made by producing 72 good-
quality systems and 66 highest-quality systems.

A way of showing the number of each system to be made for the greatest profit is 
to assume values of the profit P and graph these lines. For example, for P = $3000 
or P = $6000, we have the lines shown in Fig. 17.40. Both amounts of profit are 
possible with various combinations of speaker systems being produced. However, 
we note that the line for P = $6000 passes through feasible points farther from the 
origin. It is also clear that the lines for the profits are parallel and that the greatest 
profit attainable is given by the line passing through A, where 3x + 4y = 40 and 
2x + 6y = 540 intersect. This also illustrates why the greatest profit is found at one 
of the vertices of the region of feasible points.
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 EXAMPLE  4  Linear programming—application

An airline plans to open new routes and use two types of planes, A and B, on these 
routes. It is expected there would be at least 400 first-class passengers and 2000 
economy-class passengers on these routes each day. Plane A costs $18 000>day to 
operate and has seats for 40 first-class and 80 economy-class passengers. Plane B costs 
$16 000>day to operate and has seats for 20 first-class and 160 economy-class passen-
gers. How many of each type of plane should be used for these routes to minimize 
operating costs? (Assume that the planes will be used only on these routes.)

We first let x = the number of A planes and y = the number of B planes to be 
used. Then the operating cost C = 18 000x + 16 000y is the objective function. The 
constraints are

 x Ú 0, y Ú 0   number of planes cannot be negative

 40x + 20y Ú 400   at least 400 first-class passengers

 80x + 160y Ú 2000  at least 2000 economy-class passengers

The constraints are graphed as shown in Fig. 17.41. We see that the region of feasible 
points is unlimited (there could be more than 2400 passengers), but we still want to 
evaluate the operating cost C at the vertices. Evaluating C at these points, we have

Vertex 125, 02 15, 102 10, 202
Cost ($) 450 000 250 000 320 000

Therefore, 5 type-A planes and 10 type-B planes should be used on these routes to 
keep the operating costs at a minimum of $250 000. ■

The problems in linear programming that arise in business and industry involve 
many more variables than in the simplified examples in this text. They are solved 
 by computers using matrices, but the basic idea is the same as that shown in this 
section. 
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EXERCISES 17.6

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then find the indicated values.

 1. In Example 1, change the last constraint to 2x + y … 8. Then 
graph the feasible points and find the maximum value of F.

 2. In Example 2, change the last constraint to 3y - x … 4. Then 
graph the feasible points and find the maximum and minimum 
values of F.

In Exercises 3–16, find the indicated maximum and minimum values 
by the linear programming method of this section. For Exercises 
5–16, the constraints are shown below the objective function.

 3. Graphing the constraints of a linear programming problem shows 
the consecutive vertices of the region of feasible points to be 10, 02 , 112, 02 , 110, 72 , 10, 52 , and 10, 02 . What are the 
maximum and minimum values of the objective function 
F = 3x + 4y in this region?

 4. Graphing the constraints of a linear programming problem shows 
the consecutive vertices of the region of feasible points to be 11, 32 , 18, 02 , 19, 72 , 15, 82 , 10, 62 , and 11, 32 . What are the 
maximum and minimum values of the objective function 
F = 2x + 5y in this region?

 5. Maximum P:
  P = 3x + 5y
  x Ú 0, y Ú 0
  2x + y … 6

 6. Maximum P:
  P = 2x + 7y
  x Ú 1, y Ú 0
  x + 4y … 8

 7. Maximum P:
  P = 5x + 9y
  x Ú 0, y Ú 0
  x + 2y … 6

 8. Minimum C:
  C = 10x + 20y
  x Ú 0, y Ú 0
  3x + 5y Ú 30

 9. Minimum C:
  C = 4x + 6y
  x Ú 0, y Ú 0
  x + y Ú 5
  x + 2y Ú 7

 10. Minimum C:
  C = 6x + 4y
  x Ú 0, y Ú 0
  2x + y Ú 6
  x + y Ú 5

 11. Maximum and 
minimum F:

  F = x + 3y
  x Ú 1, y Ú 2
  y - x … 3
  y + 2x … 8

 12. Maximum and 
minimum F:

  F = 3x - y
  x Ú 1, y Ú 0
  x + 4y … 8
  4x + y … 8

 13. Maximum P:
  P = 9x + 2y
  x Ú 0, y Ú 0
  2x + 5y … 10
  4x + 3y … 12

 14. Minimum C:
  C = 3x + 8y
  x Ú 0, y Ú 0
  6x + y Ú 6
  x + 4y Ú 4

 15. Minimum C:
  C = 6x + 4y
  y Ú 2
  x + y … 12
  x + 2y Ú 12
  2x + y Ú 12

 16. Maximum P:
  P = 3x + 4y
  2x + y Ú 2
  x + 2y Ú 2
  x + y … 2

■ See the chapter introduction.
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In Exercises 17–22, solve the given linear programming problems.

 17. A person wants to invest no more than $9000, part at 6, and part 
at 5,, with no more than twice as much being invested at 6, as 
at 5,. How much should be invested at each rate to maximize 
the income from the investments?

 18. An oil refinery refines types A and B of crude oil and can refine 
as much as 4000 barrels each week. Type A crude has 2 kg of 
impurities per barrel, type B has 3 kg of impurities per barrel, and 
the refinery can handle no more than 9000 kg of these impurities 
each week. How much of each type should be refined in order 
to maximize profits, if the profit is $4>barrel for type A and 
$5>barrel for type B?

 19. A manufacturer produces a business calculator and a graphing 
calculator. Each calculator is assembled in two sets of operations, 
where each operation is in production 8 h during each day. The 
average time required for a business calculator in the first opera-
tion is 3 min, and 6 min is required in the second operation. The 
graphing calculator averages 6 min in the first operation and 4 
min in the second operation. All calculators can be sold; the profit 
for a business calculator is $8, and the profit for a graphing calcu-
lator is $10. How many of each type of calculator should be made 
each day in order to maximize profit?

 20.  Using the information given in Example 3, with the one change 
that the profit on each good-quality speaker system is $60 (instead 
of $30), how many of each system should be made? Explain why 
this one change in data makes such a change in the solution.

 21. Brands A and B of breakfast cereal are both enriched with vita-
mins P and Q. The necessary information about these cereals is as 
follows:

Cereal A Cereal B RDA

Vitamin P 1 unit>serving 2 units>serving 10 units

Vitamin Q 5 units>serving 3 units>serving 30 units

Cost 12.>serving 18.>serving  

  (RDA is the Recommended Dietary Allowance.) Find the amounts 
of each cereal that together satisfies the RDA of vitamins P and Q 
at the lowest cost. (There are 30 g of cereal in one serving.)

 22. A computer company makes parts A and B in each of two differ-
ent plants. It costs $4000 per day to operate the first plant and 
$5000 per day to operate the second plant. Each day the first plant 
produces 100 of part A and 200 of part B, while at the second 
plant 250 of part A and 100 of part B are produced. How many 
days should each plant operate to produce 2000 of each part and 
keep operating costs at a minimum?

Answer to Practice Exercise

1. 13 1at12, 322

 CHAPTER 17   EQUATIONS

If ! f1x2 !  7  n, then f1x2  6  -n or f1x2  7  n. (17.1)

If ! f1x2 !  6  n, then -n 6 f1x2  6  n. (17.2)

 CHAPTER 17  REVIEW EXERCISES

In Exercises 1–24, solve each of the given inequalities algebraically. 
Graph each solution.

 1. 2x - 12 7 0 2. 2.41T - 4.02 Ú 5.5 - 2.4T

 3. 5 - 3x 6 0 4. 6 … 4x - 2 6 9

 5. 4 6 2x - 1 6 11 6. 2x 6 x + 1 6 4x + 7

 7. 2 … 4n - 2
3

6 3 8. 3x 6 2x + 1 6 x - 5

 9. 5x2 + 9x 6 2 10. x2 + 2x 7 63

 11. 6n2 - n 7 35  12. 2x3 + 4 … x2 + 8x

 13. 
12x - 12 13 - x2

x + 4
7 0  14. x4 + x2 … 0

 15. 
8
x

6 2  16. 
1

x - 2
6 1

4

 17. 
8 - R
2R + 1

… 0  18. 
13 - x22

2x + 7
… 0

 19. 0 3x + 2 0 … 4  20. 0 4 - 3x 0 Ú 7

 21. 0 3 - 5x 0 7 7  22. ` 2 -
y

2
` … 0

 23. 0 x - 30 0 7 48  24. 2 0 2x - 9 0 6 8

In Exercises 25–28, use a graphing calculator to solve the given 
inequalities. Graph the appropriate function and from the graph 
determine the solution. Approximate roots to the nearest 0.01.

 25. x3 + x + 1 6 0  26. 
2

R + 2
7 3

 27. e-t 7 0.5 28.  sin 2x 6 0.8  10 6 x 6 42
In Exercises 29–40, draw a sketch of the region in which the points 
satisfy the given inequality or system of inequalities.

 29. y 7 12 - 3x  30. y 6 1
2

  x + 2

 31. 2y - 3x - 4 … 0  32. 3y - x + 6 Ú 0
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 33. y 7 6 - 2x2  34. y … 6

x2 - 4

 35. y - 0 x + 1 0 6 0 36. 2y + 2x3 + 6x 7 3

65. Find the values for which f1x2 = 1x - 22 1x - 32  is positive, 
zero, and negative. Use this information along with f102  and 
f152  to make a rough sketch of the graph of f1x2 .

66. Follow the same instructions as in Exercise 65 for the function 
f1x2 = 1x - 22 > 1x - 32 .

67. If two adjacent sides of a square design on a sheet of metal are 
extended 6.0 cm and 10.0 cm, respectively, how long is each side 
of the square if the perimeter of the rectangle is at least twice as 
long as the perimeter of the square? See Fig. 17.42.

 37. y 7 x + 1  
y 6 4 - x2

 38. y 7 2x - x2  
y Ú -2

 39. y … 4

x2 + 1
 

  y 6 x - 3

 40. y 6  cos 
1
2

 x

  y 7 1
2

 ex 

  -p 6 x 6 p

In Exercises 41–48, use a graphing calculator to display the region in 
which the points satisfy the given inequality or system of inequalities.

 41. y 6 3x + 5 42. y 7 2 - 1
4

 x

 43. y 7 8 + 7x - x2 44. y 6 x3 + 4x2 - x - 4

 45. y 6 32x - x4 46. y 7 2x - 1  
  y 6 6 - 3x2

 47. y 7 1 - x sin 2x 48. y 7 0 x - 1 0   
y 6 5 - x2   y 6 4 +  ln x

In Exercises 49–52, determine the values of x for which the given 
radicals represent real numbers.

 49. 13 - x 50. 1x + 5

 51. 2x2 + 4x 52. Ax - 1
x + 2

In Exercises 53–56, find the indicated maximum and minimum values 
by the method of linear programming. The constraints are shown 
below the objective function.

 53. Maximum P:
  P = 2x + 9y
  x Ú 0, y Ú 0
  x + 4y … 13
  3y - x … 8

54. Maximum P:
  P = x + 2y
  x Ú 1, y Ú 0
  3x + y … 6
  2x + 3y … 8

55. Minimum C:
  C = 3x + 4y
  x Ú 0, y Ú 1
  2x + 3y Ú 6
  4x + 2y Ú 5

56. Minimum C:
  C = 2x + 4y
  x Ú 0, y Ú 0
  x + 3y Ú 6
  4x + 7y Ú 18

In Exercises 57–82, solve the given problems using inequalities. (All 
data are accurate to at least two significant digits.)

 57. Under what conditions is 0 a + b 0 6 0 a 0 + 0 b 0 ?
 58. Is 0 a - b 0 6 0 a 0 + 0 b 0  always true? Explain.

 59. If a 7 0, a ≠ 1, show that a + a-1 7 2.

 60. Solve for x: a + 0 bx 0 6 c, given that a - c 6 0.

 61. Form an inequality of the form ax2 + bx + c 6 0 with a 7 0 
for which the solution is -2 6 x 6 5.

 62. By means of an inequality, define the region above the line 
x - 3y - 6 = 0.

63. Draw a graph of the system y 6 1 - x2 and y = x2.

64. Find a system of inequalities that would describe the region 
within the quadrilateral with vertices 10, 02 , 14, 42 , 10, -32 , 
and 14, -32 .

6.0 cm

10.0 cmx
x

Fig. 17.42 

 68. The value V (in $) of each building lot in a development is esti-
mated as V = 65 000 + 5000t, where t is the time in years from 
now. For how long is the value of each lot no more than $90 000?

 69. The cost C of producing two of one type of calculator and five of 
a second type is $50. If the cost of producing each of the second 
type is between $5 and $8, what are the possible costs of produc-
ing each of the first type?

 70. Ottawa is 450 km from Québec City. One car starts from Ottawa 
for Québec City one hour before a second car. The first car aver-
ages 60 km>h, and the second car averages 80 km>h for the trip. 
For what times after the first car starts is the second car ahead of 
the first car?

71. The pressure p (in kPa) at a depth d (in m) in the ocean is given 
by p = 101 + 10.1d. For what values of d is p 7 500 kPa?

72. After conducting tests, it was determined that the stopping dis-
tance x (in m) of a car travelling at 90 km>h was & x - 95 & … 10. 
Express this inequality without absolute values and find the inter-
val of stopping distances that were found in the tests.

73. A heating unit with 80, efficiency and a second unit with 90, 
efficiency deliver 360 MJ of heat to an office complex. If the first 
unit consumes an amount of fuel that contains no more than 261 MJ, 
what is the MJ content of the fuel consumed by the second unit?

74. A rectangular parking lot is to have a perimeter of 100 m and an 
area no greater than 600 m2. What are the possible dimensions of 
the lot?

75. The electric power P (in W) dissipated in a resistor is given by 
P = Ri2, where R is the resistance (in Ω) and i is the current (in A). 
For a given resistor, R = 12.0 Ω, and the power varies between 
2.50 W and 8.00 W. Find the values of the current.

76. The reciprocal of the total resistance of two electric resistances in 
parallel equals the sum of the reciprocals of the resistances. If a 
2.0@Ω resistance is in parallel with a resistance R, with a total 
resistance greater than 0.5 Ω, find R.

77. The efficiency E (in ,) of a certain gasoline engine is given by 
E = 10011 - r-0.42 , where r is the compression ratio for the 
engine. For what values of r is E 7 50,?

78. A rocket is fired such that its height h (in km) is given by 
h = 41t - t2. For what values of t (in min) is the height greater 
than 400 km?
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79. In developing a new product, a company estimates that it will 
take no more than 1200 min of computer time for research and no 
more than 1000 min of computer time for development. Graph 
the possible combinations of the computer times that are needed.

80. A natural-gas supplier has a maximum of 120 worker-hours per 
week for delivery and for customer service. Graph the possible 
combinations of times available for these two services.

81. A company produces two types of cell phones, the regular model 
and the deluxe model. For each regular model produced, there is a 
profit of $8, and for each deluxe model the profit is $15. The same 
amount of materials is used to make each model, but the supply is 
sufficient only for 450 cell phones per day. The deluxe model 
requires twice the time to produce as the regular model. If only 
regular models were made, there would be time enough to produce 
600 per day. Assuming all cell phones will be sold, how many of 
each model should be produced if the profit is to be a maximum?

82. A company that manufactures DVD>  CD players gets two differ-
ent parts, A and B, from two different suppliers. Each package of 
parts from the first supplier costs $2.00 and contains 6 of each 
type of part. Each package of parts from the second supplier costs 
$1.50 and contains 4 of A and 8 of B. How many packages should 
be bought from each supplier to keep the total cost to a minimum, 
if production requirements are 600 of A and 900 of B?

Writing Exercise
 83. In planning a new city development, an engineer uses a rectan-

gular coordinate system to locate points within the development. 
A park in the shape of a quadrilateral has corners at 10, 02 , 10, 202 , 140, 202 , and 120, 402  (measurements in metres). 
Write two or three paragraphs explaining how to describe the 
park region with inequalities and find these inequalities.

 CHAPTER 17  PRACTICE TEST

 1. State conditions on x and y in terms of inequalities if the point 1x, y2  is in the second quadrant.

In Problems 2–7, solve the given inequalities algebraically and graph 
each solution.

 2. 
-x
2

Ú 3 3. 3x + 1 6 -5

 4. -1 6 1 - 2x 6 5  5. 
x2 + x
x - 2

… 0

 6. 0 2x + 1 0 Ú 3 7. 0 2 - 3x 0 6 8

 8. Sketch the region in which the points satisfy the following system 
of inequalities:

  y 6 x2

  y Ú x + 1

 9. Determine the values of x for which 2x2 - x - 6 represents a 
real number.

10. The length of a rectangular lot is 20 m more than its width. If the 
area is to be at least 4800 m2, what values may the width be?

11. Type A wire costs $0.10 per metre, and type B wire costs $0.20 
per metre. Show the possible combinations of lengths of wire that 
can be purchased for less than $5.00.

12. The range of the visible spectrum in terms of the wavelength l 
of light ranges from about l = 400 nm (violet) to about 
l = 700 nm (red). Express these values using an inequality with 
absolute values.

13. Solve the inequality x2 7 12 - x graphically.

14. By using linear programming, find the maximum value of the 
objective function P = 5x + 3y, subject to the following con-
straints: x Ú 0, y Ú 0, 2x + 3y … 12, 4x + y … 8.
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LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Solve application problems 
involving ratios and 
proportions

 Set up relationships between 
variables in terms of direct 
variation, inverse variation,  
or joint variation

 Solve application problems 
involving the different types of 
variation

In 1969, as millions watched on television, men walked on the moon for the first time. 
Today, spacecraft on science missions still travel from the earth to the moon. The 2012 
Gravity Recovery and Interior Laboratory (GRAIL) mission placed two spacecraft twins 

into the same orbit around the moon. The objective of the mission is to obtain an accurate 
map of the moon’s gravitational field. This map will help increase understanding of the 
moon’s interior and, ultimately, its origin and development.

Numerous discoveries in science, engineering, and mathematics have made it possible for 
spacecraft to travel to the moon. Yet it can be argued that the first step was Newton’s formu-
lation of the universal law of gravitation in the 1680s, based on earlier discoveries regarding 
the motion of the planets and the moon. We introduce the universal law of gravitation in 
Section 18.2 as an example of a scientific law that can be stated in terms of variation, the 
principal topic of this chapter. Using the language of variation, we can describe how one vari-
able changes as other related variables change.

We begin this chapter by reviewing the meanings of ratio and proportion, which were first 
introduced in Chapter 1. These concepts then lead us to the concept of variation, which allows 
us to establish different types of relationships between variables. Many of these relationships 
are based on experimentation and observation, just as in the case of gravitation. Applications 
of variation are found in all areas of technology. It is used in acoustics, biology, chemistry, 
computer technology, economics, electronics, environmental technology, hydrodynamics, 
mechanics, navigation, optics, physics, space technology, thermodynamics, and other fields.

18Variation

 In Section 18.2 we use Newton’s 
universal law of gravitation to ana-
lyse the forces acting on a spacecraft 
travelling to the moon.
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In order to develop the meaning of variation, we now review and expand our discus-
sion of ratio and proportion. First, from Chapter 1, recall that the quotient a>b is the 
ratio of a to b. Therefore, a fraction is a ratio.

A measurement is the ratio of the measured magnitude to an accepted unit of mea-
surement. For example, measuring the length of an object as 5 cm means it is five times 
as long as the accepted unit of length, the centimetre. Other examples of ratios are den-
sity 1weight>volume2 , relative density (density of object>density of water), and pres-
sure 1 force>area2 . Thus, ratios compare quantities of the same kind (for example, the 
trigonometric ratios) or express the division of magnitudes of different quantities (such 
a ratio is also called a rate).

 EXAMPLE  1  Units of measurement when calculating ratios

The approximate airline distance from Toronto to Los Angeles is 3500 km, and the 
approximate airline distance from Toronto to Miami is 2000 km. The ratio of these 
distances is

3500 km
2000 km

=
7
4

Since both units are in kilometres, the resulting ratio is a dimensionless number.
If a jet travels from Toronto to Los Angeles in 5 h, its average speed is

3500 km
5 h

= 700 km>h

In this case, we must attach the proper units to the resulting ratio. ■

As we noted in Example 1, we must be careful to attach the proper units to the 
resulting ratio. Generally, the ratio of measurements of the same kind should be 
expressed as a dimensionless number. Consider the following example.

 EXAMPLE  2  Ratio of measurements of the same kind

The length of a certain room is 8 m, and the width of the room is 6 m. Therefore, the 
ratio of the length to the width is 86, or 43.

If the width of the room is expressed as 6000 mm, we have the ratio 
8 m>6000 mm = 1 m>750 mm. However, this does not clearly show the ratio. It is 
better and more meaningful first to change the units of one of the measurements to 
the units of the other measurement. Changing the length from 8 m to 8000 mm, we 
express the ratio as 4

3, as we saw above. From this ratio, we can easily see that the 
length is 43 as long as the width. ■

Dimensionless ratios are often used in definitions in mathematics and in technol-
ogy. For example, the irrational number p is the dimensionless ratio of the circum-
ference of a circle to its diameter. The specific gravity of a substance is the ratio of 
its density to the density of water. Other illustrations are found in the exercises for 
this section.

From Chapter 1, also recall that an equation stating that two ratios are equal is 
called a proportion. By this definition, a proportion is

 
a
b

=
c
d

 (18.1)

Consider the following example.

 18.1 Ratio and Proportion

■ The first jet-propelled airplane was flown in 
Germany in 1928.
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 EXAMPLE  3  Proportion—scale of a map application

On a certain map, 1 cm represents 10 km. Therefore, on this map we have a ratio of 
distances of 1 cm>10 km. To find the distance represented by 3.5 cm on the map, we 
can set up the proportion
  map distances

  
3.5 cm

x
=

1 cm
10 km

  

land distances

  110x2 a3.5
x
b = 10xa 1

10
b   multiply each side by LCD = 10x 

  35 = x or x = 35 km

The ratio 1 cm>10 km is the scale of the map and has a special meaning, relating map 
distances in centimetres to land distances in kilometres. In a case like this, we should not 
change either unit to the other, even though they are both units of length. ■

In Section 1.3, we discussed a method for converting measurements from one set of 
units to another. As we see in the next example, unit conversion can also be done by 
setting up a proportion.

 EXAMPLE  4  Changing units of measurement by using a proportion

Given that 1 in. = 2.54 cm (in. is the symbol for the unit of length the inch), what is 
the length in centimetres of the diagonal of a flat computer screen that is 17.0 in. long? 
See Fig. 18.1.

If we equate the ratio of known lengths to the ratio of the given length to the re-
quired length, we can find the required length by solving the resulting proportion 
(which is an equation). This gives us

 
1 in.

2.54 cm
=

17.0 in.
x cm

 x = 117.02 12.542
 = 43.2 cm

Therefore, the diagonal of the flat computer screen is 17.0 in., or 43.2 cm. ■

 EXAMPLE  5  Proportion—application

The magnitude of an electric field E is the ratio of the force F on a charge q to the mag-
nitude of q. We can write this as E = F>q. If we know the force exerted on a particular 
charge at some point in the field, we can determine the force that would be exerted on 
another charge placed at the same point. For example, if we know that a force of 10 nN 
is exerted on a charge of 4.0 nC, we can then determine the force that would be exerted 
on a charge of 6.0 nC by the proportion

 forces at point

  
10 * 10-9

4.0 * 10-9 =
F

6.0 * 10-9 

charges at point

  F =
16.0 * 10-92 110 * 10-92

4.0 * 10-9  

  = 15 * 10-9 

  =  15 nN ■

17.0 in.43.2 cm

Fig. 18.1

Practice Exercise

1.  In a certain electric field a force of 21 nN 
is exerted on a charge of 6.0 nC. At the 
same point, what is the force on a charge 
of 16 nC?
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 EXAMPLE  6  Proportion —application

An alloy is 5 parts tin and 3 parts lead. How many grams of each are in 40 g of the alloy?
First, let x = the number of grams of tin in 40 g of the alloy. Next, we note that 

there are 8 total parts of alloy, of which 5 are tin. Thus, 5 is to 8 as x is to 40. 
Therefore,
 parts tin   grams of tin
  

5
8

=
x

40 total parts   total grams 

 x = 40 a5
8
b = 25 g 

There are 25 g of tin and 15 g of lead. The ratio 25>15 is the same as 5>3. ■

Practice Exercise

2.  An alloy is 7 parts zinc and 5 parts lead. 
How much lead is there in 48 g of the 
alloy?

EXERCISES 18.1

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the indicated problem.

 1. In Example 3, change 10 km to 16 km.

 2. In Example 6, change 5 parts tin to 7 parts tin.

In Exercises 3–10, express the ratios in the simplest form.

 3. 18 V to 3 V 4. 63 m2 to 18 m2 5. 96 h to 3 days

 6. 120 s to 4 min 7. 6500 cL to 2.6 L 8. 25 cm2 to 75 mm2

 9. 0.14 kg to 3500 mg 10. 2000 mm to 6 mm

In Exercises 11–24, find the required ratios.

 11. The efficiency of a power amplifier is defined as the ratio of the 
power output to the power input. Find the efficiency of an amplifier 
for which the power output is 2.6 W and the power input is 9.6 W.

 12. A virus 3.0 * 10-5 cm long appears to be 1.2 cm long through a 
microscope. What is the magnification (ratio of image length to 
object length) of the microscope?

 13. The coefficient of friction for two contacting surfaces is the ratio of 
the frictional force between them to the perpendicular force that 
presses them together. If 
it takes 450 N to over-
come friction to move a 
1.10-kN crate along the 
floor, what is the coeffi-
cient of friction between 
the crate and the floor? 
See Fig. 18.2.

 14. The Mach number of a 
moving object is the ratio of its velocity to the velocity of sound 11200 km>h2 . Find the Mach number of a jet travelling at 
2000 km>h.

 15. The capacitance C of a capacitor is defined as the ratio of its 
charge q (in C) to the voltage V in volts. Find C (in F) for which 
q = 5.00 mC and V = 200 V. (1 F = 1 C/1 V.)

 16. The atomic mass of an atom of carbon is defined to be 12 u. The 
ratio of the atomic mass of an atom of oxygen to that of an atom 
of carbon is 4

3. What is the atomic mass of an atom of oxygen? 
(The symbol u represents the unified atomic mass unit, where 
1 u = 1.66 * 10-27 kg.)

 17. An important design feature of an aircraft wing is its aspect ratio. 
It is defined as the ratio of the square of the span of the wing 
(wingtip to wingtip) to the total area of the wing. If the span of the 
wing for a certain aircraft is 10.0 m and the area is 18.0 m2, find 
the aspect ratio.

 18. For an automobile engine, the ratio of the cylinder volume to com-
pressed volume is the compression ratio. If the cylinder volume of 
820 cm3 is compressed to 110 cm3, find the compression ratio.

 19. The specific gravity (or relative density) of a substance is the ratio 
of its density to the density of water. If the density of water is 
1.00 g/cm3, find the specific gravity of a western Canada crude 
oil that has density of 931 kg/m3.

 20. The percent grade of a road is the ratio of vertical rise to the horizon-
tal change in distance (expressed in percent). If a highway rises 75 m 
for each 1.2 km along the horizontal, what is the percent grade?

 21. The percent error in a measurement is the ratio of the error in the 
measurement to the measurement itself, expressed as a percent. 
When writing a computer program, the memory remaining is 
determined as 2450 bytes and then it is correctly found to be 
2540 bytes. What is the percent error in the first reading?

 22. The electric current in a given circuit is the ratio of the voltage to 
the resistance. What is the current 11 V>1 Ω = 1 A2  for a cir-
cuit where the voltage is 24.0 mV and the resistance is 10.0 Ω?

 23. The mass of an object is the ratio of its weight to the acceleration 
g due to gravity. If a space probe weighs 8.46 kN on earth, where 
g = 9.80 m>s2, find its mass.

 24. Power is defined as the ratio of work done to the time required to 
do the work. If an engine performs 3.65 kJ of work in 15.0 s, find 
the power developed by the engine.

In Exercises 25–28, find the required quantities from the given 
proportions.

25. According to Boyle’s law, the relation p1"p2 = V1"V2 holds for 
pressures p1 and p2 and volumes V1 and V2 of a gas at constant 
temperature. Find V1 if p1 = 36.6 kPa, p2 = 84.4 kPa, and 
V2 = 0.0447 m3.

450 N

1.10 kN

Fig. 18.2
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 26. For two connected gears, the relation

  
d1

d2
=

N1

N2

  holds, where d is the diameter of the gear and N is the number of 
teeth. Find N1 if d1 = 2.60 cm, d2 = 11.7 cm, and N2 = 45. The 
ratio N2>N1 is called the gear ratio. See Fig. 18.3.

 33. Given that 104 cm2 = 106 mm2, what area in square centimetres 
is 2.50 * 105 mm2?

 34. How many metres per second are equivalent to 45.0 km>h?

 35. How many kilolitres per hour are equivalent to 540 mL>min?

 36. The water/cement ratio of a concrete mix is the ratio of the mass 
of water in the mix to the mass of cement in the mix. If the ratio 
of a mix is specified as 0.40, how much water should be added to 
a mixture with 25 kg of cement?

 37. A particular type of automobile engine produces 62 500 cm3 of 
carbon monoxide in 2.00 min. How much carbon monoxide is 
produced in 45.0 s?

 38. An airplane consumes 140 L of gasoline in flying 680 km. Under 
similar conditions, how far can it fly on 240 L?

 39. Two separate sections of a roof have the same slope. If the rise 
and run on one section are, respectively, 3.0 m and 6.3 m, what is 
the run on the other section if its rise is 4.2 m?

 40. When a bullet is fired from a loosely held rifle, the ratio of the 
mass of the bullet to that of the rifle equals the negative of the recip-
rocal of the ratio of the velocity of the bullet to that of the rifle. If 
a 3.0 kg rifle fires a 5.0 g bullet and the velocity of the bullet is 
300 m>s, what is the recoil velocity of the rifle?

 41. A board 7.5 m long is cut into two pieces, the lengths of which 
are in the ratio 2>3. Find the lengths of the pieces.

 42. If c>d is in inverse ratio to a>b, then a>b = d>c (see Exercises 
27 and 28). The current i (in A) in an electric circuit is in inverse 
ratio to the resistance R (in Ω). If i = 0.25 mA when R = 2.8 Ω, 
what is i when R = 7.2 Ω?

 43. By mass, the ratio of chlorine to sodium in table salt is 35.46 to 
23.00. How much sodium is contained in 50.00 kg of salt?

 44. An industrial cleaner is diluted 2 parts of cleaner to 5 parts of 
water. What volume (in mL) of cleaner should be used to get 350 mL 
of diluted solution?

 45. In testing for quality control, it was found that 17 of every 500 
computer chips produced by a company in a day were defective. 
If a total of 595 defective parts were found, what was the total 
number of chips produced during that day?

 46. An electric current of 0.772 mA passes into two wires in which it 
is divided into currents in the ratio of 2.83 to 1.09. What are the 
currents in the two wires?

 47. The ratio of the width to the height of an HDTV screen is 16>9. 
What is the length of the diagonal of an HDTV screen if it is 98.0 cm 
wide?

 48. Of the earth’s water area, the Pacific Ocean covers 46.0,, and 
the Atlantic Ocean covers 23.9,. Together they cover a total of 
2.53 * 108 km2. What is the area of each?

Answers to Practice Exercises

1. 56 nN  2. 20 g

N2

d2

N1

d1

Fig. 18.3 

 27. In an electric instrument called a “Wheatstone bridge,” electric 
resistances are related by

  
R1

R2
=

R3

R4

  Find R2 if R1 = 6.00 Ω, 
R3 = 62.5 Ω, and R4 = 15.0 Ω. 
See Fig. 18.4. Meter

Battery

R1 R 2

R3 R4

Fig. 18.4

 28. In a transformer, an electric current in one coil of wire induces a 
current in a second coil. For a transformer,

  
i1
i2

=
t2
t1

  where i is the current 
and t is the number 
of windings in each 
coil. In a neon sign 
amplifier, i1 = 1.2 A 
and the turns ratio 
t2>t1 = 160. Find i2. 
See Fig. 18.5.

Iron corei2

i1
t2

t1

Fig. 18.5

In Exercises 29–48, answer the given questions by setting up and 
solving the appropriate proportions.

 29. Given that 10 000 m2 =  1 ha, what area in hectares (ha) is 
4500 m2?

 30. Given that 1 W # h = 3.6 kJ, what power in kilojoules is 250 W # h?

 31. Given that 0.01 d = 864 s, what time in seconds is 2.75 d?

 32. Given that 360° =  2p rad, what angle in degrees is 5.00 rad?
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Scientific laws are often stated in terms of ratios and proportions. For example, 
Charles’ law can be stated as “for a perfect gas under constant pressure, the ratio of 
any two volumes this gas may occupy equals the ratio of the absolute temperatures.” 
Symbolically, this could be stated as V1>V2 = T1>T2. Thus, if the ratio of the vol-
umes and one of the values of the temperature are known, we can easily find the 
other temperature.

By multiplying both sides of the proportion of Charles’ law by V2>T1, we can 
change the form of the proportion to V1>T1 = V2>T2. This statement says that the ratio 
of the volume to the temperature (for constant pressure) is constant. Thus, if any pair of 
values of volume and temperature is known, the ratio of V1>T1 can be calculated. This 
ratio of V1>T1 can be called a constant k, which means that Charles’ law can be written 
as V>T = k. We now have the statement that the ratio of the volume to temperature is 
always constant; or, as it is normally stated, “The volume is proportional to the tem-
perature.” Therefore, we write V = kT, the clearest and most informative statement of 
Charles’ law.

Thus, for any two quantities always in the same proportion, we say that one is pro-
portional to (or varies directly as) the second. To show that y is proportional to x (or 
varies directly as x), we write

 y = kx  (18.2)

where k is the constant of proportionality. We can also write y ∝ x. This type of rela-
tionship is known as direct variation.

 EXAMPLE  1  Direct variation—applications

(a) The circumference c of a circle is proportional to (varies directly as) the radius 
r. We write this as c ∝ r, or c = kr. Since we know that c = 2pr for a circle, 
we know that in this case the constant of proportionality is k = 2p.

(b) The fact that the resistance R of a wire varies directly as (is proportional to) its 
length s is written as R ∝ s, or R = ks. As the length of the wire increases (or 
decreases), this equation tells us that the resistance increases (or decreases) pro-
portionally. In this case, the constant of proportionality is different for different 
wires, although it remains constant for any given wire. ■

It is very common that, when two quantities are related, the product of the two quan-
tities remains constant. In such a case, yx = k, or

 y =
k
x

 (18.3)

This is read as “y varies inversely as x” or “y is inversely proportional to x.” This 
type of relationship is known as inverse variation.

 EXAMPLE  2  Inverse variation—application

Boyle’s law states that “at a given temperature, the pressure p of an ideal gas varies 
inversely as the volume V.” We write this as p = k>V. In this case, as the volume 
of the gas increases, the pressure decreases, or as the volume decreases, the pressure 
increases. ■

In Fig. 18.6(a), the graph of the equation for direct variation y = kx, where x Ú 0, 
is shown. It is a straight line of slope k 1k 7 02  and y-intercept of 0. We see that y 

 18.2 Variation

Constant of Proportionality

■ Charles’ law is named for the French physi-
cist Jacques Charles (1746–1823).

Direct Variation

Inverse Variation

■ Boyle’s law is named for the English physi-
cist Robert Boyle (1627–1691).



 18.2 Variation 501

increases as x increases, or y decreases as x decreases. In Fig. 18.6(b), the graph of the 
equation for inverse variation y = k>x 1k 7 0, x 7 02  is shown. It is a hyperbola  
(a different form of the equation from that of Example 4 of Section 14.1). As x increases, 
y decreases, or as x decreases, y increases.

For many relationships, one quantity varies as a specific power of another quantity. 
The terms varies directly and varies inversely as are used in the following example 
with a specific power of the independent variable.

EXAMPLE  3  Direct variation with powers—applications

(a) The statement that the volume V  of a sphere varies directly as the cube of its ra-
dius is written as V = kr3. In this case, we know that k = 4p>3. We see that as 
the radius increases, the volume increases much more rapidly. For example, if 
r = 2.00 cm, V = 33.5 cm3, and if r = 3.00 cm, V = 113 cm3.

(b) A company finds that the number n of units of a product that are sold is in-
versely proportional to the square of the price p of the product. This is written 
as n = k>p2. As the price is raised, the number of units that are sold decreases 
much more rapidly. ■

One quantity may vary as the product of two or more other quantities. Such varia-
tion is called joint variation. We write

 y = kxz  (18.4)

to show that y varies jointly as x and z.

 EXAMPLE  4  Joint variation—application

The cost C of a piece of sheet metal varies jointly as the area A of the piece and the cost 
c per unit area. This is written as C = kAc. Here, C increases as the product Ac 
increases, and decreases as the product Ac decreases. ■

Direct, inverse, and joint variations may be combined. A given relationship may be 
a combination of two or all three of these types of variation.

 EXAMPLE  5  Combined variation—application

Newton’s universal law of gravitation can be stated as follows: “The force F of gravi-
tation between two objects varies jointly as the masses m1 and m2 of the objects, and 
inversely as the square of the distance r between their centres.” We write this as

 F =
Gm1m2

r2  

where G is the constant of proportionality. ■

force varies jointly as masses  
and  
inversely as the square of the distance

0

y     kx!

(a) (b)
0

y     ! "x
k

y

x

y

x

Fig. 18.6 

Joint Variation

■ Newton’s universal law of gravitation was 
formulated by the great English mathematician 
and physicist Isaac Newton (1642–1727).

Procedure for Solving Problems Involving Variation
1.  Use the given statement to set up a general equation in terms of the variables 

and the constant of proportionality.

2.  Substitute one complete set of known values into the general equation and 
solve the resulting equation to find the constant of proportionality.

3.  Substitute the constant of proportionality into the general equation to find the 
specific equation relating the variables.

4.  The specific equation can then be used to find the value of any one of the var-
iables given any set of the others.

Practice Exercise

1.  Express the relationship that y varies di-
rectly as the square of x and inversely as z.
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 EXAMPLE  6  Find one value—given others

If y varies inversely as x, and x = 15 when y = 4, find the value of y when x = 12.
The solution is as follows:

  y =
k
x

  general equation showing inverse variation

  4 =
k

15
 , k = 60  evaluate constant of proportionality

  y =
60
x

  specific equation relating y and x

  y =
60
12

= 5   evaluating y for x = 12 ■

 EXAMPLE  7  Variation as a square root—application

The frequency f  of vibration of a wire varies directly as the square root of the tension T  
of the wire. If f = 420 Hz when T = 1.14 N, find f  when T = 3.40 N.

The steps in making this evaluation are outlined below:

 f = k1T   set up general equation: f varies directly as 1T

 420 Hz = k11.14 N   substitute given set of values and evaluate k

 k = 393 Hz>N1>2
 f = 393 Hz/N1>22T   substitute value of k to get specific equation

 f = 393 Hz/N1>223.40 N  evaluate f for T = 3.40 N

 f = 725 Hz ■

 EXAMPLE  8  Variation as a square—application

The heat H developed in an electric resistor varies jointly as the time t and the square 
of the current i in the resistor. If H0 joules of heat are developed in t0 seconds with i0 
amperes passing through the resistor, how much heat is developed if both the time and 
the current are doubled?

  H = kti2  set up general equation

  H0 J = k1 t0 s2 1 i0 A22 substitute given values and evaluate k

  k =
H0

t0i0
2J> 1s # A22  

  H =
H0ti2

t0i0
2  substitute for k to get specific equation

We are asked to determine H when both the time and the current are doubled. This 
means we are to substitute t = 2t0 and i = 2i0. Making this substitution,

H =
H012t02 12i022

t0i0
2 =

8H0 t0i0
2

t0i0
2 = 8H0

Since H = H0 when t = t0 and i = i0, when time and current are doubled, the heat 
developed is eight times that for the original values of i and t. ■

Note the use of the word and in Example 5. It is used to indicate that F varies in 
more than one way, but it is not interpreted as addition.

COMMON ERROR

Practice Exercise

2.   If y varies directly as x, and y = 5 when 
x = 20, find the value of y when x = 12.

In applied situations such as Example 
7, the constant of proportionality 
usually has a set of units associated 
with it. As long as all values used for 
the same variable are expressed in 
the same units, the units for the final 
variable evaluated will be the appro-
priate ones.

LEARNING T IP
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 EXAMPLE  9  Application of Newton’s universal law

In Example 5, we stated Newton’s universal law of gravitation. This law was formu-
lated in the late seventeenth century, but it has numerous modern space-age applica-
tions. Use this law to solve the following problem.

A spacecraft is travelling from the earth to the moon, which are 390 000 km 
apart. The mass of the moon is 0.0123 that of the earth. How far from the earth is the 
gravitational force of the earth on the spacecraft equal to the gravitational force of 
the moon on the spacecraft?

From Example 5, we have the gravitational force between two objects as

F =
Gm1m2

r2

where the constant of proportionality G is the same for any two objects. Since we 
want the force between the earth and the spacecraft to equal the force between the 
moon and the spacecraft, we have

Gmsme

r2 =
Gmsmm1390 000 - r22

where ms, me, and mm are the masses of the spacecraft, the earth, and the moon, re-
spectively; r is the distance from the earth to the spacecraft; and 390 000 - r is the 
distance from the moon to the spacecraft. Since mm = 0.0123me, we have

 
Gmsme

r2 =
Gms10.0123me21390 000 - r22

 
1

r2 =
0.01231390 000 - r22 divide each side by Gmsme

 1390 000 - r22 = 0.0123r2  multiply each side by LCD

 3900002 - 780000r + r2 = 0.0123r2

 3900002 - 780000r + 0.9877r2 = 0

 r =
780000 { 27800002 - 410.98772 139000022

210.98772
 r1 = 439000 km

 r2 = 351000 km

The only valid solution is r2 = 351000, so that the spacecraft is 351 000 km from 
the earth and 39 000 km from the moon when the gravitational forces are equal. See 
Fig. 18.7.

■ See the chapter introduction.

■ The first landing on the moon was by the 
crew of the U. S. spacecraft Apollo 11 in  
July 1969.

EXERCISES 18.2

In Exercises 1–4, make the given changes in the indicated examples of 
this section and solve the indicated problems.

 1. In Example 1(a), change radius r to diameter d, write the appropri-
ate equation, and find the value of the constant of proportionality.

 2. In Example 6, change “inversely as x” to “inversely as the square 
of x” and then solve the resulting problem.

 3. In Example 7, change 1.14 N to 1.35 N and then solve the result-
ing problem.

 4. In Example 8, change “both the time and current are doubled” to 
“the time is halved and the current is doubled” and then solve the 
resulting problem.

In Exercises 5–12, set up the general equations from the given 
statements.

 5. The speed v at which a galaxy is moving away from earth varies 
directly as its distance r from earth.

 6. The demand D for a product varies inversely as its price P.

Earth

Spacecraft

Moon

39 000 km

351 000 km

Fig. 18.7
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 7. The electric resistance R of a wire varies inversely as the square 
of its diameter d.

 8. The volume V of silt carried by a river is proportional to the sixth 
power of the velocity v of the river.

 9. In a tornado, the pressure p that a roof will withstand is inversely 
proportional to the square root of the area A of the roof.

 10. During an adiabatic (no heat loss or gain) expansion of a gas, the 
pressure p is inversely proportional to the 3>2 power of the vol-
ume V.

 11. The stiffness S of a beam varies jointly as its width w and the 
cube of its depth d.

 12. The average electric power P entering a load varies jointly as the 
resistance R of the load and the square of the effective voltage V, 
and inversely as the square of the impedance Z.

In Exercises 13–16, express the meaning of the given equation in a 
verbal statement, using the language of variation. (k and p are 
constants.)

 13. A = pr2 14. s =
k

t1.2

 15. f =
kL1m

 16. V = pr2h

In Exercises 17–20, give the specific equation relating the variables after 
evaluating the constant of proportionality for the given set of values.

 17. V varies directly as the square of H, and V = 2 when H = 64.

 18. n is inversely proportional to the square of p, and n = 1
27 when 

p = 3.

 19. p is proportional to q and inversely proportional to the cube of r, 
and p = 6 when q = 3 and r = 2.

 20. v is proportional to t and the square root of s, and v = 80 when 
s = 4 and t = 5.

In Exercises 21–28, find the required value by setting up the general 
equation and then evaluating.

 21. Find y when x = 10 if y varies directly as x, and y = 20 when 
x = 8.

 22. Find y when x = 5 if y varies directly as the square of x, and 
y = 6 when x = 8.

 23. Find s when t = 720 if s is inversely proportional to t, and 
s = 800 when t = 0.030.

 24. Find p for q = 0.8 if p is inversely proportional to the square of 
q, and p = 18 when q = 0.2.

 25. Find y for x = 6 and z = 5 if y varies directly as x and inversely 
as z, and y = 60 when x = 4 and z = 10.

 26. Find r when n = 16 if r varies directly as the square root of n and 
r = 4 when n = 25.

 27. Find f  when p = 2 and c = 4 if f  varies jointly as p and the 
cube of c, and f = 8 when p = 4 and c = 0.1.

 28. Find v when r = 2, s = 3, and t = 4 if v varies jointly as r and s 
and inversely as the square of t, and v = 8 when r = 2, s = 6, 
and t = 6.

In Exercises 29 and 30, A varies directly as x, and B varies directly as 
x, although not in the same proportion as A. All numbers are positive.

 29. Show that A + B varies directly as x.

 30. Show that 1AB varies directly as x.

In Exercises 31–60, solve the given applied problems involving 
variation.

 31. The time t it takes to download a program onto a computer hard 
drive is proportional to the memory M required for the program. 
If it takes 45.0 min to download a program with 27.5 MB (mega-
bytes) of memory required, what is the rate of downloading in kB 
(kilobytes) per second?

 32. The volume V of carbon dioxide 1CO22  that is exhausted from a 
room in a given time varies directly as the initial volume V0 that is 
present. If 75 m3 of CO2 are removed in 1 h from a room with an 
initial volume of 160 m3, how much is removed in 1 h if the ini-
tial volume is 130 m3?

 33. The amount of heat H required to melt ice is proportional to the 
mass m of ice that is melted. If it takes 2.93 * 105 J to melt 875 g 
of ice, how much heat is required to melt 625 g?

 34. In electroplating, the mass m of the material deposited varies 
directly as the time t during which the electric current is on. Set 
up the equation for this relationship if 2.50 g are deposited in 
5.25 h.

 35. Hooke’s law states that the force needed to stretch a spring is pro-
portional to the amount the spring is stretched. If 10.0 N stretches 
a certain spring 4.00 cm, how much will the spring be stretched 
by a force of 6.00 N?

 36. The rate H of heat removal by an air conditioner is propor-
tional to the electric power input P. The constant of propor-
tionality is the performance coefficient. Find the performance 
coefficient of an air conditioner for which H = 1.8 kW and 
P = 720 W.

 37. The energy E available daily from a solar collector varies directly 
as the percent p that the sun shines during the day. If a collector 
provides 1200 kJ for 75, sunshine, how much does it provide 
for a day during which there is 35, sunshine?

 38. The distance d that can be seen from horizon to horizon from 
an airplane varies directly as the square root of the altitude h of 
the airplane. If d = 213 km for h = 3950 m, find d for 
h = 5250 m.

 39. The time t required to empty a wastewater-holding tank is 
inversely proportional to the cross-sectional area A of the drain-
age pipe. If it takes 2.0 h to empty a tank with a drainage pipe for 
which A = 48 cm2, how long will it take to empty the tank if 
A = 68 cm2?

 40. The time t required to make a particular trip is inversely pro-
portional to the average speed v. If a jet takes 2.75 h at an aver-
age speed of 520 km>h, how long will it take at an average 
speed of 620 km>h? Explain the meaning of the constant of 
proportionality.

 41. In a physics experiment, a given force was applied to three 
objects. The mass m and the resulting acceleration a were 
recorded as follows:

m (g) 2.0 3.0 4.0

a (cm>s2) 30 20 15

  (a) Is the relationship a = f1m2  one of direct or inverse varia-
tion? Explain. (b) Find a = f1m2 .
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 42. The lift L of each of three model airplane wings of width w was 
measured and recorded as follows:

w 1cm2 20 40 60

L 1N2 10 40 90

  (a) Is the relationship L = f1w2  one of direct or inverse varia-
tion? Explain. (b) Find L = f1w2 .

 43. The power P required to propel a ship varies directly as the cube 
of the speed s of the ship. If 3.88 MW will propel a ship at 
19.3 km>h, what power is required to propel it at 24.2 km>h?

 44. The f -number lens setting of a camera varies directly as the 
square root of the time t that the film is exposed. If the f -number 
is 8 (written as f>8) for t = 0.0200 s, find the f -number for 
t = 0.0098 s.

 45. The force F on the blade of a wind generator varies jointly as the 
blade area A and the square of the wind velocity v. Find the equa-
tion relating F, A, and v if F = 76.5 N when A = 0.372 m2 and 
v = 9.42 m>s.

 46. The escape velocity v a spacecraft needs to leave the gravitational 
field of a planet varies directly as the square root of the product of 
the planet’s radius R and its acceleration due to gravity g. For 
Mars and earth, RM = 0.533Re and gM = 0.400ge. Find vM for 
Mars if ve = 11.2 km>s.

 47. The force F between two parallel wires carrying electric currents 
is inversely proportional to the distance d between the wires. If a 
force of 0.750 N exists between wires that are 1.25 cm apart, what 
is the force between them if they are separated by 1.75 cm?

 48. The velocity v of a pulse travelling in a string varies directly as 
the square root of the tension T  in the string. If the velocity of a 
pulse in a string is 150 m>s when the tension is 90.0 N, find the 
velocity when the tension is 135 N.

 49. The average speed s of oxygen molecules in the air is directly 
proportional to the square root of the absolute temperature T . If 
the speed of the molecules is 460 m>s at 273 K, what is the speed 
at 300 K?

 50. The time t required to test a computer memory unit varies directly 
as the square of the number n of memory cells in the unit. If a unit 
with 4800 memory cells can be tested in 15.0 s, how long does it 
take to test a unit with 8400 memory cells?

 51. The electric resistance R of a wire varies directly as its length l 
and inversely as its cross-sectional area A. Find the relation 
between resistance, length, and area for a wire that has a resist-
ance of 0.200 Ω for a length of 60.0 m and cross-sectional area of 
0.007 80 cm2.

 52. The general gas law states that the pressure p of an ideal gas var-
ies directly as the thermodynamic temperature T  and inversely as 
the volume V. If p = 610 kPa for V = 10.0 cm3 and T = 290 K, 
find V for p = 400 kPa and T = 400 K.

 53. The power P in an electric circuit varies jointly as the resistance 
R and the square of the current I. If the power is 10.0 W when the 
current is 0.500 A and the resistance is 40.0 Ω, find the power if 
the current is 2.00 A and the resistance is 20.0 Ω.

 54. The difference m1 - m2 in magnitudes (visual brightnesses) of 
two stars varies directly as the base 10 logarithm of the ratio 
b2>b1 of their actual brightnesses. For two particular stars, if 
b2 = 100b1 for m1 = 7 and m2 = 2, find the equation relating 
m1, m2, b1, and b2.

 55. The power gain G by a parabolic microwave dish varies directly 
as the square of the diameter d of the opening and inversely as the 
square of the wavelength l of the wave carrier. Find the equation 
relating G, d, and l if G = 5.5 * 104 for d = 2.9 m and 
l = 3.0 cm.

 56. The intensity I of sound varies directly as the power P of the 
source and inversely as the square of the distance r from the 
source. Two sound sources are separated by a distance d, and one 
has twice the power output of the other. Where should an observer 
be located on a line between them such that the intensity of each 
sound is the same?

 57. The x-component of the acceleration of an object moving around 
a circle with constant angular velocity v varies jointly as  cos vt 
and the square of v. If the x-component of the acceleration is 
-11.4 cm>s2 when t = 1.00 s for v = 0.524 rad>s, find the  
x-component of the acceleration when t = 2.00 s.

 58. The tangent of the proper banking angle u of the road for a car 
making a turn is directly proportional to the square of the car’s 
velocity v and inversely proportional to the radius r of the turn. If 
7.75° is the proper banking angle for a car travelling at 20.0 m>s 
around a turn of radius 300 m, what is the proper banking angle 
for a car travelling at 30.0 m>s around a turn of radius 250 m? 
See Fig. 18.8.

r

u

Fig. 18.8 

 59. The acoustical intensity I of a sound wave is proportional to the 
square of the pressure amplitude p and inversely proportional to 
the velocity v of the wave. If I = 0.474 W>m2 for p = 20.0 Pa 
and v = 346 m>s, find I if p = 15.0 Pa and v = 320 m>s.

 60. To cook a certain vegetable mix in a microwave oven, the 
instructions are to cook 120 g for 2.5 min or 240 g for 3.5 min. 
Assuming the cooking time t is proportional to some power (not 
necessarily integral) of the weight w, use logarithms to find t as a 
function of w.

Answers to Practice Exercises

1. y = kx2>z  2. y = 3
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 CHAPTER 18  EQUATIONS

Proportion 
a
b

=
c
d

 (18.1)

Direct variation y = kx (18.2)

Inverse variation y =
k
x

 (18.3)

Joint variation y = kxz (18.4)

 CHAPTER 18   REVIEW EXERCISES

In Exercises 1–14, find the indicated ratios.

 1. 4 Mg to 20 kg 2. 300 nm to 6 mm

 3. 375 mL to 25 cL 4. 12 ks to 2 h

 5. The number p equals the ratio of the circumference c of a circle 
to its diameter d. To check the value of p, a technician used 
computer simulation to measure the circumference and diameter 
of a metal cylinder and found the values to be c = 4.2736 cm 
and d = 1.3603 cm. What value of p did the technician get?

  6. The ratio of the diagonal d of a square to the side s of the square 
is 12. The diagonal and side of the face of a glass cube are 
found to be d = 35.375 mm and s = 25.014 mm. What is the 
value of 12 found from these measurements?

  7. The mechanical advantage of a lever is the ratio of the output 
force Fo to the input force Fi. Find the mechanical advantage if 
Fo = 28 kN and Fi = 5000 N.

 8. For an automobile, the ratio of the number n1 of teeth on the ring 
gear to the number n2 of teeth on the pinion gear is the rear axle 
ratio of the car. Find this ratio if n1 = 64 and n2 = 20.

 9. The pressure p exerted on a surface is the ratio of the force F on 
the surface to its area A. Find the pressure on a square patch, 
2.25 cm on a side, on a tank if the force on the patch is 37.4 N.

 10. The electric resistance R of a resistor is the ratio of the voltage V 
across the resistor to the current i in the resistor. Find R if 
V = 0.632 V and i = 2.03 mA.

 11. The heat of vapourization of a substance is the amount of heat 
needed to change a unit amount from liquid to vapour. 
Experimentation shows 7910 J are needed to change 3.50 g of 
water to steam. What is the heat of vapourization of water?

 12. The ratio of the effective length of a column to its radius of 
gyration is the slenderness ratio. What is the slenderness ratio 
of a column of effective length 3.15 m and radius of gyration 
60.0 mm?

 13. The ratio of the commission for selling a home to the selling 
price of the home is the commission rate. What is this rate if the 
commission of $20 900 is charged for selling a home priced at 
$380 000?

 14. A total cholesterol level of 200 mg>dL is considered too high, 
but many doctors consider the ratio of the total cholesterol to 
HDL (high density lipids—the “good” cholesterol) a more im-
portant measure of risk to coronary heart disease. What is this 

ratio if the total cholesterol is 179 mg>dL and the HDL is 
39 mg>dL? (Average for women is about 4.5, and for men is 
about 5.0.)

In Exercises 15 and 16, given that a>b = c>d (b and d not zero), 
show that the indicated proportions are correct.

 15. 
a + b

b
=

c + d
d

 16. 
a - b

b
=

c - d
d

In Exercises 17–32, answer the given questions by setting up and solv-
ing the appropriate proportions.

 17. On a map of Australia, 37 mm represents 300 km. If the distance 
on the map between Melbourne and Hobart, Tasmania, is 78 mm, 
how far is Hobart from Melbourne?

 18. Given that 1.000 kg = 1000 g, what is the mass in kilograms of 
a 14.0-g computer disk?

 19. Given that 1.00 kJ = 106 mJ, how much heat in kilojoules is 
produced by a heating element that produces 2660 mJ?

 20. Given that 1.00 L = 1000 cm3, what capacity in litres has a cu-
bical box that is 3.23 cm along an edge?

 21. A computer printer can print 50 pages in 2 min 5 s. How many 
pages can it print in 10.0 min?

 22. A solar heater with a collector area of 58.0 m2 is required to heat 
2560 kg of water. Under the same conditions, how much water 
can be heated by a rectangular solar collector 9.50 m by 8.75 m?

 23. The dosage of a certain medicine is 25 mL for each 10 kg of the 
patient’s weight. What is the dosage for a person weighing 56 kg?

 24. A woman invests $50 000 and a man invests $20 000 in a part-
nership. If profits are to be shared in the ratio that each invested 
in the partnership, how much does each receive from $10 500 in 
profits?

 25. On a certain blueprint, a measurement of 25.0 m is represented 
by 2.00 mm. What is the actual distance between two points if 
they are 5.75 mm apart on the blueprint?

 26. The chlorine concentration in a water supply is 0.12 part per mil-
lion. How much chlorine is there in a cylindrical holding tank 
4.22 m in radius and 5.82 m high filled from the water supply?

 27. One fibre-optic cable carries 60.0, as many messages as an-
other fibre-optic cable. Together they carry 12 000 messages. 
How many does each carry?
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 28. Two types of roadbed material, one 50, rock and the other 
100, rock, are used in the ratio of 4 to 1 to form a roadbed. If a 
total of 150 Mg are used, how much rock is in the roadbed?

 29. To neutralize 80.0 kg of sodium hydroxide, 98.0 kg of sulfuric 
acid are needed. How much sodium hydroxide can be neutral-
ized with 37.0 kg of sulfuric acid?

 30. For analysis, 105 mg of DNA sample is divided into two vials in 
the ratio of 2 to 5. How many milligrams are in each vial?

 31. A total of 322 bolts are in two containers. The ratio of the num-
ber of bolts in the first container to the number in the second 
container is 5>9. How many are in each container?

 32. A gasoline company sells octane-87 gas and octane-91 gas in the 
ratio of 9 to 2. How many of each octane are sold of a total of 
16.5 million litres?

In Exercises 33–36, give the specific equation relating the variables 
after evaluating the constant of proportionality for the given set of 
values.

 33. y varies directly as the square of x, and y = 27 when x = 3.

 34. f  varies inversely as l, and f = 5 when l = 8.

 35. v is directly proportional to x and inversely proportional to the 
cube of y, and v = 10 when x = 5 and y = 4.

 36. r varies jointly as u, v, and the square of w, and r = 8 when 
u = 2, v = 4, and w = 3.

In Exercises 37–77, solve the given applied problems.

 37. For the lever balanced at the fulcrum, the relation

  
F1

F2
=

L2

L1

  holds, where F1 and F2 are 
forces on opposite sides of the 
fulcrum at distances L1 and L2 
(see Fig. 18.9). Find L2 if 
F1 = 4.50 N, F2 = 6.75 N, and 
L1 = 17.5 cm.

 38. A company finds that the vol-
ume V of sales of a certain item and the price P of the item are 
related by

  
P1

P2
=

V2

V1

  Find V2 if P1 = $8.00, P2 = $6.00, and V1 = 3000 items per 
week.

 39. The image height h and object height H for the lens shown in 
Fig. 18.10 are related to the image distance q and object distance 
p by

  
h
H

=
q

p

  Find q if h = 24 cm,
H = 84 cm, and 
p = 36 cm.

 40. For two pulleys connected by a belt, the relation

  
d1

d2
=

n2

n1

  holds, where d is the diameter of the pulley and n is the number 
of revolutions per unit time it makes. Find n2 if d1 = 4.60 cm, 
d2 = 8.30 cm, and n1 = 18.0 r>min.

 41. An apartment owner charges rent R proportional to the floor 
area A of the apartment. Find the equation relating R and A if an 
apartment of 100 m2 rents for $850>month.

 42. The number r of aluminum cans that can be made by recycling n 
used cans is proportional to n. How many cans can be made 
from 50 000 used cans if r = 115 cans for n = 125 cans?

 43. Under certain conditions, the rate of increase v of bacteria  
is proportional to the number N of bacteria present. Find v for 
N = 7500 bacteria, if v = 800 bacteria>h for N = 4000 
bacteria.

 44. The index of refraction n of a medium varies inversely as the 
velocity of light v within it. For quartz, n = 1.46 and 
v = 2.05 * 108 m>s. What is n for a diamond, in which 
v = 1.24 * 108 m>s?

 45. The force F needed to tighten a bolt varies as the length L of the 
wrench handle. See Fig. 18.11. If F = 250 N for L = 22 cm, 
and F = 550 N for L = 10 cm, determine the equation relating 
F and L.

L1 L 2
Fulcrum

F1 F2

Fig. 18.9 

H

h
p

q

Fig. 18.10 

L
F

Fig. 18.11 

 46. In the two-base method of barometric levelling, bases are estab-
lished at two points of known elevation, one at the lowest point 
and one at the highest point. An altimeter at an unknown eleva-
tion is read at the same time that both the upper and lower base 
altimeters are read. The relation

  
HR - HL

HU - HL
=

RR - RL

RU - RL

  holds, where HL, HU, and HR are the elevations at the lower 
base, upper base, and roving altimeter stations (in mm), and 
RL, RU, and RR are the altimeter readings at the lower base, up-
per base, and roving altimeter stations (in m). Find HR if 
HU = 412.3 m, HL = 107.5 m, RU = 360 mm, RL = 108 m, 
and RR = 135 mm. See Fig. 18.12.

RL

RR
HR

HL
Lower base

Upper baseRU
HU

Fig. 18.12 
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 47. The period T  of a pendulum varies directly as the square root 
of its length L. If T = p>2 s for L = 61.0 cm, find T  for 
L = 122 cm.

 48. The component of velocity vx of an object moving in a circle 
with constant angular velocity v varies jointly with v and  sin vt. 
If v = p>6 rad>s, and vx = -4p cm>s when t = 1.00 s, find 
vx when t = 9.00 s.

 49. The charge C on a capacitor varies directly as the voltage V across 
it. If the charge is 6.3 mC with a voltage of 220 V across a capaci-
tor, what is the charge on it with a voltage of 150 V across it?

 50. The amount of natural gas burned is proportional to the amount 
of oxygen consumed. If 24.0 kg of oxygen is consumed in burn-
ing 15.0 kg of natural gas, how much air, which is 23.2, oxy-
gen by weight, is consumed to burn 50.0 kg of natural gas?

 51. The power P of a gas engine is proportional to the area A of the 
piston. If an engine with a piston area of 50.0 cm2 can develop 
22.5 kW, what power is developed by an engine with a piston 
area of 40.0 cm2?

 52. The decrease in temperature above a region is directly propor-
tional to the altitude above the region. If the temperature T  at the 
base of the Rock of Gibraltar is 22.0°C and a plane 3.50 km 
above notes that the temperature is 1.0°C, what is the tempera-
ture at the top of Gibraltar, the altitude of which is 430 m? 
(Assume there are no other temperature effects.)

 53. The distance d an object falls under the influence of gravity var-
ies directly as the square of the time t of fall. A chunk of ice falls 
from the top of the CN Tower and travels 19.62 m in 2.00 s. It 
hits the ground after 10.43 s. How tall is the tower?

 54. The kinetic energy E of a moving object varies jointly as the 
mass m of the object and the square of its velocity v. If a 5.00-kg 
object, travelling at 10.0 m>s, has a kinetic energy of 250 J, find 
the kinetic energy of an 8.00-kg object moving at 50.0 m>s.

 55. In a particular computer design, N numbers can be sorted in a 
time proportional to the square of log N. How many times 
longer does it take to sort 8000 numbers than to sort 2000 
numbers?

 56. The velocity v of a jet of fluid flowing from an opening in the 
side of a container is proportional to the square root of the depth 
d of the opening. If the velocity of the jet from an opening at a 
depth of 1.22 m is 4.88 m>s, what is the velocity of a jet from an 
opening at a depth of 7.62 m? See Fig. 18.13.

 58. The rate of emission R of radiant energy from the surface of a 
body is proportional to the fourth power of the thermodynamic 
temperature T . Given that a 25.0-W (the rate of emission) lamp 
has an operating temperature of 2500 K, what is the operating 
temperature of a similar 40.0-W lamp?

 59. The frequency f  of a radio wave is inversely proportional to its 
wavelength l. The constant of proportionality is the velocity of 
the wave, which equals the speed of light. Find this velocity if 
an FM radio wave has a frequency of 90.9 MHz and a wave-
length of 3.29 m.

 60. The acceleration of gravity g on a satellite in orbit around the 
earth varies inversely as the square of its distance r from the 
centre of the earth. If g = 8.7 m>s2 for a satellite at an altitude 
of 400 km above the surface of the earth, find g if it is 1000 km 
above the surface. The radius of the earth is 6.4 * 106 m.

 61. If the weight w of an airplane varies directly as the cube of its 
length L, and w = 15 400 N for L = 15 m, what would be the 
weight of a plane that is 550 cm long?

 62. The thrust T  of a propeller varies jointly as the square of the 
number n of revolutions per second and the fourth power of its 
diameter d. What is the effect on T  if n is doubled and d is 
halved?

 63. Using holography (a method of producing an image without us-
ing a lens), an image of concentric circles is formed. The radius 
r of each circle varies directly as the square root of the wave-
length l of the light used. If r = 3.56 cm for l = 575 nm, find 
r if l = 483 nm.

 64. A metal circular ring has a circular cross section of radius r. If R 
is the radius of the ring (measured to the middle of the cross sec-
tion), the volume V of metal in the ring varies directly as R and 
the square of r. If V = 2550 mm3 for r = 2.32 mm and 
R = 24.0 mm, find V for r = 3.50 mm and R = 32.0 mm. See 
Fig. 18.14.
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 57. In an electric circuit containing an inductance L and a capaci-
tance C, the resonant frequency f  is inversely proportional to 
the square root of the capacitance. If the resonant frequency in a 
circuit is 25.0 Hz and the capacitance is 95.0 mF, what is the 
resonant frequency of this circuit if the capacitance is 25.0 mF?

 65. The range R of a projectile varies jointly as the square of its ini-
tial velocity v0 and the sine of twice the angle u from the hori-
zontal at which it is fired. See Fig. 18.15. A bullet for which 
v0 = 850 m>s and u = 22.0° has a range of 5.12 * 104 m. 
Find the range if v0 = 750 m>s and u = 43.2°.

 66. Kepler’s third law of planetary motion states that the square of the 
period of any planet is proportional to the cube of the mean radius 
(about the sun) of that planet, with the constant of proportionality 
being the same for all planets. Using the fact that the period of the 
earth is 1 year and its mean radius is 150 * 106 km, calculate the 
mean radius for Venus, given that its period is 7.38 months.

 67. The stopping distance d of a car varies directly as the square of 
the velocity v of the car when the brakes are applied. A car mov-
ing at 48 km>h can stop in 15 m. What is the stopping distance 
for the car if it is moving at 85 km>h?
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 73. The heat loss L through fibreglass insulation varies directly as 
the time t and inversely as the thickness d of the fibreglass. If the 
loss through 20.0 cm of fibreglass is 1.20 MJ in 30 min, what is 
the loss through 15.0 cm in 1 h 30 min?

 74. A quantity important in analysing the rotation of an object is its 
moment of inertia I. For a ball bearing, the moment of inertia 
varies directly as its mass m and the square of its radius r. Find 
the general expression for I if I = 39.9 g # cm2 for m = 63.8 g 
and r = 1.25 cm.

 75. In the study of polarized light, the intensity I is proportional to 
the square of the cosine of the angle u of transmission. If 
I = 0.025 W>m2 for u = 12.0°, find I for u = 20.0°.

 76. The force F that acts on a pendulum bob is proportional to the 
mass m of the bob and the sine of the angle u the pendulum 
makes with the vertical. If F = 0.120 N for m = 0.350 kg and 
u = 2.00°, find F for m = 0.750 kg and u = 3.50°.

 77. On a map of Canada, 12.5 mm represents 200 km. If the distance 
on the map between Edmonton and Calgary is 18 mm, how far is 
Edmonton from Calgary?

Writing Exercise
 78. A fruit-packing company plans to reduce the size of its fruit 

juice can (a right circular cylinder) by 10, and keep the price 
of each can the same (effectively raising the price). The radius 
and the height of the new can are to be equally proportional to 
those of the old can. Write one or two paragraphs explaining 
how to determine the percent decrease in the radius and the 
height of the old can that is required to make the new can.

 68. The load L that a helical spring can support varies directly as the 
cube of its wire diameter d and inversely as its coil diameter D. 
A spring for which d = 0.120 cm and D = 0.953 cm can sup-
port 45.0 N. What is the coil diameter of a similar spring that 
supports 78.5 N and for which d = 0.156 cm?

 69. The volume rate of flow R of blood through an artery varies 
directly as the fourth power of the radius r of the artery and in-
versely as the distance d along the artery. If an operation is suc-
cessful in effectively increasing the radius of an artery by 25, 
and decreasing its length by 2,, by how much is the volume 
rate of flow increased?

 70. The safe, uniformly distributed load L on a horizontal beam, 
supported at both ends, varies jointly as the width w and the 
square of the depth d and inversely as the distance D between 
supports. Given that one beam has double the dimensions of 
another, how many times heavier is the safe load it can support 
than the first can support?

 71. A bank statement exactly 30 years old is discovered. It states, 
“This 10-year-old account is now worth $185.03 and pays 4, 
interest compounded annually.” An investment with annual 
compound interest varies directly as 1 + r to the power n, 
where r is the interest rate expressed as a decimal and n is the 
number of years of compounding. What was the value of the 
original investment, and what is it worth now?

 72. The distance s that an object falls due to gravity varies jointly as 
the acceleration g due to gravity and the square of the time t of 
fall. The acceleration due to gravity on the moon is 0.172 of that 
on earth. If a rock falls for t0 seconds on earth, how many times 
farther would the rock fall on the moon in 3t0 seconds?

 CHAPTER 18   PRACTICE TEST

 1. Express the ratio of 180 s to 4 min in simplest form.

 2. A person 1.8 m tall is photographed, and the film image is 20.0 
mm high. Under the same conditions, how tall is a person whose 
film image is 14.5 mm high?

 3. The change L in length of a copper rod varies directly as the 
change T  in temperature of the rod. Set up an equation for this 
relationship if L = 2.7 cm for T = 150°C.

 4. Given that 1.00 in. = 2.54 cm, what length in inches is 7.24 cm?

 5. The perimeter of a rectangular solar panel is 210.0 cm. The ratio 
of the length to the width is 7 to 3. What are the dimensions of 
the panel?

 6. The difference p in pressure in a fluid between that at the sur-
face and that at a point below varies jointly as the density d of 
the fluid and the depth h of the point. The density of water is 
1000 kg>m3, and the density of alcohol is 800 kg>m3. This dif-
ference in pressure at a point 0.200 m below the surface of water 
is 1.96 kPa. What is the difference in pressure at a point 0.300 m 
below the surface of alcohol? (All data are accurate to 3 signifi-
cant digits.)

 7. The crushing load L of a pillar varies directly as the fourth 
power of its radius r and inversely as the square of its length l. If 
one pillar has twice the radius and three times the length of a 
second pillar, what is the ratio of the crushing load of the first 
pillar to that of the second pillar?
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Sequences and the 
Binomial Theorem

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Determine if a sequence forms 
an arithmetic sequence

 Find the terms, common 
difference, number of terms, or 
sum of an arithmetic sequence

 Determine if a sequence forms 
a geometric sequence

 Find the terms, common ratio, 
number of terms, or sum of a 
finite geometric sequence

 Find the sum of an infinite 
geometric series

 Find the fraction equal to a 
given repeating decimal

 Evaluate expressions involving 
factorials

 Expand binomials to any 
power, using Pascal's triangle 
and the binomial theorem

 Obtain terms of a binomial 
series

 Solve application problems 
involving sequences and series

If a person is saving for the future and invests $1000 at 5,, compounded annually, the 
value of the investment 40 years later would be about $7040. Even better, if the interest is 
compounded daily, which is a common method today, it would be worth about $7390 in 

40 years. A person saving for retirement would do much better by putting aside $1000 each 
year and letting the interest accumulate. If $1000 is invested each year at 5,, compounded 
annually, the total investment would be worth about $126 840 after 40 years. If the interest is 
compounded daily, it would be worth about $131 000 in 40 years. Obviously, if more is in-
vested, or the interest rate is higher, the value of these investments would be higher.

Each of these values can be found quickly since the values of the annual investments form 
what is called a geometric sequence, and formulas can be formed for such sums. Such formu-
las involving compound interest are widely used in calculating values such as monthly car 
payments, home mortgages, and annuities.

A sequence is a set of numbers arranged in some specific way and usually follows a pattern. 
Sequences have been of interest to people for centuries. Records dating back to at least 1700 b.c.e. 
show calculations involving sequences. Euclid (see page 55) in his Elements dealt with se-
quences in about 300 b.c.e. More advanced forms of sequences were used extensively in the 
study of advanced mathematics in the 1700s and 1800s. These advances in mathematics have 
been very important in many areas of science and technology.

Of the many types of sequences, we study certain basic ones in this chapter. Included are 
those used in the expansion of a binomial to a power. We show applications in areas such as 
physics and chemistry in studying radioactivity, biology in studying population growth, and, 
of course, in business when calculating interest.

19

 Sequences are basic to many calcula-
tions in business, including compound 
interest. In Section 19.2, we show 
such a calculation. D
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 19.1 Arithmetic Sequences
 

 
 

Sum of n Terms

A sequence is an ordered list of numbers, each of which is said to be a term of the 
sequence. While there are sequences with no relationship between their terms, 
sequences that are useful follow a pattern. In this chapter we consider only sequences 
of real numbers or of literal numbers representing real numbers.

An arithmetic sequence (or arithmetic progression) is a set of numbers in which 
each number after the first can be obtained from the preceding one by adding to it a 
fixed number called the common difference. This definition can be expressed in terms 
of the recursion formula

an = an-1 + d  (19.1)

where an is any term, an-1 is the preceding term, and d is the common difference.

 EXAMPLE  1  Illustrations of arithmetic sequences

(a) The sequence 2, 5, 8, 11, 14, c, is an arithmetic sequence with a common differ-
ence d = 3. We can obtain any term by adding 3 to the previous term. We see that 
the fifth term is a5 = a4 + d, or 14 = 11 + 3.

(b) The sequence 7, 2, -3, -8, c, is an arithmetic sequence with d = -5. We can 
get any term after the first by adding -5 to the previous term.

The three dots after the 14 in part (a) and after -8 in part (b) mean that the  
sequences continue.  ■

If we know the first term of an arithmetic sequence, we can find any other term by 
adding the common difference enough times to get the desired term. This, however, is 
very inefficient, and there is a general way of finding a particular term.

If a1 is the first term and d is the common difference, the second term is a1 + d, the 
third term is a1 + 2d, and so on. For the nth term, we need to add d to the first term 
n - 1 times. Therefore, the nth term, an, of the arithmetic sequence is given by

an = a1 + 1n - 12d  (19.2)

Equation (19.2) can be used to find any given term in any arithmetic sequence. We can 
refer to an as the last term of an arithmetic sequence if no terms beyond it are included 
in the sequence. Such a sequence is called a finite sequence. If the terms in a sequence 
continue without end, the sequence is called an infinite sequence.

 EXAMPLE  2  Finding a specified term

Find the 10th term of the arithmetic sequence 2, 5, 8, c.
By subtracting any term from the following term, we find the common difference 

d = 3, and see that the first term a1 = 2. Therefore, the 10th term, a10, is

a1   n     d

 a10 = 2 + 110 - 123 = 2 + 192 132
 = 29

The three dots after the 8 show that the sequence continues. With no additional 
information given, this indicates that it is an infinite arithmetic sequence. ■

nth term
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 EXAMPLE  3  Finding the common difference

Find the common difference between successive terms of the arithmetic sequence for 
which the third term is 5 and the 34th term is -119.

In order to use Eq. (19.2), we could calculate a1, but we can also treat the third term 
as a1 and the 34th term as a32. This gives us the same sequence from 5 to -119. 
Therefore, using the values a1 = 5, a32 = -119, and n = 32, we can find the value  
of d. Substituting these values in Eq. (19.2) gives

 -119 = 5 + 132 - 12d

 31d = -124

 d = -4

There is no information as to whether this is a finite or an infinite sequence. The solu-
tion is the same in either case. ■

 EXAMPLE  4  Finding the number of terms

How many integers between 10 and 1000 are divisible by 6?
We must first find the smallest and the largest numbers in this range that are divisi-

ble by 6. These numbers are 12 and 996. Obviously, the common difference between 
one multiple of 6 and the next is 6. Thus, we can solve this as an arithmetic sequence 
with a1 = 12, an = 996, and d = 6. Substituting these values in Eq. (19.2), we have

 996 = 12 + 1n - 126

 6n = 990

 n = 165

Thus, 165 numbers between 10 and 1000 are divisible by 6.
All the positive multiples of 6 are included in the infinite arithmetic sequence 

6, 12, 18, c, whereas those between 10 and 1000 are included in the finite arithmetic 
sequence 12, 18, 24, c, 996. ■

 EXAMPLE  5  Arithmetic sequence—application

A package delivery company uses a metal (very low friction) ramp to slide packages 
from the sorting area down to the loading area below. If a given package is pushed such 
that it starts down the ramp at 25 cm>s, and the package accelerates as it slides down 
the ramp such that it gains 35 cm>s during each second, after how many seconds is its 
velocity 305 cm>s? See Fig. 19.1.

Here, we see that the velocity (in cm>s) of the package after each second is

60, 95, 130, c, 305, c
Therefore, a1 = 60 (the 25 cm>s was at the beginning, that is, after 0 s), d = 35,
an = 305, and we are to find n, which in this case represents the number of seconds 
during which the velocity increases. Therefore,

 305 = 60 + 1n - 12 1352
 245 = 35n - 35

 35n = 280

 n = 8.0

This means that the velocity of a package sliding down the ramp is 305 cm>s after 8.0 s. ■

Practice Exercise

1. Find d if a1 = 4 and a13 = 34.

Fig. 19.1 

Sorting 
area

25 cm/s 305 cm/s
Loading
area
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SUM OF n TERMS
Another important quantity related to an arithmetic sequence is the sum of the first n 
terms. We can indicate this sum by starting the sum either with the first term or with the 
last term, as shown by these two equations:

Sn = a1 + 1a1 + d2 + 1a1 + 2d2 + g + 1an - d2 + an

or

Sn = an + 1an - d2 + 1an - 2d2 + g + 1a1 + d2 + a1

If we now add the corresponding members of these two equations, we obtain the result

2Sn = 1a1 + an2 + 1a1 + an2 + 1a1 + an2 + g + 1a1 + an2 + 1a1 + an2
Each term on the right in parentheses has the same expression 1a1 + an2 , and there 
are n such terms. This tells us that the sum of the first n terms is given by

Sn =
n
2

 1a1 + an2  (19.3)

The use of Eq. (19.3) is illustrated in the following examples.

 EXAMPLE  6  Finding the sum of terms

Find the sum of the first 1000 positive integers.
The first 1000 positive integers form a finite arithmetic sequence for which a1 = 1, 

a1000 = 1000, n = 1000, and d = 1. Substituting these values in Eq. (19.3) (in which 
we do not use the value of d), we have

 S1000 =
1000

2
 11 + 10002 = 500110012

 = 500 500  ■

 EXAMPLE  7  Finding the sum of terms

Find the sum of the first ten terms of the arithmetic sequence in which the first term is 4 
and the common difference is -5.

We are to find Sn, given that n = 10, a1 = 4, and d = -5. Since Eq. (19.3) uses 
the value of an but not the value of d, we first find a10 by using Eq. (19.2). This gives us

 a10 = 4 + 110 - 12 1 -52 = 4 - 45

 = -41

Now, we can solve for S10 by using Eq. (19.3):

 S10 =
10
2
14 - 412 = 51 -372

 = -185  ■

If any three of the five values a1, an, n, d, and Sn are given for a particular arithmetic 
sequence, the other two may be found from Eqs. (19.2) and (19.3). Consider the fol-
lowing example.

■ Karl Friedrich Gauss (1777–1856) is considered 
one of the greatest mathematicians of all time. A 
popular story about him is that at the age of 10 his 
schoolmaster asked his class to add all the 
numbers from 1 to 100, assuming it would take 
some time to do. He had barely finished stating 
the problem when Gauss handed in the correct 
answer of 5050. He had done it essentially as we 
did the solution in Example 6.

Practice Exercise

2. Find S9 if d = -2 and a9 = 1.
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 EXAMPLE  8  Finding n and an

For an arithmetic sequence, given that a1 = 2, d = 1.5, and Sn = 72, find n and an.
First, we substitute the given values in Eqs. (19.2) and (19.3) in order to identify 

what is known, and how to proceed. Making these substitutions, we have

 an = 2 + 1n - 12 11.52 substituting in Eq. (19.2)

 72 =
n
2

 12 + an2 substituting in Eq. (19.3)

 72 =
n
2

 32 + 2 + 1n - 12 11.52 4 substituting first equation into second equation

 = 2n + 0.75n1n - 12
 288 = 8n + 3n2 - 3n multiplying each term by 4 to clear decimals

 3n2 + 5n - 288 = 0

 n =
-5 { 125 - 4132 1 -2882

6
=

-5 { 13481
6

=
-5 { 59

6

Since n must be a positive integer, we find that n = 1 -5 + 592 >6 = 9. Therefore, 
since n = 9, a9 = 2 + 19 - 12 11.52 = 14. The values n = 9 and a9 = 14 check 
with the given values. ■

 EXAMPLE  9  Sum of terms—application

The voltage across a resistor increases such that during each second the increase is 
0.002 mV less than during the previous second. Given that the increase during the first 
second is 0.350 mV, what is the total voltage increase during the first 10.0 s?

We are asked to find the sum of the voltage increases 0.350 mV, 0.348 mV, 
0.346 mV, c, so as to include ten increases. This means we want the sum of an arith-
metic sequence for which a1 = 0.350, d = -0.002, and n = 10. Since we need an to 
use Eq. (19.3), we first calculate it, using Eq. (19.2):

a10 = 0.350 + 110 - 12 1 -0.0022 = 0.332 mV

Now, we use Eq. (19.3) to find the sum with a1 = 0.350, a10 = 0.332, and n = 10:

S10 =
10
2

 10.350 + 0.3322 = 3.410 mV

Thus, the total voltage increase is 3.410 mV. ■

EXERCISES 19.1

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 3, change -119 to -88 and then find the common 
difference.

 2. In Example 4, change 6 to 5 and then find out how many numbers 
there are.

 3. In Example 6, change 1000 to 500 and then find the sum.

 4. In Example 7, change -5 to 5 and then find the sum.

In Exercises 5–8, write the first five terms of the arithmetic sequence 
with the given values.

 5. a1 = 4, d = 2

 6. a1 = 6, d = -1
2

 7. a1 = 2.5, a5 = -1.5

 8. a2 = -2, a5 = 43

In Exercises 9–16, find the nth term of the arithmetic sequence with 
the given values.

 9. 1, 4, 7, c; n = 8

 10. -6, -4, -2, c; n = 10

 11. 7p
4 , 3p2 , 5p4 , c; n = 17

 12. 2, 0.5, -1, c; n = 25

 13. a1 = -0.7, d = 0.4, n = 80

 14. a1 = 3
2, d = 1

6, n = 601

 15. a1 = b, d = 2b, n = 25

 16. a1 = -c, d = 3c, n = 30



 19.1 Arithmetic Sequences 515

In Exercises 17–20, find the sum of the n terms of the indicated 
arithmetic sequence.

 17. n = 20, a1 = 4, a20 = 40

 18. n = 8, a1 = -12, d = -2

 19. -2, -5
2, -3, c; n = 10

 20. 3k, 10
3  k, 11

3  k, c; n = 40

In Exercises 21–32, find any of the values of a1, d, an, n, or Sn that are 
missing for an arithmetic sequence.

 21. a1 = 5, d = 8, an = 45

 22. a1 = -2, n = 60, an = 28

 23. a1 = 5
3, n = 20, S20 = 40

3

 24. a1 = 0.1, an = -5.9, Sn = -8.7

 25. d = 3, n = 30, S30 = 1875

 26. d = 9, an = 86, Sn = 455

 27. a1 = 7.4, d = -0.5, an = -23.1

 28. a1 = -9
7, n = 19, a19 = -36

7

 29. a1 = 5k, d = 0.5k, Sn = 104k

 30. d = -2c, n = 50, S50 = 0

 31. a1 = -c, an =
b
2

, Sn = 2b - 4c

 32. a1 = 3b, n = 7, d =
b
3

In Exercises 33–60, find the indicated quantities for the appropriate 
arithmetic sequence.

 33. a6 = 560, a10 = 720 (find a1, d, Sn for n = 10)

 34. a17 = -91, a2 = -73 (find a1, d, Sn for n = 40)

 35. Is ln 3,  ln 6, ln 12, c an arithmetic sequence? Explain. If it is, 
what is the fifth term?

 36. Is sin 2°,  sin 4°,  sin 6°, c an arithmetic sequence? Explain. If it 
is, what is the fifth term?

 37. Find a formula with variable n for the nth term of the arithmetic 
sequence with a1 = 3 and an+1 = an + 2 for n = 1, 2, 3, c.

 38. If a, b, and c are the first three terms of an arithmetic sequence, 
find their sum in terms of b only.

 39. The terms a, m, b form an arithmetic sequence. Express a formula 
for the common difference d in terms of a and b. (The term m is 
the arithmetic mean of the terms a and b.)

 40. The terms a, m, n, b form an arithmetic sequence. Express m and 
n in terms of a and b. (The terms m and n are arithmetic means of 
the terms a and b.)

 41. Write the first five terms of the arithmetic sequence for which the 
second term is b and the third term is c.

 42. If the sum of the first two terms of an arithmetic sequence equals 
the sum of the first three terms, find the sum of the first five 
terms.

 43. Find the sum of the first 100 positive integers. (See the margin 
note on page 513.)

 44. Find the number of multiples of 8 between 99 and 999.

 45. Find x if 3 - x, -x, and 19 - 2x are the first three terms of an 
arithmetic sequence.

 46. Is x, x + 2y, 2x + 3y, c an arithmetic sequence? If it is, find 
the sum of the first 100 terms.

 47. A beach now has an area of 9500 m2 but is eroding such that it 
loses 100 m2 more of its area each year than during the previous 
year. If it lost 400 m2 during the last year, what would you expect 
its area to be 8 years from now?

 48. During a period of heavy rains, on a given day 4500 m3>s of 
water was being released from a dam. In order to minimize down-
stream flooding, engineers then reduced the releases by 500 m3>s 
each day thereafter. How much water was released during the 
first week of these releases?

 49. At a logging camp, 15 layers of logs are so piled that there are  
20 logs in the bottom layer, and each layer has 1 less log than the 
layer below it. How many logs are in the pile?

 50. In order to prevent an electric current surge in a circuit, the resis-
tance R in the circuit is stepped down by 4.0 Ω after each 0.1 s. If 
the voltage V is constant at 120 V, do the resulting currents I (in 
A) form an arithmetic sequence if V = IR?

 51. There are 12 seats in the first row around a semicircular stage. 
Each row behind the first has 4 more seats than the row in front  
of it. How many rows of seats are there if there is a total of  
300 seats?

 52. A bank loan of $8000 is repaid in annual payments of $1000 plus 
10, interest on the unpaid balance. What is the total amount of 
interest paid?

 53. A car depreciates $1800 during the first year after it is bought. 
Each year thereafter it depreciates $150 less than the year before. 
How many years after it was bought will it be considered to have 
no value, and what was the original cost?

 54. The sequence of ships' bells is as follows: 12:30 a.m. one bell is 
rung, and each half hour later one more bell is rung than the pre-
vious time until eight bells are rung. The sequence is then 
repeated starting at 4:30 a.m., again until eight bells are rung. 
This pattern is followed throughout the day. How many bells are 
rung in 1 day?

 55. If a stone released from a spacecraft near the surface of Mars falls 
1.85 m during the first second, 5.55 m during the second second, 
9.25 m during the third second, 12.95 m during the fourth second, 
and so on, how far from the surface is the spacecraft if it takes the 
stone 10.0 s to reach the surface?

 56. In preparing a bid for constructing a new building, a contractor 
determines that the foundation and basement will cost $605 000 
and the first floor will cost $360 000. Each floor above the first 
will cost $15 000 more than the one below it. How much will the 
building cost if it is to be 18 floors high?

 57. Derive a formula for Sn in terms of n, a1, and d.

 58. A harmonic sequence is a sequence of numbers whose reciprocals 
form an arithmetic sequence. Is a harmonic sequence also an 
arithmetic sequence? Explain.

 59. Show that the sum of the first n positive integers is 12 n1n + 12 .

 60. Show that the sum of the first n positive odd integers is n2.

Answers to Practice Exercises

1. d = 2.5  2. S9 = 81
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 19.2 Geometric Sequences

Sum of n Terms
A second type of important sequence of numbers is the geometric sequence (or  
geometric progression). In a geometric sequence, each number after the first can be 
obtained from the preceding one by multiplying it by a fixed number, called the  
common ratio. We can express this definition in terms of the recursion formula

an = ran-1  (19.4)

where an is any term, an-1 is the preceding term, and r is the common ratio. One 
important application of geometric sequences is in computing compound interest on 
savings accounts. Other applications are found in areas such as biology and physics.

 EXAMPLE  1  Illustrations of geometric sequences

(a) The sequence 2, 4, 8, 16, c, is a geometric sequence with a common ratio of 2. 
Any term after the first can be obtained by multiplying the previous term by 2. We 
see that the fourth term a4 = ra3, or 16 = 2182 .

(b) The sequence 9, -3, 1, -1>3, c, is a geometric sequence with a common ratio 
of -1>3. We can obtain any term after the first by multiplying the previous term 
by -1>3. ■

If we know the first term, we can find any other term by multiplying by the common 
ratio a sufficient number of times. When we do this for a general geometric sequence, 
we can find the nth term in terms of the first term a1, the common ratio r, and n. Thus, 
the second term is a1r, the third term is a1r2, and so forth. In general, the expression for 
the nth term is

an = a1rn-1  (19.5)

 EXAMPLE  2  Finding a specified term

Find the eighth term of the geometric sequence 8, 4, 2, c.
By dividing any term by the previous term, we find the common ratio to be 12. From 

the terms given, we see that a1 = 8. From the statement of the problem, we know that 
n = 8. Thus, we substitute into Eq. (19.5) to find a8:

a1   r   n

a8 = 8a1
2
b8-1

=
8

27 =
1
16

 ■

 EXAMPLE  3  Finding the common ratio

Find the common ratio r if a1 = 8
625 and a10 = -3125

64 .
Using Eq. (19.5), we have

 -3125
64 = 8

625 r10-1 = 8
625 r9 substituting in Eq. (19.5)

 r9 = - 13125 2 1625 2164 2 18 2 solving for r

 r = 3 - 13125 2 1625 2164 2 18 2 41>9 = -2.5 ■

nth term
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 EXAMPLE  4  Finding a specified term

Find the seventh term of the geometric sequence for which the second term is 3, the 
fourth term is 9, and r 7 0.

We can find r if we let a1 = 3, a3 = 9, and n = 3. (At this point, we are consider-
ing a sequence made up of 3, the next number, and 9. These are the second, third, and 
fourth terms of the original sequence.) Thus,

9 = 3r2,  r = 13  1since r 7 02
We can now find a1 of the original sequence by considering just the first two terms of 
the sequence, a1 and a2 = 3:

3 = a111322-1,  a1 = 13

We can now find the seventh term, using a1 = 13, r = 13, and n = 7:

a7 = 1311327-1 = 131332 = 2713

We could have shortened this procedure one step by letting the second term be the first 
term of a new sequence of six terms. If the first term is of no importance in itself, this is 
acceptable. ■

 EXAMPLE  5  Geometric sequence—application

In an experiment, 22.0, of a substance changes chemically each 10.0 min. If there is 
originally 120 g of the substance, how much will remain after 45.0 min?

Let Pn = the portion of the substance remaining after n minutes. From the statement 
of the problem, we know that r = 0.780, since 78.0, remains after each 10.0-min 
period. We also know that a1 = 120 g. This means that Pn = 12010.7802n>10.0. It is 
necessary to divide by 10.0 because the ratio is given for a 10.0-min period. In order to 
find Pn when n = 45.0 min, we write

 P45 = 12010.780245.0>10.0 = 12010.78024.50

 = 39.2 g

This means that 39.2 g remain after 45.0 min. Note that the power 4.50 represents  
4.50 ten-minute periods. ■

SUM OF n TERMS
A general expression for the sum Sn of the first n terms of a geometric sequence may be 
found by directly forming the sum and multiplying this equation by r:

 Sn = a1 + a1r + a1r2 + g + a1rn-1

 rSn = a1r + a1r2 + a1r3 + g + a1rn

If we now subtract the second of these equations from the first, we get 
Sn - rSn = a1 - a1rn. All other terms cancel by subtraction. Now, factoring Sn from 
the terms on the left and a1 from the terms on the right, we solve for Sn. Thus, the sum 
Sn of the first n terms of a geometric sequence is

Sn =
a111 - rn2

1 - r
  1r ≠ 12  (19.6)

Practice Exercise

1.  Find the sixth term of the geometric  
sequence for which a1 = 81 and 
r = -1>3.
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 EXAMPLE  6  Finding the sum of terms

Find the sum of the first seven terms of the geometric sequence for which the first term 
is 2 and the common ratio is 1>2.

We are to find Sn, given that a1 = 2, r = 1
2, and n = 7. Using Eq. (19.6), we have

S7 =
211 - 11

2272
1 - 1

2

=
211 - 1

1282
1
2

= 4 a127
128

b =
127
32

 ■

 EXAMPLE  7  Finding the sum of terms—application

If $100 is invested each year at 5, interest compounded annually, what would be the 
total amount of the investment after 10 years (before the 11th deposit is made)?

After 1 year, the amount invested will have added to it the interest for the year. 
Therefore, for the last (10th) $100 invested, its value will become

$10011 + 0.052 = $10011.052 = $105

The next to last $100 will have interest added twice. After 1 year, its value becomes 
$100(1.05), and after 2 years it is $100(1.05)(1.05) = $100(1.05)2. In the same way, 
the value of the first $100 becomes $10011.05210, since it will have interest added  
10 times. This means that we are to find the sum of the sequence

10011.052 + 10011.0522 + 10011.0523 + g + 10011.05210

or

10031.05 + 11.0522 + 11.0523 + g + 11.052104
For the sequence in the brackets, we have a1 = 1.05, r = 1.05, and n = 10. Thus,

S10 =
1.0531 - 11.052104

1 - 1.05
= 13.2068

The total value of the $100 investments is 100113.20682 = $1320.68. We see that 
$320.68 in interest has been earned. ■

1 year  
in account

2 years  
in account

3 years  
in account

10 years  
in account

Practice Exercise

2.  Find the sum of the six terms of the  
geometric sequence in Practice  
Exercise 1.

■ See the chapter introduction.

EXERCISES 19.2

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the given problems.

 1. In Example 4, change “seventh” to “10th.”

 2. In Example 6, change 
1
2

 to 
1
3

 and then find the sum.

In Exercises 3–6, write down the first five terms of the geometric 
sequence with the given values.

 3. a1 = 6400, r = 0.25

 4. a1 = 0.09, r = -2
3

 5. a1 = 1
6, r = 3

 6. a1 = -3, r = 2

In Exercises 7–14, find the nth term of the geometric sequence with 
the given values.

 7. 1
2, 1, 2, c; n = 9 8. 10, 1, 0.1, c; n = 8

 9. 125, -25, 5, c; n = 7 10. 0.1, 0.3, 0.9, c; n = 5

 11. a = -2700, r = -1
3, n = 10

 12. a1 = 48, r = 1
2, n = 12

 13. 10100, -1098, 1096, c; n = 51

 14. -2, 4k, -8k2, c; n = 6

In Exercises 15–20, find the sum of the first n terms of the indicated 
geometric sequence with the given values.

 15. a1 = 1
8, r = 4, n = 5 16. 162, -54, 18, c; n = 6

 17. 384, 192, 96, c; n = 7 18. a1 = 9, an = -243, n = 4

 19. a1 = 96, r = - k
2, n = 10

 20. log 2, log 4, log 16, c; n = 6

In Exercises 21–28, find any of the values of a1, r, an, n, or Sn that are 
missing.

 21. a1 = 1
16, r = 4, n = 6

 22. r = 0.2, an = 0.000 32, n = 7
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 23. r = 3
2, n = 5, S5 = 211

 24. r = -1
2, an = 1

8, n = 7

 25. an = 27, n = 4, S4 = 40

 26. a1 = 3, n = 7, a7 = 192

 27. a1 = 75, r = 1
5, an = 3

625

 28. r = -2, n = 6, S6 = 42

In Exercises 29–58, find the indicated quantities.

 29. Is 3, 3x+1, 32x+1, c a geometric sequence? Explain. If it is, find 
a20.

 30. The first two terms of a geometric sequence are added together to 
form the first term of a second sequence. The third and fourth 
terms of the first sequence are added to form the second term of 
the second sequence, and so on. If n is even for the first sequence, 
is the second sequence geometric?

 31. Show that a, 1ab, b are three successive terms of a geometric 
sequence 1a 7 0, b 7 02 .

 32. Find x if 1x, 4, 115x + 4 are the first three terms of a geomet-
ric sequence.

 33. Find x if 2, 6, 2x + 8 are successive terms of a geometric 
sequence.

 34. Write the first five terms of a geometric sequence of which the 
first two terms are a and b.

 35. Using Eq. (19.6), find the sum of the terms of a geometric 
sequence if r = -1, and n is (a) odd, (b) even.

 36. If a positive number c is added to each term of a geometric 
sequence, is the resulting sequence geometric?

 37. The sum of the first three terms of a geometric sequence equals 
seven times the first term. Find the common ratio.

 38. The sum of the first three terms of an arithmetic sequence is 3. 
What are the numbers if their squares form a geometric sequence?

 39. Each stroke of a pump removes 8.2, of the remaining air from a 
container. What percent of the air remains after 50 strokes?

 40. In 2009, the population of Canada was 33.7 million. According to 
a low growth scenario, it is estimated that the population will 
increase at an average annual rate of 0.65% until 2036. What is 
the estimated 2036 population, according to this scenario?

 41. An electric current decreases by 12.5, each 1.00 ms. If the initial 
current is 3.27 mA, what is the current after 8.20 ms?

 42. A copying machine is set to reduce the dimensions of material 
copied by 10,. A drawing 12.0 cm wide is reduced, and then the 
copies are in turn reduced. What is the width of the drawing on 
the sixth reduction?

 43. How much is an investment of $250 worth after 8 years if it earns 
annual interest of 7.2, compounded monthly? (7.2, annual 
interest compounded monthly means that 0.6, 17.2,>122  
interest is added each month.)

 44. A chemical spill pollutes a stream. A monitoring device finds  
620 ppm (parts per million) of the chemical 1.0 km below the 
spill, and the readings decrease by 12.5, for each kilometre far-
ther downstream. How far downstream is the reading 100 ppm?

 45. Measurements show that the temperature of a distant star is pres-
ently 9800°C and is decreasing by 10, every 800 years. What 
will its temperature be in 4000 years?

 46. The chlorine in a swimming pool was measured (in ppm, parts 
per million) to be 1.80, 1.53, 1.30, and 1.10 on 4 successive days. 
Noting that these values approximate a geometric sequence, what 
would be the reading 3 days after the last reading?

 47. The strength of a signal in a fibre-optic cable decreases 12, for 
every 15 km along the cable. What percent of the signal remains 
after 100 km?

 48. A series of deposits, each of value A and made at equal time inter-
vals, earns an interest rate of i for the time interval. The deposits 
have a total value of

  A11 + i2 + A11 + i22 + A11 + i23 + g + A11 + i2n

  after n time intervals (just before the next deposit). Find a formula 
for this sum.

 49. A thermometer is removed from hot water at 100.0°C into a room 
at 20.0°C. The temperature difference D between the thermome-
ter and the air decreases by 35.0, each minute. What is the tem-
perature reading on the thermometer 10.0 min later?

 50. The power on a space satellite is supplied by a radioactive iso-
tope. On a given satellite, the power decreases by 0.2, each day. 
What percent of the initial power remains after 1 year?

 51. If you decided to save money by putting away 1. on a given day, 
2. one week later, 4. a week later, and so on, how much would 
you have to put away 6 months (26 weeks) after putting away  
the 1.?

 52. How many direct ancestors (parents, grandparents, and so on) 
does a person have in the 10 generations that preceded him or her 
(assuming that no ancestor appears in more than one line of 
descent)?

 53. Derive a formula for Sn in terms of a1, r, and an.

 54. Write down several terms of a general geometric sequence. Then 
take the logarithm of each term. Explain why the resulting 
sequence is an arithmetic sequence.

 55. Do the squares of the terms of a geometric sequence also form a 
geometric sequence? Explain.

 56. If a1, a2, a3, c is an arithmetic sequence, explain why 
2a1, 2a2, 2a3, c is a geometric sequence.

 57. The numbers 8, x, y form an arithmetic sequence, and the num-
bers x, y, 36 form a geometric sequence. Find all of the possible 
sequences.

 58. For f1x2 = abx, with b 7 0, b ≠ 1, and a ≠ 0, is f112 , 
f132 ,  f152  an arithmetic sequence or a geometric sequence? 
What is the common difference (or common ratio)?

Answers to Practice Exercises

1. a6 = -1>3  2. S6 = 182>3
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 19.3 Infinite Geometric Series
 

Repeating Decimal
In the previous sections, we developed formulas for the sum of the first n terms of an 
arithmetic sequence and of a geometric sequence. The sum of the terms of a sequence is 
called a series.

 EXAMPLE  1  Illustrations of series

(a) The sum of the terms of the arithmetic sequence 2, 5, 8, 11, 14, c is the series 
2 + 5 + 8 + 11 + 14 + c.

(b) The sum of terms of the geometric sequence 1, 12, 14, 18, c is the series 
1 + 1

2 + 1
4 + 1

8 + c. ■

The series associated with a finite sequence will sum up to a real number. The series 
associated with an infinite arithmetic sequence will not sum up to a real number, as the 
terms being added become larger and larger numerically. The sum is unbounded, as we 
can see in Example 1(a). The series associated with an infinite geometric sequence may 
or may not sum up to a real number, as we now show.

Let us consider the sum of the first n terms of the infinite geometric sequence 
1, 12, 14, c. This is the sum of the n terms of the associated geometric series

1 + 1
2

+ 1
4

+ g + 1

2n-1

Here, a1 = 1 and r = 1
2, and we find that we get the values of Sn for the given values 

of n in the following table:

1 + 1
2 + 1

4 + 1
8           1 + 1

2 + 1
4 + 1

8 + 1
16 + 1

32 + 1
64

The series for n = 4 and n = 7 are shown. We see that as n gets larger, the numerator 
of each fraction comes closer to being twice the denominator. In fact, we find that if we 
continue to compute Sn as n becomes larger, Sn can be found as close to the value 2 as 
desired, although it will never actually reach the value 2. For example, if n = 100,
S100 = 2 - 1.6 * 10-30, which could be written as

1.999 999 999 999 999 999 999 999 999 998 4

to 32 significant digits. For the sum of the first n terms of a geometric sequence

Sn = a1 
1 - rn

1 - r

the term rn becomes exceedingly small if 0 r 0 6 1, and if n is sufficiently large, this 
term is effectively zero. If this term were exactly zero, the sum would be

Sn = 1 
1 - 0

1 - 1
2

= 2

The only problem is that we cannot find any number large enough for n to make 11
22n 

zero. There is, however, an accepted notation for this. This notation is

lim
nS ∞

rn = 0 1 if 0 r 0 6 12
and it is read as “the limit, as n approaches infinity, of r to the nth power is zero.”

n 2 3 4 5 6 7 8 9 10

Sn
3
2

7
4

15
8

31
16

63
32

127
64

255
128

511
256

1023
512

■ The symbol q for infinity was first used  
by the English mathematician John Wallis 
(1616–1703).
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If we consider values of r such that 0 r 0 6 1 and let the values of n become 
unbounded, we find that lim

nS ∞
rn = 0. The formula for the sum of the terms of an infi-

nite geometric series then becomes

S =
a1

1 - r
 1 0 r 0 6 12  (19.7)

where a1 is the first term and r is the common ratio. If 0 r 0 Ú 1, S is unbounded in 
value.

 EXAMPLE  2  Sum of an infinite geometric series

Find the sum of the infinite geometric series

4 - 1
2

+ 1
16

- 1
128

+ g

Here, we see that a1 = 4. We find r by dividing any term by the previous term, and we 
find that r = -1

8. We then find the sum by substituting in Eq. (19.7). This gives us

 S =
4

1 - 1 -1
82 =

4

1 + 1
8

 =
4
1

* 8
9

=
32
9

 ■

 EXAMPLE  3  Writing a repeating decimal as a fraction

Find the fraction that has its decimal form 0.121 212 c.
This decimal form can be considered as being

0.12 + 0.0012 + 0.000 012 + g
which means that we have an infinite geometric series in which a1 = 0.12 and 
r = 0.01. Thus,

 S =
0.12

1 - 0.01
=

0.12
0.99

 =
4
33

Therefore, the decimal 0.121 212 c and the fraction 4
33 represent the same number. ■

The decimal in Example 3 is called a repeating decimal because a particular 
sequence of digits in the decimal form repeats endlessly. This example verifies the theo-
rem that any repeating decimal represents a rational number. However, not all repeating 
decimals start repeating immediately. If the numbers never do repeat, the decimal repre-
sents an irrational number. For example, there are no repeating decimals that represent 
p, 12, or e. The decimal form of the number e does repeat at one point, but the repeti-
tion stops. As we noted in Section 12.5, the decimal form of e to 16 decimal places is 
2.7 1828 1828 4590 452. We see that the sequence of digits 1828 repeats only once.

The symbol ∞  is read as infinity, but it must not be thought of as a number. It is simply a 
symbol that stands for a process of considering numbers that become large without 
bound. The number called the limit of the sums is simply the number the sums get closer 
and closer to, as n is considered to approach infinity. This notation and terminology are 
of particular importance in calculus.

COMMON ERROR

Practice Exercise

1.  Find the sum of the infinite geometric  
series 9 + 3 + 1 + 1>3 + c.

Practice Exercise

2.  Find the fraction that has as its decimal 
form 0.272727 c.
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 EXAMPLE  4  Repeating decimal

Find the fraction that has its decimal form the repeating decimal 0.503 453 453 45 c.
We first separate the decimal into the beginning, nonrepeating part, and the infinite 

repeating decimal, which follows. Thus, we have

0.503 453 453 45 c = 0.50 + 0.003 453 453 45 c

This means that we are to add 50
100 to the fraction that represents the sum of the terms  

of the infinite geometric series 0.003 45 + 0.000 003 45 + g. For this series, 
a1 = 0.003 45 and r = 0.001. We find this sum to be

S =
0.003 45

1 - 0.001
=

0.003 45
0.999

=
115

33 300
=

23
6660

Therefore,

0.503 453 45 c =
5
10

+ 23
6660

=
516662 + 23

6660
=

3353
6660

 ■

 EXAMPLE  5  Infinite geometric series—application

Each swing of a certain pendulum bob is 95, as long as the previous swing. How far 
does the bob travel in coming to rest if the first swing is 40.0 cm long?

We are to find the sum of the terms of an infinite geometric series for which 
a1 = 40.0 and r = 95, = 19

20. Substituting these values into Eq. (19.7), we obtain

S =
40.0

1 - 19
20

=
40.0

1
20

= 140.02 1202 = 800 cm

The pendulum bob travels 800 cm in coming to rest. ■

■ A calculator can be used to change a 
repeating decimal to a fraction.

EXERCISES 19.3

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section, and then solve the resulting problems.

 1. In Example 2, change all -  signs to +  in the series.

 2. In Example 3, change the decimal form to 0.012012012 c.

In Exercises 3–6, find the indicated quantity for an infinite geometric 
series.

 3. a1 = 4, r = 1
2, S = ?

 4. a1 = 68, r = -1
3, S = ?

 5. a1 = 0.5, S = 0.625, r = ?

 6. S = 4 + 212, r =
112

, a1 = ?

In Exercises 7–14, find the sums of the given infinite geometric series.

 7. 20 - 1 + 0.05 - g 8. 9 + 8.1 + 7.29 + g
 9. 1 + 7

8 + 49
64 + g 10. 6 - 4 + 8

3 - g
 11. 1 + 10-4 + 10-8 + g 12. 1000 - 300 + 90 - g
 13. 12 + 132 + 1 + 12 - 132  + g
 14. 11 + 122 - 1 + 112 - 12  - g

In Exercises 15–28, find the fractions equal to the given decimals.

 15. 0.333 33 c 16. 0.555 55 c
 17. 0.499 999 c 18. 0.999 999 c
 19. 0.404 040 c 20. 0.070 707 c
 21. 0.181 818 c 22. 0.336 336 336 c
 23. 0.027 327 327 3 c 24. 0.822 22 c
 25. 0.366 666 c 26. 0.664 242 42 c
 27. 0.100 841 841 841 c 28. 0.184 561 845 618 456 c
In Exercises 29–39, solve the given problems by use of the sum of an 
infinite geometric series.

 29. There are two infinite geometric series with a1 = 50 and a3 = 2. 
Find the sum of each.

 30. Explain why there is no infinite geometric series with a1 = 5 and 
S = 2.

 31. Liquid is continuously collected in a wastewater-holding tank 
such that during a given hour only 92.0, as much liquid is col-
lected as in the previous hour. If 28.0 L are collected in the first 
hour, what must be the minimum capacity of the tank?
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 32. If 75, of all aluminum cans are recycled, what is the total num-
ber of recycled cans that can be made from 400 000 cans that are 
recycled over and over until all the aluminum from these cans is 
used up? (Assume no aluminum is lost in the recycling process.)

 33. The amounts of plutonium-237 that decay each day because of 
radioactivity form a geometric sequence. Given that the amounts 
that decay during each of the first 4 days are 5.882 g, 5.782 g, 
5.684 g, and 5.587 g, respectively, what total amount will decay?

 34. A helium-filled balloon rose 36.0 m in 1.0 min. Each minute after 
that, it rose 75, as much as in the previous minute. What was its 
maximum height?

 35. A bicyclist travelling at 10 m>s then coasts to a stop as the bicy-
cle travels 0.90 as far each second as in the previous second. How 
far does the bicycle travel in coasting to a stop?

 37. Find x if the sum of the terms of the infinite geometric series 
1 + 2x + 4x2 + c is 2>3.

 38. Find the sum of the terms of the infinite series 
1 + 2x + 3x2 + 4x3 + c for 0 x 0 6 1. (Hint: Use S - xS.)

 39. In a “torture test,” a light switch is turned on and off until it fails. 
For a certain switch, the probability that the switch will fail after it 
has been turned on or off 1000 times is given by10.9992100010.0012 + 10.9992100110.0012

+ 10.9992100210.0012 + c
  Find this probability.

Answers to Practice Exercises

1. S = 27>2  2. 3>11
 36. A square has sides of 20 cm. 

Another square is inscribed 
in the first square by joining 
the midpoints of the sides. 
Assuming that such inscribed 
squares can be formed end-
lessly, find the sum of the 
areas of all the squares and 
explain how the sum is 
found. See Fig. 19.2. Fig. 19.2 

 19.4 The Binomial Theorem
Properties of the Binomial 1a + b 2n

 
Binomial Series

We end this chapter by studying another useful and important series, the binomial 
series. The binomial series is the infinite series generalization of the binomial for-
mula, which we develop first. The binomial formula allows us to expand binomials to 
any positive integer power without direct multiplication. It is used in technical applica-
tions and in many areas of mathematics.

By direct multiplication, we may obtain the following expansions of the binomial a + b:

 1a + b20 = 1

 1a + b21 = a + b

 1a + b22 = a2 + 2ab + b2

 1a + b23 = a3 + 3a2b + 3ab2 + b3

 1a + b24 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

 1a + b25 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

Inspection shows these expansions have certain properties, and it can be shown that these 
properties are valid for the expansion of 1a + b2n, where n is any positive integer.

Properties of the Binomial (a + b)n

1. There are n + 1 terms.

2. The first term is an, and the final term is bn.

3.  Progressing from the first term to the last, the exponent of a decreases by 1 
from term to term, the exponent of b increases by 1 from term to term, and 
the sum of the exponents of a and b in each term is n.

4.  If the coefficient of any term is multiplied by the exponent of a in that term 
and this product is divided by the number of that term, we obtain the  
coefficient of the next term.

5.  The coefficients of terms equidistant from the ends are equal.
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 EXAMPLE  1  Using the basic binomial properties

Using the basic properties, develop the expansion for 1a + b25.
Since the exponent of the binomial is 5, we have n = 5.
From Property 1, we know that there are six terms.
From Property 2, we know that the first term is a5 and the final term is b5.
From Property 3, we know that the factors of a and b in terms 2, 3, 4, and 5 are 

a4b, a3b2, a2b3, and ab4, respectively.
From Property 4, we obtain the coefficients of terms 2, 3, 4, and 5. In the first term, 

a5, the coefficient is 1. Multiplying by 5, the power of a, and dividing by 1, the number 
of the term, we obtain 5, which is the coefficient of the second term. Thus, the second 
term is 5a4b. Again using Property 4, we obtain the coefficient of the third term. The 
coefficient of the second term is 5. Multiplying by 4 and dividing by 2, we obtain 10. 
This means that the third term is 10a3b2.

From Property 5, we know that the coefficient of the fifth term is the same as the 
second and that the coefficient of the fourth term is the same as the third. These proper-
ties are illustrated in the following diagram:

1a + b25 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 6 terms—Property 1

It is not necessary to use the above properties directly to expand a given binomial. If 
they are applied to 1a + b2n, a general formula for the expansion of a binomial may 
be obtained. In developing and stating the general formula, it is convenient to use the 
factorial notation n!, where

n! = n1n - 12 1n - 22 g122 112  (19.8)

We see that n!, read “n factorial,” represents the product of the first n positive integers. We 
also define 0! = 1. (See Exercise 39.)

 EXAMPLE  2  Evaluating factorials

(a) 3! = 132 122 112 = 6

(b) 5! = 152 142 132 122 112 = 120

(c) 8! = 182 172 162 152 142 132 122 112 = 40 320

(d) 3! + 5! = 6 + 120 = 126

(e) 
4!
2!

=
142 132 122 112122 112 = 12 ■

Property 2 Property 2

Property 3

Property 4

Property 5

2 + 3 = 5

5 * 4
2

2nd term

n

■

In evaluating factorials, we must remember that they represent products of numbers. In 
parts (d) and (e) of Example 2, we see that

3! + 5! is not 13 + 52!  and  4!>2! is not 14>22!.

COMMON ERROR

Practice Exercise

1. Evaluate 9!>7!.
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Based on the binomial properties, the binomial theorem states that the following bino-
mial formula is valid for all positive integer values of n (the binomial theorem is 
proven through advanced methods).

1a + b2n = an + nan-1b +
n1n - 12

2!
 an-2b2 +

n1n - 12 1n - 22
3!

 an-3b3 + g + bn  (19.9)

 EXAMPLE  3  Using the binomial formula

Using the binomial formula, expand 12x + 326.
In using the binomial formula for 12x + 326, we use 2x for a, 3 for b, and 6 for n. 

Thus,

12x + 326 = 12x26 + 612x25132 +
162 152

2
12x241322 +

162 152 142122 132 12x231323 +
162 152 142 132122 132 142 12x221324 +

162 152 142 132 122122 132 142 152 12x2 1325 + 36

= 64x6 + 576x5 + 2160x4 + 4320x3 + 4860x2 + 2916x + 729 ■

n = 6 n - 1nn - 1 n - 2

2! 3! 4! 5!

For the first few integral powers of a binomial a + b, the coefficients can be 
obtained by setting them up in the following pattern, known as Pascal’s triangle.

n = 0 1

n = 1 1  1

n = 2 1  2  1

n = 3 1  3  3  1 

n = 4 1  4  6  4  1 

n = 5 1  5  10  10  5  1

n = 6 1  6  15  20  15  6  1

We note that the first and last coefficients shown in each row are 1, and the second and 
next-to-last coefficients are equal to n. Other coefficients are obtained by adding the 
two nearest coefficients in the row above, as illustrated in Fig. 19.3 for the indicated 
section of Pascal’s triangle. This pattern may be continued indefinitely, although use of 
Pascal’s triangle is cumbersome for high values of n.

 EXAMPLE  4  Using Pascal’s triangle

Using Pascal’s triangle, expand 15s - 2t24.
Here, we note that n = 4. Thus, the coefficients of the five terms are 1, 4, 6, 4, and 

1, respectively. Also, here we use 5s for a and -2t for b. We are expanding this expres-
sion as [(5s) + (-2t)]4. Therefore,

from Pascal’s triangle for n = 4

 15s - 2t24 = 15s24 + 415s231-2t2 + 615s221-2t22 + 415s21-2t23 + 1-2t24

 = 625s4 - 1000s3t + 600s2t2 - 160st3 + 16t4 ■

In certain uses of a binomial expansion, it is not necessary to obtain all terms. Only 
the first few terms are required. The following example illustrates finding the first four 
terms of an expansion.

see expansions  
on page 523

Pascal’s Triangle

Fig. 19.3 

1                3                3

5                10

3 ! 3

1 ! 4 4 ! 6

1 ! 3

1                4                6

■ Pascal’s triangle is named after the French 
scientist, mathematician, and philosopher 
Blaise Pascal (1623–1662). However, it was 
already known in China and in medieval Islam 
during the eleventh century.
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 EXAMPLE  5  Using the binomial formula

Find the first four terms of the expansion of 1x + 7212.
Here, we use x for a, 7 for b, and 12 for n. Thus, from the binomial formula, we have

 1x + 7212 = x12 + 12x11172 +
11221112

2
x101722 +

112211121102122132 x91723 + g
 = x12 + 84x11 + 3234x10 + 75 460x9 + g ■

If we let a = 1 and b = x in the binomial formula, we obtain the binomial series

11 + x2n = 1 + nx +
n1n - 12

2!
 x2 +

n1n - 121n - 22
3!

 x3 + g  (19.10)

which, through advanced methods, can be shown to be valid for any real number n if 0 x 0 6 1. When n is either negative or a fraction, we obtain an infinite series. In such a 
case, we calculate as many terms as may be needed, although such a series is not obtain-
able through direct multiplication. The binomial series may be used to develop impor-
tant expressions that are used in applications and more advanced mathematics topics.

 EXAMPLE  6  Binomial series—application

In the analysis of forces on beams, the expression 1> 11 + m223/2 is used. Use the 
binomial series to find the first four terms of the expansion.

Using negative exponents, we have

1> 11 + m223/2 = 11 + m22-3/2

Now, in using Eq. (19.10), we have n = -3>2 and x = m2:

Practice Exercise

2.  Find the first three terms of the expansion 
of 1x - 429.

Therefore,

111 + m223>2 = 1 - 3
2

 m2 + 15
8

 m4 - 35
16

 m6 + g ■

 EXAMPLE  7  Evaluation using the binomial series

Approximate the value of 0.977 by use of the binomial series.
We note that 0.97 = 1 - 0.03, which means 0.977 = 31 + 1 -0.032 47. Using 

four terms of the binomial series, we have

 0.977 = 31 + 1 -0.032 47

 = 1 + 71 -0.032 +
7162

2!
1 -0.0322 +

7162 152
3!

1 -0.0323

 = 1 - 0.21 + 0.0189 - 0.000 945 = 0.807 955

From a calculator, we find that 0.977 = 0.807 983 (to six decimal places), which 
means these values agree to 4 significant digits with a value 0.8080. Greater accuracy 
can be found using the binomial series if more terms are used. ■

11 + m22-3/2 = 1 + a- 3
2
b 1m22 +

1 -3
22 1 -3

2 - 12
2!

1m222 +
1 -3

22 1 -3
2 - 12 1 -3

2 - 22
3!

1m223 + g

■ Binomial Series



 19.4 The Binomial Theorem 527

EXERCISES 19.4

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the given problems.

 1. In Example 3, change the exponent from 6 to 5.

 2. In Example 7, change 0.97 to 0.98.

In Exercises 3–12, expand and simplify the given expressions by use 
of the binomial formula.

 3. 1 t + 423 4. 1x - 223

 5. 12x - 124 6. 1x2 + 524

 7. 16 + 0.125 8. 1xy - z25

 9. 1n + 2p25 10. 11 - j26 1 j = 1-12
 11. 12a - b226 12. aa

x
+ xb6

In Exercises 13–16, expand and simplify the given expressions by use 
of Pascal's triangle.

 13. 15x - 324 14. 1x - 425

 15. 12a + 126 16. 1x - 327

In Exercises 17–24, find the first four terms of the indicated 
expansions.

 17. 1x + 2210 18. 1x - 428

 19. 12a - 127 20. 13b + 229

 21. 1x1>2 - 4y212 22. 12a - x-1211

 23. ab2 + 1
2b

b20
 24. a2x2 +

y

3
b15

In Exercises 25–28, approximate the value of the given expression to 
three decimal places by using three terms of the appropriate binomial 
series. Check using a calculator.

 25. 1.056 26. 10.927

 27. 23 1.045 28. 0.98-7

In Exercises 29–36, find the first four terms of the indicated 
expansions by use of the binomial series.

 29. 11 + x28 30. 11 + x2-1/3

 31. 11 - 3x2-2 32. 11 - 21x29

 33. 11 + x 34. 
111 - x

 35. 
119 - 9x

 36. 24 + x2

In Exercises 37–40, solve the given problems involving factorials.

 37. Using a calculator, evaluate (a) 17! + 4!, (b) 21!, (c) 17! * 4!, 
and (d) 68!.

 38. Using a calculator, evaluate (a) 8! - 7!, (b) 8!>7!, (c) 8! * 7!, 
and (d) 56!.

 39. Show that n! = n * (n - 1)! for n Ú 2. To use this equation for 
n = 1, explain why it is necessary to define 0! = 1.

 40. Show that 
(n + 1)!
(n - 2)!

= n3 - n for n Ú 2. See Exercise 39.

In Exercises 41–44, find the indicated terms by use of the following 
information. The r + 1 term of the expansion of 1a + b2n is given by

n(n - 1)(n - 2) g(n - r + 1)
r!

an- rbr

41. The term involving b5 in (a + b)8

42. The term involving y6 in (x + y)10

43. The fifth term of (2x - 3b)12

44. The sixth term of 11a - 1b214

In Exercises 45–56, solve the given problems.

45. Explain why n! ends in a zero if n 7 4.

46. Expand 3(a + b) + c43 using the binomial theorem. Group 
terms as indicated.

47. In the expansion of (a - x)n, where n is a positive integer, show 
that the sum of the coefficients is zero.

48. If x is very small, show that (1 + x)-n is approximately (1 - nx).

49. Approximate 16 to hundredths by noting that 
  16 = 14(1.5) = 211 + 0.5 and using four terms of the
  appropriate binomial series.

50. Approximate 23 10 by using the method of Exercise 49.

51. A company purchases a piece of equipment for A dollars, and the 
equipment depreciates at a rate of r each year. Its value V after n 
years is V = A(1 - r)n. Expand this expression for n = 5.

52. In finding the rate of change of emission of energy from the sur-
face of a body at temperature T , the expression (T + h)4 is used. 
Expand this expression.

53. In the theory associated with the magnetic field due to an electric

  current, the expression 1 - x2a2 + x2
 is found. By expanding

  (a2 + x2)-1>2, find the first three nonzero terms that could be 
used to approximate the given expression.

54. In the theory related to the dispersion of light, the expression

  1 + A

1 - l2
0>l2 arises. (a) Find the first four terms of the expansion

  of (1 - x)-1. (b) Find the same expansion by using long division. 
(c) Let x = l0

2>l2 and write the original expression in expanded 
form, using the results of (a) and (b).

55. In finding the rate at which the resistance of a wire changes with

  its radius, the expression 
k

(r + h)2 - k

r2 is used. Use three terms

  of the binomial expansion of k(r + h)-2 to approximate this 
expression.

56. Find the first four terms of the expansion of (1 + x)-1 and then 
divide 1 + x into 1. Compare the results.

Answers to Practice Exercises

1. 72  2. x9 - 36x8 + 576x7 - g



528 CHAPTER 19 Sequences and the Binomial Theorem

 CHAPTER 19  EQUATIONS

Arithmetic sequences Recursion formula  an = an-1 + d (19.1)

nth term         an = a1 + 1n - 12d (19.2)

Sum of n terms    Sn =
n
2
1a1 + an2  (19.3)

Geometric sequences Recursion formula  an = ran-1 (19.4)

nth term       an = a1rn-1 (19.5)

Sum of n terms    Sn =
a111 - rn2

1 - r
  1r ≠ 12  (19.6)

Sum of a geometric series S =
a1

1 - r
  1 0 r 0 6 12  (19.7)

Factorial notation n! = n1n - 12 1n - 22 g122 112  (19.8)

Binomial formula 1a + b2n = an + nan-1b +
n1n - 12

2!
 an-2b2 +

n1n - 121n - 22
3!

 an-3b3 + g + bn (19.9)

Binomial series 11 + x2n = 1 + nx +
n1n - 12

2!
x2 +

n1n - 1)1n - 22
3!

x3 + g (19.10)

 CHAPTER 19  REVIEW EXERCISES

In Exercises 1–8, find the indicated term of each sequence.

 1. 1, 6, 11, c (17th)

 2. 1, -3, -7, c (21st)

 3. 500, 100, 20, c (9th)

 4. 0.025, 0.01, 0.004, c (7th)

 5. -1, 3.5, 8, c (16th)

 6. -1, -5
3, -7

3, c (25th)

 7. 3
4,  12,  13, c (7th)

 8. 5 -2, 50, 52, c (7th)

In Exercises 9–12, find the sum of each sequence with the indicated 
values.

 9. a1 = -4, n = 15, a15 = 17 (arith.)

 10. a1 = 300, d = -20
3 , n = 10

 11. a1 = 16, r = -1
2, n = 14

 12. a1 = 64, an = 729, n = 7 (geom., r 7 0)

In Exercises 13–24, find the indicated quantities for the appropriate 
sequences.

 13. a1 = 17, d = -2, n = 9, S9 = ?

 14. d = 4
3, a1 = -3, an = 17, n = ?

 15. a1 = 4, r = 12, n = 7, a7 = ?

 16. an = 49
8 , r = -2

7, Sn = 1911
32 , a1 = ?

 17. a1 = 80, an = -25, Sn = 220, d = ?

 18. a1 = 2, d = 0.2, n = 11, S11 = ?

 19. n = 6, r = -0.25, S6 = 204.75, a6 = ?

 20. a1 = 10, r = 0.1, Sn = 11.111, n = ?

 21. a1 = -1, an = 32, n = 12, S12 = ? (arith.)

 22. a1 = 100, an = 6400, Sn = 32 500, n = ? (arith.)

 23. a1 = 1, n = 7, a7 = 64, S7 = ?

 24. a1 = 1
4, n = 6, a6 = 8, S6 = ?

In Exercises 25–28, find the sums of the given infinite geometric series.

 25. 0.9 + 0.6 + 0.4 + g
 26. 1280 - 320 + 80 - g
 27. 1 + 1.02-1 + 1.02-2 + g
 28. 3 - 13 + 1 - g
In Exercises 29–32, find the fractions equal to the given decimals.

 29. 0.030 303 c
 30. 0.363 363 c
 31. 0.072 727 2 c
 32. 0.253 993 993 99 c
In Exercises 33–36, expand and simplify the given expression. In Ex-
ercises 37–40, find the first four terms of the appropriate expansion.

 33. 1x - 224 34. 13 + 0.124

 35. 1x2 + 425 36. 13n1/2 - a26

 37. 1a + 2e210 38. ax
4

- yb12

 39. ap2 -
q

6
b9

 40. 12s2 - 3
2t-1214
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In Exercises 41–48, find the first four terms of the indicated expan-
sions by use of the binomial series.

 41. 11 + x212 42. 11 - 2x210

 43. 21 + x2 44. 14 - 41x2-1

 45. 21 - a2 46. 21 + 2b4

 47. 12 - 4x2-3 48. 11 + 4x2-1/4

In Exercises 49–92, solve the given problems by use of an appropriate 
sequence or expansion. All numbers are accurate to at least 2 signifi-
cant digits.

 49. Find the sum of the first 1000 positive even integers.

 50. How many integers divisible by 4 lie between 23 and 121?

 51. What is the fifth term of the arithmetic sequence in which the 
first term is a and the second term is b?

 52. Find three consecutive numbers in an arithmetic sequence such 
that their sum is 15 and the sum of their squares is 77.

 53. For a geometric sequence, is it possible that a3 = 6, a5 = 9, 
and a7 = 12?

 54. Find three consecutive numbers in a geometric sequence such 
that their product is 64 and the sum of their squares is 84.

 55. Find a formula with variable n of the arithmetic sequence with 
a1 = -5, an+1 = an - 3, for n = 1, 2, 3, c.

 56. Find the ninth term of the sequence 1a + 2b2 , b, -a, c.

 57. Approximate the value of 11.062-6 by using three terms of the 
appropriate binomial series. Check using a calculator.

 58. Approximate the value of 24 0.94 by using three terms of the ap-
propriate binomial series. Check using a calculator.

 59. Approximate the value of 130 by noting that

  130 = 125(1.2) = 511 + 0.2 and using three terms of the 
appropriate binomial series.

 60. Approximate 23 29.7 by using the method of Exercise 59.

 61. Each stroke of a pile driver moves a post 2 cm less than the pre-
vious stroke. If the first stroke moves the post 24 cm, which 
stroke moves the post 4 cm?

 62. During each hour, an exhaust fan removes 15.0, of the carbon 
dioxide present in the air in a room at the beginning of the hour. 
What percent of the carbon dioxide remains after 10.0 h?

 63. Each 1.0 mm of a filter through which light passes reduces the 
intensity of the light by 12,. How thick should the filter be to 
reduce the intensity of the light to 20,?

 64. A pile of dirt and ten holes are in a straight line. It is 20 m from 
the dirt pile to the nearest hole, and the holes are 8 m apart. If a 
backhoe takes two trips to fill each hole, how far must it travel in 
filling all the holes if it starts and ends at the dirt pile?

 65. A roof support with equally spaced vertical pieces is shown in 
Fig. 19.4. Find the total length of the vertical pieces if the short-
est one is 254 mm long.

 66. During each microsecond, the current in an electric circuit de-
creases by 9.3,. If the initial current is 2.45 mA, how long does 
it take to reach 0.50 mA?

 67. A machine that costs $8600 depreciates 1.0, in value each 
month. What is its value 5 years after it was purchased?

 68. The level of chemical pollution in a lake is 4.50 ppb (parts per 
billion). If the level increases by 0.20 ppb in the following 
month and by 5.0, less each month thereafter, what will be the 
maximum level?

 69. A piece of paper 0.015 cm thick is cut in half. These two pieces are 
then placed one on the other and cut in half. If this is repeated such 
that the paper is cut in half 40 times, how high will the pile be?

 70. After the power is turned off, an object on a nearly frictionless sur-
face slows down such that it travels 99.9, as far during 1 s as dur-
ing the previous second. If it travels 100 cm during the first second 
after the power is turned off, how far does it travel while stopping?

 71. Under gravity, an object falls 4.9 m during the first second, 14.7 m 
during the second second, 24.5 m during the third second, and so 
on. How far will it fall during the 20th second?

 72. For the object in Exercise 71, what is the total distance fallen 
during the first 20 s?

 73. An object suspended on a spring is oscillating up and down. If 
the first oscillation is 10.0 cm and each oscillation thereafter is 
9>10 of the preceding one, find the total distance the object trav-
els in coming to rest.

 74. During each oscillation, a pendulum swings through 85, of the 
distance of the previous oscillation. If the pendulum swings 
through 80.8 cm in the first oscillation, through what total dis-
tance does it move in 12 oscillations?

 75. A person invests $1000 each year at the beginning of the year. 
What is the total value of these investments after 20 years if they 
earn 7.5, annual interest, compounded semiannually?

 76. A well driller charges $10.00 for drilling the first metre of a well 
and for each metre thereafter charges 0.20, more than for the 
preceding metre. How much is charged for drilling a 150-m well?

 77. When new, an article cost $250. It was then sold at successive 
yard sales at 40, of the previous price. What was the price at 
the fourth yard sale?

 78. Each side of an equilateral triangle is 2 cm in length. The midpoints 
are joined to form a second equilateral triangle. The midpoints of 
the second triangle are joined to form a third equilateral triangle. 
Find the sum of all of the perimeters of the triangles if this process 
is continued indefinitely. See Fig. 19.5.

Fig. 19.4 5690 mm

254 mm

84.8°

Fig. 19.5 

 79. In testing a type of insulation, the temperature in a room was 
made to fall to 2>3 of the initial temperature after 1.0 h, to 2>5 
of the initial temperature after 2.0 h, to 2>7 of the initial tem-
perature after 3.0 h, and so on. If the initial temperature was 
50.0°C, what was the temperature after 12.0 h? (This is an illus-
tration of a harmonic sequence.)
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 80. Two competing businesses make the same item and sell it ini-
tially for $100. One increases the price by $8 each year for  
5 years, and the other increases the price by 8, each year for  
5 years. What is the difference in price after 5 years?

 81. In hydrodynamics, while studying compressible fluid flow, the

  expression a1 + a - 1
2

 m2ba>(a-1)
 arises. Find the first three

  terms of the expansion of this expression.

 82. The maximum tension T of a suspension bridge cable is given by

T =
wL
2 B1 + a L

4s
b2

  Find the first three terms of the expansion of this expression.

 83. During 1 year a beach eroded 1.2 m to a line 48.3 m from the 
wall of a building. If the erosion is 0.1 m more each year than 
the previous year, when will the waterline reach the wall?

 84. On a highway with a steep incline, the runaway truck ramp is con-
structed so that a vehicle that has lost its brakes can stop. The ramp 
is designed to slow a truck in succeeding 20-m distances by 
10 km>h, 12 km>h, 14 km>h, c. If the ramp is 160 m long, will 
it stop a truck moving at 120 km>h when it reaches the ramp?

 85. Each application of an insecticide destroys 75, of a certain in-
sect. How many applications are needed to destroy at least 
99.9, of the insects?

 86. A house valued at $375 000 increases in value 5.00,/year for 
the next 6 years and then decreases 3.00,/year for the follow-
ing 4 years. What is its value at the end of the 10 years?

 87. Oil pumped from a certain oil field decreases 10, each year. 
How long will it take for production to be 10, of the first year's 
production?

 88. A wire hung between two poles is parabolic in shape. To find 
the length of wire between two points on the wire, the expres-
sion 21 + 0.08x2 is used. Find the first three terms of the bino-
mial expansion of this expression.

 89. Show that the middle term of a finite arithmetic sequence equals 
S>n, if n is odd.

 90. The sum of three terms of a geometric sequence is -3, and the 
second is 6 more than the first. Find these terms.

 91. Do the reciprocals of the terms of a geometric sequence form a 
geometric sequence? Explain.

 92. The terms a, a + 12, a + 24 form an arithmetic sequence, and 
the terms a, a + 24, a + 12 form a geometric sequence. Find 
these sequences.

Writing Exercise
 93. Derive a formula for the value V after 1 year of an amount A in-

vested at r, (as a decimal) annual interest, compounded n 
times during the year. If A = $1000 and r = 0.10 (10,), write 
two or three paragraphs explaining why the amount of interest 
increases as n increases and stating your approach to finding the 
maximum possible amount of interest.

 CHAPTER 19   PRACTICE TEST

 1. Write the first five terms of the sequence for which (a) a1 = 8 
and d = -1>2; (b) a1 = 8 and r = -1>2.

 2. Find the sum of the first seven terms of the sequence 
6, -2,  23, c.

 3. For a given sequence, a1 = 6, d = 4, and Sn = 126. Find n.

 4. Find the fraction equal to the decimal 0.454 545 c.

 5. Find the first three terms of the expansion of 11 - 4x.

 6. Expand and simplify the expression (2x - y)5.

 7. What is the value after 20 years of an investment of $2500 if it 
draws 5, annual interest compounded annually?

 8. Find the sum of the first 100 even integers.

 9. A ball is dropped from a height of 8.00 m, and on each rebound, 
it rises to 1>2 of the height it last fell. If it bounces indefinitely, 
through what total distance will it move?
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LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Recognize the basic 
trigonometric identities and 
use them to prove other 
trigonometric identities 
and simplify trigonometric 
expressions

 Recognize and apply the 
formulas for trigonometric 
functions of sums and 
differences of angles

 Recognize and apply the 
formulas for trigonometric 
functions of half and double 
angles

 Solve trigonometric equations
 Evaluate inverse trigonometric 

functions in their defined range
 Find algebraic expressions for 

expressions involving inverse 
trigonometric functions

 Solve application problems 
involving basic trigonometric 
identities, other trigonometric 
formulas, and inverse 
trigonometric functions

As the use of electricity became widespread in the 1880s, there was a serious debate 
over the best way to distribute electric power. The American inventor Thomas Edison 
favoured the use of direct current because it was safer and did not vary with time. 

Another American inventor and engineer, George Westinghouse, favoured alternating current 
because the voltage could be stepped up and down with transformers during transmission.

Also favouring the use of alternating current was Nikola Tesla, an American (born in Croatia) 
electrical engineer, and he had a strong influence on the fact that alternating current came to be 
used for transmission. Tesla developed many electrical devices, among them the polyphase gen-
erator that allowed alternating current to be transmitted with constant instantaneous power. 
Using this type of generator, power losses are greatly reduced in transmission lines, which allows 
for smaller conductors, and the power can be generated far from where it is used.

Three-phase systems are used in most commercial electric generators, and in Section 20.2 we 
show how a relationship involving trigonometric functions can be used to show a basic prop-
erty of the current produced by a three-phase generator. Many such relationships among the 
trigonometric functions can be found from the definitions and other known relationships.

The trigonometric relationships that we develop in this chapter are important for a number of 
reasons. In fact, we already made use of some of them in Section 10.4 when we graphed cer-
tain trigonometric functions, and in Chapter 9 in deriving the law of cosines. In calculus, cer-
tain problems use trigonometric relationships, even including some in which these functions 
do not appear in the initial problem or final answer. Also, they are useful in a number of 
technical applications in areas such as electronics, optics, solar energy, and robotics.

Later in the chapter, we see that various trigonometric relationships are used in solving equa-
tions with trigonometric functions. Also, we develop the concept of the inverse trigonometric 
functions that were introduced in Chapter 4.

20Additional Topics  
in Trigonometry

 In Section 20.2, we show how trigo-
nometric relationships are used in  
analysing the voltage produced by a 
three-phase generator, the most 
widely used type of polyphase  
generator of alternating current.
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From Chapters 4 and 8, from the definitions, recall that sin u = y>r and csc u = r>y 
(see Fig. 20.1). Since y>r = 1> 1r>y2 , we see that sin u = 1>csc u. These definitions 
hold for any angle, which means that sin u = 1>csc u is true for any angle. This type of 
relation, which is true for any value of the variable, is called an identity. Of course, 
values where division by zero would be indicated are excluded.

In this section, we develop several important identities among the trigonometric 
functions. We also show how the basic identities are used to verify other identities.

From the definitions, we have

sin u  csc u =
y
r

 * r
y

= 1 or sin u =
1

csc u
 or csc u =

1
sin u

cos u  sec u =
x
r

* r
x

= 1 or cos u =
1

sec u
 or sec u =

1
cos u

tan u  cot u =
y
x

* x
y

= 1 or tan u =
1

cot u
 or cot u =

1
tan u

 
sin u
cos u

=
y>r

x>r
=

y
x

= tan u  
cos u
sin u

=
x>r

y>r
=

x
y

= cot u

Also, from the definitions and the Pythagorean theorem in the form of x2 + y2 = r2, 
we arrive at the following identities.

By dividing the Pythagorean relation through by r2, we haveax
r
b2

+ ay
r
b2

= 1,  which leads us to cos2 u + sin2 u = 1

By dividing the Pythagorean relation by x2, we have

1 + ay
x
b2

= a r
x
b2

,  which leads us to 1 + tan2 u = sec2 u

By dividing the Pythagorean relation by y2, we haveax
y
b2

+ 1 = a r
y
b2

,  which leads us to cot2 u + 1 = csc2 u

The term cos2 u is the common way of writing 1cos u22, and it means to square the 
value of the cosine of the angle. Obviously, the same holds true for the other 
functions.

Summarizing these results, we have the following important identities:

 20.1 Fundamental Trigonometric Identities

Identities

Basic Identities

 sin u =
1

csc u
  (20.1)  tan u =

sin u
cos u

  (20.4)   sin2 u + cos2 u = 1  (20.6)

 cos u =
1

sec u
  (20.2)   cot u =

cos u
sin u

  (20.5)  1 + tan2 u = sec2 u  (20.7)

 tan u =
1

cot u
  (20.3)   1 + cot2 u = csc2 u   (20.8)

In using the basic identities, u may stand for any angle or number or expression rep-
resenting an angle or a number.

x

y
r

(x, y)

0

u

y

x

Fig. 20.1
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 EXAMPLE  1  Using the basic identities

(a) sin ax =
1

csc ax
 using Eq. (20.1) (b) tan 157° =

sin 157°
cos 157°

 using Eq. (20.4)

(c) sin2  p4 + cos2  p4 = 1 using Eq. (20.6) ■

 EXAMPLE  2  Checking identities with numerical values

Let us check the last two illustrations of Example 1 for the given values of u.
(a) Using a calculator, we find that

sin 157°
cos 157°

=
0.390 731 128 5

-0.920 504 853 5
= -0.424 474 816 2 and 

tan 157° = -0.424 474 816 2

We see that sin 157°>cos 157° =  tan 157°.

(b) Checking Example 1(c), refer to Example 2 on page 123, or to Fig. 20.2.

sin p4 = sin 45° = 112
= 12

2  and cos p4 = cos 45° = 12
2

sin2 p4 + cos2 p4 = 1 12
2 22 + 1 12

2 22 = 1
2 + 1

2 = 1

We see that this checks with Eq. (20.6) for these values. ■

EXAMPLE  3  Simplifying basic expressions

(a) Multiply and simplify the expression sin u tan u 1csc u + cot u2 .

sin u tan u 1csc u + cot u2 = sin u tan u csc u + sin u tan u cot u

= 1 1
csc u2  tan u csc u + sin u 1 1

cot u2  cot u

= tan u + sin u

(b) Factor and simplify the expression tan3a + tan a.

tan3 a + tan a = tan a1 tan2 a + 12
 = tan a sec2 a  using Eq. (20.7)

We see that when algebraic operations are performed on trigonometric terms, they are 
handled in just the same way as with algebraic terms. This is true for the basic opera-
tions of addition, subtraction, multiplication, and division, as well as other operations 
used in simplifying expressions, such as factoring and taking roots. ■

PROVING TRIGONOMETRIC IDENTITIES
A great many identities exist among the trigonometric functions. We are going to use 
the basic identities that have been developed in Eqs. (20.1) through (20.8), along with a 
few additional ones developed in later sections to prove the validity of still other 
identities.

In proving identities, look for combinations that appear in, or are very similar to, 
those in the basic identities. This is illustrated in the following examples.

EXAMPLE  4  Proving a trigonometric identity

In proving the identity

sin x =
cos x
cot x

using Eqs. 
(20.1) and 
(20.4)

1

10

45∘

(1, 1)
y

x

r 5 =2
y 5 1

x 5 1

Fig. 20.2

Practice Exercise

1.  Multiply and simplify 
cos x1sec x + tan x2 .

The ability to prove trigonometric 
identities depends to a large extent 
on being very familiar with the basic 
identities so that you can recognize 
them in somewhat different forms.

If you do not learn these basic 
identities well, you will have diffi-
culty in following the examples and 
doing the exercises. The more readily 
you recognize these forms, the more 
easily you will be able to prove such 
identities.

LEARNING T IP
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we know that cot x =
cos x
sin x

. Since sin x appears on the left, substituting for cot x on 

the right will eliminate cot x and introduce sin x. This should help us proceed in 
proving the identity. Thus,

sin x =
cos x
cot x

=
cos x
cos x
sin x

=
cos x

1
* sin x

cos x
 

 Eq. (20.5) invert

 = sin x  cancel cos x factors

By showing that the right side may be changed exactly to sin x, the expression on 
the left side, we have proved the identity. ■

Practice Exercise

2. Prove the identity 
cos x csc x

cot2 x
= tan x.

Proving Trigonometric Identities
There is no specific procedure for proving trigonometric identities. However, the 
following points are important:

 The basic identities that may be useful must be readily recognized, keeping in 
mind equivalent forms of the same identity. For example, sin2 u = 1 - cos2 u 
is an equivalent form of the identity sin2 u + cos2 u = 1.

 Algebraic operations such as substituting, factoring, and simplifying fractions 
are frequently used, and they must be done carefully and correctly.

 Either side of the identity can be changed to the form on the other side. It is usu-
ally easier to change the form of the more complicated side to the same form as 
the less complicated side. (Although it is possible to prove an identity by work-
ing on both sides at the same time, we will not explore that method here.)

 Substitutions should be selected looking ahead and keeping in mind the side 
that is not being changed, which is the goal.

 Multiplying both numerator and denominator of an expression by the same 
quantity can be useful to obtain a difference of squares. For example, if an 
expression contains 1 - sin u, multiplication by 1 + sin u gives 1 - sin2 u, 
which can be replaced by cos2 u.

 A given identity can be proved through a variety of procedures.

 EXAMPLE  5  A trigonometric identity—two different solutions

Prove that tan u csc u = sec u.

In proving this identity, we know that tan u =
sin u
cos u

 and also that 
1

cos u
= sec u. 

Thus, by substituting for tan u, we introduce cos u in the denominator, which is equivalent 
to introducing sec u in the numerator. Therefore, changing only the left side, we have

 tan u csc u =
sin u
cos u

 csc u =
sin u
cos u

 
1

sin u

 Eq. (20.4) Eq. (20.1)

  =
1

cos u
  cancel sin u factors

  = sec u  using Eq. (20.2)

Having changed the left side into the form on the right side, we have proven the 
identity.



 20.1 Fundamental Trigonometric Identities 535

Many variations of the preceding steps are possible. Also, we could have changed 
the right side to obtain the form on the left. For example,

  tan u csc u = sec u =
1

cos u
 using Eq. (20.2)

 =
sin u

cos u sin u
=

sin u
cos u

 
1

sin u
  

 multiply numerator and  
denominator by sin u and rewrite

 = tan u csc u using Eqs. (20.4) and (20.1) ■

 EXAMPLE  6  A trigonometric identity—simplifying the left side

Prove the identity 
sec2 y
cot y

- tan3 y = tan y.

Here, we simplify the left side. We can remove cot y from the denominator, since 
cot y = 1>  tan y. Also, the presence of sec2 y suggests the use of Eq. (20.7). Therefore, 
we have

 
sec2 y
cot y

- tan3 y =
sec2 y

1
tan y

- tan3 y = sec2 y tan y - tan3 y 

 Eq. (20.3)
 = tan y1sec2 y - tan2 y2 = tan y112  

 Eq. (20.7)  = tan y

Here, we have used Eq. (20.7) in the form sec2 y - tan2 y = 1. ■

 EXAMPLE  7  A trigonometric identity—difference of squares

Prove the identity 
1 - sin x
sin x cot x

=
 cos x

1 + sin x
.

The combination 1 - sin x suggests 1 - sin2 x, since multiplying 11 - sin x2  by 11 + sin x2  gives 1 - sin2 x, which can then be replaced by cos2 x. Thus, changing 
only the left side, we have

 
1 - sin x
sin x cot x

=
11 - sin x2 11 + sin x2
sin x cot x11 + sin x2    

multiply numerator and  
denominator by 1 + sin x

 =
1 - sin2 x

sin xacos x
sin x

b 11 + sin x2 =
cos2 x

cos x11 + sin x2    
Eq. (20.6)

 cancel  sin x

 =
cos x

1 + sin x
 cancel cos x 

■

 EXAMPLE  8  A trigonometric identity—application

In finding the radiation rate of an accelerated electric charge, it is necessary to show 
that sin3 u = sin u - sin u cos2 u. Show this by changing the left side.

Since each term on the right has a factor of sin u, we see that we can proceed by 
writing sin3 u as sin u1sin2 u2 . Then the factor sin2 u and the cos2 u on the right sug-
gest the use of Eq. (20.6). Thus, we have

 sin3 u = sin u1sin2 u2 =  sin u11 - cos2 u2
 = sin u - sin u cos2 u multiplying

Since we substituted for sin2 u, we used Eq. (20.6) in the form sin2 u = 1 - cos2 u. ■
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 EXAMPLE  9  Simplifying a trigonometric expression

Simplify the expression 
csc x

tan x + cot x
.

We proceed with a simplification in a manner similar to proving an identity, although 
we do not know what the result should be. Following is one procedure for this 
simplification:

 
 csc x

tan x + cot x
=

 csc x

tan x + 1
tan x

=
 csc x

tan2 x + 1
tan x

 =
csc x tan x

tan2 x + 1
=

csc x tan x

sec2 x
=

1
sin x

 
sin x
cos x

1

cos2 x

 =
1

sin x
 
sin x
cos x

 
cos2 x

1
= cos x  ■

A graphing calculator can be used to check an identity or a simplification. This is 
done by graphing the function on each side of an identity, or the initial expression and 
the final expression for simplification. If the two graphs are the same, the identity or 
simplification can be seen to be correct, although it would not be a proof. Examples are 
left as exercises throughout the chapter.

Eq. (20.3) Eq. (20.4)

Eq. (20.7)

Eq. (20.1)

Eq. (20.2)

EXERCISES 20.1

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then prove the resulting identities.

 1. In Example 4, change the right side to tan x>sec x.

 2. In Example 6, change the first term on the left to sin y>cos3 y.

In Exercises 3–6, use a calculator to check the indicated basic 
identities for the given angles.

 3. Eq. (20.4) for u = 56° 4. Eq. (20.5) for u = 280°
 5. Eq. (20.6) for u = 4p>3 6. Eq. (20.7) for u = 5p>6

In Exercises 7–12, multiply and simplify. In Exercises 13–18, factor 
and simplify.

 7. cos x1 tan x - sec x2  8. tan y1cot y + 3 cos y2
 9. cos u cot u1sec u - 2 tan u2  10. 1csc x - 12 1csc x + 12
11. tan u1cot u + tan u2  12. cos2 t11 + tan2 t2
13. sin x + sin x tan2 x 14. sec u + sec3 u

 15. sin3 t cos t + sin t cos3 t 16. tan2 u sec2 u - tan4 u

 17. csc4 y - 1 18. sin x + sin x cot2 x

In Exercises 19–42, prove the given identities.

 19. 
sin x
tan x

= cos x 20. 
csc u
sec u

= cot u

 21. sin x sec x = tan x 22. cot u  sec u = csc u

 23. csc2 x11 - cos2 x2 = 1  24. sec u11 - sin2 u2 = cos u

 25. sin x11 + cot2 x2 = csc x

 26. csc x1csc x - sin x2 = cot2 x

 27. cos u cot u + sin u = csc u

28. csc x sec x - tan x = cot x

 29. cot u sec2 u - cot u = tan u

 30. sin y + sin y cot2 y = csc y

 31. tan x + cot x = sec x csc x

 32. tan x + cot x = tan x csc2 x

 33. cos2 x - sin2 x = 1 - 2 sin2 x

 34. 
1 + cos x

sin x
=

sin x
1 - cos x

 35. 
sin u
csc u

+ cos u
sec u

= 1

 36. 
sec u
cos u

- tan u
cot u

= 1

 37. 2 sin4 x - 3 sin2 x + 1 = cos2 x11 - 2 sin2 x2
 38. 

sin2 u + 2 cos u -  1

sin2 u + 3 cos u -  3
=

1
1 - sec u

 39. 
1
2

 sin pt a sin pt
1 - cos pt

+ 1 - cos pt
sin pt

b = 1

 40. 
cot vt

sec vt -  tan vt
- cos vt

sec vt +  tan vt
= sin vt + csc vt
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 41. 1 + sin2 x + sin4 x + g = sec2 x 1 -p
2 6 x 6 p

2 2
 42. 1 - tan2 x + tan4 x - g = cos2 x 1 -p

4 6 x 6 p
4 2

In Exercises 43–50, simplify the given expressions. The result will be 
one of sin x, cos x, tan x, cot x, sec x, or  csc x.

 43. 
tan x  csc2 x

1 + tan2 x
 44. 

cos x - cos3 x

sin x - sin3 x

 45. cot x1sec x - cos x2  46. sin x1 tan x + cot x2
 47. 

tan x + cot x
 csc x

 48. 
1 + tan x

sin x
- sec x

 49. 
cos x + sin x

1 + tan x
 50. 

sec x - cos x
tan x

In Exercises 51–54, use a graphing calculator to verify the given 
identities by comparing the graphs of each side.

 51. sin x1csc x - sin x2 = cos2 x

 52. cos y1sec y - cos y2 = sin2 y

 53. 
sec x +  csc x

1 + tan x
= csc x 54. 

cot x + 1
cot x

= 1 + tan x

In Exercises 55–58, use a graphing calculator to determine whether 
the given equations are identities.

 55. sec u tan u  csc u = tan2 u + 1

 56. sin x cos x tan x = cos2 x - 1

 57. 
2 cos2 x - 1

sin x cos x
= tan x - cot x

 58. cos3 x  csc3 x tan3 x =  csc2 x - cot2 x

In Exercises 59–62, solve the given problems involving trigonometric 
identities.

 59. When designing a solar-energy collector, it is necessary to 
account for the latitude and longitude of the location, the angle of 
the sun, and the angle of the collector. In doing this, the equation 
cos u = cos A cos B cos C + sin A sin B is used. If u = 90°, 
show that cos C = -  tan A  tan B.

 60. The path of a point on the circumference of a circle, such as a 
point on the rim of a bicycle wheel as it rolls along, traces out a 
curve called a cycloid. To find the distance through which the 
point moves, it is necessary to simplify the expression 11 - cos u22 + sin2 u. Perform this simplification.

 61. Show that the length l of the straight brace 
shown in Fig. 20.3 can be found from the 
equation

l =
a11 + tan u2

sin u

 62. In determining the path of least time between two points under 
certain conditions, it is necessary to show thatA1 + cos u

1 - cos u
 sin u = 1 + cos u

Show this by transforming the left-hand side.

In Exercises 63–68, solve the given problems.

 63.  Explain how to transform sin u  tan u + cos u into sec u.

 64.  Explain how to transform tan2 u cos2 u + cot2 u sin2 u into 1.

 65. Show that sin2 x11 - sec2 x2 + cos2 x11 + sec4 x2  has a con-
stant value.

 66. Show that cot y  csc y  sec y -  csc y cos y cot y has a constant 
value.

 67. Prove that sec2 u + csc2 u = sec2 u  csc 2 u by expressing each 
function in terms of its x, y, and r definition.

 68. Prove that 
csc u

tan u + cot u
= cos u by expressing each function in 

terms of its x, y, and r definition.

In Exercises 69–72, use the given substitutions to show that the given 
equations are valid. In each, 0 6 u 6 p>2.

 69. If x = cos u, show that 21 - x2 = sin u.

 70. If x = 3 sin u, show that 29 - x2 = 3 cos u.

 71. If x = 2 tan u, show that 24 + x2 = 2 sec u.

 72. If x = 4 sec u, show that 2x2 - 16 = 4 tan u.

Answers to Practice Exercises

1. 1 + sin x   2.  
 cos x # 1

 sin x

 cot 2x
=

 cot x

 cot 2x
=  tan x

a

l

a

u

u

Fig. 20.3 

There are other important relations among the trigonometric functions. The most impor-
tant and useful relations are those that involve twice an angle and half an angle. To obtain 
these relations, in this section we derive the expressions for the sine and cosine of the sum 
and difference of two angles. These expressions will lead directly to the desired relations 
of double and half angles that we will derive in the following sections.

Equation (12.13) gives the polar (or trigonometric) form of the product of two com-
plex numbers. We can use this formula to derive the expressions for the sine and cosine 
of the sum and difference of two angles.

 20.2 The Sum and Difference Formulas
Formulas for sin 1A + B 2  and cos 1A + B 2  
Formulas for sin 1A − B 2  and cos 1A − B 2
Formulas for tan 1A + B 2  and tan 1A − B 2
■ For reference, Eq. (12.13) is
r11cos u1 + j sin u12 r21cos u2 + j sin u22
 =  r1r23cos1u1 + u22 + j sin1u1 + u22 4
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Using Eq. (12.13) to find the product of the complex numbers cos a + j sin a and 
cos b + j sin b, which are represented in Fig. 20.4, we have1cos a + j sin a2 1cos b + j sin b2 = cos1a + b2 + j sin1a + b2
Expanding the left side, and then switching sides, we have0−1 1

1

−1

b

cos sin j  b bcos   sin j a  a+ +

Imag.

Real

a

Fig. 20.4

−4
−3

5

5
120

13

(12, 5)

ab

y

x

(−4, −3)

Fig. 20.5

 sin 1a + b2 = sin a cos b + cos a sin b (20.9)
 cos1a + b2 = cos a cos b - sin a sin b (20.10)

cos1a + b2 + j sin1a + b2 = 1cos a cos b - sin a sin b2 + j1sin a cos b + cos a sin b2
Since two complex numbers are equal if their real parts are equal and their imaginary 
parts are equal, we have the following formulas:

 EXAMPLE  1  Verifying the sin 1A + B 2  formula

Verify that sin 90° = 1, by finding sin160° + 30°2 .

 sin 90° = sin160° + 30°2 = sin 60° cos 30° + cos 60° sin 30°  using Eq. (20.9)

 =
13
2

* 13
2

+ 1
2

* 1
2

 
 for values, see  
Section 4.3

 =
3
4

+ 1
4

= 1 ■

It should be obvious from this example that sin 1A + B 2  is not equal to sinA + sinB, 
which is something that many students simply assume before they become familiar with 
the formulas and ideas of this section. If we used such a formula, we would get 
sin 90° = 1

213 + 1
2 = 1.366 for the combination 160° + 30°2 . This is not possible since 

the values of the sine never exceed 1 in value. Also, if we used the combination 145° + 45°2 , we would get 1.414, a different value for the same number, sin 90°.

COMMON ERROR

 EXAMPLE  2  Using cos 1A + B 2  with numerical values

Given that sin a = 5
13 (a in the first quadrant) and sin b = -3

5 (for b in the third quad-
rant), find cos1a + b2 .

Since sin a = 5
13 for a in the first quadrant, from Fig. 20.5, we have cos a = 12

13.
Also, since sin b = -3

5 for b in the third quadrant, from Fig. 20.5, we also have 
cos b = -4

5.
Then, by using Eq. (20.10), we have

 cos1a + b2 = cos a cos b - sin a sin b

 =
12
13

 a- 4
5
b - 5

13
 a- 3

5
b

  = - 48
65

+ 15
65

= - 33
65

 ■

From Eqs. (20.9) and (20.10), we can easily find expressions for sin1a - b2  and 
cos1a - b2 . This is done by finding sin3a + 1 -b2 4  and cos3a + 1 -b2 4 . Thus, 
we have

sin1a - b2 = sin3a + 1 -b2 4 = sin a cos1 -b2 + cos a sin1 -b2
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Since cos1 -b2 = cos b and sin1 -b2 = -sin b (see Eq. 8.7 on page 247), we have

 sin1a - b2 = sin a cos b - cos a sin b  (20.11)

In the same manner, we find that

 cos1a - b2 = cos a cos b + sin a sin b  (20.12)

 EXAMPLE  3  Using the cos 1A − B 2  formula

Find cos 15° from cos145° - 30°2 .

 cos 15° = cos145° - 30°2 = cos 45° cos 30° + sin 45° sin 30°  using Eq. (20.12)

 =
12
2

* 13
2

+ 12
2

* 1
2

=
16 + 12

4
 (exact)

 = 0.966 ■

 EXAMPLE  4  sin 1A + B 2  formula—application

In analysing the motion of an object oscillating up and down at the end of a spring, the 
expression sin1vt + a2cos a - cos1vt + a2sin a occurs. Simplify this expression.

If we let x = vt + a, the expression becomes sin x cos a - cos x sin a, which is 
the form for sin1x - a2 . Therefore,

sin1vt + a2cos a - cos1vt + a2sin a = sin x cos a - cos x sin a = sin1x - a2
  = sin1vt + a - a2 = sin vt ■

 EXAMPLE  5  Using the cos 1A + B 2  formula

Evaluate cos 23° cos 67° - sin 23° sin 67°.
We note that this expression fits the form of the right side of Eq. (20.10), so

 cos 23° cos 67° - sin 23° sin 67° = cos123° + 67°2
 = cos 90°
 = 0

Again, we are able to evaluate this expression by recognizing the form of the given 
expression. Evaluation by a calculator will verify the result. ■

By dividing the right side of Eq. (20.9) by that of Eq. (20.10), we can determine 
expressions for tan1a + b2 , and by dividing the right side of Eq. (20.11) by that of 
Eq. (20.12), we can determine an expression for tan1a - b2 . The derivation of these 
formulas is Exercise 33 of this section. These formulas can be written together, as

 tan1a ± b2 =
tan a ± tan b

1 ∓ tan a tan b
 (20.13)

The formula for tan1a + b2  uses the upper signs, and the formula for tan1a - b2  
uses the lower signs.

Certain trigonometric identities can be proven by the formulas derived in this sec-
tion. The following examples illustrate this use of these formulas.

Practice Exercise

1.  Evaluate 
sin 115° cos 25° - cos 115° sin 25°.
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 EXAMPLE  6  Proving a trigonometric identity with tan 1A t B 2
Show that tan1a + b2  tan1a - b2 =

tan2 a - tan2 b

1 - tan2 a tan2 b
.

Using Eq. (20.13), we have

tan1a + b2  tan1a - b2 = a tan a + tan b
1 - tan a  tan b

b a tan a - tan b
1 + tan a  tan b

b
  =

tan2 a - tan2 b

1 - tan2 a tan2 b
 ■

 EXAMPLE  7  Using the sin 1A + B 2  formula

Prove that sin1180° + x2 = -sin x.

sin1180° + x2 = sin 180° cos x + cos 180° sin x  using Eq. (20.9)

= 102  cos x + 1 -12  sin x  sin 180° = 0, cos 180° = -1

= -  sin x

Although x may or may not be an acute angle, this agrees with the results for the 
sine of a third-quadrant angle, as discussed in Section 8.2. See Fig. 20.6. ■

EXAMPLE  8  A trigonometric identity using sin 1A − B 2
Simplify the expression 

sin1a - b2
sin a sin b

.

 
sin1a - b2
sin a sin b

=
sin a cos b - cos a sin b

sin a sin b
  using Eq. (20.11)

=
sin a cos b
sin a sin b

-
cos a sin b
sin a sin b

=
cos b
sin b

- cos a
sin a

= cot b - cot a  using Eq. (20.5) ■

 EXAMPLE  9  Application using sin 1A − B 2
Alternating electric current is produced essentially by a coil of wire rotating in a mag-
netic field, and this is the basis for designing generators of alternating current. A three-
phase generator uses three coils of wire and thereby produces three electric currents at 
the same time. This is the most widely used type of polyphase generator as mentioned 
in the chapter introduction.

The voltages induced in a three-phase generator can be represented as

E1 = E0 sin vt  E2 = E0 sin1vt - 2p
3 2   E3 = E0 sin1vt - 4p

3 2
where E0 is the maximum voltage and v is the angular velocity of rotation. Show 
that the sum of these voltages at any time t is zero.

Setting up the sum E1 + E2 + E3 and using Eq. (20.11), we have

x

180∘ 1 x 

0

y

x

Fig. 20.6

Practice Exercise

2. Simplify tan1180° + x2 .

■ See the chapter introduction.

 E1 + E2 + E3 = E03sin vt + sin1vt - 2p
3 2 + sin1vt - 4p

3 2 4
= E01sin vt + sin vt cos 2p3 - cos vt sin 2p3 + sin vt cos 4p3  - cos vt sin 4p3 2
= E03sin vt + 1sin vt2 1 -1

22 - 1cos vt2 11
2132 + 1sin vt2 1 -1

22 - 1  cos vt2 1 -1
2132 4

 = E03 1sin vt2 11 - 1
2 - 1

22 + 1cos vt2 11
213 - 1

2132 4 = 0 ■
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EXERCISES 20.2

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the given problems.

 1. In Example 2, change 5
13 to 12

13 and then find the value of 
cos1a + b2 .

 2. In Example 7, change 180° + x to 180° - x and then determine 
what other changes result.

In Exercises 3–6, determine the values of the given functions as 
indicated. If using a calculator, round to 3 significant digits.

 3. Find sin 105° by using 105° = 60° + 45°.
 4. Find tan 75° by using 75° = 30° + 45°.
 5. Find cos 15° by using 15° = 60° - 45°.
 6. Find sin 15° by using 15° = 45° - 30°.

In Exercises 7–10, evaluate the given functions with the following 
information: sin a = 4>5 (a in first quadrant) and cos b = -12>13 
(b in second quadrant).

 7. sin1a + b2  8. tan1b - a2
 9. cos1a + b2  10. sin1a - b2
In Exercises 11–20, simplify the given expressions.

 11. sin x cos 2x + sin 2x cos x 12. sin 3x cos x - sin x cos 3x

 13. cos p cos x + sin p sin x 14. 
tan1x - y2 + tan x

1 - tan1x - y2  tan y

 15. sin1360° - x2  16. cos12p - x2
 17. tan1x - p2  18. sin1x + p>22
 19. sin 3x cos13x - p2 - cos 3x sin13x - p2
 20. cos1x + p2  cos1x - p2 + sin1x + p2  sin1x - p2
In Exercises 21–24, evaluate each expression by first changing the 
form. Verify each by use of a calculator.

 21. sin 122° cos 32° - cos 122° sin 32°
 22. cos 250° cos 70° + sin 250° sin 70°
 23. cos p5  cos 3p10 - sin p5  sin 3p10

 24. 
 tan 18° +  tan 27°

1 -  tan 18°  tan 27°

In Exercises 25–28, prove the given identities.

 25. sin1x + y2sin1x - y2 = sin2 x - sin2 y

 26. cos1x + y2cos1x - y2 = cos2 x - sin2 y

 27. cos1a + b2 + cos1a - b2 = 2 cos a cos b

 28. tan190° + x2 = -cot x (Explain why Eq. 20.13 cannot be used 
for this, but Eqs. 20.9 and 20.10 can be used.)

In Exercises 29–32, verify each identity by comparing the graph of the 
left side with the graph of the right side on a graphing calculator.

 29. cos130° + x2 =
13 cos x - sin x

2

 30. sin1120° - x2 =
13 cos x + sin x

2

 31. tan1p4 + x2 =
1 + tan x
1 - tan x

 32. cos1p2 - x2 = sin x

In Exercises 33–36, derive the given equations as indicated. Equations 
(20.14)–(20.16) are known as the product formulas.

 33. By dividing the right side of Eq. (20.9) by that of Eq. (20.10), and 
dividing the right side of Eq. (20.11) by that of Eq. (20.12), derive 
Eq. (20.13).

  tan 1A t B 2 =
tan A t tan B  

1 u tan A tan B 
 (20.13)

(Hint: Divide numerator and denominator by cos a cos b.)

 34. By adding Eqs. (20.9) and (20.11), derive the equation

  sin A cos B = 1
2 3sin 1A + B 2 + sin 1A − B 2 4  (20.14)

 35. By adding Eqs. (20.10) and (20.12), derive the equation

  cos A cos B = 1
2 3cos 1A + B 2 + cos 1A − B 2 4  (20.15)

 36. By subtracting Eq. (20.10) from Eq. (20.12), derive

  sin A sin B = 1
2 3cos 1A − B 2 − cos 1A + B 2 4  (20.16)

In Exercises 37–40, derive the given equations by letting a + b = x 
and a - b = y, which leads to a = 1

21x + y2  and b = 1
21x - y2 . 

The resulting equations are known as the factor formulas.

 37. Use Eq. (20.14) and the substitutions above to derive the equation

  sin x + sin y = 2 sin  12 1x + y 2cos 12 1x − y 2  (20.17)

 38. Use Eqs. (20.9) and (20.11) and the substitutions above to derive 
the equation

  sin x − sin y = 2 sin 12 1x − y 2cos 12 1x + y 2  (20.18)

 39. Use Eq. (20.15) and the substitutions above to derive the equation

  cos x + cos y = 2 cos 12 1x + y 2cos 12 1x − y 2  (20.19)

 40. Use Eq. (20.16) and the substitutions above to derive the equation

  cos x − cos y = −2 sin 12 1x + y 2sin 12 1x − y 2  (20.20)

In Exercises 41–50, solve the given problems.

 41. Show that sin 2x
sin x = 2 cos x. (Hint: sin 2x = sin1x + x2 .)

 42. Explain how the exact value of sin 75° can be found using either 
Eq. (20.9) or Eq. (20.11).

 43. Express cos1A + B + C) in terms of sin A, sin B, sin C, cos A, 
cos B, and cos C.

 44. The design of a certain three-phase alternating-current generator 
uses the fact that the sum of the currents I cos1u + 30°2 , 
I cos1u + 150°2 , and I cos1u + 270°2  is zero. Verify this.

 45. For voltages V1 = 20 sin 120pt and V2 = 20 cos 120pt, show 
that V = V1 + V2 = 2012  sin1120pt + p>42 .

 46. The displacements y1 and y2 of two waves travelling through 
the same medium are given by y1 = A sin 2p1 t>T - x>l2  and 
y2 = A sin 2p1 t>T + x>l2 . Find an expression for the displace-
ment y1 + y2 of the combination of the waves.

 47. An alternating electric current i is given by the equation 
i = i0 sin1vt + a2 . Show that this can be written as 
i = i1 sin vt + i2 cos vt, where i1 = i0 cos a and i2 = i0 sin a.
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 48. A weight w is held in equilibrium by forces  
F and T, as shown in Fig. 20.7. Equations  
relating w, F, and T  are

 F cos u = T sin a

 w + F sin u = T cos a

  Show that w =
T cos1u + a2

cos u
.

 49. For the two bevel gears shown in 
Fig. 20.8, the equation

  tan a =
sin b

R + cos b
 is used.  

Here, R is the ratio of gear 1 to 
gear 2. Show that 

R =
sin1b - a2

sin a
.

T

w

u

F

a

Fig. 20.7 

1

2

b

a

Fig. 20.8

50. In the analysis of the angles of incidence i and reflection r of a 
light ray subject to certain conditions, the following expression is 
found:

  E2a tan r
tan i

+ 1b = E1a tan r
tan i

- 1b   

  Show that E2 = E1 
sin1r - i2
sin1r + i2 .

Answers to Practice Exercises

1. 1  2. tan x

If we let b = a in Eqs. (20.9) and (20.10), we can derive the important double-angle 
formulas. By making this substitution in Eq. (20.9), we have

sin1a + a2 = sin12a2 = sin a cos a + cos a sin a = 2 sin a cos a

Using the same substitution in Eq. (20.10), we have

cos1a + a2 = cos12a2 = cos a cos a - sin a sin a = cos2 a - sin2 a

Again, using this substitution in the tan1a + b2  form of Eq. (20.13), we have

tan1a + a2 = tan12a2 =
tan a + tan a

1 - tan a tan a
=

2 tan a

1 - tan2 a

Then using the basic identity Eq. (20.6), other forms of the equation for  cos 2a may be 
derived. Summarizing these forms, we have

 20.3 Double-Angle Formulas
Formula for sin 2A  
cos 2 A A

 sin 2a = 2 sin a cos a  (20.21)
 cos 2a = cos2 a - sin2 a (20.22)
  = 2 cos2 a - 1  (20.23)
  = 1 - 2 sin2 a  (20.24)

 tan 2a =
2 tan a

1 - tan2 a
 (20.25)

These double-angle formulas are widely used in applications of trigonometry, espe-
cially in calculus. They should be recognized quickly in any of the above forms.

 EXAMPLE  1  Using double-angle formulas

(a) If a = 30°, we have

cos 60° = cos 2130°2 = cos2 30° - sin2 30° = a13
2

b2
- a1

2
b2 

=  
1
2

 
  using Eq. 

(20.22)

(b) If a = 3x, we have

sin 6x = sin 213x2 = 2 sin 3x cos 3x  using Eq. (20.21)
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(c) If 2a = x, we may write a = x>2, which means that

sin x = sin 2ax
2
b = 2 sin 

x
2

 cos 
x
2

  using Eq. (20.21)

(d) If a = p
6 , we have

tan 
p

3
= tan 2ap

6
b =

2 tan p6
1 - tan21p6 2 =

2(13>3)

1 - (13>322 = 13  using Eq. (20.25)  ■

 EXAMPLE  2  Simplification using the cos 2 A formula

Simplify the expression cos2 2x - sin2 2x.
Since this is the difference of the square of the cosine of an angle and the square 

of the sine of the same angle, it fits the right side of Eq. (20.22). Therefore, letting 
a = 2x, we have

 cos2 2x - sin2 2x = cos 212x2 = cos 4x ■

 EXAMPLE  3  Using the sin 2 A formula—application

To find the area A of a right triangular tract of land, a surveyor may use the formula 
A = 1

4 c2 sin 2u, where c is the hypotenuse and u is either of the acute angles. Derive 
this formula.

In Fig. 20.9, we see that sin u = a>c and cos u = b>c, which gives us

a = c sin u and b = c cos u

The area is given by A = 1
2 ab, which leads to the solution

 A =
1
2

 ab =
1
2
1c sin u2 1c cos u2

 =
1
2

 c2 sin u cos u =
1
2

 c2a1
2

 sin 2ub   using Eq. (20.21)

 =
1
4

 c2 sin 2u

In using Eq. (20.21), we divided both sides by 2 to get sin u cos u = 1
2 sin 2u.

If we had labelled the upper acute angle in Fig. 20.9 as u, we would have 
a = c cos u and b = c sin u. Using these values in the formula for the area gives the 
same solution. ■

 EXAMPLE  4  Verifying values

(a) Verifying the values of sin 90°, using the functions of 45°, we have

sin 90° = sin 2145°2 = 2 sin 45° cos 45° = 2a12
2

b a12
2

b = 1   
using Eq. 
(20.21)

(b) Using Eq. (20.25), tan 142° =
2 tan 71°

1 - tan2 71°
. Using a calculator to verify this, 

we have

 tan 142° = -0.781 285 626 5 and 
2 tan 71°

1 - tan2 71°
= -0.781 285 626 5 ■

u

b

c
a

A

Fig. 20.9
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 EXAMPLE  5  Evaluation using the sin 2 A formula

Knowing that cos a = 3>5 for an angle in the fourth quadrant, we see from Fig. 20.10(a) 
that sin a = -4>5. Therefore, we have

 sin 2a = 2 sin a cos a Eq. (20.21)

 = 2a- 4
5
b a3

5
b = - 24

25
  

In Fig. 20.10(b), angle 2a is shown. It is a third-quadrant angle, which verifies the 
sign of the result. (Since cos a = 3>5, a = 307° and 2a = 614°, which is a third-
quadrant angle.) ■

 EXAMPLE  6  Simplification using cos 2 A

Simplify the expression 
2

1 +  cos 2x
.

 
2

1 + cos 2x
=

2

1 + 12 cos2x - 12   using Eq. (20.23)

 =
2

2 cos 2x
= sec 2x   using Eq. (20.2) ■

2a

(b)

y

x

y

x

−2

−4

0 2 4

(a)

(3, 24)

y = 24

x = 3a

r = 5

Fig. 20.10 

Practice Exercise

1. Simplify 
sin 2x

cos 2x - sin 2x
.

EXERCISES 20.3

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 1(d), change p6  to p3  and then evaluate tan 2p3 .

 2. In Example 2, change 2x to 3x and then simplify.

 3. In Example 5, change 3>5 to 4>5 and then evaluate sin 2a.

 4. In Example 6, change the + in the denominator to - and then 
simplify the expression.

In Exercises 5–8, determine the values of the indicated functions in 
the given manner.

 5. Find sin 60° by using the functions of 30°.
 6. Find sin 120° by using the functions of 60°.
 7. Find tan 120° by using the functions of 60°.
 8. Find cos 60° by using the functions of 30°.

In Exercises 9–14, use a calculator to verify the values found by using 
the double-angle formulas. Round to 3 significant digits.

 9. Find sin 258° directly and by using functions of 129°.
 10. Find tan 84° directly and by using functions of 42°.
 11. Find cos 96° directly and by using functions of 48°.
 12. Find cos 276° directly and by using functions of 138°.
 13. Find tan 2p5  directly and by using functions of p5 .

 14. Find sin 10.2p2  directly and by using functions of 0.1p.

In Exercises 15–18, evaluate the indicated functions with the given 
information.

 15. Find sin 2x if cos x = 4
5 (in first quadrant).

 16. Find cos 2x if sin x = -12
13 (in third quadrant).

 17. Find tan 2x if sin x = 0.5 (in second quadrant).

 18. Find sin 4x if sin x = 0.6 (in first quadrant).

In Exercises 19–30, simplify the given expressions.

 19. 4 sin 4x cos 4x 20. 4 sin2 x cos2 x

 21. 1 - 2 sin2 4x 22. 
4 tan 4u

1 - tan2 4u

 23. 2 cos2 12 x - 1 24. 2 sin 12 x cos 12 x

 25. 4 sin2 2x - 2 26. cos 3x sin 3x

 27. 
sin 4u
sin 2u

 28. cos4 u - sin4 u

 29. 
sin 3x
sin x

- cos 3x
cos x

 30. 
cos 3x
sin x

+ sin 3x
cos x

In Exercises 31–40, prove the given identities.

 31. cos2 a - sin2 a = 2 cos2 a - 1

 32. cos2 a - sin2 a = 1 - 2 sin2 a

 33. 
cos x - tan x sin x

sec x
= cos 2x 34. 2 + cos 2u

sin2 u
= csc 2 u

 35. 
sin 2u

1 + cos 2u
= tan u 36. 

2 tan a

1 + tan2 a
= sin 2a

 37. 1 - cos 2u =
2

1 + cot2 u

 38. 
cos3 u + sin3 u
cos u + sin u

 = 1 -  
1
2

 sin 2u
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 39. ln 11 - cos 2x2 - ln 11 + cos 2x2 = 2 ln tan x

 40. log 120 sin2 u + 10 cos 2u2 = 1

In Exercises 41–44, verify each identity by comparing the graph of the 
left side with the graph of the right side on a graphing calculator.

 41. tan 2u =
2

cot u - tan u
 42. 

1 - tan2 x

sec2 x
= cos 2x

 43. 1sin x + cos x22 = 1 + sin 2x

 44. 2 csc 2x tan x = sec2 x

In Exercises 45–60, solve the given problems.

 45. Express sin 3x in terms of sin x only.

 46. Express cos 3x in terms of cos x only.

 47. Express cos 4x in terms of cos x only.

 48. Express sin 4x in terms of sin x and cos x.

 49. Show that cos 2x + sin 2x tan x reduces to 1.

 50. For an acute angle u, show that 2 sin u 7 sin 2u.

 51. Without graphing, determine the amplitude and period of the 
function y = 4 sin x cos x. Explain.

 52. Without graphing, determine the amplitude and period of the 
function y = cos2x - sin2 x.

 53. The path of a bouncing ball is given by y = 21sin x + cos x22. 
Show that this path can also be shown as y = 11 + sin 2x. Use 
a calculator to show that this can also be shown as 
y = 0 sin x + cos x 0 .

 54. The equation for the trajectory of a missile fired into the air at an 

angle a with velocity v0 is y =  x tan a -   
g

2v0
2cos2a

x2. Here, g 

is the acceleration due to gravity. On the right of the equal sign, 
combine terms and simplify.

 55. The CN Tower in Toronto is 553 m high, and it has an observa-
tion deck at the 335-m level. How far from the top of the CN 

Tower must a 553-m-high helicopter be in order that the angle 
subtended at the helicopter by the part of the tower above the 
deck equals the angle subtended by the part of the tower below 
the deck?

 56. The cross section of a radio-wave reflector is defined by 
x = cos 2u, y = sin u. Find the relation between x and y by 
eliminating u.

 57. To find the horizontal range R of a projectile, the equation 
R = vt cos a is used, where a is the angle between the line of fire 
and the horizontal, v is the initial velocity of the projectile, and t 
is the time of flight. It can be shown that t = 12v sin a2 >g, 
where g is the acceleration due to gravity. Show that 
R = 1v2 sin 2a2 >g. See Fig. 20.11.

R

v

a

Fig. 20.11 

 58. In analysing light reflection from a cylinder onto a flat surface, 
the expression 3 cos u - cos 3u arises. Show that this equals 
2 cos u cos 2u + 4 sin u sin 2u.

 59. The instantaneous electric power P in an inductor is given by the 
equation P = vi sin vt sin1vt - p>22 . Show that this equation 
can be written as P = -1

2vi  sin 2vt.

 60. In the study of the stress at a point in a bar, the equation 
s = a cos2 u + b sin2 u - 2t sin u cos u arises. Show that this 
equation can be written as

   s = 1
21a + b2 + 1

21a - b2  cos 2u - t sin 2u.

Answer to Practice Exercise

1.  tan 2x

If we let u = a>2 in the identity cos 2u = 1 - 2 sin2 u and then solve for sin1a>22 ,

 sin 
a

2
= {  A1 - cos a

2
 (20.26)

Also, with the same substitution in the identity cos 2u = 2 cos2 u - 1, which is then 
solved for cos1a>22 , we have

 cos 
a

2
= {  A1 + cos a

2
 (20.27)

In each of Eqs. (20.26) and (20.27), the sign chosen depends on the quadrant in 
which A2  lies.

 20.4 Half-Angle Formulas
Formula for sin 1A ,2 2  
cos 1A ,2 2
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 EXAMPLE  1  Evaluation using the cos 1A ,2 2  formula

We can find cos 165° by using the relation

 cos 165° = -  A1 + cos 330°
2

 using Eq. (20.27)

  = -  A1 + 0.866
2

= -0.966  

Here, the minus sign is used, since 165° is in the second quadrant, and the cosine of 
a second-quadrant angle is negative. ■

 EXAMPLE  2  Evaluation using the sin 1A ,2 2  formula

Simplify A1 - cos 114°
2

 by expressing the result in terms of one-half the given angle. 

Then, using a calculator, show that the values are equal.
We note that the given expression fits the form of the right side of Eq. (20.26), 

which means that A1 - cos 114°
2

= sin 12 1114°2 = sin 57°

Using a calculator shows thatA1 - cos 114°
2

= 0.838 670 567 9 and sin 57° = 0.838 670 567 9

which verifies the equation for these values. ■

 EXAMPLE  3  Simplification using the cos 1A ,2 2  formula

Simplify the expression A9 + 9 cos 6x
2

.

 A9 + 9 cos 6x
2

= A911 + cos 6x2
2

= 3 A1 + cos 6x
2

  = 3 cos 12 16x2   using Eq. (20.27) with a = 6x

  = 3 cos 3x

Noting the original expression, we see that cos 3x cannot be negative. ■

 EXAMPLE  4  A trigonometric identity with sin 1A ,2 2  —application

In the kinetic theory of gases, the expression211 - cos a22 + sin2a is found. Show that this expression equals 2 sin 12 a:

 211 - cos a22 + sin2 a = 21 - 2 cos a + cos2 a + sin2 a   expanding

= 11 - 2 cos a + 1   using Eq. (20.26)

= 12 - 2 cos a

= 1211 - cos a2    factoring

This last expression is very similar to that for sin 12 a, except that no 2 appears in the 
denominator. Therefore, multiplying the numerator and the denominator under the 
radical by 2 leads to the solution:

 2211 - cos a2 = B411 - cos a2
2

= 2 A1 - cos a
2

 = 2 sin 12 a   using Eq. (20.26)

Noting the original expression, we see that sin 12 a cannot be negative. ■

Practice Exercise

1. Simplify: A25 - 25 cos 4x
2
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 EXAMPLE  5  Evaluation using the cos  1A ,2 2  formula

Given that tan a = 8
15 1180° 6 a 6 270°2 , find cos 1a2 2 .

Knowing that tan a = 8
15 for a third-quadrant angle, we determine from Fig. 20.12 

that cos a = -15
17. This means

 cos 
a

2
= -  A1 + 1 -15>172

2
= -  A 2

34
  using Eq. (20.27)

 = - 1
17

 117 = -0.2425

Since 180° 6 a 6 270°, we know that 90° 6 a
2 6 135°, and therefore a2 is in the 

second quadrant. Since the cosine is negative for second-quadrant angles, we use 
the negative value of the radical. ■

 EXAMPLE  6  Simplification—using the cos 1A ,2 2  formula

Show that 2 cos2 
x
2

- cos x = 1.

The first step is to substitute for cos x2, which will result in each term on the left 
being in terms of x and no x

2 terms will exist. This will allow us to combine terms. 
We have for the left side

2 cos2 
x
2

- cos x = 2a1 + cos x
2

b - cos x    
using Eq. (20.27) with  
both sides squared

 = 1 + cos x - cos x = 1 ■

 EXAMPLE  7  Formulas for other functions of A ,2
We can find relations for other functions of a2 by expressing these functions in terms of 
sin1a2 2  and cos1a2 2 . For example,

sec 
a

2
=

1

cos 
a

2

= {  
1A1 + cos a

2

  using Eq. (20.27)

 = {  A 2
1 + cos a

 ■

(−15, −8)
= 17r

a

y

x

Fig. 20.12

Practice Exercise

2. Find the formula for csc1x>22 .

EXERCISES 20.4

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the given problem.

 1. In Example 2, change the -  sign in the numerator to + .

 2. In Example 5, change 8
15 1180° 6 a 6 270°2  to  

-  8
15 1270° 6 a 6 360°2 .

In Exercises 3–8, use the half-angle formulas to evaluate the given 
functions. When using a calculator, round to 3 significant digits.

 3. cos 15° 4. sin 22.5° 5. sin 105°
 6. cos 112.5° 7. cos 7p8  8. sin 11p

12

In Exercises 9–12, simplify the given expressions by giving the results 
in terms of one-half the given angle. Then use a calculator to verify 
the result.

 9. A1 - cos 236°
2

  10. A1 + cos 98°
2

 11. 21 + cos 164° 12. 22 - 2 cos 328°

In Exercises 13–20, simplify the given expressions.

 13. A1 - cos 6x
2

  14. A4 + 4 cos 8b

2

 15. 18 + 8 cos 4x 16. 12 - 2 cos 16x

 17. 14 - 4 cos 10u 18. 118 + 18 cos 1.4x

 19. 2 sin2 
x
2

 + cos x 20. 2 cos2 
u

2
 sec u

In Exercises 21–24, evaluate the indicated functions.

 21. Find the value of sin1a2 2  if cos a = 12
13 10° 6 a 6 90°2 .

 22. Find the value of cos1a2 2  if sin a = -  45 1180° 6 a 6 270°2 .
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 23. Find the value of cos1a2 2  if tan a = -0.292 190° 6 a 6 180°2 .

 24. Find the value of sin1a2 2  if cos a = 0.471 1270° 6 a 6 360°2 .

In Exercises 25–28, derive the required expressions.

 25. Derive an expression for csc1a2 2  in terms of sec a.

 26. Derive an expression for sec1a2 2  in terms of sec a.

 27. Derive an expression for tan1a2 2  in terms of sin a and cos a.

 28. Derive an expression for cot1a2 2  in terms of sin a and cos a.

In Exercises 29–32, prove the given identities.

 29. sin 
a

2
=

1 - cos a
2 sin a2

 30. cos 
u

2
=

sin u

2 sin u2

 31. 2 cos 
x
2

= 11 + cos x2sec 
x
2

 32. cos2 
x
2
c 1 + a sin x

1 + cos x
b2 d = 1

In Exercises 33–36, verify each identity by comparing the graph of the 
left side with the graph of the right side on a graphing calculator.

 33. 2 sin2 
a

2
- cos2 

a

2
=

1 - 3 cos a
2

 34. cos2 
A
2

- sin2 
A
2

=
sin 2A
2 sin A

 35. 2 sin2 
u

2
=

sin2 u
1 + cos u

 36. tan 
a

2
=

sin a
1 + cos a

In Exercises 37–44, use the half-angle formulas to solve the given 
problems.

 37. Find tan u if sin1u>22 = 3>5.

 38. In a right triangle with sides and 
angles as shown in Fig. 20.13, 
show that sin2 A2 = c - b

2c .

 39. In finding the path of a sliding particle, the expression 18 - 8 cos u is used. Simplify this expression.

40. In designing a track for a railway system, the equation 
d = 4r sin2 A2 is used. Solve for d in terms of cos A.

 41. In electronics, in order to find the root-mean-square current in a 
circuit, it is necessary to express sin2 vt in terms of cos 2vt. 
Show how this is done.

 42. In studying interference patterns of radio signals, the expression 
2E2 - 2E2 cos1p - u2  arises. Show that this can be written as 
4E2 cos21u>22 .

 43. The index of refraction n, the angle A of a prism, and the mini-

mum angle of deflection f are related by n =
sin 121A + f2

sin 12 A
. 

See Fig. 20.14. Show that an equivalent expression is 

n = B1 - cos A cos f + sin A sin f

1 - cos A

A
b

c a

Fig. 20.13 

l

u

x
l

Fig. 20.15 

Light ray

A

f

Fig. 20.14 

44. For the structure shown in Fig. 20.15, show that x = 2l sin2 12 u.

Answers to Practice Exercises

1. 5 sin 2x  2. {  2 2
1 - cos x

One of the most important uses of the trigonometric identities is in the solution of equa-
tions involving trigonometric functions. The solution of this type of equation consists 
of the angles that satisfy the equation. When solving for the angle, we generally first 
solve for a value of a function of the angle and then find the angle from this value of the 
function.

When equations are written in terms of more than one function, the identities pro-
vide a way of changing many of them to equations or factors involving only one func-
tion of the same angle. Thus, the solution is found by using algebraic methods and 
trigonometric identities and values. From Chapter 8, recall that we must be careful 
regarding the sign of the value of a trigonometric function in finding the angle. 
Fig. 20.16 shows again the quadrants in which the functions are positive. Functions not 
listed are negative.

 20.5 Solving Trigonometric Equations
Solve for the Function and Then the 

Calculator

Positive functions

Allsin u
csc u

tan u
cot u

cos u
sec u

y

x

Fig. 20.16
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 EXAMPLE  1  Solving a linear equation

Solve the equation 2 cos u - 1 = 0 for all values of u such that 0 … u 6 2p.
Solving the equation for cos u, we obtain cos u = 1

2. The problem asks for all val-
ues of u from 0 to 2p that satisfy the equation. We know that the cosines of angles 
in the first and fourth quadrants are positive. Also, we know that cos p3 = 1

2, which 
means that p3  is the reference angle. Therefore, the solution proceeds as follows:

 2 cos u - 1 = 0

2 cos u = 1   solve for cos u

cos u =
1
2

u =
p

3
, 

5p
3

  u in quadrants I and IV ■

 EXAMPLE  2  Solution using a trigonometric identity and factoring

Solve the equation 2 cos2 x - sin x - 1 = 0 10 … x 6 2p2 .
By use of the identity sin2 x + cos2 x = 1, this equation may be put in terms of 

sin x only. Thus, we have

 211 - sin2 x2 - sin x - 1 = 0  use identity

 -2 sin2 x - sin x + 1 = 0  multiply and simplify

 2 sin2 x + sin x - 1 = 0

 12 sin x - 12 1sin x + 12 = 0  factor

Setting each factor equal to zero, we find sin x = 1>2 or sin x = -1. For the do-
main 0 to 2p, sin x = 1>2 gives x = p>6, 5p>6, and sin x = -1 gives x = 3p>2. 
Therefore,

x =
p

6
, 

5p
6

, 
3p
2

These values check when substituted in the original equation. ■

As with algebraic equations, graphical solutions of trigonometric equations are 
approximate, whereas algebraic solutions often give exact solutions. As before, we col-
lect all terms on the left of the equal sign, with zero on the right. We then graph the 
function on the left to find its zeros by finding the values of x where the graph crosses 
(or is tangent to) the x-axis.

 EXAMPLE  3  Solution using a calculator

Graphically solve the equation 2 cos2 x - sin x - 1 = 0 (0 … x 6 2p) by using a 
graphing calculator. (This is the same equation as in Example 2.)

Since all the terms of the equation are on the left, with zero on the right, we now 
set y = 2 cos2 x - sin x - 1. We then enter this function in the graphing calculator 
as Y1, and the graph is displayed in Fig. 20.17. Since angles are expressed in radians 
and 2p = 6.3, Xmax was chosen as 6.4. Using the trace and zoom features (or the 
zero feature, or by letting y1 = 2 cos2 x - sin x - 1, y2 = 0 and using the intersect 
feature) of a graphing calculator, we find that y = 0 for

x = 0.52, 2.62, 4.71

These values are the same as in Example 2. We note that for x = 4.71, the curve 
touches the x-axis but does not cross it. This means it is tangent to the x@axis. ■

Practice Exercise

1.  Solve for x 10 … x 6 2p2 : 
2 sin x + 1 = 0

Graphical Solutions

0

–2

6.4

2

Fig. 20.17
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 EXAMPLE  4  Solution by squaring—extraneous solutions

Solve the equation cos 1x>22 = 1 + cos x 10 … x 6 2p2 .
By using the half-angle formula for cos 1x>22  and then squaring both sides of 

the resulting equation, this equation can be solved:

 {  A1 + cos x
2

= 1 + cos x  using identity

 
1 + cos x

2
= 1 + 2 cos x + cos2 x squaring both sides

 2 cos2 x + 3 cos x + 1 = 0  simplifying

 12 cos x + 12 1cos x + 12 = 0  factoring

 cos x = -  
1
2

, -1

 x =
2p
3

, 
4p
3

, p

In finding this solution, we squared both sides of the original equation. In doing 
this, we may have introduced extraneous solutions (see Section 14.3). Thus, we 
must check each solution in the original equation to see if it is valid. Hence,

 cos 
p

3
≟ 1 + cos 

2p
3
  or  - 1

2
≟ 1 + a- 1

2
b or   

1
2

=
1
2

 cos 
2p
3

≟ 1 + cos 
4p
3
 or  - 1

2
≟ 1 + a- 1

2
b or  -  

1
2

≠
1
2

 cos 
p

2
≟ 1 + cos p   or    0 ≟ 1 - 1     or    0 = 0

Thus, the apparent solution x = 4p
3  is not a solution of the original equation. The 

correct solutions are x = 2p
3  and x = p.

We can see that these values agree with the values for x for which the graph of 
y1 = cos 1x>22 - 1 - cos x crosses the x-axis in Fig. 20.18. In Fig. 20.19 the graph 
of this function and the graph of y2 = 2 cos2x + 3 cos x + 1 are compared. We see 
x = 0 for both curves at x = 2p>3 and x = p, but that the curve for y2 is quite dif-
ferent from that of y1, and y2 = 0 for x = 4p>3. When we squared both sides of the 
equation, we introduced a zero that is not a solution to the original equation. ■

 EXAMPLE  5  A trigonometric equation—application

The vertical displacement y of an object at the end of a spring, which itself is being 
moved up and down, is given by y = 3.50 sin t + 1.20 sin 2t. Find the first two values 
of t (in seconds) for which y = 0.

Using the double-angle formula for sin 2t leads to the solution.

 3.50 sin t + 1.20 sin 2t = 0  setting y = 0

 3.50 sin t + 2.40 sin t cos t = 0  using identities

 sin t13.50 + 2.40 cos t2 = 0  factoring

 sin t = 0  or cos t = -1.46

 t = 0.00, 3.14, . . .

Since cos t cannot be numerically larger than 1, there are no values of t for which 
cos t = -1.46. Thus, the required times are t = 0.00 s, 3.14 s.

We can see that these values agree with the values of t for which the graph of 
y = 3.50 sin t + 1.20 sin 2t crosses the t-axis in Fig. 20.20. ■

y

x

!1

0 2 4

Fig. 20.18 

y

y2 = 2 cos2x + 3 cosx + 1

x

−1

1

0 2 4

y1 = cos       − 1 − cosxx
2(  )

Fig. 20.19 

When checking solutions, we must 
use the original equation and not 
one that has been derived after an 
algebraic step (such as squaring both 
sides) that could have changed the 
original function.

LEARNING T IP

y

t

!2

4

2

0 2 4

Fig. 20.20
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 EXAMPLE  6  An equation with a double angle

Solve the equation tan 2u - cot 2u = 0 10 … u 6 2p2 .
We first solve for 2u and then for u.

 tan 2u - 1
tan 2u

= 0 using cot 2u =
1

tan 2u

 tan2 2u = 1 multiplying by tan 2u and adding 1 to each side

 tan 2u = {1 taking square roots

For 0 … u 6 2p, we must have values of 2u such that 0 … 2u 6 4p. Therefore,

2u =
p

4
, 

3p
4

, 
5p
4

, 
7p
4

, 
9p
4

, 
11p

4
, 

13p
4

, 
15p

4

This means that the solutions are

u =
p

8
, 

3p
8

, 
5p
8

, 
7p
8

, 
9p
8

, 
11p

8
, 

13p
8

, 
15p

8

These values satisfy the original equation. Since we multiplied through by tan 2u in 
the solution, any value of u that leads to tan 2u = 0 would not be valid since this 
would indicate division by zero in the original equation.

We see that these solutions agree with the values of u for which the graph of 
y = cos 2u - cot 2u crosses the u-axis in Fig. 20.21. ■

 EXAMPLE  7  Solution using a trigonometric identity

Solve the equation cos 3x cos x + sin 3x sin x = 1 10 … x 6 2p2 .
The left side of this equation is of the general form cos1A - x2 , where A = 3x. 

Therefore,

cos 3x cos x + sin 3x sin x = cos13x - x2 = cos 2x

The original equation becomes

cos 2x = 1

This equation is satisfied if 2x = 0 or 2x = 2p. The solutions are x = 0 and 
x = p. Only through recognition of the proper trigonometric form can we readily 
solve this equation.

We see that these solutions agree with the two values of x for which the graph of 
y = cos 3x cos x + sin 3x sin x - 1 touches the x-axis in Fig. 20.22. ■

 EXAMPLE  8  Solution using a calculator

Solve the equation sin 2x + 3 = x2.
Although we can substitute for sin 2x, we cannot express x2 in terms of a trigono-

metric function. However, we can graphically find an approximate solution.
Collecting terms on the left, we have sin 2x + 3 - x2 = 0. Then we let 

y = sin 2x + 3 - x2. Entering this function into the calculator as Y1, we find from 
its graph where y is zero. See Fig. 20.23. Using the zero feature, we find that 
x = -1.90 and x = 1.67 are the only values for which y = 0.

The solution can also be found by letting y1 = sin 2x + 3, y2 = x2, and using the 
intersect feature of a graphing calculator. ■

y

u

−3

3

0 3 6

Fig. 20.21 

Practice Exercise

2.  Solve for x 10 … x 6 2p2 : 
sec2x + 2 tan x = 0

y

x

!3

1

0

3 6

Fig. 20.22 

–3

–2

3

4

Fig. 20.23
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EXERCISES 20.5

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 1, change 2 cos u to tan u.

 2. In Example 2, change 2 cos2 x to 2 sin2 x.

 3. In Example 4, change cos 12x to sin 12x and on the right of the equal 
sign change the +  to - .

 4. In Example 7, change the +  to - .

In Exercises 5–20, solve the given trigonometric equations analytically 
(using identities when necessary for exact values when possible) for 
values of x for 0 … x 6 2p.

 5. sin x - 1 = 0 6. 2 cos x + 1 = 0

 7. sin(x - p
4) = cos(x - p

4)

 8. 4 tan x + 2 = 311 + tan x2
 9. 4 cos2 x - 1 = 0 10. 3 tan2 x - 1 = 0

 11. 2 sin2 x - sin x = 0 12. sin 4x - sin 2x = 0

 13. sin 2x sin x + cos x = 0 14. sin x - sin 
x
2

= 0

 15. 2 cos2 x - 2 cos 2x - 1 = 0

 16. tan2 x + 6 = 5 tan x 

 17. 4 tan x - sec2 x = 0 18. sin x sin 12x = 1 - cos x

 19. sin 2x cos x - cos 2x sin x = 0

 20. cos 3x cos x - sin 3x sin x = 0

In Exercises 21–38, solve the given trigonometric equations analytically. 
Use values of x for 0 … x 6 2p.

 21. tan x + 1 = 0 22. 2 sin x + 1 = 0

 23. 3 - 4 cos x = 7 - 12 - cos x2
 24. 7 sin x - 2 = 312 - sin x2
 25. 4 sin2 x - 3 = 0 26. 0 sin x 0 = 1

2

 27. sin 4x - cos 2x = 0 28. 3 cos x - 6 cos2 x = 0

 29. 2 sin x = tan x 30. cos 2x + sin2 x = 0

 31. sin2 x - 2 sin x = 1 32. 2 cos2 2x + 1 = 3 cos 2x

 33. tan x + 3 cot x = 4 34. tan2 x + 4 = 2 sec2 x

 35. sin 2x + cos 2x = 0 36. 2 sin 4x + csc 4x = 3

 37. 2 sin 2x - cos x sin3x = 0 38. tan4x = 1

In Exercises 39–52, solve the indicated equations analytically.

 39. sin 3x + sin x = 0 (Hint: See Eq. 20.17.)

 40. cos 3x - cos x = 0 (Hint: See Eq. 20.20.)

 41.  Is there any positive acute angle u for which  
sin u + cos u + tan u + cot u + sec u + csc u = 1? Explain.

 42. Use a graphing calculator to determine the minimum value of the 
function to the left of the equal sign in Exercise 41 (for a positive 
acute angle).

 43. Solve the system of equations r = sin u, r = sin 2u, for 
0 … u 6 2p.

 44. Solve the system of equations r = sin u, r = cos 2u, for 
0 … u 6 2p.

 45. The acceleration due to gravity g (in m>s2) varies with latitude, 
approximately given by g = 9.780511 + 0.0053 sin2 u2 , where 
u is the latitude in degrees. Find u for g = 9.8000.

 46. Under certain conditions, the electric 
current i (in A) in the circuit shown 
in Fig. 20.24 is given below. For 
what value of t (in s) is the current 
first equal to zero?

  
i = -e-100t132.0 sin 624t + 0.200 cos 624t2

 47. The vertical displacement y (in m) of the end of a robot arm is 
given by y = 2.30 cos 0.1t - 1.35 sin 0.2t. Find the first four 
values of t (in s) for which y = 0.

 48. In finding the maximum illuminance from a point source of light, 
it is necessary to solve the equation cos u sin 2u - sin3u = 0. 
Find u if 0 6 u 6 90°.

 49. To find the acute angle u subtended by a certain object on a camera 

film, it is necessary to solve the equation 
p2 tan u

0.0063 + p tan u
= 1.6, 

where p is the distance from the camera to the object. Find u if 
p = 4.8 m.

 50. The velocity of a certain piston is maximum when the acute crank 
angle u satisfies the equation 8 cos u + cos 2u = 0. Find this 
angle.

 51. Resolve a force of 500.0 N into two components, perpendicular to 
each other, for which the sum of their magnitudes is 700.0 N, by 
using the angle between a component and the resultant.

 52. A search and rescue helicopter flew from Gander, Newfoundland, 
and travelled 160 km east. It then turned and flew due south, 
finally making a final turn to fly directly back to Gander. If the 
total distance flown was 480 km, how long were the final two 
legs of the flight? Solve by setting up and solving an appropriate 
trigonometric equation. (The Pythagorean theorem may be used 
only as a check.)

In Exercises 53–60, solve the given equations graphically.

 53. 3 sin x - x = 0 54. 4 cos x + 3x = 0

 55. 2 sin 2x = x2 + 1 56. 1x - sin 3x = 1

 57. 2 ln x = 1 - cos 2x 58. ex = 1 + sin x

 59. In finding the frequencies of vibration of a vibrating wire, the 
equation x tan x = 2.00 occurs. Find x if 0 6 x 6 p>2.

 60. An equation used in astronomy is u - e sin u = M. Solve for u 
for e = 0.25 and M = 0.75.

Answers to Practice Exercises

1. x = 7p>6, 11p>6  2. x = 3p>4, 7p>4

20 Ω 25 mF

0.10 H

Fig. 20.24
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When we studied the exponential and logarithmic functions, we often changed an 
expression from one form to the other. The exponential function y = bx, written in 
logarithmic form with x as a function of y, is x = logb y. Then we wrote the logarith-
mic function as y = logb x, since it is standard practice to use y as the dependent vari-
able and x as the independent variable.

As we discussed in Chapter 13, these two functions, the exponential function y = bx 
and the logarithmic function y = logb x, are inverse functions. This means that if we 
solve for the independent variable in terms of the dependent variable in one function, 
we will arrive at the functional relationship expressed by the other. It also means that, 
for every value of x, there is only one corresponding value of y.

Just as we are able to solve y = bx for the exponent by writing it in logarithmic 
form, at times it is necessary to solve for the independent variable (the angle) in trigo-
nometric functions. Therefore, we define the inverse sine function

 y = sin-1 x  a-p

2
… y … p

2
b  (20.28)

where y is the angle whose sine is x. This means that x is the value of the sine of the 
angle y, or x = sin y. (It is necessary to show the range as -p>2 … y … p>2, as we 
will see shortly.)

 20.6 The Inverse Trigonometric Functions

Trigonometric Functions

In Eq. (20.28), the -1 is not an exponent.

The -1 in sin-1 x is the notation showing the inverse function. We introduced this nota-
tion in Chapter 4 when finding the angle with a known value of one of the functions.

COMMON ERROR

The notations Arcsin x, arcsin x, and Sin-1 x are also used to designate the inverse sine. 
Some calculators use the inv  key and then the sin  key to find values of the 
inverse sine. However, since most calculators use the notation sin-1 as a second func-
tion on the sin  key, we will continue to use sin-1 x for the inverse sine.

Similar definitions are used for the other inverse trigonometric functions. They also 
have meanings similar to that of Eq. (20.28).

 EXAMPLE  1  Meaning of inverse trigonometric functions

(a) y = cos-1 x is read as “y is the angle whose cosine is x.” In this case, x = cos y.

(b) y = tan -1 2x is read as “y is the angle whose tangent is 2x.” In this case, 2x = tan y.

(c) y = csc -111 - x2  is read as “y is the angle whose cosecant is 1 - x.” In this 
case, 1 - x = csc y, or x = 1 - csc y. ■

We have seen that y = sin-1 x means that x = sin y. From our previous work with 
the trigonometric functions, we know that there is an unlimited number of possible val-
ues of y for a given value of x in x = sin y. Consider the following example.

 EXAMPLE  2  Values of trigonometric functions

(a) For x = sin y, we know that

sin 
p

6
=

1
2
 and sin 

5p
6

=
1
2

In fact, x = 1
2 also for values of y of -7p

6 , 13p
6 , 17p

6 , and so on.

(b) For x = cos y, we know that

cos 0 = 1 and cos 2p = 1

In fact, cos y = 1 for y equal to any even multiple of p. ■
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From Chapter 3, we know that to have a properly defined function, there must be 
only one value of the dependent variable for a given value of the independent variable. 
(A relation, on the other hand, may have more than one such value.) Therefore, as in 
Eq. (20.28), in order to have only one value of y for each value of x in the domain of 
the inverse trigonometric functions, it is not possible to include all values of y in the 
range. For this reason, the range of each of the inverse trigonometric functions is 
defined as follows:

-p

2
… sin-1 x … p

2
  0 … cos-1 x … p  -p

2
6 tan-1 x 6 p

2
  0 6 cot-1 x 6 p

0 … sec-1 x … p  asec-1 x ≠
p

2
b  -p

2
… csc -1 x … p

2
  1csc -1 x ≠ 0) (20.29)

We must choose a value of y in the range as defined in Eq. (20.29) that corresponds to 
a given value of x in the domain. We will discuss the domains and the reasons for these 
definitions following the next two examples.

 EXAMPLE  3  Range of inverse sine and cosine

(a) sin-1a1
2
b =

p

6
  first-quadrant angle

This is the only value of the function that lies within the defined range. The value 
5p
6  is not correct, even though sin 15p

6 2 = 1
2, since 5p6  lies outside the defined range.

(b) cos-1a- 1
2
b =

2p
3

  second-quadrant angle

Other values such as 4p
3  and -2p

3  are not correct, since they are not within the de-
fined range for the function cos-1 x. ■

 EXAMPLE  4  Range of inverse tangent

tan-11 -12 = -p

4
  fourth-quadrant angle

This is the only value within the defined range for the function tan-1 x. We must 
remember that when x is negative for sin−1 x and tan−1 x, the value of y is a fourth-
quadrant angle, expressed as a negative angle. This is a direct result of the definition. 
(The single exception is sin-11 -12 = -p>2, which is a quadrantal angle and is not 
in the fourth quadrant.) ■

In choosing these values to be the ranges of the inverse trigonometric functions, we 
first note that the domain of y = sin-1 x and y = cos-1 x are each -1 … x … 1, since 
the sine and cosine functions take on only these values. Therefore, for each value in 
this domain, we use only one value of y in the range of the function. Although the 
domain of y = tan -1 x is all real numbers, we still use only one value of y in the range.

The ranges of the inverse trigonometric functions are chosen so that if x is positive, 
the resulting value is an angle in the first quadrant. However, care must be taken in 
choosing the range for negative values of x.

Since the sine of a second-quadrant angle is positive, we cannot choose these angles 
for sin-1 x for negative values of x. Therefore, we chose fourth-quadrant angles in the 
form of negative angles in order to have a continuous range of values for sin-1 x. The 
range for tan-1 x is chosen in the same way for similar reasons. However, since the 
cosine of a fourth-quadrant angle is positive, the range for cos-1 x cannot be the same. 
To keep a continuous range of values for cos-1 x, second-quadrant angles are used.

Values for the other functions are chosen such that the result is also an angle in the 
first quadrant if x is positive. As for negative values of x, it rarely makes any 
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difference, since either positive values of x arise, or we can use one of the other func-
tions. Our definitions, however, are those that are generally used.

The graphs of the inverse trigonometric functions can be used to show the domains 
and ranges. We can obtain the graph of the inverse sine function by first sketching the 
sine curve x = sin y along the y-axis. We then mark the specific part of this curve for 
which -p

2 … y … p
2  as the graph of the inverse sine function. The graphs of the other 

inverse trigonometric functions are found in the same manner. In Figs. 20.25, 20.26, 
and 20.27, the graphs x = sin y, x = cos y, and x = tan y, respectively, are shown. 
The heavier, coloured portions indicate the graphs of the respective inverse trigonomet-
ric functions.

y

x
−2 −1 210

y = sin−1 x

x = sin y

−2p

2p

p

−p

Fig. 20.25

y

x
−2 −1 210

x = cos y

y = cos−1 x

−2p

2p

p

−p

Fig. 20.26

y = tan−1 x

x = tan y
(all branches)

−p

p

y

x
−2−3 −1

21 30
−p

2

−3p
2

3p
2

p
2

Fig. 20.27

The following examples further illustrate the values and meanings of the inverse 
trigonometric functions.

 EXAMPLE  5  Values of inverse trigonometric functions

(a) sin-11 - 13>22 = -p>3 (b) cos-11 -12 = p

(c) tan-1 0 = 0 (d) tan-11132 = p>3

Using a calculator in radian mode, we find the following values:

(e) sin-1 0.6294 = 0.6808 (f) sin-11 -0.15682 = -0.1574

(g) cos-11 -0.80262 = 2.5024 (h) tan-11 -1.92682 = -1.0921

We note that in each case the calculator gives the value of the inverse function in the 
defined range for the given function. ■

 EXAMPLE  6  Given an inverse function, solve for x

Given that y = p - sec-1 2x, solve for x.
We first find the expression for sec-1 2x and then use the meaning of the inverse 

secant. The solution follows:

y = p - sec-1 2x

sec-1 2x = p - y  isolate sec-1 2x

2x =  sec1p - y2  use meaning of inverse secant

x = - 1
2

  sec y  sec 1p - y2 = -sec y

As sec 2x and 2 sec x are different functions, sec-1 2x and 2 sec-1 x are also different func-
tions. Since the values of sec-1 2x are restricted, so are the resulting values of y. ■

Practice Exercise

1. Evaluate tan-11 - 13>32 .
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 EXAMPLE  7  Solve for an angle—application

The instantaneous power P in an electric inductor is given by the equation 
P = vi sin vt cos vt. Solve for t.

Noting the product sin vt cos vt suggests using sin 2a = 2 sin a cos a. Then, using 
the meaning of the inverse sine, we can complete the solution:

 P = vi sin vt cos vt

 =
1
2

 vi sin 2vt   using double-angle formula

 sin 2vt =
2P
vi

 2vt = sin-1a2P
vi

b  using meaning of inverse sine

 t =
1

2v
 sin-1a2P

vi
b  ■

If we know the value of one of the inverse functions, we can find the trigonometric 
functions of the angle. If general relations are desired, a representative triangle is very 
useful. The following examples illustrate these methods.

 EXAMPLE  8  Angle in terms of inverse functions

(a) Find cos1sin-1 0.52 .

Knowing that the values of inverse trigonometric functions are angles, we see that 
sin-1 0.5 is a first-quadrant angle. Thus, we find sin-1 0.5 = p>6. The problem is now 
to find cos1p>62 . This is, of course, 13>2, or 0.8660. Thus,

cos1sin-1 0.52 = cos1p>62 = 0.8660.

(b) sin1cot-1 12 = sin1p>42   first-quadrant angle 

   =
12
2

= 0.7071

(c) tan3cos-11 -12 4 = tan p  quadrantal angle

   = 0

(d) cos3sin-11 -0.23952 4 = 0.9709  using a calculator ■

EXAMPLE  9  Trigonometric function of an inverse trigonometric function

Find sin1 tan-1 x2 .
We know that tan-1 x is another way of stating “the angle whose tangent is x.” 

Thus, let us draw a right triangle (as in Fig. 20.28) and label one of the acute angles 
as u, the side opposite u as x, and the side adjacent to u as 1. In this way, we see that, 
by definition, tan u = x

1, or u = tan -1 x, which means u is the desired angle. By the 
Pythagorean theorem, the hypotenuse of this triangle is 2x2 + 1. Now, we find 
that sin u, which is the same as sin1 tan-1 x2 , is x>2x2 + 1. Thus,

 sin1 tan-1 x2 =
x2x2 + 1

 ■

Practice Exercise

2. Evaluate sin3cos-11 -0.52 4 .

Fig. 20.28

x

1

u

Vx2 + 1
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 EXAMPLE 10  Trigonometric function of an inverse trigonometric function

Find cos12 sin-1 x2 .
From Fig. 20.29, we see that u = sin-1 x. From the double-angle formulas, we have

cos 2u = 1 - 2 sin2 u

Thus, since sin u = x, we have

 cos12 sin-1 x2 = 1 - 2x2 ■

 EXAMPLE  11  Inverse trigonometric function—application

A triangular brace of sides a, b, and c supports a shelf, as shown in Fig. 20.30. Find the 
expression for the angle between sides b and c.

The law of cosines leads to the solution:

 a2 = b2 + c2 - 2bc cos  A law of cosines

2bc cos A = b2 + c2 - a2  solving for cosA

 cos A =
b2 + c2 - a2

2bc

 A = cos-1ab2 + c2 - a2

2bc
b  using meaning of inverse cosine ■

x
1

u

V1 − x2

Fig. 20.29

Shelf

b
a

c

A

Fig. 20.30 

EXERCISES 20.6

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1.  In Example 1(b), change 2x to 3A.

 2. In Example 3(a), change 1>2 to -1.

 3. In Example 8(a), change 0.5 to 1.

 4. In Example 9, change sin to cos.

In Exercises 5–10, write down the meaning of each of the given 
equations. See Example 1.

 5. y = cot -1 3x 6. y = csc -1 4x

 7. y = 2 sin-1 x 8. y = 3 tan-1 x

 9. y = 5 cos-112x - 12  10. y = 4 sin-113x + 22
In Exercises 11–28, evaluate the given expressions exactly.

 11. cos-1 0.5 12. sin-1 1 13. tan-1 1

 14. cos-1 2 15. tan-11 - 132  16. sin-11 -0.52
 17. sec-1 0.5 18. cot-1 13 19. sin-11 - 12>22
 20. cos-11 - 13>22  21. sin1 tan-1 132
 22. tan3sin-112>32 4
 23. cos-13cos1 -p>42 4  24. tan-13 tan12p>32 4
 25. cos3 tan-11 -52 4  26. sec3cos-11 -0.52 4
 27. cos12 sin-1 12  28. sin12 tan-1 22
In Exercises 29–32, find the exact value of x.

29. tan-1 x = sin-1 25 30. cot-1 x = cos-1 13
31. sec-1 x = -sin-11 -1

22  32. sin-1 x = - tan-11 -12

In Exercises 33–40, use a calculator to evaluate the given expressions.

33. tan-11 -3.73212  34. cos-11 -0.65612
35. sin-1 0.0219 36. tan-1 0.2846

37. tan3cos-11 -0.62812 4  38. cos3 tan-11 -7.22562 4
 39. sin3 tan-11 -0.22972 4  40. tan3sin-11 -0.30192 4
In Exercises 41–46, solve the given equations for x.

 41. y = sin 3x 42. y = cos12x - p2
 43. y = tan -11x>42  44. y = 2 sin-11x>62
 45. 1 - y = cos-111 - x2  46. 2y = cot -1 3x - 5

In Exercises 47–54, find an algebraic expression for each of the given 
expressions.

47. tan1sin-1 x2  48. sin1cos-1 x2
49. sin1sin-1 x + cos-1 y2  50. cos1sin-1 x - cos-1 y2
51. sec1csc -1 3x2  52. tan1sin-1 2x2
53. sin12 sin-1 x2  54. cos12 tan-1 x2
In Exercises 55–60, solve the given problems with the use of the inverse 
trigonometric functions.

55. Is sin-11sin x2 = x for all x? Explain.

56. Show that the area A of a segment of a circle of radius r, bounded 
by a chord at a distance d from the centre, is given by 
A = r2cos-11d>r2 - d2r2 - d2.

57. In the analysis of ocean tides, the equation y = A cos 21vt + f2  
is used. Solve for t.
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B

A

c a

Fig. 20.34 

ac

A

Fig. 20.31

a

bA

B

Fig. 20.32

58. For an object of weight w on an inclined plane that is at an angle u to 
the horizontal, the equation relating w and u is mw cos u = w sin u, 
where m is the coefficient of friction between the surfaces in contact. 
Solve for u.

59. The electric current in a certain circuit is given by 
i = Im3sin1vt + a2cos f + cos1vt + a2sin f4 . Solve for t.

60. The time t as a function of the displacement d of a piston is given 

by t =
1

2pf
  cos-1 

d
A

. Solve for d.

In Exercises 61 and 62, prove that the given expressions are equal. 
Use the relation for sin1a + b2  and show that the sine of the sum of 
the angles on the left equals the sine of the angle on the right.

61. sin-1 
3
5

+ sin-1 
5
13

= sin-1 
56
65

62. tan-1 
1
3

+ tan-1 
1
2

=
p

4

In Exercises 63–66, evaluate the given expressions.

63. sin-1 0.5 + cos-1 0.5 64. tan-1 13 + cot-1 13

65. sin-1 x + sin-11 -x2  66. sin-1 x + cos-1 x

In Exercises 67–70, solve for the angle A for the given triangles in the 
given figures in terms of the given sides and angles.

67.  68. 

In Exercises 71–74, solve the given problems.

71. The Terry Fox monument in Thunder Bay, Ontario, is a 2.7-m 
bronze statue that stands on a granite base. From a point at a hori-
zontal distance d from the monument, the angles of elevation of 
the top of the statue and the top of the base are a and b, respec-
tively. Show that

  a =  tan -1a2.7
d

+ tan bb .

72. Explain why sin-1 2x is not equal to 2 sin-1 x.

73. If a TV camera is x m from a launch pad of a 50-m rocket that 
is y m above the ground, find an expression for u, the angle sub-
tended by the rocket at the camera lens.

74. Show that the length L of the pulley belt shown in Fig. 20.35 is 

L = 24 + 11p + 10 sin-1 
5
13

.

A B
a b

Fig. 20.33 

69. 70.

8 cm

13 cm

3 cm

Fig. 20.35

Answers to Practice Exercises

1. -p>6  2. 13>2

 CHAPTER 20   EQUATIONS

Basic  
trigonometric  
identities

sin u =
1

csc u
 (20.1)

cos u =
1

 sec u
 (20.2)

tan u =
1

 cot u
 (20.3)

tan u =
sin u
cos u

 (20.4)

cot u =
cos u
sin u

 (20.5)

sin2 u + cos2 u = 1 (20.6)

1 + tan2 u = sec2 u (20.7)

1 + cot2 u = csc2 u (20.8)

Sum and difference identities sin1a + b2 = sin a cos b + cos a sin b (20.9)
 cos1a + b2 = cos a cos b - sin a sin b (20.10)
 sin1a - b2 = sin a cos b - cos a sin b (20.11)
 cos1a - b2 = cos a cos b + sin a sin b (20.12)

 tan1a { b2 =
tan a { tan b

1 | tan a tan b
 (20.13)
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Double-angle formulas  sin 2a = 2 sin a cos a  (20.21)
  cos 2a = cos2 a - sin2 a (20.22)
  = 2 cos2 a - 1 (20.23)
  = 1 - 2 sin2 a  (20.24)

  tan 2a =
2 tan a

1 - tan2 a
 (20.25)

Half-angle formulas sin 
a

2
= {A1 - cos a

2
 (20.26)

 cos 
a

2
= {A1 + cos a

2
 (20.27)

Inverse trigonometric functions y = sin-1 x a-p

2
… y … p

2
b  (20.28)

-p

2
… sin-1 x … p

2
  0 … cos-1 x … p  -p

2
6 tan-1 x 6 p

2
  0 6 cot-1 x 6 p

 0 … sec-1 x … p  asec-1 x ≠
p

2
b   -p

2
… csc -1 x … p

2
  1csc -1 x ≠ 0) (20.29)

 CHAPTER 20   REVIEW EXERCISES

In Exercises 1–8, determine the values of the indicated functions in 
the given manner.

 1. Find sin 120° by using 120° = 90° + 30°.
 2. Find cos 30° by using 30° = 90° - 60°.
 3. Find sin 315° by using 315° = 360° - 45°.
 4. Find tan 5p4  by using 5p4 = p + p

4 .

 5. Find cos p by using p = 2 1p2 2 .

 6. Find sin 180° by using 180° = 2190°2 .

 7. Find tan 60° by using 60° = 2130°2 .

 8. Find cos 45° by using 45° = 1
2 190°2 .

In Exercises 9–16, simplify the given expressions by using one of the 
basic formulas of the chapter. Then use a calculator to verify the re-
sult by finding the value of the original expression and the value of the 
simplified expression.

 9. sin 14° cos 38° + cos 14° sin 38°
 10. cos2 148° - sin2 148°
 11. 2 sin p12 cos p12 12. 1 - 2 sin2  p8
 13. cos 73° cos 1 -142°2 + sin 73° sin 1 -142°2
 14. cos 3° cos 215° - sin 3° sin 215°

 15. 
4 tan 12°

1 - tan2 12°
 16. A1 - cos 166°

2

In Exercises 17–24, simplify each of the given expressions. Expansion 
of any term is not necessary; recognition of the proper form leads to 
the proper result.

17. sin 2x cos 3x + cos 2x sin 3x

18. cos 7x cos 3x + sin 7x sin 3x

19. 8 sin 6x cos 6x 20. 
tan x + tan 2x 

1 - tan x tan 2x 

 21. 2 - 4 sin2 6x 22. cos2 2x - sin2 2x

 23. 12 + 2cos 2x 24. 132 - 32 cos 4x

In Exercises 25–32, evaluate the given expressions.

25. sin-11 -12  26. sec-1 12 

27. cos-1 0.9659 28. tan-11 -6.2492
29. tan3sin-11 -0.52 4  30. cos3 tan-11 - 132 4
31. sin-13sin17p>62 4  32. cos-13 tan1 -p>42 4
In Exercises 33–36, simplify the given expressions.

33. 
sec y

cos y
 -  

tan y

cot y
 34. 

sin 2u
2 csc u

 - cos3 u

35. sin x 1csc x - sin x2  36. cos y 1sec y - cos y2
In Exercises 37–44, prove the given identities.

37. 
sec4 x - 1

tan2 x
= 2 + tan2 x

38. cos2 y - sin2 y =
1 - tan2 y

1 + tan2 y

39. 2 csc 2x cot x = 1 + cot2 x

40. sin x cot2 x = csc x - sin x

41. 
1 - sin2 u

1 - cos2 u
= cot 2 u 42. 

cos 2u

cos2 u
= 1 - tan2 u
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 79. sin x cos x - 1 = cos x - sin x

 80. 2 tan x = sin 2x sec2 x

In Exercises 81–84, solve the given equations graphically.

 81. x + ln x - 3 cos2 x = 2

 82. esin x - 2 = x cos2 x

 83. 2 tan-1 x + x2 = 3

 84. 3 sin-1 x = 6 sin x + 1

In Exercises 85–90, find an algebraic expression for each of the given 
expressions.

 85. tan1cot-1 x2  86. cos1csc-1 x2
 87. sin12 cos-1 x2  88. cos1p - tan-1 x2
 89. cos1sin-1 x + tan-1 y2  90. sin1cos-1 x - tan-1 y2
In Exercises 91–94, use the given substitutions to show that the equa-
tions are valid for 0 … u 6 p>2.

 91. If x = 2 cos u, show that 24 - x2 = 2 sin u.

 92. If x = 2  sec u, show that 2x2 - 4 = 2 tan u.

 93. If x = tan u, show that 
x21 + x2

= sin u.

 94. If x = cos u, show that 
21 - x2

x
= tan u.

In Exercises 95–114, use the methods and formulas of this chapter to 
solve the given problems.

 95. Prove 1cos u + j sin u22 = cos 2u + j sin 2u 1 j = 1-12 .

 96. Prove 1cos u + j sin u23 = cos 3u + j sin 3u 1 j = 1-12 .

 97. Solve the inequality sin 2x 7 2 cos x for 0 … x 6 2p.

 98. Show that 1cos 2a + sin2 a2sec2 a has a constant value.

 99. Show that y = A sin 2t + B cos 2t may be written as 
y = C sin12t + a2 , where C = 2A2 + B2 and tan a = B>A. 
(Hint: Let A>C = cos a and B>C = sin a.)

100. In a right triangle with sides a and b and hypotenuse c, show that 
sin1A>22 = 11c - b2 >2c, where angle A is opposite a.

101. Forces A and B act on a bolt such that A makes an angle u with the 
x-axis and B makes an angle u with the y-axis as shown in Fig. 
20.36. The resultant R has components Rx = A cos u - B sin u 
and Ry = A sin u + B cos u. Using these components, show that 
R = 2A2 + B2.

43. sin 
u

2
 cos 

u

2
 =  

sin u
2

44. cos1x - y2cos y - sin1x - y2sin y = cos x

In Exercises 45–52, simplify the given expressions. The result will be 
one of sin x, cos x, tan x, cot x, sec x, or csc x.

45. 
sec x
sin x

- sec x sin x 46. cos x cot x + sin x

47. sin x tan x + cos x 48. 
tan x csc x

sin x
- cot x

49. 
sin x cot x + cos x

2 cot x
 50. 

1 + cos 2x
2 cos x

51. 
sin 2x sec x

2
 52. 1sec x + tan x211 - sin x2

In Exercises 53–60, verify each identity by comparing the graph of 
the left side with the graph of the right side on a graphing calculator.

53. 
cos u - sin u
cos u + sin u

=
 cot u - 1
 cot u + 1

54. sin 3y cos 2y - cos 3y sin 2y = sin y

55. sin 4x1cos2 2x - sin2 2x2 =
sin 8x

2

56. csc 2x + cot 2x = cot x

57. 
sin x

csc x - cot x
= 1 + cos x

58. cos x - sin 
x
2

= a1 - 2 sin 
x
2
b a1 + sin 

x
2
b

59. tan 
a

2
= csc a -  cot a

60.  sec 
x
2

+ csc 
x
2

=
21sin x2 + cos x22

sin x

In Exercises 61–64, solve for x.

61. y = 2 cos 2x 62. y - 2 = 2 tanax - p

2
b

63. y =
p

4
- 3 sin-1 5x 64. 2y = sec-1 4x - 2

In Exercises 65–76, solve the given equations for x 10 … x 6 2p2 .

65. 31 tan x - 22 = 1 + tan x

66. 5 sin x = 3 - 1sin x + 22
67. 211 - 2 sin2 x2 = 1 68. sec x = 2 tan2 x

69. 2 sin2 u + 3 cos u - 3 = 0 70. 2 sin 2x + 1 = 0

71. sin x = sin x2 72. cos 2x = sin1 -x2
73. sin 2x = cos 3x

74. cos 3x cos x + sin 3x sin x = 0

75. sin2ax
2
b - cos x + 1 = 0

76. sin x + cos x = 1

In Exercises 77–80, determine whether the equality is an identity or 
an equation. If it is an identity, prove it. If it is an equation, solve it for 
0 … x 6 2p.

77. tan x + cot x = csc x sec x

78. tan x - sin2 x = cos2 x - sec2 x

Bolt0

B

A

R
y

x

u

u

Fig. 20.36

102. For a certain alternating-current generator, the expression 
I cos u + I cos1u + 2p>32 + I cos1u + 4p>32  arises. Sim-
plify this expression.
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111. A roof truss is in the shape of an isosceles triangle of height 3.2 m. 
If the total length of the three members is 25.6 m, what is the 
length of a rafter? Solve by setting up and solving an appropriate 
trigonometric equation. (The Pythagorean theorem may be used 
only as a check.)

112. The angle of elevation of the top of the Peace Tower on 
Parliament Hill in Ottawa from a point on level ground 77 m 
from the tower is twice the angle of elevation of the top from a 
point 120 m farther away. Find the height of the Peace Tower.

113. If a plane surface inclined at angle u moves horizontally, the an-
gle for which the lifting force of the air is a maximum is found 
by solving the equation 2 sin u cos2 u - sin3 u = 0, where 
0 6 u 6 90°. Solve for u.

114. To determine the angle between two sections of a certain robot 
arm, the equation 1.20 cos u + 0.135 cos 2u = 0 is to be 
solved. Find the required angle u if 0° 6 u 6 180°.

Writing Exercise
115. In checking the angles of a section of a bridge support, an engi-

neer finds the expression cos12 sin-1 0.402 . Write a paragraph 
explaining how the value of this expression can be found with-
out the use of a calculator.

103. Some comets follow a parabolic path that can be described by 
the equation r = 1k>22csc21u>22 , where r is the distance to 
the sun and k is a constant. Show that this equation can be writ-
ten as r = k> 11 - cos u2 .

104. In studying the interference of light waves, the identity 
sin 32 x

sin 12 x
  sin x = sin x + sin 2x is used. Prove this identity. 1Hint: sin 32 x = sin1x + 1

2 x2 .2
105. In the study of chemical spectroscopy, the equation 

vt = sin-1 
u - a

R
 arises. Solve for u.

106. The power P in a certain electric circuit is given by 
P = 2.53cos a sin1vt + f2 - sin a cos1vt + f24 . Solve for t.

107. In surveying, when determining an azimuth (a measure used for 
reference purposes), it might be necessary to simplify the ex-
pression 12 cos a cos b2-1 - tan a tan b. Perform this opera-
tion by expressing it in the simplest possible form when a = b.

108. In analysing the motion of an automobile universal joint, the 
equation sec2 A - sin2 B tan2 A = sec2 C is used. Show that 
this equation is true if tan A cos B = tan C.

109. The instantaneous power P in a certain electric circuit is given 
by P = VI cos f cos2 vt - VI sin f cos vt sin vt. Simplify this 
expression.

110. In studying waveforms, a sawtooth wave may often be approxi-
mated by y = sin px + 1

2 sin 2px + 1
3 sin 3px. For what values 

of x, 0 … x 6 2, is the sum of the first two terms equal to zero?

 CHAPTER 20   PRACTICE TEST

 1. Prove that sec u - tan u
csc u

= cos u.

 2. Solve for x 10 … x 6 2p2  analytically, using trigonometric 
relations where necessary: sin 2x + sin x = 0.

 3. Find an algebraic expression for cos1sin-1 x2 .

 4. The electric current as a function of the time for a particular cir-
cuit is given by i = 8.00e-20t11.73 cos 10.0t - sin 10.0t2 . Find 
the time (in s) when the current is first zero.

 5. Prove that 
tan a + tan b

tan a - tan b
=

sin1a + b2
sin1a - b2 .

 6. Prove that cot2 x - cos2 x = cot2 x cos2 x.

 7. Find cos 12x if sin x = -3
5 and 270° 6 x 6 360°.

 8. The intensity of a certain type of polarized light is given by 
I = I0 sin 2u cos 2u. Solve for u.

 9. Solve graphically: x - 2 cos x = 5.

10. Find the exact value of x: cos-1 x = - tan-11 -12 .
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 In Section 21.4, we show an important application of analytic geometry in the design 
of a TV satellite dish.

21
LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Find the distance between two 
points in the coordinate plane

 Find the slope and the 
inclination of a line

 Understand the relationship 
between the slopes of parallel 
and perpendicular lines

 Determine the equation 
and properties of a circle, a 
parabola, an ellipse, and a 
hyperbola

 Sketch the graph of a line, a 
circle, a parabola, an ellipse, or 
a hyperbola

 Find the equation of a conic 
from the definition of its locus

 Identify the conic section from 
the general second-degree 
equation

 Recognize conic sections as 
intersections of planes and 
cones

 Obtain a new coordinate 
system by translation and/or 
rotation of axes

 Convert from rectangular 
coordinates to polar 
coordinates and vice versa

 Graph functions in polar 
coordinates

 Use algebra to solve geometric 
problems

 Solve application problems 
involving lines, conics, and 
polar coordinates

T he development of geometry made little progress from the time of the ancient Greeks 
until the 1600s. Then in the 1630s, two French mathematicians, Rene Descartes and 
Pierre de Fermat, independently introduced algebra into the study of geometry. Each 

used algebraic notation and a coordinate system, and this allowed them to analyse the proper-
ties of curves. Fermat briefly indicated his methods in a letter he wrote in 1636. However, in 
1637 Descartes included a much more complete work as an appendix to his Discourse on 
Method, and he is therefore now considered the founder of analytic geometry.

At the time, it was known, for example, that a projectile follows a parabolic path and that the 
orbits of the planets are ellipses. There was a renewed interest in curves of various kinds be-
cause of their applications. However, Descartes was primarily interested in studying the rela-
tionship of algebra to geometry. In doing so, he started the development of analytic geometry, 
which has many applications and also was very important in the invention of calculus that 
came soon thereafter. In turn, through these advances in mathematics, many more areas of 
science and technology were able to be developed.

The underlying principle of analytic geometry is the relationship of an algebraic equation and 
the geometric properties of the curve that represents the equation. In this chapter, we develop 
equations for a number of important curves and find their properties through an analysis of 
their equations. Most important among these curves are the conic sections, which we briefly 
introduced in Chapter 14.

As we have noted, analytic geometry has applications in the study of projectile motion and 
planetary orbits. Other important applications range from the design of gears, airplane wings, 
and automobile headlights to the construction of bridges and nuclear towers.

Plane Analytic 
Geometry
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 21.1 Basic Definitions
 As we have noted, analytic geometry deals with the relationship between an algebraic 

equation and the geometric curve it represents. In this section, we develop certain basic 
concepts that will be needed for future use in establishing the proper relationships 
between an equation and a curve.

THE DISTANCE FORMULA
The first of these concepts involves the distance between any two points in the coordi-
nate plane. If these points lie on a line parallel to the x-axis, the distance from the first 
point 1x1, y2  to the second point 1x2, y2  is 0 x2 - x1 0 . The absolute value is used since 
we are interested only in the magnitude of the distance. Therefore, we could also 
denote the distance as 0 x1 - x2 0 . Similarly, the distance between two points 1x, y12  
and 1x, y22  that lie on a line parallel to the y-axis is 0 y2 - y1 0  or 0 y1 - y2 0 .
 EXAMPLE  1  Distance between points that share one coordinate

The line segment joining A1 -1, 52  and B1 -4, 52  in Fig. 21.1 is parallel to the x-axis. 
Therefore, the distance between these points is

d = 0 -4 - 1 -12 0 = 3 or d = 0 -1 - 1 -42 0 = 3

Also, in Fig. 21.1, the line segment joining C12, -32  and D12, 62  is parallel to the 
y-axis. The distance d between these points is

d = 0 6 - 1 -32 0 = 9 or d = 0 -3 - 6 0 = 9 ■

We now wish to find the length of a line segment joining any two points in the 
plane. If these points are on a line that is not parallel to either axis (see Fig. 21.2), we 
use the Pythagorean theorem to find the distance between them. By making a right  
triangle with the line segment joining the points as the hypotenuse and line segments 
parallel to the axes as legs, we have the distance formula, which gives the distance 
between any two points in the plane. This formula is

d = 21x2 - x122 + 1y2 - y122  (21.1)

Here, we choose the positive square root since we are concerned only with the magni-
tude of the length of the line segment.

 EXAMPLE  2  Distance formula

The distance between 13, -12  and 1 -2, -52  is given by

 d = 23 1 -22 - 342 + 3 1 -52 - 1 -12 42

 = 21 -522 + 1 -422 = 125 + 16

 = 141 = 6.40

See Fig. 21.3. ■

Another important quantity for a line is its slope, which we defined in Chapter 5. Here, 
we review its definition and develop its meaning in more detail.

The slope of a line through two points is defined as the difference in the y-coordinates 
(rise) divided by the difference in the x-coordinates (run). Therefore, the slope,  

1.  Find the distance between  1 -2, 62  and 15, -32 .

In Eq. (21.1), it makes no difference 
which point is chosen as 1x1,  y1 2  and 
which is chosen as 1x2,  y2 2 , since the 
differences in the x-coordinates and 
the y-coordinates are squared. For 
instance, in Example 2, we obtain the 
same value for the distance when we 
calculate it as

 d = 233 - 1-2242 + 31-12 - 1 -5242

 = 252 + 42 = 141 = 6.40

LEARNING T IP
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m, which gives a measure of the direction of a line, is defined as

m =
y2 - y1

x2 - x1
 (21.2)

See Fig. 21.4. ■

 EXAMPLE  3  Slope of a line

The slope of a line through 13, -52  and 1 -2, -62  is

m =
-6 - 1 -52

-2 - 3
=

-6 + 5
-5

=
1
5

See Fig. 21.5. Again, we may interpret either of the points as 1x1, y12  and the other as 1x2, y22 . We can also obtain the slope of this same line from

m =
-5 - 1 -62
3 - 1 -22 =

1
5

 ■

 EXAMPLE  4  Magnitude and sign of the slope

(a) The line in Example 3 has a positive slope, which is numerically small. From 
Fig. 21.5, it can be seen that the line rises slightly to the right.

(b) The line joining 13, 42  and 14, -62  has a slope of

m =
4 - 1 -62

3 - 4
= -10 or  m =

-6 - 4
4 - 3

= -10

This line falls sharply to the right, as shown in Fig. 21.6. ■

Again, in Eq. (21.2) we may interpret 
either of the points as 1x1, y12  and 
the other as 1x2, y22 , although we 
must be careful to place the y2 - y1 
in the numerator and x2 - x1 in the 
denominator. 

When the line is horizontal, 
y2 - y1 = 0 and m = 0. When the line 
is vertical, x2 - x1 = 0, and the slope 
is undefined.

LEARNING T IP

The larger the numerical value of the 
slope of a line, the more nearly verti-
cal is the line. Also, a line rising to 
the right has a positive slope, and a 
line falling to the right has a nega-
tive slope.

LEARNING T IP
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If a given line is extended indefinitely in either direction, it must cross the x-axis at 
some point unless it is parallel to the x-axis. The angle measured from the x-axis in a 
positive direction to the line is called the inclination of the line (see Fig. 21.7). The 
inclination of a line parallel to the x-axis is defined to be zero. An alternate definition of 
slope, in terms of the inclination a, is

m = tan a 10° … a 6 180°2  (21.3)

Since the slope can be defined in terms of any two points on the line, we can choose the 
x-intercept and any other point. Therefore, from the definition of the tangent of an 
angle, we see that Eq. (21.3) is in agreement with Eq. (21.2).

Fig. 21.7 
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 EXAMPLE  5  Inclination of a line

(a) The slope of a line with an inclination of 45° is

m = tan 45° = 1.00

(b) If a line has a slope of -1.73, we know that tan a = -1.73. Since tan a is  
negative, a must be a second-quadrant angle. The reference angle is 
 tan -11.73 = 60∘, and therefore a = 180° - 60° = 120°. See Fig. 21.8.

We see that if the inclination is an acute angle, the slope is positive and the line rises 
to the right. If the inclination is negative, the slope is negative and the line falls to the 
right. ■

Any two parallel lines crossing the x-axis have the same inclination. Therefore, as 
shown in Fig. 21.9, the slopes of parallel lines are equal. This can be stated as

m1 = m2   (for } lines) (21.4)

If two lines are perpendicular, this means that there must be 90° between their incli-
nations (Fig. 21.10). The relation between their inclinations is

 a2 = a1 + 90°
 90° - a2 = -a1

If neither line is vertical (the slope of a vertical line is undefined) and we take the tan-
gent in this last relation, we have

tan190° - a22 = tan1 -a12
or

 cot a2 = - tan a1

since a function of the complement of an angle equals the cofunction of that angle (see 
page 128) and since tan1 -a2 = - tan a (see page 247). But cot a = 1>tan a, which 
means 1>tan a2 = - tan a1. Using the inclination definition of slope, we have as the 
relation between slopes of perpendicular lines,

m2 = - 1
m1

 or m1m2 = -1   for # lines (21.5)

 EXAMPLE  6  

The line through 13, -52  and 12, -72  has a slope of

m1 =
-5 + 7
3 - 2

= 2

The line through 14, -62  and 12, -52  has a slope of

m2 =
-6 - 1 -52

4 - 2
= - 1

2

Since the slopes of the two lines are negative reciprocals, we know that the lines are 
perpendicular. See Fig. 21.11. ■

2.  What is the slope of a line perpendicular 
to the line through 1 -1, 62  and 1 -3, -32?
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Using the formulas for distance and slope, we can show certain basic geometric rela-
tionships. The following examples illustrate the use of the formulas and thereby show 
the use of algebra in solving problems that are basically geometric. They illustrate the 
methods of analytic geometry.

 EXAMPLE  7  Use of algebra in geometric problems

(a) Show that the line segments joining A1 -5, 32 , B16, 02 , and C15, 52  form a 
right triangle. See Fig. 21.12.

If these points are vertices of a right triangle, the slopes of two of the sides 
must be negative reciprocals. This would show perpendicularity. These slopes are

mAB =
3 - 0

-5 - 6
= - 3

11
  mAC =

3 - 5
-5 - 5

=
1
5

  mBC =
0 - 5
6 - 5

= -5

We see that the slopes of AC and BC are negative reciprocals, which means 
AC # BC. From this we conclude that the triangle is a right triangle.

(b) Find the area of the triangle in part (a). See Fig. 21.13.
Since the right angle is at C, the legs of the triangle are AC and BC. The area 

is one-half the product of the lengths of the legs of a right triangle. The lengths 
of the legs are

 dAC = 21 -5 - 522 + 13 - 522 = 2104 = 2226

 dBC = 216 - 522 + 10 - 522 = 226

Therefore, the area is A = 1
2 121262 11262 = 26. ■

EXERCISES 21.1

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 2, change 1 -2, -52  to 1 -2, 52 .

 2. In Example 3, change 13, -52  to 1 -3, -52 .

 3. In Example 5(b), change -1.73 to -0.577.

 4. In Example 7(a), change B16, 02  to B1 -4, -22 .

In Exercises 5–14, find the distance between the given pairs of points.

 5. 13, 82  and 1 -1, -22  6. 1 -1, 32  and 1 -8, -42
 7. 14, -52  and 14, -82  8. 1 -3, 72  and 12, 102
 9. 1 -12, 202  and 132, -132  10. 123, -92  and 1 -25, 112
 11. 1132, - 1182  and 1 - 150, 182
 12. 1e, -p2  and 1 -2e, -p2
 13. 11.22, -3.452  and 1 -1.07, -5.162
 14. 1a, h22  and 1a + h, 1a + h222
In Exercises 15–24, find the slopes of the lines through the points in 
Exercises 5–14.

In Exercises 25–28, find the slopes of the lines with the given 
inclinations.

 25. 30°
 26. 62.5°
 27. 163°
 28. 93.5°

In Exercises 29–32, find the inclinations of the lines with the given 
slopes.

 29. 0.364 30. 0.824

 31. -6.69 32. -0.721

In Exercises 33–36, determine whether the lines through the two pairs 
of points are parallel or perpendicular.

 33. 16, -12  and 14, 32 ; 1 -5, 22  and 1 -7, 62
 34. 1 -3, 92  and 14, 42 ; 19, -12  and 14, -82
 35. 1 -1, -42  and 12, 32 ; 1 -5, 22  and 1 -19, 82
 36. 1 -a, -2b2  and 13a, 6b2 ; 12a, -6b2  and 15a, 02
In Exercises 37– 40, determine the value of k.

 37. The distance between 1 -1, 32  and 111, k2  is 13.

 38. The distance between 1k, 02  and 10, 2k2  is 10.

 39. Points 16, -12 , 13, k2 , and 1 -3, -72  are on the same line.

 40. The points in Exercise 39 are the vertices of a right triangle, with 
the right angle at 13, k2 .

In Exercises 41–44, show that the given points are vertices of the 
given geometric figures.

 41. 12, 32 , 14, 92 , and 1 -2, 72  are the vertices of an isosceles triangle.

 42. 1 -1, 32 , 13, 52 , and 15, 12  are the vertices of a right triangle.
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 43. 1 -5, -42 , 17, 12 , 110, 52 , and 1 -2, 0) are the vertices of a 
parallelogram.

 44. 1 -5, 62 , 10, 82 , 1 -3, 12 , and 12, 32  are the vertices of a square.

In Exercises 45–48, find the indicated areas and perimeters.

 45. Find the area of the triangle in Exercise 42.

 46. Find the area of the square in Exercise 44.

 47. Find the perimeter of the triangle in Exercise 41.

 48. Find the perimeter of the parallelogram in Exercise 43.

In Exercises 49–52, use the following definition to find the midpoints 
between the given points on a straight line.

  The midpoint between points 1x1, y12  and 1x2, y22  on a straight 
line is the point ax1 + x2

2
, 

y1 + y2

2
b

 49. 1 -4, 92  and 16, 12  50. 1 -1, 62  and 1 -13, -82
 51. 1 -12.4, 25.72  and 16.8, -17.32
 52. 12.6, 5.32  and 1 -4.2, -2.72
In Exercises 53–62, solve the given problems.

 53. Find the relation between x and y such that 1x, y2  is always  
3 units from the origin.

 54. Find the relation between x and y such that 1x, y2  is always equi-
distant from the y-axis and 12, 02 .

 55. Show that the diagonals of a square are perpendicular to each 
other. (Hint: Use 10, 02 , 1a, 02 , and 10, a2  as three of the 
vertices.)

 56. The centre of a circle is 12, -32 , and one end of a diameter is 1 -1, 22 . What are the coordinates of the other end of the 
diameter?

 57. A line segment has a slope of 3 and one endpoint at 1 -2, 52 . If 
the other endpoint is on the x-axis, what are its coordinates?

 58. The points 1 -1, 32 , 15, x2 , and 12, 42  are collinear (on the 
same line). Find x.

 59. Find the coordinates of the point on the y-axis that is equidistant 
from 1 -3, -52  and 12, 42 .

 60. The points 1 -6, 22 , 15, -12 , and 1a, a2  1a 7 02  are vertices 
of a right triangle, with the right angle at 1a, a2 . Find a.

 61. An equilateral triangle has one vertex at the origin, another vertex 
on the x-axis, and the third vertex in the first quadrant. Find the 
slopes of the sides of the triangle.

 62. A person is working out on a treadmill inclined at 12, (the slope 
of the treadmill expressed in percent). What is the angle between 
the treadmill and the horizontal?

Answers to Practice Exercises

1. d = 1130 = 11.4  2. m = -2>9

 21.2 The Straight Line
 

 
 

General Form of Equation

In Chapter 5, we derived the slope-intercept form of the equation of the straight line. 
Here, we extend the development to include other forms of the equation of a straight 
line. Also, other methods of finding and applying these equations are shown. For com-
pleteness, we review some of the material in Chapter 5.

Using the definition of slope, we can derive the general type of equation that repre-
sents a straight line. This is another basic method of analytic geometry. That is, equa-
tions of a particular form can be shown to represent a particular type of curve. When 
we recognize the form of the equation, we know the kind of curve it represents. As we 
have seen, this is of great assistance in sketching the graph.

A straight line can be defined as a curve with a constant slope. This means that the 
value for the slope is the same for any two different points on the line that might be 
chosen. Thus, considering point 1x1, y12  on a line to be fixed (Fig. 21.14) and another 
point P1x, y2  that represents any other point on the line, we have

m =
y - y1

x - x1

which can be written as

y - y1 = m1x - x12  (21.6)

Eq. (21.6) is the point-slope form of the equation of a straight line. It is useful when 
we know the slope of a line and some point through which the line passes.

Fig. 21.14 
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 EXAMPLE  1  

Find the equation of the line that passes through 1 -4, 12  with a slope of -1>2. See 
Fig. 21.15.

Substituting in Eq. (21.6), we find that

y - 1 = 1 -1
22 3x - 1 -42 4

Simplifying, we have

 2y - 2 = -x - 4

 2y + x + 2 = 0 ■

 EXAMPLE  2  

Find the equation of the line through 12, -12  and 16, 22 .
We first find the slope of the line through these points:

m =
2 + 1
6 - 2

=
3
4

Then by using either of the two known points and Eq. (21.6), we can find the equation 
of the line (see Fig. 21.16):

 y - 1 -12 =
3
4

 1x - 22
 4y + 4 = 3x - 6

 4y - 3x + 10 = 0  ■

Eq. (21.6) can be used for any line except for one parallel to the y-axis. Such a line has 
an undefined slope. However, it does have the property that all points on it have the same 
x-coordinate, regardless of the y-coordinate. We represent a line parallel to the y-axis as

x = a   see Fig. 21.17 (21.7)

A line parallel to the x-axis has a slope of zero. From Eq. (21.6), we find its equation is 
y = y1. To keep the same form as Eq. (21.7), we write this as

y = b   see Fig. 21.18 (21.8)

 EXAMPLE  3  

(a) The line x = 2 is a line parallel to the y-axis and 2 units to the right of it. This 
line is shown in Fig. 21.19.
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(b) The line y = -4 is a line parallel to the x-axis and 4 units below it. This line is 
shown in Fig. 21.20. ■

1.  Find the equation of the straight line that 
passes through 1 -5, 22  and 1 -1, -62 .



 21.2 The Straight Line  569

If we choose the special point 10, b2 , which is the y-intercept of the line, as the 
point to use in Eq. (21.6), we have y - b = m1x - 02 , or

y = mx + b  (21.9)

Eq. (21.9) is the slope-intercept form of the equation of a straight line, and we first 
derived it in Chapter 5. Its primary usefulness lies in the fact that once we find the 
equation of a line and then write it in slope-intercept form, we know that the slope of 
the line is the coefficient of the x-term and that it crosses the y-axis at the coordinate 
indicated by the constant term. See Fig. 21.21.

 EXAMPLE  4  Slope-intercept form

Find the slope and the y-intercept of the straight line for which the equation is 
2y + 4x - 5 = 0.

We write this equation in slope-intercept form:

2y = -4x + 5
slope

y = -2x + 5
2

  

y-coordinate of intercept

Since the coefficient of x in this form is -2, the slope is -2. The constant on the right 
is 5>2, which means that the y-intercept is 10, 5>22 . See Fig. 21.22. ■

 EXAMPLE  5  Straight line—application

The pressure p0 at the surface of a body of water (due to the atmosphere) is 101 kPa. 
The pressure p at a depth of 10.0 m is 199 kPa. In general, the pressure difference 
p - p0 below the surface varies directly as the depth h. Find the equation of p as a 
function of h, and sketch its graph.

The solution is as follows:

 p - p0 = kh direct variation

 199 - 101 = k110.02 substitute given values

 k = 9.80 kPa>m

 p - 101 = 9.80h substitute in first equation

 p = 9.80h + 101

We see that this is the equation of a straight line. The slope is 9.80, and the p-intercept 
is 10, 1012 . Negative values do not have any physical meaning. The graph is shown in 
Fig. 21.23. ■

From Eqs. (21.6) and (21.9), and from the examples of this section, we see that the 
equation of the straight line has certain characteristics: We have a term in y, a term in x, 
and a constant term if we simplify as much as possible. This form is represented by the 
equation

Ax + By + C = 0  (21.10)

which is known as the general form of the equation of the straight line. We saw this 
form before in Chapter 5. Now we have shown why it represents a straight line.
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EXAMPLE  6  

Find the general form of the equation of the line parallel to the line 3x + 2y - 6 = 0 
and that passes through the point 1 -1, 22 .

Since the line whose equation we want is parallel to the line 3x + 2y - 6 = 0, it 
has the same slope. Thus, writing 3x + 2y - 6 = 0 in slope-intercept form,

 2y = -3x + 6  solving for y

 y = - 3
2

 x + 3

Since the slope of 3x + 2y - 6 = 0 is -3>2, the slope of the required line is also 
-3>2. Using m = -3>2, the point 1 -1, 22 , and the point-slope form, we have

 y - 2 = - 3
2

 1x + 12
 2y - 4 = -31x + 12

 3x + 2y - 1 = 0

This is the general form of the equation. Both lines are shown in Fig. 21.24. ■

In many physical situations, a linear relationship exists between variables. A few 
examples of this are (1) the distance travelled by an object and the elapsed time, when 
the velocity is constant, (2) the amount a spring stretches and the force applied, (3) the 
change in electric resistance and the change in temperature, (4) the force applied to an 
object and the resulting acceleration, and (5) the pressure at a certain point within a 
liquid and the depth of the point.

 EXAMPLE  7  Straight line—application

For a period of 6.0 s, the velocity v of a rocket varies linearly with the elapsed time t. If 
v = 40 m>s when t = 1.0 s and v = 55 m>s when t = 4.0 s, find the equation relat-
ing v and t and graph the function. From the graph, find the initial velocity and the 
velocity after 6.0 s. What is the meaning of the slope of the line?

With v as the dependent variable and t as the independent variable, the slope is

m =
v2 - v1

t2 - t1

Using the information given in the statement of the problem, we have

m =
55 - 40
4.0 - 1.0

= 5.0

Then using the point-slope form of the equation of a straight line, we have

 v - 40 = 5.01 t - 1.02
 v = 5.0t + 35

The given values are sufficient to graph the line in Fig. 21.25. There is no need to 
include negative values of t, since they have no physical meaning. We see that the line 
crosses the v-axis at 35. This means that the initial velocity (for t = 0) is 35 m>s. Also, 
when t = 6.0 s, we see that v = 65 m>s.

The slope is the ratio of the change in velocity to the change in time. This is the 
rocket’s acceleration. Here, the speed of the rocket increases 5.0 m>s each second. We 
can express this acceleration as 5.0 1m>s2 >s = 5.0 m>s2. ■
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2.  Write the general form of the equation of 
the straight line that passes through 10, -12  with a slope of 3.
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EXERCISES 21.2

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 1, change 1 -4, 12  to 14, -12 .

 2. In Example 2, change 12, -12  to 1 -2, 12 .

 3. In Example 4, change the +  before 4x to - .

 4. In Example 6, change the +  before 2y to - .

In Exercises 5–20, find the equation of each of the lines with the given 
properties. Sketch the graph of each line.

 5. Passes through 1 -3, 82  with a slope of 4.

 6. Passes through 1 -2, -12  with a slope of -2.

 7. Passes through 12, -52  and 14, 22 .

 8. Has an x-intercept 14, 02  and a y-intercept 10, -62 .

 9. Passes through 1 -7, 122  with an inclination of 45°.
 10. Has a y-intercept 10, -22  and an inclination of 120°.
 11. Passes through 15.3, -2.72  and is parallel to the x-axis.

 12. Passes through 1 -15, 92  and is perpendicular to the x-axis.

 13. Is parallel to the y-axis and is 3 units to the left of it.

 14. Is parallel to the x-axis and is 4.1 units below it.

 15. Perpendicular to line with slope of -3; passes through 11, -22 .

 16. Parallel to line through 1 -1, 72  and 13, 12 ; passes through 11, 22 .

 17. Has equal intercepts and passes through 15, 22 .

 18. Is perpendicular to the line 6.0x - 2.4y - 3.9 = 0 and passes 
through 17.5, -4.72 .

 19. Has a slope of -3 and passes through the intersection of the lines 
5x - y = 6 and x + y = 12.

 20. Passes through the point of intersection of 2x + y - 3 = 0 and 
x - y - 3 = 0 and through the point 14, -32 .

In Exercises 21–28, reduce the equations to slope-intercept form and 
find the slope and the y-intercept. Sketch each line.

 21. 4x - y = 8 22. 2x - 3y - 6 = 0

 23. 3x + 5y - 10 = 0 24. 4y = 6x - 9

 25. 3x - 2y - 1 = 0 26. 4x + 2y - 5 = 0

 27. 11.2x + 1.6 = 3.2y 28. 11.5x + 4.60y = 5.98

In Exercises 29–36, determine whether the given lines are parallel, 
perpendicular, or neither.

 29. 3x - 2y + 5 = 0 and 4y = 6x - 1

 30. 8x - 4y + 1 = 0 and 4x + 2y - 3 = 0

 31. 6x - 3y - 2 = 0 and x + 2y - 4 = 0

 32. 3y - 2x = 4 and 6x - 9y = 5

 33. 5x + 2y - 3 = 0 and 10y = 7 - 4x

 34. 48y - 36x = 71 and 52x = 17 - 39y

 35. 4.5x - 1.8y = 1.7 and 2.4x + 6.0y = 0.3

 36. 3.5y = 4.3 - 1.5x and 3.6x + 8.4y = 1.7

In Exercises 37–60, solve the given problems. Exercises 49–60 show 
some applications of straight lines.

 37. Find k if the lines 4x - ky = 6 and 6x + 3y + 2 = 0 are 
parallel.

 38. Find k if the lines given in Exercise 37 are perpendicular.

 39. Find k if the lines 3x - y = 9 and kx + 3y = 5 are perpendicu-
lar. Explain how this value is found.

 40. Find k such that the line through 1k, 22  and 13, 1 - k2  is per-
pendicular to the line x - 2y = 5. Explain your method.

 41. Find the slope of the line joining points on the graph of y = x2 
that have x-coordinates of -a and b 1a 7 0, b 7 02 .

 42. Show that the intercept form x
a + y

b = 1 is the equation of a line 
with x-intercept 1a, 02  and y-intercept (0, b).

 43. Find the distance from 14, 12  to the line 4x - 3y + 12 = 0.

 44. Find the acute angle between the lines x + y = 3 and 
2x - 5y = 4.

 45. Show that the following lines intersect to form a parallelogram. 
8x + 10y = 3; 2x - 3y = 5; 4x - 6y = -3; 5y + 4x = 1.

 46. For nonzero values of a, b, and c, find the intercepts of the line 
ax + by + c = 0.

 47. For nonzero values of a, b, c, and d, show that (a) lines 
ax + by + c = 0 and ax + by + d = 0 are parallel, and  
(b) lines ax + by + c = 0 and bx - ay + d = 0 are 
perpendicular.

 48. Find the equation of the line with positive intercepts that passes 
through (3, 2) and forms with the axes a triangle of area 12.

 49. In the 1700s, the French physicist Réaumur established a temper-
ature scale on which the freezing point of water was 0° and the 
boiling point was 80°. Set up an equation for the Celsius tempera-
ture T  (freezing point 0°, boiling point 100°) as a function of the 
Réaumur temperature R.

 50. The voltage V across part of an electric circuit is given by 
V = E - iR, where E is a battery voltage, i is the current, and R 
is the resistance. If E = 6.00 V and V = 4.35 V for i = 9.17 mA, 
find V as a function of i. Sketch the graph. (i and V may be 
negative.)

 51. The velocity of sound v increases 0.607 m>s for each increase in 
temperature T  of 1.00°C. If v = 343 m>s for T = 20.0°C, ex-
press v as a function of T .

 52. An acid solution is made from x litres of a 20, solution and y  
litres of a 30, solution. If the final solution contains 20 L of 
acid, find the equation relating x and y.

 53. A wall is 15 cm thick. At the outside, the temperature is 3°C, and 
at the inside, it is 23°C. If the temperature changes at a constant 
rate through the wall, write an equation of the temperature T  in 
the wall as a function of the distance x from the outside to the in-
side of the wall. What is the meaning of the slope of the line?

 54. An oil-storage tank is emptied at a constant rate. At 10 a.m., 1800 
barrels remain, and at 2 p.m., 600 barrels remain. If pumping started 
at 8 a.m., find the equation relating the number of barrels n at time 
t (in h) from 8 a.m. When will the tank be empty?
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 55. The power output P (in W) of a computer chip operating at 120°C 
is proportional to 120 - TS, where TS is the temperature of the 
surroundings. If P = 1.0 W for TS = 80°C, find the equation  
relating P and TS.

 56. The length of a rectangular solar cell is 10 cm more than the 
width w. Express the perimeter p of the cell as a function of w. 
What is the meaning of the slope of the line?

 57. A light beam is reflected off the edge of an optic fibre at an angle 
of 0.0032°. The diameter of the fibre is 48 mm. Find the equation 
of the reflected beam with the x-axis (at the centre of the fibre) 
and the y-axis as shown in Fig. 21.26.
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 58. A police report stated that a bullet caromed upward off a floor at 
an angle of 16.5° with the floor, as shown in Fig. 21.27. What is 
the equation of the bullet’s path after impact?

 59. A survey of the traffic on a particular highway showed that the 
number of cars passing a particular point each minute varied lin-
early from 6:30 a.m. to 8:30 a.m. on workday mornings. The 
study showed that an average of 45 cars passed the point in  
1 min at 7 a.m. and that 115 cars passed in 1 min at 8 a.m. If n is 
the number of cars passing the point in 1 min, and t is the num-
ber of minutes after 6:30 a.m., find the equation relating n and t 
and graph the equation. From the graph, determine n at 6:30 a.m. 
and at 8:30 a.m. What is the meaning of the slope of the line?

 60. In a research project on cancer, a tumour was determined to 
weigh 30 mg when first discovered. While being treated, it grew 
smaller by 2 mg each month. Find the equation relating the weight 
w of the tumour as a function of the time t in months. Graph the 
equation.

In Exercises 61–64, treat the given nonlinear functions as linear 
functions in order to sketch their graphs. At times, this can be useful 
in showing certain values of a function. 
For example, y = 2 + 3x2 can be 
shown as a straight line by graphing y 
as a function of x2. A table of values for 
this graph is shown along with the 
corresponding graph in Fig. 21.28.
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 61. The number n of memory cells of a certain computer that can be 
tested in t seconds is given by n = 12001t. Sketch n as a func-
tion of 1t.

 62. The force F (in N) applied to a lever to balance a certain weight 
on the opposite side of the fulcrum is given by F = 40>d, where 
d is the distance (in m) of the force from the fulcrum. Sketch F as 
a function of 1>d.

 63. A spacecraft is launched such that its altitude h (in km) is given 
by h = 300 + 2t3>2 for 0 … t 6 100 s. Sketch this as a linear 
function.

 64. The current i (in A) in a certain electric circuit is given by 
i = 611 - e-t2 . Sketch this as a linear function.

In Exercises 65–68, show that the given nonlinear functions are linear 
when plotted on semilogarithmic or logarithmic paper. In Section 
13.7, we noted that graphs on this paper often become straight lines.

 65. A function of the form y = axn is straight when plotted on logarith-
mic paper, since log y = log a + n log x is in the form of a straight 
line. The variables are log y and log x; the slope can be found from 1 log y - log a2 >log x = n, and the intercept is log a. (To get the 
slope from the graph, we calculate 1 log y - log a2 >  log x for some 
set values of x and y. The log y-intercept is found where log x = 0, 
and this occurs when x = 1.) Plot y = 3x4 on logarithmic paper to 
verify this analysis.

 66. A function of the form y = a1bx2  is a straight line on semiloga-
rithmic paper, since log y = log a + x log b is in the form of a 
straight line. The variables are log y and x, the slope is log b, and 
the intercept is a. (To get the slope from the graph, we calculate 1 log y - log a2 >x for some set values of x and y. The intercept 
is read directly off the graph where x = 0.) Plot y = 312x2  on 
semilogarithmic paper to verify this analysis.

 67. If experimental data are plotted on logarithmic paper and the points 
lie on a straight line, it is possible to determine the function (see 
Exercise 65). The following data come from an experiment to deter-
mine the functional relationship between the pressure p and the vol-
ume V of a gas undergoing an adiabatic (no heat loss) change. From 
the graph on logarithmic paper, determine p as a function of V.

V (m3) 0.100 0.500 2.00 5.00 10.0

p (kPa) 20.1 2.11 0.303 0.0840 0.0318

 68. If experimental data are plotted on semilogarithmic paper, and the 
points lie on a straight line, it is possible to determine the function 
(see Exercise 66). The following data come from an experiment 
designed to determine the relationship between the voltage across 
an inductor and the time after the switch is opened. Determine V 
as a function of t.

V(V) 40 15 5.6 2.2 0.8

t (ms) 0.0 20 40 60 80

Answers to Practice Exercises

1. 2x + y + 8 = 0  2. 3x - y - 1 = 0
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 21.3 The Circle
 We have found that we can obtain a general equation that represents a straight line by 

considering a fixed point on the line and then a general point P1x, y2  that can represent 
any other point on the same line. Mathematically, we can state this as “the line is the 
locus of a point P1x, y2  that moves from a fixed point with constant direction.” That is, 
the point P1x, y2  can be considered a variable point that moves along the line.

In this way, we can define a number of important curves. A circle is defined as the 
locus of a point P1x, y2  that moves so that it is always equidistant from a fixed point. 
We call this fixed distance the radius, and we call the fixed point the centre of the cir-
cle. Thus, using this definition, calling the fixed point 1h, k2  and the radius r, we have21x - h22 + 1y - k22 = r

or, by squaring both sides, we have

1x - h22 + 1y - k22 = r2  (21.11)

Eq. (21.11) is called the standard equation of a circle with centre at (h, k) and radius r. 
See Fig. 21.29.

 EXAMPLE  1  

The equation 1x - 122 + 1y + 222 = 16 represents a circle with centre at 11, -22  
and a radius of 4. We determine these values by considering the equation of the circle 
to be in the form of Eq. (21.11) as

1x - 122 + 3y - 1 -22 42 = 42

This circle is shown in Fig. 21.30. ■

 EXAMPLE  2  

Find the equation of the circle with centre at 12, 12  and that passes through 14, -62 .
In Eq. (21.11), we can determine the equation of this circle if we can find h, k, and r. 

From the given information, the centre is12, 12 , which means h = 2 and k = 1. To 
find r, we use the fact that all points on the circle must satisfy the equation of the circle. 
The point 14, -62  must satisfy Eq. (21.11), with h = 2 and k = 1. This means14 - 222 + 1 -6 - 122 = r2  or r2 = 53

Therefore, the equation of the circle is1x - 222 + 1y - 122 = 53

This circle is shown in Fig. 21.31. ■
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It is important to pay close attention 
to signs when finding the coordinates 
of the centre. (This will also be rele-
vant in later sections of the chapter.) 
We must have a minus sign before 
each of the coordinates. If the 
expression contains a plus sign, we 
must rewrite it to have a minus sign.

For instance, in Example 1, we 
were able to identify the x-coordinate 
of the centre directly as +1 because 
of the minus sign before it. However, 
we had to write +2 as - 1 -22  in 
order to identify the y-coordinate of 
the centre as -2.

LEARNING T IP

1.  Find the centre and radius of the circle 1x + 722 + 1y - 222 = 1.
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If the centre of the circle is at the origin, which means that the coordinates of the 
centre are 10, 02 , the equation of the circle (see Fig. 21.32) becomes

x2 + y2 = r2  (21.12)

The following example illustrates an application using this type of circle and one with 
its centre not at the origin.

 EXAMPLE  3  

A student is drawing a friction drive in which two circular discs are in contact with 
each other. They are represented by circles in the drawing. The first has a radius of 10.0 cm, 
and the second has a radius of 12.0 cm. What is the equation of each circle if the origin 
is at the centre of the first circle and the positive x-axis passes through the centre of the 
second circle? See Fig. 21.33.

Since the centre of the smaller circle is at the origin, we can use Eq. (21.12). Given 
that the radius is 10.0 cm, we have as its equation

x2 + y2 = 100

The fact that the two discs are in contact tells us that they meet at the point 110.0, 02 . 
Knowing that the radius of the larger circle is 12.0 cm tells us that its centre is at 122.0, 02 . Thus, using Eq. (21.11) with h = 22.0, k = 0, and r = 12.0, we get1x - 22.022 + 1y - 022 = 12.02

or 1x - 22.022 + y2 = 144

as the equation of the larger circle. ■

A circle with its centre at the origin exhibits an important property of the graphs of 
many equations. It is symmetric to the x-axis and also to the y-axis. Symmetry to the  
x-axis can be thought of as meaning that the lower half of the curve is a reflection of 
the upper half, and conversely. It can be shown that if -y can replace y in an equation 
without changing the equation, the graph of the equation is symmetric to the x-axis. 
Symmetry to the y-axis is similar. If -x can replace x in the equation without changing 
the equation, the graph is symmetric to the y-axis.

This type of circle is also symmetric to the origin as well as being symmetric to both 
axes. The meaning of symmetry to the origin is that the origin is the midpoint of any 
two points 1x, y2  and 1 -x, -y2  that are on the curve. Thus, if -x can replace x and 
-y can replace y at the same time, without changing the equation, the graph of the 
equation is symmetric to the origin.

 EXAMPLE  4  Symmetry

The equation of the circle with its centre at the origin and with a radius of 6 is 
x2 + y2 = 36.

The symmetry of this circle can be shown analytically by the substitutions men-
tioned above. Replacing x by -x, we obtain 1 -x22 + y2 = 36. Since 1 -x22 = x2, 
this equation can be rewritten as x2 + y2 = 36. Since this substitution did not change 
the equation, the graph is symmetric to the y-axis.

Replacing y by -y, we obtain x2 + 1 -y22 = 36, which is the same as x2 + y2 = 36. 
This means that the curve is symmetric to the x-axis.

Replacing x by -x and simultaneously replacing y by -y, we obtain 1 -x22 + 1 -y22 = 36, which is the same as x2 + y2 = 36. This means that the curve 
is symmetric to the origin. This circle is shown in Fig. 21.34. ■
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If we multiply out each of the terms in Eq. (21.11), we may combine the resulting 
terms to obtain

 x2 - 2hx + h2 + y2 - 2ky + k2 = r2

 x2 + y2 - 2hx - 2ky + 1h2 + k2 - r22 = 0  (21.13)

Since each of h, k, and r is constant for any given circle, the coefficients of x and y and 
the term within parentheses in Eq. (21.13) are constants. Eq. (21.13) can then be writ-
ten as

x2 + y2 + Dx + Ey + F = 0  (21.14)

Eq. (21.14) is called the general equation of the circle. It tells us that any equation that 
can be written in that form will represent a circle.

 EXAMPLE  5  

Find the centre and radius of the circle with general equation

x2 + y2 - 6x + 8y - 24 = 0

We write the given equation in standard form by completing the squares. This is done 
by first writing the equation in the form1x2 - 6x 2 + 1y2 + 8y 2 = 24

To complete the square of the x-terms, we take half of -6, which is -3, square it, and 
add the result, 9, to each side of the equation. In the same way, we complete the square 
of the y-terms by adding 16 to each side of the equation, which gives 

 1x2 - 6x + 92 + 1y2 + 8y + 162 = 24 + 9 + 16 

 1x - 322 + 1y + 422 = 49

 1x - 322 + 1y - 1 -42 22 = 72  

Thus, the centre is 13, -42 , and the radius is 7 (see Fig. 21.35). ■

 EXAMPLE  6  Circle—application

A certain pendulum is found to swing through an arc of the circle 3x2 + 3y2 -
9.60y - 2.80 = 0. What is the length (in m) of the pendulum, and from what point is it 
swinging?

We see that this equation represents a circle by dividing through by 3. This gives us 
x2 + y2 - 3.20y - 2.80>3 = 0. The length of the pendulum is the radius of the cir-
cle, and the point from which it swings is the centre. These are found as follows:

 x2 + 1y2 - 3.20y + 1.6022 = 1.602 + 2.80>3  complete squares in both x  @ and y  @terms

 x2 + 1y - 1.6022 = 3.493  standard form

Since 13.493 = 1.87, the length of the pendulum is 1.87 m. The point from which it 
is swinging is 10, 1.602 . See Fig. 21.36.

Replacing x by -x, the equation does not change. Replacing y by -y, the equation 
does change (the 3.20y term changes sign). Thus, the circle is symmetric only to the  
y-axis. ■

a-6
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add to both sides

coordinates of centre
radius

If we know the general equation of a 
circle, we can find the centre and 
radius by writing the equation in 
standard form. To do so, we must 
complete the square both in the 
x-terms and in the y-terms (see 
Section 7.2).

LEARNING T IP

2.  Find the centre and radius of the circle 
x 2 + y 2 - 8x + 6y + 21 = 0.
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In Section 14.1 we noted that the equation of a circle does not represent a function 
since there are two values of y for most values of x in the domain. However, the circle 
is a combination of two functions, each of which has a semicircle as its graph. The top 
and bottom semicircle functions can be found using the quadratic formula, as illus-
trated in the following example.

 EXAMPLE  7  A circle as a graph of two functions

Determine the two semicircle functions of the circle 3x2 + 3y2 + 6y - 20 = 0.
To fit the form of a quadratic equation in y, we write

3y2 + 6y + 13x2 - 202 = 0

Now, using the quadratic formula to solve for y, we let

 a = 3 b = 6 c = 3x2 - 20

 y =
-6 { 262 - 4132 13x2 - 202

2132
which means we get the two functions

y1 =
-6 + 2276 - 36x2

6
  and y2 =

-6 - 2276 - 36x2

6

The two functions are graphed together in Fig. 21.37. These two functions would be 
entered into a graphing calculator in order to display a circle. ■
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EXERCISES 21.3

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 1, change 1y + 222 to 1y + 122.

 2. In Example 2, change 12, 12  to 1 -2, 12 .

 3. In Example 5, change the +  before 8y to - .

 4. In Example 7, change the +  before 6y to - .

In Exercises 5–8, determine the centre and the radius of each circle.

 5. 1x - 222 + 1y - 122 = 25

 6. 1x - 322 + 1y + 422 = 49

 7. 41x + 122 + 4y2 = 121

 8. 9x2 + 91y - 622 = 64

In Exercises 9–24, find the standard and general equations of each of 
the circles from the given information.

 9. Centre at 10, 02 , radius 3

 10. Centre at (0, 0), radius 12

 11. Centre at 12, 22 , radius 4

12. Centre at 13
2, -22 , radius 52

 13. Centre at 112, -152 , radius 18

 14. Centre at 1 -3, -52 , radius 213

 15. The origin and 1 -6, 82  are ends of a diameter.

 16. The points 13, 82  and 1 -3, 02  are the ends of a diameter.

 17. Concentric with the circle 1x - 222 + 1y - 122 = 4 and 
passes through 14, -12

 18. Concentric with the circle x2 + y2 + 2x - 8y + 8 = 0 and 
passes through 1 -2, 32

 19. Centre at 1 -3, 52  and tangent to the line y = 10

 20. Centre at 1 -7, 12  and tangent to the y-axis

 21. Tangent to both axes and the lines y = 4 and x = -4

 22. Tangent to the lines y = 2 and y = 8, centre on the line y = x

 23. Centre at the origin, tangent to the line x + y = 2

 24. Centre at (5, 12), tangent to the line y = 2x - 3

In Exercises 25–36, determine the centre and radius of each circle. 
Sketch each circle.

 25. x2 + 1y - 322 = 4

 26. 1x - 222 + 1y + 322 = 49

 27. 41x + 122 + 41y - 522 = 81

 28. 41x + 722 + 41y + 1122 = 169

 29. x2 + y2 - 2x - 8 = 0

 30. x2 + y2 - 4x - 6y - 12 = 0

 31. x2 + y2 + 4.20x - 2.60y = 3.51

 32. x2 + y2 + 22x + 14y = 26

 33. 4x2 + 4y2 - 16y = 9

 34. 9x2 + 9y2 + 18y = 7

 35. 2x2 + 2y2 - 4x - 8y - 1 = 0

 36. 3x2 + 3y2 - 12x + 4 = 0
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In Exercises 37–40, determine whether the circles with the given 
equations are symmetric to either axis or to the origin.

 37. x2 + y2 = 100

 38. x2 + y2 - 4x - 5 = 0

 39. 3x2 + 3y2 + 24y = 8

 40. 5x2 + 5y2 - 10x + 20y = 3

In Exercises 41–62, solve the given problems.

 41. Determine whether the circle x2 - 6x + y2 - 7 = 0 crosses the 
x-axis.

 42. Find the points of intersection of the circle x2 + y2 - x - 3y = 0 
and the line y = x - 1.

 43. Find the locus of a point P1x, y2  that moves so that its distance 
from 12, 42  is twice its distance from 10, 02 . Describe the 
locus.

 44. Find the equation of the locus of a point P1x, y2  that moves so 
that the line joining it and 12, 02  is always perpendicular to the 
line joining it and 1 -2, 02 . Describe the locus.

 45. Use a graphing calculator to view the circle 
x2 + y2 + 5y - 4 = 0.

 46. Use a graphing calculator to view the circle 
2x2 + 2y2 + 2y - x - 1 = 0.

 47. What type of graph is represented by each of the following equation?

  (a) y = 29 - 1x - 222 (b) y = - 29 - 1x - 222

  (c) Are the equations in parts (a) and (b) functions? Explain.

 48. What type of graph is represented by each of the following equations?

  (a) x2 + 1y - 122 = 0 (b) x2 + 1y - 122 = -1

 49. Is the point 10.1, 3.12  inside, outside, or on the circle 
x2 + y2 - 2x - 4y + 3 = 0 ?

 50. Find the equation of the line along which the diameter of the cir-
cle x2 + y2 - 2x - 4y - 4 = 0 lies, if the diameter is parallel 
to the line 3x + 5y = 4.

 51. For the equation 1x - h22 + 1y - k22 = p, how does the 
value of p indicate whether the graph is a circle, a point, or does 
not exist?

 52. Determine whether the graph of x2 + y2 - 2x + 10y + 29 = 0 
is a circle, a point, or does not exist.

 53. The inner and outer circles of the cross section of a pipe are  
represented by the equations 2.00x2 + 2.00y2 = 5.73 and 
2.80x2 + 2.80y2 = 8.91. How thick (in cm) is the pipe wall?

 54. A 4-m pole leaning against a wall slips to the ground. Find the 
equation that represents the path of the midpoint of the pole. See 
Fig. 21.38.

 55. In a hoisting device, two of the pulley wheels may be represented 
by x2 + y2 = 14.5 and x2 + y2 - 19.6y + 86.0 = 0. How far 
apart (in cm) are the wheels?

 56. The design of a machine part shows it as a circle represented by 
the equation x2 + y2 = 42.5, with a circular hole represented by 
x2 + y2 + 3.06y - 1.24 = 0 cut out. What is the least distance 
(in cm) from the edge of the hole to the edge of the machine part?

 57. A wire is rotating in a circular path through a magnetic field to 
induce an electric current in the wire. The wire is rotating at  
60.0 Hz, with a constant velocity of 37.7 m>s. Taking the origin 
at the centre of the circle of rotation, find the equation of the path 
of the wire.

 58. A communications satellite remains stationary at an altitude of  
36 200 km over a point on the earth’s equator. It therefore rotates 
once each day about the earth’s centre. Its velocity is constant, but 
the horizontal and vertical components, vH and vV, of the velocity 
constantly change. Show that the equation relating vH and vV (in 
km>h) is that of a circle. The radius of the earth is 6370 km.

 59. Find the equation describing the rim of a circular porthole 0.80 m 
in diameter if the top is 2.0 m below the surface of the water. 
Take the origin at the water surface directly above the centre of 
the porthole.

 60. An earthquake occurred 37° north of east of a seismic recording 
station. If the tremors travel at 4.8 km>s and were recorded 25 s 
later at the station, find the equation of the circle that represents 
the tremor recorded at the station. Take the station to be at the 
centre of the coordinate system.

 61. In analysing the strain on a beam, Mohr’s circle is often used. To 
form it, normal strain is plotted as the x-coordinate and shear 
strain is plotted as the y-coordinate. The centre of the circle is 
midway between the minimum and maximum values of normal 
strain on the x-axis. Find the equation of Mohr’s circle if the 
minimum normal strain is 100 * 10-6 and the maximum normal 
strain is 900 * 10-6 (strain is unitless). Sketch the graph.

 62. An architect designs a Norman window, which has the form of a 
semicircle surmounted on a rectangle, as in Fig. 21.39. Find the 
area (in m2) of the window if the circular part is on the circle 
x2 + y2 - 3.00y + 1.25 = 0.
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Answers to Practice Exercises

1. C1 -7, 22 , r = 1  2. C14, -32 , r = 2
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 21.4 The Parabola

x  
y

In Chapter 7, we showed that the graph of a quadratic function is a parabola. We now 
define the parabola more generally and find the general form of its equation.

A parabola is defined as the locus of a point P1x, y2  that moves so that it is always 
equidistant from a given line (the directrix) and a given point (the focus). The line 
through the focus that is perpendicular to the directrix is the axis of the parabola. The 
point midway between the focus and directrix is the vertex.

Using the definition, we now find the equation of the parabola with the focus at 1p, 02  and the directrix x = -p. With these choices, we find a general equation of a 
parabola with its vertex at the origin.

From the definition, the distance from P1x, y2  on the parabola to the focus 1p, 02  
must equal the distance from P1x, y2  to the directrix x = -p. The distance from P to 
the focus is found from the distance formula. The distance from P to the directrix is the 
perpendicular distance and is along a line parallel to the x-axis. These distances are 
shown in Fig. 21.40. Therefore, we have

 21x - p22 + 1y - 022 = x + p

 1x - p22 + y2 = 1x + p22 squaring both sides

 x2 - 2px + p2 + y2 = x2 + 2px + p2

Simplifying, we obtain

y2 = 4px  (21.15)

Eq. (21.15) is called the standard form of the equation of a parabola with its axis 
along the x-axis and the vertex at the origin. Its symmetry to the x-axis can be proven 
since 1 -y22 = 4px is the same as y2 = 4px.

 EXAMPLE  1  

Find the coordinates of the focus and the equation of the directrix and sketch the graph 
of the parabola y2 = 12x.

Since the equation of this parabola fits the form of Eq. (21.15), we know that the 
vertex is at the origin. The coefficient of 12 tells us that

4p = 12,  p = 3

The focus is the point 13, 02 , and the directrix is the line x = -3, as shown in  
Fig. 21.41. ■

 EXAMPLE  2  

If the focus is to the left of the origin, with the directrix an equal distance to the right, 
the coefficient of the x-term is negative. This tells us that the parabola opens to the left, 
rather than to the right, as in the case when the focus is to the right of the origin. For 
example, the parabola y2 = -8x has its vertex at the origin, its focus at 1 -2, 02 , and 
the line x = 2 as its directrix. We determine this from the equation as follows:

y2 = -8x  4p = -8,  p = -2

Since p = -2, we find

the focus is 1 -2, 02
the directrix is the line x = - 1 -22 , or x = 2

The parabola opens to the left, as shown in Fig. 21.42. ■
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If we chose the focus as the point 10, p2  and the directrix as the line y = -p (see 
Fig. 21.43), we would find that the resulting equation is

x2 = 4py  (21.16)

This is the standard form of the equation of a parabola with the y-axis as its axis and 
the vertex at the origin. Its symmetry to the y-axis can be proved, since 1 -x22 = 4py 
is the same as x2 = 4py.

Fig. 21.43 
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Equation: y2 = 4 px (21.15) x2 = 4 py (21.16)

Axis: x-axis y-axis

Focus: (p, 0) (0, p)

Directrix: x = -p y = -p

Symmetry: x-axis y-axis

 EXAMPLE  3  Standard form—axis along the y-axis

(a) The parabola x2 = 4y fits the form of Eq. (21.16). Therefore, its axis is along 
the y-axis, and its vertex is at the origin. From the equation, we find the value 
of p, which in turn tells us the location of the vertex and the directrix.

x2 = 4y  4p = 4,  p = 1

Focus 10, p2  is 10, 12 ; directrix y = -p is y = -1. The parabola 
is shown in Fig. 21.44, and we see in this case that it opens 
upward.

(b)  The parabola 2x2 = -9y fits the form of Eq. (21.16) if we 
write it in the form

x2 = -  92 y

  Here, we see that 4p = -9>2. Therefore, its axis is along the 
y-axis, and its vertex is at the origin. Since 4p = -9>2,  
we have

p = - 9
8

  focus a0, - 9
8
b  directrix y =

9
8

The parabola opens downward, as shown in Fig. 21.45. ■

 EXAMPLE  4  Parabola—application

In calculus, it can be shown that an electromagnetic wave (light wave, television signal, 
etc.) parallel to the axis of a parabolic reflector will pass through the focus of the parabola. 
Applications of this property of a parabola are many, including a satellite television 
dish and a spotlight (the light from the focus is reflected as a beam).

A parabolic satellite television dish is 46.0 cm across and 4.50 cm deep, as shown in 
Fig. 21.46. Find where the receiver should be located to receive all of the waves 
reflected off the parabolic surface.

With the vertex at the origin and the axis along the x-axis, we will use the general 
form y2 = 4px of the parabola. Since the parabolic opening is 46.0 cm across and 4.50 cm 

Fig. 21.44 
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deep, the point (4.50, 23.0) will be on any of the parabolic cross sections. Therefore, we 
find p by substituting (4.50, 23.0) in the equation. This means

23.02 = 4p14.502 ,  p = 29.4 cm

and the receiver should be placed 29.4 cm from the vertex as shown in Fig. 21.47. The 
equation of the parabolic cross section is y2 = 118x. ■

Eqs. (21.15) and (21.16) give the general forms of the equation of a parabola with 
vertex at the origin and focus on one of the coordinate axes. We now use the definition 
to find the equation of a parabola that has its vertex at a point other than the origin.

 EXAMPLE  5  Find an equation from the definition

Using the definition of the parabola, find the equation of the parabola with its focus  
at 12, 32  and its directrix the line y = -1. See Fig. 21.48.

Choosing a general point P1x, y2  on the parabola and equating the distances from 
this point to 12, 32  and to the line y = -1, we have21x - 222 + 1y - 322 = y + 1

distance P to F = distance P to y = -1

 1x - 222 + 1y - 322 = 1y + 122   squaring both sides

 x2 - 4x + 4 + y2 - 6y + 9 = y2 + 2y + 1

 8y = 12 - 4x + x2

We note that this type of equation has appeared frequently in earlier chapters. The  
x-term and the constant (12 in this case) are characteristic of a parabola that does not 
have its vertex at the origin if the directrix is parallel to the x-axis. ■

A parabola whose axis is along the y-axis or parallel to it, as in Examples 3 and 5, is 
the graph of the quadratic function obtained when solving for y. In contrast, a parabola 
whose axis is along the x-axis or parallel to it, as in Examples 1, 2, and 4, is not a func-
tion but a combination of two functions. This is similar to Example 7 in Section 2.3. 
These cases are shown in the next example.

 EXAMPLE  6  A parabola as a graph of one or two functions

We can solve for y from the last equation in Example 5 to obtain the function

y = (12 - 4x + x2)>8

The graph of this single function is the same parabola shown in Fig. 21.48.
The equation y2 + 3x - 4y + 6 = 0 represents a parabola that is not the graph of 

a single function. If we solve for y using the quadratic formula, we get

a = 1 b = -4 c = 3x + 6

y =
4 { 21 -422 - 4112 13x + 62

2

Therefore, we obtain the two functions

y1 = 2 + 2-3x - 2 and y2 = 2 - 2-3x - 2

The two functions are graphed together in Fig. 21.49. Both functions would be entered 
into a graphing calculator in order to display this parabola. ■

We see that the equation of a parabola is characterized by the square of either x or 
y (but not both) and a first power term of the other variable. We will consider the 
parabola further in Sections 21.7, 21.8, and 21.9.

The parabola has numerous technical applications. The reflection property illustrated 
in Example 4 has other important applications, such as the design of a radar antenna. The 
path of a projectile is parabolic. The cables of a suspension bridge are parabolic.

Fig. 21.47 
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Practice Exercises

Find the coordinates of the focus and the 
equation of the directrix for each parabola.
1. y 2 = -24x 2. x 2 = 40y
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EXERCISES 21.4

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems. In each, find the 
focus and directrix, and sketch the parabola.

 1. In Example 1, change 12x to 20x.

 2. In Example 2, change -8x to -20x.

 3. In Example 3(a), change 4y to -6y.

 4. In Example 3(b), change -9y to 7y.

In Exercises 5–16, determine the coordinates of the focus and the 
equation of the directrix of the given parabolas. Sketch each curve.

 5. y2 = 4x 6. y2 = 16x

 7. y2 = -4x 8. y2 = -36x

 9. x2 = 72y 10. x2 = y

 11. x2 = -4y 12. x2 + 12y = 0

 13. 2y2 - 5x = 0 14. 3x2 = 8y

 15. y = 0.48x2 16. x = 7.6y2

In Exercises 17–30, find the equations of the parabolas satisfying the 
given conditions. The vertex of each is at the origin.

 17. Focus 13, 02  18. Focus 10, 0.42
 19. Focus 10, -0.52  20. Focus 12.5, 02
 21. Directrix y = -0.16 22. Directrix x = 20

 23. Directrix x = -84 24. Directrix y = 2.3

 25. Axis x = 0, passes through 1 -1, 82
 26. Symmetric to x-axis, passes through 12, -12
 27. Passes through 13, 52  and 13, -52
 28. Passes through 16, -12  and 1 -6, -12
 29. Passes through (3, 3) and (12, 6)

 30. Passes through 1 -5, -52  and 1 -10, -202
In Exercises 31–58, solve the given problems.

 31. Sketch the graph of the inequality x2 6 8y.

 32. Sketch the graph of the inequality 9y … 4x2.

 33. At what point(s) do the parabolas y2 = 2x and x2 = -16y 
intersect?

 34. Using trigonometric identities, show that the parametric equa-
tions x = sin t, y = 211 - cos2 t2  are the equations of a 
parabola.

 35. Find the equation of the parabola with focus 16, 12  and directrix 
x = 0, by use of the definition. Sketch the curve.

 36. Find the equation of the parabola with focus 11, 12  and directrix 
y = 5, by use of the definition. Sketch the curve.

 37. Use a graphing calculator to view the parabola 
y2 + 2x + 8y + 13 = 0.

 38. Use a graphing calculator to view the parabola 
y2 - 2x - 6y + 19 = 0.

 39. The equation of a parabola with vertex 1h, k2  and axis parallel to 
the x-axis is 1y - k22 = 4p1x - h2 . (This is shown in Section 
21.7.) Sketch the parabola for which 1h, k2  is 12, -32  and p = 2.

 40. The equation of a parabola with vertex 1h, k2  and axis parallel to 
the y-axis is 1x - h22 = 4p1y - k2 . (This is shown in Section 
21.7.) Sketch the parabola for which 1h, k2  is 1 -1, 22  and 
p = -3.

 41. The chord of a parabola that passes through the focus and is paral-
lel to the directrix is called the latus rectum of the parabola. Find 
the length of the latus rectum of the parabola y2 = 4px.

 42. Find the equation of the circle that has the focus and the vertex of 
the parabola x2 = 8y as the ends of a diameter.

 43. For either standard form of the equation of a parabola, describe 
what happens to the shape of the parabola as 0 p 0  increases.

 44. To ensure proper drainage, the surface of a lacrosse field with 
synthetic turf is parabolic. The field is 55.0 m wide and 66.0 cm 
higher in the centre than at the sides. Find the equation that repre-
sents the surface if the origin is at the centre of the field.

 45. The Lions’ Gate Bridge in Vancouver, British Columbia, is a sus-
pension bridge, and its supporting cables are parabolic. See  
Fig. 21.50. With the origin at the low point of the cable, what 
equation represents the cable if the supporting towers are 473 m 
apart and the maximum sag is 55.0 m?

Fig. 21.50 

473 m

55 m

 46. Each arch of the Allen Lambert Galleria in Brookfield Place in 
Toronto is a parabolic arch 26 m high at the centre and 13.7 m 
wide at the base. What equation represents the arch if the origin is 
at the top of the arch?

 47. The rate of development of heat H (in W) in a resistor of resist-
ance R (in Ω) of an electric circuit is given by H = Ri2, where i 
is the current (in A) in the resistor. Sketch the graph of H vs. i, if 
R = 6.0 Ω.

 48. What is the length of the horizontal bar across the parabolically 
shaped window shown in Fig. 21.51?

 49. The primary mirror in the Hubble space telescope has a parabolic 
cross section, which is shown in Fig. 21.52. What is the focal 
length (vertex to focus) of the mirror?

Fig. 21.51 
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 50. A rocket is fired horizontally from a plane. Its horizontal distance x 
and vertical distance y from the point at which it was fired are given 
by x = v0 t and y = 1

2gt2, where v0 is the initial velocity of the 
rocket, t is the time, and g is the acceleration due to gravity. Express 
y as a function of x and show that it is the equation of a parabola.

 51. To launch a spacecraft to the moon, it is first put into orbit around 
earth and then into a parabolic path towards the moon. Assume the 
parabolic path is represented by x2 = 4py and the spacecraft is 
later observed at 110, 32  (units in thousands of km) after launch. 
Will this path lead directly to the moon at 1110, 3402?

 52. Under certain load conditions, a beam fixed at both ends is ap-
proximately parabolic in shape. If a beam is 4.0 m long and the 
deflection in the middle is 2.0 cm, find an equation to represent 
the shape of the beam.

 53. A spotlight with a parabolic reflector is 
15.0 cm wide and 6.50 cm deep. See  
Fig. 21.53 and Example 4. Where 
should the filament of the bulb be  
located so as to produce a beam of 
light?

 54. A wire is fastened 12.0 m up on each of two telephone poles that 
are 60.0 m apart. Halfway between the poles, the wire is 10.0 m 
above the ground. Assuming the wire is parabolic, find the height 
of the wire 15.0 m from either pole.

 55. The total annual fraction f  of energy supplied by solar energy to  
a home is given by f = 0.0651A, where A is the area of the  
solar collector. Sketch the graph of f  as a function of A 10 6 A … 200 m22 .

 56. The velocity v (in m>s) of a jet of water flowing from an opening 
in the side of a certain container is given by v = 4.41h, where h 
is the depth (in m) of the opening. Sketch a graph of v vs. h.

 57. A small island is 4 km north of a straight shoreline. A ship chan-
nel is equidistant between the island and the shoreline. Write an 
equation for the channel.

 58. Under certain circumstances, the maximum power P (in W) in an 
electric circuit varies as the square of the voltage of the source E0 and 
inversely as the internal resistance Ri (in Ω) of the source. If  
10 W is the maximum power for a source of 2.0 V and internal resist-
ance of 0.10 Ω, sketch the graph of P vs. E0 if Ri remains constant.

Answers to Practice Exercises

1. F1 -6, 02 ; dir. x = 6  2. F10, 102 ; dir. y = -10
Fig. 21.53 

6.50 cm

15.0 cm

Filament

 21.5 The Ellipse
 

along x  
Axis along y-Axis

The next important curve is the ellipse. An ellipse is defined as the locus of a point 
P1x, y2  that moves so that the sum of its distances from two fixed points is constant. 
These fixed points are the foci of the ellipse. Letting this sum of distances be 2a and the 
foci be the points 1 -c, 02  and 1c, 02 , we have21x - c22 + y2 + 21x + c22 + y2 = 2a

See Fig. 21.54. The ellipse has its centre at the origin so that c is the length of the line 
segment from the centre to a focus. We will also see that a has a special meaning. Now, 
from Section 14.4, we see that in order to remove the radicals we should move one 
radical to the right and then square each side. This leads to the following steps:

 21x + c22 + y2 = 2a - 21x - c22 + y2

 1x + c22 + y2 = 4a2 - 4a21x - c22 + y2 + 121x - c22 + y222

 x2 + 2cx + c2 + y2 = 4a2 - 4a21x - c22 + y2 + x2 - 2cx + c2 + y2

 4a21x - c22 + y2 = 4a2 - 4cx

 a21x - c22 + y2 = a2 - cx

 a21x2 - 2cx + c2 + y22 = a4 - 2a2cx + c2x2

 1a2 - c22x2 + a2y2 = a21a2 - c22
We now define a2 - c2 = b2. (The reason for this will be clear shortly.) Therefore,

b2x2 + a2y2 = a2b2

Dividing through by a2b2, we have

x2

a2 +
y2

b2 = 1  (21.17)

A graphical analysis of this equation is found below.

Fig. 21.54 
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The x-intercepts are 1 -a, 02  and 1a, 02 . This means that 2a (the sum of distances 
used in the derivation) is also the distance between the x-intercepts. The points 1a, 02  
and 1 -a, 02  are the vertices of the ellipse, and the line between them is the major 
axis [see Fig. 21.55(a)]. Thus, a is the length of the semimajor axis.

Fig. 21.55 
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We can now state that Eq. (21.17) is called the standard equation of the ellipse with 
its major axis along the x-axis and its centre at the origin.

The y-intercepts of this ellipse are 10, -b2  and 10, b2 . The line joining these inter-
cepts is called the minor axis of the ellipse (Fig. 21.55(b)), which means b is the length 
of the semiminor axis. The intercept 10, b2  is equidistant from 1 -c, 02  and 1c, 02 . 
Since the sum of the distances from these points to 10, b2  is 2a, the distance 1c, 02  to 10, b2  must be a. Thus, we have a right triangle with line segments of lengths a, b, and 
c, with a as hypotenuse (Fig. 21.55(c)). Therefore,

a2 = b2 + c2  (21.18)

is the relation between distances a, b, and c. This also shows why b was defined as it 
was in the derivation of Eq. (21.17).

If we choose points on the y-axis as the foci, the standard equation of the ellipse, 
with its centre at the origin and its major axis along the y-axis, is

y2

a2 + x2

b2 = 1  (21.19)

See Fig. 21.56.
We now summarize the properties of ellipses with centre at the origin.

Fig. 21.56 
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 EXAMPLE  1  x

The ellipse 
x2

25
+

y2

9
= 1 fits the form of Eq. (21.17) because the larger square, 25,

appears under x2. Therefore, a2 = 25 and b2 = 9, or a = 5 and b = 3. This 
means that the vertices are 15, 02  and 1 -5, 02 , and the minor axis extends 
from 10, -32  to 10, 32 . See Fig. 21.57.

We find c from the relation c2 = a2 - b2. This means that c2 = 16 and the 
foci are 14, 02  and 1 -4, 02 . ■

EXAMPLE  2  y

The equation of the ellipse

x2

4
+

y2

9
= 1

b2 a2

has the larger denominator, 9, under the y2. Therefore, it fits the form of Eq. (21.19) with 
a2 = 9 and b2 = 4. This means that the vertices are (0, 3) and 10, -32 , and the minor 
axis extends from 1 -2, 02  to 12, 02 . In turn, we know that c2 = a2 - b2 = 9 - 4 = 5 
and that the foci are 10, 152  and 10, - 152 . This ellipse is shown in Fig. 21.58. ■

 EXAMPLE  3  

Find the coordinates of the vertices, the ends of the minor axis, and the foci of the 
ellipse 4x2 + 16y2 = 64.

This equation must be put in standard form first, which we do by dividing through 
by 64. When this is done, we obtain

x2

16
+

y2

4
= 1

We see that a2 = 16 and b2 = 4, which tells us that a = 4 and b = 2. Then 
c = 116 - 4 = 112 = 213. Since a2 appears under x2, the vertices are 14, 02  
and 1 -4, 02 . The ends of the minor axis are 10, 22  and 10, -22 , and the foci are 1213, 02  and 1 -213, 02 . See Fig. 21.59. ■

 EXAMPLE  4  Ellipse—application

A satellite to study the earth’s atmosphere has a minimum altitude of 1000 km and a 
maximum altitude of 3200 km. If the path of the satellite about the earth is an ellipse 
with the centre of the earth at one focus, what is the equation of its path? Assume that 
the radius of the earth is 6400 km.

We set up the coordinate system such that the centre of the ellipse is at the origin 
and the centre of the earth is at the right focus, as shown in Fig. 21.60. We know that 
the distance between vertices is

 2a = 3200 + 6400 + 6400 + 1000 = 17 000 km

 a = 8500 km

The distance from the right focus to the right vertex is 7400 km. This tells us

c = a - 7400 = 8500 - 7400 = 1100 km

We can now calculate b2 as

b2 = a2 - c2 = 85002 - 11002 = 7.10 * 107 km2

form requires 
+ and 1

Fig. 21.57 
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Since a2 = 85002 = 7.23 * 107 km2, the equation is

x2

7.23 * 107 +
y2

7.10 * 107 = 1

or

7.10x2 + 7.23y2 = 5.13 * 108 ■

 EXAMPLE  5  

Find the equation of the ellipse with its centre at the origin and an end of its minor axis 
at 12, 02  and which passes through 1 -1, 162 .

Since the centre is at the origin and an end of the minor axis is at 12, 02 , we know 
that the ellipse is of the form of Eq. (21.19) and that b = 2. Thus, we have

y2

a2 + x2

22 = 1

In order to find a2, we use the fact that the ellipse passes through 1 -1, 162 . This 
means that these coordinates satisfy the equation of the ellipse. This gives11622

a2 +
1 -122

4
= 1,  

6

a2 =
3
4

,  a2 = 8

Therefore, the equation of the ellipse, shown in Fig. 21.61, is

y2

8
+ x2

4
= 1 ■

The following example illustrates the use of the definition of the ellipse to find the 
equation of an ellipse with its centre at a point other than the origin.

 EXAMPLE  6  

Using the definition, find the equation of the ellipse with foci at 11, 32  and 19, 32 , 
with major axis of 10.

Recalling that the sum of distances in the definition equals the length of the major 
axis, we now use the same method as in the derivation of Eq. (21.17).

Fig. 21.61 
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Find the vertices and foci of each ellipse.

1. 
x2

9
 + y2 = 1 2. 25x 2 + 4y 2 = 25

 21x - 122 + 1y - 322 + 21x - 922 + 1y - 322 = 10 use definition of ellipse

 21x - 122 + 1y - 322 = 10 - 21x - 922 + 1y - 322 isolate a radical

 x2 - 2x + 1 + y2 - 6y + 9 = 100 - 2021x - 922 + 1y - 322 square both sides

 + x2 - 18x + 81 + y2 - 6y + 9
and simplify

 2021x - 922 + 1y - 322 = 180 - 16x isolate radical

 521x - 922 + 1y - 322 = 45 - 4x divide by 4

 251x2 - 18x + 81 + y2 - 6y + 92 = 2025 - 360x + 16x2 square both sides

 9x2 - 90x + 25y2 - 150y + 225 = 0 simplify

The additional x- and y-terms are characteristic of the equation of an ellipse whose 
centre is not at the origin (see Fig. 21.62).

The ellipse is shown in Fig. 21.62, with each half drawn in a different colour to 
represent a different function. Solving the original equation for y, the two func-

tions are y =
15 { 3210x - x2

5
. ■
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We see that the equation of an ellipse is characterized by both an x2-term and a  
y2-term, having different coefficients (in value but not in sign). We note that the coef-
ficients of the squared terms differ, whereas for the circle, they are the same. We will 
consider the ellipse further in Sections 21.7, 21.8, and 21.9.

The ellipse has many applications. The orbits of the planets about the sun are ellipti-
cal. Gears, cams, and springs are often elliptical in shape. Arches are often constructed 
in the form of a semiellipse. Ellipses are also important for blood pattern analysis in 
forensic science, for parameter estimation in statistics, and in computer vision.

■ The Polish astronomer Nicolaus Copernicus 
(1473–1543) is credited as being the first to sug-
gest that the earth revolved about the sun, 
rather than the previously held belief that the 
earth was the centre of the universe.

EXERCISES 21.5

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the given problems.

 1. In Example 1, change the 9 to 36; find the vertices, ends of the 
minor axis, and foci; and sketch the ellipse.

 2. In Example 2, interchange the 4 and 9; find the vertices, ends of 
the minor axis, and foci; and sketch the ellipse.

In Exercises 3–16, find the coordinates of the vertices and foci of the 
given ellipses. Sketch each curve.

 3. 
x2

4
+

y2

1
= 1 4. 

x2

100
+

y2

64
= 1 5. 

x2

25
+

y2

144
= 1

 6. 
x2

49
+

y2

81
= 1 7. 

4x2

25
+

y2

4
= 1 8. x2 +

9y2

25
= 1

 9. 4x2 + 9y2 = 324 10. x2 + 36y2 = 144

 11. 49x2 + 4y2 = 196 12. y2 = 2511 - x22
 13. y2 = 812 - x22  14. 2x2 + 3y2 = 600

 15. 4x2 + 25y2 = 0.25 16. 9x2 + 4y2 = 0.09

In Exercises 17–28, find the equations of the ellipses satisfying the 
given conditions. The centre of each is at the origin.

 17. Vertex 115, 02 , focus 19, 02  18. Minor axis 8, vertex 10, -52
 19. Focus (0, 8), major axis 34 20. Vertex (0, 13), focus 10, -52
 21. End of minor axis (0, 12), focus (8, 0)

 22. Sum of lengths of major and minor axes 18, focus 13, 02
 23. Vertex 18, 02 , passes through 12, 32
 24. Focus 10, 22 , passes through 1 -1, 132
 25. Passes through 12, 22  and 11, 42
 26. Passes through 1 -2, 22  and 11, 162
 27. The sum of distances from 1x, y2  to 16, 02  and 1 -6, 02  is 20.

 28. The sum of distances from 1x, y2  to 10, 22  and 10, -22  is 5.

In Exercises 29–56, solve the given problems.

 29. Find any point(s) of intersection of the graphs of the ellipse 
4x2 + 9y2 = 40 and the parabola y2 = 4x.

 30. Find the equation of the circle that has the same centre as the el-
lipse 4x2 + 9y2 = 36 and is internally tangent to the ellipse.

 31. Find the equation of the ellipse with foci 1 -2, 12  and 14, 12  and 
a major axis of 10, by use of the definition. Sketch the curve.

 32. Find the equation of the ellipse with foci 11, 42  and 11, 02  that 
passes through 14, 42 , by use of the definition. Sketch the curve.

 33. Use a graphing calculator to view the ellipse 
4x2 + 3y2 + 16x - 18y + 31 = 0.

 34. Use a graphing calculator to view the ellipse 
4x2 + 8y2 + 4x - 24y + 1 = 0.

 35. The equation of an ellipse with centre 1h, k2  and major axis 

  parallel to the x-axis is 
1x - h22

a2 +
1y - k22

b2 = 1. (This is

  shown in Section 21.7.) Sketch the ellipse that has a major axis of 
6, a minor axis of 4, and for which 1h, k2  is 12, -12 .

 36. The equation of an ellipse with centre 1h, k2  and major axis par-

  allel to the y-axis is 
1y - k22

a2 +
1x - h22

b2 = 1. (This is shown

  in Section 21.7.) Sketch the ellipse that has a major axis of 8, a 
minor axis of 6, and for which 1h, k2  is 11, 32 .

 37. For what values of k does the ellipse x2 + k2 = 1 have its verti-
ces on the y-axis? Explain how these values are found.

 38. For what value of k does the ellipse x2 + k2y2 = 25 have a focus 
at 13, 02? Explain how this value is found.

 39. Show that the ellipse 2x2 + 3y2 - 8x - 4 = 0 is symmetric to 
the x-axis.

 40. Show that the ellipse 5x2 + y2 - 3y - 7 = 0 is symmetric to 
the y-axis.

 41. Graph the inequality 100x2 + 49y2 … 4900.

 42. Graph the inequality 5x2 + 4y2 7 20.

 43. Show that the parametric equations x = 2 sin t and y = 3 cos t 
define an ellipse.

 44. For what values of k does y2 = 1 + kx2 represent an ellipse with 
foci on the y-axis?

 45. The electric power P (in W) dissipated in a resistance R (in Ω) is 
given by P = Ri2, where i is the current (in A) in the resistor. 
Find the equation for the total power of 64 W dissipated in two 
resistors, with resistances 2.0 Ω and 8.0 Ω, respectively, and with 
currents i1 and i2, respectively. Sketch the graph, assuming that 
negative values of current are meaningful.

 46. The eccentricity e of an ellipse is defined as e = c>a. A cam in 
the shape of an ellipse can be described by the equation 
x2 + 9y2 = 81. Find the eccentricity of this elliptical cam.
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 47. A space object (dubbed 2003 UB313), larger and more distant 
than Pluto, was discovered in 2003. In its elliptical orbit with the 
sun at one focus, it is 5.6 * 109 km from the sun at the closest, 
and 14.4 * 109 km at the farthest. What is the eccentricity of its 
orbit? See Exercise 46.

 48. Halley’s Comet has an elliptical orbit with a = 17.94 AU (AU is 
astronomical unit, 1 AU = 1.5 * 108 km) and b = 4.552 AU, 
with the sun at one focus. What is the closest that the comet 
comes to the sun? Explain your method.

 49. A draftsman draws a series of triangles with a base from 1 -3, 02  
to 13, 02  and a perimeter of 14 cm (all measurements in centime-
tres). Find the equation of the curve on which all of the third ver-
tices of the triangles are located.

 50. A lithotripter is used to break up a kidney stone by placing the kid-
ney stone at one focus of an ellipsoid end-section and a source of 
shock waves at the focus of the other end-section. If the vertices of 
the end-sections are 30.0 cm apart and a minor axis of the ellipsoid 
is 6.0 cm, how far apart are the foci? In a lithotripter, the shock 
waves are reflected as the sound waves noted in Exercise 51.

 51. An ellipse has a focal property such that a light ray or sound wave 
emanating from one focus will be reflected through the other focus. 
Many buildings and structures are built with elliptical ceilings or 
walls, so that a sound from one focus is easily heard at the other 
focus. (Some examples include: Statuary Hall in the U.S. Capitol, 
the Echo Wall in the Temple of Heaven in Beijing, the Whispering 
Wall at the Barossa Reservoir in South Australia, and the 
Whispering Wall on the grounds of Parliament Hill in Ottawa.) If a 
building has a ceiling whose cross sections are part of an ellipse 
that can be described by the equation 36x2 + 225y2 = 8100 
(measurements in metres), how far apart must two persons stand in 
order to whisper to each other using this focal property?

 52. An airplane wing is designed such that a certain cross section is 
an ellipse 2.80 m wide and 0.40 m thick. Find the equation that 
can be used to describe the perimeter of this cross section.

 53. A road passes through a tunnel with a semielliptical cross section 
19.6 m wide and 5.5 m high at the centre. What is the height of 
the tallest vehicle that can pass through the tunnel at a point 6.7 m 
from the centre? See Fig. 21.63.

Fig. 21.63 

6.7 m

5.5 m

19.6 m

 54. An architect designs a window in the shape of an ellipse 1.50 m 
wide and 1.10 m high. Find the perimeter of the window from the 
formula p = p1a + b2 . This formula gives a good approxima-
tion for the perimeter when a and b are nearly equal.

 55. The ends of a horizontal tank 20.0 m long are ellipses, which can 
be described by the equation 9x2 + 20y2 = 180, where x and y 
are measured in metres. The area of an ellipse is A = pab. Find 
the volume of the tank.

 56. A laser beam 6.80 mm in diameter 
is incident on a plane surface at  
an angle of 62.0°, as shown in  
Fig. 21.64. What is the elliptical 
area that the laser covers on the  
surface? (See Exercise 55.)

Answers to Practice Exercises

1. V13, 02 , V1 -3, 02 ; F1212, 02 , F1 -212, 02
2. V10, 5>22 , V10, -5>22 ; F10, 121>22 , F10, - 121>22

Fig. 21.64 
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x  
y  

xy = c

A hyperbola is defined as the locus of a point P1x, y2  that moves so that the difference 
of the distances from two fixed points (the foci) is constant. We choose the foci to be 1 -c, 02  and 1c, 02  (see Fig. 21.65), and the constant difference to be 2a. As with the 
ellipse, c is the length of the line segment from the centre to a focus, and a (as we will 
see) is the length of the line segment from the centre to a vertex. Therefore,21x + c22 + y2 - 21x - c22 + y2 = 2a

Following the same procedure as with the ellipse, the equation of the hyperbola is

x2

a2 -
y2

b2 = 1  (21.20)

When we derive this equation, we have a definition of the relation between a, b, and c 
that is different from that for the ellipse. This relation is

c2 = a2 + b2  (21.21)

Fig. 21.65 
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In Eq. (21.20), if we let y = 0, we find that the x-intercepts are 1 -a, 02  and 1a, 02 , 
just as they are for the ellipse. These are the vertices of the hyperbola. For x = 0, we 
find that we have imaginary solutions for y, which means there are no points on the 
curve that correspond to a value of x = 0.

To find the meaning of b, we solve Eq. (21.20) for y in the special form:

 
y2

b2 =
x2

a2 - 1

 =
x2

a2 - a2x2

a2x2 =
x2

a2 a1 - a2

x2 b
 y2 =

b2x2

a2  a1 - a2

x2 b multiply through by b2 and  
 take the square root of each side

 y = {  
bx
a B1 - a2

x2 (21.22)

We note that, if large values of x are assumed in Eq. (21.22), the quantity under the 
radical becomes approximately 1. In fact, the larger x becomes, the nearer to 1 this 
expression becomes since the x2 in the denominator of a2>x2 makes this term nearly 
zero. Thus, for large values of x, Eq. (21.22) is approximately

y = {  
bx
a

 (21.23)

Eq. (21.23) is seen to represent two straight lines, each of which passes through the 
origin. One has a slope of b>a, and the other has a slope of -b>a. These lines are 
called the asymptotes of the hyperbola. An asymptote is a line that the curve 
approaches as one of the variables approaches some particular value. The graph of the 
tangent function also has asymptotes, as we saw in Fig. 10.23. We can designate this 
limiting procedure with notation introduced in Chapter 19 by

As x S { ∞ , y  S {bx
a

The easiest way to sketch a hyperbola is to draw its asymptotes and then draw the 
hyperbola out from each vertex so that it comes closer and closer to each asymptote as 
x becomes numerically larger. To draw the asymptotes, first draw a small rectangle 2a 
by 2b with the origin at the centre, as shown in Fig. 21.66. Then straight lines, the 
asymptotes, are drawn through opposite vertices of the rectangle. This shows us that 
the significance of the value of b is in the slopes of the asymptotes.

Eq. (21.20) is called the standard equation of the hyperbola with its centre at 
the origin. It has a transverse axis of length 2a along the x-axis and a conjugate 
axis of length 2b along the y-axis. This means that a represents the length of the 
semitransverse axis and b represents the length of the semiconjugate axis. See  
Fig. 21.67. From the definition of c, it is the length of the line segment from the cen-
tre to a focus. Also, c is the length of the semidiagonal of the rectangle, as shown in 
Fig. 21.67. This shows us the geometric meaning of the relationship among a, b, and 
c given in Eq. (21.21).

Fig. 21.66 
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If the transverse axis is along the y-axis and the conjugate axis is along the x-axis, 
the equation of the hyperbola with its centre at the origin (see Fig. 21.68) is

y2

a2 - x2

b2 = 1  (21.24)

In this case, a similar argument as the one leading to Eq. (21.23) shows that the equa-
tions of the asymptotes are y = {(a>b)x.

We now summarize the properties of hyperbolas with centre at the origin.

Fig. 21.68 

y

x
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Standard Equation of a Hyperbola with Centre at (0, 0)

Equation:
x2

a2 -
y2

b2 = 1 (21.20)
y2

a2 - x2

b2 = 1 (21.24)

Geometric 
relationship:

c2 = a2 + b2 c2 = a2 + b2

Transverse axis: x-axis (length 2a) y-axis (length 2a)

Conjugate axis: y-axis (length 2b) 
(0, -b) to (0, b)

x-axis (length 2b)  
(-b, 0) to (b, 0)

Vertices: (-a, 0), (a, 0) (0, -a), (0, a)

Foci: (-c, 0), (c, 0) (0, -c), (0, c)

Asymptotes: y = {bx
a

y = {ax
b

Symmetry: x-axis 
y-axis 
origin

x-axis 
y-axis 
origin

 EXAMPLE  1  Standard equation—transverse axis on the x-axis

The hyperbola 
x2

16
-

y2

9
= 1

a2 b2

fits the form of Eq. (21.20). We know that it fits Eq. (21.20) and not Eq. (21.24) since 
the x2-term is the positive term with 1 on the right. From the equation, we see that 
a2 = 16 and b2 = 9, or a = 4 and b = 3. In turn, this means the vertices are 14, 02  
and 1 -4, 02  and the conjugate axis extends from 10, -32  to 10, 32 .

Since c2 = a2 + b2, we find that c2 = 25, or c = 5. The foci are 1 -5, 02 and 15, 02.
Drawing the rectangle and the asymptotes in Fig. 21.69, we then sketch in the hyper-

bola from each vertex toward each asymptote. ■

 EXAMPLE  2  Standard equation—transverse axis on the y-axis

The hyperbola 
y2

4
- x2

16
= 1

a2 b2

has vertices at 10, -22  and 10, 22 . Its conjugate axis extends from 1 -4, 02  to 14, 02 . 
The foci are 10, -2152  and 10, 2152 . We find this directly from the equation since 
the y2@ term is the positive term with 1 on the right. This means the equation fits the 
form of Eq. (21.24) with a2 = 4 and b2 = 16. Also, c2 = 20, which means that 
c = 120 = 215. The hyperbola is shown in Fig. 21.70. ■

Fig. 21.69 
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 EXAMPLE  3  

Determine the coordinates of the vertices and foci of the hyperbola

4x2 - 9y2 = 36

First, by dividing through by 36, we have

x2

9
-

y2

4
= 1

From this form, we see that a2 = 9 and b2 = 4. In turn, this tells us that a = 3, 
b = 2, and c = 19 + 4 = 113. Since a2 appears under x2, the equation fits 
the form of Eq. (21.20). Therefore, the vertices are 1 -3, 02  and 13, 02  and the 
foci are 1 - 113, 02  and 1113, 02 . The hyperbola is shown in Fig. 21.71. ■

 EXAMPLE  4  Hyperbola—application

In physics, it is shown that where the velocity of a fluid is greatest, the pressure is the 
least. In designing an experiment to study this effect in the flow of water, a pipe is con-
structed such that its lengthwise cross section is hyperbolic. The pipe is 1.0 m long, 0.2 m 
in diameter at the narrowest point in the middle, and 0.4 m in diameter at each end. What 
is the equation that represents the cross section of the pipe as shown in Fig. 21.72?

As shown, the hyperbola has its transverse axis along the y-axis and its centre 
at the origin. This means the general equation is given by Eq. (21.24). Since the 
radius at the middle of the pipe is 0.1 m, we know that a = 0.1 m. Also, since it 
is 1.0 m long and the radius at the end is 0.2 m, we know the point 10.5, 0.22  is 
on the hyperbola. This point must satisfy the equation

 
y2

a2 - x2

b2 = 1 Eq. (21.24)

point  10.5, 0.22  satisfies equation 

a = 0.1
    

0.22

0.12 - 0.52

b2 = 1

 4 - 0.25

b2 = 1,  3b2 = 0.25,  b2 = 0.083

 
y2

0.12 - x2

0.083
= 1 substituting a = 0.1, b2 = 0.083 in Eq. (21.24)

 100y2 - 12x2 = 1 equation of cross section ■

 EXAMPLE  5  The hyperbola as a graph of two functions

A hyperbola represented by either Eq. (21.20) or Eq. (21.24) is the graph of two func-
tions, which are found when we solve the equation for y. One represents the upper half 
of the hyperbola, and the other represents the lower half. For the hyperbola in Example 4, 
the functions are

y = {2(12x2 + 1)>100

Both functions would have to be entered into a graphing calculator to view the hyper-
bola shown in Fig. 21.72. ■

Equations (21.20) and (21.24) give us the standard forms of the equation of the 
hyperbola with its centre at the origin and its foci on one of the coordinate axes. There 
is another important equation form that represents a hyperbola:

form requires 
-  and 1

Fig. 21.71 

y

x
26 24 22

24
23

21

1

4
3

642

F (2=13, 0)

V(23, 0)

F (=13, 0)

V (3, 0)

Fig. 21.72 

0

!0.2

0.2

0.4 0.6!0.4
0.4 m

1.0 m

(0.5, 0.2)
y

x

Find the vertices and foci of each hyperbola.

1. x2

36 + y2

13 = 1  2. 4y 2 - x 2 = 4



 21.6 The Hyperbola  591

xy = c  (21.25)

The asymptotes of this hyperbola are the coordinate axes, and the foci are on the line 
y = x if c is positive or on the line y = -x if c is negative.

The hyperbola represented by Eq. (21.25) is symmetric to the origin, for if -x 
replaces x and -y replaces y at the same time, we obtain 1 -x2 1 -y2 = c, or xy = c. 
The equation is unchanged. However, if -x replaces x or -y replaces y, but not both, 
the sign on the left is changed. This means it is not symmetric to either axis. Here, c 
represents a constant, and it is not related to the focus. The following two examples 
deal with hyperbolas of this type.

 EXAMPLE  6  xy = c Hyperbola

Plot the graph of the hyperbola xy = 4.
We find the values in the table below and then plot the appropriate points. Here, it is 

permissible to use a limited number of points, since we know the equation represents a 
hyperbola. Therefore, using y = 4>x, we obtain the values

x -8 -4 -1 -1
2

1
2 1 4 8

y -1
2 -1 -4 -8 8 4 1 1

2

Note that neither x nor y may equal zero. The hyperbola is shown in Fig. 21.73.
If the constant on the right is negative (for example, if xy = -4), then the two 

branches of the hyperbola are in the second and fourth quadrants. ■

 EXAMPLE  7  xy = c Hyperbola—application

For a light wave, the product of its frequency f  of vibration and its wavelength l is a 
constant, and this constant is the speed of light c. For green light, for which 
f = 600 THz, l = 500 nm. Graph l as a function of f  for any light wave.

From the statement above, we know that fl = c, and from the given values, we have1600 THz2 1500 nm2 = 16.0 * 1014 Hz2 15.0 * 10-7 m2 = 3.0 * 108 m>s

which means c = 3.0 * 108 m>s. We are to sketch f l = 3.0 * 108. Solving for l as 
l = 3.0 * 108>f , we have the table at the left (only positive values have meaning). 
See Fig. 21.74. (Violet light has wavelengths of about 400 nm, orange light has wave-
lengths of about 600 nm, and red light has wavelengths of about 700 nm.) ■

We can conclude that the equation of a hyperbola is characterized by the presence 
of both an x2-term and a y2-term, having different signs, or by the presence of an xy-term 
with no squared terms. We will consider the equation of the hyperbola further in 
Sections 21.7, 21.8, and 21.9.

The hyperbola has some very useful applications. The LORAN radio navigation 
system is based on the use of hyperbolic paths. Some reflecting telescopes use hyper-
bolic mirrors. The paths of comets that never return to pass by the sun are hyperbolic. 
Some applications are illustrated in the exercises.

Fig. 21.73 
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3000

■ The first reasonable measurement of the 
speed of light was made by the Danish astrono-
mer Olaf Roemer (1644–1710). He measured the 
time required for light to come from the moons 
of Jupiter across the earth’s orbit.

f  (THz) 750 600 500 430 
l (nm) 400 500 600 700 



592  Plane Analytic Geometry

EXERCISES 21.6

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the resulting problems.

 1. In Example 2, interchange the denominators of 4 and 16; find the 
vertices, ends of the conjugate axis, and foci. Sketch the curve.

 2. In Example 3, change -9y2 to -y2 and then follow the same in-
structions as in Exercise 1.

In Exercises 3–16, find the coordinates of the vertices and the foci of 
the given hyperbolas. Sketch each curve.

 3. 
x2

25
-

y2

144
= 1 4. 

x2

16
-

y2

4
= 1 5. 

y2

9
- x2

1
= 1

 6. 
y2

4
- x2

21
= 1 7. 

4x2

25
-

y2

4
= 1 8. 

9y2

25
- x2 = 1

 9. 4x2 - y2 = 4 10. x2 - 9y2 = 1

 11. 2y2 - 5x2 = 10 12. 9y2 - 16x2 = 144

 13. y2 = 41x2 + 12  14. y2 = 91x2 - 12
 15. 4x2 - y2 = 0.64 16. 9y2 - x2 = 0.36

In Exercises 17–28, find the equations of the hyperbolas satisfying the 
given conditions. The centre of each is at the origin.

 17. Vertex 13, 02 , focus 15, 02
 18. Vertex 10, 12 , focus 10, 132
 19. Conjugate axis = 48, vertex 10, 102
 20. Sum of lengths of transverse and conjugate axes 28, focus 110, 02
 21. Passes through 12, 32 , focus 12, 02
 22. Passes through 18, 132 , vertex 14, 02
 23. Passes through 15, 42  and 13, 45152
 24. Passes through 11, 22  and 12, 2122
 25. Asymptote y = 2x, vertex 11, 02
 26. Asymptote y = -4x, vertex 10, 42
 27. The difference of distances to 1x, y2  from 110, 02  and 1 -10, 02  

is 12.

 28. The difference of distances to 1x, y2  from 10, 42  and 10, -42  is 6.

In Exercises 29–54, solve the given problems.

 29. Sketch the graph of the hyperbola xy = 2.

 30. Sketch the graph of the hyperbola xy = -4.

 31. Show that the parametric equations x = sec t, y = tan t define a 
hyperbola.

 32. Show that all hyperbolas 
x2

cos2 u
-

y2

sin2 u
= 1 have foci at 1{1, 02  

  for all values of u.

 33. Find any points of intersection of the ellipse 2x2 + y2 = 17 and 
the hyperbola y2 - x2 = 5.

 34. Find any points of intersection of the hyperbolas x2 - 3y2 = 22 
and xy = 5.

 35. Find the equation of the hyperbola with foci 11, 22  and 111, 22 , 
and a transverse axis of 8, by use of the definition. Sketch the 
curve.

 36. Find the equation of the hyperbola with vertices 1 -2, 42  and 1 -2, -22 , and a conjugate axis of 4, by use of the definition. 
Sketch the curve.

 37. Use a graphing calculator to view the hyperbola 
x2 - 4y2 + 4x + 32y - 64 = 0.

 38. Use a graphing calculator to view the hyperbola 
5y2 - 4x2 + 8x + 40y + 56 = 0.

 39. The equation of a hyperbola with centre 1h, k2  and transverse axis 

  parallel to the x-axis is 
1x - h22

a2 -
1y - k22

b2 = 1. (This is shown 

  in Section 21.7.) Sketch the hyperbola that has a transverse axis 
of 4, a conjugate axis of 6, and for which 1h, k2  is 1 -3, 22 .

 40. The equation of a hyperbola with centre 1h, k2  and transverse axis 

  parallel to the y-axis is 
1y - k22

a2 -
1x - h22

b2 = 1. (This is shown

  in Section 21.7.) Sketch the hyperbola that has a transverse axis 
of 2, a conjugate axis of 8, and for which 1h, k2  is 15, 02 .

 41. Two concentric (same centre) hyperbolas are called conjugate 
hyperbolas if the transverse and conjugate axes of one are, re-
spectively, the conjugate and transverse axes of the other. What is 
the equation of the hyperbola conjugate to the hyperbola in 
Exercise 18?

 42. As with an ellipse, the eccentricity e of a hyperbola is defined as 
e = c>a. Find the eccentricity of the hyperbola 2x2 - 3y2 = 24.

 43. Graph the inequality 100x2 - 49y2 … 4900.

 44. Draw a sketch of the graph of the region in which the points sat-
isfy the system of inequalities xy 6 4, y 7 x.

 45. Find the equation of the hyperbola that has the same foci as the 
ellipse x2

169 + y2

144 = 1 and passes through 1412, 32 .

 46. Explain how a branch of a hyperbola differs from a parabola.

 47. The cross section of the roof of a storage building shown in  
Fig. 21.75 is hyperbolic, with the horizontal beam passing 
through the focus. Find the equation of the hyperbola such that its 
centre is at the origin.

Fig. 21.75 
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Fig. 21.76 
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48. A plane is flying at a constant altitude of 2000 m. Show that the 
equation relating the horizontal distance x and the direct-line dis-
tance l from a control tower to the plane is that of a hyperbola. 
Sketch the graph of l as a function of x. See Fig. 21.76.

 49. A jet travels 600 km at a speed of v km>h for t hours. Graph the 
equation relating v as a function of t.
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 50. A drain pipe 100 m long has an inside diameter d (in m) and an 
outside diameter D (in m). If the volume of material of the pipe 
itself is 0.50 m3, what is the equation relating d and D? Graph D 
as a function of d.

 51. Ohm’s law in electricity states that the product of the current i and 
the resistance R equals the voltage V across the resistance. If a bat-
tery of 6.00 V is placed across a variable resistor R, find the equa-
tion relating i and R and sketch the graph of i as a function of R.

 52. A ray of light directed at one focus of a hyperbolic mirror is re-
flected toward the other focus. Find the equation that represents 
the hyperbolic mirror shown in Fig. 21.77.

 53. A radio signal is sent simultaneously from stations A and B 600 km 
apart on the coast of New South Wales, Australia. A ship receives 
the signal from A 1.20 ms before it receives the signal from B. 
Given that radio signals travel at 300 km>ms, draw a graph show-
ing the possible locations of the ship. This problem illustrates the 
basis of LORAN (Long Range Navigation).

 54. Maximum intensity for monochromatic (single-color) light from 
two sources occurs where the difference in distances from the 
sources is an integral number of wavelengths. Find the equation 
of the curves of maximum intensity in a thin film between  
the sources where the difference in paths is two wavelengths and 
the sources are four wavelengths apart. Let the sources be on the  
x-axis and the origin midway between them. Use units of one 
wavelength for both x and y.

1. V16, 02 , V1 -6, 02 ; F17, 02 , F1 -7, 02
2. V10, 12 , V10, -12 ; F10, 152 , F10, - 152

Fig. 21.77 

OF F

y

x
3.5 cm

2.8 cm

 21.7 Translation of Axes
 

 
The equations we have considered for the parabola, the ellipse, and the hyperbola are 
those for which the centre of the ellipse or hyperbola, or the vertex of the parabola, is at 
the origin. In this section, we consider, without specific use of the definition, the equa-
tions of these curves for the cases in which the axis of the curve is parallel to one of the 
coordinate axes. This is done by translation of axes.

In Fig. 21.78, we choose a point 1h, k2  in the xy-coordinate plane as the 
origin of another coordinate system, the x′y′-coordinate system. The x′-axis 
is parallel to the x-axis and the y′-axis is parallel to the y-axis. Every point 
now has two sets of coordinates 1x, y2  and 1x′, y′2 . We see that

x = x′ + h and y = y′ + k  (21.26)

Eq. (21.26) can also be written in the form

x′ = x - h and y′ = y - k  (21.27)

 EXAMPLE  1  

Find the equation of the parabola with vertex 12, 42  and focus 14, 42 .
If we let the origin of the x′y′-coordinate system be the point 12, 42 , then the point 14, 42  is the point 12, 02  in the x′y′-system. This means p = 2 and 4p = 8. See  

Fig. 21.79. In the x′y′-system, the equation is1y′22 = 81x′2
Using Eq. (21.27), we have 1y - 422 = 81x - 22

coordinates of vertex 12, 42
as the equation of the parabola in the xy-coordinate system. ■
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Following the method of Example 1, by writing the equation of the curve in the  
x′y′-system and then using Eq. (21.27), we have the following more general forms of 
the equations of the parabola, ellipse, and hyperbola:

  Parabola, vertex 1h, k2 : 1y - k22 = 4p1x - h2  1axis parallel to x@axis2  (21.28)
 1x - h22 = 4p1y - k2  1axis parallel to y@axis2  (21.29)

  Ellipse, centre 1h, k2 : 
1x - h22

a2 +
1y - k22

b2 = 1 1major axis parallel to x@axis2  (21.30)

 
1y - k22

a2 +
1x - h22

b2 = 1 1major axis parallel to y@axis2   (21.31)

  Hyperbola, centre 1h, k2 : 
1x - h22

a2 -
1y - k22

b2 = 1 1 transverse axis parallel to x@axis2  (21.32)

 
1y - k22

a2 -
1x - h22

b2 = 1  1 transverse axis parallel to y@axis2  (21.33)

 EXAMPLE  2  

Describe the curve defined by the equation1x - 322

25
+

1y + 222

9
= 1

We see that this equation fits the form of Eq. (21.30) with h = 3 and k = -2. It is 
the equation of an ellipse with its centre at 13, -22  and its major axis parallel to the  
x-axis. The semimajor axis is a = 5, and the semiminor axis is b = 3. The ellipse is 
shown in Fig. 21.80. ■

 EXAMPLE  3  Finding the centre of a hyperbola

Find the centre of the hyperbola 2x2 - y2 - 4x - 4y - 4 = 0.
To analyse this curve, we first complete the square in the x-terms and in the y-terms. 

This will allow us to recognize properly the choice of h and k.

 2x2 - 4x - y2 - 4y = 4

 21x2 - 2x 2 - 1y2 + 4y 2 = 4

 21x2 - 2x + 12 - 1y2 + 4y + 42 = 4 + 2 - 4

We note here that when we added 1 to complete the square of the x-terms within the 
parentheses, we were actually adding 2 to the left side. Thus, we added 2 to the  
right side. Similarly, when we added 4 to the y-terms within the parentheses, we  
were actually subtracting 4 from the left side. Continuing, we have

 21x - 122 - 1y + 222 = 2
coordinates of centre 11, -22

 
1x - 122

1
-

1y + 222

2
= 1

Therefore, the centre of the hyperbola is 11, -22 . See Fig. 21.81. ■

Fig. 21.80 
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1.  Find the centre and foci of the ellipse 
2x 2 + 3y 2 - 8x + 18y + 29 = 0.
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 EXAMPLE  4  Translation of axes—application

Cylindrical glass beakers are to be made with a height of 3 cm. Express the surface area 
in terms of the radius of the base and sketch the curve.

The total surface area S of a beaker is the sum of the area of the base and the lateral 
surface area of the side. In general, S in terms of the radius r of the base and height h of 
the side is S = pr2 + 2prh. Since h = 3 cm, we have

S = pr2 + 6pr

which is the desired relationship. See Fig. 21.82.
To analyse the equation relating S and r, we complete the square of the r terms:

 S = p1r2 + 6r2
 S + 9p = p1r2 + 6r + 92 complete the square

 S + 9p = p1r + 322

vertex 1 -3, -9p2
 1r + 322 =

1
p

 1S + 9p2
This represents a parabola with vertex 1 -3, -9p2 . Since 4p = 1>p, then 
p = 1> 14p2 , and the focus is 1 -3,  1

4p - 9p2 , as shown in Fig. 21.83. The part of 
the graph for negative r is dashed since only positive values have meaning. ■

Fig. 21.82 
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EXERCISES 21.7

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the resulting problem.

 1. In Example 2, change y + 2 to y - 2 and change the sign before 
the second term from +  to - . Then describe and sketch the curve.

 2. In Example 3, change the fourth and fifth terms from -  4y - 4 to 
+  6y - 9 and then find the centre.

In Exercises 3–10, describe the curve represented by each equation. 
Identify the type of curve and its centre (or vertex if it is a parabola). 
Sketch each curve.

 3. 1y - 222 = 41x + 12  4. 
1x + 422

4
+

1y - 122

1
= 1

 5. 
1x - 122

4
-

1y - 222

9
= 1 6. 1y + 522 = -81x - 22

 7. 
1x + 122

1
+

y2

9
= 1 8. 

1y - 422

16
-

1x + 222

4
= 1

 9. 1x + 322 = -121y - 12  10. 
x2

0.16
+

1y + 122

0.25
= 1

In Exercises 11–22, find the equation of each of the curves described 
by the given information.

 11. Parabola: vertex 1 -1, 32 , focus 13, 32
 12. Parabola: focus 12, -52 , directrix y = 3

 13. Parabola: axis, directrix are coordinate axes, focus 112, 02
 14. Parabola: vertex 14, 42 , vertical directrix, passes through 10, 12
 15. Ellipse: centre 1 -2, 22 , focus 1 -5, 22 , vertex 1 -7, 22
 16. Ellipse: centre 10, 32 , focus 112, 32 , major axis 26 units

 17. Ellipse: centre 1 -2, 12 , vertex 1 -2, 52 , passes through 10, 12

 18. Ellipse: foci 11, -22  and 11, 102 , minor axis 5 units

 19. Hyperbola: vertex 1 -1, 12 , focus 1 -1, 42 , centre 1 -1, 22
 20. Hyperbola: foci 12, 12  and 18, 12 , conjugate axis 6 units

 21. Hyperbola: vertices 12, 12  and 1 -4, 12 , focus 1 -6, 12
 22. Hyperbola: centre 11, -42 , focus 11, 12 , transverse axis 8 units

In Exercises 23–40, determine the centre (or vertex, if the curve is a 
parabola) of the given curve. Sketch each curve.

 23. x2 + 2x - 4y - 3 = 0 24. y2 - 2x - 2y - 9 = 0

 25. x2 + 4y = 24 26. x2 + 4y2 = 32y

 27. 4x2 + 9y2 + 24x = 0 28. 2x2 + y2 + 8x = 8y

 29. 9x2 - y2 + 8y = 7 30. 2x2 - 4x = 9y - 2

 31. 5x2 - 4y2 + 20x + 8y = 4 32. 0.04x2 + 0.16y2 = 0.01y

 33. 4x2 - y2 + 32x + 10y + 35 = 0

 34. 2x2 + 2y2 - 24x + 16y + 95 = 0

 35. 16x2 + 25y2 - 32x + 100y - 284 = 0

 36. 9x2 - 16y2 - 18x + 96y - 279 = 0

 37. 5x2 - 3y2 + 95 = 40x 38. 5x2 + 12y + 18 = 2y2

 39. 9x2 + 9y2 + 14 = 6x + 24y 40. 4y2 + 29 = 15x + 12y

In Exercises 41–52, solve the given problems.

 41. Find the equation of the hyperbola with asymptotes x - y = -1 
and x + y = -3 and vertex 13, -12 .

 42. The circle x2 + y2 + 4x - 5 = 0 passes through the foci and 
the ends of the minor axis of an ellipse that has its major axis 
along the x-axis. Find the equation of the ellipse.
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 43. The vertex and focus of one parabola are, respectively, the focus 
and vertex of a second parabola. Find the equation of the first pa-
rabola, if y2 = 4x is the equation of the second.

 44. Identify the curve represented by 4y2 - x2 - 6x - 2y = 14 and 
view it on a graphing calculator.

 45. What is the general form of the equation of a family of parabolas 
if each vertex and focus is on the x-axis?

 46. What is the general form of the equation of a family of ellipses 
with foci on the y-axis if each passes through the origin?

 47. An electric current (in A) is i = 2 + sin12pt - p
3 2 . What is the 

equation for the current if the origin of the 1 t′, i′2  system is 
taken as 11

6, 22  of the 1 t, i2  system?

 48. The stopping distance d (in m) of a car travelling at v km>h is 
represented by d = 0.005v2 + 0.2v. Where is the vertex of the 
parabola that represents d?

 49. The stream from a fire hose follows a parabolic curve and reaches 
a maximum height of 18 m at a horizontal distance of 28 m from 
the nozzle. Find the equation that represents the stream, with the 
origin at the nozzle. Sketch the graph.

 50. For a constant capacitive reactance and a constant resistance, 
sketch the graph of the impedance and inductive reactance (as 
abscissas) for an alternating-current circuit. (See Section 12.7.)

 51. Two wheels in a friction drive assembly are equal ellipses, as 
shown in Fig. 21.84. They are always in contact, with the left 
wheel fixed in position and the right wheel able to move horizon-
tally. Find the equation that can be used to represent the circum-
ference of each wheel in the position shown.

Fig. 21.84 
8.0 cm

6.0 cm

0

y

x

 52. An agricultural test station is to be divided into rectangular sec-
tions, each with a perimeter of 480 m. Express the area A of each 
section in terms of its width w and identify the type of curve rep-
resented. Sketch the graph of A as a function of w. For what value 
of w is A the greatest?

1. C12, -32 , F11, -32 , F13, -32
 21.8 The Second-Degree Equation

 
Coefficients A, B, C Determine the 

The equations of the circle, parabola, ellipse, and hyperbola are all special cases of the 
same general equation. In this section, we discuss this equation and how to identify the 
particular form it takes when it represents a specific type of curve.

Each of these curves can be represented by a second-degree equation of the form

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0  (21.34)

The coefficients of the second-degree equation terms determine the type of curve that 
results. Recalling the discussions of the general forms of the equations of the circle, 
parabola, ellipse, and hyperbola from the previous sections of this chapter, Eq. (21.34) 
represents the indicated curve for given conditions of A, B, and C, as follows:

1. If A = C, B = 0, a circle.

2. If A ≠ C (but they have the same sign), B = 0, an ellipse.

3. If A and C have different signs, B = 0, a hyperbola.

4. If A = 0, C = 0, B ≠ 0, a hyperbola.

5.  If either A = 0 or C = 0 (but not both), B = 0, a parabola. (Special cases 
such as a single point or no real locus can also result.)

Another conclusion about Eq. (21.34) is that, if either D ≠ 0 or E ≠ 0 (or both), 
the centre of the curve (or vertex of a parabola) is not at the origin. If B ≠ 0, the axis 
of the curve has been rotated. We have considered only one such case (the hyperbola 
xy = c) so far in this chapter. In the following section, rotation of axes is taken up, and 
if B ≠ 0, we will see that the type of curve depends on the value B2 - 4AC. The fol-
lowing examples illustrate how the type of curve is identified from the equation accord-
ing to the five criteria listed above.
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 EXAMPLE  1  

The equation 2x2 = 3 - 2y2 represents a circle. This can be seen by putting the equa-
tion in the form of Eq. (21.34). This form is

2x2 + 2y2 - 3 = 0

A = 2 C = 2

We see that A = C. Also, since there is no xy-term, we know that B = 0. This means 
that the equation represents a circle. If we write it as x2 + y2 = 3

2, we see that it fits the 
form of Eq. (21.12). The circle is shown in Fig. 21.85. ■

 EXAMPLE  2  

The equation 3y2 = 6y - x2 + 3 represents an ellipse. Before analysing the equation, 
we should put it in the form of Eq. (21.34). For this equation, this form is

x2 + 3y2 - 6y - 3 = 0

A = 1 C = 3

Here, we see that B = 0, A and C have the same sign, and A ≠ C. Therefore, it is an 
ellipse. The -6y term indicates that the centre of the ellipse is not at the origin. This 
ellipse is shown in Fig. 21.86. ■

 EXAMPLE  3  

Identify the curve represented by 2x2 + 12x = y2 - 14. Determine the appropriate 
quantities for the curve, and sketch the graph.

Writing this equation in the form of Eq. (21.34), we have

2x2 - y2 + 12x + 14 = 0

A = 2 C = -1

We identify this equation as representing a hyperbola, since A and C have different 
signs and B = 0. We now write it in the standard form of a hyperbola:

 2x2 + 12x - y2 = -14

 21x2 + 6x 2 - y2 = -14 complete the square

 21x2 + 6x + 92 - y2 = -14 + 18

 21x + 322 - y2 = 4
 centre is 1 -3, 02

 
1x + 322

2
-

y2

4
= 1 

x′2

2
-

y′2

4
= 1

Thus, we see that the centre 1h, k2  of the hyperbola is the point 1 -3, 02 . Also, 
a = 12 and b = 2. This means that the vertices are 1 -3 + 12, 02  and 1 -3 - 12, 02 , and the conjugate axis extends from 1 -3, 22  to 1 -3, -22 . Also, 
c2 = 2 + 4 = 6, which means that c = 16. The foci are 1 -3 + 16, 02  and 1 -3 - 16, 02 . The graph is shown in Fig. 21.87. ■

 EXAMPLE  4  

Identify the curve represented by 4y2 - 23 = 414x + 3y2  and find the appropriate 
important quantities.

Writing the equation in the form of Eq. (21.34), we have

4y2 - 16x - 12y - 23 = 0

Fig. 21.85 
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Identify the type of curve represented by 
each equation.
1. 2y2 - 4y + 5 = 4x - x2 
2. x2 + y2 - 8y + 12x = x2 - y2 
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Therefore, we recognize the equation as representing a parabola, since A = 0 and 
B = 0. Now, writing the equation in the standard form of a parabola, we have

4y2 - 12y = 16x + 23

 41y2 - 3y 2 = 16x + 23 complete the square

 4ay2 - 3y + 9
4
b = 16x + 23 + 9

 4ay - 3
2
b2

= 161x + 22
vertex  a-2, 

3
2
b

 ay - 3
2
b2

= 41x + 22 or y′2 = 4x′

We now note that the vertex is 1 -2, 3>22  and that p = 1. This means that the focus  
is 1 -1, 3>22  and the directrix is x = -3. The graph is shown in Fig. 21.88. ■

In Chapter 14, when these curves were first introduced, they were referred to as 
conic sections. If a plane is passed through a cone, the intersection of the plane and the 
cone results in one of these curves; the curve formed depends on the angle of the plane 
with respect to the axis of the cone. This is shown in Fig. 21.89.

Fig. 21.88 

0

2

6

2−2−4 64

−4

−2

y

x

x = −3

V(−2,     )3
2

Fig. 21.89 

p
2

V

Ellipse

Circle

Hyperbola

Parabola

EXERCISES 21.8

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the indicated problem.

 1. In Example 1, change the -  before the 2y2 to +  and then deter-
mine what type of curve is represented.

 2. In Example 3, change y2 - 14 to 14 - y2 and then determine 
what type of curve is represented.

In Exercises 3–24, identify each of the equations as representing 
either a circle, a parabola, an ellipse, a hyperbola, or none of these.

 3. x2 + 2y2 - 2 = 0 4. x2 - y = 0

 5. 2x2 - y2 - 1 = 0 6. y1y + x22 = 4

 7. 8x2 + 2y2 = 6y11 - y2  8. x1x - 32 = y11 - 2y22

 9. 2.2x2 - x - y = 1.6 10. 2x2 + 4y2 = y + 2x

 11. x2 = 1y - 12 1y + 12  12. 3.2x2 = 2.1y11 - 2y2
 13. 36x2 = 12y11 - 3y2 + 1 14. y = 311 - 2x2 11 + 2x2
 15. y13 - 2x2 = x15 - 2y2  16. x113 - 5x2 = 5y2

 17. 2xy + x - 3y = 6 18. 1y + 122 = x2 + y2 - 1

 19. 2x1x - y2 = y13 - y - 2x2
 20. 15x2 = x1x - 122 + 4y1y - 62
 21. 1x + 122 + 1y + 122 = 21x + y + 12
 22. 12x + y22 = 4x1y - 22 - 16

 23. x1y + 3x2 = x2 + xy - y2 + 1

 24. 4x1x - 12 = 2x2 - 2y2 + 3
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In Exercises 25–30, identify the curve represented by each of the 
given equations. Determine the appropriate important quantities for 
the curve and sketch the graph.

 25. x2 = 81y - x - 22  26. x2 = 6x - 4y2 - 1

 27. y2 = 21x2 - 2x - 2y2  28. 4x2 + 4 = 9 - 8x - 4y2

 29. y2 + 42 = 2x110 - x2  30. x2 - 4y = y2 + 411 - x2
In Exercises 31–36, identify the type of curve for each equation, and 
then view it on a graphing calculator.

 31. x2 + 2y2 - 4x + 12y + 14 = 0

 32. 4y2 - x2 + 40y - 4x + 60 = 0

 33. 41y2 - 4x - 22 = 514y - 52
 34. 212x2 - y2 = 8 - y2

 35. 41y2 + 6y + 12 = x1x - 42 - 24

 36. 8x + 31 - xy = y1y - 2 - x2
In Exercises 37–42, use the given values to determine the type of 
curve represented.

 37. For the equation x2 + ky2 = a2, what type of curve is repre-
sented if (a) k = 1, (b) k 6 0, and (c) k 7 0 1k ≠ 12?

 38. For the equation 
x2

4 - k
-

y2

k
= 1, what type of curve is repre-

  sented if (a) k 6 0 and (b) 0 6 k 6 4? (For k 7 4, see  
Exercise 40.)

 39. In Eq. (21.34), if A 7 C 7 0 and B = D = E = F = 0, de-
scribe the locus of the equation.

 40. For the equation in Exercise 38, describe the locus of the equation 
if k 7 4.

 41. In Eq. (21.34), if A = B = C = 0, D ≠ 0, E ≠ 0, and F ≠ 0, 
describe the locus of the equation.

 42. In Eq. (21.34), if A = -C ≠ 0, B = D = E = 0, and F = C, 
describe the locus of the equation if C 7 0.

In Exercises 43–48, determine the type of curve from the given 
information.

 43. The diagonal brace in a rectangular metal frame is 3.0 cm longer 
than the length of one of the sides. Determine the type of curve 
represented by the equation relating the lengths of the sides of the 
frame.

 44. One circular solar cell has a radius that is 2.0 cm less than the radius 
r of a second circular solar cell. Determine the type of curve repre-
sented by the equation relating the total area A of both cells and r.

 45. A flashlight emits a cone of light onto the floor. What type of 
curve is the perimeter of the lighted area on the floor, if the floor 
cuts completely through the cone of light?

 46. What type of curve is the perimeter of the lighted area on the 
floor of the cone of light in Exercise 45, if the upper edge of the 
cone is parallel to the floor?

 47. A supersonic jet creates a conical shock wave behind it. What 
type of curve is outlined on the surface of a lake by the shock 
wave if the jet is flying horizontally?

 48. In Fig. 21.89, if the plane cutting the cones passes through the in-
tersection of the upper and lower cones, what type of curve is the 
intersection of the plane and cones?

1. Ellipse  2. Parabola

 21.9 Rotation of Axes
 

Value of B2 − 4AC
In this chapter, we have discussed the circle, parabola, ellipse, and hyperbola, and in the 
last section, we showed how these curves are represented by the second-degree equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (21.34)

The discussion of these curves included their equations with the centre (or vertex for a 
parabola) at the origin. However, as noted in the last section, except for the special case 
of the hyperbola xy = c, we did not show what happens when the axes are rotated 
about the origin.

If a set of axes is rotated about the origin through an angle u, as shown in  
Fig. 21.90, we say that there has been a rotation of axes. In this case, each point P in 
the plane has two sets of coordinates, 1x, y2  in the original system and 1x′, y′2  in the 
rotated system.

If we now let r equal the distance from the origin O to point P and let f be the angle 
between the x′-axis and the line OP, we have

 x′ = r cos f   y′ = r sin f  (21.35)
 x = r cos 1u + f2     y = r sin1u + f2  (21.36)

Using the cosine and sine of the sum of two angles, we can write Eq. (21.36) as

 x = r cos f cos u - r sin f sin u

 y = r cos f sin u + r sin f cos u (21.37)

Fig. 21.90 
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Now, using Eq. (21.35), we have

 x = x′ cos u - y′ sin u
 y = x′ sin u + y′ cos u (21.38)

In our derivation, we have used the special case when u is acute and P is in the first 
quadrant of both sets of axes. When simplifying equations of curves using Eq. (21.38), 
we find that a rotation through a positive acute angle u is sufficient. It can be shown, 
however, that Eq. (21.38) holds for any u and position of P.

 EXAMPLE  1  Rotation through 45°

Transform x2 - y2 + 8 = 0 by rotating the axes through 45°.
When u = 45°, the rotation Eq. (21.38) becomes

 x = x′ cos 45° - y′ sin 45° =
x′12

-
y′12

 y = x′ sin 45° + y′ cos 45° =
x′12

+
y′12

Substituting into the equation x2 - y2 + 8 = 0 gives

 a x′12
-

y′12
b2

- a x′12
+

y′12
b2

+ 8 = 0

 
1
2

 x′2 - x′y′ + 1
2

 y′2 - 1
2

 x′2 - x′y′ - 1
2

 y′2 + 8 = 0

 x′y′ = 4

The graph and both sets of axes are shown in Fig. 21.91. The original equation repre-
sents a hyperbola. In this example, we have shown that the xy = c type of hyperbola is 
obtained by a 45° rotation of the standard form given by Eq. (21.34). ■

In Section 21.8, when we showed the type of conic section represented by the second-
degree equation Eq. (21.34), the standard forms of the parabola, ellipse, and hyperbola 
required that there be no xy-term, which means that B = 0. Remember, the xy = c 
type of hyperbola does not fit the standard form of a hyperbola.

Therefore, we see that if we can remove the xy-term from the second-degree equa-
tion of the form in Eq. (21.34), the analysis of the graph is simplified. By a proper rota-
tion of axes, we find that Eq. (21.34) can be transformed into an equation containing no 
xy-term. We now show how this is done.

By substituting Eq. (21.38) into Eq. (21.34) and then simplifying, we have1A cos2 u + B sin u cos u + C sin2 u2x′2 + 3B cos 2u - 1A - C2sin 2u4x′y′
+  1A sin2 u - B sin u cos u + C cos2 u2y′2 + 1D cos u + E sin u2x′
+ 1E cos u - D sin u2y′ + F = 0 (21.39)

If there is to be no x′y′-term, its coefficient must be zero. This means that 
B cos 2u - 1A - C2sin 2u = 0, or

tan 2u =
B

A - C
  1A ≠ C2  (21.40)

Eq. (21.40) gives the angle of rotation except when A = C. In this case, the coefficient 
of the x′y′-term is B cos 2u, which is zero if 2u = 90°. Thus,

u = 45°  1A = C2  (21.41)

Consider the following example.

Fig. 21.91 
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 EXAMPLE  2  Rotating axes— eliminating the xy-term

By rotation of axes, transform 8x2 + 4xy + 5y2 = 9 into a form without an xy-term. 
Identify and sketch the curve.

Here, A = 8, B = 4, and C = 5. Therefore, using Eq. (21.40), we have

tan 2u =
4

8 - 5
=

4
3

Since tan 2 u is positive, we may take 2 u as an acute angle, which means u is also 
acute. For the transformation, we need sin u and cos u. We find these values by first 
finding the value of cos 2 u and then using the half-angle formulas:

cos 2 u =
1

sec 2u
=

121 + tan2 2 u
=

131 + 14
322 

=
3
5

  using Eqs. (20.2) and (20.7)

Now, using the half-angle formulas, Eqs. (20.26) and (20.27), we have

■ For reference:  

Eq. (21.2) is cos u =
1

sec u
 

Eq. (20.7) is  1 + tan 2  u = sec 2  u 

Eq. (20.26) is  sin 
a

2
 = {A1 - cos a

2

Eq. (20.27) is  cos 
a

2
 = {A1 + cos a

2

sin u = A1 - cos 2 u
2

= C1 - 3
5

2
=

125
  cos u = A1 + cos 2 u

2
= C1 + 3

5

2
=

215

Here, u is about 26.6°. Now, substituting these values into Eq. (21.38), we have

x = x′a 215
b - y′a 115

b =
2x′ - y′15

  y = x′a 115
b + y′a 215

b =
x′ + 2y′15

Now, substituting into the equation 8x2 + 4xy + 5y2 = 9 gives

8 a2x′ - y′15
b2

+ 4 a2x′ - y′15
b ax′ + 2y′15

b + 5 ax′ + 2y′15
b2

= 9

814x′2 - 4x′y′ + y′22 + 412x′2 + 3x′y′ - 2y′22 + 51x′2 + 4x′y′ + 4y′22 = 45

 45x′2 + 20y′2 = 45

 
x′2

1
+

y′2

9
4

= 1

This is an ellipse with semimajor axis of 3>2 and semiminor axis of 1. See  
Fig. 21.92. ■

In Example 2, tan 2 u was positive, and we made 2 u and  u positive. If, when using 
Eq. (21.40), tan 2 u is negative, we then make 2 u obtuse 190° 6 2 u 6 180°2 . In this 
case, cos 2 u will be negative, but  u will be acute 145° 6  u 6 90°2 .

In Section 21.8, we identified a conic section by inspecting the values of A and C 
when B = 0. If B ≠ 0, these curves are identified as follows:

Practice Exercises

Identify the type of curve represented by 
each equation.
1. 3x2 - 2xy + 3y2 = 8
2. x2 - 4xy + y2 = -5
3. 4x2 + 4xy + y2 - 24x + 38y - 19 = 0

Identifying a Curve from the Value of B2 − 4AC
1. If B2 - 4AC = 0, a parabola

2. If B2 - 4AC 6 0, an ellipse

3.  If B2 - 4AC 7 0, a hyperbola

Special cases such as a point, parallel or intersecting lines, or no curve may result.

To see why the result above is true, we note that if A′, B′, and C′ represent the coef-
ficients of x'2, x′y′, and y'2, respectively, in Eq. (21.39), then it can be shown that  
B2 – 4AC = B'2 -  4A′C′. This means that if the axes have been rotated so that B′ = 0, 
then B2 -  4AC = -4A'C'. In other words, the sign of B2 -  4AC is determined by the 
values of A' and C′, and these are used to identify a conic as in Section 21.8. For exam-
ple, if the conic is a hyperbola, A′ and C′ differ in sign, so their product is negative and  
-4A′C′ 7  0, which gives B2 -  4AC 7  0. The other cases are analysed similarly.

Fig. 21.92 
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In Section 21.7, we showed the use of translation of axes in writing an equation in 
standard form if B = 0. In this section, we have seen how rotation of axes is used to 
eliminate the xy-term. It is possible that both a translation of axes and a rotation of axes 
are needed to write an equation in standard form, as seen in the following example.

 EXAMPLE  3  Translation after rotation

For the equation 16x2 - 24xy + 9y2 + 20x - 140y - 300 = 0, identify the curve 
and simplify it to standard form. Sketch the graph.

With A = 16, B = -24, and C = 9, using Eq. (21.40), we have

tan 2u =
-24

16 - 9
= - 24

7

In this case, tan 2 u is negative, and we take 2u to be an obtuse angle. We then find that 
cos 2 u = -7>25. In turn, we find that sin u = 4>5 and cos u = 3>5. Here, u is about 
53.1°. Using these values in Eq. (21.38), we find that

x =
3x′ - 4y′

5
  y =

4x′ + 3y′
5

Substituting these into the original equation and simplifying, we get

y′2 - 4x′ - 4y′ - 12 = 0

This equation represents a parabola with its axis parallel to the x′-axis. The vertex is 
found by completing the square:1y′ - 222 = 41x′ + 42
The vertex is the point 1 -4, 22  in the x′y′-rotated system. Therefore,

y″2 = 4x″

is the equation in the x″y″@rotated and then translated system. The graph and the coordi-
nate systems are shown in Fig. 21.93. ■Fig. 21.93 
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EXERCISES 21.9

In Exercises 1–4, transform the given equations by rotating the axes 
through the given angle. Identify and sketch each curve.

 1. x2 - y2 = 25, u = 45° 2. x2 + y2 = 16, u = 60°
 3. 8x2 - 4xy + 5y2 = 36, u = tan-1 2

 4. 2x2 + 24xy - 5y2 = 8, u = tan-1 34

In Exercises 5–10, identify the type of curve that each equation 
represents by evaluating B2 - 4AC.

 5. x2 + 2xy + x - y - 3 = 0 6. 8x2 - 4xy + 2y2 + 7 = 0

 7. x2 - 2xy + y2 + 3y = 0

 8. 4xy + 3y2 - 8x + 16y + 19 = 0

 9. 13x2 + 10xy + 13y2 + 6x - 42y - 27 = 0

 10. x2 - 4xy + 4y2 + 36x + 28y + 24 = 0

In Exercises 11–16, transform each equation to a form without an  
xy-term by a rotation of axes. Identify and sketch each curve. 

 11. x2 + 2xy + y2 - 2x + 2y = 0

 12. 5x2 - 6xy + 5y2 = 32 13. 3x2 + 4xy = 4

 14. 9x2 - 24xy + 16y2 - 320x - 240y = 0

 15. 11x2 - 6xy + 19y2 = 20

 16. x2 + 4xy - 2y2 = 6

In Exercises 17 and 18, transform each equation to a form without an 
xy-term by a rotation of axes. Then transform the equation to a 
standard form by a translation of axes. Identify and sketch each curve.

 17. 16x2 - 24xy + 9y2 - 60x - 80y + 400 = 0

 18. 73x2 - 72xy + 52y2 + 100x - 200y + 100 = 0

In Exercises 19 and 20, solve the given problems.

 19. (a) In Eq. (21.34), if A and C have opposite signs, what type of 
curve is represented? (b) If B ≠ 0, and either A or C is zero, 
what type of curve is represented?

 20. An elliptical cam can be represented by the equation 
x2 - 3xy + 5y2 - 13 = 0. Through what angle is the cam  
rotated from its standard position?

1. Ellipse  2. Hyperbola  3. Parabola
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 21.10 Polar Coordinates
 
 

Rectangular Coordinates

To this point, we have graphed all curves in the rectangular coordinate system. 
However, for certain types of curves, other coordinate systems are better adapted. We 
discuss one of these systems here.

Instead of designating a point by its x- and y-coordinates, we can specify its location by 
its radius vector and the angle the radius vector makes with the x-axis. Thus, the r and u that 
are used in the definitions of the trigonometric functions can also be used as the coordinates 
of points in the plane. The important aspect of choosing coordinates is that, for each set of 
values, there must be only one point that corresponds to this set. We can see that this condition 
is satisfied by the use of r and u as coordinates. In polar coordinates, the origin is called the 
pole, and the half-line for which the angle is zero (equivalent to the positive x-axis) is called 
the polar axis. The coordinates of a point are designated as 1r, u2 . See Fig. 21.94.

■ The Swiss mathematician Jakob Bernoulli 
(1654–1705) was among the first to make signifi-
cant use of polar coordinates.

When working with polar coordinates, angles are measured in radians. Make sure 
that your calculator is in radian mode.

COMMON ERROR

Fig. 21.94 

Polar axisPole

u

u = 0

(r, u)

r

 EXAMPLE  1  

(a) If r = 2 and u = p>6, we have the point shown in  
Fig. 21.96. The point corresponds to 113, 12  in rec-
tangular coordinates.

(b) The polar coordinate point 11, 3p>42  is also shown.  
It is equivalent to 1 - 12>2, 12>22  in rectangular 
coordinates.

(c) The polar coordinate point 12, 52  is also shown. It is 
equivalent approximately to 10.6, -1.92  in rectangular  
coordinates. Remember, the 5 is an angle in radians. ■

One difference between rectangular coordinates and polar 
coordinates is that, for each point in the plane, there are limit-
less possibilities for the polar coordinates of that point. For 
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example, the point 12, p6 2  can also be represented by 12, 13p
6 2  since the angles p6  and 

13p
6  are coterminal. We also remove one restriction on r that we imposed in the defini-

tion of the trigonometric functions. That is, r is allowed to take on positive and nega-
tive values.

EXAMPLE  2  r

The polar coordinates 13, 2p>32  and 13, -4p>32  represent the same point. However, 
the point 1 -3, 2p>32  is on the opposite side of the pole from 13, 2p>32 , 3 units from 
the pole. Another possible set of polar coordinates for the point 1 -3, 2p>32  is 13, 5p>32 . These points are shown in Fig. 21.97. ■

When locating and plotting a point in polar coordinates, it is generally best to first 
locate the terminal side of u, and then measure r along this terminal side. This is illus-
trated in the following example.

If r is negative, u is located as before, 
but the point is found r units from 
the pole but on the opposite side 
from that on which it is positive.

LEARNING T IP

Fig. 21.97 
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When using polar coordinates, we generally label the lines for some of the values of 
u; namely, those for u = 0 (the polar axis), u = p>2 (equivalent to the positive y-
axis), u = p (equivalent to the negative x-axis), u = 3p>2 (equivalent to the negative 
y-axis), and possibly others. In Fig. 21.95, these lines and those for multiples of p>6 
are shown. Also, the circles for r = 1, r = 2, and r = 3 are shown in this figure.
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EXAMPLE  3  Locate the terminal side first

Plot the points A12, 5p>62  and B1 -3.2, -2.42  in the polar coordinate system.
To locate A, we determine the terminal side of u = 5p>6 and then determine 

r = 2. See Fig. 21.98.
To locate B, we find the terminal side of u = -2.4, measuring clockwise from the 

polar axis (and recalling that p = 3.14 = 180°2 . Then we locate r = -3.2 on the 
opposite side of the pole. See Fig. 21.98.

We will find that points with negative values of r occur frequently when plotting 
curves in polar coordinates. ■

POLAR AND RECTANGULAR COORDINATES
The relationships between the polar coordinates of a point and the rectangular coordi-
nates of the same point come from the definitions of the trigonometric functions. Those 
most commonly used are (see Fig. 21.99)

Fig. 21.98 
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x = r cos u y = r sin u (21.42)

tan u =
y
x
 r = 2x2 + y2 (21.43)

As we have done in previous chapters, when u is not in the first quadrant, we first find 
the reference angle and then use it to find u, depending on the quadrant.

The following examples show the use of Eqs. (21.42) and (21.43) in changing coor-
dinates in one system to coordinates in the other system. Also, these equations are used 
to transform equations from one system to the other.

 EXAMPLE  4  Polar to rectangular coordinates

Using Eqs. (21.42) and (21.43), we can transform the polar coordinates 14, p>42  into 
the rectangular coordinates 1212, 2122 , since

x = 4 cos 
p

4
= 4 a12

2
b = 212 and y = 4 sin 

p

4
= 4 a12

2
b = 212

See Fig. 21.100. ■

 EXAMPLE  5  Rectangular to polar coordinates

Using Eq. (21.43), we can transform the rectangular coordinates 13, -52  into polar 
coordinates, as follows:

 tan uref =
5
3

, uref = 1.03, u = 2p - 1.03 = 5.25 1or  -1.032
 r = 232 + 1 -522 = 5.83

We know that u is a fourth-quadrant angle since x is positive and y is negative. 
Therefore, the point 13, -52  in rectangular coordinates can be expressed as the point 15.83, 5.252  in polar coordinates (see Fig. 21.101). Other polar coordinates for the 
point are also possible. ■

 EXAMPLE  6  Rectangular to polar equation of a curve

If an electrically charged particle enters a magnetic field at right angles to the field, the 
particle follows a circular path. This fact is used in the design of nuclear particle 
accelerators.

Fig. 21.100 
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■ Calculators are programmed to make  
conversions between rectangular and polar 
coordinates.
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Practice Exercise

1.  Transform the polar coordinates 1 -4, 5p>62  into rectangular coordinates.

■ The cyclotron was invented in 1931 at the 
University of California. It was the first accel-
erator to deflect particles into circular paths.

Fig. 21.99 
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A proton (positively charged) enters a magnetic field such that its path may be 
described by the rectangular equation x2 + y2 = 2x, where measurements are in 
metres. Find the polar equation of this circle.

We change this equation expressed in the rectangular coordinates x and y into an 
equation expressed in the polar coordinates r and u by using the relations r2 = x2 + y2 
and x = r cos u, as follows:

 x2 + y2 = 2x rectangular equation

 r2 = 2r cos u substitute

 r = 2 cos u divided by r

This is the polar equation of the circle, which is shown in Fig. 21.102. ■

 EXAMPLE  7  

Find the rectangular equation of the rose r = 4 sin 2u.
Using the trigonometric identity sin 2u = 2 sin u cos u and Eqs. (21.42) and (21.43) 

leads to the solution:

 r = 4 sin 2u polar equation

 = 412 sin u cos u2 = 8 sin u cos u using identity

 2x2 + y2 = 8 ay
r
b ax

r
b =

8xy

r2 =
8xy

x2 + y2 using Eqs. (21.42) and (21.43)

 x2 + y2 =
64x2y21x2 + y222 squaring both sides

 1x2 + y223 = 64x2y2 simplifying

Plotting the graph of this equation from the rectangular equation would be complicated. 
However, as we will see in the next section, plotting this graph in polar coordinates is 
quite simple. The curve is shown in Fig. 21.103. ■

Fig. 21.102 
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2.  Find the polar equation of the circle 
x2 + y2 + 2x = 0.

EXERCISES 21.10

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the indicated problems.

 1. In Example 2, change 2p>3 to p>3 and then find another set of 
coordinates for each point, similar to those shown for the points 
in the example.

 2. In Example 4, change p>4 to p>6.

 3. In Example 5, change 3 to -3 and -5 to 5.

 4. In Example 7, change sin to cos.

In Exercises 5–16, plot the given polar coordinate points on polar 
coordinate paper.

 5. a3, 
p

6
b  6. 12, p2  7. a5

2
, - 2p

5
b

 8. a5, -p

3
b  9. a-8, 

7p
6
b  10. a-5, 

p

4
b

 11. a-3, - 5p
4
b  12. a-4, - 5p

3
 b  13. 12, 22

 14. 1 -6, -62  15. 10.5, -8.42  16. 1 -2.2, 18.82

In Exercises 17–20, find a set of polar coordinates for each of the 
points for which the rectangular coordinates are given.

 17. 11 3, 12  18. 1 -1, -12
 19. a- 13

2
, - 1

2
b  20. 1 -10, 82

In Exercises 21–24, find the rectangular coordinates for each of the 
points for which the polar coordinates are given.

 21. a8, 
4p
3
b  22. 1 -4, -p2

 23. 13.0, -0.402  24. 1 -1.0, 1.02
In Exercises 25–36, find the polar equation of each of the given 
rectangular equations.

 25. x = 3 26. y = -x

 27. x + 2y + 3 = 0 28. x2 + y2 = 0.81

 29. x2 + 1y - 222 = 4 30. x2 - y2 = 0.01

 31. x2 + 4y2 = 4 32. y2 = 4x

 33. x2 + y2 = 6y 34. xy = 9

 35. x3 + y3 - 4xy = 0 36. y =
2x

x2 + 1



606  Plane Analytic Geometry

In Exercises 37– 48, find the rectangular equation of each of the 
given polar equations. In Exercises 37– 44, identify the curve that 
is represented by the equation.

 37. r = sin u 38. r = 4 cos u

 39. r cos u = 4 40. r sin u = -2

 41. r =
2

cosu - 3sin u
 42. r = e r cos u  csc u

 43. r = 4 cos u + 2 sin u 44. r sin1u + p>62 = 3

 45. r = 211 + cos u2  46. r = 1 - sin u

 47. r 2 = sin 2u 48. r 2 = 16 cos 2u

In Exercises 49–60, solve the given problems. All coordinates 
given are polar coordinates.

 49. Is the point 12, 3p>42  on the curve r = 2 sin 2u?

 50. Is the point 11>2, 3p>22  on the curve r = sin1u>32?

 51. Show that the polar coordinate equation r = a sin u + b cos u 
represents a circle by changing it to a rectangular equation.

 52. Find the distance between the points 13, p>62  and 14, p>22  
by using the law of cosines.

 53. The centre of a regular hexagon is at the pole with one vertex 
at 12, p2 . What are the coordinates of the other vertices?

 54. Find the distance between the points 14, p>62  and 15, 5p>32 .

 55. Under certain conditions, the x- and y-components of a mag-
netic field B are given by the equations

  Bx =
-ky

x2 + y2 and By =
kx

x2 + y2

  Write these equations in terms of polar coordinates.

 56. In designing a domed roof for a building, an architect uses the 

  equation x2 +
y2

k2 = 1, where k is a constant. Write this equation 

  in polar form.

 57. The shape of a cam can be described by the polar equation 
r = 3 - sin u. Find the rectangular equation for the shape of  
the cam.

 58. The polar equation of the path of a weather satellite of the earth  

is r =
7600

1 + 0.14 cos u
, where r is measured in kilometres. Find

  the rectangular equation of the path of this satellite. The path is an 
ellipse, with the earth at one of the foci.

 59. The control tower of an airport is taken to be at the pole, and the 
polar axis is taken as due east in a polar coordinate graph. How 
far apart (in km) are planes, at the same altitude, if their positions 
on the graph are (6.10, 1.25) and (8.45, 3.74)?

 60. The perimeter of a certain type of machine part can be described 
by the equation r = a sin u + b cos u 1a 7 0, b 7 02 . Explain 
why all such machine parts are circular.

1. 121 3, -22   2. r = -2 cos u

 21.11 Curves in Polar Coordinates
 
 

The basic method for finding a curve in polar coordinates is the same as in rectangular 
coordinates. We assume values of the independent variable—in this case, u—and then 
find the corresponding values of the dependent variable r. These points are then plot-
ted and joined, thereby forming the curve that represents the relation in polar 
coordinates.

Before using the basic method, it is useful to point out that certain basic curves 
can be sketched directly from the equation. This is done by noting the meaning of 
each of the polar coordinate variables, r and u. This is illustrated in the following 
example.

 EXAMPLE  1  

(a) The graph of the polar equation r = 3 is a circle of radius 3, with centre at the 
pole. This can be seen to be the case, since r = 3 for all possible values of u.  
It is not necessary to find specific points for this circle, which is shown in  
Fig. 21.104.

(b) The graph of u = p>6 is a straight line through the pole. It represents all  
points for which u = p>6 for all possible values of r. This line is shown in  
Fig. 21.104. ■Fig. 21.104 
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 EXAMPLE  2  

Plot the graph of r = 1 + cos u.
We find the following values of r corresponding to the chosen values of u.

u 0 p
4

p
2

3p
4 p 5p

4
3p
2

7p
4 2p

r 2 1.7 1 0.3 0 0.3 1 1.7 2

Point  
Number

1 2 3 4 5 6 7 8 9

We now see that the points are repeating, and it is unnecessary to find additional points. 
This curve is called a cardioid and is shown in Fig. 21.105. ■

 EXAMPLE  3  

Plot the graph of r = 1 - 2 sin u.
Choosing values of u and then finding the corresponding values of r, we find the fol-

lowing table of values.

u 0 p
4

p
2

3p
4 p 5p

4
3p
2

7p
4 2p

r 1 -0.4 -1 -0.4 1 2.4 3 2.4 1

Point  
Number

1 2 3 4 5 6 7 8 9

Particular care should be taken in plotting the points for which r is negative. This curve 
is known as a limaçon and is shown in Fig. 21.106. ■

 EXAMPLE  4  

A cam is shaped such that the edge of the upper “half” is represented by the equation 

r = 2.0 + cos u and the lower “half ” by the equation r =
3.0

2.0 - cos u
, where meas-

urements are in centimetres. Plot the curve that represents the shape of the cam.
We get the points for the edge of the cam by using values of u from 0 to p for the 

upper “half” and from p to 2p for the lower “half”. The table of values follows:

r = 2.0 + cos u

r =
3.0

2.0 - cos u

The upper “half” is part of a limaçon and the lower “half” is a semiellipse. The cam is 
shown in Fig. 21.107. ■
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Determine the type of curve represented  
by each polar coordinate equation.
1. u = 2p>5 2. r = -4

u 0 p
4

p
2

3p
4 p

r 3.0 2.7 2.0 1.3 1.0

Point  
Number

1 2 3 4 5

u p 5p
4

3p
2

7p
4 2p

r 1.0 1.1 1.5 2.3 3.0

Point  
Number

6 7 8 9 10

Fig. 21.107 
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 EXAMPLE  5  Plotting a rose

Plot the graph of r = 2 cos 2u.
In finding values of r, we must be careful first to multiply the values of u by 2 

before finding the cosine of the angle. Also, for this reason, we take values of u as mul-
tiples of p>12, so as to get enough useful points. The tables of value follows:

u 0 p
12

p
6

p
4

p
3

5p
12

p
2

r 2 1.7 1 0 -1 -1.7 -2

u 7p
12

2p
3

3p
4

5p
6

11p
12

p

r -1.7 -1 0 1 1.7 2

For values of u starting with p, the values of r repeat. We have a four-leaf rose, as 
shown in Fig. 21.108. ■

 EXAMPLE  6  Plotting a lemniscate

Plot the graph of r 2 = 9 cos 2u.
Choosing the indicated values of u, we get the values of r as shown in the follow-

ing table:

u 0 p
8  p

4  . . . 3p
4  7p

8  p 

r {3  {2 .5  0  0 {2 .5  {3  

There are no values of r corresponding to values of u in the range p>4 6 u 6 3p>4, 
since twice these angles are in the second and third quadrants and the cosine is nega-
tive for such angles. The value of r2  cannot be negative. Also, the values of r repeat 
for u 7 p. The figure is called a lemniscate and is shown in Fig. 21.109. ■

 EXAMPLE  7  Calculator display of a polar curve

View the graph of r = 1 - 2 cos u on a graphing calculator.
Using the mode feature, a polar curve is displayed using the polar graph option or 

the parametric graph option, depending on the calculator. (Review the manual for the 
calculator.) The graph displayed will be the same with either method.

With the polar graph option, the function is entered directly. The values for the 
viewing window are determined by settings for x,  y and the angles u that will be used. 
These values are set in a manner similar to those used for parametric equations. (See 
page 315 for an example of graphing parametric equations.)

With the parametric graph option, to graph r = f1u2 , we note that x = r cos u and 
y = r sin u. This tells us that

 x = f1u2cos u

 y = f1u2sin u

Thus, for r = 1 - 2 cos u, by using

 x = 11 - 2 cos u2cos u

 y = 11 - 2 cos u2sin u

the graph can be displayed, as shown in Fig. 21.110. ■
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EXERCISES 21.11

In Exercises 1– 4, make the given changes in the indicated examples 
of this section and then make the indicated graphs.

 1. In Example 1(b), change p>6 to 5p>6.

 2. In Example 3, change the -  before the 2 sin u to + .

 3. In Example 5, change cos to sin.

 4. In Example 7, change the -  before the 2 cos u to + .

In Exercises 5–32, plot the curves of the given polar equations in 
polar coordinates.

 5. r = 5 6. r = -2

 7. u = 3p>4 8. u = -1.5

 9. r = 4  sec u 10. r = 4  csc u

 11. r = 2 sin u 12. r = 3 cos u

 13. 1 - r = cos u (cardioid) 14. r + 1 = sin u (cardioid)

 15. r = 2 - cos u (limaçon) 16. r = 2 + 3 sin u (limaçon)

 17. r = 4 sin 2u (rose)  18. r = 2 sin 3u (rose)

 19. r 2 = 4 sin 2u (lemniscate) 20. r 2 = 2 sin u

 21. r = 2 u  (spiral) 22. r = 1.5 -u  (spiral)

 23. r = 4 0 sin 3u 0  24. r = 2 sin u tan u (cissoid)

 25. r =
3

2 - cos u
 1ellipse2  26. r =

2
1 - cos u

 1parabola2
 27. r - 2r cos u = 6 (hyperbola)

 28. 3r - 2r sin u = 6 (ellipse)

 29. r = 4 cos  1
  2   u 30. r = 2 + cos 3u

 31. r = 231 - sin1u - p>42 4  32. r = 4 tan u

In Exercises 33– 42, view the curves of the given polar equations on a 
graphing calculator.

 33. r = u 1 -20 … u … 202
 34. r = 0.5 sin u 

 35. r = 2 sec u + 1

 36. r = 2 cos1cos 2 u2
 37. r = 3 cos 4 u

 38. r = 3 sin 5 u

 39. r = 2 cos u + 3 sin u

 40. r = 1 + 3 cos u - 2 sin u

 41. r + 2 = cos 2 u

 42. 2r cos u + r sin u = 2

In Exercises 43–54, solve the given problems and sketch or display 
the indicated curves.

 43. What is the graph of tan u = 1?

 44. Find the polar equation of the line through the polar points 11, 02  
and 12, p>22 .

 45. Using a graphing calculator, show that the curves r = 2 sin u and 
r = 2 cos u intersect at right angles. Proper window settings are 
necessary.

 46. Using a graphing calculator, determine what type of graph is dis-
played by r = 3 sec 2 1u>22 .

 47. An architect designs a patio shaped such that it can be described 
as the area within the polar curve r = 4.0 - sin u, where meas-
urements are in metres. Sketch the curve that represents the  
perimeter of the patio.

 48. The radiation pattern of a certain television transmitting antenna can 
be represented by r = 12011 + cos u2 , where distances (in km) 
are measured from the antenna. Sketch the radiation pattern.

 49. The joint between two links of a robot arm moves in an elliptical 
path (in cm), given by r = 25

10 + 4 cos u. Sketch the path.

 50. A missile is fired at an airplane and is always directed toward the 
airplane. The missile is travelling at twice the speed of the air-
plane. An equation that describes the distance r between the 

  missile and the airplane is r =
70 sin u11 - cos u22, where u is the

  angle between their directions at all times. See Fig. 21.111. This 
is a relative pursuit curve. Sketch the graph of this equation for 
p>4 … u … p.

Fig. 21.111 

u

r

Missile

Airplane

 51. In studying the photoelectric effect, an equation used for the  
rate R at which photoelectrons are ejected at various angles u is 

R =
sin2 u11 - 0.5 cos u22 

. Sketch the graph.

 52. In order to display the graph of the rectangular equation 
41x 6 + 3x 4 y 2 + 3x 2 y 4 + y 6 - x 4 - 2x 2 y 2 - y 4 2 + y 2 = 0 
on a computer screen, it is first transformed into polar coordinates. 
Transform the equation and then sketch the graph. (Hint: The equa-
tion can be written as 41x 2 + y 2 2  3 - 41x 2 + y 2 2  2 + y 2 = 0.)

 53. Noting the graphs in Exercises 17, 18, 37, and 38, what conclu-
sion do you draw about the value of n and the graph of 
y = a sin nu or y = a cos nu?

 54. (a) Solve the equations r = 2 sin u and r = 1 + sin u simultane-
ously to find a point of intersection. (b) Display the graphs of the 
equations on a graphing calculator and note another common 
point, the coordinates of which do not satisfy both equations. 
Explain why this occurs.

Answers to Practice Exercises

1. Straight line  2. Circle
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 CHAPTER 21  EQUATIONS

Distance formula Fig. 21.2 d = 2 1x 2 - x 122 + 1y 2 - y 122   (21.1)

Slope Fig. 21.4 m =
y2 - y1

x2 - x1
 (21.2)

 Fig. 21.7 m = tan a 10° … a 6 180°2  (21.3)
 Fig. 21.9 m 1 = m 2 1 for ((  lines2  (21.4)

 Fig. 21.10 m2 = - 1
m1
 or m

 1m
 2 = -1  1for # lines2  (21.5)

Straight line Fig. 21.14 y - y 1 = m1x - x
 12  (21.6)

 Fig. 21.17 x = a (21.7)
 Fig. 21.18 y = b (21.8)

 Fig. 21.21 y = mx + b (21.9)
  Ax + By + C = 0 (21.10)

Circle Fig. 21.29 1x - h2  2 + 1y - k2  2 = r 2  (21.11)
 Fig. 21.32 x 2 + y 2 = r 2  (21.12)
  x 2 + y 2 + Dx + Ey + F = 0 (21.14)

Parabola Fig. 21.40 y 2 = 4px (21.15)
 Fig. 21.43 x 2 = 4py (21.16)

Ellipse Fig. 21.55 
x2

a2 +
y2

b2 = 1 (21.17)

 Fig. 21.55 a 2 = b2 + c2  (21.18)

 Fig. 21.56 
y2

a2 + x2

b2 = 1 (21.19)

Hyperbola Fig. 21.65 
x2

a2 -
y2

b2 = 1 (21.20)

 Fig. 21.65 c 2 = a 2 + b 2  (21.21)

 Fig. 21.66 y = {bx
a
  1asymptotes2  (21.23)

 Fig. 21.68 
y2

a2 - x2

b2 = 1 (21.24)

 Fig. 21.73 xy = c (21.25)

Translation of axes Fig. 21.78 x = x′ + h  and y = y′ + k (21.26)
  x′ = x - h  and y′ = y - k (21.27)

Parabola, vertex (h, k)  1y - k2  2 = 4p1x - h2  1axis parallel to x@axis2  (21.28)
  1x - h2  2 = 4p1y - k2    1axis parallel to y@axis2  (21.29)

Ellipse, centre (h, k)  
1x - h22

a2 +
1y - k22

b2 = 1  1major axis parallel to x@axis2  (21.30)

  
1y - k22

a2 +
1x - h22

b2 = 1  1major axis parallel to y@axis2  (21.31)

Hyperbola, centre (h, k)  
1x - h22

a2 -
1y - k22

b2 = 1  1 transverse axis parallel to x@axis2  (21.32)

  
1y - k22

a2 -
1x - h22

b2 = 1  1 transverse axis parallel to y@axis2  (21.33)
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Second-degree equation Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 (21.34)

Rotation of axes Fig. 21.90 x = x′cos u - y′sin u
  y = x′sin u - y′cos u (21.38)

Angle of rotation tan 2u =
B

A - C
  1A ≠ C2  (21.40)

  u = 45°  1A = C2  (21.41)

Polar coordinates  Fig. 21.99 x = r cos u y = r sin u (21.42)

  tan u =
y
x
 r = 2x2 + y2 (21.43)

 CHAPTER 21   REVIEW EXERCISES

In Exercises 1–12, find the equation of the indicated curve, subject to 
the given conditions. Sketch each curve.

 1. Straight line: passes through 11, -72  with a slope of 4

  2. Straight line: passes through 1 -1, 52  and 1 -2, -32
 3. Straight line: perpendicular to 3x - 2y + 8 = 0 and has a  

y-intercept of 10, -12
 4. Straight line: parallel to 2x - 5y + 1 = 0 and has an x-intercept 

of 12, 02
 5. Circle: concentric with x 2 + y 2 = 6x, passes through 14, -32
 6. Circle: tangent to lines x = 3 and x = 9, centre on line y = 2x

 7. Parabola: focus 13, 02 , vertex 10, 02
 8. Parabola: vertex 10, 02 , passes through 11, 12  and 1 -2, 42
 9. Ellipse: vertex 110, 02 , focus 18, 02 , tangent to x = -10

 10. Ellipse: centre 10, 02 , passes through 10, 32  and 12, 12
 11. Hyperbola: V10, 132 , C10, 02 , conj. axis of 24

 12. Hyperbola: vertex 10, 82 , asymptotes y = 2x, y = -2x

In Exercises 13–26, find the indicated quantities for each of the given 
equations. Sketch each curve.

 13. x2 + y2 + 6x - 7 = 0, centre and radius

 14. 2x2 + 2y2 + 4x - 8y - 15 = 0, centre and radius

 15. x2 = -20y, focus and directrix

 16. y2 = 24x, focus and directrix

 17. 4x2 + y2 = 1, vertices and foci

 18. 2y2 - 9x2 = 18, vertices and foci

 19. 2x2 - 5y2 = 0.25, vertices and foci

 20. 2x2 + 25y2 = 800, vertices and foci

 21. x2 - 8x - 4y - 16 = 0, vertex and focus

 22. y2 - 4x + 4y + 24 = 0, vertex and directrix

 23. 4x2 + y2 - 16x + 2y + 13 = 0, centre

 24. x2 - 2y2 + 4x + 4y + 6 = 0, centre

 25. x2 - 2xy + y2 + 4x + 4y = 0, vertex

 26. 3x2 - 3xy + 7y2 - 5 = 0, centre

In Exercises 27–34, plot the given curves in polar coordinates.

 27. r = 411 + sin u2  28. r = 1 - 3 cos u

 29. r = 4 cos 3u 30. r = 3 sin u - 4 cos u

 31. r =
3

sin u + 2 cos u
 32. r =

1
 21sin u - 12

 33. r = 2 sin a u
  2

 b  34. r = 1 - cos 2u

In Exercises 35–38, find the polar equation of each of the given rec-
tangular equations.

 35. y = 2x 36. 2xy = 1

 37. x 2 + xy + y 2 = 2 38. x 2 + 1y + 32  2 = 16

In Exercises 39–42, find the rectangular equation of each of the given 
polar equations.

 39. r = 2 sin 2u 40. r 2 = 9 sin u

 41. r =
4

2 - cos u
 42. r = 4 tan u sec u

In Exercises 43–48, determine the number of real solutions of the 
given systems of equations by sketching the indicated curves. (See 
Section 14.1.)

 43. x2 + y2 = 9 
4x 2 + y 2 = 16

 44. y = ex  
x2 - y2 = 1

 45. x2 + y2 - 4y - 5 = 0 
y2 - 4x2 - 4 = 0

 46. x2 - 4y2 + 2x - 3 = 0 
y2 - 4x - 4 = 0

 47. y = 2 sin x  
y = 2 - x 2 

 48. y = 4 ln x  
xy = 6

In Exercises 49–58, view the curves of the given equations on a 
graphing calculator.

 49. x2 + 3y + 2 - 11 + x22 = 0 50. y2 = 4x + 6

 51. 2x2 + 2y2 + 4y - 3 = 0

 52. 2x2 + 1y - 322 - 5 = 0

 53. x2 - 4y2 + 4x + 24y - 48 = 0

 54. x2 + 2xy + y2 - 3x + 8y = 0

 55. r = 3 cos13 u>22  56. r = 5 - 2 sin 4 u

 57. r = 2 - 3 csc u 58. r = 2 sin1cos 3 u2
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In Exercises 59–62, find the equation of the locus of a point P1x, y2  
that moves as stated.

 59. Always 4 units from 13, -42
 60. Passes through 17, -52  with a constant slope of -2

 61. The sum of its distances from 11, -32  and 17, -32  is 8.

 62. The difference of its distances from 13, -12  and 13, -72  is 4.

In Exercises 63–106, solve the given problems.

 63. Considering Eq. (21.30) of an ellipse, describe the graph if 
a = b.

 64. Show that the ellipse x2 + 9y2 = 9 has the same foci as the hy-
perbola x2 - y2 = 4.

 65. The points 1 -2, -52 , 13, -32 , and 113, x2  are collinear. 
Find x.

 66. For the polar coordinate point 1 -5, p>42 , find another set of 
polar coordinates such that r 6 0 and -2p 6 u 6 0.

 67. Find the distance between the polar coordinate points 13, p>62  
and 16, -p>32 .

 68. Show that the parametric equations y = cot u and x = csc u 
define a hyperbola.

 69. In two ways, show that the line segments joining 1 -3, 112 , 12, -12 , and 114, 42  form a right triangle.

 70. Find the equation of the circle that passes through 13, -22 , 1 -1, -42 , and 12, -52 .

 71. Graph the inequality y 7 41x + 222.

 72. Graph the inequality 4x2 + 91y - 222 6 36.

 73. What type of curve is represented by 1x + jy22 + 1x - jy22 = 2? 1 j = 1 -1 2
 74. For the ellipse in Fig. 21.112, show that the product of the slopes 

PA and PB is -b2>a2.

Fig. 21.112 
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x
B(−a, 0)

P(x, y)

A(a, 0)

(0, −b)

(0, b)

 75. Find the area of the square that can be inscribed in the ellipse 
7x2 + 2y2 = 18.

 76. Using a graphing calculator, determine the number of points of 
intersection of the polar curves r = 4 0 cos 2 u 0  and 
r = 6 sin3cos1cos 3u2 4 .

 77. By means of the definition of a parabola, find the equation of the 
parabola with focus at 13, 12  and directrix the line y = -3. 
Find the same equation by the method of translation of axes.

 78. For what value(s) of k does x2 - ky2 = 1 represent an ellipse 
with vertices on the y-axis?

 79. The total resistance R T  of two resistances in series in an elec-
tric circuit is the sum of the resistances. If a variable resistor R 
is in series with a 2.5-Ω resistor, express R T  as a function of R 
and sketch the graph.

 80. The acceleration of an object is defined as the change in veloc-
ity v divided by the corresponding change in time t. Find the 
equation relating the velocity v and time t for an object for 
which the acceleration is 6.0 m>s 2  and v = 5.0 m>s when 
t = 0 s.

 81. The velocity v of a crate sliding down a ramp is given by 
v = v 0 + at, where v 0  is the initial velocity, a is the accelera-
tion, and t is the time. If v 0 = 1.92 m>s and v = 6.20 m>s 
when t = 5.50 s, find v as a function of t. Sketch the graph.

 82. An airplane touches down when landing at 150 km>h. Its veloc-
ity v while coming to a stop is given by v = 150 - 20 000t, 
where t is the time in hours. Sketch the graph of v vs. t.

 83. It takes 2.010 kJ of heat to raise the temperature of 1.000 kg of 
steam by 1.000°C. In a steam generator, a total of y kJ is used to 
raise the temperature of 50.00 kg of steam from 100°C to T°C. 
Express y as a function of T  and sketch the graph.

 84. The temperature in a certain region is 27°C, and at an altitude of 
2500 m above the region it is 12°C. If the equation relating the 
temperature T  and the altitude h is linear, find the equation.

 85. The radar gun on a police helicopter 170 m above a multilane 
highway is directed vertically down onto the highway. If the 
radar gun signal is cone-shaped with a vertex angle of 14°, what 
area of the highway is covered by the signal?

 86. The Niagara Sky Wheel in Niagara Falls, Ontario, has a diame-
ter of 50.5 m. Find the equation representing its circumference. 
Place the origin of the coordinate system 2.50 m below the bot-
tom of the wheel and the centre of the wheel on the y-axis.

 87. The arch of a small bridge across a stream is parabolic. If, at 
water level, the span of the arch is 80 m and the maximum 
height above water level is 20 m, what is the equation that rep-
resents the arch? Choose the most convenient point for the ori-
gin of the coordinate system.

 88. A laser source is 2.00 cm from a spherical surface of radius 3.00 cm, 
and the laser beam is tangent to the surface. By placing the cen-
tre of the sphere at the origin, and the source on the positive  
x-axis, find the equation of the line along which the beam 
shown in Fig. 21.113 is directed.

Fig. 21.113 

3.00 cm 2.00 cm

Source

 89. The top horizontal cross section of a dam is parabolic. The open 
area within this cross section is 80 m across and 50 m from front to 
back. Find the equation of the edge of the open area with the vertex 
at the origin of the coordinate system and the axis along the x-axis.
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 90. The quality factor Q of a series resonant electric circuit with  
resistance R, inductance L, and capacitance C is given by

  Q =
1
RA L

C
. Sketch the graph of Q and L for a circuit in

  which R = 1000 Ω and C = 4.00 mF.

 91. At very low temperatures, certain metals have an electric resist-
ance of zero. This phenomenon is called superconductivity. A 
magnetic field also affects the superconductivity. A certain level 
of magnetic field HT, the threshold field, is related to the  
thermodynamic temperature T  by H T>H 0 = 1 - 1T>T 022, 
where H0  and T0  are specifically defined values of magnetic 
field and temperature. Sketch the graph of H T >H 0  vs. T>T 0 .

 92. A rectangular parking lot is to have a perimeter of 600 m. 
Express the area A in terms of the width w and sketch the graph.

 93. The electric power P (in W) supplied by a battery is given by 
P = 12.0i - 0.500i2, where i is the current (in A). Sketch the 
graph of P vs. i.

 94. The technical ring of the Olympic Stadium in Montreal, Quebec, 
is in the shape of an ellipse 175 m long and 104 m wide. Find the 
area of the technical ring. (A = pab for an ellipse.)

 95. A specialty electronics company makes an ultrasonic device to 
repel animals. It emits a 20–25 kHz sound (above those heard by 
people), which is unpleasant to animals. The sound covers an 
elliptical area starting at the device, with the longest dimension 
extending 36 m from the device and the focus of the area 5 m 
from the device. Find the area covered by the signal. 1A = pab2

 96. A study indicated that the fraction f  of cells destroyed by vari-
ous dosages d of X rays is given by the graph in Fig. 21.114. 
Assuming that the curve is a quarter-ellipse, find the equation 
relating f  and d for 0 … f … 1 and 0 6 d … 10 units.

Fig. 21.114 
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 97. A machine-part designer wishes to make a model for an ellipti-
cal cam by placing two pins in a design board, putting a loop of 
string over the pins, and marking off the outline by keeping the 
string taut. (Note that the definition of the ellipse is being used.) 
If the cam is to measure 10 cm by 6 cm, how long should the 
loop of string be and how far apart should the pins be?

 98. Soon after reaching the vicinity of the moon, Apollo 11 (the first 
spacecraft to land a man on the moon) went into an elliptical lu-
nar orbit. The closest the craft was to the moon in this orbit was 
110 km, and the farthest it was from the moon was 310 km. 
What was the equation of the path if the centre of the moon was 
at one of the foci of the ellipse? Assume that the major axis is 
along the x-axis and that the centre of the ellipse is at the origin. 
The radius of the moon is 1740 km.

 99. The vertical cross section of the cooling tower of a nuclear 
power plant is hyperbolic, as shown in Fig. 21.115. Find the ra-
dius r of the smallest circular horizontal cross section.

Fig. 21.115 
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12 m

30 m

30 m
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 100. Tremors from an earthquake are recorded at the Giralia seismo-
graph station 36 s before they are recorded at the Morawa seis-
mograph station, both in Western Australia. If the stations are 
740 km apart and the shock waves from the tremors travel at 
5.0 km>s, what is the curve on which lies the point where the 
earthquake occurred?

 101. An electronic instrument located at point P records the sound of 
a rifle shot and the impact of the bullet striking the target at the 
same instant. Show that P lies on a branch of a hyperbola. (The 
bullet travels faster than the speed of sound.)

 102. A 20-m rope passes over a pulley 4 m above the ground, and a 
crate on the ground is attached at one end. The other end of the 
rope is held at a level of 1 m above the ground and is drawn 
away from the pulley. Express the height of the crate over the 
ground in terms of the distance the person is from directly below 
the crate. Sketch the graph of distance and height. See  
Fig. 21.116. (Neglect the thickness of the crate.)

Fig. 21.116 

Length of rope = 20 m

1 m
4 m

h

x

 103. A satellite makes one revolution per day around the centre of the 
earth. The projection on the earth of its path can be approxi-
mated by the curve r2 = R2cos 21u + p

2 2 , where R is the  
radius of the earth. Sketch the path of the projection.

 104. The vertical cross sections of two pipes as drawn on a drawing 
board are shown in Fig. 21.117. Find the polar equation of each.

Fig. 21.117 

2.40 cm 3.80 cm

y
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 105. The path of a certain plane is r = 2001sec u + tan u2  -5 >cos u, 
0 6 u 6 p>2. Sketch the path and check it on a graphing cal-
culator. (This path is the same as for the plane in Exercise 96 on 
page 340.)

 106. The sound produced by a jet engine was measured at a distance 
of 100 m in all directions. The loudness of the sound d (in deci-
bels) was found to be d = 115 + 10 cos u, where the 0° line for 
the angle u is directed in front of the engine. Sketch the graph of 
d vs. u in polar coordinates (use d as r).

 107. Under a force that varies inversely as the square of the distance 
from an attracting object (such as the sun exerts on the earth), it 
can be shown that the equation of the path an object follows is 
given in general by

  
1
r

= a + bcos u

  where a and b are constants for a particular path. First, transform 
this equation into rectangular coordinates. Then write one or two 
paragraphs explaining why this equation represents one of the 
conic sections, depending on the values of a and b. It is through 
this kind of analysis that we know the paths of the planets and 
comets are conic sections.

 CHAPTER 21  

 1. (a) Find the distance between 14, -12  and (6, 3). (b) Find the 
slope of the line perpendicular to the line segment joining the 
points in part (a).

 2. Identify the type of curve represented by the equation 
21x2 + x2 = 1 - y2.

 3. Sketch the graph of the straight line 4x - 2y + 5 = 0 by find-
ing its slope and y-intercept.

 4. Find the polar equation of the curve whose rectangular equation 
is x2 = 2x - y2.

 5. Find the vertex and the focus of the parabola x2 = -12y. Sketch 
the graph.

 6. Find the equation of the circle with centre at 1 -1, 22  and that 
passes through 12, 32 .

 7. Find the equation of the straight line that passes through 1 -4, 12  
and 12, -22 .

 8. Where is the focus of a parabolic reflector that is 12.0 cm across 
and 4.00 cm deep?

 9. A hallway 6.0 m wide has a ceiling whose cross section is a 
semiellipse. The ceiling is 3.0 m high at the walls and 4.0 m high 
at the centre. Find the height of the ceiling 1.0 m from each wall.

 10. Plot the polar curve r = 3 + cos u.

 11. Find the centre and vertices of the conic section 
4y2 - x2 -   4x - 8y - 4 = 0. Show completely the sketch of 
the curve.

 12. (a) What type of curve is represented by 8x 2 - 4xy + 5y 2 = 36 ? 
(b) Through what angle must the curve in part (a) be rotated in 
order that there is no x′y′-term?
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LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Understand the basic concepts 
of population, sample, 
parameter, statistic, and variable

 Construct frequency, relative 
frequency, and cumulative 
frequency tables for data

 Draw a histogram, a frequency 
polygon, and an ogive

 Calculate measures of central 
tendency (mean, median, and 
mode) and measures of spread 
(range and standard deviation)

 Use Chebychev’s theorem to 
draw conclusions about a  
data set

 Calculate relative frequencies 
using the normal distribution

 Construct large sample 
confidence intervals for a 
population mean or for a 
population proportion

 Plot an x – control chart, an R 
control chart, and a p control 
chart

 Find the equation of the least-
squares line that best fits a 
given set of data

 Find the equation of a curve 
that best fits a given set of 
data by transforming the 
independent variable and using 
linear least squares

After the invention of the steam engine in the late 1700s by the Scottish engineer 
James Watt, the production of machine-made goods became widespread during the 
1800s. However, it was not until the 1920s that much attention was paid to the qual-

ity control of the goods being produced. In 1924, Walter Shewhart of Bell Telephone 
Laboratories used a statistical chart for controlling product variables; in the 1940s, quality 
control was used in much of wartime production.

Quality control is one of the modern uses of statistics, the branch of mathematics in which 
data are collected, displayed, analysed, and interpreted. Today it is nearly impossible to read a 
newspaper or watch television news without seeing some type of study, in areas such as 
medicine or politics, that involves statistics. Other areas in which statistical methods are used 
include biology, physics, psychology, sociology, reliability engineering, actuarial science, 
economics, business, and education, to name but a few.

The first significant use of statistics was made in the 1660s by John Graunt, and in the 1690s 
by Edmund Halley (of Halley’s Comet), when each published some conclusions about the 
population in England based on mortality tables. There was little development of statistics 
until the 1800s, when statistical measures became more widely used. For example, important 
contributions were made by the scientist Francis Galton, who used statistics in the study of 
human heredity, and by the nurse Florence Nightingale, who used statistical graphs to show 
that more soldiers died in the Crimean War (in the 1850s) from unsanitary conditions than 
from combat wounds.

In using statistics, we generally collect and summarize data (using methods from descriptive 
statistics) to make inferences based on those data (using methods from inferential statistics). 
The first two sections of this chapter are dedicated to descriptive statistics. After a discussion 
regarding the normal distribution, we dedicate the rest of the chapter to introducing some ba-
sic concepts of inferential statistics, including confidence intervals, statistical process control, 
and regression.

22Introduction  
to Statistics

 In Section 22.4 we see how statisti-
cal analysis was used in the design of 
the 12.9-km-long Confederation 
Bridge that joins New Brunswick and 
Prince Edward Island.
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616 CHAPTER 22 Introduction to Statistics

In statistics, a population is the complete collection of elements (people, DVDs, 
households, temperatures) that are of interest and about which information is desired. 
Typically, a researcher is interested in a numerical property of the population called a 
parameter. For example, if the population is all DVDs produced by a certain manufac-
turer over the course of a week, a parameter would be the proportion of defective 
DVDs in that lot. If the population is all Internet users, a parameter would be the aver-
age number of hours spent each week on the Internet.

Because of constraints on time, money, and other scarce resources, conclusions 
about the population are usually drawn after observing only a subset of the population, 
called a sample. Quantities computed from samples are called statistics. Statistics are 
used to estimate parameters in the population. For example, the average in a sample of 
Internet users can be used to estimate the average among all users. Similarly, the pro-
portion of defectives in a sample can be used to estimate the proportion of defectives in 
the complete lot.

We are usually only interested in some of the characteristics that elements of the 
population have in common. A variable is any characteristic whose value changes from 
individual to individual in the population. A quantitative variable has a value that repre-
sents a numerical measurement. Examples of quantitative variables are weight, length, 
voltage, pressure, and number of children in a family. When the value of a variable is 
non-numerical, it is called a qualitative variable, or an attribute. Examples of attributes 
are colour, gender, and quality (measured as defective or nondefective).

Values of variables that have been recorded constitute data. Data that have been 
collected but not yet organized are called raw data. In order to obtain useful informa-
tion from the data, it is necessary to organize it in some way. Normally, a first step in 
organizing the data is to arrange the numerical values in ascending (or descending) 
order, forming what is called an array.

 EXAMPLE  1  Illustrating an array

Each user in a sample of 50 home computer users was asked to estimate carefully the 
number of hours they spent each week on-line on the Internet. Following are the 
estimates.

12, 20, 15, 14, 7, 10, 12, 25, 18, 5, 10, 24, 16, 3, 12, 14, 28, 8, 13, 18, 

15, 8, 11, 15, 14, 22, 14, 19, 6, 10, 18, 4, 16, 24, 18, 5, 13, 20, 12, 12,

 25, 11, 8, 12, 20, 5, 10, 15, 13, 8

As we can see, no clear pattern can be seen from the raw data. Arranging these in 
numerical order to form an array, we can summarize the array by showing the num-
ber of persons reporting each estimate as follows:

(hours@persons) 3@1, 4@1, 5@3, 6@1, 7@1, 8@4, 10@4, 11@2, 12@6,

13@3, 14@4, 15@4, 16@2, 18@4, 19@1, 20@3, 22@1, 24@2, 25@2, 28@1 ■

In Example 1, although a pattern is somewhat clearer from the summarized array 
than from the raw data, a still clearer pattern is found by grouping the data. In the pro-
cess of grouping, the detail of the raw data is lost, but the advantage is that a much 
clearer overall pattern of the data can be obtained.

The grouping of data is done by first defining what values are to be included in each 
group and then tabulating the number of values that are in each group. Each group is 
called a class, and the number of values in each class is called the frequency. The 
table is called a frequency distribution table. This is illustrated in the following 
example.

 22.1 Tabular and Graphical Representation of Data
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 EXAMPLE  2  

In Example 1, we note that the estimates vary from 3 h to 28 h. We see that if we form 
classes of 0–4 h, 5–9 h, etc., we will have five possible estimates in each class and that 
there will be six classes. This gives us the following frequency distribution table of values 
showing the number of persons (frequency) reporting the indicated estimate of the 
hours spent on the Internet.

Estimate (hours) 0–4 5–9 10–14 15–19 20–24 25–29
Frequency (persons) 2 9 19 11 6 3

This table shows us the frequency distribution. The 0, 5, 10, and so on are the lower 
class limits, and the 4, 9, 14, and so on are the upper class limits. Each class includes 
five values, which is the class width. As with the class limits we have chosen, it is 
generally preferable to have the same width for each class.

We can see from this frequency distribution table that the pattern of hours on the 
Internet by the persons responding to the survey is clearer. ■

Make sure that classes are mutually exclusive, so that each observation be-
longs to one, and only one, class.

Use between 5 and 20 classes. The principal consideration is that the relevant 
characteristics of the data should be clear.

Ensure that all classes (except for open-ended classes) have the same width.

Use class limits with convenient numbers. The first lower class limit is selected 
as the lowest value, or as a convenient number less than the lowest value.

Be sure to include all classes, even if their frequency is zero.

At times, it is also helpful to know the relative frequency of the class, which is the 
frequency of the class divided by the total frequency of all classes. The relative fre-
quency can be expressed as a fraction, decimal, or percent.

 EXAMPLE  3  

The relative frequency of each class for the data in Example 2 can be shown as in the 
following table:
 

2>50 = 0.04 = 4,

Estimated Hours  
on Internet

 
Frequency

Relative  
Frequency (,)

0–4  2   4 
5–9  9  18

10–14 19  38
15–19 11  22
20–24  6  12
25–29  3   6
Total 50 100

 
■

Using graphs is a very convenient method of representing frequency distributions. 
There are several useful types of graphs for such distributions. Among the most impor-
tant of these are the histogram and the frequency polygon.

In order to represent grouped data, where the raw data values are generally not all 
the same within a given class, we find it necessary to use a representative value for each 
class. For this, we use the class mark, which is found by dividing the sum of the lower and 
upper class limits by 2. The following examples illustrate the use of a class mark with a 
histogram and a frequency polygon.

Practice Exercise

1.  Assuming the data in Example 1 are di-
vided into classes of 0–3 h, 4–7 h, etc., 
for the 8–11 h class find:

 (a) the frequency
 (b) the relative frequency

■ A graphing calculator may be used to  
display histograms and frequency polygons.
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 EXAMPLE  4  Histogram

A histogram represents a particular set of data by displaying each class of 
the data as a rectangle. Each rectangle is labelled at the centre of its base by 
the class mark. The width of each rectangle represents the class width, and 
the height of the rectangle represents the frequency of the class.

For the data in Example 2 on estimated hours on the Internet, the class 
marks are 10 + 42 >2 = 2, 15 + 92 >2 = 7, and so on. Using these 
values, a histogram representing these data is shown in Fig. 22.1. ■

 EXAMPLE  5  Frequency polygon

A frequency polygon is used to represent a set of data by plotting the class 
marks as abscissas (x-values) and the frequencies as ordinates (y-values). 
The resulting points are joined by straight-line segments.

A frequency polygon representing the data in Example 2 on esti-
mated hours on the Internet is shown in Fig. 22.2.

If the polygon is not completed as shown in Fig. 22.2, and the figure 
starts at the first class mark, and ends at the last class mark, it is then 
referred to as a broken-line graph. ■

Another way of analysing data is to use cumulative totals. The way this is 
generally done is to change the frequency into a “less than” cumulative frequency. 
To do this, we add the class frequencies, starting at the lowest class boundary. The 
graphical display that is generally used for cumulative frequency is called an ogive 
(pronounced oh-jive).

 EXAMPLE  6  Cumulative frequency—ogive

For the data on estimated hours on the Internet in Examples 2 and 3, the cumulative 
frequency is shown in the following table:

Estimated Hours
on Internet

Cumulative  
Frequency

Less than 5  2
Less than 10 11
Less than 15 30
Less than 20 41
Less than 25 47
Less than 30 50

The ogive showing the cumulative frequency for the values in this table is shown in 
Fig. 22.3. The vertical scale shows the frequency, and the horizontal scale shows the 
class boundaries.

One important use of an ogive is to determine the number of values above or be-
low a certain value. For example, to approximate the number of respondents that use 
the Internet less than 18 hours per week, we draw a line from the horizontal axis to 
the ogive and then to the vertical axis as shown in Fig. 22.3. From this, we see that 
about 37 respondents use the Internet less than 18 hours per week. ■

If the data with which we are dealing have only a limited number of values and we 
do not divide the data into classes, we can still use the methods we have developed, 
using the specific values rather than class values. Consider the following example.
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■ Computer spreadsheets are very useful for 
this type of analysis.
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Note that in a cumulative frequency 
table, the name of the class can  
vary. For example, the first class in 
Example 6 could be defined as less 
than 5, or up to but not including 5, 
or less than or equal to 4. What is 
important is that the classes be cumu-
lative and that there be no overlap 
nor ambiguity between the classes.
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 EXAMPLE  7  

A test station measured the loudness of the sound of jet aircraft taking off from a cer-
tain airport. The decibel (dB) readings measured to the nearest 5 dB for the first 20 jets 
were as follows:

 110, 95, 100, 115, 105, 110, 120, 110, 115, 105, 

 90, 95, 105, 110, 100, 115, 105, 120, 95, 110

Since there are only seven different values for 
the 20 readings, the best idea of the pattern is 
found by using these values, as shown in the fol-
lowing frequency table:

dB Reading 90 95 100 105 110 115 120
Frequency 1 3 2 4 5 3 2

The histogram for this table is shown in Fig. 22.4, and 
the frequency polygon is shown in Fig. 22.5. ■
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EXERCISES 22.1

In Exercises 1–4, divide the data in Example 1 into five classes of 
hours (0–5, 6–11, etc.) on the Internet and then do the following:

 1. Form a frequency distribution table.

 2. Find the relative frequencies.

 3. Draw a histogram.

 4. Draw an ogive.

In Exercises 5–12, use the following data. An automobile company 
tested a new engine, and found the following results in twenty tests of 
the number of litres of gasoline used by a certain model for each 100 
km travelled.

  5.3, 5.8, 5.6, 5.4, 5.9, 5.4, 6.0, 5.8, 5.8, 5.4,  
6.3, 5.6, 5.7, 5.6, 5.7, 5.9, 5.5, 6.1, 5.9, 5.8

 5. Form an ordered array and summarize it by finding the frequency 
of each number of litres used.

 6. Find the relative frequency of each number of litres used.

 7. Form a frequency distribution table with five classes.

 8. Find the relative frequencies for the data in the frequency distri-
bution table in Exercise 7.

 9. Draw a histogram for the data of Exercise 7.

10. Draw a frequency polygon for the data of Exercise 7.

11. Form a cumulative frequency table for the data of Exercise 7.

12. Draw an ogive for the data of Exercise 7.

In Exercises 13–32, find the indicated quantities.

13. In testing a computer system, the number of instructions it could 
perform in 1 ns was measured at different points in a program. 
The numbers of instructions were recorded as follows:

  19, 21, 22, 25, 22, 20, 18, 21, 20, 19, 22, 21, 19, 23, 21

  Form a frequency distribution table for these values.

14. For the data of Exercise 13, draw a histogram.

15. For the data of Exercise 13, draw a frequency polygon.

16. For the data of Exercise 13, form a relative frequency distribution 
table.

17. A strobe light is designed to flash every 2.25 s at a certain setting. 
Sample bulbs were tested with the following results:

Time (s) between 
Flashes (class mark)

 
2.21

 
2.22

 
2.23

 
2.24

Number of Bulbs 2 7 18 41

Time (s) 2.25 2.26 2.27 2.28 2.29
No. Bulbs 56 32 8 3 3

  Draw a histogram for these data.

18. For the data of Exercise 17, draw a frequency polygon.

19. For the data of Exercise 17, form a cumulative frequency distri-
bution table.

20. For the data of Exercise 17, draw an ogive.

21. In testing a braking system, the distance required to stop a car 
from 110 km>h was measured in 120 trials. The results are shown 
in the following distribution table:

Stopping Distance (m) 47–49 50–52 53–55 56–58
Times Car Stopped 2 15 32 36

Stopping Distance (m) 59–61 62–64 65–67
Times Car Stopped 24 10 1

  Form a relative frequency distribution table for these data.

22. For the data in Exercise 21, form a cumulative frequency distribu-
tion table.

23. For the data of Exercise 21, draw an ogive.

24. From the ogive in Exercise 23, estimate the number of cars that 
stopped in less than 57 m.
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25. The dosage, in millisieverts (mSv), given by a particular X-ray 
machine, was measured 20 times, with the following readings:

  0.425, 0.436, 0.396, 0.421, 0.444, 0.383, 0.437, 0.427, 0.433, 
0.434, 0.415, 0.390, 0.441, 0.451, 0.418, 0.426, 0.429, 0.409, 
0.436, 0.423

  Form a histogram with six classes and the lowest class mark of 
0.380 mSv.

26. For the data used for the histogram in Exercise 25, draw a fre-
quency polygon.

27. The life of a certain type of battery was measured for a sample of 
batteries with the following results (in number of hours):

  34, 30, 32, 35, 31, 28, 29, 30, 32, 25, 31, 30,
  28, 36, 33, 34, 30,  31, 34, 29, 30, 32

  Draw a frequency polygon using six classes.

28. For the data in Exercise 27, draw a cumulative frequency distri-
bution table using six classes.

29. The diameters of a sample of fibre-optic cables were measured 
with the following results (diameters are class marks):

Diam. (mm) 0.0055 0.0056 0.0057 0.0058 0.0059 0.0060
No. Cables 4 15 32 36 59 64

Diam. (mm) 0.0061 0.0062 0.0063 0.0064 0.0065 0.0066
No. Cables 22 18 10 12 4 4

  Draw a histogram for these data.

30. For the data of Exercise 29, draw a histogram with six classes. 
Compare the pattern of distribution with that of the histogram in 
Exercise 29.

31. Toss four coins 50 times and tabulate the number of heads that 
appear for each toss. Draw a frequency polygon showing the 
number of tosses for which 0, 1, 2, 3, or 4 heads appeared. 
Describe the distribution. (Is it about what should be expected?)

32. Most calculators can generate random numbers (between 0 and 
1). On a calculator, display 50 random numbers and record the 
first digit. Draw a histogram showing the number of times for 
which each first digit 10, 1, 2, c, 92  appeared. Describe the 
distribution. (Is it about what should be expected?)

Answers to Practice Exercise

1. (a) 10  (b) 20,

Tables and graphical representations give a general description of data. However, it is 
also useful and convenient to find representative values for the location of the centre of 
the distribution, and other numbers to give a measure of the deviation from this central 
value. In this way, we can obtain a numerical summary of the data. We study some meas-
ures of centre and deviation (or spread) in this section.

The task of a measure of central tendency is to describe with a single value the location 
of the centre of the distribution. Since there are different ways of defining what centre 
is, there are several measures of central tendency.

The first of these measures of central tendency is the median. The median is the 
value that falls in the middle of an ordered array of data, leaving as many observations 
above it as it does below it. If there is no middle observation, the median is the number 
halfway between the two numbers nearest to the middle of the array.

 EXAMPLE  1  

Given the numbers 5, 2, 6, 4, 7, 4, 7, 2, 8, 9, 4, 11, 9, 1, 3, we first arrange them in 
numerical order. This arrangement is
 middle number

1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 9, 9, 11

Since there are 15 numbers, the middle number is the eighth. Since the eighth num-
ber is 5, the median is 5.

If the number 11 is not included in this set of numbers and there are only 14 num-
bers in all, the median is that number halfway between the seventh and eighth num-
bers. Since the seventh is 4 and the eighth is 5, the median is 4.5. ■

Another very widely applied measure of central tendency is the arithmetic mean 
(often referred to simply as the mean). The mean is calculated by finding the sum of all 

 22.2 Summarizing Data
 

Median

Arithmetic Mean

Note that all measures of central ten-
dency and spread are usually rounded 
off to one more decimal place than 
was present in the original data.

LEARNING T IP
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the values and then dividing by the number of values. (The mean is the number most 
people call the “average.” However, in statistics the word average has the more general 
meaning of a measure of central tendency.)

 EXAMPLE  2  Arithmetic mean

The arithmetic mean of the numbers given in Example 1 is determined by finding the 
sum of all the numbers and dividing by 15. Therefore, by letting x (read as “x bar”) 
represent the mean, we have

 x =
5 + 2 + 6 + 4 + 7 + 4 + 7 + 2 + 8 + 9 + 4 + 11 + 9 + 1 + 3

15

 
sum of values

 =
82
15

= 5.5

 number of values

Thus, the mean is 5.5. ■

If we wish to find the arithmetic mean of a large number of values, and if some of 
them appear more than once, the calculation can be simplified. The mean can be calcu-
lated by multiplying each value by its frequency, adding these results, and then divid-
ing by the total number of values (the sum of the frequencies). Letting x represent the 
mean of the values x1, x2, c, xn, which occur with frequencies f1, f2, c, fn, respec-
tively, we have

 x =
x1 f1 + x2 f2 + g + xn fn

f1 + f2 + g + fn
 (22.1)

 EXAMPLE  3  Arithmetic mean using frequencies

Using Eq. (22.1) to find the arithmetic mean of the numbers of Example 1, we first set 
up a table of values and their respective frequencies, as follows:

Values 1 2 3 4 5 6 7 8 9 11
Frequency 1 2 1 3 1 1 2 1 2 1

We now calculate the arithmetic mean x by using Eq. (22.1):

 multiply each value by its frequency and add results

■ This is called a weighted mean since each 
value is given a weight based on the number of 
times it occurs.

 x =
1112 + 2122 + 3112 + 4132 + 5112 + 6112 + 7122 + 8112 + 9122 + 11112

1 + 2 + 1 + 3 + 1 + 1 + 2 + 1 + 2 + 1
 

sum of frequencies 

 =
82
15

= 5.5

We see that this agrees with the result of Example 2. ■

Summations such as those in Eq. (22.1) occur frequently in statistics and other 
branches of mathematics. In order to simplify writing these sums, the symbol g  is used 
to indicate the process of summation. (g  is the Greek capital letter sigma.) gx means 
the sum of the x’s.
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 EXAMPLE  4  Summation symbol g
We can show the sum of the numbers x1, x2, x3, c , xn as

a x = x1 + x2 + x3 + g + xn

If these numbers are 3, 7, 2, 6, 8, 4, and 9, we have

 a x = 3 + 7 + 2 + 6 + 8 + 4 + 9 = 39 ■

Using the summation symbol g , we can write Eq. (22.1) for the arithmetic mean as

 x =
x1 f1 + x2 f2 + x3 f3 + g + xn  fn

f1 + f2 + f3 + g + fn
= a xf

a f
 (22.1)

The summation notation gx is an abbreviated form of the more general notation 

a
n

i = l
xi. This more general form can be used to indicate the sum of the first n numbers of 

a sequence or to indicate the sum of a certain set within the sequence. For example, for 

a set of at least 5 numbers, a
5

i =3
xi indicates the sum of the third through the fifth of these 

numbers (in Example 4, a
5

i =3
xi = 16). We will use the abbreviated form gx to indicate 

the sum of all the numbers being considered.

 EXAMPLE  5  Arithmetic mean using frequencies

We find the arithmetic mean of the Internet hours in Example 1 of Section 22.1 (page 616) by

 x = a xf

a f
=

3112 + 4112 + 5132 + g + 12162 + g + 28112
50

 =
687
50

= 13.7 h  (rounded off to tenths) ■

Another measure of central tendency is the mode, which is the value that appears 
most frequently. If two or more values appear with the same greatest frequency, each is 
a mode. If no value is repeated, there is no mode.

 EXAMPLE  6  Mode

(a) The mode of the numbers in Example 1 is 4, since it appears three times, and 
no other value appears more than twice.

(b) The modes of the numbers

1, 2, 2, 4, 5, 5, 6, 7

  are 2 and 5, since each appears twice and no other number is repeated.

(c) There is no mode for the values

1, 2, 5, 6, 7, 9

  since none of the values is repeated. ■

  EXAMPLE  7  Measures of central tendency

To find the frictional force between two specially designed surfaces, the force to move 
a block with one surface along an inclined plane with the other surface is measured ten 
times. The results, with forces in newtons, are

2.2, 2.4, 2.1, 2.2, 2.5, 2.2, 2.4, 2.7, 2.1, 2.5

Find the mean, median, and mode of these forces.

Practice Exercises

For the following numbers, find the  
indicated value:
12, 17, 16, 12, 14, 18, 14, 12, 15, 18

1. The median  2. The arithmetic mean

■ The arithmetic mean is one of a number of 
statistical measures that can be found on a 
calculator.

Mode
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To find the mean, we sum the values of the forces and divide this total by 10. 
This gives

 F = aF

10
=

2.2 + 2.4 + 2.1 + 2.2 + 2.5 + 2.2 + 2.4 + 2.7 + 2.1 + 2.5
10

 =
23.3
10

= 2.33 N

The median is found by arranging the values in order and finding the middle 
value. The values in order are

2.1, 2.1, 2.2, 2.2, 2.2, 2.4, 2.4, 2.5, 2.5, 2.7

Since there are 10 values, we see that the fifth value is 2.2 and the sixth is 2.4. The 
value midway between these is 2.3, which is the median. Therefore, the median 
force is 2.3 N.

The mode is 2.2 N, since this value appears three times, which is more than any 
other value. ■

Measures of central tendency on their own are not very informative. They do not tell us 
whether values are grouped closely together or how spread out they are. Therefore, we 
also need some measure of the deviation, or spread, of the values from the centre. If the 
spread is small and the numbers are grouped closely together, the measure of central 
tendency is more reliable and descriptive of the data than in the case in which the 
spread is greater.

In statistics, there are several measures of spread that may be defined. The simplest 
one is the range, which is the difference between the highest value and the lowest value 
in the data set. For example, the range of the data in Example 7 is 2.7 -  2.1 = 0.6. We 
will see how the range is applied to statistical process control in Section 22.5.

The most widely used measure of spread is the standard deviation. The standard 
deviation of a set of sample values is defined by the equation

 s = Ca 1x - x22

n - 1
 (22.2)

The definition of s shows that the following steps are used in computing its value.

-
cal methods and is used extensively. 
Nevertheless, be aware that the 
mean is very sensitive to extreme 
observations so that a single 
extreme observation can change the 
value of the mean dramatically and 
give the wrong impression about 
the data.

extreme observations. Therefore, 
it is a good choice as a measure of 
centre in the presence of extreme 
values.

mode coincide when the distribu-
tion of data is symmetric. In those 
cases, the median or the mode 
(which are easy to calculate) can 
be used as estimates of the mean.

LEARNING T IP

Range

Standard Deviation

1. Find the arithmetic mean x of the numbers of the set.

2. Subtract the mean from each number of the set.

3. Square these differences.

4. Find the sum of these squares.

5. Divide this sum by n - 1.

6. Find the square root of this result.

Following the steps shown above, we use Eq. (22.2) for the calculation of standard 
deviation in the following examples.

The standard deviation s is a positive 
number. It is a deviation from the 
mean, regardless of whether the indi-
vidual numbers are greater than or 
less than the mean. Numbers close 
together will have a small standard 
deviation, whereas numbers further 
apart have a larger standard devia-
tion. Therefore, the standard devia-
tion becomes larger as the spread of 
data increases.

LEARNING T IP
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 EXAMPLE  8  Standard deviation —using Eq. (22.2)

Find the standard deviation of the following numbers: 1, 5, 4, 2, 6, 2, 1, 1, 5, 3.
A table of the necessary values is shown below, and steps 1–6 are indicated:

       step 2 step 3

x x - x 1x - x22

1 -2 4
5 2 4
4 1 1
2 -1 1
6 3 9
2 -1 1
1 -2 4
1 -2 4
5 2 4
3
30

0   0
32

 step 4

 x =
30
10

= 3   step 1

 a 1x - x22

n - 1
=

32
10 - 1

=
32
9

  step 5

 s = A32
9

= 1.9    step 6  
 (rounded off to tenths)

 ■

If some of the values in the data are repeated, we can use the frequency of those 
values that occur more than once in calculating the standard deviation. This is illus-
trated in the following example.

 EXAMPLE  9  Standard deviation using frequencies

Find the standard deviation of the numbers in Example 1.
Since several of the numbers appear more than once, it is helpful to use the fre-

quency of each number in the table, as follows:

step 2 step 3 
step 1

x f xf x - x 1x - x22 1x - x22f

1 1 1 -4.5 20.25 20.25
2 2 4 -3.5 12.25 24.50
3 1 3 -2.5 6.25 6.25
4 3 12 -1.5 2.25 6.75
5 1 5 -0.5 0.25 0.25
6 1 6 0.5 0.25 0.25
7 2 14 1.5 2.25 4.50
8 1 8 2.5 6.25 6.25
9 2 18 3.5 12.25 24.50

11  1
15

11
82

5.5 30.25   30.25
123.75

   x =
82
15

= 5.5

 a 1x - x22f

n - 1
=

123.75
15 - 1

=
123.75

14
 step 5

 s = A123.75
14

= 3.0 step 6

step 4 ■

It is possible to reduce the computational work required to find the standard devia-
tion. Algebraically, it can be shown (although we will not do so here) that the following 
equation is another form of Eq. (22.2) and therefore gives the same results.

 s = Hn1a x22 - 1a x22

n1n - 12  (22.3)

The population standard deviation, 
represented by the Greek letter s 
(read “sigma”), is computed using n in 
the denominator of Eq. (22.2) instead 
of n -  1. The n -  1 in the denomina-
tor of Eq. (22.2) adjusts s so that it 
gives good estimates of the parameter 
s when the standard deviation can 
only be measured from a sample.

Since we generally use data com-
ing from samples, in this text we will 
always use Eq. (22.2), and we will 
refer to the sample standard devia-
tion simply as the standard deviation.

LEARNING T IP
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Although the form of this equation appears more involved, it does reduce the amount of 
calculation that is necessary. Consider the following examples.

 EXAMPLE  10  

Using Eq. (22.3), find s for the numbers in Example 8.

x x 2

1 1
5 25
4 16
2 4
6 36
2 4
1 1
1 1
5 25
 3
30

  9
122

 n = 10

 gx2 = 122

 1gx22 = 302 = 900

 s = C1011222 - 900

10192 = 1.9

■

Practice Exercise

3.  Find the standard deviation of the first 
eight numbers in Example 8.

 EXAMPLE  11  

An ammeter measures the electric current in a circuit. In an ammeter, two resistances 
are connected in parallel, with most of the current passing through a very low resist-
ance called the shunt. The resistance of each shunt in a sample of 100 shunts was meas-
ured. The results were grouped, and the class mark and frequency for each class are 
shown in the following table. Calculate the arithmetic mean and the standard deviation 
of the resistances of the shunts.

R (ohms) f  Rf R2f
0.200 1 0.200 0.0400
0.210 3 0.630 0.1323
0.220 5 1.100 0.2420
0.230 10 2.300 0.5290
0.240 17 4.080 0.9792
0.250 40 10.000 2.5000
0.260 13 3.380 0.8788
0.270 6 1.620 0.4374
0.280 3 0.840 0.2352
0.290 2 0.580 0.1682

  100 24.730 6.1421

The arithmetic mean of the resistances is 0.2473 Ω, with a standard deviation of 
0.0163 Ω. ■

 EXAMPLE  12  

Find the standard deviation of the estimated hours on the Internet as grouped in 
Example 2 of Section 22.1 (page 617). In doing this, we assume that each value in the 
class is the same as the class mark. The method is not exact, but with a large set of 
numbers, it provides a good approximation with less arithmetic work.

 R =
24.730

100
= 0.2473 Ω

 n = 100

 gR2 = 6.1421

 1gR22 = 24.7302

 s = C10016.14212 - 24.7302

1001992 = 0.0163

It is a common error to confuse gx2 and1gx22 in Eq. (22.3). Note that for gx2, we 
square the x values and then add the squares, whereas for 1gx22, we first add the x 
values and then square the sum.

COMMON ERROR

■ Statistical measures such as x , gx ,gx2, sx , 
sx  , and n can be obtained directly on a scien-
tific or a graphing calculator.
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Thus, s = 6.1 h. ■

The mean and the standard deviation together can help us draw conclusions about 
the values in a data set. Thanks to a result known as Chebychev’s theorem, we can 
state the percentage of data values that must be within a specific number of standard 
deviations from the mean.

Interval x f xf x2f
0–4 2 2 4 8
5–9 7 9 63 441

10–14 12 19 228 2736
15–19 17 11 187 3179
20–24 22 6 132 2904
25–29 27 3 81 2187

    50 695 11 455

 n = 50

 gx2 = 11 455

 1gx22 = 6952

 s = C50111 4552 - 6952

501492 = 6.1

For any data set (population or sample), the proportion of observations that must 
be within k standard deviations of the mean is always at least 1 - 1

k2 1k 7 12 .

For the particular values k = 2, 3, and 4, here is what the statement of the theo-
rem implies:

At least 75% of observations are within two standard deviations of the mean.

At least 89% of observations are within three standard deviations of the mean.

At least 94% of observations are within four standard deviations of the mean.

Note that since Chebychev’s theorem is so general, it will underestimate the percent-
ages for some distributions. In Section 22.3, we will obtain more precise percentages 
for the important case of the normal distribution.

 EXAMPLE  13  

A sample of computers of a certain brand had a mean time of 38 months without a hard-
ware malfunction, with a standard deviation of 2.5 months. What percentage of the com-
puters in the sample lasted between 33 and 43 months without a hardware malfunction?

We can write 33 = 38 - 212.52 , and 43 = 38 + 212.52 , so 33 and 43 are 2 
standard deviations  away from the mean, and we use Chebychev’s theorem with k = 2. 
Therefore, at least 75% of the computers in the sample lasted between 33 and 43 months 
without a hardware malfunction. ■

In using the statistical measures we have discussed, we must be careful in using and 
interpreting such measures. Consider the following example.

 EXAMPLE  14  Interpreting statistical measures

(a) The numbers 1, 2, 3, 4, 5 have a mean of 3, a median of 3, and a standard devi-
ation of 1.6. These values fairly well describe the centre and distribution of the 
numbers in the set.

(b) The numbers 1, 2, 3, 4, 100 have a mean of 22, a median of 3, and a standard 
deviation of 44. The large difference between the median and the mean and the 
very large range of values within one standard deviation of the mean (-22 to 
66) indicate that this set of measures does not describe this set of numbers well. 
In a case like this, the 100 should be checked to see if it is in error. ■

Example 14 illustrates how statistical measures can be misleading in the presence of 
extreme values. Misleading statistics can also come from the process of data collection. 
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Consider the probable results of a survey to find the percent of persons in favour of 
raising income taxes for the wealthy if the survey is taken at the entrance to a welfare 
office or if it is taken at the entrance to a stock brokerage firm. There are many other 
considerations in the proper use and interpretation of statistical measures.

EXERCISES 22.2

In Exercises 1–4, delete the 5 from the data numbers given for Example 
1 and then do the following with the resulting data.

 1. Find the median.

 2. Find the arithmetic mean using the definition, as in Example 2.

 3. Find the arithmetic mean using Eq. (22.1), as in Example 3.

 4. Find the mode, as in Example 6.

In Exercises 5 and 6, use the data in Example 8. Change the first 1 to 6 
and the first 2 to 7 and then find the standard deviation of the resulting 
data as directed.

 5. Find s from the definition, as in Example 8.

 6. Find s using Eq. 22.3, as in Example 10.

 7. In Example 13, change 33 to 28 and 43 to 48 and then find the 
percentage.

In Exercises 8–15, use the following sets of numbers.

  A: 3, 6, 4, 2, 5, 4, 7, 6, 3, 4, 6, 4, 5, 7, 3

  B: 25, 26, 23, 24, 25, 28, 26, 27, 23, 28, 25

  C:  0.48, 0.53, 0.49, 0.45, 0.55, 0.49, 0.47, 0.55, 0.48,  
0.57, 0.51, 0.46, 0.53, 0.50, 0.49, 0.53

  D:  105, 108, 103, 108, 106, 104, 109, 104, 110, 108, 108,  
104, 113, 106, 107, 106, 107, 109, 105, 111, 109, 108

In Exercises 8–11, determine (a) the mean, (b) the median, and (c) the 
mode of the numbers of the given set.

 8. Set A 9. Set B 10. Set C 11. Set D

In Exercises 12–15, find the standard deviation s for the indicated set 
of numbers (a) using Eq. (22.2), and (b) using Eq. (22.3).

12. Set A 13. Set B 14. Set C 15. Set D

In Exercises 16–30, the required data are those in Exercises 22.1.

16. Find the mean, the median, and the mode of L/100 km of fuel 
usage in Exercise 5.

17. Find the standard deviation of L/100 km of fuel usage in Exercise 5 
using Eq. (22.2).

18. Find the standard deviation of L/100 km of fuel usage in Exercise 5 
using Eq. (22.3).

19. Find the mean, the median, and the mode of computer instruc-
tions in Exercise 13.

20. Find the range and standard deviation of computer instructions in 
Exercise 13.

21. Find the mean and the median of strobe light times in Exercise 17.

22. Find the standard deviation of strobe light times in Exercise 17.

23. Find the mean and median of stopping distances in Exercise 21. 
(Use the class mark for each class.)

24. Find the standard deviation of stopping distances in Exercise 21. 
(Use the class mark for each class.)

25. Find the mean, the median, and the mode of X-ray dosages in 
Exercise 25.

26. Find the range and the standard deviation of X-ray dosages in 
Exercise 25.

27. Find the mean, the median, and the mode of battery lives in 
Exercise 27.

28. Find the standard deviation of battery lives in Exercise 27.

29. Find the mean and the median of cable diameters in Exercise 29.

30. Find the standard deviation of cable diameters in Exercise 29.

In Exercises 31–47, find the indicated measure of central tendency or 
of spread.

31. The weekly salaries (in dollars) for the workers in a small factory 
are as follows:

  600, 750, 625, 575, 525, 700, 550,  
750, 625, 800, 700, 575, 600, 700

  Find the median and the mode of the salaries.

32. Find the mean salary for the salaries in Exercise 31.

33. Find the range and the standard deviation of the salaries in 
Exercise 31.

34. In a particular month, the electrical usage, rounded to the nearest 
400 MJ, of 1000 homes in a certain city was summarized as follows:

Usage 2000 2400 2800 3200 3600 4000 4400 4800
No. Homes 22 80 106 185 380 122 90 15

  Find the mean of the electrical usage.

35. Find the median and mode of electrical usage in Exercise 34.

36. Find the standard deviation of electrical usage in Exercise 34.

37. A test of air pollution in a city gave the following readings of the 
concentration of sulfur dioxide (in parts per million) for 18 con-
secutive days:

  0.14, 0.18, 0.27, 0.19, 0.15, 0.22, 0.20, 0.18, 0.15,  
0.17, 0.24, 0.23, 0.22, 0.18, 0.32, 0.26, 0.17, 0.23

  Find the median and the mode of these readings.

38. Find the mean of the readings in Exercise 37.

39. Find the range and the standard deviation of air pollution data in 
Exercise 37.

40. The following data give the mean number of days of rain for 
Vancouver, British Columbia, for the 12 months of the year.

  20, 17, 17, 14, 12, 11, 7, 8, 9, 16, 19, 22

  Find the standard deviation.
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41. The midrange, another measure of central tendency, is found by 
finding the sum of the lowest and the highest values and dividing 
this sum by 2. Find the midrange of the salaries in Exercise 31.

42. Find the midrange of the sulfur dioxide readings in Exercise 37. 
(see Exercise 41.)

43. Add $100 to each of the salaries in Exercise 31. Then find the 
median, mean, and mode of the resulting salaries. State any con-
clusion that might be drawn from the results.

44. Multiply each of the salaries in Exercise 31 by 2. Then find the 
median, mean, and mode of the resulting salaries. State any con-
clusion that might be drawn from the results.

45. Change the final salary in Exercise 31 to $4000, with all other 
salaries being the same. Then find the mean of these salaries. 
State any conclusion that might be drawn from the result. (The 
$4000 here is called an outlier, which is an extreme value.)

46. Find the median and mode of the salaries indicated in Exercise 45. 
State any conclusion that might be drawn from the results.

47. The k, trimmed mean is a measure of central tendency that 
avoids the influence of extreme observations while still using 

most of the observations in the data set. It is computed by finding 
the mean of the data after the smallest k, and the largest k, of 
the data have been discarded. Find the 10, trimmed mean of 
X-ray dosages in Exercise 25 of Section 22.1.

In Exercises 48–50, solve the given problems.

48. Use Chebychev’s theorem to find the percentage of values that 
are between 175 and 195 in a data set with mean 185 and standard 
deviation 5.

49. Use Chebychev’s theorem to find the percentage of values that 
are between 55.7 and 68.3 in a data set with mean 62 and standard 
deviation 2.1.

50. The mean compressive strength of a sample of steel beams was 
40 000 N/cm2, with a standard deviation of 450 N/cm2. What 
percent of the beams had compressive strength between 38 650 
and 41 350 N/cm2?

Answers to Practice Exercises

1. 14.5  2. 14.8  3. 2.0

In this section we discuss the normal distribution, the most important and most 
widely used distribution in statistics. The normal distribution is a continuous distribu-
tion, so we begin by discussing some generalities of continuous distributions.

In Section 22.1 we learned that for variables that take a limited number of values, the 
relative frequency of a value is obtained by dividing the frequency of that value by the 
total frequency of all values. Let us now consider variables that can be regarded as having 
an infinite number of possible values, such as weights, lengths, or durations for a very 
large population. (Such variables are said to be continuous.) When using the same proce-
dure as before, the denominator becomes infinite, giving a relative frequency of zero for 
all values. How are we then to compute the relative frequency of intervals, if the relative 
frequency of all values is zero?

The answer lies in establishing a correspondence between relative frequency 
and area. To each continuous variable we associate a function, which we can graph 
as a curve on the plane. The relative frequency of a particular interval corresponds 
to the area under the curve in that interval. Because the relative frequency for the 
complete population must be 1, the total area under the curve must be 1 (100% of 
the data).

The normal distribution is associated with the symmetric, bell-shaped curve shown 
in Fig. 22.6. Using advanced methods, its equation is found to be

 y =
e-1x - m22>2s2

s12p
 (22.4)

Here, m is the population mean and s is the population standard deviation, and p and e 
are the familiar numbers first used in Chapters 2 and 12, respectively.

From Eq. (22.4), we can see that any particular normal distribution depends on the 
values of m and s. The horizontal location of the curve depends on m, and the shape 
(how spread out the curve is) depends on s, but the bell shape remains. This is illus-
trated in general in the following example.

 22.3 Normal Distributions

■ The first derivation of the normal distribution 
is due to Abraham de Moivre (1667–1754), who 
was interested in approximating quantities 
arising in gambling problems. It was also  
derived independently by Pierre-Simon  
Laplace (1749–1847), and by Carl Friedrich 
Gauss (1777–1855), both in the context of  
measurement errors.

y

x
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 EXAMPLE  1  Location and spread of a normal distribution

In Fig. 22.7, for the left curve, m = 10 and s = 5, whereas for the right curve, 
m = 20 and s = 10.

y

x
100 20 30 40

 Fig. 22.7 ■

 EXAMPLE  2  The normal distribution applied to reliability

The normal distribution has important applications in probabilistic reliability tech-
niques for bridge design. For instance, load factors developed for the design of the 
Confederation Bridge are discussed in the article “Design criteria and load and resist-
ance factors for the Confederation Bridge,” by J. G. MacGregor et al. (Can. J. Civ. 
Eng., 24, 882–897 (1997)). Quantities that were found to be normally distributed (or 
whose logarithms were found to be normally distributed) arose in the analysis of dead 
loads, live loads due to vehicles, wind loads, temperature loads, and ice loads. To give 
a specific example, after analysing records of daily average temperatures in the region 
for 46 years, it was concluded that the 3-day temperature drop that was equalled or 
exceeded 100 times in 100 years is distributed normally, with mean 26.9°C and stand-
ard deviation 3.2°C. This distribution is shown in Fig. 22.8. ■

20

0.05

0.1

25 3026.9 35

y

x(°C)

Fig. 22.8 

■ See the chapter introduction.

Properties of the Normal Curve
The curve is symmetric about the mean.

The curve is always above the x-axis. ( y is always positive.)

The x-axis is a horizontal asymptote. (As x increases numerically, y becomes 
very small.)

The total area under the curve is 1.

The curve is bell-shaped, as seen in Figs. 22.6–22.8.

Fig. 22.9 shows areas under a normal curve with mean m and standard deviation s 
for particular regions. Using the correspondence between relative frequency and area, 
we can use the given information to find the percentage of data values that fall within 
one, two, and three standard deviations from the mean, as summarized below.

x

0.3413
0.1359 0.1359

0.02150.3413

m − 2sm − 3s m − s m + s m + 2s m + 3sm

0.0215

Fig. 22.9 

■ A more complete and rigorous treatment of 
the material covered in this and the remaining 
sections of this chapter would require the study 
of probability theory, which is beyond the 
scope of this introductory chapter.  
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We can compare these percentages with those given by Chebychev’s theorem in 
Section 22.2—namely, that at least 75% of observations are within two standard devia-
tions from the mean and that at least 89% of observations are within three standard 
deviations from the mean. We see that Chebychev’s theorem heavily underestimates 
the true percentages in the case of the normal distribution.

We can use the areas from Fig. 22.9 to calculate relative frequencies for other inter-
vals. This is illustrated in the following example.

 EXAMPLE  3  Relative frequencies and areas under the curve—application

Let us consider the normal distribution of 3–day temperature drops from Example 2, so 
that the mean and standard deviation are m = 26.9°C and s = 3.2°C, respectively. 
The percentage of values that lie between one standard deviation below the mean and 
two standard deviations above the mean is 81.85%, since the area between m - s and 
m + 2s is 0.3412 + 0.3413 + 0.1359 = 0.8185. We have

m - s = 26.9 - 3.2 = 23.7  and  m + 2s = 26.9 + 213.22 = 33.3

Therefore, about 81.85% of values for this distribution are within 23.7°C and 33.3°C. ■

STANDARD NORMAL DISTRIBUTION
As we have just seen, there are innumerable possible normal distributions. However, 
there is one of particular interest. The standard normal distribution is the normal 
distribution for which the mean is 0 and the standard deviation is 1. Making these sub-
stitutions in Eq. (22.4), we have

 y =
112p

 e-x2/2  (22.5)

as the equation of the standard normal distribution curve. All the properties of a normal 
curve are satisfied by the standard normal distribution. In particular, since the mean is 0, 
the curve is symmetric with respect to the y-axis. The curve is also bell–shaped, as seen in 
Fig. 22.10. As we discuss below, areas under the standard normal curve are used to find 
relative frequencies for all other normal curves.

We can find the relative frequency of values for any normal distribution by use of
the standard score z (or z-score), which is defined as

  z =
x - m

s
 (22.6)

For the standard normal distribution, where m = 0, if we let x = s, then z = 1. If we 
let x = 2s, z = 2. Therefore, we can see that a value of z tells us the number of stand-
ard deviations the given value of x is above or below the mean. From the discussion 
above, we can see that the value of z can tell us the area under the curve between the 
mean and the value of x corresponding to that value of z. In turn, this tells us the rela-
tive frequency of all values between the mean and the value of x.

Important Percentages for the Normal Curve
About 68% of values are within one standard deviation from the mean–that 
is, between m - s and m + s.

About 95% of values are within two standard deviations from the mean–that 
is, between m - 2s and m + 2s.

Almost all values (99.74%) are within three standard deviations from the 
mean–that is, between m - 3s and m + 3s.

y

x

0.5

0.4

0.3

0.2

0.1

0−1−2−3 1 2 3

Fig. 22.10
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The following examples illustrate the use of Eq. (22.6) and z-scores.

 EXAMPLE  4  z

For a normal distribution curve based on values of m = 20 and s = 5, find the area 
between x = 24 and x = 32. To find this area, we use Eq. (22.6) to find the corre-
sponding values of z and then find the difference between the areas associated with 
these z-scores. These z-scores are

z =
24 - 20

5
= 0.8 and z =

32 - 20
5

= 2.4

For z = 0.8, the area is 0.2881, and for z = 2.4, the area is 0.4918. Therefore, the 
area between x = 24 and x = 32 (see Fig. 22.11) is

0.4918 - 0.2881 = 0.2037

This means that the relative frequency of the values between x = 24 and x = 32 is 
20.37,. If we have a large set of measured values with m = 20 and s = 5, we 
should expect that about 20, of them are between x = 24 and x = 32. ■

 EXAMPLE  5  z

The lifetimes of a certain type of watch battery are normally distributed. The mean life-
time is 400 days, and the standard deviation is 50 days. For a sample of 5000 new bat-
teries, determine how many batteries are expected to last (a) between 360 days and 
460 days, (b) more than 320 days, and (c) less than 280 days.

(a) For this distribution, m = 400 days and s = 50 days. Using Eq. (22.6), we find 
the z-scores for x = 360 days and x = 460 days. They are

z =
360 - 400

50
= -0.8 and z =

460 - 400
50

= 1.2

For z = -0.8, the area is to the left of the mean, and since the curve is symmetric 
about the mean, we use the z = 0.8 value of the area and add it to the area for 
z = 1.2. Therefore, the area is

0.2881 + 0.3849 = 0.6730

See Fig. 22.12. This means that 67.30, of the 5000 batteries, or 3365 of the bat-
teries, are expected to last between 360 and 460 days. Because of variability within 
samples, not every sample will have exactly 3365 batteries that will last between 

 Standard Normal (z)

z  Area z  Area z  Area
0.0 0.0000 1.0 0.3413 2.0 0.4772
0.1 0.0398 1.1 0.3643 2.1 0.4821
0.2 0.0793 1.2 0.3849 2.2 0.4861
0.3 0.1179 1.3 0.4032 2.3 0.4893
0.4 0.1554 1.4 0.4192 2.4 0.4918
0.5 0.1915 1.5 0.4332 2.5 0.4938
0.6 0.2257 1.6 0.4452 2.6 0.4953
0.7 0.2580 1.7 0.4554 2.7 0.4965
0.8 0.2881 1.8 0.4641 2.8 0.4974
0.9 0.3159 1.9 0.4713 2.9 0.4981
1.0 0.3413 2.0 0.4772 3.0 0.4987

Practice Exercise

1.  For values of m = 40 and s = 8, find 
the area between x = 36 and x = 48.

x
20 3224

z = 2.4z = 0.8

x (days)

z = −0.8
360 400

z = 1.2
460

Table 22.1 gives the area under the standard normal distribution curve between zero 
and the given values of z. The table includes values only to z = 3 since nearly all of the 
area is between z = -3 and z = 3. Since the curve is symmetric to the y-axis, the val-
ues shown are also valid for negative values of z.
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360 and 460 days. On average, however, a sample of 5000 batteries will have 3365 
that will last that amount of time.

(b) To determine the number of batteries that will last more than 320 days, we first 
find the z-score for x = 320. It is z = 1320 - 4002>50 = -1.6. This means 
we want the total area to the right of z = -1.6. In this case, we add the area for 
z = 1.6 to the total area to the right of the mean. Since the total area under the 
curve is 1.0000, the total area on either side of the mean is 0.5000. Therefore, 
the area to the right of z = -1.6 is 0.4452 + 0.5000 = 0.9452. See Fig. 22.13. 
This means that 0.9452 * 5000 = 4726 batteries are expected to last more than 
320 days.

(c) To find the number of batteries that will last less than 280 days, we first find 
that z = 1280 - 4002 >50 = -2.4 for x = 280. Since we want the total area 
to the left of z = -2.4, we subtract the area for z = 2.4 from 0.5000, the total 
area to the left of the mean. Since the area for z = 2.4 is 0.4918, the total area to 
the left of z = -2.4 is 0.5000 - 0.4918 = 0.0082. See Fig. 22.14. Therefore, 
0.0082 * 5000 = 41 batteries are expected to last less than 280 days. ■

We now summarize the procedure for finding relative frequencies using z-scores.

x (days)

z = −1.6
320 400

Fig. 22.13 

x (days)

z = −2.4
280 400

Fig. 22.14 

Finding Relative Frequencies Using z-Scores
1. Sketch the normal curve, labeling the mean and the given x values. Identify 

the desired relative frequency as an area under the curve.

2. Use Eq. (22.6) to find the z-score for each x. Identify the desired relative  
frequency as an area under the standard normal curve.

3. Look up the absolute value of each z-score in Table 22.1 to find its associated 
area.

4. Depending on the situation, proceed as follows:

Area Procedure
Between two z-scores of the same sign Subtract the smaller area from the 

larger one
Between two z-scores of different sign Add both areas together
To the right of a positive z-score or to 
the left of a negative z-score

Subtract the area from 0.5

To the right of a negative z-score or to 
the left of a positive z-score

Add the area to 0.5

SAMPLING DISTRIBUTIONS
In Example 4, we assumed that the lifetimes of the batteries were normally distributed. 
Of course, for any set of 5000 batteries, or any number of batteries for that matter, the 
lifetimes that actually occur will not follow a normal distribution exactly. There will be 
some variation from the normal distribution, but for a large sample, this variation 
should be small. The mean and the standard deviation for any sample will vary some-
what from that of the population. When we consider the relative frequency distribution 
of the sample means obtained from all possible samples of the same size, we obtain 
what is called the sampling distribution of the sample means.

In the study of probability, it is shown that if we select all possible samples of size n 
from a population with a mean m and standard deviation s, the mean of the sample 
means is also m. Also, the standard deviation of the sample means, denoted by s x, and 
called the standard error of the mean, is

 s x =
s1n

 (22.7)
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Moreover, when n is large (large in this situation is usually considered to be over 30) 
the sampling distribution of the sample means is approximately normal. In other words, 
the normal curve approximates the relative frequency distribution of the sample means, 
so that areas under the normal curve can be used to approximate relative frequencies of 
the sample means.

The normal distribution also approximates the sampling distribution of quantities 
calculated from samples when the variable of interest is an attribute. For instance, sup-
pose that we take samples of n items from a very large population containing a propor-
tion p of defective items. If n is large (in this case, np and n(1 - p) must both be at 
least 5), then the sampling distribution of the sample proportion pn of defective items in 
each sample is also approximately normal. In this situation, the mean of the sample 
proportions is p, and the standard error of pn is

 s
np = Ap11 - p2

n
 (22.8)

We can see from Eqs. (22.7) and (22.8) that as the sample size gets larger, the less vari-
ation there will be in the mean or the proportion obtained from a sample.

It is a common error to forget the 1n term in the denominator of the standard error 
formulas. It is very important to include it since it is what guarantees that variation 
between samples decreases as the sample size increases.

COMMON ERROR

EXERCISES 22.3 

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the indicated problem.

 1.  In Example 1, change the second s from 10 to 5 and then describe 
the curve that would result in terms of either or both curves shown 
in Fig. 22.7.

 2. In Example 3, change two to three and then find the resulting per-
cent of values and the corresponding interval.

 3. In Example 4, change x = 32 to x = 33 and then find the result-
ing area.

 4. In Example 5(b), change 320 to 360 and then find the resulting 
number of batteries.

 EXAMPLE  6  Sampling distribution of the sample mean

For the sample of 5000 watch batteries in Example 5, we know that s = 50 days. 
Therefore, the standard error of the mean x is 50>15000 = 0.7 day. This means that 
of all samples of 5000 batteries, about 68% should have a mean lifetime of 
400 { 0.7 day (between 399.3 days and 400.7 days). Considering the significant dig-
its of these values, 68% (within one standard deviation) or even 95% (within two stand-
ard deviations) of the sample values of x would not vary by more than 1 day.  ■

 EXAMPLE  7  Sampling distribution of the sample proportion

Of the items in a very large population, 10% are defective. Samples of size 200 are 
taken from this population, and the proportion of defectives in each sample is 
recorded. The normal approximation applies since np = 20010.12 = 20 and 
n11 - p2 = 20010.92 = 180. Therefore, the sample proportion pn is approximately 
normally distributed, with mean 0.1 and standard error 2(0.10)(0.90)>200 = 0.021, or 
2.1%. This means that of all samples of size 200 taken from this population, about 68% 
would have a sample proportion of defectives of 0.1 { 0.021 (i.e., between 7.9% and 
12.1% of the sample would be defective in 68% of samples).  ■
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In Exercises 5–8, use a graphing calculator to display the indicated 
graph of Eq. (22.4).

 5. Display the graph of the normal distribution of values for which 
m = 10 and s = 5. Compare with the graph shown in Fig. 22.7.

 6. Display the graph of the normal distribution of values for which 
m = 20 and s = 10. Compare with the graph shown in Fig. 22.7.

 7. Sketch a graph of a normal distribution of values for which 
m = 100 and s = 10. Then compare with the graph displayed 
by a graphing calculator.

 8. Sketch a graph of a normal distribution of values for which 
m = 100 and s = 30. Then compare with the graph displayed 
by a graphing calculator. How does this graph differ from that of 
Exercise 7?

In Exercises 9–12, use the following data and refer to Fig. 22.9. A 
sample of 200 bags of cement are weighed as a quality check. Over a 
long period, it has been found that the mean value and standard 
deviation for this size bag are known and that the weights are normally 
distributed. Determine how many bags within this sample are expected 
to have weights that satisfy the following conditions.

 9. Within one standard deviation of the mean

10. Within two standard deviations of the mean

11. Between the mean and two standard deviations above the mean

12. Between one standard deviation below the mean and three stand-
ard deviations above the mean

In Exercises 13–16, use the following data. Each AA battery in a 
sample of 500 batteries is checked for its voltage. It has been 
previously established for this type of battery (when newly produced) 
that the voltages are distributed normally with m = 1.50 V and 
s = 0.05 V.

13. How many batteries are expected to have voltages between 1.45 V 
and 1.55 V?

14. How many batteries are expected to have voltages between 1.52 V 
and 1.58 V?

15. What percent of the batteries are expected to have voltages below 
1.54 V?

16. What percent of the batteries are expected to have voltages above 
1.64 V?

In Exercises 17–22, use the following data. The lifetimes of a certain 
type of automobile tire have been found to be distributed normally with a 
mean lifetime of 100 000 km and a standard deviation of 10 000 km. 
Answer the following questions for a sample of 5000 of these tires.

17. How many tires are expected to last between 85 000 km and 
100 000 km?

18. How many tires are expected to last between 95 000 km and  
115 000 km?

19. How many tires are expected to last more than 118 000 km?

20. If the manufacturer guarantees to replace all tires that do not last 
75 000 km, what percent of the tires may have to be replaced 
under this guarantee?

21.  What is the standard error in the mean for all samples of 5000 of 
these tires? Explain the meaning of this result.

22. What percent of the samples of 5000 of these tires should have a 
mean lifetime of more than 100 282 km?

In Exercises 23–32, solve the given problems.

23. Find the standard error of the proportion of defective items in 
samples of size 500 taken from a very large population of which 
12% of the items are defective. Explain the meaning of this result.

24. Of the 300 mL bottles filled by a certain filling machine, 1% con-
tain less than 290 mL of juice. If samples of 600 bottles produced 
by this machine are selected, find the standard error of the sample 
proportion of bottles that contain less than 290 mL. Explain the 
meaning of this result.

25. With 75.8, of the area under the normal curve to the right of z, 
find the z-value.

26. With 21, of the area under the normal curve between z1 and z2, 
to the right of z1 = 0.8, find z2.

27. With 59, of the area under the normal curve between z1 and z2, 
to the left of z2 = 1.1, find z1.

28. With 5.8, of the area under the normal curve between z1 and z2, 
to the left of z2 = 2.0, find z1.

29. For the strobe light times in Exercise 17 of Section 22.1, find the 
percent of times within one standard deviation of the mean. From 
Exercises 21 and 22 of Section 22.2, we find that x = 2.248 s and 
s = 0.014 s. Compare the results with that of a normal 
distribution.

30. Follow the same instructions as in Exercise 29 for the fibre-optic 
diameters in Exercise 29 of Section 22.1. From Exercises 29 and 
30 of Section 22.2, x = 0.005 95 mm and s = 0.000 22 mm.

31. Follow the same instructions as in Exercise 29 for the hours esti-
mated on the Internet in Example 1 of Section 22.1. From Examples 
5 and 12 of Section 22.2, we find that x = 13.7 h and s = 6.1 h.

32. Discuss the results found in Exercises 29 and 31, considering the 
methods used to find the mean and the standard deviation.

Answer to Practice Exercise

1.  z = 0.5328

In this section we begin our study of inferential statistics, where information from a 
sample is used to make statements about a whole population. We focus on the problem 
of estimation of parameters, under the assumption that data are available for a random 
sample taken from a very large population.

When a parameter is being estimated, the estimate can be a single number (called a 
point estimate), or it can be a range of numbers (called a confidence interval). 
Consider the following example.

 22.4 Confidence Intervals
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 EXAMPLE  1  Two kinds of estimates

Consider the data on Internet hours in Example 1 of Section 22.1. If the sample of 50 
users constitutes a random sample of a large population of users of home computers, 
then the information obtained from the sample can be used to estimate the population mean. 

On the one hand, the sample mean x = 13.7 is a point estimate of the population 
mean. Because it is a single number, this estimate does not convey information 
about the reliability of the estimation.

On the other hand, the interval 13.7 { 1.7 = 112.0 h, 15.4 h2  is a 95% confi-
dence interval estimate of the population mean. This means that we are 95% confi-
dent that the true value of the population mean is between 12.0 h and 15.4 h. It is 
preferable to use a confidence interval because the length of the interval and the 
level of confidence attached to it give us an idea about the reliability of our estima-
tion, in a sense that will be made precise below. ■

All confidence intervals are calculated by first selecting a confidence level, which 
measures the degree of certainty that the confidence interval will contain the population 
parameter. The most common values for the confidence level are 90%, 95%, and 99%, 
with the most common one being 95%. A confidence level of 95% means that, of all pos-
sible samples of size n taken from the same population, 95% of them will give an interval 
that will contain the population parameter, and 5% of them will not. For a particular sam-
ple, it is not possible to know whether it is one of the successful ones or not.

It is a common error to interpret the level of confidence as measuring the likelihood 
that the parameter of interest will fall within a particular interval. There is nothing 
random about the parameter; its value is a constant (unfortunately unknown to us), 
and either our interval covers it or it does not. The randomness lies in the sample, so 
the level of confidence is the likelihood that a  n will cover the 
parameter. At the 95% confidence level, 95% of the samples will, and 5% of the 
samples will not. We acknowledge that there is a 5% risk that the particular interval 
obtained will not cover the parameter.

COMMON ERROR

The method for constructing a confidence interval depends on the parameter(s) 
being estimated and on the characteristics of the sample. We will concentrate our atten-
tion on large sample confidence intervals for a single mean and a single proportion. 
We will obtain general formulas for these two cases using the normal distribution the-
ory developed in the previous section.

Suppose that we have a random sample of size n (n large) from a population with 
unknown mean m. We construct a 95% confidence interval for the mean μ, under the 
assumption that the population standard deviation s is known.

In Section 22.3, we learned that the sampling distribution of the sample mean is 
approximately normal, with mean m and standard error s>2n. It is found from tables 
that the area under the standard normal curve between -1.96 and 1.96 is 0.95, so that 
95% of the observations from a normal distribution fall within 1.96 standard deviations 
of the mean. Applying this to the sampling distribution of the sample mean, we have 
that 95% of all samples of size n will have a sample mean x that falls within 1.96 stand-
ard errors of the true mean. In other words, in 95% of samples, the sample mean x satis-
fies the inequality

m - 1.96 # s2n
6 x 6 m + 1.96 # s2n



636 CHAPTER 22 Introduction to Statistics

We can manipulate this inequality in order to transform it into a statement about the 
unknown population mean μ. We have

  m - 1.96 # s2n
6   x 6 m + 1.96 # s2n

 original inequality

 -1.96 # s2n 
6 x -  m 6 1.96 # s2n

  subtract m from each member

 -x - 1.96 # s2n
6  -m 6 -  x + 1.96 # s2n

  subtract x from each member

 x + 1.96 # s2n
7  m 7  x - 1.96 # s2n

  multiply by -1 (reverse the inequality)

 x - 1.96 # s2n
6  m 6 x + 1.96 # s2n

This last inequality is equivalent to the original one and is therefore satisfied for 95% 
of samples of size n. In other words,

 ax - 1.96 # s2n
 , x + 1.96 # s2n

b  (22.9)

is a 95% confidence interval for m.
The endpoints of the interval in Eq. (22.9) are often written in the form

 x { E, with E = 1.96 # s2n
 (22.10)

The quantity E is called the margin of error, and it represents the largest estimated dif-
ference between the estimate and the true value of the parameter.

 EXAMPLE  2  A 95% confidence interval—S known

A random sample of size n = 100 is taken from a population with s = 2.3. Construct 
a 95% confidence interval for the population mean m if the sample mean is x = 32.8.

We substitute the given values of x, s, and n into Eq. (22.10). The resulting 95% 
confidence interval is

x { 1.96 # s2n
= 32.8 { 1.96 # 2.32100

= 32.8 { 0.451 = 132.3, 33.32
Because the interval obtained is narrow, the estimation is quite precise. ■

When the standard deviation s is unknown and the sample size is large, the sample 
standard deviation s can be used to estimate the population standard deviation s.
Therefore, a 95% confidence interval for m when the standard deviation s is unknown 
is given by

 x { E, with E = 1.96 # s2n
 (22.11)
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 EXAMPLE  3  A 95% confidence interval—S estimated

Let us derive the confidence interval for the mean stated in Example 1, obtained from 
the Internet hours data from Example 1 of Section 22.1. The sample mean and sample 
standard deviation for the 50 observations are x = 13.7 h and s = 6.1 h, respectively. 
Substituting these values into Eq. (22.11), the resulting 95% confidence interval is

 x { 1.96
s2n

= 13.7 { 1.96 # 6.1250
= 13.7 { 1.69 = 112.0 h, 15.4 h2  ■

We now derive the formula for a large sample confidence interval for a mean for an 
arbitrary confidence level 1 - a. Here we have written the confidence level as is 
standard for general formulas, expressing it as a decimal whose value is 1 - a for 
some small a (for example, a = 0.05 for a 95% confidence interval).

Let za>2 denote the score such that the area under the standard normal curve 
between -za>2 and za>2 is 1 - a. See Fig. 22.15 and Table 22.2. By replacing 
1.96 with za>2 in the inequalities leading to Eq. (22.10), we obtain the follow-
ing general formula.

Practice Exercise

1.  Find a 95% confidence interval for a 
mean m if a sample with n = 45  gives 
x = 97.6 and s = 3.2.

Table 22.2 Common Values of zA,2
Confidence 

Level  11 − A 2100%

 
 

A ,2
 
 

zA ,2

90% 0.05 1.645
95% 0.025  1.96
99% 0.005 2.575

Fig. 22.15 

−1 10

1 − a

−za/2 za/2

2
a

2
a

Large Sample Confidence Interval for a Mean
A 11 - a2100% confidence interval for the mean m when the sample size is 
large 1n Ú 302 is given by

x { E, where E = za>2 # s2n
  if s is known 

(22.12)
 E = za>2 # s2n

  if s is unknown

 EXAMPLE  4  A 99% confidence interval

Construct a 99% confidence interval for the Internet hours data from Example 1 of 
Section 22.1. Recall that x = 13.7 h, s = 6.1 h, and n = 50.

From Table 22.2 we get that za>2 = 2.575. We substitute the given values into 
Eq. (22.12). The desired 99% confidence interval is

 x { za>2 s2n
= 13.7 { 2.575 # 6.1250

= 13.7 { 2.22 = 111.5 h,15.9 h2  ■

Always state a confidence interval together with its confidence level. A confidence 
interval by itself is meaningless.

COMMON ERROR

Confidence Level, Margin of Error, and Sample Size Relationships
For a fixed sample size, a higher confidence level implies a larger margin of 
error. What we gain in confidence we lose in precision.

For a fixed sample size, a smaller margin of error implies a lower confidence 
level. What we gain in precision we lose in confidence.

The only way we can increase the confidence level while at the same time  
decrease the margin of error is to increase the sample size.

Comparing the intervals in Example 3 and Example 4, we see that by increasing the 
confidence level, the margin of error increased as well, so that what we have gained in 
confidence, we have lost in precision. By examining the formula for the margin of error 
in Eq. (22.12), we can find the general relationship between confidence level, margin 
of error, and sample size.

Practice Exercise

2.  Find a 90% confidence interval for a 
mean m if a sample with n = 45 gives 
x = 97.6 and s = 3.2.
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The formula for E in Eq. (22.12) for known s can be used to determine the sample 
size needed for a desired margin of error at a fixed confidence level. Suppose that a 
maximum margin of error E is desired with a confidence level 1 - a. We have

 E = za>2 # s2n
  from Eq. (22.12)

  2n =
za>2s

E
 multiplying both sides by 2n

E

After squaring both sides, we get

 n = c za>2s
E

d 2
 (22.13)

When the result of Eq. (22.13) is not an integer, it must always be rounded up to the 
next integer in order to guarantee the prescribed margin of error.

 EXAMPLE  5  

An estimate of the mean direct-current output voltage of a certain kind of AC adaptor is 
desired. If it can be assumed that s = 0.04 V, find the sample size necessary to esti-
mate that mean with a margin of error of 0.01 V with 95% confidence.

Substituting s = 0.04, E = 0.01, and za>2 = 1.96, we get

n = c 1.9610.042
0.01

d 2
= 61.5

Therefore, a sample of 62 adaptors is necessary. ■

We now analyse the problem of estimating an unknown population proportion with 
confidence. We consider a large population such that a proportion p of its elements 
share a certain attribute. For example, p could be the proportion of defective items in a 
lot, or the proportion of incorrect entries in an account, or the proportion of compo-
nents that will last a certain number of hours, or the proportion of voters who will vote 
for a certain candidate in the next election.

Suppose that a random sample of size n is taken. We calculate the sample proportion 
pn by dividing the number of elements in the sample that share the attribute by the sam-
ple size n. We further assume that n is large, so that np Ú 5 and n(1 - p) Ú 5. (Since 
p is unknown, we require that npn Ú 5 and n11 - pn 2 Ú 5.)

As we saw in Section 22.3, under these conditions, the sampling distribution of pn is 
approximately normal with mean p and standard error 2p11 - p2 >n. Therefore, if za>2 
is the value that leaves an area of 1 - a between -za>2 and za>2, then in (1 - a)100, of 
samples, pn satisfies

p - za>2Ap11 - p2
n

6 pn 6 p + za>2Ap11 - p2
n

Manipulating this inequality and eliminating some terms because of the large sample 
size gives the following general formula for a 11 - a2100% confidence interval for p.
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 EXAMPLE  6  p

A manufacturer wants to estimate the proportion of defective parts in a large lot produced 
by a particular machine. In a sample of 350 parts, 41 of them were found to be defective. 
Construct a 90% confidence interval for the proportion of defective parts in the lot.

We have

pn = 41
350, npn = 41 Ú 5, and n11 - pn 2 = 309 Ú 5

Therefore, we can apply Eq. (22.14) with za>2 = 1.645 (see Table 22.2). The desired 
90% confidence interval is

pn { za>2Cpn 11 - pn 2
n

=
41
350

{ 1.645C 41
350

# 309
350

350
= 0.117 { 0.028 = 10.089, 0.1452  

 ■

As we did with the mean, we can obtain the required sample size for a desired mar-
gin of error at a fixed confidence level by using the formula for margin of error from 
Eq. (22.14) and solving for n. For a confidence level 1 - a, we get

 n = pn 11 - pn 2 c za>2
E

d 2
 (22.15)

Note that Eq. (22.15) requires an estimate for pn. (It can be obtained from past data or 
from a pilot study.) When no such estimate is available, we can use the fact that 

pn(1 - pn) is maximized when pn =
1
2

, so we use this worst-case scenario estimate in 

Eq. (22.15). The required sample size for a confidence level 1 - a becomes

 n =
1
4
c za>2

E
d 2

 (22.16)

 EXAMPLE  7  

Suppose that the manufacturer from Example 6 wishes to estimate the proportion of 
defectives with a maximum error of 0.025 with 90% confidence.
(a) How large a sample will he need if no information from the past is used?

  For this case we use Eq. (22.16) with E = 0.025 and za>2 = 1.645. The required 

sample size is n =
1
4
c za>2

E
d 2

=
1
4
c 1.645
0.025

d 2
= 1082.41, so that 1083 parts must 

be sampled.
(b) How large a sample will he need if the information from the sample of 350 

parts is used? (Recall that pn = 41
350.)

  If pn = 41
350 is known from the past, Eq. (22.15) gives

n = pn(1 - pn) c za>2
E

d 2
=

41
350

# 309
350

c 1.645
0.025

d 2
= 447.8

Therefore, 448 parts must be sampled. Note how information about the possible size of 
pn substantially reduced the size of the required sample. ■

Let pn be the sample proportion obtained from a sample of size n such that 
npn Ú 5 and n11 - pn 2 Ú 5. A11 - a2100%  confidence interval for the popu-
lation proportion p is given by 

 pn { E, where E = za>2Apn 11 - pn 2
n  (22.14)
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EXERCISES 22.4

In Exercises 1–5, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 2, change n = 100 to n = 140 and then find the 
indicated confidence interval.

 2. In Example 4, change the confidence level from 99% to 90% and 
then find the indicated confidence interval.

 3. In Example 5, change s = 0.04 to s = 0.03 and find the 
required sample size.

 4. In Example 6, change the 41 to a 62 and find the indicated confi-
dence interval.

 5. In Example 7(a), change 90% to 95% and find the required sam-
ple size.

In Exercises 6–8, use the following data. A random sample of size 
n = 300 is taken from a large population with s = 25.9. The sample 
mean is x = 247.1.

 6. Construct a 95% confidence interval for the population mean m.

 7. Construct a 99% confidence interval for the population mean m.

 8. How large a sample must be taken so that a 95% confidence inter-
val for μ will have a maximum margin of error E = 2.4?

In Exercises 9–12, use the following data. A random sample of size 
n = 215 is taken from a large population, and 38 are found to be 
defective.

 9. Construct a 95% confidence interval for the population propor-
tion of defectives p.

10. Construct a 99% confidence interval for the population propor-
tion of defectives p.

11. How large a sample must be taken so that a 95% confidence inter-
val for p will have a maximum margin of error of 4.5%? Assume 
that the information from the sample is used.

12. How large a sample must be taken so that a 95% confidence inter-
val for p will have a maximum margin of error of 4.5%? Assume 
that no prior information is used.

In Exercises 13–15, use the following information. A random sample of 
size n is taken from a large population with s = 3.14. The sample mean 
is x = 83.7.

13. Find a 90% confidence interval if the sample size n is 50.

14. Find a 90% confidence interval if the sample size n is 80. 
Compare the interval with the interval obtained in Exercise 13. 
How does increasing the sample size affect the margin of error?

 15. Find a 95% confidence interval if the sample size is 80. Compare 
the interval with the interval obtained in Exercise 14. How does 
increasing the confidence level affect the margin of error?

In Exercises 16–22, solve the given problems.

16. A sample of 70 washing machines of a certain brand had a mean 
replacement time of 9.1 years, with a standard deviation of 2.7 years. 
Find a 95% confidence interval for the mean replacement time of 
all washing machines of this brand.

17. A test station measured the loudness of a random sample of 45 jets 
taking off from a certain airport. The mean was found to be 
107.2 dB, with a standard deviation of 9.2 dB. Find a 90% confi-
dence interval for the mean loudness of all jets taking off from 
this airport.

18. An airline wishes to estimate the mean time passengers have to 
wait for their luggage when arriving at a large airport. How many 
passengers must be sampled so that a 95% confidence interval for 
the true mean waiting time m will have a maximum margin of 
error of 30 seconds? A similar study done in the past had a stand-
ard deviation of 2.16 minutes.

19. A toy manufacturer wishes to estimate the mean time it takes an 
adult to assemble a certain “easy to assemble” toy. How many 
adults must be sampled so that a 99% confidence interval for the 
true mean assembly time m will have a maximum margin of error 
of 2.0 minutes? The standard deviation of assembly time for a 
similar model is known to be 5.9 minutes.

20. From a random sample of 60 bicycle helmets subjected to an 
impact test, 13 helmets showed some damage from the test. Find 
a 95% confidence interval for the true proportion of helmets that 
would show damage from this test.

21. Suppose that we want to estimate the proportion of drivers that 
exceed the 100 km/h speed limit by more than 10 km in a certain 
stretch of highway. How large a sample must be taken so that a 
95% confidence interval for the true proportion p will have a 
maximum margin of error of 4%? Assume that no prior informa-
tion is used.

22. Following are two confidence interval estimates of the true mean 
contents of certain 306 mL jars of sauce:1306.2, 307.42 1306.3, 307.32

  The confidence level for one interval is 90%, and the confidence 
level for the other is 95%, with both intervals constructed from 
the same sample data. Which of the intervals is the 90% confi-
dence interval? Explain.

Answers to Practice Exercises

1.  196.7, 98.52  with 95% confidence 2. 196.8, 98.42  with  
90% confidence

One of the most important uses of statistics in industry is statistical process control 
(SPC), which is used to maintain and improve product quality. Samples are tested dur-
ing the production at specified intervals to determine whether the production process 
needs adjustment to meet quality requirements.

 22.5 Statistical Process Control



 22.5 Statistical Process Control 641

A particular industrial process is considered to be in control if it is stable and pre-
dictable, and sample measurements fall within upper and lower control limits. The 
process is out of control if it has an unpredictable amount of variation and there are 
sample measurements outside the control limits due to special causes.

 EXAMPLE  1  

A manufacturer of 1.5-V batteries states that the voltage of its batteries is no less than 
1.45 V or greater than 1.55 V and has designed the manufacturing process to meet 
these specifications.

If all samples of batteries that are tested have voltages in the proper range with 
only expected minor variations, the production process is in control.

However, if some samples have batteries with voltages out of the proper range, 
the process is out of control. This would indicate some special cause for the prob-
lem, such as an improperly operating machine or an impurity getting into the pro-
cess. The process would probably be halted until the cause is determined. ■

An important device used in SPC is the control chart. It is used to show a trend of a 
production characteristic over time. In this section we study one type of control chart 
for measurements (when the variable involved is quantitative), and one type of con-
trol chart for attributes (when the variable involved is qualitative). In both cases, 
samples are observed at specified intervals of time to see if the sample values are 
within acceptable limits. The sample values are plotted on a chart to check for trends 
and abnormalities in the production process.

In making a control chart for measurements, we must determine what the mean 
should be. For a stable process for which previous data are known, it can be based on a 
production specification or on previous data. For a new or recently modified process, it 
may be necessary to use present data, although the value may have to be revised for 
future charts. On a control chart, this value is used as the population mean, m.

It is also necessary to establish the upper and lower control limits. The standard gen-
erally used is that 99.7, of the sample measurements should fall within these control 
limits. This assumes a normal distribution, and we note that this is within three sample 
standard deviations of the population mean. We will establish these limits by use of a 
table or a formula that has been made using statistical measures developed in a more 
complete coverage of quality control. This does follow the normal practice of using a 
formula or a more complete table in setting up the control limits.

In Fig. 22.16, we show a sample control chart, and on the following pages, we illus-
trate how control charts are made.

■ This is intended only as a brief introduction 
to this topic. A complete development requires 
at least a chapter in a statistics book.

■ Minor variations may be expected, for ex-
ample, from very small fluctuations in voltage, 
temperature, or material composition. Special 
causes resulting in an out-of-control process 
could include line stoppage, material defect, or 
an incorrect applied pressure.
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 EXAMPLE  2  Making x  and R control charts

A pharmaceutical company makes a capsule of a prescription drug that contains 
500 mg of the drug, according to the label. In a newly modified process of making the 
capsule, five capsules are tested every 15 min to check the amount of the drug in each 
capsule. Testing over a 5-h period gave the following results for the 20 subgroups of 
samples.

 
Subgroup

Amount of Drug (in mg)  
of Five Capsules

 
Mean x

 
Range R

 1 503 501 498 507 502 502.2  9
 2 497 499 500 495 502 498.6  7
 3 496 500 507 503 502 501.6 11
 4 512 503 488 500 497 500.0 24
 5 504 505 500 508 502 503.8  8
 6 495 495 501 497 497 497.0  6
 7 503 500 507 499 498 501.4  9
 8 494 498 497 501 496 497.2  7
 9 502 504 505 500 502 502.6  5
10 500 502 500 496 497 499.0  6
11 502 498 510 503 497 502.0 13
12 497 498 496 502 500 498.6  6
13 504 500 495 498 501 499.6  9
14 500 499 498 501 494 498.4  7
15 498 496 502 501 505 500.4  9
16 500 503 504 499 505 502.2  6
17 487 496 499 498 494 494.8 12
18 498 497 497 502 497 498.2  5
19 503 501 500 498 504 501.2  6
20 496 494 503 502 501 499.2  9
         Sum

Mean
9998.0 174

         499.9 8.7

From this table of values, we can make an x control chart and an R control chart. 
The x chart maintains a check on the average quality level, whereas the R chart 
maintains a check on the dispersion of the production process. These two control 
charts are often plotted together and referred to as the x–R chart.

In order to define the central line of the x chart, which ideally is equivalent to 
the value of the population mean m, we use the mean of the sample means x. For the 
central line of the R chart, we use R. From the table, we see that

x = 499.9 mg and R = 8.7 mg

The upper control limit (UCL) and the lower control limit 
(LCL) for each chart are defined in terms of the mean range R 
and an appropriate constant taken from a table of control chart 
factors. These factors, which are related to the sample size n, 
are determined by statistical considerations found in a more 
complete coverage of quality control. At the left is a brief table 
of control chart factors (Table 22.3).

The UCL and LCL for the x chart are found as follows:

 UCL1x2 = x + A2 R = 499.9 + 0.57718.72 = 504.9 mg (using Table 22.3 with n = 5)

 LCL1x2 = x - A2 R = 499.9 - 0.57718.72 = 494.9 mg

 
n d2 A A2 D1 D2 D3 D4

5 2.326 1.342 0.577 0.000 4.918 0.000 2.115
6 2.534 1.225 0.483 0.000 5.078 0.000 2.004
7 2.704 1.134 0.419 0.205 5.203 0.076 1.924
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The UCL and LCL for the R chart are found as follows:

 LCL1R2 = D3 R = 0.00018.72 = 0.0 mg

 UCL1R2 = D4 R = 2.11518.72 = 18.4 mg

Using these central lines and control limit lines, we now plot the x control chart in 
Fig. 22.17 and the R control chart in Fig. 22.18.
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This would be considered a well-centred process since x = 499.9 mg, which is 
very near the target value of 500.0 mg. We do note, however, that subgroup 17 was 
at a control limit and this might have been due to some special cause, such as the use 
of a substandard mixture of ingredients. We also note that the process was out of 
control due to some special cause since the range of subgroup 4 was above the upper 
control limit. We should keep in mind that there are numerous considerations, in-
cluding human factors, that should be taken into account when making and inter-
preting control charts and that this is only a very brief introduction to this important 
industrial use of statistics. ■

We now discuss a control chart for attributes, for the case when each item tested is 
classified as being either acceptable or not acceptable. To monitor such an attribute in a 
production process, we obtain the proportion of defective parts by dividing the number 
of defective parts in a sample by the total number of parts in the sample, and then make 
a p control chart. This is illustrated in the following example.
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 EXAMPLE  3  Making a p control chart

A manufacturer of video discs has 1000 DVDs checked each day for defects (surface 
scratches, for example). The data for this procedure for 25 days are shown in the table 
at the left.

The central line for the p control chart is ideally equal to the true proportion of 
defectives in the population. This value is usually estimated from the data, using the 
average sample proportion p, which in this case is

p =
490

25 000
= 0.0196

The control limits are each three standard deviations from p. If n is the size of 
each sample, we obtain the standard error of p using Eq. (22.8) (with p in place of p). 
We get

s p = Ap11 - p2
n

= A0.019611 - 0.01962
1000

= 0.004 38

Therefore, the control limits are

 UCL1p2 = 0.0196 + 310.004 382 = 0.0327

 LCL1p2 = 0.0196 - 310.004 382 = 0.0065

Using this central line and these control limit lines, we now plot the p control chart in 
Fig. 22.19.

Day Defective 
DVDs

Proportion 
Defective

 1 22 0.022
 2 16 0.016
 3 14 0.014
 4 18 0.018
 5 12 0.012
 6 25 0.025
 7 36 0.036
 8 16 0.016
 9 14 0.014
10 22 0.022
11 20 0.020
12 17 0.017
13 26 0.026
14 20 0.020
15 22 0.022
16 28 0.028
17 17 0.017
18 15 0.015
19 25 0.025
20 12 0.012
21 16 0.016
22 22 0.022
23 19 0.019
24 16 0.016
25 20 0.020

Sum 490  

p = 0.0196

UCL = 0.0327
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According to the proportion mean of 0.0196, the process produces about 2% defec-
tive DVDs. We note that the process was out of control on Day 7. An adjustment to 
the production process was probably made to remove the special cause of the addi-
tional defective DVDs. ■

Practice Exercise

1.  In Example 3, change Day 9 datum from 
14 to 24 defective parts. Then find 
UCL(p) and LCL(p).
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EXERCISES 22.5

In Exercises 1–4, in Example 2, change the first subgroup to 497, 499, 
502, 493, and 498 and then proceed as directed.

 1. Find UCL1x2  and LCL1x2 .

 2. Find LCL1R2  and UCL1R2 .

 3.  How would the x control chart differ from Fig. 22.17?

 4.  How would the R control chart differ from Fig. 22.18?

In Exercises 5–8, use the following data.

Five automobile engines are taken from the production line each hour 
and tested for their torque (in N # m) when rotating at a constant fre-
quency. The measurements of the sample torques for 20 h of testing 
are as follows:

Hour Torques (in N # m) of Five Engines
 1 366 352 354 360 362
 2 370 374 362 366 356
 3 358 357 365 372 361
 4 360 368 367 359 363
 5 352 356 354 348 350
 6 366 361 372 370 363
 7 365 366 361 370 362
 8 354 363 360 361 364
 9 361 358 356 364 364
10 368 366 368 358 360
11 355 360 359 362 353
12 365 364 357 367 370
13 360 364 372 358 365
14 348 360 352 360 354
15 358 364 362 372 361
16 360 361 371 366 346
17 354 359 358 366 366
18 362 366 367 361 357
19 363 373 364 360 358
20 372 362 360 365 367

 5. Find the central line, UCL, and LCL for the mean.

 6. Find the central line, UCL, and LCL for the range.

 7. Plot an x chart. 8. Plot an R chart.

In Exercise 9–12, use the following data.

Five AC adaptors that are used to charge batteries of a cellular phone 
are taken from the production line each 15 minutes and tested for their 
direct-current output voltage. The output voltages for 24 sample sub-
groups are as follows:

Subgroup Output Voltages of Five Adaptors
 1 9.03 9.08 8.85 8.92 8.90
 2 9.05 8.98 9.20 9.04 9.12
 3 8.93 8.96 9.14 9.06 9.00
 4 9.16 9.08 9.04 9.07 8.97
 5 9.03 9.08 8.93 8.88 8.95
 6 8.92 9.07 8.86 8.96 9.04
 7 9.00 9.05 8.90 8.94 8.93
 8 8.87 8.99 8.96 9.02 9.03
 9 8.89 8.92 9.05 9.10 8.93
10 9.01 9.00 9.09 8.96 8.98
11 8.90 8.97 8.92 8.98 9.03
12 9.04 9.06 8.94 8.93 8.92
13 8.94 8.99 8.93 9.05 9.10
14 9.07 9.01 9.05 8.96 9.02
15 9.01 8.82 8.95 8.99 9.04
16 8.93 8.91 9.04 9.05 8.90
17 9.08 9.03 8.91 8.92 8.96
18 8.94 8.90 9.05 8.93 9.01
19 8.88 8.82 8.89 8.94 8.88
20 9.04 9.00 8.98 8.93 9.05
21 9.00 9.03 8.94 8.92 9.05
22 8.95 8.95 8.91 8.90 9.03
23 9.12 9.04 9.01 8.94 9.02
24 8.94 8.99 8.93 9.05 9.07

 9. Find the central line, UCL, and LCL for the mean.

 10. Find the central line, UCL, and LCL for the range.

 11. Plot an x chart. 

12. Plot an R chart.

For a production process for which there is a great deal of data since 
its last modification, the population mean m and population standard 
deviation s are assumed known. For such a process, we have the fol-
lowing values (using additional statistical analysis):

  x chart: central line = m, UCL = m + As, LCL = m - As

 R chart: central line = d2s, UCL = D2s, LCL = D1s

The values of A, d2, D2, and D1 are found in the table of control chart 
factors in Example 2 (Table 22.3).

 13. In the production of robot links and tests for their lengths, it has 
been found that m = 2.725 cm and s = 0.032 cm. Find the cen-
tral line, UCL, and LCL for the mean if the sample subgroup size 
is 5.

 14. For the robot link samples of Exercise 13, find the central line, 
UCL, and LCL for the range.

 15. After bottling, the volume of soft drink in six sample bottles is 
checked each 10 minutes. For this process m = 750.0 mL and 
s = 2.2 mL. Find the central line, UCL, and LCL for the range.

 16. For the bottling process of Exercise 15, find the central line, 
UCL, and LCL for the mean.

In Exercises 13–16, use the following information.
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In Exercises 17 and 18, use the following data.

A telephone company rechecks the entries for 1000 of its new custom-
ers each week for name, address, and phone number. The data col-
lected regarding the number of new accounts with errors, along with 
the proportion of these accounts with errors, is given in the following 
table for a 20-wk period:

Week Accounts with Errors Proportion with Errors
1 52 0.052
2 36 0.036
3 27 0.027
4 58 0.058
5 44 0.044
6 21 0.021
7 48 0.048
8 63 0.063
9 32 0.032

10 38 0.038
11 27 0.027
12 43 0.043
13 22 0.022
14 35 0.035
15 41 0.041
16 20 0.020
17 28 0.028
18 37 0.037
19 24 0.024
20 42 0.042

Total 738  

 17. For a p chart, find the values for the central line, UCL, and LCL.

 18. Plot a p chart.

In Exercises 19 and 20, use the following data.

A maker of electric fuses checks 500 fuses each day for defects. The 
number of defective fuses, along with the proportion of defective 
fuses for 24 days, is shown in the following table.

Day Number Defective Proportion Defective
1 26 0.052
2 32 0.064
3 37 0.074
4 16 0.032
5 28 0.056
6 31 0.062
7 42 0.084
8 22 0.044
9 31 0.062

10 28 0.056
11 24 0.048
12 35 0.070
13 30 0.060
14 34 0.068
15 39 0.078
16 26 0.052
17 23 0.046
18 33 0.066
19 25 0.050
20 25 0.050
21 32 0.064
22 23 0.046
23 34 0.068
24 20 0.040

Total 696  

 19. For a p chart, find the values for the central line, UCL, and LCL.

 20. Plot a p chart.Answers to Practice Exercise

1. UCL1p2 = 0.0333, LCL1p2 = 0.0067

We have considered statistical methods for dealing with one variable. We now discuss 
how to find an equation relating two variables for which a set of points is known.

In this section, we show a method of finding the equation of a straight line that 
passes through a set of data points, and in this way we fit the line to the points. In gen-
eral, the fitting of a curve to a set of points is called regression. Fitting a straight line to 
a set of points is linear regression, and fitting some other type of curve is called nonlin-
ear regression. We consider nonlinear regression in the next section.

Some of the reasons for using regression to find the equation of a curve that passes 
through a set of points, and thereby “fit” the curve to the points, are (1) to express a 
concise relationship between the variables, (2) to use the equation to predict certain 
fundamental results, (3) to determine the reliability of certain sets of data, and (4) to 
use the data for testing certain theoretical concepts.

For a given set of several (at least 5 or 6) points for representing pairs of data values, 
we cannot reasonably expect that the curve of any given equation will pass through all 
of the points exactly. Therefore, when we fit the curve of an equation to the points, we 
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are finding the curve that best approximates passing through the points. It is possible 
that the curve that best fits the data will not actually pass directly through any of the 
points, although it should come reasonably close to most of them. Consider the follow-
ing example.

 EXAMPLE  1  

All the students enrolled in a mathematics course took an entrance test. To study the 
reliability of this test as an indicator of future success, an instructor tabulated the test 
scores of ten students (selected at random), along with their course averages at the end 
of the course, and made a graph of the data. See the table below and Fig. 22.20.

 
Student

Entrance Test Score, 
Based on 40

Course Average, 
Based on 100

A 29 63
B 33 88
C 22 77
D 17 67
E 26 70
F 37 93
G 30 72
H 32 81
I 23 47
J 30 74
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We now ask whether there is a functional relationship between the test scores and 
the course grades. Certainly, no clear-cut relationship exists, but in general we see 
that the higher the test score, the higher the course grade. This leads to the possibility 
that there might be some straight line, from which none of the points would vary too 
significantly. If such a line could be found, then it could be the basis of predictions as 
to the possible success a student might have in the course, on the basis of his or her 
grade on the entrance test. Assuming that such a straight line exists, the problem is to 
find the equation of this line. Fig. 22.21 shows two such possible lines. ■

There are a number of different methods of determining the straight line that best 
fits the given data points. We employ the method that is most widely used: the method 
of least squares. The basic principle of this method is that the sum of the squares of the 
deviations of all data points from the best line (in accordance with this method) has 
the least value possible. By deviation, we mean the difference between the y-value of 
the line and the y-value for the point (of original data) for a particular value of x.
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 EXAMPLE  2  

In Fig. 22.22, the deviations of some of the points of Example 1 are shown. The point 129, 632  (student A of Example 1) has a deviation of 8 from the indicated line in the 
figure. Thus, we square the value of this deviation to obtain 64. In order to find the 
equation of the straight line that best fits the given points, the method of least squares 
requires that the sum of all such squares be a minimum. ■

In applying this method of least squares, it is necessary to use the equation of a 
straight line and the coordinates of the points of the data. The deviations of all of these 
data points are determined, and these values are then squared. It is then necessary to 
determine the constants for the slope m and the y-intercept b in the equation of a 
straight line y = mx + b for which the sum of the squared values is a minimum. To do 
this requires certain methods of advanced mathematics. Using those methods, it is 
shown that the equation of the least-squares line

 y = mx + b  (22.17)

can be found by calculating the values of the slope m and the y-intercept b by using the 
formulas

 m =
na xy - aa xb aa yb

na x2 - aa xb2  (22.18)

and

 b =
aa x2b aa yb - aa xyb aa xb

na x2 - aa xb2  (22.19)

In Eqs. (22.18) and (22.19), the x’s and y’s are the values of the coordinates of the 
points in the given data, and n is the number of points of data. We can reduce the cal-
culational work in finding the values of m and b by noting that the denominators in 
Eqs. (22.18) and (22.19) are the same. Therefore, in using a calculator, the value of this 
denominator can be stored in memory.
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It is a common error to confuse a x2 and 1a x22 in the denominators of Eqs. (22.18) 
and (22.19). Note that for a x2, we square the x values and then add the squares, 
whereas for 1a x22, we first add the x values and then square the sum.

COMMON ERROR

 EXAMPLE  3  

Find the equation of the least-squares line for the points indicated in the following 
table. Graph the line and data points on the same graph.

x 1 2 3 4 5
y 3 6 6 8 12
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We see from Eqs. (22.18) and (22.19) that we need the sums of x, y, xy, and x2 in 
order to find m and b. Thus, we set up a table for these values, along with the neces-
sary calculations, as follows:

x y xy x2

1 3 3  1
2 6 12  4
3 6 18  9
4 8 32 16
5 12 60 25

15 35 125 55
    

a x a y a xy a x2

sums

 n = 5 15 points2
 m =

511252 - 1152 1352
51552 - 11522 =

100
50

= 2

 b =
1552 1352 - 11252 1152

50
=

50
50

= 1

This means that the equation of the least-squares line is y = 2x + 1. This line and 
the data points are shown in Fig. 22.23. ■

 EXAMPLE  4  

Find the least-squares line for the data of Example 1.
Here, the x-values will be the entrance-test scores and the y-values are the course 

averages.

x y xy x2

29 63  1827  841
33 88  2904 1089
22 77  1694  484
17 67  1139  289
26 70  1820  676
37 93  3441 1369
30 72  2160  900
32 81  2592 1024
23 47  1081  529
30 74  2220  900
279 732 20 878 8101
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 m =
10120 8782 - 27917322

10181012 - 2792 = 1.44

 b =
810117322 - 20 87812792

10181012 - 2792 = 33.1

Thus, the equation of the least-squares line is y = 1.44x + 33.1. The line and data 
points are shown in Fig. 22.24. This line best fits the data, although the fit is obvi-
ously approximate. It can be used to predict the approximate course average that a 
student might be expected to attain, based on the entrance test. ■

 EXAMPLE  5  

In a research project to determine the amount of a drug that remains in the bloodstream 
after a given dosage, the amounts y (in mg of drug>dL of blood) were recorded after t 
hours, as shown in the following table. Find the least-squares line for these data, 
expressing y as a function of t. Sketch the graph of the line and data points.

■ A graphing calculator, a spreadsheet, or 
computer software can be used to find the 
slope and the intercept and to display the least-
squares line.
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The calculations are as follows:

t (h) 1.0 2.0 4.0 8.0 10.0 12.0
y 1mg>dL2 7.6 7.2 6.1 3.8  2.9  2.0

 n = 6

 m =
61129.82 - 37.0129.62

613292 - 37.02 = -0.523

 b =
13292 129.62 - 1129.82 137.02

613292 - 37.02 = 8.16

The equation of the least-squares line is y = -0.523t + 8.16. The line and the data 
points are shown in Fig. 22.25. This line is useful in determining the effectiveness 
of the drug. It can also be used to determine when additional medication may be 
administered. ■
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1.0 7.6 7.6    1.0
2.0 7.2 14.4    4.0
4.0 6.1 24.4   16.0
8.0 3.8 30.4   64.0

10.0 2.9 29.0 100
12.0 2.0 24.0 144
37.0 29.6 129.8 329

EXERCISES 22.6

In Exercises 1–14, find the equation of the least-squares line for the 
given data. Graph the line and data points on the same graph.

 1. In Example 3, replace the y-values with 3, 7, 9, 9, and 12. Then 
follow the instructions above.

 2. x  1  2  3  4  5  6  7
y 10 17 28 37 49 56 72

 3. x  20  26  30  38  48 60
y 160 145 135 120 100 90

 4. 
 
x  1  3  6 5 8 10  4 7  3 8
y 15 12 10 8 9  2 11 9 11 7

 5. In Example 5, change the y (mg of drug/dL of blood) values to 
8.7, 8.4, 7.7, 7.3, 5.7, and 5.2. Then proceed to find y as a func-
tion of t, as in Example 5.

 6. The velocity v (in m/s) of a falling object was found each second 
by use of an electronic device, as shown in the following table. 
Find v as a function of t.

t (s) 1.00   2.00   3.00   4.00   5.00   6.00   7.00
v (m>s) 9.70 19.5 29.5 39.4 49.2 58.9 68.6

 7. In an electrical experiment, the following data were found for the 
values of current and voltage for a particular element of the cir-
cuit. Find the voltage V as a function of the current i.

Current (mA) 15.0 10.8 9.30 3.55  4.60
Voltage (V)   3.00   4.10 5.60 8.00 10.50

 8. A particular muscle was tested for its speed of shortening as a 
function of the force applied to it. The results appear below. Find 
the speed as a function of the force.

Force (N) 60.0 44.2 37.3 24.2 19.5
Speed (m>s)   1.25   1.67   1.96   2.56   3.05

 9. The altitude h (in m) of a rocket was measured at several posi-
tions at a horizontal distance x (in m) from the launch site, shown 
in the table. Find the least-squares line for h as a function of x.

x (m) 0  500 1000 1500 2000 2500
h (m) 0 1130 2250 3360 4500 5600

10. In testing an air-conditioning system, the temperature T  in a 
building was measured during the afternoon hours with the results 
shown in the table. Find the least-squares line for T  as a function 
of the time t from noon.

t (h)  0.0  1.0  2.0  3.0  4.0  5.0
T 1°C2 20.5 20.6 20.9 21.3 21.7 22.0

11. The pressure p was measured along an oil pipeline at different 
distances from a reference point, with results as shown. Find the 
least-squares line for p as a function of x.

x (m) 0 50 100 150 200
p (kPa) 4370 4240 4070 3970 3840

12. The heat loss L per hour through various thicknesses of a particu-
lar type of insulation was measured as shown in the table. Find 
the least-squares line for L as a function of t.

t (m) 3.0 4.0 5.0 6.0 7.0
L (MJ) 5.90 4.80 3.90 3.10 2.45

13. In an experiment on the photoelectric effect, the frequency of light 
being used was measured as a function of the stopping potential 
(the voltage just sufficient to stop the photoelectric effect) with the 
results given below. Find the least-squares line for V as a function 
of f . The frequency for V = 0 is known as the threshold fre-
quency. From the graph determine the threshold frequency.

f (PHz) 0.550 0.605 0.660 0.735 0.805 0.880
V (V) 0.350 0.600 0.850 1.10 1.45 1.80
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14. If gas is cooled under conditions of constant volume, it is noted 
that the pressure falls nearly proportionally as the temperature. If 
this were to happen until there was no pressure, the theoretical 
temperature for this case is referred to as absolute zero. In an ele-
mentary experiment, the following data were found for pressure 
and temperature under constant volume.

T 1°C2 0.0  20  40  60  80 100
p (kPa) 133 143 153 162 172 183

  Find the least-squares line for p as a function of T, and from the 
graph determine the value of absolute zero found in this experiment. 

The linear coefficient of correlation, a measure of the strength of  
the linear relationship of two variables, is defined by r = m1sx>sy2 , 
where sx and sy are the standard deviations of the x-values and 
y-values, respectively. Due to its definition, the values of r lie in the 
range -1 … r … 1. If r is near 1, the correlation is considered good. 
For the values of r between -0.5 and +0.5, the correlation is poor. If 
r is near -1, the variables are said to be negatively correlated; that 
is, one increases as the other decreases. In Exercises 15–18, compute 
r for the given data.

 15. Exercise 1 16. Exercise 2

 17. Exercise 4 18. Example 1

If the experimental points do not appear to be on a straight line, but we recognize them 
as being approximately on some other type of curve, then nonlinear regression must be 
used to fit a curve to the data points. For example, if the points are apparently on a 
parabola, we would want to fit a quadratic equation instead of a line.

Often, the method of linear least squares can be adapted to fit curves. The method is 
to create new variables from the available data. By using the appropriate transforma-
tion on the data, the curved function can be written as a linear function of the new vari-
ables. In particular, we consider nonlinear transformations f(x) of the x variable, and 
extend the least-squares line to

 y = m3 f1x2 4 + b  (22.20)

Here, f1x2  must be calculated first, and then the problem can be treated as a least-
squares line to find the values of m and b. Some of the functions f1x2  that may be 
considered for use are x2, 1>x, 10x, and ln x.

 EXAMPLE  1  Fitting y = mx 2 + b to a set of points

Find the least-squares curve y = mx2 + b for the following points:

x 0 1  2  3  4  5
y 1 5 12 24 53 76

In using Eq. (22.12), f1x2 = x2. Our first step is to calculate values of x2, and then 
we use x2 as we used x in finding the equation of the least-squares line.

x f1x2 = x 2 y x 2y 1x 222

0  0  1    0   0
1  1  5    5   1
2  4 12   48  16
3  9 24  216  81
4 16 53  848 256
5 25 76 1900 625
  55 171 3017 979

 22.7 Nonlinear Regression

 n = 6

 m =
6130172 - 5511712

619792 - 552 = 3.05

 b =
19792 11712 - 130172 1552

619792 - 552 = 0.52

Therefore, the required equation is y = 3.05x2 + 0.52. The graph of this equation 
and the data points are shown in Fig. 22.26. ■
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Fig. 22.26 
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 EXAMPLE  2  y = m(1 ,x) + b to a set of points

In a physics experiment, the pressure p and volume V  of a gas were measured at 
constant temperature. When the points were plotted, they were seen to approximate 
the hyperbola y = c>x. Find the least-squares approximation to the hyperbola 
y = m11>x2 + b for the given data. See Fig. 22.27.

p1kPa2 V 1cm32
120.0 21.0

 99.2 25.0
 81.3 31.8
 60.6 41.1
 42.7 60.1

(Calculator note: The final digits for the values shown may vary depending on the 
calculator and how the values are used. Here, all individual values are shown with 
8 digits (rounded off), although more digits were used. The value of 1>x was found 
from the value of x, with the 8 digits shown. However, the values of 11>x2y and 11>x22 were found from the value of 1>x, using the extra digits. The sums were 
found using the rounded-off values shown. However, since the data contain only 3 digits, 
any variation in the final digits for 1>x, 11>x2y, or 11>x22, will not matter.)

 m =
5114.423 824 62 - 0.160 035 31403.82

510.005 725 42 - 0.160 035 32 = 2490

 b =
10.005 725 42 1403.82 - 114.423 824 62 10.160 035 32

510.005 725 42 - 0.160 035 32 = 1.2

The equation of the hyperbola y = m11>x2 + b is

 y =
2490

x
+ 1.2

This hyperbola and data points are shown in Fig. 22.28. ■

 EXAMPLE  3  y = m 110x 2 + b to a set of points

It has been found experimentally that the tensile strength of brass (a copper-zinc alloy) 
increases (within certain limits) with the percent of zinc. The following table shows the 
values that have been found. See Fig. 22.29.

Tensile Strength (GPa) 0.32 0.36 0.40 0.44 0.48
Percent of Zinc 0 5 13 22 34

Fit a curve of the form y = m110x2 + b to the data. Let x = tensile strength and 
y = percent of zinc.

x f1x2 = 10 x y 110 x 2y 110 x22

0.32  2.089 296 1  0    0.000 000  4.365 158 3
0.36  2.290 867 7  5   11.454 338  5.248 074 6
0.40  2.511 886 4 13   32.654 524  6.309 573 4
0.44  2.754 228 7 22   60.593 031  7.585 775 8
0.48  3.019 951 7 34 102.678 36  9.120 108 4

  12.666 230 6 74 207.380 25 32.628 690 5

120
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40
6050403020

p(kPa)

V (cm3)
x 1 =  V 2 f1x2 = 1

x y 1 =  p2 11
x 2y 11

x 22

21.0 0.047 619 0 120.0  5.714 285 7 0.002 267 6
25.0 0.040 000 0  99.2  3.968 000 0 0.001 600 0
31.8 0.031 446 5  81.3  2.556 603 8 0.000 988 9
41.1 0.024 330 9  60.6  1.474 452 6 0.000 592 0
60.1 0.016 638 9  42.7  0.710 482 5 0.000 276 9

  0.160 035 3 403.8 14.423 824 6 0.005 725 4
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(See the note on calculator use in Example 2.)

 m =
51207.380 252 - 12.666 230 61742

5132.628 690 52 - 12.666 230 62 = 36.8

 b =
32.628 690 51742 - 207.380 25112.666 230 62

5132.628 690 52 - 12.666 230 62 = -78.3

The equation of the curve is y = 36.8110x2 - 78.3. It must be remembered that 
for practical purposes, y must be positive. The graph of the equation is shown in 
Fig. 22.30, with the solid portion denoting the meaningful part of the curve. The 
points of the data are also shown. ■

As we noted in the previous section, a graphing calculator, a spreadsheet, or com-
puter software can be used to determine the equation of the regression curve, and to 
display its graph. The different models that can be considered include

Linear: y = ax + b

Quadratic: y = ax2 + bx + c

Cubic: y = ax3 + bx2 + cx + d

Quartic: y = ax4 + bx3 + cx2 + dx + e

Logarithmic: y = a + b ln x

Exponential: y = abx

Power: y = axb

Logistic: y =
c

1 - ae-bx

Sinusoidal: y = a sin1bx + c2 + d

40

20

0

240

220

0.50.40.30.20.1

y

x

Fig. 22.30 

EXERCISES 22.7

In the following exercises, find the equation of the indicated least-
squares curve. Sketch the curve and plot the data points on the same 
graph.

 1. In Example 1, replace the y-values with 2, 3, 10, 25, 44, and 65. 
Then follow the instructions above.

 2. For the points in the following table, find the least-squares curve 
y = m1x + b.

x 0 4  8 12 16
y 1 9 11 14 15

 3. In Example 2, change the V (volume of the gas) values to 19.9, 
24.5, 29.4, 39.4, and 56.0. Then find y 1 =  p2  as a function of 
x 1 =  V2 , as in Example 2.

 4. In Example 3, change the y (percent of zinc) values to 2, 8, 15, 
23, and 32. Then find y as a function of x (tensile strength), as in 
Example 3.

 5. The following data were found for the distance y that an object 
rolled down an inclined plane in time t. Determine the least-
squares curve y = mt2 + b. Compare the equation with that 
using the quadratic regression feature on a graphing calculator.

t (s) 1.0   2.0   3.0   4.0    5.0
y (cm) 6.0 23 55 98 148

 6. The increase in length y of a certain metallic rod was measured in 
relation to particular increases x in temperature. Find the least-
squares curve y = mx2 + b.

x (°C) 50.0 100 150 200 250 

y (cm) 1.00  4.40 9.40  16.4  24.0 

 7. The pressure p at which Freon, a refrigerant, vapourizes for temper-
ature T is given in the following table. Find the least-squares curve 
p = mT2 + b.

T  (°C)   0  10  20   30   40
p (kPa) 480 600 830 1040 1400

 8. A fraction f  of annual hot-water loads at a certain facility are 
heated by solar energy. The fractions f  for certain values of the 
collector area A are given in the following table. Find the least-
squares curve f = m1A + b.

A (m2) 0 12 27 56 90

f 0.0  0.2  0.4  0.6  0.8

 9. The makers of a special blend of coffee found that the demand for 
the coffee depended on the price charged. The price P per pound 
and the monthly sales S are shown in the following table. Find the 
least-squares curve P = m11>S2 + b.

S (thousands) 240 305 420 480 560
P (dollars) 5.60 4.40 3.20 2.80 2.40
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10. The resonant frequency f  of an electric circuit containing a 4-mF 
capacitor was measured as a function of an inductance L in the 
circuit. The following data were found. Find the least-squares 
curve f = m11>1L2 + b.

L (H) 1.0 2.0 4.0 6.0 9.0
f  (Hz) 490 360 250 200 170

11. The displacement y of an object at the end of a spring at given 
times t is shown in the following table. Find the least-squares 
curve y = me-t + b.

t (s) 0.0 0.5 1.0 1.5 2.0 3.0
y (cm) 6.1 3.8 2.3 1.3 0.7 0.3

12. The average daily temperatures T (in °C) for each month in 
Montreal (Environment Canada Archives) are given in the fol-
lowing table:

t J F M A M J J A S O N D
T(°C) -9 -7 -1 7 14 19 22 21 16 9 2 -6

  Find the least-squares curve T = m cos3p6 1 t - 0.52 4 + b. 
Assume the average temperature is for the 15th of each month. 
Then the values of t (in months) are 0.5, 1.5, c, 11.5.

 CHAPTER 22   EQUATIONS

Arithmetic mean x =
x1 f1 + x2 f2 + g + xn fn

f1 + f2 + g + fn
 (22.1)

Standard deviation s = Ca 1x - x22

n - 1
 (22.2)

 s = Cn1a x22 - 1a x22

n1n - 12  (22.3)

Normal distribution y =
e-1x-m22>2s2

s12p
 (22.4)

Standard normal distribution y =
112p

 e-x2>2 (22.5)

Standard (z) score z =
x - m

s
 (22.6)

Standard error of x s x =
s1n

 (22.7)

Standard error of pn spn = Ap11 - p2
n

 (22.8)11 − A 2100% confidence  x { E, where E = za>2 # s2n
  if s is known 

(22.12)
 

interval for M

 E = za>2 # s2n
  if s is unknown

Sample size required 1M 2  n = c za>2s
E

d 2
 (22.13)11 − A 2100% confidence interval for p pn { E, where E = za>2 Apn 11 - pn2

n
 (22.14)
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Sample sized required ( p) 

An estimate pn is available n = pn 11 - pn 2 c za>2
E

d 2
 (22.15)

No estimate pn is available n =
1
4
c za>2

E
d 2

 (22.16)

Least-squares lines y = mx + b (22.17)

 m =
na xy - aa xb aa yb

na x2 - aa xb2  (22.18)

 b =
aa x2b aa yb - aa xyb aa xb

na x2 - aa xb2  (22.19)

Nonlinear curves y = m3 f1x2 4 + b (22.20)

 CHAPTER 22  

In Exercises 1–10, use the following data. An airline’s records showed 
that the percent of on-time flights each day for a 20-day period was 
as follows:

72, 75, 76, 70, 77, 73, 80, 75, 82, 85, 
77, 78, 74, 86, 72, 77, 67, 78, 69, 80

 1. Determine the median. 2. Determine the mode.

 3. Determine the mean.

 4. Determine the standard deviation.

 5. Construct a frequency distribution table with five classes and a 
lowest class limit of 67.

 6. Draw a frequency polygon for the data in Exercise 5.

 7. Draw a histogram for the data in Exercise 5.

 8. Construct a relative frequency table for the data in Exercise 5.

 9. Construct a cumulative frequency table for the data of Exercise 5.

 10. Draw an ogive for the data of Exercise 5.

In Exercises 11–16, use the following data: An important property of 
oil is its coefficient of viscosity, which gives a measure of how well 
it flows. In order to determine the viscosity of a certain motor oil, a 
refinery took samples from 12 different storage tanks and tested them 
at 50°C. The results (in pascal-seconds) were 0.24, 0.28, 0.29, 0.26, 
0.27, 0.26, 0.25, 0.27, 0.28, 0.26, 0.26, 0.25.

 11. Find the mean. 12. Find the median.

 13. Find the standard deviation. 14. Draw a histogram.

 15. Draw a frequency polygon. 16. Determine the range.

In Exercises 17–26, use the following data: A sample of wind genera-
tors was tested for power output when the wind speed was 30 km>h. 
The following table gives the class marks of the powers produced and 
the number of generators in each class.

Power (W) 650 660 670 680 690 
No. Generators 3 2 7 12 27

Power (W) 700 710 720 730 
No. Generators 34 15 16 5

 17. Find the median. 18. Find the mean.

 19. Find the mode. 20. Draw a histogram.

 21. Find the standard deviation. 22. Draw a frequency polygon.

 23. Make a cumulative frequency table.

 24. Draw an ogive.

 25. The mean and the standard deviation obtained from the raw data 
are x = 696 and s = 17.7. Find a 95% confidence interval for 
the true mean power output produced by all generators of this 
kind when wind is 30 km/h.

 26. How many more observations should be taken so that a 95% 
confidence interval for the true mean power output will have a 
maximum margin of error E =  2.5 W?

In Exercises 27–30, use the following data: A Geiger counter records 
the presence of high-energy nuclear particles. Even though no ap-
parent radioactive source is present, some particles will be recorded. 
These are primarily cosmic rays, which are caused by very high-energy 
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The number of defective bulbs, along with the proportion of defective 
bulbs for 20 days, is shown in the following table.

Day Number Defective Proportion Defective
 1  23 0.046
 2  31 0.062
 3  19 0.038
 4  27 0.054
 5  29 0.058
 6  39 0.078
 7  26 0.052
 8  17 0.034
 9  28 0.056
10  33 0.066
11  22 0.044
12  29 0.058
13  20 0.040
14  35 0.070
15  21 0.042
16  32 0.064
17  25 0.050
18  23 0.046
19  29 0.058
20  32 0.064

Total 540  
 43. For a p chart, find the values of the central line, UCL, and LCL.

 44. Plot a p chart.

In Exercises 45 and 46, use the following information: Five ball bear-
ings are taken from the production line every 15 min and their diam-
eters are measured. The diameters of the sample ball bearings for 16 
successive subgroups are given in the following table.

Subgroup Diameters (mm) of Five Ball Bearings
 1 4.98 4.92 5.02 4.91 4.93
 2 5.03 5.01 4.94 5.06 5.07
 3 5.05 5.03 5.00 5.02 4.96
 4 5.01 4.92 4.91 4.99 5.03
 5 4.92 4.97 5.02 4.95 4.94
 6 5.02 4.95 5.01 5.07 5.15
 7 4.93 5.03 5.02 4.96 4.99
 8 4.85 4.91 4.88 4.92 4.90
 9 5.02 4.95 5.06 5.04 5.06
10 4.98 4.98 4.93 5.01 5.00
11 4.90 4.97 4.93 5.05 5.02
12 5.03 5.05 4.92 5.03 4.98
13 4.90 4.96 5.00 5.02 4.97
14 5.09 5.04 5.05 5.02 4.97
15 4.88 5.00 5.02 4.97 4.94
16 5.02 5.09 5.03 4.99 5.03

 45. Plot an x chart. 46. Plot an R chart.

particles from outer space. In an experiment to measure the amount of 
cosmic radiation, the number of counts were recorded during 200 5-s 
intervals. The following table gives the number of counts and the num-
ber of 5-s intervals having this number of counts. Draw a frequency 
curve for these data.

Counts 0 1 2 3 4 5 6 7 8 9 10
Intervals 3 10 25 45 29 39 26 11 7 2 3

 27. Find the median. 28. Find the mean.

 29. Draw a histogram.

 30. Make a relative frequency table.

In Exercises 31–36, use the following data: Police radar on a city 
street recorded the speeds of 110 cars in a 65 km/h zone. The follow-
ing table shows the class marks of the speeds recorded and the num-
ber of cars in each class.

Speed (km/h) 40 45 50 55 60 65 70 75 80 85
No. cars 3 4 4 5 8 22 48 10 4 2

 31. Find the mean. 32. Find the median

 33. Find the standard deviation.

 34. Draw an ogive.

 35. The mean and the standard deviation obtained from the raw data 
are x = 66 and s = 9.1. Find a 90% confidence interval for the 
true mean speed in this zone.

 36. How many more observations should be taken so that a 90% 
confidence interval for the true mean speed will have a maxi-
mum margin of error E =  1.0 km/h?

In Exercises 37–38, solve the given problems.

 37. Use Chebychev’s theorem to find the percentage of values that 
are between 27.8 and 36.2 in a data set with mean 32 and standard 
deviation 2.1.

 38. Use Chebychev’s theorem to find the percentage of values that 
are between 174.2 and 189.8 in a data set with mean 182 and 
standard deviation 2.6.

In Exercises 39–42, use the following data. A random sample of size 
n = 185 is taken from a large population, and 36 are found to be 
defective.

 39. Construct a 95% confidence interval for the population propor-
tion of defectives p.

 40. Construct a 90% confidence interval for the population propor-
tion of defectives p.

 41. How large a sample must be taken so that a 90% confidence in-
terval for p will have a maximum margin of error of 3.2%? 
Assume that the information from the sample is used.

 42. How large a sample must be taken so that a 90% confidence in-
terval for p will have a maximum margin of error of 3.2%? 
Assume that no prior information is used.

In Exercises 43 and 44, use the following information: A company 
that makes electric light bulbs tests 500 bulbs each day for defects. 
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 56. In an elementary experiment that measured the wavelength L of 
sound as a function of the frequency f , the following results 
were obtained.

Frequency (Hz) 240 320 400 480 560
Wavelength (cm) 140 107 81.0 70.0 60.0

  Find the least-squares curve of the form L = m11>f2 + b for 
these data.

 57. Measurements were made on the current i (in A) in an electric 
circuit as a function of the time t (in s). The circuit contained a 
resistance of 5.00 Ω and an inductance of 10.0 H. The following 
data were found.

t1s2 0.00 2.00 4.00 6.00 8.00

i1A2 0.00 2.52 3.45 3.80 3.92

  Find the least-squares curve i = m1e-0.500t2 + b for these 
data. From the equation, determine the value of the current as t 
approaches infinity.

 58. The power P (in W) generated by a wind turbine was measured 
for various wind velocities v (in km/h), as shown in the follow-
ing table.

v (km/h) 10 15 20 25 30 40
p (W) 75 250 600 1200 2100 4800

  Find the least-squares curve of the form P = mv3 + b for these 
data.

 59. The vertical distance y of the cable of a suspension bridge above the 
surface of the bridge is measured at a horizontal distance x along the 
bridge from its centre. See Fig. 22.31. The results are as follows:

x (m) 0 100 200 300 400 500
y (m) 15 17 23 33 47 65

  Plot these points and choose an appropriate function f1x2  for 
y = m3 f1x2 4 + b. Then find the equation of the least-squares 
curve.

In Exercises 47–50, use the following data: After analysing data for 
a long period of time, it was determined that samples of 500 readings 
of an organic pollutant for an area are distributed normally. For this 
pollutant, m = 2.20 mg>m3 and s = 0.50 mg>m3.

 47. In a sample, how many readings are expected to be between 
1.50 mg>m3 and 2.50 mg>m3?

 48. In a sample, how many readings are expected to be between 
2.50 mg>m3 and 3.50 mg>m3?

 49. In a sample, how many readings are expected to be above 
1.00 mg>m3?

 50. In a sample, how many readings are expected to be below 
2.00 mg>m3?

In Exercises 51–60, find the indicated least-squares curve. Sketch the 
curve and data points on the same graph.

 51. In a certain experiment, the resistance R of a certain resistor was 
measured as a function of the temperature T . The data found are 
shown in the following table. Find the least-squares line, ex-
pressing R as a function of T .

T  1°C2  0.0 20.0 40.0 60.0 80.0 100

R 1Ω 2 25.0 26.8 28.9 31.2 32.8 34.7

 52. An air-pollution monitoring station took samples of air each hour 
during the later morning hours and tested each sample for the 
number n of parts per million (ppm) of carbon monoxide. The 
results are shown in the table, where t is the number of hours 
after 6 a.m. Find the least-squares line for n as a function of t.

t (h) 0.0 1.0 2.0 3.0 4.0  5.0  6.0
n (ppm) 8.0 8.2 8.8 9.5 9.7 10.0 10.7

 53. The Mach number of a moving object is the ratio of its speed to 
the speed of sound 11200 km>h2 . The following table shows 
the speed s of a jet aircraft, in terms of Mach numbers, and the 
time t after it starts to accelerate. Find the least-squares line of s 
as a function of t.

t (min) 0.00 0.60 1.20 1.80 2.40 3.00
s (Mach number) 0.88 0.97 1.03 1.11 1.19 1.25

 54. In an experiment to determine the relation between the load x on 
a spring and the length y of the spring, the following data were 
found. Find the least-squares line that expresses y as a function 
of x.

Load (kg)  0.0  1.0  2.0  3.0  4.0  5.0
Length (cm) 10.0 11.2 12.3 13.4 14.6 15.9

 55. The distance s of a missile above the ground at time t after being 
released from a plane is given by the following table. Find the 
least-squares curve of the form s = mt2 + b for these data.

t (s) 0.0 3.0 6.0 9.0 12.0 15.0 18.0
s (m) 3000 2960 2820 2600 2290 1900 1410

Fig. 22.31

y

x

 60. After being heated, the temperature T  of an insulated liquid is 
measured at times t as follows:

t (h) 0 2 4 6 8 10
T (°C) 100 85 72 63 54 48

  Plot these points and choose an appropriate function f1x2  for 
y = m3 f1x2 4 + b. Then find the equation of the least-squares 
curve.
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 CHAPTER 22 PRACTICE TEST

In Problems 1–3, use the following set of numbers.

5, 6, 1, 4, 9, 5, 7, 3, 8, 10, 5, 8, 4, 9, 6

 1. Find the median.

 2. Find the mode.

 3. Draw a histogram with five classes and the lowest class limit at 1.

In Problems 4–8, use the following data: Two machine parts are con-
sidered satisfactorily assembled if their total thickness (to the nearest 
0.01 cm) is between or equal to 0.92 cm and 0.94 cm. One hundred 
assemblies are tested, and the class mark of the thicknesses and the 
number of assemblies in each class are given in the following table.

Total Thickness (cm) 0.90 0.91 0.92 0.93 0.94 0.95 0.96
Number 3 9 31 38 12 5 2

 4. Find the mean.

 5. Find the standard deviation.

 6. Draw a frequency polygon.

 7. Make a relative frequency table.

 8. Draw an ogive (less than).

 9. A random sample of size n =  175 is taken from a large popula-
tion so that x = 143 and s =  5.2. Construct a 95% confidence 
interval for the population mean m.

 10. A random sample of size n =  120 is taken from a large popula-
tion and 33 are found defective. Construct a 99% confidence in-
terval for the proportion p of defectives in the population.

 11. For a set of values that are normally distributed, what percent of 
them is below the value (greater than the mean) for which the  
z-score is 0.2257?

 12. The machine-part assemblies in Problems 4–8 were tested in 
groups of five each hour for 20 hours. Explain, in general, how 
to use the data from the test subgroups to plot an R chart.

 13. Find the equation of the least-squares line for the points indi-
cated in the following table. Graph the line and data points on 
the same graph.

x 1 3 5 7 9
y 5 11 17 20 27

  14. The velocity (in m/s) of an object moving down an inclined plane 
was measured as a function of the distance (in m) it moved, with 
the following results:

Distance (m) 1.00 3.00 5.00 7.00 9.00
Velocity (m/s) 1.10 1.90 2.50 2.90 3.30

  Find the equation of the least-squares curve of the form 
y = m1x + b, which expresses the velocity as a function of 
the distance.

In Exercises 61–64, use a graphing calculator, a spreadsheet, or soft-
ware to solve the given problems related to the following data. Using 
aerial photography, the area A 1 in km22  of an oil spill as a function 
of the time t 1 in h2  after the spill was found to be as follows:

t (h) 1.0 2.0 4.0 6.0 8.0 10.0

A (km2) 1.4 2.5 4.7 6.8 8.8 10.2

 61. Find the linear equation y = ax + b to fit these data.

 62. Find the quadratic equation y = ax2 + bx + c to fit these data.

 63. Find the power equation y = axb to fit these data.

 64. Find the value of the linear coefficient of correlation r for these 
data.

In Exercises 65–70, solve the given problems.

 65. With 30.5, of the area under the normal curve between 
z1 = 0.5 and z2, to the right of z1, find z2.

 66. With 79.8, of the area under the normal curve between z1 and 
z2 = 2.1, find z1.

 67. The nth root of the product of n positive numbers is the geomet-
ric mean of the numbers. Find the geometric mean of the carbon 
monoxide readings in Exercise 52.

 68. One use of the geometric mean (see Exercise 67) is to find an 
average ratio. By finding the geometric mean, find the average 
Mach number for the jet in Exercise 53.

 69. Show that Eqs. (22.18) and (22.19) satisfy the equation 
y = mx + b.

 70. Given that g 1x - x22 = gx2 - nx2, derive Eq. (22.3) from 
Eq. (22.2).

Writing Exercise
 71. A research institute is planning a study of the effect of education 

on the income of workers. Write two or three paragraphs explain-
ing what data should be collected and which of the measures dis-
cussed in this chapter would be useful in analysing the data.
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 Determining how fast an object  
is moving is important in physics  
and other areas of technology. In 
Section 23.4, we develop the method 
of finding the instantaneous velocity 
of a moving object.

The Derivative

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Determine the continuity of a 
function at a single point or 
over an interval

 Define the concept of a limit
 Evaluate a limit of a function
 Calculate average slope 

equations
 Find a derivative using the 

delta method/definition of 
derivative

 Interpret instantaneous slope
 Use derivative formulas 

to calculate derivatives of 
polynomials, and powers, 
products, and quotients of 
functions

 Apply implicit differentiation
 Calculate higher derivatives of 

functions

In the 1600s, the ability to understand and predict the motion of planets, projectiles, and 
other moving objects became the focus of many scientists and mathematicians. For example, 
the velocity of a falling object changes from one instant to the next, and particular interest 

was devoted to determining this instantaneous velocity. It was also noted that the geometric 
problem of finding the slope of a curve at a specific point was really equivalent to finding the 
instantaneous velocity of an object, since each involved an instantaneous rate of change.

It was well known at the time how to find an average velocity (distance travelled divided by 
time taken) and a slope (difference in y-values divided by difference in x-values). However, 
these methods do not work in finding an instantaneous velocity or slope since they would 
result in a division by zero. Therefore, a method for finding the slope of a tangent line to a 
curve at a given point was a major point of interest in mathematics in the 1600s.

This interest in motion and slope of a tangent line led to the development of calculus. In this chapter, 
we start developing differential calculus, which is concerned with determining the instantaneous 
rates of change of one quantity with respect to another rather than just estimating average changes 
over a large interval. This could include applications like instantaneous electric current (rate of 
change of electric charge per unit time), instantaneous power (rate of change of work per unit 
time) of a machine producing a force varying in time, or the rate of change of light intensity with 
respect to the distance from the source. In Chapter 25, we will study integral calculus, which 
involves finding the function for which the rate of change is known.

Isaac Newton, the English mathematician and physicist, and Gottfried Leibnitz, a German 
mathematician and philosopher, are credited with the creation of the basic methods of calculus 
in the 1660s and 1670s. Others, including the French mathematician Pierre de Fermat, are 
known to have developed some of the topics related to calculus in the mid-1600s. In the 1700s 
and 1800s, many mathematicians further developed and refined the concepts of calculus.

The topic of this chapter, the derivative, is the basic concept of differential calculus that is 
used to measure an instantaneous rate of change. We will show some of the applications of 
the derivative in fields such as physical science and engineering in this chapter, and develop 
several important applications in the next chapter.
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CONTINUITY OF A FUNCTION
The use of limits in dealing with functions requires an understanding of the projected 
behaviour of the function near a certain point, not the behaviour exactly at that point.
We have already encountered limits when studying infinite geometric series and the 
asymptotes of a hyperbola. They will be very useful in the application of curve sketching 
and the definition of instantaneous slope of a curve.

To develop the concept of a limit, we first consider the continuity of a function. For 
a function to be continuous at a point, the function must exist at the point, and any 
small change in x must produce only a small change in f1x2 . In fact, if the function is 
continuous, the change in f1x2  can be made as small as we wish by restricting the 
change in x sufficiently. Also, a function is said to be continuous over an interval if it 
is continuous at each point in the interval.

If the domain of a function includes a point and an interval on only one side of this point, 
it is continuous at the point if the definition of continuity holds for that part of the domain.

 EXAMPLE  1  Function discontinuous for all x

The function f1x2 = 3x2 is continuous for all values of x. That is, f1x2  is defined for 
all values of x, and a small change in x for any given value of x produces only a small 
change in f1x2 . If we choose x = 2, and then let x change by 0.1, 0.01, and so on, we 
obtain the values in the following table:

 23.1 Limits

x Approaches Infinity

x 2 2.1 2.01 2.001

f 1x2 12 13.23 12.1203 12.012 003

Change in x   0.1 0.01 0.001

Change in f 1x2   1.23 0.1203 0.012 003

We see that the change in f1x2  is smaller for smaller changes in x. This shows that 
f1x2  is continuous at x = 2. Since this type of result would be obtained for any other 
x we may choose, we see that f1x2  is continuous over the interval of all values of x. 
The graph of the function f1x2 = 3x2 is shown in Fig. 23.1. ■

 EXAMPLE  2  Function discontinuous at a point

The function f1x2 = 1
x - 2 is not continuous at x = 2. When we substitute 2 for x, we 

have division by zero. This means the function is not defined for the value x = 2. The 
condition of continuity—that the function must exist—is not satisfied. The graph of the 
function is shown in Fig. 23.2. ■

 EXAMPLE  3  Continuity and graph of a function

Looking at the graph of the function f1x2 = 3x2 in Fig. 23.1, we see that there are no 
breaks in the curve representing this function. In Example 1, we determined that this 
function is continuous for all values of x.

Now, looking at the graph of the function f1x2 = 1
x - 2 in Fig. 23.2, we see that 

there is a break in the curve at x = 2. In Example 2, we determined that this function is 
not defined at x = 2, and is therefore not continuous at x = 2. We note that it is a 
hyperbola with an asymptote x = 2. ■

 EXAMPLE  4  Continuity on an interval and discontinuity at a point

(a) For the function represented in Fig. 23.3, the solid circle at x = 1 shows that the point 
is on the graph. Since it is continuous to the right of the point, it is also continuous 
at the point. Thus, the function is continuous for x Ú 1.

Fig. 23.1 

f (x)

x

(2, 12)

0

Fig. 23.2 

x

f(x)

0

Asymptote

x 5 2

y 5 1
x 2 2

From a graphical perspective, a func-
tion is continuous over an interval if 
you can draw the graph of the func-
tion entirely without ever lifting your 
pencil from the paper.

If a “break” occurs in the graph 
because of an undefined point or 
instantaneous “jump” in the value of 
the function, or any domain gaps in 
the interval, then the function is dis-
continuous for some value or values 
in that interval.

LEARNING T IP

x

y

0 x ! 1

Fig. 23.3 

Continuity
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(b) The function represented by the graph in Fig. 23.4 is not continuous at x = 1. The 
function is defined (by the solid circle point) for x = 1. However, a small change 
from x = 1 may result in a change of at least 1.5 in f1x2 , regardless of how small 
a change in x is made. The small change condition is not satisfied.

(c) The function represented by the graph in Fig. 23.5 is not continuous for x = -2. 
The open circle shows that the point is not part of the graph, and therefore f1x2  is 
not defined for x = -2. ■

Fig. 23.4 
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 EXAMPLE  5  Function defined differently over the domain

(a) We can define the function in Fig. 23.4 as

f1x2 = e x + 2
-1

2 x + 5
for x 6 1
for x Ú 1

  where we note that the equation differs for different parts of the domain, and  
at x = 1, an instantaneous “jump” occurs in the graph, making it discontinuous  
at that point. This function is continuous on the intervals - ∞ 6 x 6 1 and 
1 6 x 6 ∞  because no gaps or jumps exist in those intervals, but the function is 
discontinuous at the point x = 1.

(b) The graph of the function

g1x2 = e2x - 1
-x + 5

for x … 2
for x 7 2

  is shown in Fig. 23.6. We see that it is a continuous function even though the 
equation for x … 2 is different from that for x 7 2. ■

 EXAMPLE  6  Behaviour of a function as x approaches 2

Consider the behaviour of f1x2 = 2x + 1 as x S 2.
Since we are not to use x = 2, we use a calculator to set up tables in order to determine 

values of f1x2 , as x gets close to 2:

values approach 5

Practice Exercise

1.  Determine the continuity of the function 
ƒ1x2 = 3

x(x + 3) .

The notation used in limits can be 
interpreted as follows:

Symbol Meaning

x S 2 “as x approaches 2”; x can 
be any number as arbitrarily 
close to 2 as you want, but 
cannot be exactly 2

x S 2+ “x approaches 2 from 
above”; x can be any num-
ber as arbitrarily close to 2 
as you want, but it must be 
larger than 2

x S 2- “x approaches 2 from 
below”; x can be any number 
as arbitrarily close to 2 as you 
want, but it must be less 
than 2

LEARNING T IP

Fig. 23.6 
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x 1.000 1.500 1.900 1.990 1.999

f 1x2 3.000 4.000 4.800 4.980 4.998

x 3.000 2.500 2.100 2.010 2.001

f 1x2 7.000 6.000 5.200 5.020 5.002

We see that f1x2  approaches 5, as x approaches 2, from above 2 and from below 2. ■
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In Example 6, since f1x2 S 5 as x S 2, the number 5 is called the limit of f1x2  as 
x S 2. This leads to the meaning of the limit of a function. In general, the limit of a 
function f 1x2  is that value which the function approaches as x approaches the given 
value a. This is written as

lim
xSa ƒ1x2 = L  (23.1)

where L is the value of the limit of the function.
An important conclusion can be drawn from the limit in Example 6. The function 

f1x2  is a continuous function, and f122  equals the value of the limit as x S 2. In gen-
eral, it is true that

if f 1x2  is continuous at x = a, then the limit as x S a equals f 1a2.

In fact, looking back at our definition of continuity, we see that this is what the defini-
tion means.

A function is continuous at the point x = a 

if

lim
xSa- f1x2 = lim

xSa+ f1x2 = lim
xSa

 f1x2 = f1a2

x 1.000 1.500 1.900 1.990 1.999

f1x2 3.000 4.000 4.800 4.980 4.998

x 3.000 2.500 2.100 2.010 2.001

f1x2 7.000 6.000 5.200 5.020 5.002

Although we can evaluate the limit for a continuous function as x S a by evaluating 
f1a2 , it is possible that a function is not continuous at x = a and yet the limit exists 
and can be determined. Thus, we must be able to determine the value of a limit without 
finding f1a2 . The following example illustrates the evaluation of such a limit.

 EXAMPLE  7  

Find lim
xS2

2x2 - 3x - 2
x - 2

.

We note immediately that the function is not continuous at x = 2, for division by 
zero is indicated. Thus, we cannot evaluate the limit by substituting x = 2 into the 
function. Using a calculator to set up tables we determine the value that f1x2  
approaches, as x approaches 2:

values approach 5

We see that the values obtained are identical to those in Example 6. Since f1x2 S 5 as 
x S 2, we have

lim
xS2

2x2 - 3x - 2
x - 2

= 5

Therefore, we see that the limit exists at x S 2, although the function does not exist at 
x = 2. ■
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The reason the functions in Examples 6 and 7 have the same limit as x approaches 2 
is shown in the following example.

 EXAMPLE  8  Factoring in limits

The function y = 2x2 - 3x - 2
x - 2  in Example 7 is the same as the function y = 2x + 1 in 

Example 6, except when x = 2. By factoring the numerator of the function of Example 
7, and then cancelling, we have

2x2 - 3x - 2
x - 2

=
12x + 12 1x - 22

x - 2
= 2x + 1

The cancellation for this expression is valid, as long as x does not equal 2, for we have 
division by zero at x = 2. Also, in finding the limit as x S 2, we do not use the value 
x = 2. Therefore,

lim
xS2

2x2 - 3x - 2
x - 2

= lim
xS2

12x + 12 = 5

The limits of the two functions are equal, since, again, in finding the limit as x approaches 
2, we do not let x = 2. The graphs of the two functions are shown in Fig. 23.7(a) and (b). 
We can see from the graphs that the limits are the same, although one of the functions is 
not continuous.

If f1x2 = 5 for x = 2 is added to the definition of the function in Example 7, it is 
then the same as f1x2 = 2x + 1, and its graph is that in Fig. 23.7(b). ■

The limit of the function in Example 7 was determined by calculating values near 
x = 2 and by means of an algebraic change in the function. This illustrates that limits 
may be found through the meaning and definition and through other procedures when 
the function is not continuous. The following is a step-by-step guide to evaluating limits.
It is intended as an introduction to the most common limits that could be encountered, 
but it is by no means complete. The steps that produce an analytical result are listed in 
order of increasing difficulty, so it is important to exhaust the simpler methods before 
moving on to the more difficult ones. Always remember that algebraic reduction in the 
initial stages of any problem can greatly simplify it.

Fig. 23.7 
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Procedure for Evaluating Limits
1.  Substitute the limiting value of x = a into the function. If you obtain a real 

result, and the function is continuous at that point, you have the limit L.

2.  If you obtain a 
0
0

 indeterminate limit, try factoring the expression.

3.  If you obtain a ∞∞ indeterminate limit, try dividing both the numerator and 

  the denominator by the highest power of x that appears in either the numerator 
or denominator.

4.  If you see square roots over individual terms in either the numerator or 
denominator, try conjugate multiplication of both the numerator and 
denominator.

5.  If you see square roots over an entire numerator or denominator, try rearranging 
the function so that it is entirely under a root sign.

6.  Construct a table of values for values of x approaching the limiting value 
from above and below. If the limits from above and below agree, you have 
the limit L.

Remember, checking the valid domains for x in the cases where square roots are 
present is always important.
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 EXAMPLE  9  Limit for a continuous function

Find lim
xS4

 1x2 - 72 .

Since the function f1x2 = x2 - 7 is continuous at x = 4, we may evaluate the 
limit by substituting x = 4 in the function. For f1x2 = x2 - 7, we have in this case 
f142 = 42 - 7 = 9. This means that

lim
xS4

1x2 - 72 = 9 ■

 EXAMPLE  10  Limit for a discontinuous function, using factoring

Find lim
tS2

a t2 - 4
t - 2

b .

Since 
22 - 4
2 - 2

=
0
0

, which is indeterminate, we try factoring:

t2 - 4
t - 2

=
1 t - 22 1 t + 22

t - 2
= t + 2

Since this expression is valid as long as t ≠ 2, we find that

lim
tS2

a t2 - 4
t - 2

b = lim
tS2

1 t + 22 = 4

Again, we do not have to be concerned with the fact that the cancellation is not valid 
for t = 2. In finding the limit, we do not consider the value of f1 t2  at t = 2. ■

LIMITS AS x APPROACHES INFINITY
Limits as x approaches infinity are also of importance. However, when dealing with 
these limits, we must remember the following.

Practice Exercise

2. Find lim
xS5

 x
2 - 25
x - 5 .

When we say the limit is infinite 1 ∞ 2 , we mean the value of the function gets larger and 
larger, without bound. Infinity is not a specific value, a place, nor a stop sign; it is a concept. 
∞  does not represent a real number, and algebraic operations may not be performed on it.

COMMON ERROR

Therefore, when we write x S ∞ , we know that we are to consider values of x that are 
becoming larger and larger without bound. We encountered this concept in Chapter 19 
when discussing infinite geometric series, and in Chapter 21 when discussing the 
asymptotes of a hyperbola. The following examples illustrate the evaluation of this 
type of limit for algebraic expressions.

 EXAMPLE  11  Limit as x approaches infinity

Find lim
xS ∞

 
x2 + 1

2x2 + 3
 .

We note that as x S ∞ , both the numerator and the denominator become large without 
bound. Therefore, we make a table to see how f1x2  behaves as x becomes very large:

x 1 10 100 1000

f1x2 0.4 0.497 536 945 8 0.499 975 003 7 0.499 999 75 values approach 0.5

From this table, we see that f1x2 S 0.5 as x S ∞ .
This limit can also be found through algebraic operations and an examination of the 

resulting algebraic form. If we divide both the numerator and the denominator of the 
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function by x2, which is the largest power of x that appears in either the numerator or 
the denominator, we have

x2 + 1

2x2 + 3
=

1 + 1

x2

2 + 3

x2

Here, we see that 1>x2 and 3>x2 both approach zero as x S ∞ . This means that the 
numerator approaches 1 and the denominator approaches 2. Therefore,

 lim
xS∞

 
x2 + 1

2x2 + 3
= lim

xS∞
 
1 + 1

x2

2 + 3

x2

=
1
2

 EXAMPLE  12  Limits with conjugate multiplication

Find lim
xS9

2x - 3
x - 9

.

lim
xS9

2x - 3
x - 9

=
29 - 3
9 - 9

=
0
0

  indeterminate

We could attempt factoring. However, although factoring the denominator as a differ-
ence of squares is possible, it is not easy to do. Let us instead try rationalizing the 
numerator by multiplying both top and bottom of the function by the conjugate. 
Remember that the conjugate of the expression 11x - 32  is 11x + 32 . The only 
difference between an expression and its conjugate is that one of the signs for the terms 
is switched, so that when the expression is multiplied by its conjugate, a difference of 
squares will result. Some terms should cancel in this method.

lim
xS9

2x - 3
x - 9

= lim
xS9

2x - 3
x - 9

# 2x + 32x + 3

= lim
xS9

(2x)2 + 32x - 32x - 9

(x - 9)(2x + 3)

= lim
xS9

x - 9

(x - 9)(2x + 3)

= lim
xS9

12x + 3

lim
xS9

2x - 3
x - 9

=
129 + 3

=
1
6

 EXAMPLE  13  Limit with a square root over the entire function

Find lim
xS ∞

2x2 - 8x
2x + 1

.

If you can move the square root to encompass the whole function, the limit can move 
inside the square root sign, and the limit can be evaluated, so that

lim
xSa

2ƒ(x) = 2lim
xSa

ƒ(x)

terms S 0
as x S ∞

■

■

Practice Exercise

3. Find lim
xS∞

 x + 2
2x - 7.
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This function can be rearranged so that the square root applies to the whole function.

lim
xS ∞

2x2 - 8x
2x + 1

= lim
xS ∞

2x2 - 8x2(2x + 1)2
= lim

xS ∞

2x2 - 8x24x2 + 4x + 1

= lim
xS∞ A x2 - 8x

4x2 + 4x + 1
= A lim

xS∞

x2 - 8x
4x2 + 4x + 1

We can now evaluate the limit inside, and take the square root of the answer at the end.

= a lim
xS ∞

x2

x2 - 8x

x2

4x2

x2 + 4x

x2 + 1

x2

= a lim
xS ∞

1 - 8
x

4 + 4
x

+ 1

x2

= A 1 - 0
4 + 0 + 0

=
1
2

 EXAMPLE  14  Limit does not exist

In trying to find

lim
xS2 

1
x - 2

we note that f1x2  is not defined for x = 2, since we would have division by zero. 
Therefore, we set up the following table to see how f1x2  behaves as x S 2:

■

x 3 2.5 2.1 2.01 2.001 

f1x2 1 2 10 100 1000
f1x2 S + ∞

x 1 1.5 1.9 1.99 1.999 

f1x2 -1 -2 -10 -100 -1000
f1x2 S - ∞

We see that f1x2  gets larger as x S 2 from above 2 and f1x2  gets smaller (large nega-
tive values) as x S 2 from below 2. This may be written as f1x2 S + ∞  as x S 2+ 
and f1x2 S - ∞  as x S 2-, but we must remember that ∞  is not a real number. 
Therefore, the limit as x S 2 does not exist. The graph of this function is shown in Fig. 
23.2, which is shown again for reference. ■

 EXAMPLE  15  Limit as a value approaches infinity

The efficiency of an engine is given by h = 1 - Q2>Q1, where Q1 is the heat taken in 
and Q2 is the heat ejected by the engine. (Q1 - Q2 is the work done by the engine.) If, 
in an engine cycle, Q2 = 500 kJ, find h as Q1 becomes large without bound.

We are to find

lim
Q1S ∞

a1 - 500
Q1

b
As Q1 becomes larger and larger, 500>Q1 becomes smaller and smaller and approaches 
zero. This means f1Q12 S 1 as Q1 S ∞ . Thus,

lim
Q1S ∞

a1 - 500
Q1

b = 1

We can verify our reasoning and the value of the limit by making a table of values 
for Q1 and h as Q1 becomes large:

Q1 500 5000 50 000 500 000 

h 0 0.9 0.99 0.999 values approach 1

x

f(x)

0

Asymptote

x 5 2

y 5 1
x 2 2

Fig. 23.2
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Again, we see that h S 1 as Q1 S ∞ . See Fig. 23.8.
This is primarily a theoretical consideration, as there are obvious practical limita-

tions as to how much heat can be supplied to an engine. An engine for which h = 1 
would operate at 100, efficiency. ■

 EXAMPLE  16  Value of the function exists—limit does not

Find lim
xS0

1x1x - 32 .

We see that x1x - 3 = 0 if x = 0, but this function does not have real values for 
any values of x less than 3, other than x = 0. Therefore, since x cannot approach zero, 
f1x2  does not approach zero, and the limit does not exist. The point of this example is 
that even if f1a2  exists, we cannot evaluate the limit simply by finding f1a2 , unless 
f1x2  is continuous at x = a. In this case, f1a2  exists, but zero is the only value less 
than x = 3 for which f1x2  is defined, and therefore the limit does not exist. ■

The definitions and development of continuity and of a limit presented in this sec-
tion are not mathematically rigorous. However, the development is consistent with a 
more rigorous development, and the concept of a limit is the principal concern.

Fig. 23.8 
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EXERCISES 23.1

In Exercises 1–4, make the given changes in the indicated examples of 
this section. Then solve the resulting problems.

 1. In Example 2, change the denominator to x + 2 and then deter-
mine the continuity.

 2. In Example 8, change the numerator to 3x2 - 5x - 2 and find 
the resulting limit. Disregard references to Examples 6 and 7.

 3. In Example 10, change the denominator to t + 2 and then find 
the limit as t S -2.

 4. In Example 11, change the numerator to 4x2 + 1 and find the 
resulting limit.

In Exercises 5–10, determine the values of x for which the function is 
continuous. If the function is not continuous, determine the reason.

 5. f1x2 = 3x - 2 6. f1x2 = 9 - x2

 7. f1x2 =
2

x2 - x
 8. f1x2 =

11x

 9. f1x2 = 7 x
x - 2

 10. f1x2 =
1x + 2

x

In Exercises 11–16, determine the values of x for which the function, 
as represented by the graphs in Fig. 23.9, is continuous. If the function 
is not continuous, determine the reason.

 11.  12. 

 13.  14. 

 15.  16. 

■ Calculus was not on a sound mathematical 
basis until limits were properly developed by 
the French mathematician Augustin-Louis 
Cauchy (1789–1857) and others in the 
mid-1800s.

Fig. 23.9 
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 30. Find lim
xS∞

 
1 - x2

8x2 + 5
 .

In Exercises 31–48, evaluate the indicated limits by direct evaluation 
as in Examples 9–16. Change the form of the function where 
necessary.

In Exercises 17–20, for the function shown in the graph for the 
indicated exercise, find (a) ƒ122, and (b) lim

xS2
 ƒ1x2.

 17. Exercise 13 18. Exercise 14

 19. Exercise 15 20. Exercise 16

 In Exercises 21–24, graph the function and determine the values 
of x for which the functions are continuous. Explain.

 21. f1x2 = e x2

2
for x 6 2
for x Ú 2

 22. f1x2 =
x3 - x2

x - 1
1

for x ≠ 1

for x = 1

 23. f1x2 =
2x2 - 18

x - 3
12

for x 6 3 or x 7 3

for x = 3

 24. f1x2 = µ x + 2

x2 - 4
x
8

for x 6 -2

for x 7 -2

In Exercises 25–30, evaluate the indicated limits by evaluating the 
function for values shown in the table and observing the values that 
are obtained. Do not change the form of the function.

 25. Find lim
xS1

 
x3 - x
x - 1

 .

x 0.900 0.990 0.999 1.001 1.010 1.100

f1x2          

 26. Find lim
xS-3

 
x3 + 2x2 - 2x + 3

x + 3
 .

x -3.100 -3.010 -3.001 -2.999 -2.990 -2.900

f1x2            

 27. Find lim
xS2

 
2 - 1x + 2

x - 2
.

x 1.900 1.990 1.999 2.001 2.010 2.100

f1x2            

 28. Find lim
xS0

 
e x - 1

x
.

x -0.1 -0.01 -0.001 0.001 0.01 0.1

f1x2            

 29. Find lim
xS∞

 
2x + 1
5x - 3

 . x 10 100 1000 10 000

f1x2        

x 10 100 1000 10 000

f1x2        

 31. lim
xS3

13x - 22  32. lim
xS4

2x2 - 7 33. lim
xS0

x2 + x
x

 34. lim
vS2

 
4v2 - 8v

v - 2
 35. lim

xS - 1
 
x2 - 1
3x + 3

 36. lim
xS3

 
x2 - 2x - 3

3 - x

 37. lim
hS3

 
h3 - 27
h - 3

 38. lim
xS1/3

 
3x - 1

3x2 + 5x - 2

 39. lim
xS1

 
12x - 122 - 1

2x - 2
 40. lim

xS4
 
0 x - 4 0
x - 4

 41. lim
pS - 1

 1p1p + 1.32 42. lim
xS1

 1x - 122x2 - 4

 43. lim
xS1

 
1x - 1
x - 1

 44. lim
xS8

 
x - 823 x - 2

 45. lim
xS∞

 
3x2 + 4.5

x2 - 1.5
 46. lim

xS∞
 

x - 1
7x + 4

 47. lim
tS∞

 
2t2 + 16

t + 1
 48. lim

xS∞
 

1 - 2x214x + 322

In Exercises 49 and 50, evaluate the function at 0.1, 0.01, and 0.001 
from both sides of the value it approaches. In Exercises 51 and 52, 
evaluate the function for values of x of 10, 100, and 1000. From these 
values, determine the limit. Then, by using an appropriate change of 
algebraic form, evaluate the limit directly and compare values.

 49. lim
xS0

 
x2 - 3x

x
 50. lim

xS3
 
2x2 - 6x

x - 3

 51. lim
xS∞

 
2x2 + x

x2 - 3
 52. lim

xS∞
 

x2 + 5264x4 + 1

In Exercises 53–56, solve the given problems involving limits.

 53. A certain object, after being heated, cools at such a rate that its 
temperature T  (in °C) decreases 10, each minute. If the object 
is originally heated to 100°C, find lim

tS10
 T  and lim

tS∞ T, where t is 
the time (in min).

 54. The area A (in mm2) of the pupil of a certain person's eye is given 

  by A = 36 + 24b3

1 + 4b3 , where b is the brightness (in lumens) of the 

  light source. Between what values does A vary?

 55. Velocity can be found by dividing the displacement s of an object 
by the elapsed time t in moving through the displacement. In a 
certain experiment, the following values were measured for the 
displacements and elapsed times for the motion of an object. 
Determine the limiting value of the velocity.

s (cm) 0.480 000 0.280 000 0.029 800 0.002 998 0 0.000 299 98

t (s) 0.200 000 0.100 000 0.010 000 0.001 000 0 0.000 100 00
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 62. For the function displayed in Exercise 16, find

(a) lim
xS - 2-  f1x2  (b) lim

xS - 2+ f1x2  (c) lim
xS - 2

 f1x2
 63. Find lim

xS4- x216 - x2.

 64. Explain why lim
xS0+

 21/x ≠ lim
xS0-

 21/x.

 65. For ƒ1x2 = x0 x 0 , find lim
xS0-

 ƒ1x2 and lim
xS0 +

 ƒ1x2. Is ƒ1x2 continuous 

  at x = 0? Explain.

 66. In Einstein’s theory of relativity, the length L of an object moving 

  at a velocity v is L = L0B1 - v2

c2, where c is the speed of light 

  and L0 is the length of the object at rest. Find lim
vSc-

 L and explain 
why a limit from the left is used.

Answers to Practice Exercises

1. Discontinuous at x = -3 and x = 0 2. 10 3. 0.5

 56. A 5@Ω resistor and a variable resistor of resistance R are placed in 
parallel. The expression for the resulting resistance RT is given by 

  RT =
5R

5 + R
. Determine the limiting value of RT as R S ∞ .

In Exercises 57–60, construct a table of values to evaluate the 
indicated limits.

 57. Approximate lim
xS2

 
2x - 4
x - 2

. 58. Approximate lim
xS1

 
4x - 4
x - 1

.

 59. lim
xS0

 11 + x21>x (Do you recognize the limiting value?)

 60. lim
xS0

 
sin x

x
 (Use radian mode.)

In Exercises 61–66, solve the given problems involving one-sided 
limits. 

 61. For the function displayed in Exercise 13, find

(a) lim
xS2- f1x2  (b) lim

xS2+ f1x2  (c) lim
xS2

 f1x2

Having developed the basic operations with functions and the concept of a limit, we 
now turn our attention to a graphical interpretation of the rate of change of a function. 
This interpretation, basic to an understanding of calculus, deals with the slope of a line 
tangent to the curve of a function.

Consider the points P1x1, y12  and Q1x2, y22  in Fig. 23.10. From Chapter 21, we 
know that the slope of the line through these points is given by

m =
rise
run

=
y2 - y1

x2 - x1

This, however, represents the slope of the line through P and Q (a secant line) and no other 
line. We can also refer to this as the average rate of change over the interval, or the average 
slope over the interval from x1 to x2. If we now allow Q to be a point closer to P, the slope 
of PQ will more closely approximate the slope of a line drawn tangent to the curve at P (see 
Fig. 23.11). In fact, the closer Q is to P, the better this approximation becomes. It is not pos-
sible to allow Q to coincide with P, for then it would not be possible to define the slope of 
PQ in terms of two points. The slope of the tangent line, often referred to as the slope of the 
curve, is the limiting value of the slope of the secant line PQ as Q approaches P.

 EXAMPLE  1  Limit of the slopes of secant lines

Find the slope of a line tangent to the curve y = x2 + 3x at the point P12, 102  by 
finding the limit of the slopes of the secant lines PQ as Q approaches P.

Let point Q have the x-values of 3.0, 2.5, 2.1, 2.01, and 2.001. Then, using a calculator, 
we tabulate the necessary values. Since P is the point 12, 102 , x1 = 2 and y1 = 10. 
Thus, using the values of x2, we tabulate the values of y2, y2 - 10, x2 - 2, and the 
slope m:

 23.2 The Slope of a Tangent to a Curve

Line

x

y

O

Q (x2, y2)

P(x1, y1)

x

y

O

Q1

Q2

P

Ta
ng
en
t

Point Q1 Q2 Q3 Q4 Q5 P

x2 3.0 2.5 2.1 2.01 2.001 2

y2 18.0 13.75 10.71 10.0701 10.007 001 10

y2 - 10 8.0 3.75 0.71 0.0701 0.007 001  

x2 - 2 1.0 0.5 0.1 0.01 0.001  

m =
y2 - 10
x2 - 2

8.0 7.5 7.1 7.01 7.001  
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We see that the slope of PQ approaches the value of 7 as Q approaches P. Therefore, 
the slope of the tangent line at 12, 102  is 7. See Fig. 23.12. ■

Let a general point P be represented by P1x, y2 . Using the appropriate notation, the 
coordinates of any other point Q1x2, y22  on the curve of f1x2  can be expressed in 
terms of the coordinates of P.  Define ∆x and ∆y as the x- and y-distances between the 
points P and Q. Then

∆x = x2 - x
x2 = x + ∆x

For the function y = f1x2 , the point P1x, y2  can be written as P1x, f1x2 2  and the 
point Q1x2, y22  can be written as Q(x + ∆x, ƒ(x + ∆x)). See Fig. 23.13.

You can see from the y-values in Fig. 23.13 that y + ∆y = ƒ(x + ∆x). Since this 
equation contains the quantities ∆x and ∆y, we can use it as a starting point for 

calculating the average slope, which we define as 
∆y
∆x

.

To calculate the average slope of any function over an interval between any two 
points, we can use the delta method.

(23.2)
(23.3)
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Delta Method for Finding an Average Slope
1.  Write y + ∆y = ƒ(x + ∆x). Substitute x + ∆x into the function and simplify 

if possible.

2.  Rearrange the equation to isolate ∆y. Do this by subtracting y (the original 
function) from both sides of the equation. Make sure that y is expressed as a 
function of x during this subtraction. Simplify if possible.

3.  Divide both sides of the equation by ∆x to get 
∆y
∆x

. This equation represents 

  the average slope between any two points for the function. The first point is 
(x, y) and the interval width in question is ∆x.

 EXAMPLE  2  Average slope over an interval

For the function y = x2 + 1, find the average slope from x = 1 to x = 1.1 using the 
delta method.

 y + ∆y = ƒ(x + ∆x) step 1

= (x + ∆x)2 + 1 substitute x + ∆x into f

= x2 + 2x∆x + ∆x2 + 1

 ∆y = x2 + 2x∆x + ∆x2 + 1 - y  step 2

= x2 + 2x∆x + ∆x2 + 1 - (x2 + 1)

= 2x∆x + ∆x2

 
∆y
∆x

=
2x∆x + ∆x2

∆x
 step 3

∆y
∆x

= 2x + ∆x
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This is the general equation for the average slope between any two points for this func-
tion. If x = 1 and ∆x = 1.1 - 1 = 0.1 then

∆y
∆x

= 2(1) + 0.1

∆y
∆x

= 2.1  ■

Using Eq. (23.3), along with the definition of slope, we can express the average slope 
over the interval from P to Q as

mPQ =
∆y
∆x

=
ƒ(x + ∆x) - ƒ(x)

∆x
 (23.4)

Notice that this summarizes the delta method in determining average slope. By our pre-
vious discussion, as Q approaches P, the slope of the tangent line will be approximated 
by Eq. (23.4).

 EXAMPLE  3  Slope of the tangent line at a specific point

Find the slope of a line tangent to the curve of y = x2 + 3x at the point 12, 102 . (This 
is the same slope as in Example 1.)

As in Example 1, point P has the coordinates 12, 102 . Thus, the coordinates of any 
other point Q on the curve can be expressed as 12 + ∆  x, f12 + ∆  x2 2 . See Fig. 23.14. 
The slope of PQ then becomes

 mPQ =
ƒ12 + ∆  x2 - ƒ122

∆x
=

312 + ∆  x22 + 312 + ∆  x24 - 322 + 31224
∆x

 =
14 + 4∆x + ∆x2 + 6 + 3∆x2 - 14 + 62

∆x

 =
7∆x + ∆x2

∆x
= 7 + ∆x

From this expression, we can see that mPQ S 7 as ∆x S 0. Therefore, we can see that 
the slope of the tangent line is

mtan = lim
∆xS0

 mPQ = 7

We see that this result agrees with that found in Example 1. ■

We can define the slope of a tangent line at a single point P by letting the point Q 
approach P. As Q approaches P, we have ∆x S 0. Consequently, we add a final step to 
the delta method outlined above.

Fig. 23.14 
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Delta Method for Finding a Tangent Line Slope

4. m tan = lim
∆xS0

mPQ = lim
∆xS0

∆y
∆x

 EXAMPLE  4  Slope of the tangent line at a general point

Find the slope of a line tangent to the curve of y = 4x - x2 at a point 1x , y2  using the 
delta method.
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mPQ =
ƒ1x + ∆x2 - ƒ1x2

∆x

mPQ =
341x + ∆x2 - 1x + ∆x224 - 14x - x22

∆x

mPQ =
4x + 4∆x - x2 - 2x # ∆x - ∆x2 - 4x + x2

∆x

mPQ =
4∆x - 2x # ∆x - ∆x2

∆x

mPQ = 4 - 2x - ∆x

Here, we see that mPQ S 4 - 2x as ∆x S 0. Therefore,

mtan = 4 - 2x

This method has an advantage over that used in Example 2. We now have a general 
expression for the slope of a tangent line for any value x. If x = -1, mtan = 6 and if 
x = 3, mtan = -2. The tangent lines are shown in Fig. 23.15. ■

 EXAMPLE  5  Evaluating the slope of a tangent line

Find the expression for the slope of a line tangent to the curve of y = x3 + 2 at the 
general point 1x, y2  and use this expression to find the slope when x = 1>2.

mPQ =
ƒ1x + ∆x2 - ƒ1x2

∆x

mPQ =
3 1x + ∆x23 + 24 - 1x3 + 22

∆x

mPQ =
x3 + 3x2 # ∆x + 3x # ∆x2 + ∆x3 + 2 - x3 - 2

∆x

mPQ =
3x2 # ∆x + 3x # ∆x2 + ∆x3

∆x

mPQ = 3x2 + 3x # ∆x + ∆x2

Taking the limit as ∆x S 0 yields the slope of the tangent line.

mtan = lim
∆xS0

13x2 + 3x # ∆x + ∆x22
mtan = 3x2

When x = 1>2, we find that the slope of the tangent is 311>42 = 3>4. The curve and 
this tangent line are shown in Fig. 23.16. ■

 EXAMPLE  6  Slope as instantaneous rate of change

In Example 1, consider points P12, 102  and Q12.5, 13.752 . From P to Q, x changes 
by 0.5 unit and f1x2  changes by 3.75 units. This means the average change in f1x2  
for a 1-unit change in x is 3.75>0.5 = 7.5 units. However, this is not the rate at which 
f1x2  is changing with respect to x at most points within this interval.

At point P, the slope of 7 of the tangent line tells us that f1x2  is changing 7 units for 
a 1-unit change in x. However, this is an instantaneous rate of change at point P and 
tells the rate at which f1x2  is changing with respect to x at P. ■
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■ Graphing calculators have a feature for 
drawing a line tangent to a curve.

Practice Exercise

1.  Find the expression for the slope of a line 
tangent to the curve of y = 4x2 at 1x, y2 .

Fig. 23.16 
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The ratio of the change in f1x2  to 
the change in x is the average rate of 
change of f 1x 2  with respect to x.

As ∆x S 0, the limit of the ratio of 
the change in f 1x 2  to the change in x 
is the instantaneous rate of change 
of f 1x 2  with respect to x.
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EXERCISES 23.2

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then find the indicated slopes.

 1. In Example 3, change the point 12, 102  to 13, 182 .

 2. In Example 4, change the 4x to 3x.

In Exercises 3–6, use the method of Example 1 to calculate the slope 
of the line tangent to the curve of each of the given functions. Let Q1, 
Q2, Q3, and Q4 have the indicated x-values. Sketch the curve and 
tangent lines.

 3. y = x2; P is 12, 42 ; let Q have x-values of 1.5, 1.9, 1.99, 1.999.

 4. y = 1 - 1
2x2; P is 12, -12 ; let Q have x-values of 1.5, 1.9, 1.99, 

1.999.

 5. y = 2x2 + 5x; P is 1 -2, -22 ; let Q have x-values of -1.5, -1.9, 
-1.99, -1.999.

 6. y = x3 + 1; P is 1 -1, 02 ; let Q have x-values of -0.5, -0.9, 
-0.99, -0.999.

In Exercises 7–18, use the delta method to find a general expression 
for the slope of a tangent line to each of the indicated curves. Then find 
the slopes for the given values of x. Sketch the curves and tangent lines.

 7. y = x2; x = 2, x = -1

 8. y = 1 - 1
2 x2; x = 2, x = -2

 9. y = 2x2 + 5x; x = -2, x = 0.5

 10. y = 4.5 - 3x2; x = 0, x = 2

 11. y = x2 + 4x + 2p; x = -3, x = 2

 12. y = 2x2 - 4x; x = 1, x = 1.5

 13. y = 6x - x2; x = -2, x = 3

 14. y = x3 - 2x; x = -1, x = 0, x = 1

 15. y = 1.5x4; x = 0, x = 0.5, x = 1

 16. y = 4 - x4; x = 0, x = 1, x = 2

 17. y = x5; x = 0, x = 0.5, x = 1

 18. y = 1
x  ; x = 0.5, x = 1, x = 2

In Exercises 19–22, use the tangent feature of a graphing calculator 
to display the curve and the tangent line for the given values of x.

 19. y = 2x - 3x2; x = 0, x = 0.5

 20. y = 3x - x3; x = -2, x = 0, x = 2

 21. y = 1
3 x6; x = 0, x = 0.5, x = 1

 22. y =
2

x + 1
 ; x = -0.5, x = 0, x = 1

In Exercises 23–26, find the average rate of change of y with respect 
to x from P to Q. Then compare this with the instantaneous rate of 
change of y with respect to x at P by finding mtan  at P.

 23. y = x2 + 2; P12, 62 , Q12.1, 6.412
 24. y = 1 - 2x2; P11, -12 , Q11.1, -1.422
 25. y = 9 - x3; P12, 12 , Q12.1, -0.2612
 26. y = x3 - 6x; P13, 92 , Q13.1, 11.1912
In Exercises 27 and 28, find the point(s) where the slope of a tangent 
line to the given curve has the given value. In Exercises 29–33, solve 
the given problems.

 27. y = 2x2, mtan = -4

 28. y = x3 + 3x2, mtan = 9

 29. Find the slope of a line perpendicular to the tangent of the curve 
of y = 8 - 3x2 where x = -1.

 30. Find the slopes of the tangent lines to the curve y = 1
3 x3 + x at 

points where x = 1 and x = 2. Then find the acute angle 
between these lines at the point where they cross.

 31. In a computer game, at one point an airplane is diving along the 
curve of y = -2x2 + 10. What is the angle of the dive (with the 
vertical) when x = 1.5?

 32. At an amusement park, a waterslide follows the curve of 
y = 8> 1x + 12 , for x = 0 m to x = 7 m. What is the angle 
(with the horizontal) of the slide when x = 4.00 m?

 33. A structural support panel follows the curve y = x3 + 1 (all 
dimensions are in metres) from x = -2.00 m to x = 2.00 m. 
Determine the slope of the structural panel at the point 
x = -1.00 m.

Answer to Practice Exercise
1. m tan = 8x

In the preceding section, we found the slope of a line tangent to a curve at a point 1x, f1x2 2  by calculating the limit (if it exists) of the difference f1x + ∆x2 - f1x2  
divided by ∆x as ∆x S 0. For brevity, we can define h = ∆x = x2 - x. We can then 
write the slope of the tangent line as

m tan = lim
hS0

 
f1x + h2 - f1x2

h
 (23.5)

 23.3 The Derivative

Derivative



674 CHAPTER 23 The Derivative

Derivative 
Slope of Tangent Line 
Slope at a Single Point 
Instantaneous Slope

dy
dx

d
dx

1y2 ƒ′1x2 Dxy y′

Here 
d
dx

 and Dx represent the process of finding the derivative with respect to a change 

in variable x.
The process of finding a derivative is called differentiation.
A four-step procedure for finding the derivative of a function by use of the defini-

tion is outlined here.

Summary of the Delta Process for Finding the Derivative of a Function
1. Find f1x + h2 .

2. Subtract f1x2  from f1x + h2 .

3. Divide the result of step 2 by h.

4. For the result of step 3, find the limit (if it exists) as h S 0.

f′1x2 =  lim
hS0

 
f1x + h2 - f1x2

h
 (23.6)

 EXAMPLE  1  Using the definition to find a derivative

Find the derivative of y = 2x2 + 3x by using the definition.
With y = f1x2 , using the above procedure to find the derivative ƒ′1x2 , we have 

the following:

 f1x + h2 = 21x + h22 + 31x + h2
 f1x + h2 - f1x2 = 21x + h22 + 31x + h2 - 12x2 + 3x2

 = 2x2 + 4xh + 2h2 + 3x + 3h - 2x2 - 3x

 = 4xh + 3h + 2h2

 
f1x + h2 - f1x2

h
=

4hx + 3h + 2h2

h
= 4x + 3 + 2h

  lim
hS0

 
f1x + h2 - f1x2

h
=   lim

hS0
14x + 3 + 2h2 = 4x + 3

 ƒ′1x2 = 4x + 3

We see that the derivative of the function 2x2 + 3x is the function 4x + 3. From the 
meanings of a slope of a tangent line and the derivative, this means we can find the slope of 
a tangent line for any point on the curve of y = 2x2 + 3x by substituting the x-coordinate 
into the expression 4x + 3. For example, the slope of a tangent line is 5 if x = 1>2 (at 
the point 11>2, 22). See Fig. 23.17. ■

step 1 

step 2

step 3

step 4

The limit on the right is defined as the derivative of f1x2  at x. This is one of the fun-
damental definitions of calculus.

Keep in mind that 
dy
dx

 is simply a shorter way of writing lim
∆xS0

∆y
∆x

. There are other 

ways of representing the derivative:

Fig. 23.17 
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Since the derivative of a function is itself a function, it is possible that it may not be 
defined for all values of x. If the value x0 is in the domain of the derivative, then the 
function is said to be differentiable at x0. The examples that follow illustrate functions 
that are not differentiable for all values of x.

 EXAMPLE  2  Using the definition—derivative of a fraction

Find the derivative of y =
3

x + 2
 by using the definition.

 f1x + h2 =
3

x + h + 2

 f1x + h2 - f1x2 =
3

x + h + 2
- 3

x + 2

 f1x + h2 - f1x2 =
31x + 22 - 31x + h + 221x + h + 22 1x + 22 =

-3h1x + h + 22 1x + 22
 
f1x + h2 - f1x2

h
=

-3h
h1x + h + 22 1x + 22 =

-31x + h + 22 1x + 22
  lim
hS0

 
f1x + h2 - f1x2

h
=  lim

hS0
 

-31x + h + 22 1x + 22 =
-31x + 222

 ƒ′1x2 =
-31x + 222

Note that neither the function nor the derivative is defined for x = -2. This means the 
function is not differentiable at x = -2. ■

step 1 

step 2

step 3

step 4

In Example 2, it was necessary to combine fractions in the process of finding the deriva-
tive. Such algebraic operations must be done with care. One of the most common 
sources of errors is the improper handling of fractions.

COMMON ERROR

 EXAMPLE  3  Derivative—proper handling of fractions

Find the derivative of y = 4x3 + 5
x

 by using the definition.

 f1x + h2 = 41x + h23 + 5
x + h

 f1x + h2 - f1x2 = 41x + h23 + 5
x + h

- a4x3 + 5
x
b

 = 41x3 + 3x2h + 3xh2 + h32 - 4x3 + 5
x + h

- 5
x

 = 4x3 + 12x2h + 12xh2 + 4h3 - 4x3 +
5x - 51x + h2

x1x + h2
 = 12x2h + 12xh2 + 4h3 - 5h

x1x + h2
 
f1x + h2 - f1x2

h
=

12x2h + 12xh2 + 4h3

h
- 5h

hx1x + h2
  lim
hS0

 
f1x + h2 - f1x2

h
=  lim

hS0
 a12x2 + 12xh + 4h2 - 5

x1x + h2 b = 12x2 - 5

x2

 f′1x2 = 12x2 - 5

x2

Note that this function is not differentiable for x = 0. ■

Practice Exercise

2.  Using the definition, find the derivative 
of y = 3>x.

The algebra is easier if the fractions 
are combined separately from the 
other terms.

LEARNING T IP

Practice Exercise

1.  Using the definition, find the derivative 
of y = 5x - x2.
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 EXAMPLE  4  Notation for evaluating the derivative

In Example 2, y =
3

x + 2
, and we found that the derivative is 

-31x + 222 . Therefore, 

we may write

y′ =
-31x + 222 or 

dy
dx

=
-31x + 222

instead of ƒ′1x2 =
-31x + 222 as we did in Example 2.

If we wish to find the value of the derivative at some point, such as 1 -1, 32 , we write

 
dy
dx

=
-31x + 222

 
dy
dx

`
x= -1

=
-31 -1 + 222 = -3

Note that only the x-coordinate was needed to evaluate the derivative. ■

 EXAMPLE  5  

Find dy>dx for the function y = 1x by using the definition.
When finding this derivative, we will employ the method of conjugate multiplica-

tion for evaluating limits. See Section 23.1 regarding this approach.

 f1x + h2 = 2x + h

 f1x + h2 - f1x2 = 1x + h - 1x

 
f1x + h2 - f1x2

h
=

2x + h - 1x
h

lim
hS0

f1x + h2 - f1x2
h

= lim
hS0

2x + h - 1x
h

=
0
0

 1 indeterminate2
lim
hS0

f1x + h2 - f1x2
h

= lim
hS0

2x + h - 1x
h

# 1x + h + 1x1x + h + 1x

 = lim
hS0

11x + h22 - 12x22

h11x + h + 1x2
 = lim

hS0

x + h - x
h11x + h + 1x2

 = lim
hS0

h
h11x + h + 1x2

 = lim
hS0

11x + h + 1x

 =
11x + 1x

 
dy
dx

=
1

21x

The domain of f1x2  is x Ú 0. However, since x appears in the denominator of the 
derivative, the domain of the derivative is x 7 0. Thus, the function is differentiable 
for x 7 0. ■

■ Most graphing calculators have a feature 
for evaluating derivatives. In particular, the 
numerical derivative feature evaluates 
derivatives through numerical approximations.

One might ask why, when finding a 
derivative, we take the limit as h 
approaches zero and not just let h equal 
zero. If we did this, we would find that 
the ratio 3f1x + h2 - f1x2 4 >h is 
exactly 0>0, which requires division by 
zero. As we know, this is indeterminate, 
and therefore h cannot equal zero. 
However, it can equal any value as near 
zero as necessary. This idea is basic in 
the meaning of the word limit.

LEARNING T IP
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EXERCISES 23.3

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then find the derivative by using the 
definition.

 1. In Example 1, change 2x2 to 4x2.

 2. In Example 2, change x + 2 in the denominator to x - 2.

In Exercises 3–26, find the derivative of each of the functions by using 
the definition.

 3. y = 3x - 1 4. y = 6x + 3

 5. y = 1 - 2x 6. y = 2.3 - 5x

 7. y = x2 - 1 8. y = 42 - x2

 9. y = px2 10. y = -6x2

 11. y = x2 - 7x 12. y = x2 + 4ex

 13. y = 8x - 2x2 14. y = 3x - 1
2x2

 15. y = x3 + 4x - 3p 16. y = 2x - 4x3

 17. y =
13

x + 2
 18. y =

3
5x + 3

 19. y = x + 4
3x

 20. y =
x

x - 1

 21. y =
2

x2 22. y =
2e2

x2 + 4

 23. y = x4 + x3 + x2 + x 24. y = 1
3x3 + 1

2x2 + x

 25. y = x4 - 2
x

 26. y =
1
6x

+ 5

x2

In Exercises 27–30, find the derivative of each function by using the 
definition. Then evaluate the derivative at the given point.

 27. y = 3x2 - 2x; 1 -1, 52  28. y = 9x - x3; 12, 102
 29. y =

11
3x + 2

; 13, 12  30. y = x2 - 2
x

; 1 -2, 52
In Exercises 31–34, find the derivative of each function by using the 
definition. Then determine the values for which the function is 
differentiable.

 31. y = 1 + 2
x

 32. y =
5x

x - 4

 33. y =
3

x2 - 1
 34. y =

2

x2 + 1

In Exercises 35–44, solve the given problems.

 35. Find the point(s) on the curve of y = x2 - 4x for which the slope 
of a tangent line is 6.

 36. Find the point(s) on the curve of y = 1> 1x + 12  for which the 
slope of the tangent line is -1.

 37. At what point on the curve of y = 2x2 - 16x is there a tangent 
line that is horizontal?

 38. At what point on the curve of y = 9 - 2x2 is there a tangent line 
that is parallel to the line 12x - 2y + 7 = 0?

 39. Find dy>dx for y = 1x + 1 by the method of Example 5. For 
what values of x is the function differentiable? Explain.

 40. Find dy>dx for y = 2x2 + 3 by the method of Example 5.

 41. By noting the derivative for the function in Exercise 23, guess as 
to a formula for the derivative of y = xn, where n is a positive 
integer.

 42. By noting the derivative for the function in Exercise 26, guess as 
to a formula for the derivative of y = xn, where n is a negative 
integer. Compare the result with that of Exercise 41.

 43. A ski run follows the curve of y = 0.01x2 - 0.4x + 4 from 
x = 0 m to x = 20.0 m. What is the angle between the ski run 
and the horizontal when x = 10.0 m? (Round to 3 significant 
digits.)

 44. The cross section of a hill can be approximated by the curve of 
y = 0.3x - 0.00003x3 from x = 0 m to x = 100 m. The top of 
the hill is level. How high is the hill? (Round to 3 significant 
digits.)

Answers to Practice Exercises

1. y′ = 5 - 2x 2. y′ = -3>x2

In Section 23.2, we saw that the slope of a line tangent to a curve at point P was the 
limiting value of the slope of the line through points P and Q as Q approaches P. In 
Section 23.3, we defined the limit of the ratio 1 f1x + h2 - f1x2 2 >h as h S 0 as the 
derivative. Therefore, the first meaning we have given to the derivative is the slope of a 
line tangent to a curve, as we noted in Example 1 of Section 23.3. The following exam-
ple further illustrates this meaning of the derivative.

 23.4 The Derivative as an Instantaneous Rate of Change

Rate of Change of the Dependent Variable 
with Respect to the Independent Variable
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 EXAMPLE  1  Slope of a tangent line

Find the slope of the line tangent to the curve of y = 4x - x2 at the point 11, 32 .
As we have noted, from Sections 23.2 and 23.3, we know that we must first find the 

derivative and then evaluate it at the given point.

 f1x + h2 = 41x + h2 - 1x + h22

 f1x + h2 - f1x2 = 41x + h2 - 1x + h22 - 14x - x22
 = 4x + 4h - x2 - 2xh - h2 - 4x + x2 = 4h - 2xh - h2

 
f1x + h2 - f1x2

h
=

4h - 2xh - h2

h
= 4 - 2x - h

 lim
hS0

f1x + h2 - f1x2
h

=  lim
hS0

14 - 2x - h2 = 4 - 2x

 
dy
dx

= 4 - 2x

 
dy
dx

` 11, 32 = 4 - 2112 = 2

The slope of the tangent line at 11, 32  is 2. Note that only x = 1 was needed for the 
evaluation. The curve and tangent line are shown in Fig. 23.18. ■

At the end of Section 23.2, we discussed the idea that the ratio 1 f1x + h2 - f1x2 2 >h 
gives the rate of change of f1x2  with respect to x. In defining the derivative as the limit 
of this ratio as h S 0, it is a measure of the rate of change of f1x2  with respect to x at 
point P. However, P may represent any point, which means the value of the derivative 
changes from one point on a curve to another point.

 EXAMPLE  2  Rate of change of f1x2  for an exact value of x

In Examples 1 and 3 of Section 23.2, f1x2  is changing at the rate of 7 units for a 1-unit 
change in x, when x equals exactly 2. In Example 4 of Section 23.2, f1x2  is increasing 
6 units for a 1-unit change in x, when x equals exactly −1 , and f1x2  is decreasing 
2 units for a 1-unit increase in x, when x equals exactly 3. ■

This gives us a more general meaning of the derivative. If a functional relationship 
exists between any two variables, then one can be taken to be varying with respect to 
the other, and the derivative gives us the instantaneous rate of change. There are many 
applications of this principle, one of which is the velocity of an object. We consider 
now the case of motion along a straight line, called rectilinear motion.

The average velocity of an object is found by dividing the change in displacement 
by the time interval required for this change. As the time interval approaches zero, the 
limiting value of the average velocity gives the value of the instantaneous velocity. 
Using symbols for the derivative, the instantaneous velocity of an object moving in 
rectilinear motion at a specified time t is given by

v = lim
hS0

s1 t + h2 - s1 t2
h

 (23.7)

where s1 t2  is the displacement as a function of the time t, and h is the time interval 
that approaches zero. In this case, the derivative has units of displacement divided by 
units of time, and we can denote it as ds>dt.

Fig. 23.18 
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The derivative gives the instantaneous 
rate of change of f1x2  with respect to x.
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 EXAMPLE  3  Instantaneous velocity

Find the instantaneous velocity, when t = 4 s (exactly), of a falling object for which 
the distance s (in m) fallen is the displacement given by s = 4.90t2, by calculating aver-
age velocities between t = 3.5 s, 3.9 s, 3.99 s, 3.999 s, and t = 4 s, and then noting the 
apparent limiting value as h S 0.

The values of h are found by subtracting the given times from 4 s. Also, since 
s = 78.40 m for t = 4 s, the differences in distance are found by subtracting the values 
of s for the given times from 78.40 m. Therefore, we have

 t (s) 3.5 3.9 3.99 3.999

 s (m) 60.025 74.529 78.00849 78.360805

 7840 - s 1m2  18.375 3.871 0.3915 0.039195

 h = 4 - t 1s2  0.5 0.1 0.01 0.001

 v =
78.40 - s

h
 1m>s2  36.750 38.710 39.150 39.155

We can see that the value of v is approaching 39.20 m>s, which is therefore the instan-
taneous velocity when t = 4 s. ■

 EXAMPLE  4  Instantaneous velocity from the derivative

Find the expression for the instantaneous velocity of the object of Example 3, for which 
s = 4.90t2, where s is the displacement (in m) and t is the time (in s). Determine the 
instantaneous velocity for t = 2 s and t = 4 s.

The required expression is the derivative of s with respect to t.

 f1 t + h2 = 4.901 t + h22

 f1 t + h2 - f1 t2 = 4.901 t + h22 - 4.90t2 = 9.80th + 4.90h2

 
f1 t + h2 - f1 t2

h
=

9.80th + 4.90h2

h
= 9.80t + 4.90h

 v =  lim
hS0

f1 t + h2 - f1 t2
h

=  lim
hS0

19.80t + 4.90h2 = 9.80t

 
ds
dt

`
t =2

= 9.80122 = 19.6 m>s and 
ds
dt

`
t =4

= 9.80142 = 39.2 m>s

We see that the second result agrees with that found in Example 3. ■

By finding  lim
hS0

1 f1x + h2 - f1x2 2 >h, we can find the instantaneous rate of change 

of f1x2  with respect to x. The expression lim
hS0

1 f1 t + h2 - f1 t2 2 >h gives the instanta-

neous velocity, or instantaneous rate of change of displacement with respect to time.

 EXAMPLE  5  Instantaneous rate of change of volume

A spherical balloon is being inflated. Find the expression for the instantaneous rate of 
change of the volume with respect to the radius. Evaluate this instantaneous rate of 
change for a radius of 2.00 m.

 V = 4
3 pr3 

 f1r + h2 = 4
3 p1r + h23

 f1r + h2 - f1r2 = 4
3 p1r + h23 - 4

3 pr3

 f1r + h2 - f1r2 = 4
3 p1r3 + 3r2h + 3rh2 + h3 - r32 = 4

3 p13r2h + 3rh2 + h32

expression for  
instantaneous velocity

volume of sphere

find derivative

■ See the chapter introduction.

■ See the chapter introduction.

Practice Exercise

1.  Find the instantaneous velocity of an object 
moving such that s = 6.00 t2 for 
t = 3.00 s. Here, s is the displacement  
(in m) and t is the time (in s).

The derivative can be interpreted as the 
instantaneous rate of change of the 
dependent variable with respect to  
the independent variable. This is true 
for a differentiable function, no matter 
what the variables represent.

LEARNING T IP
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f1r + h2 - f1r2

h
=

4p
3

 a3r2h + 3rh2 + h3

h
b =

4p
3

 13r2 + 3rh + h22
 
dV
dr

= lim
hS0

f1r + h2 - f1r2
h

= lim
hS0

a4p
3

 13r2 + 3rh + h22 b = 4pr2

 
dV
dr

`
r =2.00 m

= 4p12.0022 = 16.0p = 50.3 m2

The instantaneous rate of change of the volume with respect to the radius 1dV>dr2  for 
r = 2.00 m is 50.3 m3>m (this way of showing the units is more meaningful).

As r increases, dV>dr also increases. This should be expected as the volume of a 
sphere varies directly as the cube of the radius. ■

 EXAMPLE  6  Instantaneous rate of change of power

The power P produced by an electric current i in a resistor varies directly as the square 
of the current. Given that 1.20 W of power are produced by a current of 0.500 A in a 
certain resistor, find an expression for the instantaneous rate of change of power with 
respect to current. Evaluate this rate of change for i = 2.50 A.

We must first find the functional relationship between power and current, by solving 
the indicated problem in variation:

P = ki2 1.20 = k10.50022 k = 4.80 W>A2  P = 4.8i2

Now, knowing the function, we may determine the expression for the instantaneous 
rate of change of P with respect to i by finding the derivative.

 f1 i + h2 = 4.81 i + h22

 f1 i + h2 - f1 i2 = 4.81 i + h22 - 4.8i2 = 4.812ih + h22
 
f1 i + h2 - f1 i2

h
=

4.812ih + h22
h

= 4.812i + h2  

 
dP
di

=  lim
hS0

 
ƒ1 i + h2 - ƒ1 i2

h
= lim

hS0
34.812i + h2 4 = 9.6i

 
dP
di

`
i =2.50 A

= 9.6012.502 = 24.0 W>A 

This tells us that when i = 2.50A, the rate of change of power with respect to current is 
24.0 W>A. Also, we see that the larger the current is, the greater is the increase in power. 
This should be expected, since the power varies directly as the square of the current. ■

instantaneous rate of change  
when r = 2.00 m

instantaneous rate of change 
when i = 2.50A

expression for instantaneous 
rate of change

Practice Exercise

2.  In Example 6, change 1.20 W of power to 
1.60 W of power, and 0.500 A of current 
to 0.800 A of current, and then find the  
instantaneous rate of change of power 
with respect to current for i = 3.00 A.

EXERCISES 23.4

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the resulting problems.

 1. In Example 4, change 4.90t2 to 14.00t - 4.90t2 and then evaluate 
the instantaneous velocity at the indicated times.

 2. In Example 5, change “volume” in the second line to “surface 
area” and then evaluate the rate of change for r = 2.00 m.

In Exercises 3–6, find the slope of a line tangent to the curve of the 
given equation at the given point. Sketch the curve and the tangent line.

 3. y = x2 - 1; 12, 32  4. y = 2x - x2; 1 -1, -32
 5. y =

16
3x + 1

; 1 -3, -22  6. y = 3 - 16

x2 ; 12, -12

In Exercises 7–10, calculate the instantaneous velocity for the 
indicated value of the time (in s) of an object for which the displacement 
(in m) is given by the indicated function. Use the method of Example 3 
and calculate values of the average velocity for the given values of t 
and note the apparent limit as the time interval approaches zero.

 7. s = 4t + 10 when t = 3; use values of t of  
2.0, 2.5, 2.9, 2.99, 2.999

 8. s = 6 - 3t when t = 4; use values of t of  
3.0, 3.5, 3.9, 3.99, 3.999

 9. s = 3t2 - 4t when t = 2; use values of t of  
1.0, 1.5, 1.9, 1.99, 1.999

 10. s = 40t - 4.9t2 when t = 0.5; use values of t of  
0.4, 0.45, 0.49, 0.499, 0.4999
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In Exercises 11–14, use the definition to find an expression for the 
instantaneous velocity of an object moving with rectilinear motion 
according to the given functions (the same as those for Exercises 7–10) 
relating s (in m) and t (in s). Then calculate the instantaneous velocity 
for the given value of t, rounding answers to 3 significant digits.

 11. s = 4t + 10; t = 3 12. s = 6 - 3t; t = 4

 13. s = 3t2 - 4t; t = 2 14. s = 40t - 4.9t2; t = 0.5

In Exercises 15–20, use the definition to find an expression for the 
instantaneous velocity of an object moving with rectilinear motion 
according to the given functions relating s and t.

 15. s = 48t + 12 16. s = 3t2 - 2t3 17. s = 12t2 - t3

 18. s = s0 + v0t + 1
2 at2 1s0, v0, and a are constants.2

 19. s = 3t - 6
5t

 20. s =
2t

t + 2

In Exercises 21–24, use the definition to find an expression for the 
instantaneous acceleration of an object moving with rectilinear 
motion according to the given functions. The instantaneous 
acceleration of an object is defined as the instantaneous rate of 
change of the velocity with respect to time. Here, v is the velocity, s is 
the displacement, and t is the time.

 21. v = 6t2 - 4t + 2 22. v = 16t + 1

 23. s = t3 + 15t (Find v, then find a.)

 24. s = s0 + v0t - 1
2at2 (s0, v0, and a are constants.)  

(Find v, then find a.)

In Exercises 25–42, find the indicated instantaneous rates of change. 
Unless specified otherwise, round answers to 3 significant digits.

 25. A metal circular ring is being cooled. Find the rate at which the 
circumference changes if the radius is decreasing at the rate of 
0.00150 cm>min.

 26. Liquid is poured into a tank with vertical sides and a square hori-
zontal cross section of edge 6.25 cm. Find the instantaneous rate 
of change of volume with respect to the depth h.

 27. The distance s (in m) above the ground for a projectile fired verti-
cally upward with a velocity of 44.0 m>s as a function of time t 
(in s) is given by s = 44.0t - 4.90t2. Find t for v = 0.

 28. For the projectile in Exercise 27, find v for t = 4.00 s and for 
t = 5.00 s. What conclusion can be drawn?

 29. The electric current i at a point in an electric circuit is the instan-
taneous rate of change of the electric charge q that passes the 
point, with respect to the time t. Find i in a circuit for which 
q = 30 - 2t.

 30. A load L (in N) is distributed along a beam 10.0 m long such that 
L = 5x - 0.5x2, where x is the distance from one end of the 
beam. Find the expression for the instantaneous rate of change of 
L with respect to x.

 31. A rectangular metal plate contracts while cooling. Find the 
expression for the instantaneous rate of change of the area A of 
the plate with respect to its width w, if the length of the plate is 
constantly three times as long as the width.

 32. A circular oil spill is increasing in size. Find the instantaneous 
rate of change of the area A of the spill with respect to its radius r 
for r = 245 m.

 33. The total power P (in W) transmitted by an AM radio station is 
given by P = 500 + 250m2, where m is the modulation index. 
Find the instantaneous rate of change of P with respect to m for 
m = 0.920.

 34. The bottom of a soft-drink can is being designed as an inverted 
spherical segment, the volume of which is V = 1

6 ph3 + 2.00ph, 
where h is the depth (in cm) of the segment. Find the instantane-
ous rate of change of V with respect to h for h = 0.600 cm.

 35. The total solar radiation H (in W>m2) on a particular surface 

  during an average clear day is given by H =
5000

t2 + 10
, where t 

  1-6 … t … 62 is the number of hours from noon (6 a.m. is 
equivalent to t = -6 h). Find the instantaneous rate of change of 
H with respect to t at 3 p.m.

 36. For the solar radiator in Exercise 35, find the average rate of 
change of H between 2 p.m. and 4 p.m. Compare with the instan-
taneous rate of change at 3 p.m.

 37. The value (in thousands of dollars) of a certain car is given by the 

  function V =
48

t + 3
, where t is measured in years. Find a general 

  expression for the instantaneous rate of change of V with respect 
to t and evaluate this expression when t = 3 years.

 38. For the car in Exercise 37, find the average rate of change of V 
between t = 2 years and t = 4 years. Compare with the instanta-
neous rate of change for t = 3 years.

 39. Oil in a certain machine is stored in 
a conical reservoir, for which the 
radius and height are both 4.00 cm 
(see Fig. 23.19). Find the instanta-
neous rate of change of the volume 
V of oil in the reservoir with respect 
to the depth d of the oil.

 40. The time t required to test a computer memory unit is directly 
proportional to the square of the number n of memory cells in the 
unit. For a particular type of unit, n = 6400 for t = 25.0 s. Find 
the instantaneous rate of change of t with respect to n for this type 
of unit for n = 8000.

 41. A holograph (an image formed without using a lens) of concen-
tric circles is formed. The radius r of each circle varies directly 
as the square root of the wavelength l of the light used. If 
r = 3.72 cm for l = 592 nm, find the expression for the instan-
taneous rate of change of r with respect to l.

 42. The force F between two electric charges varies inversely as the 
square of the distance r between them. For two charged particles, 
F = 0.120 N for r = 0.0600 m. Find the instantaneous rate of 
change of F with respect to r for r = 0.120 m.

Answers to Practice Exercises

1. 36.0 m>s 2. 15.0 W>A

d
4.00 cm

4.00 cm

Fig. 23.19 
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Previously, we have been able to compute derivatives of functions using either a 
table of values or the delta method (i.e., definition of the derivative) approach. With 
the table of values technique, the construction of the table can be tedious. Moreover, 
it is limited, in the sense that it applies to a region around only one point of the func-
tion, and it requires an estimation of an emerging pattern of behaviour from the values. 
In contrast, the derivative resulting from the delta method applies to any point on 
the curve, but the technique is very time-consuming. Nevertheless, if we apply the 
method to general forms of functions, we can obtain derivative formulas that are 
valid at any point where the function is differentiable and take much less time to 
compute. In this section, we derive the formulas that are used for finding the deriva-
tives of polynomial functions of the form f1x2 = a0xn + a1xn-1 + g + an.

First, we find the derivative of a constant. Letting f1x2 = c and then using the defi-
nition of a derivative, we find that f1x + h2 - f1x2 = c - c = 0. This means that

lim
hS0

f1x + h2 - f1x2
h

= lim
hS0

a0
h
b = 0

From this, we conclude that the derivative of a constant is zero. This result holds for all 
constants. Therefore, if y = c, then dy>dx = 0, or

dc
dx

= 0  (23.8)

Graphically, this means that for any function of the type y = c, the slope is always 
zero. We know that y = c represents a straight line parallel to the x-axis. From the 
definition of slope, we know that any line parallel to the x-axis has a slope of zero. See 
Fig. 23.20. We see that the two results are consistent.

Next, we find the derivative of a positive integral power of x. If f1x2 = xn, where n 
is a positive integer, by using the binomial theorem we have

 f1x + h2 - f1x2 = 1x + h2n - xn = xn + nxn-1h +
n1n - 12

2
xn-2h2 + g + hn - xn

f1x + h2 - f1x2  = nxn-1h +
n1n - 12

2
xn-2h2 + g + hn

 
f1x + h2 - f1x2

h
= nxn-1 +

n1n - 12
2

xn-2h + g + hn-1

 lim
hS0

f1x + h2 - f1x2
h

= nxn-1

Thus, the derivative of the nth power of x is

d1xn2
dx

= nxn-1  (23.9)

 EXAMPLE  1  Derivative of a constant

Find the derivative of the function y = -5.
Since -5 is a constant, applying Eq. (23.8), we have

dy
dx

=
d1 -52

dx
= 0

■

 23.5 Derivatives of Polynomials

Power of x
Times a Function of x
Sum of Functions of x

Fig. 23.20 

x

y

0

y 5 c

To find the derivative of a power of 
x, we multiply the exponent of x by 
the numerical coefficient and then 
decrease the exponent by 1.

The derivative of any function that 
is a power of x can be found with this 
formula, known as the power rule. 
The power rule is also valid for non-
integer powers.

LEARNING T IP

Derivative of a Constant

Derivative of a Power of x



 23.5 Derivatives of Polynomials 683

 EXAMPLE  2  Derivative of y = x

Find the derivative of the function y = x.
In using Eq. (23.9), we have n = 1 since x = x1. This means

dy
dx

=
d1x2

dx
= 112x1-1 = 112 1x02

Since x0 = 1, we have

dy
dx

= 1

Thus, the derivative of y = x is 1, which means that the slope of the line y = x 
is always 1. This is consistent with our previous discussion of the slope of a 
straight line. ■

 EXAMPLE  3  Derivative of a power of r

Find the derivative of the function v = r10.
Here, the dependent variable is v, and the independent variable is r. Therefore,

 
dv
dr

=
d1r102

dr
= 10r10-1

 = 10r9  ■

Next, we find the derivative of a constant times a function of x. We denote this func-
tion as u, or to show directly that it is a function of x, as u1x2 . In finding the derivative 
of c # u with respect to x, we have

 
d
dx

1c # u2 = lim
hS0

c # u1x + h2 - c # u1x2
h

 
d1c # u2

dx
= c # lim

hS0

u1x + h2 - u1x2
h

= c # du
dx

Therefore, the derivative of the product of a constant and a differentiable function of x 
is the product of the constant and the derivative of the function of x. This is written as

d1c # u2
dx

= c # du
dx

 (23.10)

 EXAMPLE  4  Derivative of a constant times a power of x

Find the derivative of y = 3x2.
In this case, c = 3 and u = x2. Thus, du>dx = 2x. Therefore,

 
dy

dx
=

d13x22
dx

= 3 # d1x22
dx

= 312x2
 
dy
dx

= 6x ■

From here on, we will be using func-
tions that are combinations of sim-
pler functions. Therefore, we must 
denote some functions by symbols 
other than f1x2 . We will often be 
using u and v.

LEARNING T IP

Derivative of a Constant  
Times a Function

Practice Exercise

1. Find the derivative of y = 6x3.

Occasionally, the derivative of a constant times a function of x is confused with the 
derivative of a constant that stands alone. It is necessary to distinguish clearly between a 
constant that multiplies a function and an isolated constant.

COMMON ERROR
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If the types of functions for which we have found derivatives are added, the result is 
a polynomial function with more than one term. The derivative is found by letting 
y = u + v, where u and v are functions of x. Using the definition, we have

 y = u1x2 + v1x2
 
dy
dx

=
d
dx

3u1x2 + v1x2 4 = lim
hS0

3u1x + h2 + v1x + h2 4 - 3u1x2 + v1x2 4
h

 
dy
dx

= lim
hS0

c u1x + h2 - u1x2
h

+
v1x + h2 - v1x2

h
d

 
dy
dx

= lim
hS0

c u1x + h2 - u1x2
h

d + lim
hS0

c v1x + h2 - v1x2
h

d =
du
dx

+ dv
dx

This tells us that the derivative of the sum of differentiable functions of x is the sum of 
the derivatives of the functions. This is written as

d1u + v2
dx

=
du
dx

+ dv
dx

 (23.11)

The combination of the four rules obtained above allows us to take derivatives of any 
polynomial of the form ƒ1x2 = a0xn + a1xn-1 + c + an.

 EXAMPLE  5  Evaluation of a derivative

Evaluate the derivative of f1x2 = 2x4 - 6x2 - 8x - 9 at 1 -2, 152 .
First, finding the derivative, we have

 ƒ′1x2 =
d12x42

dx
-

d16x22
dx

-
d18x2

dx
-

d192
dx

 ƒ′1x2 = 8x3 - 12x - 8

We now evaluate this derivative for x = -2.

ƒ′1x2 `
x = -2 

=  81 -223 - 121 -22 - 8 = -48 ■

 EXAMPLE  6  Slope of a tangent line

Find the slope of the line tangent to the curve of y = 4x7 - x4 at the point 11, 32 .
We must find and then evaluate the derivative for the value x = 1:

 
dy
dx

= 28x6 - 4x3   find derivative

 
dy
dx

`
x =1

= 28112 - 4112 = 24  evaluate derivative

Thus, the slope of the tangent line is 24. Again, we note that the substitution x = 1 must 
be made after the differentiation has been performed. The curve and the tangent line at 11, 32  are shown in Fig. 23.21. Note that a slope of 24 results in a steep tangent line.

Derivative of a Sum

0 1−1 −0.5

−5

5

0.5

(1, 3)

y

x

Fig. 23.21 
■
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 EXAMPLE  7  Evaluation of a derivative—application

For each 4.00-s cycle, the displacement s (in cm) of a piston is given by 
s = t3 - 6t2 + 8t, where t is the time. Find the instantaneous velocity of the piston 
for t = 2.60 s.

 s = t3 - 6t2 + 8t

 
ds
dt

= 3t2 - 12t + 8    find derivative

 
ds
dt

`
t =2.6

= 312.6022 - 1212.602 + 8  evaluate derivative

 = -2.92 cm>s

The piston is moving at -2.92 cm/s (it is moving in a negative direction) when 
t = 2.60 s. ■

Practice Exercise

2.  Find the expression for the instantaneous 
velocity if s = 7t4 - 4t + 5, where s is 
the displacement and t is the time.

Method for all general derivatives:

1. Identify the form.
2. Use the appropriate derivative  

formula to find the derivative.
3. Simplify algebraically and factor 

the solution.

LEARNING T IP

EXERCISES 23.5

In Exercises 1–4, make the given changes in the indicated examples  
of this section, and then solve the resulting problem.

 1. In Example 3, change the exponent 10 to 9.

 2. In Example 4, change the coefficient 3 to 4.

 3. In Example 5, change 2x4 to 2x3 and -8x to +8x.

 4. In Example 6, change 4x7 - x4 to 4x4 - x7 and evaluate the slope.

In Exercises 5–20, find the derivative of each of the given functions.

 5. y = x5 6. y = x12  7. f1x2 = -4x9

 8. y = -7x6 9. y = 5x4 - 3p 10. s = 3t5 + 4t - 8

t2

 11. y = x2 + 2x 12. y = x3 - 3
2

x2

 13. p = 5r3 - 2r + 1 14. y = 6x2 - 6x + 5

 15. y = 25x8 - 34x5 - 1x 16. u = 4v4 - 12v + 9

 17. f1x2 = -6x7 + 5x3 + p2 18. y = 13x4 - 6x3 - x - x2

 19. y = 1
3x3 + 1

2x2 - 1
x 20. f1z2 = -1

4z8 + 1
2z4 - 23

In Exercises 21–24, evaluate the derivative of each of the given 
functions at the given point. 

 21. y = 6x2 - 8x + 1; 12, 92  22. s = 2t3 - 5t2; 1 -1, -72
 23. y = 2x3 + 9x - 7; 1 -2, -412
 24. y = x4 - 9x2 - 5x; 13, -152
In Exercises 25–28, find the slope of a line tangent to the curve of 
each of the given functions for the given values of x.

 25. y = 2x6 - 4x2 1x = -12
 26. y = 3x3 - 9

x 1x = 12
 27. y = 35x - 2x4 1x = 22
 28. y = x4 - 1

2x2 + 2 1x = -22
In Exercises 29–32, determine an expression for the instantaneous 
velocity of objects moving with rectilinear motion according to the 
functions given, if s represents displacement in terms of time t.

 29. s = 6t5 - 5t + 2 30. s = 20 + 60t - 4.9t2

 31. s = 2 - 6t - 2t3 32. s = s0 + v0t + 1
2at2

In Exercises 33–36, s represents the displacement and t represents the 
time for objects moving with rectilinear motion, according to the 
given functions. Find the instantaneous velocity for the given times, 
rounded to 3 significant digits.

 33. s = 2t3 - 4t2; t = 4 34. s = 8t2 - 10t + 6; t = 5

 35. s = 120 + 80t - 16t2; t = 2.5

 36. s = 0.5t4 - 1.5t2 + 2.5; t = 3

In Exercises 37–57, solve the given problems by finding the 
appropriate derivative.

 37. For what value(s) of x is the tangent to the curve of y = 3x2 - 6x 
parallel to the x-axis? (That is, where is the slope zero?)

 38. Find the value of a if the tangent to the curve of y = ax2 + 2x 
has a slope of -4 for x = 2.

 39. For what point(s) on the curve of y = 3x2 - 4x is the slope of a 
tangent line equal to 8?

 40. Explain why the curve y = 5x3 + 4x - 3 does not have a tangent 
line with a slope less than 4.

 41. Find the point at which a tangent line to the parabola 
y = 2x2 - 7x is perpendicular to the line x - 3y = 16.

 42. Display the graphs of y = x2 and its derivative on a graphing 
calculator. State any conclusions you can draw from the relationship 
of the two graphs.

 43. For what value(s) of x is the slope of a line tangent to the curve of 
y = 4x2 + 3x equal to the slope of a line tangent to the curve of 
y = 5 - 2x2?

 44. For what value(s) of t is the instantaneous velocity of an object 
moving according to s = 5t - 2t2 equal to the instantaneous 
velocity of an object moving according to s = 3t2 + 4?

 45. A metal cylinder is heated and then cools. If the radius always 
equals the height, find the expression for the instantaneous rate of 
change of the volume V  with respect to the radius r.

 46. A rectangular solid block of ice is melting such that the height is 
always twice the edge of the square base. Find the expression for 
the instantaneous rate of change of surface area A with respect to 
the edge of the base s.
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 47. The electric power P (in W) as a function of the current i  
(in A) in a certain circuit is given by P = 16i2 + 60i. Find  
the instantaneous rate of change of P with respect to i for 
i = 0.750 A.

 48. The torque T  on the arm of a robotic control mechanism varies 
directly as the cube of the diameter d of the arm. If T = 845 N # m 
for d = 0.925 cm, find the expression for the instantaneous rate 
of change of T  with respect to d.

 49. The resistance R (in Ω ) of a certain wire as a function of the tem-
perature T  (in °C) is given by R = 16.0 + 0.450T + 0.0125T2. 
Find the instantaneous rate of change of R with respect to T  when 
T = 115°C.

 50. The deflection d of a diving board x m from the fixed end at the 
pool side is given by d = kx213L - x2, where L is the length of 
the diving board and k is a positive constant. Find the expression 
for the instantaneous rate of change of d with respect to x.

 51. The tensile strength S (in N) of a certain material as a function of 
the temperature T  (in °C) is S = 1600 - 0.000 022T2. Find 
the instantaneous rate of change of S with respect to T  for 
T = 65.0°C.

 52. A tank containing 6000 L of water drains out in 30.0 min. The 
volume V  of water in the tank after t min of draining is 
V = 600011 - t>3022. Find the instantaneous time rate of 
change of V  after 15.0 min of draining.

 53. The altitude h (in m) of a jet as a function of the horizontal dis-
tance x (in km) it has travelled is given by 
h = 0.000 104x4 - 0.0417x3 + 4.21x2 - 8.33x. Find the instan-
taneous rate of change of h with respect to x for x = 125 km.

 54. The force F  (in N) exerted by a cam on a lever is given by 
  F = x4 - 12x3 + 46x2 - 60x + 25, where x 11 … x … 52 is 
  the distance (in cm) from the centre  

of rotation of the cam to the edge of  
the cam in contact with the lever  
(see Fig. 23.22). Find the instantaneous 
rate of change of F  with respect to x 
when x = 4.00 cm.

 55. Two ball bearings wear down such that the radius r of one is con-
stantly 1.20 mm less than the radius of the other. Find the instan-
taneous rate of change of the total volume VT  of the two ball 
bearings with respect to r for r = 3.30 mm.

 56. An open-top container is to be made from a rectangular piece of 
cardboard 6.00 cm by 8.00 cm. Equal squares of side x are to be 
cut from each corner, then the sides are to be bent up and taped 
together. Find the instantaneous rate of change of the volume V  
of the container with respect to x for x = 1.75 cm.

 57. The head loss hL (in m) for a fluid travelling in a pipe at average 

  velocity v (in m/s) is given by hL = Kv2

2g
, where K is a friction 

  loss coefficient (constant), and g = 9.81 m/s2. Determine the rate 
of change of head loss with respect to velocity when the velocity 
is 3.25 m/s and K = 0.500.

Answers to Practice Exercises

1. dy>dx = 18x2 2. v = 28t3 - 4

x

1 cm

5 cm

Fig. 23.22 

In the previous section, we considered polynomial functions. For functions that are not 
polynomials, some are products of simpler functions, some are quotients of simpler 
functions, and others are powers of simpler functions. In this section, we develop the 
formula for the derivative of a product of functions and the formula for the quotient of 
functions.

 EXAMPLE  1  Product, quotient, and powers of functions

The functions f1x2 = x2 + 2 and g1x2 = 3 - 2x can be combined to form functions 
of the type mentioned above, as we now illustrate:

 p1x2 = f1x2 # g1x2 = 1x2 + 22 13 - 2x2     product of functions

 q1x2 =
g1x2
f1x2 =

3 - 2x

x2 + 2
   quotient of functions

 F1x2 = 3g1x2 42 = 13 - 2x22   power of a function ■

The first two forms will be discussed in this section and the final form will be discussed 
in Section 23.7.

If u and v are differentiable functions of x, the derivative of the function u # v is 
found by letting y = u # v, and applying the definition as follows:

 y = u1x2 # v1x2
 
dy
dx

=
d
dx

3u1x2 # v1x2 4 = lim
hS0

u1x + h2 # v1x + h2 - u1x2 # v1x2
h

 23.6 Derivatives of Products and Quotients of Functions

Quotient
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By adding and subtracting u1x + h2 # v1x2  in the numerator of the last fraction, we 
can put it in a form that includes the derivatives of u1x2  and v1x2 . Therefore,

 
d
dx

3u1x2 # v1x2 4 = lim
hS0

u1x + h2 # v1x + h2 - u1x + h2 # v1x2 + u1x + h2 # v1x2 - u1x2 # v1x2
h

d1u # v2
dx

= lim
hS0

c u(x + h)
v(x + h) - v(x)

h
+ v(x)

u(x + h) - u(x)
h

d = u1x2 # dv1x2
dx

+ v1x2 # du1x2
dx

We conclude that the derivative of the product of two differentiable functions equals 
the first function times the derivative of the second function plus the second function 
times the derivative of the first function. This is written as

  
d1u # v2

dx
= u # dv

dx
+ v # du

dx
 (23.12)

 EXAMPLE  2  Derivative of a product of functions

Find the derivative of the product function in Example 1.

 p1x2 = 1x2 + 22 13 - 2x2    u = x2 + 2   v = 3 - 2x

 p′1x2 = 1x2 + 22 # 1 -22 + 13 - 2x2 # 12x2 = -2x2 - 4 + 6x - 4x2

 p′1x2 = -6x2 + 6x - 4

We could have multiplied the functions first, and then taken the derivative as a 
polynomial. ■

 EXAMPLE  3  Derivative of a product of functions with variable r

Find the derivative of f1r2 = 8r312r2 - 4r2  using the product rule.
Recognize that the function f1r2 = 8r312r2 - 4r2  is of the form y = u # v with 

u = 8r3 and v = 2r2 - 4r. Therefore,

d1u # v2
dr

= u # dv
dr

+ v # du
dr

  product rule 

df
dr

= 8r3 # 14r - 42 + 12r2 - 4r2 # 124r22
df
dr

= 32r4 - 32r3 + 48r4 - 96r3

df
dr

= 80r4 - 128r3

df
dr

= 16r315r - 82  ■

We will now find the derivative of the quotient of two differentiable functions by 
applying the definition to the function y = u>v, as shown below.

 
d1u # v2

dx
=   u  #   

dv
dx

+    v  #  
du
dx

Practice Exercise

1.  Find the derivative of 
y = 13 - 2x22 1x4 - 12 . Do not multi-
ply factors together before finding the 
derivative.

When the powers over the functions 
are larger than 1, it may be very  
tedious to multiply out and expand 
the functions first. The product rule 
will be very useful in combination 
with another rule, the chain rule, 
which discusses finding derivatives of 
powers of functions. This concept is 
covered in Section 23.7.

LEARNING T IP

dy
dx

=
d
dx

au1x2
v1x2 b = lim

hS0

u1x + h2
v1x + h2 -

u1x2
v1x2

h
= lim

hS0

v1x2 # u1x + h2 - u1x2 # v1x + h2
h # v1x + h2 # v1x2

Derivative of a Product
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We can put the last fraction in a form that includes the derivatives of u1x2  and v1x2  
by subtracting and adding u1x2 # v1x2  in the numerator. Therefore,

 
d
dx

c u1x2
v1x2 d = lim

hS0

v1x2 # u1x + h2 - v1x2 # u1x2 + v1x2 # u1x2 - u1x2 # v1x + h2
h # v1x + h2 # v1x2

 
d
dx

1u>v2 = lim
hS0

v1x2 # u1x + h2 - u1x2
h

- u1x2 # v1x + h2 - v1x2
h

v1x + h2 # v1x2
 
d
dx

1u>v2 =
v1x2 # du1x2

dx
- u1x2 # dv1x2

dx3v1x2 42

Therefore, the derivative of the quotient of two differentiable functions equals the 
denominator times the derivative of the numerator minus the numerator times the 
derivative of the denominator, all divided by the square of the denominator.

 
dau

v
b

dx
=

v # du
dx

- u # dv
dx

v2  (23.13)

 EXAMPLE  4  

Find the derivative of the quotient function in Example 1.

q1x2 =
3 - 2x

x2 + 2
   u = 3 - 2x   v = x2 + 2

 q′1x2 =
1x2 + 22 # 1 -22 - 13 - 2x2 # 12x21x2 + 222 =

-2x2 - 4 - 6x + 4x21x2 + 222

 q′1x2 =
21x2 - 3x - 221x2 + 222  ■

v #   
du
dx
 -   u #   

dv
dx

v2

Derivative of a Quotient

Practice Exercise

2. Find the derivative of y =
2x2

x4 - 1
.

In the first expression for q′1x2 , be careful not to cancel the factor of 1x2 + 22 , as it is 
not a factor of both terms of the numerator.

COMMON ERROR

 EXAMPLE  5  

The stress S on a hollow tube is given by

S =
16DT

p1D4 - d42
where T  is the tension, D is the outer diameter, and d is the inner diameter of the tube. 
Find the expression for the instantaneous rate of change of S with respect to D, with the 
other values being constant.

We are to find the derivative of S with respect to D, and it is found as follows:

 
dS
dD

=
p1D4 - d42 # 116T2 - 16DT # 1p2 14D32

p21D4 - d422 =
16pT1D4 - d4 - 4D42

p21D4 - d422

 
dS
dD

=
-16T13D4 + d42
p1D4 - d422 ■

Note that when taking derivatives of 
quotients, it is sometimes easier to 
rewrite the problem as a product, 
with the denominator changing to 
have a negative power when moved 
to the numerator. In other words,
y =

u
v

 can be written in product form 

as y = u # v-1.

LEARNING T IP
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 EXAMPLE  6  Evaluation of a derivative

Evaluate the derivative of y =
3x2 + x
1 - 4x

 at 12, -22 .

 
dy
dx

=
11 - 4x2 16x + 12 - 13x2 + x2 1 -4211 - 4x22

 =
6x + 1 - 24x2 - 4x + 12x2 + 4x11 - 4x22

 =
-12x2 + 6x + 111 - 4x22

 
dy
dx

`
x=2

=
-121222 + 6122 + 131 - 4122 42 =

-35
49

 = - 5
7

■

EXERCISES 23.6

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the resulting problems.

 1. In Example 2, change u to 5 - 3x2.

 2. In Example 6, change the numerator to 3x2 - x and then find and 
evaluate the derivative at x = 2.

In Exercises 3–8, find the derivative of each function by using  
Eq. (23.12). Do not find the product before finding the derivative.

 3. y = 6x13x2 - 5x2  4. y = 2x313x4 + x2
 5. s = 13t + 22 12t - 52  6. f1x2 = 13x - 22 14x2 + 32
 7. y = 1x4 - 3x2 + 32 11 - 2x32  8. y = 1x3 - 6x2 12 - 4x32
In Exercises 9–12, find the derivative of each function by using Eq. 
(23.12). Then multiply out each function and find the derivative by 
treating it as a polynomial. Compare the results.

 9. y = 12x - 72 15 - 2x2  10. f1s2 = 15s2 + 22 12s2 - 12
 11. V = 1h3 - 12 12h2 - h - 12
 12. y = 13x2 - 4x + 12 15 - 6x22
In Exercises 13–24, find the derivative of each function by using 
Eq. (23.13).

 13. y =
x

2x + 3
 14. u =

4

v2 15. y =
p

2x2 + 1

 16. R =
5i + 2
2i + 3

 17. y =
6x2

3 - 2x
 18. y =

e2

3x2 - 5x

 19. y =
2x - 1

3x2 + 2
 20. P =

2i2

4 - 3i

 21. f1x2 =
3x + 8

x2 + 4x + 2
 22. y =

33x

4x5 - 3x - 4

 23. y =
2x2 - x - 1

x3 + 2x2  24. y =
3x3 - x

2x2 - 5x + 4

In Exercises 25–32, evaluate the derivatives of the given functions for 
the given values of x.

 25. y = 13x - 12 14 - 7x2 , x = 3

 26. y = 13x2 - 52 12x2 - 12 , x = -1

 27. y = 12x2 - x + 12 14 - 2x - x22 , x = -3

 28. y = 14x4 + 0.5x2 + 12 13x - 2x22 , x = 0.5

 29. y =
3x - 5
2x + 3

 , x = -2 30. y =
2x2 - 5x
3x + 2

, x = 2

 31. S =
2n3 - 3n + 8

2n - 3n4  , n = -1 32. y = 2x3 - x2 - 2
4x + 3

, x = 0.5

In Exercises 33–57, solve the given problems by finding the 
appropriate derivatives, and round answers to 3 significant digits 
unless otherwise specified.

 33. What text equation from Section 23.5 is equivalent to the product 
rule if one of the functions u and v is a constant?

 34. By use of the quotient rule, derive a formula for the derivative of 
the function 1>v1x2.

 35. Using the product rule, find the point(s) on the curve of 
y = 12x2 - 1211 - 4x2 for which the tangent line is y = 4x - 1.

 36. Do the curves of y = x2 and y = 1>x2 cross at right angles? 
Explain.

 37. If f 1x2  is a differentiable function, find an expression for the 
derivative of y = x2 # f 1x2 .

 38. If f 1x2  is a differentiable function, find an expression for the 
derivative of y = f 1x2 >x2.

 39. Find the derivative of y =
x211 - 2x2

3x - 7
 in each of the following 

  two ways. (1) Do not multiply out the numerator before finding 
the derivative. (2) Multiply out the numerator before finding the 
derivative. Compare the results.
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 40. Find the derivative of y = 4x2 - 1
x - 1

 in each of the following 

  two ways. (1) Do not combine the terms over a common denomi-
nator before finding the derivative. (2) Combine the terms over a 
common denominator before finding the derivative. Compare the 
results.

 41. Find the slope of a line tangent to the curve of the function 
y = 14x + 121x4 - 12 at the point 1-1, 02. Do not multiply the 
factors together before taking the derivative.

 42. Find the slope of a line tangent to the curve of the function 
y = 13x + 4211 - 4x2 at the point 12, -702. Do not multiply 
the factors together before taking the derivative.

 43. For what value(s) of x is the slope of a tangent to the curve of 

  y = x

x2 + 1
 equal to zero? View the graph on a graphing calculator 

  to verify the values found.

 44. Determine the sign of the derivative of the function y = 2x - 1

1 - x2  

  for the following values of x: -2, -1, 0, 1, 2. Is the slope of a 
tangent line to this curve ever negative? View the graph on a 
graphing calculator to verify your conclusion.

 45. The power P (in W) in an electric circuit is the product of the 
voltage V  and the current I  (in A). If V  and I  vary with time t 
(in s) 10 … t … 0.2 s2, according to V = 0.0480 - 1.20t2 and 
I = 2.00 - 0.800t, find dP>dt when t = 0.150 s.

 46. The thermodynamic temperature T  (in K) varies jointly as the 
pressure p (in Pa) and volume V  (in m3). Find the expression for 
dT>dt if p = 120011 - 0.0025t2 and V = 2.5011 + 0.0048t22, 
where t is the time (in s).

 47. If a constant current of 2 A passes 
through the current divider parallel 
resistors shown in Fig. 23.23, the cur-
rent i is given by i = 8R>17R + 122, 
where R is a variable resistor. Find 
di>dR.

 48. The sales S of a product as a function of the time t (in weeks) is 

  given by S =
2300(5t + 1)

2t +  5
. Find the instantaneous rate of 

  change of S with respect to t for t = 9 weeks.

 49. During each cycle, the vertical 
displacement s of the end of a 
robot arm is given by 
s = 1t2 - 8t212t2 + t + 12, 
where t is the time. Find the 
expression for the instantane-
ous velocity of the end of the 
robot arm. See Fig. 23.24.

 50. The concentration c (in mg>L) of a certain drug in the blood-
stream is found to be c = 25t>1t2 + 52, where t is the time (in h) 
after the drug is taken. Find dc>dt.

 51. A computer, using data from a refrigeration plant, estimated that 
in the event of a power failure the temperature T  (in °C) in the 

  freezers would be given by T = 2t
0.05t + 1

- 20, where t is the 

  number of hours after the power failure. Find the time rate of 
change of temperature after 6.00 h.

 52. The voltage V  across a resistor in an electric circuit is the product 
of the resistance and the current. If the current I  (in A) varies with 
time t  (in s) according to the relation I = 5.00 + 0.01t2 and 
the resistance varies with time according to the relation 
R = 15.00 - 0.10t, find the time rate of change of the voltage 
when t = 5.00 s.

 53. The frictional radius rf  of a disc clutch is given by the equation 

  rf =
21R2 + Rr + r22

31R + r2 , where R and r are the outer radius and 

  the inner radius of the clutch, respectively. Find the derivative of 
rf  with respect to R with r constant.

 54. In thermodynamics, an equation relating the thermodynamic tem-
perature T , the pressure p, and the volume V  of a gas is 

  T = ap + a

V2b aV - b
R

b , where a, b, and R are constants. Find 

  the derivative of T  with respect to V , assuming p is constant.

 55. The electric power P produced by a certain source is given by 

  P = E2r

R2 + 2Rr + r2 , where E is the voltage of the source, R is 

  the resistance of the source, and r is the resistance in the circuit. 
Find the derivative of P with respect to r, assuming that the other 
quantities remain constant.

 56. In the theory of lasers, the power P radiated is given by the equation 

  P =
kf 2

v2 - 2vf + f 2 + a2 , where f  is the field frequency and a, 

k, and v are constants. Find the derivative of P with 

  respect to f .

 57. The pressure p (in Pa) exerted at a depth h (in m) on the wall of a 

  particular dam is given by p = 9800h2

h + 1
. Determine the rate at 

which pressure is changing at the instant the depth is 48.0 m.

Answers to Practice Exercises

1. dy>dx = -12x5 + 12x3 + 4x 2. 
dy

dx
=

-4x1x4 + 121x4 - 122

3Ω

R

4 Ω

i2 A

Fig. 23.23 

s

s = 0

Fig. 23.24 

In Example 1 of Section 23.6, we illustrated y = 13 - 2x22 as the power of a func-
tion of x, where 3 - 2x is the function. If we let u = 3 - 2x, we can write y = u2, 
and in this way, y is a function of u, and u is a function of x. This means that y is a 
function of a function of x, which is called a composite function.

 23.7 The Derivative of a Power of a Function

Power Rule Extended to All Rational 
Exponents
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Since we will often need to find the derivative of a power of a function, which is a 
composite function, let us look at the derivative of y = 13 - 2x22.

 EXAMPLE  1  Developing the chain rule

Find the derivative of y = 13 - 2x22.
We will use the product rule by treating 13 - 2x22 as 13 - 2x213 - 2x2. The rea-

son for doing it this way will be shown.

 y = 13 - 2x22 = 13 - 2x213 - 2x2
 
dy
dx

= 13 - 2x2 # 1 -22 + 13 - 2x2 # 1 -22
 
dy
dx

= 213 - 2x21-22
We want to leave the answer in this form in order to compare with a result we can get 
by letting y = u2 and u = 3 - 2x:

y = u2,    
dy
du

= 2u

u = 3 - 2x,  
du
dx

= -2

 ady
du

b # adu
dx

b = 2u1-22 = 213 - 2x21-22
We see that this result is the same as the first result, and therefore for this function we 
see that 

dy
dx = 1 dy

du2 # 1du
dx 2 . ■

As for the function in Example 1, it can be shown that for a differentiable composite 
function for which y is a function of u and u is a function of x,

dy
dx

=
dy
du

# du
dx

 (23.14)

Eq. (23.14) is known as the chain rule for derivatives.
Using Eq. (23.14) for y = un, where u is a differentiable function of x, we have

 
dy

dx
=

d1un2
du

 # du
dx
  or

 
dun

dx
= nun-1adu

dx
b  (23.15)

We use Eq. (23.15) to find the derivative of a power of a differentiable function of x.

 EXAMPLE  2  Derivative of the power of a function

Find the derivative of y = 13 - 2x23.
For this function, n = 3 and u = 3 - 2x. Therefore, du>dx = -2. This means

 
dun

dx
= n  u  n  -  1  adu

dx
b

 
dy
dx

= 313 - 2x221 -22
 
dy
dx

= -613 - 2x22  ■

Derivative of a Power of a Function of x

Chain Rule

The chain rule is one of the most 
important derivative formulas in  
calculus, as it will be useful in many 
applications. It is critical for implicit 
differentiation (Section 23.8) and any 
differentiation involving functions 
expressed in terms of other functions.

LEARNING T IP

Practice Exercise

1. Find the derivative of y = 15x + 224.
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 EXAMPLE  3  Do not forget du ,dx

Find the derivative of p1x2 = 11 - 3x224.
In this example, n = 4 and u = 1 - 3x2, and du>dx = -6x.

 
dun

dx
= n  u   n  -  1  adu

dx
b

p′1x2 = 411 - 3x2231 -6x2
p′1x2 = -24x11 - 3x223 ■

 EXAMPLE  4  Product rule combined with power rule

Find the derivative of y = 2x313 - x324.
Here, we must use the product rule in combination with the power rule.

 
dy
dx

= 2x3 # 3413 - x3231 -3x22 4 + 13 - x324 # 3213x22 4
 
dy
dx

= -24x513 - x323 + 6x213 - x324 = 6x213 - x3233 -4x3 + 13 - x32 4
 
dy
dx

= 6x213 - 5x32 13 - x323  ■

Until now, we have derived formulas for derivatives of differentiable functions of x 
raised to positive integral powers. We now show that these formulas are also valid for 
any rational number used as an exponent. If we raise each side of y = u p/q to the qth 
power, we have yq = u p. Applying the power rule, we have

 qyq-1ady
dx

b = pu p-1adu
dx

b
 
dy
dx

=
pu p-11du>dx2

qyq-1 =
p
q

 
u p-11u p/q2q-1 

du
dx

=
p
q

 
u p-1

u p-p/q 
du
dx

 
dy
dx

=
p
q

 u p-1-p+1p/q2 
du
dx

Thus,

du p>q
dx

=
p
q

u1p>q2-1du
dx

 (23.16)

In deriving Eqs. (23.15) and (23.16), we used Eq. (23.9), and we noted it was valid 
for positive integral exponents. We can show that Eq. (23.9) is also valid for negative 
exponents by using the quotient rule on 1>x n, which is the same as x-n. Therefore,

the power rule for derivatives, Eq. (23.15), can be extended to include all rational 
exponents, positive or negative.

This, of course, includes all integral exponents, positive and negative. Also, we note 
that Eq. (23.9) is equivalent to Eq. (23.15) with u = x (since du>dx = 1).

When finding derivatives requiring the chain rule, the du/dx factor is often forgotten. 
The derivative is incomplete and therefore incorrect without this factor.

COMMON ERROR

Practice Exercise

2. Find the derivative of y = 5x12x + 723.

We see that in finding the derivative, 
we multiply the function by the 
rational exponent and subtract 1 
from it to find the exponent of the 
function in the derivative. This is the 
same rule as derived for positive  
integral exponents in Eq. (23.15).

LEARNING T IP

■ For reference, Eq. (23.9) is 
dxn

dx
= nx n - 1.
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 EXAMPLE  5  

We can now find the derivative of y = 2x2 + 1.
By using Eq. (23.16) or Eq. (23.15) and writing the square root as the fractional 

exponent 1>2, we can derive the result:

 y = 1x2 + 121>2
 
dy
dx

=
1
2

 1x2 + 12-1>212x2
 
dy
dx

=
x1x2 + 121>2

To avoid introducing apparently significant factors into the numerator, we do not usu-
ally rationalize such fractions. ■

Having shown that we may use fractional exponents to find derivatives of roots of 
functions of x, we may also use them to find derivatives of roots of x itself.

 EXAMPLE  6  Derivative using a fractional exponent

Find the derivative of y = 623 x2.
We can write this function as y = 6x 2>3. In finding the derivative, we may use Eq. 

(23.9) with n = 2
3. This gives us

 y = 6x2>3
 
dy
dx

= 6 a2
3
bx-1>3 =

4

x1>3
We could also use Eq. (23.15) with u = x and n = 2

3. This gives us

du
dx

=
dx
dx

= 1

dy
dx

= 6 a2
3
bx-1>3112 =

4

x1>3
This shows us why Eq. (23.9) is equivalent to Eq. (23.15) with u = x.

Note that the domain of the function is all real numbers, but the function is not differ-
entiable for x = 0. ■

In the following examples, we illustrate the use of Eqs. (23.9) and (23.15) for the 
case in which n is a negative exponent. Special care must be taken in the case of a 
negative exponent, so carefully note the caution in each example.

 EXAMPLE  7  Derivative using a negative exponent

The electric resistance R of a wire varies inversely as the square of its radius r. For a 
given wire, R = 4.66 Ω for r = 0.150 mm. Find the derivative of R with respect to r 
for this wire.

Since R varies inversely as the square of r, we have R = k>r2. Then, using the fact 
that R = 4.66 Ω for r = 0.150 mm, we have

4.66 =
k10.15022 ,  k = 0.105 Ω # mm2

which means that

R =
0.105

r2

2
3 - 1

Note that we first rewrite the function 
in a different, more useful form. This 
is often an important step before taking 
the derivative.

LEARNING T IP

Practice Exercise

3. Find the derivative of y = 23 4 - 9x.



694 CHAPTER 23 The Derivative

We could find the derivative by the quotient rule. However, when the numerator is 
constant, the derivative is easily found by using negative exponents and the power rule.

 R =
0.105

r2 = 0.105r-2

 
dR
dr

= 0.1051 -22r-3

 
dR
dr

= - 0.210

r3

Here, we used Eq. (23.9) directly. ■

When subtracting 1 from a negative exponent, be sure to decrease the value 1e.g., -2 - 1 = -3, or -5 - 1 = -62 .
COMMON ERROR

 EXAMPLE  8  The chain rule using a negative exponent

Find the derivative of y =
111 - 4x25 .

 y =
111 - 4x25 = 11 - 4x2-5 

 
dy
dx

= 1 -52 11 - 4x2-61 -42
 
dy
dx

=
2011 - 4x26 ■

We now see the value of fractional exponents in calculus. They are useful in many 
algebraic operations, but they are almost essential in calculus. Without fractional expo-
nents, it would be necessary to develop additional formulas to find the derivatives of 
radical expressions. In order to find the derivative of an algebraic function, we need 
only those formulas we have already developed. Often, it is necessary to combine these 
formulas, as we saw in Example 4. Actually, most derivatives are combinations. The 
problem in finding the derivative is recognizing the form of the function with which 
you are dealing. When you have recognized the form, completing the problem is only a 
matter of mechanics and algebra. You should now see the importance of being able to 
handle algebraic operations with ease.

 EXAMPLE  9  

Using the quotient rule, find the derivative of y =
x

(x2 - 9)3 and evaluate it at x =  4.

Notice that this function is a quotient because of the division of the two functions, 
but the denominator by itself is a power of a function and will require the chain rule to 
differentiate.

Recognize that the function y =
x

(x2 - 9)3 is of the form y =
u
v

, with u = x and 

v = (x2 - 9)3. In order to use the quotient rule, we need the derivative of each function 
by itself.

use negative exponent

use Eq. (23.15)

express result with positive exponent

Practice Exercise

4. Find the derivative of y =
316x + 524 .
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u = x         v = (x2 - 9)3

du
dx

= 1         
dv
dx

= 3(x2 - 9)2(2x)  using chain rule

dv
dx

= 6x(x2 - 9)2

dy
dx

=
v # du

dx
- u # dv

dx

v2    quotient rule

dy
dx

=
(x2 - 9)3 # (1) - x # 6x(x2 - 9)2

(x2 - 9)6

dy
dx

=
(x2 - 9)3 - 6x2(x2 - 9)2

(x2 - 9)6

We can factor out a common factor of (x2 - 9)2 in the numerator, and it will divide out 
with the similar factor in the denominator:

dy
dx

=
(x2 - 9)2

(x2 - 9)6 3 (x2 - 9) - 6x24
dy
dx

=
-1(5x2 + 9)

(x2 - 9)4

Now evaluating at x = 4,

dy
dx

`
x =4

=
-1(5 # 42 + 9)

(42 - 9)4

dy
dx

`
x =4

=
-89
2401

= -0.0371 ■

 EXAMPLE  10  Using the chain rule and the product rule

Using the product rule, find the derivative of y =
x

(x2 - 9)3 and evaluate it at x = 4.

This is the same function as in Example 9.
Notice that this function is a quotient because of the division of the two functions, 

but we can change it into a product by bringing the denominator to the top of the frac-
tion with a negative power before differentiating.

y = x(x2 - 9)-3

Recognize that the function y = x(x2 - 9)-3 is of the form y = u # v, with u = x and 
v = (x2 - 9)-3. In order to use the product rule, we need the derivatives of each func-
tion by itself.

u = x         v = (x2 - 9)-3

du
dx

= 1         
dv
dx

= -3(x2 - 9)-4(2x)   using chain rule

dv
dx

= -6x(x2 - 9)-4

d(u # v)
dx

= u # dv
dx

+ v # du
dx

         product rule

dy
dx

= x # (-6x)(x2 - 9)-4 + (x2 - 9)-3 # (1)

dy
dx

= -6x2(x2 - 9)-4 + (x2 - 9)-3

In cases where the denominator of a 
quotient is a variable or a function 
with a power other than 1, it is  
sometimes easier to bring the denom-
inator to the top of the fraction with 
a negative power. This creates a 
product rule, instead of a quotient 
rule, which is then combined with the 
chain rule. The simpler formula  
sometimes produces a solution for 
the derivative that requires less  
factoring to express it in its simplest 
form.

LEARNING T IP
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We can factor out a common factor between the two terms:

dy
dx

= (x2 - 9)-43-6x2 + (x2 - 9)4
dy
dx

= (x2 - 9)-43-5x2 - 94
dy
dx

=
-1(5x2 + 9)

(x2 - 9)4

Now evaluating at x = 4,

dy
dx

`
x =4

=
-1(5 # 42 + 9)

(42 - 9)4

dy
dx

`
x =4

=
-89
2401

= -0.0371

This is the same answer as in Example 9, though with somewhat simpler factoring 
involved. ■

 EXAMPLE  11  The chain rule inside a product rule

Find the derivative of y = (4x + 1)2(2x2 + 3)3.
Notice that y is a product because of the multiplication of the two functions, but 

each function by itself is a power of a function and will require the chain rule to 
differentiate.

Recognize that the function y = (4x + 1)2(2x2 + 3)3 is of the form y = u # v, with 
u = (4x + 1)2 and v = (2x2 + 3)3. In order to use the product rule, we need the 
derivatives of each function by itself.

u = (4x + 1)2      v = (2x2 + 3)3

du
dx

= 2(4x + 1)1(4)    
dv
dx

= 3(2x2 + 3)2(4x)

du
dx

= 8(4x + 1)      
dv
dx

= 12x(2x2 + 3)2

d(u # v)
dx

= u # dv
dx

+ v # du
dx

       product rule

dy
dx

= (4x + 1)2 # (12x)(2x2 + 3)2 + (2x2 + 3)3 # 8(4x + 1)

There are some common algebraic factors between the two terms:

dy
dx

= 4(4x + 1)(2x2 + 3)233x(4x + 1) + (2x2 + 3) # 24
dy
dx

= 4(4x + 1)(2x2 + 3)2312x2 + 3x + 4x2 + 64
dy
dx

= 4(4x + 1)(2x2 + 3)2316x2 + 3x + 64  ■

 EXAMPLE  12  Evaluation of a derivative

Evaluate the derivative of y =
x11 - 4x

 for x = -2.

Here we have a quotient, but the denominator function has a power not equal to 1. 
Therefore, we will take the denominator to the top as a negative power and use a prod-
uct rule with a chain rule embedded in it.
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y = x # 11 - 4x2-1>2
dy
dx

= x # a- 1
2
b 11 - 4x2-3>2 # 1 - 42 + 11 - 4x2-1>2 # 112

dy
dx

= a1
2
b 11 - 4x2-3>234x + 211 - 4x214

dy
dx

= a1
2
b 11 - 4x2-3>234x + 2 - 8x4

dy
dx

= a1
2
b 11 - 4x2-3>232 - 4x4

dy
dx

= 11 - 4x2-3>231 - 2x4
dy
dx

=
1 - 2x11 - 4x23>2

Now, evaluating the derivative at x = -2, we have

 
dy
dx

`
x= -2

=
1 - 21-2231 - 41 -22 43>2 =

1 + 411 + 823>2 =
5

93>2 =
5
27

 ■

EXERCISES 23.7

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then find the derivatives.

 1. In Example 3, change 1 - 3x2 to 2 + 3x3.

 2. In Example 4, change 3 - x3 to 2 + x5.

 3. In Example 5, change x2 + 1 to 2 - 3x2.

 4. In Example 8, change the exponent 5 to 3.

In Exercises 5–32, find the derivative of each of the given functions.

 5. y = 1x 6. y = 24 x3

 7. v =
3

5t2 8. y =
2

x4

 9. y =
323 x

 10. y =
5525 x2

 11. y = x1x - 6
x

 12. f1x2 = 2x-3 - 3x-2

 13. y = 1x2 + 125 14. y = 11 - 2x24

 15. y = 2.2517 - 4x328 16. s = 318t2 - 726

 17. y = 12x3 - 321>3 18. y = 811 - 6x21.5

 19. f1y2 =
314 - y224 20. y =

p311 - 3x

 21. y = 412x4 - 520.75 22. r = 513u6 - 422>3
 23. y = 24 1 - 8x2 24. y = 923 4x6 + 2

 25. u = v18v + 5 26. y = x211 - 3x25

 27. y =
211 - 6x

x3  28. R =
2T223 1 + 4T

 29. y =
2x1x + 2

x + 4
 30. y = 821 + 1x

 31. f1R2 = A2R + 1
4R + 1

 32. y = a2x + 1
3x - 2

b2

In Exercises 33–36, evaluate the derivatives of the given functions for 
the given values of x.

 33. y = 13x + 4, x = 7 34. y = 14 - x22-1, x = -1

 35. y =
1x

1 - x
, x = 4 36. y = x223 3x + 2, x = 2

In Exercises 37–60, solve the given problems by finding the 
appropriate derivatives, and round answers to 3 significant digits 
unless otherwise specified.

 37. Find the derivative of x3>2 by writing x3>2 = x1x1>22  and using 
the product rule.

 38. Find the derivative of x3>2 by writing x3>2 = x2>x1>2 and using 
the quotient rule.

 39. Find the derivative of y = 1>x3 as (a) a quotient and (b) a negative 
power of x and show that the results are the same.

 40. Let y = 3u1x2 42 and find dy>dx, treating 3u1x2 42 as the product 
u1x2u1x2 . (See Example 1.)

 41. Find any values of x for which the derivative of y =
x22x2 + 1

 is 

zero. View the curve of the function on a graphing calculator to 
  verify the values found.
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 42. Find any values of x for which the derivative of y =
x14x - 1

 is 

  zero. View the curve of the function on a graphing calculator to 
  verify the values found.

 43. Is the line x + 3y - 12 = 0 ever perpendicular to a tangent to 
the graph of y = 12x + 3?

 44. Explain why the graph of y1 = 1x + a cannot be tangent to the 
graph of y2 = 14 - 2x, regardless of the value of a.

 45. Find the slope of a line tangent to the parabola y2 = 4x at the 
point 11, 22 .

 46. Find the slope of a line tangent to the circle x2 + y2 = 25 at the 
point 14, 3).

 47. The lowest flying speed v (in m/s) at which a certain airplane can 
fly varies directly as the square root of the wing load w (in Pa). If 
v = 27.0 m/s for w = 775 Pa, find the derivative of v with 
respect to w.

 48. During and after a period of rain, the depth h (in m) of water 
behind a certain dam was given by h = 75.01x + 22 > 1x + 32, 
where x is the number of days after the start of the rain period. 
Find dh>dx for x = 2.50 days.

 49. The displacement s (in cm) of a linkage joint of a robot is given 
by s = 18t - t222>3, where t is the time (in s). Find the velocity 
of the joint for t = 6.25 s.

 50. Water is slowly rising in a horizontal drainage pipe. The width w 
of the water as a function of the depth h is w = 22rh - h2, 
where r is the radius of the pipe. Find dw>dh for h = 225 mm 
and r = 600 mm.

 51. When the volume of a gas changes very rapidly, an approximate 
relation is that the pressure p varies inversely as the 3>2 power of 
the volume. If p is 300 kPa when V = 100 cm3, find the deriva-
tive of p with respect to V. Evaluate this derivative for 
V = 100 cm3.

 52. The power gain G of a certain antenna is inversely proportional to 
the square of the wavelength l (in m) of the carrier wave. If 
G = 5.00 * 104 for l = 0.110 m, find the derivative of G with 
respect to l for l = 0.110 m.

 53. In deep water, the velocity of a wave is v = k A l
a

+ a
l

 , where a 

  and k are constants and l is the length of the wave. For what value 
of l is dv>dl = 0?

 54. Due to air friction, the drag F on a plane is F = c1v2 + c2v-2, 
where v is the plane’s velocity and c1 and c2 are positive con-
stants. For what values of v is dF>dv = 0?

 55. The total solar radiation H (in W>m2) on a certain surface during 
an average clear day is given by

  H =
40002t6 + 100

 1 -6 6 t 6 62
  where t is the number of hours from noon. Find the rate at which 

H is changing with time at 4 p.m.

 56. In determining the time for a laser beam to go from S to P (see 
Fig. 23.25), which are in different mediums, it is necessary to find 
the derivative of the time

  t =
2a2 + x2

v1
+

2b2 + 1c - x22

v2

  with respect to x, where a, b, c, v1, and v2 are constants. Here, v1 
and v2 are the velocities of the laser in each medium. Find this 
derivative.

 57. The radio waveguide wavelength lr is related to its free-space 
wavelength l by

  lr =
2al24a2 - l2

where a is a constant. Find dlr>dl.

 58. The current I in a circuit containing a resistance R and an induct-
ance L is found from the expression

  I =
V2R2 + 1vL22

  Find the expression for the instantaneous rate of change of current 
with respect to L, assuming that the other quantities remain 
constant.

 59. The length l of a rectangular microprocessor chip is 2 mm longer 
than its width w. Find the derivative of the length of the diagonal 
D with respect to w.

 60. The trapezoidal engineering support structure shown in Fig. 23.26 
has an internal support of length l. Find the derivative of l with 
respect to x.

Answers to Practice Exercises

1. dy>dx = 20(5x + 2)3   2. dy>dx = 512x + 72218x + 72   
3. dy>dx = -314 - 9x2-2>3 4. dy>dx = -7216x + 52-5

Fig. 23.25 
P

S

b

a

x

c

3

5
l

xFig. 23.26 
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To this point, all of the functions that have been differentiated have been of the form 
y = f (x), where y is explicitly defined as a function of x. Sometimes, however, a rela-
tionship does not define the dependent variable explicitly in terms of the independent 
variable.

Explicit functions require direct substitution for the value of the variable x, and the 
value of y can be determined exactly. Implicit functions are defined by relations of the 
form F(x, y) = 0. This means that in the equation defining the relationship between x 
and y, sometimes y cannot be isolated algebraically as a single term. Often, implicit 
relations are not functions, in that there may be more than one value of y for each value 
of x. Even with this difficulty, the derivatives of implicitly defined relations can still be 
calculated using a process called implicit differentiation.

 EXAMPLE  1  Illustrations of implicit functions

(a) The equation 3x + 4y = 5 is an equation that defines a function, although it is not 
in explicit form. In solving for y as y = - 3

4x + 5
4, we have the explicit form of the 

function.

(b) The equation y2 + x = 3 is an equation that defines two functions, although we 
do not have the explicit forms. When we solve for y, we obtain the explicit functions 
y = 13 - x and y = - 13 - x.

(c) The equation y5 + xy2 + 3x2 = 5 defines y as a function of x, although we cannot 
actually solve for the explicit algebraic form of the function.

(d) The equation x2 + y2 + 4 = 0 is not satisfied by any pair of real values of  
x and y. ■

Even when it is possible to determine the explicit form of a function given in 
implicit form, it is not always desirable to do so. In some cases, the implicit form is 
more convenient than the explicit form.

The derivative of an implicit function may be found directly without having to solve 
for the explicit function. Often, the chain rule must be used (since powers of y are pow-
ers of a function of x).

The following two steps can be used to determine the derivative at any point 
dy
dx

 for 

implicit relations that are expressed in terms of x (the variable) and y (the relation).

 23.8 Differentiation of Implicit Functions
 

by Term

Implicit Differentiation
1.  Differentiate with respect to x both sides of the implicit equation. This 

means applying the process d/dx to every term of the equation. Remember to 
use the chain rule every time you encounter a relation y. Every time that you 
differentiate a function y, you will introduce the dy>dx factor through using 
the chain rule Eq. (23.15). Moreover, remember that y is a function of x, so 
you will need to use the product rule or the quotient rule if y (or y n) is multiplied 
or divided by a function of x.

2.  Rearrange algebraically to isolate dy/dx. It may appear in multiple terms, so  
algebraic factoring will be a common requirement. For implicitly defined  
relations, the derivative is itself an implicitly defined relation of x and y.

■ For reference, Eq. (23.15) is  
dun

dx
= nun - 1 

du
dx

.
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 EXAMPLE  2  Implicit derivative

Find dy>dx if y2 + 2x2 = 5.
Here, we find the derivative of each term and then solve for dy>dx. Thus,

d1y22
dx

+
d12x22

dx
=

d152
dx

 2y2-1 # dy
dx

+ 2a2x2-1 # dx
dx

b = 0

 2y # dy
dx

+ 4x = 0

 
dy
dx

= - 2x
y

 ■

 EXAMPLE  3  Implicit derivative involving a product

Find dy>dx if 3y4 + xy2 + 2x3 - 6 = 0.
In finding the derivative, we note that the second term is a product of two functions 

of x, and we must use the product rule for derivatives on it. Thus, we have

d13y42
dx

  +   
d1x # y22

dx
  +   

d12x32
dx

-
d162

dx
=

d102
dx

 12y3 # dy
dx

+ c xa2y # dy
dx

b + y2112 d +  6x2 -  0 = 0

 12y3 # dy
dx

+ 2xy # dy
dx

+ y2 + 6x2 = 0  

 112y3 + 2xy2  
dy
dx

= -y2 - 6x2

 
dy
dx

=
-y2 - 6x2

12y3 + 2xy
 ■

 EXAMPLE  4  Implicit derivative—product and power

Find dy>dx if 2x3y + 1y2 + x23 = x4.
In this case, we use the product rule on the first term and the power rule on the 

second term:

d12x3 # y2
dx

    +    
d1y2 + x23

dx
 =  

d1x42
dx

 

 2x3ady
dx

b + y16x22 + 31y2 + x22a2y # dy
dx

+ 1b = 4x3

 2x3 # dy
dx

+ 6x2y + 31y2 + x22a2y # dy
dx

b + 31y2 + x22 = 4x3

 32x3 + 6y1y2 + x224  
dy
dx

= 4x3 - 6x2y - 31y2 + x22

 
dy
dx

=
4x3 - 6x2y - 31y2 + x22

2x3 + 6y1y2 + x22  ■

solve for 
dy

dx

using product rule

product power

Practice Exercise

1. Find dy>dx if 2y3 + xy + 1 = 0.
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 EXAMPLE  5  Slope of a tangent line

Find the slope of a tangent line to the curve x3 + y3 - 9xy = 0 at the point (2, 4). This 
curve is known as a folium, which dates back to Descartes in the 1630s. See Fig. 23.27.

Here, we are to find dy>dx and evaluate it for x = 2 and y = 4.

 
d1x32

dx
+

d1y32
dx

-
d19x # y2

dx
=

d102
dx

 3x2 + 3y2 # dy
dx

- 9ax # dy
dx

+ yb = 0

 13y2 - 9x2  
dy
dx

= 9y - 3x2

 
dy
dx

=
3y - x2

y2 - 3x
      

dy
dx

`
(2, 4)

=
3142 - 22

42 - 3122 =
8
10

=
4
5

Therefore, the slope of the tangent line at (2, 4) is 4>5. ■

Fig. 23.27 

x3 + y3 − 9xy = 0
4

0 2

y

x

EXERCISES 23.8

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then find dy>dx.

 1. In Example 2, change y2 to y3.

 2. In Example 3, change xy2 to x2y.

In Exercises 3–6, terms that might appear in an implicit function are 
shown. Differentiate each term with respect to x.

 3. x2y 4. 2xy3 5. 
1
xy

 6. 
y2

x + 1

In Exercises 7–26, find dy>dx by differentiating implicitly. When 
applicable, express the result in terms of x and y.

 7. 3x + 2y = 5 8. 6x - 3y = 4

 9. 4y - 3x2 = x 10. x5 - 5y = 6 - x

 11. x2 - 4y2 - 9 = 0 12. x2 + 2y2 - 11 = 0

 13. y5 = x2 - 1 14. x2>3 + y2>3 = 5

 15. y2 + y = x2 - 4 16. 2y3 - y = 7 - x4

 17. y + 3xy - 4 = 0 18. xy3 + 3y + x2 = 2p2

 19. x2 =
x - y

x + y
 20. y2x -

5y

x + 1
+ 3x = 4

 21. 
3x2

y2 + 1
+ y = 3x + 1 22. 1xy =

x
4

+ 1

y2

 23. 12y - x24 + x2 = y + 3 24. 1y2 + 223 = x4y + e2

 25. 21x2 + 123 + 1y2 + 122 = 17

 26. 12x + 12 11 - 3y2 + y2 = 13

In Exercises 27–32, evaluate the derivatives of the given functions at 
the given points.

 27. 3x3y2 - 2y3 = -4; 11, 22
 28. 2y + 5 - x2 - y3 = 0; 12, -12

 29. 5y4 + 7 = x4 - 3y; 13, -22
 30. 1xy - y223 = 5y2 + 22; 14, 12
 31. xy2 + 3x2 - y2 + 15 = 0; 1 -1, 32
 32. 21x + y23 - y2>x = 15; 14, -22
In Exercises 33–48, solve the given problems by using implicit 
differentiation, and round answers to 3 significant digits if applicable.

 33. At what point(s) does the graph of x2 + y2 = 4x have a horizon-
tal tangent?

 34. Show that if P1x, y2  is any point on the circle x2 + y2 = a2, 
then a tangent line at P is perpendicular to a line through P and 
the origin.

 35. Show that two tangents to the curve x2 + xy + y2 = 7 at the 
points where it crosses the x-axis are parallel.

 36. At what point(s) is the tangent to the curve y2 = 2x3 perpendicular 
to the line 4x - 3y + 1 = 0?

 37. Find the slope of a line tangent to the curve of the implicit function 
xy + y2 + 2 = 0 at the point 1-3, 12.  Use the derivative evalua-
tion feature of a graphing calculator to check your result.

 38. Show that the graphs of 2x2 + y2 = 24 and y2 = 8x are perpen-
dicular at the point 12, 42 . Display the graphs on a graphing 
calculator.

 39. In an RLC circuit, the angular frequency v at which the circuit 
resonates is given by v2 = 1>LC - R2>L2. Find dv>dL.

 40. A lens is described by the ellipse x2 - xy + y2 = 7. Find the 
slope of a light ray perpendicular to the lens at 1 -1, 22 .

 41. The pressure p, volume V, and temperature T of a gas are related 
by pV = n1RT + ap - bp>T2 , where a, b, n, and R are con-
stants. For constant V, find dp>dT.

 42. Oil moves through a pipeline such that the distance s it moves and 
the time t are related by s3 - t2 = 7t. Find the velocity of the oil 
for s = 4.01 m and t = 5.25 s.
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 43. The shelf support shown in  
Fig. 23.28 is 0.750 m long. Find  
the expression for dy>dx in terms  
of x and y.

 44. An open (no top) right circular cylindrical container of radius r 
and height h has a total surface area of 936 cm2. Find dr>dh in 
terms of r and h.

 45. Two resistors, with resistances r and r + 2, are connected in par-
allel. Their combined resistance R is related to r by the equation 
r2 = 2rR + 2R - 2r. Find dR>dr.

 46. The polar moment of inertia I of a rectangular slab of concrete is 
given by I = 1

121b3h + bh32 , where b and h are the base and the 
height, respectively, of the slab. If I is constant, find the expres-
sion for db>dh.

 47. A formula relating the length L and radius of gyration r of a steel 
column is 24C3Sr3 = 40C3r3 + 9LC2r2 - 3L3, where C and S 
are constants. Find dL>dr.

 48. A computer is programmed to 
draw the graph of the implicit 
function 1x2 + y223 = 64x2y2  
(see Fig. 23.29 and Example 7 
on page 605). Find the slope  
of a line tangent to this curve  
at 12.00, 0.562  and at 12.00, 3.072 .

Answer to Practice Exercise

1. dy>dx = -y> 16y2 + x2

4

4

(2.00, 0.56)

(2.00, 3.07)

y

x

!4

!4

0.750 m

x

y

Fig. 23.28 

Fig. 23.29 

Since the derivative of a function is itself a function, we may take its derivative. A 
higher-order derivative refers to repeating the differentiation process. This will become 
relevant to curve sketching, maximum and minimum problems, motion problems, and 
other applications.

The derivative of a function is called the first derivative. To find the second deriv-
ative, just differentiate the first derivative equation. To find the third derivative, just 
differentiate the second derivative, and so on (provided that each derivative is defined). 
The second derivative, third derivative, and so on are collectively known as higher 
derivatives, or successive derivatives.

Repeated use of the derivative process leads to some cumbersome notation. 
Consequently, many other more concise notations have been adopted to decrease the 
amount of writing required. Those used in this text are summarized in the chart below:

 23.9 Higher Derivatives

Acceleration

First Derivative
dy
dx

dy
dx

f ′1x2 Dxy y′

Second Derivative
d
dx

ady

dx
b d2y

dx2
f ″1x2 D2

xy y″

Third Derivative
d
dx

a d
dx

ady
dx

b b d3y

dx3
f ‴1x2 D3

xy y‴

Fourth Derivative
d
dx

a d
dx

a d
dx

ady
dx

b b b d4y

dx4 f 142 1x2 D4
xy y(4)

Fifth Derivative
d
dx

a d
dx

a d
dx

a d
dx

ady
dx

b b b b d5y

dx5 f 152 1x2 D5
xy y(5)

Note that the “primed” notation in the last column is a common method of denoting 
higher-order derivatives because it is the most concise. The disadvantage of “primed” 
notation is that it does not explicitly state the variable of differentiation.

The Second Derivative
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 EXAMPLE  1  Higher derivatives of a function

Find the higher derivatives of y = 5x3 - 2x.
We find the first derivative as

dy
dx

= 15x2 - 2 or y′ = 15x2 - 2

Next, we obtain the second derivative by finding the derivative of the first derivative:

d2y

dx2 = 30x or y″ = 30x

Continuing to find the successive derivatives, we have

 
d3y

dx3 = 30 or  y‴ = 30

 
d4y

dx4 = 0  or y142 = 0

Since the third derivative is a constant, the fourth derivative and all successive deriva-
tives will be zero. This can be shown as dny>dxn = 0 for n Ú 4. ■

 EXAMPLE  2  Higher derivatives of a function

Find the higher derivatives of f1x2 = x1x2 - 122.
Using the product rule, Eq. (23.12), to find the first derivative, we have

 f ′1x2 = x1221x2 - 1212x2 + 1x2 - 122112
 f ′1x2 = 1x2 - 1214x2 + x2 - 12 = 1x2 - 1215x2 - 12
 f ′1x2 = 5x4 - 6x2 + 1

Continuing to find the higher derivatives, we have

 f ″1x2 = 20x3 - 12x

 f ‴1x2 = 60x2 - 12

 f 142 1x2 = 120x

 f 152 1x2 = 120

 f 1n2 1x2 = 0  for n Ú 6

All derivatives after the fifth derivative are equal to zero. ■

 EXAMPLE  3  Evaluation of a second derivative

Evaluate the second derivative of y =
2

1 - x
 for x = -2.

We write the function as y = 211 - x2-1 and then find the derivatives:

 y = 211 - x2-1

 
dy
dx

= 21 -12 11 - x2-21 -12 = 211 - x2-2

 
d2y

dx2 = 21 -22 11 - x2-31 -12 = 411 - x2-3 =
411 - x23

Evaluating the second derivative for x = -2, we have

d2y

dx2 `
x = -2

=
411 + 223 =

4
27

■ For reference, Eq. (23.12) is 
d1uv2

dx
= u # dv

dx
+ v # du

dx
.

■ Note that when using the prime 1 f ′1x2 2  
notation the nth derivative may be shown as 
f  1n2 1x2 .
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The function is not differentiable for x = 1. Also, if we continue to find higher deriva-
tives, the expressions will not become zero, as in Examples 1 and 2. ■

 EXAMPLE  4  Second derivative of an implicit function

Find y″ for the implicit function defined by 2x2 + 3y2 = 6.
Differentiating with respect to x, we have

 212x2 + 312yy′2 = 0

 4x + 6yy′ = 0 or 2x + 3yy′ = 0 (1)

Before differentiating again, we see that 3yy′ is a product, and we note that the deriva-
tive of y′ is y″. Thus, differentiating again, we have

 2 + 3yy″ + 3y′1y′2 = 0

 2 + 3yy″ + 31y′22 = 0 (2)

Now, solving Eq. (1) for y′ and substituting this into Eq. (2), we have

 y′ = - 2x
3y

 2 + 3yy″ + 3a- 2x
3y

b2
= 0

 2 + 3yy″ + 4x2

3y2 = 0

 6y2 + 9y3y″ + 4x2 = 0

y″ =
-4x2 - 6y2

9y3 =
-212x2 + 3y22

9y3

Since 2x2 + 3y2 = 6, we have

y″ =
-2162

9y3 = - 4

3y3 ■

As mentioned earlier, higher derivatives are useful in certain applications. This is 
particularly true of the second derivative. The first and second derivatives are used in 
the next chapter for several types of applications, and higher derivatives are used when 
we discuss infinite series in Chapter 30. An important technical application of the sec-
ond derivative is shown in the example that follows.

In Section 23.4, we briefly discussed the instantaneous velocity of an object, and in 
the exercises we mentioned acceleration. From that discussion, recall that the instanta-
neous velocity is the time rate of change of the displacement, and that the instantane-
ous acceleration is the time rate of change of the instantaneous velocity. Therefore, the 
acceleration is found from the second derivative of the displacement with respect to 
time.

 EXAMPLE  5  Instantaneous acceleration

For the first 12 s after launch, the height s (in m) of a certain rocket is given by 
s = 102t2 + 25 - 50. Find the vertical acceleration of the rocket when t = 10.0 s.

Since the velocity is found from the first derivative and the acceleration is found 
from the second derivative, we must find the second derivative and evaluate it for 
t = 10.0 s.

differentiation of 3yy′Practice Exercise

1.  Find the second derivative of 

y =
3

x2 + 4
.
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 s = 102t4 + 25 - 50

 v =
ds
dt

= 10a1
2
b 1 t4 + 252-1>214t32 =  

20t31 t4 + 2521>2
 a =

dv
dt

=
d2s

dt2 =
1 t4 + 2521>2160t22 - 20t311

22 1 t4 + 252-1>214t32
t4 + 25

 a =
1 t4 + 252 160t22 - 40t61 t4 + 2523/2 =

20t6 + 1500t21 t4 + 2523/2

 a =
20t21 t4 + 7521 t4 + 2523>2

Finding the value of the acceleration when t = 10.0 s, we have

a * t =10.0 =
20110.022110.04 + 752110.04 + 2523>2 = 20.1 m>s2 ■

In many applications, it is important to find at which values of x a specific derivative 
equals zero. If we factor derivatives whenever possible, the roots (zeros) of such deriv-
atives can be easily obtained.

 EXAMPLE  6  The zeros of a higher derivative

Determine all values of x for which y″ = 0 for the function 

y =
1
12

x4 - 5
6

x3 + 3x2 + 2x - 1.

y′ =
1
12

14x32 - 5
6
13x22 + 312x2 + 2

y′ =
1
3

x3 - 5
2

x2 + 6x + 2

y″ =
1
3
13x22 - 5

2
12x2 + 6

y″ = x2 - 5x + 6

Since y″ = 0,

0 = x2 - 5x + 6

We can factor the quadratic in order to solve:

0 = 1x - 22 1x - 32
so         x = 2  or  x = 3 ■

multiply numerator 
and denominator 
by 1 t4 + 2521>2

EXERCISES 23.9

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the resulting problems.

 1. In Example 1, change 2x to 2x2.

 2. In Example 3, in the denominator change 1 - x to 1 + 2x.

In Exercises 3–10, find all the higher derivatives of the given functions.

 3. y = x3 + x2 4. f1x2 = 3x - x4

 5. f1x2 = x3 - 6x4 6. s = 8t5 + 5t4

 7. y = 11 - 2x24 8. f1x2 = 13x + 223

 9. f1r2 = r14r + 923 10. y = x1x - 123
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 CHAPTER 23  EQUATIONS

Limit of function  lim
xSa  

f1x2 = L (23.1)

Difference in x-coordinates ∆x = x2 - x (23.2)

 x2 = x + ∆x (23.3)

In Exercises 11–30, find the second derivative of each of the given 
functions.

 11. y = 2x7 - x6 - 3x 12. y = 6x - 2x5

 13. y = 2x + 1x 14. r = 3u2 - 201u

 15. f1x2 = 24 8x - 3 16. f1x2 = 23 6x + 5

 17. f1p2 =
4.8p11 + 2p

 18. f1x2 =
7.513 - 4x

 19. y = 212 - 5x24 20. y = 14x + 126

 21. y = 13x2 - 125 22. y = 312x3 + 324

 23. f1x2 =
2p2

6 - x
 24. f1R2 =

1 - 3R
1 + 3R

 25. u =
v2

v + 15
 26. y =

x21 - x2

 27. x2 - y2 = 9 28. xy + y2 = 4

 29. x2 - xy = 1 - y2 30. 4xy = y2 + 2e3

In Exercises 31–36, evaluate the second derivative of the given 
function for the given value of x.

 31. f1x2 = 2x2 + 9, x = 4 32. f1x2 = x - 2

x3, x = -1

 33. y = 3x2>3 - 2
x

 , x = -8 34. y = 311 + 2x24, x =
1
2

 35. v = t18 - t25, t = 2 36. y =
x

2 - 3x
, x = - 1

3

In Exercises 37–40, find the acceleration of an object for which the 
displacement s (in m) is given as a function of the time t (in s) for the 
given value of t.

 37. s = 26.0t - 4.90t2, t = 3.00 s 38. s = 311 + 2t24, t = 0.500 s

 39. s =
16

0.5t + 1
, t = 2.00 s 40. s = 25016t + 1, t = 4.00 s

In Exercises 41–53, solve the given problems by finding the appro-
priate derivatives; round answers to 3 significant digits.

 41. Show that 
d2

dx2 1uv2 = u  
d2v

dx2 + 2 
du
dx

 
dv
dx

+ d2u

dx2   v.

 42. Show that 
d61x62

dx6 = 6!.

 43. What is the instantaneous rate of change of the first derivative of 
y with respect to x for y = 11 - 2x24 for x = 1?

 44. What is the instantaneous rate of change of the first derivative of 
y with respect to x for 2xy + y = 1 for x = 0.5?

 45. If the population of a city is P1 t2 = 800011 + 0.02t + 0.005t22  
(t is in years from 2000), what is the acceleration in the size of the 
population?

 46. The potential V (in V) of a certain electric charge is given by 
V = 6> 1 t + 12 , where t is the time (in s). Find d2V>dt2.

 47. A bullet is fired vertically upward. Its distance s (in m) above the 
ground is given by s = 655t - 4.90t2, where t is the time (in s). 
Find the acceleration of the bullet.

 48. In testing the brakes on a new model car, it was found that the 
distance s (in m) it traveled after the brakes were applied was 
given by s = 19.2 - 0.400t3, where t is the time (in s). What 
were the velocity and acceleration for t =  4.00 s?

 49. The voltage V induced in an inductor in an electric circuit is given 
by V = L1d2q>dt22 , where L is the inductance (in H). Find the 
expression for the voltage induced in a 1.60-H inductor if 
q = 12t + 1 - 1.

 50. How fast is the rate of change of solar radiation changing on the 
surface in Exercise 35 of Section 23.4 at 3 p.m.?

 51. The deflection y (in m) of a 5.00-m beam as a function of the dis-
tance x (in m) from one end is y = 0.00011x5 - 25x22 . Find the 
value of d2y>dx2 (the rate of change at which the slope of the 
beam changes) where x = 3.00 m.

 52. The force F (in N) on an object is F = 12 dv>dt + 2.0v + 5.0, 
where v is the velocity (in m>s) and t is the time (in s). If the dis-
placement is s = 25t0.60, find F for t = 3.50 s.

 53. A robotic arm moves according to the displacement s (in m) 

  equation s =
1
6

t4 - 7
6

t3 - 2t2 + 3, where t is time (in s), for

  t 7 0. Determine the times at which the acceleration of the 
robotic arm will be zero.

Answer to Practice Exercise

1. y″ =
18x2 - 241x2 + 423
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Average slope mPQ =
f1x + ∆x2 - f1x21x + ∆x2 - x

=
f1x + ∆x2 - f1x2

∆x
 (23.4)

Slope of the tangent line mtan = lim
hS0

 
f1x + h2 - f1x2

h
 (23.5)

Definition of derivative f′1x2 =  lim
hS0

 
f1x + h2 - f1x2

h
 (23.6)

Instantaneous velocity v =  lim
hS0

 
s1 t + h2 - s1 t2

h
 (23.7)

Derivatives of polynomials 
dc
dx

= 0 (23.8)

 
dxn

dx
= nxn-1 (23.9)

 
d1c # u2

dx
= c # du

dx
 (23.10)

 
d1u + v2

dx
=

du
dx

+ dv
dx

 (23.11)

Derivative of a product 
d1u # v2

dx
= u # dv

dx
+ v # du

dx
 (23.12)

Derivative of a quotient 
d 

u
v

dx
=

v # du
dx

- u # dv
dx

v2  (23.13)

Chain rule 
dy
dx

=
dy
du

 # du
dx

 (23.14)

Derivative of power 
dun

dx
= nun-1adu

dx
b  (23.15)

 
dup>q

dx
=

p
q

 u1p/q2-1 
du
dx

 (23.16)

 CHAPTER 23  REVIEW EXERCISES

In Exercises 1–12, evaluate the given limits.

 1. lim
xS4

(8 - 3x) 2. lim
xS3

(2x2 - 10) 3. lim
xS-2

 
0 x + 2 0
x + 2

 4. lim
xS3

22x2 - 18 5. lim
xS2

 
4x - 8

x2 - 4
 6. lim

xS5
 
x2 - 25
3x - 15

 7. lim
xS3

x2 - 5x + 6

x2 - 2x - 3
 8. lim

xS4

2 - 2x
x - 4

 9. lim
xS∞

2 + 1
x + 4

3 - 1

x2

 10. lim
xS∞

3x3 - 5x

6x2 + 3
 11. lim

xS∞

x - 2x3

(1 + x)3 12. lim
xS∞

24x2 + 3
x + 5

In Exercises 13–20, use the definition of the derivative/delta method 
to find the derivative of each of the given functions.

 13. y = 7 + 5x 14. y = 6x - 2 15. y = 6 - 2x2

 16. y = 12x2 - x3 17. y = 2

x2 18. y = x
1 - 4x

 19. y = 1x + 5 20. y = 11x
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In Exercises 21–36, find the derivative of each of the given 
functions.

 21. y = 2x7 - 3x2 + 5 22. y = 8x7 - 25 - x

 23. y = 41x - 3
x

+ 13 24. R = 3

T2 - 824 T

 25. f1y2 =
3y

1 - 5y
 26. y = 2x - 1

x2 + 1

 27. y = 12 - 7x24 28. y = 12x2 - 326

 29. y = 3p15 - 2x223/4 30. f1Q2 = 7013Q + 123

 31. v = 41 + 21 + 11 + 8s

 32. y = 1x - 1231x2 - 222

 33. y = 14x + 3
2x

 34. R = 1t + 41t - 4

 35. 12x - 3y23 = x2 - y 36. x2y2 = x2 + y2

In Exercises 37–40, evaluate the derivatives of the given functions 
for the given values of x.

 37. y = 4
x

+ 223 x, x = 8 38. y = 13x - 524, x = -2

 39. y = 2x112x + 7, x = 1.5 40. y =
22x2 + 1

3x
, x = 2

In Exercises 41–44, find the second derivative of each of the given 
functions.

 41. y = 3x4 - 1
x

 42. y = 11 - 8x

 43. s = 1 - 3t
1 + 4t

 44. y = 2x16x + 524

In Exercises 45–86, solve the given problems, and round answers to  
3 significant digits unless otherwise specified.

 45. As x approaches 0+ , which of the functions 1>x, 1>x2, and 
1>1x increases most rapidly (all become infinite)?

 46. The parabola y = ax2 + bx + c passes through (1, 2) and is 
tangent to the line y = x at the origin. Find a, b, and c.

 47. Find the acute angle between tangent lines to the parabolas 
y = x2 and y = 1x - 222 at the point where they intersect.

 48. Find the point(s) on the curve of y = x

x2 + 1
 where the tangent 

  line is horizontal.

 49. View the graph of y =
21x2 - 42

x - 2
 on a graphing calculator with 

  window values such that y can be evaluated exactly for x = 2. 
(Xmin = -1 (or 0), Xmax = 4, Ymin = 0, Ymax = 10 will 
probably work.) Using the trace feature, determine the value of 
y for x = 2. Comment on the accuracy of the view and the 
value found.

 50. A continuous function f1x2 is positive at x = 0 and negative 
for x = 1. How many solutions does f1x2 = 0 have between 
x = 0 and x = 1? Explain.

 51. The velocity v (in m>s) of a weight falling in water is given by 

  v =
61t + 52

t + 1
, where t is the time (in s). What are (a) the initial 

  velocity and (b) the terminal velocity (as t S ∞)?

 52. Two lenses of focal lengths f1 and f2, separated by a distance d, 
are used in the study of lasers. The combined focal length f  of 

  this lens combination is f =
f1 f2

f1 + f2 - d
. If f2 and d remain 

  constant, find the limiting value of f  as f1 continues to increase 
in value.

 53. Find the slope of a line tangent to the curve of y = 7x4 - x3 at 1-1, 82.

 54. Find the slope of a line tangent to the curve of y = 23 3 - 8x at 1-3, 32.

 55. Find the point(s) at which a tangent line to the graph of 

  y = 1>23x2 + 3 is parallel to the x-axis.

 56. Find the point(s) on the graph of y = 211 - 3x22 at which a 
tangent line is parallel to the line y = -2x + 5.

 57. If $5000 is invested at interest rate i, compounded quarterly,  
in two years it will grow to an amount A given by 
A = 500011 + 0.250i28. Find dA>di.

 58. The temperature T  (in °C) of a rotating machine part that has 

  been in operation for t hours is given by T =
1001t + 12

t + 5
. Find 

dT>dt when t = 4.00 h.

 59. Find the equations for (a) the velocity and (b) the acceleration if 
the displacement s (in m) of an object as a function of the time t 
(in s) is given by s = 11 + 8t.

 60. Find the values of the velocity and acceleration for the object in 
Exercise 59 for t = 3.00 s.

 61. The cable of a 200-m suspension bridge can be represented by 
y = 0.0015x2 + C. At one point, the tension is directed along 
the line y = 0.3x - 10. Find the value of C.

 62. The displacement s (in cm) of a piston during each 8.00-s cycle 
is given by s = 8t - t2, where t is the time (in s). For what 
value(s) of t is the velocity of the piston 4.00 cm>s?

 63. The reliability R of a computer system measures the probability 
that the system will be operating properly after t hours. For one 

  system, R = 1 - kt + k2t2

2
- k3t3

6
, where k is a constant. Find 

  the expression for the instantaneous rate of change of R with 
respect to t.

 64. The distance s (in m) travelled by a subway train after the 
brakes are applied is given by s = 20t - 2t2, where t is the 
time (in s). How far does it travel, after the brakes are applied, in 
coming to a stop?

 65. The electric field E at a distance r from a point charge is 
E = k>r2, where k is a constant. Find an expression for the in-
stantaneous rate of change of the electric field with respect to r.

 66. The velocity of an object moving with constant acceleration can 

  be found from the equation v = 2v0
2 + 2as, where v0 is the 

initial velocity, a is the acceleration, and s is the distance trav-
elled. Find dv>ds.
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 67. The voltage induced in an inductor L is given by E = L1dI>dt2, 
where I  is the current in the circuit and t is the time. Find the 
voltage induced in a 0.4-H inductor if the current I  (in A) is 
related to the time (in s) by I = t10.01t + 123.

 68. In studying the energy used by a mechanical robotic device, the 

  equation v = z

a11 - z22 - b
 is used. If a and b are constants, 

  find dv>dz.

 69. The frictional radius rf  of a collar used in a braking system is 

  given by rf =
21R3 - r32
31R2 - r22, where R is the outer radius and r is 

  the inner radius. Find drf>dR if r is constant.

 70. Water is being drained from a pond such that the volume V   
(in m3) of water in the pond after t hours is given by 
V = 5000160 - t22. Find the rate at which the pond is being 
drained after 4.00 h.

 71. The energy output E of an electric heater is a function of the 
time t (in s) given by E = t11 + 2t22 for t 6 10.0 s. Find the 
power dE>dt (in W) generated by the heater for t = 8.00 s.

 72. The amount n (in g) of a compound formed during a chemical 

  change is n = 8t

2t2 + 3
, where t is the time (in s). Find dn>dt for 

  t = 4.00 s. What is the meaning of the result?

 73. The deflection y of a 10-m beam is y = kx1x4 + 450x2 - 9502, 
where k is a constant and x is the horizontal distance from one 
end. Find the expression for the instantaneous rate of change of 
y with respect to x.

 74. The kinetic energy K  (in J) of a rotating flywheel varies directly 
as the square of its angular velocity v (in rad>s). If K = 125 J 
for v = 75.0 rad>s, find dK>dv for v = 155 rad>s.

 75. The frequency f  of a certain electronic oscillator is given by 

  f =
1

2p2C1L + 22 , where C is a capacitance and L is an 

  inductance. If C is constant, find df>dL.

 76. The volume V  of fluid produced in the retina of the eye in reaction 

  to exposure to light of intensity I  is given by V = aI2

b - I
, where 

a and b are constants. Find dV>dI .

 77. The temperature T  (in °C) in a freezer as a function of the time t 

  (in h) is given by T =
1011 - t2
0.5t + 1

. Find dT>dt.

 78. Under certain conditions, the efficiency h (in %) of an internal 
combustion engine is given by 

  h = 100a1 - 11V1>V220.4 b  

  where V1 and V2 are the maximum and minimum volumes of air 
in a cylinder, respectively. Assuming that V2 is kept constant, 
find the expression for the instantaneous rate of change of effi-
ciency with respect to V1.

 79.  The deflection y of a cantilever beam (clamped at one end and 

  free at the other end) is y = w
24EI

16L2x2 - 4Lx3 + x42. Here, 

  L is the length of the beam, and w, E, and I  are constants. Find 
the first four derivatives of y with respect to x. (Each of these 
derivatives is useful in analysing the properties of the beam.)

 80. The number n of grams of a compound formed during a certain 

  chemical reaction is given by n = 2t
t + 1

, where t is the time (in 

  min). Evaluate d2n>dt2 (the rate of increase of the amount of the 
compound being formed) when t = 4.00 min.

 81. The area of a rectangular patio is to be 75.0 m2. Express the pe-
rimeter p of the patio as a function of its width w and find 
dp>dw.

 82. A water tank is being designed in the shape of a right circular 
cylinder with a volume of 100 m3. Find the expression for the 
instantaneous rate of change of the total surface area A of the 
tank with respect to the radius r of the base.

 83. An arch over a walkway can be described by the first-quadrant 
part of the parabola y = 4 - x2. In order to determine the size 
and shape of rectangular objects that can pass under the arch, 
express the area A of a rectangle inscribed under the parabola in 
terms of x. Find dA>dx.

 84. A computer analysis showed that a specialized piece of machin-
ery has a value (in dollars) given by V = 1 500 000>12t + 102, 
where t is the number of years after the purchase. Calculate the 
value of dV>dt and d2V>dt2 for t = 5.00 years. What is the 
meaning of these values?

 85. An airplane flies over an observer with a velocity of 400 km>h 
and at an altitude of 500 m. If the plane flies horizontally in a 
straight line, find the rate at which the distance r  from the ob-
server to the plane is changing 0.600 min after the plane passes 
over the observer. See Fig. 23.30.

 86. The radius of curvature of y = f1x2 at the point 1x, y2 on the 
curve of y = f1x2 is given by

  R =
31 + 1y′2243>2

* y″ *

  A certain roadway follows the parabola y = 1.2x - x2 for 
0 6 x 6 1.2, where x is measured in kilometres. Find R for 
x = 0.200 km and x = 0.600 km. See Fig. 23.31.

Writing Exercise
 87. An engineer designing military rockets uses a computer simula-

tion to find the path of a rocket as y = f1x2 and the path of an 
aircraft to be y = g1x2. Write two or three paragraphs explain-
ing how the engineer can determine the angle at which the path 
of the rocket crosses the path of the aircraft.

Fig. 23.30 

x
y

400 km/h500 m r

O

x

y

1.2R0.2

R0.6

Fig. 23.31 
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 CHAPTER 23 PRACTICE TEST

 1. Find lim
xS1

 
x2 - x

x2 - 1
. 2. Find lim

xS∞

1 - 4x2

x + 2x2.

 3. Find the slope of a line tangent to the curve of y = 3x2 - 4

x2 at 

  12, 112.

 4. The displacement s (in cm) of a pumping machine piston in each 

  cycle is given by s = t210 - 2t, where t is the time (in s). 
Find the velocity of the piston for t = 4.00 s.

 5. Find dy>dx: y = 4x6 - 2x4 + p3

 6. Find dy>dx: y = 2x15 - 3x24

 7. Find dy>dx: 11 + y223 - x2y = 7x.

 8. Under certain conditions, due to the presence of a charge q, the 
electric potential V  along a line is given by

  V =
kq2x2 + b2

  where k is a constant and b is the minimum distance from the 
charge to the line. Find the expression for the instantaneous rate 
of change of V  with respect to x.

 9. Find the second derivative of y = 2x
3x + 2

.

 10. By using the definition, find the derivative of y = 5x - 2x2 
with respect to x.
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 In Section 24.7, we see how to use 
the derivative in the design of cylin-
drical containers such as storage 
tanks.

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Find the equation of a line 
tangent or normal to a given 
curve

 Solve equations using 
Newton’s method

 Find the velocity and 
acceleration of an object 
undergoing curvilinear motion

 Solve related rates problems
 Use derivatives to describe 

important features of the graph 
of a function such as maxima, 
minima, points of inflection, 
and concavity

 Sketch a curve using 
information about the function 
and its derivatives

 Solve applied maximum and 
minimum problems

 Use differentials to estimate 
errors in measurement

 Obtain the linear 
approximation of a function

F ollowing the work of Newton and Leibniz, the development of the calculus proceeded 
rapidly but in a rather disorganized way. Much of the progress in the late 1600s and 
early 1700s was due to a desire to solve applied problems, particularly in some areas 

of physics. These included problems such as finding velocities in more complex types of mo-
tion, accurately measuring time by use of a pendulum, and finding the equation of a uniform 
cable hanging under its own weight.

A number of mathematicians, most of whom also studied in various areas of physics, contrib-
uted to these advances in calculus. Among them was the Swiss mathematician Leonhard 
Euler, the most prolific mathematician of all time. Throughout the mid- to late 1700s, he used 
the idea of a function to better organize the study of algebra, trigonometry, and calculus. In 
doing so, he fully developed the use of calculus on problems from physics in areas such as 
planetary motion, mechanics, and optics.

Euler had a nearly unbelievable memory and ability to calculate. At an early age, he memo-
rized the entire Aeneid by the Roman poet Virgil and was able to recite it from memory at age 
70. In his head he solved major problems related to the motion of the moon that Newton had 
not been able to solve. At one time, he was given two solutions to a problem that differed in 
the 50th decimal place, and he determined, in his head, which was correct. Although blind for 
the last 17 years of his life, it was one of his most productive periods. From memory, he dic-
tated many of his articles (he wrote a total of over 70 volumes) until his sudden death in 1783.

We have noted some of the problems in technology in which the derivative plays a key role in 
the solution. Another important type is finding the maximum values or minimum values of 
functions. Such values are useful, for example, in finding the maximum possible income from 
production or the least amount of material needed in making a product. In this chapter, we 
consider several of these kinds of applications of the derivative.

Applications of the 
Derivative 24
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The first application of the derivative we consider involves finding the equation of a 
line tangent to a given curve and the equation of a line normal (perpendicular) to a 
given curve.

TANGENT LINE
To find the equation of a line tangent to a curve at a given point, we first find the de-
rivative, which is then evaluated at the point. This gives us the slope of the tangent line 
to the curve at the point. Then, by using the point-slope form of the equation of a 
straight line, we find the equation of the tangent line. The following examples illustrate 
the method.

 EXAMPLE  1  Equation of a tangent line

Find the equation of the line tangent to the parabola y = x2 - 1 at the point 1 -2, 32.
Finding the derivative and evaluating it at x = -2, we have

 
dy
dx

= 2x   derivative

 
dy
dx

2
x = -2

= -4   evaluate derivative at 1 -2, 32
 y - 3 = -41x + 22   point-slope form of straight line

 y = -4x - 5   equation of tangent line

The parabola and the tangent line are shown in Fig. 24.1. ■

 EXAMPLE  2  Tangent line to an implicit function

Find the equation of the line tangent to the ellipse 4x2 + 9y2 = 40 at the point 11, 22 .
Treating the equation as an implicit function, we have the following solution.

 8x + 18yy′ = 0   find derivative

 y′ = - 4x
9y

 y′ " 11,22 = - 4
18

= - 2
9

   

 y - 2 = - 2
9
1x - 12   point-slope form of tangent line

 9y - 18 = -2x + 2

 2x + 9y - 20 = 0   standard form of tangent line

The ellipse and the tangent line 2x + 9y - 20 = 0 are shown in Fig. 24.2. ■

NORMAL LINE
If we wish to obtain the equation of a line normal (perpendicular to a tangent) to a 
curve, we must recall that the slopes of perpendicular lines are negative reciprocals. 
Thus, the derivative is found and evaluated at the specified point. Since this gives the 
slope of a tangent line, we take the negative reciprocal of this number to find the slope 
of the normal line. Then by using the point-slope form of the equation of a straight 
line, we find the equation of the normal. The following examples illustrate the method.

evaluate derivative to find slope 
of tangent line

 24.1 Tangents and Normals

0
42

2

4

24 22

22

y

x

Fig. 24.1

Fig. 24.2

0 42

2

24 22

22

y

x

■ About 1700, the word normal was adapted 
from the Latin word normalis, which was being 
used for perpendicular.
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 EXAMPLE  3  Equation of a normal line

Find the equation of a line normal to the hyperbola y = 2>x at the point 12, 12 .
Taking the derivative and evaluating it for x = 2, we have

dy
dx

= - 2

x2,  
dy
dx

2
x =2

= - 1
2

Therefore, the slope of the normal line at 12, 12  is 2. The equation of the normal line is then

 y - 1 = 21x - 22
 y = 2x - 3

The hyperbola and normal line are shown in Fig. 24.3. ■

Many of the applications of tangents and normals are geometric. However, there are 
certain applications in technology, and one of these is shown in the following example. 
Others are shown in the exercises.

 EXAMPLE  4  Normal line—application

In Fig. 24.4, the cross section of a parabolic solar reflector is shown, along with an inci-
dent ray of light and the reflected ray. The angle of incidence i is equal to the angle of 
reflection r where both angles are measured with respect to the normal to the surface. If 
the incident ray strikes at the point where the slope of the normal is -1 and the equa-
tion of the parabola is 4y = x2, what is the equation of the normal line?

If the slope of the normal line is -1, then the slope of a tangent line is 
- 1 1

- 12 = 1. Therefore, we know that the value of the derivative at the point of re-
flection is 1. This allows us to find the coordinates of the point:

 4y = x2

 4 
dy
dx

= 2x,  
dy
dx

=
1
2

 x  find derivative

 1 =
1
2

 x   substitute 
dy

dx
= 1

 x = 2

This means that the x-coordinate of the point of reflection is 2. We can find the 
y-coordinate by substituting x = 2 into the equation of the parabola. Thus, the point is 12, 12 . Since the slope is -1, the equation is

 y - 1 = 1 -12 1x - 22
 y = -x + 3

If the incident ray is vertical, for which i = 45° at the point (2, 1), the reflected 
ray passes through (0, 1), the focus of the parabola. See Fig. 24.5. This illustrates 
the important reflection property of a parabola that any incident ray parallel to its 
axis passes through the focus. We first noted this property in our discussion of the 
parabola in Example 4 of Section 21.4. ■

2

4

42−4 −2

−2

−4

y

x

Fig. 24.3

0

4

2

222

y

r i

x

m 5 21

4y 5 x2

Fig. 24.4

Practice Exercise

1.  Find the equation of the line normal to 
y = 4 - x2 at 13, -52 .

0

4

2

2−2

y

r
F

i

x

Fig. 24.5

EXERCISES 24.1

In Exercises 1 and 2, make the given changes in the indicated exam-
ples of this section and then solve the resulting problems.

 1. In Example 2, change 4x2 + 9y2 to x2 + 4y2, change 40 to 17, 
and then find the equation of the tangent line.

 2. In Example 3, change 2>x to 3> 1x + 12  and then find the equa-
tion of the normal line.

In Exercises 3–6, find the equations of the lines tangent to the indi-
cated curves at the given points. In Exercises 3 and 6, sketch the curve 
and the tangent line. In Exercises 4 and 5, use a graphing calculator 
to view the curve and the tangent line.

 3. y = x2 + 2 at 12, 62  4. y = 1
3 x3 - 5x at 13, -6)

 5. y =
1

x2 + 1
 at 11, 122  6. x2 + y2 = 25 at 13, 42



714 CHAPTER 24 Applications of the Derivative

In Exercises 7–10, find the equations of the lines normal to the indi-
cated curves at the given points. In Exercises 7 and 10, sketch the 
curve and the normal line. In Exercises 8 and 9, use a graphing calcu-
lator to view the curve and the normal line.

 7. y = 6x - 2x2 at 12, 42  8. y = 8 - x3 at 1 -1, 9)

 9. y =
61x2 + 122  at  11, 322  10. 4x2 - y2 = 20 at 1 -3, 42 .

In Exercises 11–14, find the equations of the lines tangent or normal 
to the given curves and with the given slopes. View the curves and 
lines on a graphing calculator.

11. y = x2 - 2x, tangent line with slope 2

12. y = 12x - 9, tangent line with slope 1

13. y = 12x - 123, normal line with slope - 1
24, x 7 0

14. y = 1
2 x4 + 1, normal line with slope 4

In Exercises 15–30, solve the given problems involving tangent and 
normal lines.

15. Find the equations of the tangent and normal lines to the parabola 
with vertex at 10, 32  and focus at 10, 02 , where x = -1. Graph 
the curve and lines.

16. Find the equations of the tangent and normal lines to the ellipse 
with focus at 14, 02 , vertex at 15, 02 , and centre at the origin, 
where x = 2. Use a graphing calculator to view the curve and 
lines.

17. Show that the line tangent to the graph of y = x + 2x2 - x4 at 11, 22  is also tangent at 1 -1, 02 .

18. Show that the graphs of y2 = 4x + 4 and y2 = 4 - 4x cross at 
right angles.

19.  Without actually finding the points of intersection, explain why 
the parabola y2 = 4x and the ellipse 2x2 + y2 = 6 intersect at 
right angles. (Hint: Call a point of intersection 1a, b2 .)

20. Find the y-intercept of the line normal to the curve y = x3>4, 
where x = 16.

21. Show that the equation of the tangent line to the circle 
x2 + y2 = a2 at the point 1x1, y12  is x1x + y1y = a2.

22. At what point on the curve y = x4 does the normal line have a 
slope of 16?

23. Heat flows normal to isotherms, curves along which the tempera-
ture is constant. Find the line along which heat flows through the 
point 12, 12  if the isotherm is the graph of 2x2 + y2 = 9.

24. The sparks from an emery wheel to sharpen blades fly off tangent 
to the wheel. Find the equation along which sparks fly from a 
wheel described by x2 + y2 = 25, at 13, 42 .

25. A certain suspension cable with supports on the same level is 
closely approximated as being parabolic in shape. If the supports 
are 80 m apart and the sag at the centre is 10 m, what is the equa-
tion of the line along which the tension acts (tangentially) at the 
right support? (Choose the origin of the coordinate system at the 
lowest point of the cable.)

26. In a video game, airplanes move from left to right along the path 
described by y = 2 + 1>x. They can shoot rockets tangent to the 
direction of flight at targets on the x-axis located at x = 1, 2, 3, 
and 4. Will a rocket fired from 11, 32  hit a target?

27. In an electric field, the lines of force are perpendicular to the 
curves of equal electric potential. In a certain electric field, a 
curve of equal potential is y = 22x2 + 8. If the line along 
which the force acts on an electron has an inclination of 135°, find 
its equation.

28. A radio wave reflects from a reflecting surface in the same way as 
a light wave (see Example 4). A certain horizontal radio wave re-
flects off a parabolic reflector such that the reflected wave is 
43.60° below the horizontal, as shown in Fig. 24.6. If the equation 
of the parabola is y2 = 8x, what is the equation of the normal line 
through the point of reflection?

43.60°

y2 ! 8x
Fig. 24.6

Fig. 24.7

29. In designing a flexible tubing system, the supports for the tubing 
must be perpendicular to the tubing. If a section of the tubing 

  follows the curve y =
4

x2 + 1
 1 -2 dm 6 x 6 2 dm2 , along 

  which lines must the supports be directed if they are located at 
x = -1, x = 0, and x = 1? See Fig. 24.7.

30. On a particular drawing, a pulley wheel can be described by the 
equation x2 + y2 = 100 (units in cm). The pulley belt is directed 
along the lines y = -10 and 4y - 3x - 50 = 0 when first and 
last making contact with the wheel. What are the first and last 
points on the wheel where the belt makes contact?

Answer to Practice Exercise

1. x - 6y = 33

As we know, finding the roots of an equation f1x2 = 0 is very important in mathe-
matics and in many types of applications, and we have developed methods of solving 
many types of equations in the previous chapters. However, for a great many algebraic 
and nonalgebraic equations, there is no method for finding the roots exactly.

 24.2 Newton’s Method for Solving Equations
 

Method for Solving Equations
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We have shown that the roots of an equation can be found with great accuracy on a 
graphing calculator. In this section, we develop Newton’s method, which uses the de-
rivative to find approximately, but also with great accuracy, the real roots of many 
kinds of algebraic and nonalgebraic equations.

Newton’s method is an iterative method, which starts with a reasonable guess for 
the root, and then yields a new and better approximation. This, in turn, is used to obtain 
an even better approximation, and so on until an approximate answer with the required 
degree of accuracy is obtained. Iterative methods are easily programmable for use on a 
computer.

Let us consider a section of the curve of y = f1x2  that (a) crosses the x-axis,  
(b) always has either a positive slope or a negative slope, and (c) has a slope that either 
becomes greater or becomes less as x increases. See Fig. 24.8. (When either (b) or (c) is 
not satisfied, Newton’s method may fail to find the root. See Exercises 20 and 23.) The 
curve in the figure crosses the x-axis at x = r, which means that x = r is a root of the 
equation f1x2 = 0. If x1 is sufficiently close to r, a line tangent to the curve at 3x1, f1x12 4  will cross the x-axis at a point 1x2, 02 , with x2 closer to r than x1.

We know that the slope of the tangent line is the value of the derivative at x1, or 
mtan = f′1x12 . Therefore, the equation of the tangent line is

y - f1x12 = f′1x12 1x - x12
For the point 1x2, 02  on this line, we have

- f1x12 = f′1x12 1x2 - x12
Solving for x2, we have

x2 = x1 -
f1x12
f ′1x12

Here, x2 is a second approximation to the root. We can repeat the process starting with 
x2 in place of x1, obtaining an even better approximation x3. The repetition of this pro-
cess is what we call Newton’s method, which we now summarize.

■ Newton’s method is another mathematical 
development by the English mathematician and 
physicist Isaac Newton (1642–1727).

x

y

r
0

y 5 f(x)

(x1, f (x1))

x1x2

Fig. 24.8

Let x = r be a root of the equation f1x2 = 0, and let x1 be a first approximation 
of r. We obtain approximations x2, x3, . . . by using

 xn+1 = xn-
f1xn2
f′1xn2  (24.1)

for n = 1, 2, . . . . The number of iterations depends on the required accuracy.

The initial approximation x1 (which must be close to r) may be found by either of 
the following procedures:

1.  Choose x1 inside an interval 1a, b2  where f1a2  and f1b2  have opposite 
signs, with x1 closer to the endpoint where the function is closer to zero.

2.  Sketch the graph of the function and choose x1 as an estimate of the x-inter-
cept of the function. For some equations, it may be easier to choose x1 as an 
estimate of the intersection of two functions.

 EXAMPLE  1  

Find the root of x2 - 3x + 1 = 0 between x = 0 and x = 1.
Here, f1x2 = x2 - 3x + 1, f102 = 1, and f112 = -1. This indicates that the 

root may be near the middle of the interval. Therefore, we choose x1 = 0.5.
The derivative is

f′1x2 = 2x - 3
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Therefore, f10.52 = -0.25 and f′10.52 = -2, which gives us

x2 = 0.5 - -0.25
-2

= 0.375

This is a second approximation, which is closer to the actual value of the root. 
See Fig. 24.9. A second iteration using x2 = 0.375, f10.3752 = 0.015 625, and 
f′10.3752 = -2.25 gives us

x3 = 0.375 - 0.015 625
-2.25

= 0.381 944 4

We can check this particular result by using the quadratic formula. This tells us the 
root is x = 0.381 966 0. Our result using Newton’s method is good to three decimal 
places, and additional accuracy may be obtained by using the method again as many 
times as needed. ■

 EXAMPLE  2  Newton’s method—application

A spherical water-storage tank holds 500.0 m3. If the outside diameter is 10.0000 m, 
what is the thickness of the metal of which the tank is made?

Let x =  the thickness of the metal. We know that the outside radius of the tank 
is 5.0000 m. Therefore, using the formula for the volume of a sphere, we have

 
4p
3
15.0000 - x23 = 500.0

 125.0 - 75.00x + 15.00x2 - x3 = 119.366

 x3 - 15.00x2 + 75.00x - 5.634 = 0

 f1x2 = x3 - 15.00x2 + 75.00x - 5.634

 f′1x2 = 3x2 - 30.00x + 75.00

Since f102 = -5.634 and f10.12 = 1.717, the root may be closer to 0.1 than to 
0.0. Therefore, we let x1 = 0.07. Setting up a table, we have these values:

x
r

x1 5 0.5

x2 5 0.375

x3

(0.5, 20.25)

Fig. 24.9

Practice Exercise

1. In Example 1, let x1 = 0.3, and find x2.

■ An explanation and an example of Newton’s 
method due to Thomas Simpson (of Simpson’s 
rule) and dating back to 1740 can be found in 
the text’s companion website.

n xn f1xn2 f′1xn2 xn -
f1xn2
f′1xn2

1 0.07 -0.457 157 72.9147 0.076 269 750 8

2 0.076 269 750 8 -0.000 581 145 72.729 358 7 0.076 277 741 3

Since x2 = x3 = 0.0763 to four decimal places, the thickness is 0.0763 m. This 
means the inside radius of the tank is 4.9237 m, and this value gives an inside vol-
ume of 500.0 m3. In using a calculator, the values in the table are more easily found 
if the values of xn, f1xn2 , and f′1xn2  are stored in memory for each step. ■

 EXAMPLE  3  Graphically locating x1

Solve the equation x2 - 1 = 14x - 1.
We can see approximately where the root is by sketching the graphs of 

y1 = x2 - 1 and y2 = 14x - 1, as shown in Fig. 24.10. We see that they intersect 
between x = 1 and x = 2. Therefore, we choose x1 = 1.5. With

 f1x2 = x2 - 1 - 14x - 1

 f′1x2 = 2x - 214x - 1

we now find the values in the following table:

1

2

3

21−1

−1

y

x

y = x2 − 1 

y = V4x − 1

Fig. 24.10
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Since x5 = x4 = 1.886 38 to five decimal places, this is the required solution. 
(Here, rounded-off values of xn are shown, although additional digits were carried 
and used.) ■

n xn f1xn2 f′1xn2 xn -
f1xn2
f′1xn2

1 1.5 -0.986 067 98 2.105 572 8 1.968 313 4

2 1.968 313 4 -0.252 568 59 3.173 759 8 1.888 733 2

3 1.888 733 2 -0.007 052 69 2.996 295 7 1.886 379 4

4 1.886 379 4 -0.000 006 20 2.991 026 5 1.886 377 3

EXERCISES 24.2

In Exercises 1–4, find the indicated roots of the given quadratic equa-
tions by finding x3 from Newton’s method. Compare this root with 
that obtained by using the quadratic formula.

 1. In Example 1, change the middle term from -3x to -5x and use 
the same x1.

 2. 2x2 - x - 2 = 0 (between 1 and 2)

 3. 3x2 - 5x - 1 = 0 (between -1 and 0)

 4. x2 + 4x + 2 = 0 (between -4 and -3)

In Exercises 5–16, find the indicated roots of the given equations to at 
least four decimal places by using Newton’s method.

 5. x3 - 6x2 + 10x - 4 = 0 (between 0 and 1)

 6. x3 - 3x2 - 2x + 3 = 0 (between 0 and 1)

 7. x3 + 6x2 + 9x + 2 = 0 (the smallest root)

 8. 2x3 + 2x2 - 11x + 3 = 0 (the largest root)

 9. x4 - x3 - 3x2 - x - 4 = 0 (between 2 and 3)

 10. 2x4 - 2x3 - 5x2 - x - 3 = 0 (between -2 and -1)

 11. x4 - 2x3 - 8x - 16 = 0 (the negative root)

 12. 3x4 - 3x3 - 11x2 - x - 4 = 0 (the negative root)

 13. 2x2 = 12x + 1 (the positive real solution)

 14. x3 = 1x + 1 (the real solution)

 15. x =
11x + 2

 (the real solution)

 16. x3>2 =
1

2x + 1
 (the real solution)

In Exercises 17–31, determine the required values to at least 4 decimal 
places by using Newton’s method.

 17. Find all the real roots of x3 - 2x2 - 5x + 4 = 0.

 18. Find all the real roots of x4 - 2x3 + 3x2 + x - 7 = 0.

 19.  Explain how to find 23 4 by using Newton’s method.

 20.  Explain why Newton’s method does not work for finding the root 
of x3 - 3x = 5 if x1 is chosen as 1.

 21. Use Newton’s method to find an expression for xn+1, in terms of 
xn and a, for the equation x2 - a = 0. Such an equation can be 
used to find 1a.

 22.  Use Newton’s method on f1x2 = x1>3 with x1 = 1. Calculate 
x2, x3, and x4. What is happening as successive approximations 
are calculated?

 23. To calculate reciprocals without dividing, a computer program-
mer applied Newton’s method to the equation 1>x - a = 0. 
Show that x2 = 2x1 - ax1

2. From this, determine the expression 
for xn.

 24. The altitude h (in m) of a rocket is given by 
h = -2t3 + 84t2 + 480t + 10, where t is the time (in s) of 
flight. When does the rocket hit the ground?

 25. A solid sphere of specific gravity s sinks in water to a depth h (in 
cm) given by 0.009 26h3 - 0.0833h2 + s = 0. Find h for 
s = 0.786 (when the diameter of the sphere is 6.00 cm).

 26. A dome in the shape of a spherical segment is to be placed over 
the top of a sports stadium. If the radius r of the dome is to be 
60.0 m and the volume V within the dome is 180 000 m3, find the 
height h of the dome. See Fig. 24.11. 1V = 1

6ph1h2 + 3r22 .2
r

h

Fig. 24.11

 27. The capacitances (in mF) of three capacitors in series are C, 
C + 1.00, and C + 2.00. If their combined capacitance is 
1.00 mF, their individual values can be found by solving the 
equation

  
1
C

+ 1
C + 1.00

+ 1
C + 2.00

= 1.00

  Find these capacitances.

 28. An oil-storage tank has the shape of a right circular cylinder with 
a hemisphere at each end. See Fig. 24.12. If the volume of the 
tank is 50.0 m3 and the length l is 4.00 m, find the radius r.

r r

l ! 4.00 mFig. 24.12
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 29. A rectangular block of plastic with edges 2.00 cm, 2.00 cm, and 
4.00 cm is heated until its volume doubles. By how much does 
each edge increase if each increases by the same amount?

 30. Water flow in a wide channel approaches a bump. See Fig. 24.13. 
The water depth x (in m) over the bump is the largest root of the 
equation

    x3 - 1.015x2 + 0.115 = 0.

  Find x if it is between 0.750 m and 1.20 m.

 31. The vibration analysis of a three-storey building requires that the 
following equation be solved:

     l3 - 0.0012l2 + 9 * 10-7l - 7.2 * 10-11 = 0.

  Find the root that lies between 0 and 4 * 10-4 to 3 significant 
digits.

Answer to Practice Exercise

1. x2 = 0.379167

Bump

x

Fig. 24.13

When velocity was introduced in Section 23.4, the discussion was limited to rectilinear 
motion, or motion along a straight line. A more general discussion of velocity is neces-
sary when we discuss the motion of an object in a plane. There are many important ap-
plications of motion in a plane, a principal one being the motion of a projectile.

An important concept in developing this topic is that of a vector. The necessary fun-
damentals related to vectors are taken up in Chapter 9. Although vectors can be used to 
represent many physical quantities, we will restrict our attention to their use in describ-
ing the velocity and acceleration of an object moving in a plane along a specified path. 
Such motion is called curvilinear motion.

In describing an object undergoing curvilinear motion, it is common to express the 
x- and y-coordinates of its position separately as functions of time. Equations given in 
this form—that is, x and y both given in terms of a third variable (in this case, t)—are 
said to be in parametric form, which we encountered in Section 10.6. The third vari-
able, t, is called the parameter. Each value of the parameter t determines a point 
(x(t), y(t)), and the set of all such points determines the graph of the curve. The graph 
can be sketched by plotting enough points to indicate its shape. In some cases, we can 
eliminate the parameter t to obtain an equation in x and y, which we can then graph.

To find the velocity of an object whose coordinates are given in parametric form, we 
find its x-component of velocity vx by determining dx>dt and its y-component of veloc-
ity vy by determining dy>dt. These are then evaluated, and the resultant velocity is 

found from v = 2v2
x + v2

y  . The direction in which the object is moving is found from 
tan u = vy>vx.

 EXAMPLE  1  Parametric form—resultant velocity

If the horizontal distance x that an object has moved is given by x = 3t2 and the verti-
cal distance y is given by y = 1 - t2, find the resultant velocity when t = 2.

To find the resultant velocity, we must find v and u, by first finding vx and vy. 
After the derivatives are found, they are evaluated for t = 2. Therefore,

vx =
dx
dt

= 6t  vx " t =2 = 12 find velocity components

vy =
dy
dt

= -2t  vy " t =2 = -4

v = 2122 + 1 -422 = 12.6 magnitude of velocity

tan u =
-4
12

 u = -18.4°  direction of motion

 24.3 Curvilinear Motion

Acceleration
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To sketch the graph of the path, we can eliminate the parameter t by substituting 
t2 = x>3 (from the equation for x) into the equation for y. Therefore, y = 1 - x

3, 
and the path of the object is a line. The path and velocity vectors are shown in  
Fig. 24.14. ■

 EXAMPLE  2  Parametric form—resultant velocity

Find the velocity and direction of motion when t = 2 of an object moving such that its 
x- and y-coordinates of position are given by x = 1 + 2t and y = t2 - 3t.

 vx =
dx
dt

= 2 vx " t =2 = 2 find velocity components

 vy =
dy
dt

= 2t - 3 vy " t =2 = 1

v " t =2 = 222 + 12 = 2.24 magnitude of velocity

 tan u =
1
2

 u = 26.6°  direction of motion

We graph the path by plotting the following points: 

t 0 1 2 3

x 1 3 5 7

y 0 –2 –2 0

The path and the velocity are shown in Fig. 24.15. ■

v

u

0

5 10

10

5

−2

y

x

Fig. 24.15

Note that to find the resultant velocity, we first find the necessary derivatives and then 
evaluate them. This procedure should always be followed. When a derivative is to be 
found, it is incorrect to take the derivative of the evaluated expression (which is a 
constant).

COMMON ERROR

Acceleration is the time rate of change of velocity. Therefore, if the velocity, or its 
components, is known as a function of time, the acceleration of an object can be found 
by taking the derivative of the velocity with respect to time. If the displacement is 
known, the acceleration is found by finding the second derivative with respect to time. 
Finding the acceleration of an object is illustrated in the following example.

 EXAMPLE  3  Parametric form—resultant acceleration

Find the magnitude and direction of the acceleration when t = 2 for an object that is 
moving such that its x- and y-coordinates of position are given by the parametric equa-
tions x = t3 and y = 1 - t2.

 vx =
dx
dt

= 3t2   ax =
dvx

dt
=

d2x

dt2 = 6t   ax " t =2 = 12

vy =
dy

dt
= -2t  ay =

dvy

dt
=

d2y

dt2 = -2  ay " t =2 = -2

a " t =2 = 2122 + 1 -222 = 12.2 magnitude of acceleration

tan u =
ay

ax
= - 2

12
   u = -9.5° direction of acceleration

The quadrant in which u lies is determined from the fact that ay is negative and ax is 
positive. Thus, u must be a fourth-quadrant angle (see Fig. 24.16). ■

take second derivatives to find  
acceleration components

40 8 12 16

ax

a y
a

y

x

−2

2

−4 u

Fig. 24.16

0

15105

5

−5

y

x

vy

vx
v

u

Fig. 24.14
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We now summarize the equations used to find the velocity and acceleration of an 
object for which the displacement is a function of time. They indicate how to find the 
components, as well as the magnitude and direction, of each.

 vx =
dx
dt

   vy =
dy
dt

 

 ax =
dvx

dt
=

d2x

dt2   ay =
dvy

dt
=

d2y

dt2  

v = 2v2
x + v2

y  a = 2a2
x + a2

y  

 tan uv =
vy

vx
       tan ua =

ay

ax

velocity  
components

acceleration  
components

magnitude

direction

(24.2)

(24.3)

(24.4)

(24.5)

Practice Exercise

1.  In Example 3, solve for the acceleration 
when t = 2, if x = 0.8t5>2, instead of 
x = t3.

If the curvilinear path an object follows is given with y as a function of x, the velocity (or 
acceleration) is found by taking derivatives of each term of the equation with respect to 
time. It is assumed that both x and y are functions of time, although these functions  
are not stated. When finding derivatives, we must be careful in using the power rule,  
Eq. (23.15), so that the factor du>dt is not neglected.

COMMON ERROR

In the following examples, we illustrate the use of Eqs. (24.2) to (24.5) in applied 
situations for which we know the equation of the path of the motion. Again, we must be 
careful to find the direction of the vector as well as its magnitude in order to have a 
complete solution.

 EXAMPLE  4  Velocity at a point along a path

In a physics experiment, a small sphere is constrained to move along a parabolic path 
described by y = 1

3 x2. If the horizontal velocity vx is constant at 6.00 cm>s, find the 
velocity at the point 12.00, 1.332 . See Fig. 24.17.

Since both y and x change with time, both can be considered to be functions of 
time. Therefore, we can take derivatives of y = 1

3 x2 with respect to time.

 
dy
dt

=
1
3

 a2x 
dx
dt

b   dx2

dt
= 2x 

dx
dt

 vy =
2
3

 xvx   using Eq. (24.2)

 vy =
2
3

 12.002 16.002 = 8.00 cm>s   substituting

 v = 26.002 + 8.002 = 10.0 cm>s  magnitude (Eq. 24.4)

 tan u =
8.00
6.00

,  u = 53.1°   direction (Eq. 24.5) ■

 EXAMPLE  5  Velocity and acceleration—application to projectile motion

A helicopter is flying at 18.0 m>s and at an altitude of 120 m when a rescue marker is 
released from it. The marker maintains a horizontal velocity and follows a path given 
by y = 120 - 0.0151x2, as shown in Fig. 24.18. Find the magnitude and direction of 
the velocity and of the acceleration of the marker 3.00 s after release.

■ For reference, Eq. (23.15) rewritten for u as a 
function of t is

dun

dt
= nun - 1du

dt
.

0

5

3−3

y

x

vy

vx

v

u

Fig. 24.17

0

y

x

vy v

u

18.0 m/s

120 m

y = 120 − 0.0151x2

Fig. 24.18
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From the given information, we know that vx = dx>dt = 18.0 m>s. Taking de-
rivatives with respect to time leads to this solution:

 y = 120 - 0.0151x2

 
dy
dt

= -0.0302x 
dx
dt

  taking derivatives

 vy = -0.0302xvx   using Eq. (24.2)

 x = 13.002 118.02 = 54.0 m   evaluating at t = 3.00 s

 vy = -0.0302154.02 118.02 = -29.35 m>s  

 v = 218.02 + 1 -29.3522 = 34.4 m>s   magnitude

 tan u =
-29.35

18.0
,  u = -58.5°   direction

The velocity is 34.4 m>s and is directed at an angle of 58.5° below the horizontal.
To find the acceleration, we return to the equation vy = -0.0302xvx. Since vx is 

constant, we can substitute 18.0 for vx to get

vy = -0.5436x

Again taking derivatives with respect to time, we have

 
dvy

dt
= -0.5436 

dx
dt

 ay = -0.5436vx   using Eqs. (24.3) and (24.2)

 ay = -0.5436118.02 = -9.78 m>s2  evaluating

We know that vx is constant, which means that ax = 0. Therefore, the acceleration is 
9.78 m>s2 and is directed vertically downward. ■

EXERCISES 24.3

In Exercises 1 and 2, make the given changes in the indicated exam-
ples of this section and then solve the resulting problems.

 1. In Example 1, change x = 3t2 to x = 4t2.

 2. In Example 4, change y = x2>3 to y = x2>4 and (2.00, 1.33) to 
(2.00, 1.00).

In Exercises 3–6, given that the x- and y-coordinates of a moving parti-
cle are given by the indicated parametric equations, find the magnitude 
and direction of the velocity for the specific value of t to 3 significant 
digits. Sketch the curves and show the velocity and its components.

 3. x = 3t, y = 1 - t, t = 4

 4. x =
5t

2t + 1
, y = 0.11 t2 + t2 , t = 2

 5. x = t12t + 122, y =
614t + 3

, t = 0.5

 6. x = 11 + 2t, y = t - t2, t = 4

In Exercises 7–10, use the parametric equations and values of t of 
Exercises 3–6 to find the magnitude and direction of the acceleration 
in each case.

In Exercises 11–28, find the indicated velocities and accelerations.

 11. The water from a fire hose follows a path described by 
y = 2.0 + 0.80x - 0.20x2 (units are in metres). If vx is constant 
at 5.0 m>s, find the resultant velocity at the point (4.0, 2.0).

 12. A roller mechanism follows a path described by y = 14x + 1, 
where units are in metres. If vx = 2x, find the resultant velocity 
(in m>s) at the point 12.0, 3.02 .

 13. A float is used to test the flow pattern of a stream. It follows a 
path described by x = 0.20t2, y = -0.10t3 (x and y in m, t in 
min). Find the acceleration of the float after 2.0 min.

 14. A radio-controlled model car is operated in a parking lot. The co-
ordinates (in m) of the car are given by x = 3.5 + 2.0t2 and 
y = 8.5 + 0.25t3, where t is the time (in s). Find the acceleration 
of the car after 2.5 s.

 15. An astronaut on Mars drives a golf ball that moves according to 
the equations x = 25t and y = 15t - 3.7t2 (x and y in metres, t 
in seconds). Find the resultant velocity and acceleration of the 
golf ball for t = 6.0 s.

 16. A package of relief supplies is dropped and moves according to 
the parametric equations x = 45t and y = -4.9t2 (x and y in m, t 
in s). Find the velocity and acceleration when t = 3.0 s.
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 17. A spacecraft moves along a path described by the parametric 
equations x = 10121 + t4 - 12 , y = 40t3>2 for the first 100 s 
after launch. Here, x and y are measured in metres, and t is meas-
ured in seconds. Find the magnitude and direction of the velocity 
of the spacecraft 10.0 s and 100 s after launch.

 18. An electron moves in an electric field according to the equations 
x = 8.0>21 + t2 and y = 8.0t>21 + t2 (x and y in Mm and t 
in s). Find the velocity of the electron when t = 0.50 s.

 19. In a computer game, an airplane starts at 11.00, 4.002  (in cm) on 
the curve y = 3.00 + x-1.50 and moves with a constant horizontal 
velocity of 1.20 cm>s. What is the plane’s velocity after 0.500 s?

 20. In an aerobic exercise machine, weights are lifted and a person’s 
hands are constrained to move along arcs of the ellipse 
16x2 + 9y2 = 9 (in m). If the person’s hands move upward at 
0.100 m>s, and start at y = 0, at what velocity is each moving 
after 1.50 s?

 21. Find the resultant acceleration of the spacecraft in Exercise 17 for 
the specified times.

 22. A ski jump is designed to follow the path given by the equations 
x = 3.50t2 and y = 20.0 + 0.120t4 - 3.002t4 + 1  10 … t … 4.00 s2  (x and y in m, t in s). Find the velocity and  
acceleration of a skier when t = 4.00 s. See Fig. 24.19.

 23. A rocket follows a path given by y = x - 1
90 x3 (distances in km). 

If the horizontal velocity is given by vx = x, find the magnitude 
and direction of the velocity when the rocket hits the ground (as-
sume level terrain) if time is in minutes.

 24. A ship is moving around an island on a route described by 
y = 3.0x2 - 0.20x3. If vx = 1.2 km>h, find the velocity of the 
ship where x = 3.5 km.

 25. A computer’s hard disk is 88.9 mm in diameter and rotates at 
3600 r>min. With the centre of the disk at the origin, find the ve-
locity components of a point on the rim for x = 30.5 mm, if 
y 7 0 and vx 7 0.

 26. A robot arm joint moves in an elliptical path (horizontal major 
axis 8.0 cm, minor axis 4.0 cm, centre at origin). For y 7 0 and 
-2 cm 6 x 6 2 cm, the joint moves such that vx = 2.5 cm>s. 
Find its velocity for x = -1.5 cm.

 27. An airplane ascends such that its gain h in altitude is proportional 
to the square root of the change x in horizontal distance travelled. 
If h = 280 m for x = 400 m and vx is constant at 350 m>s, find 
the velocity at this point.

 28.  A meteor travelling toward the earth has a velocity inversely pro-
portional to the square root of the distance from the earth’s centre. 
State how its acceleration is related to its distance from the centre 
of the earth.

Answer to Practice Exercise

1. a = 4.70, u = -25.2°
v

Fig. 24.19

Often, variables vary with respect to time, and are therefore implicitly functions of 
time. If a relation is known to exist relating them, the time rate of change of one can be 
expressed in terms of the time rate of change of the other(s). This is done by taking the 
derivative with respect to time of the expression relating the variables, even if t does 
not appear in the expression, as in Examples 4 and 5 of Section 24.3. Since the time 
rates of change are related, this is referred to as a related-rates problem. Consider the 
following examples.

 24.4 Related Rates
 

Rates of Change are Related

Remember that all variables in related rates problems are functions of time, even if t 
does not appear explicitly in the expression. Once again, a common error is not to in-
clude the derivative with respect to t as a factor when applying the power rule or the 
chain rule.

COMMON ERROR

 EXAMPLE  1  Related rates—voltage and temperature

The voltage E of a certain thermocouple as a function of the temperature T (in °C) is 
given by E = 2.800T + 0.006T2. If the temperature is increasing at the rate of 
1.00 °C/min, how fast is the voltage increasing when T = 100°C?

Since we are asked to find the time rate of change of voltage, we first take deriva-
tives with respect to time. This gives us

dE
dt

= 2.800 
dT
dt

+ 0.012T 
dT
dt

  d
dt

 10.006T22 = 0.006 a2T  
dT
dt

b



 24.4 Related Rates 723

again being careful to include the factor dT>dt. From the given information, we know 
that dT>dt = 1.00°C>min and that we wish to know dE>dt when T = 100°C. Thus,

dE
dt

2
T=100

= 2.80011.002 + 0.01211002 11.002 = 4.00 V>min ■

When working with related rates, the derivative must be taken before given values are 
substituted. A common error is to substitute before taking derivatives, so that the func-
tions appear constant when they are not. For instance, in Example 1 we are finding the 
time rate of change of voltage for a specified value of T. Different values of T will lead 
to different values of dE>dT.

COMMON ERROR

 EXAMPLE  2  Related rates—distances

The distance q that an image is from a certain lens in terms of p, the distance of the 
object from the lens, is given by

q =
10p

p - 10

If the object distance is increasing at the rate of 0.200 cm>s, how fast is the image 
distance changing when p = 15.0 cm? See Fig. 24.20.

Taking derivatives with respect to time, we have

dq

dt
=

1p - 102 a10 
dp
dt

b - 10p adp
dt

b1p - 1022 =
-100 

dp
dt1p - 1022

Now, substituting p = 15.0 and dp>dt = 0.200, we have

 
dq

dt
2
p =15

=
-10010.2002115.0 - 1022

 = -0.800 cm>s

Thus, the image distance is decreasing (the significance of the minus sign) at the 
rate of 0.800 cm>s when p = 15.0 cm. ■

In many related-rate problems, the function is not given but must be set up according 
to the statement of the problem. The following examples illustrate this type of problem.

 EXAMPLE  3  Related rates—volume and radius

A spherical balloon is being blown up such that its volume increases at the constant rate of 
2.00 m3>min. Find the rate at which the radius is increasing when it is 3.00 m. See Fig. 24.21.

We are asked to find the relation between the rate of change of the volume of a 
sphere with respect to time and the corresponding rate of change of the radius with 
respect to time. Therefore, we are to take derivatives of the expression for the vol-
ume of a sphere with respect to time:

 V =
4
3

 pr3  volume of sphere

 
dV
dt

= 4 pr2 adr
dt
b  take derivatives with respect to time

 2.00 = 4p13.0022 adr
dt
b   substitute 

dV
dt

= 2.00 m3>min and r = 3.00 m

 
dr
dt

2
r =3

=
1

18.0p
 solve for 

dr
dt

 = 0.0177 m>min  ■

don’t forget the 
dp

dt

Image

Object

p
q

Fig. 24.20

Practice Exercise

1.  In Example 2, change each 10 to 12 and 
then solve.

dV/dt ! 2.00 m3/min

Pump

r

Fig. 24.21
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 EXAMPLE  4  Related rates—force and distance

The force F of gravity of Earth on a spacecraft varies inversely as the square of the dis-
tance r of the spacecraft from the centre of Earth. A particular spacecraft weighs 4500 N 
on the launchpad (F = 4500 N for r = 6370 km). Find the rate at which F changes later 
as the spacecraft moves away from the Earth at the rate of 12 km>s, where r = 8500 km.

We begin by setting up the equation relating F and r. Note that we substitute 
known values of F and r in order to obtain the constant of proportionality. As we 
said earlier, the values from the related rates problem are only substituted after tak-
ing derivatives.

 F =
k

r2  inverse variation

 4500 =
k

63702  substitute F = 4500 N, r = 6370 km

 k = 1.83 * 1011 N # km2  solve for k

 F =
1.83 * 1011

r2  substitute for k in equation

 
dF
dt

= 11.83 * 10112 1 -22 1r-32  
dr
dt

   take derivatives with respect 
to time

 =
-3.66 * 1011

r3  
dr
dt

 
dF
dt

2
r =8500 km

=
-3.66 * 1011

85003  1122   
evaluate derivative for  
r = 8500 km, dr>dt = 12 km>s

= -7.2 N>s gravitational force is decreasing ■

These examples show the following method of solving a related-rates problem.

Steps for Solving Related-Rates Problems
1. Identify the variables and rates in the problem.

2. If possible, make a sketch showing the variables.

3. Determine the equation relating the variables.

4. Differentiate with respect to time.

5. Solve for the required rate.

6. Evaluate the required rate.

 EXAMPLE  5  Related rates—distances

Two cruise ships leave Vancouver, British Columbia, at noon. Ship A travels west at 
12.0 km>h (before leaving toward Alaska), and ship B travels south at 16.0 km>h  
(toward Seattle). How fast are they separating at 2 p.m.?

In Fig. 24.22, we let x =  the distance travelled by A and y =  the distance 
travelled by B. We can find the distance between them, z, from the Pythagorean 
theorem. Therefore, we are to find dz>dt for t = 2.00 h. Even though there are three 
variables, each is a function of time. This means we can find dz>dt by taking deriva-
tives of each term with respect to time. This gives us

 z2 = x2 + y2   using the Pythagorean theorem  (step 3)

 2z 
dz
dt

= 2x 
dx
dt

+ 2y 
dy
dt

  taking derivatives with respect to time  (step 4)

 
dz
dt

=
x1dx>dt2 + y1dy>dt2

z
  solve for 

dz
dt

 (step 5)

W

B

z y

A
x

S

To Alaska

To Seattle

Vancouver

Fig. 24.22
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At 2 p.m., we have the values (step 6)

 x = 24.0 km, y = 32.0 km, z = 40.0 km  d = rt and Pythagorean theorem

 dx>dt = 12.0 km>h, dy>dt = 16.0 km>h   from statement of problem

 
dz
dt

2
z =40

=
124.02 112.02 + 132.02 116.02

40.0
= 20.0 km>h  substitute values ■

EXERCISES 24.4

In Exercises 1 and 2, make the given changes in the indicated exam-
ples of this section and then solve the resulting problems.

 1. In Example 1, change 0.006 to 0.012.

 2. In Example 3, change “volume” to “surface area” and change m3>min 
to m2>min.

In Exercises 3–6, assume that all variables are implicit functions of 
time t. Find the indicated rates.

 3. y = 5x2 - 4x; dx>dt = 0.5 when x = 5; find dy>dt.

 4. x2 + 2y2 = 9; dx>dt = 3 when x = 1 and y = 2; find dy>dt.

 5. x2 + 3y2 + 2y = 10; dx>dt = 2 when x = 3 and y = -1; find 
dy>dt.

 6. z = 2x2 - 3xy; dx>dt = -2 and dy>dt = 3 when x = 1 and 
y = 4; find dz>dt.

In Exercises 7–44, solve the problems in related rates.

 7. How fast is the slope of a tangent to the curve y = 2> 1x + 12  
changing where x = 3.0 if dx>dt = 0.50 unit>s?

 8. How fast is the slope of a tangent to the curve y = 2(1 - 2x)2 
changing where x = 1.5 if dx>dt = 0.75 unit>s?

 9. The velocity v (in m/s) of a pulse travelling in a certain string is a 
function of the tension T (in N) in the string given by v = 181T.
Find dv>dt if dT>dt = 0.20 N/s when T = 25 N.

 10. The force F (in N) on the blade of a certain wind generator as a 
function of the wind velocity v (in m/s) is given by F = 0.024v2. 
Find dF>dt if dv>dt = 0.75 m>s2 when v = 28 m>s.

 11. The electric resistance R (in Ω) of a certain resistor as a function 
of the temperature T (in °C) is R = 4.000 + 0.003T2. If the tem-
perature is increasing at the rate of 0.100°C>s, find how fast the 
resistance changes when T = 150°C.

 12. The kinetic energy K (in J) of an object is given by K = 1
2 mv2, 

where m is the mass (in kg) of the object and v is its velocity. If a 
250-kg wrecking ball accelerates at 5.00 m>s2, how fast is the 
kinetic energy changing when v = 30.0 m>s?

 13. The length L (in cm) of a pendulum is slowly decreasing at the 
rate of 0.100 cm>s. What is the time rate of change of the period 
T (in s) of the pendulum when L = 16.0 cm, if the equation relat-
ing the period and length is T = p1L>245?

 14. The voltage V that produces a current I (in A) in a wire of radius r 
(in mm) is V = 0.030I>r2. If the current increases at 0.020 A>s 
in a wire of 0.040 mm radius, find the rate at which the voltage is 
increasing.

 15. A plane flying at an altitude of 2.0 km is at a direct distance 
  D = 24.0 + x2 from an airport control tower, where x is the 

horizontal distance to the tower. If the plane’s speed is 350 km>h, 
how fast is D changing when x = 6.2 km?

 16. A variable resistor R and an 8@Ω resistor in parallel have a

  combined resistance RT given by RT =
8R

8 + R
. If R is changing 

  at 0.30 Ω >min, find the rate at which RT is changing when 
R = 6.0 Ω.

 17. The radius r of a ring of a certain holograph (an image produced 
without using a lens) is given by r = 10.40l, where l is the 
wavelength of the light being used. If l is changing at the rate of 
0.10 * 10-7 m>s when l = 6.0 * 10-7 m, find the rate at 
which r is changing.

 18. An earth satellite moves in a path that can be described by 

  
x2

72.5
+

y2

71.5
= 1, where x and y are in thousands of kilometres. 

  If dx>dt = 12 900 km>h for x = 3200 km and y 7 0, find 
dy>dt.

 19. The magnetic field B due to a magnet of length l at a distance r is 

  given by B =
k3r2 + 1 l>22243>2, where k is a constant for a 

  given magnet. Find the expression for the time rate of change of B 
in terms of the time rate of change of r.

 20. An approximate relationship between the pressure p and volume 
V of the  vapour in a diesel engine cylinder is pV1.4 = k, where k 
is a constant. At a certain instant, p = 4200 kPa, V = 75 cm3, 
and the volume is increasing at the rate of 850 cm3>s. What is the 
time rate of change of the pressure at this instant?

 21. A swimming pool with a rectangular surface 18.0 m long and 
12.0 m wide is being filled at the rate of 0.80 m3>min. At one end 
it is 1.0 m deep, and at the other end it is 2.5 m deep, with a con-
stant slope between ends. How fast is the height of water rising 
when the depth of water at the deep end is 1.0 m?

 22. An engine cylinder 15.0 cm deep is being bored such that the ra-
dius increases by 0.100 mm>min. How fast is the volume V of the 
cylinder changing when the diameter is 9.50 cm?

 23. Fatty deposits have decreased the circular cross-sectional opening 
of a person’s artery. A test drug reduces these deposits such that 
the radius of the opening increases at the rate of 0.020 mm>month.
Find the rate at which the area of the opening increases when 
r = 1.2 mm.

 24. A computer program increases the side of a square image on the 
screen at the rate of 0.25 cm>s. Find the rate at which the area of 
the image increases when the edge is 6.50 cm.

 25. A metal cube dissolves in acid such that an edge of the cube de-
creases by 0.500 mm>min. How fast is the volume of the cube 
changing when the edge is 8.20 mm?

 26. A metal sphere is placed in seawater to study the corrosive effect 
of seawater. If the surface area decreases at 35 cm2>year due to 
corrosion, how fast is the radius changing when it is 12 cm?
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 27. A uniform layer of ice covers a spherical water-storage tank. As 
the ice melts, the volume V of ice decreases at a rate that varies 
directly as the surface area A. Show that the outside radius de-
creases at a constant rate.

 28. A light in a garage is 2.90 m above the floor and 3.65 m behind 
the door. If the garage door descends vertically at 0.45 m>s, how 
fast is the door’s shadow moving toward the garage when the 
door is 0.60 m above the floor?

 29. One statement of Boyle’s law is that the pressure of a gas varies 
inversely as the volume for constant temperature. If a certain gas 
occupies 650 cm3 when the pressure is 230 kPa and the volume is 
increasing at the rate of 20.0 cm3>min, how fast is the pressure 
changing when the volume is 810 cm3?

 30. The tuning frequency f of an electronic tuner is inversely propor-
tional to the square root of the capacitance C in the circuit. If 
f = 920 kHz for C = 3.5 pF, find how fast f is changing at this 
frequency if dC>dt = 0.30 pF>s.

 31. A spherical metal object is ejected from an earth satellite and 
reenters the atmosphere. It heats up (until it burns) so that the ra-
dius increases at the rate of 5.00 mm>s. What is the time rate of 
change of volume when the radius is 225 mm?

 32. The acceleration due to the gravity g on a spacecraft is inversely 
proportional to its distance from the centre of the earth. At the 
surface of the earth, g = 9.80 m>s2. Given that the radius of the 
earth is 6370 km, how fast is g changing on a spacecraft ap-
proaching the earth at 1400 m>s at a distance of 41 000 km from 
the surface?

 33. The intensity I of heat varies directly as the strength of the source 
and inversely as the square of the distance from the source. If an 
object approaches a heated object of strength 8.00 units at the rate 
of 50.0 cm>s, how fast is the intensity changing when it is 100 cm 
from the source?

 34. The speed of sound v (in m>s) is v = 3311T>273, where T is 
the temperature (in K). If the temperature is 303 K 130°C2  and is 
rising at 2.0°C>h, how fast is the speed of sound rising?

 35. As a space shuttle moves into space, an astronaut’s weight de-
creases. An astronaut weighing 650 N at sea level has a weight of 
w = 650 1 6400

6400 + h2  at h kilometres above sea level. If the shuttle 
is moving away from earth at 6.0 km>s, at what rate is w chang-
ing when h = 1200 km?

 36. The oil reservoir for the lubricating mechanism of a machine is in 
the shape of an inverted pyramid. It is being filled at the rate of 
8.00 cm3>s and the top surface is increasing at the rate of 
6.00 cm2>s. When the depth of oil is 6.50 cm and the top surface 
area is 22.5 cm2, how fast is the level increasing?

 37. A tank in the shape of an inverted cone has a height of 3.60 m and 
a radius at the top of 1.15 m. Water is flowing into the tank at 
the rate of 0.500 m3>min. How fast is the level rising when it is 
1.80 m deep?

 38. The top of a ladder 4.00 m long is slipping down a vertical wall at 
the constant rate of 0.750 m>s. How fast is the bottom of the 
ladder moving along the ground away from the wall when it is 
2.50 m from the wall?

 39. A supersonic jet leaves an airfield travelling due east at 
1600 km>h. A second jet leaves the same airfield at the same time 
and travels 1800 km>h along a line north of east such that it re-
mains due north of the first jet. After a half-hour, how fast are the 
jets separating?

 40. A car passes over a bridge at 15.0 m>s at the same time a boat 
passes under the bridge at a point 10.5 m directly below the car. If 
the boat is moving perpendicularly to the bridge at 4.00 m>s, how 
fast are the car and the boat separating 5.00 s later?

 41. A rope attached to a boat is being pulled in at a rate of 2.50 m>s. 
If the water is 5.00 m below the level at which the rope is being 
drawn in, how fast is the boat approaching the wharf when 13.0 m 
of rope are yet to be pulled in? See Fig. 24.23.

2.50 m/s
5.00 m

Fig. 24.23

12.0 m/s

275 m

x

O

Fig. 24.24

 42. A weather balloon leaves the ground 275 m from an observer and 
rises vertically at 12.0 m>s. How fast is the line of sight from the 
observer to the balloon increasing when the balloon is 450 m 
high? See Fig. 24.24.

 43. A man 1.80 m tall approaches a street light 4.50 m above the 
ground at the rate of 1.50 m>s. How fast is the end of the man’s 
shadow moving when he is 3.00 m from the base of the light? See 
Fig. 24.25.

1.80 m
1.50 m/s

4.50 m

Fig. 24.25

25.0 cm

25.0 cm
120º

y

x

Fig. 24.26

 44. A roller mechanism, as shown in Fig. 24.26, moves such that the 
right roller is always in contact with the bottom surface and the 
left roller is always in contact with the left surface. If the right 
roller is moving to the right at 1.50 cm>s when x = 10.0 cm, 
how fast is the left roller moving?

Answer to Practice Exercise

1. -3.20 cm>s
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For the function in Fig. 24.27, we see that as x increases (from left to right), y also in-
creases until point M is reached. From M to m, y decreases. To the right of m, y again 
increases. Also, any tangent line left of M or right of m has a positive slope, and any 
tangent line between M and m has a negative slope. Since the derivative gives us the 
slope of a tangent line, we see that as x increases, y increases if the derivative is posi-
tive and decreases if the derivative is negative. This can be stated as

f1x2  increases if f′1x2 + 0 and f1x2  decreases if f′1x2 * 0

It is always assumed that x is increasing. Also, we assume in our present analysis that 
f1x2  and its derivatives are continuous over the interval of interest.

 EXAMPLE  1  Function increasing and decreasing

Find those values of x for which the function f1x2 = x3 - 3x2 is increasing and those 
values for which it is decreasing.

We find these values by finding the derivative and then finding the values of x for 
which it is positive or negative by solving inequalities. Therefore,

f′1x2 = 3x2 - 6x = 3x1x - 22
f1x2  is increasing if 3x1x - 22 7 0, and decreasing if 3x1x - 22 6 0

We now solve these inequalities by methods in Chapter 17 (see page 477). Finding 
the critical values of x = 0 and x = 2, we have the following:

If x 6 0, 3x1x - 22 7 0 or f′1x2 7 0.  f1x2  increasing

If 0 6 x 6 2, 3x1x - 22 6 0 or f′1x2 6 0.  f1x2  decreasing

If x 7 2, 3x1x - 22 7 0 or f′1x2 7 0.  f1x2  increasing

The solution of the inequality 3x1x - 22 7 0 is x 6 0 or x 7 2, which means that 
f1x2  is increasing for these values. Also, 3x1x - 22 6 0 for 0 6 x 6 2, which 
means that f1x2  is decreasing for these values. See Fig. 24.28 for the graph of 
f1x2 = x3 - 3x2. ■

The points M and m in Fig. 24.27 are called a relative maximum point and a 
relative minimum point, respectively. This means that M has a greater y-value than 
any other point near it and that m has a smaller y-value than any point near it. This does 
not necessarily mean that M has the greatest y-value of any point on the curve or that m 
has the least y-value of any point on the curve. However, the points M and m have the 
greatest or least values of y for that part of the curve (that is why we use the word rela-
tive). Examination of Fig. 24.27 verifies this point. The characteristic of both M and m 
is that the derivative is zero at each point. (We see that this is so since a tangent line 
would have a slope of zero at each.) This is how relative maximum and relative mini-
mum points are located. The derivative is found and then set equal to zero. The solutions 
of the resulting equation give the x-coordinates of the maximum and minimum points.

It remains now to determine whether a given value of x, for which the derivative is 
zero, is the coordinate of a maximum or a minimum point (or neither, which is also 
possible). From the discussion of increasing and decreasing values for y, we see that 
the derivative changes sign from plus to minus when passing through a relative maxi-
mum point and from minus to plus when passing through a relative minimum point. 
Thus, we find maximum and minimum points by determining those values of x for 
which the derivative is zero and by properly analysing the sign change of the deriva-
tive. If the sign of the derivative does not change, it is neither a maximum nor a mini-
mum point. This is known as the first-derivative test for maxima and minima.

In Fig. 24.29, a diagram for the first-derivative test is shown. The test for a relative 
maximum is shown in Fig. 24.29(a), and that for a relative minimum is shown in 
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Fig. 24.29(b). For the curves shown in Fig. 24.29, f1x2  and f′1x2  
are continuous throughout the interval shown. (Although f1x2  must 
be continuous, f′1x2  may be discontinuous at the maximum point or 
the minimum point, and the sign changes of the first-derivative test 
remain valid.)

 EXAMPLE  2  Relative maximum and minimum points

Find any relative maximum points and any relative minimum points 
of the graph of the function

y = 3x5 - 5x3

Finding the derivative and setting it equal to zero, we have

y′ = 15x4 - 15x2 = 15x21x2 - 12 = 15x21x - 12 1x + 12
Therefore,

15x21x - 12 1x + 12 = 0 for x = 0, x = 1, x = -1

Thus, the sign of the derivative is the same for all points to the left of x = -1. For 
these values, y′ 7 0 (thus, y is increasing). For values of x between -1 and 0, y′ 6 0. 
For values of x between 0 and 1, y′ 6 0. For values of x greater than 1, y′ 7 0. Thus, 
the curve has a maximum at 1 -1, 22  and a minimum at 11, -22 . The point 10, 02  is 
neither a maximum nor a minimum, since the sign of the derivative did not change at 
this value of x. The graph of y = 3x5 - 5x3 is shown in Fig. 24.30. ■

We now look again at the slope of a tangent drawn to a curve. In Fig. 24.31(a), con-
sider the change in the values of the slope of a tangent at a point as the point moves 
from A to B. At A the slope is positive, and as the point moves toward M, the slope re-
mains positive but becomes smaller until it becomes zero at M. To the right of M, the 
slope is negative and becomes more negative until it reaches I. Therefore, from A to I, 
the slope continually decreases. To the right of I, the slope remains negative but in-
creases until it becomes zero again at m. To the right of m, the slope becomes positive 
and increases to point B. Therefore, from I to B, the slope continually increases. We 
say that the curve is concave down from A to I and concave up from I to B.

The curve in Fig. 24.31(b) is that of the derivative, and it therefore indicates the val-
ues of the slope of f1x2 . If the slope changes, we are dealing with the rate of change of 
slope or the rate of change of the derivative. This function is the second derivative. The 
curve in Fig. 24.31(c) is that of the second derivative. We see that where the second 
derivative of a function is negative, the slope is decreasing, or the curve is concave 
down (opens down). Where the second derivative is positive, the slope is increasing, or 
the curve is concave up (opens up). This may be summarized as follows:

If f ″(x) 7 0, the curve is concave up.

If f ″(x) 6 0, the curve is concave down.

We can also now use this information in the determination of maximum and mini-
mum points. By the nature of the definition of maximum and minimum points and of 
concavity, it is apparent that a curve is concave down at a maximum point and concave 
up at a minimum point. We can see these properties when we make a close analysis of 
the curve in Fig. 24.31. Therefore, at x = a,

if f′1a2 = 0 and f ″1a2 6 0,

then f1x2  has a relative maximum at x = a, or

if f′1a2 = 0 and f ″1a2 7 0,

then f1x2  has a relative minimum at x = a.

(a) (b)

Relative
maximum 
f '(x) ! 0

f (x) inc.
f '(x) " 0

f (x) dec.
f '(x) # 0

Relative
minimum 
f '(x) ! 0

f (x) dec.
f '(x) # 0

f (x) inc.
f '(x) " 0

Fig. 24.29
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Practice Exercise

1.  Find the relative maximum and minimum 
points on the graph of 
y = x3 - 3x2 - 9x.

Fig. 24.31

Concave 
up

A

M
m

I

B

O

Concave 
down

(a)

(b)

(c) y ''

x

y'

x

y

x

y' ! 0

y' " 0y' " 0

y' # 0

y'' " 0

y'' # 0

y'' ! 0

y' # 0



Points of Inflection
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These statements constitute what is known as the second-derivative test for max-
ima and minima. This test is often easier to use than the first-derivative test. However, 
it can happen that y ″ = 0 at a maximum or minimum point, and in such cases it is 
necessary that we use the first-derivative test.

Second-Derivative Test  
for Maxima and Minima

In using the second-derivative test, we should note that f ″1x2  is negative at a maximum 
point and positive at a minimum point. This is contrary to a natural inclination to think 
of “maximum” and “positive” together or “minimum” and “negative” together.

COMMON ERROR

The points at which the curve changes from concave up to concave 
down, or from concave down to concave up, are known as points of 
inflection. Thus, point I in Fig. 24.31 is a point of inflection. Inflection 
points are found by determining those values of x for which the second 
derivative changes sign. This is analogous to finding maximum and mini-
mum points by the first-derivative test. In Fig. 24.32, various types of 
points of inflection are illustrated.

Throughout this analysis it has been assumed that f1x2  and its deriv-
atives are continuous functions. To show that this is necessary, see 
Exercise 54 of this section.

 EXAMPLE  3  Concavity—points of inflection

Determine the concavity and find any points of inflection on the graph of the function 
y = x3 - 3x.

This requires an inspection and analysis of the second derivative. Therefore, we 
find the first two derivatives:

 y′ = 3x2 - 3

 y″ = 6x

The second derivative is positive where the function is concave up, and this occurs 
if x 7 0. The curve is concave down for x 6 0, since y ″ is negative. Thus, 10, 02  is 
a point of inflection, since the concavity changes there. The graph of y = x3 - 3x is 
shown in Fig. 24.33. ■

At this point, we summarize the information found from the derivatives of a func-
tion f1x2 . See Fig. 24.34.
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f ''(x) ! 0

Concave up
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Points of inflection I
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I I
I I

Fig. 24.32

y

x
(0, 0)

0

Fig. 24.33

Concave
down

f ''(x) , 0

Concave
down

f ''(x) , 0

Dec.
f '(x) , 0
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f ''(x) . 0

M
m

I I

f '(x) 5 0 at M and m
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Finding Features of a Graph Using Derivatives
Let f and its derivatives be continuous. Then,

f′1x2 7 0 where f1x2  increases; f′1x2 6 0 where f1x2  decreases.

f ″1x2 7 0 where the graph of f1x2  is concave up; f ″1x2 6 0 where the graph 
of f1x2  is concave down.

If f′1x2 = 0 at x = a, there is a relative maximum point if f′1x2  changes from +  
to -  or if f ″1a2 6 0.

If f′1x2 = 0 at x = a, there is a relative minimum point if f′1x2  changes from 
-  to +  or if f ″1a2 7 0.

If f ″1x2 = 0 at x = a, there is a point of inflection if f ″1x2  changes from +  to 
-  or from -  to + .

The following examples illustrate how the above information is put together to ob-
tain the graph of a function.
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 EXAMPLE  4  Sketching a curve using derivatives

Sketch the graph of y = 6x - x2.
Finding the first two derivatives, we have

 y′ = 6 - 2x = 213 - x2
 y ″ = -2

We now note that y′ = 0 for x = 3. For x 6 3, we see that y′ 7 0, which means 
that y is increasing over this interval. Also, for x 7 3, we note that y′ 6 0, which 
means that y is decreasing over this interval.

Since y′ changes from positive on the left of x = 3 to negative on the right of 
x = 3, the curve has a maximum point where x = 3. Since y = 9 for x = 3, this 
maximum point is 13, 92 .

Since y ″ = -2, this means that its value remains constant for all values of x. 
Therefore, there are no points of inflection, and the curve is concave down for all 
values of x. This also shows that the point 13, 92  is a maximum point.

Summarizing, we know that y is increasing for x 6 3, y is decreasing for x 7 3, 
there is a maximum point at 13, 92 , and the curve is always concave down. Using 
this information, we sketch the curve shown in Fig. 24.35.

From the equation, we know this curve is a parabola. We could also find the 
maximum point from the material of Section 7.4 or Section 21.7. However, using 
derivatives we can find this kind of important information about the graphs of a 
great many types of functions. ■

 EXAMPLE  5  Sketching a curve using derivatives

Sketch the graph of y = 2x3 + 3x2 - 12x.
Finding the first two derivatives, we have

 y′ = 6x2 + 6x - 12 = 61x + 22 1x - 12
 y ″ = 12x + 6 = 612x + 12

We note that y′ = 0 when x = -2 and x = 1. Using these values in the second 
derivative, we find that y ″ is negative 1 -182  for x = -2 and y ″ is positive 1 +182  
when x = 1. When x = -2, y = 20; and when x = 1, y = -7. Therefore, 1 -2, 202  
is a relative maximum point, and 11, -72  is a relative minimum point.

Next, we see that y′ 7 0 if x 6 -2 or x 7 1. Also, y′ 6 0 for the interval 
-2 6 x 6 1. Therefore, y is increasing if x 6 -2 or x 7 1, and y is decreasing if 
-2 6 x 6 1.

Now, we note that y ″ = 0 when x = -1
2 , y ″ 6 0 when x 6 -1

2 , and y ″ 7 0 
when x 7 -1

2 . When x = -1
2 , y = 13

2  . Therefore, there is a point of inflection at 1 -1
2 , 13

2 2 , the curve is concave down if x 6 -1
2, and the curve is concave up if 

x 7 -1
2.

Finally, by locating the points 1 -2, 202 , 1 -1
2, 13

2 2 , and 11, -72 , we draw the 
curve up to 1 -2, 202  and then down to 1 -1

2 , 13
2 2 , with the curve concave down. 

Continuing down, but concave up, we draw the curve to 11, -72 , at which point 
we start up and continue up. We now know the key points and the shape of the 
curve. See Fig. 24.36. For more precision, additional points may be used. ■

 EXAMPLE  6  Sketching a curve using derivatives

Sketch the graph of y = x5 - 5x4.
The first two derivatives are

 y′ = 5x4 - 20x3 = 5x31x - 42
 y ″ = 20x3 - 60x2 = 20x21x - 32

y

x

Maximum (3, 9)

22
22

2

4

8

10

2 4 6 8

y decreasing
x . 3

y increasing
x , 3

Concave
down
all x

Fig. 24.35

Practice Exercise

2.  Find the point(s) of inflection on the 
graph of y = x3 - 3x2 - 9x.
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x
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(2 ,  )1
2
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2

M(22, 20)

m(1, 27)

Fig. 24.36
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We now see that y′ = 0 when x = 0 and x = 4. For x = 0, y ″ = 0 also, which 
means we cannot use the second-derivative test for maximum and minimum points 
for x = 0 in this case. For x = 4, y ″ 7 0 1 +3202 , which means that 14, -2562  is 
a relative minimum point.

Next, we note that

y′ 7 0  for x 6 0  or x 7 4  y′ 6 0 for 0 6 x 6 4 

Thus, by the first-derivative test, there is a relative maximum point at 10, 02 . Also, 
y is increasing for x 6 0 or x 7 4 and decreasing for 0 6 x 6 4.

The second derivative indicates that there is a point of inflection at 13, -1622 . It 
also indicates that the curve is concave down for x 6 3 1x ≠ 02  and concave up 
for x 7 3. There is no point of inflection at 10, 02  since the second derivative does 
not change sign at x = 0.

From this information, we sketch the curve in Fig. 24.37. ■

Graphing calculators have a feature by which we can find the x-value for which a 
function is maximum (or minimum) over a specified interval. To find a relative maxi-
mum (or minimum) value, care must be used in choosing the x-interval so as not to in-
clude a value for which the function may be greater (or less) than the value at the rela-
tive maximum (or minimum).

y

x

m (4, 2256)

(3, 2162)

M(0, 0)

Fig. 24.37

EXERCISES 24.5

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 1, after the -  sign change 3x2 to 6x2 and then find the 
values of x for which f1x2  is increasing and those for which it is 
decreasing.

 2. In Example 2, change the 5x3 to 15x and then find the relative 
maximum and minimum points.

 3. In Example 3, change the -  sign to +  and then determine the 
concavity and find any points of inflection.

 4. In Example 4, change the 6x to 8x and then sketch the graph as in 
the example.

In Exercises 5–8, find those values of x for which the given functions 
are increasing and those values of x for which they are decreasing.

 5. y = x2 + 2x 6. y = 2 + 6x - 3x2

 7. y = 2x3 + 3x2 - 36x - 10 8. y = x4 - 6x2

In Exercises 9–12, find any relative maximum or minimum points of 
the given functions. (These are the same functions as in Exercises 5–8.)

 9. y = x2 + 2x 10. y = 2 + 6x - 3x2

 11. y = 2x3 + 3x2 - 36x - 10 12. y = x4 - 6x2

In Exercises 13–16, find the values of x for which the given function is 
concave up, the values of x for which it is concave down, and any 
points of inflection. (These are the same functions as in Exercises 5–8.)

 13. y = x2 + 2x 14. y = 2 + 6x - 3x2

 15. y = 2x3 + 3x2 - 36x - 10 16. y = x4 - 6x2

In Exercises 17–20, sketch the graphs of the given functions by deter-
mining the appropriate information and points from the first and 
second derivatives (see Exercises 5–16).

 17. y = x2 + 2x 18. y = 2 + 6x - 3x2

 19. y = 2x3 + 3x2 - 36x - 10 20. y = x4 - 6x2

In Exercises 21–32, sketch the graphs of the given functions by deter-
mining the appropriate information and points from the first and sec-
ond derivatives.

 21. y = 12x - 2x2 22. y = 4x2 - 16x - 20

 23. y = 2x3 + 6x2 - 5 24. y = x3 - 9x2 + 15x + 1

 25. y = x3 + 3x2 + 3x + 2 26. y = x3 - 12x + 12

 27. y = 4x3 - 24x2 + 36x 28. y = x1x - 423

 29. y = 4x3 - 3x4 + 6 30. y = x5 - 20x2

 31. y = x5 - 5x 32. y = x4 + 32x + 2

In Exercises 33 and 34, view the graphs of y, y′, and y ″ together on a 
graphing calculator. State how the graphs of y′ and y ″ are related to 
the graph of y.

 33. y = x3 - 12x 34. y = 24x - 9x2 - 2x3

In Exercises 35–38, describe the indicated features of the given graphs.

 35. Display the graph of y = x3 + cx for c = -3, -1, 1, and 3 on a 
graphing calculator. Describe how the graph changes as c varies.

 36. Follow the instructions of Exercise 35 for the function y = x4 + cx2.

 37. Display the graph of y = 2x5 - 7x3 + 8x on a graphing calcula-
tor. Describe the relative locations of the left relative maximum 
point and the relative minimum points.
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In Exercises 39–50, sketch the indicated curves by the methods of this 
section. You may check the graphs by using a graphing calculator.

 39. A batter hits a baseball that follows a path given by 
y = x - 0.025x2, where distances are in metres. Sketch the 
graph of the path of the baseball.

 40. The angle u (in degrees) of a robot arm with the horizontal as a 
function of the time t (in s) is given by u = 10 + 12t2 - 2t3. 
Sketch the graph for 0 … t … 6 s.

 41. The power P (in W) in a certain electric circuit is given by 
P = 4i - 0.5i2. Sketch the graph of P vs. i.

 42. A computer analysis shows that the thrust T (in kN) of an experi-
mental rocket motor is T = 20 + 9t - 4t3, where t is the time 
(in min) after the motor is activated. Sketch the graph for the first 
2 min.

 43. For the force F exerted on the cam on the lever in Exercise 54 on 
page 686, sketch the graph of F vs. x. (Hint: Use methods of 
Chapter 15 to analyse the first derivative.)

 44. The solar-energy power P (in W) produced by a certain solar sys-
tem does not rise and fall uniformly during a cloudless day be-
cause of the system’s location. An analysis of records shows that 
P = -0.4512t5 - 45t4 + 350t3 - 1000t22 , where t is the time 
(in h) during which power is produced. Show that, during the so-
lar-power production, the production flattens (inflection) in the 
middle and then peaks before shutting down. (Hint: The deriva-
tive is zero at integer values of t.)

 45. An electric circuit is designed such that the resistance R (in Ω)  
is a function of the current i (in mA) according to 
R = 75 - 18i2 + 8i3 - i4. Sketch the graph if R Ú 0 and i can 
be positive or negative.

 46. A horizontal 12-m beam is deflected by a load such that it can be 
represented by the equation y = 0.00041x3 - 12x22 . Sketch the 
curve followed by the beam.

 47. The altitude h (in m) of a certain rocket is given by 
h = - t3 + 54t2 + 480t + 20, where t is the time (in s) of flight. 
Sketch the graph of h = f1 t2 .

 48. An analysis of data showed that the mean density d (in mg>cm3) 
of a calcium compound in the bones of women was given by 
d = 0.00181x3 - 0.289x2 + 12.2x + 30.4, where x represents 
the ages of women 120 6 x 6 80 years). (A woman probably 
has osteoporosis if d 6 115 mg>cm3.) Sketch the graph.

 49. A rectangular box is made from a piece of cardboard 8 cm by  
12 cm by cutting equal squares from each corner and bending up 
the sides. See Fig. 24.39. Express the volume of the box as a 
function of the side of the square that is cut out and then sketch 
the curve of the resulting equation.
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x
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Fig. 24.39

When graphing functions in earlier chapters, we often used information that was ob-
tainable from the function itself. We will now use this type of information, along with 
that found from the derivatives, to graph functions. We will find, in graphing any par-
ticular function, some types of information are of more value than others. The features 
we will consider in this section are as follows:

 24.6 More on Curve Sketching
 

Behaviour as x  
 

 38. Describe the following features of the graph in Fig. 24.38 be-
tween or at the points A, B, C, D, E, F, and G. (a) Increasing and 
decreasing, (b) relative maximum and minimum points, (c) con-
cavity, and (d) points of inflection.

 50. A rectangular planter with a square end is to be made from 8.0 m2 
of redwood. Express the volume of soil the planter can hold as a 
function of the side of the square of the end. Sketch the curve of 
the resulting function.

In Exercises 51–53, sketch a continuous curve that has the given 
characteristics.

 51. f112 = 0; f′1x2 7 0 for all x; f ″1x2 6 0 for all x

 52. f102 = 1; f′1x2 6 0 for all x; f ″1x2 6 0 for x 6 0; f ″1x2 7 0 
for x 7 0

 53. f1 -12 = 0; f122 = 2; f′1x2 6 0 for x 6 -1; f′1x2 7 0 for 
x 7 -1; f ″1x2 6 0 for 0 6 x 6 2; f ″(x2 7 0 for x 6 0 or 
x 7 2

 54.  Display the graph of f1x2 = x2>3 for -2 6 x 6 2 on a graph-
ing calculator. Determine the continuity of f1x2 , f′1x2 , and 
f ″1x2 . Discuss the concavity of the curve in relation to the mini-
mum point. (See the paragraph before Example 3 on page 729.)

Answers to Practice Exercises

1. Max.1 -1, 52 , Min.13, -272  2. Infl.11, -112
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 EXAMPLE  1  Sketch a graph

Sketch the graph of y =
8

x2 + 4
.

Intercepts If x = 0, y = 2, which means 10, 22  is an intercept. If y = 0, there is 
no corresponding value of x, since 8> 1x2 + 42  is a fraction greater than zero for 
all x. This also indicates that all points on the curve are above the x-axis.

Symmetry The curve is symmetric to the y-axis since

y =
81 -x22 + 4

 is the same as y =
8

x2 + 4
.

The curve is not symmetric to the x-axis since

-y =
8

x2 + 4
 is not the same as y =

8

x2 + 4
.

The curve is not symmetric to the origin since

-y =
81 -x22 + 4

 is not the same as y =
8

x2 + 4
.

The value in knowing the symmetry is that we should find those portions of the 
curve on either side of the y-axis as reflections of the other. It is possible to use this 
fact directly or to use it as a check.

Behaviour as x Becomes Large We note that as x S ∞ , y S 0 since 8> 1x2 + 42  
is always a fraction that is greater than zero but which becomes smaller as x be-
comes larger. Therefore, we see that y = 0 is an asymptote. From either the sym-
metry or the function, we also see that y S 0 as x S - ∞ .

Vertical Asymptotes From the discussion of the hyperbola, recall that an asymp-
tote is a line that a curve approaches. We have already noted that y = 0 is an as-
ymptote for this curve. This asymptote, the x-axis, is a horizontal line. Vertical as-
ymptotes, if any exist, are found by determining those values of x for which the 
denominator of any term is zero. Such a value of x makes y undefined. Since x2 + 4 
cannot be zero, this curve has no vertical asymptotes.

Domain and Range Since the denominator x2 + 4 cannot be zero, x can take on 
any value. This means the domain of the function is all values of x. Also, we have 
noted that 8> 1x2 + 42  is a fraction greater than zero. Since x2 + 4 is 4 or greater, y 
is 2 or less. This tells us that the range of the function is 0 6 y … 2.

Derivatives We now determine what the derivatives can also tell us about the 
curve. We start with the first derivative.

Features to Be Used in Graphing Functions
1. Intercepts Points for which the graph crosses (or is tangent to) each axis.

2.  Symmetry For a review of symmetry, see Example 4 and the text before it on 
page 574.

3.  Behaviour as x Becomes Large We will find what happens to the function  
as x S ∞  and as x S  - ∞  in a way similar to that when we discussed the 
asymptotes of a hyperbola on page 588.

4.  Vertical Asymptotes We will find that we can find vertical asymptotes simi-
lar to those noted on pages 100 and 308 by finding values that make factors 
in the denominator zero.

5. Domain and Range For a review of domain and range, see pages 91–93.

6.  Derivatives We will find information from the first two derivatives as we did 
in the previous section (pages 727–731).

■ The curve for Example 1 is a special case 
(with a = 1) of the curve known as the witch of 
Agnesi. Its general form is

y =
8a3

x2 + 4a2

It is named for the Italian mathematician Maria 
Gaetana Agnesi (1718–1799). She wrote the first 
text that contained analytic geometry, differen-
tial and integral calculus, series (see Chapter 30), 
and differential equations (see Chapter 31). The 
word witch was used due to a mistranslation 
from Italian to English.
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 y =
81x2 + 42 = 81x2 + 42-1

 y′ = -81x2 + 42-212x2
 =

-16x1x2 + 422

Since 1x2 + 422 is positive for all values of x, the sign of y′ is determined by the 
numerator. Thus, we note that y′ = 0 for x = 0 and that y′ 7 0 for x 6 0 and 
y′ 6 0 for x 7 0. The curve, therefore, is increasing for x 6 0, is decreasing for 
x 7 0, and has a maximum point at 10, 22 .

Now, finding the second derivative, we have

 y″ =
1x2 + 4221 -162 + 16x122 1x2 + 42 12x21x2 + 424 =

-161x2 + 42 + 64x21x2 + 423

 =
48x2 - 641x2 + 423 =

1613x2 - 421x2 + 423

We note that y″ is negative for x = 0, which confirms that 10, 22  is a maximum 
point. Also, points of inflection are found for the values of x satisfying 3x2 - 4 = 0. 
Thus, 1 -2

313, 322  and 12
313, 322  are points of inflection. The curve is concave up if 

x 6 -2
313 or x 7 2

313, and the curve is concave down if -2
313 6 x 6 2

313.
Putting this information together, we sketch the curve shown in Fig. 24.40. Note 

that this curve could have been sketched primarily by use of the fact that y S 0 as 
x S + ∞  and as x S - ∞  and the fact that a maximum point exists at 10, 22 . 
However, the other parts of the analysis, such as symmetry and concavity, serve as 
checks and make the curve more accurate. ■

 EXAMPLE  2  Sketch a graph

Sketch the graph of y = x + 4
x

.

Intercepts If we set x = 0, y is undefined. This means that the curve is not con-
tinuous at x = 0 and there are no y-intercepts. If we set y = 0, x + 4>x = 1x2 + 42 >x 
cannot be zero since x2 + 4 cannot be zero. Therefore, there are no intercepts. This 
may seem to be of little value, but we must realize this curve does not cross either 
axis. This will be of value when we sketch the curve in Fig. 24.41.

Symmetry In testing for symmetry, we find that the curve is not symmetric to ei-
ther axis. However, this curve does possess symmetry to the origin. This is deter-
mined by the fact that when -x replaces x and at the same time -y replaces y, the 
equation does not change.

Behaviour as x Becomes Large As x S + ∞  and as x S - ∞ , y S x since 
4>x S 0. Thus, y = x is an asymptote of the curve.

Vertical Asymptotes As we noted in Example 1, vertical asymptotes exist for val-
ues of x for which y is undefined. In this equation, x = 0 makes the second term on 
the right undefined, and therefore y is undefined. In fact, as x S 0 from the positive 
side, y S + ∞ , and as x S 0 from the negative side, y S - ∞ . This is derived from 
the sign of 4>x in each case.

Domain and Range Since x cannot be zero, the domain of the function is all x 
except zero. As for the range, the analysis from the derivatives will show it to be 
y … -4, y Ú 4.

Derivatives Finding the first derivative, we have

y′ = 1 - 4

x2 =
x2 - 4

x2

The x2 in the denominator indicates that the sign of the first derivative is the same as 
its numerator. The numerator is zero if x = -2 or x = 2. If x 6 -2 or x 7 2, then 
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y′ 7 0; and if -2 6 x 6 2, x ≠ 0, y′ 6 0. Thus, y is increasing if x 6 -2 or 
x 7 2, and also y is decreasing if -2 6 x 6 2, except at x = 0 (y is undefined). 
Also, 1 -2, -42  is a relative maximum point, and 12, 42  is a relative minimum 
point. The second derivative is y ″ = 8>x3. This cannot be zero, but it is negative if 
x 6 0 and positive if x 7 0. Thus, the curve is concave down if x 6 0 and concave 
up if x 7 0. Using this information, we have the curve shown in Fig. 24.41. ■

 EXAMPLE  3  Sketch a graph

Sketch the graph of y =
121 - x2

.

Intercepts If x = 0, y = 1. If y = 0, 1>21 - x2 would have to be zero, but it 
cannot since it is a fraction with 1 as the numerator for all values of x. Thus, 10, 12  
is the only intercept.

Symmetry The curve is symmetric to the y-axis.
Behaviour as x Becomes Large The values of x cannot be considered beyond 1 or 

-1, for any value of x 6 -1 or x 7 1 gives imaginary values for y. Thus, the curve 
does not exist for values of x 6 -1 or x 7 1.

Vertical Asymptotes If x = 1 or x = -1, y is undefined. In each case, as x S 1 
and as x S -1, y S + ∞ .

Domain and Range From the analysis of x becoming large and of the vertical 
asymptotes, we see that the domain is -1 6 x 6 1. Also, since 21 - x2 is 1 or 
less, 1>21 - x2 is 1 or more, which means the range is y Ú 1.

Derivatives

y′ = - 1
2
11 - x22-3>21 -2x2 =

x11 - x223>2
We see that y′ = 0 if x = 0. If -1 6 x 6 0, y′ 6 0, and also if 0 6 x 6 1, 

y′ 7 0. Thus, the curve is decreasing if -1 6 x 6 0 and increasing if 0 6 x 6 1. 
There is a minimum point at 10, 12 .

 y″ =
11 - x223>2 - x13

22 11 - x221>21 -2x211 - x223 =
11 - x22 + 3x211 - x225>2

 =
2x2 + 111 - x225>2

The second derivative cannot be zero since 2x2 + 1 is positive for all values of x. 
The second derivative is also positive for all permissible values of x, which means 
the curve is concave up for these values.

Using this information, we sketch the graph in Fig. 24.42. ■

 EXAMPLE  4  Sketch a graph

Sketch the graph of y =
x

x2 - 4
.

Intercepts If x = 0, y = 0, and if y = 0, x = 0. The only intercept is 10, 02 .
Symmetry The curve is not symmetric to either axis. However, since 

-y = -x> 3 1 -x22 - 44  is the same as y = x> 1x2 - 42 , it is symmetric to the origin.
Behaviour as x Becomes Large As x S + ∞  and as x S - ∞ , y S 0. This means 

that y = 0 is an asymptote.
Vertical Asymptotes If x = -2 or x = 2, y is undefined. As x S -2, y S - ∞  if 

x 6 -2 since x2 - 4 is positive, and y S + ∞  if x 7 -2 since x2 - 4 is negative. 
As x S 2, y S - ∞  if x 6 2, and y S + ∞  if x 7 2.

Domain and Range The domain is all real values of x except -2 and 2. As for 
the range, if x 6 -2, y 6 0 (the numerator is negative and the denominator is posi-
tive). If x 7 2, y 7 0 (both numerator and denominator are positive). Since 10, 02  
is an intercept, we see that the range is all values of y.

0

2

1

1!1

y

x

m (0, 1)
x " 1

Fig. 24.42
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Derivatives

y′ =
1x2 - 42 112 - x12x21x2 - 422 = - x2 + 41x2 - 422

Since y′ 6 0 for all values of x except -2 and 2, the curve is decreasing for all val-
ues in the domain.

Now, finding the second derivative, we have

 y″ = -
1x2 - 42212x2 - 1x2 + 42 122 1x2 - 42 12x21x2 - 424

 = -
2x1x2 - 42 - 4x1x2 + 421x2 - 423 =

2x3 + 24x1x2 - 423 =
2x1x2 + 1221x2 - 423

The sign of y ″ depends on x and 1x2 - 423. If x 6 -2, y ″ 6 0. If -2 6 x 6 0, 
y ″ 7 0. If 0 6 x 6 2, y ″ 6 0. If x 7 2, y ″ 7 0. This means the curve is concave 
down for x 6 -2 or 0 6 x 6 2 and is concave up for -2 6 x 6 0 or x 7 2.

The curve is sketched in Fig. 24.43. ■

3

2

0

y

x
!3

!2

Fig. 24.43

EXERCISES 24.6

In Exercises 1–18, use the method of the examples of this section to 
sketch the indicated curves.

 1. In Example 2, change the +  to -  before 4>x and then proceed.

 24. Sketch a graph of p vs. V from van der Waal’s equation (see 
Exercise 54 of Section 23.6), assuming the following values: 
R = T = a = 1 and b = 0. For many gases the value of a is 
much greater that that of b. Even though the values of R = T = 1 
are not realistic, the shape of the curve will be correct for the as-
sumed value of b = 0.

 25. The reliability R of a computer model is found to be 

  R =
2002t2 + 40 000

 , where t is the time of operation in hours. 

  (R = 1 is perfect reliability, and R = 0.5 means there is a 50, 
chance of a malfunction.) Sketch the graph.

 26. The electric power P (in W) produced by a source is given by 

  P =
36R

R2 + 2R + 1
, where R is the resistance in the circuit. 

  Sketch the graph.

 27. Assuming that a raindrop is always spherical and as it falls its ra-
dius increases from 1 mm to r mm, its velocity v (in mm>s) is 

  v = k ar - 1

r3 b . With k = 1, sketch the graph.

 28. If a positive electric charge of +q is placed between two negative 
charges of -q that are two units apart, Coulomb’s law states that 

  the force F on the positive charge is F = -
kq2

x2 +
kq21x - 222, 

  where x is the distance from one of the negative charges. Let 
kq2 = 1 and sketch the graph for 0 6 x 6 2.

 29. A cylindrical oil drum is to be made such that it will contain  
20 kL. Sketch the area of sheet metal required for construction as  
a function of the radius of the 
drum.

 30. A fence is to be constructed to 
enclose a rectangular area of  
20  000 m2. A previously con-
structed wall is to be used for one 
side. Sketch the length of fence to 
be built as a function of the side of the fence parallel to the wall. 
See Fig. 24.44.

 2. y =
4

x2  3. y =
2

x + 1
 4. y =

x
x - 2

 5. y = x2 + 2
x

 6. y = x + 4

x2  7. y = x - 1
x

 8. y = 3x + 1

x3  9. y =
x2

x + 1
 10. y =

9x2

x2 + 9

 11. y =
1

x2 - 1  12. y =
x2 - 1

x3
 13. y =

4
x

- 4

x2

 14. y = 4x + 11x
 15. y = x21 - x2  16. y =

x - 1

x2 - 2x

 17. y =
9x

9 - x2  18. y =
x2 - 4

x2 + 4

In Exercises 19–30, solve the given problems.

 19. Display the graph of y =
cx

1 + c2x2 on a graphing calculator for 

  c = -3, -1, 1, and 3. Describe how the graph changes as c varies.

 20. Display the graph of y = x + 4
xn on a graphing calculator for 

  n = 1, 2, 3, and 4. Describe how the graph changes as n varies.

 21. In Exercise 10, first divide the numerator by the denominator. 
Does this simplify any of the graphing features?

 22. The concentration C (in mg>cm3) of a certain drug in a patient’s 
bloodstream is C = 0.15t

t2 + 1
, where t is the time (in h) after the drug 

is administered. Sketch the graph.

 23. The combined capacitance CT (in mF) of a 6-mF capacitance and 

  a variable capacitance C in series is given by CT =
6C

6 + C
. 

Sketch the graph.

x

20 000 m 2

Wall

Fig. 24.44
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Problems from various applied situations frequently occur that require finding a maxi-
mum or minimum value of some function. If the function is known, the methods we 
have already discussed can be used directly. This is discussed in the following example.

 EXAMPLE  1  Finding the maximum efficiency

An automobile manufacturer, in testing a new engine on one of its new models, found 
that the efficiency h (in ,) of the engine as a function of the speed s (in km>h) of the 
car was given by h = 0.768s - 0.000 04s3. What is the maximum efficiency of the 
engine?

In order to find a maximum value, we find the derivative of h with respect to s:

dh

ds
= 0.768 - 0.000 12s2

We then set the derivative equal to zero in order to find the value of s for which a 
maximum may occur:

 0.768 - 0.000 12s2 = 0

 0.000 12s2 = 0.768

 s2 = 6400

 s = 80.0 km>h

We know that s must be positive to have meaning in this problem. Therefore, the 
apparent solution of s = -80 is discarded. The second derivative is

d2h

ds2 = -0.000 24s

which is negative for any positive value of s. Therefore, we have a maximum for 
s = 80.0. Substituting s = 80.0 in the function for h, we obtain

h = 0.768180.02 - 0.000 04180.032 = 61.44 - 20.48 = 40.96

The maximum efficiency is about 41.0,, which occurs for s = 80.0 km>h. ■

In many problems for which a maximum or minimum value is to be found, the func-
tion is not given. To solve such a problem, we use these steps:

 24.7 Applied Maximum and Minimum Problems
Steps in Solving Maximum  

 
Setting Up and Solving Problems

■ The first gasoline-engine automobile  
was built by the German engineer Karl Benz 
(1844 – 1929) in the 1880s.

Steps in Solving Applied Maximum and Minimum Problems
1. Determine the quantity Q to be maximized or minimized.

2. If possible, draw a figure illustrating the problem.

3. Write an equation for Q in terms of another variable of the problem.

4. Take the derivative of the function in step 3.

5. Set the derivative equal to zero, and solve the resulting equation.

6.  Check as to whether the value found in step 5 makes Q a maximum or a mini-
mum. This might be clear from the statement of the problem, or it might re-
quire one of the derivative tests.

7.  Be sure the stated answer is the one the problem required. Some problems 
require the maximum or minimum value, and others require values of other 
variables that give the maximum or minimum value.
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The following examples illustrate several types of stated problems involving maxi-
mum and minimum values.

 EXAMPLE  2  Setting up an equation and finding the maximum

Find the number that exceeds its square by the greatest amount.
The quantity to be maximized is the difference D between a number x and its 

square x2. Therefore, the required function is

D = x - x2

Since we want D to be a maximum, we find dD>dx, which is

dD
dx

= 1 - 2x

Setting the derivative equal to zero and solving for x, we have

0 = 1 - 2x,   x = 1
2

The second derivative gives d2D>dx2 = -2, which tells us that the second de-
rivative is always negative. This means that whenever the first derivative is zero, it 
represents a maximum. In many problems, it is not necessary to test for maximum or 
minimum, since the nature of the problem will indicate which must be the case. For 
example, in this problem, we know that numbers greater than 1 do not exceed their 
squares at all. The same is true for all negative numbers. Thus, the difference must 
reach a maximum for some number between 0 and 1. The answer is x = 1>2. ■

 EXAMPLE  3  Setting up an equation using geometry

A rectangular corral is to be enclosed with 1600 m of fencing. Find the maximum pos-
sible area of the corral.

There are limitless possibilities for rectangles of a perimeter of 1600 m and differ-
ing areas. See Fig. 24.45. For example, if the sides are 700 m and 100 m, the area is 
70 000 m2, or if the sides are 600 m and 200 m, the area is 120 000 m2. Therefore, we 
set up a function for the area of a rectangle in terms of its sides x and y:

A = xy

Another important fact is that the perimeter of the corral is 1600 m. Therefore, 
2x + 2y = 1600. Solving for y, we have y = 800 - x. By using this expression for 
y, we can express the area in terms of x only. This gives us

A = x1800 - x2 = 800x - x2

We complete the solution as follows:

 
dA
dx

= 800 - 2x  take derivative

 800 - 2x = 0   set derivative equal to zero

 x = 400 m

The second derivative is d2A>dx2 = -2, which is always negative. Therefore, we 
have a maximum for x = 400. This means that x = 400 m and y = 400 m give the 
maximum area of 160 000 m2 for the corral. ■

The principal difficulty that arises in 
these problems is finding the proper 
function. We must carefully read the 
problem to find the information 
needed to set up the function.

LEARNING T IP

y

x

Fig. 24.45
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 EXAMPLE  4  Setting up an equation using variation

The strength S of a beam with a rectangular cross section is directly proportional to the 
product of the width w and the square of the depth d. Find the dimensions of the strong-
est beam that can be cut from a log with a circular cross section that is 16.0 cm in diam-
eter. See Fig. 24.46.

The solution proceeds as follows:

 S = kwd2   direct variation

 d2 = 256 - w2   Pythagorean theorem

 S = kw1256 - w22   substituting

 = k1256w - w32   S = f1w2
 
dS
dw

= k1256 - 3w22   take derivative

 0 = k1256 - 3w22   set derivative equal to zero

 3w2 = 256   solve for w

 w =
1613

= 9.24 cm

 d = A256 - 256
3

  solve for d

 = 13.1 cm

This means that the strongest beam is about 9.24 cm wide and 13.1 cm deep. 
Since d2S>dw2 = -6kw, which is negative for w 7 0 (the only values with mean-
ing in this problem), these dimensions give the maximum strength for the beam.

The solution can also be checked from the graph of S as a function of w (which 
we have graphed in Fig. 24.47 for k = 1 since the value of k does not affect the so-
lution). The function S reaches a maximum at w = 9.24 cm (the maximum strength 
value will depend on k). ■

 EXAMPLE  5  Setting up an equation using the distance formula

Find the point on the parabola y = x2 that is nearest to the point 16, 32 .
In this example, we must set up a function for the distance between a general 

point 1x, y2  on the parabola and the point 16, 32 . The relation is

D = 21x - 622 + 1y - 322

However, to make it easier to take derivatives, we will square both sides of this ex-
pression. If a function is a minimum, then so is its square. We will also use the fact 
that the point 1x, y2  is on y = x2 by replacing y by x2. Thus, we have

 D2 = 1x - 622 + 1x2 - 322

= x2 - 12x + 36 + x4 - 6x2 + 9

 = x4 - 5x2 - 12x + 45

 
dD2

dx
= 4x3 - 10x - 12  take derivative

 0 = 2x3 - 5x - 6 set derivative equal to zero

There is exactly one positive solution to this equation (only one sign change). 
Testing the possible integer solutions (1, 2, 3, and 6), we find that x = 2 is the solu-
tion. Thus, the required point on the parabola is 12, 42 . (See Fig. 24.48.) The sec-
ond derivative is d(D2)2>dx2 = 6x2 - 5, which is positive at x = 2. Therefore, the 
distance is minimized. ■

Practice Exercise

1.  In Example 4, change 16.0 cm to 12.0 cm 
and solve the resulting problem.

16
.0

 c
m

w

d

Fig. 24.46

S

w

S = 256w − w3

9.24

Fig. 24.47

0 5

5

25

y

x

D
(x, y)

(6, 3)

Fig. 24.48
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 EXAMPLE  6  Setting up an equation using total value

A company determines that it can sell 1000 units of a product per month if the price is 
$5 for each unit. It also estimates that for each 1 cent reduction in the unit price, 10 
more units can be sold. Under these conditions, what is the maximum possible income 
and what price per unit gives this income?

If we let x = the number of units over 1000 sold, the total number of units sold is 
1000 + x. The price for each unit is $5 less 1. ($0.01) for each block of 10 units 
over 1000 that are sold. Thus, the price for each unit is

5 - 0.01a x
10

b   or  5 - 0.001x dollars

The income I is the number of units sold times the price of each unit. Therefore,

I = 11000 + x2 15 - 0.001x2
Multiplying and finding the first derivative, we have

 I = 5000 + 4x - 0.001x2  

 
dI
dx

= 4 - 0.002x   take derivative

 0 = 4 - 0.002x   set derivative equal to zero

 x = 2000

We note that if x 6 2000, the derivative is positive, and if x 7 2000, the derivative is 
negative. Therefore, if x = 2000, I is at a maximum. This means that the maximum 
income is derived if 2000 units over 1000 are sold, or 3000 units in all. This in turn 
means that the maximum income is $9000 and the price per unit is $3. These values 
are found by substituting x = 2000 into the expression for I and for the price. ■

 EXAMPLE  7  Setting up an equation using geometry

Find the dimensions of a 700-kL cylindrical oil-storage tank that can be made with the 
least cost of sheet metal, assuming there is no wasted sheet metal.

Analysing the wording of the problem carefully, we see that we are to minimize 
the surface area of a right circular cylinder with a volume of 700 kL. Therefore, we 
set up expressions for the surface area and the volume 1700 kL = 700 m32 :

 A = 2pr2 + 2prh   V = 700 = pr2h  (see Fig. 24.49)

We can express the equation for the area in terms of r only by solving the second 
equation for h and substituting in the first equation. This gives us

h =
700

pr2,  A = 2pr2 + 2pr a700

pr2 b = 2pr2 + 1400
r

In order to find the minimum value of A, we find dA>dr and set it equal to zero:

dA
dr

= 4pr - 1400

r2 ,  4pr - 1400

r2 = 0,   
4pr3 - 1400

r2 = 0

4pr3 - 1400 = 0,  r3 =
1400
4p

  numerator must = 0

r = A3 1400
4p

= 4.81 m  h =
700

pr2 = 9.62 m

Since dA>dr changes sign from negative to positive at r = 4.81 m, A is a minimum. ■

Practice Exercise

2.  In Example 6, change 1 cent to 2 cents 
and solve the resulting problem.

h

r

Fig. 24.49

■ See the chapter introduction.
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 EXAMPLE  8  Setting up an equation using variation

The illuminance of a light source (in lux) at any point equals the strength of the source 
(in lumens) divided by the square of the distance (in metres) from the source. Two 
sources, of strengths 8 lumens and 1 lumen, are 100 m apart. Determine at what point 
between them the illuminance is the least, assuming that the illuminance at any point is 
the sum of the illuminances of the two sources.

 Let I = the sum of the illuminances and

 x = the distance from the source of strength 8

Then we find that

I =
8

x2 + 11100 - x22

is the function relating the illuminance and the distance from the source of strength 
8. We must now take a derivative of I with respect to x, set it equal to zero, and 
solve for x to find the point at which the illuminance is a minimum:

dI
dx

= -  
16

x3 + 21100 - x23 =
-161100 - x23 + 2x3

x31100 - x23

This function will be zero if the numerator is zero. Therefore, we have

2x3 - 161100 - x23 = 0  or  x3 = 81100 - x23

Taking cube roots of each side, we have

x = 21100 - x2   or  x = 66.7 m

The illuminance is a minimum 66.7 m from the 8-lumen source. ■

EXERCISES 24.7

In the following exercises, solve the given maximum and minimum 
problems.

 1. In Example 3, change 1600 m to 2400 m and then proceed.

 2. In Example 7, change 700 kL to 800 kL and then proceed.

 3. The height (in m) of a flare shot upward from the ground is given 
by s = 34.3t - 4.9t2, where t is the time (in s). What is the great-
est height to which the flare goes?

 4. A small oil refinery estimates that its daily profit P (in dollars) 
from refining x barrels of oil is P = 8x - 0.02x2. How many 
barrels should be refined for maximum daily profit, and what is 
the maximum profit?

 5. The power output P of a battery of voltage E and internal resist-
ance R is P = EI - RI2, where I is the current. Find the current 
for which the power is a maximum.

 6. In a random sample of 20 machine parts manufactured by a  
certain company, 3 are defective. Find the maximum likelihood 
estimate of the proportion of machine parts produced by this 
company that are defective by maximizing the likelihood func-
tion L1p2 = 1140p3(1 - p)17.

 7. A dc-generator with an internal resistance r develops V volts. If 
the variable resistance in the circuit is R, the power generated is 

  P =
V2

r + R
. What resistance R gives the maximum power?

 8. If an airplane is moving at velocity v, the drag D on the plane is 
D = av2 + b>v2, where a and b are positive constants. Find the 
value(s) of v for which the drag is the least.

 9. A company projects that its total savings S (in dollars) by convert-
ing to a solar-heating system with a solar-collector of area A (in 
m2) will be S = 360A - 0.10A3. Find the area that should give 
the maximum savings and find the amount of the maximum 
savings.

 10. The altitude h (in m) of a jet that goes into a dive and then again 
turns upward is given by h = 16t3 - 240t2 + 10 000, where t is 
the time (in s) after the start of the dive. What is the altitude of the 
jet when it turns up out of the dive?

 11. If a resistance R and inductance L are in parallel with a capacitance 

  C, the impedance is Z = C R2 + v2L2

v2C2R2 + 1v2LC - 122, where v 

  is the angular frequency of the circuit impedance. For what 
value(s) of C is Z a maximum, if R and L are constant?

 12. Test results show that, when coughing, the velocity v of the wind 
in a person’s windpipe is v = kr21a - r2 , where a is the radius 
of the windpipe when not coughing and k is a constant. Find r for 
the maximum value of v.

 13. An alpha particle moves through a magnetic field along the para-
bolic path y = x2 - 4. Determine the closest that the particle 
comes to the origin.
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 14. The electric potential V on the line 3x + 2y = 6 is given by 
V = 3x2 + 2y2. At what point on this line is the potential a 
minimum?

 15. In deep water, the velocity of a wave is v = k A l
a

+ a
l
, where a 

  and k are constants, and l is the length of the wave. What is the 
length of the wave that results in the minimum velocity?

 16. The sum of the length l and width w of a rectangular table top is 
to be 240 cm. Determine l and w if the area of the table top is to 
be a maximum.

 17. A rectangular hole is to be cut in a wall for a vent. If the perimeter 
of the hole is 48 cm and the length of the diagonal is a minimum, 
what are the dimensions of the hole?

 18. When two electric resistors R1 and R2 are in series, their total re-
sistance (the sum) is 32 Ω. If the same resistors are in parallel, 
their total resistance (the reciprocal of which equals the sum of 
the reciprocals of the individual resistances) is the maximum pos-
sible for two such resistors. What is the resistance of each?

 19. A rectangular microprocessor chip is designed to have an area of 
25 mm2. What must its dimensions be if its perimeter is to be a 
minimum?

 20. The rectangular animal display area in a zoo is enclosed by chain-
link fencing and divided into two areas by internal fencing paral-
lel to one of the sides. What dimensions will give the maximum 
area for the display if a total of 240 m of fencing are used?

 21. For the microprocessor chip of Exercise 19, show that the chip 
will always be a square for a given value of the area A.

 22. A rectangular storage area is to be constructed along the side of a 
tall building. A security fence is required along the remaining 
three sides of the area. What is the maximum area that can be en-
closed with 800 m of fencing?

 23. Ship A is travelling due east at 18.0 km>h as it passes a point  
40.0 km due south of ship B, which is travelling due south at 
16.0 km>h. How much later are the ships nearest each other?

 24. An architect is designing a rectangular building in which the front 
wall costs twice as much per linear metre as the other three walls. 
The building is to cover 1350 m2. What dimensions must it have 
such that the cost of the walls is a minimum?

 25. A computer is programmed to display a slowly changing right 
triangle with its hypotenuse always equal to 12.0 cm. What are 
the legs of the triangle when it has its maximum area?

 26. Canada Post regulations require that the sum of the three dimen-
sions of a rectangular package not exceed 3 m. What are the di-
mensions of the largest rectangular box with square ends that can 
be mailed?

 27. Referring to Exercise 26, a cylinder-shaped package is considered 
to have width and height equal to its diameter. What are the di-
mensions of the largest cylindrical package that may be sent 
through the mail?

 28. An architect designs a window in the shape of a rectangle sur-
mounted by an equilateral triangle. If the perimeter of the window 
is to be 6.00 m, what dimensions of the rectangle give the win-
dow the largest area?

 29. The printed area of a rectangular poster is 384 cm2, with margins 
of 4.00 cm on each side and margins of 6.00 cm at the top and 
bottom. Find the dimensions of the poster with the smallest area.

 30. A conical funnel, with a very small opening, is being designed 
such that the slant height of the cone is 4.00 cm. What is the 
maximum volume of liquid that the funnel will be able to hold?

 31. A culvert designed with a semicircular cross section of diameter 
2.40 m is redesigned to have an isosceles trapezoidal cross sec-
tion by inscribing the 
trapezoid in the semi-
circle. See Fig. 24.50. 
What is the length of 
the bottom base b of 
the trapezoid if its area 
is to be maximum?

 32. A 36-cm-wide sheet of metal is bent into a rectangular trough as 
shown in Fig. 24.51. What dimensions give the maximum water 
flow?

2.40 m

b
Fig. 24.50

w
h h

Fig. 24.51
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x

15 cm

10 cmLid

Fig. 24.52

 33. A box with a lid is to be made from a rectangular piece of card-
board 10 cm by 15 cm, as shown in Fig. 24.52. Two equal squares 
of side x are to be removed from one end, and two equal rectan-
gles are to be removed from the other end so that the tabs can be 
folded to form the box with a lid. Find x such that the volume of 
the box is a maximum.

 34. A lap pool (a pool for swimming laps) is designed to be seven 
times as long as it is wide. If the area of the sides and bottom is 
90.0 m2, what are the dimensions of the pool if the volume of 
water it can hold is a maximum?

 35. What is the maximum slope of the curve y = 6x2 - x3?

 36. What is the minimum slope of the curve y = x5 - 10x2?

 37. The deflection y of a beam of length L at a horizontal distance x 
from one end is given by y = k12x4 - 5Lx3 + 3L2x22 , where k 
is a constant. For what value of x does the maximum deflection 
occur?

 38. The electric power P (in W) produced by a certain battery is given 

  by P =
144r1r + 0.622, where r is the resistance in the circuit. For 

  what value of r is the power a maximum?

 39. For raising a load, the efficiency E (in ,) of a screw with square 

  threads is E =
100T11 - f T2

T + f
, where f is the coefficient of 

  friction and T is the tangent of the pitch angle of the screw. If 
f = 0.25, what acute angle makes E the greatest?

 40. Computer simulation shows that the drag F (in N) on a certain air-
plane is F = 0.005 00v2 + 3.00 * 108>v2, where v is the veloc-
ity (in km>h) of the plane. For what velocity is the drag the least?

 41. Factories A and B are 8.0 km apart, with factory B emitting eight 
times the pollutants into the air as factory A. If the number n of 
particles of pollutants is inversely proportional to the square of 
the distance from a factory, at what point between A and B is the 
pollution the least?
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$80 000 per kilometre across the river, find the point P (see  
Fig. 24.56) at which the pipeline should be turned to cross the 
river if construction costs are to be a minimum.

 42. The potential energy E of an electric charge q due to another 
charge q1 at a distance of r1 is proportional to q1 and inversely 
proportional to r1. If charge q is placed directly between two 
charges of 2.00 nC and 1.00 nC that are separated by 10.0 mm, 
find the point at which the total potential energy (the sum due to 
the other two charges) of q is a minimum.

 43. An open box is to be made from a 
square piece of cardboard whose 
sides are 20.0 cm long, by cutting 
equal squares from the corners and 
bending up the sides. Determine the 
side of the square that is to be cut 
out so that the volume of the box 
may be a maximum. See Fig. 24.53.

 44. A cone-shaped paper cup is to hold 100 cm3 of water. Find the 
height and radius of the cup that can be made from the least 
amount of paper.

 45. A race track 400 m long is to be built around an area that is a 
rectangle with a semicircle at each end. Find the open side of the 
rectangle if the area of the rectangle is to be a maximum. See 
Fig. 24.54.
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 46. A beam of rectangular cross section is to be cut from a log 1.00 m 
in diameter. The stiffness of the beam varies directly as the width 
and the cube of the depth. What dimensions will give the beam 
maximum stiffness? See Fig. 24.55.

 47. A company finds that there is a net profit of $10 for each of the 
first 1000 units produced each week. For each unit over 1000 
produced, there is 2 cents less profit per unit. How many units 
should be produced each week to net the greatest profit?

 48. On a computer simulation, a target plane is projected to be at 11.20, 6.052  (distances in km), and a rocket is fired along the 
path y = 8.00 - 2.00x2. How far from the target does the rocket 
pass from the target plane’s projected position?

 49. An oil pipeline is to be built from a refinery to a tanker loading 
area. The loading area is 10.0 km downstream from the refinery 
and on the opposite side of a river 2.5 km wide. The pipeline is 
to run along the river and then cross to the loading area. If the 
pipeline costs $50 000 per kilometre alongside the river and  

P

10.0 km

Loading
area

2.5 km

Refinery

Fig. 24.56
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 50. A light ray follows a path of least time. If a ray starts at point A 
(see Fig. 24.57) and is reflected off a plane mirror to point B, 
show that the angle of incidence a equals the angle of reflection 
b. (Hint: Set up the expression in terms of x, which will lead  
to sin a = sin b.)

 51. A rectangular building covering 7000 m2 is to be built on a rec-
tangular lot as shown in Fig. 24.58. If the building is to be 10.0 m 
from the lot boundary on each side and 20.0 m from the boundary 
in front and back, find the dimensions of the building if the area 
of the lot is a minimum.

20.0 m

10.0 m

10.0 m

20.0 m
x

y7000 m2

Fig. 24.58

 52. A cylindrical cup (no top) is designed to hold 375 cm3 (375 mL). 
There is no waste in the material used for the sides. However, 
there is waste in that the bottom is made from a square 2r on a 
side. What are the most economical dimensions for a cup made 
under these conditions?

Answers to Practice Exercises

1. 6.93 cm by 9.80 cm 2. $6125 at $3.50 per unit

To this point, we have used the dy>dx notation for the derivative of y with respect to x, 
but we have not considered it to be a ratio. In this section, we define the quantities dy 
and dx, called differentials, such that their ratio is equal to the derivative. Then we show 
that differentials have applications in approximating errors in measurement and in ap-
proximating values of functions. Also, in the next chapter, we use the differential nota-
tion in the development of integration, which is the inverse process of differentiation.

 24.8 Differentials and Linear Approximations
 

 

■ The symbol dy>dx  for the derivative was 
first used by Leibniz (see page 660).
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DIFFERENTIALS
We define the differential of a function y = f1x2  as

 dy = f′1x2  dx  (24.6)

In Eq. (24.6), the quantity dy is the differential of y, and dx is the differential of x.  
In this way, we can interpret the derivative as the ratio of the differential of y to the 
differential of x.

 EXAMPLE  1  Differential of a polynomial

Find the differential of y = 3x5 - x.
Since f1x2 = 3x5 - x, we find f′1x2 = 15x4 - 1. This means that

dy = 115x4 - 12dx

 EXAMPLE  2  Differential of a rational expression

Find the differential of s =
4t

t2 + 4
.

 ds =
1 t2 + 42 142 - 14t2 12t21 t2 + 422  dt   using derivative quotient rule

 =
4t2 + 16 - 8t21 t2 + 422  dt =

-4t2 + 161 t2 + 422  dt

 =
-41 t2 - 421 t2 + 422  dt ■

To understand more about differentials and their applications, we use the delta notation 
introduced in Chapter 23. Recall that we defined ∆x as the difference between two val-
ues of x. (Here we call ∆x the increment in x.) By choosing ∆x = dx, if dx is small, 
then the differential in y, dy, closely approximates the increment in y, ∆y.

This is the basis of the applications of the differential, and to understand this better, 
let us look at Fig. 24.59. We see that points P1x, y2  and Q1x + ∆x, y + ∆y2  lie on 
the graph of f1x2  and that the increments of x and y between the points are ∆x and ∆y. 
At point P, f′1x2 = dy>dx, which means that the slope of a tangent line at P is indi-
cated by dy>dx. With dx = ∆x, we see that as dx becomes smaller, dy more nearly 
approximates ∆y, which is the actual difference in the y-values. Therefore, for small 
values of ∆x, dy can be used to approximate ∆y.

 EXAMPLE  3  Calculating the increment and the differential

Calculate ∆y and dy for y = x3 - 2x for x = 3 and ∆x = 0.1.
First, we find ∆y by calculating f13.12 - f132 . Therefore,

∆y = f13.12 - f132 = 33.13 - 213.12 4 - 333 - 2132 4 = 2.591

The differential of y is

dy = 13x2 - 22dx

Since dx = ∆x, we have

dy = 33192 - 24 10.12 = 2.5

Thus, ∆y = 2.591 and dy = 2.5. In this case, dy is very nearly equal to ∆y. ■

f′1x2
the differential of x

don’t forget the dt

Practice Exercise

1.  Find the differential of y = 12x - 124.

x

y

O

P(x, y)
dy

Dy

Q(x 1 Dx, y 1 Dy)

Dx 5 dx

Fig. 24.59

■
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ESTIMATING ERRORS IN MEASUREMENT
The fact that dy can be used to approximate ∆y is useful in finding the error in a result 
from a measurement, if the data are in error, or the equivalent problem of finding the 
change in the result if a change is made in the data. Even though such changes can be 
found by using a calculator, the differential can be used to set up a general expression 
for the change of a particular function.

 EXAMPLE  4  Calculating the error in measurement

The edge of a cube of gold was measured to be 3.850 cm. From this value, the volume 
was found. Later, it was discovered that the value of the edge was 0.020 cm too small. 
By approximately how much was the volume in error?

The volume V of a cube, in terms of an edge s, is V = s3. Since we wish to find 
the change in V for a given change in s, we want the value of dV for s = 3.850 cm 
and ds = 0.020 cm.

First, finding the general expression for dV, we have

dV = 3s2ds

Now, evaluating this expression for the given values, we have

dV = 313.8502210.0202 = 0.89 cm3

In this case, the volume was in error by about 0.89 cm3. As long as ds is small com-
pared with s, we can calculate an error or change in the volume of a cube by calcu-
lating the value of 3s2ds. ■

Often, when considering the error of a given value or result, the actual numerical 
value of the error, the absolute error, is not as important as its size in relation to the 
size of the quantity itself. The ratio of the absolute error to the size of the quantity itself 
is known as the relative error, which is commonly expressed as a percent.

 EXAMPLE  5  Absolute error and relative error

Referring to Example 4, we see that the absolute error in the edge was 0.020 cm. The 
relative error in the edge was

ds
s

=
0.020
3.85

= 0.0052 = 0.52,

The absolute error in the volume was 0.89 cm3, and the original value of the volume 
was 3.8503 = 57.07 cm3. This means the relative error in the volume was

 
dV
V

=
0.89
57.07

= 0.016 = 1.6, ■

LINEAR APPROXIMATIONS
Continuing our discussion related to Fig. 24.59, on the curve of the function f1x2  at 
the point 1a, f1a2 2 , the slope of a tangent line is f′1a2 . See Fig. 24.60. For a point 1x, y2  on the tangent line, by using the point-slope form for the equation of a straight 
line, Eq. (21.6), we have

f1x2 = f1a2 + f′1a2 1x - a2
For the points on y = f1x2  near x = a, we can use the tangent line to approximate the 
function, as shown in Fig. 24.60. Therefore, the approximation f1x2 ≈ L1x2  is the 
linear approximation of f1x2  near x = a, where the function

 L1x2 = f1a2 + f′1a2 1x - a2  (24.7)

is called the linearization of f1x2  at x = a.

Practice Exercise

2.  In Example 4, approximate the error in 
the total surface area A of the cube.

x

y

0

Slope = f '(a)
(a, f (a))

y = f (x)

a

Fig. 24.60

■ For reference, Eq. (21.6) is 
y - y1 = m1x - x12 .
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 EXAMPLE  6  Linearizing a function

Find the linearization of the function f1x2 = 12x + 1 at x = 4. Use it to approxi-
mate 19.06.

The solution is as follows:

 f1x2 = 12x + 1

 f′1x2 = 1
212x + 12-1>2122 =

112x + 1
 find the derivative

 f142 = 12142 + 1 = 3   f′142 =
112142 + 1

=
1
3

  

 L1x2 = 3 + 1
31x - 42 =

x + 5
3

  Use Eq. (24.7)

 12x + 1 ≈
x + 5

3
  

 19.06 ≈
4.03 + 5

3
=

9.03
3

= 3.01   

In Fig. 24.61, the function f1x2 = 12x + 1 and the tangent line are shown. We see 
that the tangent line gives a good approximation of the function when x is near 4. ■

evaluate f142  and  
f′142
2x + 1 = 9.06. 
x = 4.03

by calculator, 19.06 = 3.009983389

1

2

3

4

2 3 4

(4, 3)

5 61−1
−1

y

x

L(x) = x + 5
3

f(x) = V2x + 1

Fig. 24.61

EXERCISES 24.8

In Exercises 1–4, make the given changes in the indicated examples  
of this section and then solve the resulting problems.

 1. In Example 2, change the t2 to t3.

 2. In Example 3, change the -  before 2x to + .

 3. In Example 5, change 0.020 to 0.025.

 4. In Example 6, change x = 4 to x = 12; approximate 125.06.

In Exercises 5–16, find the differential of each of the given functions.

 5. y = x5 + x 6. y = 3x2 + 6

 7. V =
2

r5 + 3p2 8. y = 21x - 1
8x

 9. s = 213t2 - 524 10. y = 514 + 3x21>3
 11. y =

12

3x2 + 1
 12. R = A u

1 + 2u

 13. y = x211 - x23 14. y = 6x11 - 4x

 15. y =
x

5x + 2
 16. y =

3x + 112x - 1

In Exercises 17–20, find the values of ∆y and dy for the given values 
of x and dx.

 17. y = 7x2 + 4x, x = 4, ∆x = 0.2

 18. y = 1x2 + 2x23, x = 7, ∆x = 0.02

 19. y = x11 + 4x, x = 12, ∆x = 0.06

 20. y =
x16x - 1

, x = 3.5, ∆x = 0.025

In Exercises 21–24, find the linearization L1x2  of the given functions 
for the given values of a.

 21. f1x2 = x2 + 2x, a = 0 22. f1x2 = 213 x, a = 8

 23. f1x2 =
1

2x + 1
, a = -1 24. g1x2 = x12x + 8, a = -2

In Exercises 25–36, solve the given problems by finding the appropri-
ate differential. Round answers to 3 significant digits.

 25. If a spacecraft circles the earth at an altitude of 250 km, how much 
farther does it travel in one orbit than an airplane that circles the 
earth at a low altitude? The radius of the earth is 6370 km.

 26. Approximate the amount of paint needed to apply one coat of 
paint 0.50 mm thick on a hemispherical dome 55 m in diameter.

 27. The radius of a circular manhole cover is measured to be 
40.6 ± 0.05 cm (this means the possible error in the radius is 
0.05 cm). Estimate the possible relative error in the area of the top 
of the cover.

 28. The side of a square 
microprocessor chip is 
measured as 0.950 cm, 
and later it is meas-
ured as 0.952 cm. 
What is the difference 
in the calculations of 
the area due to the dif-
ference in the meas-
urements of the side? 
See Fig. 24.62.

dA

0.002 cm

0.002 cm

0.950 cm

0.950 cm

A

Fig. 24.62
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 29. The wavelength l of light is inversely proportional to its fre-
quency f. If l = 685 nm for f = 4.38 * 1014 Hz, find the 
change in l if f increases by 0.20 * 1014 Hz. (These values are 
for red light.)

 30. The velocity of an object rolling down a certain inclined plane is 
given by v = 140 + 4.9h, where h is the distance (in m) trav-
elled along the plane by the object. What is the increase in veloc-
ity (in m>s) of an object in moving from 20.0 m to 20.5 m along 
the plane? What is the relative change in the velocity?

 31. The radius r of a holograph is directly proportional to the square 
root of the wavelength l of the light used. Show that 
dr>r = 1

2 dl>l.

 32. The gravitational force F of the earth on an object is inversely 
proportional to the square of the distance r of the object from the 
centre of the earth. Show that dF>F = -2dr>r.

 33. Show that an error of 2, in the measurement of the radius of a 
DVD results in an error of approximately 4, in the calculation 
of the area.

 34. Show that an error of 2, in the measurement of the radius of a 
ball bearing results in an error of approximately 6, in the calcu-
lation of the volume.

 35. Calculate 14.05, using differentials.

 36.  Explain how to evaluate 2.034.

In Exercises 37–42, solve the given linearization problems.

 37. Show that the linearization of f1x2 = 11 + x2k at x = 0 is 
L1x2 = 1 + kx.

 38. Use the result shown in Exercise 37 to approximate the value of 

  f1x2 =
111 + x

 near zero.

 39. Linearize f1x2 = 12 - x for a = 1 and use it to approximate 
the value of 11.9.

 40.  Explain how to evaluate 23 8.03, using linearization.

 41. The capacitance C (in mF) in an element of an electronic tuner is 

  given by C =
3.611 + 2V

, where V is the voltage. Linearize C for 

  V = 4.0 V.

 42. A 16@Ω resistor is put in parallel with a variable resistor of resist-
ance R. The combined resistance of the two resistors is 

  RT =
16R

16 + R
. Linearize RT for R = 4.0 Ω.

Answers to Practice Exercises

1. dy = 812x - 123dx 2. dA = 0.92 cm2

 CHAPTER 24   EQUATIONS

Newton’s method xn+1 = xn -
f1xn2
f′1xn2  (24.1)

Curvilinear motion vx =
dx
dt

   vy =
dy
dt

 (24.2)

 ax =
dvx

dt
=

d2x

dt2    ay =
dvy

dt
=

d2y

dt2  (24.3)

 v = 2v2
x + v2

y   a = 2a2
x + a2

y  (24.4)

 tan uv =
vy

vx
   tan ua =

ay

ax
 (24.5)

Curve sketching f′1x2 7 0 where f1x2  increases; f′1x2 6 0 where f1x2  decreases.
and maximum and  f ″1x2 7 0 where the graph of f1x2  is concave up; f ″1x2 6 0 where the graph 
minimum values   of f1x2  is concave down.

  If f′1x2 = 0 at x = a, there is a relative maximum point if f′1x2  changes from  
  +  to -  or if f ″1a2 6 0.

  If f′1x2 = 0 at x = a, there is a relative minimum point if f′1x2  changes from  
  -  to +  or if f ″1a2 7 0.

  If f ″1x2 = 0 at x = a, there is a point of inflection if f ″1x2  changes from +  to  
  -  or from -  to + .

Differential dy = f′1x2dx (24.6)

Linearization L1x2 = f1a2 + f′1a2 1x - a2  (24.7)
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 CHAPTER 24   REVIEW EXERCISES

In Exercises 1–6, find the equations of the tangent and normal lines.

 1. Find the equation of the line tangent to the parabola y = 3x - x2 
at the point 1 -1, -42 . Graph the curve and the line.

 2. Find the equation of the line tangent to the curve y = x2 - 6
x

 at 
the point 13, 72 .

 3. Find the equation of the line normal to x2 - 4y2 = 9 at the 
point 15, 22 . Graph the curve and the line.

 4. Find the equation of the line normal to y =
41x - 2

 at the point 16, 22 .

 5. Find the equation of the line tangent to the curve y = 2x2 + 3 
and that has a slope of 12.

 6. Find the equation of the line normal to the curve y =
1

2x + 1
 

and that has a slope of 12 if x Ú 0.

In Exercises 7–12, find the indicated velocities and accelerations. 
Round answers to 3 significant digits.

 7. Given that the x- and y-coordinates of a moving particle are 
given as a function of time t by the parametric equations 
x = 1t + t, y = 1

12 t3, find the magnitude and direction of the 
velocity when t = 4.

 8. If the x- and y-coordinates of a moving object as functions of 
time t are given by x = 0.1t2 + 1, y = 14t + 1, find the mag-
nitude and direction of the velocity when t = 6.

 9. An object moves along the curve y = 0.5x2 + x such that 
vx = 0.51x. Find vy at 12, 42 .

 10. A particle moves along the curve of y =
1

x + 2
 with a constant 

  velocity in the x-direction of 4 cm>s. Find vy at 12, 142 .

 11. Find the magnitude and direction of the acceleration for the par-
ticle in Exercise 7.

 12. Find the magnitude and direction of the acceleration for the par-
ticle in Exercise 10.

In Exercises 13–16, find the indicated roots of the given equations to 
at least four decimal places by use of Newton’s method.

 13. x3 - 3x2 - x + 2 = 0 (between 0 and 1)

  14. 2x3 - 4x2 - 9 = 0 (between 2 and 3)

 15. x2 = 3
x (the real solution)

 16. 1x - 2 = 11 x - 6 2 2 (the two real solutions)

In Exercises 17–24, sketch the graphs of the given functions by in-
formation obtained from the function as well as information obtained 
from the derivatives.

 17. y = 4x2 + 16x 18. y = x3 + 2x2 + x + 1

 19. y = 27x - x3 20. y = x16 - x23

 21. y = x4 - 32x 22. y = x5 - 20x2 + 10

 23. y =
x22x2 - 1

 24. y = x3 + 3
x

In Exercises 25–28, find the differential of each of the given functions.

 25. y = 4x3 + 1
x

 26. y =
112x - 122

 27. y = x23 1 - 3x 28. s = A2 + t
2 - t

In Exercises 29 and 30, evaluate ∆y - dy for the given functions and 
values.

 29. y = 4x3 - 12, x = 2, ∆x = 0.1

 30. y = 6x2 - x, x = 3, ∆x = 0.2

In Exercises 31 and 32, find the linearization of the given functions 
for the given values of a.

 31. f1x2 = 2x4 + 3x2 + 8, a = 2

 32. f1x2 = x21x + 124, a = -2

In Exercises 33–40, solve the given problems by finding the appropri-
ate differentials.

 33. A weather balloon 3.50 m in radius becomes covered with a uni-
form layer of ice 1.20 cm thick. What is the volume of the ice?

 34. The total power P (in W) transmitted by an AM radio transmitter 
is P = 460 + 230m2, where m is the modulation index. What is 
the change in power if m changes from 0.86 to 0.89?

 35. A cylindrical silo with a flat top is 12.0 m in diameter and is 
12.0 m high. By how much is the volume changed if the radius 
is increased by 0.100 m and the height is unchanged?

 36. A ski slope follows a path that can be represented by 
  y = 0.010x2 - 0.86x + 24. What is the change in the slope of 

the path when x changes from 26 m to 28 m?

 37. The impedance Z of an electric circuit as a function of the resist-
ance R and the reactance X is given by Z = 2R2 + X2. Derive 
an expression of the relative error in impedance for an error in R 
and a given value of X.

 38. Evaluate 18.94. 39. Evaluate 3.025.

 40. Show that the relative error in the calculation of the volume of a 
sphere is approximately three times the relative error in the 
measurement of the radius.

In Exercises 41–80, solve the given problems.

 41. The parabolas y = x2 + 2 and y = 4x - x2 are tangent to each 
other. Find the equation of the line tangent to them at the point 
of tangency.

 42. Find the equation of the line tangent to the curve of y = x4 - 8x 
and perpendicular to the line 4y - x + 5 = 0.

 43. The deflection y (in m) of a beam at a horizontal distance x  
(in m) from one end is given by y = k1x4 - 30x3 + 1000x2 , 
where k is a constant. Observing the equation and using 
Newton’s method, find the values of x where the deflection is 
zero, if the beam is 10.000 m long.
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 44. The edges of a rectangular water tank are 3.00 m, 5.00 m, and 
8.00 m. By Newton’s method, determine by how much each edge 
should be increased equally to double the volume of the tank.

 45. A parachutist descends (after the parachute opens) in a path that 
can be described by x = 8.0t and y = -0.15t2, where distances 
are in metres and time is in seconds. Find the parachutist’s ve-
locity upon landing if the landing occurs when t = 12 s.

 46. One of the curves on an automobile test track can be described 
by y = 225>x, where dimensions are in metres. For a car ap-
proaching the curve at a constant velocity of 120 km>h, find the 
x- and y-components of the velocity at 110.0, 22.52 .

 47. A person walks 250 m north and turns west. Walking at the rate 
of 1.0 m>s, at what rate is the distance between the person and 
the starting point increasing 1.0 min after turning west?

 48. A glass prism for refracting light has equilateral triangular ends 
and vertical cross sections, and a volume of 45 cm3. Find the 
edge of one of the ends such that the total surface area is a 
minimum.

 49. In Fig. 24.63, the tension T supports the 40.0-N weight. The 
relation between the tension T and the deflection d is 

  d =
10002T2 - 400

. If the tension is increasing at 2.00 N>s when 

  T = 28.0 N, how fast is the deflection (in cm) changing?

 58. The current I (in A) in a circuit with a resistance R (in Ω) and  
a battery whose voltage is E and whose internal resistance is r 
(in Ω) is given by I = E> 1R + r2 . If R changes at the rate of 
0.250 Ω >min, how fast is the current changing when 
R = 6.25 Ω, if E = 3.10 V and r = 0.230 Ω?

 59. The radius of a circular oil spill is increasing at the rate of  
15 m>min. How fast is the area of the spill changing when the ra-
dius is 400 m?

 60. A special insulation strip is to be sealed completely around three 
edges of a rectangular solar panel. If 200 cm of the strip are 
used, what is the maximum area of the panel?

 61. A baseball diamond is a square 90.0 ft on a side. See Fig. 24.64. 
As a player runs from first base toward second base at 18.0 ft>s, 
at what rate is the player’s distance from home plate increasing 
when the player is 40.0 ft from first base? (1 ft =  0.3048 m)

T

d

40.0 N

100 cm

Fig. 24.63

 50. The impedance Z (in Ω) in a particular electric circuit is given 

  by Z = 248 + R2, where R is the resistance. If R is increasing 
at a rate of 0.45 Ω >min for R = 6.5 Ω, find the rate at which Z 
is changing.

 51. By using the methods of this chapter to graph y = x2 - 2
x,  

graph the solution of the inequality x2 7 2
x.

 52.  Display the graphs of y1 = x2 - 2
x and y2 = x2 on the same 

screen of a graphing calculator, and explain why y2 can be con-
sidered to be a nonlinear asymptote of y1.

 53. An analysis of the power output P (in kW>m3) of a certain 
turbine showed that it depended on the flow rate r (in m3>s)  
of water to the turbine according to the equation 
P = 0.030r3 - 2.6r2 + 71r - 200 16.0 … r … 30 m3>s2 . 
Determine the rate for which P is a maximum.

 54. The altitude h (in m) of a certain rocket as a function of the time 
t (in s) after launching is given by h = 550t - 4.9t2. What is 
the maximum altitude the rocket attains?

 55. Sketch the continuous curve having these characteristics: 
f102 = 2  f′1x2 6 0 for x 6 0  f ″1x2 7 0 for all x

f′1x2 7 0 for x 7 0

 56. Sketch a continuous curve having these characteristics:

  f102 = 1  f′102 = 0 f ″1x2 6 0 for x 6 0

f′1x2 7 0 for 0 x 0 7 0  f ″1x2 7 0 for x 7 0

 57. A horizontal cylindrical oil tank (the length is parallel to the 
ground) of radius 2.00 m is being emptied. Find how fast the 
width w of the oil surface is changing when the depth h is 
0.500 m and changing at the rate of 0.0500 m>min.

Home

Player

First
base

Second
base

90
.0 

ft

Fig. 24.64

 62. A swimming pool with a rectangular surface of 130 m2 is to 
have a cement border area that is 4.00 m wide at each end and 
2.75 m wide at the sides. Find the surface dimensions of the pool 
if the total area covered is to be a minimum.

 63. A study showed that the percent y of persons surviving burns to 

  x percent of the body is given by y =
300

0.0005x2 + 2
- 50. 

  Linearize this function with a = 50 and sketch the graphs of y 
and L1x2 .

 64. A company estimates that the sales S (in dollars) of a new prod-
uct will be S = 5000t> 1 t + 422, where t is the time (in months) 
after it is put into production. Sketch the graph of S vs. t.

 65. An airplane flying horizontally at 2400 m is moving toward a 
radar installation at 1110 km>h. If the plane is directly over a 
point on the ground 8.00 km from the radar installation, what is 
its actual speed? See Fig. 24.65.

8.00 km

2400 m 1110 km/h

?

Fig. 24.65

 66. The base of a conical machine part is being milled such that the 
height is decreasing at the rate of 0.050 cm>min. If the part 
originally had a radius of 1.0 cm and a height of 3.0 cm, how 
fast is the volume changing when the height is 2.8 cm?

 67. The reciprocal of the total capacitance CT of electrical capaci-
tances in series equals the sum of the reciprocals of the individ-
ual capacitances. If the sum of two capacitances is 12 mF, find 
their values if their total capacitance in series is a maximum.
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 69. A box with a square base and an open top is to be made of 
27 dm2 of cardboard. What is the maximum volume that can be 
contained within the box?

 70. A car is travelling east at 90.0 km>h, and an airplane is travelling 
south at 450.0 km>h at an elevation of 2.00 km. At one instant 
the plane is directly above the car. At what rate are they separat-
ing 15.0 min later?

 71. A person in a boat 4 km from the nearest point P on a straight 
shoreline wants to go to point A on the shoreline, 5 km from P. 
If the person can row at 3 km>h and walk at 5 km>h, at what 
point on the shoreline should the boat land in order that point A 
can be reached in the least time? See Fig. 24.67.

36 m
25 m

90 m

A
C

B

Fig. 24.66

Boat

4 km

5 km A
x

PFig. 24.67

 72. A machine part is to be in the shape of a circular sector of radius 
r and central angle u. Find r and u if the area is one unit and the 
perimeter is a minimum. See Fig. 24.68.

u

A = 1

rFig. 24.68

 73. An open drawer for small tools is to be made from a rectangular 
piece of heavy sheet metal 36.0 cm by 30.0 cm, by cutting out 
equal squares from two corners and bending up the three sides, 
as shown in Fig. 24.69. Find the side of the square that should be 
cut out so that the volume of the drawer is a maximum.

 74. A Norman window has the form of a rectangle surmounted by a 
semicircle. Find the dimensions (radius of circular part and 
height of rectangular part) of the window that will admit the most 
light if the perimeter of the window is 4.00 m. See Fig. 24.70.

 75. A pile of sand in the shape of a cone has a radius that always 
equals the altitude. If 3.00 m3 of sand are poured onto the pile 
each minute, how fast is the radius increasing when the pile is 
2.50 m high?

 76. A book is designed such that its (rectangular) pages have 2.5-cm 
margins at the top and bottom, 1.5-cm margins on the sides, and 
a total area of 320 cm2. What are the page dimensions that give 
the maximum printed area?

 77. A specially made cylindrical container is made of stainless steel 
sides and bottom and a silver top. If silver is 10 times as expen-
sive as stainless steel, what are the most economical dimensions 
of the container if it is to hold 314 cm3?

 78. An object is moving in a horizontal circle of a radius 2.00 m at 
the rate of 2.00 rad>s. If the object is on the end of a string and 
the string breaks after 1.05 s, causing the object to travel along a 
line tangent to the circle, what is the equation of the path of the 
object after the string breaks? (Choose the origin of the coordi-
nate system at the centre of the circle and assume the object 
started on the positive x-axis moving counterclockwise.)

 79. A builder is designing a storage building with a total volume of 
38.3 m3, a rectangular base, and a flat roof. The width is to be 
0.75 of the length. The cost per square foot is $6.00 for the floor, 
$9.00 for the sides, and $4.50 for the roof. What dimensions will 
minimize the cost of the building?

 80. City B is 16.0 km east and 12.0 km north of city A. City A is 
8.00 km due south of a river that is 1.00 km wide. A road is to be 
built between A and B that crosses straight across the river. See 
Fig. 24.71. Where should the bridge be located so that the road 
between A and B is as short as possible?

30.0 cm

x x

36.0 cm

x x

Fig. 24.69 Fig. 24.70

p ! 4.00 mh

r

16.0 km

Bridge 1.00 km

12.0 km

B

A

8.00 km

Fig. 24.71

Writing Exercise
 81. A container manufacturer makes various sizes of closed cylindri-

cal plastic containers for shipping liquid products. Write two or 
three paragraphs explaining how to determine the ratio of the 
height to radius of the container such that the least amount of plas-
tic is used for each size. Include the reason why it is not necessary 
to specify the volume of the container in finding this ratio.

 68. A cable is to be from point A to point B on a wall and then to 
point C. See Fig. 24.66. Where is B located if the total length of 
cable is a minimum?
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 CHAPTER 24   PRACTICE TEST

 1. Find the equation of the line tangent to the curve y = x4 - 3x2 
at the point 11, -22 .

 2. For y = 3x2 - x, evaluate (a) ∆y, (b) dy, and (c) ∆y - dy for 
x = 3 and ∆x = 0.1.

 3. If the x- and y-coordinates of a moving object as functions of time 
are given by the parametric equations x = 3t2, y = 2t3 - t2, 
find the magnitude and direction of the acceleration when t = 2.

 4. The electric power (in W) produced by a certain source is given 

  by P =
144r1r + 0.622, where r is the resistance (in Ω) in the 

  circuit. For what value of r is the power a maximum?

 5. Find the root of the equation x2 - 14x + 1 = 0 between 1 
and 2 to four decimal places by use of Newton’s method. Use 
x1 = 1.5 and find x3.

 6. Linearize the function y = 12x + 4 for a = 6.

 7. Sketch the graph of y = x3 + 6x2 by finding the values of x for 
which the function is increasing, decreasing, concave up, and 
concave down and by finding any maximum points, minimum 
points, and points of inflection.

 8. Sketch the graph of y =
4

x2 - x by finding the same information 

  as required in Problem 7, as well as intercepts, symmetry, be-
haviour as x becomes large, vertical asymptotes, and the domain 
and range.

 9. Trash is being compacted into a cubical volume. The edge of the 
cube is decreasing at the rate of 0.10 m>s. When an edge of the 
cube is 1.25 m, how fast is the volume changing?

 10. A rectangular field is to be fenced and then divided in half by a 
fence parallel to two opposite sides. If a total of 6000 m of fenc-
ing is used, what is the maximum area that can be fenced?



Integration

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Understand the concept of the 
antiderivative of a function

 Integrate basic functions such 
as constants, polynomials, and 
powers

 Evaluate the constant of 
integration

 Approximate the area under 
a curve using inscribed 
rectangles

 Find the area under a curve 
using a definite integral

 Use the trapezoidal rule and 
Simpson’s rule to approximate 
a definite integral

Finding areas of geometric figures had been studied by the ancient Greeks, and they had 
found how to find the area of any polygon. Also, they were able to find the area of a 
curved figure by inscribing polygons in the figure and then letting the number of sides 

of the polygon increase. There was little more progress in finding such areas until the 1600s 
when analytic geometry was developed.

Several mathematicians of the 1600s studied both the area problem and the tangent problem 
that was discussed in Chapter 23. These included the French mathematician Pierre de Fermat 
and the English mathematician Isaac Barrow, both of whom developed a few formulas by 
which tangents and areas could be found. However, Newton and Leibniz found that these two 
problems were related and determined general methods of finding them. For these reasons, 
Newton and Leibniz are credited with the creation of calculus.

Finding tangents and finding areas appear to be very different, but they are closely related. As 
we will show, finding an area uses the inverse process of finding the slope of a tangent line, 
which we have shown can be interpreted as an instantaneous rate of change.

In physical and technical applications, we often find information that gives us the instantane-
ous rate of change of a variable. With such information, we have to reverse the process of 
differentiation in order to find the function when we know its derivative. This procedure is 
known as integration, which is the inverse process of differentiation.

This means that areas are found by integration. There are also many applications of integra-
tion in science and technology. A few of these applications will be illustrated in this chapter, 
and several specific applications will be developed in the next chapter.

25

752

 In Section 25.2, integration is used 
to find the displacement of a robot 
arm as a function of time.
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 25.1 Antiderivatives
 

Antiderivative
We now show how to reverse the process of finding a derivative or a differential. This 
reverse process is known as antidifferentiation. In the next section, we formalize the 
process, and it is only the basic idea that is the topic of this section.

 EXAMPLE  1  Find a function, knowing its derivative

Find a function for which the derivative is 8x3. That is, find an antiderivative of 8x3.
When finding the derivative of a constant times a power of x, we multiply the con-

stant coefficient by the power of x and reduce the power by 1. Therefore, in this case, 
the power of x must have been 4 before the differentiation was performed.

If we let the derivative function be f1x2 = 8x3 and then let its antiderivative func-
tion be F1x2 = ax4 (by increasing the power of x in f1x2  by 1), we can find the value 
of a by equating the derivative of F1x2  to f1x2 . This gives us

F′1x2 = 4ax3 = 8x3,  4a = 8,  a = 2

This means that F1x2 = 2x4. ■

 EXAMPLE  2  Antiderivative of a polynomial

Find the antiderivative of v2 + 2v.
For v2, we know that the power of v required in an antiderivative is 3. Also, to make 

the coefficient correct, we must multiply by 13. 2v should be recognized as the derivative 
of v2. Therefore, we have as an antiderivative 13 v3 + v2. ■

In Examples 1 and 2, we could add any constant to the antiderivative shown and 
still have a correct antiderivative. This is true because the derivative of a constant is 
zero. This is discussed in the next section, and we will not show any such constants in 
this section.

When we find an antiderivative of a function, we obtain another function. Thus, we 
can define an antiderivative of the function f1x2  to be a function F1x2  such that 
F′1x2 = f1x2 .

 EXAMPLE  3   Antiderivative of a square root and a power  
with a negative exponent

Find an antiderivative of the function f1x2 = 1x - 2

x3.

Since we wish to find an antiderivative of f1x2 , we know that f1x2  is the deriva-
tive of the required function.

Considering the term 1x, we first write it as x1>2. To have x to the 12 power in the deriva-
tive, we must have x to the 32 power in the antiderivative. Knowing that the derivative of x3>2 
is 32 x1>2, we write x1>2 as 23 13

2 x1>22 . Thus, the first term of the antiderivative is 23 x3>2.
As for the term -2>x3, we write it as -2x-3. This we recognize as the derivative of 

x-2, or 1>x2.
This means that an antiderivative of the function

f1x2 = 1x - 2

x3

is the function 

F1x2 =
2
3

 x3>2 + 1

x2

A great many functions of which we must find an antiderivative are not polynomials 
or simple powers of x. It is these functions that may cause more difficulty in the general 
process of antidifferentiation. Pay special attention to the following examples, for they 
illustrate a type of problem that you will find to be very important.

function 

antiderivative

derivative

function
■

Practice Exercise

1. Find an antiderivative of x3 + 4x.
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 EXAMPLE  4  Antiderivative of a power of a function

Find an antiderivative of the function f1x2 = 31x3 - 12213x22 .
Noting that we have a power of x3 - 1 in the derivative, it is reasonable that the 

antiderivative may include a power of x3 - 1. Since, in the derivative, x3 - 1 is raised 
to the power 2, the antiderivative would then have x3 - 1 raised to the power 3. Noting 
that the derivative of 1x3 - 123 is 31x3 - 12213x22 , the desired antiderivative is

F1x2 = 1x3 - 123 ■

 EXAMPLE  5  Antiderivative of a power of a function

Find an antiderivative of the function f1x2 = 12x + 121>2.
Here, we note a power of 2x + 1 in the derivative, which implies that the antideriv-

ative has a power of 2x + 1. Since in finding a derivative, 1 is subtracted from the 
power of 2x + 1, we should add 1 in finding the antiderivative. Thus, we should have 12x + 123>2 as part of the antiderivative. Finding a derivative of 12x + 123>2, we 
obtain 3

212x + 121>2122 = 312x + 121>2. This differs from the given derivative by 
the factor of 3. Thus, if we write 12x + 121>2 = 1

3 3312x + 121>24 , we have the 
required antiderivative as

F1x2 = 1
312x + 123>2

Checking, the derivative of 1312x + 123>2 is 13 13
2212x + 121>2122 = 12x + 121>2. ■

Practice Exercise

2.  Find an antiderivative of 
514x - 324142 .

Note that when finding the antideriv-
ative of a power of a function, the 
factor representing the derivative of 
the function does not appear in the 
antiderivative. Nevertheless, it must 
be present in the expression contain-
ing the power if we are to find a 
proper antiderivative.

For instance, in Example 4, the 
factor 3x2 does not appear in the 
antiderivative. However, since  
the factor is part of the derivative  
of (x3 - 1)3, it must be present in the 
original function for (x3 - 1)3 to be  
a correct antiderivative.

LEARNING T IP

EXERCISES 25.1

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the resulting problems.

 1. In Example 1, change the coefficient 8 to 12.

 2. In Example 2, change v2 to v3.

 3. In Example 3, change 2>x3 to 3>x4.

 4. In Example 5, change 2x to 4x.

In Exercises 5–12, determine the value of a that makes F1x2  an 
antiderivative of f1x2 .

 5. f1x2 = 3x2, F1x2 = ax3 6. f1x2 = 5x4, F1x2 = ax5

 7. f1x2 = 18x5, F1x2 = ax6 8. f1x2 = 40x7, F1x2 = ax8

 9. f1x2 = 91x, F1x2 = ax3>2 10. f1x2 = 10x1>4, F1x2 = ax5>4
 11. f1x2 =

1

x2, F1x2 =
a
x

 12. f1x2 =
6

x4, F1x2 =
a

x3

In Exercises 13–38, find antiderivatives of the given functions.

 13. f1x2 = 5
2 x3>2 14. f1x2 = 4

3 x1>3
 15. f1 t2 = 6t3 + 12 16. f1x2 = 12x5 + 2x

 17. f1x2 = 2x2 - x 18. f1x2 = 6x2 - 5

 19. f1x2 = 21x + 3 20. f1s2 = 923 s - 3

 21. f1x2 = - 7

x6 22. f1x2 =
8

x5 - p

 23. f1v2 = 4v + 3p2 24. f1x2 =
1

21x
+ 13

 25. f1x2 = x2 - 4 + x -2 26. f1x2 = x1x - x-3

 27. f1x2 = 612x + 125122  28. f1R2 = 31R2 + 12212R2

 29. f1p2 = 41p2 - 12312p2
 30. f1x2 = 512x4 + 12418x32
 31. f1x2 = x312x4 + 124

 32. f1x2 = x11 - x227

 33. f1x2 = 3
216x + 121>2162

 34. f1y2 = 5
411 - y21>41 -12

 35. f1x2 = 13x + 121>3
 36. f1x2 = 14x + 321>2
 37. f1x2 =

-212x + 122

 38. f1s2 =
4s11 - s223

In Exercises 39 and 40, answer the given questions.

 39. Why is 1x + 523 a correct antiderivative of 31x + 522, whereas 12x + 523 is not a correct antiderivative of 312x + 522?

 40. Is 
1

(x + 5)3 a correct antiderivative of 
1

3(x + 5)2?

Answers to Practice Exercises

1. 1
4x4 + 2x2  2. F1x2 = 14x - 325
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 25.2 The Indefinite Integral
 In the previous section, in developing the basic technique of finding an antiderivative, 

we noted that the results given are not unique. That is, we could have added any con-
stant to the answers and the result would still have been correct. Again, this is the case 
since the derivative of a constant is zero.

 EXAMPLE  1  

The derivatives of x3, x3 + 4, x3 - 7, and x3 + 4p are all 3x2. This means that any of 
the functions listed, as well as innumerable others, would be a proper answer to the 
problem of finding an antiderivative of 3x2. ■

From Section 24.8, we know that the differential of a function F1x2  can be written 
as d3F1x2 4 = F′1x2dx. Therefore, since finding a differential of a function is 
closely related to finding the derivative, so is the antiderivative closely related to the 
process of finding the function for which the differential is known.

The notation used for finding the general form of the antiderivative, the indefinite 
integral, is written in terms of the differential. Thus, the indefinite integral of a func-
tion f1x2 , for which dF1x2 >dx = f1x2 , or dF1x2 = f1x2dx, is defined as

Lf1x2  dx = F1x2 + C  (25.1)

Here, f1x2  is called the integrand, F1x2 + C is the indefinite integral, and C is an 
arbitrary constant, called the constant of integration. It represents any of the con-
stants that may be attached to an antiderivative to have a proper result. We must have 
additional information beyond a knowledge of the differential to assign a specific value 
to C. The symbol 1  is the integral sign, and it indicates that the inverse of the differen-
tial is to be found. Determining the indefinite integral is called integration, which we 
can see is essentially the same as finding an antiderivative.

 EXAMPLE  2  

In performing the integration

constant of integration

L5x4 dx = x5 + C

integrand         indefinite integral

we might think that the inclusion of this constant C would affect the derivative of the function 
x5. However, the only effect of the C is to raise or lower the curve. The slope of y = x5 + 2, 
y = x5 - 2, or any function of the form y = x5 + C is the same for any given value of x. 
As Fig. 25.1 shows, tangents drawn to the curves are all parallel for the same value of x. ■Fig. 25.1 

x

y

O
y 5 x5 2 2

y 5 x5 1 2

y 5 x5

When evaluating an indefinite integral, it is a common error to omit the constant of 
integration.

COMMON ERROR

At this point, we shall derive some basic formulas for integration. Since we know 
d1cu2 >dx = c1du>dx2 , where u is a function of x and c is a constant, we can write

Lc du = cLdu = cu + C  (25.2)
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Also, since the derivative of a sum of functions equals the sum of the derivatives,  
we write

L1du + dv2 = u + v + C  (25.3)

To find the differential of a power of a function, we multiply by the power, subtract 
1 from it, and multiply by the differential of the function. To find the integral, we 
reverse this procedure to get the power formula for integration:

Lun du =
un+1

n + 1
+ C  1n ≠ -12  (25.4)

 EXAMPLE  3  Integration using the power rule

Integrate 16x dx.
We must identify u, n, du, and any multiplying constants. Noting that 6 is a multi-

plying constant, we identify x as u, which means dx must be du and n = 1.

1un du   un+1

L6x dx = 6Lx1 dx = 6ax2

2
b + C = 3x2 + C 

n + 1

We see that our result checks since the differential of 3x2 + C is 6x dx. ■

 EXAMPLE  4  Integration of a polynomial using the power rule

Integrate 1 15x3 - 6x2 + 12  dx.
Here, we must use a combination of Eqs. (25.2), (25.3), and (25.4). Therefore,

 L15x3 - 6x2 + 12  dx = L5x3 dx + L1 -6x22  dx + Ldx

 = 5Lx3 dx - 6Lx2 dx + Ldx

In the first integral, u = x, n = 3, and du = dx. In the second, u = x, n = 2, and 
du = dx. The third uses Eq. (25.2) directly, with c = 1 and du = dx. This means

 5Lx3 dx - 6Lx2 dx + Ldx = 5ax4

4
b - 6ax3

3
b + x + C

 =
5
4

x4 - 2x3 + x + C  ■

do not forget the 
constant of 
integration

We must be able to recognize the 
proper form and the component 
parts to use these formulas. Unless 
you do this and have a good knowl-
edge of differentiation, you will have 
trouble using Eq. (25.4). Most of the 
difficulty, if it exists, arises from an 
improper identification of du.

LEARNING T IP

Practice Exercise

1. Integrate 1 16x2 - 52  dx.
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 EXAMPLE  5   Integrating a square root and a power  
with a negative exponent

Integrate La1r - 1

r3 b  dr.

In order to use Eq. (25.4), we must first write 1r = r1>2 and 1>r3 = r-3:

 La1r - 1

r3 b  dr = Lr1>2 dr - Lr-3 dr =
1
3
2

 r3>2 - 1
-2

 r-2 + C

 =
2
3

 r3>2 + 1
2

 r-2 + C =
2
3

 r3>2 + 1

2r2 + C  ■

 EXAMPLE  6  Integrating a power of a function

Integrate 1 1x2 + 12312x dx2 .
We first note that n = 3, for this is the power involved in the function being inte-

grated. If n = 3, then x2 + 1 must be u. If u = x2 + 1, then du = 2x dx. Thus, the 
integral is in proper form for integration as it stands. Using the power formula,

L1x2 + 12312x dx2 =
1x2 + 124

4
+ C

Showing the use of u directly, we can write the integration as

L1x2 + 12312x dx2 = Lu3 du =
1
4

u4 + C =
1x2 + 124

4
+ C ■

 EXAMPLE  7  Integrating a power of a function

Integrate 1x22x3 + 2 dx.
We first note that n = 1

2 and u is then x3 + 2. Since u = x3 + 2, du = 3x2 dx. 
Now, we group 3x2 dx as du. Since there is no 3 under the integral sign, we introduce 
one. In order not to change the numerical value, we also introduce 1

3, normally before 
the integral sign.

Lx22x3 + 2 dx =
1
3L3x22x3 + 2 dx =

1
3L2x3 + 2 13x2 dx2

Here, we indicate the proper grouping to have the proper form of Eq. (25.4):

 Lx22x3 + 2 dx =
1
3L2x3 + 2 13x2 dx2 =

1
3

 a2
3
b 1x3 + 223>2 + C

 =
2
9

 1x3 + 223>2 + C

The 1>3
2 was written as 23, since this form is more convenient with fractions.

With u = x3 + 2 and using u directly in the integration, we can write

 Lx22x3 + 2 dx = L1x3 + 221>21x2 dx2
 = Lu1>2 a1

3
 dub =

1
3Lu1>2 du integrating in terms of u

 =
1
3
a2

3
b  u3>2 + C =

2
9

 u3>2 + C 

 =
2
9

 1x3 + 223>2 + C substituting x3 + 2 = u ■

It must be emphasized that the entire 
quantity 12x dx 2  must be equated to 
du. Normally, u and n are recognized 
first, and then du is derived from u.

LEARNING T IP

Practice Exercise

2. Integrate L8x21 - 2x2 dx.

■ We have integrated certain basic functions. 
Other methods are used to integrate other 
types of functions, and some of these are  
discussed in Chapter 28. Also, many  
functions cannot be integrated.
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EVALUATING THE CONSTANT OF INTEGRATION
To find the constant of integration, we need information such as a set of values that 
satisfy the function. A point through which the curve passes would provide the neces-
sary information. This is illustrated in the following examples.

 EXAMPLE  8  Evaluating the constant of integration

Find y in terms of x, given that dy>dx = 3x - 1 and the curve passes through 11, 42 .
The solution is as follows.

 dy = 13x - 12  dx rewrite equation—solve for dy in terms of dx 

 Ldy = L13x - 12  dx set up integration

y =
3
2

 x2 - x + C integrate

 4 =
3
2

- 1 + C or C =
7
2

evaluate C; point (1, 4) satisfies equation 

y =
3
2

 x2 - x + 7
2

  or 2y = 3x2 - 2x + 7 see Fig. 25.2 ■

 EXAMPLE  9  Integral with a negative exponent

The time rate of change of the displacement (velocity) of a robot arm is 
ds>dt = 8t> 1 t2 + 422. Find the expression for the displacement as a function of time 
if s = -1 m when t = 0 s.

First, we write ds = 8t dt1 t2 + 4 2 2 and then integrate. To integrate the expression on 

the right, we note that n = -2, u = t2 + 4, and du = 2t dt. This means we need a 2 
with t dt to form the proper du. In turn, this means we place a 1

2 before the integral  
sign. Also, we place the 8 in front of the integral sign. Therefore,

Lds = L
8t dt1 t2 + 422 = a1

2
b 182L1 t2 + 42 -212t dt2 set up integration

 s = 4a 1
-1

b 1 t2 + 42 -1 + C =
-4

t2 + 4
+ C integrate; -2 + 1 = -1

 -1 =
-4

0 + 4
+ C or C = 0 evaluate C given s = -1 m when t = 0 s

 s =
-4

t2 + 4
expression for displacement ■

Because a constant factor may be moved across the integral sign, we can always 
introduce a constant required to complete du, and also its reciprocal (so as not to 
change the numerical value of the integral), as in Example 7. We note, however, that 
only constant factors may be moved across the integral sign. If du is missing a varia-
ble factor, we cannot introduce the variable factor and move its variable reciprocal 
across the integral sign. For example, when integrating 11x2 + 122dx, we cannot 
integrate by setting u = x2 + 1, du = 2xdx because we cannot introduce the factor x 
and take 1/x out of the integral. Instead, we need to square the binomial and inte-
grate 11x4 + 2x2 + 12dx.

COMMON ERROR

Fig. 25.2 

6

2

1 20

(1, 4)

y

x
!1

■ See the chapter introduction.
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EXERCISES 25.2

In Exercises 1– 4, make the given changes in the indicated examples 
of this section, and then solve the resulting problems.

 1. In Example 3, change the coefficient 6 to 8.

 2. In Example 5, change 1r to 23 r.

 3. In Example 6, change the power 3 to 4.

 4. In Example 8, change 11, 42  to 12, 32 .

In Exercises 5– 36, integrate each of the given expressions.

 5. L2x dx  6. L5x4 dx  7. Lx7 dx

 8. L0.6y5 dy  9. L8x3>2 dx  10. L623 x dx

 11. L9R-4 dR  12. L
41x

  dx  13. L1x2 - x52  dx

 14. L11 - 3x2  dx  15. L19x2 + x + 32  dx  16. Lx1x - 222 dx

 17. L a t2

2
- 2

t2 b  dt 18. L
3x2 - 4

x2  dx

 19. L1x1x2 - x2  dx  20. L13R1R - 5R22  dR

 21. L12x-2>3 + 3-22  dx  22. L1x1>3 + x1>5 + x-1>72  dx

 23. L11 + 12x222 dx  24. L1x2 + 4x + 421>3 dx

 25. L1x2 - 12512x dx2  26. L1 t3 - 22613t2 dt2
 27. L1x4 + 32414x3 dx2  28. L11 - 2x21>31 -2 dx2
 29. L12u5 + 527u4 du  30. L6x211 - x324>3 dx

 31. L18x + 1 dx  32. L
dV10.3 + 2V23

 33. L
x dx26x2 + 1

 34. L
2x2 dx22x3 + 1

 35. L
4z - 42z2 - 2z

  dz 36. L1x2 - x2ax3 - 3
2

 x2b8
 dx

In Exercises 37– 40, find y in terms of x.

 37. 
dy

dx
= 6x2, curve passes through 10, 22

 38. 
dy

dx
= 8x + 1, curve passes through 1 -1, 42

 39. 
dy

dx
= x211 - x325, curve passes through 11, 52

 40. 
dy

dx
= 2x31x4 - 624, curve passes through 12, 102

In Exercises 41– 60, solve the given problems. In Exercises 41– 46, 
explain your answers.

 41. Is L3x2 dx = x3?

 42. Can L1x2 - 122 dx be integrated with u = x2 - 1?

 43. Can L14x3 + 325x4 dx be integrated with u = 4x3 + 3 and

  du = x4 dx?

 44. Is L12x + 1 dx = 2
312x + 123>2?

 45. Is L312x + 122 dx = 12x + 123 + C?

 46. Is Lx-2 dx = - 1
3  x-3 + C?

 47. Find the equation of the curve whose slope is -x21 - 4x2 and 
that passes through 10, 72 .

 48. Find the equation of the curve whose slope is 16x - 3 and that 
passes through 12, -12 .

 49. Find the general form of the function whose second derivative is 1x.

 50. Find the general form of the expression for the displacement s of 
an object if its acceleration is 9.8 m>s2.

 51. If the consumption of natural gas is 0.14 + 0.000 28t billion 
m3>year, find the volume V that will be consumed in the next t 
years. (At the end of 2010, Canada had reserves of natural gas of 
about 2.8 *  1010 m3.)

 52. The radius r (in m) of a circular oil spill is increasing at the rate 

given by 
dr
dt

=
324t + 1

, where t is in minutes. Find the radius 

  as a function of t, if t is measured from the time of the spill.

 53. The time rate of change of electric current in a circuit is given by 
di>dt = 4t - 0.6t2. Find the expression for the current as a func-
tion of time if i = 2 A when t = 0 s.

 54. The rate of change of the frequency f  of an electronic oscillator 
with respect to the inductance L is df>dL = 8014 + L2-3>2. 
Find f  as a function of L if f = 80 Hz for L = 0 H.

 55. The rate of change of the temperature T  (in °C) from the centre of 
a blast furnace to a distance r (in m) from the centre is given by 
dT>dr = -45001r + 12-3. Express T  as a function of r if 
T = 2500°C for r = 0.

 56. The rate of change of current i (in mA) in a circuit with a variable 
inductance is given by di>dt = 30015.0 - t2-2, where t (in ms) 
is the time the circuit is closed. Find i as a function of t if 
i = 300 mA for t = 2.0 ms.
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 57. At a given site, the rate of change of the annual fraction f  of en-
ergy supplied by solar energy with respect to the solar-collector

  area A (in m2) is 
df

dA
=

0.00510.01A + 1
 . Find f  as a function of A

  if f = 0 for A = 0 m2.

 58. An analysis of a company’s records shows that in a day the rate of 
change of profit p (in dollars) in producing x generators is

  
dp

dx
=

600130 - x2260x - x2
. Find the profit in producing x generators if 

  a loss of $5000 is incurred if none are produced.

 59. Find the equation of the curve for which the second derivative  
is 6. The curve passes through 11, 22  with a slope of 8.

 60.  The second derivative of a function is 12x2. Explain how to find 
the function if its curve passes through the points 11, 62  and 12, 212 . Find the function.

Answers to Practice Exercises

1. 2x3 - 5x + C  2. -  4311 - 2x223>2 + C

 25.3 The Area Under a Curve
 

 
Area Under a Curve by Integration

In geometry, there are formulas and methods for finding the areas of regular figures. By 
means of integration, it is possible to find the area between curves for which we know 
the equations. The next example illustrates the basic idea behind the method.

 EXAMPLE  1  Summing the areas of inscribed rectangles

Approximate the area in the first quadrant to the left of the line x = 4 and under the 
parabola y = x2 + 1. Here, “under” means between the curve and the x-axis. First, 
make this approximation by inscribing two rectangles of equal width under the parab-
ola and finding the sum of the areas of these rectangles. Then, improve the approxima-
tion by repeating the process with eight inscribed rectangles.

The area to be approximated is shown in Fig. 25.3(a). The area with two rectangles 
inscribed under the curve is shown in Fig. 25.3(b). The first approximation, admittedly 
small, of the area can be found by adding the areas of the two rectangles. Both rectan-
gles have a width of 2. The left rectangle is 1 unit high, and the right rectangle is 5 units 
high. Thus, the area of the two rectangles is

A = 211 + 52 = 12

Fig. 25.3 

y ! x2 " 1
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(c)

21

y ! x2 " 1

x

y
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0 43
(b)

(2, 5)

(0, 1)

21

y ! x2 " 1

x

y

16

14

12
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6

4

2

0 43
(a)

21

A much better approximation is found by inscribing the eight rectangles as shown in  
Fig. 25.3(c). Each of these rectangles has a width of 12. The leftmost rectangle has a height 
of 1. The next has a height of 5

4, which is determined by finding y for x = 1
2. The next 

rectangle has a height of 2, which is found by evaluating y for x = 1. Finding the heights 
of all rectangles and multiplying their sum by 12 gives the area of the eight rectangles as

A =
1
2
a1 + 5

4
+ 2 + 13

4
+ 5 + 29

4
+ 10 + 53

4
b =

43
2

= 21.5

Practice Exercise

1.  In Example 1, approximate the area by 
inscribing four rectangles.
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An even better approximation could be obtained by inscribing more rectangles 
under the curve. The greater the number of rectangles, the closer the sum of their areas 
is to the area under the curve. See Table 25.1. By using integration later in this section, 
we determine the exact area to be 76

3 = 25 13. ■

We now develop the basic method used to find the area under a curve, which is the 
area bounded by the curve, the x-axis, and the lines x = a and x = b. See Fig. 25.4. 
We assume here that f1x2  is never negative in the interval a 6 x 6 b. In Chapter 26, 
we will extend the method so that f1x2  may be negative.

In finding the area under a curve, we consider the sum of the areas of inscribed rec-
tangles, as the number of rectangles is assumed to increase without bound. The reason 
for this last condition is that, as we saw in Example 1, as the number of rectangles 
increases, the approximation of the area is better.

 EXAMPLE  2  Letting the number of rectangles approach infinity

Find the area under the straight line y = 2x, above the x-axis, and to the left of the line 
x = 4.

Since this figure is a right triangle, the area can easily be found. However, the method 
we use here is the important concept. We first subdivide the interval from x = 0 to 
x = 4 into n inscribed rectangles of width ∆x. The endpoints of the intervals are 
labelled a, x1, x2, c, b 1 =  xn2 , as shown in Fig. 25.5, where a = 0, b = 4 and

x1 = ∆x  x2 = 2∆x, c  xn-1 = 1n - 12∆x  b = n∆x

The area of each of these n rectangles is as follows:

First:   f1a2  ∆x, where f1a2 = f102 = 2102 = 0 is the height.

Second: f1x12  ∆x, where f1x12 = 21∆x2 = 2 ∆x is the height.

Third:   f1x22  ∆x, where f1x22 = 212 ∆x2 = 4 ∆x is the height.

Fourth:   f1x32  ∆x, where f1x32 = 213 ∆x2 = 6 ∆x is the height. 
f

Last:   f1xn-12  ∆x, where f31n - 12  ∆x4 = 21n - 12  ∆x is the height.

These areas are summed up as follows:

An =  f1a2  ∆x + f1x12  ∆x + f1x22  ∆x + g + f1xn-12  ∆x  (25.5)

= 0 + 2 ∆x1∆x2 + 4 ∆x1∆x2 + g + 231n - 12  ∆x4∆x

= 21∆x2231 + 2 + 3 + g + 1n - 12 4
Now, b = n ∆x, or 4 = n ∆x, or ∆x = 4>n. Thus,

An = 2a4
n
b231 + 2 + 3 + g + 1n - 124

The sum of the arithmetic sequence 1 + 2 + 3 + g + n - 1 is

s =
n - 1

2
 11 + n - 12 =

n1n - 12
2

=
n2 - n

2

Now, the expression for the sum of the areas can be written as

An =
32

n2  an2 - n
2

b = 16 a1 - 1
n
b

This expression is an approximation of the actual area under consideration. The larger 
n becomes, the better the approximation. If we let n S ∞  (which is equivalent to let-
ting ∆x S 02 , the limit of this sum will equal the area in question.

A = lim
nS ∞

16a1 - 1
n
b = 16 1>n S 0 as n S ∞  ■

Table 25.1 

Number of 
Rectangles n

Total Area  
of Rectangles

8 21.5

100 25.0144

1000 25.301 344

10 000 25.330 134

Fig. 25.4 

0

y

x

y ! f (x)

x ! bx ! a

The area under the curve is the limit 
of the sum of the areas of the 
inscribed rectangles, as the number 
of rectangles approaches infinity.

LEARNING T IP

■ This checks with the geometric result.

Fig. 25.5 

x ! 4

y ! 2x

x

y

O ba x2 x4
x1 x3 xn " 1

xn " 2
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The method indicated in Example 2 illustrates the interpretation of finding an area 
as a summation process, although it should not be considered as a proof. However, we 
will find that integration proves to be a much more useful method for finding an area. 
Let us now see how integration can be used directly.

Let ∆A represent the area BCEG under the curve, as indicated in Fig. 25.6. We see 
that the following inequality is true for the indicated areas:

ABCDG 6 ∆A 6 ABCEF

If the point G is now designated as 1x, y2  and E as 1x + ∆x, y + ∆y2 , we have 
y∆x 6 ∆A 6 1y + ∆y2∆x. Dividing through by ∆x, we have

y 6 ∆A
∆x

6 y + ∆y

Now, we take the limit as ∆x S 0 (∆y then approaches zero). This results in

dA
dx

= y (25.6)

This is true since the left member of the inequality is y and the right member approaches 
y. Also, in the definition of the derivative, Eq. (23.6), f1x + h2 - f1x2  is equivalent 
to ∆A, and h is equivalent to ∆x, which means

lim
∆xS0

 
∆A
∆x

=
dA
dx

We shall now use Eq. (25.6) to show the method of finding the complete area under 
a curve. We now let x = a be the left boundary of the desired area and x = b be the 
right boundary (Fig. 25.7). The area under the curve to the right of x = a and bounded 
on the right by the line GB is now designated as Aax. From Eq. (25.6), we have

dAax = 3y dx4 x
a or Aax = cLy dx d

a

x

= cLf1x2dx d
a

x

where 3 4 x
a is the notation used to indicate the boundaries of the area. If the indefinite 

integral is given by F(x) + C, we have

Aax = cLf1x2dx d
a

x
= 3F1x2 + C4a

x (25.7)

But we know that if x = a, then Aaa = 0. Thus, 0 = F1a2 + C, or C = -F1a2. 
Therefore,

Aax = cLf1x2dx d
a

x
= F1x2 − F1a2  (25.8)

Now, to find the area under the curve that reaches from a to b, we write

Aab = F1b2 - F1a2  (25.9)

Thus, the area under the curve that reaches from a to b is given by

Aab = cLf1x2  dx d b

a
= F1b2 - F1a2  (25.10)

Fig. 25.6 

x

y

O B

F

G D

E

C

y ! f (x)

"x

Eq. (25.10) tells us that the area 
under the curve may be found by 
integrating the function f1x2  to find 
the function F1x2 , which is then eval-
uated at each boundary value. The 
area is the difference between these 
values of F1x2 . See Fig. 25.8.

Note that we do not have to 
include the constant of integration 
when using F(x) in Eq. (25.10). Any 
constant added to F1x2  cancels out 
when F1a2  is subtracted from F1b2 .

LEARNING T IP

Fig. 25.7 
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In Example 2, we found an area under a curve by finding the limit of the sum of the 
areas of the inscribed rectangles as the number of rectangles approaches infinity.  
Eq. (25.10) expresses the area under a curve in terms of integration. We can now see 
that we have obtained an area by summation and also expressed it in terms of integra-
tion. Therefore, we conclude that

summations can be evaluated by integration.

Also, we have seen the connection between the problem of finding the slope of a tan-
gent to a curve (differentiation) and the problem of finding an area under a curve (inte-
gration). We would not normally suspect that these two problems would have solutions 
that lead to reverse processes. We have also seen that the definition of integration has 
much more application than originally anticipated.

 EXAMPLE  3  Area under a curve by integration

Find the area under the curve of y = x2 + 1 between the y-axis and the line x = 4. 
This is the same area that we illustrated in Example 1 and showed in Fig. 25.3(a). This 
figure is shown again here for reference.

Using Eq. (25.10), we note that f1x2 = x2 + 1. This means that

L1x2 + 12  dx =
1
3

 x3 + x + C

Therefore, with F1x2 = 1
3 x3 + x, the area is given by

A0,4 = F142 - F102 using Eq. (25.10)

 = c 1
3

 1432 + 4 d - c 1
3

 1032 + 0 d evaluating F1x2  at x = 4 and x = 0

 =
1
3

 1642 + 4 =
76
3

We note that 76>3 is a little more than 25 square units and is therefore about 4 square 
units more than the value obtained using eight inscribed rectangles in Example 1. 
Therefore, from this result, we know that the exact area under the curve is 25 13, as 
stated at the end of Example 1. ■

 EXAMPLE  4  Area under a curve by integration

Find the area under the curve y = x3 that is between the lines x = 1 and x = 2, as 
shown in Fig. 25.9.

In Eq. (25.10), f1x2 = x3. Therefore,

F1x2
 Lx3 dx =

1
4

 x4 + C

 A1,2 = F122 - F112 = c 1
4

 1242 d - c 1
4

 1142 d using Eq. (25.10) and evaluating

 = 4 - 1
4

=
15
4

The calculated area of 15>4 is the exact area, not an approximation. ■

Integration as Summation

Practice Exercise

2.  In Example 3, change x2 + 1 to x3 + 1 
and then find the area.

y ! x2 " 1

x

y

16

14

12

10

8

6

4

2

0 4321

Fig. 25.3(a)

Fig. 25.9 

y = x3

x

y

21
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EXERCISES 25.3

In Exercises 1– 4, make the given changes in the indicated examples 
of this section and then solve the resulting problems.

 1. In Example 1, change x = 4 to x = 2 and find the area of (a) two 
inscribed rectangles and (b) four inscribed rectangles.

 2. In Example 3, change x = 4 to x = 2 and compare the results 
with those of Exercise 1.

 3. In Example 4, change x = 2 to x = 3.

 4. In Example 4, change x = 1 to x = 2 and x = 2 to x = 3. Note 
that the result added to the result of Example 4 is the same as the 
result for Exercise 3.

In Exercises 5–14, find the approximate area under the curves of the 
given equations by dividing the indicated intervals into n subintervals 
and then adding up the areas of the inscribed rectangles. There are two 
values of n for each exercise and therefore two approximations for 
each area. The height of each rectangle may be found by evaluating the 
function for the proper value of x. See Example 1. Round answers to  
3 significant digits.

 5. y = 3x, between x = 0 and x = 3, for 1a2  n = 3 1∆x = 12 , 1b2  n = 10 1∆x = 0.32
 6. y = 2x + 1, between x = 0 and x = 2, for 1a2  n = 4 1∆x = 0.52 , 1b2  n = 10 1∆x = 0.22
 7. y = x2, between x = 0 and x = 2, for 1a2  n = 5 1∆x = 0.42 , 1b2  n = 10 1∆x = 0.22
 8. y = 9 - x2, between x = 2 and x = 3, for  1a2  n = 5  1∆x = 0.22 , 1b2  n = 10 1∆x = 0.12
 9. y = 4x - x2, between x = 1 and x = 4, for 1a2  n = 6, 1b2  n = 10

 10. y = 1 - x2, between x = 0.5 and x = 1, for 1a2  n = 5, 1b2  n = 10

 11. y =
1

x2, between x = 1 and x = 5, for 1a2  n = 4, 1b2  n = 8

 12. y = 1x, between x = 1 and x = 4, for 1a2  n = 3, 1b2  n = 12

 13. y =
11x + 1

, between x = 3 and x = 8, for 

  1a2  n = 5, 1b2  n = 10

 14. y = 2x2x2 + 1, between x = 0 and x = 6, for 1a2  n = 6, 1b2  n = 12

In Exercises 15–24, find the exact area under the given curves 
between the indicated values of x. The functions are the same as those 
for which approximate areas were found in Exercises 5–14.

 15. y = 3x, between x = 0 and x = 3

 16. y = 2x + 1, between x = 0 and x = 2

 17. y = x2, between x = 0 and x = 2

 18. y = 9 - x2, between x = 2 and x = 3

 19. y = 4x - x2, between x = 1 and x = 4

 20. y = 1 - x2, between x = 0.5 and x = 1

 21. y =
1

x2, between x = 1 and x = 5

 22. y = 1x, between x = 1 and x = 4

 23. y =
11x + 1

, between x = 3 and x = 8

 24. y = 2x2x2 + 1, between x = 0 and x = 6
  Explain the reason for the difference between this result and the 

two values found in Exercise 14.

In developing the concept of the area under a curve, we first (in 
Examples 1 and 2) considered rectangles inscribed under the curve. A 
more complete development also considers rectangles circumscribed 
above the curve and shows that the limiting area of the circumscribed 
rectangles equals the limiting area of the inscribed rectangles as the 
number of rectangles increases without bound. See Fig. 25.10 for an 
illustration of inscribed and circumscribed rectangles.

Fig. 25.10 

y = f (x)

0

Inscribed rectangles

x = a x = b
x

y y = f (x)

0

Circumscribed rectangles

x = a x = b
x

y

In Exercises 25–28, find the sum of the areas of 10 circumscribed 
rectangles for each curve and show that the exact area (as shown in 
Exercises 15–18) is between the sum of the areas of the 
circumscribed rectangles and the inscribed rectangles (as found in 
Exercises 5(b)–8(b)). Also, note that the mean of the two sums is 
close to the exact value.

 25. y = 3x between x = 0 and x = 3 (compare with Exercises 5(b) 
and 15). Why is the mean of the sums of the inscribed rectangles 
and circumscribed rectangles equal to the exact value?

 26. y = 2x + 1 between x = 0 and x = 2 (compare with Exercises 
6(b) and 16). Why is the mean of the sums of the inscribed rectan-
gles and circumscribed rectangles equal to the exact value?

 27. y = x2 between x = 0 and x = 2 (compare with Exercises 7(b) 
and 17). Why is the mean of the sums of the inscribed rectangles 
and circumscribed rectangles greater than the exact value?

 28. y = 9 - x2 between x = 2 and x = 3 (compare with Exercises 
8(b) and 18). Why is the mean of the sums of the inscribed rectan-
gles and circumscribed rectangles less than the exact value?

Answers to Practice Exercises

1. A = 18  2. A = 68
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 25.4 The Definite Integral
 

Lower Limit and Upper Limit
Using reasoning similar to that in the preceding section, we define the definite integral 
of a function f1x2  as

L
b

a
f1x2  dx = F1b2 - F1a2  (25.11)

where F′1x2 = f1x2 . We call this a definite integral because the final result of inte-
grating and evaluating is a number. (The indefinite integral had an arbitrary constant 
in the result.) The numbers a and b are called the lower limit and the upper limit, 
respectively. We can see that the value of a definite integral is found by evaluating the 
function (found by integration) at the upper limit and subtracting the value of this func-
tion at the lower limit.

From Section 25.3, we know that this definite integral can be interpreted as the area 
under the curve of y = f1x2  from x = a to x = b, and in general as a summation. 
This summation interpretation will be applied to many kinds of applied problems.

 EXAMPLE  1  Definite integral of a power of x

Evaluate the integral L
2

0
x4 dx.

upper limit

L
2

0
x4 dx =

x5

5
` 2
0

=
25

5
- 0 =

32
5

lower limit     f1x2   F1x2
Note that a vertical line—with the limits written at the top and the bottom—is the 

way the value is indicated after integration, but before evaluation.
The area that this definite integral can represent is shown in Fig. 25.11. ■

 EXAMPLE  2  Definite integral of a power with a negative exponent

Evaluate L
3

1
1x-2 - 12  dx.

 L
3

1
1x-2 - 12  dx = - 1

x
- x `

1

3
= a- 1

3
- 3b -  1 -1 - 12

 = -  
10
3

+ 2 = -  
4
3

 ■

 EXAMPLE  3  Definite integral of a power of a function

Evaluate L
1

0
5z1z2 + 125 dz.

For purposes of integration, n = 5, u = z2 + 1, and du = 2z dz. Hence,

 L
1

0
5z1z2 + 125 dz =

5
2 L

1

0
1z2 + 12512z dz2

 =
5
2

 a1
6
b 1z2 + 126 0 01

 =
5
12

 126 - 162 =
51632

12
=

105
4

 ■

upper  
limit subtract

lower  
limit

Limits of Integration

■ That integration is equivalent to the limit of a 
sum is the reason Leibniz (see pages 660 and 
765) used an elongated S for the integral sign. 
It stands for the Latin word for sum.

Fig. 25.11 

y = x4

0 x = 2
x

y

16

Practice Exercise

1. Evaluate L
2

1
14x - x -32  dx.
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 EXAMPLE  4  Definite integral with a radical in the denominator

Evaluate L
2.7

0.1

dx14x + 1
.

In order to integrate, we have n = - 1
2, u = 4x + 1, and du = 4 dx. Therefore,

 L
2.7

0.1

dx14x + 1
= L

2.7

0.1
14x + 12-1>2 dx =

1
4 L

2.7

0.1
14x + 12-1>214 dx2

 =
1
4
a1

1
2

b 14x + 121>2 0 2.7
0.1 =

1
2

 14x + 121>2 0 2.7
0.1 integrate

 =
1
2

 1111.8 - 11.42 = 1.13 evaluate ■

 EXAMPLE  5  Integral involving a negative power of a function

Evaluate L
4

0

x + 11x2 + 2x + 223 dx.

For integrating, n = -3, u = x2 + 2x + 2, and du = 12x + 22dx.

 L
4

0
1x2 + 2x + 22-31x + 12  dx =

1
2 L

4

0
1x2 + 2x + 22-3321x + 12  dx4

 =
1
2

 a 1
-2

b 1x2 + 2x + 22-2 ( 4
0 integrate

 = - 1
4

 116 + 8 + 22-2 + 1
4

 10 + 0 + 22-2 evaluate

 =
1
4

 a- 1

262 + 1

22 b =
1
4

 a1
4

- 1
676

b
 =

1
4

 a168
676

b =
21
338

 ■

The following example illustrates an application of the definite integral. In Chapter 26, 
we will see that the definite integral has many applications in science and technology.

 EXAMPLE  6  Definite integral—application

The rate of flow Q (in m3>s) of water over a certain dam is found by evaluating the 
definite integral in the equation Q = 11.25

0  24011.50 - y dy. See Fig. 25.12. Find Q.
The solution is as follows:

 Q = L
1.25

0
24011.50 - y dy = -240L

1.25

0
11.50 - y21>21 -dy2

 = -240a2
3
b 11.50 - y23>2 0 1.25

0 integrate

 = -1603 11.50 - 1.2523>2 - 11.50 - 023>24 evaluate

 = -16010.253>2 - 1.503>22 = 274 m3>s ■

Some graphing calculators are programmed to evaluate definite integrals and areas 
under curves. The manual should be consulted to determine how any particular model 
is used for integration.

Practice Exercise

2. Evaluate L
6

0
14x + 1 dx.

Fig. 25.12 

1.25 m 1.50 m

y
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EXERCISES 25.4

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the resulting problems.

 1. In Example 2, change the upper limit from 3 to 4.

 2. In Example 4, change 4x to 2x.

In Exercises 3–34, evaluate the given definite integrals.

 3. L
1

0
2x dx 4. L

2

0
3x2 dx 5. L

4

1
x5>2 dx

 6. L
9

4
1p3>2 - 32  dp 7. L

6

3
a 11x

- 7b  dx 8. L
1.6

1.2
a5 + 6

x4b  dx

 9. L
0.7

-1.6
11 - x21>3 dx 10. L

5

1
13v + 1 dv

 11. L
2

-2
1T - 22 1T + 22  dT  12. L

2

1
13x5 - 2x32  dx

 13. L
2.2

0.5
123 x - 22  dx 14. L

5.3

2.7
a 1

x1x
+ 4b  dx

 15. L
4

0
11 - 1x22 dx 16. L

4

1

y + 41y
 dy

 17. L
-1

-2
2x14 - x223 dx 18. L

1

0
x13x2 - 123 dx

 19. L
4

0

x dx2x2 + 9
 20. L

0.7

0.2
x21x3 + 223>2 dx

 21. L
3.25

2.75

dx23 6x + 1
 22. L

6

2

8 du14u + 1

 23. L
3

1

12x dx12x2 + 123 24. L
17.2

12.6

3 dx16x - 122

 25. L
7

3
216t2 + 8t + 1  dt 26. L

1

-5
16 - 2x dx

 27. L
2

0
2x19 - 2x222 dx 28. L

2

-1
V1V3 + 12  dV

 29. L
2

-1

8x - 212x2 - x + 123  dx 30. L
3

2

x2 + 11x3 + 3x22  dx

 31. L
1

0
1x2 + 32 1x3 + 9x + 622 dx

 32. L
-2

-3
13x2 - 2223 2x3 - 4x + 1 dx

 33. L
315

 2z24 z4 + 8z2 + 16  dz

 34. L
0

-2
112x + 4 - 23 3x + 82  dx

In Exercises 35–50, solve the given problems.

 35. Show that L
1

0
x3 dx + L

2

1
x3 dx = L

2

0
x3 dx. In terms of area,

  explain the result.

 36. Write L
8

1
f1x2  dx - L

8

5
f1x2  dx as a single definite integral.

 37. Evaluate L
x = 4

x = 1
y dx, when y2 = 4x 1y 7 02 .

 38. Show that L
3

1
4x dx = - L

1

3
4x dx.

 39. Show that L
1

0
x dx 7 L

1

0
x2 dx and L

2

1
x dx 6 L

2

1
x2 dx. 

  In terms of area, explain the result.

 40. Given that L
9

0
1x dx = 18, evaluate L

9

0
21t dt.

 41. Evaluate L
1

-1
t2k dt, where k is a positive integer.

 42. Evaluate the following integral, which arises in the study of  

electricity: L
L

0

1
EI

  1 -  12 wx22 1 -x2  dx.

 43. Evaluate the following integral, which arises in the study of  

hydrodynamics: L
h

H

Ay-1>2 dy

a12g
.

 44. It is estimated that a newly discovered oil field will produce oil at

  the rate of 
dR
dt

=
400 t21 t3 + 2022 + 10 thousand barrels per year. How

  much oil can be expected from the field in the next ten years?

 45. The work W (in N # m) in winding up an 80-m cable is 
W = 180

0 (1000 - 5x) dx. Evaluate W.

 46. The total volume V of liquid flowing through a certain pipe of

  radius R is V = k1R21R
0 r dr - 1R

0 r3 dr2 , where k is a constant. 
Evaluate V and explain why R, but not r, can be to the left of the 
integral sign.

 47. The surface area A (in m2) of a certain parabolic radio-wave re-
flector is A = 4p12

0 23x + 9  dx. Evaluate A.

 48. The total force (in N) on the circular end of a water tank is 
F = 19 60015

0  y225 - y2  dy. Evaluate F.

 49. In finding the average electron energy in a metal at very low tem-

peratures, the integral 
3N

2EF
3>2 L

EF

0
E3>2 dE is used. Evaluate this 

integral.

 50. In finding the electric field E caused by a surface electric charge 

on a disc, the equation E = kL
R

0

r dr1x2 + r223>2 is used. Evaluate

  the integral.

Answers to Practice Exercises

1. 45>8  2. 62>3
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 25.5 Numerical Integration: The Trapezoidal Rule
 

 
Approximating Integrals

For data and functions that cannot be directly integrated by available methods, it is pos-
sible to develop numerical methods of integration. These numerical methods are of 
greater importance today since they are readily adaptable for use on a calculator or 
computer. There are a great many such numerical techniques for approximating the 
value of an integral. In this section, we develop one of these, the trapezoidal rule. In 
the following section, another numerical method is discussed.

We know from Sections 25.3 and 25.4 that we can interpret a definite integral as the 
area under a curve. We will therefore show how to approximate the value of the inte-
gral by approximating the appropriate area by a set of inscribed trapezoids. The basic 
idea here is very similar to that used when rectangles were inscribed under a curve. 
However, the use of trapezoids reduces the error and provides a better approximation.

The area to be found is subdivided into n intervals of equal width. Perpendicular 
lines are then dropped from the curve (or points, if only a given set of numbers is avail-
able). If the points on the curve are joined by straight-line segments, the area of succes-
sive parts under the curve is approximated by finding the areas of the trapezoids 
formed. However, if these points are not too far apart, the approximation will be very 
good (see Fig. 25.13). From geometry, recall that the area of a trapezoid equals one-
half the product of the sum of the bases times the altitude. For these trapezoids, the 
bases are the y-coordinates, and the altitudes are h. Therefore, when we indicate the 
sum of these trapezoidal areas, we have

 AT =
1
2

 1y0 + y12h + 1
2

 1y1 + y22h + 1
2

 1y2 + y32h + g

 +  
1
2

 1yn-2 + yn-12h + 1
2

 1yn-1 + yn2h

We note, when this addition is performed, that the result is

AT = ha1
2

 y0 + y1 + y2 + g + yn-1 + 1
2

 ynb  (25.12)

The y-values to be used either are derived from the function y = f1x2  or are the  
y-coordinates of a set of data.

Since AT approximates the area under the curve, it also approximates the value of 
the definite integral, or

L
b

a
f1x2  dx ≈

h
2

 1y0 + 2y1 + 2y2 + g + 2yn-1 + yn2  (25.13)

Eq. (25.13) is known as the trapezoidal rule. This is essentially the same rule as  
(Eq. 2.13) that we used in Chapter 2 to measure irregular geometric areas (see page 74). 
Since the definite integral can be interpreted as the area under a curve, we can now use 
the trapezoidal rule to find the approximate value of a definite integral.

Wherever the curve of the function being integrated is concave up, the approximat-
ing segments are above the curve and each trapezoid has slightly more area than the 
corresponding area under the curve. If the curve is concave down, the approximating 
segments are below the curve, and each trapezoid has slightly less area than the corre-
sponding area under the curve. For a straight-line segment, the trapezoidal rule gives an 
exact value.

Fig. 25.13 

x

y

O x ! a x ! b
hhh

yn " 1 yny0 y1 y2
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 EXAMPLE  1  Approximating an integral by the trapezoidal rule

Approximate the value of L
3

1

1
x

 dx by the trapezoidal rule. Let n = 4.

We are to approximate the area under y = 1>x from x = 1 to x = 3 by dividing the 
area into four trapezoids. This area is found by applying Eq. (25.12), which is the 
approximate value of the integral, as shown in Eq. (25.13). Figure 25.14 shows the 
graph. In this example, f1x2 = 1>x, and

 h =
3 - 1

4
=

1
2

       y0 = f1a2 = f112 = 1

 y1 = f a3
2
b =

2
3

  y2 = f122 =
1
2

 y3 = f a5
2
b =

2
5

  yn = y4 = f1b2 = f132 =
1
3

 AT =
1>2

2
 c 1 + 2 a2

3
b + 2 a1

2
b + 2 a2

5
b + 1

3
d

 =
1
4

 a15 + 20 + 15 + 12 + 5
15

b =
1
4

 a67
15

b =
67
60

Therefore,

L
3

1

1
x

 dx ≈
67
60

We cannot perform this integration directly by methods developed up to this point. As 
we increase the number of trapezoids, the value becomes more accurate. See Table 25.2. 
The actual value to seven decimal places is 1.098 612 3. ■

 EXAMPLE  2   Approximating an integral by the trapezoidal rule

Approximate the value of L
1

0
2x2 + 1 dx by the trapezoidal rule. Let n = 5.

Figure 25.15 shows the graph. In this example,

h =
1 - 0

5
= 0.2

y0 = f102 = 1           y1 = f10.22 = 11.04 = 1.019 803 9

y2 = f10.42 = 11.16 = 1.077 033 0 y3 = f10.62 = 11.36 = 1.166 190 4

y4 = f10.82 = 11.64 = 1.280 624 8 y5 = f112 = 12.00 = 1.414 213 6

Hence, we have

 AT =  
0.2
2

 31 + 211.109 803 92 + 211.077 033 02 + 211.166 190 42
 + 211.280 624 82 + 1.414 213 64

= 1.15 (rounded off to 3 significant digits)

This means that

L
1

0
2x2 + 1 dx ≈ 1.15  the actual value is 1.148 to three decimal places

We note that the entire calculation can be done on a calculator without tabulating val-
ues by entering the formula directly in terms of square roots. ■

Fig. 25.14 

x

y

O a ! 1

2

b ! 3

y ! 1
x

1

Practice Exercise

1.  In Example 1, use the trapezoidal rule 
with n = 2.

Table 25.2 

Number  
of Trapezoids 

n

Total  
Area of 

Trapezoids

4 1.116 666 7

100 1.098 641 9

1000 1.098 612 6

10 000 1.098 612 3

Fig. 25.15 

x

y

(0, 0)

(0, 1)

(1, 0)

!x2 " 1y #



770 CHAPTER 25 Integration

 EXAMPLE  3  Approximating an integral by the trapezoidal rule

Approximate the value of the integral L
3

2
x1x + 1 dx by using the trapezoidal rule.

Use n = 10.
In Fig. 25.16, the graph of the function and the area used in the trapezoidal rule are 

shown. From the given values, we have h = 3 - 2
10 = 0.1. Therefore,

 y0 = f122 = 213 = 3.464 101 6     y1 = f12.12 = 2.113.1 = 3.697 431 5

 y2 = f12.22 = 2.213.2 = 3.935 479 6 y3 = f12.32 = 2.313.3 = 4.178 157 5

 y4 = f12.42 = 2.413.4 = 4.425 381 3 y5 = f12.52 = 2.513.5 = 4.677 071 7

 y6 = f12.62 = 2.613.6 = 4.933 153 2 y7 = f12.72 = 2.713.7 = 5.193 553 7

 y8 = f12.82 = 2.813.8 = 5.458 204 8 y9 = f12.92 = 2.913.9 = 5.727 041 1

 y10 = f132 = 314 = 6.000 000 0

 AT =
0.1
2

 33.464 101 6 + 213.697 431 52 + g + 215.727 041 12 + 6.000 000 04
 = 4.6958

Therefore, 13
2 x1x + 1 dx ≈ 4.6958. The actual value of the integral is 4.6954 to four 

decimal places. ■

 EXAMPLE  4  The trapezoidal rule for empirical data

The following points were found empirically:

x 0 1 2 3 4 5

y 5.68 6.75 7.32 7.35 6.88 6.24

Approximate the value of the integral of the function defined by these points between 
x = 0 and x = 5 by the trapezoidal rule.

In order to find AT, we use the values of y0, y1, and so on, directly from the table. We 
also note that h = 1. The graph is shown in Fig. 25.17. Therefore, we have

AT =
1
2

 35.68 + 216.752 + 217.322 + 217.352 + 216.882 + 6.244 = 34.26

Although we do not know the algebraic form of the function, we can state that

L
5

0
f1x2  dx ≈ 34.26 ■

Fig. 25.16 

x

y

6

5

4

3

2

1

0 321

x ! 3x ! 2

Fig. 25.17 

x

y

7

0

1

2
3

4

5
6

54321

EXERCISES 25.5

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the resulting problems.

 1. In Example 1, change n from 4 to 2.

 2. In Example 3, change n from 10 to 5.

In Exercises 3–6, (a) approximate the value of each of the given 
integrals by use of the trapezoidal rule, using the given value of n, and 
(b) check by direct integration.

 3. L
2

0
2x2 dx, n = 4 4. L

1

0
11 - x22   dx, n = 3

 5. L
4

1
11 + 1x2  dx, n = 6 6. L

8

3
11 + x  dx, n = 5

In Exercises 7–14, approximate the value of each of the given integrals 
by use of the trapezoidal rule, using the given value of n. Round to 3 
significant digits.

 7. L
3

2

1
2x

  dx, n = 2 8. L
6

2

dx
x + 3

, n = 4

 9. L
5

0
225 - x2 dx, n = 5 10. L

2

0
2x3 + 1 dx, n = 4

 11. L
5

1

1

x2 + x
  dx, n = 10 12. L

4

2

1

x2 + 1
  dx, n = 10

 13. L
4

0
2x  dx, n = 12 14. L

1.5

0
10 x  dx, n = 15
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In Exercises 15 and 16, approximate the values of the integrals 
defined by the given sets of points.

 15. L
14

2
y dx 

 16. L
3.2

1.4
y dx 

In Exercises 17–22, solve each given problem by using the trapezoidal 
rule. Round to 3 significant digits unless otherwise stated.

 17. Explain why the approximate value of the integral in Exercise 5 is 
less than the exact value.

 18. L
2

0
24 - x2 dx = p (see Exercise 27 of Section 28.8). Approxi- 

mate the value of the integral with n = 8. Compare with p.

 19. L
3

0

dx
2x + 2

=  ln 2 (see Exercise 38 of Section 28.2). Approximate  

the value of the integral with n = 6. Compare with ln 2.

 20. A force F that a distributed electric charge has on a point charge  

is F = kL
2

0

dx14 + x223>2, where x is the distance along the dis-

tributed charge and k is a constant. With n = 8, evaluate F in 
terms of k.

 21. The length L (in m) of telephone wire needed (considering the sag)
  between two poles exactly 100 m apart is 
  L = 2150

0 26.4 * 10-7x2 + 1 dx. With n = 10, evaluate L (to  
6 significant digits).

 22. The amount A (in standard pollution index) of a pollutant in the  

air in a city is measured to be A =
150

1 + 0.251 t - 4.022 + 25,

  here t is the time (in h) after 6 a.m. With n = 6, find the total value 
of A between 6 a.m. and noon.

Answer to Practice Exercise

1. 7>6 = 1.1667

 25.6 Simpson’s Rule

of Intervals Must Be Even
The numerical method of integration developed in this section is also readily program-
mable for use on a computer or easily usable with the necessary calculations done on a 
calculator. It is obtained by interpreting the definite integral as the area under a curve, 
as we did in developing the trapezoidal rule, and by approximating the curve by a set of 
parabolic arcs. The use of parabolic arcs, rather than chords as with the trapezoidal 
rule, usually gives a better approximation.

Since we will be using parabolic arcs, we first derive a formula for the area that  
is under a parabolic arc. The curve shown in Fig. 25.18 represents the parabola 
y = ax2 + bx + c. The points shown on this curve are 1 -h, y02 , 10, y12 , and 1h, y22 . 
The area under the parabola is given by

 A = L
h

-h
y dx = L

h

-h
1ax2 + bx + c2  dx =

ax3

3
+ bx2

2
+ cx 0 h-h

 =
2
3

 ah3 + 2ch

A =
h
3
12ah2 + 6c2  (25.14)

The coordinates of the three points also satisfy the equation y = ax2 + bx + c. This 
means that

 y0 = ah2 - bh + c

 y1 = c

 y2 = ah2 + bh + c

By finding the sum of y0 + 4y1 + y2, we have

y0 + 4y1 + y2 = 2ah2 + 6c (25.15)

Substituting Eq. (25.15) into Eq. (25.14), we have

A =
h
3
1y0 + 4y1 + y22  (25.16)

Fig. 25.18 

x

y

0

(h, y2)

(!h, y0)

!h h

y0 y1 y2

(0, y1)

x 1.4 1.7 2.0 2.3 2.6 2.9 3.2

y 0.180 7.87 18.23 23.53 24.62 20.93 20.76

x 2 4 6 8 10 12 14

y 0.670 2.34 4.56 3.67 3.56 4.78 6.87

Note that the area under the para-
bolic arc depends only on the dis-
tance h and the three y-coordinates. 
The coefficients of the equation of 
the parabola are not required, so 
they are not calculated.

LEARNING T IP
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Now, let us consider the area under the curve in Fig. 25.19. If a parabolic arc is 
passed through the points 1x0, y02 , 1x1, y12 , and 1x2, y22 , we may use Eq. (25.16) to 
approximate the area under the curve between x0 and x2. We again note that the dis-
tance h is the difference in the x-coordinates. Therefore, the area under the curve 
between x0 and x2 is

A1 =
h
3
1y0 + 4y1 + y22

Similarly, if a parabolic arc is passed through the three points starting with 1x2, y22 , the area between x2 and x4 is

A2 =
h
3
1y2 + 4y3 + y42

The sum of these areas is

A1 + A2 =
h
3
1y0 + 4y1 + 2y2 + 4y3 + y42  (25.17)

We can continue this procedure until the approximate value of the entire area 
has been found. We must note, however, that the number of intervals n of width h 
must be even. Therefore, generalizing Eq. (25.17) and recalling again that the value of 
the definite integral is the area under the curve, we have

■ Although Simpson’s rule is named for the 
English mathematician Thomas Simpson  
(1710–1761), he did not discover the rule.  
It was well known when he included it in  
some of his many books on mathematics.

Fig. 25.19 

x

y

0 x0 ! a
h

xn ! bx1

y0 y1 y2

x2

(x0, y0)

(x2, y2)
(x1, y1)

yn " 1

xn " 1

yn

Fig. 25.20 

1

10

y

x

y0 y1 y2

Practice Exercise

1.  In Example 1, use Simpson’s rule with 
n = 4.

L
b

a
f1x2  dx ≈

h
3

 1y0 + 4y1 + 2y2 + 4y3 + 2y4 + g + 4yn-1 + yn2 , n even  (25.18)

Eq. (25.18) is known as Simpson’s rule. As with the trapezoidal rule, we used 
Simpson’s rule in Chapter 2 to measure irregular areas (see page 75). We now see how 
it is derived. Simpson’s rule is also used in many calculator models for the evaluation 
of definite integrals.

 EXAMPLE  1  Approximating an integral by using Simpson’s rule

Approximate the value of the integral L
1

0

dx
x + 1

 by Simpson’s rule. Let n = 2.

In Fig. 25.20, the graph of the function and the area used are shown. We are to approx-
imate the integral by using Eq. (25.18). We therefore note that f1x2 = 1> 1x + 12 . 
Also, x0 = a = 0, x1 = 0.5, and x2 = b = 1. This is due to the fact that n = 2 and 
h = 0.5 since the total interval is 1 unit (from x = 0 to x = 1). Therefore,

y0 =
1

0 + 1
= 1.0000  y1 =

1
0.5 + 1

= 0.6667  y2 =
1

1 + 1
= 0.5000

Substituting, we have

 L
1

0

dx
x + 1

=
0.5
3

31.0000 + 410.66672 + 0.50004
 = 0.694

To three decimal places, the actual value of the integral is 0.693. We will consider the 
method of integrating this function in a later chapter. ■
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 EXAMPLE  2  Approximating an integral by using Simpson’s rule

Approximate the value of L
3

2
x1x + 1 dx by Simpson’s rule. Use n = 10.

Since the necessary values for this function are shown in Example 3 of Section 25.5, 
we shall simply tabulate them here 1h = 0.12 . See Fig. 25.21.

y0 = 3.464 101 6 y1 = 3.697 431 5   y2 = 3.935 479 6 y3 = 4.178 157 5

y4 = 4.425 381 3 y5 = 4.677 071 7   y6 = 4.933 153 2 y7 = 5.193 553 7

y8 = 5.458 204 8 y9 = 5.727 041 1 y10 = 6.000 000 0

Therefore, we evaluate the integral as follows:

 L
3

2
x1x + 1 dx =

0.1
3

 33.464 101 6 + 413.697 431 52 + 213.935 479 62
 + 414.178 157 52 + 214.425 381 32 + 414.677 071 72
 + 214.933 153 22 + 415.193 553 72 + 215.458 204 82
 + 415.727 041 12 + 6.000 000 04
 =

0.1
3

1140.861 562 = 4.695 385 4

This result agrees with the actual value to the 8 significant digits shown. The value we 
obtained earlier with the trapezoidal rule was 4.6958. ■

 EXAMPLE  3  Simpson’s rule—application

The rear stabilizer of a certain aircraft is shown in Fig. 25.22. The area A (in m2) of one 

side of the stabilizer is A = L
3

0
13x2 - x320.6 dx. Find this area, using Simpson’s rule 

with n = 6.

Here, we note that f1x2 = 13x2 - x320.6, a = 0, b = 3, and h =
3 - 0

6
= 0.5. 

Therefore,

 y0 = f102 = 331022 - 0340.6 = 0

 y1 = f10.52 = 3310.522 - 0.5340.6 = 0.754 272 0

 y2 = f112 = 331122 - 1340.6 = 1.515 716 6

 y3 = f11.52 = 3311.522 - 1.5340.6 = 2.074 742 8

 y4 = f122 = 331222 - 2340.6 = 2.297 396 7

 y5 = f12.52 = 3312.522 - 2.5340.6 = 1.981 116 5

 y6 = f132 = 331322 - 3340.6 = 0

 A = L
3

0
13x2 - x320.6 dx =

0.5
3

30 + 410.754 272 02 + 211.515 716 62
 + 412.074 742 82 + 212.297 396 72 + 411.981 116 52 + 04
 = 4.477 792 0 m2

Thus, the area of one side of the stabilizer is 4.8 m2 (rounded off). As with the trapezoi-
dal rule, the calculation can be done completely on a calculator, without recording the 
above values. ■

Just like the trapezoidal rule, Simpson’s rule is especially useful when approximat-
ing integrals of functions for which only a given set of points is available. This is often 
the case for functions obtained from empirical data or from experimental measure-
ments. Examples can be found in the exercises.

Fig. 25.21 
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EXERCISES 25.6

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section, and then solve the indicated problems.

 1. In Example 1, change the denominator x + 1 to x + 2 and then 
find the approximate value of the integral.

 2. In Example 2, change n such that h = 0.2 and explain why 
Simpson’s rule cannot be used.

In Exercises 3–6, (a) approximate the value of each of the given 
integrals by use of Simpson’s rule, using the given value of n, and (b) 
check by direct integration. Round to 3 significant digits.

 3. L
2

0
11 + x32  dx, n = 2 4. L

8

0
x1>3 dx, n = 2

 5. L
4

1
12x + 1x2  dx, n = 6 6. L

2

0
x2x2 + 1  dx, n = 4

In Exercises 7–12, approximate the value of each of the given integrals 
by use of Simpson’s rule, using the given values of n. Exercises 8–10 are 
the same as Exercises 10–12 of Section 25.5. Round to 3 significant 
digits.

 7. L
5

0
225 - x2  dx, n = 4 8. L

2

0
2x3 + 1  dx, n = 4

 9. L
5

1

1

x2 + x
  dx, n = 10 10. L

4

2

1

x2 + 1
  dx, n = 10

 11. L
5

-4
12x4 + 120.1  dx, n = 6 12. L

2.4

0

dx14 + 1x23>2, n = 8

In Exercises 13 and 14, approximate the values of the integrals 
defined by the given sets of points by using Simpson’s rule. These are 
the same as Exercises 15 and 16 of Section 25.5.

 13. L
14

2
y dx 

 14. L
3.2

1.4
y dx 

In Exercises 15–18, solve the given problems using Simpson’s rule. 
Exercise 15 and 16 are the same as Exercises 18 and 19 of Section 25.5.

 15. L
2

0
24 - x2 dx = p (see Exercise 27 of Section 28.8). Approx- 

imate the value of the integral with n = 8. Compare with p.

 16. L
3

0

dx
2x + 2

=  ln 2 (see Exercise 38 of Section 28.2). Approx- 

imate the value of the integral with n = 6. Compare with  ln 2.

 17. The distance x (in cm) from one end of a 
barrel plug (with vertical cross section) to  
its centre of mass, as shown in Fig. 25.23, is 
x = 0.912913

0 x10.3 - 0.1x dx. Find x  
with n = 12.

 18. The average value of the electric current iav (in A) in a circuit for 
the first 4 s is iav = 1

4 14
0 14t - t220.2 dt. Find iav with n = 10.

Answer to Practice Exercise

1. 0.693

x 2 4 6 8 10 12 14

y 0.670 2.34 4.56 3.67 3.56 4.78 6.87

x 1.4 1.7 2.0 2.3 2.6 2.9 3.2

y 0.180 7.87 18.23 23.53 24.62 20.93 20.76

Fig. 25.23 

x

3.000 cm

Centre of mass

 CHAPTER 25   EQUATIONS

Indefinite integral L f1x2  dx = F1x2 + C  (25.1)

Integrals Lc du = cLdu = cu + C  (25.2)

 L 1du + dv2 = u + v + C  (25.3)

Power formula Lun du =
un+1

n + 1
+ C  1n ≠ -12  (25.4)

Area under a curve Aab = c L f1x2  dx d b

a
= F1b2 - F1a2  (25.10)

Definite integral L
b

a
f1x2  dx = F1b2 - F1a2  (25.11)

Trapezoidal rule L
b

a
f1x2  dx ≈

h
2

 1y0 + 2y1 + 2y2 + g + 2yn-1 + yn2  (25.13)

Simpson’s rule L
b

a
f1x2  dx ≈

h
3

 1y0 + 4y1 + 2y2 + 4y3 + 2y4 + g+ 4yn-1 + yn2 , n even (25.18)
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 CHAPTER 25  REVIEW EXERCISES

In Exercises 1–24, evaluate the given integrals.

 1. L 14x3 - x2  dx  2. L 15 + 3t22  dt

 3. L1u 1u2 + 82  du  4. Lx1x - 3x42  dx

 5. L
4

1
a1x

2
+ 21x

b  dx 6. L
2

1
ax + 1

x2 b  dx

 7. L
2

0
x14 - x2  dx 8. L

1

0
2t12t + 122 dt

 9. L a5 + 6

x3 b  dx 10. L a31x + 1
21x

- 1
4
b  dx

 11. L
5

-2

dx23 x2 + 6x + 9
 12. L

0.85

0.35
x121 - x2 + 12  dx

 13. L
dn19 - 5n23  14. L

1

x2A1 + 1
x

  dx

 15. L317 - 2x23>4 dx 16. L1y3 + 3y2 + 3y + 122>3 dy

 17. L
2

0

3x dx23 1 + 2x2
 18. L

6

1

12 dx13x - 223>4
 19. Lx211 - 2x324 dx  20. L3R311 - 5R42  dR

 21. L
12 - 3x22  dx12x - x322  22. L

x2 - 326 + 9x - x3
 dx

 23. L
3

1
1x2 + x + 22 12x3 + 3x2 + 12x2  dx

 24. L
2

0
14x + 18x22 1x2 + 3x322 dx

In Exercises 25–38, solve the given problems.

 25. Find the equation of the curve that passes through 1 -1, 32  for 
which the slope is given by 3 - x2.

 26. Find the equation of the curve that passes through 11, -22  for 
which the slope is x1x2 + 122.

 27. Perform the integration 1 11 - 2x2dx (a) term by term, label-
ling the constant of integration as C1, and then (b) by letting 
u = 1 - 2x, using the general power rule and labelling the 
constant of integration as C2. Is C1 = C2? Explain.

 28. Following the methods (a) and (b) in Exercise 27, perform the 
integration 1 13x + 22dx. In (b) let u = 3x + 2. Is C1 = C2? 
Explain.

 29. Write L
8

3
F1v2  dv - L

8

4
F1v2  dv as a single definite integral.

 30. Show that L
0

-3
x3 dx = - L

3

0
x3 dx.

 31. Find the general form of the function whose second derivative is 
1>16x + 5.

 32. Find the equation of the curve for which the second derivative is 
-6x if the curve passes through 1 -1, 32  with a slope of -3.

 33. Show that L
1

0
x3 dx = L

2

1
1x - 123 dx. In terms of area, explain 

this result.

 34. If L
1

0
3 f1x2 - g1x2 4  dx = 3 and L

1

0
g1x2  dx = -1, find the 

value of L
1

0
2f1x2  dx.

 35. Use Eq. (25.10) to find the area under y = 6x - 1 between 
x = 1 and x = 3.

 36. Use Eq. (25.10) to find the first-quadrant area under 
y = 8x - x4.

 37. Given that f1x2  is continuous, f1x2 7 0, and f ″1x2 6 0 for

  a … x … b, explain why the exact value of L
b

a
f1x2  dx is greater

  than the approximate value found by use of the trapezoidal rule.

 38. It is shown in more advanced works that when evaluating 

  L
b

a
f1x2  dx, the maximum error in using Simpson’s rule is 

  
M1b - a25

180n4 , where M is the greatest absolute value of the fourth

  derivative of f1x2  for a … x … b. Evaluate the maximum error

  for the integral L
3

2

dx
2x

 with n = 4.

In Exercises 39 and 40, solve the given problems by using the trap-
ezoidal rule. In Exercises 41 and 42, solve the given problems using 
Simpson’s rule.

 39. Approximate L
3

1

dx
2x - 1

 with n = 4.

 40. The streamflow F (in m3>s) passing through a cross section of a 

stream is found by evaluating F = L
L

0
g1x2  dx, where L is the

  width of the stream cross section and g1x2  is the product of  
the depth and velocity of the stream x m from the bank. From 
the following table, estimate F with L = 24 m.

 41. Approximate L
3

1

dx
2x - 1

 with n = 4 (see Exercise 39).

 42. The velocity v (in km>h) of a car was recorded at 1-min inter-
vals as shown. Estimate the distance traveled by the car.

x (m) 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0
g (x) 0.00 0.59 0.13 0.34 0.76 0.65 0.29 0.07 0.00

t (min) 0 1 2 3 4 5 6 7 8 9 10
v (km>h) 60 62 65 69 72 74 76 77 77 75 76
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In Exercises 43–48, use the function y = x23 2x2 + 1 and approxi-
mate the area under the curve between x = 1 and x = 4 by the indi-
cated method. See Fig. 25.24.

Fig. 25.24 

x = 1 x = 4

0

5

10

15

42

y

x

3
y = xV2x2 + 1

Fig. 25.25 

x = 4

0

8

42

y

x

4

 49. Find the sum of the areas of eight inscribed rectangles.

 50. Use the trapezoidal rule with n = 8.

 51. Use Simpson’s rule with n = 8.

In Exercises 52–58, solve the given problems by integration.

 52. The charge Q (in C) transmitted in a certain electric circuit in 3 s 

is given by Q = L
3

0
6t2 dt. Evaluate Q.

 53. The velocity ds>dt (in m/s) of a projectile is ds>dt = -9.8t + 16. 
Find the displacement s of the object after 4.0 s if the initial dis-
placement is 48 m.

 54. The deflection y of a certain beam at a distance x from one end 
is given by dy>dx = k12L3 - 12Lx + 2x42 , where k is a con-
stant and L is the length of the beam. Find y as a function of x if 
y = 0 for x = 0.

 55. The total electric charge Q on a charged sphere is given by

  Q = kL ar2 - r3

R
b   dr, where k is a constant, r is the distance 

  from the centre of the sphere, and R is the radius of the sphere. 
Find Q as a function of r if Q = Q0 for r = R.

 56. Part of the deck of a boat is  
the parabolic area shown in  
Fig. 25.26. The area A (in m2)  
is A = 215

0 15 - y  dy.  
Evaluate A.

Fig. 25.26 0

y

x

y ! 5 " x2

 57. The distance s (in cm) through which a cam follower moves in  
4 s is s = 14

0 t24 + 9t2 dt. Evaluate s.

 58. The probability that the time of failure (in years) of a certain 
hydraulic component is between 3 and 6 years is given by 

p = L
6

3

32dx

(x + 4)3. Evaluate p.

Writing Exercise
 59. A computer science student is writing a program to find a good 

approximation for the value of p by using the formula A = pr2 
for a circle. The value of p is to be found by approximating the 
area of a circle with a given radius. Write two or three para-
graphs explaining how the value of p can be approximated in 
this way. Include any equations and values that may be used, but 
do not actually make the calculations.

 CHAPTER 25   PRACTICE TEST

 1. Find an antiderivative of f1x2 = 2x - 11 - x24.

 2. Integrate Lx21 - 2x2 dx.

 3. Find y in terms of x if dy>dx = 16 - x24 and the curve passes 
through 15, 22 .

 4. Approximate the area under y =
1

x + 2
 between x = 1 and

  x = 4 (above the x-axis) by inscribing six rectangles and find-
ing the sum of their areas.

 5. Evaluate L
4

1

dx
x + 2

 by using the trapezoidal rule with n = 6.

 6. Evaluate the definite integral of Problem 5 by using Simpson’s 
rule with n = 6.

 7. The total electric current i (in A) to pass a point in the circuit  

between t = 1 s and t = 3 s is i = L
3

1
at2 + 1

t2 b  dt. Evaluate i.

 43. Find the sum of the areas of three inscribed rectangles.

 44. Find the sum of the areas of six inscribed rectangles.

 45. Use the trapezoidal rule with n = 3.

 46. Use the trapezoidal rule with n = 6.

 47. Use Simpson’s rule with n = 6.

 48. Use integration (for the exact area).

In Exercises 49–51, find the area of the archway, as shown in Fig. 25.25, 
by the indicated method. The archway can be described as the area 
bounded by the elliptical arc y = 4 + 21 + 8x - 2x2, x = 0, 
x = 4, and y = 0, where dimensions are in metres.
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 In Section 26.6, integration is used 
to find the force water exerts on the 
floodgate of a dam.

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Solve application problems 
involving indefinite integrals, 
including velocity and 
displacement and voltage 
across a capacitor

 Find the area between curves
 Obtain the volume of a solid of 

revolution
 Find the centre of mass, the 

moment of inertia, and the 
radius of gyration of a flat plate 
and of a solid of revolution

 Solve application problems 
involving definite integrals, 
including work, liquid pressure, 
and average value of a function

With the development of the calculus, many problems being studied in the 1600s 
and later were much more easily solved. As we saw in Chapters 23 and 24, dif-
ferential calculus led to the solution of problems such as finding velocities, maxi-

mum and minimum values, and various types of rates of change.

Integral calculus also led to the solution of many types of problems that were being studied. 
As Newton and Leibniz developed the methods of integral calculus, they were interested in 
finding areas and the problems that could be solved by finding these areas. They were also 
very interested in applications in which the rate of change was known and therefore led to the 
relation between the variables being studied.

One of the problems being studied in the 1600s by the French mathematician and physicist 
Blaise Pascal was that of the pressure within a liquid and the force on the walls of the con-
tainer due to this pressure. Since pressure is a measure of the force on an area, finding the 
force became essentially solving an area problem. Also at the time, many mathematicians and 
physicists were studying various kinds of motion, such as motion along a curved path and the 
motion of a rotating object. When information about the velocity is known, the solution is 
found by integrating. Later, in the 1800s, since electric current is the time rate change of elec-
tric charge, the current could be found by integrating known expressions for the charge.

As it turns out, integration is useful in many areas of science, engineering, and technology. It 
has important applications in areas such as electricity, mechanics, architecture, machine de-
sign, statistics, and business, as well as other areas of physics and geometry.

In the first section of this chapter, we present some important applications of the indefinite 
integral, with emphasis on the motion of an object and the voltage across a capacitor. In the 
remaining sections, we show uses of the definite integral related to geometry, mechanics, 
work by a variable force, and force due to liquid pressure.

Applications of 
Integration 26
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VELOCITY AND DISPLACEMENT
We first apply integration to the problem of finding the displacement and velocity as 
functions of time, when we know the relationship between acceleration and time, and 
certain values of displacement and velocity. As shown in Section 25.2, these values are 
needed for finding the constants of integration that are introduced.

Recalling that the acceleration a of an object is given by a = dv>dt, we can find the 
expression for the velocity v in terms of a, the time t, and the constant of integration. 
Therefore, we write dv = a dt, or

 v = La dt (26.1)

If the acceleration is constant, we have

 v = at + C1 (26.2)

In general, Eq. (26.1) is used to find the velocity as a function of time when we know 
the acceleration as a function of time. Since the case of constant acceleration is often 
encountered, Eq. (26.2) can often be used.

 EXAMPLE  1  Find the velocity, given the acceleration

Find the expression for the velocity if a = 12t, given that v = 8 when t = 1.
Using Eq. (26.1), we have

v = L 112t2  dt = 6t2 + C1

Substituting the known values, we have 8 = 6 + C1, or C1 = 2. This means that

v = 6t2 + 2 ■

 EXAMPLE  2  Find the velocity for a constant acceleration

For an object falling under the influence of gravity, the acceleration due to gravity is 
essentially constant. Its value is -9.8 m>s2. (The negative sign is chosen so that all 
quantities directed up are positive and all quantities directed down are negative.) Find 
the expression for the velocity of an object under the influence of gravity if v = v0 
when t = 0.

We write

 v = L 1 -9.82  dt substitute a = -9.8 into Eq. (26.1)

 = -9.8t + C1   integrate

 v0 = -9.8102 + C1  substitute given values

 C1 = v0   solve for C1

 v = v0 - 9.8t   substitute

The velocity v0 is called the initial velocity. If the object is given an initial upward 
velocity of 40.0 m>s, v0 = 40.0 m>s. If the object is dropped, v0 = 0. If the object 
is given an initial downward velocity of 40.0 m>s, v0 = -40.0 m>s. ■

 26.1 Applications of the Indefinite Integral
 

Voltage Across a Capacitor

■ Velocity as a first derivative and accelera-
tion as a second derivative were introduced in 
Chapter 23.
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Once we have the expression for velocity, we can then integrate to find the expres-
sion for displacement s in terms of time. Since v = ds>dt, we can write ds = vdt, or

 s = Lv dt (26.3)

 EXAMPLE  3  Find the initial velocity

A ball is thrown vertically from the top of a building 24.5 m high and hits the ground 
5.0 s later. What initial velocity was the ball given?

Measuring vertical distances from the ground, we know that s = 24.5 m when 
t = 0 and that v = v0 - 9.8t. Thus,

 s = L 1v0 - 9.8t2  dt = v0t - 4.9t2 + C  integrate

 24.5 = v0102 - 4.9102 + C,  C = 24.5  evaluate C

 s = v0 t - 4.9t2 + 24.5

We also know that s = 0 when t = 5.0 s. Thus,

 0 = v015.02 - 4.915.022 + 24.5  substitute given values

 5.0v0 = 98.0

 v0 = 19.6 m>s

This means that the initial velocity was 19.6 m>s upward. See Fig. 26.1. ■

 EXAMPLE  4  Find the displacement, given the acceleration

During the initial stage of launching a spacecraft vertically, the acceleration a 1 in m>s22   
of the spacecraft is a = 6t2. Find the height s of the spacecraft after 6.0 s if s = 12 m 
for t = 0.0 s and v = 16 m>s for t = 2.0 s.

First, we use Eq. (26.1) to get an expression for the velocity:

 v = L6t2 dt = 2t3 + C1   integrate

 16 = 212.023 + C1,  C1 = 0  evaluate C1

 v = 2t3

We now use Eq. (26.3) to get an expression for the displacement:

 s = L2t3  dt = 1
2  t4 + C2   integrate

 12 = 1
2 10.024 + C2,  C2 = 12  evaluate 

 s = 1
2  t4 + 12

Now, finding s for t = 6.0 s, we have s = 1
2 16.024 + 12 = 660 m ■

VOLTAGE ACROSS A CAPACITOR
The second basic application of the indefinite integral we will discuss comes from the 
field of electricity. By definition, the current i in an electric circuit equals the time rate 
of change of the charge q (in coulombs) that passes a given point in the circuit, or

 i =
dq

dt
 (26.4)

Time
of flight
! 5.0 s

24.5 m

19.6 m/s

Fig. 26.1

Practice Exercise

1.  In Example 4, change the acceleration to 
a = 4 m>s2 and then find the height un-
der the same given conditions.
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Rewriting this expression dq = i dt and integrating both sides, we have

 q = 1 i dt (26.5)

Now, the voltage VC across a capacitor with capacitance C (see Fig. 26.2) is given by 
VC = q>C. By combining equations, the voltage VC is given by

 VC =
1
C

 L i dt (26.6)

Here, VC is measured in volts, C in farads, i in amperes, and t in seconds.

 EXAMPLE  5  Find the electric charge, given the current

The current i (in A) in an electric circuit as a function of time t (in s) is given by 
i = 6t2 + 4. Find an expression for the electric charge q (in C) that passes a point in 
the circuit as a function of t. If q = 0 C when t = 0 s, determine the total charge that 
passes the point in 2.0 s.

Since q = 1 i dt, we have

 q = L 16t2 + 42  dt  substitute into Eq. (26.5)

 = 2t3 + 4t + C1   integrate

This is the required expression of charge as a function of time. When t = 0, q = C1, 
which means the constant of integration represents the initial charge, or the charge that 
passed a given point before the timing started. Using q0 to represent this charge, we have

q = 2t3 + 4t + q0

Returning to the second part of the problem, we note that q0 = 0. Evaluating q for 
t = 2.0 s, we have q = 212.023 + 412.02 = 24 C, which is the charge that passes 
any point in 2.0 s. ■

 EXAMPLE  6  Find the voltage across a capacitor

The voltage across a 5.0@mF capacitor is zero. What is the voltage after 20 ms if a cur-
rent of 75 mA charges the capacitor?

Since the current is 75 mA, we know that i = 0.075 A = 7.5 * 10-2 A. Since 
5.0 mF = 5.0 * 10-6 F, we have

 VC =
1

5.0 * 10-6 L7.5 * 10-2dt   substituting into Eq. (26.6)

 = 11.5 * 1042Ldt = 11.5 * 1042 t + C1  integrate

From the given information, we know that VC = 0 when t = 0. Thus,

0 = 11.5 * 1042 102 + C1 or C1 = 0  evaluate C1

This means that

VC = 11.5 * 1042 t

Evaluating this expression for t = 20 * 10-3 s, we have

 VC = 11.5 * 1042 120 * 10-32
 = 30 * 10 = 300 V  ■

! "
! "

VC

"q!q

C # 
q
VC

Fig. 26.2

When using Eq. (26.6), all quantities 
must be in the units listed. If the 
quantities arising in a given problem 
involve different unit prefixes, we 
must use the proper power of 10 
that corresponds to each prefix.

LEARNING T IP

Practice Exercise

2.  In Example 5, change the current to 
i = 12t + 6 and then find the charge un-
der the same given conditions.

■ Here, C represents coulombs and is not the 
C for capacitance or the constant of 
integration.
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 EXAMPLE  7  Find the capacitance of a capacitor

A certain capacitor has 100 V across it. At this instant, a current i = 0.06t1/2 is sent 
through the circuit. After 0.25 s, the voltage across the capacitor is 140 V. What is the 
capacitance?

Substituting i = 0.06t1/2, we find that

 VC =
1
C L 10.06t1/2 dt2 =

0.06
C L t1>2 dt  using Eq. (26.6)

 =
0.04

C
 t3>2 + C1   integrate

From the given information, we know that VC = 100 V when t = 0. Thus,

100 =
0.04

C
102 + C1 or C1 = 100 V  evaluate 

VC =
0.04

C
  t3>2 + 100   substituting 100 for C1

We also know that VC = 140 V when t = 0.25 s. Therefore,

 140 =
0.04

C
10.2523>2 + 100

 40 =
0.04

C
10.1252

 C = 1.25 * 10-4 F = 125 mF ■

EXERCISES 26.1

 1. In Example 3, change 5.0 s to 1.0 s and then solve the resulting 
problem.

 2. In Example 7, change 0.061t to 0.06t and then solve the result-
ing problem.

 3. What is the velocity (in m>s) of a sandbag 1.5 s after it is released 
from a hot-air balloon that is stationary in the air?

 4. A beach ball is rolled up a shallow slope with an initial velocity 
of 7.2 m>s. If the acceleration of the ball is 1.2 m>s2 down the 
slope, find the velocity of the ball after 8.0 s.

 5. A conveyor belt 8.00 m long moves at 0.25 m>s. If a package is 
placed at one end, find its displacement from the other end as a 
function of time.

 6. During each cycle, the velocity v (in mm>s) of a piston is 
v = 6t - 6t2, where t is the time (in s). Find the displacement s 
of the piston after 0.75 s if the initial displacement is zero.

 7. While in the barrel of a tennis ball machine, the acceleration a (in 
m>s2) of a ball is a = 3011 - 4t, where t is the time (in s). If 
v = 0 for t = 0, find the velocity of the ball as it leaves the bar-
rel at t = 0.25 s.

 8. A person skis down a slope with an acceleration (in m>s2) given 

  by a =
600t160 + 0.5t222, where t is the time (in s). Find the skier’s 

  velocity as a function of time if v = 0 when t = 0.

 9. If a car decelerates at 250 m>s2 (about the maximum a human 
body can survive) during an accident, and the car was going at 
96 km>h at impact, over what distance must an airbag stop a per-
son in order to survive the crash?

 10. The engine of a lunar lander is cut off when the lander is 5.0 m 
above the surface of the moon and descending at 2.0 m>s. If the 
acceleration due to gravity on the moon is 1.6 m>s2, what is the 
speed of the lander just before it touches the surface?

 11. If an aircraft is to attain a take-off velocity of 75 m>s after travel-
ling 240 m along the flight deck of an aircraft carrier, find the 
aircraft’s acceleration (assumed constant).

 12. A stone is thrown straight up from the edge of a 45.0-m-high 
cliff. A loose stone at the edge of the cliff falls off 1.50 s later. 
What is the vertical velocity of the first stone, if the two stones 
reach the ground below at the same time?

 13. What must be the nozzle velocity of the water from a fire hose if 
it is to reach a point 30 m directly above the nozzle?

 14. An arrow is shot from the edge of a cliff with a vertical upward 
velocity of 40.0 m>s. If it strikes the plain below after 9.0 s, how 
high is the cliff?

 15. In coming to a stop, the acceleration of a motorcycle is -4.0t. If it 
is travelling at 32 m>s when the brakes are applied, how far does 
it travel while stopping?

 16. A hoist mechanism raises a crate with an acceleration (in m>s2) 
a = 11 + 0.2t, where t is the time in seconds. Find the dis-
placement of the crate as a function of time if v = 0 m>s and 
s = 2 m for t = 0 s.

 17. The electric current in a microprocessor circuit is 0.230 mA. How 
many coulombs pass a given point in the circuit in 1.50 ms?

 18. A capacitor in a microwave oven circuit has a charge of 0.10 mF. 
If it is further charged by a current of 0.25 mA, what is the charge 
on the capacitor 3.0 ms later?
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 19. In an amplifier circuit, the current i (in A) changes with time t 
(in s) according to i = 0.06 t21 + t2. If 0.015 C of charge has 
passed a point in the circuit at t = 0, find the total charge to have 
passed the point at t = 0.25 s.

 20. The current i (in mA) in a DVD player circuit is given by 
i = 6.0 - 0.50t, where t is the time (in ms) and 0 … t … 30 ms. 
If q0 = 0 C, for what value of t is q = 0 C? What interpretation 
can be given to this result?

 21. The voltage across a 2.5@mF capacitor in a copying machine is 
zero. What is the voltage after 12 ms if a current of 25 mA 
charges the capacitor?

 22. The voltage across an 8.50-nF capacitor in an FM receiver circuit 
is zero. Find the voltage after 2.00 ms if a current (in mA) 
i = 0.042t charges the capacitor.

 23. The voltage across a 3.75@mF capacitor in a television circuit is 
4.50 mV. Find the voltage after 0.565 ms if a current (in mA) 
i = 13 1 + 6t further charges the capacitor.

 24. A current i = t>2t2 + 1 (in A) is sent through an electric dryer 
circuit containing a previously uncharged 2.0@mF capacitor. How 
long does it take for the capacitor voltage to reach 120 V?

 25. The angular velocity v is the time rate of change of the angular 
displacement u of a rotating object. See Fig. 26.3. In testing the 
shaft of an engine, its angular velocity is v = 16t + 0.50t2, 
where t is the time (in s) of rotation. Find the angular displace-
ment through which the shaft goes in 10.0 s.

the voltage caused by the changing current is given by 
VL = L1di>dt2 , where L is the inductance (in H). If 
VL = 12.0 - 0.2t for a 3.0-H inductor, find the current in the 
circuit after 20 s if the initial current was zero.

 28. If the inner and outer walls of a container are at different tempera-
tures, the rate of change of temperature with respect to the dis-
tance from one wall is a function of the distance from the wall. 
Symbolically, this is stated as dT>dx = f1x2 , where T is the 
temperature. If x is measured from the outer wall, at 20°C, and 
f1x2 = 72x2, find the temperature at the inner wall if the con-
tainer walls are 0.5 cm thick.

 29. Surrounding an electrically charged particle is an electric field. 
The rate of change of electric potential with respect to the dis-
tance from the particle creating the field equals the negative of the 
value of the electric field. That is, dV>dx = -E, where E is the 
electric field. If E = k>x2, where k is a constant, find the electric 
potential at a distance x1 from the particle, if V S 0 as x S ∞ .

 30. The rate of change of the vertical deflection y with respect to the 
horizontal distance x from one end of a beam is a function of x. 
For a particular beam, the function is k1x5 + 1350x3 - 7000x22 , 
where k is a constant. Find y as a function of x.

 31. Freshwater is flowing into a brine solution, with an equal volume 
of mixed solution flowing out. The amount of salt in the solution 
decreases, but more slowly as time increases. Under certain con-
ditions, the time rate of change of mass of salt (in g>min) is given 
by -1>1t + 1. Find the mass m of salt as a function of time if 
1000 g were originally present. Under these conditions, how long 
would it take for all the salt to be removed?

 32. A holograph of a circle is formed. The rate of change of the 
radius r of the circle with respect to the wavelength l of the 
light used is inversely proportional to the square root of l. If 
dr>dl = 3.55 * 104 and r = 4.08 cm for l = 574 nm, find r 
as a function of l.

Answers to Practice Exercises

1. 132 m 2. 36 C

u

dv
d ta =

du
d tv =

Fig. 26.3

 26. The angular acceleration a is the time rate of change of angular 
velocity v of a rotating object. See Fig. 26.3. When starting up, 
the angular acceleration of a helicopter blade is a = 18t + 1. 
Find the expression for u if v = 0 and u = 0 for t = 0.

 27. An inductor in an electric circuit is essentially a coil of wire in 
which the voltage is affected by a changing current. By definition, 

In Section 25.3, we introduced the method of finding the area under a curve by integra-
tion. We also showed that the area can be found by a summation process on the rectan-
gles inscribed under the curve, which means that integration can be interpreted as a 
summation process. The applications of the definite integral use this summation inter-
pretation of the integral. We now develop a general procedure for finding the area for 
which the bounding curves are known by summing the areas of inscribed rectangles 
and using integration for the summation.

The first step is to make a sketch of the area. Next, a representative element of area 
dA (a typical rectangle) is drawn. In Fig. 26.4, the width of the element is dx. The 
length of the element is determined by the y-coordinate (of the vertex of the element) of 
the point on the curve. Thus, the length is y. The area of this element is y dx, which in 
turn means that dA = y dx, or

 A = L
b

a
y dx = L

b

a
f1x2dx (26.7)

 26.2 Areas by Integration
 

 
Horizontal Elements

y 5 f (x)y

y

x
O

x 5 a x 5 b
dx

(x, y)

Fig. 26.4



 26.2 Areas by Integration 783

This equation states that the elements are to be summed (this is the meaning of the inte-
gral sign) from a (the left boundary) to b (the right boundary).

 EXAMPLE  1  Find an area using vertical elements

Find the area bounded by y = x2, x = 1, and x = 2.
This area is shown in Fig. 26.5. The rectangle shown is the representative ele-

ment, and its area is y dx. The elements are to be summed from x = 1 to x = 2.

 A = L
2

1
y dx = L

2

1
x2 dx   substitute x2 for y

 =
1
3

 x3 0 21 =
1
3

 182 - 1
3

 112   integrate and evaluate

 =
7
3

 ■

In Figs. 26.4 and 26.5, the elements of area are vertical. Some problems are simpli-
fied using horizontal elements. With horizontal elements, the length (longest dimen-
sion) is measured in terms of the x-coordinate of the point on the curve, and the width is 
dy. In Fig. 26.6, the area of the element is x dy, which means dA = x dy, or

 A = L
d

c
x dy = L

d

c
g1y2  dy (26.8)

In using Eq. (26.8), the elements are summed from c (the lower boundary) to d (the 
upper boundary).

 EXAMPLE  2  Vertical and horizontal elements of an area

Find the area in the first quadrant bounded by y = 9 - x2. See Fig. 26.7.

sum right boundary

A = L
2

1
ydx

left area of element
boundary 

x
0

2

4

dx

y

y = x2

x = 2x = 1

Fig. 26.5

y

x
O

x (x, y)

x 5 g(y)
y 5 d

y 5 c

dy

Fig. 26.6

Note that the limits of integration in 
Eqs. (26.7) and (26.8) are chosen so 
that summation is done in the posi-
tive direction. Vertical elements are 
summed from left to right (with 
boundaries represented by x values), 
and horizontal elements are summed 
from bottom to top (with boundaries 
represented by y values).

LEARNING T IP

Practice Exercise

1.  Find the area in the first quadrant bounded 
by y = 4 - x2.

y

x

x

y

0

1

2

3

4

6

7

dx

(x, y)dy

8

21 1 3

(3, 0)

(0, 9)

22

Fig. 26.7

vertical element of length y and width dx horizontal element of length x and width dy

 A = L
3

0
y dx sum of areas of elements  A = L

9

0
x  dy

 = L
3

0
19 - x22  dx substitute for y; substitute for x  = L

9

0
29 - y dy = - L

9

0
(9 - y)1/2(-dy)

 = a9x - x3

3
b ` 3

0
  integrate = -  

2
3

 19 - y23>2 0 90
 = 127 - 92 - 0 = 18 evaluate = -  

2
3

 19 - 923>2 + 2
3

 19 - 023>2 = 18

Note that the limits are 0 to 3 for the vertical elements, and 0 to 9 for the horizontal 
elements. ■

The choice of vertical or horizontal elements is determined by (1) which one leads 
to the simplest solution or (2) the form of the resulting integral. In some problems, it 
makes little difference which is chosen. However, our present methods of integration 
do not include many types of integrals.

AREA BETWEEN TWO CURVES
It is also possible to find the area between two curves when one of the curves is not an 
axis. In such a case, the length of the element of area becomes the difference in the y- or 
x-coordinates, depending on whether a vertical element or a horizontal element is used.
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In Fig. 26.8, by using vertical elements, the element of area is bounded on the bot-
tom by y1 = f11x2  and on the top by y2 = f21x2 . The length of the element is 
y2 - y1, and its width is dx. Thus, the area is

 A = L
b

a
1y2 - y12  dx (26.9)

In Fig. 26.9, by using horizontal elements, the element of area is bounded on the left 
by x1 = g11y2  and on the right by x2 = g21y2 . The length of the element is x2 - x1, 
and its width is dy. Thus, the area is

 A = L
d

c
1x2 - x12  dy (26.10)

The following examples show the use of Eqs. (26.9) and (26.10) to find the indicated 
areas.

 EXAMPLE  3  Area between curves using vertical elements

Find the area bounded by y = x2 and y = x + 2.
First, by sketching each curve, we see that the area to be found is that shown in 

Fig. 26.10. The points of intersection of these curves are found by solving the equa-
tions simultaneously. The solution for the x-values is shown at the left. We then find 
the y-coordinates by substituting into either equation. The substitution shows the 
points of intersection to be 1 -1, 12  and 12, 42 .

Here, we choose vertical elements, since they are all bounded at the top by the 
line y = x + 2 and at the bottom by the parabola y = x2. If we were to choose hori-
zontal elements, the bounding curves would be different above 1 -1, 12  from below 
this point. Choosing horizontal elements would then require two separate integrals. 
Therefore, using vertical elements, we have

 A = L
2

-1
1yline - yparabola2  dx   using Eq. (26.9)

 = L
2

-1
1x + 2 - x22  dx = ax2

2
+ 2x - x3

3
b ` 2

-1

 = a2 + 4 - 8
3
b - a1

2
- 2 + 1

3
b

 =
10
3

+ 7
6

=
27
6

 =
9
2

 ■

 EXAMPLE  4  Area between curves using horizontal elements

Find the area bounded by the curve y = x3 - 3 and the lines x = 2, y = -1, and 
y = 3.

Sketching the curve and lines, we show the area in Fig. 26.11. Horizontal ele-
ments are better, since they avoid having to evaluate the area in two parts. Therefore, 
we have

y

x

y2 5 f2(x)

x 5 a
x 5 b

dx

y2 2 y1

y1 5 f1(x)

Fig. 26.8

x2 5 g2(y)

y 5 d

y 5 c

dy

x1 5 g1(y)

x2 2 x1

y

x
O

Fig. 26.9

2

1

3

4

5

21
2122 10 2 3 4

x

y

y line 2 yparabola

y 5 x 1 2y 5 x2

(21, 1)

(2, 4)

Fig. 26.10

■ x2 = x + 2
x2 - x - 2 = 0
(x + 1)(x - 2) = 0
x = -1, 2

210

2

4

6

y

x

22

y 5 x3 2 3

y 5 21

y 5 3

x 5 2

Fig. 26.11
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 A = L
3

-1
1xline - xcubic2  dy = L

3

-1
12 - 23 y + 32  dy  using Eq. (26.10)

 = 2y - 3
4

 1y + 324>3 0 3-1 = c 6 - 3
4

 164>32 d - c -2 - 3
4

 124>32 d
 = 8 - 9

2
23 6 + 3

2
23 2 = 1.71

As we see, the choice of horizontal elements leads to limits of -1 and 3. If we had 
chosen vertical elements, the limits would have been 23 2 and 23 6 for the area to the 
left of 123 6, 32 , and 23 6 and 2 to the right of this point. ■

It is important to set up the element of area so that its length is positive. A common 
error is to take the difference incorrectly, resulting in a negative area.

subtract y of the lower curve 
from y of the upper curve.

subtract x of the left curve 
from x of the right curve.

Example 5 illustrates this important point.

COMMON ERROR

 EXAMPLE  5  Area below the x-axis

Find the area bounded by x3 - 3x - 2 and the x-axis.
Sketching the graph, we find that y = x3 - 3x - 2 has a maximum point at 1 -1, 02 , a minimum point at 11, -42 , and an intercept at 12, 02 . The curve is 

shown in Fig. 26.12, and we see that the area is below the x-axis. Using vertical ele-
ments, we see that the top is the x-axis 1y = 02  and the bottom is the curve 
y = x3 - 3x - 2. Therefore, we have

 A = L
2

-1
30 - 1x3 - 3x - 22 4  dx = L

2

-1
1 -x3 + 3x + 22  dx

 = - 1
4

 x4 + 3
2

 x2 + 2x 0 2-1

 = c - 1
4

 1242 + 3
2

 1222 + 2122 d - c - 1
4

 1 -124 + 3
2

 1 -122 + 21 -12 d
 =

27
4

= 6.75

If we had simply set up the area as A = 12
-1

1x3 - 3x - 22  dx, we would have 
found A = -6.75. The negative sign shows that the area is below the x-axis. Again, 
we avoid any complications with negative areas by making the length of the element 
positive.

Also, note that since

0 - 1x3 - 3x - 22 = - 1x3 - 3x - 22
an area bounded on top by the x-axis can be found by setting up the area as being 
“under” the curve and using the negative of the function. ■

20

1

y

x

22

24

y 5 x3 2 3x 2 2
(21, 0)

Fig. 26.12

Practice Exercise

2.  Find the area bounded by y = x2 - 4 
and the x-axis.

We must be very careful if the 
bounding curves of an area cross. In 
such a case, for part of the area one 
curve is above the area, and for a dif-
ferent part of the area this same 
curve is below the area. When this 
happens, two integrals must be used 
to find the area. Example 6 illustrates 
the necessity of using this procedure.

LEARNING T IP
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 EXAMPLE  6  Area above and below the x-axis

Find the area between y = x3 - x and the x-axis.
We note from Fig. 26.13 that the area to the left of the origin is above the axis 

and the area to the right is below. If we find the area from

 A = L
1

-1
1x3 - x2  dx =

x4

4
- x2

2
` 1
-1

 = a1
4

- 1
2
b - a1

4
- 1

2
b = 0

we see that the apparent area is zero. From the figure, we know this is not correct. 
Noting that the y-values (of the area) are negative to the right of the origin, we set 
up the integrals

 A = L
0

-1
1x3 - x2  dx + L

1

0
30 - 1x3 - x2 4  dx

 = ax4

4
- x2

2
b ` 0

-1
- ax4

4
- x2

2
b ` 1

0

 = 0 - a1
4

- 1
2
b - a1

4
- 1

2
b + 0 =

1
2

 ■

 EXAMPLE  7  Area under a curve—application

Measurements of solar radiation on a particular surface indicate that the rate r (in J/h) 
at which solar energy is received during the day is given by r = 3600112t2 - t32 , 
where t is the time (in h). Since r is a rate, we write r = dE>dt, where E is the energy 
(in J) received at the surface. Thus, dE = 3600112t2 - t32  dt, and we find the total 
energy by evaluating the integral.

E = 3600L
12

0
112t2 - t32  dt

This integral can be interpreted as being the area under f1 t2 = 3600112t2 - t32  
from t = 0 to t = 12, as shown in Fig. 26.14 (the limits of integration are found 
from the t-intercepts of the curve). Evaluating this integral, we have

 E = 3600L
12

0
112 t2 - t32  dt = 3600 a4 t3 - 1

4
 t4b ` 12

0

 = 3600 c 411232 - 1
4

 11242 - 0 d
 = 6.22 * 106 J

Therefore, 6.22 MJ of energy were received in 12 h. ■

(0, 0)

1

21

y

x
(21, 0) (1, 0)

y 5 x3 2 x

Fig. 26.13

E

r (J/ h)

t (h)
0 1284

5 ! 10 5

10 6

Fig. 26.14

EXERCISES 26.2

In Exercises 1 and 2, make the given changes in the indicated exam-
ples of this section and then find the resulting areas.

 1. In Example 1, change x = 2 to x = 3.

 2. In Example 3, change y = x + 2 to y = 2x.

In Exercises 3–30, find the areas bounded by the indicated curves.

 3. y = 4x, y = 0, x = 1 4. y = 3x2, y = 0, x = 3

 5. y = 6 - 4x, x = 0, y = 0, y = 3

 6. y = 1
2 x2 + 2, x = 0, y = 4 1x 7 02

 7. y = x2 - 4, y = 0, x = -4 (y 7 0)

 8. y = x2 - 5x, y = 0

 9. y = x-2, y = 0, x = 2, x = 3

 10. y = 16 - x2, y = 0, x = -2, x = 3
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 11. y = 1x, x = 0, y = 1, y = 3

 12. y = 31x + 1, x = 0, y = 6

 13. y = 2>1x, x = 0, y = 1, y = 4

 14. x = y2 - y, x = 0

 15. y = 6 - 3x, x = 0, y = 0, y = 3

 16. y = x, y = 3 - x, x = 0

 17. y = x - 21x, y = 0

 18. y = x4 - 2x3, y = 0

 19. y = x2, y = 2 - x, x = 0 1x Ú 02
 20. y = x2, y = 2 - x, y = 1

 21. y = x4 - 8x2 + 16, y = 16 - x4

 22. y = 1x - 1, y = 3 - x, y = 0

 23. y = x2 + 5x, y = 3 - x2

 24. y = x3, y = x2 + 4, x = -1

 25. y = x5, x = -1, x = 2, y = 0

 26. y = x2 + 2x - 8, y = x + 4

 27.  y = x2, y = x + 6, y = -x + 2

 28. y = x2, y = x1/3, between x = -1 and x = 1

 29. y = 4 - x2, y = 4x - x2, x = 0, x = 2

 30. y = x - 1, y2 = 2x + 6

In Exercises 31–38, solve the given problems.

 31. Describe a region for which the area is found by evaluating the 

  integral L
2

1
12x2 - x32dx.

 32. Although the integral L
2

-2
24 - x2dx cannot be integrated by 

  methods we have developed to this point, by recognizing the re-
gion represented, it can be evaluated. Evaluate this integral.

 33. Use integration to find the area of the triangle with vertices (0, 0), 
(4, 4), and (10, 0).

 34. Show that the area bounded by the parabola y = x2 and the line 
y = b 1b 7 02  is two-thirds of the area of the rectangle that cir-
cumscribes it.

 35. Show that the curve y = xn 1n 7 02  divides the unit square 
bounded by x = 0, y = 0, x = 1, and y = 1 into regions with 
areas in the ratio of n>1.

 36.  Why can the integral L
2

a
12 + x - x22dx be used to find the 

  area bounded by x = a, y = 0, and y = 2 + x - x2 if a = -1, 
but not if a = -2?

 37. Find the value of c such that the region bounded by y = x2 and 
y = 4 is divided by y = c into two regions of equal area.

 38. Find the value(s) of c such that the region bounded by 
y = x2 - c2 and y = -x2 + c2 has an area of 576.

In Exercises 39–42, find the areas bounded by the indicated curves, 
using (a) vertical elements and (b) horizontal elements.

 39. y = 8x, x = 0, y = 4 40. y = x3, x = 0, y = 3

 41. y = x4, y = 8x 42. y = 4x, y = x3

In Exercises 43–50, some applications of areas are shown.

 43. Certain physical quantities are often represented as an area under 
a curve. By definition, 
power is the time rate of 
change of performing 
work. Thus, P = dw>dt, 
or dw = P dt. Therefore, 
if P = 12t - 4t2, find 
the work (in J) performed 
in 3 s by finding the area 
under the curve of P vs. t. 
See Fig. 26.15.

 44. The total electric charge Q (in C) to pass a point in the circuit 
from time t1 to t2 is Q = 1 t2 

t1
i dt, where i is the current (in A). 

  Find Q if t1 = 1 s, t2 = 4 s, and i = 0.0032t2t2 + 1.

 45. Since the displacement s, velocity v, and time t of a moving ob-
ject are related by s = 1v dt, it is possible to represent the change 
in displacement as an area. A rocket is launched such that its 
vertical velocity v (in km>s) as a function of time t (in s) is 
v = 1 - 0.0112t + 1. Find the change in vertical displacement 
from t = 10 s to t = 100 s.

 46. The total cost C (in dollars) of production can be interpreted as an 
area. If the cost per unit C′ (in dollars per unit) of producing x 
units is given by 100> 10.01x + 122, find the total cost of pro-
ducing 100 units by finding the area under the curve of C′ vs. x.

 47. A cam is designed such that one face of it is described as being 
the area between the curves y = x3 - 2x2 - x + 2 and 
y = x2 - 1 (units in cm). Show that this description does not 
uniquely describe the face of the cam. Find the area of the face of 
the cam, if a complete description requires that x … 1.

 48. Using CAD (computer-assisted design), an architect programs a 
computer to sketch the shape of a swimming pool designed 

  between the curves

  y =
800x1x2 + 1022  y = 0.5x2 - 4x  x = 8 

  (dimensions in m). Find the area of the surface of the pool.

 49. A coffee-table top is designed to be the region between 
y = 0.25x4 and y = 12 - 0.25x4. What is the area (in dm2) of 
the table top?

 50. A window is designed to be the area between a parabolic section 
and a straight base, as shown 
in Fig. 26.16. What is the 
area of the window?

Answers to Practice Exercises

1. 16>3 2. 32>3

w

P

t
0 3

5

10

Fig. 26.15

1.60 m

0.
64

0 
m

Fig. 26.16
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As the region revolves about the x-axis, so does its representative element, which 
generates a solid for which the volume is known—an infinitesimally thin cylindrical 
disc. The volume of a right circular cylinder is p times its radius squared times its 
height (in this case, the thickness) of the cylinder. Since the element is revolved about 
the x-axis, the y-coordinate of the point on the curve that touches the element is the ra-
dius. Also, the thickness is dx. This disc, the representative element of volume, has a 
volume of dV = py2dx. Summing these elements of volume from left to right, as 
shown in Fig. 26.17(b), we have for the total volume

 V = pL
b

a
y2 dx = pL

b

a
3 f1x2 42 dx (26.11)

The element of volume is a disc, and by use of Eq. (26.11), we can find the volume of the 
solid generated by a region bounded by the x-axis, which is revolved about the x-axis.

 EXAMPLE  1  Find a volume using vertical discs

Find the volume of the solid generated by revolving the region bounded by y = x2, 
x = 2, and y = 0 about the x-axis. See Fig. 26.18.

From the figure, we see that the radius of the disc is y and its thickness is dx. The 
elements are summed from left 1x = 02  to right 1x = 22 :

 V = pL
2

0
y2 dx   using Eq. (26.11)

 = pL
2

0
1x222 dx = pL

2

0
x4 dx  substitute x2 for y

 =
p

5
 x5 0 20 =

32p
5

  integrate and evaluate

Since p is used in Eq. (26.11), it is common to leave results in terms of p. In ap-
plied problems, a decimal result would normally be given. ■

Consider a region in the xy-plane and its representative element of area, as shown in 
Fig. 26.17(a). When the region is revolved about the x-axis, it is said to generate a solid 
of revolution, which is also shown in the figure. We now show methods of finding 
volumes of solids that are generated in this way.

 26.3 Volumes by Integration
 

x

y

y 5 f (x)

x 5 bx 5 aO

(b)

x

y

y 5 f (x)

x 5 bx 5 aO

(a)

(x, y)

dx

Fig. 26.17

■ This is the sum of the volumes of the discs 
whose thicknesses approach zero as the num-
ber of discs approaches infinity.

O

y

x

y 5 x2

dx

x 5 2

Fig. 26.18
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If a region bounded by the y-axis is revolved about the y-axis, the volume of the 
solid generated is given by

 V = pL
d

c
x2 dy (26.12)

In this case, the radius of the element of volume, a disc, is the x-coordinate of the point 
on the curve, and the thickness of the disc is dy, as shown in Fig. 26.19. One should 
always be careful to identify the radius and the thickness properly.

 EXAMPLE  2  Find a volume using horizontal discs

Find the volume of the solid generated by revolving the region bounded by 
y = 2x, y = 6, and x = 0 about the y-axis.

Fig. 26.20 shows the volume to be found. Note that the radius of the disc is x and 
its thickness is dy.

 V = pL
6

0
x2 dy   using Eq. (26.12)

 = pL
6

0
ay

2
b2

dy =
p

4 L
6

0
y2 dy  substituting 

y

2
 for x

 =
p

12
 y3 0 60 = 18p   integrate and evaluate

Since this volume is a right circular cone, it is possible to check the result:

V =
1
3

 pr2h =
1
3

 p1322 162 = 18p ■

If the region in Fig. 26.21 is revolved about the y-axis, the element 
of area y dx does not generate a disc, as when it was revolved about 
the x-axis. In Fig. 26.22, we see that the element of volume is a 
region bounded by two concentric cylinders of height y, or a 
cylindrical shell (note the hole through its centre). The total vol-
ume is made up of an infinite number of concentric shells. When 
the volumes of these shells are summed, we have the total volume 
generated. Thus, we must now find the approximate volume dV of 
the representative shell. By finding the circumference of the base 
and multiplying this by the height, we obtain an expression for the 
surface area of the shell. Then, by multiplying this by the thick-
ness of the shell, we find its volume. The volume of the repre-
sentative shell shown in Fig. 26.22(a) is

 dV = 2p1 radius2 * 1height2 * 1 thickness2  (26.13)

Similarly, when the element of volume is a disc (see Fig. 26.22(b)), its volume is given by

 dV = p1radius22 * 1 thickness2  (26.14)

O

y

x

y 5 d

dy

y 5 c

x 5 g(y)

(x, y)

Fig. 26.19

O

x

x

y 5 2x

y 5 6

(x, y)
dy

y

Fig. 26.20

O dx

y

y

x

Fig. 26.21
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Disc
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 EXAMPLE  3  Find a volume using cylindrical shells

Use the method of cylindrical shells to find the volume of the solid generated by re-
volving the first-quadrant region bounded by y = 4 - x2, x = 0, and y = 0 about the 
y-axis.

From Fig. 26.23, we identify the radius, the height, and the thickness of the shell:

radius = x  height = y  thickness = dx

The fact that the elements of area that generate the shells go from x = 0 to 
x = 2 determines the limits of integration as 0 and 2. Therefore,

V = 2pL
2

0
xy dx using Eq. (26.13)

= 2pL
2

0
x14 - x22  dx = 2pL

2

0
14x - x32  dx  substitute 4 - x2 for y

= 2pa2x2 - 1
4

 x4b ` 2
0
 integrate

= 8p evaluate ■

We can find the volume shown in Example 3 by using discs, as we show in the fol-
lowing example.

 EXAMPLE  4  Same volume using horizontal discs

Use the method of discs to find the volume indicated in Example 3.
From Fig. 26.24, we identify the radius and the thickness of the disc:

radius = x   thickness = dy

Since the elements of area that generate the discs go from y = 0 to y = 4, the 
limits of integration are 0 and 4. Thus,

 V = pL
4

0
x2 dy   using Eq. (26.14)

 = pL
4

0
14 - y2  dy  substitute  14 - y for x

 = pa4y - 1
2

 y2b ` 4
0
   integrate

 = 8p   evaluate

We see that the volume of 8p using discs agrees with the result we obtained using 
shells in Example 3. ■

thickness

radius          height

radius          thickness

It is generally better to remember the 
formulas for the elements of volume 
in the general forms given in Eqs. 
(26.13) and (26.14), and not in the 
specific forms such as Eqs. (26.11) and 
(26.12) (both of these use discs). If we 
remember the formulas in this way, 
we can readily apply these methods 
to finding the volume of any solid of 
revolution.
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(x, y)

dx

(0, 4)
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y

Fig. 26.23

x

x

O

(x, y)dy

(0, 4)

(2, 0)

y

Fig. 26.24

Practice Exercise

1.  Find the volume of the solid generated by revolving the first-quadrant region bounded by 
y = 4 - 2x about the x-axis. Use discs.
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 EXAMPLE  5  Find a volume using vertical discs

Using discs, find the volume of the solid generated by revolving the first-quadrant re-
gion bounded by y = 4 - x2, x = 0, and y = 0 about the x-axis. (This is the same 
region as used in Examples 3 and 4.)

For the disc in Fig. 26.25, we have

radius = y  thickness = dx

and the limits of integration are x = 0 and x = 2. This gives us

 V = pL
2

0
y2 dx   using Eq. (26.14)

 = pL
2

0
14 - x222  dx   substitute 4 - x2 for y

 = pL
2

0
116 - 8x2 + x42  dx

 = pa16x - 8
3

 x3 + 1
5

 x5b ` 2
0
   integrate

 =
256 p

15
  evaluate ■

We now show how to set up the integral to find the volume of the solid shown in 
Example 5 by using cylindrical shells. As it turns out, we are not able at this point to 
integrate the expression that arises, but we are still able to set up the proper integral.

 EXAMPLE  6  Same volume using cylindrical shells

Use the method of cylindrical shells to find the volume indicated in Example 5.
From Fig. 26.26, we see that for the shell we have

radius = y  height = x  thickness = dy

Since the elements go from y = 0 to y = 4, the limits of integration are 0 and 4. 
Hence,

 V = 2pL
4

0
xy dy   using Eq. (26.13)

= 2pL
4

0
14 - y1y dy2   substitute 14 - y for x

 =
256 p

15

The method of performing the integration 114 - y1y dy2  will be discussed in 
Section 28.7. We present the answer here for the reader’s information to show that 
the volume found in this example is the same as that found in Example 5. ■

In the next example, we show how to find the volume of the solid generated if a re-
gion is revolved about a line other than one of the axes. We will see that a proper 
choice of the radius, height, and thickness for Eq. (26.13) leads to the result.

(0, 4)

O dx

y

(x, y)

(2, 0)
x

Fig. 26.25

(2, 0)

(0, 4)

(x, y)

O

dy

x

y

Fig. 26.26

Practice Exercise

2.  Find the volume of the solid generated by revolving the first-quadrant  
region bounded by y = 4 - 2x about the x-axis. Use shells.
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 EXAMPLE  7  Rotate a region about a line

Find the volume of the solid generated if the region in Examples 3–6 is revolved about 
the line x = 2.

Shells are convenient, since the volume of a shell can be expressed as a single 
integral. We can find the radius, height, and thickness of the shell from Fig. 26.27. 
Carefully note that the radius is not x but is 2 − x, since the region is revolved 
about the line x = 2. This means

radius = 2 - x  height = y  thickness = dx

Since the elements that generate the shells go from x = 0 to x = 2, the limits of in-
tegration are 0 and 2. This means we have

V = 2pL
2

0
12 - x2y dx using Eq. (25.13) 

 = 2pL
2

0
12 - x2 14 - x22  dx substitute 4 - x2 for y

 = 2pL
2

0
18 - 2x2 - 4x + x32  dx

 = 2pa8x - 2
3

 x3 - 2x2 + 1
4

 x4b ` 2
0
  integrate

=
40 p

3
 evaluate

(If the region had been revolved about the line x = 3, the only difference in the in-
tegral would have been that r = 3 - x. Everything else, including the limits, would 
have remained the same.) ■

radius      height

thickness

dx

y

Axis of
rotation

(0, 4)

(x, y)

O

y

2 2 x

x 5 2

x

Fig. 26.27

EXERCISES 26.3

In Exercises 1 and 2, make the given changes in the indicated exam-
ples of this section and then find the indicated volumes.

 1. In Example 1, change y = x2 to y = x3.

 2. In Example 3, change y = 4 - x2 to y = 4 - x.

In Exercises 3–6, find the volume generated by revolving the region 
bounded by y = 2 - x, x = 0, and y = 0 about the indicated axis, 
using the indicated element of volume.

 3. x-axis (discs) 4. y-axis (discs)

 5. y-axis (shells) 6. x-axis (shells)

In Exercises 7–16, find the volume generated by revolving the regions 
bounded by the given curves about the x-axis. Use the indicated 
method in each case.

 7. y = x, y = 0, x = 3 (discs)

 8. y = 1x, x = 0, y = 2 (shells)

 9. y = 31x, y = 0, x = 4 (discs)

 10. y = 4x - x2, y = 0 (discs)

 11. y = x3, y = 8, x = 0 (shells)

 12. y = x2, y = x (shells)

 13. y = x2 + 1, x = 0, x = 3, y = 0 (discs)

 14. y = 6 - x - x2, x = 0, y = 0 (quadrant I), (discs)

 15. x = 4y - y2 - 3, x = 0 (shells)

 16. y = x4, x = 0, y = 1, y = 8 (shells)

In Exercises 17–26, find the volume generated by revolving the re-
gions bounded by the given curves about the y-axis. Use the indicated 
method in each case.

 17. y = x1>3, x = 0, y = 2 (discs)

 18. y = 2x2 - 1, y = 0, x = 3 (shells)

 19. y = 21x, x = 0, y = 3 (discs)

 20. y2 = x, y = 4, x = 0 (discs)

 21. x2 - 4y2 = 4, x = 3 (shells)

 22. y = 3x2 - x3, y = 0 (shells)
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 23. x = 6y - y2, x = 0 (discs)

 24. x2 + 4y2 = 4 (quadrant I), (discs)

 25. y = 24 - x2 (quadrant I), (shells)

 26. y = 8 - x3, x = 0, y = 0 (shells)

In Exercises 27–38, find the indicated volumes by integration.

 27. Describe a region that is revolved about the x-axis to generate a 

  volume found by evaluating the integral pL
2

1
x3 dx.

 28. Describe a region that is revolved about the y-axis to generate a 
volume found by the integral in Exercise 27.

 29. Find the volume generated if the region of Exercise 10 is revolved 
about the line x = 4.

 30. Find the volume generated if the region bounded by y = 1x and 
y = x>2 is revolved about the line y = 4.

 31. Derive the formula for the volume of a right circular cone of 
radius r and height h by revolving the area bounded by 
y = 1r>h2x, y = 0, and x = h about the x-axis.

 32.  Explain how to derive the formula for the volume of a sphere by 
using the disc method.

 33. The base of a solid is the region bounded by y = x2, y = 0, and 
x = 1. All vertical cross sections are squares with an edge in the 
xy-plane. Find the volume of the solid. (Note that this is not a 
solid generated by revolving a region about an axis.)

 34. The oil in a spherical tank 20.0 m in diameter is 7.5 m deep. How 
much oil is in the tank?

 35. A drumlin is an oval hill composed of relatively soft soil that was 
deposited beneath glacial ice. (The Halifax Citadel National 
Historic Site in Halifax, Nova Scotia, is built on a drumlin.) 
Computer analysis showed that the surface of a certain drumlin 
can be approximated by y = 1011 - 0.0001x22  revolved 180° 

about the x-axis from x = -100 to x = 100 (see Fig. 26.28). 
Find the volume (in m3) of this drumlin.

100 m100 m

y = 10 (1 − 0.0001x2)

Fig. 26.28

41.3 m 12.0 m

Fig. 26.29

 36. A commercial dirigible used for outdoor advertising has a  
helium-filled balloon in the shape of an ellipse revolved about its 
major axis. If the balloon is 41.3 m long and 12.0 m in diameter, 
what volume of helium is required to fill it? See Fig. 26.29.

 37. A hole 2.00 cm in diame-
ter is drilled through the 
centre of a spherical lead 
weight 6.00 cm in diame-
ter. How much lead is re-
moved? See Fig. 26.30.

6.00 cm2.00 cm

Fig. 26.30

 38. All horizontal cross sections of a keg 1.20 m tall are circular, and 
the sides of the keg are parabolic. The diameter at the top and bot-
tom is 0.80 m, and the diameter in the middle is 1.0 m. Find the 
volume that the keg holds.

Answers to Practice Exercises

1. 32p>3 2. 32p>3

In the study of mechanics, a very important property of an object is its centre of mass. 
In this section, we explain the meaning of centre of mass and then show how integra-
tion is used to determine the centre of mass for regions and solids of revolution.

If a mass m is at a distance d from a specified point O, the moment of the mass 
about O is defined as md. If several masses m1, m2, c, mn are at distances 
d1, d2, c, dn, respectively, from point O, the total moment (as a group) about O is 
defined as m1d1 + m2d2 + g + mndn. The centre of mass is that point d units from 
O at which all the masses could be concentrated to get the same total moment. 
Therefore, d is defined by the equation

 m1d1 + m2d2 + g + mndn = (m1 + m2 + g + mn)d (26.15)

The moment of a mass is a measure of its tendency to rotate about a point. A weight far 
from the point of balance of a long rod is more likely to make the rod turn than if the 
same weight were placed near the point of balance. It is easier to open a door if you 
push near the doorknob than if you push near the hinges. This is the type of physical 
property that the moment of mass measures.

 26.4 Centroids
 
 

Centroid of a Solid of Revolution

When finding moments, we must  
always use directed distances.
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 EXAMPLE  1  Balancing masses

One of the simplest and most basic illustrations of moments and centre of mass is seen 
in balancing a long rod (of negligible mass) with masses of different sizes, one on ei-
ther side of the balance point.

In Fig. 26.31, a mass of 5.0 kg is hung from the rod 0.8 m to the right of point O. 
We see that this 5.0-kg mass tends to turn the rod clockwise. A mass placed on the 
opposite side of O will tend to turn the rod counterclockwise. Neglecting the mass 
of the rod, in order to balance the rod at O, the moments must be equal in magnitude 
but opposite in sign.

For instance, a 4-kg mass would have to be placed at a distance d2, satisfying

5.010.82 + 4.01d22 = 15.0 + 4.02 102   Eq. (26.15) with d = 0

d2 = -1.0

In other words, the centre of mass of the combination of the 5.0-kg mass and the 4.0-kg 
mass is at O (with d = 0) if the 4.0-kg mass is placed 1.0 m to the left of O. ■

 EXAMPLE  2  Centre of mass of three masses

A mass of 3.0 g is placed at 12.0, 02  on the x-axis (distances in cm). Another mass of 
6.0 g is placed at 15.0, 02 , and a third mass of 7.0 g is placed at 16.0, 02 . See 
Fig. 26.32. Find the centre of mass of these three masses.

Taking the reference point as the origin, we find d1 = 2.0 cm, d2 = 5.0 cm, and 
d3 = 6.0 cm. Thus, m1d1 + m2d2 + m3d3 = 1m1 + m2 + m32d becomes

3.012.02 + 6.015.02 + 7.016.02 = 13.0 + 6.0 + 7.02d or d = 4.9 cm

This means that the centre of mass of the three masses is at 14.9, 02 . Therefore, a mass 
of 16.0 g placed at this point has the same moment as the three masses as a unit. ■

 EXAMPLE  3  Centre of mass of a metal plate

Find the centre of mass of the flat metal plate that is shown in Fig. 26.33.
We first note that the centre of mass is not on either axis. This can be seen from 

the fact that the major portion of the area is in the first quadrant. We will therefore 
measure the moments with respect to each axis to find the point that is the centre of 
mass. This point is also called the centroid of the plate.

The easiest method of finding this centroid is to divide the plate into rectangles, 
as indicated by the dashed line in Fig. 26.33, and assume that we may consider the 
mass of each rectangle to be concentrated at its centre. In this way, the centre of the 
left rectangle is at 1 -1.0, 1.02  (distances in cm), and the centre of the right rectan-
gle is at 12.5, 2.02 . The mass of each rectangle area, assumed uniform, is propor-
tional to its area. The area of the left rectangle is 8.0 cm2, and that of the right rec-
tangle is 12.0 cm2. Thus, taking moments with respect to the y-axis, we have

8.01 -1.02 + 12.012.52 = 18.0 + 12.02x

where x is the x-coordinate of the centroid. Solving for x, we have x = 1.1 cm.
Now, taking moments with respect to the x-axis, we have

8.011.02 + 12.012.02 = 18.0 + 12.02y

where y is the y-coordinate of the centroid. Thus, y = 1.6 cm. This means that the 
coordinates of the centroid, the centre of mass, are 11.1, 1.62 . This may be inter-
preted as meaning that a plate of this shape would balance on a single support under 
this point. As an approximate check, we note from the figure that this point appears 
to be a reasonable balance point for the plate. ■

4.0 kg

1.0 m 0.8 m

5.0 kg

O

Fig. 26.31

0 1 2 3 4 5 6

3.0 g 6.0 g

Centre of mass

7.0 g

Fig. 26.32

0

4

2

1

Centroid
3

4321−3 −2 −1

y (cm)

x (cm)

Fig. 26.33

■ Since the centre of mass does not depend 
on the density of the metal, we have assumed 
the constant of proportionality to be 1.
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CENTROID OF A THIN, FLAT PLATE BY INTEGRATION
If a thin, flat plate covers the region bounded by y1 = f11x2 , y2 = f21x2 , x = a, and 
x = b, as shown in Fig. 26.34, the moment of the mass of the element of area about the 
y-axis is given by 1rdA2x, where r is the mass per unit area. In this expression, rdA is 
the mass of the element, and x is its distance (moment arm) from the y-axis. The ele-
ment dA may be written as 1y2 - y12  dx, which means that the moment may be written 
as rx1y2 - y12  dx. If we then sum up the moments of all the elements and express this 
as an integral (which, of course, means sum), we have r1b

a x1y2 - y12  dx. If we con-
sider all the mass of the plate to be concentrated at one point x units from the y-axis, the 
moment would be 1rA2x, where rA is the mass of the entire plate and x is the distance 
the centre of mass is from the y-axis. By the previous discussion, these two expressions 
should be equal. This means r1b

a x1y2 - y12  dx = rAx. Since r appears on each side 
of the equation, we divide it out (we are assuming that the mass per unit area is con-
stant). The area A is found by the integral 1b

a 1y2 - y12  dx. Therefore, the x-coordinate 
of the centroid of the plate is given by

 x = L
b

a
x1y2 - y12  dx

L
b

a
1y2 - y12  dx

 (26.16)

Eq. (26.16) gives us the x-coordinate of the centroid of the plate if vertical elements are 
used.

x

x

O

y

y2 5 f2(x)

x 5 bx 5 a

y1 5 f1(x)

Moment arm

Fig. 26.34

The two integrals in Eq. (26.16) must be evaluated separately. We cannot cancel out 
the apparent common factor y2 - y1, and we cannot combine quantities and perform 

possible cancellations of factors common to the numerator and the denominator 
may be made.

COMMON ERROR

Following the same reasoning that we used in developing Eq. (26.16), for a thin 
plate covering the region bounded by the functions x1 = g11y2 , x2 = g21y2 , y = c, 
and y = d, as shown in Fig. 26.35, the y-coordinate of the centroid of the plate is given 
by the equation

 y = L
d

c
y1x2 - x12  dy

L
d

c
1x2 - x12  dy

 (26.17)

In this equation, horizontal elements are used.

x
O

y

y

x2 5 g2(y)

y 5 c

y 5 d

x1 5 g1(y)

Moment arm

Fig. 26.35

In applying Eqs. (26.16) and (26.17), we should keep in mind that each denominator 
on the right-hand sides gives the area of the plate and that, once we have found 
this area, we may use it for both x and y. In this way, we can avoid having to set up 
and perform one of the indicated integrations. Also, in finding the coordinates of 
the centroid, we should look for and utilize any symmetry the region may have.

LEARNING T IP
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 EXAMPLE  4  Centroid of a thin plate by integration

Find the coordinates of the centroid of a thin plate covering the region bounded by the 
parabola y = x2 and the line y = 4.

We sketch a graph indicating the region and an element of area (see Fig. 26.36). 
The curve is a parabola whose axis is the y-axis. Since the region is symmetric to the 
y-axis, the centroid must be on this axis. This means that the x-coordinate of the 
centroid is zero, or x = 0. To find the y-coordinate of the centroid, we have

moment arm of element

 y = L
4

0
y12x2  dy

L
4

0
2x dy

 using Eq. (26.17)

= L
4

0
y121y2dy

L
4

0
21y dy

=
2L

4

0
y3>2 dy

2L
4

0
y1>2 dy

=
212

52y5>2 0 40
212

32y3>2 0 40  integrate and evaluate numerator  
and denominator separately

=
4
5 1322
4
3 182 =

128
5

* 3
32

=
12
5

The coordinates of the centroid are 10, 12
5 2 . This plate would balance if a single 

pointed support were to be put under this point. ■

 EXAMPLE  5  Centroid of a triangular plate by integration

Find the coordinates of the centroid of an isosceles right triangular plate with side a. 
See Fig. 26.37.

We must first set up the region in the xy-plane. The choice shown in Fig. 26.37 is to 
place the triangle with one vertex at the origin and the right angle on the x-axis. Since 
each side is a, the hypotenuse passes through the point 1a, a2 . The equation of the 
hypotenuse is y = x. The x-coordinate of the centroid is found by using Eq. (26.16):

x = L
a

0
xy dx

L
a

0
y dx

= L
a

0
x1x2  dx

L
a

0
x dx

= L
a

0
x2 dx

1
2

 x2 0 a0 =

1
3

 x3 0 0a
a2

2

=

a3

3

a2

2

=
2a
3

The y-coordinate of the centroid is found by using Eq. (26.17):

 y = L
a

0
y1a - x2  dy

a2

2

= L
a

0
y1a - y2  dy

a2

2

= L
a

0
1ay - y22  dy

a2

2

 =

ay2

2
-

y3

3
 ` a

0

a2

2

=

a3

6

a2

2

=
a
3

Thus, the coordinates of the centroid are 12
3 a, 13 a2 . The results indicate that the cen-

tre of mass is 13 a units from each of the equal sides. ■

area

x
O

y

y
dy

2x

y 5 4

y 5 x2

Fig. 26.36

x

x

O

y

y y

dy

y ! x

a " x

dx

(a, a)

(x#, y#)

Fig. 26.37
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CENTROID OF A SOLID OF REVOLUTION
Another figure for which we wish to find the centroid is a solid of revolution. If the 
density of the solid is constant, the centroid is on the axis of revolution. The problem 
that remains is to find just where on the axis the centroid is located.

If a region bounded by the x-axis, as shown in Fig. 26.38, is revolved about the 
x-axis, a vertical element of area generates a disc element of volume. The centre of 
mass of the disc is at its centre, and we may consider its mass concentrated there. The 
moment about the y-axis of a typical element is x1r2 1py2 dx2 , where x is the moment 
arm, r is the density, and py2 dx is the volume. The sum of the moments of the ele-
ments can be expressed as an integral; it equals the volume times the density times the 
x-coordinate of the centroid of the volume. Since p and the density r would appear on 
each side of the equation, they cancel and need not be written. Therefore,

 x = L
b

a
xy2 dx

L
b

a
y2 dx

 (26.18)

is the equation for the x-coordinate of the centroid of a solid of revolution about the 
x-axis.

In the same manner, we may find that the y-coordinate of the centroid of a solid of 
revolution about the y-axis is

 y = L
d

c
yx2 dy

L
d

c
x2 dy

 (26.19)

 EXAMPLE  6  Centroid of a solid by integration

Find the coordinates of the centroid of the volume generated by revolving the first-
quadrant region under the curve y = 4 - x2 about the y-axis as shown in Fig. 26.39.

Since the curve is rotated about the y-axis, x = 0. The y-coordinate is

 moment arm

y = L
4

0
yx2 dy

L
4

0
x2 dy

 using Eq. (26.19)

 = L
4

0
y14 - y2  dy

L
4

0
14 - y2  dy

= L
4

0
14y - y22  dy

L
4

0
14 - y2  dy

=
2y2 - 1

3 y3 0 40
4y - 1

2 y2 0 40
 =

32 - 64
3

16 - 8
=

4
3

The coordinates of the centroid are 10, 432 . ■

x

O

x 5 a x 5 by

x
dx

Fig. 26.38

x

y

O

dy

(0, 4)

(2, 0) x

y

Fig. 26.39
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 EXAMPLE  7  Centroid of a right circular cone

Find the centroid of a solid right circular cone of radius r and height h.
To generate a right circular cone, we may revolve a right triangle about one of its 

legs (Fig. 26.40). Placing a leg of length h along the x-axis, we rotate the right trian-
gle whose hypotenuse is given by y = 1a>h2x about the x-axis. Therefore,

moment arm

x = L
h

0
xy2 dx

L
h

0
y2 dx

 using Eq. (26.18)

 = L
h

0
x c aa

h
bx d 2

dx

L
h

0
c aa

h
bx d 2

dx

=
aa2

h2 b a1
4

 x4b 0 h0
aa2

h2 b a1
3

 x3b 0 h0 =
3
4

 h

The centroid is located along the height 34 of the way from the vertex to the base. ■

O dx

x

h

ay

y (h, a)

x

Fig. 26.40

EXERCISES 26.4

In Exercises 1 and 2, make the given changes in the indicated exam-
ples of this section and then find the coordinates of the centroid.

 1. In Example 4, change y = x2 to y = 0 x 0  (y = x for x Ú 0, and 
y = -x for x 6 0).

 2. In Example 6, change y = 4 - x2 to y = 4 - x.

In Exercises 3–6, find the centre of mass (in cm) of the particles with 
the given masses located at the given points on the x-axis.

 3. 5.0 g at 11.0, 02 , 8.5 g at 14.2, 02 , 3.6 g at 12.5, 02
 4. 2.3 g at 11.3, 02 , 6.5 g at 15.8, 02 , 1.2 g at 19.5, 02
 5. 42 g at 1 -3.5, 02 , 24 g at 10, 02 , 15 g at 12.6, 02 , 84 g at 13.7, 02
 6. 550 g at 1 -42, 02 , 230 g at 1 -27, 02 , 470 g at 116, 02 , 120 g 

at 122, 02
In Exercises 7–10, find the coordinates (to 0.01 cm) of the centroids 
of the uniform flat-plate machine parts shown.

 7.  8. 
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In Exercises 11–34, find the coordinates of the centroids of the given 
figures. In Exercises 11–22, each region is covered by a thin, flat plate.

 11. The region bounded by y = x2 and y = 2

 12. The semicircular region in 
Fig. 26.41

 13. The region bounded by y = 4 - x and the axes

 14. The region bounded by y = x3, x = 2, and the x-axis

 15. The region bounded by y = 4x2 and y = 2x3

 16. The region bounded by y2 = x, y = 2, and x = 0

 17. The region bounded by y = 2x, y = 3x, and y = 6

 18. The region bounded by y = x2>3, x = 8, and y = 0

 19. The region bounded by y = 4 - 2x, x = 2, and y = 4

 20. The region bounded by y = 1x, y = 0, and x = 9

 21. The region bounded by x2 = 4py and y = a if p 7 0 and a 7 0

 22. The region above the x-axis, bounded by the ellipse with vertices 1a, 02  and 1 -a, 02 , and minor axis 2b (The area of an ellipse is 
pab.)

 23. The solid generated by revolving the region bounded by y = x3, 
y = 0, and x = 1 about the x-axis

 24. The solid generated by revolving the region bounded by 
y = 2 - 2x, x = 0, and y = 0 about the y-axis

 25. The solid generated by revolving the region in the first quadrant 
bounded by y2 = 4x, y = 0, and x = 1 about the y-axis

 26. The solid generated by revolving the region bounded by y = x2, 
x = 2, and the x-axis about the x-axis

 9.  10. 
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 27. The solid generated by revolving the region bounded by y2 = 4x 
and x = 1 about the x-axis

 28. The solid generated by revolving the region bounded by 
x2 - y2 = 9, y = 4, and the x-axis about the y-axis

 29.  Explain how to find the centroid of a right triangular plate with 
legs a and b. Find the location of the centroid.

 30. Find the location of the centroid of a hemisphere of radius a.

 31. A lens with semielliptical vertical cross sections and circular hori-
zontal cross sections is shown in Fig. 26.42. For proper installation in 
an optical device, its centroid must be known. Locate its centroid.

 32. A sanding machine disc can be described as the solid generated 
by rotating the region bounded by y2 = 4>x, y = 1, y = 2, and 
the y-axis about the y-axis (measurements in cm). Locate the cen-
troid of the disc.

 33. A highway marking pylon has the shape of a frustum of a cone. 
Find its centroid if the radii of its bases are 5.00 cm and 20.0 cm 
and the height between bases is 60.0 cm.

 34. A floodgate is in the shape of an isosceles trapezoid. Find the lo-
cation of the centroid of the floodgate if the upper base is 20 m, 
the lower base is 12 m, and the height between bases is 6.0 m. See 
Fig. 26.43.

1.00 cm 5.00 cm

5.00 cm
5.00 cm 5.00 cm

Fig. 26.42

20 m

12 m

6.0 m

Fig. 26.43

Important in the rotational motion of an object is its moment of inertia, which is anal-
ogous to the mass of a moving object. In each case, the moment of inertia or mass is the 
measure of the tendency of the object to resist a change in motion.

Suppose that a particle of mass m is rotating about some point: We define its mo-
ment of inertia as md2, where d is the distance from the particle to the point. If a group 
of particles of masses m1, m2, c, mn are rotating about an axis, as shown in  
Fig. 26.44, the moment of inertia I with respect to the axis of the group is

I = m1d2
1 + m2d2

2 + g + mnd2
n

where the d’s are the respective distances of the particles from the axis. If all the 
masses were at the same distance R from the axis of rotation, so that the total moment 
of inertia were the same, we would have

 m1d2
1 + m2d2

2 + g + mnd2
n = 1m1 + m2 + g + mn2R2 (26.20)

where R is called the radius of gyration.

 EXAMPLE  1  Moment of inertia and radius of gyration

Find the moment of inertia and the radius of gyration of the array of three masses, one 
of 3.0 g at 1 -2.0, 02 , another of 5.0 g at 11.0, 02 , and the third of 4.0 g at 14.0, 02 , 
with respect to the origin (distances in cm). See Fig. 26.45.

The moment of inertia of the array is

I = 3.01 -2.022 + 5.011.022 + 4.014.022 = 81 g # cm2

The radius of gyration is found from I = 1m1 + m2 + m32R2. Thus,

81 = 13.0 + 5.0 + 4.02R2,  R2 =
81
12

,  R = 2.6 cm

Therefore, a mass of 12.0 g placed at 12.6, 02  (or 1 -2.6, 02 ) has the same rota-
tional inertia about the origin as the array of masses as a unit. ■

 26.5 Moments of Inertia
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MOMENT OF INERTIA OF A THIN, FLAT PLATE
If a thin, flat plate covering the region is bounded by the curves of the functions 
y1 = f11x2 , y2 = f21x2, and the lines x = a and x = b, as shown in Fig. 26.46, the 
moment of inertia of this plate with respect to the y-axis, Iy, is given by the sum of the 
moments of inertia of the individual elements. The mass of each element is 
r1y2 - y12dx, where r is the mass per unit area and 1y2 - y12dx is the area of the 
element. The distance of the element from the y-axis is x. Representing this sum as an 
integral, we have

 Iy = rL
b

a
x21y2 - y12  dx (26.21)

To find the radius of gyration of the plate with respect to the y-axis, Ry , first find the 
moment of inertia, divide this by the mass of the plate, and take the square root of this 
result.

In the same manner, the moment of inertia of a thin plate, with respect to the x-axis, 
bounded by x1 = g11y2  and x2 = g21y2  is given by

 Ix = rL
d

c
y21x2 - x12  dy (26.22)

We find the radius of gyration of the plate with respect to the x-axis, Rx, in the same 
manner as we find it with respect to the y-axis (see Fig. 26.47).

 EXAMPLE  2  Moment of inertia of a plate

Find the moment of inertia and radius of gyration of the plate covering the region 
bounded by y = 4x2, x = 1, and the x-axis with respect to the y-axis.

We find the moment of inertia of this plate (see Fig. 26.48) as follows:

distance from element to axis

 Iy = rL
1

0
x2y dx using Eq. (26.21)

 = rL
1

0
x214x22dx = 4rL

1

0
x4 dx

 = 4ra1
5

 x5b ` 1
0

=
4r
5

To find the radius of gyration, we first determine the mass of the plate:

 m = rL
1

0
y dx = rL

1

0
14x22  dx  m = rA

 = 4ra1
3

 x3b ` 1
0

=
4r
3

 R2
y =

Iy

m
=

4r
5

* 3
4r

=
3
5

  R2
y = Iy>m

 Ry = A3
5

=
115

5
= 0.775

Therefore, if all of the mass of the plate were at a distance of 0.775 from the y-axis, the mo-
ment of inertia about the y-axis is the same as the moment of inertia of the plate itself. ■

x

x

O

y

y2 5 f2(x)

x 5 bx 5 a

y1 5 f1(x)

Fig. 26.46

x
O

y

y

x2 5 g2(y)

y 5 c

y 5 d

x1 5 g1(y)

Fig. 26.47

xx
O dx

y

Ry

(x, y)

y 5 4x2

x 5 1

Fig. 26.48
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 EXAMPLE  3  Moment of inertia of a triangular plate

Find the moment of inertia of a right triangular plate with sides a and b with respect to 
side b. Assume that r = 1.

Placing the triangle as shown in Fig. 26.49, we see that the equation of the hypot-
enuse is y = 1a>b2x. The moment of inertia is

distance from element to axis

Ix = L
a

0
y21b - x2  dy using Eq. (26.22)

 = L
a

0
y2ab - b

a
 yb  dy = bL

a

0
ay2 - 1

a
 y3b  

dy

 = ba1
3

 y3 - 1
4a

 y4b ` a
0

= baa3

3
- a3

4
b =

ba3

12
 ■

MOMENT OF INERTIA OF A SOLID
In applications, among the most important moments of inertia are those of solids of revolu-
tion. Since all parts of an element of mass should be at the same distance from the 
axis, the most convenient element of volume to use is the cylindrical shell. In Fig. 26.50, 
if the region bounded by the curves y1 = f11x2 , y2 = f21x2 , x = a, and x = b is  
revolved about the y-axis, the moment of inertia of the element of volume is 
r32px1y2 - y12  dx4 1x22 , where r is the density, 2px1y2 - y12  dx is the volume of the 
element, and x2 is the square of the distance from the y-axis. Expressing the sum of the ele-
ments as an integral, the moment of inertia of the solid with respect to the y-axis, Iy, is

 Iy = 2prL
b

a
1y2 - y12x3 dx (26.23)

The radius of gyration Ry is found by determining (1) the moment of inertia, (2) the 
mass of the solid, and (3) the square root of the quotient of the moment of inertia di-
vided by the mass.

x
O

y

y

(b, a)

b 2 x
dy

y 5 xa
b

Fig. 26.49

y

y2 − y1

x
O

x

y = f2(x)

y = f1(x)

x = b

dx

x = a

(x, y)

Fig. 26.50

y

y

x
O

(x, y)
dy

x2 = g2(y)x1 = g1(y)

y = d

y = c

x2 − x1

Fig. 26.51

■ Note carefully that Eq. (26.23) gives the  
moment of inertia with respect to the y-axis  
and that 1y2 - y12  is the height of the shell 
(see Fig. 26.21).

The moment of inertia of the solid (see Fig. 26.51) generated by revolving the re-
gion bounded by x1 = g11y2 , x2 = g21y2 , y = c, and y = d about the x-axis, Ix, is 
given by
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 Ix = 2prL
d

c
1x2 - x12y3 dy (26.24)

The radius of gyration with respect to the x-axis, Rx, is found in the same manner as Ry.

 EXAMPLE  4  Moment of inertia of a solid

Find the moment of inertia and radius of gyration with respect to the x-axis of the solid 
generated by revolving the region bounded by the curves of y3 = x, y = 2, and the  
y-axis about the x-axis. See Fig. 26.52.

distance from element to axis

Ix = 2prL
2

0
1x2 - x12y3 dy using Eq. (26.24)

= 2prL
2

0
1y32y3 dy x2 - x1 = y3 - 0 = y3

 = 2pra1
7

 y7b ` 2
0

=
256pr

7

m = 2prL
2

0
xy dy mass = r * volume

 = 2prL
2

0
y3y dy = 2pra1

5
 y5b ` 2

0
=

64pr
5

R2
x =

256pr
7

* 5
64pr

=
20
7

 R2
x = Ix>m

 Rx = A20
7

=
2
7
135 = 1.69 ■

 EXAMPLE  5  Moment of inertia of a solid disc

As noted at the beginning of this section, the moment of inertia is important when 
studying the rotational motion of an object. For this reason, the moments of inertia of 
various objects are calculated, and the formulas tabulated. Such formulas are usually 
expressed in terms of the mass of the object.

Among the objects for which the moment of inertia is important is a solid disc. 
Find the moment of inertia of a disc with respect to its axis and rewrite it in terms of 
its mass.

To generate a disc (see Fig. 26.53), we rotate the region bounded by the axes, 
x = r and y = b, about the y-axis. We then have

distance from element to axis

 Iy = 2prL
r

0
1y2 - y12x3 dx   using Eq. (26.23)

 = 2prL
r

0
1b2x3dx = 2prbL

r

0
x3 dx  y2 - y1 = b - 0 = b

 = 2prba1
4

 x4b ` r
0

=
prbr4

2

■ Note carefully that Eq. (26.24) gives the  
moment of inertia with respect to the x-axis  
and that 1x2 - x12  is the height of the shell 
(see Fig. 26.21).

y

y

x
O

dy
(x, y)

y = 2
y3 = xx2 − x1

Fig. 26.52

y

O
x
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x x = r

y = b

y2 − y1

Fig. 26.53
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The mass of the disc is r1pr22b. Rewriting the expression for Iy, we have

Iy =
1prbr22r2

2
=

mr2

2
 ■

Due to the limited methods of integration available at this point, we cannot integrate 
the expressions for the moments of inertia of circular areas or of a sphere. These will be 
introduced in Section 28.8 in the exercises, by which point the proper method of inte-
gration will have been developed.

EXERCISES 26.5

In Exercises 1 and 2, make the given changes in the indicated exam-
ples of this section, and then solve the resulting problems.

 1. In Example 2, change y = 4x2 to y = 4x.

 2. In Example 4, change y3 = x to y2 = x.

In Exercises 3–6, find the moment of inertia (in g # cm2) and the ra-
dius of gyration (in cm) with respect to the origin of each of the given 
arrays of masses located at the given points on the x-axis.

 3. 5.0 g at 12.4, 02 , 3.2 g at 13.5, 02
 4. 3.4 g at 1 -1.5, 02 , 6.0 g at 12.1, 02 , 2.6 g at 13.8, 02
 5. 45.0 g at 1 -3.80, 02 , 90.0 g at 10.00, 02 , 62.0 g at 15.50, 02
 6. 564 g at 1 -45.0, 02 , 326 g at 1 -22.5, 02 , 720 g at 115.4, 02 , 

205 g at 164.0, 02
In Exercises 7–28, find the indicated moment of inertia or radius of 
gyration.

 7. Find the moment of inertia of a plate covering the region bounded 
by x = -1, x = 1, y = 0, and y = 1 with respect to the x-axis.

 8. Find the radius of gyration of a plate covering the region bounded 
by x = 2, x = 4, y = 0, and y = 4 with respect to the y-axis.

 9. Find the moment of inertia of a plate covering the first-quadrant 
region bounded by y2 = x, x = 9, and the x-axis with respect to 
the x-axis.

 10. Find the moment of inertia of a plate covering the region bounded 
by y = 2x, x = 1, x = 2, and the x-axis with respect to the y-axis.

 11. Find the radius of gyration of a plate covering the region bounded 
by y = x3, x = 3, and the x-axis with respect to the y-axis.

 12. Find the radius of gyration of a plate covering the first-quadrant 
region bounded by y2 = 1 - x with respect to the x-axis.

 13. Find the moment of inertia of a right triangular plate with sides a 
and b with respect to side a in terms of the mass of the plate.

 14. Find the moment of inertia of a rectangular plate of sides a and b 
with respect to side a. Express the result in terms of the mass of 
the plate.

 15. Find the radius of gyration of a plate covering the region bounded 
by y = x2, x = 3, and the x-axis with respect to the x-axis.

 16. Find the radius of gyration of a plate covering the region bounded 
by y2 = x3, y = 8, and the y-axis with respect to the y-axis.

 17. Find the radius of gyration of the plate of Exercise 16 with re-
spect to the x-axis.

 18. Find the radius of gyration of a plate covering the first-quadrant 
region bounded by x = 1, y = 2 - x, and the y-axis with respect 
to the y-axis.

 19. Find the moment of inertia with respect to its axis of the solid 
generated by revolving the region bounded by y2 = 4x, y = 2, 
and the y-axis about the x-axis.

 20. Find the radius of gyration with respect to its axis of the solid 
generated by revolving the first-quadrant region under the curve 
y = 4 - x2 about the y-axis.

 21. Find the radius of gyration with respect to its axis of the solid 
generated by revolving the region bounded by y = 4x - x2 and 
the x-axis about the y-axis.

 22. Find the radius of gyration with respect to its axis of the solid 
generated by revolving the region bounded by y = 2x and y = x2 
about the y-axis.

 23. Find the moment of inertia in terms of its mass of a right circular 
cone of radius r and height h with respect to its axis. See Fig. 26.54.

h

rAxis

Fig. 26.54
 24. Find the moment of inertia in terms of its mass of a circular hoop 

of radius r and of negligible thickness with respect to its centre.

 25. A rotating drill head is in the shape of a right circular cone. Find 
the moment of inertia of the drill head with respect to its axis if its 
radius is 0.600 cm, its height is 0.800 cm, and its mass is 3.00 g. 
(See Exercise 23.)

 26. Find the moment of inertia (in kg # m2) of a rectangular door 2 m 
high and 1 m wide with respect to its hinges if r = 3 kg>m2. 
(See Exercise 14.)

 27. Find the moment of inertia of a flywheel with respect to its axis if 
its inner radius is 4.0 cm, its outer radius is 6.0 cm, and its mass is 
1.2 kg. See Fig. 26.55.

Axis

4.0 cm

6.0 cm

Fig. 26.55

L

Mass ! m

Fig. 26.56

 28. A cantilever beam is supported only at its left end, as shown in 
Fig. 26.56. Explain how to find the formula for the moment of 
inertia of this beam with respect to a vertical axis through its left 
end if its length is L and its mass is m. (Consider the mass to be 
distributed evenly along the beam. This is not an area or volume 
type of problem.) Find the formula for the moment of inertia.
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We have seen that the definite integral is used to find the exact measure of the sum of 
products in which one factor is an increment that approaches a limit of zero. This 
makes the definite integral a powerful mathematical tool in that a great many applica-
tions can be expressed in this form. The following examples show three more applica-
tions of the definite integral, and others are shown in the exercises.

WORK BY A VARIABLE FORCE
In physics, work is defined as the product of a constant force times the distance 
through which it acts. When we consider the work done in stretching a spring, the first 
thing we recognize is that the more the spring is stretched, the greater is the force nec-
essary to stretch it. Thus, the force varies. However, if we are stretching the spring a 
distance ∆x, where we are considering the limit as ∆x S 0, the force can be considered 
as constant over ∆x. Adding the product of force1 times ∆x1, force2 times ∆x2, and so 
forth, we see that the total is the sum of these products. Thus, the work can be ex-
pressed as a definite integral in the form

 W = L
b

a
f1x2  dx (26.25)

where f1x2  is the force as a function of the distance the spring is stretched. The limits 
a and b refer to the initial and final distances the spring is stretched from its normal 
length.

One problem remains: We must find the function f1x2 . From physics, we learn that 
the force required to stretch a spring is proportional to the amount it is stretched (Hooke’s 
law). If a spring is stretched x units from its normal length, then f1x2 = kx. From condi-
tions stated for a particular spring, the value of k may be determined. Thus, W = 1b

a kx dx 
is the formula for finding the total work done in stretching a spring. Here, a and b are the 
initial and final amounts the spring is stretched from its natural length.

 EXAMPLE  1  Work done stretching a spring

A spring of natural length 12 cm requires a force of 6.0 N to stretch it 2.0 cm. See  
Fig. 26.57. Find the work done in stretching it 6.0 cm.

From Hooke’s law, we find the constant k for the spring, and therefore f1x2  as

 f1x2 = kx,  6.0 = k12.02 ,  k = 3.0 N/cm

 = 3.0x

Since the spring is to be stretched 6.0 cm, a = 0 (it starts unstretched) and b = 6.0 (it 
is 6.0 cm longer than its normal length). Therefore, the work done in stretching it is

 W = L
6.0

0
3.0x dx = 1.5x2 0 06.0  using Eq. (26.25)

 = 54 N #  cm ■

Problems involving work by a variable force arise in many fields of technology. On 
the following page is an illustration from electricity that deals with the motion of an 
electric charge through an electric field created by another electric charge.

Electric charges are of two types, designated as positive and negative. A basic law is 
that charges of the same sign repel each other and charges of opposite signs attract each 
other. The force between charges is proportional to the product of their charges, and 
inversely proportional to the square of the distance between them.

 26.6 Other Applications
 

 
Average Value of a Function

■ Hooke’s law is named for the English  
physicist Robert Hooke (1635–1703).

2.0 cm

12 cm

6.0 N

Fig. 26.57
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The force f1x2  between electric charges is therefore given by

 f1x2 =
kq1q2

x2  (26.26)

when q1 and q2 are the charges (in coulombs), x is the distance (in metres), the force is 
in newtons, and k = 9.0 * 109 N #  m2>C2. For other systems of units, the numerical 
value of k is different. We can find the work done when electric charges move toward 
each other or when they separate by use of Eq. (26.26) in Eq. (26.25).

 EXAMPLE  2  Work done in moving A-particles

Find the work done when two a-particles, q = 0.32 aC each, move until they are  
10 nm apart, if they were originally separated by 1.0 m.

From the given information, we have for each a-particle

q = 0.32 aC = 0.32 * 10-18 C = 3.2 * 10-19 C

Since the particles start 1.0 m apart and are moved to 10 nm apart, a = 1.0 m and 
b = 10 * 10-9 m = 10-8 m. The work done is

f1x2  from Eq. (26.26)

 W = L
10-8

1.0

9.0 * 10913.2 * 10-1922

x2  dx   using Eq. (26.25)

 = 9.2 * 10-28L
10-8

1.0

dx

x2 = 9.2 * 10-28a- 1
x
b 2

1.0

10-8

 = -9.2 * 10-281108 - 12 = -9.2 * 10-20 J

Since 108 W 1, where W  means “much greater than,” the 1 may be neglected in the 
calculation. The minus sign in the result means that work must be done on the system 
to move the particles toward each other. If free to move, they tend to separate. ■

The following is another type of problem involving work by a variable force.

 EXAMPLE  3  Work done winding up a cable

Find the work done in winding up 60.0 m of a 100-m cable that weighs 4.00 N>m. See 
Fig. 26.58.

First, we let x denote the length of cable that has been wound up at any time. 
Then the force required to raise the remaining cable equals the weight of the cable 
that has not yet been wound up. This weight is the product of the unwound cable 
length, 100 - x, and its weight per unit length, 4.00 N>m, or

f1x2 = 4.001100 - x2
Since 60.0 m of cable are to be wound up, a = 0 (none is initially wound up) and 
b = 60.0 m. The work done is

W = L
60.0

0
4.001100 - x2  dx  using Eq. (26.25)

 = L
60.0

0
1400 - 4.00x2  dx = 400x - 2.00x2 0 060.0 = 16 800 N # m ■

x

100 ! x

dx

Fig. 26.58
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FORCE DUE TO LIQUID PRESSURE
The second application of integration in this section deals with the force due to liquid 
pressure. The force F on an area A at the depth h in a liquid of density g is F = ghA. 
Let us assume that the plate shown in Fig. 26.59 is submerged vertically in the liquid. 
Using integration to sum the forces on the elements of area, the total force on the plate 
is given by

 F = gL
b

a
lh dh (26.27)

Here, l is the length of the element of area, h is the depth of the element of area, g is the 
weight per unit volume of the liquid, a is the depth of the top, and b is the depth of the 
bottom of the area on which the force is exerted. When the liquid is water, we use 
g = 9800 N/m3.

 EXAMPLE  4  Force on a floodgate

A vertical floodgate of a dam is 3.00 m wide and 2.00 m high. Find the force on the 
floodgate if its upper edge is 1.00 m below the surface of the water. See Fig. 26.60.

Each element of area of the floodgate has a length of 3.00 m, which means that 
l = 3.00 m. Since the top of the gate is 1.00 m below the surface, a = 1.00 m, and 
since the gate is 2.00 m high, b = 3.00 m. The force on the gate is

F = 9800L
3.00

1.00
3.00h dh  using Eq. (26.27)

 = 29 400L
3.00

1.00
h dh

 = 14 700h2 0 1.00
3.00 = 14 70019.00 - 1.002

 = 118 000 N =  118 kN  ■

 EXAMPLE  5  Force on the end of a tank of water

The vertical end of a tank full of water is in the shape of a right triangle as shown 
in Fig. 26.61. (Note the y-axis directed downward.) What is the force on the end of 
the tank?

The equation of the line OA is y = 1
2 x. Thus, we see that the length of an element 

of area of the end of the tank is 4.0 - x, the depth of the element of area is y, the top 
of the tank is y = 0, and the bottom is y = 2.0 m. Therefore, the force on the end of 
the tank is

length  depth

 F = 9800L
2.0

0
14.0 - x2 1y2 1dy2   using Eq. (26.27)

 = 9800L
2.0

0
14.0 - 2y2 1y dy2

 = 19 600L
2.0

0
12.0y - y22  dy = 19 600a1.0y2 - 1

3
 y3b `

0

2.0

 = 26 100 N ■

Surface

dh

a

b

h

l

Fig. 26.59

Note that integration in Eq. (26.27) is 
done from the top to the bottom of 
the submerged plate. If a problem is 
set up using coordinate axes, it is 
convenient to have the y-axis di-
rected downward so that integration 
is done in the positive direction.

LEARNING T IP

■ See the chapter introduction.

Surface

2.00 m

1.00 m

3.00 m

dh

h

Fig. 26.60

4.0 m

2.0 m

dy

x

x

y

y0

A(x, y)

Fig. 26.61
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AVERAGE VALUE OF A FUNCTION
The third application of integration shown in this section is that of the average value of 
a function. In general, an average is found by summing up the quantities to be averaged 
and then dividing by the total number of them. Generalizing on this and using integra-
tion for the summation, the average value of a function y with respect to x from x = a 
to x = b is given by

 yav = L
b

a
y dx

b - a
 (26.28)

The following examples illustrate applications of the average value of a function.

 EXAMPLE  6  Average value of velocity

The velocity v (in m>s) of an object falling under the influence of gravity as a function 
of time t (in s) is given by v = 9.80t. What is the average velocity of the object with 
respect to time for the first 3.0 s?

In this case, we want the average value of the function v = 9.80t from t = 0 s to 
t = 3.0 s. This gives us

 vav = L
3.0

0
v dt

3.0 - 0
  using Eq. (26.28)

 = L
3.0

0
9.80t dt

3.0
=

4.90t2

3.0
 `

0

3.0

 = 14.7 m>s

This result can be interpreted as meaning that an average velocity of 14.7 m>s for 
3.0 s would result in the same distance, 44.1 m, being travelled by the object as that 
with the variable velocity. Since s = 1v dt, the numerator represents the distance 
travelled. ■

 EXAMPLE  7  Average value of electric power

The power P (in W) developed in a certain resistor as a function of the current i (in A) 
is P = 6.0i2. What is the average power with respect to the current as the current 
changes from 2.0 A to 5.0 A?

In this case, we are to find the average value of the function P from i = 2.0 A to 
i = 5.0 A. This average value of P is

 Pav = L
5.0

2.0
Pdi

5.0 - 2.0
  using Eq. (26.28)

 =
6.0L

5.0

2.0
i2 dt

3.0
=

2.0i3

3.0
`
2.0

5.0
=

2.01125 - 8.02
3.0

= 78 W ■

In general, it might be noted that the average value of y with respect to x is that value 
of y which, when multiplied by the length of the interval for x, gives the same area as 
that under the curve of y as a function of x.
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EXERCISES 26.6

 1. In Example 1, find the work done in stretching the spring from a 
length of 15.0 cm to a length of 18.0 cm.

 2. In Example 3, find the work done in winding up all the cable.

 3. In Example 4, find the force on the floodgate if the upper edge is 
2.00 m below the surface.

 4. In Example 6, find the average velocity of the object with respect 
to time between 3.00 s and 6.00 s.

 5. The spring of a spring balance is 8.0 cm long when there is no 
weight on the balance, and it is 9.5 cm long with 6.0 N hung from 
the balance. How much work is done in stretching it from 8.0 cm 
to a length of 10.0 cm?

 6. How much work is done in stretching the spring of Exercise 5 
from a length of 10.0 cm to 12.0 cm?

 7. A 640-N person compresses a bathroom scale 0.080 cm. If the 
scale obeys Hooke’s law, how much work is done compressing 
the scale if a 720-N person stands on it?

 8. A force F of 25 N on the spring in the lever-
spring mechanism shown in Fig. 26.62 
stretches the spring by 16 mm. How much 
work is done by the 25-N force in stretching 
the spring?

 9. An electron has a 1.6 * 10-19 C negative 
charge. How much work is done in separat-
ing two electrons from 1.0 pm to 4.0 pm?

 10. How much work is done in separating an electron (see Exercise 9) 
and an oxygen nucleus, which has a positive charge of 
1.3 * 10-18 C, from a distance of 2.0 mm to a distance of 1.0 m?

 11. The gravitational force (in N) of attraction between two objects is 
given by F = k>x2, where x is the distance between the objects. 
If the objects are 10 m apart, find the work required to separate 
them until they are 100 m apart. Express the result in terms of k.

 12. Find the work done by winding up 20 m of a 25-m rope on which 
the force of gravity is 6.0 N>m.

 13. A 6000-N elevator is suspended on cables that together weigh 
48 N>m. How much work is done in raising the elevator from the 
basement to the second floor, a distance of 8.0 m?

 14. A chain is being unwound from a winch. The force of gravity on 
it is 12.0 N>m. When 20 m have been unwound, how much work 
is done by gravity in unwinding another 30 m?

 15. At liftoff, a rocket weighs 320 kN, including the weight of its 
fuel. During the first (vertical) stage of ascent, fuel is consumed at 
the rate of 12 kN per 1000 m of ascent. How much work is done 
in lifting the rocket to an altitude of 12 000 m? (Disregard the de-
crease in weight due to increasing elevation.)

 16. While descending, a 550-N weather balloon enters a zone of 
freezing rain in which ice forms on the balloon at the rate of 
7.50 N per 100 m of descent. Find the work done on the balloon 
during the first 1000 m of descent through the freezing rain.

 17. A meteorite is 75 000 km from the centre of Earth and falls to the 
surface of Earth. From Newton’s law of gravity (see page 501), 
the force of gravity varies inversely as the square of the distance 

between the meteorite and the centre of Earth. Find the work done 
by gravity if the meteorite weighs 160 N at the surface, and the 
radius of Earth is 6400 km.

 18. A rectangular swimming pool full of water is 5.50 m wide,13.5 m 
long, and 1.75 m deep. Find the work done in pumping the water 
from the pool to a level 1.25 m above the top of the pool.

 19. Find the work done in pumping the water out of the top of a cylin-
drical tank 2.0 m in radius and 4.0 m high, given that the tank is 
initially full and water weighs 9.8 kN>m3. (Hint: If horizontal 
slices dx m thick are used, each element weighs 
98001p2 12.0022  dx N, and each element must be raised 4.0 – x 
m, if x is the distance from the base to the element (see Fig. 26.63). 
In this way, the force, which is the weight of the slice, and the 
distance through which the force acts are determined. Thus, the 
products of force and distance are summed by integration.)

F

Fig. 26.62

4.0 m

2.0 m

4 − x

dx

x

Fig. 26.63

 20. A hemispherical tank of radius 3.0 m is full of water. Find the 
work done in pumping the water out of the top of the tank. (See 
Exercise 19. This problem is similar, except that the weight of 
each element is 9800p (radius)2 (thickness), where the radius of 
each element is different. If we let x be the radius of an element 
and y be the distance the element must be raised, we have 
9800px2 dy with x2 + y2 = 9.0.)

 21. One end of a spa is a vertical rectangular wall 4.00 m wide. What 
is the force exerted on this wall by the water if it is 0.80 m deep?

 22. Find the force on one side of a cubical container 6.0 cm on an 
edge if the container is filled with mercury. The density of mer-
cury is 133 kN>m3.

 23. A rectangular sea aquarium observation window is 3.00 m wide 
and 2.00 m high. What is the force on this window if the upper 
edge is 1.50 m below the surface of the water? The density of 
seawater is 10.1 kN>m3.

 24. A horizontal tank has vertical circular ends, each with a radius of 
2.00 m. It is filled to a depth of 2.00 m with oil of density 
9400 N>m3. Find the force on one end of the tank.

 25. A swimming pool is 6.00 m wide and 15.0 m long. The bottom 
has a constant slope such that the water is 1.00 m deep at one end 
and 2.00 m deep at the other end. Find the force of the water on 
one of the sides of the pool.

 26. Find the force on the lower half of the wall at the deep end of the 
swimming pool in Exercise 25.

 27. A small dam is in the shape of the area bounded by y = x2 and 
y = 20 (distances in m). Find the force on the area below y = 4 
if the surface of the water is at the top of the dam.
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 28. The tank on a tanker truck has vertical elliptical ends with the 
major axis horizontal. The major axis is 2.0 m and the minor axis 
1.3 m. Find the force on one end of the tank when it is half-filled 
with fuel oil of density 7.8 kN>m3.

 29. A watertight cubical box with an edge of 2.00 m is suspended in 
water such that the top surface is 1.00 m below water level. Find 
the total force on the top of the box and the total force on the bot-
tom of the box. What meaning can you give to the difference of 
these two forces?

 30. Find the force on the region bounded by x = 2y - y2 and the  
y-axis if the upper point of the area is at the surface of the water. 
All distances are in metres.

 31. The electric current i (in A) as a function of the time t (in s) for a 
certain circuit is given by i = 4t - t2. Find the average value of 
the current with respect to time for the first 4.0 s.

 32. The temperature T (in °C) recorded in a city during a given day 
  approximately followed the curve of 
  T = 0.001 00t4 - 0.280t2 + 25.0, where t is the number of 

hours from noon 1 -12 h … t … 12 h2 . What was the average 
temperature during the day?

 33. The efficiency h (in ,) of an automobile engine is given by 
h = 0.768s - 0.000 04s3, where s is the speed (in km>h) of the car. 
Find the average efficiency with respect to the speed for 
s = 30.0 km>h to s = 90.0 km>h. (See Example 1 of Section 24.7.)

 34. Find the average value of the volume of a sphere with respect to 
the radius. Explain the meaning of the result.

 35. The length of arc s of a curve from x = a to x = b is

 s = L
b

a B1 + ady

dx
b2

dx (26.29)

  The cable of a bridge can be described by the equation 
y = 0.04x3>2 from x = 0 to x = 100 m. Find the length of the 
cable. See Fig. 26.64.

100 mFig. 26.64

 37. The area of a surface of revolution from x = a to x = b is 

S = 2pL
b

a
yB1 + ady

dx
b2

dx

  Find the formula for the lateral surface area of a right circular 
cone of radius r and height h.

 38. The grinding surface of a grinding machine can be described as 
the surface generated by rotating the curve y = 0.2x3 from x = 0 
to x = 2.0 cm about the x axis. Find the grinding surface area. 
(See Exercise 37.)

 CHAPTER 26   EQUATIONS

Velocity v = La dt (26.1)

 v = at + C1 (26.2)

Displacement s = Lv dt (26.3)

Electric current i =
dq

dt
 (26.4)

Electric charge q = L i dt (26.5)

Voltage across a capacitor VC =
1
C L i dt (26.6)

Area A = L
b

a
y dx = L

b

a
f1x2  dx (26.7)

 A = L
d

c
x dy = L

d

c
g1y2  dy (26.8)

 A = L
b

a
1y2 - y12  dx (26.9)

 A = L
d

c
1x2 - x12  dy (26.10)

 36. A rocket takes off in a path described by the equation 
y = 2

31x2 - 123>2. Find the distance travelled by the rocket for 
x = 1.0 km to x = 3.0 km. (See Exercise 35.)
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Volume V = pL
b

a
y2 dx = pL

b

a
3 f1x2 42 dx (26.11)

 V = pL
d

c
x2 dy (26.12)

Shell dV = 2p1 radius2 * 1height2 * 1 thickness2  (26.13)
Disc dV = p1radius22 * 1 thickness2  (26.14)

Centre of mass m1d1 + m2d2 + g + mndn = 1m1 + m2 + g + mn2d (26.15)

Centroid of a flat plate x = L
b

a
x1y2 - y12  dx

L
b

a
1y2 - y12  dx

   (26.16)   y = L
d

c
y1x2 - x12  dy

L
d

c
1x2 - x12  dy

 (26.17)

Centroid of a solid of revolution x = L
b

a
xy2 dx

L
b

a
y2 dx

 (26.18)   y = L
d

c
yx2 dy

L
d

c
x2 dy

 (26.19)

Radius of gyration m1d2
1 + m2d2

2 + g + mnd2
n = 1m1 + m2 + g + mn2R2 (26.20)

Moment of inertia of a flat plate Iy = rL
b

a
x21y2 - y12  dx (26.21)

 Ix = rL
d

c
y21x2 - x12  dy (26.22)

Moment of inertia of a solid of revolution Iy = 2prL
b

a
1y2 - y12x3 dx (26.23)

 Ix = 2prL
d

c
1x2 - x12y3 dy (26.24)

Work W = L
b

a
f1x2  dx (26.25)

Force between electric charges f1x2 =
kq1q2

x2  (26.26)

Force due to liquid pressure F = gL
b

a
lh dh (26.27)

Average value yav = L
b

a
y dx

b - a
 (26.28)

Length of arc s = L
b

a B1 + ady
dx

b2
dx (26.29)
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 CHAPTER 26   REVIEW EXERCISES

 1. A pitcher releases a baseball horizontally at 45.0 m>s. How far 
does it drop while travelling 17.1 m to home plate?

 2. If the velocity v (m>s) of a subway train after the brakes are ap-
plied can be expressed as v = 1400 - 20t, where t is the time 
in seconds, how far does it travel in coming to a stop?

 3. A weather balloon is rising at the rate of 10.0 m>s when a small 
metal part drops off. If the balloon is 60.0 m high at this instant, 
when will the part hit the ground?

 4. A float is dropped into a river at a point where it is flowing at 
1.5 m>s. How far does the float travel in 30 s if it accelerates 
downstream at 0.010 m>s2?

 5. A golf ball is putted straight for the hole with an initial velocity 
of 2.50 m>s and acceleration of -0.750 m>s2. Will the ball 
make it to the hole, which is 4.20 m away?

 6. What is the initial vertical velocity of a baseball that just reaches 
the ceiling of an indoor stadium that is 65 m high?

 7. The electric current i (in A) in a circuit as a function of the time 
t (in s) is i = 0.25121t - t2 . Find the total charge to pass a 
point in the circuit in 2.0 s.

 8. The current i (in A) in a certain electric circuit is given by 
i = 11 + 4t, where t is the time (in s). Find the charge that 
passes a given point from t = 1.0 s to t = 3.0 s if q0 = 0.

 9. The voltage across a 5.5-nF capacitor in an FM radio receiver is 
zero. What is the voltage after 25 ms if a current of 12 mA 
charges the capacitor?

 10. The initial voltage across a capacitor is zero, and VC = 2.50 V 
after 8.00 ms. If a current i = t>2t2 + 1, where i is the current 
(in A) and t is the time (in s), charges the capacitor, find the ca-
pacitance C of the capacitor.

 11. The distribution of weight on a cable is not uniform. If the slope 
of the cable at any point is given by dy>dx = 20 + 0.025x2 and 
if the origin of the coordinate system is at the lowest point, find 
the equation that gives the curve described by the cable.

 12. The time rate of change of the reliability R (in ,) of a computer 
system is dR>dt = -2.510.05t + 12-1.5, where t is the time 
(in h). If R = 100 for t = 0, find R for t = 100 h.

 13. Find the area between y = 19 - x and the coordinate axes.

 14. Find the area bounded by y = 3x2 - x3 and the x-axis.

 15. Find the area bounded by y2 = 2x and y = x - 4.

 16. Find the area bounded by y = 6> 1x + 322, y = 0, x = -1, 
and x = 3.

 17. Find the area between y = x2 and y = x3 - 2x2.

 18. Find the area between y = x2 + 8 and y = 3x2.

 19. Show that the curve y = x2n 1n 7 02  divides the square 
bounded by x = 0, y = 0, x = 1, and y = 1 into two regions, 
the areas of which are in the ratio 2n>1.

 20. Find the value of a such that the line x = a bisects the area un-
der the curve y = 1>x2 between x = 1 and x = 4.

 21. Find the volume generated by revolving the region bounded by 
y = 3 + x2 and the line y = 4 about the x-axis.

 22. Find the volume generated by revolving the region bounded by 
y = 8x - x4 and the x-axis about the x-axis.

 23. Find the volume generated by revolving the region bounded by 
y = x3 - 4x2 and the x-axis about the y-axis.

 24. Find the volume generated by revolving the region bounded by 
y = x and y = 3x - x2 about the y-axis.

 25. Find the volume generated by revolving an ellipse about its  
major axis.

 26. A hole of radius 1.00 cm is bored along the diameter of a sphere 
of radius 4.00 cm. Find the volume of the material that is re-
moved from the sphere.

 27. Find the centre of mass of the following array of four masses in 
the xy-plane (distances in cm): 60 g at 14, 42 , 160 g at 1 -3, 62 ,
70 g at 1 -5, -42 , and 130 g at 13, -52 .

 28. Find the centroid of the flat-plate machine part shown in 
Fig. 26.65. Each section is uniform, and the mass of the section 
to the right of the y-axis is twice that of the section to the left.

0

2

2

y

x

1

1−2 −1Fig. 26.65

 29. Find the centroid of a flat plate covering the region bounded by 
y2 = x3 and y = 3x.

 30. Find the centroid of a flat plate covering the region bounded by 
y = 2x - 4, x = 1, and y = 0.

 31. Find the centroid of the volume generated by revolving the re-
gion bounded by y = 1x, x = 1, x = 4, and y = 0 about the 
x-axis.

 32. Find the centroid of the volume generated by revolving the re-
gion bounded by yx4 = 1, y = 1, and y = 4 about the y-axis.

 33. Find the moment of inertia of a flat plate covering the region 
bounded by y = 3x - x2 and y = x with respect to the y-axis.

 34. Find the radius of gyration of a flat plate covering the region 
bounded by y = 8 - x3, and the axes, with respect to the 
y-axis.

 35. Find the moment of inertia with respect to its axis of a lead 
bullet that is defined by revolving the region bounded by 
y = 3.00x0.10, x = 0, x = 20.0, and y = 0 about the x-axis (all 
measurements in mm). The density of lead is 0.0114 g>mm3.

 36. Find the radius of gyration with respect to its axis of a rotating 
machine part that can be defined by revolving the region 
bounded by y = 1>x, x = 1.00, x = 4.00, and y = 0.25 (all 
measurements in cm) about the x-axis.

 37. A pail and its contents weigh 80 N. The pail is attached to the end 
of a 30-m rope that weighs 20 N and is hanging vertically. How 
much work is done in winding up the rope with the pail attached?

 38. The gravitational force (in N) of the earth on a satellite (the weight 
of the satellite) is given by f(x) = 1011>x2, where x is the vertical 
distance (in km) from the centre of the earth to the satellite. How 
much work is done in moving the satellite from the earth’s surface 
to an altitude of 3000 km? The radius of the earth is 6370 km.
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 39. A decorative glass table-top is designed to be the region between 
the curves of y = 0.0001x4 and y = 110 - 0.0001x4. Find the 
area (in cm2) of the table top.

 40. A level putting green at a golf course can be approximated as the 
area bounded by y = 0.003x3 - 2x and y = 1.5x - 0.001x3. 
Find the area (in m2) of the green.

 41. In a video game, a large rock is propelled up a slope at 12 m>s, 
but is accelerating down the slope at 6.0 m>s2. What is the ve-
locity of the rock after 5.0 s?

 42. The vertical end of a trough is made of a right triangular section 
of concrete and a similar section of wood, as shown in Fig. 26.66. 
Find the force on each section if the trough is full of water.

2.0 m 

1.0 m 
Wood 

Concrete 

Fig. 26.66

 43. The rear stabilizer of a certain aircraft can be described as the 
region under the curve y = 3x2 - x3, as shown in Fig. 26.67. 
Find the x-coordinate (in m) of the centroid of the stabilizer.

4

2

0 2 4

y

x

y ! 3x2 " x3

Fig. 26.67

 44. The diameter of a circular swimming pool is 12 m, and the sides 
are 2.0 m high. If the depth of the water is 1.5 m, how much 
work is done in pumping all of the water out over the side?

 45. The nose cone of a rocket has the shape of a semiellipse re-
volved about its major axis, as shown in Fig. 26.68. What is the 
volume of the nose cone?

10 m

3.0 m

Fig. 26.68

10.0 m

16.0 m

Fig. 26.69

 46. The deck area of a boat is a parabolic section as shown in 
Fig. 26.69. What is the area of the deck?

 47. The vertical ends of a fuel storage tank have a parabolic bottom 
section and a triangular top section, as shown in Fig. 26.70. 
What volume does the tank hold?

6.00 m

2.00 m

4.
00

 m

Fig. 26.70

 48. The capillary tube shown 
in Fig. 26.71 has circular 
horizontal cross sections 
of inner radius 1.1 mm. 
What is the volume of the 
liquid in the tube above 
the level of liquid outside 
the tube if the top of the 
liquid in the centre verti-
cal cross section is de-
scribed by the equation 
y = x4 + 1.5, as shown?

y

x

y ! x4 " 1.5 r ! 1.1 mm

Fig. 26.71

 49. A cylindrical chemical waste-holding tank 4.50 m in radius has 
a depth of 3.25 m. Find the total force on the circular side of the 
tank when it is filled with liquid with a density of 10.6 kN>m3.

 50. A section of a dam is in the shape of a right triangle. The base of 
the triangle is 6.00 m and is in the surface of the water. If the 
triangular section goes to a depth of 4.00 m, find the force on it. 
See Fig. 26.72.

Surface

4.00 m

6.00 m

Fig. 26.72

 51. The electric resistance of a wire is inversely proportional to the 
square of its radius. If a certain wire has a resistance of 0.30 Ω 
when its radius is 2.0 mm, find the average value of the resist-
ance with respect to the radius as the radius changes from  
2.0 mm to 2.1 mm.

 52. The mass of earth is 5.98 * 1024 kg, and the mass of the moon 
is 7.36 * 1022 kg. Assuming all of the mass of each is at its 
centre, find the centre of mass of the earth-moon system, if their 
centres are 3.82 * 108 m apart. Compare this position with the 
radius of earth, which is 6.37 * 106 m.



813

 53. In the television tube of an older TV set, electrons are acceler-
ated from rest with an acceleration of 5 * 1014 m>s2. What is 
their velocity after travelling 2.5 cm?

 54. A horizontal straight section of pipe is supported at its centre by 
a vertical wire as shown in Fig. 26.73. Find the formula for the 
moment of inertia of the pipe with respect to an axis along the 
wire if the pipe is of length L and mass m.

L

Wire

Mass ! m

Fig. 26.73

 56. Use the information given in Table 22.1 and the symmetry of 

  the standard normal distribution to find 122pL
3

-2
e-x2>2dx  (see 

Exercise 55).

Writing Exercise
 57. The float for a certain valve control has a circular top of radius 

a. All cross sections of the float that are perpendicular to a fixed 
diameter of the top are squares. Write one or two paragraphs 
explaining how to derive the formula that gives the volume of 
the float. What is the formula?

 55. Table 22.1 in Section 22.4 gives areas under the curve from 0 to 

  z for the standard normal distribution, given by y =
122p

 e-x2>2. 

  Use the information given in the table to find 122pL
2

1
e-x2>2dx.

 CHAPTER 26   PRACTICE TEST

In Problems 1–3, use the region bounded by y = 1
4 x2, y = 0, and 

x = 2.

 1. Find the area.

 2. Find the coordinates of the centroid of a flat plate that covers the 
region.

 3. Find the volume if the given region is revolved about the x-axis.

In Problems 4 and 5, use the first-quadrant region bounded by 
y = x2, x = 0, and y = 9.

 4. Find the volume if the given region is revolved about the x-axis.

 5. Find the moment of inertia of a flat plate that covers the region, 
with respect to the y-axis.

 6. The velocity v of an object as a function of the time t is 
v = 60 - 4t. Find the expression for the displacement s if 
s = 10 for t = 0.

 7. The natural length of a spring is 8.0 cm. A force of 12 N 
stretches it to a length of 10.0 cm. How much work is done in 
stretching it from a length of 10.0 cm to a length of 14.0 cm?

 8. A vertical rectangular floodgate is 6.00 m wide and 2.00 m high. 
Find the force on the gate if its upper edge is 1.00 m below the 
surface of the water 1g = 9.80 kN>m32 .
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 In  Sections 27.4 and 27.8, we use de-
rivatives of transcendental functions in 
analysing the motion of a rocket.

27
LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Find the derivative of 
expressions involving 
trigonometric and inverse 
trigonometric functions

 Find the derivative of 
expressions involving 
logarithmic and exponential 
functions

 Find limits of indeterminate 
forms using L’Hospital’s rule

 Solve application problems 
involving derivatives of 
transcendental functions

While studying vibrations in a rod in the mid-1700s, the Swiss mathematician Euler 
noted that the trigonometric functions arose naturally as solutions to equations in 
which derivatives appeared. This was the first treatment of the trigonometric 

functions as functions of numbers essentially as we do today. Later, in 1755, Euler wrote a 
textbook on differential calculus in which he included differentiation of the trigonometric, 
inverse trigonometric, logarithmic, and exponential functions. Euler called these functions 
“transcendental,” as “they transcend the power of algebraic methods.” These functions are 
not algebraic in that they cannot be expressed using algebraic operations (addition, subtrac-
tion, multiplication, division, and taking roots).

As noted on page 370, logarithms were developed as a tool for calculation. In establishing the 
calculus, Newton and Leibniz did some formulation of the logarithmic and exponential func-
tions. However, the calculus of the transcendental functions was formulated mostly in the 
1700s by Euler and a number of other mathematicians. This led to the rapid progress made 
later in many technical and scientific areas. For example, transcendental functions, along with 
their derivatives and integrals, have been of great importance in the development of the fields 
of electricity and electronics in the 1800s, 1900s, and 2000s, particularly with respect to alter-
nating current.

In this chapter, we develop formulas for the derivatives of these transcendental functions, and 
in the next chapter, we will take up integration that involves these functions. Other areas in 
which we will show important applications include harmonic motion, rocket motion, mone-
tary interest calculations, population growth, acoustics, and optics.

Differentiation of 
Transcendental 
Functions

814
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 27.1 Derivatives of the Sine and Cosine Functions 815

We now find the derivative of the sine function. We will then be able to use it in find-
ing the derivatives of the other trigonometric and inverse trigonometric functions.

Let y = sin x, where x is expressed in radians. If x changes by an amount h, from 
the definition of the derivative, we have

dy
dx

= lim
hS0

sin1x + h2 - sin x

h

Referring now to Eq. (20.18), we have

 
dy
dx

= lim
hS0

2 sin 12 1x + h - x2  cos 12 1x + h + x2
h

= lim
hS0

sin1h>22  cos1x + h>22
h>2

Looking ahead to the next step of letting h S 0, we see that the numerator and denomi-
nator both approach zero. This situation is precisely the same as that in which we were 
finding the derivatives of the algebraic functions. To find the limit, we must find

lim
hS0

sin1h>22
h>2

since these are the factors that cause the numerator and denominator to approach zero.
In finding this limit, we let u = h>2 for convenience of notation. This means that 

we are to determine lim
uS0

sin u
u

. Of course, it would be convenient to know before pro-

ceeding if this limit does actually exist. Therefore, by using a calculator, we can 

develop a table of values of 
sin u
u

 as u becomes very small:

u (radians) 0.5 0.1 0.05 0.01 0.001
sin u
u

0.958 851 1 0.998 334 2 0.999 583 4 0.999 983 3 0.999 999 8

We see from this table that the limit of 
sin u
u

, as u S 0, appears to be 1.

In order to prove that lim
uS0

sin u
u

= 1, we use a geometric approach. Considering 

Fig. 27.1, we see that the following inequality is true:

Area triangle OBD 6 area sector OBD 6 area triangle OBC

1
2

 r1r sin u2 6 1
2

 r 2u 6 1
2

 r 1r tan u2 or sin u 6 u 6 tan u

Remembering that we want to find the limit of 1sin u2 >u, we next divide through by 
sin u and then take reciprocals:

1 6 u

sin u
6 1

cos u
  or  1 7 sin u

u
7 cos u

 27.1 Derivatives of the Sine and Cosine Functions
Limit of (sin) U>U as U S 0  
Derivative of sin u  
Derivative of cos u

■ For reference, Eq. (20.18) is 
sin x - sin y = 2 sin 12 1x - y2  cos 12 1x + y2 .

(OB = r )

(OD = r )

O

D
C

BA

u

Fig. 27.1 
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When we consider the limit as u S 0, we see that the left member remains 1 and the 
right member approaches 1. Thus, 1sin u2 >u must approach 1. This means

 lim
u S0

sin u
u

= lim
hS0

sin 1h>22
h>2

= 1  (27.1)

Using the result in Eq. (27.1) in the expression for dy>dx, we have

lim
hS0

c cos 1x + h>22 sin 1h>22
h>2

d = cos x

 
dy
dx

= cos x (27.2)

To find the derivative of y = sin u, where u is a function of x, we use the chain rule, 
Eq. (23.14), which we repeat here for reference:

 
dy
dx

=
dy
du

# du
dx

 (27.3)

Therefore, for y = sin u, dy>du = cos u, we have

 
d1sin u2

dx
= cos u 

du
dx

 (27.4)

 EXAMPLE  1  Derivative of sin u

(a) Find the derivative of y = sin 2x.

  In this example, u = 2x. Therefore, using Eq. (27.4),

 du
dx

 
dy
dx

=
d1sin 2x2

dx
= cos 2x 

d12x2
dx

= 1cos 2x2 122
 = 2 cos 2x

(b) Find the derivative of y = 2 sin1x22 .

  In this example, u = x2, which means that du>dx = 2x. This means

 
dy
dx

= 23cos1x22 4 12x2   using Eq. (27.4)

 = 4x cos1x22  ■

 EXAMPLE  2  Derivative of a power of sin u

Find the derivative of r = sin2 u.
This example is a combination of the use of the power rule, Eq. (23.15) and the 

derivative of the sine function Eq. (27.4). Since sin2 u means 1sin u22, in using the 
power rule we have u = sin u. Thus,

 
dr
du

= 21sin u2  
d sin u

du
  using Eq. (23.15)

 = 2 sin u cos u   using Eq. (27.4)

 = sin 2u   using identity (Eq. 20.21) ■

Practice Exercise

1.  Find the derivative of 
y = 3 sin14x + 12 .

It is important here, just as it is in 
finding the derivatives of powers of 
all functions, to remember to include 
the factor du ,dx.

LEARNING T IP

■ For reference, Eq. (23.15) is 
dun

dx
= nun - 1adu

dx
b .
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In order to find the derivative of the cosine function, we write it in the form 
cos u = sin 1p2 - u2 . Thus, if y = sin 1p2 - u2 , we have

 
dy
dx

= cos ap
2

- ub  
d 1p2 - u2

dx
= cos ap

2
- ub a- du

dx
b

 = -cos ap
2

- ub  
du
dx

Since cos1p2 - u2 = sin u, we have

 
d1cos u2

dx
= - sin u 

du
dx

 (27.5)

 EXAMPLE  3  Derivative of cos u—application

The electric power P developed in a resistor of an amplifier circuit is P = 25 cos2 120pt, 
where t is the time. Find the expression for the time rate of change of power.

From Chapter 23, we know that we are to find the derivative dP>dt. Therefore,

 P = 25 cos2 120pt

 
dP
dt

= 2512 cos 120pt2  
d cos 120pt

dt
 using Eq. (23.15)

 = 50 cos 120pt1 -sin 120pt2  
d1120pt2

dt
 using Eq. (27.5)

 = 1 -50 cos 120pt sin 120pt2 1120p2
 = -6000p cos 120pt sin 120pt

 = -3000p sin 240pt using Eq. (20.21) ■

 EXAMPLE  4  Derivative of a root containing cos u

Find the derivative of y = 11 + cos 2x.

 y = 11 + cos 2x21>2
 
dy
dx

=
1
2

 11 + cos 2x2 -1>2 
d11 + cos 2x2

dx
 using Eq. (23.15)

 =
1
2

 11 + cos 2x2 -1>21 -sin 2x2 122  using Eq. (27.5)

 = - sin 2x11 + cos 2x
 ■

 EXAMPLE  5  Derivative of the product sin u cos u

Find the differential of y = sin 2x cos x2.
From Section 24.8, recall that the differential of a function y = f1x2  is dy = f′1x2dx. 

Thus, using the derivative product rule and the derivatives of the sine and cosine 
functions, we arrive at the following result:

y = sin 2x cos x2 y = 1sin 2x2 # 1cos x22
dy = 3sin 2x1 -sin x22 12x2 + cos x21cos 2x2 122 4dx

=  1 -2x sin 2x sin x2 + 2 cos 2x cos x22dx ■

■ For reference, Eq. (20.21) is 
sin 2a = 2 sin a cos a.

Practice Exercise

2. Find the derivative of 
y = 511 + cos x222.
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 EXAMPLE  6  Slope of a tangent

Find the slope of a line tangent to the curve of y = 5 sin 3x at x = 0.2.
Here, we are to find the derivative of y = 5 sin 3x and then evaluate the deriva-

tive for x = 0.2. Therefore, we have the following:

 y = 5 sin 3x

 
dy
dx

= 51cos 3x2 132 = 15 cos 3x find derivative

 
dy
dx

`
x =0.2

= 15 cos 310.22 = 15 cos 0.6  evaluate

 = 12.38

In evaluating the slope, we must remember that x = 0.2 means the values are in 
radians. Therefore, the slope is 12.38.

The curve and the tangent line at x = 0.2 are shown in Fig. 27.2. The tangent line 
and its slope can be checked on some graphing calculators using the tangent and 
numerical derivative features.  ■

x

y

0.2

1

2

3

4

5

0.4 0.6 0.8 1

Fig. 27.2

EXERCISES 27.1

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then find the derivatives.

 1. In Example 2, in the given function, change u to 2u2.

 2.  In Example 4, in the given function, change 2x to x2.

In Exercises 3–34, find the derivatives of the given functions.

 3. y = sin1x + 22  4. y = 3 sin 4x

 5. y = 2 sin12x3 - 12  6. s = 5 sin17 - 3t2
 7. y = 6 cos 12 x 8. y = cos11 - x2
 9. y = 2 cos13x - p2  10. y = 4 cos16x2 + 52
 11. r = sin2 3pu 12. y = 3 sin312x4 + 12
 13. y = 3 cos315x + 22  14. y = 4 cos2 1x

 15. y = x sin 3x 16. v = 6t2 sin 3pt

 17. y = 3x3 cos 5x 18. y = 0.5u cos12u + p>42
 19. u = 3 sin v2 cos 5v 20. y = 6 sin x cos 4x

 21. y = 11 + sin 4x 22. y = 1x - cos2 x24

 23. r =
sin13t - p>32

2t
 24. T =

4z + 3
sin pz

 25. y =
2 cos x2

3x - 1
 26. y =

cos2 3x

1 + 2 sin2 2x

 27. y = 2 sin2 3x cos 2x 28. y = cos3 4x sin2 2x

 29. s = sin1sin 2t2  30. z = 0.2 cos1sin 3 f2
 31. y = sin3 x - cos 2x 32. y = x sin x + cos x

 33. p =
1

sin s
+ 1

cos s

 34. y = 2x sin x + 2 cos x - x2 cos x

In Exercises 35–56, solve the given problems.

 35. Using a graphing calculator: (a) display the graph of 
y = 1sin x2 >x to verify that 1sin u2 >u S 1 as u S 0, and (b) 
verify the values for 1sin u2 >u in the table on page 815.

 36. Evaluate lim
uS0

(tan u)/u. (Use the fact that lim
uS0

1sin u2 >u = 1.)

 37. On a calculator, find the values of (a) cos 1.0000 and  
(b) 1sin 1.0001 - sin 1.00002>0.0001. Compare the values and 
give the meaning of each in relation to the derivative of the sine 
function where x = 1.

 38. On a calculator, find the values of (a) -sin 1.0000 and  
(b) 1cos 1.0001 - cos 1.00002 >0.0001. Compare the values and 
give the meaning of each in relation to the derivative of the cosine 
function where x = 1.

 39. On the graph of y = sin x in Fig. 27.3, draw tangent lines at the 
indicated points and determine the slopes of these tangent lines. 
Then plot the values of these slopes for the same values of x and 
join the points with a smooth curve. Compare the resulting curve 
with y = cos x. (Recall the meaning of the derivative as the slope 
of a tangent line.)

1

0 1 2 3 4 5 6

!1

y

x

Fig. 27.3 
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 40. Repeat the instructions given in Exercise 39 for the graph of 
y = cos x in Fig. 27.4. Compare the resulting curve with 
y = sin x. (Be careful in this comparison and remember the dif-
ference between y = sin x and the derivative of y = cos x. As in 
Exercise 39, note the meaning of the derivative as the slope of a 
tangent line.)

52. A water slide at an amusement park follows the curve 1 y in m2  
y = 2.0 + 2.0 cos10.53x + 0.402  for 0 … x … 5.0 m. Find the 
angle with the horizontal of the slide for x = 2.5 m.

53. The blade of a sabre saw moves vertically up and down, and its 
displacement y (in cm) is given by y = 1.85 sin 36pt, where t is 
the time (in s). Find the velocity of the blade for t = 0.0250 s.

54. The current i (in A) in an amplifier circuit as a function of the 
time t (in s) is given by i = 0.10 cos1120pt + p>62 . Find the 
expression for the voltage across a 2.0-mH inductor in the circuit. 
(See Exercise 27 of Section 26.1 on page 782.)

55. In testing a heat-seeking rocket, it is found to be always moving 
directly toward a remote-controlled aircraft. At a certain instant, the 

distance r (in km) from the rocket to the aircraft is r =
100

1 - cos u
, 

where u is the angle between their directions of flight. Find dr>du for 
u = 120°. See Fig. 27.5.

1

!1

0 1 2 3 4 5 6

y

x

Fig. 27.4 

 41. Find the derivative of the implicit function sin1xy2 + cos 2y = x2.

 42. Find the derivative of the implicit function 
x cos 2y + sin x cos y = 1.

 43. Show that 
d4 sin x

dx4 = sin x.

44. Show that y = A sin kx + B cos kx satisfies the equation 
y ″ + k2y = 0.

45. Find the derivative of each member of the identity 
cos 2x = 2 cos2 x - 1 and thereby obtain another trigonometric 
identity.

46. Find values of x for which the following curves have horizontal 
tangents: (a) y = x + sin x and (b) y = 4x + cos px.

47. Use differentials to estimate the value of sin 31°.
48. Find the linearization L1x2  of the function f1x2 = sin1cos x2  

for a = p>2.

49. Find the slope of a line tangent to the curve y =
2 sin 3x

x
, where 

x = 0.15.

50. An object is oscillating vertically on the end of a spring such that 
its displacement d (in cm) is d = 2.5 cos 16t, where t is the time 
(in s). What is the acceleration of the object after 1.5 s?

51. The voltage V in a certain electric circuit as a function of the time 
t (in s) is given by V = 3.00 sin 188t cos 188t. How fast is the 
voltage changing when t = 2.00 ms?

u

r

Fig. 27.5 

56. The number N of reflections of a light ray passing through an 

optic fibre of length L and diameter d is N =
L sin u

d2n2 - sin2 u
. 

Here, n is the index of refraction of the fibre, and u is the angle 
between the light ray and the fibre’s axis. Find dN>du.

Answers to Practice Exercises

1. y′ = 12 cos14x + 12   2. y′ = -20x sin x211 + cos x22

We obtain the derivative of tan u by expressing tan u as sin u>cos u. Therefore, letting 
y = sin u>cos u, by employing the quotient rule, we have

 
dy
dx

=
cos u3cos u1du>dx2 4 - sin u3 -sin u1du>dx2 4

cos2 u

 =
cos2 u + sin2 u

cos2 u
 
du
dx

=
1

cos2 u
 
du
dx

= sec2 u 
du
dx

 
d1 tan u2

dx
= sec2 u  

du
dx

 (24.6)

 27.2 Derivatives of the Other Trigonometric Functions
Derivatives of tan u, cot u, sec u, csc u
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We find the derivative of cot u by letting y = cos u>sin u, again using the quotient rule.

 
dy
dx

=
sin u3 -sin u1du>dx2 4 - cos u3cos u1du>dx2 4

sin2 u

 =
-sin2 u - cos2 u

sin2 u
 
du
dx

 
d1cot u2

dx
= - csc2 u 

du
dx

 (27.7)

To obtain the derivative of sec u, we let y = 1>cos u. Then,

dy
dx

= - 1cos u2 -2 c 1 -sin u2 adu
dx

b d =
1

cos u
 
sin u
cos u

 
du
dx

 
d1sec u2

dx
= sec u tan u 

du
dx

 (27.8)

We obtain the derivative of csc u by letting y = 1>sin u. And so,

dy
dx

= - 1sin u2-2 acos u 
du
dx

b = - 1
sin u

 
cos u
sin u

 
du
dx

 
d1csc u2

dx
= -csc u cot u 

du
dx

 (27.9)

 EXAMPLE  1  Derivative of a power of sec u

Find the derivative of y = 3 sec2 4x.
Using the power rule and Eq. (27.8), we have

 
dy
dx

= 3122 1sec 4x2  
d1sec 4x2

dx
   using  

dun

dx
= nun-1 

du
dx

 

 = 61sec 4x2 1sec 4x tan 4x2 142   using 
d 1sec u2

dx
= sec u tan u 

du
dx

 = 24 sec2 4x tan 4x  ■

 EXAMPLE  2  Derivative of a product with csc u

Find the derivative of y = t csc3 2t.
Using the power rule, the product rule, and Eq. (27.9), we have

dy
dt

= t13 csc2 2t2 1 -csc 2t  cot 2t2 122 + 1csc3 2t2 112
 = csc3 2t1 -6t cot 2t + 12  ■

 EXAMPLE  3  Derivative of a power with tan u and sec u

Find the derivative of y = 1 tan 2x + sec 2x23.
Using the power rule and Eqs. (27.6) and (27.8), we have

 
dy
dx

= 31 tan 2x + sec 2x223sec2 2x122 + sec 2x tan 2x122 4
 = 31 tan 2x + sec 2x2212 sec 2x2 1sec 2x + tan 2x2
 = 6  sec 2x1 tan 2x + sec 2x23  ■

Practice Exercise

1. Find the derivative of y = 3 tan 8x.

Practice Exercise

2.  Find the derivative of 
y = 51cot 3x + csc 3x22.
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 EXAMPLE  4  Differential with sin u and tan u

Find the differential of r = sin 2u tan u2.
Here, we are to find the derivative of the given function and multiply by du. 

Therefore, using the product rule along with Eqs. (27.4) and (27.6), we have

 dr = 3 1sin 2u2 1sec2 u22 12u2 + 1 tan u22 1cos 2u2 122 4  du

 = 12u sin 2u sec2 u2 + 2 cos 2u tan u22du   don’t forget the du ■

 EXAMPLE  5  Derivative of an implicit function

Find dy>dx if  cot 2x - 3 csc xy = y2.
In finding the derivative of this implicit function, we must be careful not to forget 

the factor dy>dx when it occurs. The derivative is found as follows:

 cot 2x - 3 csc xy = y2

 1 -csc2 2x2 122 - 31 -csc xy  cot xy2 ax  
dy
dx

+ yb = 2y  
dy
dx

 3x csc xy cot xy  
dy
dx

- 2y  
dy
dx

= 2 csc2 2x - 3y csc xy cot xy

  
dy
dx

=
2 csc2 2x - 3y csc xy cot xy

3x csc xy cot xy - 2y
 ■

 EXAMPLE  6  Evaluation of a derivative

Evaluate the derivative of y =
2x

1 - cot 3x
, where x = 0.25.

Finding the derivative, we have

 
dy
dx

=
11 - cot 3x2 122 - 2x1csc2 3x2 13211 - cot 3x22

 =
2 - 2 cot 3x - 6x csc2 3x11 - cot 3x22

Now, substituting x = 0.25, we have

 
dy
dx

`
x=0.25

=
2 - 2 cot 0.75 - 610.252csc2 0.7511 - cot 0.7522

 = -626.0

In the above calculation, we have used the calculator in radian mode. Moreover, 
we have calculated cot 0.75 and csc 0.75 as the reciprocals of tan 0.75 and sin 0.75, 
respectively. ■

EXERCISES 27.2

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then find the derivatives.

 1.  In Example 1, in the given function, change 4x to x2.

 2.  In Example 4, in the given function, change u2 to 3u.

In Exercises 3–34, find the derivatives of the given functions.

 3. y = tan 5x 4. y = 3 tan13x + 22
 5. y = 5 cot10.25p - u2  6. y = 3 cot 6x

 7. u = 3 sec 5v 8. y = sec 11 - x

 9. y = -3 csc12x + 3 10. h = 0.5 csc 11 - 2pt2
 11. R = 5 tan2 3pt 12. y = 2 tan21x22
 13. y = 2 cot4 12 x 14. p = 3 cot214 - 3r22
 15. y = 1 sec 4x 16. y = 0.8  sec3 5u

 17. y = 3 csc4 7x 18. y = 7 csc219x32
 19. r = t2 tan 0.5t 20. y = 3x sec 2px

 21. y = 4 cos x  csc x2 22. y = 1
2 sin 2x sec x

 23. y =
 csc x

x
 24. u =

 cot 0.25z
2z
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 25. y =
2 cos 4x

1 + cot 3x
 26. y =

tan2 3x

2 + sin x2

 27. y = 1
3 tan3 x - tan x 28. y = 4 csc 4x - 2 cot 4x

 29. r = tan1sin 2pu2  30. y = x tan x + sec2 2x

 31. y = 12x + tan 4x 32. V = 11 - csc2 3r23

 33. x sec y - 2y = sin 2x 34. 3 cot1x + y2 = cos y2

In Exercises 35–38, find the differentials of the given functions.

 35. y = 4 tan2 3x 36. y = 2.5 sec3 2t

 37. y = tan 4x sec 4x 38. y = 2x cot 3x

In Exercises 39–52, solve the given problems.

 39. On a calculator, find the values of (a) sec2 1.0000 and (b) 1 tan 1.0001 - tan 1.00002 >0.0001. Compare the values and 
give the meaning of each in relation to the derivative of tan x 
where x = 1.

 40. On a calculator, find the values of (a) sec 1.0000 tan 1.0000 and 
(b) 1sec 1.0001 - sec 1.00002 >0.0001. Compare the values and 
give the meaning of each in relation to the derivative of sec x 
where x = 1.

41. (a) Display the graph of y = tan x on a graphing calculator, and 
using the derivative feature, evaluate dy>dx for x = 1. (b) 
Display the graph of y = sec2 x and evaluate y for x = 1. 
(Compare the values in parts (a) and (b).)

42. Follow the instructions in Exercise 41, using the graphs of 
y = sec x and y = sec x tan x.

43. Find the derivative of each member of the identity 
1 + tan2 x = sec2 x and show that the results are equal.

44. Find the points where a tangent to the curve of y = tan x is paral-
lel to the line y = 2x if 0 6 x 6 2p.

45. Find the slope of a line tangent to the curve of y = 2 cot 3x where 
x = p>12.

46. Find the slope of a line normal to the curve of y = csc 12x + 1 
where x = 0.45.

47. Show that y = 2 tan x - sec x satisfies 
dy

dx
=

2 - sin x

cos2 x
.

48. A helicopter takes off such that its height h (in m) above the 
ground is h = 25 sec 0.16t for the first 8.0 s of flight. What is its 
vertical velocity after 6.0 s?

49. The vertical displacement y (in cm) of the end of an industrial 
robot arm for each cycle is y = 2.0t1.5 - tan 0.10t, where t is the 
time (in s). Find its vertical velocity for t = 15 s.

50. The electric charge q (in C) passing a given point in a circuit is 

given by q = t sec20.20t2 + 1.0, where t is the time (in s). Find 
the current i (in A) for t = 0.80 s. 1 i = dq>dt2

 51. An observer to a rocket launch was 1000 m from the takeoff posi-
tion. The observer found the angle of elevation of the rocket as a 
function of time to be u = 3t> 12t + 102 . Therefore, the height 

h (in m) of the rocket was h = 1000 tan 
3t

2t + 10
. Find the time 

rate of change of height after 5.0 s. See Fig. 27.6.

1000 m

h

u

Fig. 27.6 

378.00 m MarkerMarker

Surveyor

u

Fig. 27.7 

52. A surveyor measures the distance between two markers to be 
378.00 m. Then, moving along a line equidistant from the mark-
ers, the distance d from the surveyor to each marker is 
d = 189.00 csc 12 u, where u is the angle between the lines of 
sight to the markers. See Fig. 27.7. By using differentials, find the 
change in d if u changes from 98.20° to 98.45°.

Answers to Practice Exercises

1. y′ = 24 sec2 8x   2. y′ = -30 csc 3x1cot 3x + csc 3x22

To obtain the derivative of y = sin-1 u, we first solve for u in the form u = sin y, and 
then take the derivative with respect to x. This results in du

dx = cos y 
dy
dx. Solving this for 

dy>dx, we have

dy
dx

=
1

cos y
 
du
dx

=
121 - sin2 y

 
du
dx

=
121 - u2

 
du
dx

We choose the positive square root since cos y 7 0 for -  p2 6 y 6 p
2 , which is the 

range of the defined values of sin-1 u. Therefore, we obtain the following result:

 
d1sin-1 u2

dx
=

121 - u2
 
du
dx

 (27.10)

 27.3 Derivatives of the Inverse Trigonometric Functions
Derivatives of sin−1 u, cos−1 u, tan−1 u

■ Note that the derivative of the inverse sine 
function is an algebraic function.
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 EXAMPLE  1  Derivative of sin−1u

Find the derivative of y = sin-1 4x.

 
du
dx

dy
dx

=
121 - 14x22

 142 =
421 - 16x2

  using Eq. (27.10)

 u ■

We find the derivative of the inverse cosine function by letting y = cos-1 u and by 
following the same procedure as that used in finding the derivative of sin-1 u:

 u = cos y,  
du
dx

= -sin y 
dy
dx

 
dy
dx

= - 1
sin y

 
du
dx

= - 121 - cos2 y
 
du
dx

 
d1cos-1 u2

dx
= -  

121 - u2
 
du
dx

 (27.11)

The positive square root is chosen here since sin y 7 0 for 0 6 y 6 p, which is the 
range of the defined values of cos-1 u. We note that the derivative of the inverse cosine 
is the negative of the derivative of the inverse sine.

By letting y = tan-1 u, solving for u, and taking derivatives, we find the derivative 
of the inverse tangent function:

u = tan y,  
du
dx

= sec2 y 
dy
dx

,  
dy
dx

=
1

 sec2 y
 
du
dx

=
1

1 + tan2 y
 
du
dx

 
d1 tan-1 u2

dx
=

1

1 + u2 
du
dx

 (27.12)

We can see that the derivative of the inverse tangent is also an algebraic function.
The inverse sine, inverse cosine, and inverse tangent prove to be the inverse trigono-

metric functions of greatest importance in applications and in further development of 
mathematics. Therefore, the formulas for the derivatives of the other inverse functions 
are not presented here, although they are included in the exercises.

 EXAMPLE  2  Derivative of cos−1u—application

A 20-N force acts on a sign as shown in Fig. 27.8. Express the angle u as a function of 
the x-component, Fx, of the force, and then find the expression for the instantaneous 
rate of change of u with respect to Fx.

From the figure, we see that Fx = 20 cos u. Solving for u, we have 
u = cos-11Fx>202 . To find the instantaneous rate of change of u with respect to Fx, 
we are to take the derivative du>dFx:

 u = cos-1 
Fx

20
= cos-1 0.05Fx

 
du
dFx

= - 121 - 10.05Fx22
 10.052   using Eq. (27.11)

 =
-0.0521 - 0.0025F2

x

  ■

Practice Exercise

1. Find the derivative of y = 5 sin-1 x2.

Fig. 27.8 

20 N

SIGN

Fy

Fx
u
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 EXAMPLE  3  Derivative of tan−1 u

Find the derivative of y = 1x2 + 12 tan-1 x - x.
Using the product rule along with Eq. (27.12) on the first term, we have

 
dy
dx

= 1x2 + 12 a 1

1 + x2 b 112 + 1 tan-1 x2 12x2 - 1

 using Eq. (27.12)

  = 2x tan-1 x ■

 EXAMPLE  4  Differential of sin−1 u

Find the derivative of y = x sin-1 2x + 1
221 - 4x2.

 using Eq. (27.10) using Eq. (23.15)

  
dy
dx

= xa 221 - 4x2
b + sin-1 2x + 1

2
 a1

2
b 11 - 4x22 -1>21 -8x2

 =
2x21 - 4x2

+ sin-1 2x - 2x21 - 4x2

  = sin-1 2x  ■

 EXAMPLE  5  Tangent line for a quotient with tan−1u

Find the slope of a tangent to the curve of y = tan - 1 x
x2 + 1

, where x = 3.60. In Fig. 27.9, the 
function and the tangent line are shown.

Here, we are to find the derivative and then evaluate it for x = 3.60.

 
dy
dx

=
1x2 + 12 a 1

1 + x2 b 112 - 1 tan-1 x2 12x21x2 + 122   take derivative

 =
1 - 2x tan-1 x1x2 + 122

 
dy
dx

2
x=3.60

=
1 - 213.602 1 tan-1 3.60213.602 + 122 = -0.0429  evaluate ■

Practice Exercise

2. Find the derivative of y = 1 tan-1 3x22.

■ For reference, Eq. (23.15) is  
dun

dx
= nun - 1adu

dx
b .

Fig. 27.9 

x

y

0.1

0.2

0.3

0.4

4321

EXERCISES 27.3

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then find the derivatives.

 1.  In Example 1, in the given function, change 4x to x2.

 2.  In Example 3, in the given function, change 1x2 + 12 tan-1 x to 14x2 + 12 tan-1 2x.

In Exercises 3–34, find the derivatives of the given functions.

 3. y = sin-1 7x 4. R = 3 sin-114 - t 22
 5. y = 2 sin-1 3x3 6. y = sin-111 - 2x

 7. y = 3.6 cos-1 0.5s 8. u = 0.2 cos-1 5t

 9. y = 2 cos-112 - x 10. y = 3 cos-11x2 + 0.52
 11. V = 8 tan-11s 12. y = tan-111 - x2
 13. y = 6 tan-111>x2  14. w = 4 tan-1pu4

 15. y = 5x sin-1 x 16. y = x2 cos-1 x

 17. v = 0.4u tan-1 2u 18. y = 1x2 + 12sin-1 4x

 19. T =
3R - 1

sin-1 2R
 20. u =

tan-1 2r
pr

 21. y =
sin-1 2x

cos-1 2x
 22. y =

x2 + 1

tan-1 x

 23. y = 21cos-1 4x23 24. r = 0.5 1sin-1 3t24

 25. u = 3sin-114t + 32 42 26. y = 2sin-11x - 12
 27. y = tan-1a1 - t

1 + t
b  28. p =

3

cos-1 2w

 29. y =
1

1 + 4x2 - tan-1 2x 30. y = sin-1 x - 21 - x2

 31. y = 314 - cos-1 2x23 32. sin-11x + y2 + y = x2

 33. 2 tan-1 xy + x = 3 34. y = 22p - sin-1 4x



 27.4 Applications 825

53. As a person approaches a building of height h, the angle of eleva-
tion of the top of the building is a function of the person’s dis-
tance from the building. Express the angle of elevation u in terms 
of h and the distance x from the building and then find du>dx. 
Assume the person’s height is negligible to that of the building. 
See Fig. 27.11.

54. A triangular metal frame is 
designed as shown in Fig. 27.12. 
Express angle A as a function of x 
and evaluate dA>dx for x = 6 cm.

Answers to Practice Exercises

1.  y′ = 10x>21 - x4   2.  y′ = 16 tan-1 3x2 > 11 + 9x22

In Exercises 35–54, solve the given problems.

 35. On a calculator, find the values of (a) 1>21 - 0.52 and (b) 1sin-1 0.5001 - sin-1 0.50002 >0.0001. Compare the values 
and give the meaning of each in relation to the derivative of 
sin-1 x where x = 0.5.

 36. On a calculator, find the values of (a) 1> 11 + 0.522  and  
(b) 1 tan-1 0.5001 - tan-1 0.50002 >0.0001. Compare the values 
and give the meaning of each in relation to the derivative of 
tan-1 x where x = 0.5.

 37. Find the differential of the function y = 1sin-1 x23.

 38. Find the linearization L1x2  of the function f1x2 = 2x cos-1 x 
for a = 0.

 39. Find the slope of a line tangent to the curve of y = x>tan-1 x at 
x = 0.80.

 40. Explain what is wrong with a problem that requires finding the 
derivative of y = sin-11x2 + 12 .

41. Find the second derivative of y = x tan-1x.

42. Find the point(s) at which the line normal to y = 2 sin-1 0.5x is 
parallel to the line y = 1 - x.

43. Use a graphing calculator to display the graphs of y = sin-1 x 
and y = 1>21 - x2. By roughly estimating slopes of tangent 
lines of y = sin-1 x, note that y = 1>21 - x2 gives reasonable 
values for the derivative of y = sin-1 x.

44. Use a graphing calculator to display the graphs of y = tan-1 x 
and y = 1> 11 + x22 . By roughly estimating slopes of tangent 
lines of y = tan-1 x, note that y = 1> 11 + x22  gives reasona-
ble values for the derivative of y = tan-1 x.

45. Find the second derivative of the function y = tan-1 2x.

46. Show that 
d1cot-1 u2

dx
= -  

1

1 + u2 
du
dx

.

47. Show that 
d1sec -1 u2

dx
=

12u21u2 - 12  
du
dx

.

48. Show that 
d1csc -1 u2

dx
= - 12u21u2 - 12  

du
dx

.

49. In the analysis of the waveform of an AM radio wave, the equa-

tion t =
1
v

 sin-1 
A - E

mE
 arises. Find dt>dm, assuming that the 

other quantities are constant.

50. An equation that arises in the theory of solar collectors is 

a = cos-1 
2f - r

r
. Find the expression for da>dr if f  is constant.

51. When an alternating current passes through a series RLC circuit, 
the voltage and current are out of phase by angle u (see Section 12.7). 
Here u = tan-13 1XL - XC2 >R4 , where XL and XC are the reac-
tances of the inductor and capacitor, respectively, and R is the 
resistance. Find du>dXC for constant XL and R.

52. When passing through glass, a light ray is refracted (bent) such 
that the angle of refraction r is given by r = sin-13 1sin i2 >m4 . 
Here, i is the angle of incidence, and μ is the index of refraction of 
the glass (see Fig. 27.10). For different types of glass, m differs. 
Find the expression for dr for a constant value of i.

i

r

Air

Glass

Fig. 27.10 

h

x
u

Fig. 27.11 

Fig. 27.12 

A

5 cm x

8 cm

With our development of the formulas for the derivatives of the trigonometric and 
inverse trigonometric functions, it is now possible to use these derivatives in the same 
manner as we applied the derivatives of algebraic functions. We can now use these 
functions in the types of applications listed at the left as shown in the examples and 
exercises of this section.

 EXAMPLE  1  Sketching a curve

Sketch the curve y = sin2 x - x
2

  10 … x … 2p2 .

First, by setting x = 0, we see that the only easily obtainable intercept is 10, 02 . 
Replacing x by - x and y by - y, we find that the curve is not symmetric to either 
axis or to the origin. Also, since x does not appear in a denominator, there are no 
vertical asymptotes. We are considering only the restricted domain 0 … x … 2p. 
(Without this restriction, the domain is all x and the range is all y.)

 27.4 Applications
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In order to find the information from the derivatives, we write

 
dy
dx

= 2 sin x cos x - 1
2

= sin 2x - 1
2

 
d2y

dx2 = 2 cos 2x

Relative maximum and minimum points will occur for sin 2x = 1>2. Thus, we have 
possible relative maximum and minimum points for

2x =
p

6
, 

5p
6

, 
13p

6
, 

17p
6

,  or  x =
p

12
, 

5p
12

, 
13p
12

, 
17p
12

Now, using the second derivative, we find that d2y>dx2 is positive for x = p
12 and 

x = 13p
12  and is negative for x = 5p

12  and x = 17p
12 . Thus, the maximum points are 15p

12 , 0.2792  and 117p
12 , -1.292 . Minimum points are 1 p

12, -0.0642  and 113p
12 , -1.632 . 

Inflection points occur for cos 2x = 0, or

2x =
p

2
, 

3p
2

, 
5p
2

, 
7p
2

, or x =
p

4
, 

3p
4

, 
5p
4

, 
7p
4

Therefore, the points of inflection are 1p4 , 0.112 , 13p
4 , -0.682 , 15p

4 , -1.462 , 
and 17p

4 , -2.252 . Using this information, we sketch the curve in Fig. 27.13. ■

 EXAMPLE  2  Solve an equation using Newton’s method

By using Newton’s method, solve the equation 2x - 1 = 3 cos x.
First, we locate the required root approximately by sketching y1 = 2x - 1 and 

y2 = 3 cos x. As we can see in Fig. 27.14, they intersect between x = 1 and x = 2, 
near x = 1.2. Therefore, using x1 = 1.2, with

 f1x2 = 2x - 1 - 3 cos x

 f′1x2 = 2 + 3 sin x

we use Eq. (24.1) with n = 2, which is

x2 = x1 -
f1x12
f′1x12

To find x2, we have

 f11.22 = 211.22 - 1 - 3 cos 1.2 = 0.312 926 7

 f ′11.22 = 2 + 3 sin 1.2 = 4.796 117 3

 x2 = 1.2 - 0.312 926 7
4.796 117 3

= 1.134 754 2

Finding the next approximation, we find x3 = 1.134 236 6, which is accurate to 
the value shown. Again, when using the calculator, it is not necessary to list the val-
ues of f1x12  and f′1x12 , as the complete calculation can be done directly on the 
calculator. ■

 EXAMPLE  3  Finding a maximum value

Logs with a circular cross section 1.20 m in diameter are cut in half lengthwise. Find 
the largest rectangular cross-sectional area that can then be cut from one of the halves.

From Fig. 27.15, we see that x = 0.60 cos u and y = 0.60 sin u, which means the 
area of the rectangle inscribed within the semicircular area is

 A = 12x2y = 210.60 cos u2 10.60 sin u2 = 0.72 cos u sin u
 = 0.36 sin 2u  using trigonometric identity (Eq. 20.21)

0

2

−2

y

I

I
m

m
M

M

II

x
p 2p3p

2
p
2

Fig. 27.13 

x

y

1

−1

−2

−3

2

3

321−1

y = 2x − 1

y = 3cosx

Fig. 27.14 

Fig. 27.15

x

y2.0
 m

u
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Now, taking the derivative and setting it equal to zero, we have

 
dA
du

= 10.36 cos 2u2 122 = 0.72 cos 2u

 0.72 cos 2u = 0,  2u =
p

2
,  u =

p

4
   cos 

p

2
= 0

(Using 2u = 3p
2 , u = 3p

4  leads to the same solution.) Since the minimum area is 
zero, we have the maximum area when u = p

4 , and this maximum area is

A = 0.36 sin 21p
4
2 = 0.36 sin 

p

2
= 0.36 m2  sin 

p

2
= 1

Therefore, the largest rectangular cross-sectional area is 0.36 m2. ■

 EXAMPLE  4  Finding the time rate of change

A rocket is taking off vertically at a distance of 6500 m from an observer. If, when the 
angle of elevation is 38.4°, it is changing at 5.00°>s, how fast is the rocket ascending?

From Fig. 27.16, letting x = the height of the rocket, we see that tan u = x>6500, 
or u = tan-11x>65002 . Taking derivatives with respect to time, we have

 
du
dt

=
1

1 + 1x>650022 
dx>dt

6500
=

6500 dx/dt

65002 + x2

We must remember to express angles in radians. This means du>dt = 5.00°>s =
0.0873 rad>s. Substituting this value and x = 6500 tan 38.4° = 5150 m, we have

 0.0873 =
6500 dx>dt

65002 + 51502

  
dx
dt

= 924 m>s  ■

 EXAMPLE  5  Application of the differential

On level ground, 180 m from the base of a building, the angle of elevation of the top of 
the building is 30.00°. What error in calculating the height h of the building would be 
caused by an error of 0.25° in the angle?

From Fig. 27.17, h = 180 tan u. To find the error in h, we must find the differen-
tial dh.

dh = 180 sec2 udu

The possible error in u is 0.25°, which in radian measure is 0.25p>180, which is the 
value we should use in the calculation of dh. Calculating dh, we have

dh =
18010.25p>1802

cos2 
p

6

= 1.05 m

An error of 0.25° in the angle results in an error of over 1 m in the calculated value of the 
height. In using the calculator, we divide by cos2 

p

6
 since sec u = 1>cos u. ■

x

6500 m

u

Fig. 27.16 

h

180 m

u

Fig. 27.17 

■ See the chapter introduction.
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 EXAMPLE  6  Curvilinear motion—parametric equations

A particle is rotating so that its x- and y-coordinates are given by x = cos 2t and 
y = sin 2t. Find the magnitude and direction of its velocity when t = p>8.

Taking derivatives with respect to time, we have

 vx =
dx
dt

= -2 sin 2t  vy =
dy
dt

= 2 cos 2t

 vx ! t =p>8 = -2 sin 2ap
8
b = -2a12

2
b = - 22 evaluating 

 vy ! t =p>8 = 2 cos 2ap
8
b = 2a12

2
b = 12

 v = 2v2
x + v2

y = 12 + 2 = 2  magnitude

 tan uref = ` vy

vx
` =

1212
= 1

Since vx is negative and vy is positive, u is in the second quadrant, so 
u = p - p>4 = 3p>4 1or u = 135°2 . 

We can plot the curve by squaring x and y and adding, thus removing the parameter t. 
This gives x2 + y2 =  cos22t +  sin22t = 1, so the curve is a circle of radius 1 (see 
Fig. 27.18). The direction of the resultant velocity tells us that the particle is moving 
counterclockwise around the circle. ■

Fig. 27.18 

vy

vx

v

0

1

1−1

−1

y

x

u

EXERCISES 27.4

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the resulting problems.

 1.  In Example 1, change sin2 x to sin x.

 2.  In Example 6, change cos 2t to 3 cos 2t, and sin 2t to 2 sin 2t.

In Exercises 3–38, solve the given problems. Where necessary, round 
answers to 3 significant digits.

 3.  Show that the slopes of the sine and cosine curves are negatives 
of each other at the points of intersection.

 4.  Show that the graph of the tangent function is always increasing 
(when the tangent is defined).

 5.  Show that the curve of y = tan-1 x is always increasing.

 6.  Sketch the graph of y = sin x + cos x 10 … x … 2p2 .

 7.  Sketch the graph of y = x - tan x 1 -p
2 6 x 6 p

2 2 .

 8.  Sketch the graph of y = 2 sin x + sin 2x 10 … x … 2p2 .

 9.  Find the equation of the line tangent to the curve of y = x sin-1x 
at x = 0.50.

10. Find the equation of the line normal to the curve of y = 3 tan x2 
at x = 0.25.

 11. By Newton’s method, find the positive root of the equation 
x2 - 4 sin x = 0 to at least four decimal places.

 12. By Newton’s method, find the smallest positive root of the equa-
tion tan x = 2x to at least four decimal places.

 13. Find the minimum value of the function y = 6 cos x - 8 sin x.

 14. Find the maximum value of the function 
y = tan-111 + x2 + tan-111 - x2 .

 15. Power P is the time rate of change of work W. Find the equation 
for the power in a circuit for which W = 8 sin2 2t.

 16. The phase shift f in a certain electric circuit with a resistance R 
and variable capacitance C is f = tan-1 vRC. Find the equation 
for the instantaneous rate of change of f with respect to C.

 17. In studying water waves, the vertical displacement y (in m) of a 
wave was determined to be y = 0.50 sin 2t + 0.30 cos t, where t 
is the time (in s). Find the velocity and the acceleration for 
t = 0.40 s.

 18. At 45°N latitude, the number of hours h of daylight each day 
during the year is given approximately by the equation 
h = 12.2 + 3.5 sin 3 2p

3651 t - 812 4 , where t is measured in days  1 t = 37 is Feb. 6, etc.2 . Find the date of the longest day and the 
date of the shortest day. (Cities at 45°N are Ottawa, Ontario, and 
Venice, Italy.)

 19. Find the time rate of change of the horizontal component Tx of the 
constant 46.6-N tension shown in Fig. 27.19 if du>dt = 0.36°>s 
for u = 14.2°.

Fig. 27.19 

46.6 N

u
Tx

 20. The apparent power Pa (in W) in an electric circuit whose power 
is P and whose impedance phase angle is u is given by 
Pa = P sec u. Given that P is constant at 12 W, find the time rate 
of change of Pa if u is changing at the rate of 0.050 rad>min, 
when u = 40.0°.
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 21. A point on the outer edge of a 38.0-cm wheel can be described by 
the equations x = 19.0 cos 6pt and y = 19.0 sin 6pt. Find the 
velocity of the point for t = 0.600 s.

 22. A machine is programmed to move an etching tool such that the 
position (in cm) of the tool is given by x = 2 cos 3t and 
y = cos 2t, where t is the time (in s). Find the velocity of the tool 
for t = 4.1 s.

 23. Find the acceleration of the tool of Exercise 22 for t = 4.1 s.

 24. The volume V (in m3) of water used each day by a community 
during the summer is found to be V = 2500 + 480 sin 1pt>902 , 
where t is the number of the summer day, and t = 0 is the first 
day of summer. On what summer day is the water usage the 
greatest?

 25. A person observes an object dropped from the top of a building 
40.0 m away. If the top of the building is 60.0 m above the per-
son’s eye level, how fast is the angle of elevation of the object 
changing after 1.0 s? (The distance the object drops is given by 
s = 4.9t2.) See Fig. 27.20.

s

40.0 m

60.0 m

u

Fig. 27.20 

R

610 km

u

Fig. 27.22 

 26. A car passes directly under a police helicopter 150 m above a 
straight and level highway. After the car has travelled another 
20.0 m, the angle of depression of the car from the helicopter 
is decreasing at the rate of 0.215 rad>s. What is the speed of 
the car?

 27. A searchlight is 225 m from a straight wall. As the beam 
moves along the wall, the angle between the beam and the per-
pendicular to the wall is increasing at the rate of 1.5°>s. How 
fast is the length of the beam increasing when it is 315 m long? 
See Fig. 27.21.

of 2.60 m/s. How fast is the angle of elevation of the line of sight 
to the elevator increasing when the elevator is 40.0 m above the 
ground?

 29. A crate of weight w is being pulled along a level floor by a force 
F that is at an angle u with the floor. The force is given by 
F = 0.25w

0.25 sin u + cos u. Find u for the minimum value of F.

 30. The electric power P (in W) developed in a resistor in an FM 
receiver circuit is P = 0.0307cos2 120pt, where t is the time (in s). 
Linearize P for t = 0.0010 s.

 31. When an astronaut views the horizon of earth from a spacecraft at 
an altitude of 610 km, the angle u in Fig. 27.22 is found to be 
65.8° { 0.5°. Use differentials to approximate the possible error 
in the astronaut’s calculation of earth’s radius.

 32. A surveyor measures two sides and the included angle of a trian-
gular parcel of land to be 82.04 m, 75.37 m, and 38.38°. What 
error is caused in the calculation of the third side by an error of 
0.15° in the angle?

 33. The volume V  (in L) of air in a person’s lungs during one nor-
mal cycle of inhaling and exhaling at any time t is V =  
0.4811.2  - cos 1.26t2 . What is the maximum flow rate (in L>s) 
of air?

 34. To connect the four vertices of a square with the minimum 
amount of electric wire requires using the wiring pattern shown in 
Fig. 27.23. Find u for the total length of wire 1L = 4x + y2  to 
be a minimum.

y

x x

x x
u

Fig. 27.23 

225 m

Wall

Be
am

u

Fig. 27.21

 35. The strength S of a rectangular beam is directly proportional to 
the product of its width w and the square of its depth d. Use trigo-
nometric functions to find the dimensions of the strongest beam 
that can be cut from a circular log 16.0 cm in diameter. (See 
Example 4 on page 739.)

 36. An architect is designing a window in the shape of an isosceles 
triangle with a perimeter of 150 cm. What is the vertex angle of 
the window of greatest area?

 28. A person standing 35.0 m from the base of the Skylon Tower in 
Niagara Falls observes one of the exterior elevators rising at a rate 
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Fig. 27.24 

y

1.8 m
1.2 mu

 38. The television screen at a sports arena is vertical and 2. 4 m high. 
The lower edge is 8.5 m above an observer’s eye level. If the best 
view of the screen is obtained when the angle subtended by the 
screen at eye level is a maximum, how far from directly below the 
screen must the observer’s eye be? See Fig. 27.25.

x

8.5 m

Eye

Screen
2.4 m

u

Fig. 27.25 

 37. A wall is 1.8 m high and 1.2 m from a building. What is the 
length of the shortest pole that can touch the building and the 
ground beyond the wall? (Hint: From Fig. 27.24, show that 
y = 1.8 csc u + 1.2 sec u.2

Using the definition of a derivative, we next find the derivative of the logarithmic func-
tion. Therefore, letting y = logbx, we have

 
dy
dx

= lim
hS0

logb1x + h2 - logb x

h
= lim

hS0

logb x + h
x

h

 = lim
hS0

1
x

 
x
h

 logba1 + h
x
b   multiply and divide by x

 =
1
x

 lim
hS0

logba1 + h
x
b x>h

   using Eq. (13.9)

 =
1
x

 logb a lim
hS0

a1 + h
x
b x>hb

In the last line, we have interchanged the limit and the logarithm because the logarithm 
function is continuous. We can see that the exponent becomes unbounded, but the 
number being raised to this exponent approaches 1. Therefore, we will investigate this 
limiting value.

To approximate the value, we graph the function y = 11 + t21/t (for purposes of 
graphing, we let h>x = t). Constructing a table of values, we then graph this function 
in Fig. 27.26.

t -0.5 -0.25 +0.25 +0.50 +1.00
y   4.00   3.16   2.44   2.25   2.00

Only these values are shown, since we are interested in the y-value corresponding to 
t = 0. We see from the graph that this value is approximately 2.7. Choosing very small 
values of t, we may obtain these values:

t 0.1 0.01 0.001 0.0001
y 2.5937 2.7048 2.7169 2.718 15

By methods developed in Chapter 29, it can be shown that this value is about 2.718 281 8. 
The limiting value is the irrational number e. This is the same number used in the 
exponential form of a complex number in Chapter 12 and as the base of natural loga-
rithms in Chapter 13.

 27.5 Derivative of the Logarithmic Function
Limit of 11 + h ,x 2x,h as h S 0
of logb u u
Properties of Logarithms

Fig. 27.26 
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Returning to the derivative of the logarithmic function, we have

dy
dx

=
1
x

 log ba lim
hS0

a1 + h
x
bx>hb =

1
x

 log be

Now, for y = logb u, where u is a function of x, using Eq. (27.3), we have

 
d1 logb u2

dx
=

1
u

 logb e 
du
dx

 (27.13)

At this point, we see that if we choose e as the base of a system of logarithms, the 
above formula becomes

 
d1 ln u2

dx
=

1
u

 
du
dx

 (27.14)

 EXAMPLE  1  Derivative of log u

Find the derivative of y = log 4x.
Using Eq. (27.13), we find

 
du
dx

 
dy
dx

=
1
4x

 1 log e2 142
 u

  =
1
x

 log e log e = 0.4343 ■

 EXAMPLE  2  Derivative of ln u 

Find the derivative of s = ln 3t4.
Using Eq. (27.14), we have 1with u = 3t4 2

 
ds
dt

=
1

3t4 112t32
  =

4
t
  

du
dt  

■

 EXAMPLE  3  Derivative of In tan u

Find the derivative of y = ln tan 4x.
Using Eq. (27.14), along with the derivative of the tangent, we have

 
dy
dx

=
1

tan 4x
 1sec2 4x2 142

  
d tan 4x

dx

  =
cos 4x
sin 4x

 
4

cos2 4x
 using trigonometric relations

  =
1

sin 4x
 

4
cos 4x

= 4 csc 4x sec 4x ■

■ For reference, Eq. (27.3) is  
dy
dx

=
dy
du

# du
dx

.

Practice Exercise

1. Find the derivative of y = 2 ln 5x2.

The choice of e as the base b makes 
loge e = 1; thus, this factor does not 
appear in Eq. (27.14). We now see 
why the number e is chosen as the 
base for a system of logarithms, the 
natural logarithms. The notation ln u 
is the same as that used in Chapter 13 
for natural logarithms.

LEARNING T IP
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 EXAMPLE  4  Derivative using properties of logarithms

Find the derivative of y = ln 
x - 1
x + 1

.

In this example, it is easier to find the derivative if we write y in the form

y = ln1x - 12 - ln1x + 12
by using the properties of logarithms (Eq. 13.8). Hence,

 
dy
dx

=
1

x - 1
- 1

x + 1
=

x + 1 - x + 11x - 12 1x + 12
  =

2

x2 - 1
 ■

 EXAMPLE  5  Derivative of In u3 and In3 u

(a) Find the derivative of y = ln11 - 2x23.

  First, using Eq. (13.9), we rewrite the equation as y = 3 ln11 - 2x2 . Then we 
have

dy
dx

= 3a 1
1 - 2x

b 1 -22 =
-6

1 - 2x

(b) Find the derivative of y = ln311 - 2x2 .

First, we note that

y = ln311 - 2x2 = 3 ln11 - 2x2 43

where ln311 - 2x2  is usually the preferred notation.
Next, we must be careful to distinguish this function from that in part (a). For 

y = ln311 - 2x2 , it is the logarithm of 1 - 2x that is being cubed, whereas for 
y = ln11 - 2x23, it is 1 - 2x that is being cubed.

Now, finding the derivative of y = ln311 - 2x2 , we have

  
dy
dx

= 33 ln211 - 2x2 4 a 1
1 - 2x

b 1 -22  

  = -
6 ln211 - 2x2

1 - 2x
 

d ln 11 - 2x2
dx

 
■

 EXAMPLE  6  Evaluation of the derivative of In u

Evaluate the derivative of y = ln3 1sin 2x2 12x2 + 12 4  for x = 0.375.
First, using the properties of logarithms, we rewrite the function as

y = ln sin 2x + 1
2

 ln1x2 + 12
Now, we have

 
dy
dx

=
1

sin 2x
 1cos 2x2 122 + 1

2
a 1

x2 + 1
b 12x2   take the derivative

 = 2 cot 2x + x

x2 + 1

 
dy
dx

2
x =0.375

= 2 cot 0.750 + 0.375

0.3752 + 1
= 2.48   evaluate 

■

Often, finding the derivative of a 
logarithmic function is simplified by 
using the properties of logarithms to 
simplify the logarithmic expression 
before taking the derivative.

LEARNING T IP

■ For reference, Eqs. (13.7), (13.8), and (13.9) 
are
logb xy = logb x + logb y

logb ax
y
b = logb x - logb y

logb xn = n logb x

Practice Exercise

2. Find the derivative of y = ln 
4x

x + 4
.
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EXERCISES 27.5

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then find the derivatives.

 1.  In Example 3, in the given function, change tan to cos.

 2.  In Example 4, in the given function, change x - 1 to x2.

In Exercises 3–34, find the derivatives of the given functions.

 3. y = log x2 4. y = log2  6x 5. y = 4 log5 13 - x2
 6. y = log7 1x2 + 12  7. u = 8 ln13 - x2  8. y = 2 ln13x2 - 12
 9. y = 2 ln tan 2x 10. s = ln sin2 t 11. R = ln1T

 12. y = ln 14x - 323 13. y = ln1x - x223

 14. s = 3 ln217t3 - 12  15. v = 3(t + ln t2)2

 16. y = 6x2 ln 5x 17. y = 3x ln16 - x2
 18. y =

8 ln x
x

 19. y = ln1 ln x2
 20. y = ln 

2x
1 + x

 21. r = 0.5 ln cos1pu22
 22. y = ln1x1x + 12  23. y = sin ln x

 24. y = tan -1 ln 2x 25. u = 3v ln2 2v 

26. h = 0.1s ln4 s 27. y = ln1x tan x2
 28. y = ln1x + 2x2 - 12  29. r = ln 

v2

v + 2

 30. y = 1x + ln 3x

 31. y = 2x2 + 1 - ln  
1 + 2x2 + 1

x

 32. 3 ln xy + sin y = x2

 33. y = x - ln21x + y2  34. y = ln1x + ln x2
In Exercises 35–56, solve the given problems.

 35. On a calculator, find the value of 1 ln 2.0001 - ln 2.00002>0.0001 
and compare it with 0.5. Give the meanings of the value found 
and 0.5 in relation to the derivative of ln x, where x = 2.

 36.  On a calculator, find the value of 1 ln 0.5001 - ln 0.50002 >0.0001 
and compare it with 2. Give the meanings of the value found and 
2 in relation to the derivative of ln x, where x = 0.5.

 37. Using a graphing calculator, (a) display the graph of 
y = 11 + x21/x to verify that 11 + x21/x S 2.718 as x S 0 and 
(b) verify the values for 11 + x21/x in the tables on page 830.

 38. (a) Display the graph of y = ln x on a graphing calculator, and 
using the derivative feature, evaluate dy>dx for x = 2. (b) Display 
the graph of y = 1>x, and evaluate y for x = 2. (c) Compare the 
values in parts (a) and (b).

 39. Given that ln sin 45° = -0.3466, use differentials to approxi-
mate ln sin 44°.

 40. Find the second derivative of the function y = x2 ln x.

41. Evaluate the derivative of y = sin-1 2x + ln21 - 4x2, where 
x = 0.250.

42. Evaluate the derivative of y = ln A2x + 1
3x + 1

 , where x = 2.75.

43. Find the linearization L1x2  for the function f1x2 = 2 ln tan x 
for a = p>4.

44. Find the differential of the function y = 6 logx 2.

45. Find the slope of a line tangent to the curve of 
y = tan-1 2x + ln14x2 + 12 , where x = 0.625.

46. Find the slope of a line tangent to the curve of y = x ln 3x at 
x = 4.

47. Find the derivative of y = xx by first taking logarithms of each 
side of the equation. Explain why Eq. (23.15) cannot be used to 
find the derivative of this function.

48. Find the derivative of y = 1sin x2x by first taking logarithms of 
each side of the equation. Explain why Eq. (23.15) cannot be used 
to find the derivative of this function.

49. Find the derivatives of y1 = ln1x22  and y2 = 2 ln x, and evalu-
ate these derivatives for x = -1. Explain your results.

50. The inductance L (in mH) of a coaxial cable is given by 
L = 0.032 + 0.15  log1a>x2 , where a and x are the radii of the 
outer and inner conductors, respectively. For constant a, find 
dL>dx.

51. If the loudness b (in decibels) of a sound of intensity I is given by 
b = 10 log1I>I02 , where I0 is a constant, find the expression for 
db>dt in terms of dI>dt.

52. The time t for a particular computer system to process N bits of 
data is directly proportional to N ln N. Find the expression for 
dt>dN.

53. When a tractor-trailer turns a right-angle corner, the rear wheels 
follow a curve known as a tractrix, the equation for which is 

y = ln a1 + 21 + x2

x
b - 21 - x2. Find dy>dx.

54. When designing a computer to sort files on a hard disk, the equa-
tion y = xA logx A arises. If A is constant, find dy>dx.

55. When air friction is considered, the time t (in s) it takes a certain 
falling object to attain a velocity v (in m>s) is given by 

t = 5 ln 
5

5 - 0.1v
. Find dt>dv for v = 10.0 m>s.

56. The electric potential V at a point P at a distance x from an elec-
tric charge distributed along a wire of length 2a (see Fig. 27.27) is 

V = k ln 
2a2 + x2 + a2a2 + x2 - a

 , where k is a constant. Find the expres-

sion for the electric field E, where E = -dV>dx.

Fig. 27.27 

2a

x

P

Answers to Practice Exercises

1. y′ = 4>x  2. y′ = 4> 1x2 + 4x2
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To obtain the derivative of the exponential function, we let y = bu, then take natural 
logarithms of both sides, and then take derivatives of both sides:

  ln y = ln bu = u ln b

 
1
y

 
dy
dx

=  ln b 
du
dx

 
dy
dx

= y ln b 
du
dx

 
d1bu2

dx
= bu  ln b adu

dx
b  (27.15)

If we let b = e, Eq. (27.15) becomes

 
d1eu2

dx
= e u adu

dx
b  (27.16)

The simplicity of Eq. (27.16) compared with Eq. (27.15) again shows the advantage 
of choosing e as the base of natural logarithms. It is for this reason that e appears so 
often in applications of calculus.

 EXAMPLE  1  Derivative of ex

Find the derivative of y = ex.
Using Eq. (27.16), we have

 
du
dx

dy
dx

= ex112 = ex

We see that the derivative of the function ex equals itself. This exponential function 
is widely used in applications of calculus. ■

 27.6 Derivative of the Exponential Function
Derivative of bx  
of ex

■ For reference, Eq. (23.15) is 
dun

dx
= nun - 1adu

dx
b .

Note carefully that Eq. (23.15) is used with a variable raised to a constant exponent, 
whereas Eqs. (27.15) and (27.16) are used with a constant raised to a variable 
exponent.

 variable constant constant variable

 
dun

dx
= nun-1adu

dx
b      

dbu

dx
= bu ln badu

dx
b

LEARNING T IP

In the following example, we must note carefully this difference in the type of function 
that leads us to use either Eq. (23.15) or Eq. (27.15) in order to find the derivative.

 EXAMPLE  2  Derivative of u2 u

Find the derivatives of y = 14x22 and y = 24x.
Using Eq. (23.15), we have Using Eq. (27.15), we have

  y = 14x22 
du
dx   y = 24x 

du
dx

  
dy
dx

= 214x21142   
dy
dx

= 24x1 ln 22 142
  = 32x  = 14 ln 22 124x2  ■
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 EXAMPLE  3  Derivative of ln cos eu

Find the derivative of y = ln cos e2x.
Here, we use Eq. (27.16) and the derivatives of the logarithmic and cosine 

functions.

  
dy
dx

=
1

cos e2x 
d cos e2x

dx
 using  

d ln u
dx

=
1
u

  
du
dx

  =
1

cos e2x  1 -sin e2x2  
de2x

dx
 using  

d cos u
dx

= -sin u  
du
dx

  = - sin e2x

cos e2x 1e2x2 122  using  
deu

dx
= eu  

du
dx

  = -2e2x tan e2x using  
sin u
cos u

= tan u ■

 EXAMPLE  4  Derivative of a product

Find the derivative of r = uetan u.
Here, we use Eq. (27.16) with the derivatives of a product and the tangent:

 
dr
du

= uetan u1sec2 u2 + etan u112
  = etan u1u  sec2 u + 12  ■

 EXAMPLE  5  

Find the derivative of y = 1e1/x22.
In this example, we use Eqs. (23.15) and (27.16):

 
dy
dx

= 21e1>x2 1e1>x2 a- 1

x2 b  

  using Eqs. (27.16) and (23.15) to  

find 
du
dx

 of Eq. (23.15)

  =
-21e1>x22

x2 =
-2e2>x

x2

We can also solve this problem by using the laws of exponents and writing the func-
tion as y = e2>x. This change in form simplifies the steps for finding the derivative:

 using Eq. (23.15) to find 
du
dx

 of Eq. (27.16)

 
dy
dx

= e2>xa- 2

x2 b =
-2e2>x

x2  ■

 EXAMPLE  6  Evaluation of the slope of a tangent

Find the slope of a line tangent to the curve of y =
3e2x

x2 + 1
 at x = 1.275.

Here, we are to evaluate the derivative for x = 1.275. The solution is as follows:

 
dy

dx
=

1x2 + 12 13e2x2 122 - 3e2x12x21x2 + 122   take the derivative

 =
6e2x1x2 - x + 121x2 + 122

 
dy

dx
2
x=1.275

=
6e211.2752 11.2752 - 1.275 + 1211.2752 + 122 = 15.05  evaluate

The function and the tangent line are shown in Fig. 27.28. ■

Practice Exercise

1. Find the derivative of y = ln 1e3x + 12 .

Practice Exercise

2. Find the derivative of y = 8e4x cos x.

Fig. 27.28 
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 EXAMPLE  7  Derivative of a power

Find the derivative of y = 13e4x + 4x2 ln x23.
Using the general power rule (Eq. 23.15) for the derivatives, the derivative of the 

exponential function (Eq. 27.16), the derivative of a product (Eq. 23.12), and the 
derivative of a logarithm (Eq. 27.14), we have

 
dy
dx

= 313e4x + 4x2 ln x22 c 12e4x + 4x2a1
x
b + 1 ln x2 18x2 d

  = 313e4x + 4x2 ln x22112e4x + 4x + 8x ln x2  ■

EXERCISES 27.6

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the resulting problems.

 1.  In Example 3, in the given function, change cos to sin.

 2.  In Example 6, in the given function, change x2 + 1 to x + 1.

In Exercises 3–32, find the derivatives of the given functions.

 3. y = 46x 4. y = 10x2

 5. y = 6e1x 6. r = 0.3eu
2

 7. y = 4et1e2t - et2  8. y = 0.6 ln1e5x + 32
 9. R = Te-T 10. y = 5x2e2x

 11. y = xesin x 12. y = 4ex sin 12x

 13. r =
21e2s - e-2s2

e2s  14. u =
e0.5v

2v

 15. y = e-3x sin 4x 16. y = 1cos 2x2 1ex2 -12
 17. y =

2e3x

4x + 3
 18. y =

7 ln 3x

e2x + 8

 19. y = 0.5 ln 1et2 + 42  20. p = 13e2n + e223

 21. y = 12e2x23 sin x2 22. y = 1e3/x cos x22

 23. u = 42ln 2t + e2t 24. y = 12ex2
+ x223

 25. y = xexy + sin y 26. y = 4e-2/x  ln y + 1

 27. y = 3e2x  ln x 28. r = 0.4e2u ln cos u

 29. I = ln sin 2e6t 30. y = 6 tan ex+1

 31. y = 2 sin-1 e2x 32. W = tan-1 e3s

In Exercises 33–54, solve the given problems. Where necessary, round 
answers to 3 significant digits.

 33. On a calculator, find the values of (a) e and  
(b) 1e1.0001 - e1.00002 >0.0001. Compare the values and give the 
meaning of each in relation to the derivative of ex, where x = 1.

 34. On a calculator, find the values of (a) e2 and  
(b) 1e2.0001 - e2.00002 >0.0001. Compare the values and give the 
meaning of each in relation to the derivative of ex, where x = 2.

 35. Display the graph of y = ex on a graphing calculator. Using the 
derivative feature, evaluate dy>dx for x = 2 and compare with 
the value of y for x = 2.

 36. Find a formula for the nth derivative of y = aebx.

 37. Find the slope of a line tangent to the curve of y = e-x>2 cos 4x 
for x = 0.625.

 38. Find the slope of a line tangent to the curve of y =
e-x

1 + ln 4x
 for 

x = 1.842.

 39. Find the differential of the function y =
12e4x

x + 6
.

 40. Find the linearization of the function f1x2 =
6e4x

2x + 3
 for a = 0.

41. Use a graphing calculator to display the graph of y = ex. By 
roughly estimating slopes of tangent lines, note that it is reasona-
ble that these values are equal to the y-coordinates of the points 
at which these estimates are made. (Remember: For y = ex, 
dy>dx = ex also.)

42. Use a graphing calculator to display the graphs of y = e-x and 
y = -e-x. By roughly estimating slopes of tangent lines of 
y = e-x, note that y = -e-x gives reasonable values for the 
derivative of y = e-x.

43. Show that y = xe-x satisfies the equation 1dy>dx2 + y = e-x.

44. Show that y = e-x sin x satisfies the equation 
d2y

dx2 + 2 
dy

dx
+ 2y = 0.

45. For y =
e2x - 1

e2x + 1
, show that 

dy

dx
= 1 - y2.

46. If ex + ey = ex+y, show that dy>dx = -ey-x.

47. For what values of m does the function y = aemx satisfy the equa-
tion y″ + y′ - 6y = 0?

48. For what values of m does the function y = aemx satisfy the equa-
tion y″ + 4y = 0?

49. If y = Aekx + Be-kx, show that y″ = k2y.

50. The average energy consumption C (in MJ>year) of a certain model 
of refrigerator-freezer is approximately C = 5350e-0.0748t + 1800, 
where t is measured in years, with t = 0 corresponding to 1990, 
and a newer model is produced each year. Assuming the function 
is continuous, use differentials to estimate the reduction in energy 
consumption of the 2012 model from that of the 2011 model.

51. The reliability R 10 … R … 12  of a certain computer system is 
given by R = e-0.002t, where t is the time of operation (in h). 
Find dR>dt for t = 100 h.



 27.7 L’Hospital’s Rule 837

52. A thermometer is taken from a freezer at -16°C and placed in a 
room at 24°C. The temperature T  of the thermometer as a func-
tion of the time t (in min) after removal is given by 
T = 8.013.0 - 5.0e-0.50t2 . How fast is the temperature chang-
ing when t = 6.0 min?

53. For the electric circuit shown in Fig. 27.29, the current i (in A) is 
given by i = 4.42e-66.7t sin 226t, where t is the time (in s). Find 
the expression for di>dt.

The hyperbolic cosine of u is defined as 

cosh u =
1
2

 1eu + e-u2 .

Figure 27.31 shows the graph of y = cosh x.

These functions are called hyperbolic functions since, if x = cosh u 
and y = sinh u, x and y satisfy the equation of the hyperbola 
x2 - y2 = 1.

55. Verify the fact that the exponential expressions for the hyperbolic 
sine and hyperbolic cosine given above satisfy the equation of the 
hyperbola.

56. Show that sinh u and cosh u satisfy the identity 
cosh2 u - sinh2 u = 1.

57. Show that 
d
dx

 sinh u = cosh u 
du
dx

 and  

d
dx

 cosh u = sinh u 
du
dx

  

where u is a function of x.

58. Show that 

  
d2 sinh x

dx2 = sinh x and 
d2 cosh x

dx2 = cosh x.

59. A telephone wire hangs so that its shape is described by 

y = 50 cosh 
x

50
. Find the expression for dy>dx. (See Exercise 57.)

Answers to Practice Exercises

1.  y′ = 3e3x> 1e3x + 12   2.  y′ = 8e4x14 cos x - sin x2

Fig. 27.29 

R = 8.00 Ω

L = 0.0600 H

E = 60.0 V C = 300 mF

Fig. 27.31 
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54. Under certain assumptions of limitations to population growth, 
the population P (in billions) of the world is given by the logistic 

equation P =
10

1 + 0.65e-0.060t, where t is the number of years 

after the year 2000. Find the expression for dP>dt.

In Exercises 55–59, use the following information.
The hyperbolic sine of u is defined as

sinh u =
1
2

 1eu - e-u2 .

Figure 27.30 shows the graph of 
y = sinh x. 0

y

x

Fig. 27.30 

We dedicate this section to finding limits of quotients where both numerator and 
denominator approach zero or where both numerator and denominator approach infin-
ity. We have already encountered this type of expression in Section 23.1, where we 
evaluated the limit using algebraic techniques, and in Section 27.1, where we found 

that lim
uS0

 sin u
u

= 1 using a geometric approach. Now we study a more general method 

to evaluate such limits by using derivatives.
For the limit of u1x2 >v1x2  as x S a, if both u1x2  and v1x2  approach zero, the 

limit is called an indeterminate form of the type 0 , 0. If u1x2  and v1x2  approach 
infinity, the limit is called an indeterminate form of the type H >H .

To find these limits, we use L’Hospital’s rule.  The proof of L’Hospital’s rule can 
be found in texts covering advanced methods in calculus.

 27.7 L’Hospital’s Rule
Indeterminate Forms 0 ,0 and H , H
Indeterminate Form 0 ~ H

■ The method is named after the French math-
ematician the Marquis de l’Hospital (1661–1704), 
who incorporated it in the first textbook on dif-
ferential calculus to appear in print (in 1696). 
However, the result was derived two years ear-
lier by his calculus tutor, Johann Bernoulli 
(1667–1748).

L’Hospital’s Rule
If u1x2  and v1x2  are differentiable such that v′1x2  is not zero, and if lim

xSa u1x2 = 0 
and lim

xSa v1x2 = 0 or lim
xSa u1x2 = ∞  and lim

xSa v1x2 = ∞ , then

lim
xSa

 
u1x2
v1x2 = lim

xSa
 
u′1x2
v′1x2
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 EXAMPLE  1  L’Hospital’s rule—indeterminate form 0 ,0

Using L’Hospital’s rule, find lim
uS0

sin u
u

.

This, of course, is the same limit we found in Section 27.1 when deriving the de-
rivative of the sine function. Noting again that

lim
uS0 sin u = 0 and lim

uS0 u = 0

we see that this is of the indeterminate form 0>0. Applying L’Hospital’s rule, we 
have

lim
uS0

sin u
u

= lim
uS0

 
 d
du  sin u

d
du u

= lim
uS0

 
cos u

1
=

1
1

= 1

This agrees with the result in Section 27.1. ■

 EXAMPLE  2  L’Hospital’s rule—indeterminate form H , H

Evaluate lim
xS ∞

 
3e2x

5x
.

Here, we see that 3e2x S ∞  and 5x S ∞  as x S ∞ , which means the limit is of 
the indeterminate form ∞ >∞ . Therefore, using L’Hospital’s rule, we have

lim
xS ∞

 
3e2x

5x
= lim

xS∞
 
d
dx 3e2x

d
dx 5x

= lim
xS∞

 
6e2x

5
= ∞

This means that the limit does not exist. ■

 EXAMPLE  3  L’Hospital’s rule—limit as t S P ,2

Evaluate lim
tSp>2 

1 - sin t
cos t

.

Here, lim
tSp>211 - sin t2 = 0 and lim

tSp>2cos t = 0, which means the limit is of the 
indeterminate form 0>0. Using L’Hospital’s rule, we have

 lim
tSp>2 

1 - sin t
cos t

= lim
tSp>2 

d
dt 11 - sin t2

d
dt cos t

= lim
tSp>2 -cos t

-sin t
=

0
-1

= 0 ■

 EXAMPLE  4  Using L’Hospital’s rule twice

Using L’Hospital’s rule, find lim
xS ∞

 
x2 + 1

2x2 + 3
.

This is the same limit we found algebraically in Example 11 on page 664.
Noting that 1x2 + 12 S ∞  and 12x2 + 32 S ∞  as x S ∞ , this limit is of the 

indeterminate form ∞ >∞ . Therefore, applying L’Hospital’s rule, we have

lim
xS ∞

 
x2 + 1

2x2 + 3
= lim

xS ∞
 

d
dx 1x2 + 12
d
dx 12x2 + 32 = lim

xS ∞
 
2x
4x

= lim
xS ∞

 
1
2

=
1
2

After applying L’Hospital’s rule, we were able to algebraically simplify the expres-
sion. However, because 2x S ∞  and 4x S ∞  as x S ∞ , this last limit also is of the 
indeterminate form ∞ >∞  and we can use L’Hospital’s rule again. This gives us

lim
xS ∞

 
2x
4x

= lim
xS ∞

 
d
dx 2x
d
dx 4x

= lim
xS ∞

 
2
4

=
1
2

We note that this result agrees with the result of Example 11 on page 664. ■

Practice Exercise

1. Find lim
xS0

 
1 - e4x

2x
.

Practice Exercise

2. Find lim
xS ∞

 
ln x
x

.
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 EXAMPLE  5  Be careful to check the indeterminate form

Find lim
xSp -  

2 sin x
1 - cos x

.

Applying L’Hospital’s rule, we have

lim
xSp -  

2 sin x
1 - cos x

= lim
xSp -  

d
dx 2 sin x

d
dx 11 - cos x2 = lim

xSp -  
2 cos x
sin x

= - ∞

However, this result is INCORRECT. Checking back to the original expression, we 
note that it does not fit the indeterminate form 0>0. As x S p-  (x approaches p 
from values below p), 2 sin x approaches 0, but 1 - cos x approaches 2. Therefore, 
we cannot apply L’Hospital’s rule to this limit.

Since this function is continuous as x S p- , we have

 lim
xSp -  

2 sin x
1 - cos x 

=
2 sin p

1 - cos p
=

0
1 - 1 -12 = 0 ■

We can verify the value of a limit found using L’Hospital’s rule by successive evalua-
tion. The table derived in Example 6 can be obtained using the table feature of some 
graphing calculators.

 EXAMPLE  6  Numerical verification of a limit

Find lim
xSp

 
1 + cos x 1p - x22 and verify the value of the limit numerically using values of x that 

approach p.
Because cos p = -1, we see that both the numerator and the denominator ap-

proach zero as x approaches p. Therefore, we have

 lim
xSp

 
1 + cos x 1p - x22 = lim

xSp
 
d
dx 11 + cos x2

d
dx 1p - x22 = lim

xSp
 

-sin x 
-21p - x2   

 indeterminate form  0>0; 
use L’Hospital’s rule 
again

 = lim
xSp

 
d
dx 1 -sin x2

d
dx 3 -21p - x2 4 = lim

xSp
 
-cos x

2
=

- 1 -12
2

=
1
2

To verify the limit numerically, we form a table of values of 11 +  cos x2 > 1p - x22 
using values of x that approach p. Such a table is shown in Fig. 27.32. We see that 
the limit 1>2 is verified. ■

There are indeterminate forms other than 0>0 and ∞ >∞ . One of these is illustrated 
in the following example, and others are covered in the exercises.

 EXAMPLE  7  Indeterminate form 0 # H
Find lim

xS0 +  x
2 ln x.

As x S 0+ , we note that x2 S 0 and  ln  x S - ∞ . This is the indeterminate form 
0 # ∞ . By writing x2 as 1> 11>x22  we can change this indeterminate form to ∞ >∞ . 
Making this change, and then applying L’Hospital’s rule, we have

 lim
xS0 +  x

2 ln x = lim
xS0 +  

 ln x 
1
x2

= lim
xS0 +

d
dx ln x 
d
dx x -2

= lim
xS0 +  

1
x

- 2
x3

= lim
xS0 + a- x2

2
b = 0 ■

When using L’Hospital’s rule, always verify that the limit fits the indeterminate 
form of 0/0 or H , H  before you apply the rule. If you use the rule when it does not 
apply, it will lead to incorrect calculations, as can be seen in Example 5.

COMMON ERROR

3.1376

3.1386

3.1396

3.1406

Error

3.1426

3.1436

3.1446

3.1456

x

0.499 999 336

0.499 999 627

0.499 999 835

0.499 999 954

0.499 999 956

0.499 999 832

0.499 999 624

0.499 999 331

1 + cosx
(p − x)2

p

Fig. 27.32 
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EXERCISES 27.7

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the resulting problems.

 1.  In Example 2, change the denominator 5x to 5 ln x.

 2.  In Example 5, change the denominator 1 - cos x to 1 + cos x.

In Exercises 3–30, evaluate each limit (if it exists). Use L’Hospital’s 
rule (if appropriate).

 3. lim
uS0

 
tan u
u

 4. lim
xS ∞

 
ex

x2

 5. lim
xS ∞

 
x ln x

x + ln x
 6. lim

xS1
 

ln x
x - 1

 7. lim
tSp>4 

1 - sin 2t
p
4 - t

 8. lim
xS0

ln cos x
x

 9. lim
xS0

 
 ln x

x -1  10. lim
uSp>2 

1 + sec u
tan u

 11. lim
xS0

 
sin x - x

x3  12. lim
xS ∞

 
x2 + x
ex + 1

 13. lim
xS1

 
sin px
x - 1

 14. lim
xS0

 
tan-1 x

x

 15. lim
xS0

 x cot x 16. lim
zS + ∞

 ze- z

 17. lim
xS0 +  x ln sin x 18. lim

xSp>2 11 - sin x2 tan x

 19. lim
xS0

 
2 sin x

5ex  20. lim
xS ∞

 
e2x - 1
4x + 1

 21. lim
xS + ∞

 
1 + e2x

2 + ln x
 22. lim

xSp>2  
p
2 - x

1 + sin x

 23. lim
xS0

 
 ln sin x
 ln tan x

 24. lim
tS + ∞

 
 ln ln t

ln t

 25. lim
xS0 +  1sin x2 1 ln x2  26. lim

xS0 + 1sin-1 x2 1 ln x2
 27. lim

xS2
 
2x3 - 7x2 + 11x - 10

x3 - 5x2 + 7x - 2

 28. lim
xS1

 
x4 - x3 - 3x2 + 5x - 2

x4 - 5x3 + 9x2 - 7x + 2

 29. lim
xS0

 
11 - x - 11 + x

x

 30. lim
xS0

 
ex + e-x - 2

1 - cos 2x

In Exercises 31–40, solve the given problems.

 31. Another indeterminate form is ∞ - ∞ . Often, it is possible to 
make an algebraic or trigonometric change in the function so that 
it will take on the form of a 0>0 or ∞ >∞  indeterminate form. 
Find lim

uSp
2

-
1sec u - tan u2 .

 32. Find lim
xS0

 a 1
sin x

- 1
x
b . (See Exercise 31.)

 33. Three other indeterminate forms are 00, ∞0, and 1∞ . For the func-
tion y = 3 f1x2 4g1x2 and the following limits, we have the indi-
cated indeterminate form:

lim
xSa f1x2 = 0  and lim

xSa g1x2 = 0  (indet. form 00)

lim
xSa f1x2 = ∞   and lim

xSa g1x2 = 0  (indet. form ∞0)

lim
xSa f1x2 = 1  and lim

xSa g1x2 = ∞   (indet. form 1∞) 

By taking the logarithm of y = 3 f1x2 4g1x2, we have

ln y = g1x2  ln f1x2
and in each case the right-hand member is a type that can be 
solved by L’Hospital’s rule. By knowing the limit of  ln y, we can 
find the limit of y.

Find lim
xS0

xx.

 34. Find lim
xS0

a1
x
b sin x

.  (See Exercise 33.)

 35. Find lim
xS + ∞

 11 + x221>x. (See Exercise 33.)

 36. Find lim
uSp>21sin u2 tan u. (See Exercise 33.)

 37. Explain why L’Hospital’s rule cannot be applied to lim
xS ∞

x sin x.

 38. By inspection, find lim
xSp

2
-

(cos x2 tan x. What is the form of this 

limit? (Note that it is not one of the indeterminate forms noted in 
this section.)

 39. If the force resisting the fall of an object of mass m through the 
atmosphere is directly proportional to the velocity v, then the 

velocity at time t is v =
mg

k
11 - e-kt>m2 , where g is the acceler-

ation due to gravity and k is a positive constant. Find limkS0 +v.

 40. In Exercise 39, find limmS∞ v.

Answers to Practice Exercises

1. -2 2. 0
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The following examples show applications of the logarithmic and exponential func-
tions to the types of applications shown at the left. These and other applications are 
included in the exercises.

 EXAMPLE  1  Sketching a graph

Sketch the graph of the function y = x ln x.
First, we note that x cannot be zero since ln x is not defined at x = 0. Since 

ln 1 = 0, we have an intercept at 11, 02 . There is no symmetry to the axes or origin, 
and there are no vertical asymptotes. Also, because ln x is defined only for x 7 0, 
the domain is x 7 0.

Finding the first two derivatives, we have

dy
dx

= x a1
x
b + ln x = 1 + ln x  

d2y

dx2 =
1
x

The first derivative is zero if ln x = -1, or x = e-1. The second derivative is posi-
tive for this value of x. Thus, there is a minimum point at 11>e, -1>e2 . Since the 
domain is x 7 0, the second derivative indicates that the curve is always concave 
up. In turn, we now see that the range of the function is y Ú -1>e. The graph is 
shown in Fig. 27.33.

Using L’Hospital’s rule, we find lim
xS0

 x ln x = 0. Therefore, although the curve 
approaches the origin as x approaches zero, the origin is not included on the graph 
of the function. ■

 EXAMPLE  2  Sketching a graph

Sketch the graph of the function y = e-x cos x 10 … x … 2p2 .
This curve has intercepts for all values for which cos x is zero. Those values in 

the domain 0 … x … 2p for which cos x = 0 are x = p
2  and x = 3p

2 . The factor e-x 
is always positive, and e-x = 1 for x = 0, which means 10, 12  is also an intercept. 
There is no symmetry to the axes or the origin, and there are no vertical asymptotes.

Next, finding the first derivative, we have

dy
dx

= -e-x sin x - e-x cos x = -e-x 1sin x + cos x2
Setting the derivative equal to zero, since e-x is always positive, we have

sin x + cos x = 0,  tan x = -1,  x =
3p
4

, 
7p
4

Now, finding the second derivative, we have

d2y

dx2 = -e-x 1cos x - sin x2 - e-x1 -12 1sin x + cos x2 = 2e-x sin x

The sign of the second derivative depends only on sin x. Therefore,

d2y

dx2 7 0 for x =
3p
4
 and 

d2y

dx2 6 0 for x =
7p
4

This means that 13p
4 , -0.0672  is a minimum and 17p

4 , 0.0032  is a maximum.
Also, from the second derivative, points of inflection occur for x = 0, p, and 2p 

since sin x = 0 for these values. The graph is shown in Fig. 27.34. ■

 27.8 Applications

Time-Rate-of-Change Problems

Fig. 27.33 
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 EXAMPLE  3  

Find the root of the equation e2x - 4 cos x = 0 that lies between 0 and 1, by using 
Newton’s method.

Here,

 f1x2 = e2x - 4 cos x

 f′1x2 = 2e2x + 4 sin x

This means that f102 = -3 and f112 = 5.2. Therefore, we choose x1 = 0.5. 
Using Eq. (24.1), which is

x2 = x1 -
f1x12
f′1x12

we have these values:

 f1x12 = e210.52 - 4 cos 0.5 = -0.792 048 4

 f′1x12 = 2e210.52 + 4 sin 0.5 = 7.354 265 8

 x2 = 0.5 - -0.792 048 4
7.354 265 8

= 0.607 699 2

Using the method again, we find x3 = 0.597 975 1, which is correct to three decimal 
places. ■

 EXAMPLE  4  Time rate of change—population growth

One model for population growth is that the population P at time t is given by 
P = P0ekt, where P0 is the initial population (t = 0, when timing starts for the popula-
tion being considered) and k is a constant. Show that the instantaneous time rate of 
change of population is directly proportional to the population present at time t.

To find the time rate of change, we find the derivative dP>dt:

 
dP
dt

= 1P0ekt2 1k2 = kP0ekt

  = kP  since P = P0ekt

Thus, we see that population growth increases as population increases. ■

 EXAMPLE  5  Acceleration of a rocket

A rocket is moving such that the only force acting on it is due to gravity and its mass is 
decreasing (because of the use of fuel) at a constant rate r. If it moves vertically, its 
velocity v as a function of time t is given by

v = v0 - gt - k ln a1 - rt
m0

b
where v0 is the initial velocity, g is the acceleration due to gravity, t is the time, m0 is 
the initial mass, and k is a constant. Determine the expression for the acceleration.

Since acceleration is the time rate of change of the velocity, we must find dv>dt. 
Therefore,

 
dv
dt

= -g - k 
1

1 - rt
m0

 a -r
m0

b = -g +
km0

m0 - rt
 a r

m0
b

  =
kr

m0 - rt
- g ■

Practice Exercise

1.  In Example 3, choose x1 = 0.7 and then 
find x2.

■ See the chapter introduction.
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EXERCISES 27.8

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the resulting problems.

 1.  In Example 2, in the given function, change cos to sin.

 2.  In Example 3, in the given function, change e2x to 2ex.

In Exercises 3–14, sketch the graphs of the given functions.

 3. y = ln cos x 4. y =
2 ln x

x

 5. y = 3xe-x 6. y =
ex

x

 7. y = ln 
1

x2 + 1
 8. y = 5 ln 

e
x

 9. y = 4e-x2
  10. y = 4x - ex

 11. y = 8 ln x - 2x 12. y = e-x sin  x

 13. y = 1
2 1ex - e-x2  (See Exercise 55 of Section 27.6.)

 14. y = 1
2 1ex + e-x2  (See Exercise 55 of Section 27.6.)

In Exercises 15–44, solve the given problems by finding the appropriate 
derivative.

 15. Find the values of x for which the graphs of y1 = e2/x2
 and 

y2 = e-2/x2
 are increasing and decreasing. Explain why they differ 

as they do.

 16. Find the values of x for which the graphs of y1 = ln1x2 + 12  
and y2 = ln1x2 - 12  are concave up and concave down. Explain 
why they differ as they do.

 17. Find the equation of the line tangent to the curve of y = x2 ln x at 
the point 11, 02 .

 18. Find the equation of the line tangent to the curve of y = tan-1 2x, 
where x = 1.

 19. Find the equation of the line normal to the curve of y = 2 sin 12 x, 
where x = 3p>2.

 20. Find the equation of the line normal to the curve of y = e2x>x, at 
x = 1.

 21. By Newton’s method, solve the equation x2 - 3 + ln 4x = 0 to 
at least four decimal places.

 22. By Newton’s method, find the value of x to at least four decimal 
places for which y = ecos x is minimum 10 6 x 6 2p2 .

 23. The electric current i (in A) through an inductor of 0.50 H as a 
function of time t (in s) is i = e-5.0t sin 120pt. Find the volt-
age across the inductor for t = 1.0 ms. (See Exercise 27 on 
page 782.)

 24. A computer analysis showed that the population density D (in 
persons>km2) at a distance r (in km) from the centre of a city is 
approximately D = 20011 + 5e-0.01r22  if r 6 20 km. At what 
distance from the city centre does the decrease in population den-
sity 1dD>dr2  itself start to decrease?

 25. The power supply P (in W) in a satellite is P = 100e-0.005t, 
where t is measured in days. Find the time rate of change of 
power after 100 days.

 26. The number N of atoms of radium at any time t is given in terms 
of the number at t = 0, N0, by N = N0 e

-kt. Show that the time 
rate of change of N is proportional to N.

 27. A metal bar is heated, and then allowed to cool. Its temperature T  
(in °C) is found to be T = 15 + 75e-0.25t, where t (in min) is the 
time of cooling. Find the time rate of change of temperature after 
5.0 min.

 28. The insulation resistance R (in Ω >m) of a shielded cable is given 
by R = k ln 1r2>r12 . Here r1 and r2 are the inner and outer radii 
of the insulation. Find the expression for dR>dr2 if k and r1 are 
constant.

 29. The vapour pressure p and thermodynamic temperature T  of a gas 

are related by the equation ln p =
a
T

+ b  ln T + c, where a, b, 

and c are constants. Find the expression for dp>dT.

 30. The charge q on a capacitor in a circuit containing a capacitor of 
capacitance C, a resistance R, and a source of voltage E is given 
by q = CE11 - e- t/RC2 . Show that this equation satisfies the 

equation R 
dq

dt
 +

q

C
= E.

 31. Assuming that force is proportional to acceleration, show that a 
particle moving along the x-axis, so that its displacement is 
x = Aekt + Be-kt, has a force acting on it which is proportional 
to its displacement.

 32. The radius of curvature at a point on a curve is given by

  R =
31 + 1dy>dx2243>2

d2y>dx2 .

  A roller mechanism moves along the path defined by y = ln sec x 1 -1.5 dm … x … 1.5 dm2 . Find the radius of curvature of this 
path for x = 0.85 dm.

 33. Sketch the graph of y = ln sec x, marking that part which is the 
path of the roller mechanism of Exercise 32.

 34. In an electronic device, the maximum current density im as a 
function of the temperature T  is given by im = AT2ek/T, where A 
and k are constants. Find the expression for a small change in im 
for a small change in T .

 35. The energy E (in J) dissipated by a certain resistor after t seconds 
is given by E = ln 1 t + 12 - 0.25t. At what time is the energy 
dissipated the greatest?

 36. In a study of traffic control, the number n of vehicles on a certain 
section of a highway from 2 p.m. to 8 p.m. was found to be 
n = 20011 + t3e- t2 , where t is the number of hours after 2 p.m. 
At what time is the number of vehicles the greatest?

 37. A meteorologist sketched the path of the jet stream on a map of 
the northern United States and southern Canada on which all 
latitudes were parallel and all longitudes were parallel and equally 
spaced. A computer analysis showed this path to be 
y = 6.0e-0.020x sin 0.20x 10 … x … 602 , where the origin is 
125.0°W, 45.0°N and 160, 02  is 65.0°W, 45.0°N. Find the loca-
tions of the maximum and minimum latitudes of the jet stream 
between 65°W and 125°W for that day.

 38. The reliability R 10 … R … 12  of a certain computer system 
after t hours of operation is found from R = 3e-0.004t - 2e-0.006t. 
Use Newton’s method to find how long the system operates to 
have a reliability of 0.8 (80, probability that there will be no 
system failure).
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 39. An object on the end of a spring is moving so that its displace-
ment (in cm) from the equilibrium position is given by 
y = e-0.5t 10.4 cos 6t - 0.2 sin 6t2 . Find the expression for the 
velocity of the object. What is the velocity when t = 0.26 s? The 
motion described by this equation is called damped harmonic 
motion.

 40. A package of weather instruments is propelled into the air to an 
altitude of about 7 km. A parachute then opens, and the package 
returns to the surface. The altitude y of the package as a function 

of the time t (in min) is given by y =
10t

e0.4t + 1
. Find the vertical 

velocity of the package for t = 8.0 min.

 41. The speed s of signaling by use of a certain communications 
cable is directly proportional to x2  ln x -1, where x is the ratio of 
the radius of the core of the cable to the thickness of the surround-
ing insulation. For what value of x is s a maximum?

 42. A computer is programmed to inscribe a series of rectangles in 
the first quadrant under the curve of y = e-x. What is the area of 
the largest rectangle that can be inscribed?

 43. The relative number N of gas molecules in a container that are 
moving at a velocity v can be shown to be N = av2e-bv2

, where a 
and b are constants. Find v for the maximum N.

 44. A missile is launched and travels along a path that can be repre-
sented by y = 1x. A radar tracking station is located 2. 00 km 
directly behind the launch pad. Placing the launch pad at the ori-
gin and the radar station at 1 -2.00, 02 , find the largest angle of 
elevation required of the radar to track the missile.

Answer to Practice Exercise

1. x2 = 0.6068

 CHAPTER 27  

Limit of  
sin U
U

  as U S 0 lim
uS0

 
sin u
u

= lim
hS0

 
sin1h>22

h>2
= 1 (27.1)

Chain rule 
dy
dx

=
dy
du

# du
dx

  (27.3)

Derivatives 
d1sin u2

dx
= cos u 

du
dx

  (27.4)

 
d1cos u2

dx
= -sin u  

du
dx

  (27.5)

 
d1 tan u2

dx
=  sec2 u 

du
dx

  (27.6)

 
d1cot u2

dx
= -csc2 u 

du
dx

  (27.7)

 
d1sec u2

dx
=  sec u tan u 

du
dx

 (27.8)

 
d1csc u2

dx
= -csc u cot u 

du
dx

 (27.9)

 
d1sin-1 u2

dx
=

121 - u2
 
du
dx

 (27.10)

 
d1cos-1 u2

dx
= - 121 - u2

 
du
dx

 (27.11)

 
d1 tan-1 u2

dx
=

1

1 + u2 
du
dx

 (27.12)

 
d1 logb u2

dx
=

1
u

 logb e 
du
dx

 (27.13)
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d1 ln u2

dx
=

1
u

 
du
dx

 (27.14)

 
d1bu2

dx
= bu ln b 

du
dx

  (27.15)

 
d1eu2

dx
= eu 

du
dx

 (27.16)

 CHAPTER 27

In Exercises 1–40, find the derivative of the given functions.

 1. y = 3 cos14x - 12  2. y = 4 sec11 - x32
 3. u = 0.2 tan 13 - 2v 4. y = 5 sin11 - 6x2
 5. y = csc213x + 22  6. r = cot2 5pu

 7. y = 3 cos4 x2 8. y = 2 sin3 1x

 9. y = 1ex-322  10. y = 0.5esin 2x

 11. y = 3 ln1x2 + 12  12. R = ln13 + sin T22
 13. y = 10 tan-11x>52  14. y = 0.4 cos-112pt + 12
 15. u = ln sin-1 0.1t 16. y = sin1 tan-1 x2
 17. y = 1csc 4x + cot 4x 18. y = 3 cos21 tan 3x2
 19. y = 7 ln1x - e-x22 20. h = ln 23 sin 6u

 21. y =
cos2 x

e3x + p2 22. y = B1 + cos 2x
2

 23. v =
u2

tan-1 2u
 24. y =

sin-1 x
4x

 25. y = ln1csc x22  26. u = 0.5 ln tan ex

 27. y = ln213 + sin x2  28. y = ln13 + sin pt22

 29. L = 0.1e-2t sec pt 30. y = 5 e3x ln x

 31. y = 2sin 2x + e4x 32. x + y ln 2x = y2

 33. tan-1 
y

x
= x2ey 34. 3y + ln xy = 2 + x2

 35. r = 0.5t1e2t + 12 1e-2t - 12  36. y = 1 ln 4x - tan 4x23

 37. ln xy + ye-x = 1

 38. y = x1sin-1 x22 + 221 - x2 sin-1 x - 2x

 39. y = x cos-1 x - 21 - x2

 40. W = ln14s2 + 12 + tan-1 2s

In Exercises 41–44, sketch the graphs of the given functions.

 41. y = x - cos 0.5x 42. y = 4 sin x + cos 2x

 43. y = x1 ln x22 44. y = 2 ln 13 + x2
In Exercises 45–48, find the equations of the indicated tangent or 
normal lines.

 45. Find the equation of the line tangent to the curve of 
y = 4 cos21x22  at x = 1.

 46. Find the equation of the line tangent to the curve of y = ln cos x 
at x = p

6 .

 47. Find the equation of the line normal to the curve of y = ex2
 at 

x = 1
2.

 48. Find the equation of the line normal to the curve of y = tan-1 4x 
at x = 1>2.

In Exercises 49–54, find the indicated limits by use of L’Hospital’s 
rule.

 49. lim
xS0

 
sin 2x
sin 3x

 50. lim
xS0

 
xex

1 - ex

 51. lim
xSp+  

sin x
x - p

 52. lim
tS + ∞

 
x4 + 5x2 + 1

3x4 + 4

 53. lim
xS ∞

ln x23  x
 54. lim

xSp
 1x - p2cot x

In Exercises 55–98, solve the given problems.

 55. Find the derivative of each member of the identity 
sin2 x + cos2 x = 1 and show that the results are equal.

 56. Find the derivative of each member of the identity 
sin1x + 12 = sin x cos 1 + cos x sin 1 and show that the re-
sults are equal.

 57. If y = sin 3x, show that 
d2y

dx2 = -9y.

 58. If y = e5x1a + bx2 , show that 
d2y

dx2 - 10 
dy

dx
 + 25y = 0.

 59. By Newton’s method, solve the equation ex - x2 = 0.

 60. By Newton’s method, find the nonzero solution to the equation 
x2 = tan-1 x.

 61. Find the values of x for which the graph of y = ex - 2e-x is 
concave up.

 62. Find the values of x for which the graph of y = 2esin 1x>22 has 
maximum or minimum points.

 63. If a block is placed on a plane inclined with the horizontal at an 
angle u such that the block stays at the same position, the coef-
ficient of friction m is given by m = tan u. Use differentials to 
find the change in m if u changes from 18° to 20°.

 64. The tensile strength S (in N) of a plastic is tested and found to 
change with the temperature T  (in °C) according to the equation 
S = 1800 ln1T + 252 - 40T + 8600. For what temperature 
is the tensile strength the greatest?

 65. If a 200-N crate is dragged along a horizontal floor by a force F 
(in N) acting along a rope at an angle u with the floor, the mag-

nitude of F is given by F =
200 m

m sin u + cos u
, where m is the co-

efficient of friction. Evaluate the instantaneous rate of change of 
F with respect to u when u = 15° if m = 0.20.

 66. Find the date of the maximum number of hours of daylight in 
Toronto, Ontario. See Exercise 73 on page 319.
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 80. An analysis of samples of air for a city showed that the number 
of parts per million p of sulfur dioxide on a certain day was 
p = 0.05 ln12 + 24t - t22 , where t is the hour of the day. 
Using differentials, find the approximate change in the amount 
of sulfur dioxide between 10 a.m. and noon.

 81. According to Newton’s law of cooling (Isaac Newton, again), 
the rate at which a body cools is proportional to the difference in 
temperature between it and the surrounding medium. By use of 
this law, the temperature T  (in °C) of an engine coolant as a 
function of the time t (in min) is T = 30 + 6010.520.200t. The 
coolant was initially at 90°C and the air temperature was 30°C. 
Linearize this function for t = 5.00 min.

 82. The charge q on a certain capacitor in an amplifier circuit as a 
function of time t is given by 
q = e-0.1t10.2 sin 120pt + 0.8 cos 120 pt2 . The current i in 
the circuit is the instantaneous time rate of change of the charge. 
Find the expression for i as a function of t.

 83. A projection of the number n (in millions) of users of the Internet 
is n = 160 - 140e-0.30t, where t is the number of years after 
2000. What is the projected annual rate of increase in 2015?

 84. A football is thrown horizontally (very little arc) at 18 m>s par-
allel to the sideline. A TV cam-
era is 31 m from the path of the 
football. Find du>dt, the rate at 
which the camera must turn to 
follow the ball when u = 15°. 
See Fig. 27.37.

 85. An architect designs an arch of height y (in m) over a walkway 
by the curve of the equation y = 3.00e-0.500x2

. What are the di-
mensions of the largest rectangular passage area under the arch?

 86. A force P (in N) at an angle u above the horizontal drags a 50-N 
box across a level floor. The coefficient of friction between the 
floor and the box is constant and equals 0.20. The magnitude of 

the force P is given by P =
10.202 1502

0.20 sin u + cos u
. Find u such that 

P is a minimum.

 87. A jet is flying at 220 m>s directly away from the control tower 
of an airport. If the jet is at a constant altitude of 1700 m, how 
fast is the angle of elevation of the jet from the control tower 
changing when it is 13.0°?

 88. The current i in an electric circuit with a resistance R and an in-
ductance L is i = i0e-Rt/L, where i0 is the initial current. Show 
that the time rate of change of the current is directly proportional 
to the current.

 89. A silo constructed as shown in Fig. 27.38 is to hold 2880 m3 
of silage when completely full. It can be shown (can you?) that 
the surface area S (in m2) (not including the base) is 
S = 640 + 81p1csc u - 2

3 cot u2 . Find u such that S is a 
minimum.

 67. Periodically, a robot moves a part vertically y cm in an automo-
bile assembly line. If y as a function of the time t (in s) is 
y = 0.751sec 10.15t - 12 , find the velocity at which the part 
is moved after 5.0 s of each period.

 68. The length L (in m) of the shadow of a tree 15 m tall is 
L = 15 cot u, where u is the angle of elevation of the sun. 
Approximate the change in L if u changes from 50° to 52°.

 69. An analysis of temperature records for Sydney, Australia, indi-
cates that the average daily temperature (in °C) during the year 
is given approximately by T = 17.2 + 5.2 cos 3p6  1x - 0.502 4 , 
where x is measured in months (x = 0.5 is Jan. 15, etc.). What 
is the daily time rate of change of temperature on March 1? 
(Hint: 12 months>365 days = 0.033 month>day = dx>dt.)

 70. An earth-orbiting satellite is launched such that its altitude (in 
km) is given by y = 24011 - e-0.05t2 , where t is the time (in 
min). Find the vertical velocity of the satellite for t = 10.0 min.

 71. Power P is the time rate of change of doing work W. If work is 
being done in an electric circuit according to W = 25 sin2 2t, 
find P as a function of t.

 72. The value V of a bank account in which $1000 is deposited and 
then earns 6, annual interest, compounded continuously (daily 
compounding approximates this, and some banks actually use 
continuous compounding), is V = 1000e0.06t after t years. How 
fast is the account growing after exactly 2 years?

 73. In determining how to divide files on the hard disk of a com-
puter, we can use the equation n = xN logx N. Sketch the graph 
of n as a function of x for 1 6 x … 10 if N = 8.

 74. Under certain conditions, the potential V (in V) due to a magnet 

is given by V = -k ln a1 + L
x
b , where L is the length of the 

magnet and x is the distance from the point where the potential 
is measured. Find the expression for dV>dx.

 75. In the theory of making images by holography, an expression 
used for the light-intensity distribution is I = kE0

2 cos2 12 u, 
where k and E0 are constant and u is the phase angle between 
two light waves. Find the expression for dI>du.

 76. Neglecting air resistance, the range R of a bullet fired at an angle u 

with the horizontal is R =
v0

2

g
 sin 2u, 

where v0 is the initial velocity and g 
is the acceleration due to gravity. 
Find u for the maximum range. See 
Fig. 27.35.

 77. In the design of a cone-type clutch, 
an equation that relates the cone angle u and the applied force F 
is u = sin-1 1Ff>R2 , where R is the frictional resistance and f  
is the coefficient of friction. For constant R and f , find du>dF.

 78. If inflation makes the dollar worth 5, less each year, then the 
value of $100 in t years will be V = 10010.952 t. What is the 
approximate change in the value during the fourth year?

 79. An object attached to a cord of length l, 
as shown in Fig. 27.36, moves in a circu-
lar path. The angular velocity v is given 
by v = 1g> 1 l cos u2 . By use of dif-
ferentials, find the approximate change 
in v if u changes from 32.50° to 32.75°, 
given that g = 9.800 m>s2 and 
l = 0.6375 m.

Fig. 27.35 

v0

R

u

l
u

Fig. 27.36 

u

31 m

Football

TV camera

Fig. 27.37 

Fig. 27.38 

9.0 m

u
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 96. The displacement y (in cm) of a weight on a spring in water is 
given by y = 3.0te-0.20t, where t is the time (in s). What is the 
maximum displacement? (For this type of displacement, the mo-
tion is called critically damped, as the weight returns to its equi-
librium position as quickly as possible without oscillating.)

 97. Show that the equation of the hyperbolic cosine function 

y =
H
w

 cos h 
wx
H

 (w and H are constants) satisfies the equation

   
d2y

dx2 =
w
HB1 + ady

dx
b2

 (see Exercise 55 on page 837). A cate-

nary (see Exercise 59 on page 392) is the curve of a uniform 
cable hanging under its own weight and is in the shape of a hy-
perbolic cosine curve. This shape (inverted) was chosen for the 
St. Louis Gateway Arch (shown in Fig. 27.44) and makes the 
arch self-supporting. Also, an igloo has the shape of a rotated 
inverted catenary (called a catenoid).

 90. Light passing through a narrow slit forms patterns of light and 
dark (see Fig. 27.39). The intensity I of the light at an angle u is 

given by I = I0 c sin1k sin u2
k sin u

d 2
, where k and I0 are constants. 

Show that the maximum and minimum values of I occur for 
k sin u = tan1k sin u2 .

u
10.0 cm

L

C

h r

Fig. 27.41 

6.00 cm

10.0 cm

Fig. 27.42

10.0 cm

10.0 cm10.0 cm Au u

Fig. 27.43 

Fig. 27.44 

Tape together

Filter
surface

Cut out

u

Fig. 27.45 

Slit

Screen

I0

u

Fig. 27.39 

Fig. 27.40 

0

r

y

x
u

  91. When a wheel rolls along a straight line, a point P on the cir-
cumference traces a curve called a cycloid. See Fig. 27.40. The 
parametric equations of a cycloid are x = r1u - sin u2  and 
y = r11 - cos u2 . Find the velocity of the point on the rim of 
a wheel for which r = 5.50 cm and du>dt = 0.120 rad>s for 
u = 35.0°. (An inverted cycloid is the path of least time of 
descent (the brachistochrone) of an object acted on only by 
gravity.)

 92. In the study of atomic spectra, it is necessary to solve the equa-
tion x = 511 - e-x2  for x. Use Newton’s method to find the 
solution.

 93. The illuminance from a point source of light varies directly as 
the cosine of the angle of incidence (measured from the perpen-
dicular) and inversely as the square of the distance r from the 
source. How high above the centre of a circle of radius 10.0 cm 
should a light be placed so that illuminance at the circumference 
will be a maximum? See Fig. 27.41.

 94. A Y-shaped metal bracket is to be made such that its height is 
10.0 cm and its width across the top is 6.00 cm. What shape will 
require the least amount of material? See Fig. 27.42.

 95. A gutter is to be made from a sheet of metal 30.0 cm wide by 
turning up strips of width 10.0 cm along each side to make equal 
angles u with the vertical. Sketch a graph of the cross-sectional 
area A as a function of u. See Fig. 27.43.

 98. A conical filter is made from a circular piece of wire mesh of 
radius 24.0 cm by cutting out a sector with central angle u and 
then taping the cut edges of the remaining piece together (see 
Fig. 27.45). What is the maximum possible volume the resulting 
filter can hold?

 99. To find the area of the largest rectangular microprocessor chip 
with a perimeter of 40 mm, it is possible to use either an alge-
braic function or a trigonometric function. Write two or three 
paragraphs to explain how each type of function can be used to 
find the required area.



848 CHAPTER 27 Differentiation of Transcendental Functions

 CHAPTER 27  PRACTICE TEST

In Problems 1–3, find the derivative of each of the functions.

 1. y = tan3 2x + tan-1 2x

 2. y = 213 + cot 4x23

 3. y sec 2x = sin-1 3y

 4.  Find the differential of the function y =
cos2 13x + 12

x
.

 5.  Find the slope of a tangent to the curve of y = ln 
2x - 1

1 + x2  for 
x = 2.

 6.  Find the expression for the time rate of change of electric current 
that is given by the equation i = 8e- t sin 10t, where t is the 
time.

 7.  Sketch the graph of the function y = xex.

 8.  A balloon leaves the ground 250 m from an observer and rises 
at the rate of 5.0 m>s. How fast is the angle of elevation of the 
balloon increasing after 8.0 s?

 9.  Find lim
xS0

 
tan-1x
2 sin x

 using L’Hospital’s rule.



849

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Perform integrals by any of the 
following methods:
 the general power formula
 integration of basic 

logarithmic and exponential 
forms

 integration of basic 
trigonometric and inverse 
trigonometric forms

 integration by parts
 trigonometric substitution
 integration by partial 

fractions
 using tables

 Solve application problems 
involving integration

In developing calculus, mathematicians saw that integration and differentiation were in-
verse processes and that many integrals could be formed by finding the antiderivative. 
However, many of the integrals that arose mathematically and from the study of mechani-

cal systems did not fit a form from which the antiderivative could be found directly. This led 
to the creation of numerous methods to integrate various types of functions.

Some of these methods of integration had been developed by the early 1700s, and were used 
by many mathematicians, including Newton and Leibniz. By the mid-1700s, many of these 
methods were included in textbooks. One of these texts was written by the Italian mathemati-
cian Maria Agnesi. Her text included analytic geometry, differential calculus, integral calcu-
lus, and some advanced topics and was noted for clear and organized explanations with many 
examples. Another important set of textbooks was written by Euler, who wrote separate texts 
on precalculus topics, differential calculus, and integral calculus. These texts were also noted 
for clear and organized presentations and were widely used until the early 1800s. Euler’s inte-
gral calculus text included most of the methods of integration presented in this chapter.

Being able to integrate functions by using special methods, as well as by directly using anti-
derivatives, made integral calculus much more useful in developing many areas of geometry, 
science, and technology in the 1800s and 1900s. In earlier chapters, we have noted a number 
of applications of integration, and additional examples are found in the examples and exer-
cises of this chapter.

In this chapter, we expand the use of the general power formula for integration for use with 
integrands that include transcendental functions and several special methods of integration 
for integrands that do not directly fit standard forms. In using all forms of integration, recog-
nition of the integral form is of great importance.

Methods of 
Integration 28

 In Section 28.5, we show an applica-
tion of integration that is important 
in the design of computers, electronic 
equipment, and electric appliances.
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The first formula for integration that we will discuss is the general power formula, and 
we will expand its use to include transcendental integrands. It was first introduced with 
the integration of basic algebraic forms in Chapter 25 and is repeated here for reference.

 Lun du =
un+1

n + 1
+ C  1n ≠ -12  (28.1)

 EXAMPLE  1  Trigonometric integrand

Integrate1sin3 x cos x dx.
Since d1sin x2 = cos x dx, we note that this integral fits the form of Eq. (28.1) 

for u = sin x. Thus, with u = sin x, we have du = cos x dx, which means that this 
integral is of the form1u3 du. Therefore, the integration can now be completed:

du

 L sin3 x cos x dx = L sin3 x1cos x dx2
=

1
4

 sin4 x + C

We note here that the factor cos x is a necessary part of the du in order to have the 
proper form of integration and therefore does not appear in the final result.

We check our result by finding the derivative of 14 sin4 x + C, which is

 
d
dx

 a1
4

 sin4 x + Cb =
1
4

 142sin3 x cos x

 = sin3 x cos x  ■

 EXAMPLE  2  Trigonometric integrand

Integrate1211 + tan u sec2 u du.
Here, we note that d1 tan u2 = sec2 u du, which means that the integral fits the 

form of Eq. (28.1) with

u = 1 + tan u  du = sec2 u du  n = 1
2

The integral is of the form1u1>2 du. Thus,
du

 L211 + tan u 1sec2 u du2 = 2L 11 + tan u21>21sec2 u du2
u

 = 2 a2
3
b 11 + tan u23>2 + C

 =
4
3

 11 + tan u23>2 + C  ■

 EXAMPLE  3  Logarithmic integral

IntegrateL ln x adx
x
b .

By noting that d1 ln x2 =
dx
x

 , we have: u = ln x du =
dx
x

 n = 1

This means that the integral is of the form 1u du. Thus,

L ln x adx
x
b =

1
2

  1 ln x22 + C =
1
2

  ln2 x + C ■

do not forget the 
constant of integration

 28.1 The General Power Formula
 

Recognizing u, n, and du  
Special Care with du

In applying Eq. (28.1) to transcenden-
tal integrands, as well as with alge-
braic integrands, we must properly 
recognize the quantities u, n, and du. 
This requires familiarity with the dif-
ferential forms of Chapters 23 and 27.

LEARNING T IP

Practice Exercise

1. Integrate Lcos2 x sin x dx.

Practice Exercise

2. Integrate L
2 ln 2x dx

x
.
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 EXAMPLE  4  Inverse trigonometric integrand

Find the value of L
0.5

0

sin-1 x21 - x2
 dx.

For purposes of integrating: u = sin-1x du =
dx21 - x2

 n = 1

 L
0.5

0

sin-1 x21 - x2
 dx = L

0.5

0
sin-1 x a dx21 - x2

b   Lu du

 =
1sin-1 x22

2
 `

0

0.5
  integrate

 =
1p6 22

2
- 0 =

p2

72
  evaluate ■

 EXAMPLE  5  Inverse trigonometric integrand

Find the first-quadrant area bounded by y =
e2x2e2x + 1

 and x = 1.5.

The area is shown in Fig. 28.1. Using a representative element of area y dx, the 
area is found by evaluating the integral

L
1.5

0

e2x dx2e2x + 1

For the purpose of integration, n = -  12, u = e2x + 1, and du = 2e2x dx. Therefore,

 L
1.5

0
1e2x + 12-1>2e2x dx =

1
2 L

1.5

0
1e2x + 12-1>2 12e2x dx2

 =
1
2

 122 1e2x + 121>2 `
0

1.5
= 1e2x + 121>2 `

0

1.5

 = 2e3 + 1 - 12 = 3.178  ■

0.5 1 1.5

y

y

x

dy

Fig. 28.1

EXERCISES 28.1

In Exercises 1 and 2, make the given changes in the indicated exam-
ples of this section and then solve the given problems.

 1. In Example 1, change sin3 x to cos3 x. What other change must be 
made in the integrand to have a result of 14 cos4 x + C?

 2. In Example 3, change ln x to ln x2 and then integrate.

In Exercises 3–26, integrate each of the functions.

 3. Lsin4 x cos x dx 4. Lcos5 x1 -sin x dx2
 5. L0.41cos u sin u du 6. L8 sin1>3 x cos x dx

 7. L4 tan2 x  sec2 x dx 8. Lsec3 x1sec x tan x2  dx

 9. L
p>8

0
cos 2x sin 2x dx 10. L

p>4
p>6 31cot x csc2 x dx

 11. L  1sin-1 x23a dx21 - x2
b  12. L

201cos-1 2t24 dt21 - 4t2

 13. L
5 tan-1 5x

1 + 25x2 dx 14. L
sin-1 4x dx21 - 16x2

 15. L 3 ln 1x + 12 42 
dx

x + 1
 16. L0.813 + 2 ln u23  

du
u

 17. L
1>2

0

 ln12x + 32
2x + 3

 dx 18. L
e

1

11 - 2 ln x2  dx

x

 19. L  14 + ex23ex dx 20. L211 - e-x 1e-x dx2
 21. L

e2t dt11 - e2t23 22. L
11 + 3e-2x24 dx

e2x

 23. L  11 + sec2 x241sec2 x tan x dx2
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 36. Find the equation of the curve for which 
  dy>dx = 11 + tan 2x22 sec2 2x if the curve passes through 12, 12 .

 37. In the development of the expression for the total pressure p on a 
wall due to molecules with mass m and velocity v striking the 
wall, the equation p = mnv21p>2

0 sin u cos2 u du is found. The 
symbol n represents the number of molecules per unit volume, 
and u represents the angle between a perpendicular to the wall 
and the direction of the molecule. Find the expression for p.

 38. The solar energy E passing through a hemispherical surface per 
unit time, per unit area, is E = 2pI1p>2

0 cos u sin u du, where I is 
the solar intensity and u is the angle at which it is directed (from 
the perpendicular). Evaluate this integral.

 39. After an electric power interruption, the current i in a circuit is 
given by i = 311 - e-t22 1e-t2 , where t is the time. Find the 
expression for the total electric charge q to pass a point in the cir-
cuit if q = 0 for t = 0.

 40. A space vehicle is launched vertically from the ground such that its 

  velocity v (in km>s) is given by v = 3 ln 21 t3 + 12 4  
t2

t3 + 1
, 

  where t is the time (in s). Find the altitude of the vehicle after 10.0 s.

Answers to Practice Exercises

1. -  13 cos3 x + C 2. ln2 2x + C

 24. L 1ex + e-x21>41ex - e-x2  dx

 25. L
p>4

p>6 11 + cot x22 csc2 x dx 26. L
p>2

p>3 sin u du11 + cos u

In Exercises 27–30, rewrite the given integrals so that they fit the 
form 1un du, and identify u, n, and du.

 27. L  sec5x sin x dx 28. L
tan3 x dx

cos2 x

 29. L
dx

x ln2x
 30. L

211 + e-r2 11 - e-r2
e2r  dr

In Exercises 31–40, solve the given problems by integration.

 31. Find the first-quadrant area under the curve of y = ln2 x>x from 
x = 1 to x = 4.

 32. Find the first-quadrant area under the curve of y = sin3 x cos x 
from x = 0 to x = p

2 .

 33. Find the area under the curve y =
1 + tan-1 2x

1 + 4x2  from x = 0 to 

  x = 2.

 34. Find the first-quadrant area bounded by y =
ln 14x + 12

4x + 1
 and 

  x = 5.

 35. The general expression for the slope of a given curve is 1 ln x22>x. 
If the curve passes through 11, 22 , find its equation.

The general power formula for integration, Eq. (28.1), is valid for all values of n except 
n = -1. If n were set equal to -1, this would cause the result to be undefined. When 
we obtained the derivative of the logarithmic function, we found

d1 ln u2
dx

=
1
u

 
du
dx

This means the differential of the logarithmic form is d1 ln u2 = du>u. Reversing 
the process, we then determine that 1du>u = ln u + C. In other words, when the ex-
ponent of the expression being integrated is -1, the expression is a logarithmic form.

Logarithms are defined only for positive numbers. Thus, 1du>u = ln u + C is 
valid if u 7 0. If u 6 0, then -u 7 0. In this case, d1 -u2 = -du, or 

1 1 -du2 > 1 -u2 =  ln1 -u2 + C. However, 1du>u = 1 1 -du2 > 1 -u2 . These re-
sults can be combined into a single form using the absolute value of u. Therefore,

 L
du
u

= ln 0 u 0 + C  (28.2)

 28.2 The Basic Logarithmic Form
Integration of du>u  
Result Is Absolute Value of u
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 EXAMPLE  1  Algebraic integrand

Integrate L
dx

x + 1
.

Since d1x + 12 = dx, this integral fits the form of Eq. (28.2) with u = x + 1 
and du = dx. Therefore, we have

du

L
dx

x + 1
= ln 0 x + 1 0 + C

u ■

 EXAMPLE  2  Algebraic integrand—application

Newton’s law of cooling states that the rate at which an object cools is directly propor-
tional to the difference in its temperature T and the temperature of the surrounding me-
dium. By use of this law, the time t (in min) a certain object takes to cool from 80°C to 
50°C in air at 20°C is found to be

t = -9.8L
50

80

dT
T - 20

Find the value of t.
We see that the integral fits Eq. (28.2) with u = T - 20 and du = dT . Thus,

 t = -9.8L
50

80

dT
T - 20

 = -9.8 ln 0 T - 20 0 80
50   integrate

 = -9.81 ln 30 - ln 602   evaluate

 = -9.8 ln 
30
60

= -9.8 ln 10.502   ln x - ln y = ln 
x
y

 = 6.8 min  ■

 EXAMPLE  3  Trigonometric integrand

Integrate L
cos x
sin x

 dx.

We note that d1sin x2 = cos x dx. This means that this integral fits the form of 
Eq. (28.2) with u = sin x and du = cos x dx. Thus,

 L
cos x
sin x

 dx = L
cos x dx

sin x

 = ln 0 sin x 0 + C ■

 EXAMPLE  4  Comparing a logarithmic form with a power formula form

Integrate L
x dx

4 - x2.

This integral fits the form of Eq. (28.2) with u = 4 - x2 and du = -2x dx. This 
means that we must introduce a factor of -2 into the numerator and a factor of - 1

2 
before the integral. Therefore,

 L
x dx

4 - x2 = - 1
2

 L
-2x dx

4 - x2

= - 1
2

 ln 0 4 - x2 0 + C

 du

 u

 du

 u

 du

 u

Practice Exercise

1. Integrate L
3 dx

5 - 2x
.
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We should note that if the quantity 4 - x2 were raised to any power other than -1, 
as in the example, we would have to employ the general power formula for integra-
tion. For example,

 L
x dx14 - x222 = - 1

2
 L

-2x dx14 - x222

 u2

 = - 1
2

 
14 - x22-1

-1
+ C =

1

214 - x22 + C ■

 EXAMPLE  5  Exponential integrand

Integrate L
e4x dx

1 + 3e4x.

Since d11 + 3e4x2 >dx = 12e4x, we see that we can use Eq. (28.2) with u = 1 + 3e4x 
and du = 12e4x dx. Therefore, we write

L
e4x dx

1 + 3e4x =
1
12

 L
12e4x dx

1 + 3e4x   multiply and divide by 12

 =
1
12

 ln 0 1 + 3e4x 0 + C   integrate

 =
1
12

 ln11 + 3e4x2 + C  1 + 3e4x 7 0 for all x ■

 EXAMPLE  6  Definite integral with a trigonometric integrand

Evaluate L
p>8

0

 sec2 2u
1 + tan 2u

 du.

Since d11 + tan 2u2 = 2 sec2 2u du, we see that we can use Eq. (28.2) with 
u = 1 + tan 2u and du = 2 sec2 2u du. Therefore, we have

 L
p>8

0

 sec2 2u
1 + tan 2u

 du =
1
2

 L
p>8

0
 
2 sec2 2u du
1 + tan 2u

   multiply and divide by 2

 =
1
2

 ln 0 1 + tan 2u 0 0p>8   integrate

 =
1
2

 1 ln 0 1 + 1 0 - ln 0 1 + 0 0 2   evaluate

 =
1
2

 1 ln 2 - ln 12 =
1
2

 1 ln 2 - 02
 =

1
2

 ln 2  ■

 EXAMPLE  7  Find a volume using a logarithmic form

Find the volume within the piece of tapered tubing shown in Fig. 28.2, which can be 
described as the volume generated by revolving the region bounded by the curve of 

y =
314x + 3

, x = 2.50 cm, and the axes about the x-axis.

du

Practice Exercise

2. Integrate L
sin x dx

1 - cos x
 .

0

2

4321

22

y

x

x 5 2.50 cm

Fig. 28.2
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The volume can be found by setting up only one integral by using a disc element 
of volume, as shown. The volume is found as follows:

 V = pL
2.50

0
 y2 dx = pL

2.50

0
a 314x + 3

b2
 dx

 = pL
2.50

0

9 dx
4x + 3

=
9p
4

 L
2.50

0

4 dx
4x + 3

 =
9p
4

 ln14x + 32 0 02.50 =
9p
4

 1 ln 13.0 - ln 32
 =

9p
4

 ln 
13.0

3
= 10.4 cm3  ■

EXERCISES 28.2

In Exercises 1 and 2, make the given changes in the indicated exam-
ples of this section and then solve the given problems.

 1. In Example 1, change x + 1 to x2 + 1. What other change must 
be made in the integrand to have a result of ln 0 x2 + 1 0 + C?

 2. In Example 3, interchange cos x and sin x and then integrate.

In Exercises 3–30, integrate each of the given functions.

 3. L
dx

1 + 4x
 4. L

dx
1 - 4x

 5. L
2x dx

4 - 3x2 6. L
41u du

1 + u1u

 7. L
2

0

dx
8 - 3x

 8. L
3

-1
 
8x3 dx

x4 + 1

 9. L
0.4 csc2 2u du

cot 2u
 10. L

sin 3x
cos 3x

 dx

 11. L
p>2

0

cos x dx
1 + sin x

 12. L
p>4

0

 sec2 x dx
4 + tan x

 13. L
e-x

1 - e-x dx 14. L
5e3x

1 - e3x dx

 15. L
1 + ex

x + ex dx 16. L
3 et dt2e2t + 4et + 4

 17. L
 sec x tan x dx
1 + 4  sec x

 18. L
sin 2x

1 - cos2 x
 dx

 19. L
3

1

1 + x

4x + 2x2 dx 20. L
2

1
 
4x + 6x2

x2 + x3  dx

 21. L
0.5 dr
r ln r

 22. L
dx

x11 + 2 ln x2
 23. L

2 + sec2 x
2x + tan x

 dx 24. L
x + cos 2x

x2 + sin 2x
 dx

 25. L
6 dx11 - 2x

 26. L
4x dx11 + x222

 27. L
x + 2

x2  dx  28. L
3v2 - 2v

v2  dv

 29. L
p>12

0

 sec2 3x
4 + tan 3x

 dx 30. L
2

1

x2 + 1

x3 + 3x
 dx

In Exercises 31–48, solve the given problems by integration.

 31. Find the area bounded by 
y1x + 12 = 1, x = 0, 
y = 0, and x = 2. See 
Fig. 28.3.

 32.  Evaluate L
2

1
 x-1 dx and L

4

2
 x-1 dx. Give a geometric 

interpretation of these two results.

 33. Integrate L
x - 4
x + 4

 dx by first using algebraic division to change 

  the form of the integrand.

 34. Integrate Lsec x dx by first multiplying the integrand by 

  
 sec x + tan x
 sec x + tan x

 (a special form of 1).

 35. Find the volume generated by revolving the region bounded by 
y = 1> 1x2 + 12 , x = 0, x = 1, and y = 0 about the y-axis. 
Use shells.

 36. Find the volume of the solid generated by revolving the region 

  bounded by y =
213x + 1

 , x = 0, x = 3.5, and y = 0 about 

  the x-axis.

 37. The general expression for the slope of a curve is 
sin x

3 + cos x
. If 

  the curve passes through the point 1p>3, 22 , find its equation.

 38. Show that L
3

0

dx
2x + 2

= ln 2.

 39. If a 7 0 and b 7 0, show that L
a

1

du
u

 + L
b

1

du
u

 = L
ab

1

du
u

 .

y

O
x

x ! 2

y ! 1
x " 1

Fig. 28.3
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 40. If x 7 0, find f1x2  if f ′′1x2 = x-2, f112 = 0, and f122 = 0.

 41. The acceleration a (in m>s2) of an object is a = 1 t + 42-1. Find 
the velocity for t = 4 s, if the initial velocity is zero.

 42. The pressure p (in kPa) and volume V (in cm3) of a gas are related 
by pV = 8600. Find the average value of p from V = 75 cm3 to 
V = 95 cm3.

 43. Under ideal conditions, the natural law of population growth is 
that population increases at a rate proportional to the population P 

  present at any time t. This leads to the equation t =
1
k

 L
dP
P

. 

  Assuming ideal conditions for Canada, if P = 30.7 million in 
2000 1 t = 02  and P = 34.1 million in 2010 (t = 10 years), find 
the population that is projected for 2030 (t = 30 years).

 44. In determining the temperature that is absolute zero (0 K, or about 

  -273°C), the equation ln T = - L
dr

r - 1
 is used. Here, T is the 

  thermodynamic temperature and r is the ratio between certain 
specific vapour pressures. If T = 273.16 K for r = 1.3361, find 
T as a function of r (if r 7 1 for all T).

 45. The time t and electric current i for a certain circuit with a volt-
age E, a resistance R, and an inductance L is given by 

  t = LL
di

E - iR
. If t = 0 for i = 0, integrate and express i as a 

  function of t.

 46. Conditions are often such that a force proportional to the velocity 
tends to retard the motion of an object moving through a resisting 
medium. Under such conditions, the acceleration of a certain ob-
ject moving down an inclined plane is given by 20 - v. This 

  leads to the equation t = L
dv

20 - v
. If the object starts from 

  rest, find the expression for the velocity as a function of time.

 47. An architect designs a wall panel that can be described as the 

  first-quadrant area bounded by y =
50

x2 + 20
 and x = 3.00. If the 

  area of the panel is 6.61 m2, find the x-coordinate (in m) of the 
centroid of the panel.

 48. The electric power P developed in a certain resistor is given by 

P = 3L
sin pt

2 + cos pt
 dt, where t is the time. Express P as a 

function of t.

Answers to Practice Exercises

1. - 3
2 ln $ 5 - 2x $ + C 2. ln $1 - cos x $ + C

In deriving the derivative for the exponential function, we obtained the result 
deu>dx = eu 1du>dx2 . This means that the differential of the exponential form is 
d1eu2 = eu du. Reversing this form to find the proper form of the integral for the ex-
ponential function, we have

 Leu du = eu + C (28.3)

 EXAMPLE  1  Algebraic u

Integrate Lxex2
 dx.

Since d1x22 = 2x dx, we can write this integral in the form of Eq. (28.3) with 
u = x2 and du = 2x dx. Thus,

u

 Lxex2
 dx =

1
2

 Lex2
 12x dx2

du

 =
1
2

 ex2
+ C  ■

 28.3 The Exponential Form
Integration of eu du

Practice Exercise

1. IntegrateL6e-3x dx.
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 EXAMPLE  2  Algebraic u—application

For an electric circuit containing a direct voltage source E, a resistance R, and an 

inductance L, the current i and time t are related by ieRt>L =
E
L

 LeRt>L dt. See 

Fig. 28.4. If i = 0 for t = 0, perform the integration and then solve for i as a function 
of t.

For this integral, we see that u =
Rt
L

, which means that du =
R dt

L
. The solution 

is then as follows:

ieRt>L =
E
L

 LeRt>L dt =
E
L

 aL
R
b LeRt>LaR dt

L
b   introduce factor 

R
L

 =
E
R

 eRt>L + C   integrate

 01e02 =
E
R

  e0 + C,  C = - E
R

  i = 0 for t = 0; evaluate C

 ieRt>L =
E
R

 eRt>L - E
R

  substitute for C

 i =
E
R

- E
R

 e-Rt>L =
E
R

 11 - e-Rt>L2   solve for i ■

 EXAMPLE  3  eu in the denominator

Integrate L
dx

e3x.

This integral can be put in proper form by writing it as 1e-3x dx. In this form, 
u = -3x and du = -3 dx. Thus,

 L
dx

e3x = Le-3x dx = - 1
3

 Le-3x 1 -3 dx2
 = - 1

3
 e-3x + C  ■

 EXAMPLE  4  Proper form using laws of exponents

Integrate L
4e3x - 3ex

ex+1  dx.

By using the laws of exponents, this integral can be put in proper form for inte-
gration, and then integrated as follows:

 L
4e3x - 3ex

ex+1  dx = L
4e3x

ex+1 dx - L
3ex

ex+1 dx

 = 4Le3x-1x+12 dx - 3Lex-1x+12 dx  using Eq. (11.2)

 = 4Le2x-1 dx - 3Le-1 dx

 =
4
2

 Le2x-1 12 dx2 - 3
e

 Ldx

 = 2e2x-1 - 3
e

 x + C  ■

R

L
E

Fig. 28.4

■ For reference, Eq. (11.2) is 
am

an = am - n.
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 EXAMPLE  5  Definite integral with a trigonometric u

Evaluate: 1p>2
0  1sin 2u2 1ecos 2u2  du.

With u = cos 2u, du = -2 sin 2u du, we have

 L
p>2

0
1sin 2u2 1ecos 2u2  du = - 1

2
 L

p>2
0

1ecos 2u2 1 -2 sin 2u du2
= -  

1
2

 ecos 2u 0 p>20   integrate

= -  
1
2

 a1
e

- eb = 1.175  evaluate ■

 EXAMPLE  6  Algebraic u—Finding the equation of a curve

Find the equation of the curve for which 
dy
dx

=
e1x+11x + 1

 if the curve passes through 10, 12 .
The solution of this problem requires that we integrate the given function and 

then evaluate the constant of integration. Hence,

dy =
e1x+11x + 1

 dx   Ldy = L
e1x+11x + 1

 dx

For purposes of integrating the right-hand side,

 u = 1x + 1 and du =
1

21x + 1
 dx

 y = 2Le1x+1a 1
21x + 1

 dxb
 = 2e1x+1 + C

Letting x = 0 and y = 1, we have 1 = 2e + C, or C = 1 - 2e. This means that 
the equation is

y = 2e1x+1 + 1 - 2e  see Fig. 28.5. ■

Practice Exercise

2. Integrate L
esin x

sec x
 dx.

0 2 4

5

10

15

y

x
!2

!5

Fig. 28.5

EXERCISES 28.3

In Exercises 1 and 2, make the given changes in the indicated exam-
ples of this section and then solve the given problems.

 1. In Example 1, change ex2
 to ex3

. What other change must be made 
in the integrand to have a result of ex3

+ C?

 2. In Example 4, change ex+1 to ex-1 and then integrate.

In Exercises 3–28, integrate each of the given functions.

 3. Le7x17 dx2  4. Lex414x3 dx)

 5. Le2x+5 dx 6. L2e-4x dx

 7. L
2

-2
 6es>2 ds 8. L

2

1
 3e4x dx

 9. L6x2 ex3
 dx 10. Lxe-x2

 dx

 11. L
4

1

e1x1x
 dx 12. L

1

0
 41 ln eu2e-2u2

 du

 13. L41sec u tan u2e2 sec u du 14. L 1sec2 x2etan x dx

 15. L2e2y + e3ydy 16. L
4 dx

x2 e1>x
 17. L

3

1
 3e2x 1e-2x - 12  dx 18. L

0.5

0
 
3 e3x+1

ex   dx

 19. L
2 dx1xe1x

 20. L
4 dx

esin x sec x

 21. L
etan-1 2x

4x2 + 1
 dx 22. L

e 

sin-1 2x dx21 - 4x2

 23. L
ecos 3x dx

csc 3x
 24. L  1ex - e-x22 dx
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 25. L
p

0
1sin 2x2ecos2x dx 26. L

2

0

e2t dt2e2t + 4

 27. L
6ex dx
ex + 1

 28. L
4ex dx11 - ex22

In Exercises 29–45, solve the given problems by integration.

 29. Find the area bounded by y = 3 ex, x = 0, y = 0, and x = 2.

 30. Find the area bounded by x = a, x = b, y = 0, and y = ex. 
Explain the meaning of the result.

 31. Integrate L2ex2 + ln x dx by first showing that eln x = x. (Hint: Let 

  y = eln x and then take natural logarithms of both sides.)

 32. Integrate Lex+ ln x  
dx
x

. See Exercise 31.

 33. Integrate L
dx

1 + ex by first changing the form of the integrand 

by algebraic division.

 34. Integrate L
e2x dx
1 + ex by first changing the form of the integrand 

by algebraic division.

 35. Find the volume generated by revolv-
ing the region bounded by y = ex2

, 
x = 1, y = 0, and x = 2 about the  
y-axis. See Fig. 28.6.

 36. Find the equation of the curve for which dy>dx = 2ex+3 if the 
curve passes through 11, 02 .

 37. Find the average value of the function y = 4ex>2 from x = 0 to 
x = 4.

 38. Find the moment of inertia with respect to the y-axis of a flat plate 
that covers the first-quadrant region bounded by y = ex3

, x = 1, 
and the axes.

 39. Using Eq. (27.15), show that Lbu du =
bu

ln b
+ C 1b 7 0, b ≠ 12 .

 40. Find the first-quadrant area bounded by y = 2x and x = 3. See 
Exercise 39.

 41. For an electric circuit containing a 
voltage source E, a resistance R, and a 
capacitance C, an equation relating the 
charge q on the capacitor and the time 

  t is q et>RC =
E
R Le t>RC dt. See 

  Fig. 28.7. If q = 0 for t = 0, perform 
the integration and then solve for q as 
a function of t.

 42. In the theory dealing with energy propagation of lasers, the 
  equation E = a1 I0

0  e-Tx dx is used. Here, a, I0, and T are con-
stants. Evaluate this integral.

 43. The St. Louis Gateway Arch (see Fig. 27.44) has a shape that is 
given approximately by (measurements in m) 

  y = -19.461ex>38.92 + e-x>38.922 + 230.9. Find the total open 
area under the arch. (Hint: The limits of integration are the  
x-intercepts. To find them, set y = 0 and solve as an equation in 
quadratic form.)

 44. The force F (in N) exerted by a robot programmed to staple 
  carton sections together is given by F = 6 1esin pt cos pt dt, 

where t is the time (in s). Find F as a function of t if F = 0 for 
t = 1.5 s.

 45. The average lifetime of a certain kind of emergency backup 
battery is 200 hours. The proportion of those batteries that  
are expected to last less than 100 hours is given by 

  p = 1100
0 10.052x-0.5e-0.1x0.5

dx. Find p.

Answers to Practice Exercises

1. -2e-3x + C 2. esin x + C

y

x

y ! ex2

Fig. 28.6

R

C

E

Fig. 28.7

By noting the formulas for differentiating the six trigonometric functions, and the anti-
derivatives that are found using them, we have the following six integration formulas:

 L sin u du = -cos u + C (28.4)

 Lcos u du = sin u + C (28.5)

 L sec2 u du = tan u + C (28.6)

 Lcsc2 u du = -cot u + C (28.7)

 L sec u tan u du = sec u + C (28.8)

 Lcsc u cot u du = -csc u + C (28.9)

 28.4 Basic Trigonometric Forms
Integration of the Six Trigonometric 
Functions and Four Trigonometric  
Integrals That Directly Give  
Trigonometric Functions
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 EXAMPLE  1  Integration of sec2 u du

Integrate 1x sec2 x2 dx.
With u = x2, du = 2x dx, we have

du

 Lx sec2 x2 dx =
1
2 L 1sec2 x22 12x dx2

u

 =
1
2

 tan x2 + C  using Eq. (28.6) ■

 EXAMPLE  2  Integration of tan u sec u du

Integrate L
tan 2x
cos 2x

 dx.

By using the basic identity sec u = 1>cos u, we can transform this integral into 
the form 1sec 2x tan 2x dx. In this form, u = 2x and du = 2 dx. Therefore,

du

 L
tan 2x
cos 2x

 dx = L sec 2x tan 2x dx =
1
2 L sec 2x tan 2x12 dx2

u

 =
1
2

 sec 2x + C  using Eq. (28.8) ■

 EXAMPLE  3  Integration of cos u du—application

The vertical velocity v (in cm>s) of the end of a vibrating rod is given by 
v = 80 cos 20pt, where t is the time in seconds. Find the vertical displacement y (in 
cm) as a function of t if y = 0 for t = 0.

Since v = dy>dt, we have the following solution:

 
dy
dt

= 80 cos 20pt

 Ldy = L80 cos 20pt dt =
80

20pL 1cos 20pt2 120p dt2   set up integration

 y =
4
p

 sin 20pt + C   using Eq. (28.5)

 0 = 1.27 sin 0 + C,  C = 0 evaluate C

 y = 1.27 sin 20pt   solution ■

To find the integrals for the other trigonometric functions, we must change them to a 
form for which the integral can be determined by methods previously discussed. We 
can accomplish this by using the basic trigonometric relations.

The formula for 1 tan u du is found by expressing the integral in the form 

1 1sin u>cos u2  du. We recognize this as being a logarithmic form, where the u of the 
logarithmic form is cos u in this integral. The differential of cos u is -sin u du. 
Therefore, we have

L tan u du = L
sin u
cos u

 du = - L
-sin u du

cos u
 = - ln 0 cos u 0 + C

The formula for 1cot u du is found by writing it in the form 1 1cos u>sin u2  du. In 
this manner, we obtain the result

Lcot u du = L
cos u
sin u

 du = L
cos u du

sin u
 = ln 0 sin u 0 + C

Practice Exercise

1. Integrate Lsin 5x dx.

Practice Exercise

2. Integrate L6 csc2 3x dx.
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The formula for 1sec u du is found by writing it in the form

L
sec u1sec u + tan u2

sec u + tan u
 du

We see that this form is also a logarithmic form, since

d1sec u + tan u2 = 1sec u tan u + sec2 u2  du

The right side of this equation is the expression appearing in the numerator of the inte-
gral. Thus,

 L sec u du = L
sec u1sec u + tan u2  du

sec u + tan u
= L

sec u tan u + sec2 u
sec u + tan u

 du

 = ln 0 sec u + tan u 0 + C

To obtain the formula for 1csc u du, we write it in the form

L
csc u1csc u - cot u2  du

csc u - cot u

Thus, we have

 Lcsc u du = L
csc u1csc u - cot u2

csc u - cot u
 du = L

1 -csc u cot u + csc2 u2  du

csc u - cot u
 = ln 0 csc u - cot u 0 + C

Summarizing these results, we have the following integrals:

  L  tan u du = - ln 0 cos u 0 + C (28.10)

  L  cot u du = ln 0 sin u 0 + C (28.11)

  L  sec u du = ln 0 sec u + tan u 0 + C (28.12)

  L  csc u du = ln 0 csc u - cot u 0 + C (28.13)

 EXAMPLE  4  Integration of tan u du

Integrate 1 tan 4u du.
Noting that u = 4u, du = 4 du, we have

 L tan 4u du =
1
4

 L tan 4u14 du2   multiply and divide by 4

 = -  
1
4

 ln 0 cos 4u 0 + C  using Eq. (28.10) ■

 EXAMPLE  5  Integration of sec u du

Integrate L
sec e-x dx

ex .

In this integral, u = e-x, du = -e-x dx. Therefore,

 L
sec e-x dx

ex = - L  1sec e-x2 1 -e-x dx2   introducing -  sign

 = - ln 0 sec e-x + tan e-x 0 + C  using Eq. (28.12) ■

Practice Exercise

3.  Integrate L4x cot x2 dx.
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 EXAMPLE  6  Integration of csc u du and cot u du

Evaluate L
p>4

p>6  
1 + cos x

sin x
 dx.

 L
p>4

p>6  
1 + cos x

sin x
 dx = L

p>4
p>6 csc x dx + L

p>4
p>6 cot x dx  using Eqs. (20.1) and (20.5)

 = ln 0 csc x - cot x 0 0 p>4p>6 + ln 0 sin x 0 0 p>4p>6 integrating

 = ln 0 12 - 1 0 - ln 0 2 - 13 0 + ln ` 1
2

 12 ` - ln ` 1
2
`   evaluating

 = ln 
11

2122 112 - 1211
22 12 - 132 = ln 

2 - 12
2 - 13

= 0.782 ■

EXERCISES 28.4

In Exercises 1 and 2, make the given changes in the indicated exam-
ples of this section and then solve the given problems.

 1. In Example 1, change sec2 x2 to sec2 x3. What other change must 
be made in the integrand to have a result of tan x3 + C?

 2. In Example 4, change tan to cot and then integrate.

In Exercises 3–26, integrate each of the given functions. You may 
need to use trigonometric identities to change some of the integrals 
into a basic trigonometric form.

 3. Lcos 2x dx 4. L4 sin12 - x2  dx

 5. L0.3  sec2 3u du 6. Lcsc 8x cot 8x dx

 7. Lsec 12 x tan 12 x dx 8. Lex csc 21ex2  dx

 9. L
1

0.5
 x2 cot x3 dx 10. L

1

0
6 sin 12 t  sec 12 t dt

 11. L3f  sec2 f2 cos f2 df 12. L 1cos2 4x - sin2 4x2dx

 13. L  
sin11>x2

x2  dx 14. L
3 dx
sin 4x

 15. L
p>6

0

dx

cos2 2x
 16. L

1

0

2es ds
 sec es

 17. LA1 - cos x
2

 dx 10 … x 6 p
22  18. L

sin 2x

cos2 x
 dx

 19. L2tan2 2x + 1 dx 20. L51 tan u2 1 ln cos u2  du

 21. L
2 tan T

1 - tan2 T
 dT  22. L

1 - cot2 x

cos2 x
 dx

 23. L
1 - sin x
1 + cos x

 dx 24. L
1 +  sec2 x

x + tan x
 dx

 25. L
p>9

0
sin 3x1csc 3x + sec 3x2dx 26. L

p>3
p>4 11 +  sec x22 dx

In Exercises 27–40, solve the given problems by integration.

 27. Find the area bounded by y = 2 tan x, x = p
4 , and y = 0.

 28. Find the area under the curve y = sin x from x = 0 to x = p.

 29. Although L
dx

1 + sin x
 does not appear to fit a form for integra-

  tion, show that it can be integrated by multiplying the numerator 
and the denominator by 1 - sin x.

 30. Change the integrand of Lsin2 2x cos x dx to a form that can be 

  integrated by methods of this section.

 31. Integrate Lsec2 x tan x dx (a) with u = tan x, and (b) with 

  u = sec x. Explain why the answers appear to be different.

 32. Evaluate L
a+2p

a
sin x dx for any real value of a. Show an inter-

  pretation of the result in terms of the area under a curve.

 33. Find the volume generated by revolving the region bounded by 
y = sec x, x = 0, x = p

3 , and y = 0 about the x-axis.

 34. Find the volume generated by revolving the region bounded by 
y = cos x2, x = 0, y = 0, and x = 1 about the y-axis.

 35. The angular velocity v (in rad>s) of a pendulum is 
  v = -0.25 sin 2.5t. Find the angular displacement u as a func-

tion of t if u = 0.10 for t = 0.

 36. If the current i (in A) in a certain electric circuit is given by 
i = 110 cos 377t, find the expression for the voltage across a 
500@mF capacitor as a function of time. The initial voltage is zero. 
Show that the voltage across the capacitor is 90° out of phase with 
the current.
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 37. A fin on a wind-direction indicator has a shape that can be de-
scribed as the region bounded by y = tan x2, y = 0, and x = 1. 
Find the x-coordinate (in m) of the centroid of the fin if its area is 
0.3984 m2.

 38. A force is given as a function of the distance from the origin as 

  F =
2 + tan x

cos x
. Express the work done by this force as a function 

  of x if W = 0 for x = 0.

 39. The probability that the phase error in a tracking device is 

  between 0 and p>4 is given by p = L
p>4

0
cos x dx. Find p.

 40. The number of hours h of daylight each day during the year  
in Toronto, Ontario, can be approximated by h = 12.2 + 3.3 
sin1 2p

365t - 160p
365 2 , where t is measured in days (t = 15 is Jan. 15, 

etc.). Find the average number of daylight hours during the month 
of January.

Answers to Practice Exercises

1. - 1
5 cos 5x + C 2. -2 cot 3x + C 3. 2 ln 0 sin x2 0 + C

By use of trigonometric relations developed in Chapter 20, it is possible to transform 
many integrals involving powers of the trigonometric functions into integrable form. 
Let us first state the relationships that are useful for these integrals:

 cos2 x + sin2 x = 1 (28.14)
 1 + tan2 x = sec2 x (28.15)
 1 + cot2 x = csc2 x (28.16)
 2 cos2 x = 1 + cos 2x (28.17)
 2 sin2 x = 1 - cos 2x (28.18)

We now summarize how each of these identities can be used for integrating powers of 
trigonometric functions. Some examples are given after the summary.

 28.5 Other Trigonometric Forms
Odd Power of sin u or cos u  
Even Power of sin u or cos u  
Power of tan u, cot u, sec u, csc u  
Root-Mean-Square Value of Function

Integrals Involving Powers of Trigonometric Functions
Products of sines and cosines, with at least one of the powers odd: Use 
Eq. (28.14) to write the integrand in powers of either the sine or the cosine, 
with only a first power of the other. (This first power will be the required fac-
tor in du.)

Products of even powers of sines and cosines: Use Eqs. (28.17) and (28.18) 
to halve the even powers. The most commonly met integrands are cos2 u and 
sin2 u, which can be integrated directly after one substitution.

Products of powers of tangents and secants or even powers of secants: 
Use Eq. (28.15) to write the integrand as powers of tan u multiplied by sec2 u 
(which becomes part of du) or as powers of sec u multiplied by sec u tan u 
(which becomes part of du).

Products of powers of cotangents and cosecants or even powers of cose-
cants: Use Eq. (28.16) to write the integrand as powers of cot u multiplied by 
csc2 u (which becomes part of du) or as powers of cscu multiplied by csc u 
cot u (which becomes part of du).

■ Odd powers of secants and odd powers  
of cosecants are integrated by parts (see 
Section 28.7).
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 EXAMPLE  1  Integration with an odd power of sin u

Integrate 1sin3 x cos2 x dx.
Since sin3 x = sin2 x sin x = 11 - cos2 x2sin x, we can write this integral with 

powers of cos x along with -sin x, which is the necessary du for this integral. 
Therefore,

 L sin3 x cos2 x dx = L 11 - cos2 x2 1sin x2 1cos2 x2  dx using Eq. (28.14)

 = L 1cos2 x - cos4 x2 1sin x dx2
du

 = - Lcos2 x1 -sin x dx2 + Lcos4 x1 -sin x dx2
= - 1

3
 cos3 x + 1

5
 cos5 x + C  ■

 EXAMPLE  2  Integration with an odd power of cos u

Integrate 1cos5 2x dx.
Since cos5 2x = cos4 2x cos 2x = 11 - sin2 2x22 cos 2x, it is possible to write 

this integral with powers of sin 2x along with cos 2x dx. Thus, with the introduction 
of a factor of 2, 1cos 2x2 12 dx2  is the necessary du for this integral. Thus,

Lcos5 2x dx = L  11 - sin2 2x22 cos 2x dx  using Eq. (28.14)

 = L 11 - 2 sin2 2x + sin4 2x2  cos 2x dx

 = Lcos 2x dx - L2 sin2 2x cos 2x dx + L sin4 2x cos 2x dx

 =
1
2

 Lcos 2x12 dx2 - Lsin2 2x12 cos 2x dx2 + 1
2

 Lsin4 2x12 cos 2x dx2
du 

du

 =
1
2

 sin 2x - 1
3

 sin3 2x + 1
10

 sin5 2x + C ■

 EXAMPLE  3  Integration with an even power of sin u

Integrate 1sin2 2x dx.
Using Eq. (28.18) in the form sin2 2x = 1

2 11 - cos 4x2 , this integral can be 
transformed into a form that can be integrated. (Here, we note the x of Eq. 28.18 is 
treated as 2x for this integral.) Therefore, we write

 L sin2 2x dx = L c 1
2

 11 - cos 4x2 d  dx   using Eq. (28.18)

 =
1
2

 Ldx - 1
8

 Lcos 4x14 dx2
 =

x
2

- 1
8

 sin 4x + C  ■

Practice Exercise

1. Integrate Lsin3 x dx.
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 EXAMPLE  4  Integration with a power of sec u

Integrate 1sec3 t tan t dt.
By writing sec3 t tan t as sec2 t1sec t tan t2 , we can use the sec t tan t dt as the du 

of the integral. Thus,

du

 L sec3 t tan t dt = L  1sec2 t2 1sec t tan t dt2
 =

1
3

 sec3 t + C  ■

 EXAMPLE  5  Integration with a power of tan u

Integrate 1 tan5 x dx.
Since tan5 x = tan3 x tan2 x = tan3 x1sec2 x - 12 , we can write this integral 

with powers of tan x along with sec2 x dx. Thus, sec2 x dx becomes the necessary du 
of the integral. It is necessary to replace tan2 x with sec2 x - 1 twice during the inte-
gration. Therefore,

L tan5 x dx = L tan3 x1sec2 x - 12  dx   using Eq. (28.15)

 = L tan3 x1sec2 x dx2 - L tan3 x dx

 =
1
4

 tan4 x - L tan x1sec2 x - 12  dx   using Eq. (28.15) again

 =
1
4

 tan4 x - L tan x1sec2 x dx2 + L tan x dx

 =
1
4

 tan4 x - 1
2

 tan2 x - ln 0 cos x 0 + C  ■

 EXAMPLE  6  Integration of another trigonometric form

Integrate L
p>4

0

tan3 x

sec3 x
 dx.

Of several possible ways in which the integrand can be transformed into an inte-
grable form, among the easiest is the following:

 L
p>4

0

tan3 x

sec3 x
 dx = L

p>4
0

sin3 x

cos3 x
 

1

sec3 x
 dx   tan x = sin x>cos x

 = L
p>4

0
sin3 x = L

p>4
0

 11 - cos2 x2sin x dx  cos x sec x = 1

 = L
p>4

0
sin x dx - L

p>4
0

cos2 x sin x dx

 = -cos x + 1
3

 cos3 x 0 p>40   integrate

 = - 12
2

+ 1
3

 a12
2

b3
- a-1 + 1

3
b   evaluate

 =
8 - 512

12
= 0.0774  ■

Practice Exercise

2. Integrate Lsec4 x dx.
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 EXAMPLE  7  Root-mean-square value—application

The root-mean-square value of a function with respect to x is defined by the following 
equation:

 yrms = B1
T

 L
T

0
y2 dx (28.19)

Usually, the value of T that is of importance is the period of the function. Find the 
root-mean-square value of the electric current i (in A) used in a desktop computer, 
for which i = 3.82 cos 120pt, for one period.

The period is 2p
120p = 1

60.0 s. Thus, we must find the square root of the integral

1
1>60.0

 L
1>60.0

0
13.82 cos 120pt22 dt = 876L

1>60.0

0
cos2 120pt dt

Evaluating this integral, we have

 876L
1>60.0

0
cos2 120pt dt = 438L

1>60.0

0
11 + cos 240pt2  dt

 = 438t 0 01>60.0 + 438
240p

 L
1>60.0

0
cos 240pt1240p dt2

 = 7.3 + 438
240p

 sin 240pt 0 01>60.0 = 7.3

This means the root-mean-square current is

irms = 17.3 = 2.70 A

This value of the current, often referred to as the effective current, is the value of 
direct current that would produce the same quantity of heat energy in the same time. 
It is important in the design of electronic equipment and electric appliances. ■

■ See the chapter introduction.

■ In most countries, the rms voltage is 240 V. 
In Canada and the United States, it is 120 V.

EXERCISES 28.5

In Exercises 1 and 2, answer the given questions related to the indi-
cated examples of this section.

 1. In Example 3, what change must be made in the integrand in  
order to have a result of 16 sin3 2x + C?

 2. In Example 5, what change must be made in the integrand in  
order to have a result of 16 tan6 x + C?

In Exercises 3–34, integrate each of the given functions.

 3. Lsin2 x cos x dx 4. Lsin x cos5 x dx

 5. Lsin3 2x dx 6. L3 cos3 T dT

 7. L41cos4 u - sin4 u2  du 8. Lsin3 x cos6 x dx

 11. Lsin2 x dx 12. Lcos2 2x dx

 13. L211 + cos 3f22 df 14. L
1

0
 sin2 4x dx

 15. L tan3 x dx 16. L
6 cot2 y

tan y
 dy

 17. L
p>4

0
tan x sec4 x dx 18. Lcot 4x csc4 4x dx

 19. L tan4 2x dx 20. L4 cot4 x dx

 21. L0.5 sin s sin 2s ds 22. L1tan x sec4 x dx

 23. L  1sin x + cos x22 dx 24. L 1 tan 2x + cot 2x22 dx
 9. L

p>4
0

5 sin5 x dx 10. L
p>2

p>3 10 sin t11 - cos 2t22 dt
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 25. L
1 - cot x

sin4 x
 dx 26. L

1sin u + sin2 u22

sec u
 du

 27. L
p>4

p>6 cot5 p dp 28. L
p>3

p>6 2 dx
1 + sin x

 29. Lsec6 x dx 30. L tan7 x dx

 31. L
sin 2x

cos3x
 dx 32. L

sec2 t tan t

4 + sec2 t
 dt

 33. L
sec e-x

ex  dx 34. L
p>4

0
11 + cos 4x dx

In Exercises 35–52, solve the given problems by integration.

 35. Using Eq. (20.14) on page 541, integrate Lsin 4x cos 5x dx.

 36. Using Eq. (20.15) on page 541, integrate Lcos 3x cos 4x dx.

 37. Find the volume generated by revolving the region bounded by 
y = sin x and y = 0, from x = 0 to x = p, about the x-axis.

 38. Find the volume generated by revolving the region bounded by 
y = tan31x22 , y = 0, and x = p

4  about the y-axis.

 39. Find the area bounded by y = sin x, y = cos x, and x = 0 in the 
first quadrant.

 40. Find the length of the curve y = ln cos x from x = 0 to x = p
3 . 

(Use Eq. 26.29.)

 41. Show that 1sin x cos x dx can be integrated in two ways. Explain 
the difference in the answers.

 42. For n 7 0, show that L tan x secn x dx = 1
n secn x + C.

 43. Show that L
p

0
sin2 nx dx = 1

2 p, where n is any positive integer.

 44. The velocity v (in cm/s) of an object is v = cos2 pt. How far does 
the object move in 4.0 s?

 45. The acceleration a (in m>s2) of an object is a = sin2 t cos t. If the 
object starts at the origin with a velocity of 6 m>s, what is its po-
sition at time t?

 46. Find the root-mean-square current in a circuit from t = 0 s to 
t = 0.50 s if i = i0 sin t 1cos t.

 47. In the study of the rate of radiation by an accelerated charge, the 
following integral must be evaluated: 1p

0  sin3 u du. Find the 
value of the integral.

 48. In finding the volume of a special O-ring for a space vehicle, the 

  integral L
sin2 u

cos2 u
 du must be evaluated. Perform this integration.

 49. For a voltage V = 340 sin 120pt, show that the root-mean-
square voltage for one period is 240 V.

 50. For a current i = i0 sin vt, show that the root-mean-square cur-
rent for one period is i0>12.

 51. In the analysis of the intensity of light from a certain source, the 
equation I = A1a>2

-a>2 cos23bp1c - x2 4  dx is used. Here, A, a, 
b, and c are constants. Evaluate this integral. (The simplification 
is quite lengthy.)

 52. In the study of the lifting force L due to a stream of fluid 
  passing around a cylinder, the equation 
  L = k12p

0  1a sin u + b sin2 u - b sin3 u2  du is used. Here, k, 
a, and b are constants and u is the angle from the direction of 
flow. Evaluate the integral.

Answers to Practice Exercises

1. -cos x + 1
3 cos3 x + C 2. tan x + 1

3 tan3 x + C

Using Eq. (27.10), we can find the differential of sin -11u>a2 , where a is constant:

dasin-1 
u
a
b =

121 - 1u>a22
 
du
a

=
a2a2 - u 

2
 
du
a

=
du2a2 - u2

Noting this differentiation formula, and the antiderivative of the result, we have the 
important integration formula

 L
du2a2 - u2

= sin-1 
u
a

+ C (28.20)

By finding the differential of tan-1 1u>a2 , we have

datan-1 
u
a
b =

1

1 + 1u>a22  
du
a

=
a2

a2 + u2  
du
a

=
a du

a2 + u2

 28.6 Inverse Trigonometric Forms
 

 
Comparison of Inverse Sine, 
Inverse Tangent, Power, and 
Logarithmic Forms

■ For reference, Eq. (27.10) is 

d1sin-1 u2
dx

=
121 - u2

 
du
dx

.
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Again, noting the antiderivative, we have another important integration formula:

 L
du

a2 + u2 =
1
a

  tan-1 
u
a

+ C (28.21)

This shows one of the principal uses of the inverse trigonometric functions: They 
provide a solution to the integration of important algebraic functions.

 EXAMPLE  1  Inverse sine form

Integrate L
dx29 - x2

.

This integral fits the form of Eq. (28.20) with u = x, du = dx, and a = 3. Thus,

 L
dx29 - x2

= L
dx232 - x2

 = sin-1 
x
3

+ C  ■

 EXAMPLE  2  Inverse tangent form—application

The volume flow rate Q (in m3>s) of a constantly flowing liquid is given by 

Q = 24L
2

0

dx

6 + x2, where x is the distance from the centre of flow. Find the value of Q.

For the integral, we see that it fits Eq. (28.21) with u = x, du = dx, and a = 16.

 Q = 24L
2

0

dx

6 + x2 = 24L
2

0

dx11622 + x2

 =
2416

 tan-1 ` x16
` 2
0

 =
2416

 atan-1 
216

- tan-1 0b
 = 6.71 m3>s  ■

 EXAMPLE  3  Inverse sine form

Integrate L
dx225 - 4x2

.

This integral fits the form of Eq. (28.20) with u = 2x, du = 2 dx, and a = 5. 
Thus, in order to have the proper du, we must include a factor of 2 in the numerator, 
and therefore we also place a 12 before the integral. This leads to

 L
dx225 - 4x2

=
1
2

 L
2 dx252 - 12x22

 

 =
1
2

  sin-1 
2x
5

+ C  ■

du

u

Practice Exercise

1. Integrate L
dx29 - 4x2

.



 28.6 Inverse Trigonometric Forms 869

 EXAMPLE  4  Completing the square to fit the tan-1 u form

Integrate L
3

-1

dx

x2 + 6x + 13
 .

At first glance, it does not appear that this integral fits any of the forms pre-
sented up to this point. However, by writing the denominator in the form 1x2 + 6x + 92 + 4 = 1x + 322 + 22 (see Example 4 on page 227), we recognize 
that u = x + 3, du = dx, and a = 2. Thus,

 L
3

-1

dx

x2 + 6x + 13
= L

3

-1

dx1x + 322 + 22

 =
1
2

  tan-1 
x + 3

2
 ` 3

-1
  integrate

 =
1
2

 1 tan-1 3 - tan-1 12   evaluate

 = 0.2318

Now, we can see the use of completing the square when we are transforming inte-
grals into proper form. ■

 EXAMPLE  5  Inverse tangent and logarithmic forms

Integrate L
2r + 5

r2 + 9
 dr.

By writing this integral as the sum of two integrals, we may integrate each of 
these separately:

L
2r + 5

r2 + 9
 dr = L

2r dr

r2 + 9
+ L

5 dr

r2 + 9

The first integral is a logarithmic form, and the second is an inverse tangent form. 
For the first, u = r2 + 9, du = 2r dr. For the second, u = r, du = dr, a = 3.

L
2r dr

r2 + 9
+ 5L

dr

r2 + 9
= ln 0 r2 + 9 0 + 5

3
 tan-1 

r
3

+ C ■

 EXAMPLE  6  Comparing the inverse sine, power, and logarithmic forms

The integral L
dx21 - x2

 is of the inverse sine form with u = x, du = dx, and 

a = 1. Thus,

L
dx21 - x2

= sin-1 x + C

The integral L
x dx21 - x2

 is not of the inverse sine form due to the factor of x in 

the numerator. It is integrated by use of the general power rule, with u = 1 - x2, 
du = -2x dx, and n = -  12 . Thus,

L
x dx21 - x2

= - 21 - x2 + C

du

u

Practice Exercise

2. Integrate L
dx

4 + 9x2.

The inverse trigonometric integral 
forms show very well the importance 
of proper recognition of the form of 
the integral. It is important that 
these forms are not confused with 
those of the general power rule or 
the logarithmic form.

LEARNING T IP
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The integral L
x dx

1 - x2 is of the basic logarithmic form with u = 1 - x2 and 

du = -2x dx. If 1 - x2 is raised to any power other than 1 in the denominator, we 
would use the general power rule. To be of the inverse sine form, we would have the 
square root of 1 - x2 and no factor of x, as in the first illustration. Thus,

 L
x dx

1 - x2 = -  
1
2

 ln 0 1 - x2 0 + C ■

 EXAMPLE  7  Recognizing different forms

The following integrals are of the form indicated:

L
dx

1 + x2 Inverse tangent form u = x, du = dx

L
x dx

1 + x2 Logarithmic form u = 1 + x2, du = 2x dx

L
x dx21 + x2

 General power form u = 1 + x2, du = 2x dx

L
dx

1 + x
 Logarithmic form u = 1 + x, du = dx

L
x dx21 - x4

 Inverse sine form u = x2, du = 2x dx

L
x dx

1 + x4 Inverse tangent form  u = x2, du = 2x dx ■

There are a number of integrals whose forms appear to be similar to those in 
Examples 6 and 7, but which do not fit the forms we have discussed. They include

L
dx2x2 - 1

  L
dx21 + x2

  L
dx

1 - x2  L
dx

x21 + x2

We will develop methods to integrate some of these forms, and all of them can be inte-
grated by the tables discussed in Section 28.11.

EXERCISES 28.6

In Exercises 1 and 2, answer the given questions related to the indi-
cated examples of this section.

 1. In Example 1, what change must be made in the integrand in 
  order to have a result of 29 - x2 + C?

 2. In Example 2, what change must be made in the integrand in or-
der that the integration would lead to a result of ln 16 + x22 + C?

In Exercises 3–30, integrate each of the given functions.

 3. L
dx24 - x2

 4. L
dx249 - x2

 5. L
dx

64 + x2 6. L
6p2 dp

4 + p6

 7. L
8x dx21 - 16x4

 8. L
1

0

2 dx29 - 4x2

 9. L
2

0

3e-t dt

1 + 9e-2t 10. L
3

1

4 dx

49 + 4x2

 11. L
0.4

0

2 dx24 - 5x2
 12. L

dx

21x11 - x

 13. L
8x dx

9x2 + 16
 14. L

4y dy225 - 16y2

 15. L
e

1

3 du

u31 + 1 ln u224  16. L
1

0

4x dx

1 + x4

 17. L
ex dx21 - e2x

 18. L
sec2 x dx21 - tan2 x

 19. L
dT

T2 + 2T + 2
 20. L

2 dx

x2 + 8x + 17

 21. L
4 dx2-4x - x2

 22. L
0.3 ds22s - s2

 23. L
p>2

p>6 2 cos 2u du

1 + sin2 2u
 24. L

0

-4

dx

x2 + 4x + 5
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 25. L
2 - x24 - x2

 dx 26. L
3 - 2x

1 + 4x2 dx

 27. L
sin-1 x21 - x2

 dx 28. L
dx

ex + e-x

 29. L
x3 + 3x5

1 + x6  dx 30. L
x tan-1 x2

1 + x4  dx

In Exercises 31–34, identify the form of each integral as being in-
verse sine, inverse tangent, logarithmic, or general power, as in 
Examples 6 and 7. Do not integrate. In each part (a), explain how the 
choice was made.

 31. (a) L
2 dx

4 + 9x2  (b) L
2 dx

4 + 9x
 (c) L

2 x dx24 + 9x2

 32. (a) L
2x dx

4 - 9x2  (b) L
2 dx14 - 9x

 (c) L
2x dx

4 + 9x2

 38. Find the circumference of the circle x2 + y2 = r2 by integration. 
(Use Eq. 26.29.)

 39. To find the electric field E from an electric charge distributed 
uniformly over the entire xy-plane at a distance d from the plane, 

  it is necessary to evaluate the integral kdL
dx

d2 + x2. Here, x is 

  the distance from the origin to the element of charge. Perform the 
indicated integration.

 40. An oil-storage tank can be described as the volume generated by 
  revolving the region bounded by y = 24>216 + x2, x = 0, 

y = 0, and x = 3 about the x-axis. Find the volume (in m3) of 
the tank.

 41. In dealing with the theory for simple harmonic motion, it is 

  necessary to solve the equation 
dx2A2 - x2

= A k
m

 dt (k, m, and 

  A are constants). Determine the solution if x = x0 when t = 0.

 42. During each cycle, the velocity v (in m>s) of a robotic welding 

  device is given by v = 2t - 12

2 + t2, where t is the time (in s). 

  Find the expression for the displacement s (in m) as a function of 
t if s = 0 for t = 0.

 43. Find the moment of inertia with respect to the y-axis for a flat 
plate covering the region bounded by y = 1> 11 + x62 , the  
x-axis, x = 1, and x = 2.

 44. Find the length of arc along the curve y = 21 - x2 between 
x = 0 and x = 1. (Use Eq. 26.29.)

Answers to Practice Exercises

1. 1
2 sin-1 2x

3 + C 2. 1
6 tan-1 3x

2 + C

 33. (a) L
2x dx24 - 9x2

 (b) L
2 dx24 - 9x2

 (c) L
2 dx

4 - 9x

 34. (a) L
2 dx

9x2 + 4
 (b) L

2x dx29x2 - 4
 (c) L

2x dx

9x2 - 4

In Exercises 35–44, solve the given problems by integration.

 35.  Explain how to integrate L
dx1x 11 + x2 . What is the result?

 36. Integrate LA1 + x
1 - x

 dx by first multiplying the numerator and 

  denominator of the fraction under the radical by 1 + x.

 37. Find the area bounded by 
y11 + x22 = 1, x = 0, 
y = 0, and x = 2. See 
Fig. 28.8.

y = 1
1+x2

1

1

0 2

y

x
Fig. 28.8

There are many methods of transforming integrals into forms that can be integrated by 
one of the basic formulas. In the preceding sections, we saw that completing the square 
and trigonometric identities can be used for this purpose. In this section and the follow-
ing one, we develop two general methods. The method of integration by parts is dis-
cussed in this section.

Since the derivative of a product of functions is found by use of the formula

d1uv2
dx

= u # dv
dx

+ v # du
dx

 28.7 Integration by Parts
 

Identifying u and dv  
Repeated Use of the Method
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the differential of a product of functions is given by d1uv2 = u dv + v du. Integrating 
both sides of this equation, we have uv = 1u dv + 1v du. Solving for 1u dv, we 
obtain

 Lu dv = uv - Lv du (28.22)

Integration by use of Eq. (28.22) is called integration by parts.

 EXAMPLE  1  Algebraic-trigonometric integrand

Integrate 1x sin x dx.
This integral does not fit any of the previous forms we have discussed, since nei-

ther x nor sin x can be made a factor of a proper du. However, by choosing u = x 
and dv = sin x dx, integration by parts may be used. Thus,

u = x  dv = sin x dx

By finding the differential of u and integrating dv, we find du and v. This gives us

du = dx  v = -cos x + C1

Now, substituting in Eq. (28.22), we have

L  u dv =  u v - L  v du

     

 L 1x2 1sin x dx2 = 1x2 1 -cos x + C12 - L 1 -cos x + C12 1dx2
 = -x cos x + C1x + Lcos x dx - LC1 dx

 = -x cos x + C1x + sin x - C1x + C

 = -x cos x + sin x + C

Other choices of u and dv may be made, but they are not useful. For example, if we 
choose u = sin x and dv = x dx, then du = cos x dx and v = 1

2x2 + C2. This makes 

1v du = 1 11
2x2 + C22 1cos x dx2 , which is more complex than the integrand of 

the original problem. ■

As in Example 1, there is often more than one choice as to the part of the integrand 
that is selected to be u and the part that is selected to be dv. There are no set rules that 
may be stated for the best choice of u and dv, but two guidelines may be stated.

Practice Exercise

1. Integrate Lx sec2 xdx.

We note that the constant C1 that 
was introduced when we integrated 
dv does not appear in the final result. 
This constant will always cancel out, 
and therefore we do not need a con-
stant of integration when finding v.

LEARNING T IP

Guidelines for Choosing u and dv
1. The quantity u is normally chosen such that du>dx is of simpler form than u.

2. The differential dv is normally chosen such that 1dv is easily integrated.

Working examples, and thereby gaining experience in methods of integration, is the 
best way to determine when this method should be used and how to use it.
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 EXAMPLE  2  Algebraic integrand

Integrate 1x11 - x dx.
We see that this form does not fit the general power rule, for x dx is not a factor 

of the differential of 1 - x. By choosing u = x and dv = 11 - x dx, we have 
du>dx = 1, and v can readily be determined. Thus,

 u = x   dv = 11 - x dx = 11 - x21>2 dx

 du = dx   v = - 2
3

 11 - x23>2
Substituting in Eq. (28.22), we have

L  u dv =  u v - L  v du

     

Lx3 11 - x21>2 dx4 = x c - 2
3

 11 - x23>2 d - L c - 2
3

 11 - x23>2 d  dx

At this point, we see that we can complete the integration. Thus,

 Lx11 - x21>2 dx = - 2x
3

 11 - x23>2 + 2
3

 L  11 - x23>2 dx

 = - 2x
3

 11 - x23>2 + 2
3

 a- 2
5
b 11 - x25>2 + C

 = - 2
3

 11 - x23>2 c x + 2
5

 11 - x2 d + C

 = - 2
15

 11 - x23>2 12 + 3x2 + C  ■

 EXAMPLE  3  Algebraic-logarithmic integrand

Integrate 11x  ln x dx.
For this integral, we have

 u =  ln x   dv = x1>2 dx 

 du =
1
x

 dx  v =
2
3

 x3>2
 L  1x  ln x dx =

2
3

 x3>2 ln x - 2
3

 Lx1>2 dx

=
2
3

x3>2ln x - 4
9

x 

3>2 + C ■

 EXAMPLE  4  Inverse sine integrand

Integrate 1sin-1 x dx.
We write

u = sin-1 x     dv = dx

du =
dx21 - x2

  v = x

 L sin-1 x dx = x sin-1 x - L
x dx21 - x2

= x sin-1 x + 1
2

 L
-2x dx21 - x2

 = x sin-1 x + 21 - x2 + C ■
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 EXAMPLE  5  Application with an algebraic-exponential integrand

In a certain electric circuit, the current i (in A) is given by the equation i = te-t, where 
t is the time (in s). Find the charge q to pass a point in the circuit between t = 0 s and 
t = 1.0 s.

Since i =
dq

dt
, we have 

dq

dt
= te-t. Thus, with q = L

1.0

0
te-t dt, we are to solve 

for q.

For this integral,

 u = t  dv = e-t dt

 du = dt v = -e-t

 q = L
1.0

0
te-t dt = - te-t `

0

1.0
+ L

1.0

0
e-t dt = - te-t - e-t `

0

1.0

 = -e-1.0 - e-1.0 + 1.0 = 0.26 C

Therefore, 0.26 C pass a given point in the circuit. ■

There are instances when integration by parts must be used more than once in order 
to complete an integral. Consider the following examples.

 EXAMPLE  6  Integration by parts twice

Integrate 1  x2 cos x dx.
Let u = x2, dv = cos x dx, du = 2x dx, v = sin x. Then

Lx2 cos x dx = x2 sin x - 2Lx sin x dx

We apply integration by parts a second time to the right-hand integral, with 
u = x, dv = sin x dx, du = dx, v = -cos x. Therefore,

Lx sin x dx = -x cos x + L cos x dx = -x cos x + sin x

Substituting, we get

Lx2 cos x dx = x2 sin x + 2x cos x - 2 sin x ■

 EXAMPLE  7  Integration leading to an equation

Integrate 1ex sin x dx.
Let u = sin x, dv = ex dx, du = cos x dx, v = ex.

Lex sin x dx = ex sin x - Lex cos x dx

At first glance, it appears that we have made no progress. Nevertheless, we carry 
on and apply integration by parts to the integral 1ex cos x dx:

u = cos x dv = ex dx du = -sin x dx v = ex

And so 1ex cos x dx = ex cos x + 1ex sin x dx. Substituting this expression into the 
expression for 1ex sin x dx, we obtain

 Lex sin x dx = ex sin x - aex cos x + Lex sin x dxb
 = ex sin x - ex cos x - Lex sin x dx

There are some integrals for which 
using integration by parts twice leads 
to an integral of the same form as 
the original integral but with a dif-
ferent coefficient. Although this may 
seem as if the integration took us 
back where we started, what we now 
have is an equation, which can be 
solved by combining the integrals of 
like form. See Example 7.

LEARNING T IP
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Adding the right-hand integral to both sides gives

 2Lex sin x dx = ex 1sin x - cos x2 + 2C

 Lex sin x dx =
ex

2
 1sin x - cos x2 + C

Thus, by combining integrals of like form, we obtain the desired result. ■

EXERCISES 28.7

In Exercises 1 and 2, answer the given questions related to the indi-
cated examples of this section.

 1.  In Example 2, do the choices  u = 11 - x and dv = x dx work 
for this integral? Explain.

 2.  In Example 7, do the choices u = ex and dv = sin x dx work for 
this integral? Explain.

In Exercises 3–22, integrate each of the given functions.

 3. Lu cos u du 4. Lx sin 2x dx

 5. L4xe2x dx 6. L3xex dx

 7. L3x csc2x dx 8. L
p>4

0
x sec x tan x dx

 9. L2 tan -1 x dx 10. L ln s ds

 11. L
0

-3

4t dt11 - t
 12. Lx1x + 1 dx

 13. Lx ln x dx 14. Lx2 ln 4x dx

 15. L2f2 sin f cos f df 16. L
1

0
 r2e2r dr

 17. L
p>2

0
ex cos x dx 18. Le-x sin 2x dx

 19. L 1x + 428 1x + 52dx 20. Lcos x ln1sin x2dx

 21. Lcos1 ln x2dx 22. Lsec3x dx

In Exercises 23–36, solve the given problems by integration.

 23. To integrate Le-1x dx, the only choices possible of u = e-1x 

  and dv = dx do not work. However, if we first let t = 1x, 
dt = dx>21x, the integration can be done by parts. Perform this 
integration.

 24. To integrate Lx ln 1x + 12  dx, the substitution t = x + 1, 

  dt = dx leads to an integral that can be done readily by parts. 
Perform this integration in this way.

 25. Find the area bounded by y = xe-x, 
y = 0, and x = 2. See Fig. 28.9.

 26. Find the area bounded by 
y = 21 ln x2 >x2, y = 0, and x = 3.

 27. Find the volume generated by revolving 
the region bounded by y = tan2 x, 
y = 0, and x = 0.5 about the y-axis.

 28. Find the volume generated by revolving 
the region bounded by y = sin x and y = 0 from x = 0 to 
x = p about the y-axis.

 29. Find the x-coordinate of the centroid of a flat plate covering the 
region bounded by y = cos x and y = 0 for 0 … x … p>2.

 30. Find the moment of inertia with respect to its axis of the solid 
generated by revolving the region bounded by y = ex, x = 1, 
and the coordinate axes about the y-axis.

 31. Find the root-mean-square value of the function y = 2sin-1 x 
between x = 0 and x = 1. (See Example 7 of Section 28.5.)

 32. The general expression for the slope of a curve is 
  dy>dx = x321 + x2. Find the equation of the curve if it passes 

through the origin.

 33. Computer simulation shows that the velocity v (in m>s) of a test 
car is v = t3>2t2 + 1 from t = 0 to t = 8.0 s. Find the expres-
sion for the distance travelled by the car in t seconds.

 34. The nose cone of a rocket has the shape of the solid that is gener-
ated by revolving the region bounded by y =  ln x, y = 0, and 
x = 9.5 about the x-axis. Find the volume (in m3) of the nose 
cone. See Fig. 28.10.

y

x
O

y ! xe"x

x ! 2

Fig. 28.9

−3

3

0 8

y(m)

x(m)

y = ln x

x = 9.5 m

4

Fig. 28.10

 35. The current in a given circuit is given by i = e-2t cos t. Find an 
expression for the amount of charge that passes a given point in 
the circuit as a function of the time, if q0 = 0.

 36. In finding the average length x (in nm) of a certain type of large 

  molecule, we use the equation x = lim
bS ∞

30.11b
0 x3e-x2>8 dx4 . 

  Evaluate the integral and then use L’Hospital’s rule (or a calcula-
tor) to show that x S 3.2 nm as b S ∞ .

Answer to Practice Exercise

1. x tan x + ln $ cos x $ + C
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In this section, we show how trigonometric relations are useful in integrating algebraic 
integrals involving the expressions 2a2 - x2, 2a2 + x2, or 2x2 - a2. We begin by 
summarizing the method, which is known as trigonometric substitution, and then 
consider some examples.

 28.8 Integration by Trigonometric Substitution
Transform Algebraic Integrals into 
Trigonometric Integrals

Trigonometric Substitution
1.  Select the appropriate trigonometric substitution according to the following 

table and rewrite the radical as shown:

If  
the Integral 

Involves

 
Then  

Substitute

 
Use the  
Identity

 
To Rewrite the  

Radical as2a2 - x2 x = a sin u 1 - sin2 u = cos2 u a cos u2a2 + x2 x = a tan u 1 + tan2 u = sec2 u a sec u2x2 - a2 x = a sec u sec2 u - 1 = tan2 u a tan u

2.  Replace all factors of the integral with expressions in terms of u, thus obtain-
ing a trigonometric integral.

3.  Integrate the trigonometric integral.

4.  Express the answer in terms of the original variable x. The values of the dif-
ferent trigonometric functions may be read from a suitable reference triangle.

 EXAMPLE  1  For 2a2 − x2, let x = a sin U

Integrate L
dx

x221 - x2
.

If we let x = sin u, then 21 - sin2 u = cos u, and the integral can be transformed 
into a trigonometric integral. Carefully replacing all factors of the integral with ex-
pressions in terms of U, we have x = sin u, 21 - x2 = cos u, and dx = cos u du. 
Therefore,

 L
dx

x221 - x2
= L

cos u du

sin2 u21 - sin2 u
  substituting

 = L
cos u du

sin2 u cos u
= Lcsc2 u du  using trigonometric relations 

 = -cot u + C   using Eq. (28.7)

Making a triangle with an angle u such that sin u = x>1 (see Fig. 28.11), we may 
express any of the trigonometric functions in terms of x. (This is the method used 
with inverse trigonometric functions.) Thus,

cot u =
21 - x2

x

Therefore, the result of the integration becomes

L
dx

x221 - x2
= -cot u + C = - 21 - x2

x
+ C ■

u

1
x

V1−x2

Fig. 28.11
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 EXAMPLE  2  For 2a2 + x2, let x = a tan U

Integrate L
dx2x2 + 4

.

If we let x = 2 tan u, the radical in this integral becomes2x2 + 4 = 24 tan2 u + 4 = 22tan2 u + 1 = 22  sec2 u = 2 sec u

Therefore, with x = 2 tan u and dx = 2 sec2 u du, we have

 L
dx2x2 + 4

= L
2 sec2 u du24 tan2 u + 4

= L
2 sec2 u du

2 sec u
 substituting

 = L sec u du = ln 0 sec u + tan u 0 + C using Eq. (28.12)

 = ln ` 2x2 + 4
2

+ x
2
` + C = ln ` 2x2 + 4 + x

2
` + C  see Fig. (28.12)

This answer is acceptable, but by using the properties of logarithms, we have

 ln ` 2x2 + 4 + x
2

` + C = ln 0 2x2 + 4 + x 0 + 1C - ln 22
 = ln 0 2x2 + 4 + x 0 + C′  ■

 EXAMPLE  3  For 2x2 − a2, let x = a sec U

Integrate L
2 dx

x2x2 - 9
.

If we let x = 3  sec u, the radical in this integral becomes2x2 - 9 = 29  sec 2 u - 9 = 32 sec 2 u - 1 = 32tan 2 u = 3 tan u

Therefore, with x = 3 sec u and dx = 3 sec u tan u du, we have

 L
2 dx

x2x2 - 9
= 2L

3 sec u tan u d u

3 sec u29  sec 2 u - 9
= 2L

tan u d u
3 tan u

 =
2
3

 Ld u =
2
3

 u + C =
2
3

  sec-1 
x
3

+ C

It is not necessary to refer to a triangle to express the result in terms of x. The solu-
tion is found by solving x = 3 sec u for u, as indicated. ■

 EXAMPLE  4  Trigonometric substitution—application

The joint between two links of a robot arm moves back and forth along the curve de-
fined by y = 3.0 ln x from x = 1.0 cm to x = 4.0 cm. Find the distance the joint 
moves in one cycle.

The required distance is found by use of the equation for the length of arc,  
Eq. (26.29). Therefore, we find the derivative as dy>dx = 3.0>x, which means the 
total distance s moved in one cycle is

s = 2L
4.0

1.0
 DJ1 + a3.0

x
b2 R  dx = 2L

4.0

1.0

2x2 + 9.0
x

 dx

To integrate, we make the substitution x = 3.0 tan u and dx = 3.0 sec2 u du. Thus,

u

2

x
Vx 2 + 4

Fig. 28.12

■ Combining constants, as in C′ = C - ln 2, 
is a common practice in integration problems.

For reference, Eq. (26.29) is 

s = L
b

a
 C1 + ady

dx
b2

 dx
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O

y

x
x ! "2

x ! "5

y !
"x2 # 1x 2

1

Fig. 28.14

 L
2x2 + 9.0

x
 dx = L

29.0 tan2 u + 9.0
3.0 tan u

 13.0 sec2 u du2 = 3.0L
 sec u
tan u

 11 + tan 2 u2  du

 = 3.0aL  sec u
tan u

 du + L  tan u sec u dub = 3.0aL  csc u du + L  tan u sec u dub   see Fig. 28.13

= 3.01 ln 0 csc u - cot u 0 +  sec u2 + C = 3.0J ln ` 2x2 + 9.0
x

- 3.0
x

` + 2x2 + 9.0
3.0

 R + C

u

3.0

x
Vx 2 + 9.0

Fig. 28.13

Limits have not been included, due to the change in variables. Evaluating, we have

 s = 2L
4.0

1.0

2x2 + 9.0
x

 dx = 6.0J ln ` 2x2 + 9.0 - 3.0
x

` + 2x2 + 9.0
3.0

 R ` 4.0

1.0

 = 6.0J aln 0.50 - ln  
110.0 - 3.0

1.0
b + 5.0

3.0
- 110.0

3.0
 R = 10.4 cm  ■

For easy reference, we rewrite the radical forms and their appropriate trigonometric 
substitutions here:

For 2a 

2 - x 

2, use x = a sin u

 For 2a2 + x2, use x = a tan u (28.23)
For 2x2 - a2, use x = a sec u

EXERCISES 28.8

In Exercises 1 and 2, answer the given equations related to the indi-
cated examples of this section.

 1. In Example 1, how must the integrand be changed in order to 
have a result of sin-1 x + C?

 2. In Example 2, how must the integrand be changed in order to 
have a result of tan-1 1x>22 + C?

In Exercises 3–8, give the proper trigonometric substitution and find 
the transformed integral, but do not integrate.

 19. L
5 dx2x2 + 2x + 2

 20. L
dx2x2 + 2x

 21. L
3

2.5 

dy

y24y2 - 9
 22. L  216 - x2 dx

 23. L
2 dx2e2x - 1

 24. L
12 sec2 u du14 - tan2 u23>2

In Exercises 25–36, solve the given problems by integration.

 25. Perform the integration Lx21 - x2dx (a) by using the power 

  formula, and (b) by trigonometric substitution. Compare results.

 26. Perform the integration L
x dx

x2 + 1
 (a) by using the logarithmic 

formula, and (b) by trigonometric substitution. Compare results.

 27. Find the area of a quarter circle of radius 2. See Exercise 18 of 
Section 25.5.

 28. Find the area bounded by y =
1

x22x2 - 1
, x = 12, x = 15, 

  and y = 0. See Fig. 28.14.

 3. L
29 - x2

x2  dx  4. L
dx2x2 - 16

 5. L
dx

x22x2 + 1

 6. L
dx11 - x 

223>2  7. L
dx

x2x2 - 1
 8. L  225 + x2 dx

In Exercises 9–24, integrate each of the given functions.

 9. L
21 - x2

x2  dx 10. L
4

0

dt1 t2 + 923>2
 11. L

2 dx2x2 - 4
 12. L

2x2 - 25
x

 dx

 13. L
6 dz

z22z2 + 9
 14. L

3 dx

x24 - x2

 15. L
4 dx14 - x223>2 16. L

6p3 dp29 + p2

 17. L
0.5

0

x3 dx21 - x2
 18. L

5

4

2x2 - 16

x2  dx

Basic Trigonometric Substitutions
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 29. Find the moment of inertia with respect to the y-axis of a flat plate 
covering the first-quadrant region under the circle x2 + y2 = a2 
in terms of its mass.

 30. Find the moment of inertia of a sphere of radius a with respect to 
its axis in terms of its mass.

 31. Find the volume generated by revolving the region bounded by 

  y =
2x2 - 16

x2 , y = 0, and x = 5 about the y-axis.

 32. The perimeter of the rudder of a boat can be described as the re-
gion bound by y = -0.5x224 - x2 and the x-axis. Find the area 
of one side of the rudder.

 33. Find the x-coordinate of the centroid of the boat rudder in 
Exercise 32.

 34. The vertical cross section of a highway culvert is defined by the re-
gion within the ellipse 1.00x2 + 9.00y2 = 9.00, where dimensions 
are in metres. Find the area of the cross section of the culvert.

 35. If an electric charge Q is distributed along a straight wire of 
length 2a, the electric potential V at a point P, which is at a 

  distance b from the centre of the wire, is V = kQL
a

-a

dx2b2 + x2
. 

  Here, k is a constant and x is the distance along the wire. Evaluate 
the integral.

 36. An electric insulating ring for a machine part can be described as 
the volume generated by revolving the region bounded by

  y = x22x2 - 4, y = 0, and x = 2.5 cm about the y-axis. Find 
the volume (in cm3) of material in the ring.

Certain algebraic integrals can be transformed into integrable form 
with the appropriate algebraic substitution. For an expression of the 
form 1ax + b2p>q, a substitution of the form u = 1ax + b21>q may 
put it into an integrable form. In Exercises 37–40, use this type of 
substitution for the given integrals.

 37. Lx1x + 1 dx 38. Lx23 8 - x dx

 39. Lx1x - 422>3 dx 40. L
x2 dx14x + 125>2

We have seen how the derivative of a product and trigonometric identities are used to 
write integrals into a form that can be integrated. In this section and the next, we show 
an algebraic method by which integrands that are fractions can also be changed into an 
integrable form.

In algebra, we combine fractions into a single fraction by means of addition. 
However, if we wish to integrate an expression that contains rational fractions, in which 
both numerator and denominator are polynomials, it is often advantageous to reverse the 
process of addition and express the rational fraction as the sum of simpler fractions.

 EXAMPLE  1  Illustrating partial fractions

In attempting to integrate L
7 - x

x2 + x - 2
 dx, we find that it does not fit any of the 

standard forms in this chapter. However, we can show that

7 - x

x2 + x - 2
=

2
x - 1

- 3
x + 2

This means that

 L
7 - x

x2 + x - 2
 dx = L

2 dx
x - 1

- L
3 dx
x + 2

 = 2 ln 0 x - 1 0 - 3 ln 0 x + 2 0 + C

We see that by writing the fraction in the original integrand as the sum of the sim-
pler fractions, each resulting integrand can be integrated. ■

In Example 1, we saw that the integral is readily determined once the rational frac-
tion 17 - x2 > 1x2 + x - 22  is replaced by the simpler fractions. In this section and 
the next, we describe how certain rational fractions can be expressed in terms of sim-
pler fractions and thereby be integrated. This technique is called the method of partial 
fractions.

 28.9  Integration by Partial Fractions: Nonrepeated 
Linear Factors

 
 

 
Solution by Equating Coefficients
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There are four cases for the types of factors of the denominator. They are (1) nonre-
peated linear factors, (2) repeated linear factors, (3) nonrepeated quadratic factors, 
and (4) repeated quadratic factors. In this section, we consider the case of nonrepeated 
linear factors, and the other cases are discussed in the next section.

NONREPEATED LINEAR FACTORS
For the case of nonrepeated linear factors, we use the fact that corresponding to each 
linear factor ax + b, occurring once in the denominator, there will be a partial frac-
tion of the form

A
ax + b

where A is a constant to be determined. The following examples illustrate the method.

 EXAMPLE  2  Integration by partial fractions

Integrate L
7 - x

x2 + x - 2
 dx. (This is the same integral as in Example 1. Here, we see 

how the partial fractions are found.)
First, we note that the degree of the numerator is 1 (the highest-power term is x) 

and that of the denominator is 2 (the highest-power term is x2). Since the degree of 
the denominator is higher, we may proceed to factoring it. Thus,

 
7 - x

x2 + x - 2
=

7 - x1x - 12 1x + 22  

There are two linear factors, 1x - 12  and 1x + 22 , in the denominator, and they 
are different. This means that there are two partial fractions. Therefore, we write

 
7 - x1x - 12 1x + 22 =

A
x - 1

+ B
x + 2

 (1)

We are to determine constants A and B so that Eq. (1) is an identity. In finding A and 
B, we clear Eq. (1) of fractions by multiplying both sides by 1x - 12 1x + 22 .

7 - x = A1x + 22 + B1x - 12  (2)

Eq. (2) is also an identity, which means that there are two ways of determining the 
values of A and B.

Solution by substitution: Since Eq. (2) is an identity, it is true for any value of x. 
Thus, in turn we pick x = -2 and x = 1, for each of these values makes a factor on 
the right equal to zero, and the values of B and A are easily found. Therefore,

For x = -2:  7 - 1 -22 = A1 -2 + 22 + B1 -2 - 12
 9 = -3B  B = -3

For x = 1:   7 - 1 = A11 + 22 + B11 - 12
 6 = 3A,  A = 2

Solution by equating coefficients: Since Eq. (2) is an identity, another way of 
finding the constants A and B is to equate coefficients of like powers of x from each 
side. Thus, writing Eq. (2) as

7 - x = 12A - B2 + 1A + B2x

we have

 2A - B = 7   equating constants: x0 terms

 A + B = -1  equating coefficients of x

Practice Exercise

1.  Find the partial fractions for
3x + 11

x2 - 2x - 3

■ The method of partial fractions essentially 
reverses the process of combining fractions 
over a common denominator. By determining 
that

7 - x
x2 + x - 2

=
2

x - 1
- 3

x + 2

reverses the process by which

 
2

x - 1
- 3

x + 2
=

21x + 22 - 31x - 121x - 12 1x + 22
 =

7 - x
x2 + x - 2

In order to express the rational frac-
tion f1x2 >g1x2  in terms of simpler 
partial fractions, the degree of the 
numerator f1x2  must be less than 
that of the denominator g1x2 . If this 
is not the case, we divide numerator 
by denominator until the remainder is 
of the proper form. Then the denomi-
nator g1x2  is factored into a product 
of linear and quadratic factors. The 
method of determining the partial 
fractions depends on the factors that 
are obtained.
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Now, using the values A = 2 and B = -3 (as found at the left), we have

7 - x1x - 12 1x + 22 =
2

x - 1
- 3

x + 2

Therefore, the integral is found as in Example 1.

 L
7 - x

x2 + x - 2
 dx = L

7 - x1x - 12 1x + 22  dx = L
2 dx
x - 1

- L
3 dx
x + 2

 = 2 ln 0 x - 1 0 - 3 ln 0 x + 2 0 + C

Using the properties of logarithms, we may write this as

L
7 - x

x2 + x - 2
 dx =  ln ` 1x - 1221x + 223 ` + C ■

 EXAMPLE  3  Integration by partial fractions

Integrate L
6x2 - 14x - 111x + 12 1x - 22 12x + 12  dx.

The denominator is factored and is of degree 3 (when multiplied out, the highest-
power term of x is x3). This means we have three nonrepeated linear factors.

6x2 - 14x - 111x + 12 1x - 22 12x + 12 =
A

x + 1
+ B

x - 2
+ C

2x + 1

Multiplying through by 1x + 12 1x - 22 12x + 12 , we have

6x2 - 14x - 11 = A1x - 22 12x + 12 + B1x + 12 12x + 12 + C1x + 12 1x - 22
We now substitute the values of 2, - 1

2, and -1 for x. Again, these are chosen be-
cause they make factors of the coefficients of A, B, or C equal to zero, although any 
values may be chosen. Therefore,

For x = 2:  6142 - 14122 - 11 = A102 152 + B132 152 + C132 102 , B = -1

For x = - 1
2

 :  6a1
4
b - 14a- 1

2
b - 11 = Aa- 5

2
b 102 + Ba1

2
b 102 + Ca1

2
b a- 5

2
b ,    C = 2

For x = -1:  6112 - 141 -12 - 11 = A1 -32 1 -12 + B102 1 -12 + C102 1 -32 ,  A = 3

Therefore,

 L
6x2 - 14x - 111x + 12 1x - 22 12x + 12  dx = L

3 dx
x + 1

 - L
dx

x - 2
+ L

2 dx
2x + 1

 = 3 ln 0 x + 1 0 - ln 0 x - 2 0 + ln 0 2x + 1 0 + C1 = ln ` 12x + 12 1x + 123

x - 2
` + C1

Here, we have let the constant of integration be C1 since we used C as the numerator 
of the third partial fraction. ■

 EXAMPLE  4  Integration by partial fractions

Integrate L
2x4 - x3 - 9x2 + x - 12

x3 - x2 - 6x
 dx.

Since the numerator is of a higher degree than the denominator, we must first di-
vide the numerator by the denominator. This gives

2x4 - x3 - 9x2 + x - 12

x3 - x2 - 6x
= 2x + 1 + 4x2 + 7x - 12

x3 - x2 - 6x

■ The partial fractions corresponding to a 
quotient of polynomials can be found using the 
expand feature on some graphing calculators.

■  2A - B = 7
  A + B = -1

 3A = 6
 A = 2

 2122 - B = 7
 -B = 3

 B = -3
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We must now express this rational fraction in terms of its partial fractions.

4x2 + 7x - 12

x3 - x2 - 6x
=

4x2 + 7x - 12
x1x + 22 1x - 32 =

A
x

+ B
x + 2

+ C
x - 3

Clearing fractions, we have

4x2 + 7x - 12 = A1x + 22 1x - 32 + Bx1x - 32 + Cx1x + 22
Now, using values of x of -2, 3, and 0 for substitution, we obtain the values of 
B = -1, C = 3, and A = 2, respectively. Therefore,

 L
2x4 - x3 - 9x2 + x - 12

x3 - x2 - 6x
 dx = L  a2x + 1 + 2

x
- 1

x + 2
+ 3

x - 3
b  dx

= x2 + x + 2 ln 0 x 0 - ln 0 x + 2 0 + 3 ln 0x - 3 0 + C1

= x2 + x + ln ` x2 1x - 323

x + 2
` + C1 ■

In Example 2, we showed two ways of finding the values of A and B. The method of 
substitution is generally easier to use with linear factors, and we used it in Examples 3 
and 4. However, as we will see in the next section, the method of equating coefficients 
can be very useful for other cases with partial fractions.

EXERCISES 28.9

In Exercises 1 and 2, make the given changes in the integrands of the 
indicated examples of this section, and then find the resulting frac-
tions to be used in the integration. Do not integrate.

 1. In Example 2, change the numerator to 10 - x.

 2. In Example 3, change the numerator to x2 - 12x - 10.

In Exercises 3–6, write out the form of the partial fractions, similar to 
that shown in Eq. (1) of Example 2, that would be used to perform the 
indicated integrations. Do not evaluate the constants.

 3. L
3x + 2

x2 + x
 dx 4. L

9 - x

x2 + 2x - 3
 dx

 5. L
x2 - 6x - 8

x3 - 4x
 dx 6. L

2x2 - 5x - 7

x3 + 2x2 - x - 2
 dx

In Exercises 7–24, integrate each of the given functions.

 7. L
x + 31x + 12 1x + 22  dx 8. L

x + 2
x1x + 12  dx

 9. L
dx

x2 - 4
 10. L

p - 9

2p2 - 3p + 1
 dp

 11. L
x2 + 3

x2 + 3x
 dx 12. L

x3

x2 + 3x + 2
 dx

 13. L
1

0

2t + 4

3t2 + 5t + 2
 dt 14. L

3

1

x - 1

4x2 + x
 dx

 19. L
2

1

x3 + 7x2 + 9x + 2

x1x2 + 3x + 22  dx

 20. L
2x3 + x - 1

x3 + x2 - 4x - 4
 dx

 21. L
dV1V2 - 42 1V2 - 92  22. L

5x3 - 2x2 - 15x + 24

x4 - 2x3 - 11x2 + 12x
 dx

 23. L
2x dx

x4 - 3x3 + 2x2 24. L
exdx

e2x + 3ex + 2

 15. L
4x2 - 10

x1x + 12 1x - 52  dx 16. L
4x2 + 21x + 61x + 22 1x - 32 1x + 42  dx

 17. L
6x2 - 2x - 1

4x3 - x
 dx 18. L

3

2

dR

R3 - R

In Exercises 25–34, solve the given problems by integration.

 25. Derive the general formula L
du

u1a + bu2 = -  
1
a

 ln 
a + bu

u
+ C.

 26. Derive the general formula L
du

u2 - a2 =
1
2a

 ln 
u - a
u + a

+ C.

 27. Integrate L
cos u

sin2 u + 2 sin u - 3
 du. (Hint: First, find the partial

  fractions for 1> 1sin2 u + 2 sin u - 32 .)

 28. Find the first-quadrant area bounded by y = 1> 1x3 + 3x2 + 2x2 , 
x = 1, and x = 3.

 29. Find the volume generated if the region of Exercise 28 is revolved 
about the y-axis.

 30. Find the x-coordinate of the centroid of a flat plate that covers the 
region bounded by y1x2 - 12 = 1, y = 0, x = 2, and x = 4.

 31. The general expression for the slope of a curve is 
  13x + 52 > 1x2 + 5x2 . Find the equation of the curve if it passes 

through 11, 02 .
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 32. The current i (in A) as a function of the time t (in s) in a certain 
electric circuit is given by i = 14t + 32 > 12t2 + 3t + 12 . Find 
the total charge that passes a given point in the circuit during the 
first second.

 33. The force F (in N) applied by a stamping machine in making a 
certain computer part is F = 4x> 1x2 + 3x + 22 , where x is the 
distance (in cm) through which the force acts. Find the work done 
by the force from x = 0 to x = 0.500 cm.

 34. Under specified conditions, the time t (in min) required to form x 
grams of a substance during a chemical reaction is given by 
t = 1dx> 3 14 - x2 12 - x2 4 . Find the equation relating t and 
x if x = 0 g when t = 0 min.

Answer to Practice Exercise

1. 3x + 11
x2 - 2x - 3

= 5
x - 3 - 2

x + 1

In the previous section, we introduced the method of partial fractions and considered 
the case of nonrepeated linear factors. In this section, we develop the use of partial 
fractions for the cases of repeated linear factors and nonrepeated quadratic factors. We 
also briefly discuss the case of repeated quadratic factors.

REPEATED LINEAR FACTORS
For repeated linear factors, we use the fact that corresponding to each linear factor 
ax + b that occurs n times in the denominator there will be n partial fractions

A1

ax + b
+

A21ax + b22 + g +
An1ax + b2n

where A1, A2, c, An are constants to be determined.

 EXAMPLE  1  Two factors—one repeated

Integrate L
dx

x1x + 322.

Here, we see that the denominator has a factor of x and two factors of x + 3. For 
the factor of x, we use a partial fraction as in the previous section, for it is a non- 
repeated factor. For the factor x + 3, we need two partial fractions, one with a de-
nominator of x + 3 and the other with a denominator of 1x + 322. Thus, we write

1

x1x + 322 =   
A

x
+ B

x + 3
+ C1x + 322 

Multiplying each side by x1x + 322, we have

 1 = A1x + 322 + Bx1x + 32 + Cx (1)

Using the values of x of -3 and 0, we have

For x = -3:   1 = A1022 + B1 -32 102 + 1 -32C,   C = - 1
3

For x = 0: 1 = A1322 + B102 132 + C102 , A =
1
9

Since no other numbers make a factor in Eq. (1) equal to zero, we either choose 
some other value of x or equate coefficients of some power of x in Eq. (1). Since 
Eq. (1) is an identity, we may choose any value of x. With x = 1, we have

 1 = A1422 + B112 142 + C112
 1 = 16A + 4B + C

 28.10 Integration by Partial Fractions: Other Cases
 

 
 

Repeated Quadratic Factors

Practice Exercise

1. Find the partial fractions for 2
x 1 x - 1 2 2.
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Using the known values of A and C, we have

1 = 16a1
9
b + 4B - 1

3
,  B = - 1

9

This means that

1

x1x + 322 =
1
9

x
+

- 1
9

x + 3
+

- 1
31x + 322

or

 L
dx

x1x + 322 =
1
9

 L
dx
x

- 1
9

 L
dx

x + 3
- 1

3
 L

dx1x + 322

 =
1
9

 ln 0 x 0 - 1
9

 ln 0 x + 3 0 - 1
3

 a 1
-1

b 1x + 32-1 + C1

 =
1
9

 ln ` x
x + 3

` + 1
31x + 32 + C1  ■

 EXAMPLE  2  Two factors—one repeated

Integrate L
3x3 + 15x2 + 21x + 151x - 12 1x + 223  dx.

First, we set up the partial fractions as

3x3 + 15x2 + 21x + 151x - 12 1x + 223 =  
A

x - 1
+ B

x + 2
+ C1x + 222 + D1x + 223

Next, we clear fractions:

 3x3 + 15x2 + 21x + 15 = A(x + 2)3 + B(x - 1)(x + 2)2

+ C1x - 12 1x + 22 + D1x - 12    (1)
For x = 1: 3 + 15 + 21 + 15 = 27A, 54 = 27A, A = 2

For x = -2: 31-82 + 15142 + 211-22 + 15 = -3D,  9 = -3D, D = -3

To find B and C, we equate coefficients of powers of x. Therefore, we write Eq. (1) as

 3x3 + 15x2 + 21x + 15 = 1A + B2x3 + 16A + 3B + C2x2

 + 112A + C + D2x + 18A - 4B - 2C - D2
Coefficients of x3: 3 = A + B, 3 = 2 + B, B = 1

Coefficients of x2: 15 = 6A + 3B + C,  15 = 12 + 3 + C,  C = 0

 
3x3 + 15x2 + 21x + 151x - 12 1x + 223 =

2
x - 1

+ 1
x + 2

+ 01x + 222 + -31x + 223

L
3x3 + 15x2 + 21x + 151x - 12 1x + 223  dx = 2L

dx
x - 1

+ L
dx

x + 2
- 3L

dx1x + 223

=  2 ln 0 x - 1 0 + ln 0x + 2 0 - 3a 1
-2

b 1x + 22-2 + C1

 = ln 0 1x - 122 1x + 22 0 + 3

21x + 222 + C1 ■

If there is one repeated factor in the denominator and it is the only factor present in 
the denominator, a substitution is easier and more convenient than using partial frac-
tions. This is illustrated in the following example.
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 EXAMPLE  3  The only factor is repeated

Integrate L
x dx1x - 223.

This could be integrated by first setting up the appropriate partial fractions. 
However, the solution is more easily found by using the substitution u = x - 2. 
Using this, we have

 u = x - 2  x = u + 2  dx = du

 L
x dx1x - 223 = L

1u + 22 1du2
u3 = L

du

u2 + 2L
du

u3

 = Lu-2 du + 2Lu-3 du =
1

-u
+ 2

-2
 u-2 + C

 = - 1
u

- 1

u2 + C = - u + 1

u2 + C

 = - x - 2 + 11x - 222 + C =
1 - x1x - 222 + C  ■

NONREPEATED QUADRATIC FACTORS
For the case of nonrepeated quadratic factors, we use the fact that corresponding to 
each irreducible quadratic factor ax2 + bx + c that occurs once in the denominator 
there is a partial fraction of the form

Ax + B

ax2 + bx + c

where A and B are constants to be determined. (Here, an irreducible quadratic factor is 
one that cannot be further factored into linear factors involving only real numbers.) 
This case is illustrated in the following examples.

 EXAMPLE  4  Two factors—one quadratic

Integrate L
4x + 4

x3 + 4x
 dx.

In setting up the partial fractions, we note that the denominator factors as 
x3 + 4x = x1x2 + 42 . Here, the factor x2 + 4 cannot be further factored. This 
means we have

4x + 4

x3 + 4x
=

4x + 4

x1x2 + 42 =  
A

x
+ Bx + C

x2 + 4

Clearing fractions, we have

 4x + 4 = A1x2 + 42 + Bx2 + Cx

 = 1A + B2x2 + Cx + 4A

Equating coefficients of powers of x gives us

For x2: 0 = A + B

For x: 4 = C

For constants: 4 = 4A,  A = 1

Practice Exercise

2. Find the partial fractions for 
x2 - 2

x3 + 2x
.
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Therefore, we easily find that B = -1 from the first equation. This means that

4x + 4

x3 + 4x
=

1
x

+ -x + 4

x2 + 4

and

 L
4x + 4

x3 + 4x
 dx = L

1
x
 dx + L

-x + 4

x2 + 4
 dx

 = L
1
x
 dx - L

x dx

x2 + 4
+ L

4 dx

x2 + 4

 = ln 0 x 0 - 1
2

 ln 0 x2 + 4 0 + 2 tan-1 
x
2

+ C1

We could use the properties of logarithms to combine the first two terms of the 
answer. Doing so, we have the following result:

L
4x + 4

x3 + 4x
 dx = ln 

$ x $2x2 + 4
+ 2 tan-1 

x
2

+ C1 ■

 EXAMPLE  5  One quadratic factor and a repeated linear factor

Integrate L
x3 + 3x2 + 2x + 4

x2 1x2 + 2x + 22  dx.

In the denominator, we have a repeated linear factor, x2, and a quadratic factor. 
Therefore,

 
x3 + 3x2 + 2x + 4

x2 1x2 + 2x + 22 =  
A

x
+ B

x2 + Cx + D

x2 + 2x + 2

 x3 + 3x2 + 2x + 4 = Ax1x2 + 2x + 22 + B1x2 + 2x + 22 + Cx3 + Dx2

 = 1A + C2x3 + 12A + B + D2x2 + 12A + 2B2x + 2B

Equating coefficients, we find that

For constants: 2B = 4, B = 2

For x: 2A + 2B = 2, A + B = 1, A = -1

For x2:  2A + B + D = 3, -2 + 2 + D = 3, D = 3

For x3: A + C = 1, -1 + C = 1, C = 2

 
x3 + 3x2 + 2x + 4

x2 1x2 + 2x + 22 = - 1
x

+ 2

x2 + 2x + 3

x2 + 2x + 2

 L
x3 + 3x2 + 2x + 4

x2 1x2 + 2x + 22  dx = - L
dx
x

+ 2L
dx

x2 + L
2x + 3

x2 + 2x + 2
 dx

 = - ln 0 x 0 - 2a1
x
b + L

2x + 2 + 1

x2 + 2x + 2
 dx

= - ln 0 x 0 - 2
x

+L
2x + 2

x2 + 2x + 2
 dx +L

dx1x2 + 2x + 12 + 1

 = - ln 0 x 0 - 2
x

+ ln 0 x2 + 2x + 2 0 + tan-1 1x + 12 + C1
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Note the manner in which the integral with the quadratic denominator was handled 
for the purpose of integration. First, the numerator, 2x + 3, was written in the form 12x + 22 + 1 so that we could fit the logarithmic form with the 2x + 2. Then we 
completed the square in the denominator of the final integral so that it then fit an in-
verse tangent form. ■

REPEATED QUADRATIC FACTORS
Finally, considering the case of repeated quadratic factors, we use the fact that corre-
sponding to each irreducible quadratic factor ax2 + bx + c that occurs n times in the 
denominator there will be n partial fractions

A1x + B1

ax2 + bx + c
+

A2x + B21ax2 + bx + c22 + g +
Anx + Bn1ax2 + bx + c2n

where A1, A2, c, An, B1, B2, c, Bn are constants to be determined. The procedures 
that lead to the solution are the same as those for the other cases. Exercises 19 and 20 in 
this section are solved by using these partial fractions for repeated quadratic factors.

We now summarize the method of partial fractions for all four cases discussed in the 
last two sections.

Method of Partial Fractions
To integrate a rational expression of the form f1x2 >g1x2  by the method of par-
tial fractions:

1.  Make sure that the degree of the numerator f1x2  is less than the degree of 
the denominator g1x2 . If it is not, divide the numerator by the denominator 
until the remainder is of the proper form.

2.  Factor the denominator as completely as possible.

3.  Select the term(s) that correspond to each factor in the denominator accord-
ing to the following table. Keep in mind that if there is only one factor pre-
sent, integration by substitution may be more convenient.

Factor in 
Denominator

 
Term(s) in Partial Fractions Decomposition

ax + b A
ax + b1ax + b2n A1

ax + b
+

A21ax + b22 + c +
An1ax + b2n

ax2 + bx + c
Ax + B

ax2 + bx + c1ax2 + bx + c2n A1x + B1

ax2 + bx + c
 +  

A2x + B21ax2 + bx + c22 + c+  
Anx + Bn1ax2 + bx + c2n

4.  Determine the values of the coefficients either by substitution of convenient 
values of x, or by equating coefficients of like powers of x from each side.

5. Integrate.
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EXERCISES 28.10

In Exercises 1–4, make the given changes in the integrands of the in-
dicated examples of this section. Then write out the equation that 
shows the partial fractions that would be used for the integration. Do 
not evaluate the constants.

 1. In Example 1, change the numerator from 1 to 2.

 2. In Example 2, change the denominator to 1x - 122 1x + 222.

 3. In Example 4, change the denominator to x3 - 9x2.

 4. In Example 5, change the denominator to x21x2 + 3x + 22 .

In Exercises 5–20, integrate each of the given functions.

 5. L
x - 8

x3 - 4x2 + 4x
 dx 6. L

dT

T3 - T2

 22. Integrate L
cos x dx

sin x +  sin3x
. (Hint: The numerator for the quadratic 

  factor is B sin x + C.)

 23. Find the area bounded by y =
x - 3

x3 + x2, y = 0, and x = 1.

 24. Find the first-quadrant area bounded by y =
3x2 + 2x + 91x2 + 92 1x + 12  

and x = 2.

 25. Find the volume generated by revolving the first-quadrant region 
bounded by y = 4> 1x4 + 6x2 + 52  and x = 2 about the 
y-axis.

 26. Find the volume generated by revolving the first-quadrant region 
bounded by y = x> 1x + 322 and x = 3 about the x-axis.

 27. Under certain conditions, the velocity v (in m>s) of an object 
moving along a straight line as a function of the time t (in s) is 

  given by v =
t2 + 14t + 2712t + 12 1 t + 522. Find the distance travelled by 

  the object during the first 2.00 s.

 28. By a computer analysis, the electric current i (in A) in a certain 

  circuit is given by i =
0.001017t2 + 16t + 4821 t + 42 1 t2 + 162 , where t is the 

  time (in s). Find the total charge that passes a point in the circuit 
in the first 0.250 s.

 29. Find the x-coordinate of the centroid of a flat plate covering the 
region bounded by y = 4> 1x3 + x2 , x = 1, x = 2, and y = 0.

 30. The slope of a curve is given by 
dy

dx
=

29x2 + 36

4x4 + 9x2 . Find the 

  equation of the curve if it passes through 11, 52 .

Answers to Practice Exercises

1. 2
x 1 x - 1 2 2 = 2

x - 2
x - 1 + 21 x - 1 2 2 2. x2 - 2

x3 + 2x
= -1

x + 2x
x2 + 2

 7. L
2 dx

x2 1x2 - 12  8. L
3

1
 
3x3 + 8x2 + 10x + 2

x1x + 123  dx

 9. L
2

1

2s ds1s - 323 10. L
x dx1x + 224

 11. L
x3 - 2x2 - 7x + 281x + 122 1x - 322 dx 12. L

4 dx1x + 1221x - 122

 13. L
2

0

x2 + x + 51x + 12 1x2 + 42  dx 14. L
v2 + v - 11v2 + 12 1v - 22  dv

 15. L
5x2 + 8x + 16

x21x2 + 4x + 82  dx 16. L
2x2 + x + 31x2 + 22 1x - 12  dx

 17. L
10x3 + 40x2 + 22x + 714x2 + 12 1x2 + 6x + 102  dx  18. L

4

3

5x3 - 4x

x4 - 16
 dx

 19. L
-x3 + x2 + x + 31x + 12 1x2 + 122 dx 20. L

2r31r2 + 122 dr

In Exercises 21–30, solve the given problems by integration.

 21. For the integral of Example 3, set up the integration by partial 
fractions, and then integrate. Compare results with Example 3.

In this chapter, we have introduced certain basic integrals and have also brought in 
some methods of reducing other integrals to these basic forms. Often, this transforma-
tion and integration requires a number of steps to be performed, and therefore integrals 
are tabulated for reference. The integrals found in tables have been derived by using the 
methods introduced thus far, as well as many other methods that can be used. Therefore, 
an understanding of the basic forms and some of the basic methods is very useful in 
finding integrals from tables. Such an understanding forms a basis for proper recogni-
tion of the forms that are used in the tables, as well as the types of results that may be 
expected. The following examples illustrate the use of the table of integrals found in 
Appendix B. More extensive tables are available in other sources.

 28.11 Integration by Use of Tables
Proper Recognition of the Form,  

 
Proper Identification of u and du

The use of the tables depends on 
proper recognition of the form and 
the variables and constants of the 
integral.

LEARNING T IP
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 EXAMPLE  1  Integral fits the form of formula 6

Integrate L
x dx12 + 3x

.

We first note that this integral fits the form of formula 6 of Appendix B, with 
u = x, a = 2, and b = 3. Therefore,

L
x dx12 + 3x

= -
214 - 3x212 + 3x

27
+ C ■

 EXAMPLE  2  Integral fits the form of formula 18

Integrate L
24 - 9x2

x
 dx.

This fits the form of formula 18, with proper identification of constants; u = 3x, 
du = 3 dx, a = 2. Hence,

 L
24 - 9x2

x
 dx = L

24 - 9x2

3x
 3 dx

 = 24 - 9x2 - 2 lna2 + 24 - 9x2

3x
b + C ■

 EXAMPLE  3  Integral fits the form of formula 37

Integrate 15 sec3 2x dx.
This fits the form of formula 37; n = 3, u = 2x, du = 2 dx. And so,

 L5 sec3 2x dx = 5 a1
2
b L sec3 2x12 dx2

 =
5
2

 
 sec 2x tan 2x

2
+ 5

2
 a1

2
b L sec 2x12 dx2

To complete this integral, we must use the basic form of Eq. (28.12). Thus, we 
complete it by

L5 sec3 2x dx =
5 sec 2x tan 2x

4
+ 5

4
 ln 0 sec 2x + tan 2x 0 + C ■

 EXAMPLE  4  Area—integral fits the form of formula 46

Find the area bounded by y = x2 ln 2x, y = 0, and x = e.
From Fig. 28.15, we see that the area is

A = L
e

0.5
 x2 ln 2x dx

This integral fits the form of formula 46 if u = 2x. Thus, we have

 A =
1
8

 L
e

0.5
 12x22 ln 2x12 dx2 =

1
8

 12x23 c ln 2x
3

- 1
9
d e

0.5

 = e3 a ln 2e
3

- 1
9
b - 1

8
 a ln 1

3
- 1

9
b = e3 a3 ln 2e - 1

9
b + 1

72
 = 9.118  ■

The proper identification of u and du is the key step in the use of tables. Therefore, 
for the integrals in the following example, the proper u and du, along with the appropri-
ate formula from the table, are identified, but the integrations are not performed.

■ For reference, formula 18 is 

L
2a2 - u2

u
 du =2a 

2 - u 

2 - a lnaa + 2a 

2 - u 

2

u
b

■ For reference, formula 37 is

Lsecn u du =  

secn-2 u tan u
n - 1

+ n - 2
n - 1

 L 
secn-2 u du

■ For reference, Eq. (28.12) is 

Lsec u du = ln 0 sec u + tan u 0 + C.

0

2
4
6
8

10
12
14

1 2 3

y

dx

y

x

22

x 5 e

y 5 x2 ln 2x

Fig. 28.15
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 EXAMPLE  5  Identify the formula, u, and du

(a)  Lx21 - x4 dx  u = x2,  du = 2x dx  formula 15

(b)  L
14x6 - 923>2

x
 dx  u = 2x3,  du = 6x2 dx  formula 22 

introduce a factor of x2 into numerator and denominator

(c)  Lx3 sin x2 dx  u = x2,  du = 2x dx  formula 47 ■

Following is a brief summary of the approach to integration we have used to obtain 
the exact result. Also, definite integrals may be approximated by methods such as the 
trapezoidal rule or Simpson’s rule.

Basic Approach to Integrating a Function
1.  Write the integral so that it fits an integral form. Either a basic form as de-

veloped in this chapter or a form from a table of integrals may be used.

2.  Use a method of transforming the integral so that an integral form may be 
used. Appropriate methods are covered in this chapter or in other sources.

EXERCISES 28.11

In Exercises 1 and 2, make the given changes in the indicated exam-
ples of this section, and then state which formula from Appendix B 
would be used to complete the integration.

 1. In Example 1, change the denominator to 12 + 3x22.

 2. In Example 2, in the numerator, change -  to + .

In Exercises 3–8, identify u, du, and the formula from Appendix B that 
would be used to complete the integration. Do not integrate.

 3. L
4 dy

3y11 + 2y
 4. L

x dx2x4 - 16

 5. L
x dx14 - x423>2 6. Lx5 ln x3 dx

 7. Lx cos2 1x22  dx 8. L
ds

s1s4 - 123>2
In Exercises 9–52, integrate each function by using the table in 
Appendix B.

 9. L
3x dx

2 + 5x
 10. L

4x dx11 + x22

 11. L
7

2
 4x12 + x dx 12. L

dx

x2 - 4

 13. L
dy1y2 + 423>2 14. L

p>3
0

sin3 x dx

 15. Lsin 2x sin 3x dx 16. L6 sin-1 3x dx

 17. L
24x2 - 9

x
 dx 18. L

19x2 + 1623>2
x

 dx

 19. Lcos5 4x dx 20. L0.2 tan2 2f df

 21. L6r tan-1 r2 dr 22. L5xe4x dx

 23. L
2

1
14 - x223>2 dx 24. L

3 dx

9 - 16x2

 25. L
dx

x24x2 + 1
 26. L

24 + x2

x
 dx

 27. L
8 dx

x21 - 4x2
 28. L

dx

x11 + 4x22

 29. L
p>12

0
sin u cos 5u du 30. L

2

0
x2e3x dx

 31. Lx5 cos x3 dx 32. L5 sin3 t cos2 t dt

 33. L
2x dx11 - x423>2 34. L

dx
x11 - 4x2

 35. L
3

1

23 + 5x2 dx
x

 36. L
1

1>2 29 - 4x2

x
 dx

 37. Lx3 ln x2 dx 38. L
1.2u du

u22u4 - 9

 39. L
9x2 dx1x6 - 123>2 40. Lx72x4 + 4 dx

 41. L t2 1 t6 + 123>2 dt 42. L
23 + 4x2 dx

x

 43. Lsin3 4x cos3 4x dx 44. L6 cot4  2x dx
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 45. Find the length of arc of the curve y = x2 from x = 0 to x = 1. 
(Use Eq. 26.29.)

 46. Find the moment of inertia with respect to its axis of the solid 
generated by revolving the region bounded by y = 3 ln x, x = e, 
and the x-axis about the y-axis.

 47. Find the area of an ellipse with a major axis 2a and a minor axis 
2b.

 48. The voltage across a 5.0@mF capacitor in an electric circuit is zero. 
What is the voltage after 5.00 ms if a current i (in mA) as a func-
tion of the time t (in s) given by i = tan-1 2t charges the 
capacitor?

 49. Find the force (in N) on the region bounded by x = 1>11 + y, 
y = 0, y = 3, and the y-axis, if the surface of the water is at the 
upper edge of the area.

 50. If 6.00 g of a chemical are placed in water, the time t (in min) 
it takes to dissolve half of the chemical is given by 

  t = 560L
6

3

dx
x1x + 42 , where x is the amount of undissolved 

  chemical at any time. Evaluate t.

 51. The dome of a sports arena is the surface generated by revolving 
y = 20.0 cos 0.0196x 10 … x … 80.0 m2  about the y-axis. Find 
the volume within the dome.

 52. If an electric charge Q is distributed along a wire of length 2a, the 
force F exerted on an electric charge q placed at point P is 

  F = kqQL
b dx1b2 + x223>2. Integrate to find F as a function of x.

 CHAPTER 28  EQUATIONS

Integrals Lun du =
un+1

n + 1
+ C 1n ≠ -12  (28.1)

 L
du
u

= ln 0 u 0 + C (28.2)

 Leu du = eu + C (28.3)

 L sin u du = -cos u + C (28.4)

 Lcos u du = sin u + C (28.5)

 L sec2 u du = tan u + C (28.6)

 Lcsc2 u du = -cot u + C (28.7)

 L sec u tan u du =  sec u + C (28.8)

 Lcsc u cot u du = -csc u + C (28.9)

 L tan u du = - ln 0 cos u 0 + C (28.10)

 Lcot u du = ln 0 sin u 0 + C (28.11)

 L sec u du = ln 0 sec u + tan u 0 + C (28.12)

 Lcsc u du = ln 0 csc u - cot u 0 + C (28.13)
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Trigonometric relations cos2 x + sin2 x = 1 (28.14)
 1 + tan2 x = sec2 x (28.15)
 1 + cot2 x = csc2 x (28.16)
 2 cos2 x = 1 + cos 2x (28.17)
 2 sin2 x = 1 - cos 2x (28.18)

Root-mean-square value yrms = B 1
T

 L
T

0
 y2 dx (28.19)

Integrals L
du2a2 - u2

= sin-1 
u
a

+ C (28.20)

 L
du

a2 + u2 =
1
a

 tan-1 
u
a

+ C (28.21)

 Lu dv = uv - Lv du (28.22)

Trigonometric substitutions For 2a2 - x2  use x = a sin u

 For 2a2 + x2  use x = a tan u (28.23)
 For 2x2 - a2  use x = a sec u 

 CHAPTER 28  REVIEW EXERCISES

In Exercises 1–42, integrate the given functions without using a table 
of integrals.

 1. Le-8x dx 2. Lecos 2x sin x cos x dx

 3. L
dx

x1 ln 2x22 4. L
8

1
 y1>32y4>3 + 9 dy

 5. L
p>2

0

4 cos u du
1 + sin u

 6. L
 sec2 x dx
2 + tan x

 7. L
2 dx

25 + 49x2 8. L
dx21 - 4x2

 9. L
p>2

0
cos3 2u du 10. L

p>18

0
sec3 6x tan 6x dx

 11. L
2

0

x dx

4 + x2 12. L
e

1

 ln v2 dv
 ln ev

 13. L  1sin t + cos t22 sin t dt 14. L
sin3 x dx1cos x

 15. L
ex dx

1 + e2x 16. L
p + 25

p2 - 25
 dp

 17. L  sec4 3x dx 18. L
11 - cos2 u2  du

1 + cos 2u

 19. L
2x2 + 6x + 1

2x3 - x2 - x
 dx 20. L

4 - e1x1x e1x
 dx

 21. L
3x dx

4 + x4 22. L
3

1

12 dR1R 11 + R2
 23. L

4 dx24x2 - 9
 24. L

x2 dx29 - x2

 25. L
e2x dx2e2x + 1

 26. L
x2 - 2x + 31x - 123  dx

 27. L
2x2 + 3x + 18

x3 + 9x
 dx 28. L

e>2
1>2 14 +  ln 2u23 du

u

 29. L
p>6

0
3 sin2 3f df 30. L  sin4 x dx

 31. Lx csc2 2x dx 32. Lx tan-1 x dx

 33. L
3u2 - 6u - 2

3u3 + u2  du 34. L
R2 + 3

R4 + 3R2 + 2
 dR

 35. Le2x cos e2x dx 36. L
3 dx

x2 + 6x + 10

 37. L
e

1

3 cos 1 ln x2  dx

x
 38. L

3

1

2 dx

x2 - 2x + 5

 39. L
u2 - 8
u + 3

 du 40. L
logx 2 dx

x ln x

 41. L
sin x cos2 x

5 + cos2 x
 dx 42. L

e2xdx

16 + e4x
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In Exercises 43–84, solve the given problems by integration.

 43. For the integral L
dx

x22 - x2
, using a trigonometric substitu-

tion, find the transformed integral but do not integrate.

 44. For the integral L
dx2x2 + 4x + 3

, using a trigonometric sub-

stitution, find the transformed integral but do not integrate.

 45. Perform the integrations Leln 4xdx and L ln e4xdx. Compare 

results.

 46. Perform the integrations Lsin 6x sin 5x dx using Eq. (20.16) on 

page 541.

 47. For the integral L 216 + x8

x   dx, identify the formula found in 

Appendix B, u, and du that would be used for the integration. Do 

not integrate.

 48. For the integral Lx92x5 + 8 dx, identify the formula found in 

Appendix B, u, and du, that would be used for the integration. 

Do not integrate.

 49. Show that 1ex 1ex + 122 dx can be integrated in two ways. 
Explain the difference in the answers.

 50.  Show that L
1
x
 11 + ln x2  dx can be integrated in two ways. 

Explain the difference in the answers.

 51. Integrate L sin x dx
1 + sin x by first rewriting the integrand. (Hint: 

First divide and then note Exercise 29 on page 862.)

 52. Integrate L
dx

1 + ex by first rewriting the integrand. (Hint: It is 

possible to multiply the numerator and the denominator by an 

appropriate expression.)

 53.  The integral L
x2x2 + 4

 dx can be integrated in more than 

one way. Explain what methods can be used and which is simpler.

 54. Find the equation of the curve for which dy>dx = ex12 - ex22, 
if the curve passes through 10, 42 .

 55. Find the equation of the curve for which dy>dx =  sec4 x, if the 
curve passes through the origin.

 56. Find the equation of the curve for which 
dy

dx
=

24 + x2

x4 , if the 
curve passes through 12, 12 .

 57. Find the area bounded by y = 4e2x, x = 1.5, and the axes.

 58. Find the area bounded by y = x> 11 + x22, the x-axis, and the 
line x = 4.

 59. Find the area inside the circle x2 + y2 = 25 and to the right of 
the line x = 3.

 60. Find the area bounded by y = x1x + 4, y = 0, and x = 5.

 61. Find the area bounded by y = tan-1 2x, x = 2, and the x-axis.

 62. In polar coordinates, the area A bounded by the curve r = f 1u2 , 
u = a, and u = b is found by evaluating the integral 

  A =
1
2

 L
b

a

r2 du. Find the area bounded by a = 0, b = p>2, 

  and r = eu.

 63. Find the volume generated by revolving the region bounded by 
y = xex, y = 0, and x = 2 about the y-axis.

 64. Find the volume generated by revolving about the y-axis the re-
gion bounded by y = x + 1x + 1, x = 3, and the axes.

 65. Find the volume of the solid generated by revolving the region 
bounded by y = ex sin x and the x-axis between x = 0 and 
x = p about the x-axis.

 66. Find the centroid of a flat plate that covers the region bounded 
by y = ln x, x = 2, and the x-axis.

 67. Find the length of arc along the curve of y = ln sin x from 
x = p>3 to x = 2p>3. (Use Eq. 26.29.)

 68. Find the area of the surface generated by revolving the curve of 
y = 24 - x2 from x = -2 to x = 2 about the x-axis. See 
Exercise 37 of Section 26.6.

 69. The force F (in N) on a nail by a hammer is F = 5> 11 + 2t2 , 
where t is the time (in s). The impulse I of the force from 

  t = 0 s to t = 0.25 s is I = L
0.25

0
  F dt. Find the impulse.

 70. The acceleration of a parachutist is given by dv>dt = g - kv, 
where k is a constant depending on the resisting force due to air 
friction. Find v as a function of the time t.

 71. The change in the thermodynamic entity of entropy ∆S may be 
expressed as ∆S = 1  1cv>T2  dT , where cv is the heat capacity 
at constant volume and T is the temperature. For increased ac-
curacy, cv is often given by the equation cv = a + bT + cT2, 
where a, b, and c are constants. Express ∆S as a function of 
temperature.

 72. A certain type of chemical reaction leads to the equation 

  dt =
dx

k1a - x2 1b - x2 , where a, b, and k are constants. Solve 

  for t as a function of x.

 73. An electric transmission line between two towers has a shape 
given by y = 16.01e 

x>32 + e-x>322 . Find the length of trans-
mission line if the towers are 50.0 m apart (from x = -25.0 m 
to x = 25.0 m). (Use Eq. 26.29.)

 74. An object at the end of a spring is immersed in liquid. Its velocity 
(in cm>s) is then described by the equation v = 2e-2t + 3e-5t, 
where t is the time (in s). Such motion is called overdamped. Find 
the displacement s as a function of t if s = -1.6 cm for t = 0.

 75. When we consider the resisting force of the air, the velocity v (in 
m>s) of a falling brick in terms of the time t (in s) is given by 
dv> 19.8 - 0.1v2 = dt. If v = 0 when t = 0, find v as a func-
tion of t.

 76. The power delivered to an electric circuit is given by P = Ei, 
where E and i are the instantaneous voltage and the instantaneous 
current in the circuit, respectively. The mean power, averaged 

  over a period 2p>v, is given by Pav =
v

2p
 L

2p>v
0

 Ei dt. If 

  E = 20 cos 2t and i = 3 sin 2t, find the average power over a 
period of p>4.
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 77. Find the root-mean-square value for one period of the electric 
current i if i = 2 sin t.

 78. In atomic theory, when finding the number n of atoms per  
unit volume of a substance, we use the equation 
n = A1p

0  eacos u sin u du. Perform the indicated integration.

 79. In the study of the effects of an electric field on molecular orien-
tation, the integral 1p

0  11 + k cos u2  cos u sin u du is used. 
Evaluate this integral.

 80. In finding the lift of the air flowing around an airplane wing, we 
use the integral 1p>2

-p>2u2 cos u du. Evaluate this integral.

 81. Find the volume within the piece of tubing in an oil distribution 
line shown in Fig. 28.16. All cross sections are circular.

 82. A metal plate has a shape shown in Fig. 28.17. Find the x- 
coordinate of the centroid of the plate.

O

2.00
cm

2.00
cm

y

x

y ! e"0.1x

Fig. 28.16

O

y

x
1.00 dm

1.
00

 d
m

(x!, y!)

y "
x2 # 1

1

Fig. 28.17

 83. The nose cone of a space vehicle is to be covered with a heat 
shield. The cone is designed such that a cross section x metres 
from the tip and perpendicular to its axis is a circle of radius 
1.5x2>3 metres. Find the surface area of the heat shield if the 
nose cone is 4.00 m long. See Fig. 28.18. (See Exercise 37 of 
Section 26.6.)

4.00 m
x r

r ! 1.5x2/3

Fig. 28.18

1.12 m

1.
25

 m

Fig. 28.19

 84. A window has a shape of a semiellipse, as shown in Fig. 28.19. 
What is the area of the window?

Writing Exercise
 85. The side of a blade designed to cut leather at a shoe factory can 

be described as the region bounded by y = 4 cos2x and y = 4 
from x = 0 to x = 3.14. Write two or three paragraphs explain-
ing how the area of the blade may be found by integrating the 
appropriate integral by either of two methods of this chapter.

 CHAPTER 28  PRACTICE TEST

In Problems 1–7, evaluate the given integrals.

 1. L 1sec x - sec3 x tan x2  dx 2. Lsin3 x dx

 3. L tan3 2x dx 4. Lcos2 4u du

 5. L
dx

x224 - x2
 6. Lxe-2x dx

 7. L
x3 + 5x2 + x + 2

x4 + x2  dx

 8. The electric current in a certain circuit is given by 

  i = L
6t + 1

4t2 + 9
 dt, where t is the time. Integrate and find the 

  resulting function if i = 0 for t = 0.

 9. Find the first-quadrant area bounded by y =
1216 - x2

 and 
x = 3.
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 In Section 29.2 we see how the 
shape of the roof of the Saddledome 
arena in Calgary, Alberta, is deter-
mined by a function of two variables.

Partial Derivatives 
and Double Integrals

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Set up and evaluate a function 
of two variables

 Use traces and sections to 
sketch the graph of a surface 
in the rectangular coordinate 
system in three dimensions

 Convert points and equations 
from rectangular to cylindrical 
coordinates and vice versa

 Find the first- and second-order 
partial derivatives of a function 
of several variables

 Evaluate double integrals
 Understand the geometric 

interpretation of the partial 
derivatives and the double 
integral of a function of two 
variables

 Solve application problems 
involving functions of two 
variables, their partial 
derivatives, and their integrals

To this point, we have been dealing with functions that have a single independent 
variable. There are, however, numerous applications in which functions with more 
than one independent variable are used. Although a number of these functions involve 

three or more independent variables, many involve only two, and we shall be concerned 
primarily with these.

In the first two sections of this chapter, we establish the meaning of a function of two inde-
pendent variables, and discuss how the graph of this type of function is shown. In the last two 
sections, we develop some of the basic concepts of the calculus of these functions, primarily 
partial derivatives and double integrals. In finding the partial derivative, we take the deriva-
tive of the function with respect to one independent variable, holding the other constant. 
Similarly, when integrating an expression with two differentials, we integrate with respect to 
one, holding the other constant, and then integrate with respect to the other.

While studying problems in motion and optics in the early 1700s, mathematicians including 
Leibniz developed the meaning and use of partial derivatives. By the middle of the eighteenth 
century, double integrals seem to have been known by the leading mathematicians of the 
time. However, their wide dissemination is due to Euler who, in 1769, published the first 
detailed explanation of them.

Partial derivatives and double integrals have applications in many areas of science and tech-
nology, including acoustics, electricity, electronics, mechanics, product design, and wave 
motion. Some of these applications are shown in the examples and exercises of this chapter.
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Many familiar formulas express one variable in terms of two or more other variables. 
The following example illustrates one from geometry.

 EXAMPLE  1  A function of two variables

The total surface area A of a right circular cylinder is a function of the radius r and the 
height h of the cylinder. That is, the area will change if either or both of these change. 
The formula for the total surface area is

A = 2pr2 + 2prh

We say that A is a function of r and h. See Fig. 29.1. ■

We define a function of two variables as follows: If z is uniquely determined for 
given values of x and y, then z is a function of x and y. The notation used is similar to 
that used for one independent variable. It is z = f1x, y2 , where both x and y are inde-
pendent variables. Therefore, it follows that f1a, b2  means “the value of the function 
when x = a and y = b.”

 EXAMPLE  2  Illustrating the notation z = f1x, y2
If f1x, y2 = 3x2 + 2xy - y3, find f1 -1, 22 .

Substituting -1 for x and 2 for y, we have

 f1 -1, 22 = 31 -122 + 21 -12 122 - 1223

 = 3 - 4 - 8 = -9  ■

 EXAMPLE  3  Application of a function of two variables

For a certain electric circuit, the current i (in A), in terms of the voltage E and resis-
tance R (in Ω) is given by

i =
E

R + 0.25

Find the current for E = 1.50 V and R = 1.20 Ω and for E = 1.60 V and R = 1.05 Ω.
Substituting the first values, we have

i =
1.50

1.20 + 0.25
= 1.03 A

For the second pair of values, we have

i =
1.60

1.05 + 0.25
= 1.23 A

For this circuit, the current generally changes if either or both of E and R change. ■

 EXAMPLE  4  Using f1x, y2  notation

If f1x, y2 = 2xy2 - y, find f1x, 2x2 - f1x, x22 .
We note that in each evaluation, the x factor remains as x, but that we are to substi-

tute 2x for y and subtract the function for which x2 is substituted for y.

 f1x, 2x2 - f1x, x22 = 32x12x22 - 12x2 4 - 32x1x222 - x24
 = 38x3 - 2x4 - 32x5 - x24
 = 8x3 - 2x - 2x5 + x2

 = -2x5 + 8x3 + x2 - 2x
This type of difference of functions is important in Section 29.4. ■

 29.1 Functions of Two Variables

z = f 1x, y 2 x 
and y

Fig. 29.1 

r

h

Practice Exercise

1.  If f1x, y2 = 4xy2 - 3x2y, find 
f11, 42 - f1x, 2x2 .
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Restricting values of the function to real numbers means that values of either x or y 
or both that lead to division by zero or to imaginary values for z are not permissible.

 EXAMPLE  5  Restrictions on independent variables

If f1x, y2 = 3xy1 x - y 2 1 x + 3 2 , all values of x and y are permissible except those for which 
x = y and x = -3. Each of these would indicate division by zero.

If f1x, y2 = 24 - x2 - y2, neither x nor y may be greater than 2 in absolute 
value, and the sum of their squares may not exceed 4. Otherwise, imaginary values of 
the function would result. ■

Following is an example of setting up a function of two variables from stated conditions. 
As with word problems with one unknown, although no general rules can be given for 
this procedure, a careful analysis of the statement should lead to the required function.

 EXAMPLE  6  Setting up a function of two variables

An open rectangular fish tank is to hold 0.25 m3 of water when completely full. 
Express the total surface area of glass required to make the tank as a function of the 
length and width of the tank.

An “open” tank is one that has no top. Therefore, the surface area S of the tank is

S = lw + 2lh + 2hw

where l is the length, w the width, and h the height of the tank (see Fig. 29.2). However, 
this equation contains three independent variables. Using the condition that the volume 
of water is 0.25 m3, we have lwh = 0.25. Since we wish to have only l and w, we solve 
this equation for h and find that h = 0.25>lw. Substituting for h in the equation for the 
surface area, we have

 S = lw + 2l a0.25
lw

b + 2 a0.25
lw

bw

 = lw + 0.50
w

+ 0.50
l

 the required function ■

Fig. 29.2 

V = 0.25 m3

l

w

h = 0.25
lw

EXERCISES 29.1

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the resulting problems.

 1. In Example 2, change f1 -1, 22  to f1 -2, 12 .

 2. In Example 4, change f1x, 2x2  -  f1x, x22  to f12x, x2  -  f1x2, x2 .

In Exercises 3–8, determine the indicated function.

 3. Express the volume V of a right circular cylinder as a function of 
the radius r and height h.

 4. Express the length of a diagonal of a rectangle as a function of the 
length and the width.

 5. A cylindrical can is to be made to contain a volume V. Express 
the total surface area (including the top) of the can as a function 
of V and the radius of the can.

 6. The angle between two forces F1 and F2 is 30.0°. Express the 
magnitude of the resultant R in terms of F1 and F2. See Fig. 29.3.

 7. A right circular cylinder is to be inscribed in a sphere of radius r. 
Express the volume of the cylinder as a function of the height h of 
the cylinder and r. See Fig. 29.4.

Fig. 29.3 30º

F2

R

F1

Fig. 29.4 

r 

h 

 8. An office-furniture-leasing firm charges a monthly fee F based 
on the length of time a corporation has used the service, plus $100 
for each week the furniture is leased. Express the total monthly 
charge T  as a function of F and the number of weeks w the furni-
ture is leased.
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In Exercises 9–24, evaluate the given functions.

 9. f1x, y2 = 2x - 6y; find f10, -42 .

 10. F1x, y2 = x2 - 5y + y2; find F12, -22 .

 11. g1r, s2 = r - 2rs - r2s; find g1 -2, 12 .

 12. f1r, u2 = 2r1r tan u - sin 2u2 ; find f13, p>42 .

 13. Y1y, t2 =
2 - 3y

t - 1
+ 2y2t; find Y1y, 22 .

 14. f1r, t2 = r3 - 3r2t + 3rt2 - t3; find f13, t2 .

 15. X1x, t2 = -6xt + xt2 - t3; find X1x, - t2 .

 16. g1y, z2 = 2yz2 - 6y2z - y2z2; find g1y, 2y2 .

 17. H1p, q2 = p -
p - 2q2 - 5q

p + q
; find H1p, q + k2 .

 18. g1x, z2 = z tan-1 1x2 + xz2 ; find g1 -x, z2 .

 19. f1x, y2 = x2 - 2xy - 4x; find f1x + h, y + k2 - f1x, y2 .

 20. g1y, z2 = 4yz - z3 + 4y; find g1y + 1, z + 22 - g1y, z2 .

 21. f1x, y2 = xy + x2 - y2; find f1x, x2 - f1x, 02 .

 22. f1x, y2 = 4x2 - xy - 2y; find f1x, x22 - f1x, 12 .

 23. g1y, z2 = 3y3 - y2z + 5z2; find g13z2, z2 - g1z, z2 .

 24. X1x, t2 = 2x - t2 - 2x2

x
; find X12t, t2 - X12t2, t2 .

In Exercises 25–28, determine which values of x and y, if any, are not 
permissible. In Exercise 27, explain your answer.

 25. f1x, y2 =
1y

2x
 26. f1x, y2 =

x2 - 4y2

x2 + 9

 27. f1x, y2 = 2x2 + y2 - x2y - y3

 28. f1x, y2 =
1

xy - y

In Exercises 29–40, solve the given problems. When necessary, round 
answers to 3 significant digits.

 29. The voltage V across a resistor R in an electric circuit is given by 
V = iR, where i is the current. What is the voltage if the current 
is 3 A and the resistance is 6 Ω?

 30. The centripetal acceleration a of an object moving in a circular 
path is a = v2>R, where v is the velocity of the object and R is 
the radius of the circle. What is the centripetal acceleration of an 
object moving at 6 m>s in a circular path of radius 4 m?

 31. The pressure p (in Pa) of a gas as a function of its volume V and 
temperature T  is p = nRT>V. If n = 3.00 mol and 
R = 8.31 J>mol # K, find p for T = 300 K and V = 50.0 m3.

 32. The power P (in W) supplied to a resistance R in an electric cir-
cuit by a current i is P = i2R. Find the power supplied by a cur-
rent of 4.0 A to a resistance of 2.4 Ω.

 33. The atmospheric temperature T  near ground level in a certain 
region is T = ax2 + by2, where a and b are constants. What type 
of curve is each isotherm (along which the temperature is con-
stant) in this region?

 34. The pressure p exerted by a force F on an area A is p = F>A. If a 
given force is doubled on an area that is 2>3 of a given area, what 
is the ratio of the initial pressure to the final pressure?

  35. The current i (in A) in a certain electric circuit is a function of the 
time t (in s) and a variable resistor R (in Ω), given by 

  i =
6.0 sin 0.01t

R + 0.12
. Find i for t = 0.75 s and R = 1.50 Ω.

 36. The reciprocal of the image distance q from a lens as a function of 
the object distance p and the focal length f  of the lens is 

  
1
q

=
1
f

- 1
p

.

  Find the image distance of an object 20 cm from a lens whose 
focal length is 5 cm.

 37. A rectangular solar cell panel has a perimeter p and a width w. 
Express the area A of the panel in terms of p and w and evaluate 
the area for p = 250 cm and w = 55 cm. See Fig. 29.5.

 38. A gasoline storage tank is in the shape of a right circular cylinder 
with a hemisphere at each end, as shown in Fig. 29.6. Express the 
volume V of the tank in terms of r and h and then evaluate the 
volume for r = 1.25 m and h = 4.17 m.

 39. The crushing load L of a pillar varies as the fourth power of its 
radius r and inversely as the square of its length l. Express L as a 
function of r and l for a pillar 6.0 m tall and 1.0 m in diameter that 
is crushed by a load of 20 Mg.

 40. The resonant frequency f  (in Hz) of an electric circuit containing 
an inductance L and capacitance C is inversely proportional to the 
square root of the product of the inductance and the capacitance. 
If the resonant frequency of a circuit containing a 4-H inductor 
and a 64@mF capacitor is 10 Hz, express f  as a function of  
L and C.

Answer to Practice Exercise

1. f11, 42 - f1x, 2x2 = 52 - 10x3

Fig. 29.5 

p ! perimeter

A ! area
w

Fig. 29.6 

h

w
r
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We will now undertake a brief description of the graphical representation of a func-
tion of two variables. We shall show first a method of representation in the rectan-
gular coordinate system in two dimensions. The following example illustrates the 
method.

 EXAMPLE  1  Representing f 1x, y 2  in two dimensions

In order to represent z = 2x2 + y2, we will assume various values of z and sketch the 
curve of the resulting equation in the xy-plane. For example, if z = 2 we have

2x2 + y2 = 2

We recognize this as an ellipse with its major axis along the y-axis and vertices at 10, 122  and 10, - 122 . The ends of the minor axis are at 11, 02  and 1 -1, 02 . 
However, the ellipse 2x2 + y2 = 2 represents the function z = 2x2 + y2 only for the 
value of z = 2. If z = 4, we have 2x2 + y2 = 4, which is another ellipse. In fact, for 
all positive values of z, an ellipse is the resulting curve. Negative values of z are not 
possible since neither x2 nor y2 may be negative. Fig. 29.7 shows the ellipses that are 
obtained by using the indicated values of z. ■

The method of representation illustrated in Example 1 is useful if only a few specific 
values of z are to be used, or at least if the various curves do not intersect in such a way 
that they cannot be distinguished. If a general representation of z as a function of x and 
y is desired, it is necessary to use three coordinate axes, one each for x, y, and z. The 
most widely applicable system of this kind is to place a third coordinate axis at right 
angles to each of the x- and y-axes. In this way, we employ three dimensions for the 
representation.

The three mutually perpendicular coordinate axes—the x-axis, the y-axis, and the 
z-axis—are the basis of the rectangular coordinate system in three dimensions. 
Together they form three mutually perpendicular planes in space: the xy-plane, the 
yz-plane, and the xz-plane. To every point in space of the coordinate system is associ-
ated the set of numbers 1x, y, z2 . The point at which the axes meet is the origin. The 
positive directions of the axes are indicated in Fig. 29.8. That part of space in which all 
values of the coordinates are positive is called the first octant. Numbers are not 
assigned to the other octants.

 EXAMPLE  2  Representing 1x, y, z 2  in rectangular coordinates

Represent the point 12, 4, 32  in rectangular coordinates.
We first note that when representing a point in three dimensions, a certain dis-

tortion is necessary to represent values of x reasonably, since the x-axis “comes 
out” of the plane of the page. Units that are 12>2 1 ≃  0.72  as long as those used 
on the other axes give a good representation. With this in mind, we draw a line 
4 units long from the point 12, 0, 02  on the x-axis in the xy-plane, parallel to the 
y-axis. This locates the point 12, 4, 02 . From this point, a line 3 units long is drawn 
vertically upward, and this locates the point 12, 4, 32 . See the points and dashed 
lines in Fig. 29.9.

This point 12, 4, 32  may also be located by starting from 10, 4, 02  on the y-axis, 
then proceeding 2 units parallel to the x-axis to 12, 4, 02 , and then proceeding vertically 
3 units upward to 12, 4, 32 .

In may also be located by starting from the point 10, 0, 32  on the z-axis, although it 
is generally preferred to start on the x-axis, or possibly the y-axis. ■

We now show certain basic techniques by which three-dimensional figures may be 
drawn. We start by showing the general equation of a plane.

 29.2 Curves and Surfaces in Three Dimensions

Cylindrical Coordinates
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In Chapter 21, we showed that the graph of the equation Ax + By + C = 0 in two 
dimensions is a straight line. By the following example, we will verify that the graph of 
the equation

Ax + By + Cz + D = 0  (29.1)

is a plane in three dimensions.

 EXAMPLE  3  Illustrating the graph of a plane

Show that the graph of the linear equation 2x + 3y + z - 6 = 0 in the rectangular 
coordinate system of three dimensions is a plane.

If we let any of the three variables take on a specific value, we obtain a linear equa-
tion in the other two variables. For example, the point 11

2, 1, 22  satisfies the equation 
and therefore lies on the graph of the equation. For x = 1

2, we have

3y + z - 5 = 0

which is the equation of a straight line. This means that all pairs of values of y and z 
that satisfy this equation, along with x = 1

2, satisfy the given equation. Thus, for x = 1
2, 

the straight line 3y + z - 5 = 0 lies on the graph of the equation.
For z = 2, we have

2x + 3y - 4 = 0

which is also a straight line. By similar reasoning, this line lies on the graph of the 
equation. Since two lines through a point define a plane, these lines through 11

2, 1, 22  
define a plane. This plane is the graph of the equation (see Fig. 29.10).

For any point on the graph of this equation, there is a straight line on the graph that 
is parallel to one of the coordinate planes. Therefore, there are intersecting straight 
lines through the point. Thus, the graph is a plane. A similar analysis can be made for 
any equation of the same linear form. ■

 EXAMPLE  4  Sketching the graph of a plane

Sketch the graph of 3x - y + 2z - 4 = 0.
As in the case of two-dimensional graphs, the intercepts of a graph in three dimen-

sions are those points where it crosses the respective axes. Therefore, by letting two of 
the variables at a time equal zero, we obtain the intercepts. For the graph of the given 
equation, the intercepts are 14

3, 0, 02 , 10, -4, 02 , and 10, 0, 22 . These points are 
located (see Fig. 29.11), and lines drawn between them to represent the plane. ■

The intersection of two surfaces is a curve in space. This has been seen in Examples 
3 and 4, since the intersections of the given planes and the coordinate planes are lines 
(which in the general sense are curves). We define the traces of a surface to be the 
curves of intersection of the surface and the coordinate planes. The traces of a plane 
are those lines drawn between the intercepts to represent the plane. Many surfaces may 
be sketched by finding their traces and intercepts.

 EXAMPLE  5  Using intercepts and traces to sketch a graph

Find the intercepts and traces for the graph of the equation z = 4 - x2 - y2 and then 
sketch the graph.

The intercepts of the graph of the equation are 12, 0, 02 , 1 -2, 0, 02 , 10, 2, 02 , 10, -2, 02 , and 10, 0, 42 .
Since the traces of a surface lie within the coordinate planes, for each trace one 

of the variables is zero. Thus, by letting each variable in turn be zero, we find the 
trace of the surface in the plane of the other two variables. Therefore, the traces 
of this surface are

Equation of a Plane

Fig. 29.10 
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Since we know that the graph of an 
equation of the form of Eq. (29.1) is  
a plane, its graph can be found by 
determining its three intercepts, and 
the plane can then be represented by 
drawing in the lines between these 
intercepts. If the plane passes through 
the origin, by letting two of the variables 
in turn be zero, two straight lines that 
define the plane are found.

LEARNING T IP

y

x

z

2

1

2
1

!4 !3 !2 !1

0

Fig. 29.11 

The graphs of planes and of functions 
with two independent variables are 
examples of surfaces in space. More 
generally, the graph of an equation 
relating three variables is also a surface.
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in the yz@plane:  z = 4 - y2  (a parabola)

in the xz@plane:  z = 4 - x2  (a parabola)

in the xy@plane:  x2 + y2 = 4 (a circle)

Using the intercepts and sketching the traces, we obtain the surface represented by the 
equation as shown in Fig. 29.12. This figure is called a circular paraboloid. ■

There are numerous techniques for analysing the equation of a surface in order to 
obtain its graph. Another that we shall discuss here, which is closely associated with a 
trace, is that of a section. By assuming a specific value of one of the variables, we 
obtain an equation in two variables, the graph of which lies in a plane parallel to the 
coordinate plane of the two variables. The following examples illustrate sketching a 
surface by use of intercepts, traces, and sections.

 EXAMPLE  6  Using traces and sections to sketch a graph

Sketch the graph of 4x2 + y2 - z2 = 4.
The intercepts are 11, 0, 02 , 1 -1, 0, 02 , 10, 2, 02 , and 10, -2, 02 . We note that 

there are no intercepts on the z-axis, for this would necessitate z2 = -4.
The traces are

in the yz@plane:  y2 - z2 = 4  (a hyperbola)

in the xz@plane:  4x2 - z2 = 4  (a hyperbola)

in the xy@plane:  4x2 + y2 = 4 (an ellipse)

The surface is reasonably defined by these curves, but by assuming suitable values 
of z, we may indicate its shape better. For example, if z = 3, we have 4x2 + y2 = 13, 
which is an ellipse. In using it, we must remember that it is valid for z = 3 and there-
fore should be drawn 3 units above the xy-plane. If z = -2, we have 4x2 + y2 = 8, 
which is also an ellipse. Thus, we have the following sections:

for z = 3:   4x2 + y2 = 13  (an ellipse)

for z = -2:  4x2 + y2 = 8   (an ellipse)

Other sections could be found, but these are sufficient to obtain a good sketch of the 
graph (see Fig. 29.13). The figure is called an elliptic hyperboloid. ■

 EXAMPLE  7  Sketching a graph—application

Sketch the graph of z = y2 - x2 (a hyperbolic paraboloid). 
There is only one intercept at the origin. The traces are

in the yz@plane:   z = y2   (a parabola opening upward)

in the xz@plane:   z = -x2  (a parabola opening downward)

in the xy@plane:   y = {x  (two intersecting lines)

Sections in the yz-plane are all parabolas opening upward, and sections in the 
xz-plane are all parabolas opening downward. Finally, sections in the hori-
zontal xy-plane are hyperbolas of the form y2 - x2 = k. For example, if 
z = -1, we have the hyperbola x2 - y2 = 1.

This surface is not easy to draw, but using the information above, we obtain 
a sketch of the surface, as shown in Fig. 29.14. Note that the origin looks like a 

minimum from one direction but like a maximum from another. This behaviour at the 
origin is what gives this surface its characteristic saddle shape.

The shape of a hyperbolic paraboloid has intrinsic structural strength that is often exploited 
in the building of large roofs. For example, the cable net roof of the Saddledome arena in 
Calgary, Alberta, is a hyperbolic paraboloid that can be approximated by the equation

z =
1

327
 y2 - 1

763
 x2
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Practice Exercise

1.  What is the trace of x2 + 4y2 - 4z2 = 4  
in the (a) xy-plane? (b) xz-plane?
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(placing the origin at the centre of the roof, with all measurements in metres). Other 
structures with saddle-shaped cable net roofs include the Stadium of Peace and 
Friendship in Athens, Greece, and the velodrome in London, England (host of the 
London 2012 track cycling events). ■

Having developed the rectangular coordinate system in three dimensions, we can 
compare the graph of a function using two dimensions and three dimensions. The next 
example shows the surface for the function of Example 1.

 EXAMPLE  8  Comparing a 2D graph and a 3D graph

Sketch the graph of z = 2x2 + y2.
The only intercept is 10, 0, 02 . The traces are

in the yz@plane:  z = y2 (a parabola)

in the xz@plane:  z = 2x2 (a parabola)

in the xy@plane:  the origin

The trace in the xy-plane is only the point of origin, since 2x2 + y2 = 0 may be written 
as y2 = -2x2, which is true only for x = 0 and y = 0.

To get a better graph, we should use some positive values for z. As we noted in 
Example 1, negative values of z cannot be used. Since we used z = 2, z = 4, z = 6, 
and z = 8 in Example 1, we shall use these values here. Therefore,

for z = 2:  2x2 + y2 = 2  for z = 4:  2x2 + y2 = 4

for z = 6:  2x2 + y2 = 6  for z = 8:  2x2 + y2 = 8

Each of these sections is an ellipse. The surface, called an elliptic paraboloid, is 
shown in Fig. 29.15. Compare with Fig. 29.7. ■

Example 8 illustrates how topographic maps may be drawn. These maps represent 
three-dimensional terrain in two dimensions. For example, if Fig. 29.15 represents an exca-
vation in the surface of the earth, then Fig. 29.7 represents the curves of constant elevation, 
or contours, with equally spaced elevations measured from the bottom of the excavation.

An equation with only two variables may represent a surface in space. Since only 
two variables are included in the equation, the surface is independent of the other variable. 
Another interpretation is that all sections, for all values of the variable not included, are 
the same. That is, all sections parallel to the coordinate plane of the included variables 
are the same as the trace in that plane.

 EXAMPLE  9  Comparing a linear equation in 2D and 3D

Sketch the graph of x + y = 2 in the rectangular coordinate system in three dimen-
sions and in two dimensions.

Since z does not appear in the equation, we can consider the equation to be 
x + y + 0z = 2. Therefore, we see that for any value of z, the section is the straight 
line x + y = 2. Thus, the graph is a vertical plane as shown in Fig. 29.16(a). The graph 
as a straight line in two dimensions is shown in Fig. 29.16(b).

Fig. 29.15 
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 EXAMPLE  10  Sketching a cylindrical surface

The graph of the equation z = 4 - x2 in three dimensions is a surface whose sec-
tions, for all values of y, are given by the parabola z = 4 - x2. The surface is shown 
in Fig. 29.17. ■

The surface in Example 10 is known as a cylindrical surface. In general, a cylindrical 
surface is one that can be generated by a line moving parallel to a fixed line while passing 
through a plane curve.

It must be realized that most of the figures shown extend beyond the ranges indi-
cated by the traces and sections. However, these traces and sections are convenient for 
representing and visualizing these surfaces.

There are various computer programs, and some graphing calculators, that can be 
used to display three-dimensional surfaces. They generally use sections in planes that 
are perpendicular to both the x- and y-axes. Such computer-drawn surfaces are of great 
value for visualizing all types of surfaces, especially those of a complex nature. Fig. 29.18 
shows the graph of

z =
sin12x2 + y22

x2 + 1

drawn by a computer program.

Another set of coordinates that can be used to display a three-dimensional figure are 
cylindrical coordinates, which are polar coordinates combined with the z-axis. In 
using cylindrical coordinates, every point in space is designated by the coordinates 1r, u, z2 , as shown in Fig. 29.19. The equations relating the rectangular coordinates 1x, y, z2  and the cylindrical coordinates 1r, u, z2  of a point are

x = r cos u  y = r sin u  z = z

r2 = x2 + y2  tan u =
y
x

 
(29.2)

The following examples illustrate the use of cylindrical coordinates.

 EXAMPLE  11  Plotting points in cylindrical coordinates

(a) Plot the point with cylindrical coordinates 14, 2p>3, 22  and find the corresponding 
rectangular coordinates.

    This point is shown in Fig. 29.20. From Eq. (29.2), we have

x = 4 cos 
2p
3

= 4 a- 1
2
b = -2  y = 4 sin 

2p
3

= 4 a13
2

b = 213  z = 2

  Therefore, the rectangular coordinates of the point are 1 -2, 213, 22 .

(b) Find the cylindrical coordinates of the point with rectangular coordinates 12, -2, 62 .

    Using Eq. (29.2), we have

r = 222 + 1 -222 = 212  z = 6

tan u =
-2
2

= -1 (quadrant IV)  u = 2p - p

4
=

7p
4

  The cylindrical coordinates are 1212, 7p>4, 62 . As with polar coordinates, the 
value of u can be 7p>4 + 2np, where n is an integer. ■
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 EXAMPLE  12  Sketching a surface in cylindrical coordinates

Find the equation for the surface z = 4x2 + 4y2 in cylindrical coordinates and sketch 
the surface.

Factoring the 4 from the terms on the right, we have z = 41x2 + y22 . We can now 
use the fact that x2 + y2 = r2 to write this equation in cylindrical coordinates (r, u, z) 
as z = 4r2. From this equation, we see that z Ú 0 and that as r increases, we have 
circular sections (parallel to the xy-plane) of increasing radius. Therefore, we see that 
it is a circular paraboloid. See Fig. 29.21. ■

Fig. 29.21 
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If the centre of the trace of a circular 
cylinder in the xy-plane is at the origin, 
the equation of the cylinder in cylindrical 
coordinates is simply r = a. This is why 
these coordinates are called “cylindrical” 
coordinates.
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 EXAMPLE  13  Sketching a surface in cylindrical coordinates

Find the equation for the surface r = 4 cos u in rectangular coordinates and sketch the 
surface.

If we multiply each side of the equation by r, we obtain r2 = 4r cos u. Now, from 
Eq. (29.2), we have r2 = x2 + y2 and r cos u = x, which means that x2 + y2 = 4x, or

 x2 - 4x + 4 + y2 = 4

 1x - 222 + y2 = 4

We recognize this as a cylinder that has as its trace in the xy-plane a circle with centre 
at 12, 0, 02 , as shown in Fig. 29.22. ■

EXERCISES 29.2

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the resulting problems.

  1. In Example 4, change the -4 to +6.

 2. In Example 6, change the -  sign before z2 to + .

In Exercises 3 and 4, use the method of Example 1 and show the 
graphs of the given equations for the given values of z.

 3. z = x2 + y2, z = 1, z = 4, z = 9

 4. z = y - x2, z = 0, z = 2, z = 4

In Exercises 5–24, sketch the graphs of the given equations in the 
rectangular coordinate system in three dimensions.

 5. x + y + 2z - 4 = 0 6. 2x - y - z + 6 = 0

 7. 4x - 2y + z - 8 = 0 8. 3x + 3y - 2z - 6 = 0

 9. z = y - 2x - 2 10. z = x - 4y

 11. x + 2y = 4 12. 2x - 3z = 6

 13. x2 + y2 + z2 = 4 14. 2x2 + 2y2 + z2 = 8

 15. z = 4 - 4x2 - y2 16. z = x2 + y2

 17. z = 2x2 + y2 + 2 18. x2 + y2 - 4z2 = 4

 19. x2 - y2 - z2 = 9 20. z2 = 9x2 + 4y2

 21. x2 + y2 = 16 22. 4z = x2

 23. y2 + 9z2 = 9 24. xy = 2

In Exercises 25–30, perform the indicated operations involving 
cylindrical coordinates.

 25. Find the rectangular coordinates of the points whose cylindrical 
coordinates are (a) 13, p>4, 52 , (b) 12, p>2, 32 , (c) 14, p>3, 22 .

 26. Find the cylindrical coordinates of the points whose rectangular 
coordinates are (a) 13, 4, 52 , (b) 18, 15, -62 , (c) 113, -2, 12 .

 27. Describe the surface for which the cylindrical coordinate equation 
is (a) r = 2, (b) u = 2, (c) z = 2.

 28. Write the equation x2 + y2 + 4z2 = 4 in cylindrical coordinates 
and sketch the surface.

 29. Write the equation r2 = 4z in rectangular coordinates and sketch 
the surface.

 30. Write the equation r = 2 sin u in rectangular coordinates and 
sketch the surface.
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In Exercises 31–37, sketch the indicated curves and surfaces.

 31. Curves that represent a constant temperature are called isotherms. 
The temperature at a point 1x, y2  of a flat plate is t (°C), where 
t = 4x - y2. In two dimensions, draw the isotherms for 
t = -4, 0, 8.

 32. At a point 1x, y2  in the xy-plane, the electric potential V (in volts) 
is given by V = y2 - x2. Draw the lines of equal potential for 
V = -9, 0, 9.

 33. An electric charge is so distributed that the electric potential at all 
points on an imaginary surface is the same. Such a surface is 
called an equipotential surface. Sketch the graph of the equipo-
tential surface whose equation is 2x2 + 2y2 + 3z2 = 6.

 34. The surface of a small hill can be roughly approximated by the 
equation z12x2 + y2 + 1002 = 1500, where the units are 
metres. Draw the surface of the hill and the contours for z = 3 m, 
z = 6 m, z = 9 m, z = 12 m, and z = 15 m.

 35. The pressure p (in kPa), volume V (in m3), and temperature T  (in 
K) for a certain gas are related by the equation p = T>2V. Sketch 
the p-V-T surface by using the z-axis for p, the x-axis for V, and 
the y-axis for T . Use units of 100 K for T  and 10 m for V. 
Sections must be used for this surface, a thermodynamic surface, 
since none of the variables may equal zero.

 36. Sketch the line in space defined by the intersection of the planes 
x + 2y + 3z - 6 = 0 and 2x + y + z - 4 = 0.

 37. Sketch the graph of x2 + y2 - 2y = 0 in three dimensions and 
in two dimensions.

Answer to Practice Exercise

1. (a) x2 + 4y2 = 4 (ellipse) (b) x2 - 4z2 = 4 (hyperbola)

In Chapter 23, when showing the derivative to be the instantaneous rate of change of 
one variable with respect to another, only one independent variable was present. To 
extend the derivative to functions of two (or more) variables, we find the derivative of 
the function with respect to one variable, while holding the other variable(s) constant.

If z = f1x, y2  and y is held constant, z becomes a function of only x. The derivative 
of f1x, y2  with respect to x is termed the partial derivative of z with respect to x. 
Similarly, if x is held constant, the derivative of f1x, y2  with respect to y is the partial 
derivative of z with respect to y. The notations for the partial derivative of z = f1x, y2  
with respect to x include

0z
0x
  

0f
0x
  fx  

0
0x

 f1x, y2  fx 1x, y2
Similarly, 0z>0y denotes the partial derivative of z with respect to y. In speaking, this is 
often shortened to “the partial of z with respect to y.”

 EXAMPLE  1  Finding partial derivatives

If z = 4x2 + xy - y2, find 0z>0x and 0z>0y.
Finding the partial derivatives of z, we have

 z = 4x2 + xy - y2

 
0z
0x

= 8x + y   treat y as a constant

 
0z
0y

= x - 2y   treat x as a constant ■

 EXAMPLE  2  Finding partial derivatives

If z =
x ln y

x2 + 1
, find 0z>0x and 0z>0y.

 
0z
0x

=
1x2 + 12 1  ln y2 - 1x  ln y2 12x21x2 + 122 =

11 - x22  ln y11 + x222

 
0z
0y

= a x

x2 + 1
b a1

y
b =

x

y1x2 + 12

 29.3 Partial Derivatives

■ The symbol 0 was introduced by the German 
mathematician Carl Jacobi (1804–1851).

Practice Exercise

1.  If z = 4x2 + x sin y, find 0z>0x and  
0z>0y.
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We note that in finding 0z>0x, it is necessary to use the quotient rule, since x appears in 
both numerator and denominator. However, when finding 0z>0y, the only derivative 
needed is that of ln y. ■

 EXAMPLE  3  Evaluating a partial derivative

For the function f1x, y2 = x2y22 + xy2, find fy 12, 12 .
The notation fy12, 12  means the partial derivative of f  with respect to y, evaluated 

for x = 2 and y = 1. Thus, first finding fy1x, y2 , we have

 f1x, y2 = x2y12 + xy221>2
 fy1x, y2 = x2ya1

2
b 12 + xy22-1>2 12xy2 + 12 + xy221>21x22

 =
x3y212 + xy221>2 + x2 12 + xy221>2

 =
x3y2 + x212 + xy2212 + xy221>2 =

2x2 + 2x3y212 + xy221>2
 fy 12, 12 =

2142 + 2182 11212 + 221>2 = 12  ■

To determine the geometric interpretation of a partial derivative, assume that 
z = f1x, y2  is the surface shown in Fig. 29.23. Choosing a point P on the surface, we 
then draw a plane through P parallel to the xz-plane. On this plane through P, the value 
of y is constant. The intersection of this plane and the surface is the curve as indicated. 
The partial derivative of z with respect to x represents the slope of a line tangent to this 
curve. When the values of the coordinates of point P are substituted into the expression 
for this partial derivative, it gives the slope of the tangent line at that point. In the same 
way, the partial derivative of z with respect to y, evaluated at P, gives the slope of the 
line tangent to the curve that is found from the intersection of the surface and the plane 
parallel to the yz-plane through P.

 EXAMPLE  4  Slopes of lines tangent to a surface

Find the slope of a line tangent to the surface 2z = x2 + 2y2 and parallel to the xz-
plane at the point 12, 1, 32 . Also, find the slope of the line tangent to this surface and 
parallel to the yz-plane at the same point.

Finding the partial derivative with respect to x, we have

2  
0z
0x

 = 2x or 
0z
0x

= x

This derivative, evaluated at the point (2, 1, 3), will give us the slope of the line tan-
gent that is also parallel to the xz-plane. Therefore, the first required slope is

0z
0x

2 12, 1, 32 = 2

The partial derivative of z with respect to y, evaluated at 12, 1, 32 , will give us the 
second required slope. Thus,

0z
0y

= 2y,  
0z
0y

2 12, 1, 32 = 2

Therefore, both slopes are 2. See Fig. 29.24. ■

Applications of partial derivatives are found in many fields of technology. We show 
here an application from electricity, and others are found in the exercises.

Fig. 29.23 

y
P

O

x

z

∂z
∂x P

Slope =

∂z
∂y P

Slope =

Fig. 29.24 

y

x

z

4

1

210

(2, 1, 3)

3
2

1

∂z
∂y (2, 1, 3)

= 2

∂z
∂x (2, 1, 3)

= 2

The general interpretation of the 
partial derivative follows that of a 
derivative of a function with one 
independent variable. The partial 
derivative fx 1x0, y02  is the instantane-
ous rate of change of the function f1x, y2  
with respect to x, with y held constant at 
the value of y0. This holds regardless of 
what the variables represent.

LEARNING T IP
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 EXAMPLE  5  Partial derivative—application

An electric circuit in a microwave transmitter has parallel resistances r and R. The current 
through r can be found from

i =
IR

r + R

where I is the total current for the two branches. Assuming that I is constant at 85.4 mA, 
find 0i>0r and evaluate it for R = 0.150 Ω and r = 0.032 Ω.

Substituting for I and finding the partial derivative, we have the following:

 i =
85.4R
r + R

= 85.4R1r + R2-1

 
0i
0r

= 1 -12 185.4R2 1r + R2-2 112 =
-85.4R1r + R22

 
0i
0r

2
R =0.150
r =0.032 =

-85.410.150210.032 + 0.15022 = -387 mA>Ω

This result tells us that the current is decreasing at the rate of 387 mA per ohm of 
change in the smaller resistor at the instant when r = 0.032 Ω, for a fixed value of 
R = 0.150 Ω. ■

Since the partial derivatives 0f>0x and 0f>0y are functions of x and y, we can take 
partial derivatives of each of them. This gives rise to partial derivatives of higher 
order, in a manner similar to the higher derivatives of a function of one independent 
variable. The possible second-order partial derivatives of a function f1x, y2  are

 
02f

0x2 =
0
0x

 a 0f
0x
b    

02f

0y2 =
0
0y

 a 0f
0y
b

 
02f

0x0y
=

0
0x

 a 0f
0y
b   

02f
0y0x

=
0
0y

 a 0f
0x
b

 EXAMPLE  6  Second-order partial derivatives

Find the second-order partial derivatives of z = x3y2 - 3xy3.
First, we find 0z>0x and 0z>0y:

0z
0x

= 3x2y2 - 3y3 or 
0z
0y

= 2x3y - 9xy2

Therefore, we have the following second-order partial derivatives:

 
02z

0x2 =
0
0x

 a 0z
0x
b = 6xy2  

02z

0y2 =
0
0y

 a 0z
0y
b = 2x3 - 18xy

 
02z

0x 0y
=

0
0x

 a 0z
0y
b = 6x2y - 9y2  

02z
0y 0x

=
0
0y

 a 0z
0x
b = 6x2y - 9y2  ■

In Example 6, we note that

02z
0x 0y

=
02z

0y 0x
 (29.3)

In general, this is true if the function and partial derivatives are continuous.

Practice Exercise

2. If z = 2x2y - 5x2y4, find 
02z

0x 0y
.
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 EXAMPLE  7  Equality of second-order partial derivatives

For f1x, y2 = tan-1 
y

x2, show that 
02f

0x 0y
=

02f
0y 0x

.

Finding 0f>0x and 0f>0y, we have

 
0f
0x

=
1

1 + a y

x2 b2 a -2y

x3 b =
x4

x4 + y2 a-
2y

x3 b =
-2xy

x4 + y2

 
0f
0y

=
1

1 + a y

x2 b2 a 1

x2 b =
x4

x4 + y2 a 1

x2 b =
x2

x4 + y2

Now, finding 02f>0x0y and 02f>0y 0x, we have

 
02f

0x 0y
=

1x4 + y22 12x2 - x2 14x321x4 + y222 =
-2x5 + 2xy21x4 + y222

 
02f

0y 0x
=

1x4 + y22 1 -2x2 - 1 -2xy2 12y21x4 + y222 =
-2x5 + 2xy21x4 + y222

We see that they are equal. ■

EXERCISES 29.3

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the resulting problems.

 1. In Example 2, change x2 to y2.

 2. In Example 4, change the equation to 2z = 2x2 + y2 and the 
point 12, 1, 32  to 11, 2, 32 .

In Exercises 3–24, find the partial derivative of the dependent variable 
or function with respect to each of the independent variables.

 3. z = 5x + 4x2y 4. z = 3x2y3 - 3x + 4y

 5. f1x, y2 = xe2y 6. z = 3y cos 2x

 7. f1x, y2 =
2 + cos x
1 - sec 3y

 8. f1x, y2 =
tan-1 y

2 + x2

 9. f = r11 + 2rs 10. w = uv211 - u

 11. z = 1x2 + xy324 12. f1x, y2 = 12xy - x225

 13. z = sin xy 14. y = tan-1ax
t
b

 15. y = ln 1r2 + s2  16. u = ex+2y

 17. f1x, y2 =
2 sin3 2x
1 - 3y

 18. f1x, y2 =
3x + ln y

x2 + y2

 19. z =
sin-1 xy

3 + x2  20. z =
11 - tan xy

xy + y2

 21. z = sin x + cos xy - cos y

 22. t = 2rers2
- tan 12r + s2

 23. f1x, y2 = ex cos xy + e-2x tan y

 24. u = ln 
y2

x - y
+ e-x 1sin y - cos 2y2

In Exercises 25–28, evaluate the indicated partial derivatives at the 
given points.

 25. z = 3xy - x2, 
0z
0x

2 11, -2, -72 26. z = x2 cos 4y, 
0z
0y

2 12, 
p
2 , 42

 27. z = x 2x2 - y2, 
0z
0x

2 15, 3, 202 28. z = ey ln xy, 
0z
0y

2 1e, 1, e2
In Exercises 29–32, find all second partial derivatives.

 29. z = 2xy3 - 3x2y 30. F1x, y2 = y ln 1x + 2y2
 31. z =

x
y

+ ex sin y 32. f1x, y2 =
2 + cos y

1 + x2

In Exercises 33–45, solve the given problems.

 33. Find the slope of a line tangent to the surface z = 9 - x2 - y2 
and parallel to the yz-plane that passes through 11, 2, 42 . Repeat 
the instructions for the line through 12, 2, 12 . Draw an appropri-
ate figure.

 34. A metal plate in the shape of a circular segment of radius r expands 
by being heated. Express the width w (straight dimension) as a 
function of r and the height h. Then find both 0w>0r and 0w>0h.

 35. Two resistors R1 and R2, placed in parallel, have a combined 

resistance RT given by 
1

RT
=

1
R1

+ 1
R2

. Find 
0RT

0R1
.
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 36. Find 0z>0y for the function z = 4x2 - 8. Explain your result. 
Draw an appropriate figure.

 37. A metallic machine part contracts while cooling. It is in the shape 
of a hemisphere attached to a cylinder, as shown in Fig. 29.25. 
Find the rate of change of volume with respect to r when 
r = 2.65 cm and h = 4.20 cm.

 38. Two masses M and m are attached as shown in Fig. 29.26. If 
  M 7 m, the downward acceleration a of mass M is given by 

  a =
M - m
M + m

 g, where g is the acceleration due to gravity. Show 

  that M 
0a
0M

 + m 
0a
0m

 = 0.

 39. In quality testing, a rectangular sheet of vinyl is stretched. Set up 
the length of the diagonal d of the sheet as a function of the sides 
x and y. Find the rate of change of d with respect to x for 
x = 2.20 m if y remains constant at 1.55 m.

 40. If an observer and a source of sound are moving toward or 
away from each other, the observed frequency of sound is differ-
ent from that emitted. This is known as the Doppler effect. 
The equation relating the frequency fo the observer hears  
and the frequency fs emitted by the source (a constant) is 

  fo = fsav + vo

v - vs
b , where v is the velocity of sound in air (a 

Fig. 29.25 

h

r

r

mM

Fig. 29.26 

  constant), vo is the velocity of the observer, and vs is the veloc-

ity of the source. Show that fs  
0fo
0vs

= fo 
0fo
0vo

. Explain the meaning 

of 0fo>0vs.

 41. The mutual conductance (in 1>Ω) of a certain electronic device is 
defined as gm = 0ib>0Vc. Under certain circumstances, the current 
ib (in mA) is given by ib = 501Vb + 5Vc21.5. Find gm when 
Vb = 200 V and Vc = -20 V.

 42. The amplification factor of the electronic device of Exercise 41 is 
defined as m = -0Vb>0Vc. For the device of Exercise 41, under 
the given conditions, find the amplification factor.

 43. The temperature u in a metal bar depends on the distance x from 
one end and the time t. Show that u1x, t2 = 5e-tsin 4x satisfies 

  the one-dimensional heat-conduction equation 
0u
0t

= k 
02u

0x2, where 
k is called the diffusivity. Here k = 1>16.

 44. The displacement y at any point in a taut, flexible string depends 
on the distance x from one end of the string and the time t. Show 
that y1x, t2 = 2 sin 2x cos 4t satisfies the wave equation 

  
02y

0t2 = a2 
02y

0x2 with a = 2.

 45. The steady-state temperature u of a thin, flat plate satisfies 

  Laplace’s equation 
02u

0x2 + 02u

0y2 = 0. Show that the function 

  u1x, y2 = e-x sin y satisfies Laplace’s equation.

Answers to Practice Exercises

1. 0z>0x = 8x + sin y, 0z>0y = x cos y

2. 
02z

0x 0y
= 4x - 40xy3

We now turn our attention to integration in the case of a function of two variables. The 
analysis has similarities to that of partial differentiation, in that an operation is per-
formed while holding one of the independent variables constant.

If z = f1x, y2  and we wish to integrate with respect to x and y, we first consider 
either x or y constant and integrate with respect to the other. After this integral is evalu-
ated, we then integrate with respect to the variable first held constant. We shall now 
define this type of integral and then give an appropriate geometric interpretation.

If z = f1x, y2  the double integral of the function over x and y is defined as

L
b

a
c LG1x2

g1x2  f1x, y2dy d dx

Since it is customary not to include the brackets in writing a double integral, we write

L
b

a
c LG1x2

g1x2  f1x, y2dy d dx = L
b

a L
G1x2

g1x2 f1x, y2dy dx  (29.4)

 29.4 Double Integrals

Volume Under a Surface
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 EXAMPLE  1  Evaluating a double integral

Evaluate L
1

0 L
x

x2
xy dy dx.

First, we integrate the inner integral with y as the variable and x as a constant.

L
x

x2
 xy dy = ax 

y2

2
 b 2

x2

x

= x ax2

2
- x4

2
b =

1
2

 1x3 - x52
This means

 L
1

0 L
x

x2
xy dy dx = L

1

0

1
2

 1x3 - x52dx =
1
2

 ax4

4
- x6

6
b 2

0

1

 =
1
2

 a1
4

- 1
6
b - 1

2
 102 =

1
24

 ■

 EXAMPLE  2  Evaluating a double integral

Evaluate L
p>2

0 L
sin y

0
e2x cos y dx dy.

Since the inner differential is dx, we first integrate with x as the variable and y as a 
constant. The second integration is with y as the variable.

L
p>2

0 L
sin y

0
e2x cos y dx dy = L

p>2
0

c 1
2

 e2x cos y d
0

sin y
dy

=
1
2 L

p>2
0

 1e2 sin y cos y - cos y2  dy

 =
1
2

 c 1
2

 e2 sin y - sin y d
0

p>2
=

1
2

 a1
2

 e2 - 1b - 1
2

 a1
2

- 0b
 =

1
4

 e2 - 1
2

- 1
4

=
1
4

 1e2 - 32 = 1.097 ■

For the geometric interpretation of a double integral, consider the surface shown in 
Fig. 29.27(a). An element of volume (dimensions of dx, dy, and z) extends from the 
xy-plane to the surface. With x a constant, sum (integrate) these elements of volume 
from the left boundary, y = g1x2 , to the right boundary, y = G1x2 . Now, the vol-
ume of the vertical slice is a function of x, as shown in Fig. 29.27(b). By summing 
(integrating) the volumes of these slices from x = a (x = 0 in the figure) to x = b, we 
have the complete volume, as shown in Fig. 29.27(c).

treat as constant

 
double integral is dx,

x, and 

x.

y x
x only, 

 
double integral is dy,

y, and 

y.

x y
y only, 
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Practice Exercise

1. Evaluate L
1

0 L
x

0
2xy dy dx.

We interpret a double integral as the 
volume under a surface,

LEARNING T IP

Fig. 29.27 

y

dx
O

x

z

x 5 b

x 5 0

(b)

yO

x

z

(c)

y
dx

z

dy

x

z

(a)

O

z 5 f (x, y)

y 5 g(x) y 5 G(x)
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 EXAMPLE  3  Volume under a plane

Find the volume that is in the first octant and under the plane x + 2y + 4z - 8 = 0. 
See Fig. 29.28.

This figure is a tetrahedron, for which V = 1
3 Bh. Assuming the base is in the xy-

plane, B = 1
2 142 182 = 16, and h = 2. Therefore, V = 1

3 1162 122 = 32
3  cubic 

units. We shall use this value to check the one we find by double integration.
To find z = f1x, y2 , we solve the given equation for z. Thus,

z =
8 - x - 2y

4

Next, we must find the limits on y and x. Choosing to integrate over y first, we see that 
y goes from y = 0 to y = 18 - x2 >2. This last limit is the trace of the surface in the 
xy-plane. Next, we note that x goes from x = 0 to x = 8. Therefore, we set up and 
evaluate the integral:

 V = L
8

0 L
18  -   x2>2

0
a8 - x - 2y

4
bdy dx

 = L
8

0
c 1
4

 18y - xy - y22 2
0

18-x2>2 d dx

 =
1
4 L

8

0
c 8 a8 - x

2
b - x a8 - x

2
b - a8 - x

2
b2 d dx

 =
1
4 L

8

0
a32 - 4x - 4x + x2

2
- 16 + 4x - x2

4
bdx

 =
1
4 L

8

0
a16 - 4x + x2

4
bdx

 =
1
4

 a16x - 2x2 + x3

12
b 2

0

8
=

1
4

 a128 - 128 + 512
12

b
 =

1
4

 a128
3

b =
32
3

 cubic units

We see that the values obtained by the two different methods agree. ■

 EXAMPLE  4  Volume under a surface

Find the volume above the xy-plane, below the surface z = xy, and enclosed by the 
cylinder y = x2 and the plane y = x.

Because the cylinders are perpendicular to the xy-plane, the volume of interest lies 
under the function z = xy and above the region on the xy-plane bounded by the parabola 
y = x2 and the line y = x (see Fig. 29.29). The limits of integration can be found 
directly from the graph of this region without having to plot the surface. Integrating over 
y first, the limits on y are y = x2 to y = x. The corresponding limits on x are x = 0 to 
x = 1. Therefore, the double integral to be evaluated is

V = L
1

0 L
x

x2
xy dy dx

This integral has already been evaluated in Example 1 of this section, and we can now 
see the geometric interpretation of that integral. Using the result from Example 1, we 
see that the required volume is 1>24 cubic unit. ■

Fig. 29.28 

y

dy
dx

z

x

z

2

1

0

1
2

6

4321

3
4

5

7
8

y 5 0
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8 2 x

Fig. 29.29 

x

y

y = x2

y = x
1

1



912 CHAPTER 29 Partial Derivatives and Double Integrals

 EXAMPLE  5  Volume under a surface

Find the volume in the first octant that is under the surface z = 4 - x2 - y2, and is 
between the cylinder x2 = 3y and the plane y = 1. See Fig. 29.30.

We find the limits of integration from the shaded region on the xy-plane. Integrating 
over x first, we have

 V = L
1

0 L
13y

0
14 - x2 - y22  dx dy

 = L
1

0
c 4x - x3

3
- y2x d

0

13y

 dy

 = L
1

0
 1413y - 13y3>2 - 13y5>22  dy

 = 13 c 4a2
3
b  y3>2 - 2

5
 y5>2 - 2

7
 y7>2 d `

0

1

 = 13 a8
3

- 2
5

- 2
7
b =

20813
105

= 3.43 cubic units

If we integrate over y first, we arrive at the same result evaluating the double integral

V = L
13

0 L
1

x2>3 14 - x2 - y22  dy dx ■

y

x

z
4

3

2

1

0 21

2
1

z 5 4 2 x2 2 y2

y 5 1

x2 5 3y

(=3, 1, 0)

Fig. 29.30 

EXERCISES 29.4

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the resulting problems.

 1. In Example 1, change the integrand xy to 1x + y2 .

 2. In Example 2, delete the e2x.

In Exercises 3–16, evaluate the given double integrals.

 3. L
4

2 L
1

0
xy2 dx dy 4. L

2

0 L
1

0

y1xy + 122 dx dy

 5. L
2

1 L
y2

0
xy2dx dy 6. L

4

0 L
1y

1
 1x - y2dx dy

 7. L
1

0 L
21-x2

0
y dy dx 8. L

9

4 L
x

0
1x - y dy dx

 9. L
p>6

0 L
y

p>3sin x dx dy 10. L
13

0 L
1

x2>314 - x22dy dx

 11. L
e

1 L
y

1

1
x

 dx dy 12. L
1

-1 L
ex

1

1
xy

  dy dx

 13. L
2

1 L
x

0
yx3exy2

dy dx 14. L
p>6

0 L
1

0
y sin x dy dx

 15. L
ln 3

0 L
x

0
e2x+3ydy dx 16. L

1>2
0 L

y2

y

dx dy2y2 - x2

In Exercises 17–26, find the indicated volumes by double integration.

 17. The first-octant volume under the plane x + y + z - 4 = 0

 18. The first-octant volume under the surface z = y2 and bounded by 
the planes x = 2 and y = 3

 19. The volume above the xy-plane and under the surface 
z = 4 - x2 - y2

 20. The volume above the xy-plane, below the surface z = x2 + y2, 
and inside the cylinder x2 + y2 = 4

 21. The first-octant volume bounded by the xy-plane, the planes 
x = y, y = 2, and z = 2 + x2 + y2

 22. The volume bounded by the planes x + 3y + 2z - 6 = 0, 
2x = y, x = 0, and z = 0

 23. The first-octant volume under the plane z = x + y and inside the 
cylinder x2 + y2 = 9

 24. The volume above the xy-plane and bounded by the cylinders 
x = y2, y = 8x2, and z = x2 + 1. Integrate over y first and then 
check by integrating over x first.

 25. A wedge is to be made in the shape shown in Fig. 29.31. (All ver-
tical cross sections are equal right triangles.) By double integra-
tion, find the volume of the wedge.

 26. A circular piece of pipe is cut as shown in Fig. 29.32. Find the 
volume within the pipe. Describe how to set up the coordinate 
system in order to determine the required volume.

Fig. 29.31 

12 cm

5 cm

10 cm

Fig. 29.32 

2 cm

6 cm

4 cm

d ! 4 cm
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In Exercises 27 and 28, draw the appropriate figure.

 27. Draw the appropriate figure indicating a volume that is found 
from the integral 

  L
1

0 L
1

x2
14 - x - 2y2  dy dx.

 28. Repeat Exercise 27 for the integral 

  L
2

1 L
2-y

0
21 + x2 + y2 dx dy.

Answer to Practice Exercise

1. 1>4

 CHAPTER 29  EQUATIONS

Equation of a plane Ax + By + Cz + D = 0 (29.1)

Cylindrical coordinates x = r cos u  y = r sin u  z = z 

 r2 = x2 + y2  tan u =
y
x

 (29.2)

Partial derivatives 
02z

0x 0y
=

02z
0y 0x

 (29.3)

Double integral L
b

a
c LG1x2

g1x2 f1x, y2  dy d dx = L
b

a L
G1x2

g1x2 f1x, y2  dy dx (29.4)

 CHAPTER 29  REVIEW EXERCISES

In Exercises 1–4, evaluate the given functions.

  1. f1x, y2 = 3x2y - y3, find f1 -1, 42
 2. f1r, u2 = r2 cos 2u - r sin u, find f13, p2
 3. f1s, t2 =

2st2 - t
s

, find f14, s22
 4. f1x, y2 =

4x
xy - 2

, find f1x2, 2x2
In Exercise 5–8, sketch the graphs of the given equations in the rec-
tangular coordinate system in three dimensions.

 5. x - y + 2z - 4 = 0 6. 2y + 3z = 6

 7. z = x2 + 4y2 8. x2 + y2 - 4z2 - 4 = 0

In Exercises 9–18, find the partial derivatives of the given functions 
with respect to each of the independent variables.

 9. z = 5x3y2 - 2xy4 10. z = 2x1y - x2y

 11. z = 2x2 - 3y2 12. u =
r1r - 3s22

 13. z =
2x - 3y

x2y + 1
 14. z = x1y2 + xy + 224

 15. u = y ln sin 1x2 + 2y2  16. q = p ln 1r + 12 -
rp

r + 1

 17. z = sin-11x + y 18. z = yexy sin 12x - y2
In Exercises 19 and 20, find all of the second partial derivatives of the 
given functions.

 19. z = 3x2y - y3 + 2xy

 20. z = x12y + 1 + y2 1x - 223

In Exercises 21–28, evaluate each of the given double integrals.

 21. L
2

0 L
2

1
13y + 2xy2  dx dy 22. L

7

2 L
1

0
x22 + x2y dx dy

 23. L
3

0 L
x

1
1x + 2y2  dy dx 24. L

2

1 L
p>4

0
r sec2 u  du dr

 25. L
1

0 L
2x

0
x2exy dy dx 26. L

p>2
p>4 L

1cos u

1
r sin u dr du

 27. L
e

1 L
x

1
 
ln y
xy

 dy dx 28. L
3

1 L
x

0

2

x2 + y2 dy dx

In Exercises 29–46, solve the given problems.

 29. Sketch the surface representing z = 2x2 + 4y2.

 30. For the function of Exercise 29, find the equation of a line tan-
gent to the surface at 12, 1, 2122  that is parallel to the 
yz-plane.

 31. Sketch the surface representing z = ex+y.
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 32. For the function of Exercise 31, find the volume in the first 
octant under the surface and inside the planes x = 1 and y = x.

 33. Describe the surface for which the cylindrical coordinate equa-
tion is (a) u = 3, (b) z = r2.

 34. Write the cylindrical coordinate equation r = 21sin u + cos u2  
in rectangular coordinates and sketch the surface.

 35. In a simple series electric circuit, with two resistors r and R  
connected across a voltage source E, the voltage V across r is 
V = rE> 1r + R2 . Assuming E to be constant, find 0V>0r and 
0v>0R.

 36. For a gas, the volume expansivity is defined as b =
1
V

 
0V
0T

, 

  where V is the volume and T  is the temperature of the gas. If V
  as a function of T  and the pressure p is given by 

V = a + bT>p - c>T2, where a, b, and c are constants, find b.

 37. In the theory dealing with transistors, the current gain a of a tran-
sistor is defined as a = 0ic>0ie, where ic is the collector current 
and ie is the emitter current. If ic is a function of ie and the collector 
voltage Vc given by ic = ie 11 - e-2Vc2 , find a if Vc is 2 V.

 38. Young’s modulus, which measures the ratio of the stress to strain 

  in a stretched wire, is defined as Y =
L
A

 
0F
0L

, where L is the 

  length of the wire, A is its cross-sectional area, and F is the 
tension in the wire. Find Y  (in Pa) if F = -0.0100 T>L2 for 
L = 1.10 m, T = 300 K, and A = 1.00 * 10-6 m2.

 39. The period T  of the pendulum as a function of its length l and 
the acceleration due to gravity g is given by T = 2p1l>g. 
Show that 0T>0l = T>2l.

 40. The volume of a right circular cone of radius r and height h is 
given by V = 1

3  pr2h. Show that 0V>0r = 2V>r.

 41. The coefficient of linear expansion a of a wire whose length 

  L is a function of the tension and temperature T  is given by 

  a =
1
L

  a0L
0T

b . If L is a function of T  and the tension F given by 

  L = L0 + k1 F + k2 T + k3 FT2, where k1, k2, and k3 are con-
stants, find the expression for a.

 42. An isothermal process is one during which the temperature does 
not change. If the volume V, pressure p, and temperature T  of an 
ideal gas are related by the equation pV = nRT , where n and R 
are constants, find the expression for 0p>0V, which is the rate of 
change of pressure with respect to volume for an isothermal process.

 43. For the ideal gas of Exercise 42, show that 

  a0V
0T

b a0T
0p

b a 0p

0V
b = -1.

 44. Find the volume in the first octant below the plane 
x + y + z - 6 = 0 and inside the cylinder y = 4 - x2.

 45. Find the first-octant volume bounded by x2 + y2 = 16 and 
x + z = 8. Describe each of the bounding surfaces.

 46. Find the first-octant volume below the surface z = 4 - y2 and 
inside the plane x + y = 2.

Writing Exercise
 47. An architectural design student determined the area of a patio 

  could be described by the double integral L
4

0 L
1y

0
f1x, y2  dx dy. 

  Write the integration with the order of integration interchanged. 
Write one or two paragraphs to explain your method on inter-
changing the order of integration.

 CHAPTER 29  PRACTICE TEST

 1. Given f1x, y2 =
2y

x2 - y2, find f1 -1, 32 .

 2. Sketch the surface representing the function z = 4 - x2 - 4y2.

 3. Given z = xe2xy, find 
0z
0x

 and 
0z
0y

.

 4. Given z = 3x3y + 2x2y4, find 
02z
0x0y

.

 5. Evaluate L
2

0 L
2x

x2
 1x3 + 4y) dy dx.

 6. Evaluate L
ln 8

1 L
ln y

0
ex+y dx dy.

 7. Find the volume in the first octant bounded by the coordinate 
planes and the cylinders x2 + y2 = 9 and y2 + z2 = 9.

 8. The fundamental frequency of vibration f  of a string varies di-
rectly as the square root of the tension T  and inversely as the 
length L. If a string 60 cm long is under a tension of 65 N and 
has a fundamental frequency of 30 Hz, find the partial derivative 
of f  with respect to T  and evaluate it for the given values.
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 Many types of electronic devices are 
used to control the current in a circuit. 
In Section 30.6, we see how series are 
used to analyse one such device.

LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Find the terms of sequences 
and series

 Decide whether a geometric 
series is convergent or 
divergent and, if convergent, 
find its sum

 Find the Maclaurin series 
expansion of a function

 Use algebraic, trigonometric, or 
calculus procedures on known 
series to obtain other series 
expansions

 Find the Taylor series 
expansion of a function

 Approximate the value of 
functions by using series

 Find the Fourier series 
expansion of a periodic 
function

 Find the half-range Fourier 
series of a function

 Solve application problems 
using series

In the mid-1600s, mathematicians found that transcendental functions can be represented 
by polynomials and that by using these polynomials it was possible to calculate the values 
of these functions more easily. In this chapter, we show how a given function may be 

expressed in terms of a polynomial and how this polynomial is used to evaluate the function.

The polynomials that we will develop are known as power series, and they can be expressed 
with an unlimited number of terms. Although first noted for their usefulness in calculating 
values of transcendental functions, many mathematicians, including Newton, used power 
series extensively in their contributions to various areas of mathematics. In fact, the French 
mathematician Joseph-Louis Lagrange (1736–1813) attempted to make power series the 
basis for the development of all methods in calculus.

Another type of series was developed by the French physicist and mathematician Jean 
Baptiste Joseph Fourier (1768–1830) in the study of heat conduction. In 1822, he showed that 
a function can be expressed in a series of sine and cosine terms. Today, these series are very 
important in the study of electricity and electronics. They are also useful in the study of me-
chanical vibrations and other applications that are periodic in nature. We study these series in 
the last two sections of this chapter.

We see again that a concept first used to ease calculation became very important in the later 
development of mathematics. Also, a concept developed for the study of heat, long before the 
advent of electronics, has become important in electronics.

In Chapter 19, we discussed arithmetic and geometric sequences and the concept of an infi-
nite geometric sequence. In the first section of this chapter, we develop these topics further 
for use in the sections that follow.

Expansion of 
Functions in Series 30
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Practice Exercise

1.  Find the first three terms of the sequence 

 for which an =
n + 3

n2 + 1
 , n = 1, 2, 3, c

■ The sequence feature on some graphic 
calculators can be used to find the terms of a 
sequence.

Infinite Series

Partial Sum

Aside from arithmetic sequences and geometric sequences, there are many other ways 
of generating sequences of numbers. The squares of the integers 1, 4, 9, 16, 25 c 
form a sequence. Also, the successive approximations x1, x2, x3, c found by using 
Newton’s method in solving a particular equation form a sequence.

In general, a sequence (or infinite sequence) is an infinite succession of numbers. 
Each of the numbers is a term of the sequence. Each term of the sequence is associated 
with a positive integer, although at times it is convenient to associate the first term with 
zero (or some specified positive integer). We shall use an to designate the term of the 
sequence corresponding to the integer n.

 EXAMPLE  1  Find the terms of a sequence, given the general term

Find the first three terms of the sequence for which the general term is an = 2n + 1, 
n = 1, 2, 3, c.

Substituting the values of n, we obtain the values

a1 = 2112 + 1 = 3  a2 = 2122 + 1 = 5  a3 = 2132 + 1 = 7, c
Therefore, we have the sequence 3, 5, 7, c.

Given an = 2n + 1 for n = 0, 1, 2, c, the sequence is 1, 3, 5, c. ■

As we stated in Chapter 19, the sum of the terms of a sequence is called an infinite 
series. Thus, for the sequence

a1, a2, a3, c, an, c
the associated infinite series is

a1 + a2 + a3 + g + an + g
Using the summation sign Σ (see Section 22.2) to indicate the sum, we have

a
∞

n =1
an = a1 + a2 + a3 + g + an + g  (30.1)

Since it is not possible to find the sum of infinitely many terms, we define the sum 
for an infinite series in terms of a limit. For the infinite series of Eq. (30.1), we let Sn 
represent the sum of the first n terms. Therefore,

 S1 = a1

 S2 = a1 + a2

 S3 = a1 + a2 + a3

Sn = a1 + a2 + a3 + g + an

The numbers S1, S2, S3, c, Sn, c form a sequence. Each term of this sequence is 
called a partial sum. We say that the infinite series, Eq. (30.1), is convergent and has 
the sum S given by

S = lim
nS ∞

Sn = lim
nS ∞

 a
n

i =1
ai  (30.2)

if this limit exists. If the limit does not exist, the series is divergent.

 30.1 Infinite Series
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 EXAMPLE  2  Convergence of partial sums

For the infinite series

a
∞

n =0
 
1
5n =

1

50 + 1

51 + 1

52 + g + 1
5n + g

the first six partial sums are

 S0 = 1      first term

 S1 = 1 + 1
5

= 1.2  sum of first two terms

 S2 = 1 + 1
5

+ 1
25

= 1.24 sum of first three terms

 S3 = 1 + 1
5

+ 1
25

+ 1
125

= 1.248

 S4 = 1 + 1
5

+ 1
25

+ 1
125

+ 1
625

= 1.2496

 S5 = 1 + 1
5

+ 1
25

+ 1
125

+ 1
625

+ 1
3125

= 1.24992

These values can be found using the standard calculational features of a calculator, or 
by the cumulative sum (cumSum) feature. Here, it appears that the sequence of partial 
sums approaches the value 1.25. We therefore conclude that this infinite series con-
verges and that its sum is approximately 1.25. (In Example 4 of this section, we show 
that this infinite series does in fact converge and that its sum is 1.25.) ■

 EXAMPLE  3  

(a) The infinite series

a
∞

n =1
 5n = 5 + 52 + 53 + g + 5n +  g

  is a divergent series. The first four partial sums are

S1 = 5  S2 = 30  S3 = 155  S4 = 780

  Obviously, they are increasing without bound.

(b) The infinite series

a
∞

n =0
 1 -12n = 1 + 1 -12 + 1 + 1 -12 + g + 1 -12n + g

  has as its first five partial sums

S0 = 1  S1 = 0  S2 = 1  S3 = 0  S4 = 1

  The values of these partial sums do not approach a limiting value, and therefore, 
the series diverges. ■

Since convergent series are those that have a value associated with them, they are 
the ones that are of primary use to us. However, generally, it is not easy to determine 
whether a given series is convergent, and many types of tests have been developed for 
this purpose. These tests for convergence may be found in most textbooks that include 
the more advanced topics in calculus.

One important series for which we are able to determine the convergence, and its 
sum if convergent, is the geometric series. For this series, the nth partial sum is

Sn = a1 + a1r + a1r2 +  g +  a1rn-1



918 CHAPTER 30 Expansion of Functions in Series

where r is the fixed number by which we multiply a given term to get the next term. In 
Chapter 19, we determined that if 0 r 0 6 1, the sum S of the infinite geometric series is

S = lim
nS ∞

Sn =
a1

1 - r
 (30.3)

 EXAMPLE  4  

Show that the infinite series

a
∞

n =0
 
1
5n =

1

50 + 1

51 + 1

52 + g+  
1
5n + g

is convergent and find its sum. This is the same series as in Example 2.
This is a geometric series with r = 1

5. Since 0 r 0 6 1, the series converges. The 
sum is

S =
1

1 - 1
5

=
1
4
5

=
5
4

= 1.25  using Eq. (30.3) ■

If r = 1, we see that the series is 
a1 + a1 + a1 +  g +  a1 +  g and is, 
therefore, divergent. If r = -1, the 
series is a1 - a1 + a1 - a1 + g and 
is also divergent. If 0 r 0 7 1, lim

nS ∞
rn is 

unbounded. Therefore, the geometric 
series is convergent only
if ∣ r ∣ * 1 and has the value given by 
Eq. (30.3).

LEARNING T IP

Practice Exercise

2.  Show that the infinite series a
∞

n = 0
 
2
3n  

is convergent and find its sum.

■ See Example 2.

EXERCISES 30.1

In Exercises 1 and 2, make the given changes in the indicated 
examples of this section and then solve the given problems.

 1. In Example 3(a), change 5n to 0.5n. What other changes occur?

 2. In Example 4, change n = 0 to n = 1. What is the value of S?

In Exercises 3–6, give the first four terms of the sequences for which 
an is given.

 3. an = n2, n = 1, 2, 3, c 4. an =
2n+1

n!
, n = 1, 2, 3, c

 5. an =
1

n + 2
, n = 0, 1, 2, c

 6. an =
n2 + 1
2n + 1

, n = 0, 1, 2, c

In Exercises 7–10, give (a) the first four terms of the sequence for 
which an is given and (b) the first four terms of the infinite series 
associated with the sequence.

 7. an = a- 2
5
bn

, n = 1, 2, 3, c

 8. an =
1
n

+ 1
n + 1

, n = 1, 2, 3, c

 9. an = cos 
np
2

, n = 0, 1, 2, c

 10. an =
nn

n!
, n = 2, 3, 4 c

In Exercises 11–14, find the nth term of the given infinite series for 
which n = 1, 2, 3, c.

 11. 
1
2

+ 1
3

+ 1
4

+ 1
5

 +  g

 12. 
1
2

+ 1
4

+ 1
8

+ 1
16

 +  g

 13. 
1

2 * 3
- 1

3 * 4
+ 1

4 * 5
- 1

5 * 6
 +  g

 14. 
112

- 1
2

+ 12
4

- 1
4

 +  g

In Exercises 15–24, find the first five partial sums of the given series 
and determine whether the series appears to be convergent or 
divergent. If it is convergent, find its approximate sum.

 15. 1 + 1
8

+ 1
27

+ 1
64

+ 1
125

 +  g
 16. 1 + 2 + 5 + 10 + 17 +  g
 17. 1 + 1

2
+ 2

3
+ 3

4
+ 4

5
+ g

 18. 
1
3

- 1
9

+ 1
27

- 1
81

+ 1
243

- g

 19. a
∞

n = 0
1n 20. a

∞

n = 1
 

2
n1n + 12  21. a

∞

n = 1
 

2n + 1

n2 1n + 122

 22. a
∞

n = 1
 

n
2n + 1

 23. a
∞

n = 1
 
sin n

4n  24. a
∞

n = 3
 
ln n
en

In Exercises 25–32, test each of the given geometric series for 
convergence or divergence. Find the sum of each series that is 
convergent.

 25. 1 + 2 + 4 + g + 2n + g
 26. 1 + 1

2
+ 1

4
+ g + 1

2n + g

 27. 1 - 1
3

+ 1
9

- g + a-1
3
bn

+ g

 28. 1 - 3
2

+ 9
4

- g + a-3
2
bn

+ g
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 29. 10 + 9 + 8.1 + 7.29 + 6.561 + g
 30. 4 + 1 + 1

4
+ 1

16
+ 1

64
+ g

 31. 512 - 64 + 8 - 1 + 1
8

- g

 32. 16 + 12 + 9 + 27
4

+ 81
16

+ g

In Exercises 33 and 34, find the values of x for which the given series 
converge.

 33. a
∞

n = 0
 1x - 42n 34. a

∞

n = 2
 
xn

5n

In Exercises 35–44, solve the given problems as indicated.

 35. Using a calculator, take successive square roots of 2 and find at 
least 20 approximate values for the terms of the sequence 
21>2, 21>4, 21>8, 21>16, c. From the values that are obtained, (a) 
what do you observe about the value of lim

nS∞
21>2n

? (b) Determine 
whether the infinite series for this sequence converges or 
diverges.

 36. Using a calculator, (a) take successive square roots of 0.01 and 
then (b) take successive square roots of 100. From these 
sequences of square roots, state any general conclusions that 
might be drawn.

 37. Referring to Chapter 19, we see that the sum of the first n terms 
of a geometric sequence is

  Sn =
a1 11 - rn2

1 - r
 1r ≠ 12  Eq. (19.6)

  where a1 is the first term and r is the common ratio. We can visu-
alize the corresponding infinite series by graphing the function 
f1x2 = a111 - rx2>11 - r2 1r ≠ 12 (or using a calculator 
that can graph a sequence). The graph represents the sequence of 
partial sums for values where x = n, since f1n2 = Sn.

   Use a graphing calculator to visualize the first five partial sums 
of the series

  
1
2

+ 1
4

+ 1
8

+ g

  What value does the infinite series approach? (Remember: Only 
points for which x is an integer have real meaning.)

 38. Following Exercise 37, use a graphing calculator to show that the 
sum of the infinite series of Example 4 is 1.25. (Be careful: Because 
of the definition of the series, x = 1 corresponds to n = 0.)

 39. The value V  (in dollars) of a certain investment after n years can 
be expressed as

  V = 10011.05 + 1.052 + 1.053 + g + 1.05n2
  (a) By finding partial sums, determine whether this series con-

verges or diverges. (b) Following Exercise 37, use a graphing 
calculator to visualize the first 10 partial sums. (See Example 7 of 
Section 19.2.)

 40. If an electric discharge is passed through hydrogen gas, a spec-
trum of isolated parallel lines, called the Balmer series, is formed. 
See Fig. 30.1. The wavelengths l (in nm) of the light for these 
lines is given by the formula

  
1
l

= 1.097 * 10-2a 1

22 - 1

n2 b  1n = 3, 4, 5, c2
  Find the wavelengths of the first three lines and the shortest 

wavelength of all the lines of the series.

 41. Use geometric series to show that a
∞

n = 0
xn = 1

1 - x
 for 0 x 0 6 1.

 42. Use geometric series to show that a
∞

n = 0
 1-12nxn = 1

1 + x
 for

  0 x 0 6 1.

 43. If term a1 is given along with a rule to find term an + 1 from term 
an, the sequence is said to be defined recursively. If a1 = 2 and 
an + 1 = 1n + 12an, find the first five terms of the sequence.

 44. A sequence is defined recursively (see Exercise 43) by x1 = N
2

, 

  xn + 1 = 1
2

 axn + N
xn
b . With N = 10, find x6 and compare the 

  value with 210. It can be seen that 2N can be approximated 
using this recursion sequence.

Answers to Practice Exercises

1. 2, 1, 3>5, c 2. r = 1>3 6 1, S = 3

Fig. 30.1 Violet Green Red

n ! 3n ! 4n ! 5

In this section, we develop a very important basic polynomial form of a function. 
Before developing the method using calculus, we will review how this can be done for 
some functions algebraically.

 EXAMPLE  1  An algebraic function represented by a series

By using long division (as started at the left), we have

2
2 - x

= 1 + 1
2

 x + 1
4

 x2 + g + a1
2

 xbn-1
+ g (1)

 30.2 Maclaurin Series

■   1 + x
2

2 - x)2        

  
2 - x

x

  
x - x2

2

x2

2
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where n is the number of the term of the expression on the right. Since x represents a 
number, the right-hand side of Eq. (1) becomes a geometric series.

From Eq. (30.3), we know that the sum of a geometric series with first term a1 and 
common ratio r is

S =
a1

1 - r

when & r & 6  1 and the series converges.
If x = 1, the right-hand side of Eq. (1) is

1 + 1
2

+ 1
4

+ g + a1
2
bn-1

+ g

For this series, r = 1
2 and a1 = 1, which means that the series converges and S = 2. 

Moreover, the left side of Eq. (1) is also 2 when x = 1, so the function may be repre-
sented by the series for this value of x.

If x = 3, the right-hand side of Eq. (1) is

1 + 3
2

+ 9
4

+ g + a3
2
bn-1

+ g

which diverges since r 7 1. Therefore, the left-hand side of Eq. (1) cannot be repre-
sented by the series when x = 3.

As we can see, the function and the series agree when the series converges. Since 
the series converges as long as & x & 6 2, we conclude that the series on the right prop-
erly represents the function on the left, as long as 0 x 0 6 2. ■

From Example 1, we see that an algebraic function may be properly represented by 
a function of the form

f1x2 = a0 + a1x + a2x2 + g + anxn + g  (30.4)

Eq. (30.4) is known as a power-series expansion of the function f1x2 . The problem 
now arises as to whether or not functions in general may be represented in this form. If 
such a representation were possible, it would provide a means of evaluating the tran-
scendental functions for the purpose of making tables of values. Also, since a power-
series expansion is in the form of a polynomial, it makes algebraic operations much 
simpler due to the properties of polynomials. A further study of calculus shows many 
other uses of power series.

In Example 1, we saw that the function could be represented by a power series as 
long as 0 x 0 6 2. That is, if we substitute any value of x in this interval into the series 
and also into the function, the series will converge to the value of the function. This 
interval of values for which the series converges is called the interval of convergence.

 EXAMPLE  2  Interval of convergence

In Example 1, the interval of convergence for the series

1 + 1
2

 x + 1
4

 x2 + g + a1
2

 xbn-1
+ g

is 0 x 0 6 2. We saw that the series converges for x = 1, with S = 2, and that the value 
of the function is 2 for x = 1. This verifies that x = 1 is in the interval of 
convergence.

Also, we saw that the series diverges for x = 3, which verifies that x = 3 is not in 
the interval of convergence. ■

Power Series
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At this point, we will assume that unless otherwise noted, the functions with which 
we will be dealing may be properly represented by a power-series expansion (it takes 
more advanced methods to prove that this is generally possible), for appropriate intervals 
of convergence. We will find that the methods of calculus are very useful in developing 
the method of general representation. Thus, writing a general power series, along with the 
first few derivatives, we have

 f1x2 = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + g + anxn + g
 f ′1x2 = a1 + 2a2x + 3a3x2 + 4a4x3 + 5a5x4 + g + nanxn-1 + g
 f ″1x2 = 2a2 + 2132a3x + 3142a4x2 + 4152a5x3 + g + 1n - 12nanxn-2 + g
 f ‴1x2 = 2132a3 + 2132 142a4x + 3142 152a5x2 + g + 1n - 22 1n - 12nanxn-3 + g

 f  iv 1x2 = 2132 142a4 + 2132 142 152a5x + g + 1n - 32 1n - 22 1n - 12nanxn-4 + g
Regardless of the values of the constants an for any power series, if x = 0, the left and 
right sides must be equal, and all the terms on the right are zero except the first. Thus, 
setting x = 0 in each of the above equations, we have

f102 = a0     f ′102 = a1     f ″102 = 2a2

f ‴102 = 2132a3  f  iv102 = 2132 142a4

Solving each of these for the constants an, we have

a0 = f102   a1 = f′102   a2 =
f ″102

2!
  a3 =

f ‴102
3!

  a4 =
f iv102

4!

Substituting these into the expression for f1x2 , we have

Eq. (30.5) is known as the Maclaurin series expansion of a function. For a function to 
be represented by a Maclaurin expansion, the function and all of its derivatives must 
exist at x = 0. Also, we note that the factorial notation introduced in Section 19.4 is 
used in writing the Maclaurin series expansion.

As we mentioned earlier, one of the uses we will make of series expansions is that of 
determining the values of functions for particular values of x. If x is sufficiently small, 
successive terms become smaller and smaller and the series will converge rapidly. This 
is considered in the sections that follow.

The following examples illustrate Maclaurin expansions for algebraic, exponential, 
and trigonometric functions.

 EXAMPLE  3  Maclaurin series for an algebraic function

Find the first four terms of the Maclaurin series expansion of f1x2 =
2

2 - x
.

f1x2 =
2

2 - x
     f102 = 1   f ″1x2 =

412 - x23   f ″102 =
1
2

f ′1x2 =
212 - x22  f ′102 =

1
2

  f ‴1x2 =
1212 - x24  f ‴102 =

3
4

 f1x2 = 1 + 1
2

 x + 1
2

 ax2

2!
b + 3

4
 ax3

3!
b + g  using Eq. (30.5)

   
2

2 - x
= 1 + 1

2
 x + 1

4
 x2 + 1

8
 x3 + g  ■

find derivatives 
and evaluate 
each at x = 0

f1x2 = f102 + f ′102x +
f ″102x2

2!
+

f ‴102x3

3!
+ g +

f n102x n

n!
+ g  (30.5)Maclaurin Series

■ The Maclaurin series is named for the 
Scottish mathematician Colin Maclaurin 
(1698–1746).

Practice Exercise

1.  Find the first four terms of the  
Maclaurin series expansion for 

 f1x2 =
1

1 + x
.

■ Compare with Example 1.
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 EXAMPLE  4  Maclaurin series for an exponential function

Find the first four terms of the Maclaurin series expansion of f1x2 = e-x.

 f1x2 = e-x    f102 = 1   f ″1x2 = e-x   f ″102 = 1

 f ′1x2 = -e-x  f ′102 = -1  f ‴1x2 = -e-x  f ⁗102 = -1

 f1x2 = 1 + 1 -12x + 1ax2

2!
b + 1 -12 ax3

3!
b + g  using Eq. (30.5)

e-x = 1 - x + x2

2!
- x3

3!
+ g ■

 EXAMPLE  5  Maclaurin series for a trigonometric function

Find the first three nonzero terms of the Maclaurin series expansion of f1x2 = sin 2x.

f1x2 = sin 2x     f102 = 0   f  ‴1x2 = -8 cos 2x   f  ‴102 = -8

f ′1x2 = 2 cos 2x    f ′102 = 2   f iv 1x2 = 16 sin 2x   f iv102 = 0

 f ″1x2 = -4 sin 2x   f ″102 = 0   f v1x2 = 32 cos 2x   f v102 = 32

 f1x2 = 0 + 2x + 0 + 1 -82  
x3

3!
+ 0 + 32  

x5

5!
 + g

 sin  2x = 2x - 4
3

 x3 + 4
15

 x5 - g ■

 EXAMPLE  6  Maclaurin series—application

Frictional forces in the spring shown in Fig. 30.2 are just sufficient so that the lever 
does not oscillate after being depressed. Such motion is called critically damped. 
The displacement y as a function of the time t for one case is y = 11 + t2e- t. To 
study the motion for small values of t, a Maclaurin expansion of y = f1 t2  is to be 
used. Find the first four terms of the expansion.

 f1 t2 = 11 + t2e-t               f102 = 1

 f ′1 t2 = 11 + t2e-t 1 -12 + e-t = - te-t      f ′102 = 0

 f ″1 t2 = te-t - e-t               f ″102 = -1

 f ‴1 t2 = - te-t + e-t + e-t = 2e-t - te-t      f ‴102 = 2

 f  iv1 t2 = -2e-t + te-t - e-t = te-t - 3e-t     f iv102 = -3

 f1 t2 = 1 + 0 + 1 -12 t2

2!
+ 2 

t3

3!
 + 1 -32 t4

4!
+ g

 11 + t2e-t = 1 - t2

2
+ t3

3
- t4

8
+ g ■

find derivatives 
and evaluate 
each at x = 0

This series is called an alternating series 
since every other term is negative.

Fig. 30.2 

y

EXERCISES 30.2

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then find the resulting series.

 1. In Example 3, in f1x2 , change the denominator to 2 + x.

 2. In Example 5, in f1x2 , change 2x to 1 -2x2 .

In Exercises 3–20, find the first three nonzero terms of the Maclaurin 
expansion of the given functions.

 3. f1x2 = ex 4. f1x2 = sin x

 5. f1x2 = cos x 6. f1x2 = ln11 + x2
 7. f1x2 = 11 + x  8. f1x2 = 23 1 + x

 9. f1x2 = e-2x 10. f1x2 =
111 + x

 11. f1x2 = cos 4px 12. f1x2 = ex sin x

 13. f1x2 =
1

1 - x
 14. f1x2 =

111 + x22

 15. f1x2 = ln11 - 2x2  16. f1x2 = 11 + x23>2
 17. f1x2 = cos2 x 18. f1x2 = ln11 + 4x2
 19. f1x2 = sin1x + p

4 2  20. f1x2 = 12x - 122
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In Exercises 21–28, find the first two nonzero terms of the Maclaurin 
expansion of the given functions.

 21. f1x2 = tan-1 x 22. f1x2 = cos x2

 23. f1x2 = tan x 24. f1x2 = sec x

 25. f1x2 = ln cos x 26. f1x2 = xesin x

 27. f1x2 = 11 + sin x 28. f1x2 = xe-x2

In Exercises 29–42, solve the given problems.

 29. Is it possible to find a Maclaurin expansion for (a) f1x2 = csc x 
or (b) f1x2 = ln x? Explain.

 30. Is it possible to find a Maclaurin expansion for (a) f1x2 = 1x 
or (b) f1x2 = 11 + x? Explain.

 31. Find the first three nonzero terms of the Maclaurin expansion for 
(a) f1x2 = ex and (b) f1x2 = ex2

. Compare these expansions.

 32. By finding the Maclaurin expansion of f1x2 = 11 + x2n, 
derive the first four terms of the binomial series, which is Eq. (19.10). 
Its interval of convergence is 0 x 0 6 1 for all values of n.

 33. If f1x2 = e3x, compare the Maclaurin expansion with the line-
arization for a = 0.

 34. Find the Maclaurin series for y = sinh x. (See Exercises 55–59 
on page 837.)

 35. Find the Maclaurin series for y = cosh x. (See Exercises 55–59 
on page 837.)

 36. Find the Maclaurin series for f(x) = cos2 x, by using the identity 
cos2 x = 1

2 11 + cos 2x2 . Compare the result with that of 
Exercise 17.

 37. If f1x2 = x2, show that this function is obtained when a 
Maclaurin expansion is found.

 38. If f1x2 = x4 + 2x2, show that this function is obtained when a 
Maclaurin expansion is found.

 39. The displacement y (in cm) of an object hung vertically from a 
spring and allowed to oscillate is given by the equation 
y = 4e-0.2t cos t, where t is the time (in s). Find the first three 
terms of the Maclaurin expansion of this function.

 40. For the circuit shown in Fig. 30.3, after the switch is closed, the 
transient current i (in A) is given by i = 2.511 + e-0.1t2 . Find 
the first three terms of the Maclaurin expansion of this function.

 41. The reliability R 10 … R … 12  of a certain computer system is 
R = e-0.001t, where t is the time of operation (in min). Express 
R = f1 t2  in polynomial form by using the first three terms of the 
Maclaurin expansion.

 42. In the analysis of the optical paths of light from a narrow slit S to 
a point P, as shown in Fig. 30.4, the law of cosines is used to 
obtain the equation

  c2 = a2 + 1a + b22 - 2a1a + b2cos 
s
a

  where s is part of the circular arc ABµ. 
By using two nonzero terms of the 
Maclaurin expansion of cos sa, sim-
plify the right side of the equation. 
(In finding the expansion, let x = s

a 
and then substitute back into the 
expansion.)

Answer to Practice Exercise

1. 
1

1 + x
= 1 - x + x2 - x3 + g

10 Ω

2.0 mF10 Ω

50 V

Fig. 30.3 

S

A

P

B

a

a
s

c

b

Fig. 30.4 

The series found in Exercises 3 to 6 and 32 (the binomial series) of Section 30.2 are of 
particular importance. They are used to evaluate exponential functions, trigonometric 
functions, logarithms, powers, and roots, as well as develop other series. For reference, 
we give them here with their intervals of convergence.

 ex = 1 + x + x2

2!
+ x3

3!
+ g        (all x) (30.6)

 sin x = x - x3

3!
+ x5

5!
- g         (all x) (30.7)

 cos x = 1 - x2

2!
+ x4

4!
- g         (all x) (30.8)

 ln11 + x2 = x - x2

2
+ x3

3
- x4

4
+ g   1 0 x 0 6 12  (30.9)

11 + x2n = 1 + nx +
n1n - 12

2!
x2 + g  1 0 x 0 6 12  (30.10)

 30.3 Operations with Series
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In the next section, we will see how to use these series in finding values of functions. 
In this section, we see how new series are developed by using the above basic series, 
and we also show other uses of series.

 EXAMPLE  1  Series formed using functional notation

Find the Maclaurin expansion of e2x.
From Eq. (30.6), we know the expansion of ex. Hence,

f1x2 = 1 + x + x2

2!
+ x3

3!
+ g

Since e2x = f12x2 , we have

 f12x2 = 1 + 12x2 +
12x22

2!
+

12x23

3!
+ g  in f1x2 , replace x by 2x

 e2x = 1 + 2x + 2x2 + 4x3

3
+ g  ■

 EXAMPLE  2  Series formed using functional notation

Find the Maclaurin expansion of sin x2.
From Eq. (30.7), we know the expansion of sin x. Therefore,

 f1x2 = x - x3

3!
+ x5

5!
- g

 f1x22 = 1x22 -
1x223

3!
+

1x225

5!
- g  in f1x2 , replace x by x2

 sin x2 = x2 - x6

3!
+ x10

5!
- g

Direct expansion of this series is quite lengthy. ■

The basic algebraic operations may be applied to series in the same manner they are 
applied to polynomials. That is, we may add, subtract, multiply, or divide series in 
order to obtain other series. The interval of convergence for the resulting series is that 
which is common to those of the series being used. The multiplication of series is illus-
trated in the following example.

 EXAMPLE  3  Series formed by multiplication

Multiply the series expansion for ex by the series expansion for cos x to obtain the 
series expansion for ex cos x.

Using the series expansion for ex and cos x as shown in Eqs. (30.6) and (30.8), we 
have the following indicated multiplication:

ex cos x = a1 + x + x2

2!
+ x3

3!
+ x4

4!
+ gb a1 - x2

2!
+ x4

4!
- gb

By multiplying the series on the right, we have the following result, considering 
through the x4 terms in the product.

1a1 - x2

2!
+ x4

4!
b   xa1 - x2

2!
b  

x2

2!
a1 - x2

2!
b  ax3

3!
+ x4

4!
b 112

 ex cos x = 1 - x2

2
+ x4

24
+ x - x3

2
+ x2

2
- x4

4
+ x3

6
+ x4

24
+ g

 = 1 + x - 1
3

 x3 - 1
6

 x4 + g  ■

When we discussed functions in 
Chapter 3, we mentioned functions 
such as f12x2  and f1 -x2 . By using 
functional notation and the preceding 
series, we can find the series expan-
sions of many other series without 
using direct expansion. This can often 
save time in finding a desired series.

LEARNING T IP

Practice Exercise

1.  Using the Maclaurin series for 
ln11 + x2 , find the first four terms of 
the Maclaurin expansion of ln11 - 2x2 .
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It is also possible to use the operations of differentiation and integration to obtain 
series expansions, although the proof of this is found in more advanced texts. Consider 
the following example.

 EXAMPLE  4  Series formed by differentiation

Show that by differentiating the series for ln11 + x2  term by term, the result is the 

same as the series for 
1

1 + x
.

The series for ln11 + x2  is shown in Eq. (30.9) as

ln11 + x2 = x - x2

2
+ x3

3
- x4

4
+ g

Differentiating, we have

 
1

1 + x
= 1 - 2x

2
+ 3x2

3
- 4x3

4
+ g

 = 1 - x + x2 - x3 + g

Using the binomial expansion for 
1

1 + x
= 11 + x2-1, we have

 11 + x2-1 = 1 + 1 -12x +
1 -12 1 -22

2!
 x2 +

1 -12 1 -22 1 -32
3!

 x3 + g
 = 1 - x + x2 - x3 + g

We see that the results are the same. ■

We can use algebraic operations on series to verify that the definition of the expo-
nential form of a complex number, as shown in Eq. (12.11), is consistent with other 
definitions. The only assumption required here is that the Maclaurin expansions for 
ex, sin x, and cos x are also valid for complex numbers. This is shown in advanced 
calculus. Thus,

eju = 1 + ju +
1 ju22

2!
+

1 ju23

3!
+ g = 1 + ju - u2

2!
- j 

u3

3!
 + g (30.11)

 j sin u = ju - j 
u3

3!
 + g  (30.12)

cos  u = 1 - u2

2!
+ g (30.13)

When we add the terms of Eq. (30.12) to those of Eq. (30.13), the result is the series 
given in Eq. (30.11). Thus,

 e ju = cos u + j sin u  (30.14)

A comparison of Eqs. (12.11) and (30.14) indicates the reason for the choice of the 
definition of the exponential form of a complex number.

An additional use of power series is now shown. Many integrals that occur in prac-
tice cannot be integrated by methods given in the preceding chapters. However, power 
series can be very useful in giving excellent approximations to some definite integrals.

using  
Eq. (30.10)  
with n = -1

■ For reference, Eq. (12.11) is 
re ju = r1cos u + j sin u2 .

■ Eq. (30.14) is known as Euler’s Formula.  
If u = p, we have e jp = -1, which can be 
written as

e jp + 1 = 0
This equation connects the five fundamental 
numbers e, j, p, 1, and 0, and it has been called 
a “beautiful” equation by mathematicians. (In 
nontechnical sources, i  would appear in place 
of j  (see page 342.))
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 EXAMPLE  5  Using series for integration

Find the first-quadrant area bounded by y = 21 + x3 and x = 0.5.
From Fig. 30.5, we see that the area is

A = L
0.5

0
21 + x3 dx

This integral does not fit any form we have used. However, its value can be closely 
approximated by using the binomial expansion for 21 + x3 and then integrating.

Using the binomial expansion to find the first three terms of the expansion for 21 + x3, we have

 21 + x3 = 11 + x320.5 = 1 + 0.5x3 +
0.51 -0.52

2
 1x322 + g

 = 1 + 0.5x3 - 0.125x6 + g
Substituting in the integral, we have

 A = L
0.5

0
11 + 0.5x3 - 0.125x6 + g2  dx

 = x + 0.5
4

x4 - 0.125
7

x7 + g 0 0.5
0

 = 0.5 + 0.007 812 5 - 0.000 139 5 + g = 0.507 673 + g
We can see that each of the terms omitted was very small. The result shown is correct 
to four decimal places, or A = 0.5077. Additional accuracy can be obtained by using 
more terms of the expansion. ■

 EXAMPLE  6  Using series for integration

Evaluate L
0.1

0
e-x2

 dx.

 e-x2
= 1 + 1 -x22 +

1 -x222

2!
+ g   using Eq. 130.62

 L
0.1

0
e-x2

 dx = L
0.1

0
a1 - x2 + x4

2
- gbdx   substitute

 = ax - x3

3
+ x5

10
- gb ` 0.1

0
          integrate

 = 0.1 - 0.001
3

+ 0.000 01
10

= 0.099 667 7    evaluate

This answer is correct to the indicated accuracy. ■

The question of accuracy now arises. The integrals just evaluated indicate that the 
more terms used, the greater the accuracy of the result. To show the accuracy involved 
graphically, Fig. 30.6 depicts the graphs of y = sin x and the graphs of

y = x  y = x - x3

3!
  y = x - x3

3!
+ x5

5!

which are the first three approximations of y = sin x. We can see that each term added 
gives a better fit to the curve of y = sin x. Also, this gives a graphical representation of 
the meaning of a series expansion.

Fig. 30.5 

0

0.5

1

0.5dx

y

y

x

1 1 x3=y 5

0

2

32123 2122

22

21

1

y

x

y 5 sin x

y 5 x

y 5 x 2 x3

3! 5!
x5

1

y 5 x 2 x3

3!

Fig. 30.6 

For small values of x, a Maclaurin 
series gives good accuracy with a very 
few terms. In this case, the series  
converges rapidly. For this reason, a 
Maclaurin series is of particular use 
for small values of x. For larger values 
of x, a function is usually expanded in 
a Taylor series (see Section 30.5). Of 
course, if we omit any term in a series, 
there is some error in the calculation.

LEARNING T IP
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EXERCISES 30.3

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section, and then find the resulting series.

 1. In Example 1, change e2x to e2x2
.

 2. In Example 3, change ex to e-x.

In Exercises 3–10, find the first four nonzero terms of the Maclaurin 
expansions of the given functions by using Eqs. (29.6) to (29.10).

 3. f1x2 = e3x 4. f1x2 = e-2x

 5. f1x2 = sin 12 x 6. f1x2 = sin x4

 7. f1x2 = x cos 4x  8. f1x2 = 21 - x4

 9. f1x2 = ln11 + x22  10. f1x2 = x2 ln11 - x2
In Exercises 11–14, evaluate the given integrals by using three terms 
of the appropriate series. Round answers to 3 significant digits.

 11. L
1

0
sin x2 dx 12. L

0.4

0
24 1 - 2x2 dx

 13. L
0.2

0
 cos 1x dx 14. L

0.2

0.1

cos x - 1
x

 dx

In Exercises 15–28, find the indicated series by the given operation.

 15. Find the first four terms of the Maclaurin expansion of the function 

  f1x2 =
2

1 - x2 by adding the terms of the series for the functions 

  
1

1 - x
 and 

1
1 + x

.

 16. Find the first four nonzero terms of the expansion of the function 
f1x2 = 1

2 1ex - e-x2  by subtracting the terms of the appropriate 
series. The result is the series for sinh x. (See Exercise 55 of 
Section 27.6.)

 17. Find the first three terms of the expansion for ex sin x by multiply-
ing the proper expansions together, term by term.

 18. Find the first three nonzero terms of the expansion for 
f1x2 = tan x by dividing the series for sin x by that for cos x.

 19. By using the properties of logarithms and the series for 
ln11 + x2 , find the series for x2 ln (1 - x22.

 20. By using the properties of logarithms and the series for 

  ln11 + x2 , find the series for ln 
1 + x
1 - x

.

 21. Find the first three terms of the expansion for ln11 + sin x2  by 
using the expansions for ln11 + x2  and sin x.

 22. Show that by differentiating term by term the expansion for sin x, 
the result is the expansion for cos x.

 23. Show that by differentiating term by term the expansion for ex, 
the result is also the expansion for ex.

 24. Find the expansion for sin x + x cos x by differentiating term by 
term the expansion for x sin x.

 25. Show that by integrating term by term the expansion for cos x, the 
result is the expansion for sin x.

 26. Show that by integrating term by term the expansion for 
-1> 11 - x2  (see Exercise 13 of Section 30.2), the result is the 
expansion for ln11 - x2 .

 27. By multiplication of series, find the first three terms of the expan-
sion for the displacement of the oscillating object of Exercise 39 
on page 923.

 28. By using the series for ex, find the first three terms of the expan-
sion of the electric current given in Exercise 40 on page 923.

In Exercises 29–40, solve the given problems. Where necessary, round 
answers to 3 significant digits.

 29. Evaluate 11
0  ex dx directly and compare the result obtained by 

using four terms of the series for ex and then integrating.

 30. Evaluate  lim
xS0

 
sin x 

x
 by using the series expansion for sin x. 

  Compare the result with Eq. (27.1).

 31. Evaluate  lim
xS0

 
sin x - x

x3  by using the expansion for sin x.

 32. Find the approximate area bounded by y = sin x, y = 0, and 
x = p>6 by using two terms of the expansion for sin x. Compare 
the result with that found by direct integration.

 33. Find the approximate value of the area bounded by y = x2ex, 
x = 0.2, and the x-axis by using three terms of the appropriate 
Maclaurin series.

 34. Find the approximate area under the graph of y =
112p

 e-x2>2 

  from x = -1 to x = 1 by using three terms of the appropriate 
series. See Fig. 30.7. Compare with the value obtained from 
Table 22.1.

 35. The Fresnel integral L
x

0
cos t2 dt is used in the analysis of beam 

  displacements (and in optics). Evaluate this integral for x = 0.2 
by using two terms of the appropriate series.

 36. The dome of a sports arena is designed as the surface generated by 
revolving the curve of y = 20.0 cos 0.0196x 10 … x … 80.0 m2  
about the y-axis. Find the volume within the dome by using three 
terms of the appropriate series. (This is the same dome as in 
Exercise 51, page 891. Compare the results.)

 37. In the theory of relativity, when studying the kinetic (moving) 

  energy of an object, the equation K = c a1 - v2

c2 b-1>2
- 1 dmc2 

  is used. Here, for a given object, K is the kinetic energy, v is its 
velocity, and c is the velocity of light. If v is much smaller than c, 
show that K = 1

2 mv2, which is the classical expression for K.

 38. The charge q on a capacitor in a certain electric circuit is given by 
q = ce-at sin 6at, where t is the time. By multiplication of series, 
find the first four nonzero terms of the expansion for q.

 39. By differentiating the expansion for 
1

1 - x
, show that 

  a
∞

n = 1
nxn-1 =

111 - x22   for & x & 6 1.

Fig. 30.7 
0

1

y

x
x ! 1x ! "1
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 40. In a torture test, a machine drops a mobile phone repeatedly until 
it breaks. If the probability that the phone will break any time it is 
dropped is 0.04, the average number of times it can be dropped 

  before it breaks is given by m = 0.04a
∞

n = 1
n10.962n-1. Find m. 

  (Hint: Use Exercise 39.)

In Exercises 41–44, use a graphing calculator to display (a) the given 
function and (b) the first three series approximations of the function in 
the same display. Each display will be similar to that in Fig. 30.6 for 
the function y = sin x and its first three approximations. Be careful in 
choosing the appropriate window values.

 41. y = ex 42. y = cos x

 43. y = ln11 + x2   1 0 x 0 6 12
 44. y = 11 + x  1 0 x 0 6 12
Answer to Practice Exercise

1. ln11 - 2x2 = -2x - 2x2 - 8
3 x3 - 4x4 - g

As we mentioned at the beginning of the previous section, power-series expansions can 
be used to compute numerical values of exponential functions, trigonometric functions, 
logarithms, powers, and roots. By including a sufficient number of terms in the expan-
sion, we can calculate these values to any degree of accuracy that may be required.

It is through such calculations that tables of values can be made, and decimal 
approximations of numbers such as e and p can be found. Also, many of the values 
found on a calculator or a computer are calculated by using series expansions that have 
been programmed into the chip which is in the calculator or computer.

 EXAMPLE  1  Exponential value

Calculate the value of e0.1.
In order to evaluate e0.1, we substitute 0.1 for x in the expansion for ex. The more 

terms that are used, the more accurate a value we can obtain. The limit of the partial 
sums would be the actual value. However, since e0.1 is irrational, we cannot express the 
exact value in decimal form.

Therefore, the value is found as follows:

 ex = 1 + x + x2

2!
+ g  Eq. 130.62

 e0.1 = 1 + 0.1 +
10.122

2
+ g  substitute 0.1 for x

 = 1.105  using 3 terms

Using a calculator, we find that e0.1 = 1.105 170 918, which shows that our answer is 
valid to the accuracy shown. ■

 EXAMPLE  2  Trigonometric value

Calculate the value of sin 2°.
In finding trigonometric values, we must be careful to express the angle in radians. 

Thus, the value of sin 2° is found as follows:

 sin x = x - x3

3!
+ g   Eq. 130.72

 sin 2° = a p
90

b -
1p>9023

6
+ g  2° =

p

90
 rad 

 = 0.034 899 496 3   using 2 terms

A calculator gives the value 0.034 899 496 7. Here, we note that the second term is 
much smaller than the first. In fact, a good approximation of 0.0349 can be found by 
using just one term. We now see that sin u ≈ u for small values of u, as we noted in 
Section 8.4. ■

 30.4 Computations by Use of Series Expansions
Calculating Values of Algebraic, 
Trigonometric, Exponential, and 
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 EXAMPLE  3  Trigonometric value

Calculate the value of cos 0.5429.
Since the angle is expressed in radians, we have

 cos 0.5429 = 1 - 0.54292

2
+ 0.54294

4!
- g  using Eq. 130.82

 = 0.856 249 5  using 3 terms

A calculator shows that cos 0.5429 = 0.856 214 082 4. Since the angle is not small, 
additional terms are needed to obtain this accuracy. With one more term, the value 
0.856 213 9 is obtained. ■

 EXAMPLE  4  Logarithmic value

Calculate the value of ln 1.2.

 ln11 + x2 = x - x2

2
+ x3

3
- g  Eq. 130.92

 ln 1.2 = ln11 + 0.22
 = 0.2 -

10.222

2
+

10.223

3
- g = 0.1827

To 4 significant digits, ln 11.22 = 0.1823. One more term is required to obtain this 
accuracy. ■

We now illustrate the use of series in error calculations and measurement approxi-
mations. We also discussed these as applications of differentials. A series solution 
allows as close a value of the calculated error or approximation as needed, whereas 
with differentials, the calculation is limited to one term.

 EXAMPLE  5  Approximation of the value of a velocity

The velocity v of an object that has fallen h m is v = 4.431h. Find the approximate 
error in calculating the velocity of an object that has fallen 100.0 m with a possible 
error of 2.0 m.

If we let v = 4.431100.0 + x, where x is the error in h, we may express v as a 
Maclaurin expansion in x:

 f1x2 = 4.431100.0 + x21>2  f102 = 44.3

 f ′1x2 = 2.221100.0 + x2-1>2  f ′102 = 0.222

 f ″1x2 = -1.111100.0 + x2-3>2   f ″102 = -0.001 11

Therefore,

v = 4.431100.0 + x = 4.43 + 0.222x - 0.000 56x2 + g
Since the calculated value of v for x = 0 is 44.3, the error E in the value of v is

E = 0.222x - 0.000 56x2 + g
Calculating, the error for x = 2.0 is

E = 0.22212.02 - 0.000 5614.02 = 0.444 - 0.002 = 0.442 m>s

The value 0.444 is that which is found using differentials. The additional terms are cor-
rections to this term. The additional term in this case shows that the first term is a good 
approximation to the error. Although this problem can be done numerically, a series 
solution allows us to find the error for any value of x. ■

Practice Exercise

1.  Using two terms of the appropriate series, 
calculate the value of cos 2°.
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 EXAMPLE  6  Approximation of a tangent to earth’s surface

From a point on the surface of the earth, a laser beam is aimed tangentially toward a 
vertical rod 2 km distant. How far up on the rod does the beam touch? (Assume earth is 
a perfect sphere of radius 6400 km.)

From Fig. 30.8, we see that

x = 6400 sec u - 6400

Finding the series for sec u, we have

 f1u2 = sec u  f102 = 1

 f ′1u2 = sec u tan u  f ′102 = 0

 f ″1u2 = sec3 u + sec u tan2 u   f  ″102 = 1

Thus, the first two nonzero terms are sec u = 1 + 1u2>22 . Therefore,

 x = 64001sec u - 12
 = 6400a1 + u2

2
- 1b = 3200 u2

The first two terms of the expansion for tan u are u + u3>3, which means that 
tan u ≈ u, since u is small (see Section 8.4). From Fig. 30.8, tan u = 2>6400, and 
therefore u = 1>3200. Therefore, we have

x = 3200a 1
3200

b2
=

1
3200

= 0.0003 km

This means the 2-km-long beam touches the rod only 30 cm above the surface! ■

x

u

6400 km

2 km

64
00

 k
m

6400 sec u

Fig. 30.8 

EXERCISES 30.4

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section, and then solve the resulting problems.

 1. In Example 1, change e0.1 to e-0.1.

 2. In Example 4, change ln 1.2 to ln 0.8.

In Exercises 3–20, calculate the value of each of the given functions. 
Use the indicated number of terms of the appropriate series. Compare 
with the value found directly on a calculator.

 3. e0.2 (3) 4. 1.01-1 (4)

 5. sin 0.1 (2) 6. cos 0.05 (2)

 7. e (7) 8. e-0.5 (5)

  9. cos p° (2) 10. sin 8° (3)

 11. ln 1.4 (4) 12. ln 0.95 (4)

 13. sin 0.3625 (3) 14. cos 1 (4)

 15. ln 0.8461 (5) 16. ln 1.0534 (3)

 17. 1.0326 (3) 18. 0.99828 (3)

 19. 1.1-0.2 (3) 20. 0.96-1 (3)

In Exercises 21–24, calculate the value of each of the given functions. 
In Exercises 21 and 22, use the expansion for 11 + x, and in 
Exercises 23 and 24, use the expansion for 23 1 + x. Use three terms 
of the appropriate series.

 21. 11.1076 22. 10.7915

 23. 23 0.9628 24. 23 1.1392

In Exercises 25–28, calculate the maximum error of the values 
calculated in the indicated exercises. If a series is alternating (every 
other term is negative), the maximum possible error in the calculated 
value is the value of the first term omitted.

 25. Exercise 5 26. Exercise 4

 27. Exercise 9 28. Exercise 11

In Exercises 29–40, solve the given problems by using series 
expansions.

 29. Evaluate 13.92 by noting that 13.92 = 14 - 0.08 = 211 - 0.02.

 30. Evaluate sin 32° by first finding the expansion for sin1x + p>62 .

 31. We can evaluate p by use of 1
4 p = tan-1 12 + tan-1 13 (see 

Exercise 62 of Section 20.6), along with the series for tan-1 x. 
The first three terms are tan-1 x = x - 1

3 x3 + 1
5 x5. Using these 

terms, expand tan-1 12 and tan-1 13 and approximate the value of p.

 32. Use the fact that 1
4 p = tan-1 17 + 2 tan-1 13 to approximate the 

value of p. (See Exercise 31.)

 33. Explain why ex 7 1 + x + 1
2 x2 for x 7 0.

 34. Using a calculator, determine how many terms of the expansion 
for ln11 + x2  are needed to give the value of ln 1.3 accurate to 
five decimal places.

 35. The time t (in years) for an investment to increase by 10, when 

  the interest rate is 6, is given by t =
ln 1.1
0.06

. Evaluate this 

  expression by using the first four terms of the appropriate series.
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 36. The period T  of a pendulum of length L is given by 

  T = 2pAL
g

 a1 + 1
4

 sin2 
u

2
+ 9

64
 sin4 

u

2
+ gb  

  where g is the acceleration due to gravity and u is the maximum 
angular displacement. If L = 1.000 m and g = 9.800 m>s2, cal-
culate T  for u = 10.0° (a) if only one term (the 1) of the series is 
used and (b) if two terms of the indicated series are used. In the 
second term, substitute one term of the series for sin2 1u>22 .

 37. The current in a circuit containing a resistance R, an inductance L, 
and a battery whose voltage is E is given by the equation 

  i =
E
R

 11 - e-Rt>L2 , where t is the time. Approximate this 

  expression by using the first three terms of the appropriate expo-
nential series. Under what conditions will this approximation be 
valid?

 38. The image distance q from a certain lens as a function of the 
object distance p is given by q = 20p> 1p - 202 . Find the first 

three nonzero terms of the expansion of the right side. From this 
expression, calculate q for p = 2.00 cm and compare it with the 
value found by substituting 2.00 in the original expression.

 39. At what height above the shoreline of Lake Ontario must an 
observer be in order to see a point 15 km distant on the surface of 
the lake? (The radius of the earth is 6400 km.)

 40. The efficiency h (in %) of an internal combustion engine in terms 
of its compression ratio c is given by h = 10011 - c-0.402 . 
Determine the possible approximate error in the efficiency for a 
compression ratio measured to be 6.00 with a possible error of 
0.50. (Hint: Set up a series for 16 + x2-0.40.2

Answer to Practice Exercise

1. cos 2° = 0.999 390 8

To obtain accurate values of a function for values of x that are not close to zero, it is 
usually necessary to use many terms of a Maclaurin expansion. However, we can use 
another type of series, called a Taylor series, which is a more general expansion than 
a Maclaurin expansion. Also, functions for which a Maclaurin series may not be found 
may have a Taylor series.

The basic assumption in formulating a Taylor expansion is that a function may be 
expanded in a polynomial of the form

f1x2 = c0 + c11x - a2 + c21x - a22 + g  (30.15)

Following the same line of reasoning as in deriving the Maclaurin expansion, we may 
find the constants c0, c1, c2, c. That is, derivatives of Eq. (30.15) are taken, and the 
function and its derivatives are evaluated at x = a. This leads to

f1x2 = f1a2 + f ′1a2 1x - a2 +
f ″1a2 1x - a22

2!
+ g  (30.16)

Equation (30.16) is the Taylor series expansion of a function. It converges rapidly for 
values of x that are close to a, and this is illustrated in Examples 3 and 4.

 EXAMPLE  1  Taylor series for ex

Expand f1x2 = e x in a Taylor series with a = 1.

 f1x2 = e x    f112 = e find derivatives and evaluate each at x = 1

 f ′1x2 = e x    f ′112 = e

 f ″1x2 = e x    f ″112 = e

 f ‴1x2 = e x   f ‴112 = e

 f1x2 = e + e1x - 12 + e 
1x - 122

2!
 + e 

1x - 123

3!
 + g  using Eq. 130.162

 ex = e c 1 + 1x - 12 +
1x - 122

2
+

1x - 123

6
+ g d

This series can be used in evaluating e x for values of x near 1. ■

 30.5 Taylor Series

Value of a

■ The Taylor series is named for the English 
mathematician Brook Taylor (1685–1731).

Practice Exercise

1.  Expand f1x2 = e x in a Taylor series 
with a = 3.
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 EXAMPLE  2  Taylor series for 1x

Expand f1x2 = 1x in powers of 1x - 42 .
Another way of stating this is to find the Taylor series for f1x2 = 1x, with 

a = 4. Thus,

 f1x2 = x1>2      f142 = 2   find derivatives and evaluate each at x = 4

 f ′1x2 =
1

2x1>2     f ′142 =
1
4

 f ″1x2 = - 1

4x3>2   f ″142 = - 1
32

 f ‴1x2 =
3

8x5>2    f ‴142 =
3

256

 f1x2 = 2 + 1
4

 1x - 42 - 1
32

 
1x - 422

2!
+ 3

256
 
1x - 423

3!
- g  using Eq. 130.162

 1x = 2 +
1x - 42

4
-

1x - 422

64
+

1x - 423

512
- g

This series would be used to evaluate square roots of numbers near 4.
Fig. 30.9 shows the graphs of y = 1x and y = 1 + x>4 (the first two terms of the 

series, and the linearization of the function at x = 4). We see that each curve passes 
through (4, 2), and they have nearly equal values of y for values of x near 4. ■

In the last section, we evaluated functions by using Maclaurin series. In the follow-
ing examples, we use Taylor series to evaluate functions.

 EXAMPLE  3  Evaluating a square root using Taylor series

By using Taylor series, evaluate 14.5.
Using the four terms of the series found in Example 2, we have

 14.5 = 2 +
14.5 - 42

4
-

14.5 - 422

64
+

14.5 - 423

512
  substitute 4.5 for x

 = 2 +
10.52

4
-

10.522

64
+

10.523

512

 = 2.121 337 891

The value found directly on a calculator is 2.121 320 344. Therefore, the value found 
by these terms of the series expansion is correct to four decimal places. ■

 EXAMPLE  4  Evaluating a sine value using Taylor series

Calculate the approximate value of sin 29° by using three terms of the appropriate 
Taylor expansion.

Since the value of sin 30° is known to be 1
2, we let a = p

6  (remember, we must use 
values expressed in radians) when we evaluate the expansion for x = 29°. When 
expressed in radians, the quantity 1x - a2  is - p

180 (equivalent to -1°). This means 
that its numerical values are small and become smaller when it is raised to higher powers. 
Therefore,

Fig. 30.9 

2 3 4 6

(4, 2)

y

x

1

2

3

1

y =√x

y = 1 + 4
x

In Example 3, we see that successive 
terms become small rapidly. If a value 
of x is chosen such that x - a is larger, 
the successive terms may not become 
small rapidly, and many terms may be 
required. Therefore, we should choose 
the value of a as conveniently close as 
possible to the x-values that will be 
used. Also, we should note that a 
Maclaurin expansion for 1x cannot be 
used since the derivatives of 1x are 
not defined for x = 0.

LEARNING T IP

■ The taylor feature on some graphic 
calculators can be used to find the Taylor 
expansion of a function.
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 f1x2 = sin x    f ap
6
b =

1
2

  find derivatives and evaluate each at x =
p

6

 f ′1x2 = cos x    f ′ap
6
b =

13
2

 f ″1x2 = -sin x   f  ″ap
6
b = - 1

2

 f1x2 =
1
2

+ 13
2

 ax - p

6
b - 1

4
 ax - p

6
b2

- g     using Eq. 130.162
 sin x =

1
2

+ 13
2

 ax - p

6
b - 1

4
 ax - p

6
b2

- g   f1x2 = sin x 

 sin 29° = sinap
6

- p

180
b            29° = 30° - 1° =

p

6
- p

180
 

 =
1
2

+ 13
2

 ap
6

- p

180
- p

6
b - 1

4
 ap

6
- p

180
- p

6
b2

- g  substitute 
p

6
- p

180
 for x

 =
1
2

+ 13
2

 a- p

180
b - 1

4
 a- p

180
b2

- g
 = 0.484 808 850 9

The value found directly on a calculator is 0.484 809 620 2. ■

EXERCISES 30.5

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section, and then solve the resulting problems.

 1. In Example 2, change 1x - 42  to 1x - 12 .

 2. In Example 4, change sin 29° to sin 31°.

In Exercises 3–10, evaluate the given functions by using the series 
developed in the examples of this section.

 3. e1.2 4. e0.7

 5. 14.2 6. 13.5

 7. sin 32° 8. sin 28°
 9. sin 29.53° 10. 13.8527

In Exercises 11–22, find the first three nonzero terms of the Taylor 
expansion for the given function and given value of a.

 11. e-x 1a = 22  12. cos x 1a = p
4 2

 13. sin x 1a = p
3 2  14. ln x 1a = 32

 15. 23 x 1a = 82  16. 
1
x

 1a = 22
 17. tan x 1a = p

4 2  18. ln sin x 1a = p
2 2

 19. ex sin x 1a = p
2 2  20. xe-x 1a = -12

 21. 
1

x + 2
 1a = 32  22. 

111 + x22 1a = -22
In Exercises 23–30, evaluate the given functions by using three terms 
of the appropriate Taylor series.

 23. ep 24. ln 3.1

 25. 19.3 26. 2.056-1

 27. 23 8.3 28. tan 46°
 29. sin 61° 30. cos 42°

In Exercises 31–38, solve the given problems.

 31. By completing the steps indicated before Eq. (30.16) in the text, 
complete the derivation of Eq. (30.16).

 32. Find the first three terms of the Taylor expansion of f1x2 = ln  x 
with a = 1. Compare this Taylor expansion with the linearization 
L1x2  of f1x2  with a = 1. Compare the graphs of f1x2 , L1x2 , 
and the Taylor expansion on a graphing calculator.

 33. Show that the polynomial 2x3 + x2 - 3x + 5 can be written as 
21x - 123 + 71x - 122 + 51x - 12 + 5.

 34. Calculate 13 using the series in Example 2 and compare with the 
value using the series in Exercise 1. Which is the better 
approximation?

 35. Calculate sin 31° by using three terms of the Maclaurin expansion 
for sin x. Also, calculate sin 31° by using three terms of the Taylor 
expansion in Example 4 (see Exercise 2). Compare the accuracy 
of the values obtained with that found directly on a calculator.

 36. Referring to Eq. (30.16), show that a Taylor series can be 
expressed in the form 

  f1a + h2 = f1a2 + f ′1a2h +
f ″1a2

2!
 h2 + g

 37. The current i in a certain electric circuit is i = 6 sin pt. Write the 
first three terms of the Taylor series of this function about 
t = p>2.
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 38. In the analysis of the electric potential of an electric charge dis-

tributed along a straight wire of length L, the expression ln 
x + L

x
 

  is used. Find three terms of the Taylor expansion of this expres-
sion in powers of 1x - L2 .

In Exercises 39–42, use a graphing calculator to display (a) the 
function in the indicated exercise of this set and (b) the first two terms 
of the Taylor series found for that exercise in the same display. 
Describe how closely the graph in part (b) fits the graph in part (a). 
Use the given values of x for Xmin and Xmax.

 39. Exercise 13 (sin x), x = 0 to x = 2

 40. Exercise 15 123 x2 , x = 0 to x = 16

 41. Exercise 16 11>x2 , x = 0 to x = 4

 42. Exercise 17 (tan x), x = 0 to x = 1.5

Answer to Practice Exercise

1. f1x2 = e3J1 + 1x - 32 +
1x - 322

2
+

1x - 323

6
+ gR

Many problems encountered in the various fields of science and technology involve 
functions that are periodic. A periodic function is one for which F1x + P2 = F1x2 , 
where P is the period. We noted that the trigonometric functions are periodic when we 
discussed their graphs in Chapter 10. Illustrations of applied problems that involve 
periodic functions are alternating-current voltages and mechanical oscillations.

In this section, we use a series made of terms of sines and cosines. This allows us to 
represent complicated periodic functions in terms of the simpler sines and cosines. It also 
provides us a good approximation over a greater interval than Maclaurin and Taylor series, 
which give good approximations with a few terms only near a specific value. Illustrations 
of applications of this type of series are given in Example 3 and in the exercises.

We will assume that a function f1x2  may be represented by the series of sines and 
cosines as indicated:

 f1x2 = a0 + a1cos x + a2 cos 2x + g + an cos nx + g
 + b1 sin x + b2 sin 2x + g + bn sin nx + g  

(30.17)

Note that although the period of individual terms in the series may be less than 2p (for 
instance,  sin 2x has period p), all terms repeat every 2p units. Therefore, the series 
expansion indicated in Eq. (30.17) has period 2p. This series is called a Fourier series.

The principal problem to be solved is that of finding the coefficients an and bn. 
Derivatives proved to be useful in finding the coefficients for a Maclaurin expansion. In 
contrast, we use the properties of certain integrals to find the coefficients of a Fourier 
series. To utilize these properties, we multiply all terms of Eq. (30.17) by cos mx and then 
evaluate from -p to p (in this way we take advantage of the period 2p). Thus, we have

L
p

-p
f1x2  cos mx dx = L

p

-p
1a0 + a1 cos x + a2 cos 2x + g2 1cos mx2  dx

+ L
p

-p
1b1 sin x + b2 sin 2 x + g2 1cos mx2dx 

(30.18)

Using the methods of integration of Chapter 28, we now find the values of the coeffi-
cients an and bn. For the coefficients an we find that the values differ depending on 
whether or not n = m. Therefore, first considering the case for which n ≠ m, we have

 L
p

-p
a0 cos mx dx =

a0

m
 sin mx 0 p-p

 =
a0

m
 10 - 02 = 0 

(30.19)

L
P

-P
an cos nx cos mx dx

= an c sin1n - m2x

21n - m2 +
sin1n + m2x

21n + m2 d ` p
-p

= 0  1n ≠ m2  
(30.20)

 30.6 Introduction to Fourier Series

Coefficients

■ The Fourier series is named for the French 
mathematician and physicist Jean Baptiste 
Joseph Fourier (1768–1830).
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These values are all equal to zero since the sine of any multiple of p is zero.
Now, considering the case for which n = m, we have

 L
p

-p
an cos nx cos nx dx = L

p

-p
an cos2 nx dx

= aanx

2
+

an

2n
 sin nx cos nxb ` p

-p

=
anx

2
0 p-p = pan  (30.21)

Now, finding the values of the coefficient bn, we have

L
p

−p

bn sin nx cos mx dx = bn c- cos1n - m2x

21n - m2 -
cos1n + m2  x

21n + m2 d ` p
−p

= bn c -
cos1n - m2p

21n - m2 -
cos1n + m2p

21n + m2 d
+

cos1n - m2 1 -p2
21n - m2 +

cos1n + m2 1 -p2
21n + m2 d

= 03since cos u = cos1 -u2 4  1n ≠ m2  (30.22)

L
p

-p
bn sin nx cos nx dx =

bn

2n
 sin2 nx 0 p-p = 0  (30.23)

These integrals are seen to be zero, except for the one specific case of 

1p

-p an cos nx cos mx dx when n = m, for which the result is indicated in Eq. (30.21). 
Using these results in Eq. (30.18), we have

 L
p

-p
f1x2  cos nx dx = anL

p

-p
 cos2 nx dx = pan

 an =
1
pL

p

-p

f1x2  cos nx dx (30.24)

This equation allows us to find the coefficients an, except a0. We find the term a0 by 
direct integration of Eq. (30.17) from -p to p. When we perform this integration, all 
the sine and cosine terms integrate to zero, thereby giving the result

 L
p

-p
f1x2  dx = L

p

-p
a0 dx = a0x 0 p-p = 2pa0

 a0 =
1

2pL
p

-p

f1x2  dx  (30.25)

By multiplying all terms of Eq. (30.17) by sin mx and then integrating from -p to 
p, we find the coefficients bn. We obtain the result

bn =
1
pL

p

-p

f1x2  sin nx dx (30.26)

We can restate our equations for the Fourier series of a function f1x2 :

 f1x2 = a0 + a1 cos x + a2 cos 2x + g + an cos nx + g
 + b1 sin x + b2 sin 2x + g + bn sin nx + g (30.17)
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where the coefficients are found by

 a0 =
1

2p
 L

p

-p
f1x2  dx  (30.25)

 an =
1
pL

p

-p
f1x2  cos nx dx (30.24)

 bn =
1
pL

p

-p
f1x2  sin nx dx  (30.26)

 EXAMPLE  1  Fourier series for a square wave function

Find the Fourier series for the square wave function

f1x2 = e -1
1

-p … x 6 0
0 … x 6 p

(Many of the functions we shall expand in Fourier series are discontinuous (not con-
tinuous) like this one. See Section 23.1 for a discussion of continuity.)

When f1x2  is defined differently for 
the intervals of x indicated, it requires 
two integrals for each coefficient.

LEARNING T IP

 a0 =
1

2p
 L

0

-p
 1 -12  dx + 1

2pL
p

0
 112  dx = - x

2p
 ` 0

-p
+ x

2p
` p
0

= - 1
2

+ 1
2

= 0

  an =
1
pL

0

-p
1 -12  cos nx dx + 1

pL
p

0
112  cos nx dx = - 1

np
  sin nx 0 0-p + 1

np
  sin nx 0 p0 = 0 + 0 = 0

for all values of n, since sin np = 0;

 b1 =
1
pL

0

-p
 1 -12  sin x dx + 1

pL
p

0
 112  sin x dx =

1
p

 cos x 0 0-p - 1
p

 cos x 0 p0
 =

1
p

 11 + 12 - 1
p

 1 -1 - 12 =
4
p

 b2 =
1
pL

0

-p
 1 -12  sin 2x dx + 1

pL
p

0
 112  sin 2x dx =

1
2p

  cos 2x 0 0-p - 1
2p

  cos 2x 0 p0
 =

1
2p

 11 - 12 - 1
2p

 11 - 12 = 0

  b3 =
1
pL

0

-p
 1 -12  sin 3x dx + 1

pL
p

0
 112  sin 3x dx =

1
3p

  cos 3x 0 0-p - 1
3p

  cos 3x 0 p0
 =

1
3p

 11 + 12 - 1
3p

 1 -1 - 12 =
4

3p

In general, if n is even, bn = 0, and if n is odd, then bn = 4>np. Therefore,

f1x2 =
4
p

 sin x + 4
3p

 sin 3x + 4
5p

 sin 5x + g =
4
p

 asin x + 1
3

 sin 3x + 1
5

 sin 5x + gb
A graph of the function as defined, and the curve found by using the first three terms 

of the Fourier series, are shown in Fig. 30.10.

using Eq. 130.252  

using Eq. 130.242
using Eq. 130.262  
with n = 1

using Eq. 130.262  
with n = 2

using Eq. 130.262  
with n = 3

0

1

−1

f (x)

x
p−2

p
2

−p p

Fig. 30.10 
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Since functions found by Fourier series have a period of 2p, they can rep-
resent functions with this period. If the function f1x2  were defined to be 
periodic with period 2p, with the same definitions as originally indicated, we 
would graph the function as shown in Fig. 30.11. The Fourier series represen-
tation would follow it as in Fig. 30.10. If more terms were used, the fit would 
be closer. ■

 EXAMPLE  2  Finding a Fourier series

Find the Fourier series for the function

f1x2 = e1
x

-p … x 6 0
0 … x 6 p

For the periodic function, let f1x + 2p2 = f1x2  for all x.
A graph of three periods of this function is shown in Fig. 30.12.

Now, finding the coefficients, we have

 a0 =
1

2pL
0

-p
dx + 1

2pL
p

0
x dx =

x
2p

` 0
-p

+ x2

4p
` p
0

 

 =
1
2

+ p

4
=

2 + p

4

 a1 =
1
pL

0

-p
 cos x dx + 1

pL
p

0
x cos x dx

 =
1
p

 sin x 0 0-p + 1
p

 1cos x + x sin x2 0 0p = - 2
p

 a2 =
1
pL

0

-p
 cos 2x dx + 1

pL
p

0
x cos 2x dx

 =
1

2p
 sin 2x 0 0-p + 1

4p
 1cos 2x + 2x sin 2x2 0 0p = 0

 a3 =
1
pL

0

-p
 cos 3x dx + 1

pL
p

0
x cos 3x dx

=
1

3p
 sin 3x 0 0-p + 1

9p
 1cos 3x + 3x sin 3x2 0 0p = -  

2
9p

 b1 =
1
pL

0

-p
 sin x dx + 1

pL
p

0
x sin x dx

 = - 1
p

 cos x 0 0-p + 1
p

 1sin x - x cos x2 0 0p =
p - 2
p

 b2 =
1
pL

0

-p
 sin 2x dx + 1

pL
p

0
x sin 2x dx

 = - cos 2x
2p

` 0
-p

+ sin 2x - 2x cos 2x
4p

` p
0

= - 1
2

Therefore, the first few terms of the Fourier series are

f1x2 =
2 + p

4
- 2

p
 cos x - 2

9p
 cos 3x - g + ap - 2

p
b  sin x - 1

2
 sin 2x + g 

 ■

using Eq. 130.252

using Eq. 130.242  
with n = 1

using Eq. 130.242  
with n = 2

using Eq. 130.242  
with n = 3

using Eq. 130.262  
with n = 1

using Eq. 130.262  
with n = 2

0

1

x
−2p

−1

p 2p 3p−3p −p

f (x)

Fig. 30.11 

Fig. 30.12 0

f(x)

x
−2p p 2p 3p−3p −p
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 EXAMPLE  3  Fourier series for a half-wave rectifier

Certain electronic devices allow an electric current to pass through in only one direc-
tion. When an alternating current is applied to the circuit, the current exists for only 
half the cycle. Figure 30.13 is a representation of such a current as a function of time. 
This type of electronic device is called a half-wave rectifier. Derive the Fourier series 
for a rectified wave for which half is defined by f1 t2 = sin t 10 … t … p2  and for 
which the other half is defined by f1 t2 = 0.

In finding the Fourier coefficients, we first find a0 as

a0 =
1

2pL
p

0
 sin t dt =

1
2p

 1 -cos t2 0 0p =
1

2p
 11 + 12 =

1
p

In the previous example, we evaluated each of the coefficients individually. Here, 
we show how to set up a general expression for an and another for bn. Once we have 
determined these, we can substitute values of n in the formula to obtain the individual 
coefficients:

 an =
1
pL

p

0
 sin t cos nt dt = - 1

2p
c cos 11 - n2 t

1 - n
+

cos 11 + n2 t

1 + n
d

0

p

 = - 1
2p

c cos 11 - n2p
1 - n

+
cos 11 + n2p

1 + n
- 1

1 - n
- 1

1 + n
d

See formula 40 in the table of integrals in Appendix B. It is valid for all values of n 
except n = 1. Now, we write

 a1 =
1
pL

p

0
 sin t cos t dt =

1
2p

 sin2 t 0 0p = 0

 a2 = - 1
2p

a -1
-1

+ -1
3

- 1
-1

- 1
3
b = - 2

3p

 a3 = - 1
2p

a 1
-2

+ 1
4

- 1
-2

- 1
4
b = 0

 a4 = - 1
2p

a -1
-3

+ -1
5

- 1
-3

- 1
5
b = - 2

15p

 bn =
1
pL

p

0
 sin t sin nt dt =

1
2p

c sin 11 - n2 t

1 - n
-

sin 11 + n2 t

1 + n
d

0

p

 = - 1
2p

c sin 11 - n2p
1 - n

-
sin 11 + n2p

1 + n
d

See formula 39 in Appendix B. It is valid for all values of n except n = 1.
Therefore, we have

b1 =
1
pL

p

0
 sin t sin t dt =

1
pL

p

0
 sin2 t dt =

1
2p

 1 t - sin t cos t2 0 0p =
1
2

We see that bn = 0 if n 7 1, since each is evaluated in terms of the sine of a multiple 
of p.

Therefore, the Fourier series for the rectified wave is

f1 t2 =
1
p

+ 1
2

 sin t - 2
p
a1

3
 cos 2t + 1

15
 cos 4t + gb

The graph of these terms of the Fourier series and the original function are shown in 
Fig. 30.14. ■

■ See the chapter introduction.

Fig. 30.13 

O

1

t
p 2p 3p

i = f (t)

Fig. 30.14 
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t
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2pp
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All the types of periodic functions included in this section (as well as many others) 
may actually be seen on an oscilloscope when the proper signal is sent into it. In this 
way, the oscilloscope may be used to analyse the periodic nature of such phenomena as 
sound waves and electric currents.

EXERCISES 30.6

In Exercises 1 and 2, make the given changes in Example 1 of this section 
and then find the resulting Fourier series.

 1. Change the -1 to -2, and the 1 to 2.

 2. Change the -1 to 0.

In Exercises 3–14, find at least three nonzero terms (including a0 and 
at least two cosine terms and two sine terms if they are not all zero) of 
the Fourier series for the given periodic functions and sketch at least 
three periods of the function.

 3. f1x2 = e1
0

-p … x 6 0
0 … x 6 p

 4. f1x2 = e0
2

-p … x 6 -p
2 , p2 … x 6 p

-p
2 … x 6 p

2

 5. f1x2 = e1
2

-p … x 6 0
0 … x 6 p

 6. f1x2 = c 0

1

-p … x 6 0, 
p

2
6 x 6 p

0 … x … p

2

 7. f1x2 = e0
x

-p … x 6 0
0 … x 6 p

 8. f1x2 = x -  p … x 6 p

 9. f1x2 = e -1

0

1

-p … x 6 0

0 … x 6 p

2
p

2
… x 6 p

 10. f1x2 = x2 -p … x 6 p

 11. f1x2 = e -x
x

-p … x 6 0
0 … x 6 p

 12. f1x2 = e 0
x2  

-p … x 6 0
0 … x 6 p

 13. f1x2 = ex -p … x 6 p

 14. f 1x2 = bp + x -p …  x 6 0
p - x 0 6 x 6 p

In Exercises 15–20, use a graphing calculator to display the terms of 
the Fourier series given in the indicated example or answer for the 
indicated exercise. Compare with the sketch of the function. For each 
calculator display, use Xmin = -8 and Xmax = 8.

 15. Example 1 16. Example 2 17. Exercise 5

 18. Exercise 7 19. Exercise 11 20. Exercise 10

In Exercises 21–24, solve the given problems.

 21. The periodic force F (in N) applied in testing a spring system can 
be represented by F = 0 for -p … t 6 0 and F = t2 + t for 
0 6 t 6 p, where the time t is in seconds. Find the Fourier series 
that represents this force.

 22. Another representation for a half-wave rectifier (see Example 3) 
is f1 t2 = cos t 1 -p>2 … t 6 p>22 , f 1 t2 = 0  

  1-p 6 t 6 -  p>2, p>2 6 t 6 p2. Find the Fourier series for 
this half-wave rectifier.

 23. Find the Fourier expansion of the electronic device known as a 
full-wave rectifier. This is found by using as the function for the 
current f 1 t2 = -sin t for -p … t … 0 and f 1 t2 = sin t for 
0 6 t … p. The graph of this function is shown in Fig. 30.15. 
The portion of the curve to the left of the origin is dashed because 
from a physical point of view we can give no significance to this 
part of the wave, although mathematically we can derive the 
proper form of the Fourier expansion by using it.

 24. The loudness L (in decibels) of a certain siren as a function of 
time t (in s) can be described by the function

  L = 0  -p … t 6 0

  L = 100t  0 … t 6 p>2

  L = 1001p - t2  p>2 … t 6 p

  with a period of 2p seconds (where only positive values of t have 
physical significance). Find a0, the first nonzero cosine term, and 
the first two nonzero sine terms of the Fourier expansion for the 
loudness of the siren. See Fig. 30.16.

O
t

p 2p 3p

f (t)

−p

Fig. 30.15 

0

50

3p

L (dB)

t (s)

100

150

200

2pp

Fig. 30.16 
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When finding the Fourier expansion of some functions, it may turn out that all the sine 
terms evaluate to be zero or that all the cosine terms evaluate to be zero. In fact, in 
Example 1 on page 936, we see that all of the cosine terms were zero and that the 
expansion contained only sine terms. We now show how to quickly determine if an 
expansion will contain only sine terms, or only cosine terms.

In Chapter 21 (page 574), we showed that when -x replaces x in a function f1x2 , and 
the function does not change, the curve of the function is symmetric to the y-axis. Such 
a function is called an even function.

 EXAMPLE  1  cos x is an even function

We can show that the function y = cos x is an even function by using the Maclaurin 
expansions for cos x and cos1 -x2 . These are

 cos x = 1 - x2

2
+ x4

24
- g

 cos1 -x2 = 1 -
1 -x22

2
+

1 -x24

24
 g = 1 - x2

2
+ x4

24
- g

Since the expansions are the same, cos x is an even function (and so is cos nx for all n).
 ■

Again referring to Chapter 21 (page 574), we recall that if -x replaces x and -y 
replaces y at the same time, and the function does not change, then the function is sym-
metric to the origin. Such a function is called an odd function.

 EXAMPLE  2  sin x is an odd function

We can show that the function y = sin x is an odd function by using the Maclaurin 
expansions for sin x and -sin1 -x2  (the -  sign before sin1 -x2  is equivalent to making 
y negative). These are

 sin x = x - x3

6
+ x5

120
- g

 -sin1 -x2 = - c 1 -x2 -
1 -x23

6
+

1 -x25

120
- g d = x - x3

6
+ x5

120
- g

Since sin x = -sin1 -x2 , sin x is an odd function (and so is sin nx for all n). ■

It follows from the definitions that the product of two odd functions is even  
and that the product of an even function and an odd function is also odd. Moreover, 
if f1x2  is odd, 1p

-p  f1x2 = 0 (the area from -p to 0 cancels out with the area from  
0 to p).

These properties combined with the results of Examples 1 and 2 imply that when 
f1x2  is even, the integrand in Eq. (30.26) is odd, and all bn terms are 0. Similarly, 
when f1x2  is odd, the integrands in Eqs. (30.25) and (30.24) are odd, and all an terms 
are 0. We summarize this in the Learning Tip to the left.

 30.7 More About Fourier Series

Period 2L

Practice Exercises

Determine whether the following functions 
are even or odd or neither:
1. f1x2 = x1>3 2. f1x2 = sin2 x

even function contains only cosine 
terms (and possibly a constant 
term). When finding the Fourier 
series for such a function, we do 
not have to find any sine terms.

odd function contains only sine 
terms (and no constant term). 
When finding the Fourier series 
for such a function, we do not 
have to find any cosine terms.

LEARNING T IP
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 EXAMPLE  3  Fourier series of an even function

The function

f1x2 = e0
1

-p … x 6 -p>2, p>2 … x 6 p

-p>2 … x 6 p>2

is even (the symmetry to the y-axis can be seen in Fig. 30.17). Therefore, its Fourier 
series expansion contains only cosine terms (and a constant). We find the series to be 

f1x2 =
1
2

+ 2
p

 acos x - 1
3

 cos 3x + 1
5

 cos 5x - gb . ■

 EXAMPLE  4  Fourier series of an odd function

The function

f1x2 = e -1
1

-p … x 6 0
0 … x 6 p

is odd (the symmetry to the origin can be seen in Fig. 30.18). Therefore, its Fourier 
series expansion contains only sine terms and no constant. As we showed in Example 1, 

the series is f1x2 =
4
p

 asin x + 1
3

 sin 3x + 1
5

 sin 5x + gb . ■

 EXAMPLE  5  Constant added to a Fourier series

The values of the function

f1x2 = e1
2

-p … x 6 -p>2, p>2 … x 6 p

-p>2 … x 6 p>2

are all 1 greater than those of the function of Example 3. Therefore, denoting the func-
tion of Example 3 as f11x2 , we have f1x2 = 1 + f11x2 . This means that the Fourier 
series for f1x2  is

 f1x2 = 1 + c 1
2

+ 2
p

 acos x - 1
3

 cos 3x + 1
5

 cos 5x - gb d
 =

3
2

+ 2
p

 acos x - 1
3

 cos 3x + 1
5

 cos 5x - gb
In Fig. 30.19, we see that the graph of f1x2  is shifted up vertically by 1 unit from the 
graph of f1 1x2  in Fig. 30.17. This is equivalent to a vertical translation of axes. We 
also note that f1x2  is an even function. ■

 EXAMPLE  6  Constant subtracted from a Fourier series

The values of the function

f1x2 = e -3
2
1
2

-p … x 6 0
0 … x 6 p

are all 1
2 less than those of the function of Example 4. Therefore, denoting the function 

of Example 4 as f1 1x2 , we have f1x2 = -1
2 + f1 1x2 . This means that the Fourier 

series for f1x2  is

f1x2 = - 1
2

+ 4
p

 asin x - 1
3

 sin 3x + 1
5

 sin 5x - gb
In Fig. 30.20, we see that the graph of f1x2  is shifted vertically down by 1

2 unit from 
the graph of f1 1x2  in Fig. 30.18. Because of the presence of the constant term, f1x2  is 
not an odd function. However, since f1x2  is obtained as a shift of an odd function, its 
series expansion contains only sine terms. ■

1

x

f (x)

0p− 2
p
2

−p p

Fig. 30.17 

If a constant k is added to a function 
f1 1x2 , the resulting function f1x2  is

f1x2 = k + f11x2
Therefore, if we know the Fourier 
series expansion for f11x2 , the 
Fourier series expansion of f1x2  is 
found by adding k to the Fourier 
series expansion of f11x2 .

LEARNING T IP
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Fig. 30.18 

2

1

x

f (x)

0p−2
p
2

−p p

Fig. 30.19 
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Fig. 30.20 
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L
The standard form of a Fourier series we have considered to this point is defined over 
the interval from x = -p to x = p. At times, it is preferable to have a series that is 
defined over a different interval.

Noting that

sin 
np
L

 1x + 2L2 = sin n apx
L

+ 2pb = sin 
npx

L

we see that sin1npx>L2  has a period of 2L. Thus, by using sin1npx>L2  and 
cos 1npx>L2  and the same method of derivation, the following equations are found for 
the coefficients for the Fourier series for the interval from x = -L to x = L.

 a0 =
1

2L L
L

-L
f1x2  dx  (30.27)

 an =
1
L L

L

-L
f1x2cos 

npx
L

 dx (30.28)

 bn =
1
L L

L

-L
f1x2sin 

npx
L

 dx  (30.29)

Note that the conclusions regarding the Fourier series of odd and even functions also 
apply when the period is 2L.

 EXAMPLE  7  Fourier series with period of 8

In checking electric circuit elements, a square wave representing the current i (in mA) 
as a function of the time t (in ms) is given by

f1 t2 = e0
2

-4 … t 6 0
0 … t 6 4

and for which the period is 8 ms. See Fig. 30.21.
Since the period is 8 ms, L = 4 ms. Next, we note that f1 t2 = 1 + f1 1 t2 , where 

f11 t2  is an odd function (from the definition of f1 t2 , and from Fig. 30.21 we can see 
the symmetry to the point 10, 12 ). Therefore, the constant is 1 and there are no cosine 
terms in the Fourier series for f1 t2 . Now, finding the sine terms, we have

 bn =
1
4 L

0

-4
0 sin 

npt
4

 dt + 1
4 L

4

0
2 sin 

npt
4

 dt  using Eq. 130.292
 =

1
2

 a 4
np

b L4

0
 sin 

npt
4

 anp dt
4

b = - 2
np

 cos 
npt
4

` 4
0

 = - 2
np

 1cos np - cos 02 =
2

np
 11 - cos np2

 b1 =
2
p

 31 - 1 -12 4 =
4
p

 b2 =
2

2p
 11 - 12 = 0

 b3 =
2

3p
 31 - 1 -12 4 =

4
3p
  b4 =

2
4p

 11 - 12 = 0

Therefore, the Fourier series is

f1 t2 = 1 + 4
p

 sin 
pt
4

+ 4
3p

 sin 
3pt
4

+ g

See Exercise 43 on page 316. ■

A function that is obtained as a vertical 
shift of an odd function will no longer 
be odd. However, its series expansion 
will still contain only sine terms, as 
seen in Example 6. It is therefore worth 
identifying when a function is a shift 
of an odd function, since in that case 
no cosine terms need to be computed.

LEARNING T IP
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 EXAMPLE  8  Fourier series with period of 2

Find the Fourier series for the function

f1x2 = x2 -1 … x 6 1

for which the period is 2. See Fig. 30.22.
Since the period is 2, L = 1. Next, we note that f1x2 = f1 -x2 , which means it is 

an even function. Therefore, there are no sine terms in the Fourier series. Finding the 
constant and the cosine terms, we have

Practice Exercise

3.  Find the Fourier series for the function 
f1x2 = x2 + 2 -1 … x 6 1.

Fig. 30.22 

1

x

f (x)

0−2 2

 a0 =
1

2112 L1

-1
x2 dx =

1
6

 x3 ` 1
-1

=
1
6

 11 + 12 =
1
3

 an =
1
1 L

1

-1
x2 cos 

npx
1

 dx = L
1

-1
x2 cos npx dx

 = x2 a 1
np

 sin npxb ` 1
-1

- 2
npL

1

-1
x sin npx dx

 =
1

np
 sin np - 1

np
 sin 1 -np2 - 2

np
 c xa-  

1
np

 cos npxb ` 1
-1

- a-  
1

npL
1

-1
 cos npx dxb d

 =
2

n2p2 3cos np + cos 1 -np2 4 + 1

n2p2 sin npx 0 1-1 =
2

n2p2 12 cos np2 =
4

n2p2 cos np

a1 =
4

p2 cos p = -  
4

p2  a2 =
4

4p2 cos 2p =
4

4p2  a3 =
4

9p2 cos 3p = -  
4

9p2

integrating by parts: u = x2, du = 2xdx, 
dv = cos npx dx, v = 11>np2  sin npx 

integrating by parts: u = x, du = dx, 
dv = sin npx dx, v = 1 -1>np2  cos npx

sin np = 0

sin np = 0

Therefore, the Fourier series is

f1x2 =
1
3

- 4

p2 acos px - 1
4

 cos 2px + 1
9

 cos 3px - gb  ■

We have seen that the Fourier series expansion for an even function contains only 
cosine terms (and possibly a constant), and the expansion of an odd function contains 
only sine terms. It is also possible to force a function to be even or odd, so that the 
expansion will contain only cosine terms or only sine terms.

Considering the symmetry of an even function, the area under the curve from -L to 
0 is the same as the area under the curve from 0 to L (see Fig. 30.23). This means the 
value of the integral from -L to 0 equals the value of the integral from 0 to L. 
Therefore, the value of the integral from -L to L equals twice the value of the integral 
from 0 to L, or

L
L

-L
f1x2  dx = 2L

L

0
f1x2  dx  f(x) even

Therefore, to obtain the Fourier coefficients for an expression from -L to L for an 
even function, we can multiply the coefficients obtained using Eqs. (30.27) and (30.28) 
from 0 to L by 2. Similar reasoning shows that the Fourier coefficients for an expansion 
from -L to L for an odd function may be found by multiplying the coefficients 
obtained using Eq. (30.29) from 0 to L by 2.

Fig. 30.23 

x

y

0−L L

AA

f (x) even
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A half-range Fourier cosine series is a series that contains only cosine terms, and 
a half-range Fourier sine series is a series that contains only sine terms. To find the half-
range expansion for a function f1x2 , it is defined for interval 0 to L (half of the interval 
from -L to L) and then specified as odd or even, thereby clearly defining the function in 
the interval from -L to 0. This means that the Fourier coefficients for a half-range 
cosine series are given by

Fig. 30.24 

0

2

f(x)

x
−4 2 4−2

■ See Exercise 44 on page 316.

Fig. 30.25 

0

2

−2

f(x)

x
−4 2 4−2

a0 =
1
L L

L

0
f1x2  dx and an =

2
L L

L

0
f1x2cos 

npx
L

 dx  1n = 1, 2, c2  (30.30)

Similarly, the Fourier coefficients for a half-range sine series are given by

bn =
2
L L

L

0
f1x2sin 

npx
L

 dx  1n = 1, 2, c2  (30.31)

 EXAMPLE  9  Half-range cosine series

Find f1x2 = x in a half-range cosine series for 0 … x 6 2.
Since we are to have a cosine series, we extend the function to be an even function 

with its graph as shown in Fig. 30.24. The red portion between x = 0 and x = L 
shows the given function as defined, and blue portions show the extension that makes it 
an even function. Now, by use of Eqs. (30.30), we find the Fourier expansion coeffi-
cients, with L = 2.

 a0 =
1
2 L

2

0
x dx =

1
4

x2 ` 2
0

= 1

   an =
2
2 L

2

0
x cos 

npx
2

 dx = x c a 2
np

 sin 
npx

2
b - a -4

n2p2 cos 
npx

2
b d `

0

2

 =
4

n2p2 1cos np - 12  1n ≠ 02
If n is even, cos np - 1 = 0. Therefore, we evaluate an for the odd values of n, and 
find the expansion is

f1x2 = 1 - 8

p2 acos 
px
2

+ 1
9

 cos 
3px

2
+ 1

25
 cos 

5px
2

+ gb  ■

 EXAMPLE  10  Half-range sine series

Expand f1x2 = x in a half-range sine series for 0 … x 6 2.
Since we are to have a sine series, we extend the function to be an odd function with 

its graph as shown in Fig. 30.25. Again, the red portion shows the given function as 
defined, and blue portions show the extension that makes it an odd function. By using 
Eq. (30.31), we find the Fourier expansion coefficients, with L = 2.

 bn =
2
2
aL2

0
x sin 

npx
2

 bdx

      = x c a -2
np

 cos 
npx

2
b - a -4

n2p2 sin 
npx

2
b d `

0

2
= -  

4
np

 cos np

 f1x2 =
4
p

 asin 
px
2

- 1
2

 sin px + 1
3

 sin 
3px

2
- gb  ■
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EXERCISES 30.7

In Exercises 1–4, write the Fourier series for each function by 
comparing it to an appropriate function given in an example of this 
section. Do not use any of the formulas for a0, an, or bn.

 1. f1x2 = e2
3

-p … x 6 -p>2, p>2 … x 6 p

-p>2 … x 6 p>2

 2. f1x2 = e -1
2
3
2

-p … x 6 0
0 … x 6 p

 3. f1x2 = e -2
0

-4 … x 6 0
0 … x 6 4

 4. f1x2 = e -1
3
2
3

-p … x 6 -p>2, p>2 … x 6 p

-p>2 … x 6 p>2

In Exercises 5–12, determine whether the given function is even, or 
odd, or neither. One period is defined for each function.

 5. f1x2 = e5
0

-3 … x 6 0
0 … x 6 3

 6. f1x2 = e-1
1

-2 … x 6 0
0 … x 6 2

 7. f1x2 = e2
0

-1 … x 6 1
-2 … x 6 -1, 1 … x 6 2

 8. f1x2 = e0
1

-2 … x 6 0, 1 … x 6 2
0 … x 6 1

 9. f1x2 = 0 x 0  -4 … x 6 4 10. f1x2 = e 0
ex 

-1 … x 6 0
0 … x 6 1

 11. f1x2 = -x cos 3x -3 … x 6 3

 12. f1x2 = x sin 2x cos x -4 … x 6 4

In Exercises 13–16, determine whether the Fourier series of the given 
functions will include only sine terms, only cosine terms, or both sine 
terms and cosine terms.

 13. f1x2 = 2 - x -4 … x 6 4

 14. f1x2 = cos1sin x2  -p … x 6 p

 15. f1x2 = e0   -p … x 6 0
cos x   0 … x 6 p

 16. f1x2 = e -3 -3 … x 6 0
0 0 … x 6 3

In Exercises 17–22, find at least three nonzero terms (including a0 
and at least two cosine terms and two sine terms if they are not all 
zero) of the Fourier series for the function from the indicated exercise 
of this section.

 17. Exercise 5 18. Exercise 6 19. Exercise 7

 20. Exercise 8 21. Exercise 9 22. Exercise 10

In Exercises 23–28, solve the given problems.

 23. Expand f1x2 = 1 in a half-range sine series for 0 … x 6 4.

 24. Expand f1x2 = 1 10 … x 6 22 , f1x2 = 0 12 … x 6 42  in a 
half-range cosine series for 0 … x 6 4.

 25. Expand f1x2 = x2 in a half-range cosine series for 0 … x 6 2.

 26. Expand f1x2 = x2 in a half-range sine series for 0 … x 6 2.

 27. Each pulse of a pulsating force F of a pressing machine is 8 N. 
The force lasts for 1 s, followed by a 3-s pause. Thus, it can be 
represented by F = 0 for -2 … t 6 0 and 1 … t 6 2, and 
F = 8 for 0 … t 6 1, with a period of 4 s (only positive values of 
t have physical significance). Find the Fourier series for the force.

 28. A pulsating electric current i (in mA) with a period of 2 s can be 
described by i = e-t for -1 … t 6 1 s for one period (only posi-
tive values of t have physical significance). Find the Fourier 
series that represents this current.

Answers to Practice Exercises

1. odd 2. even 3. f 1x2 = 7
3 - 4

p2 1cos px - 1
4 cos 2px + g2

 CHAPTER 30   EQUATIONS

Infinite series a
∞

n = 1
an = a1 + a2 + a3 + g + an + g (30.1)

Sum of series S = lim
nS∞

Sn = lim
nS∞ a

n

i= 1
ai (30.2)

Sum of geometric series S = lim
nS∞

Sn =
a1

1 - r
 for 0 r 0 6 1 (30.3)

Power series f1x2 = a0 + a1x + a2x2 + g + anxn + g (30.4)

Maclaurin series f 1x2 = f 102 + f ′102x +
f ″102x2

2!
+

f ‴102x3

3!
+ g +

f n 102xn

n!
+ g (30.5)
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Special series  ex = 1 + x + x2

2!
+ x3

3!
+ g  (all x)  (30.6)

  sin x = x - x3

3!
+ x5

5!
- g  (all x) (30.7)

  cos x = 1 - x2

2!
+ x4

4!
- g  (all x) (30.8)

  ln11 + x2 = x - x2

2
+ x3

3
- x4

4
+ g   1 0 x 0 6 12 (30.9)

  11 + x2n = 1 + nx +
n1n - 12

2!
x2 + g 1 0 x 0 6 12 (30.10)

Taylor series f1x2 = f1a2 + f ′1a2 1x - a2 +
f ″1a2 1x - a22

2!
+ g (30.16)

Fourier series f1x2 = a0 + a1 cos x + a2 cos 2x + g + an cos nx + g 
 + b1 sin x + b2 sin 2x + g + bn sin nx + g (30.17)

Period = 2P  a0 =
1

2pL
p

-p
f1x2  dx (30.25)

 an =
1
pL

p

-p
f 1x2cos nx dx (30.24)

 bn =
1
pL

p

-p
f1x2sin nx dx (30.26)

Period = 2L a0 =
1

2L L
L

-L
f1x2  dx (30.27)

 an =
1
L L

L

-L
f1x2cos 

npx
L

 dx (30.28)

 bn =
1
L L

L

-L
f1x2sin 

npx
L

 dx (30.29)

Half-range expansions a0 =
1
L L

L

0
f1x2dx and an =

2
L L

L

0
f1x2cos 

npx
L

 dx 1n = 1, 2, c2  (30.30)

 bn =
2
L L

L

0
f1x2sin 

npx
L

 dx 1n = 1, 2, g2 (30.31)

 CHAPTER 30   REVIEW EXERCISES

In Exercises 1–10, find the first three nonzero terms of the Maclaurin 
expansion of the given functions.

 1. f1x2 =
1

1 + ex  2. f1x2 = ecos x

 3. f1x2 = sin 2x2 4. f1x2 =
111 - x22

 5. f1x2 = 1x + 121>3 6. f1x2 =
x2

1 + x2

 7. f1x2 = sin-1 x 8. f1x2 =
1

1 - sin x

 9. f1x2 = cos1a + x2  10. f1x2 = ln1a + x2
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In Exercises 11–22, calculate the value of each of the given functions. 
Use three terms of the appropriate series. Round answers to 3 signifi-
cant digits.

 11. e-0.2 12. ln11.102 13. 23 1.3

 14. sin 3.5° 15. 1.086-1 16. 0.983910

 17. ln 0.8172 18. cos 0.1376 19. tan 43.62°
 20. 24 260 21. 2148 22. cos 47°

In Exercises 23 and 24, evaluate the given integrals by using three 
terms of the appropriate series.

 23. L
0.2

0.1

cos x1x
 dx 24. L

0.1

0
23 1 + x2 dx

In Exercises 25 and 26, find the first three terms of the Taylor expan-
sion for the given function and value of a.

 25. cos x 1a = p>32 26. ln cos x 1a = p>42
In Exercises 27–30, write the Fourier series for each function by com-
paring it to an appropriate function in an example of either Section 
30.6 or 30.7. One period is given for each function. Do not use any 
formulas for a0, an, or bn.

 27. f1x2 = e0
x - 1

-p … x 6 0
0 … x 6 p

 28. f1x2 = x2 - 1 -1 … x 6 1

 29. f1x2 = ep - 1
p + 1

-4 … x 6 0
0 … x 6 4

 30. f1x2 = e1
1 + sin x

-p … x 6 0
0 … x 6 p

In Exercises 31–34, find at least three nonzero terms (including a0 
and at least two cosine terms and two sine terms if they are not all 
zero) of the Fourier series for the given function. One period is given 
for each function.

 31. f1x2 = e0
1

-p … x 6 -p>2, p>2 … x 6 p

-p>2 … x 6 p>2 
 

   (See Example 3, page 941.)

 32. f1x2 = e -x
0

-p … x 6 0
0 … x 6 p

 33. f1x2 = x -2 … x 6 2

 34. f1x2 = e -2
2

-3 … x 6 0
0 … x 6 3

In Exercises 35–74, solve the given problems.

 35. Test the series 1000 + 800 + 640 + 512 + c for conver-
gence or divergence. If convergent, find its sum.

 36. Test the series 1 + 1.1 + 1.21 + 1.331 + c for convergence 
or divergence. If convergent, find its sum.

 37. Find the sum of the series 64 + 48 + 36 + 27 +  g.

 38. Find the first five partial sums of the series a
∞

n = 1
 

n
3n + 1

 and 

  determine whether it appears to be convergent or divergent.

 39. Express the integration of the indefinite integral 1sin 1x22 dx as 
an infinite series.

 40. Express the integration of the indefinite integral 111 + x42-1 dx 
as an infinite series.

 41. Find the first three terms of the Taylor series for f1x2 = tan x 
with a = p>4.

 42. Integrate the series found in Exercise 41 to find the Taylor  
expansion for ln cos x with a = p>4.

 43. Differentiate the series found in Exercise 41 to find the Taylor 
expansion for sec2x with a = p>4.

 44. Use the series for 11 - x22-1>2 to find the Maclaurin series for 
sin-1x.

 45. If h is small, show that sin1x + h2 - sin1x - h2 = 2h cos x.

 46. Find the first three nonzero terms of the Maclaurin expansion of 
the function sin x + x cos x by differentiating the expansion 
term by term for x sin x.

 47. Using the properties of logarithms and Eq. (30.9), find four 
terms of the Maclaurin expansion of ln11 + x24.

 48. By multiplication of series, show that the first two terms of the 
Maclaurin series for 2 sin x cos x are the same as those of the 
series for sin 2x.

 49. Find the first four nonzero terms of the expansion for sin2 x by 
using the identity sin2 x = 1

2 11 - cos 2x2 and the series for 
cos x.

 50. Evaluate the integral 11
0 x sin x dx (a) by methods of Chapter 28 

and (b) using three terms of the series for sin x. Compare 
results.

 51. Find the first three terms of the Maclaurin expansion for sec x by 
finding the reciprocal of the series for cos x.

 52. By simplifying the sum of the squares for the Maclaurin series for 
sin x and cos x, verify (to this extent) that sin2 x + cos2 x = 1.

 53. From the Maclaurin series for f1x2 = 1> 11 - x2  (see 
Exercise 13 of Section 30.2), find the series for 1>11 + x2.

 54. Show that the Maclaurin expansions for cos x and cos1-x2 are 
the same.

 55. Expand f1x2 = x2 in a half-range cosine series for 0 6 x … 1.

 56. Expand f1x2 = 2 - x in a half-range sine series for 
0 6 x … 2.

 57. Calculate e0.9 by using four terms of the Maclaurin expansion for 
ex. Also, calculate e0.9 by using the first three terms of the Taylor 
expansion in Example 1 on page 931. Compare the accuracy of 
the values obtained with that found directly on a calculator.

 58. Find the volume generated by revolving the region bounded by 
y = e-x, y = 0, x = 0, and x = 0.1 about the y-axis by using 
three terms of the appropriate series.

 59. Find the approximate area between the curve of y = x - sin x

x2  
and the x-axis between x = 0.1 and x = 0.2.

 60. Find the approximate value of the moment of inertia with re-
spect to its axis of the solid generated by revolving the smaller 
region bounded by y = sin x, x = 0.3, and the x-axis about the 
y-axis. Use two terms of the appropriate series.

 61. Find three terms of the Maclaurin series for tan-1 x by integrat-
ing the series for 1>11 + x22, term by term.
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 62. The current i in an electric circuit containing a resistance R and 
an inductance L is given by i = Ie-Rt>L, where I  is the current at 
t = 0. Express i as an infinite series.

 63. A piano wire vibrates with a displacement y (in mm) given by 
y = 3.2 cos 880pt, where t is the time (in s). Express y as an 
infinite series.

 64. The displacement y (in m) of a water wave as a function of the 
time t (in s) is y = 0.5 sin 0.5t - 0.2 sin 0.4t. Find the first 
three terms of the Maclaurin series for the displacement.

 65. The number N  of radioactive nuclei in a radioactive sample is 
N = N0e

-lt. Here, t is the time, N0 is the number at t = 0, and 
l is the decay constant. By using four terms of the appropriate 
series, express the right side of this equation as a polynomial.

 66. The length of Lake Erie is a great circle arc of 390 km. If the 
lake is assumed to be flat, use series to find the error in calculat-
ing the distance from the centre of the lake to the centre of the 
earth. The radius of the earth is 6400 km.

 67. From what height can a person see a point 10 km distant on 
earth’s surface?

 68. The vertical displacement y of a mass at the end of a spring is 
given by y = sin 3t - cos 2t, where t is the time. By subtraction 
of series, find the first four nonzero terms of the series for y.

 69. The electric potential V  at a distance x along a certain surface is 

  given by V = ln 
1 + x
1 - x

. Find the first four terms of the 

Maclaurin series for V .

 70. If a mass M  is hung from a spring of mass m, the ratio of the 
masses is m>M = kv tan kv, where k is a constant and v is a 
measure of the frequency of vibration. By using two terms of the 
appropriate series, express m>M  as a polynomial in terms of v.

 71. In the study of electromagnetic radiation, the expression 

  
N0

1 - e-k>T  is used. Here, T  is the thermodynamic temperature, and 

  N0 and k are constants. Show that this expression can be written 
as N0 11 + e-k>T + e-2k>T + g2. (Hint: Let x = e-k>T.)

 72. In the analysis of reflection from a spherical mirror, it is necessary 
to express the x-coordinate on the surface shown in Fig. 30.26 in 
terms of the y-coordinate and the radius R. Using the equation of 
the semicircle shown, solve for x (note that x … R). Then express 
the result as a series. (Note that the first approximation gives a 
parabolic surface.)

 73. A certain electric current is pulsating so that the current as a 
function of time is given by f1 t2 = 0 if -p … t 6 0 and 
p>2 6 t 6 p. If 0 6 t 6 p>2, f1 t2 = sin t. Find the Fourier 
expansion for this pulsating current and sketch three periods.

 74. The force F  applied to a spring system as a function of the time 
t is given by F = t>p if 0 … t … p and F = 0 if p 6 t 6 2p. 
If the period of the force is 2p, find the first few terms of the 
Fourier series that represents the force.

Writing Exercise
 75. A computer science class is assigned to write a program to find 

the Maclaurin series for sin2 x, using only the series for sin x 
and/or cos x, and any algebraic, trigonometric, or calculus pro-
cedures. Write a paragraph or two explaining how this can be 
done in at least four different ways.

Fig. 30.26 

0 R

y

x

(x, y)

 CHAPTER 30   PRACTICE TEST

 1. By direct expansion, find the first four nonzero terms of the 
Maclaurin expansion for f1x2 = 11 + ex22.

 2. Find the first three nonzero terms of the Taylor expansion for 
f1x2 = cos x, with a = p>3.

 3. Evaluate ln 0.96 by using four terms of the expansion for 
ln11 + x2.

 4. Find the first three nonzero terms of the expansion for 

  f1x2 =
111 - 2x

 by using the binomial series.

 5. Evaluate 11
0 x cos x dx by using three terms of the appropriate 

series.

 6. An electric current is pulsating such that it is a function of the 
time with a period of 2p. If f1 t2 = 2 for 0 … t 6 p and 
f1 t2 = 0 for the other half-cycle, find the first three nonzero 
terms of the Fourier series for this current.

 7. f1x2 = x2 + 2 for -2 … x 6 2 (period = 4). Is f1x2  an 
even function, an odd function, or neither? Expressing the 
Fourier series as F1x2, what is the Fourier series for the function 
g1x2 = x2 - 1 for -2 … x 6 2 (period = 4)? (Do not use in-
tegration to derive specific terms for either series.)
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LEARNING OUTCOMES
After completion of this 
chapter, the student should 
be able to:

 Show that a function is a 
solution of a differential 
equation

 Solve first-order differential 
equations by separation of 
variables or by recognizing 
integrating combinations

 Solve first-order linear 
differential equations using an 
integrating factor

 Solve first-order differential 
equations numerically by 
Euler’s method or by the 
Runge–Kutta method

 Solve homogeneous linear 
differential equations of higher 
order

 Solve higher-order 
nonhomogeneous linear 
differential equations by the 
method of undetermined 
coefficients

 Find the Laplace transform and 
the inverse Laplace transform 
of a function

 Solve differential equations 
using Laplace transforms

 Solve application problems 
involving differential equations

Many of the physical problems being studied in the 1700s, such as velocity and light, 
led to equations that involved derivatives or differentials. These equations are 
called differential equations. Therefore, solving these differential equations be-

came a very important topic of mathematical development during the eighteenth century.

In this chapter, we study some of the basic methods of solving differential equations. Many of 
these methods were first developed by the famous Swiss mathematician Leonhard Euler 
(1707–1783). He is undoubtedly the most prolific mathematician of all time, in that his work 
in mathematics and other fields filled over 70 large volumes.

The final topic covered in this chapter is the solution of differential equations by Laplace 
transforms. They are named for the French mathematician Pierre Laplace (1749–1827). 
Actually, Laplace had devised a mathematical method in the late 1700s that the English elec-
tric engineer Oliver Heaviside (1850–1925) refined and developed into its present useful 
form in the late 1800s. The Laplace transform is particularly useful for solving problems in-
volving electrical circuits and mechanical systems.

Here, we see again that a field of mathematics was developed in response to the need for solv-
ing real-life physical problems. Also, we see that a method developed for purely mathemati-
cal reasons was then very usefully applied 100 years later in electricity, an area of study that 
did not exist when the method was first devised.

We actually solved a few simple differential equations in earlier chapters when we started a 
solution with the expression for the slope of a tangent line or the velocity of an object. Also, 
we have noted the applications of differential equations in electrical circuits, mechanical sys-
tems, and the study of light. Other areas of application include chemical reactions, interest 
calculations, changes in pressure and temperature, population growth, forces on beams and 
structures, and nuclear energy.

31Differential 
Equations

 In Section 31.10, we show how dif-
ferential equations are used in the 
dating of geological samples (such as 
those from the Dome Glacier in 
Alberta) by using carbon dating.
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 31.1 Solutions of Differential Equations
 

 
 

Show Equation Is a Solution

A differential equation is an equation that contains derivatives or differentials. Most 
differential equations we shall consider contain first and/or second derivatives, although 
some will have higher derivatives. An equation that contains only first derivatives is 
called a first-order differential equation. An equation that contains second deriva-
tives, and possibly first derivatives, is called a second-order differential equation. In 
general, the order of the differential equation is that of the highest derivative in the 
equation, and the degree is the highest power of that derivative.

 EXAMPLE  1  Illustrations of differential equations

(a) The equation dy>dx + x = y is a first-order differential equation since it con-
tains only a first derivative.

(b) The equations 
d2y

dx2 + y = 3x2 and 
d2y

dx2 + 2 
dy
dx

 = x are second-order differential

  equations since each contains a second derivative and no higher derivatives. The 
dy>dx in the second equation does not affect the order.

(c) The equation 
d2y

dx2 + ady
dx

b4
- y = 6 is a differential equation of the second order 

  and first degree. That is, the highest derivative that appears is the second, and it is 
raised to the first power. Since the second derivative appears, the fourth power 
of the first derivative does not affect the degree. ■

A solution of a differential equation is a relation between the variables that satisfies 
the differential equation. That is, when this relation is substituted into the differential 
equation, an algebraic identity results. A solution containing a number of independent 
arbitrary constants equal to the order of the differential equation is called the general 
solution of the equation. When specific values are given to at least one of these con-
stants, the solution is called a particular solution.

 EXAMPLE  2  Independent arbitrary constants

Any coefficients that are not specified numerically after like terms have been combined 
are independent arbitrary constants. In the expression c1x + c2 + c3x, there are only 
two arbitrary constants, since the x-terms may be combined; c2 + c4x is an equivalent 
expression with c4 = c1 + c3. ■

 EXAMPLE  3  Illustration of the general solution

y = c1e-x + c2e2x is the general solution of the differential equation

d2y

dx2 -
dy
dx

= 2y

The order of this differential equation is 2, and there are two independent arbitrary con-
stants in the solution. The equation y = 4e-x is a particular solution. It can be derived 
from the general solution by letting c1 = 4 and c2 = 0. Each of these solutions can be 
shown to satisfy the differential equation by taking two derivatives and substituting. ■

To solve a differential equation, we have to find some method of transforming the 
equation so that each term may be integrated. Some of these methods will be consid-
ered after this section.

General Solution

Particular Solution
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To show that a given equation is a 
solution of the differential equation, 
we take the required derivatives and 
show that an identity results after 
substitution.

LEARNING T IP  EXAMPLE  4  Showing that an equation is the general solution

Show that y = c1 sin x + c2 cos x is the general solution of the differential equation 
y″ + y′ = 0.

The function and its first two derivatives are

 y = c1 sin x + c2 cos x

 y′ = c1 cos x - c2 sin x

 y″ = -c1 sin x - c2 cos x

Substituting these into the differential equation, we have

y″         +        y         = 0

1 -c1 sin x - c2 cos x2 +  1c1 sin x + c2 cos x2 = 0 or 0 = 0

We know that this must be the general solution, since there are two independent arbi-
trary constants and the order of the differential equation is 2. ■

 EXAMPLE  5  Showing that an equation is a particular solution

Show that y = 3x + x2 is a solution of the differential equation xy′ - y = x2.
Taking one derivative of the function and substituting in the differential equation, 

we have

 y = 3x + x2        particular solution—no arbitrary constants

xy′ - y = x2

 y′ = 3 + 2x

x13 + 2x2 - 13x + x22 = x2 or x2 = x2 ■

Practice Exercise

1.  Show that y = 2 + ce2x is a solution of 
y″ - 2y′ = 0. Is it the general solution?

EXERCISES 31.1

In Exercises 1 and 2, show that the indicated solutions are, in fact, 
solutions of the differential equations in the indicated examples.

 1. In Example 3, two solutions are shown for the given differential 
equation. Show that each is a solution.

 2. In Example 4, show that y1 = c sin x + 5 cos x and 
y2 = 2 sin x - 3 cos x are solutions of the given differential 
equation.

In Exercises 3–6, determine whether the given equation is the general 
solution or a particular solution of the given differential equation.

 3. 
dy

dx
+ 2xy = 0, y = e-x2

 4. y′ lnx -
y

x
= 0, y = c lnx

 5. y″ + 3y′ - 4y = 3ex, y = c1ex + c2e-4x + 3
5 xex

 6. 
d2y

dx2 + 4y = 8, y = c sin 2x + 3 cos 2x + 2

In Exercises 7–10, show that each function y = f1x2  is a solution of 
the given differential equation.

 7. 
dy

dx
- y = 1; y = ex - 1, y = 5ex - 1

 8. 
dy

dx
= 2xy2; y = - 1

x2, y = - 1

x2 + c

 9. y″ + 4y = 0; y = 3 cos 2x, y = c1 sin 2x + c2 cos 2x

 10. y″ = 2y′; y = 3e2x, y = 2e2x - 5

In Exercises 11–32, show that the given equation is a solution of the 
given differential equation.

 11. 
dy

dx
= 2x, y = x2 + 1 12. xy′ = 2y, y = cx2

 13. 
dy

dx
= 1 - 3x2, y = 2 + x - x3

 14. 
dy

dx
= 3y + 2x, y = ce3x - 2

3
 x - 2

9

 15. y′ + 2y = 2x, y = ce-2x + x - 1
2

 16. y″ = 6x + 2, y = x3 + x2 + c

 17. y″ + 9y = 4 cos x, 2y = cos x

 18. y″ - 4y′ + 4y = e2x, y = e2xac1 + c2x + x2

2
b

 19. x2y′ + y2 = 0, xy = cx + cy

 20. xy′ - 3y = x2, y = cx3 - x2

 21. x 
d2y

dx2 
+

dy

dx
= 0, y = c1 ln x + c2

 22. y″ + 4y = 10ex, y = c1 sin 2x + c2 cos 2x + 2ex

 23. y′ + y = 2 cos x, y = sin x + cos x - e-x
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 24. 1x + y2 - xy′ = 0, y = x ln x - cx

 25. y″ - 3y′ + 2y = 3, y = c1ex + c2e2x + 3>2

 26. xy″ + y′ = 16x3, y = x4 + c1 + c2 ln x

 27. cos x  
dy

dx
 + sin x = 1 - y, y =

x + c
sec x + tan x

 28. 2xyy′ + x2 = y2, x2 + y2 = cx

 29. 1y′22 + xy′ = y, y = cx + c2

 30. x4 1y′22 - xy′ = y, y = c2 + c
x

 31. 
d3y

dx3 =
d2y

dx2, y = c1 + c2x + c3ex

 32. 
d3y

dx3 + 4  
d2y

dx2 
+ 4  

dy

dx
 = 0, y = c1 + c2e-2x + xe-2x

In Exercises 33 and 34, solve the given problems.

 33. The general solution of the differential equation y″ - y′>x = 3x 
is y = x3 + c1x2 + c2. Find the particular solution if the graph 
of the solution passes through the point 10, -42 .

 34. For a given electric circuit, the charge q in the circuit as a func-
tion of the time t is q = 0.0111 - cos 316t2 . Show that this sat-

isfies the differential equation 0.1 
d2q

dt2 + 104q = 100.

Answer to Practice Exercise

1. 14ce2x2 - 212ce2x2 = 0, No (two constants required).

 31.2 Separation of Variables
 

 
Finding Particular Solutions

We will now solve differential equations of the first order and first degree. Of the many 
methods for solving such equations, a few are presented in this and the next two sec-
tions. The first of these is the method of separation of variables.

A differential equation of the first order and first degree contains the first derivative 
to the first power. That is, it may be written as dy>dx = f1x, y2 . This type of equation 
is more commonly expressed in its differential form,

M1x, y2  dx + N1x, y2  dy = 0  (31.1)

where M1x, y2  and N1x, y2  may represent constants, functions of either x or y, or 
functions of x and y.

To solve an equation of the form of Eq. (31.1), we must integrate. However, if 
M1x, y2  contains y, the first term cannot be integrated. Also, if N1x, y2  contains x, the 
second term cannot be integrated. If it is possible to rewrite Eq. (31.1) as

A1x2  dx + B1y2  dy = 0  (31.2)

where A1x2  does not contain y and B1y2  does not contain x, then we may find the 
solution by integrating each term and adding the constant of integration. Many differ-
ential equations can be solved in this way.

 EXAMPLE  1  Separate variables—divide by x

Solve the differential equation dx - 4xy3dy = 0.
We can write this equation as112  dx + 1 -4xy32  dy = 0

which means that M1x, y2 = 1 and N1x, y2 = -4xy3.
We remove the x from the coefficient of dy by dividing each term by x, which gives us

dx>x - 4y3 dy = 0

It is now possible to integrate each term. Performing this integration, we have

ln 0 x 0 - y4 = c

The constant of integration c becomes the arbitrary constant of the solution. ■

Eq. (31.1) can be rewritten in the 
form of Eq. (31.2) when the func-
tions M1x, y2  and N1x, y2  are both 
products of a function involving only 
x and a function involving only y. 
Therefore, the x and y terms can be 
separated by multiplying or dividing 
the equation by an appropriate 
expression.

It is important to note that, if divi-
sion is used, the solution is not valid 
for values that make the divisor zero.
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 EXAMPLE  2  Separate variables—divide by y 1x2 + 1 2
Solve the differential equation xy dx + 1x2 + 12  dy = 0.

In order to integrate each term, it is necessary to divide each term by y1x2 + 12 . 
When this is done, we have

x dx

x2 + 1
+

dy
y

= 0

Integrating, we obtain the solution

1
2

 ln 1x2 + 12 + ln y = c

It is possible to make use of the properties of logarithms to make the form of this 
solution neater. If we write the constant of integration as ln c1, rather than c, we have 
1
2 ln 1x2 + 12 + ln y = ln c1. Multiplying through by 2 and using the property of 
logarithms given by Eq. (13.9), we have ln 1x2 + 12 + ln y2 = ln c2

1. Next, using the 
property of logarithms given by Eq. (13.7), we then have ln 1x2 + 12y2 = ln c2

1, 
which means 1x2 + 12y2 = c2

1

This form of the solution is more compact and generally would be preferred. ■

 EXAMPLE  3  Divide by U and multiply by dt

Solve the differential equation 
du
dt

=
u

t2 + 4
.

The solution proceeds as follows:

 
du
u

=
dt

t2 + 4

ln u =
1
2

  tan-1 
t
2

+ c
2

integrate

 2 ln u = tan-1 
t
2

+ c

 ln u2 = tan-1 
t
2

+ c

Note the different forms of the result using c>2 as the constant of integration. These 
forms would differ somewhat had we chosen c as the constant.

The choice of ln c as the constant of integration is also reasonable. On the left, it 
would lead to the result 2 ln cu = tan-1 1 t>22 . On the right, after solving explicitly for

u using the exponential function, it would lead to the expression u = ce 12 
tan-11 t

22. ■

 EXAMPLE  4  Divide by ex sin y

Solve the differential equation 2e3x sin y dx + ex csc y dy = 0.
To separate variables, we divide by ex sin y to remove sin y from the first term and ex 

from the second term. Using properties of trigonometric and exponential functions, we 
have

 
2e3x sin y dx

ex sin y
+

ex csc y dy
ex sin y

= 0 divide by ex sin y

 2e2x dx + csc 2 y dy = 0 variables separated

 e2x 12 dx2 + csc 2 y dy = 0 form for integrating

 e2x - cot y = c integrate ■

separate variables by multiplying 
by dt and dividing by u

In Example 1, we showed the inte-
gration of dx>x  as ln 0 x 0 , which fol-
lows our discussion in Section 28.2. 
We know ln 0 x 0 = ln x  if x 7 0 and 
ln 0 x 0 = ln 1 -x2  if x 6 0. Since we 
know the values being used when 
we find a particular solution, we 
generally will not use the absolute 
value notation when integrating 
logarithmic forms. We would show 
the integration of dx>x  as ln x, with 
the understanding that we know 
x 7 0. When using negative values of 
x , we would express it as ln 1 -x2 .
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Practice Exercise

1.  Find the general solution of the differen-
tial equation dx + 2y sec x dy = 0.

■ For reference, Eq. (13.9) is  
logb x

n = n logb x and Eq. (13.7) is 
logb xy = logb x + logb y.

Any expression that represents a con-
stant may be chosen as the constant 
of integration and leads to a correct 
solution. In checking answers, we 
must remember that a different 
choice of constant will lead to a dif-
ferent form of the solution. Thus, 
two different-appearing answers may 
both be correct. Often there is more 
than one reasonable choice of a con-
stant, and different forms of the 
solution may be expected.
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To find a particular solution, we need information that allows us to evaluate the con-
stant of integration. We now show how to find particular solutions, and graphically 
show the difference between the general solution and a particular solution.

 EXAMPLE  5  Finding a particular solution

Solve the equation 1x2 + 122 dy + 4x dx = 0, subject to the condition that x = 1 
when y = 3.

 dy + 4x dx1x2 + 122 = 0 dividing by 1x2 + 122

 y - 2

x2 + 1
= c integrating

 y =
2

x2 + 1
+ c general solution

 3 =
2

1 + 1
+ c, c = 2  use x = 1, y = 3 to evaluate c

y =
2

x2 + 1
+ 2 particular solution

The general solution defines a family of curves, one member of the family for each 
value of c. A few of these curves are shown in Fig. 31.1. When c is specified as in the 
particular solution, we have the specific curve shown. ■

 EXAMPLE  6  The constant does not affect the result

Find the particular solution in Example 2, given that x = 0 when y = e.
Using the solution 12  ln1x2 + 12 + ln y = c, we have

1
2  ln10 + 12 + ln e = c, 1

2  ln 1 + 1 = c, c = 1

 12  ln1x2 + 12 + ln y = 1 substitute c = 1

 ln1x2 + 12 + 2 ln y = 2

ln y21x2 + 12 = 2 using properties of logarithms

y21x2 + 12 = e2 exponential form of particular solution

Using the general solution 1x2 + 12y2 = c2
1, we have

 10 + 12e2 = c2
1,   c2

1 = e2

 y21x2 + 12 = e2

which is precisely the same solution as above. This shows that the choice of the form of 
the constant does not affect the final result, and the constant is truly arbitrary. ■

Fig. 31.1 

2

0
1

3

5

(1, 3)

y

x
22

21

23

c 5 2

Practice Exercise

2.  In Example 4, find the particular solution 
if x = 0 when y = p>4.

EXERCISES 31.2

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the resulting differential equations.

 1. In Example 2, change the first term to 2xy dx.

 2. In Example 4, change the second term to e2x csc y dy.

In Exercises 3–32, solve the given differential equations. Explain your 
method of solution for Exercise 15.

 3. 2x dx + dy = 0 4. y2 dy + x3 dx = 0

 5. y2 dx + dy = 0 6. ydt + tdy = 3ty dt

 7. 
dV
dP

= - V

P2 8. 
2 dy

dx
=

y1x + 12
x

 9. x2 + 1x3 + 52y′ = 0 10. xyy′ + 21 + y2 = 0

 11. dy + ln xy dx = 14x + ln y2  dx

 12. r21 - u2  
dr
du

= u + 4

 13. ex2
dy = x11 - y dx

 14. 21 + 4x2 dy = y3x dx 15. ex+y dx + dy = 0

 16. e2xdy + exdx = 4 dx 17. y′ - y = 4



 18. ds - s2 dt = 9 dt

 19. x  
dy

dx
 = y2 + y2 ln x

 20. 1yx2 + y2  
dy

dx
= tan-1 x

 21. y tan x dx + cos2 x dy = 0

 22. sin x sec y dx = dy

 23. yx2 dx = y dx - x2 dy

 24. y21 - x2 dy + 2 dx = 0

 25. ecos u tan u du + sec u dy = 0

 26. 1x3 + x22  dx + 1xy + x + y + 12  dy = 0

 27. xe x
2-ydx = dy

 28. cos2 f + y csc f 
dy

df
= 0

 29. 2 ln t dt + t di = 0

 30. y2et + 1et + 42y′ = 0

 31. 2y1x3 + 12  dy + 3x2 1y2 - 12  dx = 0

 32. V + 1 + 11 + sin T 2  secT  
dV
dT

 = 0

In Exercises 33–38, find the particular solution of the given 
differential equation for the indicated values.

 33. 
dy

dx
+ yx2 = 0; x = 0 when y = 1

 34. 
ds
dt

= sec s; t = 0 when s = 0

 35. y′ = 11 - y2cos x; x = p>6 when y = 0

 36. x dy = y ln y dx; x = 2 when y = e

 37. y2ex dx + e-x dy = y2 dx; x = 0 when y = 2

 38. 2y cos y dy - sin y dy = y sin y dx; x = 0 when y = p>2

In Exercise 39–44, solve the given problems.

 39. In Example 6, show that the particular solution is the same if the 
constant of integration is ln c, rather than c.

 40. Find f1x2  if f ′1x2 = x2 f1x2  and f102 = 1.

 41. The temperature reading T  (in °C) at time t (in s) of a thermome-
ter initially reading 40°C and then placed in water at 10°C is 
found by solving the equation dT + 0.151T - 102dt = 0. 
Solve for T  as a function of t.

 42. The current i (in A) in an electric circuit changes with time t (in s) 
according to the equation di + 10i dt = 6 dt. Find i as a function 
of t if the initial current is zero.

 43. In the study of fluid mechanics, streamlines are often drawn to visu-
alize the flow field. (A streamline is tangent to the velocity vector.) 
Find an expression for the streamlines of a fluid flow if these satisfy

  the equation 
dy

dx
= - x

y
. What shape do these lines have?

 44. Find an expression for the streamlines of a fluid flow if these sat-

isfy the equation 
dy

dx
= -

y

x
. What shape do these lines have? (See

  Exercise 43.)

Answers to Practice Exercises

1.  sin x + y2 = c  2. cot y = e2x

 31.3 Integrating Combinations
Combinations of Differentials Integrated For different equations that cannot be solved by separation of variables, other methods 

have been developed. One is based on the fact that certain combinations of differentials 
can be integrated as a unit. The following differentials show some of the possible 
combinations:

 d1xy2 = xdy + y dx  (31.3)
 d1x2 + y22 = 21x dx + y dy2  (31.4)

 day
x
b =

x dy - y dx

x2  (31.5)

 dax
y
b =

y dx - x dy

y2  (31.6)

Eq. (31.3) suggests that if the combination x dy + y dx occurs in a differential equa-
tion, we should look for a function of xy as a solution. Eq. (31.4) suggests that if the 
combination x dx + y dy occurs, we should look for a function of x2 + y2. Eqs. (31.5) 
and (31.6) suggest that if either of the combinations x dy - y dx or y dx - x dy occurs, 
we should look for a function of y>x or x>y.
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 EXAMPLE  1  Recognizing the differential of xy

Solve the differential equation x dy + y dx + xy dy = 0.
By dividing through by xy, we have

x dy + y dx
xy

+ dy = 0

The left term is the differential of xy divided by xy. Thus, it integrates to ln xy.

d1xy2
xy

+ dy = 0

for which the solution is

ln xy + y = c ■

 EXAMPLE  2  Recognizing the differential of y , x
Solve the differential equation y dx - x dy + x dx = 0.

The combination of y dx - x dy suggests that this equation might make use of either 
Eq. (31.5) or (31.6). This would require dividing through by x2 or y2. If we divide by 
y2, the last term cannot be integrated, but division by x2 still allows integration of the 
last term. Performing this division, we obtain

y dx - x dy

x2 + dx
x

= 0

This left combination is the negative of Eq. (31.5). Thus, we have

-day
x
b + dx

x
= 0

for which the solution is -
y
x

+ ln x = c. ■

 EXAMPLE  3  Two combinations in the same equation

Find the general solution of the differential equation

(x3 + xy2 + 2y) dx + (y3 + x2y + 2x) dy = 0

which satisfies the condition that x = 1 when y = 0.
Regrouping the terms of the equation, we have

x1x2 + y22  dx + y1x2 + y22  dy + 21y dx + x dy2 = 0

Factoring x2 + y2 from each of the first two terms gives

 1x2 + y22 1x dx + y dy2 + 21y dx + x dy2 = 0

d1x2 + y22        d1xy2
 
1
2

 1x2 + y22 12x dx + 2y dy2 + 21y dx + x dy2 = 0

 
1
2
a1

2
b 1x2 + y222 + 2xy + c

4
= 0 integrating

  1x2 + y222 + 8xy + c = 0 ■

Practice Exercise

1.  Find the general solution of the differen-
tial equation 14x - y2dx = xdy.

The use of integrating combinations 
depends on proper recognition of the 
forms. It may take two or three 
arrangements to find the combina-
tion that leads to the solution. Of 
course, many equations cannot be 
arranged so as to give integrable 
combinations in all terms.
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 EXAMPLE  4  Particular solution—differential of x  

2 + y   

2

Find the particular solution of the differential equation 1x2 + y2 + x2  dx + y dy = 0 
that satisfies the condition x = 1 when y = 0.

Regrouping the terms of this equation, we have

 1x2 + y22  dx + 1x dx + y dy2 = 0 divide each term by x2 + y2

 dx +
x dx + y dy

x2 + y2 = 0

The right term now can be put in the form of du>u (with u = x2 + y2) by multiplying 
each of the terms of the numerator by 2. This leads to

dx + a1
2
b 2x dx + 2y dy

x2 + y2 = 0  d1x2 + y22 = 2x dx + 2y dy

x + 1
2

 ln 1x2 + y22 =
c
2
 or 2x + ln 1x2 + y22 = c

Using the condition that x = 1 when y = 0, 2112 + ln 112 + 022 = c, or c = 2. 
The particular solution is then 2x + ln 1x2 + y22 = 2. ■

EXERCISES 31.3

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the resulting differential equations.

 1. In Example 1, change the third term to 2xy2dy.

 2. In Example 2, change the third term to 2 dx.

In Exercises 3–18, solve the given differential equations.

 3. x dy + y dx + x dx = 0 4. 12y + t2dy + y dt = 0

 5. y dx - x dy + x3 dx = 2 dx 6. x dy - y dx + y2 dx = 0

 7. A3 dr + A2r dA + r dA = A dr

 8. sec 1xy2dx + 1x dy + y dx2 = 0

 9. sin x dy = 11 - y cos x2dx

 10. x1x + exy2dy + y12x + exy2dx = 0

 11. 2x2 + y2 dx - 2y dy = 2x dx

 12. R dR + 1R2 + T2 + T 2dT = 0

 13. tan 1x2 + y22dy + x dx + y dy = 0

 14. 1x2 + y322 dy + 2x dx + 3y2 dy = 0

 15. y dy + 1y2 - x22dx = x dx (Explain your solution.)

 16. ex+y 1dx + dy2 + 4x dx = 0

 17. 10x dy + 5y dx + 3y dy = 0

 18. 21u dv + v du2 ln uv + 3u3v du = 0

In Exercises 19–24, find the particular solutions to the given 
differential equations that satisfy the given conditions.

 19. 21x dy + y dx2 + 3x2dx = 0; x = 1 when y = 2

 20. t dt + s ds = 21 t2 + s22dt; t = 1 when s = 0

 21. y dx - x dy = y3dx + y2x dy; x = 2 when y = 4

 22. ex>y1x dy - y dx2 = y4dy; x = 0 when y = 2

 23. 2 csc 1xy2dx + x dy + y dx = 0; x = 0 when y = p>2

 24. 23 x2 + y2dy = 31x dx + y dy2 ; x = 0 when y = 8

In Exercises 25 and 26, rewrite each equation such that each resulting 
term or combination is in an integrable form.

 25. e-xdy - 2ydy = ye-xdx

 26. cos1x + 2y2dx + 2 cos1x + 2y2dy - x dy = y dx

Answer to Practice Exercise

1. 2x2 - xy = c

 31.4 The Linear Differential Equation of the First Order
 

P and Q Functions of x  
Identifying P, Q, and e1 Pdx

There is one type of differential equation of the first order and first degree for which an 
integrable combination can always be found. It is the linear differential equation of 
the first order and is of the form

dy + Py dx = Q dx  (31.7)

where P and Q are functions of x only. This type of equation occurs widely in 
applications.
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If each side of Eq. (31.7) is multiplied by e1P dx, it becomes integrable, since the left 
side becomes of the form du with u = ye1P dx and the right side is a function of x only. 
This is shown by finding the differential of ye1P dx. Thus,

d1ye1P dx2 = e1P dx1dy + Py dx2
In finding the differential of 1P dx, we use the fact that, by definition, the integral and 
the differential are reverse processes. Thus, d1 1P dx2 = P dx. Therefore, if each side 
is multiplied by e1P dx, the left side may be immediately integrated to ye1P dx, and the 
right-side integration may be indicated. The solution becomes

ye1P dx = LQe1P dx dx + c  (31.8)

 EXAMPLE  1  Quadratic factor

Solve the differential equation dy + a2
x
by dx = 4x dx.

This equation fits the form of Eq. (31.7) with P = 2>x and Q = 4x. The first 
expression to find is e1P dx. In this case, this is

e112>x2 dx = e2 ln x = eln x2
= x2  see text comments following example

The left side integrates to yx2, while the right side becomes 14x1x22dx. Thus,

ye1P dx = LQe1P dx dx + c 

 y1x22 = L  14x2 1x22dx + c using Eq. (31.8)

 yx2 = L4x3dx + c = x4 + c integrating

 y = x2 + cx-2 ■

 EXAMPLE  2  Power function factor

Solve the differential equation x dy - 3y dx = x3dx.
Putting this equation in the form of Eq. (31.7) by dividing through by x gives 

dy - 13>x2y dx = x2dx. Here, P = -3>x, Q = x2, and the factor e1P dx becomes

e11-3>x2dx = e-3 ln x = eln x-3
= x-3

Therefore,

 ye1P dx = LQe1P dx dx + c

 yx-3 = Lx21x-32dx + c using Eq. (31.8)

 = Lx-1dx + c = ln x + c

 y = x31 ln x + c2  ■

In finding the factor e1P dx, we often 
obtain an expression of the form eln u. 
Using the properties of logarithms, 
we recall how eln u = u:

Let y = eln u.

ln y = ln eln u = ln u1 ln e2 = ln u 

 y = u  or  eln u = u

LEARNING T IP

In finding e1P dx, the constant of inte-
gration in the exponent 1P dx can 
always be taken as zero, as we did in 
Example 1. To show why this is so, let 
P = 2>x as in Example 1:

e112>x2dx = eln x 

2 +c = 1eln x 

22 1ec2 = x2ec

The solution to the differential equa-
tion, as given in Eq. (31.8), is then

y1x22 1ec2 = L4x1x22 1ec2dx + c1ec

Regardless of the value of c, the fac-
tor ec can be divided out. Therefore, 
it is convenient to let c = 0 and have 
ec = 1.
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Practice Exercise

1.  Find the general solution of the differen-
tial equation x dy - 2y dx = 2x4 dx.



 EXAMPLE  3  Exponential factor

Solve the differential equation dy + y dx = x dx.
Here, P = 1, Q = x, and e1P dx = e1112 dx = ex. Therefore,

yex = Lxexdx + c = ex1x - 12 + c 

 y = x - 1 + ce-x  
using Eq. (31.8) and integrating  
by parts or tables ■

 EXAMPLE  4  Trigonometric factor

Solve the differential equation cos x 
dy
dx

 = 1 - y sin x.

Writing this in the form of Eq. (31.7), we have

dy + y tan x dx = sec x dx dividing by cos x

Thus, with P = tan x, we have

e1P dx = e1tan x dx = e-ln cos x = sec x using elnu =  u 

y sec x = L  sec 2 x dx = tan x + c using Eq. (31.8)

y = sin x + c cos x ■

 EXAMPLE  5  Finding a particular solution

For the differential equation dy = 11 - 2y2x dx, find the particular solution such that 
x = 0 when y = 2.

The solution proceeds as follows:

dy + 2xy dx = x dx form of Eq. (31.7)

 e1P dx = e12x dx = ex2
find e1P dx

yex2
= Lx ex2d 

dx using Eq. (31.8)

 =
1
2

  ex2
+ c general solution

122 1e02 =
1
2

 1e02 + c, 2 =
1
2

+ c, c =
3
2

x = 0, y = 2;  
evaluate c

 yex2
=

1
2

  ex2
+ 3

2
substitute c =

3
2

 y =
1
2

 11 + 3 e-x22 particular solution ■

EXERCISES 31.4

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the resulting differential equations.

 1. In Example 1, change the right side to 3 dx.

 2. In Example 3, change the right side to 2 dx.

In Exercises 3–28, solve the given differential equations.

 3. dy + y dx = e-xdx

 4. dy + 3y dx = e-3x dx

 5. dy + 2y dx = e-4xdx
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 6. di + i dt = e-t cos t dt

 7. 
dy

dx
- 2y = 4

 8. 2  
dy

dx
 = 5 - 6y

 9. dy = 3x2 12 - y2dx

 10. x dy + 3y dx = dx

 11. 2x dy + y dx = 8x3dx

 12. 3x dy - y dx = 9x dx

 13. dr + r cot u du = du

 14. y′ = x2y + 3x2

 15. sin x  
dy

dx
 = 1 - y cos x

 16. 
dv
dt

- v
t

= ln t

 17. y′ + y = x + ex

 18. y′ + 2y = sin x

 19. ds = 1 te4t + 4s2dt

 20. y′ - 2y = 2e2x

 21. y′ = x3 11 - 4y2
 22. y′ + y tan x = -sin x

 23. x  
dy

dx
 = y + 1x2 - 122

 24. dy = dt -
y dt11 + t22 tan-1 t

 25. 21 + x2dy + x11 + y2dx = 0

 26. 11 + x22dy + xy dx = x dx

 27. tan u 
dr
du

- r = tan2 u

 28. y′ + y = y2 (Solve by letting y = 1>u and solving the resulting 
linear equation for u.)

In Exercises 29 and 30, solve the given differential equations. Explain 
how each can be solved using either of two different methods.

 29. y′ = 211 - y2  30. x dy = 12x - y2dx

In Exercises 31–36, find the indicated particular solutions of the given 
differential equations.

 31. 
dy

dx
+ 2y = e-x; x = 0 when y = 1

 32. dq - 4q du = 2 du; q = 2 when u = 0

 33. y′ + 2y cot x = 4 cos x; x = p>2 when y = 1>3

 34. y′1x + 1
2  y = e1x; x = 1 when y = 3

 35. 1sin x2y′ + y = tan x; x = p>4 when y = 0

 36. f1x2dy + 2yf ′1x2dx = f1x2 f ′1x2dx; f1x2 = -1 when 
y = 3

In Exercises 37–40, solve the given problems.

 37. The differential equation y′ + P1x2y = Q1x2y2 is not linear. 
Show that the substitution u = y-1 will transform it into a linear 
equation.

 38. An equation used in the analysis of rocket motion is
  m dv + kv dt = 0, where m and k are positive constants. Solve 

this equation for v as a function of t in two ways.

 39. The electric current i in a circuit with a voltage V, resistance R, 
and inductance L, is a function of the time t given by

  
di
dt

+ R
L

 i =
V
L

. Solve for i as a function of t if the initial current 

  is zero.

 40. If A dollars are placed in an account that pays 5, interest, com-
pounded continuously, and A dollars are added to the account 
each year, the number of dollars n in the account after t years is 
given by dn>dt = A + 0.05n. Solve for n as a function of t.

Answer to Practice Exercise

1. y = x4 + cx2

 31.5 Numerical Solutions of First-Order Equations
Many differential equations do not have exact solutions. Therefore, in this section, we 
show one basic method and one more advanced method of solving such equations 
numerically.

To find an approximate solution to a differential equation of the form dy>dx = f1x, y2 , 
that passes through a known point 1x0, y02 , we write the equation as dy = f1x, y2dx 
and then approximate dy as y1 - y0, and replace dx with ∆x. From Section 24.8, we 
recall that ∆y closely approximates dy for a small dx and that dx = ∆x. This gives us

y1 = y0 + f1x0, y02∆x  and  x1 = x0 + ∆x

Therefore, we now know another point 1x1, y12  that is on (or very nearly on) the curve 
of the solution. We can now repeat this process using 1x1, y12  as a known point to 
obtain a next point 1x2, y22 . Continuing this process, we can get a series of points that 
are approximately on the solution curve. The method is called Euler’s method.

■ Euler’s method is named for the Swiss 
mathematician Leonhard Euler (1707–1783).
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 EXAMPLE  1  Euler’s method

For the differential equation dy>dx = x + y, use Euler’s method to find the y-values 
of the solution for x = 0 to x = 0.5 with ∆x = 0.1, if the curve of the solution passes 
through 10, 12 .

Using the method outlined above, we have x0 = 0, y0 = 1, and

y1 = 1 + 10 + 12 10.12 = 1.1  and  x1 = 0 + 0.1 = 0.1

This tells us that the curve passes (or nearly passes) through the point 10.1, 1.12 . 
Assuming this point is correct, we use it to find the next point on the curve.

y2 = 1.1 + 10.1 + 1.12 10.12 = 1.22  and  x2 = 0.1 + 0.1 = 0.2

Therefore, the next approximate point is 10.2, 1.222 . Continuing this process, we find 
a set of points that would approximately satisfy the function that is the solution of the 
differential equation. Tabulating results, we have the following table:

 
x

 
y

Correct  
Value of y

the values shown have been 
rounded off, although more digits 
were carried in the calculations

0.0 1.0000 1.0000

0.1 1.1000 1.1103

0.2 1.2200 1.2428

0.3 1.3620 1.3997

0.4 1.5282 1.5836

0.5 1.7210 1.7974

In this case, we are able to find the correct values since the equation can be written as 
dy>dx - y = x, and the solution is y = 2ex - x - 1. Although numerical methods 
are generally used with equations that cannot be solved exactly, we chose this equation 
so that we could compare values obtained with known values.

We can see that as x increases, the error in y increases. More accurate values can be 
found by using smaller values of ∆x. In Fig. 31.2 the solution curves using ∆x = 0.1 
and ∆x = 0.05 are shown along with the correct values of y.

Euler’s method is easy to use and understand, but it is less accurate than other meth-
ods. We will show one of the more accurate methods in the next example. ■

For more accurate numerical solutions of a differential equation, the Runge–Kutta 
method is often used. Starting at a first point 1x0, y02 , the coordinates of the second 
point 1x1, y12  are found by using a weighted average of the slopes calculated at the 
points where x = x0, x = x0 + 1

2∆x, and x = x0 + ∆x. The formulas for y1 and x1 are

Fig. 31.2 

y(Δx = 0.05)
y (correct)

y(Δx = 0.1)

0

1.8

0.5

y

x
1.0

0.40.30.20.1

1.6

1.4

1.2

y1 = y0 + 1
6

 H1J + 2K + 2L + M2  and  x1 = x0 + H  (for convenience, H = ∆x)

where

 J = f1x0, y02
 K = f1x0 + 0.5H, y0 + 0.5HJ2 We have used uppercase letters to correspond 

to calculator use. Traditional sources normally 
use h  for H and a lowercase letter (such as k) 
with subscripts for J, K, L, and M, and express 
0.5 as 1>2.

 L = f1x0 + 0.5H, y0 + 0.5HK2
 M = f1x0 + H, y0 + HL2

As with Euler’s method, once 1x1, y12  is determined, we use the formulas again to find 1x2, y22  by replacing 1x0, y02  with 1x1, y12 . The following example illustrates the use 
of the Runge–Kutta method.

■ The Runge–Kutta method is named  
for the German mathematicians  
Carl Runge (1856–1927) and  
Martin Kutta (1867–1944).
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 EXAMPLE  2  Runge–Kutta method

For the differential equation dy>dx = x + sin xy, use the Runge–Kutta method to find 
y-values of the solution for x = 0 to x = 0.5 with ∆x = 0.1, if the curve of the solu-
tion passes through 10, 02 .

Using the formulas and method outlined above, we have the following solution, 
with calculator notes to the right of the equations. Also, calculator symbols are used on 
the right sides of the equations to indicate the way in which they should be entered.

 x0 = 0 store as X

 y0 = 0 store as Y

 H = 0.1 store as H

 J = X + sin XY = 0 store as J

 K = X + 0.5H + sin 3 1X + 0.5H2 1Y + 0.5HJ2 4 = 0.05 store as K

 L = X + 0.5H + sin 3 1X + 0.5H2 1Y + 0.5HK2 4 = 0.050 125 store as L

 M = X + H + sin 3 1X + H2 1Y + HL2 4 = 0.100 501 25 store as M

 y1 = Y + 1H>62 1J + 2K + 2L + M2 = 0.005 012 520 8 store as Y

 x1 = X + H = 0.1 store as X

We now use 1x1, y12  as we just used 1x0, y02  to get the next point 1x2, y22 , which is 
then used to find 1x3, y32 , and so on. A table showing calculator values and a graph of 
these values is shown in Fig. 31.3. ■

Fig. 31.3 

0
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0.5
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0.40.20.1 0.3
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EXERCISES 31.5

In Exercises 1–8, use Euler’s method to find y-values of the solution 
for the given values of x and ∆x, if the curve of the solution passes 
through the given point. Check the results against known values by 
solving the differential equations exactly.

 1. 
dy

dx
= x + 1; x = 0 to x = 1; ∆x = 0.2; 10, 12

 2. 
dy

dx
= 12x + 1; x = 0 to x = 1.2; ∆x = 0.3; 10, 22

 3. 
dy

dx
= y10.4x + 12 ; x = -0.2 to x = 0.3; ∆x = 0.1; 1 -0.2, 22

 4. 
dy

dx
= y + ex; x = 0 to x = 0.5; ∆x = 0.1; 10, 02

 5. The differential equation of Exercise 1 with ∆x = 0.1

 6. The differential equation of Exercise 2 with ∆x = 0.1

 7. The differential equation of Exercise 3 with ∆x = 0.05

 8. The differential equation of Exercise 4 with ∆x = 0.05

In Exercises 9–14, use the Runge–Kutta method to find y-values of the 
solution for the given values of x and ∆x, if the curve of the solution 
passes through the given point.

 9. 
dy

dx
= xy + 1; x = 0 to x = 0.4; ∆x = 0.1; 10, 02

 10. 
dy

dx
= x2 + y2; x = 0 to x = 0.4; ∆x = 0.1; 10, 12

 11. 
dy

dx
= exy; x = 0 to x = 1; ∆x = 0.2; 10, 02

 12. 
dy

dx
= 11 + xy; x = 0 to x = 0.2; ∆x = 0.05; 10, 12

 13. 
dy

dx
= cos1x + y2 ; x = 0 to x = 0.6; ∆x = 0.1; 10, p>22

 14. 
dy

dx
= y + sin x; x = 0.5 to x = 1.0; ∆x = 0.1; 10.5, 02

In Exercises 15–18, solve the given problems.

 15. In Example 1, use Euler’s method to find the y-values from 
x = 0 to x = 3 with ∆x = 1. Compare with the value found us-
ing the exact solution. Comment on the use of Euler’s method in 
finding the value of y for x = 3.

 16. For the differential equation dy>dx = x + 1, if the curve of the so-
lution passes through 10, 02 , calculate the y-value for x = 0.04 
with ∆x = 0.01. Find the exact solution, and compare the result us-
ing three terms of the Maclaurin series that represents the solution.

 17. An electric circuit contains a 1-H inductor, a 2@Ω resistor, and a 
voltage source of sin t. The resulting differential equation relating 
the current i and the time t is di>dt + 2i = sin t. Find i after 0.5 s 
by Euler’s method with ∆t = 0.1 s if the initial current is zero. 
Solve the equation exactly and compare the values.

 18. An object is being heated such that the rate of change of the tempera-
ture T (in °C) with respect to time t (in min) is dT>dt = 23 1 + t3. 
Find T for t = 5 min by using the Runge–Kutta method with 
∆t = 1 min, if the initial temperature is 0°C.

■  x y

0.0 0.0

0.1 0.0050125208

0.2 0.0202013395

0.3 0.0460278455

0.4 0.0832868181

0.5 0.1331460062
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 31.6 Elementary Applications
 

Electrical, Mechanical, and  
Other Technical Applications

The differential equations of the first order and first degree we have discussed thus far 
have numerous applications in geometry and the various fields of technology. In this 
section, we illustrate some of these applications.

 EXAMPLE  1  Find a curve, given its slope

The slope of a curve is given by the expression 6xy. Find the equation of the curve if it 
passes through the point 12, 12 .

Since the slope is 6xy, the differential equation for the curve is

dy
dx

= 6xy

We now want to find the particular solution of this equation for which x = 2 when 
y = 1. The solution follows:

 
dy
y

= 6x dx separate variables

 ln y = 3x2 + c general solution

 ln 1 = 31222 + c evaluate c

 0 = 12 + c,  c = -12

 ln y = 3x2 - 12 particular solution

The graph of this solution is shown in Fig. 31.4. ■

 EXAMPLE  2  Orthogonal trajectories

A curve that intersects all members of a family of curves at right angles is called an 
orthogonal trajectory of the family. Find the equations of the orthogonal trajectories 
of the parabolas x2 = ky. As before, each value of k gives us a particular member of 
the family.

The derivative of the given equation is dy>dx = 2x>k. This equation contains the 
constant k, which depends on the point 1x, y2  on the parabola. Eliminating this con-
stant between the equations of the parabolas and the derivative, we have

k =
x2

y
  

dy
dx

=
2x
k

=
2x

x2>y
 or 

dy
dx

=
2y
x

This equation gives a general expression for the slope of any of the members of the 
family. For a curve to be perpendicular, its slope must equal the negative reciprocal of 
this expression, or the slope of the orthogonal trajectories must be

dy
dx

`
OT

= - x
2y

  this equation must not contain the constant k

Solving this differential equation gives the family of orthogonal trajectories.

 2y dy = -x dx

 y2 = - x2

2
+ c

2

 2y2 + x2 = c orthogonal trajectories

Thus, the orthogonal trajectories are ellipses. Note in Fig. 31.5 that each parabola inter-
sects each ellipse at right angles. ■

Fig. 31.4 

y

x
O

dy
dx  ! 6xy

(2, 1)

ln y ! 3x2 " 12

Fig. 31.5 

y

x
O

Parabola
(curve)

Ellipse
(OT)

■ Some calculators have a feature by which a 
family of curves can be graphed.
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 EXAMPLE  3  Radioactivity

Radioactive elements decay at rates that are proportional to the amount of the element 
present. Carbon-14 decays such that one-half of an original amount decays into other 
forms in about 5730 years. By measuring the proportion of carbon-14 in remains at a 
given site, the approximate age of the remains can be determined. This method is called 
carbon dating.

The analysis of some detrital wood washed from the Dome Glacier in Alberta 
showed that the concentration of carbon-14 was 47.7, of the concentration that new 
wood would have. Determine the equation relating the amount of carbon-14 present 
with the time and then determine the age of the wood from the Dome Glacier. (Scientists 
use paleoecological samples of this kind to study past climate change.)

Let N0 be the original amount and N be the amount present at any time t (in years). 
The rate of decay can be expressed as a derivative. Therefore, since the rate of change 
is proportional to N, we have the equation

dN
dt

= kN

Solving this differential equation, we have

 
dN
N

= k dt separate variables

 ln N = kt + ln c general solution

 ln N0 = k102 + ln c N = N0 for t = 0

 c = N0 solve for c

 ln N = kt + ln N0 substitute N0 for c

 ln N - ln N0 = kt use properties of logarithms

 ln 
N
N0

= kt

 N = N0ekt exponential form

Now, using the condition that one-half of carbon-14 decays in 5730 years, we have 
N = N0>2 when t = 5730 years. This gives

N0

2
= N0e5730k or  

1
2

= 1ek25730 and

 ek = 0.51>5730        both sides to the power 1/5730

Therefore, the equation relating N and t is

N = N0 10.52 t>5730 substitute in the exponential form

Since the present concentration is N = 0.477N0, we can solve for t:

 0.477N0 = N010.52 t>5730 or  0.477 = 0.5t>5730

 ln 0.477 = ln 0.5t>5730,  ln 0.477 =
t

5730
 ln 0.5 solving an exponential equation

 t = 5730  
ln 0.477
ln 0.5

 = 6120 years

Therefore, the wood from the Dome Glacier is about 6120 years old. ■

■ See the chapter introduction.

■ Radioactivity was discovered in 1898  
by the French physicist Henri Becquerel  
(1852–1908). Carbon dating was developed in 
1947 by the U.S. chemist Willard Libby  
(1908 –1980).



 EXAMPLE  4  Electric circuits

The general equation relating the current i, voltage E, inductance L, capacitance C, and 
resistance R in a simple electric circuit (see Fig. 31.6) is

L 
di
dt

 + Ri +
q
C

= E (31.9)

where q is the charge on the capacitor. Find the general expression for the current in a 
circuit containing an inductance, a resistance, and a voltage source if i = 0 when t = 0.

The differential equation for this circuit is

L 
di
dt

 + Ri = E

Using the method of the linear differential equation of the first order, we have the equation

di + R
L

 i dt =
E
L

 dt

The factor e 1P dt
 is e11R>L2dt

= e1R>L2t. This gives

ie1R>L2t =
E
L

 Le1R>L2tdt =
E
R

 e1R>L2t + c

Letting the current be zero for t = 0, we have c = -E>R. The result is

 ie1R>L2t =
E
R

 e1R>L2t - E
R

 i =
E
R

 11 - e-1R>L2t2
(We can see that i S E>R as t S ∞ . In practice, the exponential term becomes negligi-
ble very quickly.) ■

 EXAMPLE  5  Salt solution

Fifty litres of brine originally containing 3.00 kg of salt are in a tank into which 2.00 L 
of water run each minute with the same amount of mixture running out each minute. 
How much salt is in the tank after 10.0 min?

Let x = the number of kilograms of salt in the tank after t minutes. Each litre of 
brine contains x>50 kg of salt, and in time dt, 2 dt L of mixture leave the tank with 1x ,50 2 12 dt 2  kg of salt. The amount of salt that is leaving may also be written as -dx 
(the minus sign is included to show that x is decreasing). Thus,

-dx =
2x dt
50

  or  
dx
x

= - dt
25

This leads to ln x = - 1 t>252 + ln c. Using the fact that x = 3.00 kg when t = 0, we 
find that ln 3.00 = ln c, or c = 3.00. Therefore,

x = 3.00e-t>25

is the general expression for the amount of salt in the tank at time t. Therefore, when 
t = 10.0 min, we have

x = 3.00e-10>25 = 3.00e-0.4 = 3.0010.6702 = 2.01 kg

There are 2.01 kg of salt in the tank after 10.0 min. (Although the data were given with 
3 significant digits, we did not use all significant digits in writing the equations that 
were used.) ■

Fig. 31.6 

R

E C

L
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 EXAMPLE  6  Motion in a resisting medium

An object moving through (or across) a resisting medium often experiences a retarding 
force approximately proportional to the velocity as well as the force that causes the 
motion. An example is a ball falling due to the force of gravity, with air resistance pro-
ducing a retarding force. Applying Newton’s laws of motion (from physics) to the ball 
leads to the equation

m 
dv
dt

 = F − kv (31.10)

where m is the mass of the object, v is the velocity of the object, t is the time, F is the force 
causing the motion, and k 1k 7 02  is a constant. The quantity kv is the retarding force.

We assume that these conditions hold for a falling object whose mass is 5.00 kg and 
experiences a force (its own weight) of 49.0 N. The object starts from rest, and the air 
causes a retarding force numerically equal to 0.200 times the velocity.

Substituting in Eq. (31.10) and then solving the differential equation, we have

 5
dv
dt

= 49 - 0.2 v

 
5dv

49 - 0.2v
= dt separate variables

 -25 ln149 - 0.2v2 = t - 25 ln c integrate

 ln149 - 0.2v2 = - t
25

+ ln c solve for v

 ln 
49 - 0.2v

c
= - t

25
 49 - 0.2v = ce-t>25

 0.2v = 49 - ce-t>25

 v = 5149 - ce-t>252 general solution

Since the object started from rest, v = 0 when t = 0. Thus,

 0 = 5149 - c2 or c = 49 evaluate c

 v = 24511 - e-t>52 particular solution

 = 24511 - e-0.2002 = 24511 - 0.8192 evaluating v for t = 5.00 s

 = 44.4 m>s

After 5.00 s, the velocity is 44.4 m>s. Without the air resistance, the velocity would be 
about 49.0 m>s. ■

■ There is at least some resistance to the mo-
tion of any object moving through a medium 
(not a vacuum). The exact nature of the resist-
ance is not usually known.

■ Slug is the unit of mass when force is ex-
pressed in pounds.

■ The data were given to 3 significant digits, 
but not all significant digits were used in writ-
ing the equations.

EXERCISES 31.6

In Exercises 1–4, make the given changes in the indicated examples of 
this section, and then solve the resulting problems.

 1. In Example 2, change x2 = ky to y2 = kx.

 2. In Example 4, if the term L di
dt is deleted (no inductance) in  

Eq. (31.9), find the expression for the charge in the circuit. (There 
is a capacitance C, and i = dq>dt.) The initial charge is zero.

 3. In Example 5, change 2.00 L to 1.00 L.

 4. In Example 6, change 0.200 to 0.100 (for the retarding force).

In Exercises 5–8, find the equation of the curve for the given slope 
and point through which it passes. Use a graphing calculator to 
display the curve.

 5. Slope given by 2x>y; passes through 12, 32
 6. Slope given by -y> 1x + y2 ; passes through 1 -1, 32
 7. Slope given by y + x; passes through 10, 12
 8. Slope given by -2y + e-x; passes through 10, 22



In Exercises 9–12, find the equation of the orthogonal trajectories of 
the curves for the given equations. Use a graphing calculator to 
display at least two members of the family of curves and at least two 
of the orthogonal trajectories.

 9. The exponential curves y = kex

 10. The hyperbolas x2 - y2 = a2

 11. The curves y = k1sec x + tan x2
 12. The family of circles, all with centres at the origin

In Exercises 13–50, solve the given problems by solving the 
appropriate differential equation.

 13. The isotope cobalt-60, with half-life of 5.27 years, is used in 
treating cancerous tumors. What percent of an initial amount re-
mains after 2.00 years?

 14. Radium-226 decays such that 10, of the original amount disin-
tegrates in 246 years. Find the half-life (the time for one-half of 
the original amount to disintegrate) of radium-226.

 15. A possible health hazard in the home is radon gas. It is radioac-
tive and about 90.0, of an original amount disintegrates in  
12.7 days. Find the half-life of radon gas. (The problem with ra-
don is that it is a gas and is being continually produced by the ra-
dioactive decay of minute amounts of radioactive radium found in 
the soil and rocks of an area.)

 16. Noting Example 3, another element used to date more recent 
events is helium-3, which has a half-life of 12.3 years. If a build-
ing has 5.0, of helium-3 that a new building would have, about 
how old is the building?

 17. A radioactive element leaks from a nuclear power plant at a con-
stant rate r, and it decays at a rate that is proportional to the 
amount present. Find the relation between the amount N present 
in the environment in which it leaks and the time t, if N = 0 
when t = 0.

 18. Most use of the pesticide DDT was banned in Canada in 1970. It 
has been found that 19, of an initial amount of DDT is degraded 
into harmless products in 10 years. If no DDT has been used in an 
area since 1970, in what year will the concentration become only 
20, of the 1970 amount?

 19. The growth of the population P of a nation with a constant immi-

gration rate I may be expressed as 
dP
dt

= kP + I, where t is in

  years. If the population of Canada in 2012 was 34.9 million and 
about 0.20 million immigrants enter Canada each year, what will 
the population of Canada be in 2025, given that the growth rate k 
is about 1.0, (0.010) annually?

 20. Assuming that the natural environment of the earth is limited and 
that the maximum population it can sustain is M, the rate of 
growth of the population P is given by the logistic differential 

equation 
dP
dt

= kP1M - P2 . Using this equation for the earth, if

  P = 7.0 billion in 2012, k = 0.00030, M = 50 billion, what will 
be the population of the earth in 2025?

 21. The rate of change of the radial stress S on the walls of a pipe 
with respect to the distance r from the axis of the pipe is given by 

r 
dS
dr

= 21a - S2 , where a is a constant. Solve for S as a function

  of r.

 22. The velocity v of a meteor approaching the earth is given by 

v 
dv
dr

= - GM

r2 , where r is the distance from the centre of the

  earth, M is the mass of the earth, and G is a universal gravita-
tional constant. If v = 0 for r = r0, solve for v as a function of r.

 23. Assume that the rate at which highway construction increases 
is directly proportional to the total length M of all highways 
already completed at time t (in years). Solve for M as a func-
tion of t if M = 5250 km for a certain county when t = 0 and 
M = 5460 km for t = 2.00 years.

 24. The marginal profit function gives the change in the total profit P 
of a business due to a change in the business, such as adding new 
machinery or reducing the size of the sales staff. A company de-
termines that the marginal profit dP>dx is e-x2

- 2Px, where x is 
the amount invested in new machinery. Determine the total profit 
(in thousands of dollars) as a function of x, if P = 0 for x = 0.

 25. According to Newton’s law of cooling, the rate at which a body 
cools is proportional to the difference in temperature between it 
and the surrounding medium. Assuming Newton’s law holds, how 
long will it take a cup of hot water, initially at 90°C, to cool to 40°C 
if the room temperature is 25°C, if it cools to 60°C in 5.0 min?

 26. An object whose temperature is 100°C is placed in a medium 
whose temperature is 20°C. The temperature of the object falls to 
50°C in 10 min. Express the temperature T  of the object as a func-
tion of time t (in min). (Assume it cools according to Newton’s 
law of cooling as stated in Exercise 25.)

 27. If interest in a bank account is compounded continuously, the 
amount grows at a rate that is proportional to the amount present 
in the account. Interest that is compounded daily very closely  
approximates this situation. Determine the amount in an account 
after one year if $1000 is placed in the account and it pays 4, 
interest per year, compounded continuously.

 28. The rate of change in the intensity I of light below the surface of 
the ocean with respect to the depth y is proportional to I. If the 
intensity at 5.0 m is 50, of the intensity I0 at the surface, at what 
depth is the intensity 15, of I0?

 29. For a DNA sample in a liquid containing a solute of constant con-
centration c0, the rate at which the concentration c1 t2  of solute in 
the sample changes is proportional to c0 - c1 t2 . Find c1 t2  if 
c102 = 0.

 30. In a town of N persons, during a flu epidemic, it was determined 
that the rate dS>dt at which persons were being infected was pro-
portional to the product of the number S of infected persons and 
the number N - S of healthy persons. Find S as a function of t.
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 31. If the current in an RL circuit with a voltage source E is zero when 
t = 0 (see Example 4), show that lim

tS ∞
i = E>R. See Fig. 31.7.

 41. For each cycle, a roller mechanism follows a path described by 
y = 2x - x2, y Ú 0, such that dx>dt = 6t - 3t2. Find x and y 
(in cm) in terms of the time t (in s) if x and y are zero for t = 0.

 42. In studying the flow of water in a stream, it is found that an object 
follows the hyperbolic path y1x + 12 = 10 such that 1 t + 12  dx = 1x - 22  dt. Find x and y (in m) in terms of time t 
(in s) if x = 4 m and y = 2 m for t = 0.

 43. The rate of change of air pressure p (in kPa) with respect to 
height h (in m) is approximately proportional to the pressure. If 
the pressure is 100 kPa when h = 0 and p = 80 kPa when 
h = 2000 m, find the expression relating pressure and height.

 44. Water flows from a vertical cylindrical storage tank through a 
hole of area A at the bottom of the tank. The rate of flow is 
2.6 A1h, where h is the distance (in m) from the surface of the 
water to the hole. If h changes from 9.0 m to 8.0 m in 16 min, 
how long will it take the tank to empty? See Fig. 31.10.

Fig. 31.7 Fig. 31.8 
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 32. If a circuit contains only an inductance and a resistance, with 
L = 2.0 H and R = 30 Ω, find the current i as a function of time 
t if i = 0.020 A when t = 0. See Fig. 31.8.

 33. An amplifier circuit contains a resistance R, an inductance L, and 
a voltage source E sin vt. Express the current in the circuit as a 
function of the time t if the initial current is zero.

 34. A radio transmitter circuit contains a resistance of 2.0 Ω, a varia-
ble inductor of 100 - t henrys, and a voltage source of 4.0 V. 
Find the current i in the circuit as a function of the time t for 
0 … t … 100 s if the initial current is zero.

 35. If a circuit contains only a resist-
ance and a capacitance C, find the 
equation relating the charge q on 
the capacitor in terms of the time t 
if i = dq>dt and q = q0 when 
t = 0. See Fig. 31.9.

Fig. 31.9 
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 36. One hundred litres of brine originally containing 4.0 kg of salt are 
in a tank into which 5.0 L of water run each minute. The same 
amount of mixture from the tank leaves each minute. How much 
salt is in the tank after 20 min?

 37. An object falling under the influence of gravity has a variable ac-
celeration given by 9.8 - v, where v represents the velocity. If 
the object starts from rest, find an expression for the velocity in 
terms of the time. Also, find the limiting value of the velocity 
(find lim

tS ∞
 v).

 38. In a ballistics test, a bullet is fired into a sandbag. The accelera-
tion of the bullet within the sandbag is -151v, where v is the 
velocity (in m>s). When will the bullet stop if it enters the sand-
bag at 300 m>s?

 39. A boat with a mass of 150 kg is being towed at 8.0 km>h. The 
tow rope is then cut, and a motor that exerts a force of 80 N on the 
boat is started. If the water exerts a retarding force that numeri-
cally equals twice the velocity, what is the velocity of the boat  
3.0 min later?

 40. A parachutist is falling at a rate of 60.0 m>s when her parachute 
opens. If the air resists the fall with a force equal to 5v2, find the 
velocity as a function of time. The person and equipment have a 
combined mass of 100 kg (weight is 980 N).

Fig. 31.10 
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 45. Assume that the rate of depreciation of an object is proportional 
to its value at any time t. If a car costs $33 000 new and its value 
3 years later is $19 700, what is its value 11 years after it was 
purchased?

 46. Assume that sugar dissolves at a rate proportional to the undis-
solved amount. If there are initially 525 g of sugar and 225 g re-
main after 4.00 min, how long does it take to dissolve 375 g?

 47. Fresh air is being circulated into a room whose volume is 120 m3. 
Under specified conditions the number of cubic metres x of car-
bon dioxide present at any time t (in min) is found by solving the 
differential equation dx>dt = 1 - 5.0 x. Find x as a function of t 
if x = 0.35 m3 when t = 0.

 48. Moisture evaporates from a surface at a rate proportional to the 
amount of moisture present at any time. If 75, of the moisture 
evaporates from a certain surface in 1.00 h, how long did it take 
for 50, to evaporate?

 49. On a certain weather map, the isobars (curves of equal barometric 
pressure) are given by y = ex>2 + k. Find the equation of the or-
thogonal trajectories (curves that show the wind direction), and 
display a few of each on a calculator.

 50. The lines of equal potential in a field of force are all at right an-
gles to the lines of force. In an electric field of force caused by 
charged particles, the lines of force are given by x2 + y2 = kx. 
Find the equation of the lines of equal potential. Use a graphing 
calculator to view a few members of the lines of force and those 
of equal potential.



 31.7 Higher-Order Homogeneous Equations
n  
Operator D

 

 
Auxiliary Equation

Another important type of differential equation is the linear differential equation of higher 
order with constant coefficients. First, we shall briefly describe the general higher-order 
equation and the notation we shall use with this type of equation.

The general linear differential equation of the nth order is of the form

  a0
dny
dxn + a1

dn-1y

dxn-1 + g + an-1
dy
dx

+ an y = b  (31.11)

where the a’s and b are either functions of x or constants.
For convenience of notation, the nth derivative with respect to the independent varia-

ble will be denoted by Dn. Here, D is called the operator, since it denotes the operation 
of differentiation. Using this notation with x as the independent variable, Eq. (31.11) 
becomes

 a0 D
ny + a1Dn-1y + g + an-1Dy + an y = b  (31.12)

If b = 0, the general linear equation is called homogeneous, and if b ≠ 0, it is 
called nonhomogeneous. Both types of equations have important applications.

 EXAMPLE  1  D

Using the operator form of Eq. (31.12), the differential equation

d3y

dx3 - 3 
d2y

dx2 
+ 4 

dy
dx

 - 2y = ex sec x

is written as

D3y - 3D2y + 4Dy - 2y = ex sec x

This equation is nonhomogeneous since b = ex sec x. ■

Although the a’s may be functions of x, we shall restrict our attention to the cases in 
which they are constants. We shall, however, consider both homogeneous equations 
and nonhomogeneous equations. Also, since second-order linear equations are the most 
commonly found in elementary applications, we shall devote most of our attention to 
them. The methods used to solve second-order equations may be applied to equations 
of higher order, and we shall consider certain of these higher-order equations.

 

Using the operator notation, a second-order, linear, homogeneous differential equation 
with constant coefficients is one of the form

 a0 D
2y + a1Dy + a2 y = 0  (31.13)

where the a’s are constants. The following example indicates the kind of solution we 
should expect for this type of equation.
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 EXAMPLE  2  Solution for a second-order equation

Solve the differential equation D2y - Dy - 2y = 0.
First, we put this equation in the form 1D2 - D - 22y = 0. This is another way of 

saying that we are to take the second derivative of y, subtract the first derivative, and 
finally subtract twice the function. This expression may now be factored as 1D - 22 1D + 12y = 0. (We will not develop the algebra of the operator D. 
However, most such algebraic operations can be shown to be valid.) This formula tells 
us to find the first derivative of the function and add this to the function. Then twice 
this result is to be subtracted from the derivative of this result. If we let z = 1D + 12y, 
which is valid since 1D + 12y is a function of x, we have 1D - 22z = 0. This equa-
tion is easily solved by separation of variables. Thus,

dz
dx

- 2z = 0   
dz
z

- 2 dx = 0   ln z - 2x =  ln c1

 ln 
z
c1

= 2x or z = c1e2x

Replacing z by 1D + 12y, we have1D + 12y = c1e2x

This is a linear equation of the first order. Then,

dy + y dx = c1e2x dx

The factor e1 P dx
 is e1 dx

= ex. And so,

 yex = Lc1e3x dx =
c1

3
 e3x + c2 using Eq. (31.8)

 y = c′1e2x + c2e-x

where c′1 = 1
3 c1. This example indicates that solutions of the form emx result for this 

equation. ■

Based on the result of Example 2, assume that an equation of the form of Eq. (31.13) 
has a particular solution cemx. Substituting this into Eq. (31.13) gives

a0 cm2emx + a1cmemx + a2 cemx = 0

Since the exponential function emx 7 0 for all real x, this equation will be satisfied if m 
is a root of the equation

a0 m
2 + a1 m + a2 = 0  (31.14)

Eq. (31.14) is called the auxiliary equation of Eq. (31.13). Note that it may be formed 
directly by inspection from Eq. (31.13).

There are two roots of the auxiliary Eq. (31.14), and there are two arbitrary con-
stants in the solution of Eq. (31.13). These factors lead us to the general solution of  
Eq. (31.13), which is

y = c1em1x + c2em2x  (31.15)

where m1 and m2 are the two real and distinct solutions of Eq. (31.14). We see that this 
is in agreement with the results of Example 2.

Auxiliary Equation

General Solution



 EXAMPLE  3  Using the auxiliary equation

Solve the differential equation D2y - 5Dy + 6y = 0.
From this operator form of the differential equation, we write the auxiliary equation

 m2 - 5m + 6 = 0

(m - 32 1m - 22 = 0 solving auxiliary equation

 m1 = 3  m2 = 2

y = c1e3x + c2e2x using Eq. (31.15) ■

It makes no difference which constant is written with each exponential term.

 EXAMPLE  4  The auxiliary equation has zero as a root

Solve the differential equation y″ = 6y′.
We first rewrite this equation using the D notation for derivatives. Also, we want to 

write it in the proper form of a homogeneous equation. This gives us

D2y - 6 Dy = 0

Proceeding with the solution, we have

 m2 - 6m = 0 auxiliary equation

 m1m - 62 = 0 solve for m

 m1 = 0  m2 = 6

 y = c1e0x + c2e6x using Eq. (31.15)

Since e0x = 1, we have

y = c1 + c2e6x general solution ■

 EXAMPLE  5  A third-order equation

Solve the differential equation 2 
d3y

dx3 
+

d2y

dx2 - 7 
dy
dx

 = 0.

Although this is a third-order equation, the method of solution is the same as in the 
previous examples. Using the D-notation for derivatives, we have

 2 D3y + D2y - 7 Dy = 0

 2m3 + m2 - 7m = 0  auxiliary equation

 m12m2 + m - 72 = 0

We can see that one root is m = 0. The quadratic factor is not factorable, but we can 
find the roots from it by using the quadratic formula. This gives

m =
-1 ± 11 + 56

4
=

-1 ± 157
4

Since there are three roots, there are three arbitrary constants. Following the solution 
indicated by Eq. (31.15), we have

y = c1e0x + c2e1-1+157)x>4 + c3e1-1-157)x>4
Again, e0x = 1. Also, factoring e-x>4 from the second and third terms, we have

y = c1 + e-x>4 1c2ex157>4 + c3e-x157>42  ■

In all examples and exercises of this section, all the roots of the auxiliary equation 
are different, and they do not include complex numbers. For such roots, the solutions 
have a different form. They are the topic of the following section.

Practice Exercise

1.  Solve the differential equation 
2D2y - Dy - 3y = 0.
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 EXAMPLE  6  A particular solution

Solve the differential equation D2y - 2 Dy - 15y = 0 and find the particular solution 
that satisfies the conditions Dy = 2 and y = -1, when x = 0. (It is necessary to give 
two conditions since there are two constants to evaluate.)

We have

 m2 - 2m - 15 = 0,  1m - 52 1m + 32 = 0

m1 = 5  m2 = -3

y = c1e5x + c2e-3x

This equation is the general solution. In order to evaluate the constants c1 and c2, we 
use the given conditions to find two simultaneous equations in c1 and c2 . These are 
then solved to determine the particular solution. Thus,

y′ = 5c1e5x - 3c2e-3x

Using the given conditions in the general solution and its derivative, we have

 c1 + c2 = -1 y = -1 when x = 0

 5c1 - 3c2 = 2    Dy = 2 when x = 0

The solution to this system of equations is c1 = - 1
8 and c2 = - 7

8. The particular solu-
tion becomes

y = - 1
8

 e5x - 7
8

 e-3x or 8y + e5x + 7e-3x = 0 ■

EXERCISES 31.7

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the resulting differential equations.

 1. In Example 3, delete the +6y term.

 2. In Example 4, add 16y to the right side.

In Exercises 3–26, solve the given differential equations.

 3. 
d2y

dx2 -
dy

dx
- 6y = 0 4. 

d2y

dx2 +
dy

dx
= 0

 5. 3 
d2y

dx2 
+ 4 

dy

dx
 + y = 0 6. 

d2y

dx2 - 2 
dy

dx
 - 8y = 0

 7. D2y - 3 Dy = 0 8. D2y = 25y

 9. 2 D2y - 3y = Dy 10. D2y + 7 Dy + 6y = 0

 11. 3 D2y + 12y = 20 Dy 12. 4 D2y + 12 Dy = 7y

 13. 3y″ + 8y′ - 3y = 0 14. 8y″ + 6y′ = 9y

 15. 3y″ + 2y′ - y = 0 16. 2y″ - 7y′ + 6y = 0

 17. 2 
d2y

dx2 
- 4 

dy

dx
 + y = 0 18. 

d2y

dx2 +
dy

dx
= 5y

 19. 4 D2y - 3 Dy = 2y 20. 2 D2y - 3 Dy - y = 0

 21. y″ = 3y′ + y 22. 5y″ - y′ = 3y

 23. y″ + y′ = 8y 24. 8y″ = y′ + y

 25. 2D2y + 5aDy - 12a2y = 0 1a 7 02
 26. 3k4D2y + 14k2Dy - 5y = 0

In Exercises 27–30, find the particular solutions of the given 
differential equations that satisfy the given conditions.

 27. D2y - 4 Dy - 21y = 0; Dy = 0 and y = 2 when x = 0

 28. 4 D2y - Dy = 0; Dy = 2 and y = 4 when x = 0

 29. D2y - Dy = 12y; y = 0 when x = 0, and y = 1 when x = 1

 30. 2 D2y + 5 Dy = 0; y = 0 when x = 0, and y = 2 when x = 1

In Exercises 31–34, solve the given third- and fourth-order differential 
equations.

 31. y‴ - 2y″ - 3y′ = 0

 32. D3y - 6 D2y + 11 Dy - 6y = 0

 33. D4y - 5 D2y + 4y = 0

 34. D4y - D3y - 9 D2y + 9 Dy = 0

In Exercises 35 and 36, solve the given problems.

 35. The voltage v at a distance s along a transmission line is given by 
d2v>ds2 = a2v, where a is called the attenuation constant. Solve 
for v as a function of s.

 36. Following the method of Example 2, solve the differential equa-
tion D2y - 3Dy + 2y = 0. Do not use Eqs. (31.14) and (31.15).

Answer to Practice Exercise

1. y = c1e-x + c2e3x>2



 31.8 Auxiliary Equation with Repeated or Complex Roots
 

 
In solving higher-order homogeneous differential equations in the previous section, we 
purposely avoided repeated or complex roots of the auxiliary equation. In this section, 
we develop the solutions for such equations. The following example indicates the type 
of solution that results from the case of repeated roots.

 EXAMPLE  1  

Solve the differential equation D2y - 4Dy + 4y = 0.
Using the method of Example 2 of the previous section, we have the following steps:1D2 - 4D + 42y = 0,  1D - 22 1D - 22y = 0,  1D - 22z = 0

where z = 1D - 22y. The solution to 1D - 22z = 0 is found by separation of vari-
ables. And so,

dz
dx

- 2z = 0  
dz
z

- 2dx = 0

ln z - 2x = ln c1 or z = c1e2x

Substituting back, we have 1D - 22y = c1e2x, which is a linear equation of the first 
order. Then

dy - 2y dx = c1e2x dx  e1-2 dx = e-2x

This leads to

ye-2x = c1Ldx = c1x + c2 or y = c1xe2x + c2e2x

This example indicates the type of solution that results when the auxiliary equation 
has repeated roots. If the method of the previous section were to be used, the solution 
of the above example would be y = c1e2x + c2e2x. This would not be the general solu-
tion, since both terms are similar, which means that there is only one independent 
constant. The constants can be combined to give a solution of the form y = ce2x, 
where c = c1 + c2. This solution would contain only one constant for a second-order 
equation. ■

Based on the above example, the solution to Eq. (31.13) when the auxiliary  
Eq. (31.14) has repeated roots is

 y = emx 1c1 + c2x2  (31.16)

where m is the double root. (In Example 1, this double root is 2.)

 EXAMPLE  2  

Solve the differential equation 1D + 222y = 0.
The solution is as follows:1m + 222 = 0 auxiliary equation

m = -2, -2

y = e-2x1c1 + c2x2 using Eq. (31.16) ■

■ For reference, Eq. (31.13) is 
a0 D

2y + a1 Dy + a2 y = 0 and  
Eq. (31.14) is a0 m

2 + a1 m + a2 = 0.

Solution with Repeated Roots
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 EXAMPLE  3  Solving an equation with a double root

Solve the differential equation 
d2y

dx2 + 25y = 10 
dy
dx

.

 D2y + 25y = 10Dy using operator D notation

 D2y - 10Dy + 25y = 0 put in proper form with 0 on right

 m2 - 10m + 25 = 0 auxiliary equation

 1m - 522 = 0 solve for m

 m = 5, 5 double root

 y = e5x1c1 + c2x2 using Eq. (31.16) ■

When the auxiliary equation has complex roots, it can be solved by the method of 
the previous section and the solution can be put in a more useful form. For complex 
roots of the auxiliary equation m = a ± jb, the solution is of the form

y = c1e1a +  jb2x + c2e1a - jb2x = eax1c1ejbx + c2e-jbx2
Using the exponential form of a complex number, Eq. (12.11), we have

 y = eax[c1 cos bx + jc1 sin bx + c2 cos(-bx) + jc2 sin(-bx)]

 = eax1c1 cos bx + c2 cos bx + jc1 sin bx - jc2 sin bx2
 = eax1c3 cos bx + c4 sin bx2

where c3 = c1 + c2 and c4 = jc1 - jc2.
Therefore, if the auxiliary equation has complex roots of the form a ± jb,

y = eax1c1 sin bx + c2 cos bx2  (31.17)

is the solution to Eq. (31.13). The c1 and c2 here are not the same as those above. They 
are simply the two arbitrary constants of the solution.

 EXAMPLE  4  Solving an equation with complex roots

Solve the differential equation D2y - Dy + y = 0.
We have the following solution:

 m2 - m + 1 = 0 auxiliary equation

 m =
1 ± j13

2
complex roots

a =
1
2
  b =

13
2

identify a and b

 y = ex>2 ac1 sin 
13
2

x + c2 cos 
13
2

xb using Eq. (31.17) ■

 EXAMPLE  5  Solving a third-order equation

Solve the differential equation D3y + 4Dy = 0.
This is a third-order equation, which means there are three arbitrary constants in the 

general solution.

m3 + 4m = 0,  m1m2 + 42 = 0 auxiliary equation

m1 = 0  m2 = 2j  m3 = -2j three roots, two of them complex

a = 0  b = 2 identify a and b for complex roots

y = c1e0x + e0x 1c2 sin 2x + c3 cos 2x2 using Eqs. (31.15) and (31.17)

= c1 + c2 sin 2x + c3 cos 2x e0 = 1 ■

Practice Exercise

1.  Solve the differential equation 
D2y + 8Dy + 16y = 0.

Solution with Complex Roots

Practice Exercise

2.  Solve the differential equation 
D2y + 2Dy + 5y = 0.



 EXAMPLE  6  Complex roots—a particular solution

Solve the differential equation y″ - 2y′ + 12y = 0, if y′ = 2 and y = 1 when x = 0.

 D2y - 2Dy + 12y = 0 using operator D notation

 m2 - 2m + 12 = 0 auxiliary equation

m =
2 ± 14 - 48

2
= 1 ± j111 complex roots: a = 1, b = 111

y = ex 1c1 cos 111x + c2 sin 111x2 general solution

Using the condition that y = 1 when x = 0, we have

1 = e01c1 cos 0 + c2 sin 02   or  c1 = 1

Since y′ = 2 when x = 0, we find the derivative and then evaluate c2.

 y′ = ex1c1 cos 111x + c2 sin 111x - 111c1 sin 111x + 111c2 cos 111x2
 2 = e01cos 0 + c2 sin 0 - 111 sin 0 + 111c2 cos 02 y′ = 2 when x = 0

 2 = 1 + 111c2, c2 =
1
11

111 solve for c2

 y = ex acos 111x + 1
11

111 sin 111xb particular solution ■

If the root of the auxiliary equation is repeated more than once—for example, a tri-
ple root—an additional term with another arbitrary constant and the next higher power 
of x is added to the solution for each additional root. Also, if a pair of complex roots is 
repeated, an additional term with a factor of x and another arbitrary constant is added 
for each root of the pair. These are illustrated in the following example.

 EXAMPLE  7  Root repeated more than once

(a) For the differential equation D3y + 3D2y + 3Dy + y = 0, the auxiliary equa-
tion is

m3 + 3m2 + 3m + 1 = 0,  1m + 123 = 0

  Each of the three roots is m = -1. The equation is a third-order equation, which 
means there are three arbitrary constants. Therefore, the general solution is

y = e-x 1c1 + c2x + c3x22
(b) For the differential equation D4y + 8D2y + 16y = 0, the auxiliary equation is

m4 + 8m2 + 16 = 0, 1m2 + 422 = 0

  With two factors of m2 + 4, the roots are 2 j, 2 j, -2j, and -2j. The fourth-order 
equation, and four roots, indicate four arbitrary constants. Since e0x = 1, the 
general solution is

y = 1c1 + c2x2sin 2x + 1c3 + c4x2cos 2x ■

Knowing the various types of possible solutions, it is possible to determine the dif-
ferential equation if the solution is known. Consider the following example.

 EXAMPLE  8  Determine the equation from the solution

(a) A solution of y = c1ex + c2e2x indicates an auxiliary equation with roots of 
m1 = 1 and m2 = 2. Thus, the auxiliary equation is 1m - 12 1m - 22 = 0, 
and the simplest form of the differential equation is D2y - 3Dy + 2y = 0.

(b) A solution of y = e2x1c1 + c2x2  indicates repeated roots m1 = m2 = 2 of the 
auxiliary equation 1m - 222 = 0, and a differential equation is 
D2y - 4Dy + 4y = 0. ■

Repeated Complex Roots

 31.8 Auxiliary Equation with Repeated or Complex Roots 975



976 CHAPTER 31 Differential Equations

Let us summarize the type of solution that results from each of the cases discussed 
in the last two sections.

The Homogeneous Linear Differential Equation
The terms of the general solution to a homogeneous linear differential equation of 
constant coefficients are related to the roots of the auxiliary equation as follows.

Root of the auxiliary equation Terms in the general solution
m a single real root c1emx

m a double real root emx1c1 +  c2x2
m an n-fold real root emx1c1 +  c2x + c + cnxn-12
m = a { bj complex  
conjugate roots

eax1c1 sin bx + c2 cos bx2

EXERCISES 31.8

In Exercises 1–4, make the given changes in the indicated examples of 
this section, and then solve the resulting differential equations.

 1. In Example 3, change the sign of the term 10 
dy
dx.

 2. In Example 3, delete the term 10 
dy
dx.

 3. In Example 3, delete the term 25y.

 4. In Example 4, change the -  sign to + .

In Exercises 5–32, solve the given differential equations.

 5. 
d2y

dx2 - 2 
dy

dx
 + y = 0 6. 

d2y

dx2 - 6 
dy

dx
 + 9y = 0

 7. D2y + 12 Dy + 36y = 0 8. 16 D2y + 8 Dy + y = 0

 9. 
d2y

dx2 + 9y = 0 10. 
d2y

dx2 + y = 0

 11. D2y + Dy + 2y = 0

 12. D2y + 4y = 2 Dy

 13. D4y - y = 0

 14. 4 D2y = 12 Dy - 9y

 15. 4 D2y + y = 0

 16. 9 D2y + 4y = 0

 17. 16y″ - 24y′ + 9y = 0

 18. 9y″ - 24y′ + 16y = 0

 19. 25y″ + 4y = 0

 20. y″ + 5y = 4y′
 21. 2 D2y + 5y = 4 Dy

 22. D2y + 4 Dy + 6y = 0

 23. 25y″ + 16y = 40y′
 24. 9y‴ + 0.6y″ + 0.01y′ = 0

 25. 2 D2y - 3 Dy - y = 0

 26. D2y - 5 Dy = 14y

 27. 3 D2y + 12 Dy = 2y

 28. 36 D2y = 25y

 29. D3y - 6 D2y + 12 Dy - 8y = 0

 30. D4y - 2 D3y + 2 D2y - 2 Dy + y = 0

 31. D4y + 2 D2y + y = 0

 32. 16 D4y - y = 0

In Exercises 33–36, find the particular solutions of the given 
differential equations that satisfy the given conditions.

 33. y″ + 2y′ + 10y = 0; y = 0 when x = 0 and y = e-p>6 when 
x = p>6

 34. 9 D2y + 16y = 0; Dy = 0 and y = 2 when x = p>2

 35. D2y + 16y = 8 Dy; Dy = 2 and y = 4 when x = 0

 36. D4y + 3 D3y + 2 D2y = 0; y = 0 and Dy = 4 and D2y = -8 
and D3y = 16 when x = 0

In Exercises 37–40, find the simplest form of the second-order 
homogeneous linear differential equation that has the given solution. 
In Exercises 38 and 39, explain how the equation is found.

 37. y = c1e3x + c2e-3x

 38. y = c1e3x + c2xe3x

 39. y = c1 cos 3x + c2 sin 3x

 40. y = c1e2x cos x + c2e2x sin x

In Exercises 41 and 42, solve the given problems.

 41. Find the solution of the equation D2y + ay = 0, if y = 0 for 
x = 0 and x = 1, (a) if a = 0, and (b) a 6 0.

 42. What is the solution of the equation in Exercise 41, with the same 
conditions, if 0 6 a 6 p2?

Answers to Practice Exercises

1. y = e-4x 1c1 + c2x2  2. y = e-x1c1 sin 2x + c2 cos 2x2



 31.9 Solutions of Nonhomogeneous Equations
 

 

We now consider the solution of a nonhomogeneous linear equation of the form

a0 D
2y + a1Dy + a2 y = b  (31.18)

where b is a function of x or is a constant. When the solution is substituted into the left 
side, we must obtain b. Solutions found from the methods of Sections 31.7 and 31.8 
give zero when substituted into the left side, but they do contain the arbitrary constants 
necessary in the solution. If we could find a particular solution that when substituted 
into the left side produced b, it could be added to the solution containing the arbitrary 
constants. Therefore, the solution is of the form

y = yc + yp  (31.19)

where yc, called the complementary solution, is obtained by solving the correspond-
ing homogeneous equation and where yp is the particular solution necessary to pro-
duce the expression b of Eq. (31.18). It should be noted that yp satisfies the differential 
equation, but it has no arbitrary constants and therefore cannot be the general solution. 
The arbitrary constants are part of yc.

 EXAMPLE  1  

The differential equation D2y - Dy - 6y = ex has the solution

y = c1e3x + c2e-2x - 1
6 ex

where the complementary solution yc and particular solution yp are

yc = c1e3x + c2e-2x  yp = -  16 ex

The complementary solution yc is obtained by solving the corresponding homogeneous 
equation D2y - Dy - 6y = 0, and we shall discuss below the method of finding yp. 
Again, we note that yc contains the arbitrary constants, yp contains the expression 
needed to produce the ex on the right, and therefore both are needed to have the com-
plete general solution. ■

The method that is used to find a particular solution yp is called the method of 
undetermined coefficients.

1.  Obtain the complementary solution yc by solving the corresponding homoge-
neous equation.

2.  Make a guess as to the form of a particular solution yp. Since a combination 
of the particular solution and its derivatives must form the function b on the 
right side of the equation, yp should contain all possible forms of b and its 
derivatives. Leave the coefficients of yp undetermined.

3.  Substitute the chosen form of yp into the differential equation and equate the 
coefficients of like terms. Find the values of the coefficients by solving the 
resulting equation(s).

4.  Complete the solution by adding yp to yc. Note that some adjustments will be 
necessary in step 3 if the proposed yp and yc have similar terms (see Example 9).
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 EXAMPLE  2  Forms of particular solutions

(a) If the function b is 4x, we choose the particular solution yp to be of the form 
yp = A + Bx. The Bx-term is included to account for the 4x. Since the deriva-
tive of Bx is a constant, the A-term is included to account for any first deriva-
tive of the Bx-term that may be present. Since the derivative of A is zero, no 
other terms are needed to account for higher-derivative terms of the Bx-term.

(b) If the function b is e2x, we choose the form of the particular solution to be 
yp = Ce2x. Since all derivatives of Ce2x are a constant times e2x, no other forms 
appear in the derivatives, and no other forms are needed in yp.

(c) If the function b is 4x + e2x, we choose the form of the particular solution to be 
yp = A + Bx + Ce2x. ■

 EXAMPLE  3  Forms of particular solutions

(a) If b is of the form x2 + e-x, we choose the particular solution to be of the form 
yp = A + Bx + Cx2 + Ee-x.

(b) If b is of the form xe-2x - 5, we choose the form of the particular solution to be 
yp = Ae-2x + Bxe-2x + C.

(c) If b is of the form x sin x, we choose the form of the particular solution to be 
yp = A sin x + B cos x + Cx sin x + Ex cos x. All these types of terms occur in 
the derivatives of x sin x. ■

 EXAMPLE  4  Forms of particular solutions

(a) If b is of the form ex + xex, we should then choose yp to be of the form 
yp = Aex + Bxex. These terms occur for xex and its derivatives. Since the form 
of the ex-term of b is already included in Aex, we do not include another  
ex-term in yp.

(b) In the same way, if b is of the form 2x + 4x2, we choose the form of yp to be 
yp = A + Bx + Cx2. There are only forms that occur in either 2x or 4x2 and 
their derivatives. ■

 EXAMPLE  5  Solving a nonhomogeneous equation

Solve the differential equation D2y - Dy - 6y = ex.
In this case, the solution of the auxiliary equation m2 - m - 6 = 0 gives us the 

roots m1 = 3 and m2 = -2. Thus,

yc = c1e3x + c2e-2x

The proper form of the particular solution is yp = Aex. This means that Dyp = Aex and 
D2yp = Aex. Substituting yp and its derivatives into the differential equation, we have

Aex - Aex - 6Aex = ex

To produce equality, the coefficients of ex must be the same on each side of the equa-
tion. Thus,

-6A = 1 or A = -1>6

Therefore, yp = - 1
6 ex. This gives the complete solution y = yc + yp,

y = c1e3x + c2e-2x - 1
6

 ex  see Example 1

This solution checks when substituted into the original differential equation. ■

Practice Exercise

1.  Find the form of yp if b is of the form 
x + cos x.



 EXAMPLE  6  Solving a nonhomogeneous equation

Solve the differential equation D2y + 4y = x - 4e-x.
In this case, we have m2 + 4 = 0, which give us m1 = 2j and m2 = -2j. 

Therefore, yc = c1 sin 2x + c2 cos 2x.
The proper form of the particular solution is yp = A + Bx + Ce-x. Finding two  

derivatives and then substituting into the differential equation gives

yp = A + Bx + Ce-x  Dyp = B - Ce-x  D2yp = Ce-x

D2y + 4y = x - 4e-x differential equation1Ce-x2 + 41A + Bx + Ce-x2 = x - 4e-x substituting

Ce-x + 4A + 4Bx + 4Ce-x = x - 4e-x

14A2 + 14B2x + 15C2e-x = 0 + 112x + 1 -42e-x note coefficients

Equating the constants and the coefficients of x and e-x on either side gives

4A = 0  4B = 1 5C = -4

A = 0  B = 1>4  C = -4>5

This means that the particular solution is

yp =
1
4

 x - 4
5

 e-x

In turn, this tells us that the complete solution is

y = c1 sin 2x + c2 cos 2x + 1
4

 x - 4
5

 e-x

Substitution into the original differential equation verifies this solution. ■

 EXAMPLE  7  Solving a nonhomogeneous equation

Solve the differential equation D3y - 3 D2y + 2 Dy = 10 sin x.

Practice Exercise

2.  Find yp for the differential equation 
D2y + 4y = 8xe2x.

m3 - 3m2 + 2m = 0  m1m - 12 1m - 22 = 0  m1 = 0  m2 = 1  m3 = 2 auxiliary equation

yc = c1 + c2ex + c3e2x complementary solution

We now find the particular solution:

 yp = A sin x + B cos x particular solution form

 Dyp = A cos x - B sin x  D2yp = -A sin x - B cos x  D3yp = -A cos x + B sin x find three derivatives

 1-A cos x + B sin x2 - 31-A sin x - B cos x2 + 21A cos x - B sin x2 = 10 sin x substitute into differential equation

 13A - B2sin x + 1A + 3B2cos x = 10 sin x

3A - B = 10  A + 3B = 0 equate coefficients

The solution of this system is A = 3, B = -1.

 yp = 3 sin x - cos x particular solution

 y = c1 + c2ex + c3e2x + 3 sin x - cos x complete general solution

Check this solution in the differential equation. ■
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 EXAMPLE  8  Particular solution

Find the particular solution of y″ + 16y = 2e-x if Dy = -2 and y = 1 when x = 0.
In this case, we must not only find yc and yp, but we must also evaluate the constants 

of yc from the given conditions. The solution is as follows:

 D2y + 16y = 2e-x operator D form

 m2 + 16 = 0, m = ± 4j auxiliary equation

 yc = c1 sin 4x + c2 cos 4x complementary solution

 yp = Ae-x particular solution form

 Dyp = -Ae-x  D2yp = Ae-x

Ae-x + 16Ae-x = 2e-x substituting

 17Ae-x = 2e-x,  A =
2
17

equate coefficients

 yp =
2
17

 e-x

 y = c1 sin 4x + c2 cos 4x + 2
17

 e-x complete general solution

We now evaluate c1 and c2 from the given conditions:

 Dy = 4c1 cos 4x - 4c2 sin 4x - 2
17

 e-x

 1 = c1 102 + c2112 + 2
17

 112 ,  c2 =
15
17

y = 1 when x = 0

-2 = 4c1 112 - 4c2102 - 2
17

 112 ,  c1 = - 8
17

Dy = -2 when x = 0

 y = - 8
17

 sin 4x + 15
17

 cos 4x + 2
17

 e-x required particular solution

This solution checks when substituted into the differential equation. ■

The particular solution of a non-homogeneous differential equation can also be obtained 
when the function b in Eq. (31.18) is periodic. By expanding b in a Fourier series, the par-
ticular solution can be found by undetermined coefficients, as we see in the next example.

 EXAMPLE  9  A solution using Fourier series

Solve the differential equation D2y + 4y = f1x2  where

f1x2 = b x 0 … x 6 2
4 - x 2 … x 6 4

, f1x + 42 = f1x2 ,  and f1x2  is extended to be even.

See Fig. 31.11.
We have seen in Example 6 that the complementary solution is of the form 

yc = c1 sin2x + c2 cos2x. We now find a particular solution.
We begin by writing f1x2  in a half-range cosine series 1 f1x2  is even2 . We have 

already done that in Example 9 of Section 30.7. We have

f1x2 = 1 - 8

p2 acos  
px
2

 + 1
9

  cos 
3px

2
+ 1

25
  cos 

5px
2

+ cb
Since the differential equation contains only y and its second derivatives, a particular 
solution involving only cosines is appropriate. Therefore we choose a particular solu-
tion of the form

yp = A0 + a
∞

n =1
An cos 

npx
2

Fig. 31.11 

0

2

2−2−4 4

f(x)

x



Therefore,

D2yp = a
∞

n =1
a- n2p2

4
bAn cos 

npx
2

We substitute yp and D2yp into the differential equation and equate the coefficients of like 
terms. If n = 0 we have 4A0 = 1, so A0 = 1>4. If n is even, An = 0, and if n is odd,a- n2p2

4
+ 4bAn = - 8

p2n2  or  An =
32

p21p2n4 - 16n22
Therefore, the particular solution is

yp =
1
4

+ 32

p2 a 1

p2 - 16
  cos 

px
2

+ 1

81p2 - 144
  cos 

3px
2

+ cb
The complete solution is

y = c1 sin2x + c2 cos2x + 1
4

+ 32

p2 a 1

p2 - 16
  cos 

px
2

+ 1

81p2 - 144
  cos 

3px
2

+ cb  ■

A SPECIAL CASE
It may happen that a term of the proposed yp is similar to a term of yc. Since any term of 
yc gives zero when substituted in the differential equation, so will that term of the pro-
posed yp. This means the proposed yp must be modified. The following example shows 
us how.

 EXAMPLE  10  yp and yc have similar terms

Solve the differential equation D2y - 2Dy + y = x + ex.
We find that the auxiliary equation and complementary solution are

m2 - 2m + 1 = 0,  1m - 122 = 0  m1 = 1  m2 = 1

 yc = ex 1c1 + c2 x2
Based on the function b on the right side, the proposed form of yp is

yp = A + Bx + Cex  proposed form

We now note that the term Cex is similar to the term c1ex of yc. Therefore, we must 
multiply the term Cex by the smallest power of x such that it is not similar to any term 
of yc. If we multiply by x, the term becomes similar to c2 xex. Therefore, we must multi-
ply Cex by x2 such that yp is

yp = A + Bx + Cx2ex  correct modified form

Using this form of yp, we now complete the solution.

■ From Eq. (31.18), we note that the function b 
is the function on the right side of the differen-
tial equation.

If a term of the proposed yp is similar 
to a term of yc, any term of the pro-
posed yp included to account for the 
similar term of the function b must 
be multiplied by the smallest possible 
integral power of x such that any 
resulting term yp is not similar to the 
term of yc.

LEARNING T IP

■ Note that the A + Bx are not multiplied by 
x2 since they are not included in yp to account 
for the ex to the right.

Dyp = B + Cx2ex + 2Cxex  D2yp = Cx2ex + 2Cxex + 2Cex + 2Cxex = 2Cex + 4Cxex + Cx2ex12Cex + 4Cxex + Cx2ex2 - 21B + Cx2ex + 2Cxex2 + 1A + Bx + Cx2ex2 = x + ex1A - 2B2 + Bx + 2Cex = x + ex

A - 2B = 0  B = 1  2C = 1  A = 2  B = 1  C = 1>2

 yp = 2 + x + 1
2  x2ex

 y = ex 1c1 + c2x2 + 2 + x + 1
2  x2ex ■
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EXERCISES 31.9

In Exercises 1–4, make the given changes in the indicated examples of 
this section and then solve the given problems.

 1. In Example 3(a), add 2x to the form b and then determine the 
form of yp.

 2. In Example 5, change ex to e2x and then find the solution.

 3. In Example 6, on the right side, change x to sin x, and then find 
the solution.

 4. In Example 8, change the right side to x2 + xex and then find the 
proper form for yp.

In Exercises 5–16, solve the given differential equations. The form of 
yp is given.

 5. D2y - Dy - 2y = 4 (Let yp = A.)

 6. D2y - Dy - 6y = 4x (Let yp = A + Bx.)

 7. D2y - y = 2 + x2 (Let yp = A + Bx + Cx2.)

 8. D2y + 4Dy + 3y = 2 + ex (Let yp = A + Bex.)

 9. y″ - 3y′ = 2ex + xex (Let yp = Aex + Bxex.)

 10. y″ + y′ - 2y = 8 + 4x + 2xe2x  
(Let yp = A + Bx + Ce2x + Exe2x.)

 11. 9D2y - y = sin x (Let yp = A sin x + B cos x.)

 12. D2y + 4y = sin x + 4 (Let yp = A + B sin x + C cos x.)

 13. 
d2y

dx2 - 2 
dy

dx
 + y = 2x + x2 + sin 3x 

  1Let yp = A + Bx + Cx2 + E sin 3x + F cos 3x.2
 14. D2y - y = e-x (Let yp = Axe-x.)

 15. D2y + 4y = -12 sin 2x (Let yp = Ax sin 2x + Bx cos 2x.)

 16. y″ - 2y′ + y = 3 + ex (Let yp = A + Bx2ex.)

In Exercises 17–32, solve the given differential equations.

 17. 
d2y

dx2 -
dy

dx
- 30y = 10 18. 2 

d2y

dx2 
+ 11 

dy

dx
 - 6y = 8x

 19. 3 
d2y

dx2 
-

dy

dx
- 4y = 5e3x 20. 

d2y

dx2 + 4y = 2 sin 3x

 21. D2y - 4y = sin x + 2 cos x

 22. 6D2y + Dy - y = ex - e-x

 23. D2y + y = 4 + sin 2x

 24. D2y - Dy + y = x + sin x

 25. D2y + 5Dy + 4y = xex + 4

 26. 3D2y + Dy - 2y = 4 + 2x + ex

 27. y‴ - y′ = sin 2x 28. D4y - y = x

 29. D2y + y = cos x 30. 4y″ - 4y′ + y = 4 ex>2
 31. D2y + 2Dy = 8x + e-2x 32. D3y - Dy = 4e-x + 3e2x

In Exercises 33–36, find the particular solution of each differential 
equation for the given conditions.

 33. D2y - Dy - 6y = 5 - ex; Dy = 4 and y = 2 when x = 0

 34. 3y″ - 10y′ + 3y = xe-2x; y′ = - 9
35 and y = -13

35 when 
x = 0

 35. y″ + y = x + sin 2x; y′ = 1 and y = 0 when x = p

 36. D2y - 2 Dy + y = xe2x - e2x; Dy = 4 and y = -2 when 
x = 0

In Exercises 37 and 38, solve the given problems.

 37. Solve the first-order equation Dy - y = x2 by the method of un-
determined coefficients. For this equation, why is this method 
easier than the method of Section 31.4?

 38. Show that the equation 1D2 + 12y = x3, subject to the condi-
tions that y = 0 for x = 0 and x = p, has no solution.

In Exercises 39–40, find a particular solution of the equation 
D2y + 4y = f1x2  for the given function. (One period is defined for 
each function.) See Example 9.

 39. f1x2 = b1 0 … x 6 2
-1 2 … x 6 4

 and f1x2  is extended to be odd.

 40. f1x2 = b1 0 … x 6 4
8 - x 4 … x 6 8

 and f1x2  is extended to be even.

Answers to Practice Exercises

1. yp = A + Bx + C sin x + D cos x 2. yp = - 1
2

  e2x + xe2x

 31.10 Applications of Higher-Order Equations
 

 
We now show important applications of second-order differential equations to simple 
harmonic motion and simple electric circuits. Also, we will show an application of a 
fourth-order differential equation to the deflection of a beam.

 EXAMPLE  1  Simple harmonic motion

Simple harmonic motion may be defined as motion in a straight line for which the 
acceleration is proportional to the displacement and in the opposite direction. Examples 
of this type of motion are a weight on a spring, a simple pendulum, and an object bob-
bing in water. If x represents the displacement, d2x>dt2 is the acceleration.

Using the definition of simple harmonic motion, we have

d2x

dt2 = -k2x



(We chose k2 for convenience of notation in the solution.) We write this equation in the 
form

D2x + k2x = 0  here, D = d>dt

The roots of the auxiliary equation are kj and -kj, and the solution is

x = c1 sin kt + c2 cos kt

This solution indicates an oscillating motion, which is known to be the case. If, for ex- 
ample, k = 4 and we know that x = 2 and Dx = 0 (which means the velocity is zero) 
for t = 0, we have

Dx = 4c1 cos 4t - 4c2 sin 4t

2 = c1 102 + c2112 x = 2  for t = 0

0 = 4c1112 - 4c2102 Dx = 0 for t = 0

which gives c1 = 0 and c2 = 2. Therefore,

x = 2 cos 4t

is the equation relating the displacement and time; Dx is the velocity and D2x is the 
acceleration. See Fig. 31.12. ■

 EXAMPLE  2  Damped simple harmonic motion

In practice, an object moving with simple harmonic motion will in time cease to move 
due to unavoidable frictional forces. A “freely” oscillating object has a retarding force 
that is approximately proportional to the velocity. The differential equation for this 
case is D2x = -k2x - b Dx. This results from applying (from physics) Newton’s sec-
ond law of motion (see the margin note at the left). Again, using the operator 
D2x = d2x>dt2, the term D2x represents the acceleration of the object, the term -k2x is 
a measure of the restoring force (of the spring, for example), and the term -b Dx repre-
sents the retarding (damping) force. This equation can be written as

D2x + b Dx + k2x = 0

The auxiliary equation is m2 + bm + k2 = 0, for which the roots are

m =
-b ± 2b2 - 4k2

2

If k = 3 and b = 4, m = -2 { j15, which means the solution is

x = e-2t 1c1 sin 15t + c2 cos 15t2  (1)

Here, 4k2 7 b2, and this case is called underdamped. In this case, 
the object oscillates as the amplitude becomes smaller.

If k = 2 and b = 5, m = -1, -4, which means the solution is

x = c1e-t+c2e-4t (2)

Here, 4k2 6 b2, and the motion is called overdamped. Note that the 
motion is not oscillatory, since no sine or cosine terms appear. In this 
case, the object returns slowly to equilibrium without oscillating.

If k = 2 and b = 4, m = -2, -2, which means the solution is

x = e-2t1c1 + c2t2  (3)

Here, 4k2 = b2, and the motion is called critically damped. Again 
the motion is not oscillatory. In this case, there is just enough damping 
to prevent any oscillations. The object returns to equilibrium in the 
minimum time.

See Fig. 31.13, in which Eqs. (1), (2), and (3) are represented in gen-
eral. The actual values depend on c1 and c2, which in turn depend on the 
conditions imposed on the motion. ■

Fig. 31.12 
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Fig. 31.13 

x

t

Critically
damped

Underdamped

Overdamped

0

■ Newton’s second law states that the net 
force acting on an object is equal to its mass 
times its acceleration. (This is one of Newton’s 
best-known contributions to physics.)
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 EXAMPLE  3  Underdamped harmonic motion

In testing the characteristics of a particular type of spring, it is found that a weight of 4.90 N 
stretches the spring 0.490 m when the weight and spring are placed in a fluid that resists 
the motion with a force equal to twice the velocity. If the weight is brought to rest and 
then given a velocity of 12.0 m>s, find the equation of motion. See Fig. 31.14.

Fig. 31.14 

4.90 N

12.0 m/s

Damping
force

5 22.00v
Hooke's law force

5 210.0x

Motion
of

weight4.90 N

0.490 m

Equilibrium
position

x

In order to find the equation of motion, we use Newton’s second law of motion 
(see Example 2). The weight (one force) at the end of the spring is offset by the 
equilibrium position force exerted by the spring, in accordance with Hooke’s law 
(see Section 26.6). Therefore, the net force acting on the weight is the sum of the 
Hooke’s law force due to the displacement from the equilibrium position and the 
resisting force. Using Newton’s second law, we have

mass  *  acceleration =  resisting force +  Hooke’s law force

mD2x = -2.00 Dx - kx

The mass of an object is its weight divided by the acceleration due to gravity. The 
weight is 4.90 N, and the acceleration due to gravity is 9.80 m>s2. Thus the mass m is

m =
4.90 N

9.80 m>s2 = 0.500 kg

where the kilogram is the unit of mass.
The constant k for the Hooke’s law force is found from the fact that the spring 

stretches 0.490 m for a force of 4.90 N. Thus, using Hooke’s law,

4.90 = k10.4902 ,  k = 10.0 N>m

This means that the differential equation to be solved is

0.500D2x + 2.00Dx + 10.0x = 0

or

1.00D2x + 4.00Dx + 20.0x = 0

Solving this equation, we have

1.00m2 + 4.00m + 20.0 = 0 auxiliary equation

m =
-4.00 ± 116.0 - 4120.02 11.002

2.00
 = -2.00 ± 4.00j complex roots

 x = e-2.00t 1c1 cos 4.00t + c2 sin 4.00t2 general solution



Since the weight started from the equilibrium position with a velocity of 12.0 m>s, 
we know that x = 0 and Dx = 12.0 for t = 0. Thus,

0 = e01c1 + 0c22 or c1 = 0  x = 0 for t = 0

Thus, since c1 = 0, we have

 x = c2e-2.00t sin 4.00t

 Dx = c2e-2.00t1cos 4.00t2 14.002 + c2 sin 4.00t1e-2.00t2 1 -2.002
 12.0 = c2e0112 14.002 + c2102 1e02 1 -2.002   Dx = 12.0 for t = 0

 c2 = 3.00

This means that the equation of motion is

x = 3.00e-2.00t sin 4.00t

The motion is underdamped; the graph is shown in Fig. 31.15. ■

It is possible to have an additional force acting on a weight such as the one in 
Example 3. For example, a vibratory force may be applied to the support of the spring. 
In such a case, called forced vibrations, this additional external force is added to the 
other net force. This means that the added force F1 t2  becomes a nonzero function on 
the right side of the differential equation, and we must then solve a nonhomogeneous 
equation.

 EXAMPLE  4  Electric circuits

The impressed voltage in the electric circuit shown in Fig. 31.16 equals the sum of the 
voltages across the components of the circuit. For this circuit with a resistance R, an 
inductance L, a capacitance C, and a voltage source E, we have

L 
d2q

dt2 + R 
dq

dt
 +

q

C
= E  (31.20)

By definition, q represents the electric charge, dq>dt = i is the current, and d2q>dt2 is 
the time rate of change of current. This equation may be written as

LD2q + RDq + q>C = E

The auxiliary equation is Lm2 + Rm + 1>C = 0. The roots are

m =
-R ± 2R2 - 4L>C

2L

= - R
2L

± B R2

4L2 - 1
LC

If we let a = R>2L and v = 21>LC - R2>4L2, we have (assuming complex roots, 
which corresponds to realistic values of R, L, and C)

qc = e-at1c1 sin vt + c2 cos vt2
This indicates an oscillating charge, or an alternating current. However, the exponential 
term usually is such that the current dies out rapidly unless there is a source of voltage 
in the circuit. ■

Fig. 31.15 
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If there is no source of voltage in the circuit of Example 4, we have a homogeneous 
differential equation to solve. If we have a constant voltage source, the particular solu-
tion is of the form qp = A. If there is an alternating voltage source, the particular solu-
tion is of the form qp = A sin v1t + B cos v1t, where v1 is the angular velocity of the 
source. After a very short time, the exponential factor in the complementary solution 
makes it negligible. For this reason, it is referred to as the transient term, and the par-
ticular solution is the steady-state solution.

It should be noted that the complementary solutions of the mechanical and electric 
cases are of identical form. There is also an equivalent mechanical case to that of an 
impressed sinusoidal voltage source in the electric case. This arises in the case of 
forced vibrations, when an external force affecting the vibrations is applied to the sys-
tem. Thus, we may have transient and steady-state solutions to mechanical and other 
nonelectric situations.

 EXAMPLE  5  Electric circuit

Find the steady-state solution for the current in a circuit containing the following ele-
ments: C = 400 mF, L = 1.00 H, R = 10.0 Ω, and a voltage source of 500 sin 100t. 
See Fig. 31.17.

This means the differential equation to be solved is

d2q

dt2 + 10 
dq

dt
 + 104

4
 q = 500 sin 100t

Since we wish to find the steady-state solution, we must find qp, from which we may 
find ip by finding a derivative. The solution now follows:

To find the steady-state solution for 
Eq. (31.20) we need find only the par-
ticular solution.

LEARNING T IP

Fig. 31.17 

500 sin 100t

400 mF

10.0 Ω

1.00 H

 qp = A sin 100t + B cos 100t particular solution form

 
dqp

dt
= 100A cos 100t - 100B sin 100t

 
d2qp

dt2 = -104A sin 100t - 104B cos 100t

-104A sin 100t - 104B cos 100t + 103A cos 100t - 103B sin 100t substitute into differential equation

+ 104

4
A sin 100t + 104

4
B cos 100t = 500 sin 100t1-0.75 * 104A - 103B2sin 100t + 1-0.75 * 104B + 103A2cos 100t = 500 sin 100t

-7.5 * 103A - 103B = 500 equate coefficients of sin 100t

103A - 7.5 * 103B = 0 equate coefficients of cos 100t

Deflection of Beams

Solving these equations, we obtain

B = -8.73 * 10-3 and A = -65.5 * 10-3

Therefore,

 qp = -65.5 * 10-3 sin 100t - 8.73 * 10-3 cos 100t

 ip =
dqp

dt
= -6.55 cos 100t + 0.87 sin 100t

which is the required solution. (We assumed 3 significant digits for the data but did not 
use all of them in most equations of the solution.) ■

The solutions to the second-order differential equations for the applications of simple 
harmonic motion and electric circuits generally include sines and cosines, because of 
the oscillatory nature of these applications. We now consider problems involving the 
deflections of beams, which involve fourth-order differential equations and algebraic 
functions.



In the study of the strength of materials and elasticity, it is shown that the deflection y 
of a beam of length L satisfies the differential equation EI d4y>dx4 = w1x2 , where EI is 
a measure of the stiffness of the beam and w1x2  is the weight distribution along the beam. 
See Fig. 31.18. Since this is a fourth-order equation, it is necessary to specify four condi-
tions to obtain a solution. These conditions are determined by the way in which the ends, 
where x = 0 and where x = L, are held. For an end held in the specified manner, these 
conditions are clamped: y = 0 and y′ = 0; hinged: y = 0 and y″ = 0; free: y″ = 0 and 
y‴ = 0 (y′ = 0 indicates no change in alignment; y″ = 0 indicates no curvature; y‴ = 0 
indicates no shearing force). Since the conditions are given for specific positions, this kind 
of problem is called a boundary value problem. Consider the following example.

 EXAMPLE  6  Deflection of a beam

A uniform beam of length L is hinged at both ends and has a constant load distribution 
of w due to its own weight. Find the deflection y of the beam in terms of the distance x 
from one end of the beam.

Using the differential equation given above, we have EI d4y>dx4 = w. For conveni-
ence in the solution, let k = w>EI. Thus, the solution is as follows:

 D4y = k

 m4 = 0  m1 = m2 = m3 = m4 = 0

Since the four roots of the auxiliary equation are equal,

yc = c1 + c2x + c3x2 + c4x3

The form of yp indicates that we must multiply the proposed yp = A by x4 so that it is 
not similar to any of the terms of yc. This gives us yp = x4. Therefore, we now find the 
general solution as follows:

yp = Ax4  Dyp = 4Ax3  D2yp = 12Ax2  D3yp = 24Ax  D4yp = 24A

24A = k,  A = k>24

y = c1 + c2x + c3x2 + c4x3 + k
24

 x4  general solution

From the discussion about beams before this example, we now find four boundary con-
ditions in order to evaluate the four constants in yc. For a beam hinged at both ends, we 
know that y = 0 and D2y = 0 for both x = 0 and x = L. Therefore, we now find two 
derivatives, use these conditions, and thereby find yc.

 Dy = c2 + 2c3x + 3c4x2 + k
6

 x3 find derivatives

 D2y = 2c3 + 6c4x + k
2

x2

 At x = 0, y = 0: c1 = 0;  At x = 0, D2y = 0: c3 = 0 use conditions to 
evaluate constants

 At x = L, D2y = 0: 0 = 6c4L + kL2

2
 ;  c4 = -  

kL
12

 At x = L, y = 0: 0 = c2L + c4L3 + kL4

24

 0 = c2L + a-  
kL
12

bL3 + kL4

24
 ;  c2 =

kL3

24

Therefore, substituting the values of the four constants in the general solution above, 
the particular solution that satisfies these conditions is

 y =
kL3

24
x - kL

12
x3 + kx4

24
=

k
24

 1L3x - 2Lx3 + x42
 =

w
24EI

 1L3x - 2Lx3 + x42   k = w>EI ■

Fig. 31.18 

L

x
Undeflected beam

Deflected beam

0

y
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EXERCISES 31.10

In Exercises 1 and 2, make the given changes in the indicated examples 
of this section and then solve the resulting problems.

 1. In Example 1, change the conditions that x = 2 and Dx = 0 for 
t = 0 to x = 0 and Dx = 2 for t = 0.

 2. In Example 5, change the voltage source to 500 cos 100t.

In Exercises 3–27, solve the given problems.

 3. An object moves with simple harmonic motion according to 
D2x + 0.2Dx + 100x = 0, D = d>dt. Find the displacement as 
a function of time, subject to the conditions x = 4 and Dx = 0 
when t = 0.

 4. What must be the value of b so that the motion of an object given 
by the equation D2x + bDx + 100x = 0 is critically damped?

 5. When the angular displacement u of a pendulum is small (less than 
about 6°), the pendulum moves with simple harmonic motion 

  closely approximated by D2u +
g

l
 u = 0. Here, D = d>dt, g is

  the acceleration due to gravity, and l is the length of the pendu-
lum. Find u as a function of time (in s) if g = 9.8 m>s2, 
l = 1.0 m, u = 0.1, and Du = 0 when t = 0. Sketch the curve.

 6. A block of wood floating in oil is depressed from its equilibrium 
position such that its equation of motion is D2y + 8Dy + 3y = 0, 
where y is the displacement (in cm) and D = d>dt. Find its dis-
placement after 12 s if y = 6.0 cm and Dy = 0 when t = 0.

 7. A car suspension is depressed from its equilibrium position such 
that its equation of motion is D2y + b Dy + 25y = 0, where y is 
the displacement and D = d>dt. What must be the value of b if 
the motion is critically damped?

 8. In an electric circuit, if a capacitor discharges through a negligi-
ble resistance, the current i is related to the time t by the equation 
d2i>dt2 = -a2i, where a is a constant. Find the frequency of the 
current if a = 1000.

 9. For an elastic band that is stretched vertically, with one end fixed 
and a mass m at the other end, the displacement s of the mass is

  given by m 
d2s

dt2 = -  
mg

e
 1s - L2 , where L is the natural length

  of the band and e is the elongation due to the weight mg. Find s if 
s = s0 and ds>dt = 0 when t = 0.

 10. A mass of 0.820 kg stretches a given spring by 0.250 m. The mass 
is pulled down 0.150 m below the equilibrium position and re-
leased. Find the equation of motion of the mass if there is no 
damping.

 11. A 4.00-N weight stretches a certain spring 5.00 cm. With this 
weight attached, the spring is pulled 10.0 cm longer than its equi-
librium length and released. Find the equation of the resulting 
motion, assuming no damping.

 12. Find the solution for the spring of Exercise 11 if a damping force 
numerically equal to the velocity is present.

 13. Find the solution for the spring of Exercise 11 if no damping is 
present but an external force of 4 sin 2t is acting on the spring.

 14. Find the solution for the spring of Exercise 11 if the damping 
force of Exercise 12 and the impressed force of Exercise 13 are 
both acting.

 15. Find the equation relating the charge and the time in an electric 
circuit with the following elements: L = 0.200 H, R = 8.00 Ω, 
C = 1.00 mF, and E = 0. In this circuit, q = 0 and i = 0.500 A 
when t = 0.

 16. For a given electric circuit, L = 2 mH, R = 0, C = 50 nF, and 
E = 0. Find the equation relating the charge and the time if 
q = 105 C and i = 0 when t = 0.

 17. For a given circuit, L = 0.100 H, R = 0, C = 100 mF, and 
E = 100 V. Find the equation relating the charge and the time if 
q = 0 and i = 0 when t = 0.

 18. Find the relation between the current and the time for the circuit 
of Exercise 17.

 19. For a radio tuning circuit, L = 0.500 H, R = 10.0 Ω, 
C = 200 mF, and E = 120 sin 120pt. Find the equation relating 
the charge and time.

 20. Find the steady-state current for the circuit of Exercise 19.

 21. In a given electric circuit L = 8.00 mH, R = 0, C = 0.500 mF, 
and E = 20.0e-200t mV. Find the relation between the current 
and the time if q = 0 and i = 0 for t = 0.

 22. Find the current as a function of time for a circuit in which 
L = 0.400 H, R = 60.0 Ω, C = 0.200 mF, and 
E = 0.800e-100t V, if q = 0 and i = 5.00 mA for t = 0.

 23. Find the steady-state current for a circuit with L = 1.00 H, 
R = 5.00 Ω, C = 150 mF, and E = 120 sin 100t V.

 24. Find the steady-state solution for the current in an electric circuit 
containing the following elements: C = 20.0 mF, L = 2.00 H, 
R = 20.0 Ω, and E = 200 sin 10t V. 

 25. A cantilever beam is clamped at the end x = 0 and is free at the 
end x = L. Find the equation for the deflection y of the beam in 
terms of the distance x from one end if it has a constant load dis-
tribution of w due to its own weight. See Fig. 31.19.

Fig. 31.19 

x

y

 26. A beam 10 m in length is hinged at both ends and has a variable 
load distribution of w = kEIx, where k = 7.2 * 10-4>m and x 
is the distance from one end. Find the equation of the deflection y 
in terms of x.

 27. A mass of 1
16 kg stretches a spring for which k = 4 N>m. A peri-

odic external force f1x2  is applied to the spring, with one period

  defined by f1 t2 = bpt 0 … t 6 1
pt - 2p 1 … t 6 2

, and f1 t2 is extended

  to be odd. Express the displacement y of the object as a function 
of time. (See Example 9 in Section 31.9.)



 31.11 Laplace Transforms
 

 
Inverse Transforms

Laplace transforms provide an algebraic method of obtaining a particular solution of 
a differential equation from stated initial conditions. Since this is frequently what is 
wanted, Laplace transforms are often used in engineering and electronics. The treat-
ment in this text is intended only an as introduction to Laplace transforms.

The Laplace transform of a function f1 t2  is defined as the function F1s2  as

F1s2 = L
∞

0
e-stf1 t2  dt  (31.21)

By writing the transform as F1s2 , we show that the result of integrating and evaluating 
is a function of s. To denote that we are dealing with “the Laplace transform of the 
function f1 t2 ,” the notation l1 f2  is used. Thus,

F1s2 = l1 f2 = L
∞

0
e-stf1 t2  dt  (31.22)

We shall see that both notations are quite useful.
In Eqs. (31.21) and (31.22), we note that the upper limit is ∞ , which means it is 

unbounded. This integral is one type of what is known as an improper integral. In 
evaluating at the upper limit, it is necessary to find the limit of the resulting function as 
the upper limit approaches infinity. This may be shown as

lim
cS ∞ L

c

0
e-stf1 t2  dt

where we substitute c for t in the resulting function and determine the limit as c S ∞  
to determine the result for the upper limit. This also means that the Laplace transform, 
F1s2 , is defined only for those values of s for which the limit is defined.

 EXAMPLE  1  Finding a transform from the definition

Find the Laplace transform of the function f1 t2 = t, t 7 0.
By the definition of the Laplace transform.

l1 f2 = l1 t2 = L
∞

0
e-stt dt

This may be integrated by parts or by formula 44 in Appendix B. Using the formula, 
we have

 l1 t2 = L
∞

0
te-st dt = lim

cS ∞ L
c

0
te-st dt = lim

cS ∞

e-st1 -st - 12
s2 `

0

c

 = lim
cS ∞

c e-sc 1 -sc - 12
s2 d + 1

s2

For s > 0, we can rewrite the quotient so as to have an ∞ >∞  indeterminate form and 
use L’Hospital’s rule (see Section 27.7) to evaluate the limit. We have

l1 t2 = - lim
cS ∞

c sc + 1

s2esc d + 1

s2   rewriting to have ∞ >∞

 = - lim
cS ∞

c s

s3esc d + 1

s2  

= 0 + 1

s2 =
1

s2 defined for s 7 0 ■

differentiate numerator and 
denominator with respect to c

■ The Laplace transform is named for the 
French mathematician and astronomer Pierre 
Laplace (1749–1827).
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■ For reference, if limcS ∞
 u1c2 limcS ∞

v1c2 = ∞ ,
then by L’Hospital’s rules

lim
cS ∞

u1c2
v1c2 = lim

cS ∞

u′1c2
v′1c2 .
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 EXAMPLE  2  Finding a transform from the definition

Find the Laplace transform of the function f1 t2 = cos at.
By definition,

l1 f2 = l1cos at2 = L
∞

0
e-st cos at dt

Using formula 50 in Appendix B, we have

 l1cos at2 = L
∞

0
e-stcos at dt = lim

cS ∞ L
c

0
e-st cos at dt

 = lim
cS ∞

e-st1 -s cos at + a sin at2
s2 + a2 `

0

c

 = lim
cS ∞

e-sc1 -s cos ac + a sin ac2
s2 + a2 - a-  

s

s2 + a2 b
 = 0 + s

s2 + a2 =
s

s2 + a2   1s 7 02
Therefore, the Laplace transform of the function cos at is

l1cos at2 =
s

s2 + a2

In both examples, the resulting transform was an algebraic function of s. ■

We now present a short table of Laplace transforms. They are sufficient for our 
work in this chapter. More complete tables are available in many references.

Table of Laplace Transforms

f1 t2 = l-1 1F2 l1 f2 = F1s2 f1 t2 = l-11F2 l1 f2 = F1s2
  1. 1 1

s
11. te-at 11s + a22

  2. t n-11n - 12!

1
sn 1n = 1, 2, 3, c2 12. t n-1e-at 1n - 12 !1s + a2n

  3. e-at 1
s + a

13. e-at11 - at2 s1s + a22

  4. 1 - e-at a
s1s + a2 14. 3 1b - a2 t + 14e-at s + b1s + a22

  5. cos at s

s2 + a2
15. sin at - at cos at 2a31s2 + a222

  6. sin at a

s2 + a2
16. t sin at 2as1s2 + a222

  7. 1 - cos at a2

s1s2 + a22 17. sin at + at cos at 2as21s2 + a222

  8. at - sin at a3

s2 1s2 + a22 18. t cos at s2 - a21s2 + a222

  9. e-at - e-bt b - a1s + a2 1s + b2 19. e-at sin bt b1s + a22 + b2

10. ae-at - be-bt s1a - b21s + a2 1s + b2 20. e-at cos bt s + a1s + a22 + b2



An important property of transforms is the linearity property,

l3af + bg4 = al1 f2 + bl1g2  (31.23)

We state this property here since it determines that the transform of a sum of functions 
is the sum of the transforms. This is of definite importance when dealing with a sum of 
functions. This property is a direct result of the definition of the Laplace transform.

Another Laplace transform important to the solution of a differential equation is the 
transform of the derivative of a function. Let us first find the Laplace transform of the 
first derivative of a function.

By definition,

l1 f ′2 = L
∞

0
e-stf ′1 t2  dt

To integrate by parts, let u = e-st and dv = f ′1 t2  dt, so du = -se-st dt and v = f1 t2  
(the integral of the derivative of a function is the function). Therefore,

 l1 f ′2 = lim
cS ∞

e-stf1 t2 `
0

c

+ sL
∞

0
e-stf1 t2  dt

 = 0 - f102 + sl1 f2
It is noted that the integral in the second term on the right is the Laplace transform of f1 t2  
by definition. Therefore, the Laplace transform of the first derivative of a function is

l1 f ′2 = sl1 f2 - f102  (31.24)

Applying the same analysis, we may find the Laplace transform of the second 
derivative of a function. It is

l1 f ″2 = s2l1 f2 - sf102 - f ′102  (31.25)

Here, it is necessary to integrate by parts twice to derive the result. The transforms of 
higher derivatives are found in a similar manner.

Eqs. (31.24) and (31.25) allow us to express the transform of each derivative in 
terms of s and the transform itself. This is illustrated in the following example.

 EXAMPLE  3  Linearity property—transforms of derivatives

Given that f102 = 0 and f ′102 = 1, express the transform of f ″1 t2 - 2f ′1 t2  in 
terms of s and the transform of f1 t2 .

By using the linearity property and the transforms of the derivatives, we have

l3 f ″ - 2f ′4 = l1 f ″2 - 2l1 f ′2  using Eq. (31.23)

= 3s2l1 f2 - sf102 - f ′102 4 - 23sl1 f2 - f1024 using Eqs. (31.25) and (31.24)

= 3s2l1 f2 - s # 0 - 14 - 23sl1 f2 - 04 substitute given values

= 1s2 - 2s2l1 f2 - 1 ■

Practice Exercise

1.  Given that f102 = 1 and f ′102 = 0, 
express the transform of f ″1 t2 - f ′1 t2  
in terms of s and the transform of f1 t2 .
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If the Laplace transform of a function is known, it is then possible to find the function 
by finding the inverse transform,

l-11F2 = f1 t2  (31.26)

where l-1 denotes the inverse transform.

 EXAMPLE  4  Inverse transform from the table

If F1s2 =
s

s2 + a2, from Transform 5 of the table, we see that

 l-11F2 = l-1a s

s2 + a2 b = cos at

 f1 t2 = cos at  ■

 EXAMPLE  5  Inverse transform from the table

If 1s2 - 2s2l1 f2 - 1 = 0, then

l1 f2 =
1

s2 - 2s
 or F1s2 =

1
s1s - 22

Therefore, we have

 f1 t2 = l-11F2 = l-1 c 1
s1s - 22 d   inverse transform

 = - 1
2

 l -1 c -2
s1s - 22 d        fit form of Transform 4

 = - 1
2

 11 - e2t2         use Transform 4 ■

The introduction of the factor -2 in Example 5 illustrates that it often takes some 
algebra steps to get F1s2  to match the proper form in the table. Another algebraic step 
that may be useful is completing the square. For a review of this algebraic method, see 
Section 7.2 (in particular, see Example 4 on page 227). The following example illus-
trates its use in finding an inverse transform.

 EXAMPLE  6  Inverse transform by completing the square

If F1s2 =
s + 5

s2 + 6s + 10
, then

l-11F2 = l-1 c s + 5

s2 + 6s + 10
d

It appears that this function does not fit any of the forms given. However,

s2 + 6s + 10 = 1s2 + 6s + 92 + 1 = 1s + 322 + 1

By writing F1s2  as

F1s2 =
1s + 32 + 21s + 322 + 1

=
s + 31s + 322 + 1

+ 21s + 322 + 1

we can find the inverse of each term. Therefore,

l-11F2 = e-3t cos t + 2e-3t sin t   using Transforms 20 and 19

 f1 t2 = e-3t1cos t + 2 sin t2  ■

Practice Exercise

2. Find f1 t2  if F1s2 =
6

s2 + 9
.



The following example shows how partial fractions can be used to find the inverse 
transform of F1s2 . For a review of the method of expressing a given algebraic fraction 
in terms of partial fractions, refer to Examples 2–4 on pages 880 and 881 and Examples 
1–4 on pages 883–887.

 EXAMPLE  7  Inverse transform by partial fractions

If F1s2 =
5s2 - 17s + 32

s3 - 8s2 + 16s
, then

l-11F2 = l-1 c 5s2 - 17s + 32

s3 - 8s2 + 16s
d

To fit forms in the table, we will now use partial fractions.

 
5s2 - 17s + 32

s3 - 8s2 + 16s
=

5s2 - 17s + 32

s1s - 422 =
A
s

+ B
s - 4

+ C1s - 422 

 5s2 - 17s + 32 = A1s - 422 + Bs1s - 42 + Cs  

s = 0:  32 = 16A,  A = 2

s = 4:  51422 - 17142 + 32 = 4C,  C = 11

s2 terms:  5 = A + B,  5 = 2 + B,  B = 3

l-11F2 = l-1 c 2
s

+ 3
s - 4

+ 111s - 422 d  
l-11F2 = f1 t2 = 2 + 3e4t + 11te4t ■

factor of s,  
repeated factor s - 4

multiply each side by s1s - 422

substitute in F1s2
using Transforms 1, 3, and 11

EXERCISES 31.11

In Exercises 1–4, make the given changes in the indicated examples of 
this section, and then solve the resulting problems.

 1. In Example 1, change the function f1 t2 . Let f1 t2 = 1.

 2. In Example 2, change the function f1 t2 . Let f1 t2 = sin at.

 3. In Example 3, interchange the values of f102  and f ′102 .

 4. In Example 4, in the function F1s2 , change the numerator to a.

In Exercises 5–12, find the transforms of the given functions by use of 
the table.

 5. f1 t2 = e3t 6. f1 t2 = 1 - cos 2t

 7. f1 t2 = 5t3e-2t 8. f1 t2 = 8e-3t sin 4t

 9. f1 t2 = cos 2t - sin 2t 10. f1t2 = 2t sin 3t + e-3t cos t

 11. f1 t2 = 3 + 2t cos 3t 12. f1 t2 = t3 - 3te-t

In Exercises 13–16, express the transforms of the given expressions in 
terms of s and l1 f2 .

 13. f ″ + f ′, f102 = 0, f ′102 = 0

 14. f ″ - 3f ′, f102 = 2, f ′102 = -1

 15. 2f ″ - f ′ + f, f102 = 1, f ′102 = 0

 16. f ″ - 3f ′ + 2f, f102 = -1, f ′102 = 2

In Exercises 17–28, find the inverse transforms of the given functions of s.

 17. F1s2 =
2

s3 18. F1s2 =
6

s2 + 4

 19. F1s2 =
15

2s + 6
 20. F1s2 =

3

s4 + 4s2

 21. F1s2 =
1

s3 + 3s2 + 3s + 1
 22. F1s2 =

s2 - 1

s4 + 2s2 + 1

 23. F1s2 =
s + 21s2 + 922 24. F1s2 =

s + 3

s2 + 4s + 13

 25. F1s2 =
4s2 - 81s + 12 1s - 22 1s - 32

 26. F1s2 =
3s + 11s - 12 1s2 + 12

 27. F1s2 =
2s + 3

s2 - 2s + 5

 28. F1s2 =
3s4 + 3s3 + 6s2 + s + 1

s5 + s3  
 (Explain your method of 
solution.)

In Exercises 29 and 30, find the indicated Laplace transforms.

 29. For the Laplace transform F1s2  of the function f1 t2 , it can be 
shown that l5tf1 t26 = - d

dsF1s2 . Verify this relationship by 
deriving Transform 11 from Transform 3.

 30. Using the equation given in Exercise 29, derive the transform for 
t2cos at from Transform 18.

Answers to Practice Exercises

1. 1s2 - s2l1 f2 - s + 1 2. 2 sin 3t
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We will now show how certain differential equations can be solved by using Laplace 
transforms. It must be remembered that these solutions are the particular solutions of 
the equations subject to the given conditions. The necessary operations were developed 
in the preceding section. The following examples illustrate the method.

 EXAMPLE  1  Solution of a first-order equation

Using Laplace transforms, solve the differential equation 2y′ - y = 0, if y102 = 1. 
(Note that we are using y to denote the function.)

Taking transforms of each term in the equation, we have

 l12y′2 - l1y2 = l102
 2l1y′2 - l1y2 = 0

l102 = 0 by direct use of the definition of the transform. Now, using Eq. (31.24), 
l1y′2 = sl1y2 - y102 , we have

23sl1y2 - 14 - l1y2 = 0  y102 = 1

Solving for l1y2 , we obtain

2sl1y2 - l1y2 = 2

l1y2 =
2

2s - 1
=

1

s - 1
2

Finding the inverse transform, we have

y = et>2  using Transform 3

You should check this solution with that obtained by methods developed earlier. ■

 EXAMPLE  2  Solution of a second-order equation

Using Laplace transforms, solve the differential equation y″ + 2y′ + 2y = 0, if 
y102 = 0 and y′102 = 1.

Using the same steps as outlined in Example 1, we have

 31.12 Solving Differential Equations by Laplace Transforms

Differential Equation into Algebraic Form

It should be noted that the solution in 
Example 1 was essentially an algebraic 
one. This points out the power and 
usefulness of Laplace transforms. We are 
able to change a differential equation 
into an algebraic form, which can in turn 
be translated into the solution of the  
differential equation. Thus, we can solve 
a differential equation by using algebra 
and specific algebraic forms.

LEARNING T IP

 l1y″2 + 2l1y′2 + 2l1y2 = 0

 3s2l1y2 - sy102 - y′102 4 + 23sl1y2 - y102 4 + 2l1y2 = 0

 3s2l1y2 - s102 - 14 + 23sl1y2 - 04 + 2l1y2 = 0

 s2l1y2 - 1 + 2sl1y2 + 2l1y2 = 0

 1s2 + 2s + 22l1y2 = 1

 l1y2 =
1

s2 + 2s + 2
=

11s + 122 + 1
 

 y = e-t sin t

take transforms

using Eqs. (31.25) and (31.24)

substitute given values

solve for l1y2
take inverse transform

using Transform 19 ■



 EXAMPLE  3  Solution of a second-order equation

Solve the differential equation y″ + y = cos t, if y102 = 1 and y′102 = 2.

 EXAMPLE  4  Application—simple harmonic motion

A spring is stretched 0.31 m by a weight of 4.9 N (mass of 0.5 kg). The medium resists 
the motion with a force of 4v, where v is the velocity of the motion. The differential 
equation describing the displacement y of the weight is

1
2

  
d2y

dt2 + 4 
dy
dt

 + 16y = 0  see Example 3, page 984

Find y as a function of time t, if y102 = 1 and dy>dx = 0 for t = 0.
Clearing fractions and denoting derivatives by y″ and y′, we have the following 

differential equation and solution.

y″ + 8y′ + 32y = 0 
l1y″2 + 8l1y′2 + 32l1y2 = 0 take transforms

 3s2l1y2 - s # 1 - 04 + 83sl1y2 - 14 + 32l1y2 = 0 substitute given values

 1s2 + 8s + 322l1y2 = s + 8 solve for l1y2
l1y2 =

s + 81s + 422 + 42 =
s + 41s + 422 + 42 + 41s + 422 + 42    fit transform forms

y = e-4t cos 4t + e-4t sin 4t = e-4t1cos 4t + sin 4t2    take inverse transforms

The graph of this solution is shown in Fig. 31.20. ■

0.5 1

y

x

1

Fig. 31.20 

10 !

1 H

6 V

Fig. 31.21 

 l1y″2 + l1y2 = l1cos t2  

 3s2l1y2 - s112 - 24 + l1y2 =
s

s2 + 1
 

 1s2 + 12l1y2 =
s

s2 + 1
+ s + 2

 l1y2 =
s1s2 + 122 + s

s2 + 1
+ 2

s2 + 1
 

 y =
t
2

 sin t + cos t + 2 sin t

take transforms

using Eq. (31.25) and Transform 5

do not combine the fractions

using Transforms 16, 5, and 6
■

Fig. 31.22 

0.6

0.5

y

x

 EXAMPLE  5  Application—electric current

The initial current in the circuit shown in Fig. 31.21 is zero. Find the current as a func-
tion of the time t.

Setting up the differential equation, and then solving it, we have

 
di
dt

+ 10i = 6

 ladi
dt
b + 10l1 i2 = l162  

 3sl1 i2 - 04 + 10l1 i2 =
6
s
 

 l1 i2 =
6

s1s + 102  

 i = 0.611 - e-10t2  

The graph of this solution is shown in Fig. 31.22. ■

using Eq. (31.20)

take transforms

substitute given values and  
find transform on right

solve for l1 i2
take inverse transform
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 EXAMPLE  6  Application—electric current

An electric circuit in an FM radio transmitter contains a 1-H inductor and a 4@Ω resis-
tor. It is being tested using a voltage source of 6 sin 2t. If the initial current is zero, find 
the current i as a function of time t. See Fig. 31.23.

The solution is as follows:112Di + 4i = 6 sin 2t differential equation, D = d>dt

l1Di2 + 4l1 i2 = 6l1sin 2t2 take transforms3sl1 i2 - 04 + 4l1 i2 =
6122
s2 + 4

i102 = 0

l1 i2 =
121s + 42 1s2 + 42 =

A
s + 4

+ Bs + C

s2 + 4
 use partial fractions

 12 = A1s2 + 42 + B1s2 + 4s2 + C1s + 42
The equations that give us the following values are shown in the margin at the left.

A = 0.6  B = -0.6  C = 2.4

l1 i2 = 0.6a 1
s + 4

b - 0.6a s

s2 + 4
b + 1.2a 2

s2 + 4
b    take inverse transforms

 l = 0.6e-4t - 0.6 cos 2t + 1.2 sin 2t

This is checked by showing that i102 = 0 and that it satisfies the original equation. ■

 EXAMPLE  7  Application—electric current

An electric circuit contains a 0.1-H inductor, a 250@mF capacitor, a voltage source of 
10 sin 4t, and negligible resistance (assume R = 0). See Fig. 31.24. If the initial charge 
on the capacitor is zero, and the initial current is also zero, find the current in the circuit 
as a function of the time t.

The solution is as follows:

Fig. 31.23 

4 Ω

1 H

6 sin 2t

■ s = 0: 12 = 4A + 4C, 3 = A + C 
s terms: 0 = 4B + C 
s2 terms: 0 = A + B

Fig. 31.24 

0.1 H

10 sin 4t

250 mF

 0.1D2q + 1

250 * 10-6 q = 10 sin 4t differential equation, D = d>dt

 D2q + 40,000q = 100 sin 4t

 l1D2q2 + 40,000l1q2 = 100l1sin 4t2 take transforms3s2l1q2 - sq102 - Dq102 4 + 40,000l1q2 =
400

s2 + 16
q102 = 0, D1q2 = 0

l1q2 =
4001s2 + 20022 1s2 + 162 =

As + B

s2 + 2002 + Cs + E

s2 + 16
 use partial fractions

 400 = 1As + B2 1s2 + 162 + 1Cs + E2 1s2 + 20022
The equations that give us the following values are shown in the margin at the left.

 A = 0  B = -0.010  C = 0  E = 0.010

l1q2 =
0.010

s2 + 16
- 0.010

s2 + 2002 =
0.010

4
 a 4

s2 + 16
b - 0.010

200
 a 200

s2 + 2002 b  

 q = 0.0025 sin 4t - 5.0 * 10-5 sin 200t  take inverse transforms

 i = 0.010 cos 4t - 0.010 cos 200t ■

■ s = 0: 400 = 16B + 2002E 
s terms: 0 = 16A + 2002C 
s2 terms: 0 = B + E 
s3 terms:  0 = A + C



EXERCISES 31.12

In Exercises 1–4, make the given changes in the indicated examples of 
this section, and then solve the resulting problems.

 1. In Example 1, change the function y102  from 1 to 2.

 2. In Example 2, interchange the values of y102  and y′102 .

 3. In Example 3, interchange the values of y102  and y′102 .

 4. In Example 5, change the initial current to 1 A.

In Exercises 5–37, solve the given differential equations by Laplace 
transforms. The function is subject to the given conditions.

 5. y′ + y = 0, y102 = 1 6. y′ - 2y = 0, y102 = 2

 7. 2y′ - 3y = 0, y102 = -1 8. y′ + 2y = 1, y102 = 0

 9. y′ + 3y = e-3t, y102 = 1 10. y′ + 2y = te-2t, y102 = 0

 11. y″ + 4y = 0, y102 = 0, y′102 = 1

 12. 9y″ - 4y = 0, y102 = 1, y′102 = 0

 13. 4y″ + 4y′ + 5y = 0, y102 = 1, y′102 = -1>2

 14. y″ + 2y′ + y = 0, y102 = 0, y′102 = -2

 15. y″ - 4y′ + 5y = 0, y102 = 1, y′102 = 2

 16. 4y″ + 4y′ + y = 0, y102 = 1, y′102 = 0

 17. y″ + y = 1, y102 = 1, y′102 = 1

 18. 9y″ + 4y = 2t, y102 = 0, y′102 = 0

 19. y″ + 2y′ + y = e-t, y102 = 1, y′102 = 2

 20. 2y″ + 8y = 3 sin 2t, y102 = 0, y′102 = 0

 21. y″ - 4y = 10e3t, y102 = 5, y′102 = 0

 22. y″ - 2y′ + y = e2t, y102 = 1, y′102 = 3

 23. y″ - y = 5 sin 2t, y102 = 0, y′102 = 1

 24. 2y″ + y′ - y = sin 3t, y102 = 0, y′102 = 0

 25. A constant force of 6 N moves a 2-kg mass through a medium 
that resists the motion with a force equal to the velocity v. The

  equation relating the velocity and the time is 2 
dv
dt

 = 6 - v. Find

  v as a function of t if the object starts from rest.

 26. A pendulum moves with simple harmonic motion according to 
the differential equation D2u + 20u = 0, where u is the angular 
displacement and D = d>dt. Find u as a function of t if u = 0 
and Du = 0.40 rad>s when t = 0.

 27. The end of a certain vibrating metal rod oscillates according to 
D2y + 6400y = 0 (assuming no damping), where D2 = d2>dt2. 
If y = 4 mm and Dy = 0 when t = 0, find the equation of 
motion.

 28. If there is a retarding force of 0.2Dy to the motion of the rod in 
Exercise 27, find the equation of motion.

 29. A 50@Ω resistor, a 4.0@mF capacitor, and a 40-V battery are con-
nected in series. Find the charge on the capacitor as a function of 
time t if the initial charge is zero.

 30. A 2-H inductor, an 80@Ω resistor, and an 8-V battery are con-
nected in series. Find the current in the circuit as a function of 
time if the initial current is zero.

 31. A 10-H inductor, a 40@mF capacitor, and a voltage supply whose 
voltage is given by 100 sin 50t are connected in series in an elec-
tric circuit. Find the current as a function of the time if the initial 
charge on the capacitor is zero and the initial current is zero.

 32. A 20-mH inductor, a 40@Ω resistor, a 50@mF capacitor, and a volt-
age source of 100e-1000t are connected in series in an electric cir-
cuit. Find the charge on the capacitor as a function of time t, if 
q = 0 and i = 0 when t = 0.

 33. The weight on a spring undergoes forced vibrations according to 
the equation D2y + 9y = 18 sin 3t. Find its displacement y as a 
function of the time t, if y = 0 and Dy = 0 when t = 0.

 34. A spring is stretched 1 m by a 20-N weight. The spring is 
stretched 0.5 m below the equilibrium position with the weight 
attached and then released. If it is in a medium that resists the mo-
tion with a force equal to 12v, where v is the velocity, find the 
displacement y of the weight as a function of the time.

 35. For the electric circuit shown in Fig. 31.25, find the current as a 
function of the time t if the initial current is zero.

Fig. 31.25 

E = 50e−100t V L = 0.2 H

R = 10 Ω

 36. For the electric circuit shown in Fig. 31.26, find the current as a 
function of time t if the initial charge on the capacitor is zero and 
the initial current is zero.

Fig. 31.26 

E = 60 V

L = 10 H

C = 10 mF

 37. For the beam in Example 6 on page 987, find the deflection y as a 
function of x using Laplace transforms. The Laplace transform of 
the fourth derivative yiv is given by

  l1yiv2 = s4l1y2 - s3y102 - s2 y′102 - sy ″102 - y‴102
  Also, since y′102  and y‴102  are not given, but are constants, 

assume y′102 = a, and y‴102 = b. It is then possible to evalu-
ate a and b to obtain the solution.
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 CHAPTER 31  EQUATIONS

Separation of variables M1x, y2dx + N1x, y2dy = 0 (31.1)
 A1x2dx + B1y2dy = 0 (31.2)
Integrating combinations d1xy2 = x dy + y dx (31.3)
 d1x2 + y22 = 21x dx + y dy2  (31.4)

 day
x
b =

x dy - y dx

x2  (31.5)

 dax
y
b =

y dx - x dy

y2  (31.6)

Linear differential equation of first order dy + Py dx = Q dx (31.7)

 ye1P dx = LQe1P dxdx + c  (31.8)

Electric circuit L 
di
dt

 + Ri +
q

C
= E (31.9)

Motion in resisting medium m 
dv
dt

 = F - kv (31.10)

General linear differential equation a0 
dny
dxn + a1 

dn-1y

dxn-1 + g + an-1 
dy
dx

+ any = b (31.11)

 a0 D
ny + a1 D

n-1y + g + an-1 Dy + any = b (31.12)
Homogeneous linear differential equation a0 D

2y + a1 Dy + a2 y = 0 (31.13)
Auxiliary equation a0 m

2 + a1m + a2 = 0 (31.14)
Distinct roots y = c1em1x + c2em2x (31.15)
Repeated roots y = emx1c1 + c2x2  (31.16)
Complex roots y = eax1c1 sin bx + c2 cos bx2  (31.17)
Nonhomogeneous linear differential equation a0D2y + a1Dy + a2 y = b (31.18)
 y = yc + yp (31.19)

Electric circuit L 
d2q

dt2 
+ R 

dq

dt
 +

q

C
= E (31.20)

Laplace transforms F1s2 = L
∞

0
e-stf1 t2dt (31.21)

 F1s2 = l1 f2 = L
∞

0
e-stf1 t2dt (31.22)

 l3af + bg4 = al1 f2 + bl1g2  (31.23)
 l1 f ′2 = sl1 f2 - f102  (31.24)
 l1 f ″2 = s2l1 f2 - sf102 - f ′102  (31.25)
Inverse transform l-1 1F2 = f1 t2  (31.26)



 CHAPTER 31  REVIEW EXERCISES

In Exercises 1–32, find the general solution to the given differential 
equations.

 1. 4xy3dx + 1x2 + 12dy = 0 2. 
dy

dx
= ex-y

 3. sin 2x dx + y sin x dy = sin x dx

 4. x dy + y dx = y dy

 5. 2 D2y + Dy = 0 6. 2 D2y - 5 Dy + 2y = 0

 7. 16y″ - 8y′ + y = 0 8. y″ + 2y′ + 2y = 0

 9. 1x + y2dx + 1x + y32dy = 0 10. R ln L dL = L dR

 11. V 
dP
dV

 - 5 P = V2

 12. dy - 2y dx = 1x - 22exdx

 13. dy = 2y dx + y2dx

 14. x2y dy = 11 + x2csc y dx

 15. D2y + 2 Dy + 6y = 0 16. 4 D2y - 4 Dy + y = 0

 17. y′ + 4y = 2e-2x 18. 2uv du = 12v - ln v2dv

 19. sin x 
dy

dx
 + y cos x + x = 0 20. y dy = 1x2 + y2 - x2dx

 21. 2 
d2s

dt2 
+ ds

dt
- 3s = 6 22. 

d2y

dx2 + 6 
dy

dx
 + 9y = 3x

 23. y″ + y′ - y = 2ex 24. 4 D3y + 9 Dy = xex

 25. 9 D2y - 18 Dy + 8y = 16 + 4x

 26. 9y″ + 4y = 4 cos 2x

 27. D3y - D2y + 9 Dy - 9y = sin x

 28. y″ + y′ = ex + cos 2x

 29. y″ - 7y′ - 8y = 2e-x 30. 3y″ - 6y′ = 4 + xex

 31. D2y + 25y = 50 cos 5x 32. D2y + 4y = 8x sin 2x

In Exercises 33–40, find the indicated particular solution of the given 
differential equations.

 33. 3y′ = 2y cot x; x =
p

2
 when y = 2

 34. TdV - VdT = V3dV; T = 1 when V = 3

 35. y′ = 4x - 2y; x = 0 when y = -2

 36. xy2dx + exdy = 0; x = 0 when y = 2

 37. 
d2v

dt2 + dv
dt

+ 4v = 0; 
dv
dt

= 115, v = 0 when t = 0

 38. 5y″ + 7y′ - 6y = 0; y′ = 10, y = 2 when x = 0

 39. D2y + 4 Dy + 4y = 4 cos x; Dy = 1, y = 0 when x = 0

 40. y″ - 2y′ + y = ex + x; y = 0, y′ = 0 when x = 0

In Exercises 41–48, solve the given differential equations by using 
Laplace transforms, where the function is subject to the given conditions.

 41. 4y′ - y = 0, y102 = 1 42. 2y′ - y = 4, y102 = 1

 43. y′ - 3y = et, y102 = 0 44. y′ + 2y = e-2t, y102 = 2

 45. y″ + y = 0, y102 = 0, y′102 = -4

 46. y″ + 4y′ + 5y = 0, y102 = 1, y′102 = 1

 47. 16y″ + 9y = 3ex, y102 = 0, y′102 = 0

 48. y″ - 2y′ + y = ex + x, y102 = 0, y′102 = 1

In Exercises 49–91, solve the given problems.

 49. Use Euler’s method to find the y-values of the solution of the 
equation dy>dx = 1 + y2 from x = 0 to x = 0.4, with 
∆x = 0.1, if the curve passes through (0, 0).

 50. Solve the equation of Exercise 49, subject to the same condi-
tions, using the Runge–Kutta method.

 51. Find the particular solution of the equation dy>dx - 2y = e3x, 
if y = 1 when x = 0, (a) as a first-order linear equation, and (b) 
using Laplace transforms.

 52. Find the particular solution of the equation D2y - 4y = 2 - 8x, 
if y = 0 and y′ = 0 when x = 0, (a) by the method of undeter-
mined coefficients, and (b) by using Laplace transforms.

 53. An object moves along a hyperbolic path described by xy = 1, 
such that dx>dt = 2t. Express x and y in terms of t if x = 1, 
y = 1 when t = 0.

 54. An object moves along a parabolic path described by 
y = x2 + x, such that dx>dt = 4t + 1. Express x and y in 
terms of t, if both x and y are zero when t = 0.

 55. The time rate of change of volume of an evaporating substance 
is proportional to the surface area. Express the radius of an 
evaporating sphere of ice as a function of time. Let r = r0 when 
t = 0. (Hint: Express both V and A in terms of the radius r.)

 56. An insulated tank is filled with a solution containing radioactive 
cobalt. Due to the radioactivity, energy is released and the tem-
perature T  (in °C) of the solution rises with the time t (in h). The 
following equation expresses the relation between temperature 
and time for a specific case:

  56 600 = 2621T - 702 + 20 200 
dT
dt

 

  If the initial temperature is 70°C, what is the temperature 24 h later?

 57. In a certain chemical reaction, the velocity of the reaction is pro-
portional to the mass m of the chemical that remains unchanged. 
If m0 is the initial mass and dm>dt is the velocity of the reaction, 
find m as a function of the time t.

 58. Under proper conditions, bacteria grow at a rate proportional to 
the number present. In a certain culture, there were 104 bacteria 
present at a given time, and there were 3.0 * 105 bacteria pre-
sent after 10 h. How many were present after 5.0 h?

 59. An object with a mass of 1.00 kg slides down a long inclined 
plane. The effective force of gravity is 4.00 N, and the motion is 
retarded by a force numerically equal to the velocity. If the ob-
ject starts from rest, what is the velocity 1 in m>s2  4.00 s later?

 Review Exercises 999



1000 CHAPTER 31 Differential Equations

 60. A 760-N object falls from rest under the influence of gravity. Find 
the equation for the velocity at any time t (in s) if the air resists the 
motion with a force numerically equal to twice the velocity.

 61. A particle is moving along a path y = f1x2  such that the slope of 
the path is y> 1y - x2 , and the path passes through the point 1 -1, 22 . Find the equation of the path 1y 7 02 .

 62. On a certain weather map, the lines indicating equal temperature 
(isotherms) are given by y = x3 + k. Find the equation of the 
orthogonal trajectories of the isotherms, the curves that show the 
direction of heat flow.

 63. After 10.0 s, it is noted that 15.9, of the radioactive isotope 
neon-23 has decayed. Find the half-life of neon-23.

 64. The isotope iodine-131, with a half-life of 8.04 days, is used in 
nuclear medicine to study the thyroid gland. Of an original 
amount, what percent of iodine-131 remains after 21 days?

 65. Radioactive potassium-40 with a half-life of 1.28 * 109 years is 
used for dating rock samples. If a given rock sample has 75, of 
its original amount of potassium-40, how old is the rock?

 66. When a gas undergoes an adiabatic change (no gain or loss of 
heat), the rate of change of pressure with respect to volume is di-
rectly proportional to the pressure and inversely proportional to 
the volume. Express the pressure in terms of the volume.

 67. Under ideal conditions, the natural law of population change is 
that the population increases at a rate proportional to the popula-
tion at any time. Under these conditions, project the population of 
the world in 2020 if it reached 6.0 billion in 1999 and 6.9 billion 
in 2010.

 68. A spherical balloon is being blown up such that its volume V in-
creases at a rate proportional to its surface area. Show that this 
leads to the differential equation dV>dt = kV2>3 and solve for V 
as a function of t.

 69. Find the orthogonal trajectories of the family of curves y = kx5.

 70. Find the equation of the curves for which their normals at all 
points are in the direction of the lines connecting the points and 
the origin.

 71. Find the temperature after 1.0 h of an object originally 100°C, if it 
cools to 90° in 5.0 min in air that is at 20°C. (See Exercise 25 on 
page 967.)

 72. If a circuit contains a resistance R, a capacitance C, and a source 
of voltage E, express the charge q on the capacitor as a function 
of time.

 73. A 2-H inductor, a 40@Ω resistor, and a 20-V battery are connected 
in series. Find the current in the circuit as a function of time if the 
initial current is zero.

 74. A hollow cylinder moves vertically up and down in water accord-
ing to the equation D2y + 6.5y = 0, where D = d>dt. Find the 
displacement y as a function of the time t, if y = 8.0 cm and 
y′ = 0 cm>s when t = 0 s.

 75. A certain spring stretches 0.5 m by a 40-N weight. With this 
weight suspended on it, the spring is stretched 0.5 m beyond the 
equilibrium position and released. Find the equation of the result-
ing motion if the medium in which the weight is suspended re-
tards the motion with a force equal to 16 times the velocity. 
Classify the motion as underdamped, critically damped, or over-
damped. Explain your choice.

 76. The end of a vibrating rod moves according to the equation 
D2y + 0.2Dy + 4000y = 0, where y is the displacement and 
D = d>dt. Find y as a function of t if y = 3.00 cm and 
Dy = -0.300 cm>s when t = 0.

 77. A 0.5-H inductor, a 6-Ω resistor, and a 20-mF capacitor are con-
nected in series with a generator for which E = 24 sin 10t. Find 
the charge on the capacitor as a function of time if the initial 
charge and initial current are zero.

 78. A 5.00-mH inductor and a 10.0@mF capacitor are connected in se-
ries with a voltage source of 0.200e-200t V. Find the charge on the 
capacitor as a function of time if q = 0 and i = 4.00 mA when 
t = 0.

 79. Find the equation for the current as a function of time if a resistor 
of 20 Ω, an inductor of 4 H, a capacitor of 100 mF, and a battery 
of 100 V are in series. The initial charge on the capacitor is  
10 mC, and the initial current is zero.

 80. If an electric circuit contains an inductance L, a capacitor with a 
capacitance C, and a sinusoidal source of voltage E0 sin vt, ex-
press the charge q on the capacitor as a function of the time. 
Assume q = 0, i = 0 when t = 0.

 81. The differential equation relating the current and time for a cer-
tain electric circuit is 2 di>dt + i = 12. Solve this equation by 
use of Laplace transforms, given that the initial current is zero. 
Evaluate the current for t = 0.300 s.

 82. A 6-H inductor and a 30@Ω resistor are connected in series with a 
voltage source of 10 sin 20t. Find the current as a function of time 
if the initial current is zero. Use Laplace transforms.

 83. A 0.25-H inductor, a 4.0@Ω resistor, and a 100@mF capacitor are 
connected in series. If the initial charge on the capacitor is 400 mC 
and the initial current is zero, find the charge on the capacitor as a 
function of time. Use Laplace transforms.

 84. An inductor of 0.5 H, a resistor of 6 Ω, and a capacitor of 200 mF 
are connected in series. If the initial charge on the capacitor is  
10 mC and the initial current is zero, find the charge on the ca-
pacitor as a function of time after the switch is closed. Use 
Laplace transforms.

 85. A mass of 0.25 kg stretches a spring for which k = 16 N/m. An 
external force of cos 8t is applied to the spring. Express the dis-
placement y of the object as a function of time if the initial dis-
placement and velocity are zero. Use Laplace transforms.

 86. A spring is stretched 1.00 m by a mass of 5.00 kg (assume the 
weight to be 50.0 N). Find the displacement y of the object as a 
function of time if y102 = 1 m and dy>dt = 0 when t = 0. Use 
Laplace transforms.



 87. Air containing 20, oxygen passes into a 5.00-L container ini-
tially filled with 100, oxygen. A uniform mixture of the air and 
oxygen then passes from the container at the same rate. What 
volume of oxygen is in the container after 5.00 L of air have 
passed into it?

 88. When a circular disc of mass m and radius r is suspended by a 
wire at the centre of one of its flat faces and the disc is twisted 
through an angle u, torsion in the wire tends to turn the disc back 
in the opposite direction. The differential equation for this case is

  
1
2

 mr2 
d2u

dt2 = -ku, where k is a constant. Determine the equation

  of motion if u = u0 and du>dt = v0 when t = 0. See Fig. 31.27.

Fig. 31.27 

r

Motion
of disc

u

 89. The approximate differential equation relating the displacement y 

  of a beam at a horizontal distance x from one end is EI 
d2y

dx2 
= M, 

  where E is the modulus of elasticity, I is the moment of inertia of the 
cross section of the beam perpendicular to its axis, and M is the 
bending moment at the cross section. If M = 2000x - 40x2 for a 
particular beam of length L for which y = 0 when x = 0 and when 
x = L, express y in terms of x. Consider E and I as constants.

 90. The gravitational acceleration of an object is inversely propor-
tional to the square of its distance r from the centre of the earth. 
Use the chain rule, Eq. (23.14), to show that the acceleration is

  
dv
dt

= v 
dv
dr

 , where v =
dr
dt

 is the velocity of the object. Then 

  solve for v as a function of r if dv>dt = -g and v = v0 for 
r = R, where R is the radius of the earth. Finally, show that a 
spacecraft must have a velocity of at least v0 = 12gR 111.2 km>s2  in order to escape from the earth’s gravitation. 
(Note the expression for v2 as r S ∞ .)

 91. For the electric circuit shown in Fig. 31.28, find the current as a 
function of the time t, if the initial charge on the capacitor is zero 
and the initial current is zero.

Fig. 31.28 

E = 60.0 V

L = 60.0 mH

R = 8.00 Ω

C = 300 mF

Writing Exercise
 92. An electric circuit contains an inductor L, a resistor R, and a bat-

tery of voltage E. The initial current in the circuit is zero. Write 
three or four paragraphs explaining how the differential equation 
for the current in the circuit is solved using (a) separation of vari-
ables, (b) the linear differential equation of the first order, and (c) 
Laplace transforms.

 CHAPTER 31 PRACTICE TEST

In Problems 1–6, find the general solution of each of the given 
differential equations.

 1. x 
dy

dx
 + 2y = 4

 2. y″ + 2y′ + 5y = 0

 3. x dx + y dy = x2dx + y2dx

 4. 2D2y - Dy = 2 cos x

 5. 
d2y

dx2 - 4 
dy

dx
 + 4y = 3x

 6. D2y - 2Dy - 8y = 4e-2x

 7. Find the particular solution of the differential equation 1xy + y2 dy

dx
= 2, if y = 2 when x = 0.

 8. If interest in a bank account is compounded continuously, the 
amount grows at a rate that is proportional to the amount present. 
Derive the equation for the amount A in an account with continu-
ous compounding in which the initial amount is A0 and the inter-
est rate is r as a function of the time t after A0 is deposited.

 9. Using Laplace transforms, solve the differential equation 
y″ + 9y = 9, if y102 = 0 and y′102 = 1.

 10. Using Laplace transforms, solve the differential equation 
D2y - Dy - 2y = 12, if y102 = 0 and y′102 = 0.

 11. Find the equation for the current as a function of the time (in s) in 
a circuit containing a 2-H inductance, an 8@Ω resistor, and a 6-V 
battery in series, if i = 0 when t = 0.

 12. A mass of 0.5 kg stretches a spring for which k = 32 N/m. With 
this weight attached, the spring is pulled 0.3 m longer than its 
equilibrium length and released. Find the equation of the resulting 
motion, assuming no damping. (The acceleration due to gravity is 
9.8 m>s2.)
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 1.1 Numbers 1

APPENDIX

A
Solving Word 
Problems

A.1

Drill-type problems require a working knowledge of the methods presented, and some 
algebraic steps to change the algebraic form may be required to complete the solution. 
Word problems, however, require a proper interpretation of the statement of the prob-
lem before they can be put in a form for solution.

We have to put word problems in symbolic form in order to solve them, and it is this 
procedure that most students find difficult. Because such problems require more than 
going through a certain routine, they demand more analysis and appear to be more dif-
ficult. Among the reasons for the student's difficulty at solving word problems are 
(1) unsuccessful previous attempts at solving word problems, leading the student to 
believe that all word problems are “impossible,” (2) a poorly organized approach to the 
solution, and (3) failure to read the problem carefully, thereby having an improper and 
incomplete interpretation of the statement given. These can be overcome with proper 
attitude and care.

A specific procedure for solving word problems is shown on page 48, when word 
problems are first covered in our study of algebra. There are over 120 completely 
worked examples of word problems (as well as numerous other examples that show a 
similar analysis) throughout this text, illustrating proper interpretations and approaches 
to these problems.

RISERS
The procedure shown on page 48 is similar to that used by most instructors and texts. 
One of the variations that a number of instructors use is called RISERS. This is a word 
formed from the first letters (an acronym) of the words that outline the procedure. 
These are Read, Imagine, Sketch, Equate, Relate, and Solve. We now briefly outline 
this procedure here.

Read the statement of the problem carefully.

Imagine. Take time to get a mental image of the situation described.

Sketch a figure.

Equate, on the sketch, the known and unknown quantities.

Relate the known and unknown quantities with an equation.

Solve the equation.

There are problems where a sketch may simply be words and numbers placed so that 
we may properly equate the known and unknown quantities. For example, in Example 2  
on page 48, the sketch, equate, and relate steps might look like this:

sketch 34 resistors 56 Ω
1.5@Ω resistors 2.0@Ω resistors

equate x 34 - x
resistance 1.5x 2.0134 - x2 56

relate 1.5x + 2.0134 - x2 = 56

If you follow the method on page 48, or this RISERS variation, or any appropriate 
step-by-step method, and write out the solution neatly, you will find that word prob-
lems lend themselves to solution more readily than you have previously found.



2 APPENDIX A Solving Word ProblemsSolving Word Problems

A Table of Integrals
APPENDIX

B
The basic forms of Chapter 28 are not included. The constant of integration is omitted.

Forms containing a + bu and 1a + bu

 1. L
u du

a + bu
=

1

b2 3 1a + bu2 - a ln1a + bu2 4
 2. L

du
u1a + bu2 = - 1

a
 ln 

a + bu
u

 3. L
u du1a + bu22 =

1

b2 a a
a + bu

+ ln1a + bu2 b
 4. L

du

u1a + bu22 =
1

a1a + bu2 - 1

a2 ln 
a + bu

u

 5. Lu1a + bu du = -
212a - 3bu2 1a + bu23>2

15b2

 6. L
u du1a + bu

= -
212a - bu21a + bu

3b2

 7. L
du

u1a + bu
=

11a
  ln a1a + bu - 1a1a + bu + 1a

b , a 7 0

 8. L
 1a + bu

u
 du = 21a + bu + aL

du

u1a + bu

Forms containing 2u2 { a2 and 2a2 - u2

 9. L
du

u2 - a2 =
1
2a

 ln 
u - a
u + a

 10. L
du2u2 ± a2

= ln(u + 2u2 ± a2)

 11. L
du

u2u2 + a2
= - 1

a
 ln aa + 2u2 + a2

u
b

 12. L
du

u2u2 - a2
=

1
a

 sec -1 
u
a

 13. L
du

u2a2 - u2
= - 1

a
 ln aa + 2a2 - u2

u
b

 14. L2u2 { a2 du =
u
2

 2u2 { a2 { a2

2
 ln 1u + 2u2 { a22

 15. L2a2 - u2 du =
u
2

 2a2 - u2 + a2

2
 sin -1 

u
a

A.2



 APPENDIX B A Table of Integrals A.3

 16. L
2u2 + a2

u
  du = 2u2 + a2 - a ln aa + 2u2 + a2

u
b

 17. L
2u2 - a2

u
  du = 2u2 - a2 - a sec -1 

u
a

 18. L
2a2 - u2

u
  du = 2a2 - u2 - a ln aa + 2a2 - u2

u
b

 19. L 1u2 { a223>2 du =
u
4

 1u2 { a223>2 { 3a2u
8

2u2 { a2 + 3a4

8
 ln 1u + 2u2 { a22

 20. L 1a2 - u223>2 du =
u
4

 1a2 - u223>2 + 3a2u
8

 2a2 - u2 + 3a4

8
 sin -1 

u
a

 21. L
1u2 + a223>2

u
  du =

1
3

 1u2 + a223>2 + a2 2u2 + a2 - a3 ln aa + 2u2 + a2

u
b

 22. L
1u2 - a223>2

u
  du =

1
3

 1u2 - a223>2 - a2 2u2 - a2 + a3 sec -1 
u
a

 23. L
1a2 - u223>2

u
  du =

1
3

 1a2 - u223>2 - a2 2a2 - u2 + a3 ln aa + 2a2 - u2

u
b

 24. L
du1u2 { a223>2 = {  

u

a22u2 { a2

 25. L
du1a2 - u223>2 =

u

a22a2 - u2

 26. L
du

u1u2 + a223>2 =
1

a22u2 + a2
- 1

a3 ln aa + 2u2 + a2

u
b

 27. L
du

u1u2 - a223>2 = - 1

a22u2 - a2
- 1

a3 sec -1 
u
a

 28. L
du

u1a2 - u223>2 =
1

a22a2 - u2
- 1

a3 ln aa + 2a2 - u2

u
b

Trigonometric forms

 29. Lsin2 u du =
u
2

- 1
2

 sin u cos u

 30. Lsin3 u du = -cos u + 1
3

 cos3 u

 31. Lsinn u du = - 1
n

 sinn-1 u cos u + n - 1
n

 Lsinn-2 u du

 32. Lcos2 u du =
u
2

+ 1
2

 sin u cos u

 33. Lcos3 u du = sin u - 1
3

 sin3 u

 34. Lcosn u du =
1
n

  cosn-1 u sin u + n - 1
n

 L  cosn-2 u  du

 35. L tann u du =
tann-1 u
n - 1

- L  tann-2 u du
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 36. Lcotn  u du = - cotn-1  u
n - 1

- L  cotn-2 u du

 37. L  secn u du =
secn-2 u tan u

n - 1
+ n - 2

n - 1 Lsecn-2 u du

 38. Lcscn u du =
cscn-2 u cot u

n - 1
+ n - 2

n - 1 Lcscn-2 u du

 39. Lsin au sin bu du =
sin 1a - b2u

21a - b2 -
sin 1a + b2u

21a + b2
 40. Lsin au cos bu du = -

cos 1a - b2u

21a - b2 -
cos 1a + b2  u

21a + b2
 41. Lcos au cos bu du =

sin 1a - b2u

21a - b2 +
sin 1a + b2u

21a + b2
 42. Lsinm u cosn u du =

sinm+1 u cosn-1 u
m + n

+ n - 1
m + n

 Lsinm u cosn-2 u du

 43. Lsinm u cosn u du = - sinm-1 u cosn+1 u
m + n

+ m - 1
m + n Lsinm-2 u cosn u du

Other forms

 44. Lueau du =
eau1au - 12

a2

 45. Lu2 eau du =
eau

a3  1a2u2 - 2au + 22
 46. Lun ln u du = un+1a ln u

n + 1
- 11n + 122 b

 47. Lu sin u du = sin u - u cos u

 48. Lu cos u du = cos u + u sin u

 49. Leau sin bu du =
eau1a sin bu - b cos bu2

a2 + b2

 50. Leau cos bu du =
eau1a cos bu + b sin bu2

a2 + b2

 51. Lsin-1 u du = u sin-1 u + 21 - u2

 52. L  tan-1 u du = u tan-1 u - 1
2

 ln11 + u22



23. 3 530 000 cm>min2

25. 90 000 000 ms (with 2 significant digits)

27. 0.0150 mC>V  29. 110 000 km/h  31. 56 000 cm3  

33. 24 000 km>h  35. 0.0112 m2  37. 1000 g>L

39. 1200 km>h 1with 3 significant digits2
41. 0.135 J>1s # cm22   43. 120 000 mA>cm2

45. 8 cylinders: exact; 55 km>h: approximate

47. Both are exact.

49. 107 has 3 significant digits; 3004 has 4 significant digits. 

51. 6.80 has 3 significant digits; 6.08 has 3 significant digits.

53. 3000 has 1 significant digit; 3000.1 has 5 significant digits.

55. (a) 0.01 (b)  30.8  57. (a) Same (b) 78.0

59. (a)  0.004  (b) Same  61. (a) 4.94. (b) 4.9

63. (a) 50 900  (b) 51 000  65. (a) 9540 (b) 9500

67. (a) 0.945 (b) 0.94  69. (a) 12 (b) 12.20  71. (a) 0.015

 (b) 0.011 4  73. (a) 0.2   (b) 0.1356 to 4 significant digits

75. (a) 6.5  (b) 6.085 610 98 (6.086 to 4 significant digits)

77. 15.8788  79. 204.2

81. Measurements can be more than 2.745 MHz and  
less than 2.755.

83. Too many sig. digits; time has only 2 sig. digits.

85. (a) 19.3 (b) 27

87. (a) 2 (b) 2 (c) -2 (d) 0 (e) Undefined

89. Example: 1231 465 - 164 3522 , 9 = 7457; integer

91. (a) p 6 3.1416 (b) p 6 122 , 72
93.  (a) 1 , 3 = 0.333 333. . .   (b)  5 , 11 = 0.454 545 . . .
 (c)  2 , 5 = 0.400 000 . . . (0 repeats)  95. 95.3 MJ
97. 262 144 bytes  99. 59.14%

Exercises 1.4, page 25

1. x6  3. 
a6x2

b4t2   5. x7  7. 2b6  9. m2  11. 
1

7n4

13. P8  15. 8p3  17. a30T60  19. 
8

b3  21. 
x8

16

23. 1  25. -3  27. 
1
6

  29. R2  31. - t14

33. 
1

64v12  35. -L2  37. 
1
8

  39. 1  41. 
a

x2

43. 
64s6

g2   45. 
x3

64a3  47. 
5n3

T
  49. -53  51. 253

53.  -0.421  55. 9990  57. Yes   59. 625 

61. 1, provided that x ≠ 0  63. 
G2k5T5

h
 

65. 
r
6

  67. $3212.27

  B.1

Exercises 1.1, page 5

1. Change 
5
1

 to 
-3
1

 and 
-19

1
 to 

14
1

.  3. -6 6 -4; -6 is to the 

left of -4. The figure must be changed to show -6 to the left of -4.

5. 3: integer, rational, real. 1-4: imag.; -p

6
 : irrational, real.

7. 3, 4, 
p

2
  9. 6 6 8  11. p 7 -3.2

13. -4 6 - " -3 "   15. - 1
3

7 - 1
2

  17. 
1
3

, - 13
4

, 
b
y

19. 

-4 3 4-3 -2 -1 0 1 2

12
5 2.5- √3

21.  No, " 0 " = 0  23. The number itself

25. 
3
23

  27. -3.1, - " -3 " , -1, 15, p, " -8 " , 9

29. (a) Positive integer (b)  Negative integer
 (c)  Positive rational number less than 1

31. (a) Yes (b) Yes 

33. (a) To the right of zero (b) To the left of -4
35. Positive number less than 1 
37. All real values of a; b = 0.

39. 0.00080 F  41. N = 1000 an bits

43. Yes; -30 °C is to the left of -20°C

Exercises 1.2, page 10

1. 22  3. -4  5. 4  7. 6  9. -3  11. -24 

13. 35  15. 20  17. 40  19. -1  21. -17 

23. Undefined  25. 20  27. 16  29. -9  31. 24

33. -6  35. 3  37. Commutative law of multiplication

39. Distributive law  41. Associative law of addition

43. Associative law of multiplication  

45. d  47. b  49. (a) Positive (b) Negative  

51. Correct. (For x 7 0, x is positive; for x 6 0, -x is positive.)  

53. (a) Negative reciprocals of each other (b) All values of x and y 
with x ≠ y  55. -2.4 kW # h  57. 2.0  °C  59. 10 V

61. 100 m + 200 m = 200 m + 100 m; commutative law of  
addition  

63. 418 min + 6 min2  OR 418 min2 + 416 min2 ; distributive law 

Exercises 1.3, page 19

1. 0.390 has three significant digits; the zero is not necessary as a 
placeholder and should not be written unless it is significant.

3. 75.7  5. 1 000 000 Hz  7. 0.001 m  9. 1000 volts

11. 0.001 amperes  13. 100 000 cm  15.  0.000 02 Ms

17. 0.000 25 m2  19. 80 000 L 1with 3 significant digits2
21. 4500 cm>s 1with 3 significant digits2  

Since statements will vary for writing exercises, answers here are in abbreviated form. Answers are not included for end-of-chapter  
writing exercises. 

1.1 Numbers B.1Answers to Odd-Numbered Exercises



B.2 ANSWERS TO ODD-NUMBERED EXERCISES

57. 0.0001r2P + 0.02rP + P  59. 3R2 - 4RX

61. n2 + 200n + 10 000  63. R1
2 - R2

2

Exercises 1.9, page 40

1. 
3

y3  3. 3x - 2  5. -4x2y  7. 
4t4

r2   9. 4x2

11. -6a  13. a2 + 2y  15. -2rt2 + t

17. -4q3 + 2p + q  19. 
2L
R

- R  21. 
1
3a

- 2b
3a

+ 1

23. 3yn - 2ay  25. 2x + 1   27.  x - 1 

29. 4x2 - x - 1 - 3
2x - 3

  31.  Z - 2 - 1
4Z + 3

33. x2 + x - 6  35. 2a2 + 8 

37. x2 - 2x + 4  39. x - y  41. x - y + z  43. -5 

45. 
x4 + 1
x + 1

= x3 - x2 + x - 1 + 2
x + 1

≠ x3 

47. A +
m2E2

2A
-

m4E4

8A3   49. 
GMm

R

51. s2 + 2s + 6 + 16s + 16

s2 - 2s - 2

Exercises 1.10, page 44

1. (a) -9 (b) -15 (c) -36 (d) -4  3. 
1
8

  5. 9

7. -1  9. -10  11. -5  13. -3  15. 4  17. - 7
2

19. 8  21. 
10
3

  23. 2  25. - 5
2

  27. 0  29. 8

31. 9 or -9  33. 9.5   35. -2.1  37. 5.7

39. 0.85  41. (a) Identity (b) Conditional  43. 3.75 

45. 55 km>h  47. 120 °C  49. 750 L  51. 820 km

Exercises 1.11, page 46

1. 
v - v0

t
  3. 

V0 + bTV0 - V

bV0
  5. 

E
I

  7. g2 - rL

9. 
Q

Sd2  11. 
p - pa

dg
  13. 

APV
R

  15. 
-ct2 + 0.3t

c

17. Tv - c  19. 
K1m1 - K2m1

K2
  21. 

2gm - 2am

a
 

23. 
C 2

0 - C 2
1

2C 2
1

  25. 
Ar - N

r
  27. 100T1 - 100T2 

29. 
Q1 + PQ1

P
  31. 

N + N2 - N2T

T
  33. 

L - pr2 - 2x1 - 2x2

p

35. 
V 2

1 + gJP

V1
  37. 

Cd1k1 + k22
2Ak1k2

  39. 
CN - NV

C
  

41. 1070 K  43. 32.3 °C  45. 3.22 Ω

47. 
d - v214 h2 - v112 h2

v1

Exercises 1.12, page 50

1. 29 1.5 Ω resistors and 5 2.5 Ω resistors

3. 3.000 h  5. $22 000 6 years ago, $27 000 today

7. 1.9 * 105 the first year, 2.6 * 105 the second year

9. 50 hectares at $200 per hectare and 90 hectares at $300 per hectare

11. 60 ppm>h  13. 20 girders  15. -2.3 mA, -4.6 mA,  6.9 mA

Exercises 1.5, page 29

1. 8060  3. 45 000  5. 0.002 01  7. 3.23  9. 18.6

11. 4 * 103  13. 8.7 * 10-3  15. 6.09 * 100 

17. 6.3 * 10-2  19. 1 * 100  21. 5.6 * 1013

23. 2.2 * 108  25. 3.2 * 10-34  27. 1.728 * 1087

29. 4.85 * 1010  31.  1.59 * 107  33.  9.965 * 10-3

35. 3.38 * 1016  37. 2 * 106 kW  39. 3 * 10-6 W

41. 2 * 109 Hz  43. 0.000 000 000 001 6 W

45. 2 GW  47. 3 mW  49. 2 GHz

51. (a) 8.09 * 106 (b) 809 * 103 (c) 80.9 * 10-3

53. 1021   55. 3.3 * 10-11mg 

57. (a) 8.64 * 104 s  (b) 3.155 760 0 * 109 s

59. 4.8 * 102 W  61. 2.998 * 105 km>s

Exercises 1.6, page 31

1. -4  3. 12  5. 9  7. -11  9. -7  11. 0.3
13. 5  15. -6  17. 5  19. 47  21. 53  23. 2013

25. 4121  27. 215  29. 4  31. 7  33. 10

35. 3110  37. 9.24  39. 0.6877 

41.  (a) 60.00 (b) 84.00 43. (a) 0.0388 (b) 0.0246

45. 98 km>h  47. 1450 m>s  49. 107 cm

51. No, not true if a 6 0  53. (a) 12.9 (b)  -0.598

55. (a) Imaginary (b) Real

Exercises 1.7, page 35

1. 3x - 3y  3. 4ax + 5s  5. 8x  7. y + 4x

9. 5F - 3T - 2  11. -a2b - a2b2  13. 3s - 4

15. -v + 5x - 4  17. 5a - 5  19. -5a + 2

21. -2t + 5u  23. 7r + 8s  25. 19j - 50

27. 3n - 9  29. -2t2 + 18  31.  6a  33.  2aZ + 1

35. 4c - 6  37. 8p - 5q  39. -4x2 + 22  41. 7V2 - 3

43. -6t + 13  45. -24R + 4Z  47. 2D + d 

49. 3B - 2a  51. 40x + 250 

53. (a) x2 + 2y + 2a - b (b) 3x2 - 4y + 2a + b  55. $1b - a2 $

Exercises 1.8, page 38

1. -8s8t13  3. x2 - 5x + 6  5. a3x  7. -a2c3x3

9. -8a3x5  11. i2R + 2i2r  13. -3s3 + 15st

15. 5m3n + 15m2n  17. -3M2 - 3MN + 6M

19. acx4 + acx3y3  21. x2 + 2x - 15  23. 2x2 + 9x - 5

25. 6a2 - 7ab + 2b2  27. 6s2 + 11st - 35t2

29. 2x3 + 5x2 - 2x - 5  31. x2 + 4y2 - 4xy - 16

33. 2a2 - 16a - 18  35. 18T2 - 15T - 18

37. -2L3 + 6L2 + 8L  39. 4x2 - 20x + 25

41. x1
2 + 6x1x2 + 9x2

2  43. x2y2z2 - 4xyz + 4

45. 2x2 + 32x + 128  47. -x3 + 2x2 + 5x - 6

49. 6T3 + 9T2 - 6T   51. (a)  49 ≠ 9 + 16 (b) 1 ≠ 9 - 16

53. If 1 6 x 6 9, then  x2 - 1 can be factored to 1x - 12 1x + 12 . 

55. 1x + y23 = x3 + 3x2y + 3y2x + y3



 ANSWERS TO ODD-NUMBERED EXERCISES B.3

17. 6.9 km, 9.5 km  19. 32 CDs and 22 DVDs  21. 900 m
23. 84.2 km>h, 92.2 km>h  25. 395 s, first car
27. 146 km from A  29. 4.0 L  31. 79 km>h

Review Exercises for Chapter 1, page 52

1. -10  3. -20  5. -22  7. -25  9. -4  11. 5

13. 4r2t4   15. - 24t

m2n
   17. 

8T3

N
   19. 315   21. (a) 3 (b) 8800

23. (a) 4  (b) 9.0  25. 18.0  27. 1.3 * 10-4  29. -2ab - a

31. 7LC - 3  33. 2x2 + 9x - 5  35. x2 + 16x + 64

37. -3h2k4 + hk  39. 7R - 6r  41. 13xy - 10z

43. 2x3 - x2 - 7x - 3  45.  -3x2y + 24xy2 - 48y3

47. 18p2q - 9p2 + 3pq  49. 
3q4

p3 +
6q

p
- 2

51. 2x - 5  53. x2 - 2x + 3  55. 4x3 - 2x2 + 6x, R = -1 

57. 15r - 3s - 3t  59. y2 + 5y - 1, R = 4  61. - 9
2

63. 
21
10

  65. - 7
3

  67. 3  69. - 19
5

  71. 1.0  

73. (a) 6 * 1010 bytes (b) 60 gigabytes  

75. (a) 1.92 * 108 km (b) 192 Gm

77. (a) 40 500 000 000 000 km  (b) 40.5 Pm

79. (a) 0.000 000 000 001 W>m2   (b) 1 pW>m2

81. (a) 0.15 Bq>L (b) 150 * 10- 3 mBq>L  83. 
R

n2

85. 
L2P

p2I
  87. 

Rr - Pp

Q
  89. 

d + A
A

  91. 
N1 - N3 + N3T

T

93. 
HR + AT1

A
  95. 

d - 3bkx2 + kx3

3kx2   97. 8.2 * 105

99. 1.20  101. 0.0188 Ω  103. 101x + 198a cm

105. -2t2 - 2h2 - 4ht + 4t + 4h  107. Yes, (18 to 0)

109. Identity  111. - 1y - x23  113. 4 * 10-7

115. $59, $131  117. 160 cm3, 80 cm3, 320 cm3

119. 1900 Ω,  3100 Ω   121. 6.7 h  123. 34.5 h
125. 400 L of 0.50% grade oil and 600 L of 0.75% grade oil
127. 27 m2  129. 5.500%

Exercises 2.1, page 58

1.  90°  3. 4 pairs  5. ∠EBD and ∠DBC  7. ∠ABC

9. 25°  11. BD and BC  13. 140°  15.  40°  17. 35°
19. 62°  21. 28°  23. 134°  25. 44°  27. 46°  

29. 4.53 m  31. 3.40 m  33. 133°  35. 882 m  

37. 180°  39. Sum of angles is 180°

Exercises 2.2, page 64

1. 65°  3. 7.02 m  5. 56°  7. 48°  9. 8.4 m2

11. 32 300 cm2  13. 4.41 cm2  15. 0.390 m2  17. 942 cm

19. 64.5 cm  21. 26.6 mm  23. 522 cm  25. 67°
27. 227.2 cm  29. 45°  31. An equilateral triangle

33. The smaller triangles are similar.

35. ∠LMK = ∠OMN; ∠KLM = ∠MON; ∆MKL  ∼ ∆MNO

37. 8  39. 65°  41. 1150 cm2  43. 9.6 m2  45. 5.7 m

47. 23.1 m  49. 7.5 m, 9.0 m  51. 3.4 m  53. 20.0 km

Exercises 2.3, page 68

1. Trapezoid  3. 8900 m2  5. 260 m  7. 3.324 mm

9. 12.8 m  11. 214.4 dm  13. 7.3 mm2  15. 0.683 km2

17. 9.2 m2  19. 2.00 * 103 dm2  21. p = 2b + 4a

23. A = bh + a2  25. Rectangle  27. 288 cm2

29. The diagonal always divides the rhombus into two congruent 
triangles. All outer sides are always equal.

31. 348 m  33. 2000 mm, 8000 mm  35. 2.4 L  
37. 3.04 km2

39. 360°. A diagonal divides a quadrilateral into two triangles, and 
the sum of the interior angles of each triangle is 180°.

Exercises 2.4, page 72

1. 18°  3. p = 11.6 cm, A = 8.30 cm2  5. (a) AD (b) AF

7. (a) AF # OE (b) ∆OCE  9. 1730 cm  11. 72.6 mm

13. 0.0285 km2  15. 4.26 m2  17. 25°  19. 25°
21. 120°  23. 40°  25. 0.393 rad  27. 2.185 rad

29. 
pr
2

+ 2r  31. 
1
4
pr2 - 1

2
r2

33. All are on the same diameter.  35. 10.3 cm2

37. 40 060 km  39. 
0.445

1
  41. 35.7 cm  43. 9500 cm2

45. 9.7 * 107 mm2

47. Horizontally and opposite to original direction  49. 630 km

Exercises 2.5, page 76

1. Simpson’s rule. The use of smaller intervals improves the  
approximation.

3. Simpson’s rule. It accounts better for the arcs between points on 
the curve.

5. 84 m2  7. 0.45 m2  9. 9.8 km2  11. 19 000 km2

13. 11 800 m2  15. 8.0 * 103 m2

17. 2.73 cm2. All of the trapezoids are inscribed.

19. 2.98 cm2. The ends of the areas are curved so they can get closer 
to the boundary.

Exercises 2.6, page 80

1. The volume increases by a factor of 4.

3. 771 cm3  5. 366 cm3  7. 3.99 * 106 m2  9. 2.83 m3

11. 20 500 cm2  13. 2.5 * 105 cm3  15. 3.358 m2

17. 0.15 cm3  19. 72.3 cm2  21. 
1
6
pd3  23. 

6
1

  25. 
4
1

27. 604 cm2  29. 1.4 * 106 m3  31. 2.6 * 106 m3

33. 66 600 m3  35. 1560 mm2  37. 7330 cm3  39. 1.10 cm3

Review Exercises for Chapter 2, page 82

1. 32°  3. 32°  5. 41  7. 700  9. 7.36  11. 21.1

13. 25.5 mm  15. 3.06 m2  17. 309 mm  19. 3320 cm2

21. 6190 cm3  23. 1.60 * 105 m3  25. 1.62 m2

27. 66.6 mm2  29. 25°  31. 65°  33. 53°  35. 2.4

37. p = b + 2b2 + 4a2 + pa  39. A = ab + 1
2
pa2  41. Yes
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19. 2, does not exist  21. 2, 0.75  23.  d1 t2 = 120 + 80t

25. w1 t2 = 5500 - 2t

27. m1h2 = 0.5h - 390 for h 7 1000 m

29. C1 l2 = 5l + 250

31. (a)  y1x2 =
1200 - 0.1x

0.4
 (b) 2900 L

33.  y1x2 =
2750 - 15x

25
  35. A1p2 =

p2

16
+

160 - p22

4p
 

37. d1h2 = 2h2 + 14 400
 Domain: all real values h Ú 0, or 30, ∞ 2
 Range: all real values d Ú 120 m, or 3120, ∞ 2
39. v1 t2 =

300
t

 Domain: all real values t 7 0, or 10, ∞ 2
 Range: all real numbers 0 6 v 6 c, or 10, c2
41. Domain: all real values C 7 0, or 10, ∞ 2
43. m1h2 = e110 for 0 … h … 1000 m

0.5h - 390 for h 7 1000 m

45. (a) V1w2 = 10w2 - 150w + 500
 (b) Domain: w 7 10 cm, or 110 cm, ∞ 2
47. 1  49. Range: all real values ƒ1x2 Ú 2, or 32, ∞ 2
Exercises 3.3, page 96

1. 1 -1, 12   3. A12, 12 , B1 -1, 22 , C1 -2, -32
5. 

C

A

B
x

y

0-4 4

7
 

7. Isosceles triangle 

C(1, -2)

A(-1, 4) B(3, 4)

x

y  

9. Rectangle

 

-4 5

7
D C

A B
x

y

 

11. 15, 42   13. 13, -22
15. On a vertical line one unit to the right of the y-axis

17. On a horizontal line 3 units above the x-axis

19. On a 45° line through the origin  21. 0

23. To the right of the y-axis

25. To the left of a line parallel to the y-axis, one unit to its left

27. Quadrant I or Quadrant III  29. On the x- or y-axis

31. In Quadrant III  33. (a) 8 (b) 6

43. n2; A = p1nr22 = n21pr22    45. 
a
d

=
b
c

  47. 71°

49. 7.89 m  51. 12 cm  53. 30 m  55. 6.0 m

57. 5.91 km  59. 42 100 km  61. 2.7 * 106 mm2

63. 1 .1 * 10 6 m2  65. 193 m3  67. 10.000 m  69. 873 L 

71. h = 52.5 cm, w = 93.3 cm  73. 136 000 m2

Exercises 3.1, page 90

1. -13  3.  f1T - 102 = 9.1 + 0.08T + 0.001T2

5. (a) A1r2 = pr2 (b) A1d2 =
pd2

4

7. d1V2 = A3 6V
p

  9. A1s2 = s2, s1A2 = 2A

11. A1r2 = 4r2 - pr2  13. 3, -1  15. 5, 5

17. -2.66, - 1
2

  19. 
a
4

+ a2

2
, 0

21. 3s2 + s + 6, 12s2 - 2s + 6  23. -8

25. 62.9, 2.60 * 102  27. -299.67

29. Square the value of the independent variable and add 2 to the  
result.

31. Multiply the value of the independent variable by 6, cube the  
value of the independent variable, and subtract the second result  
from the first.

33. Multiply the value of the independent variable by 2 and then add 5.
 Multiply this result by 3, then subtract 1.

35. Multiply the value of the independent variable by 2 and then  
add 3. Divide this result by the sum of the independent  
variable and 2.

37.  A = 5s2

  ƒ1s2 = 5s2

39.  A = 6.00 - 0.25t
  ƒ1 t2 = 6.00 - 0.25t

41. 10.4 m 43. 13.2m, 0.4v + 0.32v2, 40.8 m, 40.8 m 45. d1 t2 = 55t

47. (a) ƒ3ƒ1x2 4  means “function of the function of x.” (b) 8x4

Exercises 3.2, page 94

1. ƒ1x2 = -x2 + 2 is defined for all real values of x.
 Since x2 cannot be negative, the maximum value of ƒ1x2  is 2.
 Range: all real numbers ƒ1x2 … 2

3. 4 mA, 0 mA

5. Domain: all real numbers
 Range: all real numbers 

7. Domain: all real numbers R ≠ 0, or 1 - ∞ , 02  and 10, ∞ 2
 Range: all real numbers G1R2 ≠ 0, or 1 - ∞ , 02  and 10,  ∞ 2
9. Domain: all real numbers s ≠ 0, or 1 - ∞ , 02  and 10, ∞ 2
 Range: all real numbers ƒ1s2 7 0, or 10, ∞ 2
11. Domain: all real numbers  h Ú 0, or 30, ∞ 2
 Range: all real numbers H1h2 Ú 1, or 31, ∞ 2
13. Domain: all real numbers 
 Range: all real numbers y Ú 0, or 30, ∞ 2
15. Domain: all real numbers y 7 2, or 12, ∞ 2
17. Domain: all real numbers D ≠ 2, -4, or 1 - ∞ , -42 , 1 -4, 22 , 

and 12, ∞ 2
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Exercises 3.4, page 102

1. 

-3 1-2

-4

6

8

x

y  3. 

-4 2 4-2

2
4

x

y

5. 

1

3

x

y  7. 

x

y

-4

2

9. 

2

2

6

t

s

-2

 11. 

4

1
x

y

-1

13. 

2 x

y

-1

4

 15. 

x

y
4

1

17. y

x-1 1

-4

4

10
 19. y

x-3 1

-4

1
3

21. y

x
1 2

-1
1

 23. V

s

8

2

25. y

x

2

1

-12

 27. D

v

14

4
1

-4

29. P

V

1

1

 31. 

x

y

1

1

33. 

x

y

2

2

 35. v

h-4 -2 2 4

2

37. n(L)

m(L)
100

40

39. V($)

m(km)

50 000

100 000

 41. H(W)

I(A)
1

240

43. 

v(km/h)

1400

50

r(m)

45. 

v(m/s)

60

5
20

40

202 8 14

P(W)

47. 

d(mm)

1300

100
1000300

V(dm3)

49. 

w(m)

2700

2100

7030

A(m2)   
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3. Range: all real values y Ú 15.2, or 315.2, ∞ 2
 30

0 3
0

5. 

-3 5

5

-5

 7. 

-3 5

10

-5

9. 

-3 3

10

-5

 11. 

-3 3

10

-10

13. 

-2 6

10

-10

 15. 

-4 4

5

-5

17. 

-3 3

10

-10

19. -2.791, 1.791  21. 2.104  23. 4.321  25. 1.400

27. No solution  29. Range: all real values y 7 0 or y … -1

31. Range: all real values y … -4 or y Ú 0

33. Range: all real values Y1y2 Ú 3.464 (approx.)

35. Range: all real numbers

37. y = 3x + 1 

-2 2

2

-2

39. y = 2x - 3 

-1 5

3

-1

51. 

n

1.5

2.01.3

N  53. 

n
8642

2

4

S

55. No. ƒ112 = 2 says nothing about ƒ122 .

57. y = x is the same as  y = $ x $  for x Ú 0.
  y = $ x $  is the same as  y = -x for x 6 0.

 

x

2

y = |x|

y = x

–2

–2 2

y

59. 

x
1

10

1

y

y = x2 + 1

y = 3 - x

61. (a) 

x

4

-1 3-3

y  (b) 

x

4

-1 3-3

y

   The graphs are identical except 
the second curve is undefined 
at a single point x = 2.

63. Yes  65. No

Exercises 3.5, page 107

1. 

x

7

2

4

-4 4

y  -2.4, 0.4
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7. 

2 864 10

4
8

12
16
20

Time (yrs)

Rate (%)

9. (a) 132 °C (b) 0.7 min  11. (a) 1.5 mm (b) 3.2 mm

13. 0.30 H  15. 7.2%

17. (a) 170 cm Rate (m3/s)

Height (cm)

4.0

1.0
2.0
3.0

600170
 (b) 2.4 m3/s Rate (m3/s)

Height (cm)

4.0

1.0
2.02.4
3.0

600240

19. 1.3 m3/s  21. 0.34  23. 76 m2  25. 130.3 °C
27. 3.7 m3/s

Review Exercises for Chapter 3, page 112

1. A1 t2 = 4pt2  3. y1x2 =
2000 - 0.05x

0.04

5. 16, -47  7. 3, 21 - 4h  9. h3 + 11h2 + 36h

11. -3  13. -3.67, 16.6  15. 0.165 03, -0.214  76

17. Domain: all real numbers, or 1 - ∞ , ∞ 2
 Range: all real numbers f1x2 Ú 1, or 31, ∞ 2
19. Domain: all real numbers t 7 -4, or 1 -4, ∞ 2
 Range: all real numbers g1 t2 7 0, or 10, ∞ 2
21. Domain: all real numbers n ≠ 5, or 1 - ∞ , 52  and 15, ∞ 2  
 Range: all real numbers f1n2 7 1, or 11, ∞ 2
23. y

x2

10
 25. s

t

27. y

x-3

-12

 29. A

s-3

6

12

-9

-15

41. y = -21x + 222 - 3 

-5 3

2

-8

43. y = 22x + 3 + 1 

-2 5

5

-1

45. 6.00 V  47. 24.4 cm, 29.4 cm

49. w = 17.6 cm, I = 29.6 cm.  51. 66.7 m

53. 3.9362 cm, 3.9362 cm, and 1.9362 cm  55. 0.250 cm/min

57. (a) The graph will look similar to the graph in (b).
 (b) r

t

1

2

3

84
59. Curves are reflected about the x-axis.
 y

x2

8
16

y = 2x3

y = -2x3

Exercises 3.6, page 111

1. 

21 3 87654 9

600
700
800
900

Production (1000’s of litres)

Week

3. Material (cm2)

42 6 1412108 16
500

600

700

800

Diameter (cm)

5. M. ind. (H)

42 6 8 10 12
Distance (cm)

0.2
0.4
0.6
0.8
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73.  

100

1000

100

N

t

75. 

0 40 80 120 160

40

80

d

D

77. 3.46 m

79. 3.5 h 

3.52

350

70
170

d

t

81. 32.8 °C  83. 0.389 m  85. 6.53 hours

31. y

x

33. 0.43  35. 0.17, 5.83  37. 1.35  39. -0.71, 0.71

41. Range: all real values y Ú -6.25 or 3 -6.25, ∞ 2
43. Range: all real values A … -2.83 or A Ú 2.83, or 1 - ∞ , -2.834
 or 32.83, ∞ 2  

45. a and b have opposite signs.  47. 11,  {232  

49. All values of 1x,  y2  that are not on the x-axis or y-axis.

51. There are many possibilities. Two are shown.

3

1

y

x

53. y = 2x + 1 + 1

55. The graphs are reflections of each other across the y-axis.

 

2

-10

10 f (x)

f (x)

f (-x)

f (-x)

-2

57. Yes; this passes the vertical line test.  59. 13.4  61. 72°

63. 

t

T

32.5

28.0

30

 65. P

p

5000

-1000
15030

67. L = f1r2 = 2pr + 12

 

L

r

24

12

21

69. 2.63%

71.  

80 140

3.5

0.5

20

P

i

Exercises 4.1, page 118
1. 865.6°, or -574.4°  3. -135°
5. y

x
-90°

60°

120°
  7. y

x

-360°
50°

-30°

9. 405°, -315°  11. 210°, -510°  13. 430°30′, -289°30′
15. 638.1°, -81.9°  17. 15.18°  19. 82.91°  21. 18.85°
23. -235.49°  25. 0.977 rad  27. 6.72 rad  29. 47°30′
31. -5°37′  33. 15.20°  35. 301.27°
37. y

x
u

(4, 2)

  39. y

x

u

(-3, -5)

41. y

x

u

(-7, 5)

  43. y

x

u

(-2, 0)

45. First-quadrant angle, fourth-quadrant angle

47. First-quadrant angle, quadrantal angle

49. First-quadrant angle, second-quadrant angle
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9. 0.381  11. 1.58  13. 0.9626  15. 1.00  17. 0.4085

19. 1.57  21. 116.9  23. 0.07063  25. 70.97°
27. 65.70°  29. 11.7°  31. 49.453°  33. 53.44°
35. 86.53°  37. 74.1°  39. 6.95°  41. 0.956 =  0.956

43. 2.7 =  2.7
45. y is always less than or equal to r, and the minimum value of y 

is 0.
47. As u increases from 0° to 90°  , the radius vector rotates counter-

clockwise and x decreases.
49. 0.8885  51. 0.93614  53. 71.6°  55. 87.5 dB
57. 48.6°

Exercises 4.4, page 130
1. sin A = 0.868, cos A = 0.496, tan A = 1.75, sin B = 0.496
   cos B = 0.868, tan B = 0.571
3. a = 44.68
   A =  34.17°
   B =  55.83°
5. 

60°

6 cm

3 cm

  7. 
5 cm

3 cm

9. c =  6850   11. b =  309    13. b =  12.6
   b =  1450      A =  26.3°     a =  20.2
   B =  12.2°     B =  63.7°     A =  57.9°
15. a =  32    17. a =  30.21   19. c =  71.85
   A =  21°      b =  48.16     A =  52.15°
   B =  69°       B =  57.90°      B =  37.85°
21. c =  1.09   23. c =  1.922   25. c =  648.46
   b =  0.661     a =  0.5239    A =  65.883°
  A =  52.5°     A =  15.82°      B =  24.117°
27. c =  14.61   29. b =  0.0162
   a =  0.7584     a =  0.0959
   B =  87.025°    A =  80.44°
31. The given information does not determine a unique triangle.

33. 4.45  35. 40.24°  37. 43.1°  39. 788

41. a =  c sin A  43. c =  
a

cos B
    b =  c cos A    b =  a tan B
    B =  90° -  A   A =  90° -  B

Exercises 4.5, page 133

1. 639 m  3. 98.7 m  5. 44.0 m  7. 0.390°
9. 850.1 cm  11. 7610 mm  13. 0.34 km  15. 26.6°, 63.4°
17. 3.4°  19. 23.5°  21. 8.12°  23. 3.07 cm  25. 651 m

27. 30.2°  29. 6.28 cm  31. 47.3 m  33. 282 m

35. d =  2 x tan 1 u22   37. A =  a sin u 1b + a cos u2
39. 35.3°

Review Exercises for Chapter 4, page 137

1. 377.0°, -343.0°  3. 142.5°, -577.5°  5. 31.90°
7. -38.10°  9. 17°30′  11. 749°42′

51. Third-quadrant angle, first-quadrant angle  53. 21.710°
55. 86°16′26 ″

Exercises 4.2, page 122

1. sin u =
3
5

  csc u =
5
3

  3. sin u =
4
5

  csc u =
5
4

 cos u =
4
5

  sec u =
5
4

   cos u =
3
5

  sec u =
5
3

 tan u =
3
4

  cot u =
4
3

   tan u =
4
3

  cot u =
3
4

5. sin u =
8
17

  csc u =
17
8

  7. sin u =
40
41

  csc u =
41
40

 cos u =
15
17

  sec u =
17
15

   cos u =
9
41

  sec u =
41
9

 tan u =
8
15

  cot u =
15
8

   tan u =
40
9

  cot u =
9
40

9. sin u =
215

4
  csc u =

4215

 cos u =
1
4

    sec u = 4

 tan u = 215  cot u =
1215

11. sin u =
122

  csc u = 22

 cos u =
122

  sec u = 22

 tan u = 1    cot u = 1

13. sin u =
2229

  csc u =
229

2

 cos u =
5229

  sec u =
229

5

 tan u =
2
5

    cot u =
5
2

15. sin u = 0.808  csc u = 1.24

 cos u = 0.589  sec u = 1.70

 tan u = 1.37   cot u = 0.729

17. 
5
13

  , 
12
5

  19. 
225

  , 25  21. 0.882, 1.33

23. 0.246, 3.94  25. sin u =
4
5

 , tan u =
4
3

27. tan u =
1
3

 , sec u =
210

3
  29. 1  31. cos u = 21- y2

33. - 7
3

  35. sec u

Exercises 4.3, page 125
1. 20.65°  3. 71.0°
5. sin 40° = 0.65 csc 40° = 1.5

cos 40° = 0.76 sec 40° = 1.3
tan 40° = 0.86 cot 40° = 1.2

7. sin 15° = 0.26 csc 15° = 3.8
cos 15° = 0.97 sec 15° = 1.0
tan 15° = 0.27 cot 15° = 3.7
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5. 4  7. -5  9. 2
7  11. 0.5

13. y

x(0, -1)

(1, 1)

2
1

 15. y

x

(0, 2) (3, 2)

17. y

x
(0, 0)

(2, 1)
1

2

 19. y

x

(1, 11)

-9

1
(0, 20)

21. m = -2, b = 1 23. m = 1, b = -4

 y

x
-2

(0, 1)

(1, -1)

1

 y

x

(0, -4)
(1, -3)

1
1

25. m = 5
2, b = -20 27. m = -3

5, b = 3
8

 

(2, -15)
5

2

y

x

(0, -20)

 y

x
5

-3

Q0,     R3
8

Q5,        R21
8-

29.   31.

 
y

x

(0, 2) (2, 1)

(4, 0)

 
y

x

(0, -4)

(3, 0)

Q2 ,        R4
3-

33. y

x

(-1, 3)

(-2, 0)

(0, 6)

 35. y

x

(1, 18)

(0, 30)

Q   , 0R5
2

37. 6

13. sin u =
7
25
  csc u =

25
7

 cos u =
24
25
  sec u =

25
24

 tan u =
7
24
  cot u =

24
7

15. sin u =
122
  csc u = 22

 cos u =
122
  sec u = 22

 tan u = 1    cot u = 1

17. 0.923, 2.40  19. 0.447, 1.12  21. 0.952  23. 42.12

25. 1.05  27. 0.00  29. 18.2°  31. 57.57°  33. 12.25°
35. 87.7°  37. 7.998°  39. 88.85°
41. B =  73.0°  43. c =  104  45. B =  52.5°
 a =  1.83 A =  51.5° b =  15.6
 c =  6.27 B =  38.5° c =  19.7

47. a =  4.006  49. B =  40.33°  51. b =  10.196
 A =  31.61° a =  0.6292 A =  48.813°
 B =  58.39° b =  0.5341 B =  41.187°
53. 4.6  55. 61.2  57. 10.5
59. C

By
c

x
h

A

 cot A =
x
h

, cot B =
y

h
, c = x + y, c = h cot A + h cot B

61. 
2x2 + 1

x
  63. 16.7°  65. 80.3°  67. 12.0°

69. (a) A =  12 bh =  12 b1a sin C2  =  12 ab sin C

 (b) 679.2 m2

71. 4.92 km  73. 0.977 m2  75. 15.3 m2  77. 4.43 m
79. 34 m  81. 56%  83. 10.2 cm
85. End: 30.2 km
 Middle: 30.2 km
87. 1.83 km
89. (a) 147 000 mm2 (b) 155 000 mm2

 (c)  The flat surface approximation does not account for the 
curved surface of the soccer ball.

91. 464 m  93. 73.3 cm  95. 35 m2

Exercises 5.1, page 145

1. x - 1
6

 y + z - 4w = 7 is linear

3. x = 4, y = 4  5. No; yes  7. Yes; no  9. 5
3, 50

3   

11. -7
2, -9  13. -2.0, 2.5  15. Yes  17. No  19. No

21. No  23. Yes  25. 6  27. Yes  29. No

Exercises 5.2, page 149

1. The line rises 1 unit for each 4 units in going from left to right.

3. The slope is 23 and the y-intercept is the point 10, -4
32 .
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39. d

l

(10, 3.2)

10

2(0, 1.2)

 41. I2

I1

Q1,    R2
5

4
5

Q0,        R2
5-

1

Exercises 5.3, page 152

1. x = 1.5, y = 1.4  3. x = 3.0, y = 1.0

5. x = 3.0, y = 0.0  7. x = 2.2, y = -0.3

9. x = -0.9, y = -2.3  11. t = -1.7, s = 1.1

13. x = 0, y = 3  15. x = -14.0, y = -5.0

17. r1 = 4.0, r2 = 7.5  19. x = 2.1, y = -0.4

21. x = -3.600, y = -1.400
23. x = 1.111, y = 0.841  25. Dependent

27. t = -1.887, v = -3.179

29. x = 1.500, y = 4.500  31. Inconsistent

33. T1 = 50 N, T2 = 47 N  35. 2.6 m, 3.4 m

37. 40 kg, 80 kg

Exercises 5.4, page 158

1. x = -3, y = -3  3. x =
16
13

, y = - 2
13

5. x = 1, y = -2  7. p = 3, V = 7  9. x = -1, y = -4

11. x = 1
2, y = 2  13. x = 1, y = 1

2  15. x = 3, y = 1

17. x = -1, y = -2  19. t = -1
3, y = 2  21. Inconsistent

23. x = -14
5 , y = -16

5   25. x = 1
2, y = -4

27. x = -2
3, y = 0  29. x = 3

5, y = 1
5  31. V = -2, C = -1

33. A = -1, B = 3  35. a = 1
3, b = -7

37. x = 69
29, y = 13

29  39. s = 39
10, t = 16

5   

41. V1 = 9 V, V2 = 6 V  43. x = 6250  L, y = 3750  L

45. 54  47. Wf = 9580  N, Wr = 8120  N  

49. t1 = 32 s, t2 = 20 s

51. 34 at $900 per month, 20 at $1250 per month

53. 7.00 kW, 9.39 kW

55.  This is an inconsistent system. There could be an error in the sales 
figures, and/or the conclusion is in error.

57. a ≠ b  59. 1 -3, -42, 19, 02
Exercises 5.5, page 164

1. 86  3. x = -13, y = -27  5. -10  7. 29

9. 32  11. 9300  13. 1.083  15. 96  17. x = 3, y = 1

19. x = -1, y = -2  21. t = - 1
3

, y = 2  23. Inconsistent

25. x = - 14
5

, y = - 16
5

  27. x =
69
29

, y =
13
29

29. s =
39
10

, t =
16
5

  31. x = -11.2, y = -9.26

33. x = -1.0, y = -2.0  35. 0  37. 0  

39. F1 = 15 N, F2 = 6.0 N

41. x = 73.6 L, y = 70.4 L

43. 160 3-bedroom homes, 80 4-bedroom homes

45. 210 phones, 110 detectors  47. $2000, 6.0%

49. 2.5 h, 2.1 h  51. V1 i2 = 4.5i - 3.2

Exercises 5.6, page 168

1. x = 1, y = -4, z =  13  3. x = 2, y = -1, z = 1

5. x = 4, y = -3, z = 3  7. i = 1
2, w = 2

3, h = 1
6

9. x = 2
3, y = -1

3, z = 1  11. x = 4
15, y = -3

5, z = 1
3

13. x = 3
4, y = 1, z = -1

2  15. r = 0, s = 0, t = 0, u = -1

17. A = 2, B = 1, C = 1  19. P = 800 h, M = 125 h, I = 225 h

21. F1 = 9.43 N, F2 = 8.33 N, F3 = 1.67 N

23. A = 22.5°, B = 45.0°, C = 112.5°
25. a = 0.295, b = -5.53, c = 24.2

27. x = 70.0 kg, y = 100.0 kg, z = 30.0 kg

29. Infinite number of solutions. A possible solution is 
x = -10, y = -6, z = 0

31. Inconsistent

Exercises 5.7, page 174

1. -38  3. 122  5. 651  7. -439  9. 202

11. 29 440  13. 0.128  15. x = -1, y = 2, z = 0

17. x = 2, y = -1, z = 1  19. x = 4, y = -3, z = 3

21. l = 1
2, w = 2

3, h = 1
6  23. x = 2

3, y = -1
3, z = 1

25. x = 4
15, y = -3

5, z = 1
3  27. p = -2, q = 2

3, r = 1
3

29. x = 3
4, y = 1, z = -1

2  31. Value changes from 19 to -19.

33. 19 (no change)  35. A = 125 N, B = 60.0 N, C = 75.0 N

37. s0 = 2.00 m, v0 = 5.00 m>s, a = 4.00 m>s2

39. V =  f1T2 = 5.00 + 0.500T + 0.100T2

41. 79% nickel, 16% iron, 5% molybdenum

43. vc = 45.9 km>h, vj = 551 km>h, vt = 30.9 km>h

45. F1 = 27.9 N, F2 = 44.5 N, F3 = 52.6 N

Review Exercises for Chapter 5, page 176

1. -17  3. -1485  5. -4  7. 
2
7

 

9. m = -2, b = 4 11. m = 4, b = - 5
2

 y

x

(1, 2)

1

-2
(0, 4)

 y

x
4

1

Q1,    R3
2

Q0,        R5
2-
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15. 21x + 2y - 4z2   17. 3ab1b - 2 + 4b22   

19. 4 pq13q - 2 - 7q22   21. 21a2 - b2 + 2c2 - 3d22   

23. 1x + 22 1x - 22   25. 110 + 3A2 110 - 3A2   

27. 36a4 + 1  29. 219s + 5t2 19s - 5t2   

31. 112n + 13p22 112n - 13p22   

33. 1x + y + 32 1x + y - 32   35. 21x + 22 1x - 22   

37. 3001x + 3z2 1x - 3z2   39. 21I - 12 1I - 52   

41. 1x2 + 42 1x + 22 1x - 22   

43. 1x4 + 12 1x2 + 12 1x + 12 1x - 12
45. 

b + 3
2 - b

  47. 
3

21 t - 12   49. 
5
2

  51. 1x - y2 1b + 32
53. 1a + x2 1a - b2   55. 1x + 32 1x + 22 1x - 22   

57. 1x - y2 1x + y + 12   59. 16 777 216  

61. n2 + n = n1n + 12 ; the product is even.  63. 2pr1h + r2
65. Rv11 + v + v22   67. r1R + r2 1R - r2   

69. r21p - 22   71. 
i2R2

R1 + R2
  73. 

5Y
313S - Y2   

75. 
ER

A1T0 - T12   

Exercises 6.3, page 195

1. 1x + 32 1x + 12   3. 12x - 12 1x - 52
5. 21x + 62 1x - 32   7. 1x + 12 1x + 42
9. 1s - 72 1s + 62   11. 1 t + 82 1 t - 32   13. 1x + 122

15.  1L - 2K22  17. 13x + 12 1x - 22
19. 413y + 12 1y - 32   21. 12s + 112 1s + 12
23. 13ƒ2 - 12 1ƒ2 - 52   25. 12t - 32 1 t + 52
27. 13t - 4u2 1 t - u2   29. 14x - 72 1x + 12
31. 1x + y2 19x - 2y2   33. 12m + 522  35. 212x - 322

37. 13t - 42 13t - 12   39. 12b - 12 14b2 + 2b + 12 1b3 + 42
41. 14p - q2 1p - 6q2   43. 112x - y2 1x + 4y2
45. 21x - 12 1x - 62   47. 2x12x2 - 12 1x2 + 42  

49. ax1x + 6a2 1x - 2a2   51. 1a + b + 22 1a + b - 22
53. 15a + 5x + y2 15a - 5x - y2   55. 14xn - 32 1xn + 42
57. 161 t - 42 1 t - 12   59. 41s + 32 1s + 12
61. 10012n + 32 1n - 122   63. 1V - nB22

65. wx21x - 3L2 1x - 2L2   67. Ad13u - v2 1u - v2
69.  k = -1, 12x + 122  71. 1x2 + 2x + 22 1x2 - 2x + 22
73. 914x2 + 12   75. (a) 12n2 + 32 16n2 - 52   

(b) 1p - 6q2 14p - q2   (c) 16x + 5y2 12x - y2   

(d) 1x + 4y2 112x - y2
Exercises 6.4, page 197

1. 1x - 22 1x2 + 2x + 42   3. 1x + 12 1x2 - x + 12
5. 12 - t2 14 + 2t + t22   7. 13x - 2a22 19x2 + 6a2x + 4a42
9. 41x + 22 1x2 - 2x + 42   11. 6A31A - 12 1A2 + A + 12
13. 6x3y13 - y2 19 + 3y + y22
15. x3y31x + y2 1x2 - xy + y22
17. 3a31a - 12 1a2 + 2a + 12
19. 0.0011R - 4r2 1R2 + 4Rr + 16r22
21. 27L31L + 22 1L2 - 2L + 42

13. x = 2, y = 0  15. A = 2.2, B = 2.7

17. x = 1.5, y = -1.9  19. M = 1.5, N = 0.4

21. x = 1, y = 2  23. x = 1
2, y = -2  25. i = 2, v = -1

3

27. x = - 6
19, y = 36

19  29. x = 43
39, y = 7

13  31. x = 1, y = 2

33. x = 1
2, y = -2  35. i = 2, v = -1

3

37. x = - 6
19, y = 36

19  39. x = 43
39, y = 7

13

41. 33 (the second equation is already solved for y)

43. 40 (the coefficients don’t indicate another method)

45. -115  47. 230.08  49. x = 2, y = -1, z = 1

51. r = 3, s = -1, t = 3
2  53. x = -0.168, y = 0.156, z = 2.41

55. x = 2, y = -1, z = 1  57. r = 3, s = -1, t = 3
2

59. x = -0.168, y = 0.156, z = 2.41  61. 4  63. - 15
7

65. x =
8
3

, y = -8

67. x = 1, y = 3  69. -6  71. -4
3

73. F1 = 21 000 N, F2 = 2400 N, F3 = 18 000 N

75. p1 = 42,, p2 = 58,  77. $40 000, $4000

79. 27.6 tonnes of 6.0% copper, 14.4 tonnes of 2.4% copper

81. a = 444 m # °C, b = 9.56 °C  83. 22 800 km>h, 1400 km>h

85. R1 = 0.500 Ω, R2 = 1.50 Ω  87. L = 10.0 N, w = 40.0 N

89. A = 75.0°, B = 65.0°, C =  40.0°
91. A = 68.0 MB, B = 24.0 MB, C = 48.0 MB

93. 4.26 N, 1.74 N  95. 8.84 m3>h, 4.65 m3>h

Exercises 6.1, page 184

1. 9r2 - 4s2  3. x2 + 2xy + y2 - 4x - 4y + 4  

5. 40x - 40y  7. 2x3 - 8x2  9. T2 - 36  

11. 9v2 - 4  13. 16x2 - 25y2  15. 144 - 25a2b2  

17. 25ƒ2 + 40ƒ + 16  19. 4x2 + 68x + 289  

21. L4 - 2L2 + 1  23. 16a2 + 56axy + 49x2y2  

25. 0.36s2 - 1.2st + t2  27. x2 + 6x + 5  

29. 18 + 9C2 + C4  31. 20x2 - 21x - 5  

33. 40v2 + 138v - 45  35. 600x2 - 130xy - 63y2  

37. 2x2 - 8  39. 8a3 - 2a  41. 6ax2 + 24abx + 24ab2  

43. 20n4 + 100n3 + 125n2  45. 16R4 - 72R2r2 + 81r4  

47. x2 + 2xy + y2 + 2x + 2y + 1  

49. 9 - 6x - 6y + x2 + 2xy + y2  51. - t3 + 15t2 - 75t + 125

53. 27L3 + 189L2R + 441LR2 + 343R3  55. w2 + 2wh + h2 - 1

57. x3 + 8  59. 64 - 27x3  61. x4 - 2x2y2 + y4  

63. P1P0c + P1G  65. 4p2 + 8pDA + 4D2A2  

67. 
1
2

 pR2 - 1
2

 pr2  69. 
L
6

 x3 - L
2

 ax2 + L
2

 a2x - L
6

 a3  

71. L0 + aL0T - aL0T0  73. 2499  75. 4x2 - 9

77. (a) 1x + y22   (b) x2 + 2xy + y2 (Eq. 6.3)

79. 4x2 - y2 - 4y - 4

Exercises 6.2, page 189

1. 2ax12x - 12   3. 51x + 32 1x - 32
5. 61x + y2   7. 51a - 12   9. 3x1x - 32   

11. 7b1bh - 42   13. 24n112n + 12   
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23. 
1x + 12 1x - 12 1x - 42

41x + 22 , x ≠ 0

25. 
x2

a + x
, x ≠ -a, b ≠

cx
2

  27. 
15
4

, a ≠ -  
5
7

, -  
11
4

29. 
3

4x + 3
, x ≠ 5, 1, -  

7
2

31. 
213T + N2 15V - 621V - 72 14T + N2 , T ≠

N
2

, V ≠ -  
5
2

  33. 
7x4

3a4, x ≠ 0

35. 
4t12t - 12 1 t + 5212t + 122 , t ≠ 5, -  

1
2

  37. 
x + y

2

39. 1x + y2 13p + 7q2 , a ≠ -b, p ≠ q

41. 
x - 2

6x
, x ≠ -2, 0  43. -

212x - 12
51x - 22 , x ≠ -  

1
2

, -2

45. 
2v1v2

v1 + v2
, d ≠ 0  47. 

p

2
, a, b, l ≠ 0, a ≠ -b

Exercises 6.7, page 210

1. 12a2b3  3. 
x3 - 10x2 + 36x - 90

21x - 4221x + 32   5. 
9
5

  7. 
8
x

  9. 
5
4

11. 
3 + 7ax + 8x

4x
  13. 

ax - b

x2   15. 
30 + ax2

25x3

17. 
14 - a2

10a
  19. 

xy + 2y + 7x - 8

4xy
  21. 

7
212x - 12

23. 
5 - 3x

2x1x + 12   25. 
-3

41s - 32   27. 
7R + 6

31R + 32 1R - 32
29. 

2x - 51x - 422  31. 
-41v + 12 1v - 32   33. 

9x2 + x - 213x - 12 1x - 42
35. 

- t12t2 - 3t - 1521 t + 3221 t - 32 1 t + 22   37. 
-w12w2 - w + 121w + 12 1w2 - w + 12

39. 
1

x - 1
, x ≠ 0  41. 

x - y

y
,  x ≠ 0,-y

43. -  
13x + 42 1x - 12

2x
, x ≠ 0, 1, -1

45. 
h1x + 12 1x + h + 12   47. 

-h12x + h2
x21x + h22

49. 
r2 + y2 - rx

r2   51. 
2a - 1

a2   53. 
a2 + 2a - 1

a + 1

55. ab,  a ≠ -b  57. 
2mn

m2 + n2  59. 
31H - H02

4pH

61. 
n12n + 12

21n - 12 1n + 22   63. 
P219x2 + L22

4L4

65. 
Ls + R

CLs2 + CRs + 1
  67. 

v2L2 + v4L2c2R2 - 2v2LcR2 + R2

R2v2L2

Exercises 6.8, page 215

1. 
2

b - 1
  3. 

arv2

M12a - r2   5. 4  7. -3  9. 
13
2

11. 
16
21

  13. -9  15. -  
2
13

  17. 
5
3

  19. -2

21. -  
1
2

  23. 
37
6

  25. 7  27. 
63
8

  29. No solution

31. 
2
3

  33. 
3b

1 - 2b
  35. 

12b - 12 1b + 62
21b - 12

23. 1a + b + 42 1a2 + 2ab + b2 - 4a - 4b + 162
25. 12 + x2 12 - x2 116 + 4x2 + x42
27. 21x + 52 1x2 - 5x + 252
29. D1D - d2 1D2 + Dd + d22
31. QH1H + Q2 1H2 - HQ + Q22
33. x5 - y5 = 1x - y2 1x4 + x3 y + x2y2 + xy3 + y42 ,

x7 - y7 = 1x - y2 (x6 + x5y + x4y2 + x3y3 + x2y4 + xy5 + y62
35. 1x + y2 1x - y2 1x4 + x2y2 + y42
37. n3 + 1 = 1n + 12 1n2 - n + 12 ; 1n + 12  is a factor of 

n3 + 1 so n3 + 1 is not prime.

Exercises 6.5, page 201

1. 
3c
4b

, a, b, c ≠  0  3. 
x + 2
x - 2

, x ≠ -2  5. 
14
21

  7. 
2ax2

2xy

9. 
2x - 4

x2 + x - 6
  11. 

ax2 - ay2

x2 - xy - 2y2  13. 
7
11

15. 
2xy

4y2, x ≠ 0  17. 
2

R + 1
, R ≠ 1  19. 

s - 5
2s - 1

, s ≠ -2

21. 9xy  23. a2 - 25  25. 2x  27. 1, x ≠ b

29. 
1
4

, a ≠ 0  31. 
3x
4

, x, y ≠ 0  33. 
1
5a

, a + b ≠ 0

35. 
21a - b2

2a - b
  37. 

4x2 + 112x + 12 12x - 12   39. 3x, x ≠ 2

41. 
1

2y2, y ≠ -  
3
2

  43. 
x - 4
x + 4

, x ≠ 4  45. 
2w2 - 1

w2 + 8

47. 
5x + 4

x1x + 32 , x ≠ 2  49. 
1N2 + 42 1N + 22

8
, N ≠ 2

51. 
1

2t + 1
, t ≠ -4  53. 

x + 3
x - 3

, x ≠ 1  55. -  
y + x

2
, x ≠ y

57. 
x + 1
x - 1

, x ≠ {1  59. 
1x + 52 1x - 3215 - x2 1x + 32 , x ≠ {2

61. 
x2 - xy + y2

2
, x ≠ -y  63. 

2x

9x2 - 3x + 1
, x ≠ - 1

3

65. (a) 
x21x + 22

x2 + 4
 (x2 + 4 does not factor)

(b) 
x21x + 22 1x - 22  (there are no more common factors)

67. (a) 
1x - 22 1x + 12

x1x - 12  (no common factor)

(b) 
x - 2

x
, x ≠ -1 (no common factor)

69. u + v, u ≠ v  71. 
E21R - r21R + r23

Exercises 6.6, page 205

1. 
21x + y2
31x - y2 , x ≠ y, -  

3y

2
  3. 31x + 2y2 , x ≠ -y  5. 

3
28

7. 6xy, y ≠ 0  9. 
7
18

  11. 
xy2

bz2, a ≠ 0  13. 4t, x ≠ -3

15. 31u + v2 1u - v2 , u ≠ -2v  17. 
50

31a + 42 , a ≠ -4

19. 
x2 - 3

x21x2 + 32   21. 
3x
5a

, x ≠ 0, 3, -  
1
2

 and a ≠ 0
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101. 413x2 + 12x + 162   103. 
12wv2p2D

gn2t

105. 
R2 + r2

2
,  R ≠ r,-r  107. 

120 - 60d2 + 5d4 - d6

120

109. 
4k2 + k - 2
4k1k - 12   111. 

4r3 - 3ar2 - a3

4r3

113. 
c21u2 - 2gx2

1 - u2c2 + 2gc2x
  115. 

W
g1h2 - h12   117. 

RHw
w - RH

119. 
p2

2E - 2V0 - 1m + M2V2  121. -
1s2b2m + kL22

sb2

123. 
i

sV - V0
  125.  3.43 h  127. 600 Hz  129. 11.3

131. 18.0 Ω

37. 
21s - s02 - tv0

t
  39. 

8.01V - 6.02
15.6 - V

  41. 
jX

1 - gmz

43. 
pV3 - pV2b + aV - ab

RV2   45. 
CC3 + CC2 - C2C3

C2 - C

47. 
ƒ11 - n21R22

nƒ - ƒ - R2
  49. 3.08 h  51. 3.24 min  53. 220 m

55. 80.1 km/h  57. 2.23 V  59. A = 3, B = -2

Review Exercises for Chapter 6, page 217

1. 12ax + 15a2  3. 4a2 - 49b2  5. 4a2 + 4a + 1

7. b2 + 3b - 28  9. 2x2 - 13x - 45  11. 4c2a - d2

13.  31s + 3t2   15.  a21x2 + 12   17. 
bx1Wb + 122 1Wb - 122

19.  14x + 8 + t22 14x + 8 - t22   21. 413t - 122

23. 15t + 122  25. 1x + 82 1x - 72
27. 1 t + 32 1 t - 32 1 t2 + 42   29. 12k - 92 1k + 42
31. 212x + 52 12x - 72   33. 15b - 12 12b + 52
35. 41x + 4y2 1x - 4y2   37. 215 - 2y22 125 + 10y2 + 4y42
39. 12x + 32 14x2 - 6x + 92   41. 1a - 32 1b2 + 12
43. 1x + 52 1n - x + 52   45. 

16x2

3a2 , a, x, y ≠ 0

47.  
3x + 1
2x - 1

,  x ≠
3
2

  49. 
16

5x1x - y2 ,  x ≠ 0,-y

51. 
-6

L - 5
,   L ≠ {3  53. 

x + 2
2x17x - 12 ,  x ≠ 0,-2

55. 
1

x - 1
,  x ≠ 0  57. 

16x - 15

36x2    59. 
5y + 6

2xy

61. 
-212a + 32

a1a + 22   63. 
4x2 - x + 1

2x1x + 32 1x - 12
65. 

12x2 - 7x - 4
214x - 12 1x + 12 1x - 12   67. 

x3 + 6x2 - 2x + 2
x1x + 32 1x - 12

69. 1x + 252 1x - 252   71. 12x + 12 12x - 12
73. xa1 +

y

x
b   75. 2ax

2
- yb   77. 2  79. -

1a - 122

2a

81. 
10
3

  83. -6  85. (a) Changes the sign of the fraction. 

(b) Leaves the sign of the fraction unchanged.

87. 
1
4
3 1x + y22 - 1x - y224

 =
1
4
3x2 + 2xy + y2 - 1x2 - 2xy + y22 4

 =
1
4
3x2 + 2xy + y2 - x2 + 2xy - y24

 =
1
4
34xy4

 = xy

89. 2zS2 + 2zS  91. 4b2 + 4bnl - 4bl + n2l2 - 2nl2 + l2

93. 1T2 - T12 1c + R2   95. R13R - 4r2
97. 8n6 + 36n5 + 66n4 + 63n3 + 33n2 + 9n + 1

99. 10aT - 10at + aT2 - 2aTt + at2

Exercises 7.1, page 224

1. - 1
2

, 4  3. a = 1, b = -2, c = -4  

5. No x2 term so it is not quadratic.  7. a = 1, b = -1, c = 0

9. -2, 2  11. - 3
2

, 
3
2

  13. 9, -1  15. 4, 3  17. 0, 
5
2

19. 
1
3

, - 1
3

  21. 4, 
1
3

  23. -1, 
4
7

  25. 
2
3

, 
3
2

  27. 
1
2

, - 3
2

29. 
b
2

, 
-2b

3
  31. 

5
2

, - 9
2

  33. 0, -2  35. b - a, -b - a

37. -a - b, b - a  39. 
1
2

+ 3 =
7
2

= - -7
2

= - b
a

 

41. -6.00 A or 2.00 A  43. 2:00 a.m., 10:00 a.m.  

45. -1, 0, 1  47. 4, 
3
2

  49. -2, 
1
2

51. 3 N/cm, 6 N/cm  53. 30 km/h going, 40 km/h returning

Exercises 7.2, page 228

1. -3 { 117  3. {5  5. {17  7. -3, 7

9. -3 { 17  11. 2, -4  13. -2, -1  15. 2 { 12

17. -5, 3  19. -3, 
1
2

  21. 
1
2
{ 133

6
  23. 

1
4
{ 117

4

25. 1 { 15
5

  27. - 1
3

 1double root2   29. -b { 2b2 - c

31. 1x + 322 + 22  33. 5.0 °C, 15 °C  35. 5.61 m

Exercises 7.3, page 231

1. -2, -3  3. 
4
3

 1double root2   5. 2, -4  7. -2, -1

9. 2 { 12  11. -5, 3  13. -3, 
1
2

  

15. 
1
6
13 { 1332   17. 

1 { 117
4

  19. - 8
5

 , 
5
6



 ANSWERS TO ODD-NUMBERED EXERCISES B.15

1minimum point 10, -32 2 .

y = x2 − 3

y = x2 + 3

y = x2

27. y = 1x - 222 + 3 is y = x2 shifted right 2 and up 3.

y = 1x + 222 - 3 is y = x2 shifted left 2 and down 3.

y = (x + 2)2 − 3

y = (x − 2)2 + 3

y = x2

29.

  

y =
 3x 2

y =
 x 2

y =
   x 2

1
3

The graph of y = 3x2 is the graph of y = x2 narrowed. The

graph of y = 1
3 x

2 is the graph of y = x2 broadened.

31. 7  33. -2 
35.

 

d

t
(4, 15)

47

 

37.

 

−2

20

−20

10

y

x

39.

  

P

i
17

208

41. (a) 18.9 s  (b) 463 m  (c) 2.6 s, 15.8 s

43. 4.53 cm  45. 21.6 m by 92.6 m, or 32.4 m by 61.7 m

Review Exercises for Chapter 7, page 237

1. -4, 1  3. 2, 8  5. -4, 
1
3

  7. 
1
2

, 
5
3

 

9. 0, 
25
6

  11. - 3
2

, 
7
2

  13. -10.0, 11.0  

15. -1 { 17  17. 
9
2

, -4  19. 
3 { 141

8

21. 
-2.3 { 1-40.91

4.2
 1 imaginary roots2

23. 
-2 { 158

6
  25. -2 { 222  27. 

-4 { 1103

21. 
-61 { 2-119

16
 1 imaginary roots2

23. 
1
6
11 { 21092   25. 

11
5

 , - 11
5

  27. 
3
4

 , - 5
8

29. -0.540, 0.740  31. -0.256, 2.43  

33. -c { 2c2 + 1  35. 
b + 1 { 24ab2 - 3b2 + 2b + 1

2b2

37. Unequal, imaginary  39. Real, irrational, and unequal

41. 4  43. {2, {1  45. 4.38 cm  47. 1.618

49. 
-R { 2R2 - 4L>C

2L
  51. 1.78 cm  

53. l = 23.8 m, w = 11.0 m

55. 1.11 m  57. 80.0 km>h, 100.0 km>h

Exercises 7.4, page 235

1. y

x

(0, 6)

(-2, -2)

 3. y

x

(0, 5)

(3, -4)

5. 

(0, −4)

Q   ,     R5
3

13
3

y

x

 7. 

(2, −4)

R

v(0, 0)

9. 

(0, −4)

(2, 0)(−2, 0)

y

x

 11. 

(1, 0)(−4, 0)

(0, 8)

Q−    ,      R
3
2

25
2

y

x

13. 

(0, 3)

(1, 5)(−1, 5)

y

x

 15. 

(0, −6)
(1, −10)(−1, −6)

Q−    , −    R
1
2

11
2

y

x

17. -1.22, 1.22   19.  0.532, 3.14  21. No real solutions

23. -2.41, 1.24

25. The parabola y = x2 + 3 is shifted up +3 units 1minimum point 10, 32 2 .

The parabola y = x2 - 3 is shifted down -3 units



B.16 ANSWERS TO ODD-NUMBERED EXERCISES

19. sin u =
12
13

, cos u = - 5
13

, tan u = - 12
5

,

  csc u =
13
12

, sec u = - 13
5

, cot u = - 5
12

21. sin u =
-2229

, cos u =
5229

, tan u = - 2
5

,

  csc u = - 229
2

, sec u =
229

5
, cot u = - 5

2
 

23. I, II  25. I, III  27. II, III  29. II  31. II
33. IV  35. III  37. II  39. -   41. -

Exercises 8.2, page 248

1. sin 200° = -  sin 20° = -0.342,
 cos 265° = -  cos 85° = -0.0872,
 tan 150° = -  tan 30° = -0.577,

 cot 300° = -  cot 60° = - 1
tan 60°

= -0.577,

 sec 344° = sec 16° =
1

cos 16°
= 1.04,

 sin 397° = sin 37° = 0.602

3. 296.0°  5. sin 20°, -  cos 40°  7. - tan 75°, -csc 58°
9. cos 40°, - tan 40°  11. -sin 15° = -0.259

13. -cos 73.7° = -0.2807  15. sec  31.67° = 1.1750

17. - tan  31.5° = -0.613  19. -0.5228  21. -0.76199

23. -3.9096  25. 0.2989  27. 237.99°, 302.01°
29. 66.40°, 293.60°  31. 90.7°, 270.7°  33. 119.5°
35. 263°  37. 306.21°  39. 299.24°  41. -0.7002

43. -0.777  45. <  47. =   49. -0.9659  51. cot u

53. 0.0183 A  55. 12.6 cm

Exercises 8.3, page 252

1. 160°  3. 1.082, 2.060  5. 
p

12
, 

5p
6

  7. 
5p
12

, 
11p

6

9. 
7p
6

, 
3p
20

  11. 4p, - p

20
  13. 72°, 270° 

15. 10°, 315°  17. 70°, 300°  19. -20°, 27° 

21. 0.401 rad  23. 4.40 rad  25. 5.821 rad 
27. 8.351 rad  29. 43.0°  31. 195.2°  33. 722°  

35. -940.8°  37. 0.7071  39. 3.732
41. -0.8660  43. -8.3265  45. 0.9056  47. -0.890

49. -2.09  51. 0.149  53. 0.3141, 2.827

55. 2.932, 6.074  57. 0.8309, 5.452  59. 2.442, 3.841

61. -0.3827  63. -cot u  65. 612 mil  67. 11.0 rad

69. 0.030 J  71. 2900 m

Exercises 8.4, page 257

1. 2.36 cm  3. 14.4 m>s  5. 3.46 cm  7. 426 mm

9. 0.1849 km2  11. 67 cm2  13. 0.0647 m  15. 8.21 m

17. 43.1 m  19. 1.81 rad, 14.5 cm2  21. 12:32:44

23. 627 m2  25. 0.52 rad>s  27. 34.73 m2  29. 0.704 m

29. -1, 
5
4

  31. 
-3 { 1-47

4
 1 imaginary roots2

33. 
-1 { 1-1

a
 1a ≠ 0, imaginary roots2

35. 
-3 { 29 + 4a2

2a
  37. -5, 6  39. 

1 { 133
4

41. 3 { 17  43. 0

45. 

(0, −1)
Q   , −  R1
4

9
8

y

x

4

6

8

 47. 

(1, −2)
(−1, −4)

(0, 0)

y

x
-2

2
4

Q   ,     R
1
6

1
12

Q   ,  0R1
3

49. -1.69, 1.19  51. No real roots.  53. -4

55. 0, L  57. 17  59. 95.8 °C  61. 0.55 s, 2.22s 

63. 8000  65. 
-ph + 2p2h2 + 2pA

2p

67. 
r + 1 { 21r + 122 - 4rp2

2r

69. p

t (h)
3 6

0.135

71. 81.4 m and 61.4 m  73. 9.88 cm

75. 570 m by 570 m, 670 m by 970 m.

77. 40.7 cm * 55.2 cm  79. 25

81. p

h
6 18 24

0.268
0.205

0.017

  83. 3.56

Exercises 8.1, page 243

1. (a)- , + , - , - , + , - , (b) + , - , + , + , + , -   3. + , -
5. + , +   7. - , +   9. + , -   11. - , -   13. - , +

15. sin u =
125

, cos u =
225

, tan u =
1
2

, 

 csc u = 25, sec u =
25
2

, cot u = 2

17. sin u =
-3213

, cos u =
-2213

, tan u =
3
2

, 

 csc u = - 213
3

, sec u = - 213
2

, cot u =
2
3



 ANSWERS TO ODD-NUMBERED EXERCISES B.17

31. 22.6 m2  33. 369 m3  35. 0.4 km  37. 5.42 m>s

39. 188 rad>s2  41. 509 000 km>h  43. 75.8 r>min

45. 9.41 m  47. 1260 mm>s  49. 0.433 rad>s

51. 1070 km>h  53. 11.0 * 103 m2  55. 14.9 m3

57. The sequences both converge to 1.  59. 1.15 * 108 km

Review Exercises for Chapter 8, page 261

1. sin u =
4
5

, cos u =
3
5

, tan u =
4
3

,  

 csc u =
5
4

, sec u =
5
3

, cot u =
3
4

 

3. sin u = - 2253
, cos u =

7253
, tan u = - 2

7
, 

 csc u = - 253
2

,  sec u =
253

7
, cot u = - 7

2

5. -cos 48°, tan 14°  7. -sin 71°, sec 15°  9. 
2p
9

, 
17p
20

11. 
34p
15

, 
9p
8

  13. 252°, 130°  15. 12°, 330°  17. 32.1°

19. 2067°  21. 1.78 rad  23. 0.3534 rad  25. 4.5736 rad

27. -11.10 rad  29. -0.4147  31. -0.466  33. -1.0799

35. -0.42641  37. -1.638  39. 4.1398  41. -0.5878

43. -0.8660  45. 0.5569  47. 1.197  49. 10.30°, 190.30°
51. 118.23°, 241.77°  53. 0.5759, 5.707  
55. 4.187, 5.238  57. 223.76°  59. 246.78°  61. 10.8 cm

63. 3.23 rad  65. 14.2 m  67. 2100 cm2

69. A =
1
2

  ur2 - 1
2

 r (r sin u) =
1
2

  r2(u - sin u)

71. 1040 m2  73. 0.0562 W  75. 45.8°  77. 137 r>min

79. 3600 km>h  81. (a) 6670 km (b) 10 000 km; The distance 
over the north pole is shorter.

83. 47.1 m>s  85. 2.70 m2  87. 302 m>s  89. 138 m2

91. 3.58 * 105 km  

Exercises 9.1, page 261
1. 

S
RS

C

S
B S

A

    3. 

S
R

-
S
A

2
S
B

5. (a) Scalar, no direction given  
(b) Vector, magnitude and direction both given

7.  (a) A vector; it has magnitude and direction (b) Scalar; it has  
magnitude but not direction

9. 
S      
R

    11. 

S
R

13. 

S
R

15. 5.6 cm, 50° 
 

50°

4.3

x

y

3.6

5.6

17. 4.3 cm, 156° 
 

156°

6.0

4.3

1.8

y

x

    
19. 

SA + 
SB

 
S
A

 
S
B

21. 

S
C + 

S
D

 
S
D

 
S
C

23. 

SA + 
SC + 

SE

 
S
C

 
S
A

 
S
E

25. 
 
S
E

 
S
D

2
S
A + 

S
D + 

S
E

2
S
A

27. 
3

S
E 

S
B S

B  + 3
S
E

29. 

3
S
C + 

S
E 

 
S
E

3
S
C

31.  
S
A

S
A  - 

S
B 

-
S
B 

33. 
 
S
E

S
E  - 

S
B 

-
S
B 

35. 

3
S
B

 
S
A

1
2

3
S
B +  

S
A

1
2

37. 

S
B  + 2

S
C - 

S
E 

 
S
B

2
S
C

-
S
E 

 

39. S
C -

S
B

 
S
A3

4-

41. S
R

4200 N 45
00

 N

1600 N
70°

43. 

50 m/min

24 m
/m

in

44 m/min

29°



B.18 ANSWERS TO ODD-NUMBERED EXERCISES

45. 

S
R

45°
10 sin 45°

10 sin 45°

10

6

4

u

 47. 

Wind

Tension

Buoyancy-weight

R = 0

Exercises 9.2, page 271

1. Vx = -11.6, Vy = -8.46    3. Ax = 0, Ay = -375.4

5. 662, 352    7. -349, -664    9. -750, 0    

11. 3.22 N, 7.97 N    13. -62.9 m>s, 44.1 m>s

15. 0 mm>s2, -9040 mm>s2    17. -2.53 mN, -0.788 mN

19. -0.8088 dm, 0.3296 dm    21. 23.9 km>h, 7.43 km>h

23. 12 400 N, 760 N    25. 116 km>h    27. 0.237 m, 1.18 m

29. 89 N, -190 N    31. 290 N    

33. 0.57 (km>h)>m, 0.48 (km>h)>m

Exercises 9.3, page 276

1. R = 1650, u = 73.8°    3. R = 24.2, u = 52.6°  
5. R = 7.781, u = 66.63° (with AS)    7. R = 10.0, u = 58.8°
9. R = 2.74, u = 111.0°    11. R = 2130, u = 107.7°
13. R = 7052, u = 349.82°    15. R = 29.2, u = 10.8°
17. R = 5920, u = 88.4°    19. R = 27.27, u = 33.14°
21. R = 50.2, u = 50.3°    23. R = 0.242, u = 285.9°
25. R = 532, u = 95.7°    27. R = 235, u = 121.6°
29. R = 68 000 N, u = 345.1°     

31. 40 N    33. 24.3 kg # m>s

Exercises 9.4, page 280

1. 47.08 km, 10.27° N of E  

3. 39.6 N, 29.5° from 34.5-N force  5. 11 000 N, 44° above 
horizontal

7. 3070 m, 17.8° S of W    9. 229.4 m, 72.82° N of E

11. 3750 N, 56° from 2080-N force

13. 25.3 km>h, 29.6° S of E    15. 9.6 m>s2, 7.0° from vertical

17. 781 N, 9.3° above horizontal

19. 540 km>h, 6° from direction of plane

21. 29 180 km>h, 0.03° from direction of shuttle

23. 27.0 km at a bearing of 192.4°    25. 9.3 km>h    27. 910 N

29. 184 000 cm>min2, 89.6°    31. 138 km, 65.0° N of E

33. 79.0 m>s, 75.6° from vertical

35. 4.06 A>m, 11.6° with magnet

Exercises 9.5, page 286

1. b = 76.01, C = 40.77°, c = 50.01

3. b = 38.1, C = 66.0°, c = 46.1

5. b = 2620, C = 108.0°, c = 2800

7. B = 12.20°, C = 149.57°, c = 7.448

9.  A = 149.7°, a = 11 050, C = 9.574°
11. A = 3.40°, a = 0.0776, c = .005 66

13. A = 99.4°, b = 55.1, c = 24.4

15. A = 68.01°, a = 5520, c = 5376

17. A1 = 61.36°, c1 = 5.628, C1 = 70.51°;  
A2 = 118.64°, c2 = 1.366, C2 = 13.23°

19. A1 = 107.3°, a1 = 5280, C1 = 41.3°, 
A2 = 9.9°, a2 = 950, C2 = 138.7°

21. No solution    23. 25.3 cm    25. 9.4°    27. 6.0 m

29. 880 N    31. 1200 m    33. 13.94 cm    35. 27 300 km

37. 77.4° with bank downstream    

39. 62 m downhill at 62° with the hillside slope  41. 105 m

Exercises 9.6, page 291

1.  A = 14.0°, B = 21.0°, c = 107

3.  A = 50.3°, B = 75.7°, c = 6.31

5. A = 70.9°, B = 11.1°, c = 4750

7. A = 34.73°, B = 40.67°, C = 104.6°
9. A = 18.21°, B = 22.28°, C = 139.51°
11. A = 6.0°, B = 16.0°, c = 1150

13. A = 82.3°, b = 2160, C = 11.4°, 
15.  A = 36.24°, a = 97.22, B = 39.09°
17. A = 46.94°, B = 61.52°, C = 71.24°
19. A = 138°, B = 33.7°, C = 8.3°
21. b = 3700, C = 25°, c = 2400

23.  (Intermediate steps)  

cos A =
b2 + c2 - a2

2bc

 1 + cos A =
b2 + 2bc + c2 - a2

2bc

25. Case 3: no; Case 4: yes, if sum of lengths of two sides is smaller 
than third side.    27. 69.4 km    29. 47°    

31. 57.3°, 141.7°    33. 16.5 mm

35. 5.09 km>h, 91.6° with respect to the land    

37. 17.8 km    39. 2.05 km, 2.48 km

Review Exercises for Chapter 9, page 293

1. Ax = 57.4, Ay = 30.5    3. Ax = -0.7485, Ay = -0.5357

5. R = 602, u = 32.9° with B   7. R = 5960, u = 33.60° with A

9. R = 965, u = 8.58°    11. R = 26.12, u = 146.03°
13. R = 71.94, u = 336.5°    15. R = 0.994, u = 359.6°
17. b = 181, C = 64.0°, c = 175  

19. A = 21.2°, b = 34.8, c = 51.5

21. a = 17 340, b = 24 660, C = 7.99°
23. A = 39.89°, a = 5195, C = 30.02°
25.  A1 = 54.8°, a1 = 12.7, A2 = 12.0°, a2 = 3.24,  

B1 = 68.6°, B2 = 111.4°
27. A = 32.3°, b = 267, C = 17.7°    

29. A = 176.4°, B = 1.1°, c = 5.41

31. a = 1782, b = 1920, C = 16.00°
33. A = 37°, B = 25°, C = 118°
35. A = 20.6°, B = 35.4°, C = 124°



 ANSWERS TO ODD-NUMBERED EXERCISES B.19

23. 0, 0.84, 0.91, 0.14, -0.76,-0.96,-0.28, 0.66

 

63

1

0

y

x
-1

25. 12, 6.48, -4.99, -11.9, 27. 

2p

2

0 p

y

x
-2

 
    -7.84, 3.40, 11.5, 9.05

 

63

12

0
-12

y

x

29. y = -2cos x 31. 

2p

0.05

0 p

y

x

-0.05

 

2pp

2

0
-2

y

x

33. y = 4 sin x    35. y = -1.5 cos x

37. y = -2.50 sin x    39. y = -2.50 cos x

Exercises 10.2, page 302

1. y = 3 sin 6x 

p
6

3

-3

p

y

x

3. 
p

3
    5. 

p

4
    7. 

p

6
    9. 

p

8
    11. 1    13. 

1
2

15. 6p    17. 3p    19. 3    21. 
2
p

23. 

p
6

p
3

2

0

-2

y

x

 25. 

p
8

p
4

3

0
-3

y

x

27. 

p
12

p
6

2

0
-2

y

x

 29. 

p
16

p
8

1

0
-1

y

x

31. 

1
2

520

0 1-520

y

x

 33. 

1
2

1
4

3

0

-3

y

x

35. 

6p3p

15

0
-15

y

x

 37. 

3p
2

3p0

1
2

1
2-

y

x

37.  Add the 3 forms of the law of cosines together; simplify; divide 
by 2abc.

39. 130 cm    41. At = 1
2 ab; b =

a  sin B
 sin A

; substitute

43. -155.7 N, 81.14 N    45. 630 m>s    47. 9.8 km

49. R = 2700 N, u = 107°    51. 6.1 m>s, 35° with horizontal

53. 0.11 N    55. 1.5 pm    57. 2.30 m, 2.49 m    

59. 0.039 km    61. 52 900 km    63. 2.65 km    65. 293 km

67. 1270 m or 1680 m (ambiguous)    

69. 810 N, 36° N of E

Exercises 10.1, page 299

1. y = 3 cos x  

2pp

3

0
-3

y

x

 

3.  0, -0.7,-1,-0.7, 0, 0.7, 1, 0.7, 0, -0.7,-1,-0.7, 0, 0.7, 1,  
0.7, 0 

 
1
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21. 40, 23, - 2
3p  23. 1, 2

p, 1
p 
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27. y = 4 sin12
3x + p

6 2  29. y = 12 cos 14px - p
2 2

31. 

0 2p
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p
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35. y = 2 sin12x + p
4 2   37.
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0 160p + 10

-7500
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41.  y = 5 sin1p8x + p
8 2 . As shown: amplitude = 5;

 period = 2p
b = 16, b = p

8 ; displacement = - c
b = -1, c = p

8

43.  y = -0.8 cos 2x. As shown: amplitude = $ -0.8 $ = 0.8; 

 period = 2p
b = p, b = 2; displacement = - c

b = 0, c = 0

Exercises 10.4, page 309

1. y = 5 cot 2x

 y
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43. y = sin 6x    45. y = sin 6px    
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p
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51. 2p

53. y = -2 sin 2x  55. y = 2 cos 
1
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57. 
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61. y = 1
2 cos 2x    63. y = -4 sin px

Exercises 10.3, page 306

1. y = -cos 12x - p
6 2   3. 1, 2p, p6
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21. 50
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80  25. y = -3 sec(x>2)
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2.83

A
p
2

Exercises 10.5, page 312

1. d = R cos vt 3.
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t
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19.  (a)  50
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 (b) L 7 0, above x-axis

3. Undef., -1.7,-1,-0.58, 0, 0.58, 1, 1.7, undef., -1.7,-1,-0.58, 0
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21. d = 1.98 sin (pt) 2
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Exercises 10.6, page 316
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Review Exercises for Chapter 10, page 317
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21. 
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41. y = 2 sin12x + p
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55. y = 3 sin x 57. y = 3 cos 3x
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Exercises 11.1, page 324

1. 
y2

4x2    3. 
3

416
    5. x3    7. 

2

a4    9. 
1

125
    11. 

4p2

x2

13. 
2n2

5a
    15. 1    17. -7    19. 

3

x2    21. 
a3

343x3

23. 
n9

8
    25. 

3

a3b6    27. 
1

a + b
    29. 

2x2 + 3y2

x2y2  

31. 
8

3an    33. 
b3

432a
, a ≠ 0    35. 

4

t4V4, t, V ≠ 0

37. 
2a6 + 16

a8     39. 
10
9

    41. 
R1R2

R1 + R2

43. 
4n2 - 4n + 1

n4     45. 
8
99

    47. 
x + y

xy
, x, y ≠ 0, x ≠ y

49. 
t2 + t + 2

t2     51. 
2D

D2 - 1
    53. No

55. (a) 45 (b) 210
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61. 2a2 + b2    63. 3x - 1    65. 26 a3; 26 b2; 26 c

67. 
Uxy2 = U2+

Ux + 2y1 = 

y

x
-2

-2-4 2 4

2

-4

    69. 12ag

71. 
8Af2f 2 + f 0

2

p21 f 2 + f 0
22

Exercises 11.4, page 334

1. 1615    3. 713    5. 15 - 17    7. 315

9. -4t13    11. -212a    13. 1917    15. -2012

17. 1R12313 - 6122     19. 
7
3
115    21. -912

23. 1323 3    25. 24 2    27. 15a - 2b221ab

29. 13 - 2a2110    31. 12b - a223 3a2b

33. 
1a2 - c321ac

a2c3     35. 
1a - 2b223 ab2

ab

37. 
-2V2T2 - V2

T2 - V2     39. 1513 - 1115 = 1.384 014 4

41. 
1
6
16 = 0.408 248 3    43. 7

223 2 = 4.409 723 7

45. 313    47. Positive, 11000 = 10110, 111 7 110

49. 612 + 216 units    51. 5400 + 90012 = 6670 mm

Exercises 11.5, page 338

1. 3110 - 16    3. 13 - 12    5. 130    7. 213

9. 2    11. 50    13. 215    15. 16 - 115    17. -1

19. 498 + 27110    21. 66 + 13111x - 5x

23. a1b + c1ac    25. 
2 - 16

2
    27. 2a - 3b + 212ab

29. 26 72    31. 
1
4

 117 - 132
33. 

1
11

 117 + 312 - 6 - 1142     35. 
1
17

 1 -56 + 91152
37. 

21x + 15x2
x - 5

    39. 1    41. -
1R + 22 1R - 12

R

43. -
2x2 - y2 + 2x2 + xy

y
    45. a - 1 + 1a1a - 22

47. -1 - 166 = -9.124 038 4

49. - 16 + 5130
26

= -1.668 697 2    51. 
2x + 11x

53. 
x15x + 2212x + 1

    55. 
17

15110 - 1215
    57. 

11x + h + 1x
59. 11 - 1222 - 211 - 122 - 1

 = 1 - 212 + 2 - 2 + 212 - 1 = 0

61. a = c    63. 
23 x - 1
x - 1

57. (a) aa
b
b-n

=
1aa
b
bn =

1
an

bn

=
bn

an = ab
a
bn

 (b) 303.551 82 = 303.551 82

59. n = 3    61. 7    63. N # m    65. J>s3    67. 1

69. 
p3 11 + i2n - 14

i11 + i2n

Exercises 11.2, page 328
1. 16    3. y

x
-2

-2-4 2 4

2

4

-4

    5. 5    7. 3

9. 1025    11. 
1
2

    13. 
1
16

    15. 25    17. 81    19. -200

21. 
3
5

    23. -2    25. 
39

1000
    27. 

3
5

    29. 2.059

31. 0.538 91    33. B7>6    35. 
1

-y9>10
    37. 

1

x3>2    39. 2ab2

41. 
1

8a3b9>4    43. a1>12    45. 
4x14x2 + 121>2    47. -y, y ≠ 1

49. 
T1T + 221>2   51. 

a2 + 1

a4    53. 
a + 1

a1>2    55. 
x15x - 2212x - 121>2

57. 

x

f(x)

4

6

    59. f (t)

t
-2

-2-4 2 4

2

-4

     61. 23 x2

63.  If 1A>S2-1>4 = 0.5 = 1>2, then 1A>S21>4 = 2. Raise each to 
the fourth power and get A>S = 16.

65. R =
T2>3
k1>3 - d    67. 1.91 mA

Exercises 11.3, page 332

1. ab21a    3. 
24 54

3
    5. 216    7. 613    9. xy21y

11. xy2z1z    13. 3R2V212RT     15. 223 2    17. 225 3

19. 223 a2    21. 2st24 4r3t    23. 2    25. P23 V

27. 
1
2
16    29. 

1
2
23 6    31. 

1
3
25 27    33. 215    35. 2

37. 200    39. 2000    41. 12a    43. 
1
2
12    45. 23 2

47. 28 n    49. 
2u17uv

v3     51. 4113    53. 
16x

3c2

55. 
3
4
12   57. 

2xy1x2 + y22
xy

   59. 
21C - 22 1C + 221C + 22



 ANSWERS TO ODD-NUMBERED EXERCISES B.25

49. x = 2, y = -2  51. x = 10, y = -6

53. x = -2, y = 3  55. (a) No change (b) Sign changes

57. Yes  59. 0  61. Yes; imag. part is zero.

63. Each is x.

Exercises 12.2, page 347

1. 1 - 5j  3. 
1
25

 129 + 22j2   5. 5 - 8j  7. -25 + 10j

9. -0.23 + 0.86j  11. -36 + 21j  13. 7 + 49j

15. 22 + 3j  17. -18j12  19. -  28j  21. 317 + 3j

23. -40 - 42j  25. -2 - 2j  27. 
1
29

 1 -30 + 12j2
29. - 1

3
11 + j2   31. 

1
11

 1 -13 + 8j122   33. 
-1 + 3j

5

35. 
-45
13

+
48j

13
  37. -8j  39. 80j  41. - 7

8
+ 4j

43. 1-1 - j22 + 21-1 - j2 + 2 = 1 + 2j - 1 - 2 - 2j + 2 = 0

45. 10  47. 
3
10

+ 1
10

  j  49. -1 + j  51. -4

53. 
1
10

 111 + 27j2   55. 281 + 35.2j volts

57. 0.016 + 0.037j amperes  59. (a) Real (b) Pure imaginary

61. Product is the sum of squares of two real numbers
 1a + bj2 1a - bj2 = a2 + b2

Exercises 12.3, page 349
1. 3 - j 3. 

65. c 1
2
12b2 - 4k2 - b2 d 2

+ b c 1
2
12b2 - 4k2 - b2 d + k2

 =
1
4
1b2 - 4k22 - b

2
2b2 - 4k2 + 1

4
 b2

 + b
2
2b2 - 4k2 - 1

2
b2 + k2 = 0

67. 
2500 - 501V

2500 - V
    69. 2Q212 + 1    71. 

2C1L - R2C2
LC

Review Exercises for Chapter 11, page 339

1. 
2

a2    3. 
9d 3

c
    5. 375    7. 

1
8000

    9. 
t4

9
    11. -28

13. 64a2b5    15. -8m9n6    17. 
21C - 2L22

CL2

19. 
2y

x + 2y
, x ≠ 0    21. 

b
ab - 3

    23. 
1x3y3 - 121>3

y

25. 
1

W + H
    27. 

-21x + 121x - 123     29. 2117    31. b2c1ab

33. 3ab21a    35. 
2t121st

u
    37. 

512s
2s

    39. 
1
9
133

41. mn22m24 8n    43. 12    45. 0    47. -717

49. 3ax12x    51. 12a + b223 a    53. 2516 - 172
55. 4113 - 152     57. 6 - 51B - 7117B

59. 42 - 717a - 3a    61. 
6x + 13xy

12x - y
    63. - 8 + 16

29

65. 
13 - 2135

29
    67. 

6x - 13a1x + 5a2

9x - 25a2     69. 24b2 + 1

71. x19 - 4x2     73. 1 + 61>2    75. 
15 - 2115

4

77. 
3 + n + 2n1n + 32

3
    79. 51 - 71105

81. 212 - 1112 + 12 = 2112 - 12 112 + 122

 = 2112 - 12 13 + 2122 = 212 + 1 = 1.553 774 0

83. 1212 units    85. 
33
4

- 213    87. 2.528%

89. (a) v = k1P>w21>3 (b) v =
k23 Pw2

w
    91. 

10011 + 21x2
x

93. 
c1c2 - v221>2    95. 

11A + h + 1A
    97. 612 cm

99. 
1LC1C21C1 + C22

2pLC1C2

Exercises 12.1, page 344

1. - 26  3. -1  5. 9j  7. -2j  9. 0.6j  11. 8j12

13. 
1
2

 j17  15. -2ej  17. (a) -7 (b) 7  19. (a) 4 (b) -4

21. - 3
5

  23. 10j  25. (a) 1 (b) -1  27. 0  29. -2j

31. - j  33. 2 + 3j  35. -7j  37. 2 + 2j

39. -2 + 3j  41. 312 - 2j12  43. -1

45. (a) 6 + 7j (b) 8 - j   47. (a) -2j (b) -4

   

-2 + j

3 - j

-5 - 2j

Real

Imag.

   

2 + 6j

Real

Imag.

5.   7. -3j

   

Real

-4 - 3j

Imag.

   

Real

-3j

Imag.

9. 5 + 4j 11. 8 + j

   
Real

Imag.

2 + 3 + 4j = 5 + 4j
3 + 4j

2
    

Imag.

Real

3 + 2j

8 + j

5 - j
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13. -1 + 9j 15. -3j

    

Imag.

Real

-1 + 4j

-1 + 9j

5j

1 - 4j     

Imag.

Real

- 3j

-2 + j

2 - 4j

17. -1 + 4j 19. -180 + 150j

    

Imag.

Real

3 - 2j

-(4 - 6j)

-1 + 4j

    Imag.

Real

-180 + 150j

-260 - 150j

80 + 300j

21. 4.5 + 2.0j 23. 4 + 2j

    

Imag.

Real

4.5 + 2.0j

3.0 + 2.5j

1.5 - 0.5j

    

Imag.

Real

1 + 8j

4 + 2j

3 - 6j

25. -2j 27. -13 + j

    Imag.

Real
(2j + 1) - 3j-(j + 1)

(2j + 1)

-2j
-3j

    

Imag.

Real

-13 + j -6 + jj - 7

-7 + j - j
-j

29. Imag.

Neg.
Real

Conj.

3 + 2j

-(3 + 2j)
3 - 2j

 31. Imag.

Neg.Conj.
Real

-(-3 - 5j)

-3 - 5j

-3 + 5j

33. Imag.

Real

9 - 3j
3 - j

-9 + 3j

35. A complex number is on the opposite side of the real axis 
from its conjugate.

    
Imag.

Real

2 + 4j

2 - 4j

37. Subtracting the conjugate from the complex number 
results in an imaginary number.

    
Imag.

Real

2 + 4j-(2 - 4j)

8j

2 - 4j

-2

-4

39. 90 - 15j N

    
Imag.

Real

40 + 10j

90 - 15j

50 - 25j

-5 50 100

10

5

-25

-15

Exercises 12.4, page 344

1. 51cos 126.9° + j sin 126.9°2   3. 101cos 36.9° + j sin 36.9°2
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23. -1.85 - 2.36j 25. 0.08

         
27. -120j 29. -4.71 + 0.595j

         
31. -0.6052 - 0.7096j 33. 7.32j

         
35. -6.961 + 86.14j 37. 180°

    
39. conj. of r1cos u + j sin u2  = r 1cos u - j sin u2

  = r 1cos1 -u2 + j sin 1 -u)2
41. 3.03l339.5° kV  43. 2.51 + 12.1j V>m

Exercises 12.5, page 354

1. 8.50e3.95j

3. 2.001cos 217.7° + j sin 217.7°2 = -1.58 - 1.22j

5. 3.00e1.05j  7. 0.450e4.93j  9. 375.5e4.617j

11. 0.515e3.461j  13. 4.06e-1.07j = 4.06e5.21j 

15. 9245e5.172j  17. 5.00e5.36j  19. 36.1e2.55j

21. 6.37e0.386j  23. 825.7e3.836j

25. 3.00l28.6°; 2.63 + 1.44j  27. 464l106.0°, -128 + 446j

29. 3.20l50.0° = 2.06 + 2.45j

31. 0.1724l137.0°; -0.1261 + 0.1176j

33. -18.2 + 9.95j; 20.7l151.3°
35. -0.912 - 27.5j; 27.5l268°  37. 6.43e0.952j

39. 391e0.285j ohms; 391Ω  41. 3.17 * 10-4e0.478j 1>Ω

5. 501cos 306.9° + j sin 306.9°2

   
7. 3.611cos 123.7° + j sin 123.7°2

   
9. 0.601cos 204° + j sin 204°2   11. 21cos 60° + j sin 60°2
   

  

13. 8.0621cos 295.84° + j sin 295.84°2

   
15. 31cos 180° + j sin 180°2   17. 91cos 90° + j sin 90°2

     

19. 2.94 + 4.05j 21. -140 + 80j
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21. 3 + 11j 23. 4 + 8jExercises 12.6, page 360

1. 5.091cos 101.3° + j sin 101.3°2
3. 6131cos 281.5° + j sin 281.5°2   5. 81cos 80° + j sin 80°2
7. 31cos 250° + j sin 250°2   9. 21cos 35° + j sin 35°2
11. 2.4l170°  13. 0.0081cos 105° + j sin 105°2
15. 2561cos 0° + j sin 0°2   17. 0.8l273°  19. 5l87°
21. 1.73l79.8°  23. 11 750l115.91°
25. 65.01cos 345.7° + j sin 345.7°2 = 63 - 16j

27. 61.41cos 343.9° + j sin 343.9°2 ; 59 - 17j

29. 2.211cos 71.6° + j sin 71.6°2 ; 
7
10

+ 21
10

  j

31. 3.851cos 120.5° + j sin 120.5°2 = -1.95 + 3.31j

33. 6251cos 212.5° + j sin 212.5°2 = -527 - 336j

35. 609.71cos 281.5° + j sin 281.5°2 ; 122 - 597j

37. 21cos 30° + j sin 30°2 ; 21cos 210° + j sin 210°2
39. -0.364 + 1.67j, -1.26 - 1.15j, 1.63 - 0.520j

41. 1.10 + 0.455j, -1.10 - 0.455j  43. 1, -1, j, - j

45. 3j, - 3
2
113 + j2 , 

3
2
113 - j2

47. 1.62 + 1.18j, -0.618 + 1.90j, -2, -0.618 - 1.90j, 1.62 - 1.18j

49. -5, 
5
2

+ j 
513

2
, 

5
2

- j 
513

2

51. c 1
2
11 - j132 d 3

=
1
8

 [1 - 31 j132 + 31 j1322

 - 1 j1323] =
1
8

 [1 - 3j13 - 9 + 3j13]

 =
1
8

 1 -82 = -1

53. -1, 
1
2

+ j 
13
2

, 
1
2

- j 
13
2

  55. p = 0.479l40.5° watts

57. 43.3l165°, 43.3 V

Exercises 12.7, page 365

1. VR = 24.0 V, VL = 32.0 V, VRL = 40.0 V, u = 53.1°  
(voltage leads current)  3. 12.9 V  

5. (a) 2850 Ω (b) 37.9° (c) 16.4 V  7. (a) 14.6 Ω (b) -90.0°
9. (a) 47.8 Ω (b) 19.8°
11. 38.0 V  13. 54.4 Ω, -62.3°  15. 0.682 H

17. 208  kHz  19. 1.30 * 10-11 F = 13 pF  21. 1.02 mW

23. 21.4 - 33.9j Ω

Review Exercises for Chapter 12, page 367

1. 10 - j  3. 6 + 2j  5. 9 + 2j  7. -12 + 66j

9. 
1
85

 121 + 18j2   11. -2 - 3j  13. 
1
10

 1 -12 + 9j2
15. 

1
5

 113 + 11j2   17. x = -3, y = -2

19. x =
10
13

,   y =
11
13

(-1 + 5j) + (4 + 6j) =
3 + 11j

-1 + 5j

Real

4 + 6j

Imag.

25. 221cos 315° + j sin 315°2 = 22 e5.50j

27. 80.11cos 254.1° + j sin 254.1°2 = 80.1e4.43j

29. 4.671cos 76.8° + j sin 76.8°2 ; 4.67e1.34j

31. 5000l0°, 5000e0j  33. - 22 - j22

35. -2.789 + 4.163j  37. 0.19 - 0.59j  39. 26.31 - 6.427j

41. 1.94 + 0.495j  43. -728.1 + 1017j

45. 151cos 84° + j sin 84°2   47. 20l263°
49. 81cos 59° + j sin 59°2   51. 14.29l133.61°
53. 1.26l59.7°  55. 9682l249.5°
57. 10241cos 160° + j sin 160°2   59. 343l331.5°
61. 321cos 270° + j sin 270°2 = -32j  

63. 
625
2

1cos 270° + j sin 270°2 = - 625
2

j

65. 1 + j13, -2, 1 - j13

67.  0.383 + 0.924j, -0.924 + 0.383j, -0.383 - 0.924j,
0.924 - 0.383j  69. 40 + 9j, 411cos 12.7° + j sin 12.7°2

71. -15.0 - 10.9j, 18.51cos 216.0° + j sin 216.0°2
73. 15 - 16j  75. - j, -2j  77. x2 - 4x + 5 = 0

79. 1 - j, Yes; -1 - j, No  81. 
1
2

  83. 2 + 9
2

j

85. 60 V  87. -21.6°  89. 22.9 Hz

91. 55001cos 53° + j sin 53°2  N  93. 
m - jvn

m2 + v2n2

95. e jp =  cos p + j sin p = -1

Exercises 13.1, page 372

1. - 1
4

    3. (a) Yes (b) Yes

5. (a) No (base cannot be negative) (b) Yes    7. 3

9. 
1
81

    11. 
1
27

13. y

x

64

8

-3 3

 15. y

x

20

-2 2

4 + 8j

-(5 - 6j)

9 + 2j

Imag.

Real
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49. y

x

0.4

-0.4

10 20

 51. 

-1 3

3

-3

53. 

-3 1

2

-1

  55. (a) -3 
     (b)  No value (x cannot be 

negative)

  57.  (a) 
1
2

 

(b) Not defined

59. 

-3 5

y1 = log(x + 2)
y2 = log(x)
y3 = log(x - 2)

3

-3

 61. 0.0102, 2.376

63. b2 = b1100.41m1 -m22         65. N = N0e-kt

67. V1 = V2e-W>k
69. 

N

t

8

11

     71. They are the same. 
      

-2 2

3

-1

73. 

-4 5

4

-2

 75. 

-4 5

4

-2

Exercises 13.3, page 381

1. log4 3 + log4 7    3. log4 a5
x
b     5. 3    7. 

1
2

9. log5 3 + log5 11    11. log7 5 - log7 3    13. 3 log2 a

15. log6 a + log6 b + log6 c    17. 2 log5 y

19. 
1
2

 log2 x - 2 log2 a    21. logb ac    23. log5 3

25. logb x3>2    27. loge 4p
3    29. -5    31. 2.5    33. 3

35. 
3
4

    37. 2 + log3 2    39. -1 - log2 3

41. 
1
2
11 + log3 22     43. 3 + log10 3    45. y = 2x

47. y =
3x
5

    49. y =
49

x3     51. y = 212ax21>5    53. y =
2
x

55. y = ax2

9
b1/log53

    57. log10 x + log10 3 = log10 3x

17. y

x

16

1 2 3

 19. 

-2 3

5

-1

21. 

-2 2

2

-1

  23. 

-1 3

10

-1

25. 4    27. f1c + d2 = bc+d = bcbd = f1c2 # f1d2
29. 

-2 2

5

-1

 31. -0.767, 2, 4

33. $303.88  35. 0.00125 mA  37. 100

0
t(s)

q (mC)

0 0.5

Exercises 13.2, page 376

1. 324>5 = 16 in logarithmic form is 
4
5

= log32 16.

3.  If x = 16, y = log4 16 means y = 2, since 42 = 16. If x =
1
16

, 

y = log4a 1
16

b  means y = -2, since 4-2 =
1
16

.

5. log3 27 = 3    7. log4 256 = 4    9. log7a 1
49

b = -2

11. log2a 1
64

b = -6    13. log8 2 =
1
3

15. log1>4a 1
16

b = 2    17. 81 = 34    19. 9 = 91

21. 5 = 251>2    23. 3 = 2430.2    25. 0.1 = 10-1

27. 16 = 10.52-4    29. 2    31. -2    33. 343

35. 
9
4

    37. 15    39. 
1
64

    41. 0.2    43. -4

45. y

x

3

-3

27

 47. y

x

2

-2

4
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57. 

-1 5

100

-100

  x = 3.35    59. {3.66 m

Exercises 13.7, page 394

1. 

5-1
1

1000  3. 

101
1

1000

5. 

50
1

1000  7. 

100
1

103

9. 

80
1

1000  11. 

100
1

100

13. 

1031
1

102  15. 

10310
10-2

10

17. 

10210-110-2

10  19. Semilog paper 
     

5-1
0.001

10

21. Log-log paper  23. Semilog paper 

101
1

104     

100
1

1000

59. y = loge1e2x2 = 2 loge e + loge x = 2 + loge x    61. 8 
 

3-1

4

-2

    

63. y1 = y2  

-1 3

1

-3

    65. D = aecr2 -br

    67. T = 90.0e-0.23t

Exercises 13.4, page 384

1. -0.4372    3. 2.754    5. 6.966    7. -0.2787    9. 1.219

11. 27 400    13. 0.049 60    15. 2000.4    17. 0.005 788 2

19. 85.5    21. 7.37 * 10101    23. 1.1461 - 0.3010 = 0.8451

25. 1.9085 = 1.9085    27. 8.954    29. -13.886

31. -30.040    33. 2.65 * 107 m>s    35. 3.2 * 10-19 J

37. 2   39. 15.2 dB    41. 7.9    43. 2400 = 2.58 * 10120

Exercises 13.5, page 387

1. 5.298    3. 3.258    5. 0.4460    7. -4.916 23

9. 1.92    11. 4.806    13. 1.795    15. 3.940    17. 0.3322

19. -0.008 335    21. -17.390 66    23. 1.6549   

25. -0.164 13    27. 8.94    29. 1.0085    31. 0.4757

33. 6.20 * 10-11

35. 

-1 5

2

-2

    37. 

-5 5

3

-3

39. 1.6094 + 2.0794 = 3.6889    41. 4.3944 = 4.3944    43. 3    

45. 10    47. 2x + y    49. 2.45 * 109 Hz

51. 8.2,    53. 0.38 s    55. 21.7 s

Exercises 13.6, page 382

1. -0.535    3. 4    5. -0.7    7. 0.587    9. 1.43

11. 1.854    13. 0, 
 ln 0.6
 ln 2

= -0.7    15. 
1
4

    17. 1, 100

19. 3    21. -0.162    23. 250    25. 4    27. 2    

29. 1.42    31. -0.104    33. 0.203    35. 0.974

37. 10.9    39. {0.9624    41. 0.0025    43. 1 -1.21, 02
45. 28.0    47. Noon of previous day (36 h earlier)

49. 1.72 * 10-5 mol>L    51. 3.55 * 1022

53. c = 15e-0.20t    55. P = P010.9992 t
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19. 1 + 1
2

 log4 3    21. 2 - log3 x    23. 3 + 4 log10 x

25. y =
4
x

    27. y = e2>3x    29. y = 17x    31. y =
15
x

33. y = 8x3    35. y =
x

 ln 2

37. 

-2 3

10

-2

   39. 

-1 3

0.5

-0.5

41. 

-1 5

2

-1

   43. 

-5 5

1

-0.5

     

45. 2.182    47. -3.32    49. 1.8188    51. -2.7657

53. 0.805    55. 4.30    57. 2    59. -0.2

61. 

40
1

104     63. 

1031
1

10

65. 4    67. 12    69. 0.9542 - 0.7782 = 0.1761    71. 0

73. 1    75. 0.706    77. 1.28 * 10-5 or 3.925

79. V = 100011.0322t, t =
log1V>10002

2 log 1.03
    81. I = I0e-bh

83. 4.60 * 106 N # m

85. 

t

p

20201995
900

1050

1200

1350

    87. 

N

t

1000
0

4000

8000

12000

89. sin u =
lv2

3g
    91. R = 2C>B - 1    93. 910 times brighter

95. 1.17 min    97. 0.813 cm    99. 
ln 

p

p0

ln 
pT0

p0T

101. n = 20e-0.04t    103. 

0.90.1
1

103

25. Log-log paper  27. (a) 
81

10

 

1001
0.001

10

27. (b) 

100

102

10

10-1

1

 29. 

100
t

N

500
10

103

31. 

109
r

g

10610-3

10

33. 

1981 1986 1991 1996 2001 2006 2011
Year

10-2

10-1

1

10

102
N

35. 

f

B

102 104
0

40

20

  37. 

d

R

10-2 10
1

103

39. 

0.01 1 100
-50

0
G

vT

Review Exercises for Chapter 13, page 396

1. 10 000    3. 
1
5

    5. 6    7. 
5
3

    9. 6    11. 100

13. log3 2 + log3 x    15. 2 log3 t    17. 2 + log2 7



B.32 ANSWERS TO ODD-NUMBERED EXERCISES

Exercises 14.1, page 402

1. y = 3x2 + 6x  3. x = -1.2, y = 0.27; x = 0.76, y = 2.3

 

-4 2

10

-3

5. x = 1.79, y = 3.58; x = -1.79, y = -3.58

7. x = 0.00, y = -2.00; x = 2.67, y = -0.67

9. x = 1.50, y = 0.25  11. x = 2.79, y = 10.74

13. x = 1.10, y = 2.79; x = -1.10, y = 2.79;

    x = 2.41, y = -1.80; x = -2.41, y = -1.80

15. No real solutions

17. x = -2.83, y = -1.00; x = 2.83, y = 1.00;

    x = 2.83, y = -1.00; x = -2.83, y = 1.00

19. x = -0.81, y = 2.52; x = 2.56, y = 0.66

21. x = 0.00, y = 0.00; x = 0.88, y = 0.77

23. x = -1.15, y = 3.15; x = 1.84, y = 0.16

25. x = 16.34, y = 16.12

27. x = 3.64, y = 0.97   

29. x = -2.06, y = 4.23; x = 1.06, y = 1.12

31. 

x

y

x

y

x

y

x

y

x

y

33. 4.93 km N, 1.64 km E  35. 2.2 A, 0.9 A  37. No

Exercises 14.2, page 405

1. x = 2, y = 0; x =
10
3

, y = - 8
3

3. x = - 16, y = - 13; x = - 16, y = 13;
   x = 16, y = - 13; x = 16, y = 13
5. x = 0, y = 1; x = 1, y = 2

7. x = - 19
5

, y =
17
5

; x = 5, y = -1  9. x = 1, y = 0

11. x =
2
7
13 + 122 , y =

2
7
1 -1 + 2122 ;

    x =
2
7
13 - 122 , y =

2
7
1 -1 - 2122

13. w = 1, h = 1  15. x = - 3
2

, y = - 8
3

; x = 2, y = 2

17. x = -5, y = 25; x = 5, y = 25

19. x = 1, y = 2; x = -1, y = 2;  
x = 2j, y = -3; x = -2j, y = -3

21. D = 1, R = 0; D = -1, R = 0; D =
1
2
16, R =

1
2

;

    D = - 1
2
16, R =

1
2

23. x = 119, y = 16; x = 119, y = - 16;
    x = - 119, y = 16; x = - 119, y = - 16

25. x = -5, y = -2; x = -5, y = 2;  
x = 5, y = -2; x = 5, y = 2

27. x = -3, y = 2; x = -1, y = -2  29. x = a, y = b

31. x = 50 km, h = 25 km  33. 2.00 cm, 4.00 cm

35. 1.5 cm, 1.4 cm  37. 2.19 m, 0.21 m  39. 12, 10

41. 12.0 cm, 18.0 cm  43. 130 km>h

Exercises 14.3, page 410

1. { 1
2

 j12, {2  3. -3, -2, 2, 3  5. - 1
2

, 
1
4

7. - 1
2

, 
1
2

, 
1
6

 j16, - 1
6

 j16  9. 1, 
25
4

  11. 
64
729

, 1

13. -27, 125  15. 81  17. 26  19. -2, -1, 3, 4

21. 18  23. 1, -1, j12, - j12  25. 0  27. {2, {4

29. 1, 4  31. 10, 100  33. -2, -1, 1, 2

35. R1 = 2.62 Ω, R2 = 1.62 Ω  37. 0.610

39. 40.4 cm, 55.4 cm

Exercises 14.4, page 413

1. 
13
12

  3. 10  5. 12  7. 2  9. 
2
3

  11. -1

13. 32  15. 4, 9  17. {5

19. 12 (Extraneous root introduced in squaring both sides of 1x + 4 = x - 8.)

21. 16  23. 
1
2

  25. 7, -1  27. 0  29. 5  31. 25

33. 258  35. 4  37. 4  39. 16

41. x = 2; For x = 5, squaring 3 - x is squaring a negative  
number. A different extraneous root is introduced.

43. -r { 2r2 + R2  

45. r2
1 = 1kC + A - 2R2

1 - R2
222 + r2

2

47. 9.6 m2  49. 9.2 km  51. 1.4 km

Review Exercises for Chapter 14, page 414

1. x = -0.93, y = 3.44; x = 0.81, y = 2.60

3. x = 2.00, y = 0.00; x = 1.60, y = 0.60

5. x = -0.56, y = 1.32; x = 0.56, y = 1.32

7. x = -2, y = 7; x = 2, y = 7

9. x = 0.00, y = 0.00; x = 2.38, y = 0.91

11. x = 0, y = 0; x = 2, y = 16

13. L = 12, R = 1; L = - 12, R = 1

15. u =
1
12

11 + 1972 , v =
1
18

15 - 1972 ;

    u =
1
12

11 - 1972 , v =
1
18

15 + 1972
17. x = 7, y = 5; x = 7, y = -5; x = -7, y = 5;
    x = -7, y = -5
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15. -3, -  
2
3

, -  
1
2

, 
1
2

  17. 2, 2, -1, -1, -3

19. 2, 2, 2, 
1
2

 j, -  
1
2

 j  21. -1.86, 0.68, 3.18

23. -3.01, -1.49, -0.33, 0.33  25. 0.59  27. -0.77

29.  x = -2, y = -28; x = 223, y = 20 - 1223;  

x = 223, y = 20 + 1223  31. - 3
4

, 25, - 25

33. 1.73 s, 4.51 s  35. 0, L  37. 0.87 s, 4.13 s

39. 1.23 cm or 2.14 cm  41. 3.0 mm, 4.0 mm; 5.0 mm, 6.0 mm

43. 2800 Ω, 4200 Ω, 8400 Ω
45. Two positive, one negative; zero positive, one negative, two 

complex

Review Exercises for Chapter 15, page 433

1. 1  3. -107  5. Yes  7. No

9. x2 + 4x + 10, R = 11  11. 2x2 - 7x + 10, R = -17

13. x3 - 3x2 - 2x + 10, R = -4

15. 2m4 + 10m3 + 4m2 + 21m + 105, R = 516  17. No

19. Yes  21. (unlisted roots) -2, 1  23. (unlisted roots) 3, 4

25. (unlisted roots) -1 + j22, -1 - j22

27. (unlisted roots) - j, 
1
2

, -  
3
2

  29. (unlisted roots) 2, -2

31. (unlisted roots) -2 - j, 
1
2

 1 -1 { j232   33. 1, 2, -4

35. -  
1
2

, 1, 1  37. -1, -  
1
2

, 
5
3

  

39. 
1
2

, 
3
2

, -1 + 22, -1 - 22  41. 1, 3, 5  43. 2 or 4  

45.  Use k as second coefficient in synthetic division, equate  
remainder to 0; k = 4.

47. x3 - 5x2 + x - 5  49. x = -1, y = -2; x = 2, y = 1

51. 1.91  53. 11.22, 1.44  55. 0.75 cm  57. 2 cm

59. 5.1 m, 8.3 m  61. h = 2.25 m, w = 1.20 m

19. x = -2, y = 2; x =
2
3

, y =
10
9

21. -4, -2, 2, 4  23. 1, 16  25. 
1
3

, - 1
7

  27. 1, 1.65

29. 13, - 13, 
1
2

 j13, - 1
2

 j13  31. 6  33. 8  35. 
9
16

37. 
1
3
111 - 41152   39. 2  41. 4  43. 5  45. -1, 2

47. x = a + 1, y = a  49. 25

51. x = -2, y = -3; x = 3, y = 2

53. l =
1
2
1 -1 + 21 + 16p2L2>h22

55. m =
1
2
1 -y { 22s2 - y22   57. 0.40 s, 0.80 s  59. 70 m

61. 20 dm, 26 dm, 26 dm,  or  27.6 dm, 22.2 dm, 22.2 dm

63. 3.0 mm, 1.0 mm  65. 34 mm, 52 mm

67. 0.353 cm, 6.29 cm  69. 27.0 km>h, 23.8 km>h

Exercises 15.1, page 422

1. -25  3. Coefficients 1 0 0 -4 11, R = -26  5. 0

7. -40  9. -43  11. 51  13. -28  15. 14  

17. Yes  19. No  21. No  23. x2 + 3x + 2, R = 0

25. x2 + x - 4, R = 8

27. p5 + 2p4 + 4p3 + 2p2 + 2p + 4, R = 2

29. x6 + 2x5 + 4x4 + 8x3 + 16x2 + 32x + 64, R = 0

31. x3 + x2 + 2x + 1, R = 0  33. No  35. No  37. Yes

39. No  41. Yes  43. Yes  45. 2x2 - 5x + 1 - 8
x + 4

47.  14x3 + 8x2 - x - 22 , 12x - 12 = 2x2 + 5x + 2; no,  
because the coefficient of x in 2x - 1 is 2, not 1.

49. -7  51. x2 - 13 + j2x + 3j, R = 0

53. Yes: If r is a zero of ƒ1x2 , ƒ1r2 = 0 = -g1r2 , so r is a zero 

of -g1x2 .  55. (a) No (b) Yes  57. Yes

Exercises 15.2, page 426

(Note: Unknown roots listed)

1. 1, 1, 1, -1, -1  3. -3, 2, 3  5. -3, -3, 2j, -2j

7. -2, 3  9. -2, -2  11. - j, -  
2
3

  13. 2j, -2j

15. -1, 
1
2

  17. -2, 1  19. 1 - j, 
1
2

, -2  21. j, - j

23. - j, -1, 1  25. -2j, 3, -3

27.  Complex roots occur in conjugate pairs. Two real and one  
complex is not a possibility for a third-degree polynomial.

29. x3 - 2x2 + 2x

Exercises 15.3, page 432

1. No more than two positive roots and three negative roots

3. 1, -1, -2  5. 2, -1, -3

7. 1, 
1
6
1 -3 + j2152 , 

1
6
1 -3 - j2152   9. 

1
3

, -3, -1

11. -2, -2, 2 { 23  13. -2, 
2
5

, 1 + j23, 1 - j23

Exercises 16.1, page 438

1. J5
6

7
4

-1
1

9
12

R   3. a = 1, b = -3, c = 4, d = 7

5. x = -2, y = 5, z = -9, r = 48, s = 4, t = -1

7. C = 3, D = 2, E = -2

9. Elements cannot be equated; different number of rows.

11. J1
0

10
2
R   13. C -5

11
11

0
71
-5

S   15. J6 13 -13
6 -7 3

R
17. Cannot be added  19. J5 17 -20

8 -13 14
R

21. J -15 -14 5
-6 -4 27

R   23. J 4 -16 28
-8 24 -44

R
25. Elements cannot be combined.

27. J -3 12 -21
6 -18 33

R   29. J20 31 -25
14 -9 -13

R
31. Cannot be subtracted  33. J -43 -50 29

-22 0 59
R
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23. C 5
2

-1
7
4

-2
1

-3
2

-2
1

-1
S   25. J0.3 

0.05
-0.4
    0.1

R
27. C 2

-1
1

4
-2

1

3.5
-1.5

0.5
S   29. C 2.5

-1
1.75

-2
1

-1.5

-2
1

-1
S

31. D1
1
2
1

2
3
4
1

3
3
3
1

1
2
3
1

T   

33. D 2.537
-0.213
-1.006

0.113

-0.950
0.687
0.870

-0.123

0.159
0.290
0.496

-0.033

0.470
-0.272
-0.532

0.385

T
35. 2 1

1
1
1
2 = 0 means the inverse does not exist.

37. 
1

ad - bc
Jad - bc

cd - dc
-ba + ab
-bc + ad

R = J1
0

0
1
R

39.  C 1
2
1
2
1
2

1
2

-3
2

-5
2

1
2

-5
2

-7
2

S  which is symmetric  41. C 0.8
0.0

-0.6

0.0
1.0
0.0

0.6
0.0
0.8

S
Exercises 16.4, page 453

1. x = 2, y = -3  3. x =
1
2

, y = 3  5. x = 1, y = 3

7. x = 2, y = -2  9. x = -1, y = 0, z = 3   

11. x = - 3
2

, y = -2  13. x = 1.6, y = -2.5

15. x = 2, y = -4, z = 1  17. x = 2, y = - 1
2

, z = 3

19. x = 1, y = -2, z = -3  21. u = 2, v = -5, w = 4

23. x = 2, y = 3, z = -2, t = 1

25. v = 2, w = -1, x =
1
2

, y =
3
2

, z = -3  

27. x = {2, y = -2

29. x = 1, y = -2; The three lines meet in the point 11, -22 .

31. 1180 N, 1860 N  33. 10 V, 8 V  35. 40 mL, 8 mL    

37. 6.4 L, 1.6 L, 2.0 L

39. x = 2.5 ha, y = 3.2 ha, z = 1.5 ha, t = 4 ha

Exercises 16.5, page 457

1. x =
11
7

, y =
6
7

  3. x = 2, y = 1  5. x =
17
14

, y =
19
14

7. Inconsistent  9. x = -2, y = - 2
3

, z =
1
3

11. w = 1, x = 0, y = -2, z = 3

13. Unlimited: x = -3, y = -1, z = 1; x = 12, y = 0, z = -10

15. Inconsistent  17. x = 4, y =
2
3

, z = -2

19. x =
1
2

, y = - 3
2

  21. x =
1
6

, y = - 1
2

  23. Inconsistent

35. A + B = B + A = C 3
5

10

1
-3
10

0
-2

8

7
5
0
S

37. - 1A - B2 = B - A = C 5
5

-8

-3
3

12

-6
0
8

-7
-3

4
S

39. vw = 30.9 km>h, vp = 249 km>h  

41. C288 225 0 0
186 132 72 0

0 105 204 234
S

43. B = J15
10

25
10

10
10

25
45

R , J = J15
0

30
100

3
2

3
2
R

Exercises 16.2, page 443

1. C 5
-9

1

6
0

12

7
-3
11

-10
12
-8

S   3. [-8 -12]  5. J 305
-325

R
7. C -1

2

-121
8
1
10

111
4

-101
2

22
S   9. D33

31
15
50

-22
-12

13
-41

T   11. J -15
8

15
5

-26
-13

R
13. J -49.43

-53.02
55.20
79.16

R  

15. AB = [40], BA = C -1
5
7

3
-15
-21

-8
40
56

S
17. AB = J 45

327
R , BA not defined  19. AI = I A = A

21. AI = I A = A  23. B = A-1  25. B = A-1  27. Yes

29. No  31. A2 = A  33. B3 = B   

35. Jac + bd ad + bc
bc + ad bd + ac

R    

37. J -1
0

0
-1

R J -1
0

0
-1

R = J1
0

0
1
R

39. A2 - I = 1A + I2 1A - I2 = J15
21

28
36

R
41. J0

j
- j
0
R J0

j
- j
0
R = J1

0
0
1
R

43. V2 = V1, i2 = -V1>R + i1  45. Ellipse

Exercises 16.3, page 448

1. J -5
2

-2

3
2

1
R   3. J -2

-1
-5

2

-1
R   5. J -1

3
2
15

1
6
1
30
R

7. c 3
4

-1
4

1
2

0
d   9. J - 8

283
13

1415

- 9
566
5

283

R   11. J -3
2

2
-1

R
13. J -1

2
1
2

-2
1
R   15. J2

9
1
9

-5
9
2
9
R   17. J 7

25
3
5

-1
5 -1

2
R

19. C -18
-3
-5

-7
-1
-2

5
1
1
S   21. C 2

-1
1

4
-2

1

7
2

-3
2
1
2

S
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53. J 1
15

0
16

R , J 1
63

0
64

R , J 1
255

0
256

R
55. B3 = C1

0
0

0
1
0

0
0
1
S   57. 77  59. 323  61. 77

63. 323  65. N-1 = -N = J 0
-1

1
0
R

67. J n
1 - n

1 + n
-n

R J n
1 - n

1 + n
-n

R
   = J n2 + 11 - n221n - n22 - 1n - n22 1n + n22 - 1n + n2211 - n22 + n2 R
69. 1A + B2 1A - B2 = J -6

4
2
2
R , A2 - B2 = J -10

8
-4

6
R

71. c 1
2

0

1
3
1
6
d =

1
2
c1
0

2
3
1
3
d   73. R1 = 4 Ω, R2 = 6 Ω

75. F = 303 N, T = 175 N  77. R1 = 4 Ω, R2 = 6 Ω
79. F = 303 N, T = 175 N  

81. 0.20 h after police pass intersection  83. 30 g, 50 g, 20 g

85. x = 0.58, y = 0.22, z = 0.20

87. 830 g, 880 g, 290 g  89. 1575 kJ, 581 kJ, 741 kJ

25. Inconsistent  27. r = 0, s = 0, t = 0, u = -1

29. x =
c1b2 - c2b1

a1b2 - a2b1
, y =

a1c2 - a2c1

a1b2 - a2b1

31. x = 57 * 106 calc>s, y = 68 * 106 calc>s

33. 250 parts>h, 220 parts>h, 180 parts>h

Exercises 16.6, page 461

1. 3 3 0 0
1 1 0
2 1 3

3 = 9, 3 0 0 3
0 1 1
3 1 2

3 = -9

3. -60  5. 0  7. -40  9. -40  11. 39  13. 57

15. -13  17. -72  19. 0  21. 39  23. 57  

25. -13  27. -72  29. 0

31. x = -1, y = 0, z = 2, t = 1

33. x = 1, y = 2, z = -1, t = 3

35. x = 2, y = -1, z = -1, t = 3

37. D = 1, E = 2, F = -1, G = -2  39. 0  41. 8

43. 
33
16

A, 
11
8

 A, - 5
8

 A, - 15
8

 A, - 15
16

 A  45. 0.618, 1.618

47. ppm SO2: 0.5, NO: 0.3, NO2: 0.2, CO: 5.0

Review Exercises for Chapter 16, page 463

1. a = 4, b = -1

3. x = 2, y = -3, z =
5
2

, a = -1, b = - 7
2

, c =
1
2

5. x = -1, y =
1
2

, a = - 1
2

, b = - 3
2

  7. D 1
8

-8
3

-3
-5
-2

-10

T
9. D -3

0
2

-1

3
-7
-2
-4

T   11. D 7
 -4
-1

1

-6
20
6

15

T   13. J0
0

0
0
R

15. C0.3
0.0
0.0

0.1
-0.1
-0.2

0.0
0.1
0.2

S   17. J -2
-1

5
2

1
R   19.  J 40

3

-20
3

5
3

35
3
R

21. C 11
-4

3

10
-4

3

3
-1

1
S   23. C 1

2

-3
-4

-1
2

2
3

-1
1
2
S   

25. x = -3, y = 1  27. x = 10, y = -15  

29. u = -1, v = -3, w = 0  31. x = 1, y =
1
2

, z = - 1
3

33. x = -3, y = 1  35. u = -1, v = -3, w = 0

37. x = 1, y =
1
2

, z = - 1
3

  39. Unlimited number of solutions

41. u = -1, v = -3, w = 0  43. x = 1, y =
1
2

, z = - 1
3

45. x = 3, y = 1, z = -1  47. x = 1, y = 2, z = -3, t = 1

49. x = - 1
3

, y = 3, z =
2
3

, t = -4

51. r =
11
10

, s =
-92

5
, t =

3
20

, u =
64
5

, v =
3
10

Exercises 17.1, page 471

1. x + 1 6 0  is true for all values of x  less than -1; x 6 -1, or 1 - ∞ , -12
3.  -2 7 -4 multiplied by -3, gives 6 6 1 2 ; divided by -2  gives 

1 6 2 .

5. 7 6 1 2     7. 2 0 6 4 5     9. -4 7 -9     11. 1 6 6 8 1

13. x 7 -2     15. x … 4 5     17. 1 6 x 6 7

19. x 6 -9  o r x Ú -4     21. x 6 1  o r 3 6 x … 5

23. -2 6 x 6 2  o r 3 … x 6 4

25. x  is greater than 0 and less than or equal to 2.

27. x  is less than -1 0 , or greater than or equal to 10 and less than 20.

29. 1 - ∞ , 32   31. 1 - ∞ , 14  or 13, ∞ 2
 

3
x        

1 3
x

33. 30, 52    35. 3 -3, 52
 

0 5
x        

-3 5
x

37. 1 - ∞ , -12  or 31, 42   39. 1 -3, -12  or 11, 34
 

-1 1 4
x    

-1-3 1 3
x

41. 1 - ∞ , -0.32  or 1 -0.3, ∞ 2  43. 13, 54  or 38, 102
 

-0.3
t     

3 5 8 10
x

45. Absolute inequality    47. No, a - b 6 0

49. $ x + y $ 6 $ x $ + $ y $
51.  From step (4) to step (5), both sides divided by log 0.5, which is 

negative. Sign in step (5) should be 7 .

53. 2000 … M … 1 000 000    55. 29 000 6 v 6 40 000 km>h



B.36 ANSWERS TO ODD-NUMBERED EXERCISES

Exercises 17.3, page 481

 1. x 6 1 or x 7 3,  3. -3 6 x 6 2 or x 7 4,
 1 - ∞ , 12  or 13, ∞ 2     1 -3, 22  or 14, ∞ 2
 1 3

x
    2-3 4

x

 5. -4 6 x 6 4, 1 -4, 42   7. 0 … x … 2, 30, 24
 4-4

x
    20

x

 9. -4 … x … 3
2

, c -4, 
3
2
d  11. x = -2

 -4
x

3
2     -2

x

13. All R, 1 - ∞ , ∞ 2
 

0
R

15. -2 6 x 6 0, x 7 1, 1 -2, 02  or 11, ∞ 2
 

0 1-2
x

17. -2 … s … -1, s Ú 1, 3 -2, -14  or 31, ∞ 2
 

-1 1-2
s

19. x … -2, x Ú 1
3

, 1 - ∞ , -24  or c 1
3

, ∞ b
 -2 1

3

x

21. -6 6 x … 3
2

, a-6, 
3
2
d

 
-6 3

2

x

23. -5 6 x 6 -1, x 7 7, 1 -5, -12  or 17, ∞ 2
 

-5 -1 7
x

25. x 6 -1, 1 - ∞ , -12
 -1

x

27. T 6 3, T Ú 8, 1 - ∞ , 32  or 38, ∞ 2
 3

T
8

29. -1 6 x 6 3
4

, x Ú 6, a-1, 
3
4
b  or 36, ∞ 2

 
3
4

-1
x

6

31. 2 6 x 6 4, 5 6 x 6 9, 12, 42  or 15, 92
 2 4

x
5 9

33. x … -2, x Ú 1, 1 - ∞ , -22  or 11, ∞ 2
35. -1 … x … 0, 3 -1, 04
37. x 7 1.52, 11.52, ∞ 2

 

57. 0 6 n … 2565 steps    59. E = 0 for 0 6 r 6 a    
 E = k>r2 for r Ú a

  

a
r

E
k
a2

Exercises 17.2, page 475

1. x … 3, 1 - ∞ , 34  3. 1 6 x 6 9
2

 , a1, 
9
2
b  5. x 7 -1, 1 -1, ∞ 2

      
1

x
9
2

  
-1

x

7. x 6 64, 1 - ∞ , 642  9. x … -2, 1 - ∞ , -24
 

64
x  -2

x

11. y 6 -2, 1 - ∞ , -22  13. x … 5
2

, a- ∞ , 
5
2
d

 -2
y

 
x

5
2

15. T 6 - 177
20

, a- ∞ , - 177
20

b   17. x 7 -1.80, 1 -1.80, ∞ 2
 

T
-177

20        
x

-1.80

19. L 7 - 7
9

, a- 7
9

, ∞ b  21. -1 6 x 6 1, 1 -1, 12
 

L
7- 9  

x
-1 1

23. 2 6 x … 5, 12, 54  25. -3 … x 6 -1, 3 -3, -12
 

x
2 5    

x
-3 -1

27. No values          29. x Ú 5, 35, ∞ 2
 

x
0           5

x

31. x Ú -5, 3 -5, ∞ ) 33. -6 6 k 6 6, 1 -6, 62
  -5

x
    -6 6

k

35. n 7 35 h, 135, ∞ 2  37. 50° 6 F 6 68°, 150, 682
  35

n
    50 68

F

39. 0.542 m 6  w 6 0.813 m, 10.542, 0.8132
  

0.542 0.813
w

41. 0.400 h 6 t 6 2.60 h, 10.400, 2.602
  0.4 2.6

t

43. 0 … x … 500, 200 … y … 700, [200, 700]

  
200 700

y

45. 2 min … stop times … 4 min, 32, 44   
2 4

x 
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11. -26 6 t 6 24, 1 -26, 242
 

-26 24
t

13. -6.4 … x … -2.1, 3 -6.4, -2.14
 

-6.4 -2.1
x

15. x 6 -18, x 7 66, 1 - ∞ , -182  or 166, ∞ 2
 

-18 66
x

17. 1 6 x 6 2, 11, 22  19. x … 1
10

, x Ú 7
10

, 1 - ∞ , 1
10 4  or 3 7

10 , ∞ 2
 1 2

x
  

x
7
10

1
10

21. -15 6 R 6 35
3

, a-15, 
35
3
b

 

R
35
3

-15

23. x … 8.4, x Ú 17.6, 1 - ∞ , 8.44  or 317.6, ∞ 2
 

x
17.68.4

25. x 6 -3, -2 6 x 6 1, x 7 2 1 - ∞ , -32  or 1 -2, 12  or 12, ∞ 2
27. -3 6 x 6 -2, 1 6 x 6 2, 1 -3, -22  or 11, 22
29. No solutions; 0 x 0  is never less than 0.

31. x 7 a - c
$ b $

    33. 4 km, 50 km

35.  $ p - 2 000 000 $ … 200 000; production is at least 1 800 000 
barrels, but not greater than 2 200 000 barrels.

37. $ d - 3.765 $ … 0.002    39. $ m - 1607.3 $ … 65.3

41. 8.87 s 6 t 6 29.9 s, 18.87 s, 29.9 s2
Exercises 17.5, page 487

1. y 6 3 - x 3. y

y = x - 1
x

1

1

 y

y = 3 - x

x
1

1

 

5. y

y = 2x + 5

x
1

1

 7. y

x
1

4

1 4
y = -   x - 33

2

9. y

x

1

1 2

y = x2

 11. 
y

x

1

-2

1 2

y = 2x2 - 4x

39. -1.39 6 x 6 -0.43, 1 -1.39, -0.432

 

-3

6

3

-4  

-3

6

3

-4

41. x 6 -1.69, x 7 2.00, 1 - ∞ , -1.692  or 12.00, ∞ 2

 

-3

5

3

-5  

-3

5

3

-5

43. x 6 -4.43, -3.11 6 x 6 -1.08, x 7 3.15,

  1 - ∞ , -4.432  or 1 -3.11, -1.082  or 13.15, ∞ 2

 

-5

2

5

-1  

-5

2

5

-1

 

-5

2

5

-1  

-5

2

5

-1

45. No; not true if 0 … x … 1    47. x2 - 3x - 4 6 0

49. x 6 3.11, 1 - ∞ , 3.112     51. a ≠ b

53. 0.5 A 6 i 6 1 A, 10.5 A, 1 A2     55. 4 … t … 16, 34, 164
57. C1 7 4

3
 mF, 14>3 mF, ∞ 2     59. h 7 2640 km, 12640, ∞ 2  km

61. 3.0 … w 6 5.0 mm, 33.0 mm, 5.0 mm2
63. 0 … t 6 0.92 h, 30, 0.92 h2
Exercises 17.4, page 484

1. -2 6 x 6 3, 1 -2, 32  3. 3 6 x 6 5, 13, 52
  

-2 3
x    

3 5
x

5. x 6 -2, x 7 2
5

, 1 - ∞ , 2,2  or a2
5

, ∞ b   7. 
1
6

… x … 3
2

, c 1
6

, 
3
2
d

  -2
x

2
5

            x
1
6

3
2

9. x 6 0, x 7 3
2

, 1 - ∞ , 02  or a3
2

, ∞ b
 

x
0 3

2
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41. 

-3 3

-5

5  43. y 6 2x + 5
2

45. Below 47. y

x
1

1

-6

y = 2x2 - 6

y = x  - 3

49. B

A

200

400

300

 51. P

i

53. 
100

60

y

x

Exercises 17.6, page 491

1. Max F = 18 at 10, 62  3. Max F = 58 at 110, 72  
   Min F = 0 at 10, 02

 5. Max P = 30 at 10, 62
 7. Max P = 30 at (6, 0)

 9. Min C = 24 at 13, 22
 11. Min F = 7 at 11, 22
      Max F =

47
3

 at a5
3

, 
14
3
b

13. Max P = 27 at 13, 02     15. Min C = 40 at 14, 42
17. $6000 at 6,, $3000 at 5,
19. 40 business models  21. 4 27 servings of A = 900

7  g of A
 60 graphing models 2 67 servings of B = 600

7  g of B 
 

x

y

6 10

10

5
x + 2y = 10

5x + 3y = 30

Q    ,      R30
7

20
7

    

x

y

80 160

120

80 (40, 60)
3x + 6y = 480

6x + 4y = 480

Review Exercises for Chapter 17, page 492

1. x 7 6, (6, ∞ ) 3. x 7 5
3

, a5
3

, ∞ b

x

y

4 6

(2, 4)
6

8

x + y = 6

2x + y = 8

6
x x

5
3

13. y

x

8

16

24

32

40

48

-8 1 4

y = 32x  - x4
 15. y

x

10

20

-5 1
y =

x2 + 1
10

17. y

x

1

2

-p p
2 y = 1 + sin 2x 

 19. y

x
-2

-4

21. y

x

 23. y

x
1

1

y = 1 - x y = x

25. y

x

1

1 2

y = x - 2

y = 2x2

 27. y

x

2

1
y = 4x - x2

y =   x 21
2

29. y y = sin x
y = 0

x

1

-1
3p-p

 31. 
y

x

y = 3
x = 5

x = 1

y = -7

33. 

-5 5

-5

5  35. 

-5 5

-5

5

37. 

-3 3

-10

15  39. 

-5 5

-10

5
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37. 

-1 1

y

x

y = 4 - x2
y = x + 1  39. 

-3

4

-3

y

x

y = x - 3

y = 4
x2 + 1

41. 

-3

10

3

-5

 43. 

-2

25

10

-5

45. 

-3

75

5

-25

 47. 

-5

10

5

-10

49. x … 3, 1 - ∞ , 34   51.  x … -4, x Ú 0, (- ∞ , 44  or 30, ∞ )

53. Max P = 29 at 11, 32
55. Min C =

65
8

 at a3
8

, 
7
4
b

57. a and b must have different signs.

59. a + 1
a

- 2 7 0, a2 + 1 - 2a 7 0, 1a - 122 7 0

61. x2 - 3x - 10 6 0    63. 

-3

4

-3

y

x

   

65. f1x2 7 0 for x 6 2 or x 7 3  

x

y

2 3

6

1

 f1x2 6 0 for 2 6 x 6 3

 f1x2 = 0 for x = 2, x = 3

 f102 = 6, f152 = 6

67. 0 6 x … 8.0 cm    69. Between $5 and $12.50

71. d 7 39.5 m    73. 168 … B … 400 MJ

75. 0.456 6 i 6 0.816 A    77. r 7 5.7

79. 

Research
time

1200

1000

D
ev

el
op

m
en

t
tim

e

 

5. 
5
2

6 x 6 6, a5
2

, 6b  7. 2 … n 6 11
4

, c 2, 
11
4
b

 

x
5
2

6
 

n
11
4

2

9. -2 6 x 6 1
5

, a-2, 
1
5
b  

 

x
1
5

-2

11. n 6 - 7
3

 or n 7 5
2

, a- ∞ , - 7
3
b  or a5

2
, ∞ b

  
5
2

7
3-

n

13. x 6 -4, 
1
2

6 x 6 3  15. x 6 0, x 7 4, (- ∞ , 0) or (4, ∞ )

  1 - ∞ , -42  or 11>2, 32     40
x

 
1
2

3-4
x   

17. R 6 - 1
2

, R Ú 8, a- ∞ , - 1
2
b  or 38, ∞ )

 81
2-

R

19. -2 … x … 2
3

, c -2, 
2
3
d

 
-2 2

3

x

21. x 6 - 4
5

, x 7 2, a- ∞ , - 4
5
b  or (2, ∞ )

  24
5-

x

23. x 6 -18, x 7 78, (- ∞ , 18) or (78, ∞ )
  

78-18
x

25. x 6 -0.68, (- ∞ , -0.68) 27. x 6 0.69, (- ∞ , 0.69)

 

-3

5

3

-5  

-3

3

3

-3

29. 

12

4

y

x

y = -3x + 12

 31. 

4

-1

y

x

y = x + 23
2

- 4
3

33. 

4

4

y

x

y = -2x2 + 6

 35. 
4

-1

y

x

y = ƒx + 1ƒ
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Exercises 19.1, page 514

1. -3    3. 125 250    5. 4, 6, 8, 10, 12    

7. 2.5, 1.5, 0.5, -0.5, -1.5    9. 22    11. - 9p
4

    13. 30.9

15. 49b    17. 440    19. - 85
2

    21. n = 6, S6 = 150

23. d = - 2
19

, a20 = - 1
3

    25. a1 = 19, a30 = 106

27. n = 62, S62 = -486.7

29. n = 13, a13 = 11k    31. n = 8, d =
1
14

1b + 2c2
33. a1 = 360, d = 40, S10 = 5400    
35. Yes, d =  ln 2; a5 =  ln 48    37. an = 2n + 1

39. d =
b - a

2
    41. 2b - c, b, c, 2c - b, 3c - 2b

43. 5050    45. -8

47. 2700 m2    49. 195 logs    51. 10 rows

53. 13 years, $11 700    55. 185 m     

57. Sn =
1
2

n [2a1 + 1n - 12d]     59. a1 = 1, an = n

Exercises 19.2, page 518

1. 243    3. 6400, 1600, 400, 100, 25    5. 
1
6

, 
1
2

, 
3
2

, 
9
2

, 
27
2

7. 128    9. 
1

125
    11. 

100
729

    13. 1    15. 
341
8

    17. 762

19. 
31210 - k102

1612 + k2     21. a6 = 64, S6 =
1365
16

23. a1 = 16, a5 = 81    25. a1 = 1, r = 3

27. n = 7, Sn =
58 593

625
    29. Yes; r = 3x; a20 = 319x+1

31. r = Ab
a

    33. 5    35. (a) a1, (b) 0    37. 2 or -3

39. 1.4,    41. 1.09 mA    43. $443.96    45. 5800 °C
47. 43,    49. 21.1 °C    51. $671 088.64   

53. Sn =
a1 - ran

1 - r
    55. Yes, the ratio is squared.

57. 8, 1, -6; 8, 16, 24; 8, 16, 24; 16, 24, 36

Exercises 19.3, page 522

1. 
32
7

    3. 8    5. 0.2    7. 
400
21

    9. 8    11. 
10 000
9999

13. 
1
2

 (5 + 313)    15. 
1
3

    17. 0.5    19. 
40
99

    21. 
2
11

23. 
91

3330
    25. 

11
30

    27. 
100 741
999 000

    29. 
125
2

, 
125
3

31. 350 L    33. 346 g    35. 100 m    37. - 1
4

    39. 0.368

Exercises 19.4, page 527

1. 32x5 + 240x4 + 720x3 + 1080x2 + 810x + 243

3. t3 + 12t2 + 48t + 64    5. 16x4 - 32x3 + 24x2 - 8x + 1

7. 8445.963 01

9. n5 + 10pn4 + 40p2n3 + 80p3n2 + 80p4n + 32p5

81.  300 regular  
150 deluxe  

x

y

100 600

(300, 150)

600

100 x + 2y = 600

x + y = 450

Exercises 18.1, page 498

1. 56 km    3. 6    5. 
4
3

    7. 25    9. 40    

11. 0.27 = 27,    13. 0.41    15. 0.025 mF    17. 5.56

19. 0.931    21. 3.5,    23. 863 kg    25. 0.103

27. 1.44 Ω    29. 0.45 ha    31. 237 600 s

33. 2.50 * 103 cm2    35. 0.0324 kL>h    37. 23 400 cm3 

39. 8.8 m    41. 3.0 m, 4.5 m    43. 19.67 kg

45. 17 500 chips    47. 112 cm

Exercises 18.2, page 503

1. C = kd, k = p    3. 667 Hz    5. v = kr

7. R =
k

d2    9. p =
k1A

    11. S = kwd3

13. A varies directly as the square of r.

15. f  varies directly as L and inversely as the square root of m.

17. V =
H2

2048
    19. p =

16q

r3     21. 25    23. 0.033

25. 180    27. 2.56 * 105

29. A = k1x, B = k2x; A + B = 1k1 + k22x    31. 10.2 kB/s

33. 209 kJ    35. 2.40 cm    37. 560 kJ    39. 1.4 h

41. (a) Inverse (b) a = 60>m

43. 7.65 MW    45. F = 2.32Av2    47. 0.536 N

49. 480 m>s    51. R =
2.60 * 10-5l

A
    53. 80.0 W

55. G =
5.9d2

l2     57. -6.58 cm>s2    59. 0.288 W>m2

Review Exercises for Chapter 18, page 506

1. 200    3. 1.5    5. 3.1417    7. 5.6    9. 7.39 N/cm2

11. 2260 J>g    13. 5.5,

15. 
a
b

+ b
b

=
c
d

+ d
d

=
a
b

+ c
d

    17. 630 km

19. 2.66 * 10-3 kJ    21. 240 pages    23. 140 mL

25. 71.9 m    27. 4500, 7500    29. 30.2 kg

31. 115 bolts, 207 bolts    33. y = 3x2    35. v =
128x

y3

37. 11.7 cm    39. 10 cm    41. R = 8.5 A

43. 1500 bacteria>h    45. F =
5500

L
    47. 2.22 s

49. 4.3 mC    51. 18.0 kW    53. 533 m    55. 1.4

57. 48.7 Hz    59. 2.99 * 108 m>s    61. 759 N

63. 3.25 cm    65. 5.73 * 104 m    67. 47 m    69. 150,
71. $125.00, $600.13    73. 4.80 MJ    75. 0.023 W>m2



 ANSWERS TO ODD-NUMBERED EXERCISES B.41

81. 1 + 1
2

 am2 + 1
8

 am4    83. 21 years    85. Five applications

87. 22 years    

89. amid = a1n+12>2 = a + n - 1
2

d

 =
1
n
c n
2

(a + (a + (n - 1)d)) d =
Sn

n
91. Yes; term to term ratios are equal.

11. 64a6 - 192a5b2 + 240a4b4 - 160a3b6 + 60a2b8  
- 12ab10 + b12

13. 625x4 - 1500x3 + 1350x2 - 540x + 81

15. 64a6 + 192a5 + 240a4 + 160a3 + 60a2 + 12a + 1

17. x10 + 20x9 + 180x8 + 960x7 + g
19. 128a7 - 448a6 + 672a5 - 560a4 + g
21. x6 - 48x11>2y + 1056x5y2 - 14 080x9>2y3 + g
23. b40 + 10b37 + 95

2
b34 + 285

2
b31 + g

25. 1.338    27. 1.015    29. 1 + 8x + 28x2 + 56x3 + g
31. 1 + 6x + 27x2 + 108x3 + g
33. 1 + 1

2
x - 1

8
x2 + 1

16
x3 - g

35. 
1
3
c 1 + 1

2
x + 3

8
x2 + 5

16
x3 + g d

37. (a) 3.557 * 1014 (b) 5.109 * 1019 (c) 8.536 * 1015

    (d) 2.480 * 1096

39.  n! = n1n - 121n - 221 g2122112 = n * 1n - 12!; for 
n = 1, 1! = 1 * 0! Since 1! = 1, 0! must = 1.

41. 56a3b5    43. 10 264 320x8b4

45. n! contains factors 2 and 5.

47.  n = 1, 1 - 1 = 0; n = 2, 1 - 2 + 1 = 0; n = 3, 
1 - 3 + 3 - 1 = 0, etc.

49. 2.45    51. V = A11 - 5r + 10r2 - 10r3 + 5r4 - r52
53. 1 - x

a
+ x3

2a3 - g    55. - 2hk

r3 + 3kh2

r4

Review Exercises for Chapter 19, page 528

1. 81    3. 1.28 * 10-3    5. 66.5    7. 
16
243

    9. 
195
2

11. 
5461
512

    13. 81    15. 32    17. -15    19. -0.25

21. 186    23. 
455
2

 1as2 , 127 1gs2 , or 43 1gs2     25. 2.7

27. 51    29. 
1
33

    31. 
4
55

33. x4 - 8x3 + 24x2 - 32x + 16

35. x10 + 20x8 + 160x6 + 640x4 + 1280x2 + 1024

37. a10 + 20a9e + 180a8e2 + 960a7e3 + g
39. p18 - 3

2
 p16q + p14q2 - 7

18
 p12q3 + g

41. 1 + 12x + 66x2 + 220x3 + g
43. 1 + 1

2
 x2 - 1

8
 x4 + 1

16
 x6 - g

45. 1 - 1
2

 a2 - 1
8

 a4 - 1
16

 a6 - g

47. 
1
8

+ 3
4

 x + 3x2 + 10x3 + g    49. 1 001 000

51. 4b - 3a    53. No    55. an = -3n - 2    57. 0.716

59. 5.475    61. 11th    63. 12.6 mm    65. 7690 mm

67. $4700    69. 1.65 * 1010 cm = 165 000 km    71. 191 m

73. 100 cm    75. $47 340.80    77. $6.40    79. 4.0 °C

Exercises 20.1, page 531
(Note: “Answers” to trigonometric identities are intermediate steps of 
suggested reductions of the left member.)

1. sin x =
tan x
sec x

=

sin x
cos x

1
cos x

=
sin x
cos x

# cos x
1

= sin x

3. 
0.829
0.559

= 1.48  5. a- 1
2
13b2

+ a- 1
2
b2

=
3
4

+ 1
4

= 1

7. sin x - 1  9. cot u - 2 cos u  11. sec2 u

13. tan x sec x  15. sin t cos t  17. cot2 y1csc2 y + 12
19. 

sin x
sin x
cos x

=
sin x

1
acos x

sin x
b   21. sin xa 1

cos x
b

23. csc2 x1sin2 x2
25. sin x1csc2 x2 = sin x a 1

sin2x
b

27. cos uacos u
sin u

b + sin u =
cos2 u + sin2 u

sin u
=

1
sin u

29. cot u1sec2 u - 12 = cot u tan2 u = 1cot u tan u2 tan u

31. 
sin x
cos x

+ cos x
sin x

=
sin2 x + cos2 x

cos x sin x
=

1
cos x sin x

33. 11 - sin2 x2 - sin2 x

35. 
sin u

1
sin u

+ cos u
1

cos u

= sin2 u + cos2 u

37. 12 sin2 x - 12 1sin2 x - 12
39. 

sin pt
2

asin2 pt + 11 - cos pt2211 - cos pt2  sin pt
b

   =
sin2 pt + 1 - 2 cos pt + cos2 pt

211 - cos pt2 =
211 - cos pt2
211 - cos pt2

41. Geometric series with a1 = 1, r = sin2x  43. cot x

45. sin x  47. sec x  49. cos x

51. 

-4 4

3

-1

 53. 

-4 4

3

-3
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43. cos A cos B cos C - sin A sin B cos C - sin A cos B sin C 
 - cos A sin B sin C

45.  20221sin 120 pt cos p/4 + sin p/4 cos 120pt2
    = 20 22a 122

b 1sin 120pt + cos 120pt2
47. i0 sin1vt + a2 = i01sin vt cos a + cos vt sin a2
49. tan a1R + cos b2 = sin b, R =

sin b - tan a cos b

tan a

   =
sin b cos a - cos b sin a

cos a tan a

Exercises 20.3, page 544

1. - 13  3. - 24
25

5. sin 60° = sin 2130°2 = 2 sin 30° cos 30°

  = 2a1
2
b a1

2
13b =

1
2
13

7. tan 120° =
2 tan 60°

1 - tan2 60°
=

213

1 - 11322 = - 13

9. sin 258° = 2 sin 129° cos 129° = -0.978

11. cos 96° = cos2 48° - sin2 48° = -0.105  13. 3.08

15. 
24
25

  17. - 13  19. 2 sin 8x  21. cos 8x  23. cos x   

25. -2 cos 4x  27. 2cos 2u  29. 2

31. cos2 a - 11 - cos2 a2
33. 

cos x - 1sin x>cos x2  sin x

1>cos x
= cos2 x - sin2 x

35. 
2 sin u cos u

1 + 2 cos2 u - 1
=

sin u
cos u

37. 1 - 11 - 2 sin2 2u2 =
2

csc2 u

39. ln
1 - cos 2x
1 + cos 2x

= ln
2 sin2 x

2 cos2 x
= ln tan2 x

41. 

-3 3

3

-3

  43. 

45. 3 sin x - 4 sin3 x  47. 8 cos4 x - 8 cos2 x + 1

49. 1 - 2 sin2 x + 2 sin x cos x sin x
cos x

= 1

51.  amp. = 2, per. = p; write equation as 
y = 212 sin x cos x2 = 2 sin 2x.

53. 2sin2 x + 2 sin x cos x + cos2 x = 21 + sin 2x 

1

0 2p

2

0

  

-4 4

3

-3

55. Yes   57. No

   

-2 5

4

-1   

-1 2

3

-3

59. 0 = cos A cos B cos C + sin A sin B,

    cos C = - sin A sin B
cos A cos B

61. l = a csc u + a sec u = aa 1
sin u

+ tan u
sin u

b
63. Write tan u in terms of sin u and cos u. Use cos u as LCD and 

then Eq. (20.6) to simplify. 

65. sin2 x - sin2 x sec2 x + cos2 x + cos2 x sec4 x

   = sin2 x - tan2 x + cos2 x + sec2 x = 2

67. a r
x
b2

+ a r
y
b2

=
r21x2 + y22

x2y2

69. 21 - cos2 u = 2sin2 u

71. 24 + 4 tan2 u = 221 + tan2 u

Exercises 20.2, page 541

1. 
16
65

3. sin 105° = sin 60° cos 45° + cos 60° sin 45°

  =
13
2

 
12
2

+ 1
2

 
12
2

= 0.966

5. cos 15° = cos160° - 45°2
  = cos 60° cos 45° + sin 60° sin 45°

  = a1
2
b a1

2
12b + a1

2
13b a1

2
 12b

  =
1
4
12 + 1

4
16 =

1
4
112 + 162 = 0.966

7. - 33
65

  9. - 56
65

  11. sin 3x  13. -cos x  15. -sin x

17. tan x  19. 0  21. 1  23. 0

25.  1sin x cos y + cos x sin y2 1sin x cos y - cos x sin y2  
= sin2 x cos2 y - cos2 x sin2 y 
= sin2 x11 - sin2 y2 - 11 - sin2 x2sin2 y

27.  1cos a cos b - sin a sin b2  
+  1cos a cos b + sin a sin b2

29. 

-5 5

2

-2

  31. 

33, 35, 37, 39. Use the indicated method.

41.  
sin1x + x2

sin x
=

sin x cos x + cos x sin x
sin x

   

   =
2 sin x cos x

sin x

-5 5

2

-2
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15. 
p

4
, 

3p
4

, 
5p
4

, 
7p
4

  17. 0.262, 1.31, 3.40, 4.45

19. 0, p  21. 
3p
4

, 
7p
4

23. 1.98, 4.30  25. 
p

3
, 

2p
3

, 
4p
3

, 
5p
3

 

27. 
p

12
, 
p

4
, 

5p
12

, 
3p
4

, 
13p
12

, 
5p
4

, 
17p
12

, 
7p
4

  29. 0, 
p

3
, p, 

5p
3

31. 3.569, 5.856

33. 
p

4
, 

5p
4

, 1.25, p + 1.25

35. 
3p
8

, 
7p
8

, 
11p

8
, 

15p
8

37. 0, 
p

2
, p, 

3p
2

  39. 0, 
p

2
, p, 

3p
2

41. No; cot u 7 1, sec u 7 1, csc u 7 1 for 0 6 u 6 p

2

43. u = 0, r = 0; u =
p

3
, r =

13
2

; u = p, r = 0; u =
5p
3

, 

    r = - 13
2

45. 37.8°  47. 10.2 s, 15.7 s, 21.2 s, 47.1 s

49. 6.6 * 10-4 rad    51. 300.0 N, 400.0 N   

53. -2.28, 0.00, 2.28 55. 0.29, 0.95
   

x

y
 

x

y

57. 2.10 59. 1.08
   

x

y
 

x

y

Exercises 20.6, page 557

1. y is the angle whose tangent is 3A.  3. 0

5. y is the angle whose cotangent is 3x.

7. y is twice the angle whose sine is x.

9. y is five times the angle whose cosine is 2x - 1.

11. 
p

3
  13. 

p

4
  15. -p

3
  17. No value  19. -p

4

21. 
1
2
13  23. 

p

4
  25. 

1226
  27. -1  29. 2>121

31. 2>13  33. -1.3090  35. 0.0219  37. -1.239

39. -0.2239  41. x =
1
3

 sin-1 y  43. x = 4 tan y

45. x = 1 - cos11 - y2   47. 
x21 - x2

49. xy + 21 - x2 - y2 + x2y2  51. 
3x29x2 - 1

53. 2x21 - x2

55. 474 m  57. R = va2v sin a
g

b  cos a =
v212 sin a cos a2

g

59. vi sin vt sinavt - p

2
b

   = vi sin vtasin vt cos 
p

2
- cos vt sin 

p

2
b

   = vi sin vt[- 1cos vt2112] = - 1
2

vi12 sin vt cos vt2
Exercises 20.4, page 547

1. cos 57°

3. cos 15° = cos
1
2
130°2 = A1 + cos 30°

2
= A1.8660

2
  = 0.966

5. sin 105° = sin 
1
2
1210°2 = A1 - cos 210°

2

  = A1.8660
2

= 0.966

7. -0.924  9. sin 118° = 0.882 947 6

11. B2a1 + cos 164°
2

b = 12 cos 82° = 0.196 820 5

13. sin 3x  15. 4 cos 2x  17. 212 sin 5u  19. 1

21. 
1
26

126  23. 0.142  25. { A 2 sec a
sec a - 1

27. tan 
1
2

 a =
1 - cos a

sin a
=

sin a
1 + cos a

29. 
1 - cos a

2 sin1
2a

=
1 - cos a

221
211 - cos a2 = A1 - cos a

2

31. 2B2
(1 + cos x2 11 + cos x2

2122 11 + cos x2 =
211 + cos x2

2
# A 2

1 + cos x

33. 

-5 5

3

-3

 35. 

-3 3

2

-2

37. {24
7

  39. 4 sin 
u

2

41.  sin2vt = aA1 - cos 2vt
2

b2

     =
1 - cos2vt

2

43. 
B 1 - cos1A + f2

2A1 - cos A
2

= B 1 - cos1A + f2
1 - cos A

Exercises 20.5, page 552

1. 
p

4
, 

5p
4

  3. 0, 
p

3
, 

5p
3

  5. 
p

2
  7. 

p

2
, 

3p
2

9. 
p

3
, 

2p
3

, 
4p
3

, 
5p
3

  11. 0, 
p

6
, 

5p
6

, p  13. 
p

2
, 

3p
2
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57. 

-5 5

-1

3   59. 

61. x =
1
2

 cos-1 
1
2

y  63. x =
1
5

 sin 
1
3
a1

4
p - yb

65. 1.29, 4.43  67. 
p

6
, 

5p
6

, 
7p
6

, 
11p

6
  69. 0, 

p

3
, 

5p
3

71. 0, 
2p
3

  73. 
p

10
, 
p

2
, 

9p
10

, 
13p
10

, 
3p
2

, 
17p
10

75. 0

77. Identity: 

tan x + 1
tan x

=
tan2 x + 1

tan x
= sec2x1cot x2 =

sec2 x cos x
sin x

79. 
p

2
, p

81. 1.56, 2.16, 3.46  83. -2.31, 1.14

x

y
  

x

y

85. 
1
x

  87. 2x21 - x2  89. 
21 - x2 - xy21 + y2

91. 221 - cos2 u  93. 
tan u21 + tan2 u

=
tan u
sec u

95. 1cos u + j sin u22 = 1cos2 u - sin2 u2 + j12 sin u cos u2
97. 

p

2
6 x 6 3p

2

99. CaA
C

 sin 2t + B
C

 cos 2tb
 = C1cos a sin 2t + sin a cos 2t2
101. R = 21A cos u - B sin u22 + 1A sin u + B cos u22

 = 2A21cos2 u + sin2 u2 + B21sin2 u + cos2 u2
103. 

k
2

# 1

sin2u
2

=
k
2

# 1
1 - cos u

2

  105. u = a + R sin vt

107. 
cos 2a

2 cos2 a
  109. P = VI cos vt[cos1f + vt2]

111. 6.8 m  113. 54.7°

-6 6

-3

355. No; sin-11sin x2 = x for -p

2
… x … p

2
.

57. t =
1

2v
 cos-1 

y

A
-

f

v

59. t =
1
v
asin-1 

i
Im

- a - fb
61. sinasin-1 

3
5

+ sin-1 
5
13

b =
3
5

# 12
13

+ 4
5

# 5
13

=
56
65

63. 
p

2
  65. 0  67. sin-1aa

c
b   69. tan-1ab tan B

a
b

71. Let y = height to top of base; tan a =
2.7 + y

d
,

    tan b =
y

d
; tan a =

2.7 + d tan b

d

73. u = tan-1ay + 50
x

b - tan-1ay

x
b

Review Exercises for Chapter 20, page 559

1. sin190° + 30°2 = sin 90° cos 30° + cos 90° sin 30°

 = 112 a1
2
13b + 102 a1

2
b =

1
2
13

3. sin1360° - 45°2 = sin 360°cos 45° - cos 360°sin 45°

 = 0a1
2
12b - 1a1

2
12b = - 1

2
12

5. cosa2
p

2
b = cos2 

p

2
- sin2 

p

2
= 0 - 12 = -1

7. tan 2130°2 =
2 tan 30°

1 - tan2 30°
=

2113>32
1 - 113>322 = 13

9. sin 52° = 0.788  11. 
1
2

  13. cos 215° = -0.819

15. 2 tan 24° = 0.890  17. sin 5x  19. 4 sin 12x

21. 2 cos 12x  23. 2 cos x  25. -p

2
  27. 0.2619

29. - 1
3
13  31. -p

6
  33. sec2 y - tan2 y = 1

35. sin x csc x - sin2 x = 1 - sin2 x = cos2 x

37. 
1sec2 x - 12 1sec2 x + 12

tan2 x
= sec2 x + 1

39. 2a 1
sin 2x

b acos x
sin x

b = 2a 1
2 sin x cos x

b acos x
sin x

b
 =

1

sin2 x

41. 
cos2 u

sin2 u
  43. 

1
2
a2 sin 

u

2
 cos 

u

2
b   45. cot x  47. sec x

49. sin x  51. sin x

53. 

-4 4

-3

3   55. 

-1 1

-1

1

Exercises 21.1, page 566

1. 161    3. 150°    5. 2129    7. 3    9. 55

11. 2153    13. 2.86    15. 
5
2

    17. Undefined    19. - 3
4

21. - 5
9

    23. 0.747    25. 
1
3
13    27. -0.311    29. 20.0°

31. 98.50°    33. Parallel    35. Perpendicular    37. 8, -2



 ANSWERS TO ODD-NUMBERED EXERCISES B.45

23. y = - 3
5

x + 2; m = - 3
5

, 10, 22

 

y

x
-2

2

4

10
3

25. y =
3
2

x - 1
2

; m =
3
2

, a0, - 1
2
b

 

y

x1
2

1
2

1
2-

27. y = 3.5x + 0.5; m = 3.5, 10, 0.52     29. Parallel

 

y

x0.2-0.4

0.5

31. Perpendicular    33. Neither    35. Perpendicular

37. -2

39.  The slope of the first line is 3. A line perpendicular to it has a 
slope of -1

3. The slope of the second line is - k
3, so k = 1.

41. b - a    43. 5

45. m1 = - 4
5

, m2 =
2
3

, m3 =
2
3

; m4 = - 4
5

; m1 = m4, m2 = m3

47. m1 = - a
b

, m2 = - a
b

, m1 = m2; m3 = - a
b

, m4 =
b
a

, m3 = -1>m4

49. C =
5
4

R    51. v = 0.607T + 331

53. T =
4
3

x + 3    55. P = 3.0 - 0.025TS

57. y = 10-512.4 - 5.6x2     59. n =
7
6

 t + 10; at 6:30,

  n = 10; at 8.30, n = 150

 
t

n

120

150

61. n

(2, 2400)

Ë

t

 63. h

1000

2300

300 t3/2

39. -3    41. Two sides equal 2110.    43. m1 =
5
12

, m2 =
4
3

45. 10    47. 4110 + 412 = 18.3    49. (1, 5)  
51. 1 -2.8, 4.22     53. x2 + y2 = 9    55. m1 = 1, m2 = -1

57. a- 11
3

, 0b     59. a0, - 7
9
b     61. 0, 13, - 13

Exercises 21.2, page 571

 1. 2y - x - 2 = 0     3. 2, a0, 
5
2
b

 5. 4x - y + 20 = 0  7. 7x - 2y - 24 = 0

 

y

x

5

5-10 -5

15
20

-10
 

y

x

6

-6
-12

24
7

 9. x - y + 19 = 0 11. y = -2.7

 

y

x

18

-18  

y

x

2

-2

4

-4

13. x = -3 15. x - 3y - 7 = 0

 

y

x

2

-2
-3 3

4

-4
 

y

x

2

-2

(7, 0)

-4

2
7- 3Q   ,       R0

17. x + y - 7 = 0 19. 3x + y - 18 = 0

 

(0, 7)

(7, 0)
(5, 2)

y

x

2
4

6

8

2 4 6 8  

y

x

6

6-6
-6

12

18

21. y = 4x - 8; m = 4, 10, -82

 

y

x
-4

-4 4

4

-8



B.46 ANSWERS TO ODD-NUMBERED EXERCISES

33. 10, 22 , r =
5
2

 35. 11, 22 , r =
1
2
122

 

y

x

(0, 2)

 

y

x

(1, 2)

37. Symmetric to both axes and origin

39. Symmetric to y-axis    41. 17, 02 , 1 -1, 02
43. 3x2 + 3y2 + 4x + 8y - 20 = 0, circle

45. Graph y = -2.5 { 210.25-x2

 

-6

-6

2

6

47.  (a) Semicircle 
(b) Semicircle 
(c)  Yes, there is only one value of y for each x in the domain.

49. Outside

51. p 7 0, circle; p = 0, point; p 6 0, does not exist

53. 0.0912 cm    55. 2.82 cm    57. x2 + y2 = 0.0100

59. x2 + 1y + 2.422 = 0.16

61. 1x - 500 * 10-622 + y2 = 0.16 * 10-6

 

y

x
(100 * 10-6, 0)

500 * 10-6

Exercises 21.4, page 581

 1. F15, 02 , x = -5  3. Fa0, - 3
2
b , y =

3
2

 

y

x

x = -5

V(0, 0)

F(5, 0)

 

x

y

V(0, 0)

y = 2
3

y = -Q0,    R2
3

 5. F11, 02 , x = -1  7. F1 -1, 02 , x = 1

 

x

y
x = -1

V(0, 0)
F(1, 0)

 

x = 1

V(0, 0)
F(-1, 0)

y

x

65.   
103

102

10
1
1 2 3 4

 67. 102

10-2

1

10-1 1 10

m = -1.4

a = 0.80

p = 0.80V -1.4

Exercises 21.3, page 576

1. C11, -12 , r = 4     3. C13, 42 , r = 7

 

y

x
(1, -1)

    

y

x

(3, 4)

5. 12, 12 , r = 5    7. C1 -1, 02 , r =
11
2

    9. x2 + y2 = 9

11. 1x - 222 + 1y - 222 = 16, or 

 x2 + y2 - 4x - 4y - 8 = 0

13.  1x - 1222 + 1y + 1522 = 324, or 
x2 + y2 - 24x + 30y + 45 = 0

15. 1x + 322 + 1y - 422 = 25 17. 1x - 222 + 1y - 122 = 8

19.  1x + 322 + 1y - 522 = 25, or 

 x2 + y2 + 6x - 10y + 9 = 0

21. 1x + 222 + 1y - 222 = 4 or    23.  x2 + y2 = 2

 x2 + y2 + 4x - 4y + 4 = 0

25. 10, 32 , r = 2 27. 1 -1, 52 , r =
9
2

 

y

x

(0, 3)

 

y

x

(-1, 5)

29. 11, 02 , r = 3 31. 1 -2.1, 1.32 , r = 3.1

 

y

x(1, 0)

 

y

x

(-2.10, 1.30)
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55. f

A

0.92

200

   57.  x2 = 8y with vertex midway between 
island and shore

Exercises 21.5, page 586

1.  V10, 62 , V10, -62 , 3. V12, 02 , V1 -2, 02 , 

  ends minor axis (5, 0), 1 -5, 02  F113, 02 , F1 - 13, 02
 foci 10, 1112 , 10, - 1112

 

x

y

F

F

-5

-6

6

5

 

x

y

F F-2

-1

1

2

5. V10, 122 , V10, -122 , 7. Va5
2

, 0b , Va- 5
2

, 0b , 

 
F10, 11192 , F10, - 11192

 Fa3
2

, 0b , Fa- 3
2

, 0b

 

x

y

F

F

-5

-12

12

5

 

x

y

F F

-2

2

2
5

2
5-

9. V19, 02 , V1 -9, 02 , 11. V10, 72 , V10, -72 ,

 F1315, 02 , F1 -315, 02  F10, 1452 , F10, - 1452

 

xF F

-6

-9 9

6
y

 

x

y

F

F

-2

-7

7

2

13. V10, 42 , V10, -42 , 15. V10.25, 02 , V1 -0.25, 02 ,

 F10, 1142 , F10, - 1142   F10.23, 02 , F1 -0.23, 02

 

x

y

F

F

-4

4

√
—
2-√

—
2

 

x

y

F F-0.25

-0.1

0.1

0.25

 9. F10, 182 , y = -18 11. F10, -12 , y = 1

 

y = -18
V(0, 0)

F(0, 18)

x

y

 

y = 1

V(0, 0)

F(0, -1)

y

x

13. Fa5
8

, 0b , x = - 5
8

    15. Fa0, 
25
48

b , y = - 25
48

 

V(0, 0)

FQ  , 0R

y

x

x = - 8
5

8
5

 

x

y

y = -

V(0, 0)

FQ0,     R48
25

48
25

17. y2 = 12x    19. x2 = -2y    21. x2 = 0.64y

23. x2 = 336y    25. x2 =
1
8

 y    27. y2 =
25
3

 x

29. y2 = 3x

31. 
8

2

-2 2 x

y     33. (0, 0), 18, -42

35. y2 - 2y - 12x + 37 = 0   37. Graph y = -4 { 23 - 2x

 

y

x

x = 0

V(3, 1)

F(6, 1)

 

Q  , -4R2
3

-10

-10

2

6

39. y

x

x = 0

F(4, -3)
V(2, -3)

    41. 4 $ p $     

43. The parabola becomes broader as $ p $  increases.

45. x2 = 1020y    47. H

i

    49. 57.6 m

51. No (a course correction is necessary)    53.  2.16 cm from vertex



B.48 ANSWERS TO ODD-NUMBERED EXERCISES

45. i1
2 + 4i2

2 = 32           47. 0.44    49. 7x2 + 16y2 = 112 
 i2

i1

5.7

2.8

     51. 27.5 m    53. 4.0 m    

     55. 843 m3

Exercises 21.6, page 592

1. V10, -42 ,  V10, 42 ,        3. V15, 02 , V1 -5, 02 ,
conj. axis1 -2, 02 , 12, 02  F113, 02 , F1 -13, 02
F10, -2152 , F10, 2152

y
F

F

x
2

4

-2

-4

  

y

F F
x

-12

-5 5

12

5. V10, 32 , V10, -32 , 

F(0,110), F(0, - 110)

F

y

x

F

-1

-3

3

1

7. Va- 5
2

, 0b , Va5
2

, 0b ,        9. V11, 02 , V1 -1, 02 ,

Fa- 1
2
141, 0b , Fa1

2
141, 0b    

F115, 02 , F1 - 15, 02
y

x
F F

-2

2

2
5

2
5-

     

x

y

F F-1

-2

1

2

17. 
x2

225
+

y2

144
= 1, or 144x2 + 225y2 = 32 400

19. 
x2

225
+

y2

289
= 1, or 289x2 + 225y2 = 65 025

21. 
x2

208
+

y2

144
= 1, or 144x2 + 208y2 = 29 952

23. 
x2

64
+

15y2

144
= 1, or 3x2 + 20y2 = 192

25. 
x2

5
+

y2

20
= 1, or 4x2 + y2 = 20

27. 
x2

100
+

y2

64
= 1, or 16x2 + 25y2 = 1600

29. 11, -22 , (1, 2)

31. 16x2 + 25y2 - 32x - 50y - 359 = 0

 

y

F F

x

(-4, 1) (1, 1)

(1, 5)

(6, 1)

(1, -3)

33.  Graph y = 3 { 2-12x2 - 48x - 12
3

 

 

-5

-1

6

1

35. y

xF F
(-1, -1)

(2, 1)

(2, -1)

(2, -3)

(5, -1)

37. Write equation as 
x2

1
+

y2

1>k2 = 1. Thus, 
1

k2 7 1, or $ k $ 6 1.

39. 2x2 + 3y2 - 8x - 4 = 2x2 + 31 -y22 - 8x - 4

41. 

x

y

F

F

-7

-10

10

7

 43. sin2 t + cos2 t =
x2

4
+

y2

9
= 1



 ANSWERS TO ODD-NUMBERED EXERCISES B.49

37. Graph y = 4 { 0.52x2 + 4x

 

-8

-2

8

4

39. y

F F

x

(-3, 2)

(-3, -1)

(-1, 2)

(-5, 2)

(-3, 5)

41. x2 - 2y2 = 2            43. y

x-7 7

45. 9x2 - 16y2 = 144    47. 3y2 - x2 = 27

49. v

t
100

41

200

600 (1, 600)

(4, 150)

    51. i = 6.00>R

      

i

R

53. 

A

ship

x

y

B

Exercises 21.7, page 595

1.  Hyperbola, C13, 22 , transverse axis parallel to x-axis

 a = 5, b = 3

 

y y¿

x¿
x

(3, 2)

11. V10, 152 , V10, - 152 ,    13. V10, 22 , V10, -22 ,

F10, 172 , F10, - 172           F10, 152 , F10, - 152

 

F

y

x

F

√
—
2

√
—
5

-√
—
5

-√
—
2

         

x

y

F

F

-1

-2

1

2

15. V10.4, 02 , V1 -0.4, 02 , 

 F10.9, 02 , F1 -0.9, 02

 

x

y

F F

-0.4 0.4

-0.8

0.8

17. 
x2

9
-

y2

16
= 1, or 16x2 - 9y2 = 144

19. 
y2

100
- x2

576
= 1, or 144y2 - 25x2 = 14 400

21. 
x2

1
-

y2

3
= 1, or 3x2 - y2 = 3

23. 
x2

5
-

y2

4
= 1, or 4x2 - 5y2 = 20

25. x2 -
y2

4
= 1, or 4x2 - y2 = 4

27. 
x2

36
-

y2

64
= 1, or 16x2 - 9y2 = 576

29. y

x

1

1

31.  sec2 t - tan2 t = x2 - y2 = 1

33. 1 -2, -32 , 1 -2, 32 , 12, -32 , (2, 3)

35. 9x2 - 16y2 - 108x + 64y + 116 = 0

 

y

x

F F

(2, 2)
(10, 2)

(6, 5)

(6, 2)

(6, -1)



B.50 ANSWERS TO ODD-NUMBERED EXERCISES

27. Ellipse, 1 -3, 02

 

y

x

x¿

y¿

(-3, 0)

29. Hyperbola, (0, 4)

 

y¿y

x¿

x

(0, 4)

31. Hyperbola, 1 -2, 12     33. Hyperbola, 1 -4, 52

 

yy¿

x¿

x

(-2, 1)

       

yy¿

x¿

x

(-4, 5)

35. Ellipse, 11, -22     37. Hyperbola, (4, 0)

 

y
y¿

x¿
x

C(1, -2)

 

y y¿

x¿
x

(4, 0)

39. Circle, a1
3

, 
4
3
b  y y¿

x¿

x

Q    ,    R1
3

4
31

3

1
3

41. x2 - y2 + 4x - 2y - 22 = 0

43. y2 + 4x - 4 = 0    45. y2 = 4p1x - h2     

47. i′ = sin 2pt′

49. 1x - 2822 = - 282

18
 1y - 182   (28, 18)

y

x10
10
20

30 50 70

51. 
x2

9.0
+

y2

16
= 1, 

1x - 7.022

16
+

y2

9.0
= 1

3. Parabola, 1 -1, 22
 

y

x = -2

x¿

y¿

x

(-1, 2)

5. Hyperbola, (1, 2)     7. Ellipse, 1 -1, 02

 

y

x¿

y¿

x

(1, 2)

       

yy¿

x¿
x

(-1, 0)

9. Parabola, 1 -3, 12   yy¿

x¿

x

(-3, 1)

11. 1y - 322 = 161x + 12 , or y2 - 6y - 16x - 7 = 0

13. y2 = 241x - 62
15. 

1x + 222

25
+

1y - 222

16
= 1, or 

 16x2 + 25y2 + 64x - 100y - 236 = 0

17. 
1y - 122

16
+

1x + 222

4
= 1, or

 4x2 + y2 + 16x - 2y + 1 = 0

19. 
1y - 222

1
-

1x + 122

3
= 1, or

 x2 - 3y2 + 2x + 12y - 8 = 0

21. 
1x + 122

9
-

1y - 122

16
= 1, or 

 16x2 - 9y2 + 32x + 18y - 137 = 0

23. Parabola, 1 -1, -12

 

y

x¿

y¿

x

(-1, -1)

25. Parabola, (0, 6)

 

y y¿

x¿

x

(0, 6)
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Exercises 21.9, page 602

1. Hyperbola; 2x′y′ + 25 = 0  3. Ellipse; 4x′2 + 9y′2 = 36

 y

x

x¿y¿

45°

 y

x

y¿
x¿

tan-12

5. Hyperbola    7. Parabola    9. Ellipse

11. Parabola; x′2 + 12y′ = 0 13.  Hyperbola; 4x′2 - y′2 = 4
 

-5

-5

5

5  

-5

-5

5

5

15. Ellipse; x′2 + 2y′2 = 2 17. Parabola 
 

-3

-2

3

2
     y′2 - 4x′ + 16 = 0 
     y ″2 = 4x ″
  

-2

-2

10

16

19. (a) Hyperbola  (b) Hyperbola

Exercises 21.10, page 605

1. a3, 
-5p

3
b , a-3, 

p

3
b      3. (5.83, 2.11)

5. 

1 2 3 0

Q3,    R6
p

2
3p

2
p

p

Exercises 21.8, page 598

1. Hyperbola    3. Ellipse    5. Hyperbola    7. Circle

9. Parabola    11. Hyperbola    13. Circle

15. None (straight line)    17. Hyperbola    19. Ellipse

21. None (point at origin)    23. Ellipse

25. Parabola: V1 -4, 02 ; F1 -4, 22   
y

x(-4, 0)

27. Hyperbola; C11, -22 ; 29. Ellipse; C15, 02 ;
  V11, -2 { 122  V15, {2122
 y

x
(1, -2)

 y

x(5, 0)

31. Ellipse; graph y = -3 { 0.52-2x2 + 8x + 8

 

-2

-6

2

6

33. Parabola; graph y =
5 { 216x + 8

2
 

-2

-10

10

10

35. Hyperbola; graph y = -3 { 2x2 - 4x + 8
2

 
-10

-15

5

10

37. (a) Circle (b) Hyperbola (c) Ellipse    39. Point at the origin

41. Straight line    43. Parabola

45.  Circle if light beam is perpendicular to floor; otherwise, an 
 ellipse

47. One branch of a hyperbola



B.52 ANSWERS TO ODD-NUMBERED EXERCISES

15. 

0.5

(0.5, -8.4)

0

2
3p

2
p

p

17. a2, 
p

6
b     19. a1, 

7p
6
b     21. a-4, -413b

23. 12.76, -1.172     25. r = 3 sec u

27. r =
-3

cos u + 2 sin u
    29. r = 4 sin u

31. r2 =
4

1 + 3 sin2 u
    33. r = 6 sin u

35. r =
2 sin 2u

cos3 u + sin3 u
    37. x2 + y2 - y = 0, circle

39. x = 4, straight line    41. x - 3y - 2 = 0, straight line

43. x2 + y2 - 4x - 2y = 0, circle

45. x4 + y4 - 4x3 + 2x2y2 - 4xy2 - 4y2 = 0

47. 1x2 + y222 = 2xy   49. Yes c as a2, 
3p
4
b d

51. x2 + y2 - bx - ay = 0

53. 12, 02 , a2, 
p

3
b , a2, 

2p
3
b , a2, 

4p
3
b , a2, 

5p
3
b

55. Bx = - k sin u
r

, By =
k cos u

r

57. x4 + y4 + 2x2y2 + 2x2y + 2y3 - 9x2 - 8y2 = 0

59. 13.8 km

Exercises 21.11, page 609

1. u =
5p
6

 

0

2
3p

2
p

p

u = 6
5p

7. 

1 2 3
0

2
3p

2
p

p

2
5 -Q ,    R5

2p

9. 

0

2
3p

6
7p

2
p

p

Q-8,    R

84

6
7p

11. 

1 2 3
0

2
3p

2
p

p

-Q-3,    R4
5p

- 4
5p

13. 

1

(2, 2)

2 0

2
3p

2
p

p
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11. 

1 2 0

2
3p

2
p

p

13. 

1 2 0

2
3p

2
p

p

15. 

1 2 3 0

2
3p

2
p

p

17. 

043

2
3p

2
p

p

3. r = 2 sin 2u

 

0

1

2

2
3p

6
7p

6
5p

3
2p

3
4p

3
5p

6
11p

2
p

6
p

3
p

p

5. 

5
0

2
3p

2
p

p

7. 

0

2
3p

2
p

p

u = 4
3p

9. 

0
4

2
3p

2
p

p
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27. 

0
4

8
12

16

2
3p

2
p

p

29. 

0
2

4

2
3p

2
p

p

31. 

0

4

2

2
3p

2
p

p

33. 

-20

-20

20

20

35. 

-3

-3

3

7

19. 

02 3 4

2
3p

2
p

p

21. 

20
40

60
80

100

0

2
3p

2
p

p

23. 

02 3 4

2
3p

2
p

p

25. 

01 2 3

3

2
3p

2
p

p
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51. 

0
0.5

1.0
1.5

2
3p

2
p

p

53. If n is odd, there are n loops. If n is even, there are 2n loops.

Review Exercises for Chapter 21, page 611

1. 4x - y - 11 = 0 3. 2x + 3y + 3 = 0 
 y

x

-2

1

13
2-

      
y

x

(0, -11)

5. x2 - 6x + y2 - 1 = 0   7. y2 = 12x 
 

y

x

x = -3

3

8

1 F

       y

x

(4, -3)

(3, 0)

9. 9x2 + 25y2 = 900

 

y

x-10 (0, 0) (8, 0) 10

6

-6

37. 

-6

-4

4

6

 39. 

-4

-2

4

6

41. 

-2

-4

4

2

  43.  Straight line 

y

x

45. 

-4.5

-3

3

4.5

47. 

2 3 4 5 0

2
3p

2
p

p

49. 

1
2

3
4

5

0

2
3p

2
p

p
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25. (0, 0)  y
y¿ x¿

x-10 -5
-5

5

-10

5

45°

27. 

0

4

8

2
3p

6
7p

6
5p

3
2p

3
4p

3
5p

6
11p

2
p

6
p

3
p

p

29. 

02 4

2
3p

6
7p

6
5p

3
2p

3
4p

3
5p

6
11p

2
p

6
p

3
p

p

31. 

04 8

2
3p

6
7p

6
5p

3
2p

3
4p

3
5p

6
11p

2
p

6
p

3
p

p

11. 144y2 - 169x2 = 24 336

 

y

x

F

F

-12

-13

13

12

13.  1 -3, 02 , r = 4 15. 10, -52 , y = 5
 

y

x(-3, 0)

 
y

x

F-5

(0, 0)

y = 5

17. V10, 12 , V10, -12 , Fa0, 
1
2
13b , 

Fa0, - 1
2
13b  

y

x

(0, 0)

-1

1

1
2- 1

2

19. V a 1
212

, 0b , V a- 1
212

, 0b , F a170
20

, 0b , F a- 170
20

, 0b  

y

x
F F

-1
2

-1
2
Ë

5

1
2
Ë

5

Ë

2
1

2
Ë

2

21. V14, -82 , F14, -72  23. 12, -12

 

y

x

(4, -8)  

y

x

F

F

(3, -1)
(2, -1)

(2, -3)

(2, 1)
1

(1, -1)



 ANSWERS TO ODD-NUMBERED EXERCISES B.57

71. 
y

x-2

16

 73. Hyperbola    75. 8

77. x2 - 6x - 8y + 1 = 0 79. RT = R + 2.5 
  RT

R

2.5

81. v = 1.92 + 0.778t 83. y = 100.5T - 10 050

 

v(m/s)

t(s)

1.92

5.5

6.20

      

y (kJ)

T (°C)
100 (°C)

20 100

85. 1400 m2    87. y = - 1
80

 x2    89. y2 = 32x

91. HT/H0

T/T0

 93. P

i
24

72

95. 700 m2    97. 18 cm, 8 cm    99. 11.3 m

101.  Dist. from rifle to P - dist. from target to P = constant 
 (related to dist. from rifle to target)

103. 

0
R

2
3p

2
p

p

 105. 

   

y

x
200

15

33. 

1 2
0

2
3p

2
p

p

 35. u = tan-1 2 = 1.11

37. r2 =
2

1 + sin u cos u
    39. 1x2 + y223 = 16x2y2

41. 3x2 + 4y2 - 8x - 16 = 0    43. 4    45. 2    47. 2

49. Graph y =
2
3

x - 1
3

 51. Graph y = -1 { 1
2
210 - 4x2

 

-5

-5

5

5

 

-3

-3

1

3

53.  Graph y = { 20.25x2 + x - 3 + 3

 

-14

-2

6

10

55. Graph r = 2 - 3
sinu

 57. 

-10

-6

1

10

 

-4

-3

3

4

59. x2 + y2 - 6x + 8y + 9 = 0

61.  
1x - 422

16
+

1y + 322

7
= 1 or 

 7x2 + 16y2 - 56x + 96y + 144 = 0

63. Circle    65. 1    67. 245

69. m1 = - 12
5

, m2 =
5
12

; 132 + 132 = 338
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23. 

47
Distance (m)

C
um

ul
at

iv
e 

T
im

es

57 68

10

30

50

70

90

110

130

25. 

0.380
0.395

0.410
0.425

Dosage (mSv)

0.440
0.455

2
1

Fr
eq

ue
nc

y

7

27. 

29.523.5

Battery Life (h)

Fr
eq

ue
nc

y

37.5

1

4

7

29. 

0.
00

55

0.
00

57

0.
00

59

0.
00

61

0.
00

63

0.
00

65

Diameter (mm)

10
20
30

Fr
eq

ue
nc

y

40
50
60
70

4

1210

18
22

44

64
59

36
32

15

31.  The greatest frequency should be at 2 and the least at 0 and 4. 
  

1 2
Number of Heads

Fr
eq

ue
nc

y

3 40

  (Graphs will generally have 
approximately the shape 
shown.)

Exercises 22.2, page 627

1. 5  3. 5.5  5. 2.2  7. 94%  9. (a) 25.5 (b) 25 (c) 25

11. (a) 107.2 (b) 107.5 (c) 108  13. (a) 1.8 (b) 1.8  

Exercises 22.1, page 619

1. Est. hours 0–5 6–11 12–17 18–23 24–29

ƒ 5 12 19 9 5

3. 

2.5 8.5 14.5 20.5 26.5

4

8

Fr
eq

ue
nc

y

12

16

20

5

12

19

9

5

5. No. 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3

ƒ 1 3 1 3 2 4 3 1 1 0 1

7. No. 5.1–5.3 5.4–5.6 5.7–5.9 6.0–6.2 6.3–6.5

ƒ 1 7 9 2 1

9. 

5.2 5.5 5.8
Litres

6.1 6.4

2

4

Fr
eq

ue
nc

y

6

8

10

1

7

9

2
1

11. No. 65.4 65.7 66.0 66.3 66.6

Cum. ƒ 1 8 17 19 20 

13. No. inst. 18 19 20 21 22 23 24 25 
ƒ 1 3 2 4 3 1 0 1 

15. 

19 21
Number

Fr
eq

ue
nc

y

23 2517

2

4

17. 

2.21 2.23 2.25
Time (seconds)

2.27 2.29

10

20

30

Fr
eq

ue
nc

y 40

50

60

2

18

41

32

56

87
33

19. Time (s) 62.22 62.23 62.24 62.25 62.26 62.27 62.28 62.29 62.30 
Cum. ƒ 2 9 27 68 124 156 164 167 170 

21. Dist. (m) 47–49 50–52 53–55 56–58 59–61 62–64 65–67
Rel. Freq. (,) 1.7 12.5 26.7 30.0 20.0 8.3 0.8 
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5. x = 361.8 N # m, UCL = 368.9 N # m, LCL = 354.6 N # m

7. 

11 142 5 8

Hour

Sa
m

pl
e 

M
ea

n
(N

 · 
m

)

2017

LCL = 354.6

x= = 361.8

UCL = 368.9

350

360

370

9. x = 8.986 V, UCL = 9.081 V, LCL = 8.891 V

11. 

15 183 6 9 12
Subgroup

Sa
m

pl
e 

M
ea

n 
(V

)

2421

LCL = 8.891

x= = 8.986

UCL = 9.081

8.85

8.95

9.05

9.15

13. m = 2.725 cm, UCL = 2.729 cm, LCL = 2.721 cm

15. m = 5.57 mL, UCL = 11.17 mL, LCL = 0.00 mL

17. p = 0.0369, UCL = 0.0548, LCL = 0.0190

19. p = 0.0580, UCL = 0.0894, LCL = 0.0266

Exercises 22.6, page 650

1.  y = 2x + 2 3. y = -1.77x + 191 

x

y

1 5
1

12

  

x

y

10 60
10

100

160

5.  y = -0.308t + 9.07 7. V = -0.590i + 11.3 

t

y

1 11
1

11

   

i

V

1 8 15
1

5

10

9.  h = 2.24x + 5.2 11. p = -2.66x + 4364 

x

h

250 1000 2000
400

2000

4000

5200

   

x

p

100 400

3300

3832

4364

15. (a) 2.500 (b) 2.500  17. 0.257 L/100 km  

19. Mean: 20.9 instructions, median: 21 instructions, mode: 21 
instructions  21. Mean: 2.248 s, median: 2.25 s

23. Mean: 56.5 m, Median: 57 m  25. Mean: 0.4237 mSv,  
median: 0.4265 mSv, mode: 0.436 mSv  27. Mean: 31.2 h,  
median: 31 h, Mode: 30 h  29. Mean: 0.005  95 mm,  
median: 0.0059 mm  31. $700  

33. Range 275, s = $84.62  35. Median: 3600 h, mode: 3600 h  

37. Median: 0.195 ppm, mode: 0.18 ppm  

39. Range: 0.18 ppm, s = 0.0474 ppm  41. $662.50

43.  Median: $725, mean: $748.2, mode: $800. When adding a con-
stant, the mean, the median, and the mode are all increased by 
the same constant.

45.  $883.90; The mean no longer represents the centre of the data.

47. 0.4254 mSv  49. At least 89%

Exercises 22.3, page 633

1.  m = 10, a = 5 and m = 20, a = 5 result in the same curve, with  
the first centred at x = 10 and the second centred at x = 20.

3. 0.2072  

5. 

-10

0.1

30
0

7. 

0

0.05

13070

9. 136  11. 95  13. 341  15. 78.81%  17. 2166  

19. 179  21. 141; about 68% of all samples of size 5000 have a 
mean lifetime from 99  859 km to 100  141 km.

23. 0.0145; 68% of all samples of size 500 will have a proportion of 
defectives that is within 10.1055, 0.13452 .

25. -0.7  27. -0.6  29. 76% (normal dist. percentage is 68%)

31. 68% (normal dist. percentage is 68%)

Exercises 22.4, page 640

1. 132.4, 33.22   3. 35  5. 1537  7. 1243.2, 251.02   

9. 10.126, 0.2282   11. 277  13. 183.0, 84.42   

15. 183.0, 84.42 . Margin of error has increased as well.  

17. 1104.9, 109.52   19. 58  21. 601

Exercises 22.5, page 645

1. UCL1x2 = 504.7 mg, LCL1x2 = 494.7 mg

3.  The first point would be below the x line. The UCL and LCL lines 
would be 0.2 unit lower.
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13. V = 4.32 ƒ - 2.03,  
ƒ0 = 0.470 PHz 

f

V

0.1 0.8
0.1

-2.1

1.8

15. 0.953  17. -0.901

Exercises 22.7, page 653

1. y = 2.59x2 + 1.07 3. y =
2410

x
- 0.234

 

x

y

1 5

10

40

70

    

x(=V)

y(=p)

10 5040
10

40

40

110

5. y = 5.97t2 + 0.38 7. p = 0.551T2 + 540 
 

t

y

1 53
10

60

100

140

    

T

p

10 403020

500

1000

1500

9. P =
1343

S
 11. y = 6.20e-t - 0.05 

 

S

P

100 500300

1

3

5

   

t

y

1 3

1

4

Review Exercises for Chapter 22, page 655

1. 76.5  3. 76.2

5. No. 67–70 71–74 75–78 79–82 83–86 
ƒ 3 4 8 3 2 

7. 

68.5 72.5 76.5
Percent of on-time !ights

80.5 84.5

2

4

Fr
eq

ue
nc

y 6

8

1

3

5

7

9. No. 671 675 679 683 687 
f  3 7 15 18 20 

11. 0.264 Pa # s  13. 0.014 Pa # s

15. 

0.24 0.26
Viscosity

0.28

2

Fr
eq

ue
nc

y

4

1

3

   

17. 700 W  19. 700 W  21. 17.3 W

23. Power (W) 6660 6670 6680 6690 
Cum. ƒ 3 5 12 24 

 Power (W) 6700 6710 6720 6730 6740 
Cum. ƒ 51 85 100 116 121 

25. 1692.8, 699.22   27. 4  

29. 

0 1 2 3 4 5 6 7 8 9 10
Counts

20

40

Fr
eq

ue
nc

y

50

10

30

31. 66.2 km>h  33. 9.0 km>h

35. 164.6, 67.42   37. At least 75%  39. 10.138, 0.2522   

41. 415  43. p = 0.0540, UCL = 0.0843, LCL = 0.0237

45. 

1 Subgroup

Sa
m

pl
e 

M
ea

n 
(m

m
)

16

LCL = 4.922

x= = 4.989

UCL = 5.055

4.900

5.100

47. 322  49. 495  
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41. Does not exist  43. 
1
2

  45. 3  47. 1

49. x -0.1 -0.01 -0.001 0.001 

ƒ1x2  -3.1 -3.01 -3.001 -2.999 

 x 0.01 0.1 

ƒ1x2   -2.99 -2.9 
   lim

xS0
ƒ1x2 = -3: use factoring

51. x 10 100 1000 

ƒ1x2 2.1649 2.0106 2.0010 
   lim

xS∞
ƒ1x2 = 2; 

   divide numerator and 
denominator by x2

53. 34.9 °C, 0 °C  55. 3 cm>s  57. 2.77  59. e

61. (a) -1 (b) 2, (c) Does not exist  63. 0

65. -1; +1; no, lim
xS0+  

ƒ1x2 ≠ lim
xS0-  

ƒ1x2
Exercises 23.2, page 673

1. 9  3.  (Slopes) 3.5, 3.9, 3.99  5. (Slopes) -2, -2.8, 
     3.999; m = 4       -2.98, -2.998; m = -3

     y

x

2

2

4

  y

x-2

-2

1

1

7. mtan = 2x; 4, -2 9. mtan = 4x + 5; -3, 7

 y

x

2

2

4

  y

x

1

1-2

-2

11. mtan = 2x +  4; -2, 8 13. mtan = 6 - 2x; 10, 0

 y

x

6

14

2-3

     

-2

-16

1 3

y

x

8

51.  R = 0.0983T + 25.0 

T

R

20.0 100.060.0

4.0

24.0

36.0

53. s = 0.123t + 0.887 55. s = -4.90t2 + 3000 
 

t

s

0.00 2.00 3.001.00
0.10

0.50

0.90
1.10
1.30

        

t

s

5 15 2010

500

3000

57. i = 3.9911 - e-0.500t2 , 3.99 A  59. y = 0.0002x2 + 15 
 

8.004.00

1.00

0.00

3.00

2.00

t(s)

i(A)  

100 500300

10

0

50

70

30

x

y

61. y = 0.997x + 0.581  63. y = 1.39x0.878   

65. 2.7  67. 9.2 ppm

69. Substitute expressions for m, b, and x. Simplify to y = y.

Exercises 23.1, page 667

1. Not cont. at x = -2  3. -4  5. Cont. all x

7. Not cont. x = 0 and x = 1, div. by zero

9. Cont. x … 0, x 7 2; function not defined  11. Cont. all x

13. Not cont. x = 2, jump in the graph   

15. Not cont. x = 2, ƒ122 ≠ lim
xS2

 ƒ1x2
17. (a) -1 (b)  lim

xS2
ƒ1x2  does not exist  

19. (a) 0 (b)  lim
xS2

ƒ1x2 = -1

21. Not cont. x = 2, jump in the graph  23. Cont. all x

25. x 0.900 0.990 0.999 1.001 
ƒ1x2 1.7100 1.9701 1.9970 2.0030 

 x 1.010 1.100 
ƒ1x2 2.0301 2.3100 

   lim
xS1

ƒ1x2 = 2

27. x 1.900 1.990 1.999 2.001 

ƒ1x2 -0.2516 -0.2502 -0.250 02 -0.249 98

 x 2.010 2.100 

ƒ1x2 -0.2498 -0.2485 

   lim
xS2

ƒ1x2 = -0.25

29. x   10   100   1000 

ƒ1x2 0.4468 0.4044 0.4004
   lim

xS ∞
ƒ1x2 = 0.4

31. 7  33. 1  35. - 2
3

  37. 27  39. 2
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9. 5, 6.5, 7.7, 7.97, 7.997;  lim
tS2  v = 8.00 m>s  11. 4; 4.00 m>s

13. 6t - 4; 8.00 m>s  15. 48  17. 3t18 - t2  19. 3 + 6

5t2

21. 12t - 4  23. 6t  25. 6.28 cm>cm  27. 4.49 s

29. -2  31. 6w  33. 0.460 kW  35. -83.1 W> 1m2 # h2
37. -  

481 t + 322; -$1330>year  39. pd2  41. 24.2>1l m/m

Exercises 23.5, page 685

1. 9r8  3. 6x2 - 12x + 8; 56  5. 5x4  7. -36x8

9. 20x3  11. 21x + 12   13. 15r2 - 2

15. 200x7 - 170x4 - 1
21x

  17. -42x6 + 15x2  

19. x2 + x + 1

x2  21. 16  23. 33  25. -4  27. -29

29. 516t4 - 12   31. -611 + t22   33. 64.0 m>s

35. 0.00 m>s  37. 1  39. (2, 4)  41. 11, -52
43. -  14  45. 3pr2  47. 84.0 W>A  49. 3.32 Ω >°C  

51. -0.002 86 N>°C  53. -98.0 m>km  55. 391 mm3>mm

Exercises 23.6, page 689

1. 219x2 - 9x - 52
3. 6x16x - 52 + 13x2 - 5x2 162 = 6x19x - 102
5. 13t + 22 122 + 12t - 52 132 = 12t - 11

7. 1x4 - 3x2 + 32 1 -6x22 + 11 - 2x32 14x3 - 6x2
   = 2x1 -7x5 + 15x3 + 2x2 - 9x - 32
9. 12x - 72 1 -22 + 15 - 2x2 122 = -81x - 32
11. 1h3 - 12 14h - 12 + 12h2 - h - 12 13h22
   = 10h4 - 4h3 - 3h2 - 4h + 1

13. 
312x + 322  15. - 4px12x2 + 122  17. 

12x13 - x213 - 2x22

19. 
-6x2 + 6x + 413x2 + 222   21. 

-3x2 - 16x - 261x2 + 4x + 222

23. 
-2x3 + 2x2 + 5x + 4

x31x + 222   25. -107  27. 75.0  29. 19

31. -5.64  33. Eq. (23.10)  35. 10, -12
37. x2ƒ′1x2 + 2xƒ1x2
39. (1) 

-12x3 + 45x2 - 14x13x - 722        (2) 
-12x3 + 45x2 - 14x13x - 722

41. 12.0  43. 1, -1          45. -0.694 W>s 

       
1

-1

3-3

47. 
9617R + 1222  49. 8t3 - 45t2 - 14t - 8  51. 1.18 °C>h

15. mtan = 6x3; 0, 0.75, 6 17. mtan = 5x4; 0, 0.31, 5

 

1

1

-1

y

x

   

2

1

y

x

19. 2

-2

2-2

 21. 0.5

-0.1

1.5-1

23. av. ch. = 4.1, mtan = 4  25. av. ch. = -12.6, mtan = -12.0

27. 1 -1, 22   29. -  
1
6

  31. 9.46°  33. 3

Exercises 23.3, page 677

1. 8x + 3  3. 3  5. -2  7. 2x  9. 2px

11. 2x - 7  13. 412 - x2   15. 3x2 + 4  17. -  
131x + 222

19. 1 - 4

3x2  21. -  
4

x3  23. 4x3 + 3x2 + 2x + 1

25. 4x3 + 2

x2  27. 213x - 12 ; -8  29. -  
3313x + 222 ; -  

3
11

31. -  
2

x2; all real numbers except 0

33. 
-6x1x2 - 122; all real numbers except -1 and 1  35. 15, 52

37. 14, -322
39. 

1
21x + 1

; differentiable for x 7 -1 since derivative and 

 function are both defined for these values.

41. 
dy

dx
= nxn-1  43. -11.3°

Exercises 23.4, page 680

1. 
ds
dt

= 14.0 - 9.80t; -56.0 m/s, -25.3 m/s

3. 
dy

dx
`
x = 2

= 4 5. 
dy

dx
`
x = -3

= - 3
4

  

y

x

 
y

x

7. 4.00, 4.00, 4.00, 4.00, 4.00; lim
tS3 v = 4.00 m>s
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37. 1  39. 
1

2vL3 a-  
L
C

+ 2R2b   41. 
nRT2 + bnP

VT2 - anT2 + bnT

43. -  
x
y

  45. 
r - R + 1

r + 1
  47. 

2C2r112CSr - 20Cr - 3L2
31Cr + L2 1Cr - L2

Exercises 23.9, page 705

1. y′ = 15x2 - 4x, y ″ = 30x - 4, y‴ = 30, y1n2 = 0 1n Ú 42
3. y′ = 3x2 + 2x, y ″ = 6x + 2, y‴ = 6, y1n2 = 0 1n Ú 42
5.  ƒ′1x2 = 3x2 - 24x3, ƒ ″1x2 = 6x - 72x2,

   ƒ‴1x2 = 6 - 144x, ƒ142 1x2 = -144, ƒ1n2 1x2 = 0 1n Ú 52
7.  y′ = -811 - 2x23, y″ = 4811 - 2x22,

   y‴ = -19211 - 2x2 , y142 = 384, y1n2 = 0 1n Ú 52
9.  ƒ′1r2 = 116r + 92 14r + 922, 
   ƒ ″1r2 = 2418r + 92 14r + 92 ,
   ƒ‴1r2 = 96116r + 272 , ƒ 142 1r2 = 1536,
   ƒ1n2 1r2 = 0 1n Ú 52
11. 84x5 - 30x4  13. -  

1

4x3>2  15. -  
1218x - 327>4

17. 
14.4p11 + 2p25>2  19. 60012 - 5x22

21. 30127x2 - 12 13x2 - 123  23. 
4p216 - x23

25. 
4501v + 1523  27. -  

9

y3  29. -  
61x2 - xy + y2212y - x23

31. 9
125  33. -  13

384  35. -4320  37. -9.80 m>s2

39. 1.00 m>s2

41. 
d
dx

au 
dv
dx

+ v 
du
dx

b = u 
d2v

dx2 + dv
dx

 
du
dx

+ v 
d2u

dx2 + du
dx

 
dv
dx

43. 48.0  45. 
d2P

dt2 = 80.0  47. -9.80 m>s2   

49. -  
1.6012t + 123>2  51. 0.0490

Review Exercises for Chapter 23, page 707

1. -4  3. Does not exist  5. 1  7. 1
4  9. 2

3

11. -2  13. 5  15. -4x  17. -  
4

x3  19. 
1

21x + 5

21. 2x17x5 - 32   23. 
1

x2 12x3/2 + 32   25. 
311 - 5y22

27. -2812 - 7x23  29. 
9px15 - 2x227>4

31. 
131 + 21 + 11 + 8s21 + 11 + 8s11 + 8s

33. 
-2x - 3

2x214x + 321>2  35. 
2x - 612x - 3y22

1 - 912x - 3y22   37. 
5
48

39. 13.6  41. 
2118x5 - 12

x3   43. 
5611 + 4t23  45. 

1

x2

47. 53.1°

53. 
2R1R + 2r2
31R + r22   55. 

E21R - r21R + r23   57. 9.80 * 103 Pa>m

Exercises 23.7, page 697

1. 36x212 + 3x323  3. - 3x12 - 3x221>2  5. 
1

2x1>2  7. - 6

5t3

9. - 1

x4>3  11. 
3
2

x1>2 + 6

x2  13. 10x1x2 + 124  

15. -216x217 - 4x327  17. 
2x212x3 - 322>3  19. 

24y14 - y225

21. 
24x312x4 - 520.25  23. 

-4x11 - 8x223>4  25. 
12v + 518v + 521>2

27. 
615x - 12

x411 - 6x21>2  29. 
x2 + 12x + 161x + 4221x + 221>2

31. 
-112R + 114R + 123>2  33. 

3
10

  35. 
5
36

37. 
d
dx

 x1x1>22 = xa1
2

 x-1>2b + x1>2112 =
3
2

 x1>2
39. 

x3102 - 113x22
x6 = -3x-4  41. x = 0

                 2

-1

-2 2

43. Yes, at a- 13
9

, 
1
3
b   45. 1  47. 

0.4851w
  49. -1.35 cm>s

51. 
-450 000

V5>2 , -4.50 kPa>cm3  53. l = a

55. -45.2 W> 1m2 # h2   57. 
8a314a2 - l223>2

59. 
121w + 122w2 + 2w + 2

Exercises 23.8, page 701

1. -  
4x

3y2  3. x2 
dy

dx
+ 2xy  5. -  

x 
dy
dx + y1xy22   7. - 3

2

9. 
6x + 1

4
  11. 

x
4y

  13. 
2x

5y4  15. 
2x

2y + 1
  17. 

-3y

3x + 1

19. 
y - x3 - 2x2y - xy2

x
  21. 

31y2 + 12 1y2 - 2x + 121y2 + 122 - 6x2y

23. 
412y - x23 - 2x

812y - x23 - 1
  25. 

-3x1x2 + 122

y1y2 + 12   27. 3  

29. -  108
157  31. 

1
4

  33. 12, 22 , 12, -22
35. At 117, 02  and 1 - 17, 02 , mtan = -2
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7. x - 2y + 6 = 0  9. 2x - 6y + 7 = 0

 

1

1

4

2

(2, 4)

y

x

 

7

6-6

-2

11. y = 2x - 4 13.   y - 8 = - 1
241x - 3

22 , or 
  2x + 48y - 387 = 0

 

2

4-2

-2

 

10

2-2

-4

15.  2x - 12y + 37 = 0  
72x + 12y + 37 = 0 

2

2

4

6

-6

-4

-2
4 6 8-8 -6 -4 -2

y

x

17. The line is y - x - 1 = 0.

19.  Take derivatives; evaluate at 1a, b2 ; show that product 
 m1m2 = -4a>b2 = -1.

21. y - y1 = -
x1

y1
1x - x12 ; y1y - y1

2 = -x1x + x1
2; 

    x1x + y1y = x1
2 + y1

2 = a2

23. x - 4y + 2 = 0  25. x - 2y - 20 = 0

27. x + y - 6 = 0

29. x + 2y - 3 = 0, x = 0, x - 2y + 3 = 0

Exercises 24.2, page 717

1. x3 = 0.2086; calculator: 0.2087 (to three decimal places)

3. -0.180 460 4  5. 0.585 786 4  7. -3.7321  

9. 2.561 552 8  11. -1.236 068  13. 0.917 543 3  

15. 0.618 034 0  17. -1.855 772 5, 0.678 362 8, 3.177 409 7

19. Find the real root of x3 - 4 = 0; 1.587 401 1

21. xn+1 =
1
2

xn + a
2xn

  23.  xn = 2xn-1 - ax2
n-1, n Ú 2 

25. 4.21 cm  27. 2.214 mF, 3.214 mF, 4.214 mF  29. 0.629 cm

31. 1.00 * 10-4

49.  It appears to be 8, but using  

-1 4
0

10

Point (2, 8)
missing

 
trace, there is no value  
shown for x = 2.

51. (a) 30.0 m>s (b) 6.00 m>s  53. -31.0  55. a0, 
1
3
13b

57. 10 00011 + 0.250t27 59. (a) n =
411 + 8t21>2

     (b) a =
-1611 + 8t23>2

61. 5  63. -k + k2t - 1
2

k3t2  

65. -  
2k

r3   67. 0.410.01t + 12210.04t + 12   

69. 
2R1R + 2r2
31R + r22   71. 833 W  73. 5k1x4 + 270x2 - 1902

75. -  
1

4p1C1L + 223>2  77. 
-1510.5t + 122

79.  y′ =
w

6EI
13L2x - 3Lx2 + x32

    y ″ =
w

2EI
1L - x22

    y‴ =
w
EI

1x - L2
    yiv =

w
EI

81. p = 2w + 150
w

, 
dp

dw
= 2 - 150

w2

83. A = 4x - x3, 
dA
dx

= 4 - 3x2

85. 397 km>h

Exercises 24.1, page 713

1. x + 8y - 17 = 0

3. 4x - y - 2 = 0  5. 2y + x - 2 = 0

 

y

x

1

1 2

6 (2, 6)

 

2

5-5

-1

1 1
2Q  ,     R
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21.  Max. 13, 182 ,  23. Max. 1 -2, 32 , min.
 conc. down all x 10, -52 , infl. 1 -1, -12

 

y

x1 3

4

18

   

3
(0, -5)

(-2, 3)

(-1, -1)

50
y

x

25.  No max. or min.,  27. Max. 11, 162 , min. 13, 02 , 
 infl. 1 -1, 12  infl. 12, 82

 

1

4

y

x

 

4

1 2 3

16
y

x

29.  Max. (1, 7),  31. Max. 1 -1, 42 , min. 11, -42 , 
 infl. (0, 6), 12

3, 178
27 2  infl. 10, 02

 
1

1

7

y

x

 

-1 1

4

-4

y

x

33. Where y′ 7 0, y inc. 25

5-5

-25

 y′ = 0, y has a max. or min.
 y′ 6 0, y dec.
 y ″ 7 0, y conc. up
 y ″ = 0, y has infl.
 y ″ 6 0, y conc. down

35.  Curve has a maximum and a  c = 1

c = 3

c = -1

c = -3

3

3-3

-3

 
minimum for c 6 0 but is always  
increasing for c 7 0.

37.  The left relative maximum  6

2-2

-6

 
point is above the left relative  
minimum point but below the 
right relative minimum point. 
 

Exercises 24.3, page 721

1. 16.5, -14.0°   

3. 3.16, 341.6° 5. 8.07, 352.4°

12

-3

y

x

u
vy

vx
v

  

3

2

y

vy

vx
v

x

u

7. a = 0  9.  20.0, 3.68°  11. 6.42 m>s, 321°
13. 1.3 m>min2, 288°  15. 39 m>s, 310° and 7.4 m>s2, 270°
17. 276 m>s, 43.5°; 2090 m>s, 16.7°  19. 1.32 cm>s, -24.9°
21. 22.1 m>s2, 25.4°; 20.2 m>s2, 8.5°  23. 21.2 km>min, 296.6°
25. vx = 731 m>min, vy = -690 m>min  27. 370 m>s, 19°

Exercises 24.4, page 725

1. 5.20 V>min  3. 23  5. 3  7. 0.031 units>s

9. 0.36 m>s  11. 0.0900 Ω >s  13. -0.002 51 s>s  

15. 330 km>h  17. 4.1 * 10-6 m>s  

19. 
dB
dt

=
-3kr1dr>dt23r2 + 1 l>22245>2  21. 0.0056 m>min  

23. 0.15 mm2>month  25. -101 mm3>min

27. 
dV
dt

= -kA; 
dr
dt

= -k  29. -4.6 kPa>min

31. 3.18 * 106 mm3>s  33. I =
8k

x2 ; 
dI
dt

= 0.000 800k unit>s

35. -0.43 N>s  37. 0.481 m>min  39. 820 km>h

41. 2.71 m>s  43. 2.50 m>s

Exercises 24.5, page 731

1. Inc. x 6 0, x 7 4, dec. 0 6 x 6 4
3. Conc. down x 6 0, conc. up x 7 0, infl. 10, 02
5. Inc. x 7 -1, dec. x 6 -1
7. Inc. x 6 -3, x 7 2; dec. -3 6 x 6 2
9. Min. 1 -1, -12   11. Max. 1 -3, 712 ; min. 12, -542
13. Conc. up all x
15. Conc. up, x 7 -1

2; conc. down, x 6 -1
2; infl. 1 -1

2, 17
2 2

17. y

x-2 1

1

  19. y

x-2

15

(-3, 71)

(-0.5, 8.5)

(2, -54)
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3. Dec. x 6 -1, x 7 -1,  5. Int. 1 - 23 2, 02 , min. 11, 32 ,
 conc. up x 7 -1,  infl. 1 - 23 2, 02 , asym. x = 0
 conc. down x 6 -1,  

y

x1

1

 
int. (0, 2), 
asym. x = -1, y = 0

 

y

x1

1

7. Int. (1, 0), 1 -1, 02 , 9. Int. (0, 0), max. 1 -2, -42 ,

 asym. x = 0, y = x, min. (0, 0), asym. x = -1

 conc. up x 6 0, y

x1

y = x - 1

1

 conc. down x 7 0

 

y

x1

1

11. Int. 10, -12 , 13. Int. (1, 0), max. (2, 1),
 max. 10, -12 , infl. 13, 892 , 
 asym. x = 1, asym. x = 0, y = 0
 x = -1, y = 0 

y

x

1

2
 

y

x1-1-1

1

39. Max. 120, 102      41. Max. 14, 82

 

10

20 40

y

x

 

8

1
8

(4, 8)

1

P

i

43. Max. 13, 162  45.  Max. 10, 752 ,  
infl. 11, 642 , 13, 482

 1

2

16
(3, 16)

(4.15, 7.17)
(1.85, 7.17)

5

F

 x
    

R

i
 

47. Max. (40, 41 620) 49.  V = 4x3 - 40x2 + 96x, 
max. 11.57, 67.62 ,

  infl. a10
3

, 23.7b

 

(40, 41 620)

(18, 20 324)10 000

50 000

10 40

f(t)

t

  

V

x

51. 

x

y

1

 53. 

1-1 2

1

2

y

x

Exercises 24.6, page 736

1. y = x - 4
x

,  y y = x

x

 int. 12, 02 , 1 -2, 02 ; 
 inc. all x, except x = 0;  
 conc. up x 6 0,  
 conc. down x 7 0
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17. 12 cm by 12 cm  19. 5 mm, 5 mm

21. xy = A, p = 2x + 2y; p = 2x + 2A
x ; 

dp
dx = 2 - 2A

x2 ;

 x = 1A, y = 1A; x = y (square)

23. 1.10 h  25. 8.49 cm, 8.49 cm

27.  r = 0.5 cm, l = 1 cm, V = 0.8 m3  29. 24.0 cm, 36.0 cm

31. 1.20 m  33. 2 cm  35. 12  37. 0.58L  39. 38.0°
41. 8>3 km from A  43. 3.3 cm  45. 100 m

47. 1250 units per week  49. 8.0 km from refinery

51. 59.2 m, 118 m

Exercises 24.8, page 746

1. 
-81 t3 - 221 t3 + 422 dt  

3. 
dx
x

= 0.0065 = 0.65%; 
dV
V

= 0.019 = 1.9%

5. 15x4 + 12dx  7. 
-10dr

r6   9. 48t13t2 - 523dt   

11. 
-72xdx13x2 + 122   13. x11 - x221 -5x + 22dx  15. 

2dx15x + 222

17. 12.28, 12  19. 0.626 49, 0.6257
21. L1x2 = 2x  23. L1x2 = -2x - 3  25. 1570 km

27. 0.246,  29. -31.3 nm  31. 
dr
r

=
1
2

# dl
l

  

33. 
dA
A

=
2dr
r

  35. 2.0125

37. L1x2 = 1k + k11k-12x = 1 + kx

39. L1x2 = -  12x + 3
2; 1.45  41. L1V2 = 1.73 - 0.133V

Review Exercises for Chapter 24, page 748

 1. 5x - y + 1 = 0 3. 8x + 5y - 50 = 0

 

y

x

 

y

x

5. x - 2y + 3 = 0  7. 4.19, 72.6°  9. 2.12

11. 2.00, 90.9°  13. 0.745 898 3  15. 1.4422

17. Min. 1 -2, -162 , 19. Int. (0, 0), 1{313, 02 ;
 conc. up all x  max. (3, 54), min. 1 -3, -542 ;
    infl. (0, 0)

 

y

x-2

-16     

y

x-2 2

50

100

15. Int. (0, 0), (1, 0), 1 -1, 02 , 17. Int. (0, 0), infl. (0, 0),

 max. 11
212, 122 , asym. x = -3,

 min. 1 -1
212, -1

22   x = 3, y = 0

 

y

x
0.1

0.2

 

y

x
1

1

19. As c goes from -3 to +3,  21. Dividing simplifies analysing 
the graph goes from second  behaviour as x becomes large  
and fourth quadrants to the   and finding the range. 
third and first quadrants.

 

0.5

3-3

c = 1

c = -1

c = 3

c = -3
c = 1

c = -1

c = 3

c = -3

-0.5

23. Int. (0, 0), asym. CT = 6, 25. Int. (0, 1), max. (0, 1), 
 inc. C Ú 0,  infl. (141, 0.82),
 conc. down C Ú 0  asym. R = 0

 

CT

C

  

R

t

27. Int. (1, 0), 1 -1, 02 ; 29. A = 2pr2 + 40
r

,

 inc. all x, except x = 0;  min. (1.47, 40.8),
 conc. up x 6 0,  asym. r = 0
 conc. down x 7 0  

1 2

20
40

5

A

r

 v

r1

1

v = r 

Exercises 24.7, page 741

1. 360 000 m2  3. 60 m  5. 
E
2R

  7. 0  

9. 35 m2, $8300  11. 
L

R2 + v2L2  13. 1.94 units  15. a
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Exercises 25.2, page 759

1. 4x2 + C    3. 
1x2 + 125

5
+ C    5. x2 + C    7. 1

8 x8 + C

9. 16
5  x5>2 + C    11. - 3

R3 + C    13. 1
3 x3 - 1

6 x6 + C

15. 3x3 + 1
2 x2 + 3x + C    17. 

1
6

 t3 + 2
t

+ C    

19. 2
7 x7>2 - 2

5 x5>2 + C    21. 6x1>3 + 1
9 x + C

23. x + 8x3 + 144
5  x5 + C    25. 1

6 1x2 - 126 + C

27. 1
5 1x4 + 325 + C    29. 1

80 12u5 + 528 + C    

31. 1
12 18x + 123>2 + C    33. 1

626x2 + 1 + C

35. 42z2 - 2z + C    37. y = 2x3 + 2    

39. y = 5 - 1
18 11 - x326

41. No. The result should include the constant of integration.

43.  No. With u = 4x3 + 3, du = 12x2dx, and the x4 would have to 
be x2.

45. No. There should be a factor of 1>2 in the result.

47. 12y = 83 + 11 - 4x223>2    49. 4
15 x5>2 + C1x + C2

51. V = 0.14t + 0.000 14 t2    53. i = 2t2 - 0.2t3 + 2

55. T = 22501r + 12 -2 + 250    57. f = 10.01A + 1 - 1

59. y = 3x2 + 2x - 3

Exercises 25.3, page 764

1. (a) 3  (b) 15
4     3. 20    5. 9, 12.2    7. 1.92, 2.28

9. 7.62, 8.21    11. 0.464, 0.599    13. 1.92, 1.96   

15. 13.5    17. 8
3    19. 9    21. 0.8    23. 2

25.  14.85; the extra area above y = 3x using circumscribed rectan-
gles is the same as the omitted area under y = 3x using inscribed 
rectangles.

27.  3.08; the extra area above y = x2 using circumscribed rectangles 
is greater than the omitted area under y = x2 using inscribed 
rectangles.

Exercises 25.4, page 767

1. -9
4   3. 1   5. 254

7    7. 216 - 213 - 21 = -19.57

9. 2.53

11. -32
3     13. 33

2023 11
5 - 3

823 1
2 - 17

5 = -1.55    15. 4
3

17. -81
4     19. 2    21. 1

4120.52>3 - 17.52>32 = 0.188

23. 176
1083 = 0.162    25. 84    27. 364

3     29. 33
784 = 0.0421

31. 3880
9     33. 2

3 113113 - 272 = 13.2

35.  14 + 15
4 = 4; under y = x3, the area from x = 0 to x = 1 plus the 

area from x = 1 to x = 2 equals the area from x = 0 to x = 2.

37. 
28
3

39. 
1
2

7 1
3

 and 
3
2

6 7
3

; from x = 0 to x = 1 the area under y = x

is greater than the area under y = x2. Between x = 1 and x = 2, the 
area under y = x is less than the area under y = x2.

41. 
2

2k + 1
    43. 

A12
a1g

 11h - 1H2
45. 64 000 N # m    47. 86.8 m2    49. 

3NEF

5

21. Min. 12, -482 ; 23. Min. 1{12, 22 ;
 conc. up x 6 0, x 7 0      ,  asym. x = {1;
 int. (0, 0), (213 4, 0)  conc. up x 6 1, x 7 1

 

y

x

-50

2

50

  

y

x-1 1

2

25. a12x2 - 1

x2 bdx  27. 
11 - 4x2dx11 - 3x22>3  29. 0.244

31. L1x2 =
1
3
111x - 42   33. 1.85 m3  35. 45.2 m3

37. 
RdR

R2 + X2  39. 251.1  41. 2x - y + 1 = 0

43. 0.0 m, 6.527 m  45. 8.8 m>s, 336°  47. 0.23 m>s

49. -7.44 cm>s  51. 
0 1.26

  53. 22 m3>s

55. y

2

x

  57. -0.113 m>min

59. 38 000 m2>min  61. 7.30 ft>s   

63. Max. (0, 100); infl. (37, 63); 65. 1160 km>h
 int. (0, 100), (89, 0),
 L1x2 = 113 - 1.42x

 

y

x

100

(37, 63)

(50, 42)

10

10 100

89

67. 6 mF, 6 mF  69. 13.5 dm3  71. 3 km  73. 6.56 cm

75. 0.153 m>min  77. r = 2.09 cm; h = 23.0 cm

79. l = 4.67 m, w = 3.50 m, h = 2.34 m 

Exercises 25.1, page 754

1. F1x2 = 3x4    3. F1x2 =
2
3

 x3>2 + 1

x3    5. 1    7. 3 

9. 6    11. -1    13. x5>2    15. 3
2 t4 + 12t    17. 2

3 x3 - 1
2 x2 

19. 4
3 x3>2 + 3x    21. 

7

5x5    23. 2v2 + 3p2v 

25. 
1
3

 x3 - 4x - 1
x

    27. 12x + 126    29. 1p2 - 124

31. 1
40 12x4 + 125    33. 16x + 123>2    35. 1

4 13x + 124>3
37. 

1
2x + 1

39.  12x + 523 is an antiderivative of 612x + 522. Factor of 2 from 
2x + 5 is needed.
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37. 42>3    39. 1    41. 48
5     43. 18 J    45. 80.8 km

47. 4 cm2    49. 42.5 dm2

Exercises 26.3, page 792

1. 128 p
7     3. 8

3 p    5. 8
3 p    7. 9p    9. 72p    11. 768

7  p

13. 348
5  p    15. 16

3  p    17. 128
7  p    19. 243

80  p    21. 
10p

3
 15

23. 1296
5  p    25. 16

3  p

27. The region bounded by y = x3>2, y = 0, x = 1, and x = 2

29. 128
3  p    31. 1

3 pr2h    33. 1
5    35. 16 800 m3

37. 18.3 cm3

Exercises 26.4, page 798

1. 10, 832     3. 2.9 cm    5. 1.2 cm    7. 1 -0.5 cm, 0.5 cm2
9. 16

5, 192
35 2     11. 10, 652     13. 14

3, 432     

15. (1.20, 5.49)    17. 15
3, 42     19. 14

3, 832     21. 10, 35 a2  

23. 17
8, 02     25. 10, 562     27. 12

3, 02
29.  12

3 b, 13 a2 . Place triangle with a vertex at origin, side b and right 
angle on x-axis. Equation of hypotenuse is y = ax>b. Use Eqs. 
(26.16) and (26.17).

31. 0.375 cm above centre of base    33. 19.3 cm from larger base

Exercises 26.5, page 803

1. Iy = r, Ry =
1
2
12    3. 68 g # cm2, 2.9 cm    

5. 2530 g # cm2, 3.58 cm    7. 2
3 r    9. 162

5  r    11. 16

13. 1
6  mb2    15. 9

717    17. 8
11155    19. 16

3  pr    21. 4
5110

23. 3
10  mr2    25. 0.324 g # cm2    27. 31.2 kg # cm2

Exercises 26.6, page 808

1. 41 N # cm    3. 176 kN    5. 8.0 N # cm    7. 32.4 N # m

9. 1.7 * 10-16 J    11. 0.09k N # m    13. 50 000 N # m

15. 3.00 * 106 kN # m    17. 9.37 * 105 N # km

19. 9.8 * 105 N # m    21. 12.5 kN    23. 152 kN

25. 1.72 * 105 N    27. 1.84 MN

29. 3.92 * 104 N, 1.18 * 105 N buoyant force    31. 2.7 A

33. 35.3,    35. 109 m    37. S = pr2r2 + h2

Review Exercises for Chapter 26, page 811

1. 0.708 m    3. 4.7 s    5. No    7. 0.44 C    9. 55 V

11. y = 20x + 1
120  x3    13. 18    15. 18    17. 27

4

19. Atop>Abot = a 2n
2n + 1

bn a 1
2n + 1

b =
2n
1

21. 48
5  p    23. 512

5  p    25. 4
3 pab2    27. 1 -0.5 cm, 0.6 cm2

29. 130
7 , 45

4 2     31. 114
5 , 02     33. 8

5 r    35. 68.7 g # mm2

37. 2700 N # m    39. 4790 cm2    41. -18 m>s    43. 1.8 m

45. 47 m3    47. 88 m3    49. 1580 kN    51. 0.29 Ω
53. 5 * 106 m>s    55. 0.1359

Exercises 25.5, page 770

1. 7
6    3. 11

2 = 5.50, 16
3 = 5.33    5. 7.66, 23

3 = 7.67

7. 0.204    9. 19.0    11. 0.520    13. 21.7    15. 45.4

17. The tops of all trapezoids are below y = 1 + 1x.

19. 0.702, ln 2 = 0.693    21. 100.027 m

Exercises 25.6, page 774

1. 0.406    3. (a) 6  (b) 6    5. (a) 19.7  (b) 19.7

7. 19.3    9. 0.511    11. 13.1    13. 44.6    15. 3.12

17. 1.19 cm

Review Exercises for Chapter 25, page 775

1. x4 - 1
2 x2 + C    3. 2

7 u7>2 + 16
3  u3>2 + C    5. 19

3

7. 16
3     9. 5x - 3

x2 + C    11. 3

13. 
1

1019 - 5n22 + C    15. -  67 17 - 2x27>4 + C

17. 9
8 1323 3 - 12     19. - 1

30 11 - 2x325 + C

21. - 1

2x - x3 + C    23. 3350
3     25. y = 3x - 1

3 x3 + 17
3

27. (a) x - x2 + C1

 (b) -1
4 11 - 2x22 + C2 = x - x2 + C2 - 1

4; C1 = C2 - 1
4

29. L
4

3
F1v2dv              31. 1

27 16x + 52 3>2
+ C1x + C2

33.  0.25 = 0.25; y = x3 shifted 1 unit to the right is y = 1x - 123. 
Therefore, areas are the same.

35. 22    37. The graph of f1x2  is concave down. This means the 
tops of the trapezoids are below y = f1x2 .

39. 0.842    41. 0.811    43. 13.6    45. 19.30

47. 19.04    49. 25.7 m2    51. 25.8 m2

53. -   14.4 m

55. Q =
k

12R
14r3R - 3r4 - R42 + Q0

57. 66.4 m

Exercises 26.1, page 781

1. -19.6 m>s   3. -15 m>s   5. s = 8.00 - 0.25t   7. 5.0 m>s

9. 1.4 m    11. 12 m>s2    13. 24 m>s    15. 85 m

17. 0.345 nC    19. 0.015 C    21. 120 V    23. 4.68 mV

25. 970 rad    27. 67 A    29. 
k
x1

31. m = 1002 - 21t + 1, 2.51 * 105 min

Exercises 26.2, page 786

1. 26
3     3. 2    5. 27

8     7. 32
3     9. 1

6    11. 26
3

13. 3    15. 9
2    17. 8

3    19. 7
6    21. 256

15     23. 343
24

25. 65
6     27. 49

3     29. 4

31.  The area bounded by x = 1, y = 2x2, and y = x3 or the area 
bounded by x = 1, y = 0, and y = 2x2 - x3.

33. 20    35. 
A1

A2
=

1 - 1
n + 1
1

n + 1

=
n

n + 1
 
n + 1

1
=

n
1
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37. 4 sec 4x1 tan2 4x + sec2 4x2  dx

39. (a) 3.425 518 8, value of derivative

(b) 3.426 052 4, slope of secant line

41. (a) 

0 2

-1

4   (b) 

0 2

-1

4

43. 2 tan x sec2 x = 2 sec x1sec x tan x2     45. -12

47. 2 sec2 x - sec x tan x =
2

cos2 x
- sin x

cos2 x
49. -8.4 cm>s    51. 140 m>s

Exercises 27.3, page 824

1. 
2x21 - x4

    3. 
721 - 49x2

    5. 
18x221 - 9x6

7. 
-1.821 - 0.25s2

    9. 
111x - 12 12 - x2     11. 

41s11 + s2
13. - 6

x2 + 1
    15. 

5x21 - x2
+ 5 sin-1 x

17. 
0.8u

1 + 4u2 + 0.4 tan-1 2u 

19. 
321 - 4R2 sin-1 2R - 6R + 221 - 4R21sin-1 2R22

21. 
21cos-1 2x + sin-1 2x221 - 4x21cos-1 2x22

    23. 
-241cos-1 4x2221 - 16x2

25. 
4 sin-114t + 322- (4t2 + 6t + 2)

    27. 
-1

t2 + 1
    29. 

-212x + 12211 + 4x222  

31. 
1814 - cos-1 2x2221 - 4x2

    33. -
x2y2 + 2y + 1

2x

35. (a) 1.154 700 5, value of derivative

(b) 1.154 739 0, slope of secant line

37. 
31sin-1 x22 dx21 - x2

    39. 0.41    41. 
211 + x222

43. 

-1.5 1.5

-2

3     45. 
-16x11 + 4x222

47. Let y = sec-1 u; solve for u; take derivatives; substitute.

49. 
E - A

vm2m2E2 - 1A - E22
    51. - R

R2 + 1XL - XC22

53. u = tan-1 
h
x

; 
du
dx

=
-h

x2 + h2

Exercises 27.1, page 818

1. 8u sin 2u2 cos 2u2 = 4u sin 4u2    3. cos1x + 22
5. 12x2 cos12x3 - 12     7. -3 sin 12 x    9. -6 sin13x - p2
11. 6p sin 3pu cos 3pu = 3p sin 6pu

13. -45 cos215x + 22sin15x + 22
15. sin 3x + 3x cos 3x    17. 9x2 cos 5x - 15x3 sin 5x

19. 6v cos15v2  cos v2 - 15 sin15v2  sin v2

21. 
2 cos 4x11 + sin 4x

    23. 
3t cos13t - p>32 -  sin13t - p>32

2t2

25. 
4x11 - 3x2sin x2 - 6 cos x213x - 122

27. 4 sin 3x13 cos 3x cos 2x - sin 3x sin 2x2
29. 2 cos 2t cos1sin 2t2     31. 3 sin2 x cos x + 2 sin 2x

33. - cos s

sin2 s
+ sin s

cos2 s
35. (a) 

-4 4

-2

2   (b) See the table.

37.  (a) 0.540 302 3, value of derivative

(b) 0.540 260 2, slope of secant line

39. Resulting curve is y = cos x.

41. 
2x - y cos xy

x cos xy - 2 sin 2y

43. 
d sin x

dx
= cos x, 

d2 sin x

dx2 = -sin x,

d3 sin x

dx3 = -cos x, 
d4 sin x

dx4 = sin x

45. sin 2x = 2 sin x cos x    47. 0.515    49. -2.65

51. 412 V>s    53. -199 cm>s    55. -38.5 km

Exercises 27.2, page 821

1. 12x sec2 x2 tan x2    3. 5 sec2 5x    5. 5 csc210.25p - u2
7. 15 sec 5v tan 5v    9. 

312x + 3
 csc 12x + 3 cot 12x + 3

11. 30p tan 3pt sec2 3pt    13. -4 cot3 
1
2

x csc2 
1
2

 x

15. 2 tan 4x1sec 4x    17. -84 csc4 7x cot 7x

19. 0.5t2 sec2 0.5t + 2t tan 0.5t

21. -4 csc x212x cos x cot x2 + sin x2
23. -

csc x(x cot x + 1)

x2

25. 
21 -4 sin 4x - 4 sin 4x cot 3x + 3 cos 4x csc2 3x211 + cot 3x22

27.  sec2 x1 tan2 x - 12     29. 2p cos 2pu sec2 1sin 2pu2
31. 

1 + 2 sec2 4x12x + tan 4x
    33. 

2 cos 2x -  sec y

x sec y tan y - 2

35. 24 tan 3x sec2 3x dx
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ln x is not defined for x … 0. Therefore 
dy2

dx
`
x = -1

=
2
x
`
x = -1

 does not exist.

51. 
10 log e

I
  
dI
dt

    53. 
x

x2 + 1 + 21 + x2
- 1

x
+ x21 - x2

55. 0.125 s2>m

Exercises 27.6, page 836

1. 2e2x cot e2x    3. 16 ln 4246x    5. 
3e2x1x

    7. 4e2t13et - 22
9. e-T11 - T2     11. esin x1x cos x + 12     13. 8e-4s

15. e-3x14 cos 4x - 3 sin 4x2     17. 
2e3x112x + 5214x + 322  

19. 
tet2

et2 + 4
    21. 16e6x1x cos x2 + 3 sin x22  

23. 
211 + 2te2t2
t2ln 2t + e2t

    25. 
exy1xy + 12

1 - x2exy - cos y
  

27. 
3e2x

x
+ 6e2x ln x    29. 12e6t cot 2e6t    31. 

4e2x21 - e4x

33. (a) 2.718 281 8, value of derivative

    (b) 2.718 417 7, slope of secant line

35. 

0 4
0

20     37. -1.46    

39. 
12e4x14x + 232  dx1x + 622     41. 

-3 3

-1

8

43. 1 -xe-x + e-x2 + 1xe-x2 = e-x

45. 
2e2x1e2x + 12 - 2e2x1e2x - 121e2x + 122 =

4e2x1e2x + 122

=
1e2x + 122 - 1e2x - 1221e2x + 122

47. -3, 2    49. Ak2ekx + Bk2e-kx = k21Aekx + Be-kx2
51. -0.001 64>h    53. e-66.7t1999 cos 226t - 295 sin 226t2
55. Substitute and simplify.

57. 
d
dx

 c 1
2

 1eu - e-u2 d =
1
2

 1eu + e-u2  
du
dx

;

d
dx

 c 1
2

 1eu + e-u2 d =
1
2

 1eu - e-u2  
du
dx

59. sinh
x

50

Exercises 27.7, page 840

1. ∞     3. 1    5. ∞     7. 0    9. 0    11. -1
6    

13. -p    15. 1    17. 0    19. 0    21. ∞

Exercises 27.4, page 828

1. Max. 1p3 , 0.342 ; 

min. 15p
3 , -3.482 ;

infl. 10, 02 , 1p, -p
2 2   

y

x

1
I

I

M

m

-1

-4

p 2p

3.  d sin x>dx = cos x and d cos x>dx = -sin x, and sin x = cos x at 
points of intersection.

5. 
1

x2 + 1
 is always positive.

7. 
14

-14

y

xp
2

p
2-

  Dec. 0 6 x 6 p

2
, -p

2
6 x 6 0;  

infl. (0, 0); 

asym. x =
p

2
, x = -p

2

9. y = 1.10x - 0.29    11. 1.933 753 8    13. -10 

15. 32 sin 2t cos 2t    17. 0.58 m>s, -1.7 m>s2    

19. -0.0718 N>s    21. 358 cm>s, 18.0°    23. 17.4 cm>s2, 176°
25. -0.085 rad>s    27. 8.08 m>s    29. 14.0°    31. 282 km

33. 1.06 L>s    35. w = 9.24 cm, d = 13.1 cm    37. 4.21 m

Exercises 27.5, page 833

1. -4 tan 4x    3. 
2 log e

x
    5. 

4 log5 e

x - 3
    7. 

8
x - 3

 

9. 
4 sec2 2x

tan 2x
= 4 sec 2x csc 2x    11. 

1
2T

    13. 
311 - 2x2

x - x2

15. 
61 t + 22 1 t + ln t22

t
    17. 3 ln16 - x2 - 3x

6 - x

19. 
1

x ln x
    21. -pu tan (pu2)    23. 

cos ln x
x

    

25. 6 ln 2v + 3 ln2 2v    27. 
x sec2 x +  tan x

x tan x
    29. 

v + 4
v1v + 22

31. 
2x2 + 1

x
    33. 

x + y - 2 ln1x + y2
x + y + 2 ln1  x + y2

35. 0.5 is value of derivative; 0.499 987 5 is slope of secant line.

37. (a) 

-1 1

-1

y = (1 + x)1/x 
y = e

5   (b) See the table.

39. -0.3640    41. 0.976    43. L1x2 = 4x - p    45. 2.73

47.  xx1 ln x + 12 . In Eq. (23.15) the exponent is constant. For xx, 
both the base and the exponent are variables.

49. ln1x22  is defined for all x, x ≠ 0. 

Therefore 
dy1

dx
`
x = -1

=
2
x
`
x = -1

= -2.
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11.  Max. (4, 3.09),          13. Int. (0, 0), infl. (0, 0), 
asym. x = 0               inc. all x

x

y

1 5

1

-1

-5

5

       

x

y

1

2

-2

15.  y1 inc. x 6 0, y1 dec. x 7 0; 
y2 inc. x 7 0, y2 dec. x 6 0; 
y1 and y2 are reciprocals.

17. y = x - 1    19. 212x - 2y + 212 - 3p12 = 0

21. 1.197 333 8    23. 174 V    25. -0.303 W>day

27. -5.4 °C>min     29. 
p1 -a + bT2

T2     31. a = k2x

33.  Int. (0, 0);  
min. (0, 0), 12p, 02 , g;

 asym. x = -p

2
, 
p

2
, 

3p
2

, g  

x

y

p 2pp
2-

 The path of the roller  
mechanism is the dark curve  1 -1.5 6 x 6 1.52

35. 3.0 s

37.  Max. 1117.6° W, 50.2° N2 , 186.2° W, 47.7° N2 ; 
min. 1101.9° W, 41.2° N2 , 170.5° W, 43.0° N2

39. v = -e-0.5t11.4 cos 6t + 2.3 sin 6t2 , -2.03 cm>s

41. 1>1e = 0.607    43. 
11b

Review Exercises for Chapter 27, page 845

1. -12 sin14x - 12     3. 
-0.2 sec213 - 2v13 - 2v

5. -6 csc213x + 22cot13x + 22     7.  -24x cos3 x2 sin x2

9. 2e21x-32    11. 
6x

x2 + 1
    13. 

50

25 + x2

15. 
0.1

sin-1 0.1t21 - 0.01t2
    17. 1 -2 csc 4x21csc 4x + cot 4x

19. 
1411 + e-x2

x - e-x     21. - 2 sin x cos x

e3x + p2 - 3e3x cos2 x1e3x + p222

23. 
2u11 + 4u22 1 tan-1 2u2 - 2u211 + 4u22 1 tan-1 2u22     25. -2x cot x2

27. 
2 cos x ln13 + sin x2

3 + sin x
    29. 0.1e-2t sec pt1 -2 + p tan pt2

31. 
 cos 2x + 2e4x2sin 2x + e4x

    33. 
2x3ey + 2xy2ey + y

x - x4ey - x2y2ey   

35. 0.5[e-2t(1 - 2t) - e2t(1 + 2t)]    37. 
y1xye-x - 12
x1ye-x + 12

39.  cos-1 x

23. 1    25. 0    27. -7    29. -1    31. 0    33. 1

35. 1    37. sin x varies between 1 and -1 as x S ∞ .    39. gt

Exercises 27.8, page 843

1. Int. 10, 02 , 1p, 02 , 12p, 02 ;    

max. 1p4 , 0.3222 ;

min. 15p
4 , -0.0142 ;   

infl. 1p2 , 0.2082 , 13p
2 , -0.0092

xI

I

m

y M

p 2p
-0.1

0.1

0.3

p
2

p
4

3. Int. (0, 0), max. (0, 0),           

x

y

p 2pp
2-

   not defined for cos x 6 0,

   asym. x = -1
2 p, 12 p, c

5. Int. (0, 0), max. a1, 
1
e
b ,            

x

y

1
-3

3
   infl. a2, 

6

e2 b , asym. y = 0

7.  Int. (0, 0), max. (0, 0),       

x

y

1-1
-1

1infl. 1 -1, - ln 22 , 11, - ln 22     

9. Int. (0, 4); max. (0, 4);

infl. a1
2

 12, 
4
e

 1eb , a- 1
2

 12, 
4
e

 1eb ; 

asym. y = 0

x

y

1 2-1-2

1

2

3

4
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93. 7.07 cm     95. A = 50 cos u11 + 2 sin u2 ,
  max. (0.635, 88.0)

     

I

Imax

h
7.07

97. 
w
H

 cosh 
wx
H

=
w
H

 71 + sinh2 
wx
H

41. Inc. all x,

Infl. x = 12n + 12p

x

y

2

2

43.  Max. 1e-2, 4e-22 ,       45. 7.27x + y - 8.44 = 0

min. (1, 0), infl. 1e-1, e-12     

x

y

1(0, 0)

1

47. 2x + 2.57y - 4.30 = 0    49. 2
3    51. -1    53. 0

55. 2 sin x cos x - 2 cos x sin x = 0 

57. -9 sin 3x = -91sin 3x2     59. -0.703 467 4

61. x > 12 ln 2 1 =  0.34662     63. 0.039    65. 2.5 N

67. 0.12 cm>s    69. -0.064 ° C>day    71. 50 sin 4t 

73. 

x

y

1 5 e2e 10

10

40

60

n =
18 ln 82x

ln x
,

min. 1e, 8e ln 82 ,

asym. x = 1

75. -kE2
0 cos 12 u sin 12 u    77. 

f2R2 - F2f 2

79. 0.005 934 rad>s    81. L1 t2 = 80.8 - 4.16t

0 10
40

100

83. 470 000 users/year    85. 2.00 m, 1.82 m    87. -0.0065 rad>s

89. 48.2°    91. 0.397 cm>s, 72.6°

Exercises 28.1, page 851

1. Change cos x to -sin x.    3. 1
5 sin5 x + C

5. -  4
15 1cos u23>2 + C    7. 4

3 tan3 x + C    9. 1
8

11. 1
4 1sin-1 x24 + C    13. 1

2 1 tan-1 5x22 + C

15. 1
3 3 ln1x + 12 43 + C    17. 0.179    19. 1

4 14 + ex24 + C  

21. 
1

411 - e2t22 + C    23. 1
10 11 + sec2 x25 + C    25. 4.13

27. - L
-sin x dx

 cos5 x
;  u =  cos x, du = -  sin x dx, n = -5

29. L
1

ln2 x
  
dx
x

,  u = ln x, du =
dx
x

, n = -2

31. 0.888    33. 1.10    35. y = 1
3 1 ln x23 + 2    37. 1

3 mnv2

39. q = 11 - e-t23

Exercises 28.2, page 855

1. Change dx to 2x dx.    3. 1
4 ln 0 1 + 4x 0 + C

5. -  13 ln 0 4 - 3x2 0 + C    7. 1
3 ln 4 = 0.462

9. -0.2 ln 0 cot 2u 0 + C    11. ln 2 = 0.693

13. ln 0 1 - e-x 0 + C    15. ln 0 x + ex 0 + C

17. 1
4 ln 0 1 + 4  sec x 0 + C    19. 1

4 ln 5 = 0.402

21. 0.5 ln 0 ln r 0 + C    23. ln 0 2x + tan x 0 + C

25. -611 - 2x + C    27. ln 0 x 0 - 2
x + C

29. 1
3 ln15

42 = 0.0744    31. 1.10

33. L
x - 4
x + 4

 dx = L a1 - 8
x + 4

b  dx = x - 8 ln 0 x + 4 0 + C

35. p ln 2 = 2.18    37. y = lna 3.5
3 + cos x

+ 2b
39. ln a + ln b = ln ab    41. ln 2    43. 42.1 million

45. i =
E
R

 11 - e-Rt>L2     47. 1.41 m

Exercises 28.3, page 858

1. Change x dx to 3x2 dx.    3. e7x + C    5. 1
2 e2x+5 + C

7. 28.2    9. 2ex3
+ C    11. 21e2 - e2 = 9.34

13. 2e2 sec u + C    15. 2
3 11 + ey23>2 + C

17. 6 -
31e6 - e22

2
= -588    19. -  

4

e2x
+ C

21. 1
2 etan-1 2x + C    23. -  13 ecos 3x + C    25. 0   

27. 6 ln1ex + 12 + C    29. 3e2 - 3 = 19.2

31. y = eln x; ln y = ln eln x; y = x; ex2
+ C
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19.  tan-1 1T + 12 + C    21.  4 sin-1 12 1x + 22 + C    

23. -0.714    25. 2 sin-111
2 x2 + 24 - x2 + C

27. 1
2 1sin-1x22 + C    29. 1

3  tan-1 x3 + 1
2 ln1x6 + 12 + C

31.  (a) Inverse tangent, L
du

a2 + u2  where u = 3x, 

  du = 3 dx, a = 2; numerator cannot fit du of denominator.  
Positive 9x2 leads to inverse tangent form.

 (b) logarithmic, L
du
u

 where u = 4 + 9x, du = 9 dx

 (c) general power, Lu-1>2 du where u = 4 + 9x2, du = 18x dx

33. (a) General power, Lu-1>2 du where u = 4 - 9x2,

  du = -18x dx; numerator can fit du of denominator. Square root 
becomes -1>2 power. Does not fit inverse sine form. 

 (b) Inverse sine, L
du2a2 - u2

 where 

 u = 3x, du = 3 dx, a = 2 (c) Logarithmic, L
du
u

 where u = 4 - 9x, du = -9 dx

35. Form fits inverse tangent integral with u = 1x, du =
dx

21x
. 

 Result is 2 tan-11x + C.
37.  tan-1 2 = 1.11    39. k tan-1 

x
d

+ C

41.  sin-1 
x
A

= 7 k
m

 t + sin-1 
x0

A
    43. 0.220 r

Exercises 28.7, page 875

1. No. Integral 1v du is more complex than the given integral.

3. cos u + u sin u + C    5. 2xe2x - e2x + C

7. 3 ln $ sin x $ - 3x cot x + C   9. 2x tan-1 x -  ln    11 + x22  +  C

11. -  32
3     13. 1

2 x2 ln x - 1
4 x2 + C

15. 1
2 f sin 2f - 1

4 12f2 - 12cos 2f + C

17. 1
2 1ep>2 - 12 = 1.91   

19. 1
9 1x + 52 1x + 429 - 1

901x + 4210 + C

21. 1
2 x[cos(ln x) + sin(ln x)] + C

23. -2e-1x11x + 12 + C    25. 1 - 3

e2 = 0.594  

27. 0.110    29. 1
2 p - 1 = 0.571    31. 0.756 

33. s = 1
3 3 1 t2 - 222t2 + 1 + 24

35. q = 1
5 3e-2t 1sin t - 2 cos t2 + 24  

Exercises 28.8, page 878

1. Delete the x2 before the radical in the denominator.

3. x = 3 sin u,1cot2 u  du    5. x = tan u,1csc u cot u du

7. x = sec u,1du    9. -  
21 - x2

x
- sin-1 x + C

11. 2 ln 0 x + 2x2 - 4 0 + C    13. -  
22z2 + 9

3z
+ C

15. 
x24 - x2

+ C    17. 
16 - 913

24
= 0.017

33. L a1 - ex

ex + 1
b  dx = x - ln1ex + 12 + C

35. p1e4 - e2 = 163    37. 21e2 - 12 = 12.8

39. ln b1bu du = bu + C1    41. q = EC11 - e-t>RC2
43. 26 610 m2    45. 0.632

Exercises 28.4, page 862

1. Change x dx to 3x2 dx.    3. 1
2 sin 2x + C

5. 0.1 tan 3u + C    7. 2 sec 12 x + C    9. 0.6365

11. 3
2 ln 0 sec f2 + tan f2 0 + C    13. cos a1

x
b + C

15. 1
213    17. -2 cos x2 + C    19. 1

2 ln 0 sec 2x + tan 2x 0 + C

21. -  12 ln cos 2T + C    

23. csc x - cot x - ln 0 csc x - cot x 0 + ln 0 sin x 0 + C

25. 1
9 p + 1

3 ln 2 = 0.580    27. 0.693

29. Integral changes to 11sec2 x - sec x tan x2  dx

31. (a) 12 tan2 x + C1, (b) 12  sec2 x + C2; C1 = C2 + 1
2

33. p13 = 5.44    35. u = 0.10 cos 2.5t    

37. 0.7726 m     39. 0.707

Exercises 28.5, page 866

1. Change dx to cos 2x dx.    3. 1
3 sin3 x + C

5. -  12 cos 2x + 1
6 cos3 2x + C    7. 2 sin 2u + C

9. 1
24 164 - 43122 = 0.133    11. 1

2 x -1
4 sin 2x + C

13. 1
319f + 4 sin 3f + sin 3f cos 3f2 + C

15. 1
2 tan2 x + ln 0 cos x 0 + C    17. 3

4  

19. 1
6 tan3 2x - 1

2 tan 2x + x + C

21. 1
3 sin3 s + C    23. x - 1

2 cos 2x + C

25. 1
4 cot4 x - 1

3 cot3 x + 1
2 cot2 x - cot x + C

27. 1 + 1
2 ln 2 = 1.35    29. 1

5 tan5 x + 2
3 tan3 x + tan x + C

31. 2 sec x + C    33. - ln 0  sec e-x + tan e-x 0 + C

35. 1
2 cos x - 1

18 cos 9x + C    37. 1
2 p2 = 4.93

39. 12 - 1 = 0.414

41.  1sin x cos x dx = 1
2 sin2 x + C1 = -  12 cos2 x + C2; 

C2 = C1 + 1
2

43. L
p

0
 sin 2 nx dx =

1
2

 L
p

0
 11 - cos 2nx2  dx

    =
1
2

 x -  sin 2nx ` p
0

=
p

2

45. s = - 1
3

 cos t + 1
9

 cos3 t +  6t + 2
9

47. 4
3    49. V = C 1

1>60.0 L
1>60.0

0
1340 120pt22 dt = 240 V

51. 
aA
2

+ A
2bp

 sin abp cos 2bcp

Exercises 28.6, page 870

1. Change dx to -x dx.    3.  sin-1 12 x + C    5. 1
8 tan-1 18 x + C

7.  sin-1 4x2 + C    9. 0.863    11. 2
515 sin-1 1515 = 0.415

13. 4
9 ln 0 9x2 + 16 0 + C    15. 2.36    17.  sin-1 ex + C
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Exercises 28.11, page 890

1. Formula 3    3. u = y, du = dy, Formula 7

5. Formula 25; u = x2, du = 2x dx

7. u = x2, du = 2x dx, Formula 32

9. 3
25 32 + 5x - 2 ln 0 2 + 5x 0 4 + C    11. 3544

15 = 236

13. 
y

42y2 + 4
+ C    15. 1

2 sin x - 1
10 sin 5x + C

17. 24x2 - 9 - 3 sec-1a2x
3
b + C

19. 1
20 cos4 4x sin 4x + 1

5 sin 4x - 1
15 sin3 4x + C

21. 3r2 tan -1 r2 - 3
2 ln11 + r42 + C

23. 1
4 18p - 9132 = 2.39

25. - ln a1 + 24x2 + 1
2x

b + C

27. -8 ln a1 + 21 - 4x2

2x
b + C    29. 0.0208

31. 1
3 1cos x3 + x3 sin x32 + C    33. 

x221 - x4
+ C

35. 4.89    37. 1
4 x4 1 ln x2 - 1

22 + C    39. -  
3x32x6 - 1

+ C

41. 
t3

12
 1 t6 + 123>2 + t3

8
2t6 + 1 + 1

8
  ln 1 t3 + 2t6 + 12 + C

43.  
1
24

    sin4 4x cos2 4x + 1
48

 sin4 4x + C

45. 1
4 1 3215 + ln12 + 152 4 = 1.479    

47.  pab    49. 32.7 kN    51. 187 000 m3

Review Exercises for Chapter 28, page 892

1. -  18 e-8x + C    3. -  
1

ln 2x
+ C    5. 4 ln 2 = 2.77

7. 2
35 tan-1 75 x + C    9. 0    11. 1

2 ln 2 = 0.347

13. 2
3 sin3 t - cos t + C    15.  tan-1 ex + C

17. 1
9 tan3 3x + 1

3 tan 3x + C    19. ln ` 1x - 123

x12x + 12 ` + C

21. 3
4 tan-1 

x2

2
+ C    23. 2 ln 0 2x + 24x2 - 9 0 + C

25. 2e2x + 1 + C    27. 2 ln 0 x 0 + tan-1 
x
3

+ C

29. 
p

4
    31. -  12 x cot 2x + 1

4 ln 0 sin 2x 0 + C

33. 
2
u

+ ln 0 3u + 1 0 + C    35. 1
2 sin e2x + C

37. 3 sin 1 = 2.52    39. 1
2 u2 - 3u + ln 0 u + 3 0 + C

41. 15 tan-1 a15 cos x
5

b - cos x + C

43. x = 12 sin u; 
112

 Lcsc u du     45. 2x2 + C, 2x2 + C

47. Formula 16, u = x4, du = 4x3 dx

49. 1
3 1ex + 123 + C1 = 1

3  e3x + e2x + ex + C2; C2 = C1 + 1
3

51. x - tan x + sec x + C 

53.  Power rule with u = x2 + 4, du = 2x dx, and n = -1>2 is 
easier to use than a trigonometric substitution with x = 2 tan u.

19. 5 ln 0 2x2 + 2x + 2 + x + 1 0 + C    21. 0.0400

23. 2 sec-1 ex + C

25. (a) -  
1
3

 11 - x223>2 + C, (b) -  
1
3

 11 - x223>2 + C

27. p    29. 1
4 ma2    31. 2.68    33. 1.36    

35. kQ ln 
2a2 + b2 + a2a2 + b2 - a

   37. 
21x + 125>2

5
-

21x + 123>2
3

+ C

39. 
3
8

 1x - 428>3 + 12
5
1x - 4)5>3 + C

Exercises 28.9, page 882

1. 
3

x - 1
- 4

x + 2
    3. 

A
x

+ B
x + 1

   

5. 
A
x

+ B
x + 2

+ C
x - 2

    7. ln ` 1x + 122

x + 2
` + C

9. 
1
4

 ln ` x - 2
x + 2

` + C    11. x + ln ` x1x + 324 ` + C

13. 1.06    15. ln ` x2 1x - 523

x + 1
` + C

17. 
1
4

 ln ` x4 12x + 123

2x - 1
` + C    19. 1 + ln 

16
3

= 2.674

21. 
1
60

 ln ` 1V + 223 1V - 3221V - 2231V + 322 ` + C    23. ln ` x1x - 221x - 122 ` + C

25. 
1

u1a + bu2 =
A
u

+ B
a + bu

; 1 = A1a + bu2 + Bu;

 A =
1
a

, B = -  
b
a

27. -  
1
4

 ln `  sin u + 3
 sin u - 1

` + C    29. 2p ln 
6
5

= 1.15

31. y = ln ` x1x + 522

36
`     33. 0.163 N # cm

Exercises 28.10, page 888

1. 
2

x1x + 322 =
A
x

+ B
x + 3

+ C1x + 322

3. 
4x + 4

x3 - 9x2 =
A
x

+ B

x2 +  C
x - 9

5. 
3

x - 2
+ 2 ln ` x - 2

x
` + C    7. 

2
x

+ ln ` x - 1
x + 1

` + C

9. -  
5
4

    11. -  
2

x + 1
- 1

x - 3
+ ln 0  x + 1 0 + C

13. 
1
8

 p + ln 3 = 1.49    15. -  
2
x

+ 3
2

 tan-1 
x + 2

2
+ C

17. 
1
4

 ln14x2 + 12 + ln 0 x2 + 6x + 10 0 + tan-11x + 32 + C

19. tan-1x + x

x2 + 1
+ ln 0 x + 1 0 - 1

2
 ln 0 x2 + 1 0 + C

21. 
1 - x1x - 222 + C    23. 2 + 4 ln 

2
3

= 0.378 

25. p ln 
25
9

= 3.21    27. 0.919 m    29. 1.37
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13. z

x

y

    15. z

x

y

17. z

x

y

    19. z

x

y

21. z

x

y

    23. 

y

x

z

25. (a) 13
212, 3212, 52  (b) (0, 2, 3) (c) 12, 213, 22

27. (a) cylinder, axis is z-axis, r = 2

 (b) plane u = 2 for all r and z

 (c) plane z = 2 for all r and u

29. x2 + y2 = 4z    31. 
y

x

   
33. z

y

x

    35. p

T

V

37. z

y

x

   y

x

Exercises 29.3, page 908

1. 
0z
0x

=
 ln y

y2 + 1
, 

0z
0y

=
x1y2 + 12 - 2xy2 ln y

y1y2 + 122

3. 
0z
0x

= 5 + 8xy, 
0z
0y

= 4x2

z

x

y

55. y = 1
3 tan3 x + tan x    57. 21e3 - 12 = 38.2    59. 11.2

61. 1
4 18 tan-1 4 - ln 172 = 1.94    63. 4p1e2 - 12 = 80.3

65. 1
8 p1e2p - 12 = 210    67.  ln 3 = 1.10    69. 1.01 N # s

71. ∆S = a  ln T + bT + 1
2 cT2 + C    73. 55.2 m

75. v = 9811 - e-0.1t2     77. 12    79. 2
3 k    81. 3.47 cm3

83. 73.0 m2

Exercises 29.1, page 897

1. 7    3. V = pr2h    5. A =
2V
r

+ 2pr2

7. V =
1
4

 ph14r2 - h22     9. 24    11. -2

13. 2 - 3y + 4y2    15. 6xt + xt2 + t3

17. 
p2 + pq + kp - p + 2q2 + 4kq + 2k2 + 5q + 5k

p + q + k

19. 2hx - 2kx - 2hy + h2 - 2hk - 4h    21. 0

23. 81z6 - 9z5 - 2z3    25. x = 0, y 6 0

27. y 7 1    29. 18 V    31. 150 Pa

33.  For a, b, and T  with same sign: circle if a = b, ellipse if a ≠ b; 
for a and b of different signs, hyperbola

35. 0.0278 A    37. A =
pw - 2w2

2
, 3850 cm2

39. L =
1.2 * 104

l2  r4   

Exercises 29.2, page 904

1. z

y

x -3

-2

6

    3. y

x

5. z

x

y

    7. z

x

y

9. z

y

x

    11. z

y

x
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21. 
28
3

   23. 18   25. 300 cm3   27. z

y = 1

y = x2

z = 4 - x - 2y

y

x

Review Exercises for Chapter 29, page 913

1. -52    3. 
8s4 - s2

4

5. z

2
-4

4

y

x

    7. z

x

y

9. 
0z
0x

= 15x2y2 - 2y4, 
0z
0y

= 10x3y - 8xy3

11. 
0z
0x

=
x2x2 - 3y2

, 
0z
0y

=
-3y2x2 - 3y2

13. 
0z
0x

=
2 - 2x2y + 6xy21x2y + 122 , 

0z
0y

= - 3 + 2x31x2y + 122

15. 
0u
0x

= 2xy cot1x2 + 2y2 ,

 
0u
0y

= 2y cot1x2 + 2y2 +  ln sin1x2 + 2y2
17. 

0z
0x

=
0z
0y

=
1

221x + y2 11 - x - y2
19. 

02z

0x2 = 6y, 
02z

0y2 = -6y, 
02z

0x 0y
= 6x + 2

21. 12    23. 
21
2

    25. 
e2 - 3

4
= 1.10    27. 

1
6

29. z

2

x

y

    31. z

y

x

33. (a)  u = 3 represents a vertical plane.

 (b) z = r2 represents a circular paraboloid.

35. 
0v
0r

=
ER1r + R22, 

0v
0R

=
-rE1r + R22    37. 0.982

39. 
p1gl

=
2p1l>g

2l
    41. 

k2 + 2k3FT

L0 + k1F + k2T + k3FT2

5. 
0f

0x
= e2y, 

0f

0y
= 2xe2y

7. 
0f

0x
= - sin x

1 - sec 3y
, 

0f

0y
=

312 + cos x2  sec 3y tan 3y11 - sec 3y22

9. 
0f
0r

=
1 + 3rs11 + 2rs

, 
0f
0s

=
r211 + 2rs

11. 
0z
0x

= 412x + y32 1x2 + xy323, 
0z
0y

= 12xy2 1x2 + xy323

13. 
0z
0x

= y cos xy, 
0z
0y

= x cos xy

15. 
0y

0r
=

2r

r2 + s
, 

0y

0s
=

1

r2 + s

17. 
0f

0x
=

12 sin2 2x cos 2x
1 - 3y

, 
0f

0y
=

6 sin3 2x11 - 3y22

19. 
0z
0x

=
3y + x2y - 2x21 - x2y2 sin-1xy13 + x22221 - x2y2

,

    
0z
0y

=
x13 + x2221 - x2y2

21. 
0z
0x

= cos x - y sin xy, 
0z
0y

= -x sin xy + sin y

23. 
0f

0x
= ex 1cos xy - y sin xy2 - 2e-2x tan y, 

    
0f

0y
= -xex sin xy + e-2x sec2 y

25. -8    27. 41
4

29. 
02z

0x2 = -6y, 
02z

0y2 = 12xy, 
02z

0x 0y
= 6y2 - 6x

31. 
02z

0x2 = ex sin y, 
02z

0y2 =
2x

y3 - ex sin y,

    
02z

0x 0y
=

02z
0y 0x

= - 1

y2 + ex cos y

33. -4, -4             35. a R2

R1 + R2
b2

    

z

x

y

    

37. 114 cm2    39. 0.817    41. 3.75 * 10-3 1>Ω
43. -5e-t sin 4x = 1

16 1 -80e-t sin 4x2
Exercises 29.4, page 912

1. 
3
20

    3. 
28
3

    5. 
127
14

    7. 
1
3

    9. 
p - 6

12

11. 1    13. 495    15. 
74
5

    17. 
32
3

    19. 8p
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39. 4 - 0.8t - 1.92t2 + g
41. R = e-0.001t = 1 - 0.001t + 15 * 10-72 t2 - g

Exercises 30.3, page 927

1. e2x2
= 1 + 2x2 + 2x4 + 4

3 x6 + g
3. 1 + 3x + 9

2 x2 + 9
2 x3 + g

5. 
x
2

- x3

233!
+ x5

255!
- x7

277!
+ g

7. x - 8x3 + 32
3  x5 - 256

45  x7 + g
9. x2 - 1

2 x4 + 1
3 x6 - 1

4 x8 + g  11. 0.310

13. 0.190  15. 211 + x2 + x4 + x6 + g2
17. x + x2 + 1

3 x3 + g
19. -2x3 - x4 - 2x5

3
- x6

2
- g

21. x - 1
2 x2 + 1

6 x4 - g
23. 

d
dx

  a1 + x + 1
2

 x2 + 1
6

 x3 + gb = 1 + x + 1
2

 x2 + g

25. L  cos x dx = x - x3

3!
+ g

27. 4 - 0.8t - 1.92t2 + 0.4t3  +    g
29. L

1

0
 ex dx = 1.718 281 8,

 L
1

0
a1 + x + 1

2 x2 + 1
6 x3bdx = 1.708 333 3

31. -1
6  33. 0.003 10  35. 0.200

37. c a1 - v2

c2 b-1>2
- 1 dmc2

 =  c1 + a - 1
2
b a- v2

c2 b +
1-1

221-3
22

2
 a- v2

c2 b2
+ g -  1 dmc2

 = 1 + 1
2

 mv2 + 3
8

 m 
v4

c2 
+  g -1 =

1
2

 mv2, if v is much

 smaller than c.

39. 
1

1-x
= a

∞

n = 0
xn ; differentiate on the left by the power rule and

 on the right term by term.

41. 

-5 5

y4

y2

y1

y3

3

-1

 43. 

-1 1

y1
y2 y4

y3

1

-1

Exercises 30.4, page 930

1. 0.905  3. 1.22, 1.221 402 8  5. 0.099 833 3, 0.099 833 4

7. 2.718 055 6, 2.718 281 8  9. 0.998 496 77, 0.998 497 15

11. 0.334 933 3, 0.336 472 2  13. 0.354 613 0, 0.354 612 9

15. -0.167 115 17, -0.167 117 72  17. 1.207 36, 1.208 03

19. 0.981 16, 0.981 118 50  21. 1.052 352 8  23. 0.987 446 2

25. 8.3 * 10-8  27. 3.77 * 10-7  29. 1.9799  31. 3.146

33.  The terms of the expansion for ex after those on the right side of 
the inequality have a positive value.

43. a0V
0T

b a0T
0p

b a 0p

0V
b = - anR

p
b a V

nR
b apV

V2 b
  = -1

45.  32ap - 2
3
b = 79.20. The bounding surfaces are a cylinder with 

axis along the z-axis, and a plane parallel to the y-axis.

Exercises 30.1, page 918

1. Converges; S1 = 0.5, S2 = 0.75, S3 = 0.875, S4 = 0.9375

3. 1, 4, 9, 16  5. 1
2, 13, 14, 15

7. (a) -2
5, 4

25, - 8
125, 16

625  (b) -  25 + 4
25 - 8

125 + 16
625 - g

9. (a) 1, 0, -1, 0  (b) 1 + 0 - 1 + 0 + g
11. an =

1
n + 1

  13. an =
1-12n+11n + 12 1n + 22

15. 1, 1.125, 1.162 037 0, 1.177 662 0, 1.185 662 0; convergent; 1.2

17. 1, 1.5, 2.166 666 7, 2.916 666 7, 3.716 666 7; divergent

19. 0, 1, 2.4142, 4.1463, 6.1463; divergent

21.  0.75, 0.888 888 9, 0.937 500 0, 0.960 000 0, 0.972 222 2;  
convergent; 1

23.  0.210 367 7, 0.267 198 8, 0.269 403 8, 0.266 447 6, 0.265 511 1; 
convergent; 0.26  25. Divergent

27. Convergent, S = 3
4  29. Convergent, S = 100

31. Convergent, S = 4096
9   33. 3 6 x 6 5

35. (a) 1  (b) Diverges

37. 1

 

-1

1

1.5

5

-1

39. (a) Diverges   
(b) y = 210011.05x - 12

 

0

1500

0 10

41. r = x; S =
1

1 - x
  43. 2, 4, 12, 48, 240

Exercises 30.2, page 922

1. 
2

2 + x
= 1 - 1

2
 x + 1

4
 x2 - 1

8
 x3 + g

3. 1 + x + 1
2 x2 + g  5. 1 - 1

2 x2 + 1
24 x4 - g

7. 1 + 1
2 x - 1

8 x2 + g  9. 1 - 2x + 2x2 - g
11. 1 - 8p2x2 + 32

3  p4x4 - g  13. 1 + x + x2 + g
15. -2x - 2x2 - 8

3 x3 - g  17. 1 - x2 + 1
3 x4 - g

19. 
12
2

a1 + x - 1
2

 x2 - gb   21. x - 1
3 x3 + g

23. x + 1
3 x3 + g  25. -  12 x2 - 1

12 x4 - g
27. 1 + 1

2 x - g
29. No. Functions are not defined at x = 0.

31. ex = 1 + x + x2

2
+ g , ex2

= 1 + x2 + x4

2
+ g

33. f1x2 = 1 + 3x + 9
2 x2 + g ; L1x2 = 1 + 3x

35. 1 + x2

2!
+ x4

4!
+ g  37. f1x2 = x2
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5. f1x2 =
3
2

+ 2
p

 sin x + 2
3p

 sin 3x + g

   
y

x
p 3p

1
2

5p-p

7. f1x2 =
p

4
- 2

p
 acos x + 1

9
  cos 3x + gb

   + asin x - 1
2

 sin 2x + gb
   

y

x
p 3p 5p-p

p

9. f1x2 = - 1
4

- 1
p

  cos x + 1
3p

  cos 3x - g

   + 3
p

 sin x - 1
p

 sin 2x + 1
p

 sin 3x - g

   
y

xp 3p 5p-p
-1

1

11. f1x2 =
p

2
- 4

p
 cos x - 4

9p
 cos 3x - g

    
y

x
p 3p 5p-p

p

13. 
ep - e-p

2p
 a1 - cos x + 2

5
 cos 2x - g + sin x - 4

5
 sin 2x  gb

    

y

x
p 3p 5p-p

25

35. 1.59 years  37. i =
E
L

 at - Rt2

2L
b ; small values of t

39. 18 m

Exercises 30.5, page 933

1. 1x = 1 + 1
2

 1x - 12 - 1
8

 1x - 122 + 1
16

 1x - 123 - g
3. 3.32  5. 2.049  7. 0.5299  9. 0.492 88

11. e-2 c 1 - 1x - 22 +
1x - 222

2!
- gd

13. 
1
2

 c 13 + ax - 1
3

 pb - 13
2!

 ax - 1
3

 pb2
- g d

15. 2 + 1
12 1x - 82 - 1

288 1x - 822 + g

17. 1 + 2ax - 1
4 pb + 2ax - 1

4 pb2
+ g

19. ep>2 c 1 + ax - p

2
b - 1

3
 ax - p

2
b3

+ g d
21. 

1
5

- x - 3
25

+
1x - 322

125
- g

23. 23.1308  25. 3.0496  27. 2.0247  29. 0.874 62

31. Use the indicated method.

33. 2x3 + x2 - 3x + 5 = 5 + 51x - 12 + 14 
1x - 122

2

   + 12 
1x - 123

6
35. 0.515 040 8, 0.515 038 8, 0.515 038 1

37. 6 sin 
p2

2
+ 6p cos 

p2

2
 at - p

2
b - 3p2 sin 

p2

3
 at - p

2
b2

+ g

39. Graph of part (b) fits  41. Graph of part (b) fits 

 well near x = p>3. well near x = 2.

 
1.2

0

f(x)

Taylor

20

 2

0

f(x)

Taylor

40

Exercises 30.6, page 939

1. f1x2 =
8
p

 asin x + 1
3

 sin 3x + 1
5

 sin 5x + gb
3. f1x2 =

1
2

- 2
p

 sin x - 2
3p

 sin 3x - g

   
y

x
p 3p

1

5p-p
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15. 

-8

2

8

-2

 17. 

-8

3

8

-1

19. 

-8

4

8

-1

21. 
p12p + 32

12
- 2p + 2

p
 cos t + 1

2
 cos 2t - g

   + p2 + p - 4
p

 sin t - p + 1
2

 sin 2t + g

23. f1 t2 =
2
p

- 4
3p

 cos 2t - 4
15p

 cos 4t - g

Exercises 30.7, page 945

1. 5
2 + 2

p 1cos x - 1
3 cos 3x + 1

5 cos 5x - g2
3. -1 + 4

p
 sin 

px
4

+ 4
3p

 sin 
3px

4
+ g

5. Neither  7. Even  9. Even  11. Odd

13. Sine terms  15. Sine terms and cosine terms

17. f1x2 =
5
2

- 10
p

 asin 
px
3

+ 1
3

  sin px - gb
19. f1x2 = 1 + 4

p
 cos 

px
2

- 4
3p

 cos 
3px

2
+ g

21. f1x2 = 2 - 16

p2 acos 
px
4

+ 1
9

  cos 
3px

4
+ gb

23. f1x2 =
4
p

 asin 
px
4

+ 1
3

 sin 
3px

4
+ 1

5
 sin 

5px
4

+ gb
25. f1x2 =

4
3

- 16

p2 acos 
px
2

- 1
4

 cos px + 1
9

 cos 
3px

2
- gb

27. f1 t2 = 2 + 8
p

 acos 
p

2
 t - 1

3
 cos 

3p
2

 t + g + sin 
p

2
 t

 + sin pt + 1
3

 sin 
3p
2

 t + gb
Review Exercises for Chapter 30, page 946

1. 1
2 - 1

4 x + 1
48 x3 - g  3. 2x2 - 4

3 x6 + 4
15 x10 - g

5. 1 + 1
3 x - 1

9 x2 + g  7. x + 1
6 x3 + 3

40 x5 + g
9.  cos a - 1sin a2x - 1cos a2  

x2

2
+ g  11. 0.82

13. 1.09  15. 0.921  17. -0.202  19. 0.953

21. 12.1655  23. 0.259

25. 1
2 - 1

213 1x - 1
3 p2 - 1

41x - 1
3 p22 + g

27. f1x2 =
p - 2

4
- 2

p
 acos x + 1

9
 cos 3x + gb

   + ap - 2
p

b  sin x - 1
2

 sin 2x + g

29. f1x2 = p + 4
p

 asin 
px
4

+ 1
3

 sin 
3px

4
+ gb

31. f1x2 = 1
2 + 2

pacos x - 1
3 cos 3x + gb

33. f1x2 =
4
p

 asin 
px
2

- 1
2

 sin px + 1
3

 sin 
3px

2
- gb

35. Convergent, S = 5000  37. S = 256

39. 
1
3

 x3 - 1
42

 x7 + g

41. 1 + 2ax - p

4
b + 2ax - p

2
b2

+ g

43. 2 + 4ax - p

4
b + g

45. 1x + h2 -
1x + h23

3!
+ g - 1x - h2 +

    
1x - h23

3!
- 1

315
 x8 + g

    = 2h - 2hx2

2!
+ g = 2ha1 - x2

2!
+ gb

47. 4x - 2x2 + 4
3x3 - x4 + g  49. x2 - 1

3 x4 + 2
45 x6 - g

51. 1 + x2

2
+ 5x4

24
+ g  53. 1 - x + x2 - g

55. 
1
3

+ 4

p2 a-cos px + 1
4

 cos 2px - 1
9

 cos 3px + gb
57. 2.4265, 2.4600, 2.459 603 1  59. 0.002 496 88

61. x - x3

3
+ x5

5
- g

63. 3.2 c 1 -
1880pt22

2
+

1880pt24

24
- g d

65. N0 a1 - lt + l2t2

2
- l3t3

6
+ gb

67. 7.8 m  69. 2x + 2
3 x3 + 2

5 x5 + 2
7 x7 + g

71. N031 + e-k>T + 1e-k>T22 + g4
    = N0 11 + e-k>T + e-2k>T + g2
73. f1 t2 =

1
2p

+ 1
p

 a1
2

 cos t - 1
3

 cos 2t + gb
    + 1

4
 sin t + 2

3p
 sin 2t + g

 

y

x
p-p
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Exercises 31.3, page 957

1. ln xy + y2 = c     3. 2xy + x2 = c     5. x3 - 2y = cx - 4

7. A2r - r = cA    9. y sin x = x + c

11. 22x2 + y2 = x + c    13. y = c - 1
2

 ln sin1x2 + y22
15. ln1y2 - x22 + 2x = c; subtract x dx from each side and divide 

 through by y2 - x2.

17. 5xy2 + y3 = c    19. 2xy + x3 = 5

21. 2x = 2xy2 - 15y    23. 2x + 1 = cos xy

25. 1e-x dy - ye-x dx2 - 2y dy = 0

Exercises 31.4, page 959

1. y = x + cx-2    3. y = e-x 1x + c2
5. y = -  12 e-4x + ce-2x    7. y = -2 + ce2x

9. y = ce-x3
+ 2    11. y =

8
7

 x3 + c1x

13. r = -cot u + c csc u    15. y = 1x + c2csc x

17. y = x + 1
2ex - 1 + ce-x    19. 2s = e4t 1 t2 + c2

21. y = 1
4 + ce-x4

    23. 3y = x4 - 6x2 - 3 + cx

25. y = ce-2x2 +1 - 1

27. r = sin u3 ln1 tan u + sec u24 + c sin u

29. Can solve by separation of variables: 
dy

1 - y
= 2 dx. 

  Can also solve as linear differential equation of first order: 
dy + 2y dx = 2 dx; y = 1 + ce-2x

31. y = e-x    33. y = 4
3 sin x - csc2 x

35. y1csc x - cot x2 = ln 
112 - 12 1csc 2x - cot 2x2

csc x - cot x

37. u′ - P1x2u = -Q1x2     39. i =
V
R

 11 - e-Rt>L2
Exercises 31.5, page 962

1. 

 y = 1
2 x2 + x + 1 

3. 

 y = 2.4233e0.2x2 +x 

5. 

Exercises 31.1, page 951

1. 1c1e-x + 4c2e2x2 - 1 -c1e-x + 2c2e2x2 = 21c1e-x + c2e2x2 ;

    14e-x2 - 1 -4e-x2 = 214e-x2     3. Particular solution

5. General solution 

(The following “answers” are the unsimplified expressions obtained 
by substituting functions and derivatives.)

7. ex - 1ex - 12 = 1; 5ex - 15ex - 12 = 1

9.  -12 cos 2x + 413 cos 2x2 = 0; 1 -4c1 sin 2x - 4c2 cos 2x2 + 41c1 sin 2x + c2 cos 2x2 = 0

11. 2x = 2x    13. 1 - 3x2 = 1 - 3x2

15. 1 -2ce-2x + 12 + 21ce-2x + x - 1
22 = 2x

17. -  12 cos x + 9
2 cos x = 4 cos x

19. x2 c -  
c21x - c22 d + c cx1x - c2 d 2

= 0

21. xa-
c1

x2 b +
c1

x
= 0

23. 1cos x -  sin x + e-x2 + 1sin x + cos x - e-x2 = 2 cos x

25.  1c1ex + 4c2e2x2 - 31c1ex + 2c2e2x2 +  

 21c1ex + c2e2x + 3
22 = 3

27. cos x c 1sec x + tan x2 - 1x + c2 1sec x tan x + sec2 x21sec x + tan x22 d
 + sin x = 1 - x + c

sec x + tan x

29. c2 + cx = cx + c2    31. c3ex = c3ex    

33. y = x3 + c1x2 - 4

Exercises 31.2, page 954

1. y1x2 + 12 = c    3. y = c - x2    5. x - 1
y

= c

7. ln V =
1
P

+ c    9. ln1x3 + 52 + 3y = c

11. y = 2x2 + x - x ln x + c    13. 411 - y = e-x2
+ c

15.  ex - e-y = c; ex+y is the same as exey. Divide each term by ey 
and integrate.

17. ln1y + 42 = x + c    19. y11 + ln x22 + cy + 2 = 0

21.  tan2 x + 2 ln y = c    23. x2 + 1 + x ln y + cx = 0

25. y - ecos u = c    27. ex2
= 2ey + c

29. i = c - 1 ln t22    31. (y2 - 1)(x3 + 1) = c

33. 3 ln y + x3 = 0    35. 2 ln11 - y2 = 1 - 2 sin x

37. e2x - 2
y

= 21ex - 12
39. 

1
2

 ln1x2 + 12 + ln y = ln c; 
1
2

 ln 1 + ln e = ln c; c = e

41. T = 10 + 30e-0.15t

43. y2 + x2 = c;  circles of radius 2c

x 0.0 0.2 0.4 0.6 0.8 1.0 
y 1.00 1.20 1.44 1.72 2.04 2.40 
y (correct) 1.00 1.22 1.48 1.78 2.12 2.50

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
y 1.00 1.10 1.21 1.33 1.46 1.60 1.75 1.91 

x 0.8 0.9 1.0 
y 2.08 2.26 2.45 

x -0.2 -0.1 0.0 0.1 0.2 0.3 

y 2.0000 2.1840 2.3937 2.6330 2.9069 3.2208
y (correct) 2.00 2.20 2.42 2.68 2.98 3.33
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49. y = 4e-x>2 + c1   

-6

7

6

-1

Exercises 31.7, page 972

1. y = c1 + c2e5x    3. y = c1e3x + c2e-2x

5. y = c1e-x + c2e-x>3    7. y = c1 + c2e3x

9. y = c1e3x>2 + c2e-x    11. y = c1e6x + c2e2x>3
13. y = c1ex>3 + c2e-3x    15. y = c1ex>3 + c2e-x

17. y = ex1c1ex22>2 + c2e-x22>22
19. y = e3x>81c1ex241>8 + c2e-x241>8
21. y = e3x>21c1ex213>2 + c2e-x213>2
23. y = e-x>21c1ex233>2 + c2e-x233>2
25. y = c1e3ax>2 + c2e-4ax    27. y = 1

513e7x + 7e-3x2
29. y =

e3

e7 - 1
 1e4x - e-3x2     31. y = c1 + c2e-x + c3e3x

33. y = c1ex + c2e-x + c3e2x + c4e-2x

35. v = c1eas + c2e-as

Exercises 31.8, page 976

1. y = e-5x1c1 + c2x2     3. y = c1 + c2e10x

5. y = 1c1 + c2x2ex    7. y = 1c1 + c2x2e-6x

9. y = c1 sin 3x + c2 cos 3x

11. y = e-x>21c1 sin 12 17x + c2 cos 12 17x2
13. y = c1ex + c2e-x + c3 sin x + c4 cos x

15. y = c1 sin 12 x + c2 cos 12 x    17. y = 1c1 + c2x2e3x>4
19. y = c1 sin 25 x + c2 cos 25 x

21. y = ex1c1 cos 12 16x + c2 sin 12 16x2
23. y = 1c1 + c2x2e4x>5
25. y = e3x>41c1ex217>4 + c2e-x217>4
27. y = c1ex1-6+2422>3 + c2ex1-6-2422>3
29. y = e2x1c1 + c2x + c3x22
31. y = 1c1 + c2x2sin x + 1c3 + c4x2cos x

33. y = e-x sin 3x    35. y = e4x14 - 14x2
37. D2y - 9y = 0

39.  D2y + 9y = 0. The sum of cos 3x and sin 3x with no exponen-
tial factor indicates imaginary roots with a = 0 and b = 3.

41. (a) y = 0  (b) y = 0

Exercises 31.9, page 982

1. yp = A + Bx + Cx2 + Ee-x

3. y = c1 sin 2x + c2 cos 2x + 1
3 sin x - 4

5e-x

7. (Not all values shown)

9. 

11. 

13. 

15.  y3 = 12; yactual = 36.2. Euler method is too inaccurate for larger 
values of x or ∆x.

17. iapprox = 0.0804A, iexact = 0.0898A

Exercises 31.6, page 966

1. y2 + 2x2 = c    3. 2.46 kg

5. y2 = 2x2 + 1 7. y = 2ex - x - 1

 

-5

4

5

-4

 

-3

5

3

-1

9. y2 = c - 2x 11. y2 = c - 2 sin x

 

-5

3

5

-3

 

-8

3

8

-3

13. 76.9,    15. 3.82 days    17. N =
r
k

 11 - e-kt2
19. 39.6 million    21. S = a + c

r2    23. 5250e0.0196t

25. 12 min    27. +1040.81    29. c = c0 11 - e-kt2
31. lim

tS ∞

E
R

 11 - e-Rt>L2 =
E
R

33. i =
E

R2 + v2L2 1R sin vt - vL cos vt + vLe-Rt>L2
35. q = q0e-t>RC    37. v = 9.811 - e-t2 , 9.8    39. 37 m>s

41. x = 3t2 - t3, y = 6t2 - 2t3 - 9t4 + 6t5 - t6

43. p = 10010.82h/2000   45. +4980   47. x = 0.20 + 0.15-5.0t

x -0.2 -0.1 0.0 0.1 0.2 0.3 

y 2.000 2.1903 2.4079 2.6573 2.9436 3.2732 

x 0.0 0.1 0.2 0.3 0.4 
y 0.0000 0.1003 0.2027 0.3092 0.4220 

x 0.0 0.2 0.4 0.6 0.8 1.0 
y 0.0000 0.2027 0.4232 0.6884 1.0588 1.7722 

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 
y 1.5708 1.5660 1.5521 1.5302 1.5011 1.4656 1.4244 
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Exercises 31.11, page 993

1. F1s2 = L
∞

0
e-stdt = -  

1
s

 e-st ` ∞
0

=
1
s

3. 1s2 - 2s2,1 f2 - s + 2    5. 
1

s - 3
    7. 

301s + 224

9. 
s - 2

s2 + 4
    11. 

3
s

+
21s2 - 921s2 + 922     13. s2 ,1 f2 + s ,1 f2

15. 12s2 - s + 12  ,1 f2 - 2s + 1    17. t2    19. 15
2  e-3t

21. 1
2 t2e-t    23. 1

54 19t sin 3t + 2 sin 3t - 6t cos 3t2
25. -  13 e-t - 8

3 e2t + 7e3t    27. 1
2 et 14 cos 2t + 5 sin 2t2

29. -  
d
ds

 a 1
s + a

b =
11s + a22

Exercises 31.12, page 997

1. y = 2 et>2    3. y =
t
2

 sin t + sin t + 2 cos t    5. y = e-t

7. y = -e3t>2    9. y = 11 + t2e-3t    11. y = 1
2 sin 2t

13. y = e-t>2 cos t    15. y = e2t cos t    17. y = 1 + sin t

19. y = e-t 1  12 t2 + 3t + 12     21. y = 2 e3t + 3e-2t

23. y = 3
2 et - 3

2 e-t - sin 2t    25. v = 6 11 - e-t>22
27. y = 4 cos 80t    29. q = 1.6 * 10-4 11 - e-5000t2
31. i = 5t sin 50t    33. y = sin 3t - 3t cos 3t

35. i = 5.0e-50t - 5.0e-100t    37. y =
w

24EI
1L3x - 2Lx3 + x42

Review Exercises for Chapter 31, page 999

1. 2 ln1x2 + 12 - 1

2y2 = c    3. y2 = 2x - 4 sin x + c

5. y = c1 + c2e-x>2    7. y = 1c1 + c2x2ex>4
9. 2x2 + 4xy + y4 = c    11. P = cV5 - 1

3V2

13. y =
2c

1 - ce2x    15. y = e-x 1c1 sin 15x + c2 cos 15x2
17. y = e-2x + ce-4x    19. y = 1

2 1c - x22  csc x

21. s = c1et + c2e-3t>2 - 2

23. y = e-x>21c1ex15>2 + c2e-x15>22 + 2ex

25. y = c1e2x>3 + c2e4x>3 + 1
2x + 25

8

27. y = c1ex + c2 sin 3x + c3 cos 3x - 1
16 1sin x + cos x2

29. y = c1e-x + c2e8x - 2
9xe-x

31. y = c1 sin 5x + c2 cos 5x + 5x sin 5x

33. y3 = 8 sin2 x    35. y = 2x - 1 - e-2x

37. v = 2e-t>2 sin11
2115 t2 t

39. y = 1
25 316 sin x + 12 cos x - 3e-2x 14 + 5x2 4

41. y = et>4    43. y = 1
2 1e3t - et2     45. y = -4 sin t

47. y = 1
25 13ex - 3 cos 3x

4 - 4 sin 3x
4 2

5. y = c1e2x + c2e-x - 2    7. y = c1e-x + c2ex - 4 - x2

9. y = c1 + c2e3x - 3
4 ex - 1

2 xex

11. y = c1ex>3 + c2e-x>3 - 1
10 sin x

13. y = 1c1 + c2x2ex + 10 + 6x + x2 - 2
25 sin 3x + 3

50  cos 3x

15. y = c1 sin 2x + c2 cos 2x + 3x cos 2x

17. y = c1e-5x + c2e6x - 1
3    19. y = c1e4x>3 + c2e-x + 1

4e3x

21. y = c1e2x + c2e-2x - 1
5 sin x - 2

5 cos x

23. y = c1 sin x + c2 cos x - 1
3 sin 2x + 4

25. y = c1e-x + c2e-4x - 7
100 ex + 1

10 xex + 1

27. y = c1 + c2ex + c3e-x + 1
10 cos 2x

29. y = c1 sin x + c2 cos x + 1
2 x sin x

31. y = c1 + c2e-2x + 2x2 - 2x - 1
2 xe-2x

33. y = 1
6111e3x + 5e-2x + ex - 52

35. y = -  23 sin x + p cos x + x - 1
3 sin 2x

37.  y = cex - x2 - 2x - 2; If solved as a first-order linear  
equation, integration is more complex.

39. 
16
p
a 1

16 - p2 sin 
p x
2

+ 1

32 - 8p2 sin 
3p x

2
 + gb

Exercises 31.10, page 988

1. x =
1
2

 sin 4t    3. x = e-0.1t10.04 sin 10t + 4 cos 10t2
5. u = 0.1 cos 3.1t 7. 10   

 

t

u

2

-0.1

0.1

9. s = (s0 - L) cos Ag

e
 t + L    11. y = 0.100 cos 14.0t

13. y = - 7
960

 sin 14t + 0.100 cos 14t + 49
960

 sin 2t

15. q = 2.24 * 10-4e-20t sin 2240t

17. q = 0.0111 - cos 316t2
19.  q = e-10t1c1 sin 99.5t + c2 cos 99.5t2
  -  1.81 * 10-3 sin 120pt

  -  1.03 * 10-4 cos 120pt

21.  i = 10-612.00 cos11.58 * 104t2
 + 158 sin11.58 * 104t2 - 2.00e-200t2
23. ip = 0.528 sin 100t - 3.52 cos 100t

25. y =
w

24EI
 16L2x2 - 4Lx3 + x42

27. y = c1 sin 8t + c2 cos 8t + a
∞

n = 1
 

32(-1)n+1

n(64 - p2n2)
 sin npt



B.84 ANSWERS TO ODD-NUMBERED EXERCISES

75. y = 0.25e-2t12 cos 4t + sin 4t2 , underdamped

77. q = e-6t10.4 cos 8t + 0.3 sin 8t2 - 0.4 cos 10t    79. i = 0

81. i = 1211 - e-t>22 ; i10.32 = 1.67 A

83. q = 10-4e-8t14.0 cos 200t + 0.16 sin 200t2
85. y = 0.25t sin 8t    87. 2.47 L

89. y =
10
3EI

 3100x3 - x4 + xL2 1L - 1002 4
91. i = 4.42e-66.7t sin1226t2

49. 
x 0 0.1 0.2 0.3 0.4
y 0 0.100 0.201 0.305 0.414

51. (a) and (b) y = e3x    53. x = t2 + 1; y =
1

t2 + 1

55. r = r0 + kt    57. m = m0 ekt    59. 3.93 m>s

61. y2 - 2xy - 8 = 0    63. 40.0 s    65. 5.31 * 108 years

67. 7.8 billion    69. 5y2 + x2 = c    71. 36.1 °C
73. i = 0.511 - e-20t2



1.1 Numbers C.1Solutions to Practice Test Problems

C.1

Chapter 1
1.

2. is undefined (division by zero).

3.

4.

5.

6.

7.

8.

9.

10. (quotient)

(remainder)
11.

12.

13.

 y = -1>3 3y = -1
 3y + 8 - 8 = 7 - 8

 5y - 2y + 8 = 7
 5y - 21 y - 42 = 7

 = 3x - 6x + 3 = -3x + 3
 = 3x - 36x - 34 3x - 34x - 13 - 2x24 = 3x - 34x - 3 + 2x4= 2x2 + 14x - 3x - 21 = 2x2 + 11x - 21

= 2x1x2 + 2x172 + 1-321x2 + 1-3217212x - 321x + 72 2
 -10x + 5
 -10x + 7
   6x2 - 3x

 2x - 1 !6x2 - 13x + 7
 3x - 5

 = -4a2 + 2ax2

 
8a3x2 - 4a2x4

-2ax2
= 8a3x2

-2ax2
- 4a2x4

-2ax2
= -4a2 - 1-2ax22 = 3am3 - 6m5

 3m21am - 2m32 = 3m21am2 + 3m21-2m32 = 4x2 + 12x + 9
 = 4x2 + 6x + 6x + 9
 = 2x12x2 + 2x132 + 312x2 + 3132 12x + 322 = 12x + 3212x + 32 = b6

8c9

 12a0b-2c32-3 = 2-3a01-32b1-221-32c31-32 = 2-3a0b6c-9

346.4 - 23.5
287.7

- 0.944313.46210.1092 = -1.108

 = -9
3

= -3

 
1+621-22 - 31-12

5 - 2
=

-12 - 1-32
3

= -12 + 3
3

3.372 * 10-3

7.526 * 1012
= 4.480 * 10-16

1721-321-221-62102
29 + 16 = 225 = 5

14.

15. (six places to right)
16.

17. illustrates distributive law.
18. (a) 5 (b) 3.0 (zero is significant)
19. Evaluation:

20.

21.

22. Let number of newtons of second alloy

Chapter 2
1. (sum of angles of a triangle)

(vertical angles)

2. (straight angle)
(corresponding angles)

2

13

4

52°

C D

A B
AB ‖ CD

 ∠2 = 128°
 ∠2 + 52° = 180°

 ∠4 = 52°
 ∠2 + ∠4 = 180°

 ∠1 = 180° - 90° - 52° = 38°
 ∠3 = 52°

 ∠1 + ∠3 + 90° = 180°

 n = 30 N
 0.2n = 6

 6 + 0.8n = 0.6n + 12
 0.31202 + 0.8n = 0.61n + 202n =

t2 =
L - L0 + aL0t1

aL0

L - L0 + aL0t1 = aL0t2

= L0 + aL0t2 - aL0t1

= L031 + at2 - at14L = L031 + a1t2 - t124 = 80 000 - 1600x + 9x2
 = 80 000 - 1600x + 8x2 + x2
 = 8110 000 - 200x + x22 + x2

 81100 - x22 + x2 = 81100 - x21100 - x2 + x2

100011 + 0.05>222132 = 100011.02526 = $1159.69

315 + 82 = 3152 + 3182
0.000 003 6 = 3.6 * 10-6

 x = 3d + 7
2

 2x = 3d + 7
 3x - 9 - x + 9 = x - 2 + 3d - x + 9

 3x - 9 = x - 2 + 3d
 31x - 32 = x - 12 - 3d2

SOLUTIONS TO PRACTICE TEST PROBLEMS

0.3 (order)
0.3 1.41 4 (value)-3-3.14

ƒ -4 ƒ22-3-p

C.1



C.2 SOLUTIONS TO PRACTICE TEST PROBLEMSC.2 SOLUTIONS TO PRACTICE TEST PROBLEMS

3.

4. Use Hero’s formula:

5. 2

6.

7. (a)
(b)

8.

9.

10. (tangent perpendicular to radius)

(isosceles triangle)
(intercepted arc)

(central angle)

11. (sum of angles of triangle)

(straight angle)

12.

2.25 cm

 = 10.3 cm
 p = 312.252 + 1

2 12p2 C 12 12.252 D r = 1
2 12.252 cm

 ∠2 = 142°
 ∠2 + 38° = 180°

 ∠2 + ∠CBO = 180°
 ∠CBO = 180° - 52° - 90° = 38°

 ∠CBO + 52° + 90° = 180°
 ∠CBO + ∠1 + 90° = 180°

64°
1

2
C

BDOA ∠1 = 52°
 CD
¬ = 52°

 12 CD¬ = 26°
 ∠A = ∠ACO = 26°

 ∠ACO = 26°
 ∠ACO + 64° = 90°

= 8.06 m3
V = 1

3pr2h = 1
3p12.082211.782 = 140 cm2 r = 10.5

p

 = 4pa 10.5
p
b2

=
4110.522
p

 21.0 = 2pr

 A = 4pr2 c = 2pr

V = s3 = 4.503 = 91.1 cm3
A = 6s2 = 614.5022 = 122 cm2

 = 1
2113.82149.8 + 23.52 = 506 mm2

 A = 1
2 h1b1 + b22

d 3810 mm

5180 mm

= 6430 mm
d = 238102 + 51802
d2 = 38102 + 5180

= 4.43 cm2

A = 25.0915.09 - 2.46215.09 - 3.65215.09 - 4.072s = 1
2 12.46 + 3.65 + 4.072 = 5.09 cm

x =
2.417.62

3.0
= 6.1 m

x
2.4

= 7.6
3.0

2.4 m

3.0 m

x

7.6 m

13.
14.

Chapter 3

1.

2.
3.

0!2

4

!4

4

y

x

y = 4 - 2142 = -4
y = 4 - 2132 = -2
y = 4 - 2122 = 0
y = 4 - 2112 = 2
y = 4 - 2102 = 4
y = 4 - 21-12 = 6
y = 4 - 2x
f1x2 = 4 - 2x

w = 2000 - 10t

 f12.3852 = 212.3852 - 12.38522 + 8
2.385

= 2.436

 = -26
 = -8 - 16 - 2

 f1-42 = 21-42 - 1-422 + 8
-4

 f1x2 = 2x - x2 + 8
x

  = 41 000 m2
  + 212052 + 211102 + 204A = 1

2 150230 + 21902 + 211452 + 212602A = 2.252 - 1
2p C 12 12.252 D2 = 3.07 cm2

x y

6

0 4

1 2

2 0

3

4 -4

-2

-1

x y

0

1.4

0 2

1 2.4

2 2.8

4 3.5

-1

-2

4.

and 

5.

y = 24 + 2142 = 3.5

y = 24 + 2122 = 2.8

y = 24 + 2112 = 2.4

y = 24 + 2102 = 2

y = 24 + 21-12 = 1.4

y = 24 + 21-22 = 0

y = 24 + 2x

x = 2.2x = -0.7

-2

-5

3

2

y = 2x2 - 3x - 3

0!2

4

4

y

x

6. On negative x-axis

7.
Domain: , or ; x cannot be greater than 6 to have
real values of 
Range: or is the principal square
root of and cannot be negative.6 - x

26 - x[0, q2;f1x2 Ú 0,
f1x2.1-q , 6]x … 6

f1x2 = 26 - x



 SOLUTIONS TO PRACTICE TEST PROBLEMS C.3SOLUTIONS TO PRACTICE TEST PROBLEMS C.3

8. Shifting to the right 1 and up 3 gives

9. Range: or , or 

10. Let radius of circular part
square semicircle

= 4r2 + 1
2pr2

A = 12r212r2 + 1
2 1pr22

r =

-10

-12

6

6

1-q , -8.9) or 10.9, q2y 7 0.9y 6 -8.9

y = 21x - 122 - 3 + 3 = 21x - 122 = 2x2 - 4x + 2.
y = 2x2 - 3 4. Let distance from course to east

 = 1.598 km
 x = 22.62 sin 4.05°

 
x

22.62
= sin 4.05°

x =

r

r2

r2

11.

  (45.0) ! 270 mAf

i (mA)

300
270

0 45 60
V (V)

12. V for mA
V for mA

(rounded off)
V

for mA
V i

Chapter 4
1.

2.
3. u = 68.12°cos u = 0.3726;

tan 73.8° = 3.44

37°39¿ = 37.65°
39¿ = A 39

60 B° = 0.65°

10
C 20.0 188
x[ ]12

200
30.0 220

S
32

i = 200
V = 20.0 + 3.8 = 23.8

x = 3.8
x
10

= 12
32

,

i = 220V = 30.0
i = 188V = 20.0

S x

22.62 km
4.05°

5.

6.

7.

8.

9.

s = 24.0 cos 42.0° = 17.8

s>2
12.0

= cos 42.0°
42.0°42.0°

12.0 12.0

s

B

A
b

c ! 3.88
a ! 2.49

B = 50.1°A = 39.9°
sin A = 2.49

3.88

b = 23.882 - 2.492 = 2.98
2.492 + b2 = 3.882

B

a
c

A ! 37.4°
b ! 52.8

= 40.4
= 66.5a = 52.8 tan 37.4°

c = 52.8
cos 37.4°

a
52.8

= tan 37.4°

52.8
c

= cos 37.4°B = 90° - 37.4° = 52.6°

tan u = 1.294; csc u = 1.264

2

0 3x

  r
 = 3

y

x
utan u = 225

x = 232 - 22 = 25

sin u = 2
3

Voltage V 10.0 20.0 30.0 40.0 50.0 60.0
Current i 145 188 220 255 285 315



C.4 SOLUTIONS TO PRACTICE TEST PROBLEMSC.4 SOLUTIONS TO PRACTICE TEST PROBLEMS

10.

, 

11.

12.

0

r 

(5, 2)

y = 2

x = 5

y

xu

cot u = 5
2 = 2.500tan u = 2

5 = 0.4000

sec u = 229
5 = 1.077cos u = 5229

= 0.9285

csc u = 229
2 = 2.693sin u = 2229

= 0.3714
r = 252 + 22 = 229

 = 0.6120 mm
 = 30.05 sin 1.167°

 l = d sin u

 sin u
 cos u

=
9>41

40>41
= 9

40

 cos u = 40
41

 sin u = 9
41

h = 292 + 402 = 41

40

9
h

!

3.

4.

Inconsistent
5.

6.

b = 4m = -2
 y = -2x + 4

 2x + y = 4

y =
` 3
2

4
-1
`

19
= -3 - 8

19
= -  

11
19

x =
` 4
-1

-2
5
`

` 3
2

-2
5
` = 20 - 2

15 - 1-42 = 18
19

2x + 5y = -1
3x - 2y = 4

0 = -7x = 5 - 2y
4y = 3 - 10 + 4y4y = 3 - 2x
4y = 3 - 215 - 2y2x + 2y = 5

†-1 3 -2
4 -3 0
5 -4 2

† -1 3
4 -3
5 -4

= 6 + 0 + 32 - 30 - 0 - 24 = -16

8. 9.

10

290
310

C

d

C = 310 - 2d

 P = -5
 -2P = 10

 6a 1
2
b - 2P = 13

 N = 1
2

 26N = 13
 8N + 6P = -26

 18N - 6P = 39
 4N + 3P = -13
 6N - 2P = 13

10.

Int: , Int: , 
0

!2

4

3

(1.3, !1.1)

y

xy = -1.1x = 1.3
11, 0210, 4213, 0210, -22 y = 0: x = 1y = 0: x = 3

x = 0: y = 4x = 0: y = -2
4x + y = 42x - 3y = 6

13.

14. Distance between points is 

Chapter 5
1. Points and 

2. OK
No

, Not a solution. Values do not satisfy second
equation.

y = 3x = -2
3 - 5(-2) = 13y - 5x = 12
2(-2) + 5(3) = 112x + 5y = 11

m =
4 - 1-52
-1 - 2

= 9
-3

= -3

1-1, 4212, -52

13.500°

21.375°
y

x

18.525 m

x - y = 18.525
tan 13.500° - 18.525

tan 21.375° = 29.831 m

18.525
y

= tan 21.375°18.525
x

= tan 13.500°
x - y.

!
3.2 m

1.0 m

u = 18°
 sin u = 1.0>3.2

0

(0, 4)

2

1
!2

y

x7. (perimeter)

 w = 3 km
 9 = w + 6
 l = 9 km

2l = 18
l - w = 6.0
l + w = 12
l = w + 6.0
2l + 2w = 24



 SOLUTIONS TO PRACTICE TEST PROBLEMS C.5SOLUTIONS TO PRACTICE TEST PROBLEMS C.5

11. Let vol. of first alloy
vol. of second alloy
vol. of third alloy

total vol.
copper
zinc

12.

Chapter 6
1.

2.

3.

4.
5.

6.
 = 12 - b21a - 2T2 2a - 4T - ba + 2bT = 21a - 2T2 - b1a - 2T2 = p1b + 2a21b2 - 2ab + 4a22 pb3 + 8a3p = p1b3 + 8a324x2 - 16y2 = 41x2 - 4y22 = 41x + 2y21x - 2y2

2x2 + 5x - 3

2x2 + 12x + 18
=
12x - 121x + 32

21x + 322 = 2x - 1
21x + 32, x Z -3

 R1 =
RR2 + rR - rR2

R2 - R

 R11R2 - R2 = RR2 + rR - rR2

 R1R2 - RR1 = RR2 + rR - rR2

 R1R2 + rR2 = RR2 + RR1 + rR
 R21R1 + r2 = RR2 + R1R1 + r2 

RR21R1 + r2
R

=
RR21R1 + r2

R1 + r
+

RR21R1 + r2
R2

1
R

= 1
R1 + r

+ 1
R2

 = 8x3 - 24x2 + 18x
 = 2x14x2 - 12x + 92 2x12x - 322 = 2x312x22 - 212x2132 + 324

= -101
-23

= 101
23

= -24 + 12 - 10 - 2 - 45 - 32
-12 + 6 + 0 - 1 - 0 - 16

y =

† 32
1

4
-2

5

-1
3
4
†

† 32
1

2
-1

0

-1
3
4
†

x + 4z = 5
2x - y + 3z = -2
3x + 2y - z = 4

z = 50 cm3
x = 0 cm3
y = 50 cm3

3x + 3y = 150
3x + 2y = 100
3x + 3y = 150
6x + 5y + 3z = 400

x + y + z = 100
0.3x + 0.3y = 15
0.6x + 0.5y + 0.3z = 40

x + y + z = 100
z =
y =
x = 7.

8.

9.

10.

11. Let time working together

LCD of 12 and 16 is 48.

12. LCD

No solution.
 x = 0

 3 + 12x - 32 = 3x

3x12x - 32
x12x - 32 +

x12x - 32
x

=
3x12x - 32

2x - 3

= x12x - 32, x Z 0, 3>23

2x2 - 3x
+ 1

x
= 3

2x - 3

t = 48
7

= 6.9 days

4t + 3t = 48
t

12
+ t

16
= 1

48t
12

+ 48t
16

= 48t =

 =
512x - 121x + 1212x - 52

 = 2x + 2 - 3
21x + 12 * 10

2x - 5

 
1 - 3

2x + 2
x
5

- 1
2

=

21x + 12 - 3

21x + 12
2x - 5

10

 = -  
1x + 121x - 22

x
, x Z 2

 = -  
x1x + 121x - 2221x - 221x22

 =
x1x + 12

2 - x
*
1x - 222

x2

 
x2 + x
2 - x

, x2

x2 - 4x + 4
= x2 + x

2 - x
* x2 - 4x + 4

x2

 = -2x3 - 5x - 3

4x21x - 12
 = 3x - 3 - 8x - 2x3

4x21x - 12
 =

31x - 12 - 214x2 - x12x22
4x21x - 12

 
3

4x2
- 2

x2 - x
- x

2x - 2
= 3

4x2
- 2

x1x - 12 - x
21x - 12

= 2(9x + 8)(2x - 1)
36x2 + 14x - 16 = 2(18x2 + 7x - 8)

Chapter 7
1.

or x = -4x = 3
2

x + 4 = 02x - 3 = 0
(2x - 3)(x + 4) = 0
2x2 + 5x - 12 = 0
2x2 + 5x = 12 2.

, ,

= 3 ; 229
2

x =
-(-3) ; 2(-3)2 - 4(1)(-5)

2(1)

c = -5b = -3a = 1
x2 - 3x - 5 = 0
x2 = 3x + 5



C.6 SOLUTIONS TO PRACTICE TEST PROBLEMSC.6 SOLUTIONS TO PRACTICE TEST PROBLEMS

3.
On calculator

From zero feature
or x = 1.69x = -0.44

Y1 = 4X2 - 5X - 3

4x2 - 5x - 3 = 0 9. Let width of window
height of window

(perimeter)

(area)

or

10.

y-int 
For 

for 

Chapter 8

1. 2. (a) (b) (c)

3.
4. ,

5.

6.

7.

or

8.
,

in third quadrant
,

9. ,

rad

s ! 16.0 m

r ! 4.25 m
= 34.0 m2

A = 1
2

  ur2 = 1
2
13.76214.2522

u = 16.0
4.25

= 3.76

16.0 = 4.25us = ru

u = 3.7432uref = 0.6017
u

csc u negative,cos u negative
cos u = -0.8244, csc u 6 0;

u = 180° + 13.47° = 193.47°
u = 13.47°
uref = 13.47°
tan u = 0.2396

3.572 = 3.572a 180°
p
b = 204.7°

v = vr = 14400p211.402 = 19 000 m>min
= 4400p rad>min

v = 2200 r>min = 12200 r>min212p rad>r2r = 1.40 m

sec u = 15
-9

= -  
5
3

sin u = 12
15

= 4
5

r = 21-922 + 122 = 15

y = 12x = -9

sin 205° = -sin1205° - 180°2 = -sin 25°

+-+150° = a p
180
b11502 = 5p

6

0 8

8

!8

y

x

x = 1.2, 6.8y = 0
x = 8, y = 8

10, 82V14, -82, c = 8,
y = 42 - 8142 + 8 = -8

-b
2a

=
-1-82
2112 = 4

a = 1, b = -8
y = x2 - 8x + 8

w = 2.9 m, h = 1.3 m
w = 1.3 m, h = 2.9 m

= 2.88, 1.32

w =
-1-4.22 ; 21-4.222 - 413.82

2

 w2 - 4.2w + 3.8 = 0
 -w2 + 4.2w = 3.8
 w14.2 - w2 = 3.8

h = 4.2 - ww + h = 4.2
2w + 2h = 8.4

h =
w =

4.

(not quadratic)

5.

6.

Min. pt. is ,
, y-intercept is .

7.

8.

 x = 3 ; 322
 x - 3 = ;218

 1x - 322 = 18
x2 - 6x + 9 = 9 + 9
x2 - 6x = 9
x2 - 6x - 9 = 0

= E ; 2E2 - 4RP
2R

I =
-1-E2 ; 21-E22 - 4RP

2R

RI2 - EI + P = 0
P = EI - RI2

0

(0, 5)

("2, "3)

"4

"3

y

x

10, 52c = 5
1-2, -321a 7 02y = 21-222 + 81-22 + 5 = -3

-b
2a

= -8
2122 = -2

y = 2x2 + 8x + 5

 x = -3, 2
 1x + 321x - 22 = 0

 0 = x2 + x - 6
 3x + 6 - 2x = x2 + 2x

 31x + 22 - 2x = x2 + 2x

 
3x1x + 22

x
-

2x1x + 22
x + 2

= x1x + 22
3
x

- 2
x + 2

= 1, x Z 0, -2

 x = 6
5

 5x = 6
 2x2 - x = 6 - 6x + 2x2
 2x2 - x = 6 - 2x13 - x2



 SOLUTIONS TO PRACTICE TEST PROBLEMS C.7

x45.0°

45.0°

Pole

Tree

36
.50

 m

21
.3

8 
m

Set !
"

SOLUTIONS TO PRACTICE TEST PROBLEMS C.7

10.
, , cm

, cm

Chapter 9
1.

2.

= 34.4
b = 222.52 + 30.92 - 2122.52130.92cos 78.6°

b2 = a2 + c2 - 2ac cos B

R
B

2A

s = 6.1012.072 = 12.6s = ru

u =
2138.52
6.102 = 2.0738.5 = 1

2
 u16.1022,

r = 6.10d = 12.2 cmA = 38.5 cm2
A = 1

2
  ur2

8.

km

9.

is in second quadrant, since is negative and is positive.

10.
means two solutions.

29.6

36.5°

22.3
22.3

C1, C2

B1B2
A

c2 = 22.3 sin 15.6°
sin 36.5° = 10.1

c2

sin 15.6° = 22.3
sin 36.5° ,

c1 = 22.3 sin 91.4°
sin 36.5° = 37.5

c1

sin 91.4° = 22.3
sin 36.5° ,

C2 = 180° - 36.5° - 127.9° = 15.6°
B2 = 180° - 52.1° = 127.9°,

C1 = 180° - 36.5° - 52.1° = 91.4°B1 = 52.1°
sin B = 29.6 sin 36.5°

22.3
29.6
sin B = 22.3

sin 36.5° ,

17.6 6 22.3 6 29.6
29.6 sin 36.5° = 17.6

74.2°208.9°

A ! 449

B ! 285

y

x

RyRxu

u = 113.4°uref = 66.6°,tan uref = 294.3
127.3 ,

R = 21-127.322 + 294.32 = 321

= 294.3
Ry = Ay + By = 449 sin 74.2° + 285 sin 208.9°

= -127.3
Rx = Ax + Bx = 449 cos 74.2° + 285 cos 208.9°

By = 285 sin 208.9°Ay = 449 sin 74.2°
Bx = 285 cos 208.9°Ax = 449 cos 74.2°

148.5°31.5°

C

A

42.0 km
63.0 km

x

C = 180° - 1148.5° + 20.4°2 = 11.1°
= 23.2A = 20.4°

x = 63.0 sin 11.1°
sin 148.5°sin A = 42.0 sin 148.5°

63.0

x
sin 11.1° = 63.0

sin 148.5°
63.0

sin 148.5° = 42.0
sin A

b

B
78.6°

a ! 22.5

c ! 30.9

104.2°
18.9°

C

A B

a ! 426

4.

c = 426 sin 56.9°
sin 18.9° = 1100

c
sin C = a

sin A

C = 180° - 118.9° + 104.2°2 = 56.9°

5. Since a is longest side, find A first.

 C = 180° - 1105.4° + 18.8°2 = 55.8°
 B = 18.8°

sin B = b sin A
a

= 3.29 sin 105.4°
9.84

b
sin B = a

sin A

 A = 105.4°
cos A = b2 + c2 - a2

2bc
= 3.292 + 8.442 - 9.842

213.29218.442a2 = b2 + c2 - 2bc cos A

C

A B

a ! 9.84

c ! 8.44

b ! 3.29

6. , 

,
Quad. II:

!ref

"235

280 152

x

y

!

u = 180° - 32.9° = 147.1°
uref = 32.9°tan uref = ` 152

-235
` = 152

235

R = 2(-235)2 + 1522 = 280

Ry = 152Rx = -235

7.
Ay = 871 sin 284.3° = -844
Ax = 871 cos 284.3° = 215

Ax

Ay

284.3°

A ! 871

y

x

3.

Displacement is 26.19 m,
N of E.9.74°

u = 45.00° - 35.26° = 9.74°
a = 35.26°sin a = 21.38 sin 45.00°

26.19 ,

21.38
sin a = 26.19

sin 45.00°x = 26.19 m
x2 = 36.502 + 21.382 - 2136.502121.382cos 45.00°
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Chapter 10
1.

, , 

2.

per. = 2p
p>2 = 4

disp. = 0,Amp. = 0.5,
y = 0.5 cos p2 x

displacement = -
-p3
4p

= 1
12

period = 2p
4p

= 1
2

amplitude = ƒ -3 ƒ = 3c = -p>3b = 4pa = -3
y = -3 sin(4px - p>3)

x 0 1 2 3 4
y 0.5 0 0 0.5-0.5

3.
For 

, 
disp. = 0

per. = 2p,amp. = 3
y1 = 3 sin x,

y = 2 + 3 sin x

x 0
0 3 0 0
2 5 2 2-1y = 2 + 3 sin x

-3y1 = 3 sin x
2p3p

2pp
2

4.
sec x = 1

cos x

y = 3 sec x

5

2

0

y

x
!1 2!

3

0

y

x

!3

2!

y " 3 sec x

y " sec x
y " cos x

5.

, ,

disp. = -
-p>3

2 = p6

per. = 2p
2 = pAmp. = 2

y = 2 sina2x - p3 b

0 2 0 0-2y

7p
6

11p
12

2p
3

5p
12

p
6x

p
6 + 3p

4 = 11p
12

p
6 + p

2 = 2p
3 ,p

6 + p
4 = 5p

12 ,

2

0

y

x

!2

!
6

7!
6

!

6.

7.
For 

, 
For 

, 

8. , 

9.

, ,

10.
is first max. with 

y = 2 sin 3x
2

b = 3
2

p
2b = p

3 ,1
4 A2pb B = p

3 ,period = 2p
b ,

x 7 0Ap3 , 2 By = 2 sin bx

0 6.02
t

!0.26

!R

R

disp. =
-p>6
2.00 = - p12 s = -0.26 s

s = 3.14 sper. = 2p
2.00 = pAmp. = R

d = R sin A2.00t + p
6 Bv = 2.00 rad>sd = R sin Avt + p

6 B
-1

-2

1

2

y = 2 cos 2ptx = sin pt

2

0

y

x

!3 y " 2 sin x # cos 2x

y1 " 2 sin x

y2 " cos 2x
2!

disp. = 0per. = 2p
2 = pamp. = 1,

y2 = cos 2x,
disp. = 0per. = 2p,amp. = 2

y1 = 2 sin x,
y = 2 sin x + cos 2x

0.2

0.20

y

t

!0.2

per. = 0.100 samp. = 0.200 cm,
y = 0.200 cos 20pt,

T = 0.100 s,A = 0.200 cm,
y = A cos 2pT t

0 4

0.5

y

x

!0.5

x

y

2

"2

4!
3

!
3
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Chapter 11
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
11.

12.

13.

14.

15.

 = 23

22323
= 23

6

 
3-1/2

2
= 1

2 * 31/2
= 1

223

 = 12 + 525

 = 36 + 1525
3

 =
21152 + 4245 + 245 + 2132

15 - 4132
 
2215 + 23215 - 223

= 2215 + 23215 - 223
* 215 + 223215 + 223

a4a-1>2b3>4
b-2

b ab-1

2a
b = 4a-1>2b3>4-1

2ab-2
= 2b2-1>4

a1+1>2 = 2b7>4
a3>2

= 3x + 4

(2x + 3)1>2
=

(2x + 3)1>2 (2x + 3)1>2 + x + 1

(2x + 3)1>2 = 2x + 3 + x + 1

(2x + 3)1>2
= 12x + 3)1>2 + x + 1

(2x + 3)1/2

12x + 321/2 + 1x + 1212x + 32-1/2

 = 1225 - 423

 = 6 A225 B - 2 A223 B = 6220 - 2212

 212 A3210 - 26 B = 222 A3210 B - 222 A26 B227a4b3 = 29 * 3 * 1a2221b221b2 = 3a2b23b

3 - 212

21x
= 3 - 212

21x
* 1x1x

= 31x - 212x
2x

223  4  4 = 212 4 = 212 22 = 22>12 = 21>6 = 26 2

= 2x - 612xy + 9y
A12x - 31y B2 = A12x B2 - 212x A31y B + A31y B2=

xy2

2y2 + x

12x-1 + y-22-1 = 1

2x-1 + y-2
= 1

2
x

+ 1

y2

= 1

2y2 + x

xy2

= 415 - 515 = -15
= 2 A215 B - 515

2120 - 1125 = 214 * 5 - 125 * 5

1as-1/3t3/4212 = a12s1-1/321122t13/421122 = a12s-4t9 = a12t9

s4

 = 110321222 = 4000

 
1003/2

8-2/3
= 11003/22182/32 = 311001/22343181/3224

(3px-4)-2 = (3p)-2(x-4)-2 = x8

(3p)2
= x8

9p2

-5y0 = -5(1) = -5
16.

Chapter 12
1.

2.
3. :

,

4. (a)
(b)

5.

6.

7.

8. , , 

9.

10.

y = -1x = -1,
2x = -2

3x - y = -2
x - y = 0

 1x - y2 + 13x - y2j = 0 - 2j
 x - y + 3xj - yj = -2j

x + 2j - y = yj - 3xj

 u = 321.0° = 5.60 rad
 tan u = -2.81

3.47 , uref = 39.0°
R = 23.472 + 1-2.8122 = 4.47

3.47 - 2.81j = 4.47e5.60j

 u = -18.2°
 tan u =

XL - XC

R
= 6.20 - 7.35

3.50 = -1.15
3.50

 = 23.502 + 16.20 - 7.3522 = 3.68 Æ
 ƒZ ƒ = 2R2 + 1XL - XC22XC = 7.35 ÆXL = 6.20 ÆR = 3.50 Æ

125.2° = 125.2p
180

= 2.185 rad
2.561cos 125.2° + j sin 125.2°2 = 2.56e2.185j

 =
10 - 26j - 12

25 - 91-12 =
-2 - 26j

34
= -

1 + 13j

17

 
2 - 4j

5 + 3j
=
12 - 4j215 - 3j215 + 3j215 - 3j2 =

10 - 26j + 12j2

25 - 9j2

4

0
4

Real

Imag.

!1

!3

!1 " 4 j

3 " j

4 ! 3 j

14 - 3j2 + 1-1 + 4j2 = 3 + j

-j15 = -j12j3 = 1-121-j2 = j
-2-64 = -18j2 = -8j

 = 7.28l285.9°
 2 - 7j = 7.281cos 285.9° + j sin 285.9°2 u = 285.9°uref = 74.1°tan u = -7

2 = -3.500,
r = 222 + (-7)2 = 253 = 7.282 - 7j

12l130°213l45°2 = 122132l130° + 45° = 6l175°
 = 2 + 13j
 = 3 - 2j + 15j - 1

A3 - 1-4 B + A51-9 - 1 B = 13 - 2j2 + 3513j2 - 14
= 0.220

2 * 10
= 0.011 0.220164 * 1062-1/6 = 0.220164 * 10621/6

N = 64 * 1060.220N-1/6
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6.

7.

8.

9.

10.

11.

12.

years

Chapter 14
1.

Let 

Check: 

Solution: x = 81
9 - 6 = 3
811/2 - 21811/42 = 3

x = 81x1/4 = 3,
x1/4 Z -1
y = 3, -1
1y - 321y + 12 = 0
y2 - 2y - 3 = 0

y = x1/4
x1/2 - 2x1/4 = 3

t = ln 2
0.08 = 8.66ln 2 = ln e0.08t = 0.08t

 2 = e0.08t 2A0 = A0e0.08t
 A = 2A0A = A0e0.08t

 log5 7.32 =
log 7.32

log 5 = 1.237

 logb x =
loga x

loga b

2 ln 0.9523
log 6066 = -0.025 84

i = Ie-t/RC 
i
I

= e-t/RC

 ln 
i
I

= - t>RC

 ln i - ln I = - t>RC

y = 1
49 x3x3 = 49y

x3

y
= 72log7 

x3

y
= 2

 log7 x3 - log7 y = 2
 3 log7 x - log7 y = 2

 = 2 log5 2 + 3 log5 a - log5 7
 = log5 4 + 3 log5 a - log5 7
 = log5 4 + log5 a

3 - log5 7

 log5a4a3

7
b = log5 4a3 - log5 7

0!1 2 4

1000

10

0.1

y

x

y = 213x2
C.10 SOLUTIONS TO PRACTICE TEST PROBLEMS

11.

12.

Cube roots of j: 

Chapter 13

1.

2.

3.

4.

5.

0 8 16

4

!2

y

x

log4 16 = 2log4 14 = -1,

y = 2 log4 x

 x = 1
3
a log 8

log 3 - 1b = 0.298

 3x + 1 =
log 8
log 3

 13x + 12log 3 = log 8
33x+1 = 8

 x = 4
 43 = x3
 64 = x3

 logx 64 = 3

 x = 21322 = 18

 
x
2

= 32

log3 x
2

= 2
 log3 x - log3 2 = 2

 = 1

91/2
= 1

3

 x = 9-1/2

 log9 x = - 1
2

-j
-0.8660 + 0.5000j
0.8660 + 0.5000j

 = cos 270° + j sin 270° = -j

 = 11/3acos 
90° + 720°

3
+ j sin 

90° + 720°
3

b = cos 150° + j sin 150° = -0.8660 + 0.5000j

 = 11/3acos 90° + 360°
3 + j sin 90° + 360°

3 b = cos 30° + j sin 30° = 0.8660 + 0.5000j

 j1/3 = 11/3acos 
90°
3

+ j sin 
90°
3
bj = 11cos 90° + j sin 90°2 = 8.04 * 10-12 = 8.04 pF

 C = 112pf22L
= 112p2216.00 * 1052218.75 * 10-32

 2pfL = 1
2pfC

f = 600 kHz = 6.00 * 105 Hz
L = 8.75 mH = 8.75 * 10-3 H

x 1 4 16
y 0 2 4-2

1
4

x 0 1 2
y 0.7 2 6 18

-1

x 3 4 5
y 54 162 486
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2.

Check: 

Solution: 
3.

Let 

All values check.
4.

or
5.

6.

7.
y = 2

x
y = ;2x2 - 4

xy = 2x2 - y2 = 4

 h =
v2 - v2

0

2g

 2gh = v2 - v2
0

 v2 = v2
0 + 2gh

 v = 2v2
0 + 2gh

 x = 60
 2x = 120

 2x + 5 = 125
23 2x + 5 = 5

x = 2, y = - 1
2

x = - 8
3 , y = 19

18

x = 2: y = 1
214 - 52 = - 1

2

x = - 8
3: y = 1

2 A64
9 - 5 B = 19

18

x = - 8
3 , 2

13x + 821x - 22 = 0
3x2 + 2x - 16 = 0
2x + 6 A 12 B1x2 - 52 = 1

 y = 1
21x2 - 52 2x + 6y = 1

 x2 - 2y = 5

 x = -1, 1, -4, 4
 x2 = 1, 16
 y = 1, 16

 1 y - 121 y - 162 = 0
 y2 - 17y + 16 = 0
y = x2

x4 - 17x2 + 16 = 0

x = 3

3
4 - 7

4 Z 1
3233

16 - 2 - 233
16 + 1 ! 1x = 33

16 :
3 - 2 = 1

313 - 2 - 13 + 1 ! 1x = 3:
 = 81 ; 15

32
= 3, 

33
16

 x =
81 ; 2812 - 411621992

32

 16x2 - 81x + 99 = 0
 16x2 - 80x + 100 = x + 1

 4x - 10 = 1x + 1
 8x - 20 = 21x + 1

 91x - 22 = 1 + 21x + 1 + 1x + 12 31x - 2 = 1 + 1x + 1
 31x - 2 - 1x + 1 = 1

8. Let length, width

, 
(or )

Chapter 15
1.

is not a zero
2.

Other roots: 
3.

Quotient: 
Remainder = -15

x2 - 2x - 2
1 -2 -2 -15

3 -6 -6
1 -5 4 -9 ƒ 3
1x3 - 5x2 + 4x - 92 , 1x - 32x = -3, 1
x2 + 2x - 3 = 1x + 321x - 121 2 -3

2 4 -6
1 0 -7 6 ƒ2

2 0 -14 12
1 -2 -7 20 -12 ƒ2
x4 - 2x3 - 7x2 + 20x - 12 = 0

-3 f1-32 Z 0,
 = -54 + 27 - 21 - 6 = -54

 f1-32 = 21-323 + 31-322 + 71-32 - 6
 f1x2 = 2x3 + 3x2 + 7x - 6

w = 5.00 ml = 2.00 m,
w = 2.00 ml = 5.00 m

w = 5, 2
 1w - 521w - 22 = 0

 w2 - 7w + 10 = 0
 7w - w2 = 10

 17 - w2w = 10
 l = 7 - w

 l + w = 7
 lw = 10    
 2l + 2w = 14

w =l =
y = -0.9x = -2.2,y = 0.9;x = 2.2,

0

!4

4

4 (2.2, 0.9)

(!2.2, !0.9)
!4

y

x

x y
0

;3.5;4
;2.2;3

;2
x y

0 —
1 2
2 1
4 1

2

-2-1
-1-2
- 1

2-4

SOLUTIONS TO PRACTICE TEST PROBLEMS C.11
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4.

Remainder is not zero;
is not a factor.

5.

Remainder 
6.

4 roots
No more than 3 positive roots
One negative root
Rational roots: factors of 12 divided by factors of 2
Possible rational roots: 

2 is too large.

roots: 
7.

for m, m
8. Let length of edge.

mm

Chapter 16

1.

2B = c 2
-2

8
-4

10
6
d

B = c 1
-1

4
-2

5
3
dA = c 3

2
-1

0
4

-2
d

0

-3

5

3

x = 3.8

y = x3 - 3x2 - 3x - 1
x3 - 3x2 - 3x - 1 = 0
2x3 = x3 + 3x2 + 3x + 1

2V = 1x + 123V = x3,
x =

x = 8x = 0y = 0
1 8 500 0

8 64 4000
1 0 436 -4000 ƒ 8 
x = 0, x3 + 436x - 4000 = 0
y = 0, kx21x3 + 436x - 40002 = 0
y = kx21x3 + 436x - 400023

2 , -1, 2j, -2j
x = ;  2jx2 + 4 = 0,2x2 + 8 = 0,

2 0 8 0
-2 0 -8

2 2 8 8 0 ƒ -1
3 3 12 12

2 -1 5 -4 -12  ƒ 32 

2 3 11 18 24
4 6 22 36

2 -1 5 -4 -12 ƒ2
; 3

2; 1
2,;12,;6,;4,;3,;2,;1,

n = 4;
 f1-x2 = 2x4 + x3 + 5x2 + 4x - 12
 f1x2 = 2x4 - x3 + 5x2 - 4x - 12
2x4 - x3 + 5x2 - 4x - 12 = 0

= -37
 = -64 + 64 - 28 - 9 = -37

 f1-42 = 1-423 + 41-422 + 71-42 - 9
 f1x2 = x3 + 4x2 + 7x - 9
1x3 + 4x2 + 7x - 92 , 1x + 422x + 1

2 14 16 -8 -12
-1 -7 -8 4

ƒ- 1
22 15 23 0 -16

2x + 1 = 2 Ax + 1
2 Bf1x2 = 2x4 + 15x3 + 23x2 - 16

2.

3.

4.

5.

C-1 = C -7
9

- 5
9
4
9

4
3
2
3

- 1
3

8
9
7
9

-2
9

SC 1
0
0

0
1
0

4
7
2

1
† 1

1
4
9

0
- 1

2

- 1
3

0
0

-2
9

S : C 1
0
0

0
1
0

0
0
1
† -7

9

- 5
9
4
9

4
3
2
3

- 1
3

8
9
7
9

-2
9

SC 1
0
0

0
1
3

4
7
2

6
† 1

1
1

0
- 1

2

0

0
0
1
S : C 1

0
0

0
1
0

4
7
2

- 9
2

† 1
1

-2

0
- 1

2
3
2

0
0
1
S :C 1

2
-1

0
-2

3

4
1
2
† 1

0
0

0
1
0

0
0
1
S : C 1

0
0

0
-2

3

4
-7

6
† 1
-2

1

0
1
0

0
0
1
S :AB = BA = I, B = A-1

= c1
0

0
1
d = I

BA = c -2
-1

5
2
d c2

1
-5
-2
d = c -4 + 5

-2 + 2
10 - 10
5 - 4

d
= c1

0
0
1
d = I

AB = c2
1

-5
-2
d c -2

-1
5
2
d = c -4 + 5

-2 + 2
10 - 10
5 - 4

d
B = c -2

-1
5
2
dA = c2

1
-5
-2
d

DC = C 2
4
6

-2
-5

1
S C 1

2
-1

0
-2

3

4
1
2
S= C26

2
22

2
7

-11
S= C 2 + 0 + 24

4 - 8 + 6
-2 + 12 + 12

-2 + 0 + 4
-4 + 10 + 1

2 - 15 + 2
SCD = C 1

2
-1

0
-2

3

4
1
2
S C 2

4
6

-2
-5

1
S  c = 9 b = 10 a = 7

 5 + 4 = c 2152 = b 3 + 4 = a
 y + z = c 2y = b x + z = a

y = 5
3 - y = -2x = 3

z = 4x - y = -22x = 6

c 2x
x + z

x - y
2y

z
y + z

d = c6
a

-2
b

4
c
d

 = c 1
4

-9
4

-6
-8
d

 A - 2B = c 3 - 2
2 + 2

-1 - 8
0 + 4

4 - 10
-2 - 6

d
C.12 SOLUTIONS TO PRACTICE TEST PROBLEMS

not defined, since D
has 2 columns and
C has 3 rows
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6.

7.

interchange equations

subtract 2 times first equation
from second equation
divide second equation by 

substitute in first equation

8.

9.

(1) 2 col. 1 added to col. 2; (2) rows 1 and 3 interchanged; 
(3) cols. 1 and 2 interchanged; (4) expanded by col. 1

10.

The solution is 

11. Let number of shares of stock A
number of shares of stock B

Let coefficient matrixC =
 3A + 4B = 200
 5A + 3B = 260
30A + 40B = 2000
50A + 30B = 2600

B =
A =

x = 1
2, y = -3, z = - 7

2.

= J 1
2

-3
- 7

2
K

A -1C = J 7
40

1
80 - 1

16
1
4 - 1

8 - 3
8

11
40 -27

80 - 5
16
K  J 6

6
10 K

J 1 0 - 1
5

0 1 -6
5

0 0 - 16
5

 †  3
25

2
25 0

- 2
25

7
25 0

-22
25

27
25 1 K : J 1 0 0

0 1 0
0 0 1

 †  7
40

1
80 - 1

16
1
4 - 1

8 - 3
8

11
40 -27

80 - 5
16
K

C 1 -2
7

1
7

0 25
7 - 30

7

0 -27
7

10
7

 †  1
7 0 0

-2
7 1 0

-4
7 0 1

S  :  C 1 -2
7

1
7

0 1 -6
5

0 -27
7

10
7

 †  1
7 0 0

- 2
25

7
25 0

-4
7 0 1

S :J 7 -2 1
2 3 -4
4 -5 2

 †  1 0 0
0 1 0
0 0 1 K : J 1 -2

7
1
7

2 3 -4
4 -5 2

 †  17 0 0
0 1 0
0 0 1 K :

*

= 9 ` -3 2
2 -3

` = 9(9 - 4) = 45

† 2 -4 -3
-3 6 2
5 -1 5

† = † 2 0 -3
-3 0 2
5 9 5

† = - † 5 9 5
-3 0 2
2 0 -3

† = † 9 5 5
0 -3 2
0 2 -3

†
= 2(32) + 4(-25) - 3(-27) = 64 - 100 + 81 = 45
= 2[30 - (-2)] + 4[-  15 - 10] - 3[3 - 30]

† 2 -4 -3
-3 6 2
5 -1 5

† = 2 ` 6 2
-1 5

` - (-4) ` -3  2
5  5

` +  (-3) ` -3      6
 5   -1

`
       x = 4

y = -1x + 2(-1) = 2
  y = -1

-7x + 2y = 2
- 7y = 7

x + 2y = 2
2x - 3y = 11

x + 2y = 2
x + 2y = 2

2x - 3y = 11

y = -1x = 4

A-1C = c 2
7

- 1
7

3
7
2
7
d c11

2
d = c 22

7 + 6
7

- 11
7 + 4

7
d = c 4

-1
d

C = c11
2
dA-1 = c 2

7

- 1
7

3
7
2
7
dA = c2

1
-3

2
dx + 2y = 2

2x - 3y = 11

shares shares

Chapter 17

1. 2. 3.

4. 5.

6.

or

7. 8.

1-2, 10>32-2 6 x 6 10
3

10
3

7 x 7 -2

-10 6 -3x 6 6
-8 6 2 - 3x 6 8

y

x

y ! x2

y ! x " 1

ƒ2 - 3x ƒ 6 8

#2 1

1-q , -2][1, q2  x … -2 x Ú 1
 2x … -4 2x Ú 2

 2x + 1 … -3 2x + 1 Ú 3,
 ƒ2x + 1 ƒ Ú 3

1#2

1-2, 12-2 6 x 6 1
1 7 x 7 -2

-2 6 -2x 6 4

x2 + x
x - 2

… 0, 
x1x + 12

x - 2
… 0-1 6 1 - 2x 6 5

#2#6

1-q , -221-q , -6]
x 6 -2x … -6

3x 6 -6-x Ú 6

3x + 1 6 -5
-x
2

Ú 3x 6 0, y 7 0

B = 20A = 40

 = c40
20
d

 cA
B
d = c 4

11

- 3
11

- 3
11
5
11
d c260

200
d = c 4

1112602 - 3
1112002

- 3
1112602 + 5

1112002 d
 C-1 = 1

11
c 4
-3

-3
5
d = c 4

11

- 3
11

- 3
11
5
11
d

` 5
3

3
4
` = 20 - 9 = 11C = c5

3
3
4
d ,

Interval Sign

Solution: or

(x cannot equal 2)
#1 0 2

1-q , -1] or [0, 22 0 … x 6 2x … -1

++ +
+x 7 2

-+ +
-0 6 x 6 2

+- +
--1 6 x 6 0

--  -
-x 6 - 1

x(x + 1)

x - 2

SOLUTIONS TO PRACTICE TEST PROBLEMS C.13
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9. If is real,
then 

or
or

10. Let width, length

11. Let length of type A wire
length of type B wire

12. (within 150 nm of )

13. Graph We see that 
for , or 

14.

Vertices:

0 10 15.6 12

Max. value of at 

Chapter 18

1. 2.

3.

 L = 0.018T
 k = 0.018 cm>°C

 2.7 = k11502 L = 2.7 cm for T = 150 °C
 L = kT

 x = 1.3 m
 20.0x = 1.8114.52 

1.8 m
20.0 mm

= x
14.5 mm

180 s
4 min

= 180 s
240 s

= 3
4

a 6
5

,
16
5
bP = 15.6

P = 5x + 3y

10, 42a 6
5

, 
16
5
b12, 0210, 02

4x + y … 8
2x + 3y … 12
x Ú 0, y Ú 0

62

4

8

y

x

(  ,  )6
5

16
5

P = 5x + 3y

y

x
4

12

20

-4 -2 2 4
-12

-20

(-q , -4) or (3, q)x 6 -4 or x 7 3
x2 + x - 12 7 0y = x2 + x - 12.

l = 550 nmƒl - 550 nm ƒ 6 150 nm

A + 2B 6 50
0.10A + 0.20B 6 5.00

B =

500

25

B

A

A =
[60, q )

 w Ú 60 m w1w + 202 Ú 4800
 1w + 8021w - 602 Ú 0 wl Ú 4800
 w2 + 20w - 4800 Ú 0 l = w + 20

l =w =
[3, q)(-q , -2)

x Ú 3x … -2
1x - 321x + 22 Ú 0

x2 - x - 6 Ú 0.
2x2 - x - 6 4.

x = 7.24

104
= 7.24*10-4 mm

1 cm

104 mm
= x

7.24 mm

5. 6.
Using values of water,

For alcohol,

= 2.35 kPa
p = 0.009801800210.3002 k = 0.00980 kPa # m2>kg
 1.96 = k11000210.2002p = kdh

 = 73.5 cm
 l = 105.0 - 31.5

 w = 31.5 cm
 10w = 315.0

 315.0 - 3w = 7w

 
105.0 - w

w
= 7

3

 
l
w

= 7
3

 l = 105.0 - w
 2l + 2w = 210.0

7. Let crushing load of first pillar
crushing load of second pillar

Chapter 19
1. (a) , ; arith. seq. 8, , 7, , 6, …

(b) , ; geom. seq. 8, , 2, , , …

2. 6, ,
geometric sequence

3.
arithmetic sequence

4.

S = 0.45
1 - 0.01

= 0.45
0.99

= 5
11

r = 0.01a = 0.45
0.454 545 Á = 0.45 + 0.0045 + 0.000 045 + Á

 n = 7
 1n + 921n - 72 = 0

 n2 + 2n - 63 = 0
 252 = n18 + 4n2 = 4n2 + 8n
 126 = n

236 + 12 + 4n24 an = 6 + 1n - 124 = 2 + 4n
 126 = n

216 + an2sn = 126;d = 4,a1 = 6,

 =
6a1 + 1

37
b

4
3

= 1094
243

 S7 =
6B1 - A - 1

3 B7R
1 - A - 1

3 B
 a1 = 6 r = -2

6
= - 1

3

2
3, Á  ;-2

1>2-1-4r = -1>2a1 = 8
13>215>2d = -1>2a1 = 8

 
L1

L2
=

k12r22413l222
kr4

2

l2
2

=
16kr4

2

9l2
2

*
l2
2

kr4
2

= 16
9

 L2 =
kr4

2

l2
2

L1 =
k12r22413l222

L2 =
L1 =
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5.

6.

7.
Value after 1 year is

8.

9. Ball falls 8.00 m, rises 4.00 m, falls 4.00 m, etc.

Chapter 20

1.

2.
2 sin x cos x + sin x = 0
sin 2x + sin x = 0

 cos u = cos u
 = 1 - sin2 u

cos u = cos2 u
cos u = cos u

 sec u - tan u
csc u = 1

cos u -

sin u
cos u

1
sin u

= 1
cos u - sin2 u

cos u

 = 8.00 + 8.00
1 - 0.5

= 8.00 + 16.0 = 24.0 m
 = 8.00 + 8.00 + 4.00 + 2.00 + Á

 Distance = 8.00 + 14.00 + 4.002 + 12.00 + 2.002 + Á

 = 10 100 S100 = 100
2 12 + 2002 n = 100a100 = 200,a1 = 2,

2 + 4 + Á + 200

 = $6633.24
 V20 = 250011.05220
2500 + 250010.052 = 250011.0525% = 0.05

= 32x5 - 80x4y + 80x3y2 - 40x2y3 + 10xy4 - y5

+
5142132122

2132142 12x21-y24 + 1-y25 +
5142132

2132 12x221-y23 12x - y25 = 12x25 + 512x241-y2 +
5142

2
12x231-y22 = 1 - 2x - 2x2 + Á

 = 1 + A 12 B1-4x2 +
1
2 A 12 - 1 B

2
1-4x22 + Á

 21 - 4x = 11 - 4x21/2
6.

7.

since 
is in second quadrant, where is negative.

8.

 u = 1
4

 sin-1 2I
I0

 4u = sin-1 2I
I0

 
2I
I0

= 2 sin 2u cos 2u = sin 4u
 I = I0 sin 2u cos 2u

cos x2
x
2

135° 6 x
2 6 180°;270° 6 x 6 360°,

cos 
x
2

= -A1 + A45 B
2

= -A 9
10

= -0.9487

cos x = 4
5

(4, !3)

x
r " 5

x

ysin x = - 3
5

cos2 x cot2 x = cos2 x cot2 x
cos2 x1csc2 x - 12 = cos2 x cot2 x;

cot2 x - cos2 x = cos2 x

sin2 x
- cos2 x =

x = 0, p, 2p3 , 4p3

cos x = - 1
2

sin x = 0

sin x12 cos x + 12 = 0

4.
Since will not equal zero, if

5.

 =
sin 1a + b2
sin 1a - b2

=
sin a cos b + sin b cos a
sin a cos b - sin b cos a 

tan a + tan b
tan a - tan b =

sin a
cos a +

sin b
cos b

sin a
cos a -

sin b
cos b

 t = 0.105 s
 10.0t = tan-1 1.73
 1.73 = tan 10.0t

1.73 cos 10.0t - sin 10.0t = 0
i = 08.00e-20t

i = 8.00e-20t11.73 cos 10.0t - sin 10.0t2

9.

0

-2

8

2

x = 3.02, 4.42, 6.77
y = x - 2 cos x - 5

Chapter 21
1. Points: , 

(a) 

(b) Between points ; perp. line, 

2.

(same sign)
: ellipse

3.

4.

5.
,

F10, -32V10, 02 p = -34p = -12

!4

!6 6

y

x
V(0, 0)

F(0, !3)

x2 = -12y

 r = 2 cos u
 r2 = 2r cos u

 x2 + y2 = 2x
 x2 = 2x - y2

 m = 2 b = 5
2

 y = 2x + 5
2

0

4

2!2

y

x

(0,  )5
2

 4x - 2y + 5 = 0

B = 0
A Z C
 2x2 + y2 + 2x - 1 = 0

 21x2 + x2 = 1 - y2

m = - 1
2

m =
3 - (-1)

6 - 4
= 2

d = 2(6 - 4)2 + [3 - (-1)]2 = 24 + 16 = 225

(6, 3)(4, -1)

10.

x = cos p4 = 1
212

cos-1 x = - A -p4 B = p
4

tan-11-12 = -p4
cos-1 x = - tan-11-12

3.

x
1

!

1 ! x2"

= 21 - x2
cos u = cos1sin-1 x2u = sin-1 x
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8.

Focus is 2.25 cm
from vertex.

9.
Find y for m.

10.
r 0

4.0 3.7 3.0 2.3 2.0 2.3 3.0 3.7 4.0

11.

12. Equation of curve: ; , ,

(a) ; ellipse
(b) ;tan 2u = B

A - C
= -4

8 - 5
= - 4

3

B2 - 4AC = (-  4)2 - 4(8)(5) = 16 - 160 6 0
C = 5

B = -4A = 88x2 - 4xy + 5y2 = 36

V

V

C
0

2

!5

3

y

x

V1-2, 22V1-2, 02C1-2, 12
1 y - 122

12
-
1x + 222

22
= 1

41 y2 - 2y + 12 - 1x2 + 4x + 42 = 4 + 4 - 4
41 y2 - 2y 2 - 1x2 + 4x 2 = 4
4y2 - x2 - 4x - 8y - 4 = 0

0
0 2

!2

2

!

3!
2

!
2

u

2p7p
4

3p
2

5p
4p3p

4
p
2

p
4

r = 3 + cos u

h = 3.0 + 0.7 = 3.7 m
y = 0.7 my2 = 5/9

4
9

+
y2

1
= 1

x = 2

6.0 m

4.0 m 3.0 m

y

x

h

x2

9
+

y2

1
= 1b = 1a = 3

p = 2.25
16.0022 = 4p14.002

0

12.0 cm (6.00, 4.00)

4.00 cm
F

y

x

x2 = 4py

Chapter 22
1. Number 1 2 3 4 5 6 7 8 9 10

Frequency 1 0 1 2 3 2 1 2 2 1

Median is eighth number; median .
2. 5 appears three times, and no other number appears more than

twice; mode
3. Number 1–2 3–4 5–6 7–8 9–10

Frequency 1 3 5 3 3

4. Let 

cm

5.

6.

7. t (cm) 0.90 0.91 0.92 0.93 0.94 0.95 0.96
% 3 9 31 38 12 5 2

8. t (cm)
cum f 3 12 43 81

t (cm)
cum f 93 98 100

9. A 95% confidence interval is given by

 = (142.2, 143.8)

 = 143 ; 0.77

 x ; za/2
# s1n

= 143 ; 1.96 # 5.21175

100

cum. f

t (cm)

50

0
0.9650.9350.895

60.96560.95560.945

60.93560.92560.91560.905

0.89 0.97

38

f

t

s = B 100185.94642 - 92.72

1001992 = 0.117 cm

 1gx22 = 92.72
 + 1210.9422 + 510.9522 + 210.9622 = 85.9464

gx2 = 310.9022 + 910.9122 + 3110.9222 + 3810.9322= 92.7
100

= 0.927

t =
3(0.90) +  9(0.91) +  31(0.92) +  38(0.93) +  12(0.94) +  5(0.95) +  2(0.96)

3 + 9 + 31 + 38 + 12 + 5 + 2

t = thickness

5

1.5

f

n0
3.5 5.5 7.5 9.5

4
3
2
1

= 5.

= 6
gf = 15

6. Centre 

or
x2 + y2 + 2x - 4y - 5 = 0

1x + 122 + 1 y - 222 = 10
= 210

r = 212 + 122 + 13 - 222k = 2h = -1,1-1, 22;

u = 1
2

 tan -1a-  
4
3
b = 63.4°

7.

 x + 2y + 2 = 0
 2y - 2 = -x - 4

 y - 1 = - 1
21x + 42m = -2 - 1

2 + 4
= - 1

2
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14.

SOLUTIONS TO PRACTICE TEST PROBLEMS C.17

11. (total area to the left)

12. Find the range of each subgroup (subtract the lowest value from
the largest value). Find the mean R of these ranges (divide their
sum by 20). This is the value of the central line. Multiply R by
the appropriate control chart factors to obtain the upper control
limit (UCL) and the lower control limit (LCL). Draw the central
line, the UCL line, and the LCL line on a graph. Plot the points
for each R corresponding to its subgroup and join successive
points by straight-line segments.

13.

 = 72.57%
 0.5000 + 0.2257 = 0.7257

2.

3.

4.

5.
is constant

6.

7.

8.

9.

10.

 limh:0
 

f1x + h2 - f1x2
h

= 5 - 4x

 
f1x + h2 - f1x2

h
= 5h - 4xh - 2h2

h
= 5 - 4x - 2h

 = 5h - 4xh - 2h2
 f1x + h2 - f1x2 = 51x + h2 - 21x + h22 - 15x - 2x22 f1x + h2 = 51x + h2 - 21x + h22y = 5x - 2x2

d2y

dx2
= -214213x + 22-3132 = -2413x + 223

dy

dx
=
13x + 22122 - 2x13213x + 222 = 413x + 222 = 413x + 22-2

y = 2x
3x + 2

dV
dx

= kqa - 1
2
b 1x2 + b22-3/212x2 =

-kqx1x2 + b223/2

V =
kq2x2 + b2

= kq1x2 + b22-1/2

y¿ =
7 + 2xy

6y11 + y222 - x2

6y11 + y222y¿ - x2y¿ = 7 + 2xy
311 + y22212yy¿2 - x2y¿ - y12x2 = 7
11 + y223 - x2y = 7x

 = 1011 - 3x2 15 - 3x23 = 215 - 15x2 15 - 3x23 = 215 - 3x231-12x + 5 - 3x2 = -24x15 - 3x23 + 215 - 3x24 
dy

dx
= 2x3415 - 3x231-324 + 15 - 3x24122 y = 2x15 - 3x24 = 24x5 - 8x3

p3 
dy

dx
= 416x52 - 214x32 y = 4x6 - 2x4 + p3

 v ƒ t=4.00 =
10 - 314.002310 - 214.00241/2

= 10 - 12.00

2.001/2
= -1.41 cm>s

 = - t110 - 2t21/2
+ 110 - 2t21/2 = 10 - 3t110 - 2t21/2

 v = ds
dt

= t A 12 B110 - 2t2-1/21-22 + 110 - 2t21/2112s = t210 - 2t

 mtan = 13
 = 13

 
dy

dx
`
x=2

= 6122 + 8

23

 
dy

dx
= 6x + 8

x3

y = 3x2 - 4

x2

lim
x:q

1 - 4x2

x + 2x2
= lim

x:q

1

x2
- 4

1
x

+ 2
= -2

x y xy
1 5 5 1
3 11 33 9
5 17 85 25
7 20 140 49
9 27 243 81

25 80 506 165
 y = 2.65x + 2.75
 = 2.75

 b =
165(80) - (506)(25)

5(165) - 252

 = 2.65

 m =
5(506) - (25)(80)

5(165) - 252

 n = 5

0 10

30

y

x

x2

x y
1.00 1.000 1.10 1.1000 1.000
3.00 1.732 1.90 3.2908 3.000
5.00 2.236 2.50 5.5900 5.000
7.00 2.646 2.90 7.6734 7.000
9.00 3.000 3.30 9.9000 9.000

10.614 11.70 27.5542 25.000

(rounded
off)

Chapter 23

1. lim
x:1

x2 - x

x2 - 1
= lim

x:1
 

x1x - 121x + 121x - 12 = lim
x:1

x
x + 1

= 1
2

 y = 1.101x

 b =
125.0002111.702 - 127.55422110.6142

5125.0002 - 110.61422 = 0.00

 m =
5127.55422 - 110.6142111.702

5125.0002 - 110.61422 = 1.10

 n = 5

A1x B2 = x1xy1x

10. We have and 
Therefore, we can apply Eq. (22.14) with 
The desired 99% confidence interval is

 = (0.170, 0.380)

 = 0.275 ; 0.105

pN ; za/2BpN (1 - pN )

n
= 33

120
; 2.575C 33

120
# 87

120

120

za/2 = 2.575.
n(1 - pN ) = 87 Ú 5.npN = 33 Ú 5,pN = 33

120,



C.18 SOLUTIONS TO PRACTICE TEST PROBLEMSC.18 SOLUTIONS TO PRACTICE TEST PROBLEMS

Chapter 24
1.

2.

3.

4.

5.

f ¿1x2 = 2x - 1
2 14x + 12-1/2142 = 2x - 214x + 121/2

f1x2 = x2 - 24x + 1x2 - 24x + 1 = 0;

ar 6 0.6, 
dP
dr

7 0; r 7 0.6, 
dP
dr

6 0b
r = 0.6 Æ0.6 - r = 0,

dP
dr

= 0;

=
14431r + 0.62 - 2r41r + 0.623 =

14410.6 - r21r + 0.623
dP
dr

=
14431r + 0.622112 - r1221r + 0.6211241r + 0.624

P = 144r1r + 0.622
tan u = 22

6 , u = 74.7°a ƒ t=2  = 262 + 222 = 22.8

ay ƒ t=2 = 12122 - 2 = 22ax ƒ t=2 = 6

ay =
dvy

dt
=

d2y

dt2
= 12t - 2ax =

dvx

dt
= d2x

dt2
= 6

vy =
dy

dt
= 6t2 - 2tvx = dx

dt
= 6t

y = 2t3 - t2x = 3t2

¢y - dy = 0.03

 = 36132 - 1410.12 = 1.7

 dy = 16x - 12dx

 3313.122 - 3.14 - 331322 - 34 = 1.73

 ¢y = f13.12 - f132y = 3x2 - x

 y = -2x

 y - 1-22 = -21x - 12 = -2

 
dy

dx
`
x=1

= 4(13) - 6(1)

 
dy

dx
= 4x3 - 6x

y = x4 - 3x2

7.

y inc. Max. 
y dec. Min. (0, 0)
y inc. Infl. 
y conc. down
y conc. up

8.

y dec.
y inc.
y dec., conc. up
y conc. up

Min. , no infl., int. , sym. none; as 
asym. Domain: all real x except 0;

range: all real y.
9. Let volume of cube

edge of cube

10.

ax 6 1000, 
dA
dx

7 0; x 7 1000, 
dA
dx

6 0bAmax = 110002115002 = 1.5 * 106 m2
y = 1500 m
3000 - 3x = 0, x = 1000 m

dA
dx

= 3000 - 3x

= 3000x - 3
2 x

2

A = xy = xa 6000 - 3x
2

b
y = 6000 - 3x

2

3x + 2y = 6000y

y

xxx

 = -0.47 m3>s 
dV
dt
`
s=1.25

= 311.25221-0.102
dV
dt

= 3s2 
de
dt

V = s3

s =
V =

x = 0.y = -x,y: -x,
x: ;q ,A23 4, 0 B1-2, 32 x 6 0

 x 7 0

 -2 6 x 6 0

 x 6 -2

y– = 24

x4

y¿ = - 8

x3
- 1 = - 8 + x3

x3 3

0

y

x

y ! "x

("2, 3) (#4, 0)

y = 4

x2
- x

(0, 0)

y

x

("4, 32)

("2, 16)

 x 7 -2

 x 6 -2

1-2, 162 x 7 0

-4 6 x 6 0

1-4, 322 x 6 -4

y– = 6x + 12 = 61x + 22y¿ = 3x2 + 12x = 3x1x + 42y = x3 + 6x2

n

1 1.5 –0.395 751 3 2.244 071 1 1.676 354 2
2 1.676 354 2 0.034 300 1 2.632 211 8 1.663 323 3

xn -
f(xn)

f¿(xn)
f¿(xn)f(xn)xn

6.

L1x2 = 4 + 1
4 1x - 62 = 1

4 x + 5
2

f 162 = 22162 + 4 = 4

dy

dx
`
x=6

= 122162 + 4
= 1

4

dy

dx
= 1

2
12x + 42-1/2122 = 122x + 4

y = 22x + 4, a = 6

x3 = 1.6633
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Chapter 25
1. Power of x required for 2x is 2. Therefore, multiply by .

Antiderivative of . Power of required is
5. Derivative of is Writing 
as , the antiderivative of is 

Therefore, the antiderivative of is 

2.

3.

4. , ,

x 1 2 3 4

y

5. (See values for Problem 4.)

6. (See values for Problem 4.)

7.

= 1
3 1272 - 1

3 - A 13 - 1 B = 9.3 A

i = L
3

1
a t2 + 1

t2
b dt = 1

3
t3 - 1

t
2 3
1

 + 2a 1
5
b + 4a 2

11
b + 1

6
d = 0.6932

 L
4

1

dx
x + 2

= 1
6

 c 1
3

+ 4a2
7
b + 2a 1

4
b + 4a2

9
b

 = 0.6949

 + 2a 1
5
b + 2a 2

11
b + 1

6
d L

4

1

dx
x + 2

= 1
4

 c 1
3

+ 2a2
7
b + 2a 1

4
b + 2a2

9
b

0 1 2 3 4

0.5

y

x

1
6

2
11

1
5

2
9

1
4

2
7

1
3

7
2

5
2

3
2

A = 1
2 A27 + 1

4 + 2
9 + 1

5 + 2
11 + 1

6 B = 0.6532

¢x = 4 - 1
6

= 1
2

n = 6y = 1
x + 2

 y = - 1
5 16 - x25 + 11

5

 2 = - 1
5 16 - 52 + C, C = 11

5

 y = -116 - x241-dx2 = -  
1
5
16 - x25 + C

1 dy = 116 - x24 dx

dy

dx
= 16 - x24, dy = 16 - x24 dx

 = - 1
6 11 - 2x223/2 + C

 = - 1
4 A23 B11 - 2x223/2 + C

 1x11 - 2x221/2 dx = - 1
4 111 - 2x221/21-4xdx2n + 1 = 3

2n = 1
2du = -4x dxu = 1 - 2x2

1x21 - 2x2 dx = 1x11 - 2x221/2 dx

x2 + 1
5 11 - x25. 2x - 11 - x241

5 11 - x25. -11 - x241
5 3511 - x241-124 -11 - x24511 - x241-12.11 - x25 11 - x242x = 1

2 12x22 = x2
1>2 Chapter 26

1.

2.

3.

4.

or 

5.

6.
for

7.

= 96 N # cm
W = L

6.0

2.0
6.0x dx = 3.0x2 ƒ6.0

2.0 = 3.0136.0 - 4.02k = 6.0 N>cm12 = k12.02,F = kx,

s = 60t - 2t2 + 10
C = 1010 = 60102 - 21022 + C,t = 0,s = 10

s = 1160 - 4t2dt = 60t - 2t2 + C

 = ra3x3 - 1
5

x5b ` 3
0

= ra81 - 243
5
b =

162r

5

Iy = rL
3

0
x219 - x22dx = rL

3

0
19x2 - x42dx

3

dx

dy

(3, 9)

!3

y " 9

y

x

= 4p
5
135 - 02 = 972p

5

V = 2pL
9

0
xy dy = 2pL

9

0
y1/2y dy = 4p

5
y5/2 ƒ90

= 243p - 243p
5

= 972p
5

V = pL
3

0
92 dx - pL

3

0
1x222 dx = 81px ƒ30 - p

5
x5 ƒ30

= 32p
80

= 2p
5

V = pL
2

0
a 1

4
x2b2

dx = p
16 L

2

0
x4 dx = p

80
x5 ƒ20

=
1 - 4

5

2
3

= 1
5

* 3
2

= 3
10

=
2 A 12 y2 - 2

5 y5/2 B ƒ10
2
3

y = L
1

0
y A2 - 21y B dy

2
3

=
2L

1

0
1y - y3/22dy

2
3

x = L
2

0
x A 14 x2 B dx

2
3

=

1
4L

2

0
x3 dx

2
3

=
1
16 x4 ƒ20

2
3

= 1
2
3

= 3
2

= 1
12

x3 ƒ20 = 2
3

0

1

dx

dy

(2, 1)

y

x
x " 2

A = L
2

0

1
4

x2 dx



C.20 SOLUTIONS TO PRACTICE TEST PROBLEMSC.20 SOLUTIONS TO PRACTICE TEST PROBLEMS

8.

Chapter 27
1.

2.

3.

4.

5.

6.

7.

y dec.
y inc.
y conc. down
y conc. up

Int. (0, 0), min. ,
infl. asym. y = 01-2, -2e-22,1-1, -e-12x 7 -2
x 6 -2
x 7 -1
x 6 -1

 y– = xex + ex + ex = ex1x + 22 y¿ = xex + ex = ex1x + 12 y = xex

 = 8e-t110 cos 10t - sin 10t2 
di
dt

= 831e-t cos 10t21102 + 1sin 10t21-e-t24i = 8e-t sin 10t

mtan =
dy

dx
`
x=2

= 2
4 - 1

- 4
1 + 4

= 2
3

- 4
5

= - 2
15

dy

dx
= 2

2x - 1
- 2x

1 + x2

= ln 12x - 12 - ln 11 + x22y = ln 
2x - 1

1 + x2

 =
-6x cos13x + 12 sin13x + 12 -  cos213x + 12

x2
dx

 dy =
x52 cos 13x + 123-sin13x + 1213246 -  cos213x + 12112

x2
 dx

y =
 cos213x + 12

x

y¿ =
2y21 - 9y2 sec 2x tan 2x

3 - 21 - 9y2 sec 2x

21 - 9y2 sec 2x12y tan 2x + y¿2 = 3y¿

y1sec 2x tan 2x2122 + 1sec 2x21 y¿2 =
3y¿21 - 13y22

y sec 2x = sin-1 3y

 = -2413 + cot 4x22 csc2 4x

 
dy

dx
= 213213 + cot 4x221-csc2 4x2142y = 213 + cot 4x23 = 6 tan2 2x sec2 2x + 2

1 + 4x2

 
dy

dx
= 31tan2 2x21sec2 2x2122 + 2

1 + 12x22
y = tan3 2x + tan-1 2x

1.00 m
dh

2.00 m

6.00 m

= 19.80213.00219.00 - 1.002 = 235 kN
F = 9.80L

3.00

1.00
6.00h dh = 19.80216.002 

1
2 h2 ƒ3.00

1.00

8. For 

9. Function is indeterminate form.

Chapter 28

1.

2.

3.

4.

5. Let 

 = - 24 - x2

4x
+ C

 = - 1
4 cot u + C

 = 1
4L

 cos udu

sin2 u2 cos2 u
= 1

4Lcsc2 udu

 L
dx

x224 - x2
= L

2 cosudu

4 sin2 u24 - 4 sin2 u

dx = 2 cos udu.
x = 2 sin u,

 = 1
2u + 1

16 sin 8u + C

 = 1
2L du + 1

16Lcos 8u18 du2Lcos2 4udu = 1
2 L 11 + cos 8u2du

 = 1
4 tan2 2x + 1

2 ln ƒcos 2x ƒ + C

- 1
2 Ltan 2x12 dx2 = 1

2 Ltan 2x sec2 2x12 dx2
 = Ltan 2x1sec2 2x - 12dx

Ltan3 2x dx = Ltan 2x1tan2 2x2dx

 = -cos x + 1
3 cos3 x + C

 = Lsin x dx - Lcos2 x sin x dx

 = L11 -  cos2 x2sin x dx

L  sin3 x dx = L  sin2 x sin x dx

= ln ƒsec x +  tan x ƒ - 1
3 sec3 x + C

= L  sec x dx - L  sec2 x1sec x tan x2dx

L1sec x - sec3 x tan x2dx

lim
x:0

 
tan-1x
2 sin x

= lim
x:0

 

d
dx tan-1x

d
dx(2 sin x)

= lim
x:0

 

1

1 + x
2 

2 cos x
= 1

2

0>0
du
dt
`
t=8.0

= 250

2502 + 402
15.02 = 0.020 rad>s

 
du
dt

= 1

1 + x2

2502

 
dx>dt

250
= 2502

2502 + x2
 
dx>dt

250

 u =  tan-1 
x

250

x = 40 mt = 8.0 s,

(0, 0)

y

x(!2, !2e!2 )

(!1, !e!1)

x

250 m
!

x
2

!

4 ! x 2"



 SOLUTIONS TO PRACTICE TEST PROBLEMS C.21

2.
Intercepts: (2, 0, 0), , (0, 1, 0), , (0, 0, 4)
Traces:

in yz-plane: (parabola)
in xz-plane: (parabola)
in xy-plane: (ellipse)

3. ;

4. ;

5.

6.

7.

= 9y - 1
3 y3 ƒ30 = 18

= L
3

0
(9 - y2) dy

= L
3

0
x29 - y2 `29-y2

0
dy

V = L
3

0 L
29-y2

0
29 - y2

  dx dy

= e - 16 + 24 ln 2 = 3.354
= 8(ln 8 - 1) - 8 + e = 8 ln 23 - 8 - 8 + e

= ey(y - 1) - ey ` ln 8

1
= eln 8(ln 8 - 1) - eln 8 + e

=L
ln 8

1
(eyeln y - ey)dy = L

ln 8

1
(yey - ey)dy

=L
ln 8

1
(ey+ ln y - ey)dy

L
ln 8

1 L
ln y

0
ex+ydx dy = L

ln 8

1
ex+y ` ln y

0
dy

=  a 8
3

 x3 - 1
6

 x6b ` 2
0

= 8
3

 (8) - 1
6

 (64) = 64
3

- 32
3

= 32
3

=L
2

0
(2x4 + 8x2 - x5 - 2x4) dx = L

2

0
(8x2 - x5) dx

L
2

0 L
2x

x2
(x3 + 4y)dy dx = L

2

0
(x3y + 2y2) ` 2x

x2
dx

02z
0x 0y

= 9x2 + (16x)y3 = 9x2 + 16xy3

0z
0y

= 3x3(1) + 2x2(4y3) = 3x3 + 8x2y3z = 3x3y + 2x2y4

0z
0y

= xe2xy(2x) = 2x2e2xy

0z
0x

= x(e2xy)(2y) + e2xy(1) = e2xy(2xy + 1)z = xe2xy

x2 + 4y2 = 4
z = 4 - x2
z = 4 - 4y2

(0, -1, 0)(- 2, 0, 0)
z = 4 - x2 - 4y2

0

y

x
x ! 3dx

z

y

x

SOLUTIONS TO PRACTICE TEST PROBLEMS C.21

6.

7.

-terms: -terms:
x-terms: :

8.

for 

9.

Chapter 29

1. ; f(- 1, 3) =
2(3)

(- 1)2 + 32
= 6

10
= 3

5
f(x, y) =

2y

x2 - y2

 = sin-1 34 = 0.8481

 = sin-1 
x
4
` 3
0

 = L
3

0
 

dx216 - x2

 A = L
3

0
y dxy = 1216 - x2

;

= 3
4

 ln 
4t2 + 9

9
+ 1

6
 tan-1 

2t
3

i = 3
4

 ln14t2 + 92 + 1
6

 tan-1
 
2t
3

- 3
4

 ln 9

C = - 3
4

 ln 90 = 3
4

 ln 9 + 1
6

 tan-1 0 + C,t = 0:i = 0

= 3
4

 ln14t2 + 92 + 1
2
a 1

3
b  tan-1 

2t
3

+ C

= 6
8 L  

8t dt

4t2 + 9
+ 1

2 L  
2 dt

9 + 12t22
i = L  

6t + 1

4t2 + 9
dt = L  

6t dt

4t2 + 9
+ L  

dt

4t2 + 9

 = ln ƒx ƒ - 2
x

+ 3 tan-1 x + C

 L
x3 + 5x2 + x + 2

x4 + x2
 dx = L  

dx
x

+ L  
2 dx

x2
+ L  

3 dx

x2 + 1

A = 1, B = 2, C = 0, D = 3
2 = Bx = 01 = A

5 = B + Dx21 = A + Cx3
 x3 + 5x2 + x + 2 = Ax1x2 + 12 + B1x2 + 12 + Cx3 + Dx2

 = A
x

+ B

x2
+ Cx + D

x2 + 1

 
x3 + 5x2 + x + 2

x4 + x2
= x3 + 5x2 + x + 2

x21x2 + 12
L

x3 + 5x2 + x + 2

x4 + x2
 dx

 = -  
1
2 xe-2x - 1

4 e-2x + C

L xe-2x dx = x A-  
1
2 e-2x B - L A-  

1
2 e-2x B dx

v = -  
1
2 e-2xdv = e-2x dx,du = dx,u = x,L xe-2x dx;

z

y

x



C.22 SOLUTIONS TO PRACTICE TEST PROBLEMSC.22 SOLUTIONS TO PRACTICE TEST PROBLEMS

8. ; ; 

Hz/N

Chapter 30
1.

2.

3.

4.

5.

= 1
2 - 1

8 + 1
144 - 0 = 0.3819

= 1
2

x2 - x4

8
+ x6

144
` 1
0

= L
1

0
ax - x3

2
+ x5

24
b dx

L
1

0
x cos x dx = L

1

0
xa1 - x2

2
+ x4

24
b dx

 = 1 + x + 3
2  x

2 + Á
 11 - 2x2-1/2 = 1 + a - 1

2
b(-2x) +

- 1
2 A - 3

2 B
2

(-2x22 + Á

11 + x2n = 1 + nx +
n1n - 12

2
x2 + Á

f1x2 = 121 - 2x
= 11 - 2x2-1/2

 = -0.040 822 0

 = -0.04 -
1-0.0422

2
+
1-0.0423

3
-
1-0.0424

4

 ln 0.96 = ln11 - 0.042ln11 + x2 = x - x2

2
+ x3

3
- x4

4
+ Á

= 1
2

 c1 - 13ax - p
3
b - 1

2
 ax - p

3
b2

+ Á d
  cos x = 1

2
- 23

2
 ax - p

3
b -

1
2
ax - p

3
b2

2
+ Á

f– ap
3
b = - 1

2
f–1x2 = -cos x

f ¿ ap
3
b = - 23

2
f ¿1x2 = -sin x

fap
3
b = 1

2
f1x) = cos x

 = 4 + 4x + 3x2 + 5
3x

3 + Á
 11 + ex)2 = 4 + 4x + 6

2x2 + 10
6 x3 + Á

f‡1x2 = 2ex + 8e2x
f‡102 = 2112 + 8112 = 10f–1x2 = 2ex + 4e2x
f–102 = 2112 + 4112 = 6= 2ex + 2e2x
f ¿102 = 211 + 12112 = 4f ¿1x2 = 211 + ex21ex2 f 102 = 11 + 122 = 4f 1x2 = 11 + ex22

0f

0T
ƒL=60, T=65  = 900

60265 * 65
= 15

65
= 0.23

0f

0T
= k

L
 

1

22T
= 1800265L

 
1

22T
= 900

L265T

k = 1800265
 
Hz # cm

N1>230 Hz = k265 N
60 cmf = k2T

L

6.

7.
Since is an even function.
Since is not an odd function.

Fourier series for is 

Chapter 31

1.

2.

3.

4.

y = c1 + c2ex/2 - 2
5 sin x - 4

5 cos x
B = - 4

5A = - 2
5-2B - A = 2-2A + B = 0

1A cos x - B sin x2 = 2 cos x21-A sin x - B cos x2 -
D2yp = -A sin x - B cos x
Dyp = A cos x - B sin x
yp = A sin x + B cos x
yc = c1 + c2e x/2

m = 0, 122m2 - m = 0
2D2y - Dy = 2 cos x

ln1x2 + y22 = 2x + c1
2 ln1x2 + y22 = x + 1

2 c

x dx + y dy

x2 + y2
= dx

x dx + y dy = x2 dx + y2 dx = 1x2 + y22dx

y = e-x1c1 sin 2x + c2 cos 2x2m = -2 ; 24 - 20
2

= -1 ; 2j

m2 + 2m + 5 = 0
y– + 2y¿ + 5y = 0

y = 2 + c

x2

yx2 = L
4
x

x2 dx = L4x dx = 2x2 + c

e12
x dx = e2 ln x = x2

dy + 2
x

y dx = 4
x

dx

x  
dy

dx
+ 2y = 4

F1x2 - 3.g1x2g1x2 = x2 - 1, g1x2 = f1x2 - 3
f1x2 Z -f1-x2, f1x2f1x2 = f1-x2, f1x2= 1-x22 + 2 = x2 + 2, -f1-x2 Z f1x2f1x2 = x2 + 2, f1-x2f(t) = 1 + 4

p
 sin t + 4

3p
 sin 3t + Á

b3 = 2
3p
11 + 12 = 4

3p

b2 = 2
2p
11 - 12 = 0b1 = 2

p
11 + 12 = 4

p

= 2
np
11 -  cos np2bn = 1

pL
p

0
 2 sin nt dt = 2

np
 1-cos nt2 ` p

0

= 0 for all n
an = 1

pL
p

0
2 cos nt dt = 2

np
 sin nt ` p

0

a0 = 1
2p

 L
p

0
2 dt = 1

p
t ` p

0
= 1

0 … t 6 pf1t2 = 2
-p … t 6 0f1t2 = 0

0

2
t

f (t)

-p 3p2pp



 SOLUTIONS TO PRACTICE TEST PROBLEMS C.23SOLUTIONS TO PRACTICE TEST PROBLEMS C.23

5.

6.

(factor of x necessary due to first term of )

7.

when

8.

9.

y = 1 - cos 3t + 1
3 sin 3t

l1y2 =
9

s1s2 + 92 + 1

s2 + 9
1

1s2 + 92l1y2 =
9
s

+ 1

s2l1 y2 - s102 - 1 + 9l1 y2 =
9
s

l1 y ″2 + 9l1 y2 = l192y¿102 = 1y102 = 0
y– + 9y = 9

 A = A0ert
 c = A0

 A0 = ce0
 A = cert

 ln 
A
c

= rt

 ln A = rt + ln c

dA
A

= r dt

dA
dt

= rA

y2 = 4 ln1x + 12 + 4
1
2 y2 = 2 ln1x + 12 + 2

c = 21
2 142 = 2 ln112 + c,

x = 0y = 2

1
2 y2 = 2 ln1x + 12 + c
y dy = 2 dx

x + 1

y1x + 12dy = 2 dx

1xy + y2 
dy

dx
= 2

y = c1e
-2x + c2e4x - 2

3 xe-2x
A = - 2

3-6Ae-2x = 4e-2x
- 8Axe-2x = 4e-2x

1-4Ae-2x + 4Axe-2x2 - 21Ae-2x - 2Axe-2x2D2yp = -2Ae-2x - 2Ae-2x + 4Axe-2x = -4Ae-2x + 4Axe-2x
Dyp = Ae-2x - 2Axe-2x

ycyp = Axe-2x
yc = c1e

-2x + c2e4x
m = -2, 41m + 221m - 42 = 0m2 - 2m - 8 = 0

D2y - 2Dy - 8y = 4e-2x

y = 1c1 + c2x2e2x + 3
4 + 3

4 x
A = 3

4B = 3
4

4B = 34A - 4B = 0
0 - 4B + 41A + Bx2 = 3x

D2yp = 0Dyp = Byp = A + Bx
yc = 1c1 + c2x2e2x

m = 2, 2m2 - 4m + 4 = 0

d2y

dx2
- 4 

dy

dx
+ 4y = 3x

10. D2y - Dy - 2y = 12 y102 = 0, y′102 = 0

l1 y ″2 - l1 y′2 - 2l1 y2 = l1122
s2l1 y2 - s102 - 0 - 3sl1 y2 - 04 - 2l1 y2 =

12
s

l1 y2 1s2 - s - 22 =
12
s

l1 y2 =
12

s1s2 - s - 22 =
12

s1s + 12 1s - 22
=
A
s

+ B
s + 1

+ C
s - 2

11.

for

12. , 

for

x = 0.3 cos 8t
c1 = 00 = 8c1 cos 0 - 8c2 sin 0,
c2 = 0.30.3 = c1 sin 0 + c2 cos 0,
t = 0Dx = 0x = 0.3 ft

Dx = 8c1 cos 8t - 8c2 sin 8t
x = c1 sin 8t + c2 cos 8t

m = ; 8jm2 + 64 = 0;
D2x + 64x = 0

0.5D2x + 32x = 0mD2x = -kx,
k = 32 N>mm = 0.5 kg

i = 3
4 11 - e-4t2 = 0.7511 - e-4t2ie4t = 3

4 e4t - 3
4

c = - 3
40 = 3

4 + ct = 0i = 0

ie4t = L3e4t dt = 3
4 e4t + ce14 dt = e4t

di + 4i dt = 3 dt2 
di
dt

+ 8i = 6

E = 6 VR = 8 ÆL = 2 H
L 

di
dt

+ Ri = EL 
d2q

dt2
+ R 

dq

dt
= E

y = -6 + 4e-t + 2e2t

l1 y2 = - 6
s

+ 4
s + 1

+ 2
s - 2

12 = 6C, C = 2s = 2:
12 = 3B, B = 4s = -1:
12 = -2A, A = -6s = 0:

12 = A1s + 121s - 22 + Bs1s - 22 + Cs1s + 12
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Acoustics
Acoustical intensity, 53(79), 312(18), 

505(56, 59)
Acoustics, 189(72)
Doppler effect, 333(70)
Loudness of siren, 319(76), 939(24)
Loudness sensed by human ear, 329(64), 

391(50), 395(35), 640(17), 833(51)
Sound in seawater, 32(47)
Sound of jet engine, 126(55), 614(106)
Sound reflection in buildings, 587(51)
Ultrasonics, 613(95)
Velocity of sound, 152(59), 166(52), 

178(84), 571(51), 726(34), 909(40)
Wavelength of sound, 657(56)

Aeronautics
Air traffic control, 292(37), 592(48), 

606(59), 846(87)
Aircraft emergency locator transmitter, 

218(107)
Aircraft on aircraft carrier, 781(11)
Aircraft stabilizer, 812(43)
Aircraft wing design, 77(7, 8), 498(17), 

587(52)
Airfoil design, 211(66), 218(104)
Concorde gain in altitude, 293(47)
Distance between jets, 726(39)
Flying speed, 698(47)
Fuel supply, 165(41), 218(92), 499(38)
Glide-slope indicator, 83(50)
Helicopter blade rotation, 259(48)
Helicopter forces, 280(14)
Helicopter path, 552(52)
Helicopter position, 403(33), 545(55)
Helicopter velocity, 822(48)
Jet distance, 592(49)
Jet speed, 11(64), 21(96), 216(55), 238(74, 

76), 259(50), 504(40)
Mach number, 485(36), 498(14), 657(53)
Plane landing, 287(32), 612(82)
Plane location, 95(42), 272(26), 294(65), 

392(56), 482(63), 686(53), 741(10)
Plane on radar, 138(71)
Plane route, 258(35), 292(31), 294(66), 

599(48), 614(105)
Plane speed, 145(27), 236(46), 272(25), 280(2, 

19), 340(96), 349(40), 406(43), 698(47, 
54), 709(85), 722(19, 27), 725(15), 741(8), 
742(40), 743(48), 749(65)

Plane velocity, 722(27)
Propeller rotation, 263(5)
Radar, 38(59), 218(95)
Rocket pursuit of aircraft, 329(68), 609(50), 

709(87), 714(26), 819(55)
Shock wave of supersonic jet, 599(47)
Speed of SST Concorde, 51(22)

Wind lift and drag, 269(41), 505(42), 
561(113), 894(80)

Wind shear, 272(33)

Architecture
Arch design, 232(50), 581(46), 709(83), 

776(49, 50, 51), 846(85)
Architecture, 185(67), 189(66), 216(42), 

218(117)
Attic room, 138(77)
Bastion floor design, 287(27)
BC Place Stadium (Vancouver),  

84(60)
Building design, 742(24), 743(51)
Ceiling design, 138(63), 178(86)
CN Tower (Toronto), 53(99), 134(10), 

508(53)
Courtyard design, 69(31)
Deck design, 403(36)
Dome design, 717(26), 891(51), 927(36)
Door design, 432(44), 434(61), 803(26)
Floor design, 77(12), 236(44), 287(27)
Gateway Arch (St. Louis), 373(38), 847(97), 

859(43)
Gothic arch, 262(89)
Great Pyramid (Egypt), 81(31)
Hallway design, 258(27)
Kitchen tiling, 54(127)
Norman window, 238(80), 577(62),  

750(74)
Patio design, 83(52), 138(75), 140(95), 

259(54), 609(47), 709(81), 914(47)
Ramp for disabled, 83(49), 134(11)
Roof design, 65(39), 413(47), 499(39), 

592(47), 606(56)
Room design, 232(55)
Rotating restaurant, 262(78)
Security fence, 69(38), 135(25), 236(45), 

258(31), 402(32), 406(40), 742(22)
Shelf support, 702(43)
Spaceship Earth (Florida) design, 81(33)
Sunroom design, 263(9)
Support design, 69(34)
Support panel, 673(33)
Swimming pool design, 77(5, 6), 80(28), 

742(34), 749(62), 787(48)
Wall panel, 293(41), 856(47)
Window design, 68(2), 69(32), 73(43), 

114(10), 139(81), 140(93), 422(58), 
581(48), 587(54), 742(28), 787(50), 
829(36), 894(84)

Winnipeg Art Gallery, 288(41) 
World Trade Center, 135(32)

Astronomy
Astronomical unit, 29(61)
Black holes, 53(84)

Centre of mass (Earth-Moon), 812(52)
Cosmic radiation, 656(27, 28, 29, 30)
Crater on Moon, 294(56)
Diameter of Venus, 262(92)
Earth’s shadow, 84(62)
Earth’s velocity, 259(42)
Electrons in Universe, 29(53)
Energy from sun, 20(41)
Galaxy movement, 503(5)
Haley’s comet, 587(48)
Hubble telescope, 84(65), 581(49)
Jupiter’s moon, 135(24)
Meteor velocity, 403(37), 722(28), 967(22)
Meteorite, 808(17)
Moon, 20(42), 262(79), 485(38)
Parsec, 29(42)
Planetary motion, 215(3), 259(41), 262(79), 

340(88), 395(34)
Space object, 587(47)
Star brightness, 377(63), 398(93), 505(54)
Star movement, 260(59)
Star temperature, 519(45)

Automotive Technology
Accident analysis, 280(16)
Airbag in car, 781(9)
Auto jack, 68(29)
Auto repair, 219(128)
Battery life, 219(125)
Car speed, 232(57), 272(24), 875(33)
Carburetor assembly, 165(46)
Compression ratio, 340(94), 498(18)
Cost of operating car, 113(72), 169(24)
Drive shaft rotation, 259(52), 782(25)
Engine coolant, 21(99)
Engine cylinders, 725(22)
Engine efficiency, 47(41), 332(68), 398(96), 

493(77), 709(78), 809(33), 931(40)
Engine emissions, 499(37)
Engine flywheel, 259(44), 398(95)
Engine power, 236(40), 498(24)
Engine torque, 111(8, 16)
Fuel consumption, 102(38), 195(60), 

225(44), 627(16, 17, 18)
Headlight angle, 134(7)
Piston velocity, 303(59), 312(20), 318(63)
Radiator antifreeze, 51(29)
Rear axle ratio, 506(8)
Seat belt design, 280(17)
Speed in turn, 102(43), 258(25), 505(58)
Speedometer calibration, 261(72)
Stopping distance, 90(43), 493(72), 596(48), 

619(21, 22, 23, 24), 627(23, 24), 
706(48), 781(15)

Tire angular velocity, 262(77)
Tire lifetimes, 634(17, 18, 19, 20, 21, 22)
Tire performance on ice, 280(11)
Torque rotation, 645(5, 6, 7, 8)
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Tractor-trailer, 377(70), 833(53)
Universal joint, 561(108)
Weight of car, 159(47)
Wheel angular acceleration, 432(33)
Windshield design, 138(73), 258(28)

Biology and Medical Science
Ancestors, 519(52)
Bacteria, 507(43), 999(58)
Biology, 195(61)
Blood cell, 29(40)
Blood flow, 218(90), 725(23)
Body burns, 749(63)
Body heat, 391(47)
Calcium density in bones, 316(36), 732(48)
Cholesterol, 506(14)
DNA sample, 507(30), 967(29)
Drug dosage, 158(44), 180(9), 736(22)
Drug testing, 238(69)
Eye exposure to light, 668(54), 709(76)
Flu epidemic, 967(30)
Insecticide effectiveness, 530(85)
Intravenous solution, 175(44)
Lithotripter, 587(50)
Lung flow rate, 829(33)
Medical science, 46(15), 50(10)
Medication, 20(40), 50(10), 382(66), 

391(53), 506(23), 650(5), 690(50)
Muscle action, 650(8)
Nutrition, 492(21)
Population density, 382(65), 843(24)
Population growth, 47(28), 238(67), 

387(52), 397(85), 519(40), 706(45), 
837(54), 856(43), 967(19, 20),1000(67)

Protein molecule, 397(92)
Pulse rate, 316(37)
Shearing effects in spinal column, 368(93)
Tumour, 572(60)
Ultracentrifuge, 262(87)
Ultrasound, 307(40), 472(58)
Vaccine, 113(73)
Virus under microscope, 498(12)
Windpipe, 741(12)
X-ray dosage, 340(100), 613(96), 620(25, 

26), 627(25, 26)

Business and Finance
Airline on-time flights, 655(1, 2, 3, 4, 5, 6, 

7, 8, 9, 10)
Annuity value, 53(104)
Appreciated value, 340(92)
Benford’s law, 398(98)
Brand-switching model, 465(85)
Business, 189(65), 216(48)
Cell phones, 395(33)
Commissions on sales, 165(47), 178(77), 

506(13)
Compound interest, 38(57), 111(7, 15), 

112(26), 387(51), 846(72), 960(40)
Contractor costs, 476(35)

Cost of calculators, 493(69)
Cost of CDs/DVDs, 51(19)
Cost of construction, 515(56)
Cost of drilling well, 529(76)
Cost of living index, 340(87)
Cost of machine parts, 482(60)
Cost of mouse pads, 36(52)
Cost of operating copier, 113(70)
Cost of production, 237(57), 787(46)
Cost of TV commercial, 53(116)
Cost of wire, 494(11)
Demand and price, 503(6)
Depreciation of car, 32(50), 515(53), 

968(45)
Depreciation of equipment, 47(39), 108(46), 

527(51), 529(67)
Depreciation of yard sale purchases,  

529(77)
Distribution of gasoline, 51(27)
Exchange rate for Canadian dollars, 111(2)
Filling bottles, 634(24), 640(22), 645(15, 16)
Finance, 325(69)
Furniture leasing, 897(8)
Helmet test damage, 640(20)
Income and education, 658(71)
Inflation, 846(78)
Installation of cable, 94(29), 95(44)
Insurance claim, 165(45)
Interest on loan, 515(52)
Investments, 38(57), 54(129), 112(3), 

178(78), 232(52), 373(33), 397(79), 
492(17), 506(24), 519(43), 529(75), 
530(93), 708(57), 919(39)

Land developer, 103(49)
Logging company plans, 454(30)
Lottery, 51(20), 397(84)
Mail order charges, 175(40)
Manufacturing defects, 640(10), 656(43, 44)
Manufacturing electronic equipment, 237(63)
Marginal profit, 967(24)
Money saved, 519(48, 51)
Office rentals, 159(51)
Petroleum rights, 50(9)
Price increases, 530(80)
Price of coffee, 653(9)
Production of calculators, 492(19)
Production of CD/DVD players, 179(90), 

494(82)
Production of computer parts, 94(26), 492(22)
Production of medical supplies, 169(19)
Production of product, 492(20)
Profit from table sales, 406(44)
Profit on sales, 94(33), 113(65), 165(43), 

743(47), 760(58)
Rent charges, 507(41)
Resale value of truck, 102(39)
RRSP account, 145(30)
Salaries, 627(32, 33), 628(40, 41, 42)
Sales of computer chips, 434(54)
Sales of software, 53(115)
Sales over time, 482(55), 690(48)

Sales report, 159(55)
Sales volume, 507(38), 749(64)
Satellite telephone leasing, 94(34)
Size of DVDs, 20(35)
Taxes, 90(46), 94(32)
Telephone accounts, 646(17, 18)
Toy assembly time required, 640(19)
Trucking delivery routes, 51(16)
Value of building lot, 493(68)
Value of car, 50(5), 681(37, 38)
Value of house, 530(86)
Value of machinery, 709(84)
Waiting time for luggage, 640(18)
Washing machine replacement times, 640(16)
Yard sales, 529(77)

Chemistry
Acid solution, 571(52)
Alcohol solution, 94(28)
Brine solution, 54(126), 398(101), 782(31), 

966(6), 968(36)
Chemical reactions, 54(117), 397(88), 

507(29), 709(72), 709(80), 725(25, 26), 
883(34), 893(72), 999(57)

Chemistry, 46(6), 195(63)
Dissolving, 891(50), 968(46)
Evaporation, 968(48), 999(55)
Fertilizer solubility, 114(81)
Filtration, 262(82)
Industrial cleaners, 114(80)
Molecular interaction, 197(32), 894(79)
Molecule size, 875(36)
Oxygen-air mixture, 1001(87)
Sodium in salt, 499(43)
Weed-killing solution, 159(54)

Civil Engineering
Aqueduct, 136(37)
Bridge cable, 809(35)
Bridge design, 51(13), 139(85), 218(108), 

581(45), 612(87), 657(59)
Bridge support, 84(66), 113(64), 561(115)
Chlorine in water supply, 506(26)
City development, 494(83)
City park, 68(3), 292(39)
Civil engineering, 195(58)
Conduit design, 73(44)
Culvert design, 133(3), 488(52), 742(31), 

879(34)
Dam design, 612(89)
Drainage trough design, 66(54)
Drainpipe, 593(50)
Drawbridge construction, 135(22)
Driveway design, 135(21)
Gold mine, 288(39)
Highway construction, 84(64), 287(34), 

967(23)
Highway design, 258(33, 36), 750(80)
Kejimkujik National Park area, 77(13)
Levee, 138(76)
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Parking lot design, 76(3), 493(74), 613(92)
Power line, 113(77), 893(73)
Railroad track, 84(67), 258(29)
River channel, 77(15)
River silt, 504(8)
Road banking, 138(67)
Road grade, 134(17), 498(20)
Road tunnel, 261(70), 587(53)
Roadbed, 54(121), 507(28)
Runaway truck ramp, 530(84)
Sidewalk design, 258(20)
Storm drain flow, 340(98)
Street plan, 135(33), 259(45), 287(31)
Suspension cable, 530(82), 714(25)
Tower support, 65(40), 84(53)
Traffic flow, 170(28), 257(17), 476(43), 

572(59), 843(36)
Utility pole wires (catenary), 392(59), 

582(54), 771(21), 837(39)
Utility poles, 238(79)
Water channel, 138(70)
Well locations, 406(36)

Computer
Access time, 47(32)
Chip power, 572(55)
Chip price, 434(54)
Chip quality, 51(26), 499(45)
Chip size, 68(4), 406(35), 415(63), 482(61), 

488(54), 742(19, 21), 746(28), 847(99)
Chip temperature, 485(34)
Computer design, 38(61), 185(63), 189(74)
Computer efficiency, 47(46)
Computer image, 197(27), 335(52), 609(52)
Computer memory, 6(41), 20(34), 21(97), 

29(38), 53(97, 100), 169(26), 179(91), 
237(66), 391(45), 498(21)

Computer memory test, 505(50), 572(61), 
681(40)

Computer network, 113(76)
Computer program, 262(88)
Computer reliability, 708(63), 736(25), 

836(51), 843(38), 923(41)
Computer speed, 29(54), 103(53), 377(69), 

472(57), 619(13, 14, 15, 16), 627(19), 
833(52)

Computer time, 494(79)
Cryptography, 449(42)
Disk design, 506(18), 833(54)
Disk speed, 722(25)
Download time, 504(31)
Email, 149(42), 159(45)
Hard disk files, 846(73)
Internet, 373(36), 619(1, 2, 3, 4), 846(83)
Printer speed, 258(26), 506(21)
Website, 11(63), 50(8)

Construction
Backhoe use, 529(64)
Board cutting, 113(60), 499(41)

Board measurements, 134(14)
Cement bag weights, 634(9, 10, 11, 12)
Cement-sand mixture, 51(30)
Concrete drying, 238(73)
Concrete mix, 499(36)
Cutting speed of saw, 108(55), 281(29), 

318(62), 819(53)
Demolition ball, 90(41), 725(12)
Gutter design, 847(95)
Leaning Tower of Pisa, 134(4)
Lumber from log, 103(47)
Nail resistance, 329(66), 893(69)
Paint supply, 746(26)
Painting crew, 216(52)
Pile driver, 529(61)
Pipe section, 813(54)
Plywood size, 134(15), 335(51), 415(64)
Riveter, 219(11)
Roof support, 529(65)
Steam-pipe construction, 59(33)
Structure support, 126(56), 537(61), 673(33)
Truss design, 59(23, 24, 25, 26, 27, 28), 

169(23), 179(89), 294(62), 406(37), 
561(111)

Wallboard size, 84(61)
Winding up rope, 767(45), 808(12), 811(37)

Design
Airplane emergency chute, 138(72)
Aquarium, 90(37)
Banner, 415(61)
Barrel plug, 774(17)
Baseball field, 259(53), 291(30)
Basketball, 81(37)
Basketball rim, 73(39)
Boat deck, 776(56), 812(46)
Boat rudder, 879(32, 33)
Book, 750(76)
Box, 80(27), 108(53), 414(48), 482(64), 

732(49), 742(33), 743(43), 750(69)
Calculator, 415(65)
Carton liner, 406(41)
CD/DVD, 238(82), 258(39), 747(33)
Computer monitor, 232(51), 415(60)
Container, 111(3), 114(82), 189(63), 

197(30), 237(65), 681(34), 686(56), 
702(44), 750(81), 793(38), 897(5)

Cooler, 108(47)
Dip stick, 81(40)
Drafting, 135(29), 319(71), 587(49), 

613(104)
Drawer, 750(73)
Engineering, 47(25)
Filter, 847(98)
Funnel, 742(30)
Girder structure, 136(34)
Glass panel, 262(84)
Glass prism, 749(48)
Golden ratio, 231(47), 414(40)
Grain storage bin, 434(60)

Gutter, 847(95)
Highway pylon, 799(33)
Hot water tank, 85(69)
Igloo, 847(97)
Instrumentation, 218(99)
Label, 81(38)
Lacrosse field, 581(44)
Lawn roller, 81(36)
Machinery hood, 112(2), 262(85)
Manhole cover, 746(27)
Metal bracket, 847(94)
Metal frame, 825(54)
Metal sheet, 493(67)
Oil tank, 434(59), 736(29), 741(2)
Olympic Stadium (Montreal), 613(94)
Olympic technical ring, 613(94)
Paper cup, 81(32), 743(44, 52)
Peace Tower, 561(112)
Planter, 732(50)
Plastic band, 415(68)
Plastic pipe, 476(36)
Porthole, 577(59)
Poster, 742(29)
Propane tank, 81(34), 434(52)
Putting green, 812(40)
Race track, 743(45)
Radar, 53(94)
Railroad track, 548(40)
Ramp, 141(13), 281(32), 287(25)
Ranch, 69(37)
Safe, 432(42)
Sailboat sail, 65(43), 406(34)
Silo, 748(35), 846(89)
Silver and stainless steel container, 750(77)
Ski slope, 677(43), 748(36)
Solar energy panel, 749(60)
Spotlight reflector, 582(53)
Stairway handrail, 135(31)
Storage building, 108(52, 56), 228(36), 

750(79)
Storage tank, 587(55)
Structural support, 139(83), 415(71), 599(43)
Structure, 548(44)
Surveillance camera, 134(19)
Tablet and foil, 434(56)
Tabletop, 69(36), 134(18), 338(66), 742(16), 

787(49), 812(39)
Tarpaulin, 236(37)
Tennis ball, 85(8)
Tennis court, 232(53)
Tent, 85(70)
Terry Fox monument, 558(71)
Tower guardrail, 134(16)
Tray, 432(39)
Trellis, 139(86)
Trough, 415(66), 742(32), 812(42)
Tubing, 485(37), 714(29), 894(81)
TV screen, 32(49), 135(30), 238(77), 

499(47), 830(38)
Valve, 41(51), 813(57)
Vent, 742(17)
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Washer, 406(33), 410(38)
Water purifying tablet, 434(56)
Water slide, 138(74), 673(32), 819(52)
Water tank, 709(82), 749(44)
Wedge, 81(35), 912(25)
Wire shape, 530(88)
Workbench, 69(33)
Zoo display, 742(20)

Electricity and Electronics
Admittance, 355(39)
AM radio signal, 126(57), 681(33), 748(34), 

825(49)
Ammeter, 90(40), 189(71), 259(46)
Amplification factor, 909(42)
Amplifier, 338(69), 498(11), 782(19), 819(54)
Antenna, 113(59), 135(32), 609(48)
Apparent power, 138(68), 828(20)
Battery charge, 395(30)
Battery life, 620(27, 28), 627(28), 859(45)
Battery power, 613(93)
Battery voltages, 645(9, 10, 11, 12)
Bode diagram, 395(39, 40)
Capacitors in series, 6(39), 216(45), 

232(58), 339(71), 377(66), 434(58), 
482(57), 498(15), 717(27), 736(23), 
747(41), 749(67), 781(18)

Cell phone, 494(81), 928(40)
Charge on capacitor, 253(70), 319(81), 

843(30), 846(82), 927(38), 988(8)
Circuit board, 59(36)
Circuit design, 68(30), 829(34)
Circuit frequency, 340(99)
Circuit tuning, 325(62)
Current change with time, 955(42)
Current density, 843(34)
Discharge through hydrogen gas, 919(40)
Electric charge, 743(42), 776(52, 55), 

787(44), 891(52)
Electric circuit, 837(53), 846(88), 856(45), 

862(36), 893(76), 898(32), 962(17)
Electric current, 11(60), 36(48), 41(52), 

108(45), 114(11, 12), 149(41), 152(34), 
159(56), 216(57), 236(39), 248(53), 
307(38), 316(39), 335(50), 347(54, 57), 
352(44), 361(58), 366(12), 373(35), 
387(53), 398(102, 104), 392(60), 397(80), 
422(55), 472(60), 498(22), 499(42, 46), 
519(41), 529(66), 541(47), 552(46), 
558(59), 561(109, 4), 572(64), 596(47), 
657(57), 681(29), 690(47), 748(37), 
749(58), 759(53), 774(18), 781(17), 
809(31), 848(6), 852(39), 875(35), 
883(32), 888(28), 894(8), 923(40), 948(6), 
960(39)

Electric field, 113(74), 269(42), 280(6), 
352(43), 708(65), 714(27), 767(50), 
782(29), 871(39), 968(50)

Electric intensity, 472(59)
Electric motors, 218(106)

Electric potential, 706(46), 710(8), 742(14), 
833(56), 879(35), 905(33), 948(69)

Electric power, 856(48)
Electric usage, 627(35, 36)
Electricity, 46(5), 47(18), 53(83, 88), 

185(72), 195(59), 211(65, 67), 218(114, 
116, 123), 219(133, 2), 333(72)

Electromagnetic wave, 313(22), 368(90)
Electronics, 47(23, 34, 37)
Electroplating, 476(41), 504(34)
Energy, 843(35)
Filter circuit, 333(71)
FM transmission, 216(41)
Force between parallel wires, 505(47)
Force on electric charge, 29(44), 681(42), 

736(28), 771(20)
Full-wave rectifier, 939(23)
Fuses, 646(19, 20)
Generator, 541(44, 46), 741(7)
Half-wave rectifier, 939(22)
Heat developed, 102(41), 503(4)
Impedance, 138(78), 319(79), 347(56, 58), 

355(37), 365(2), 366(5, 6, 13, 14, 22, 
23), 384(44), 596(50), 741(11), 749(50)

Inductance, 366(15), 759(56), 782(27), 
833(50)

Kirchhoff’s laws, 165(42), 169(22), 175(36), 
178(74)

Magnetic field, 135(23), 211(62), 294(53), 
527(53), 725(19)

Magnetic intensity, 281(35, 36), 395(38)
Microwave, 47(48), 387(49), 505(60)
Mutual conductance, 909(41)
Mutual inductance, 111(5, 13)
Ohm’s law, 593(51)
Oscillator frequency, 709(75), 759(54)
Oscilloscope signal, 300(31), 316(41, 43, 

44), 319(78)
Permittivity, 325(64)
Photoelectric effect, 609(51), 650(13)
Potential from magnet, 846(74)
Power, 29(37), 38(63), 51(18), 90(44), 

749(53), 751(4), 829(30)
Power gain, 382(68), 398(94), 505(55), 

545(59), 698(52)
Power generation, 482(53)
Radar signal, 355(38)
Radiation, 189(76), 948(71)
Radio antennas, 253(72), 545(56)
Radio circuit, 968(34), 988(19, 20)
Radio communication, 413(43)
Radio signal, 312(17), 548(42)
Radio wave, 698(57), 714(28), 767(47)
Resistance, 29(60), 32(46), 41(48), 47(45), 

178(85), 215(39), 236(42), 406(39), 
488(51), 493(76), 504(7), 505(50), 
506(10), 515(50), 527(55), 612(79), 
657(51), 686(49), 732(45), 742(18, 38), 
812(51), 843(28)

Resistance and temperature, 102(40), 
145(28), 725(11)

Resistors in parallel, 53(101), 114(86), 
219(131), 225(52), 237(64), 262(73), 
410(35), 432(43), 702(45), 725(16), 
747(42), 908(35)

Resonance, 95(41), 366(17, 18, 19), 413(42), 
613(90), 654(10), 701(39), 898(40)

RLC circuits, 232(49), 329(67), 366(7, 8, 9, 
10, 16, 20), 415(54), 698(58), 701(39), 
825(51), 859(41), 931(37), 966(2), 
968(31), 997(29, 30, 31, 32, 33, 35, 36, 
37), 1000(72, 73, 77, 78, 79, 80, 81, 82, 
83, 84), 1001(91, 11)

Root-mean-square current, 548(41), 867(46, 
50), 894(77)

Root-mean-square voltage, 867(49)
Superconductivity, 613(91)
Telephone channel, 397(91)
Tracking device, 863(39)
Thermocouple, 725(1)
Transformer, 499(28)
Transistors, 211(59)
Tuner, 726(30)
TV signal, 813(53)
Voltage, 6(40), 11(59), 21(98), 44(48), 

47(45), 54(119), 103(54), 138(65), 
158(41), 166(51), 175(39), 225(41), 
228(33), 238(70), 303(57), 312(9, 10), 
316(34), 352(41), 361(55, 58), 366(3, 4, 
11), 368(85), 432(37), 476(44), 485(40), 
541(45), 571(50), 650(7), 706(49), 
709(67), 725(14), 782(21, 22, 23, 24), 
811(9), 891(48), 898(29), 914(35), 
972(35)

Voltage across inductor, 843(23)
Wheatstone bridge, 499(27)
Wire in magnetic field, 262(83)

Energy Technology
Delivery and customer service, 494(80)
Electric heater, 709(71)
Energy conservation, 189(75)
Heating element, 506(19)
Heating unit efficiency, 493(73)
Insulation, 529(79), 650(12)
Jet engine power, 47(35)
Joule, 325(63)
Natural gas consumption, 759(51)
Nuclear energy, 225(43), 237(56), 613(99)
Oil burner heat, 111(4)
Solar cell, 236(43), 415(67), 572(56), 

599(44)
Solar collector, 102(42)
Solar energy, 11(55), 21(95), 218(94), 

316(40), 325(65), 329(63), 398(103), 
504(37), 537(59), 582(55), 681(35, 36), 
698(55), 706(50), 732(44), 741(9), 
760(57), 825(50), 852(38), 898(37)

Solar heating, 53(92)
Solar panel design, 108(49), 225(54), 

403(34), 476(39)
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Water power, 196(67), 259(49)
Wind power, 102(45), 159(53), 259(51), 

505(45), 655(17, 18, 19, 20, 21, 22, 23, 
24, 25, 26), 657(58), 725(10)

Environmental Science
Air circulation, 968(47)
Air pollution, 50(11), 54(120), 215(40), 

238(81), 384(30), 504(32), 529(62), 
657(52), 742(41), 771(22), 846(80)

Beach erosion, 515(47), 530(83)
Cans recycled, 507(42), 523(32)
Chemical dump site, 216(50)
Forest fire, 54(124), 77(9, 10)
Insecticide DDT, 381(64), 391(46),  

967(18)
Lake pollution, 108(50), 529(68)
Nuclear power plant discharge, 178(81), 

967(17)
Oil spill, 84(63), 185(76), 232(54), 681(32), 

749(59), 759(52)
Organic pollutants, 657(47, 48, 49, 50)
Ozone layer, 397(81)
Pond draining, 709(70)
River flow, 50(6), 721(13), 775(40), 811(4), 

968(42)
Seawater corrosion, 725(26)
Stream pollution, 44(46), 54(118), 519(44)
Trash compacting, 751(9)
Water consumption, 829(24)

Geodesy, Geology, Seismology
Arctic Circle, 135(28)
Athabasca glacier, 90(39)
Bermuda Triangle, 65(42)
Comparing earthquakes, 391(52)
Distance from Manila to Shanghai,  

258(18)
Distance from Whitehorse to Russia, 

262(81)
Distance to point on Lake Ontario, 931(39)
Drumlin surface, 793(35)
Earth’s crust, 485(33)
Earth’s radius, 73(37)
Earthquake centre, 613(100)
Earthquake intensity, 373(34), 577(60)
Easter Island area, 76(2)
Gravitational force on spacecraft, 53(102), 

395(31), 811(38)
Haiti earthquake (2010), 384(42)
Hill surface, 677(44), 905(34)
Hours of daylight, 307(45), 319(73, 74), 

828(18), 845(66), 863(40)
Jurassic geological period, 472(56)
Lake Erie length, 948(66)
Lake Ontario width, 75(2)
Moment magnitude scale, 384(42), 391(51)
Ocean tides, 303(60), 316(38), 557(57)
Richter scale for earthquakes, 384(41)
Sleeping Giant Provincial Park, 134(13)

Hydrodynamics and Hydrostatics
Air pressure, 312(13, 14), 395(28, 36), 

968(43)
Atmospheric pressure, 20(30)
Capillary tube, 294(50), 812(48)
Dam water release, 515(48)
Floating buoy, 432(36)
Floodgate, 799(34)
Fluid flow, 46(16), 189(68), 218(97), 

237(58), 339(72), 340(16), 530(81), 
686(57), 767(46), 867(52) 

Fluid pressure, 506(9)
Force due to water pressure, 38(58), 

690(57), 808(3, 21, 22, 23, 24, 25, 26, 
27), 809(29, 30), 812(50), 813(8)

Hydraulic press, 84(58)
Hydrodynamics, 46(11), 218(111), 767(43)
Peterborough Lift Lock, 485(39) 
Roman aqueduct, 139(79)
Streamlines of fluid flow, 955(43, 44)
Water discharge from tank, 111(17, 18, 19), 

686(52), 968(44)
Water flow, 73(40), 236(36), 272(22), 

377(68), 582(56), 596(49), 698(50), 
718(30), 721(11), 725(21), 726(37)

Water pressure, 113(68), 114(78), 236(38), 
387(50), 493(71)

Water pumping, 781(13), 808(18, 19, 20), 
812(44)

Water waves, 112(1), 238(68), 698(53), 
742(15), 828(17), 948(64)

Machine Technology
Air pump, 519(39)
Ball bearings, 114(84), 218(102), 432(41), 

434(62), 656(45, 46), 686(55), 747(34)
Bell crank, 77(16), 175(35)
Braking system, 709(69)
Cam design, 76(1), 111(11, 12), 258(22), 

312(5, 6), 586(46), 606(57), 613(97), 
686(54), 732(43), 787(47)

Cam follower, 776(57)
Chain saw, 262(86)
Chain saw engine fuel, 179(88)
Clutch, 690(53), 846(77)
Conveyor belt, 781(5)
Defective parts, 741(6)
Diesel engine design, 725(20)
Drill bit, 259(47), 803(25)
Emery wheel, 714(24)
Etching tool, 829(22, 23)
Flywheel, 218(105), 709(74), 803(27)
Friction drive, 596(51)
Gears, 51(12), 53(91), 73(48), 139(88), 

262(75), 294(52), 413(45), 499(26), 
542(49)

Grinding machine, 809(38)
Hoist mechanism, 781(16)
Hydraulic component failure, 776(58)
Jet engine design, 46(13)

Leather-cutting blade, 894(85)
Machine design, 46(9), 47(31), 189(64), 

197(29), 215(38), 218(103), 231(45)
Machine parts, 72(3), 83(51), 292(40), 

577(56), 606(60), 658(4, 5, 6, 12), 
708(58), 749(66), 750(72), 798(7, 8, 9, 
10), 811(28, 36), 879(36)

Machine tool, 149(39)
Mechanism design, 218(98, 113)
Metal plate, 189(69), 894(82)
Oil reservoir, 726(36)
Outboard engine fuel, 51(28), 54(122)
Packaging machine, 216(51)
Pipe, 189(70), 238(72), 294(60), 577(53), 

912(26)
Piston, 552(50), 558(60), 710(4), 781(6)
Pressing machine, 945(27)
Pressure gauges, 47(30)
Pulley belt, 73(46), 113(67), 178(80), 

257(4), 262(76), 558(74)
Pulleys, 47(21, 33), 507(40), 577(55), 714(30)
Pump design, 179(95), 219(126)
Rivet, 81(39)
Robotic link, 20(84), 53(105), 103(52), 

113(61), 134(6), 165(39), 169(25), 
236(35), 268(7), 272(27), 291(28), 
300(32), 432(40), 552(47), 561(114), 
609(49), 645(15), 698(49), 732(40), 
822(49)

Robotic movement, 722(26)
Robotics, 196(68), 686(48), 690(49), 

706(53), 709(68), 846(67), 859(44), 
871(42)

Roller belt, 414(52)
Roller mechanism, 319(77), 406(38), 

721(12), 726(44), 843(32, 33), 968(41)
Sanding machine, 799(32)
Saw tooth, 83(47)
Shearing pin, 294(52)
Slider mechanism, 397(89)
Spring mechanism, 310(29)
Springs, 158(42), 218(109), 225(51), 

361(56), 434(55), 504(35), 657(54), 
808(1, 5, 6, 8), 813(7), 847(96), 893(74)

Stamping machine, 883(33)
Taper, 135(27)
Torture testing, 523(39), 928(40)
V-gauge, 136(35)
Wrench, 292(33)

Materials
Brass, 653(4)
Copper alloy, 180(11)
Copper ore, 178(79)
Fertilizer, 170(27)
Gold alloy, 54(128), 179(93)
Lead alloy, 498(3)
Nickel alloy, 175(41)
Plastic building material, 36(49)
Plastic sheet, 340(91)
Sterling silver, 166(50)
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Measurement
Agricultural test station, 596(52)
Airplane altitude, 139(82)
Antennas, 53(103)
Artillery, 253(65)
Balloon, 108(57), 725(2), 848(8), 1000(68)
Banner, 136(36)
Baseball batting average, 11(56)
Beach shade, 65(46)
Bicycle wheel, 253(67)
Blueprint measurements, 506(25)
Bolts, 507(31)
Bottle volume, 634(24), 640(22), 645(15, 16)
Box capacity, 506(20)
Building height, 825(53)
Building lots, 84(54), 238(71), 494(10)
Buoy circumference, 95(46)
Cable length, 159(46), 750(68)
Calculator use, 54(129), 620(32)
Canada Post package regulation, 742(26, 27)
Carpet area, 138(66)
Chair, 291(29)
Chlorine in pool, 519(46)
Coin tosses, 620(31)
Communications cable, 844(41)
Container weight, 6(38)
Copy machine reductions, 519(42)
Crate angle, 140(90)
Crop-dusting area, 140(94)
Cylinder, 506(5)
Cylindrical cup area, 114(87)
Desktop, 416(8)
Distance between cities, 280(8), 287(30), 

498(1)
Distance between persons, 84(68), 403(38)
Distance between points on blueprint, 

506(25)
Distance between streets, 59(35), 135(33)
Distance from horizon to horizon, 504(38)
Distance to bridge, 295(67)
Distance to fire, 90(38), 294(63)
Distance to hang glider, 140(91)
Distance to helicopter, 95(37)
Distance to mountain, 288(38)
Distance to object, 948(67)
Distance to rocket, 65(44), 133(2), 231(46)
Distance to shoreline, 750(71)
Distance travelled, 36(50), 90(45), 114(79), 

175(43), 216(56), 219(130), 269(45), 
493(70), 775(42)

Fence enclosure, 415(62)
Field dimensions, 95(40), 238(75), 415(62), 

482(58), 581(44), 736(30), 741(1), 
751(10)

Flagpole height, 84(55)
Flare shot, 11(58)
Fossils, time dating and, 472(56)
Glass cube, 506(6)
Golf course holes, 175(38)
Grey Cup blimp height, 133(1)

Googol, 29(52)
Greyhound and fox, 216(58)
Guy wire length, 65(49), 406(42)
Heating object, 962(18)
Height of cliff, 294(54)
Iceberg height, 310(27)
Ladder against wall, 65(45)
Lawn sprinkler area, 258(23)
Lead sphere, 83(48)
Length of Natapoka Arc (Hudson Bay), 

73(49)
Lighted area, 599(45, 46)
Log volume, 47(44)
Map distance, 506(17), 509(77)
Marshy area, 85(14)
Mine shaft, 281(26)
Paper thickness, 529(69)
Paperweight, 136(39)
Pile of sand, 750(75)
Piled logs, 515(49)
Pole on wall, 66(51), 577(54), 830(37)
Pond, draining, 709(70)
Ranch perimeter, 180(7)
Rectangular plate, 73(42)
Rope length, 613(102)
Shadow, 846(68)
Shot-put stopboard, 262(80)
Soccer ball area, 140(89)
Soccer player, 268(5)
Spotlight beam, 258(24), 259(56)
Sprinkler system flow, 159(48)
Storage depot fencing, 112(4)
Street light height, 134(20)
Strobe light times, 619(17, 18, 19, 20), 

627(21, 22)
Tank volume, 681(26)
Telephone pole, 85(3)
Theater rows, 515(51)
Time, 253(66), 472(54)
Time on clock, 258(21)
Time using ship bells, 515(54)
Tree measurement, 73(41), 134(5)
Wall pennant area, 65(41)

Meteorology
Air temperature, 47(27)
Annual rainfall in Vancouver, 627(40)
Atmospheric pressure at given altitude, 

395(36)
Atmospheric temperature, 898(33)
Cloud ceiling, 139(80)
Daily temperature for Montreal, 316(35), 

654(12)
Daily temperature for Sydney, Australia, 

846(69)
El Niño, 113(63)
Hurricane, 85(72)
Isobars, 968(49)
Isotherms, 1000(62)
Jet stream, 843(37)

Rainfall, 80(26), 698(48), 736(27)
Small craft warning, 268(6)
Storm cloud, 293(46)
Storm front, 280(13)
Tornado, 504(9)
Weather balloon, 80(25), 94(27), 95(43)
Weather instruments, 844(40)
Weather satellite, 606(58)
Wind indicator, 863(37)
Wind-chill factor, 111(6, 14)

Motion
Falling object, 281(33), 395(27), 414(50), 

415(57, 59), 416(6), 515(55), 529(71, 
72), 650(6), 708(51), 721(16), 781(1, 3, 
12), 829(25), 833(55), 840(39, 40), 
893(75), 966(4), 968(37), 1000(60)

Flare, 228(34)
General

Acceleration, 175(37), 612(80), 748(11, 
12), 856(41), 867(45)

Ambulance to and from accident, 
219(132)

Average speed of truck, 95(39)
Baseball player, 749(61)
Beach ball, 781(4)
Bicycle, 523(35)
Bouncing ball, 530(9), 545(53)
Canadian Grand Prix race, 51(25)
Car and plane, 750(70)
Car passing semi, 51(31)
Crate, 829(29)
Distance moved, 94(23), 165(44), 

529(70)
Hydrofoil, 225(53)
Motorboat, 280(7)
Moving boat, 368(92), 726(40, 41), 

968(39)
Moving ladder, 726(38)
Moving particle, 548(39), 1000(61)
Moving shadow, 726(28), 726(43)
Path of least time (brachistochrone), 

537(62)
Person on barge, 281(34)
Rising balloon, 523(34)
Searchlight beam, 829(27)
Ship speed, 54(123)
Ski slope, 51(21)
Sphere in fluid, 422(56)
Subway stopping distance, 708(64), 

811(2)
Terminal speed of skydiver, 32(48)
Trains, 216(54), 415(70), 476(45)
Trains in Eurotunnel, 51(23)
Travel time, 51(24)
Velocity, 9(7), 44(45), 215(37), 258(30), 

272(24), 277(32), 293(44), 325(66, 
67), 658(14), 668(55), 681(21, 22, 
23), 685(44), 748(7, 8, 9, 10), 811(2), 
867(44)
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Walking speed and distance, 749(47)
Weather balloon, 726(42)

Oscillatory, Rotational, and Vibrational
Buoy, 318(69)
Energy, 195(64)
Ferris wheel, 253(68), 259(40),  

612(86)
Floating wood, 988(6)
Gyroscope, 185(70)
Mechanical vibrations, 218(121)
Motorboat propellor, 258(34), 318(67)
Musical notes, 219(127) 
Object moving in circle, 505(57), 

508(48), 750(78), 846(79), 898(30)
Object moving in conic section path, 

828(2), 999(53, 54)
Oscillating plate, 253(69)
Oscillating spring, 316(33), 319(75), 

338(65), 529(73), 654(11), 819(50), 
844(39), 923(39), 939(21), 948(68, 
70, 74), 988(10, 11, 12, 13, 14), 
997(33, 34), 1000(75, 85, 86), 
1001(12)

Pendulum, 138(64), 262(74), 312(15), 
508(47), 725(13), 862(35), 914(39), 
931(36), 988(5), 997(26)

Piano wire, 303(58)
River boat paddles, 258(37), 313(21)
Rotating beacon, 312(19)
Rotating drum, 258(32)
Rotating wheel, 537(60), 829(21),  

847(91)
Rubber raft, 319(70)
Simple harmonic motion, 871(41),  

988(1, 3, 4, 9)
Sprocket assembly, 259(43)
Stone moving in circle, 73(47)
Torsion pendulum, 318(66), 1001(88)
TV camera, 846(84)
Vibrating rod, 997(27, 28)
Vibrating wire, 503(3), 948(63)
Vibration analysis of three-storey build-

ing, 718(31)
Watch second-hand, 258(38)
Wave, 355(40), 541(46), 561(110)
Wave in string, 307(37), 312(11, 12), 

319(83, 6), 505(48), 725(9), 909(44), 
914(8)

Rectilinear and Curvilinear
Acceleration, 552(45)
Airport walkway, 165(48)
Arrow, 781(14)
Balloon, 294(51)
Baseball, 732(39), 811(1, 6)
Bullet, 499(40), 706(47), 846(76)
Car on test track, 749(46)
Elevator, 216(53), 808(13), 829(28)
Exercise machine, 722(20)
Falling object, 53(98), 90(3)
Golf ball, 721(15), 811(5)
Hang glider, 257(3)

Missile, 47(47), 231(46), 236(41), 
295(68), 657(55), 844(44)

Object on inclined plane, 280(22), 319(80), 
612(81), 653(5), 747(30), 999(59)

Object through resisting medium, 
856(46)

Parachutist, 749(45), 893(70), 968(40)
Projectile, 195(57), 237(61), 545(57), 

681(27, 28), 776(54)
Radio-controlled car, 721(14)
Rock, 812(41)
Scuba diver, 281(28)
Ski tow, 269(43)
Skier, 722(22), 781(8)
Sky diver, 280(15)
Tennis ball machine, 781(7)
Velocity, 708(59, 66), 722(18, 23, 27), 

813(6), 888(27)
Water skier, 272(30) 
Wind speed, 281(25)

Navigation
Boat’s course, 281(23), 281(30), 288(37), 

292(35, 36, 38), 295(69), 368(92), 
414(51), 722(24)

Coast Guard boat, 139(84), 165(49), 281(31)
Ship’s course, 140(4), 269(46), 277(30), 

280(1, 20), 295(8), 415(69), 582(57)
Ship’s location, 295(70), 414(49), 742(23)
Ship’s location using LORAN, 593(53)
Ship’s power, 505(43)
Submarine, 126(58), 272(21), 291(27)
Tugboats, 277(29)

Nuclear and Atomic Physics
Alpha particle, 741(13)
Atomic mass, 29(58), 498(16)
Atomic particle, 867(47)
Atomic spectra, 847(92)
Atomic structure, 415(53), 894(78)
Atomic theory, 47(40)
Electron motion, 722(18), 808(9, 10), 

813(53)
Force between electrons, 29(44)
Molecular orientation, 294(55)
Nuclear physics, 46(12), 218(100, 119)
Radioactive elements:

carbon, 384(29)
cesium-137, 397(82)
cobalt, 967(13), 999(56)
helium, 967(16)
iodine, 1000(64)
neon, 1000(63)
plutonium, 523(33)
potassium, 1000(65)
radium, 377(65), 397(87), 843(26), 967(14)
radon gas, 967(15)
strontium, 395(29)
substance, 948(65)
uranium, 29(55)

Optics
Apparent depth in water, 292(32)
Electron microscope, 472(53)
Fibre-optic cable, 488(49), 506(27),  

620(29, 30)
Fibre-optic system, 384(43), 519(47)
Fresnel integral, 927(35)
Holography, 681(41), 725(17), 747(31), 

782(32), 846(75)
Illuminance, 397(86), 552(48), 847(93)
Illumination, 108(51)
Interference of light waves, 561(104)
Interference of waves, 318(68)
Interferometer, 410(37)
Laser beam, 29(43), 59(34), 139(87), 

248(56), 262(91), 287(33), 310(28), 
340(97), 482(62), 587(56), 698(56)

Laser energy, 29(43), 113(71), 690(56), 
859(42)

Lasers, 185(66), 196(66), 612(88)
Lens combinations, 708(52)
Light dispersion, 410(36), 527(54)
Light emission, 237(62)
Light intensity, 398(97), 529(63), 552(48), 

593(54), 867(51)
Light passing through narrow slit, 847(90)
Light reflection, 369(94), 542(50), 545(58), 

582(53), 743(50)
Light refraction, 825(52)
Light waves, 318(64), 923(42)
Mirrors, 434(57), 593(52), 948(72)
Optic fibre, 103(51), 572(57), 819(56)
Optical lens, 325(70), 413(46), 507(39), 

701(40), 799(31), 898(36), 931(38)
Optical prism, 80(30)
Polarized light, 316(42)
Refraction, 507(44)
Spectroscopy, 46(14), 415(56), 561(105)
Transmittance of a substance, 384(40)
Wavelength of light, 141(11), 548(43), 

747(29)

Petroleum
Athabasca oil pipeline, 80(29)
Blending gasoline, 102(37)
Diesel fuel production, 111(1)
Fuel consumption, 178(75, 76)
Fuel oil storage, 51(14)
Gas and diesel fuel production, 488(50), 

507(32)
Gasoline blending, 44(49)
Gasoline in car, 20(31)
Gasoline storage tank, 898(38)
Land leases, 50(9)
Mixing, 149(40), 158(43)
Natural gas pipeline, 51(17)
Natural gas reserves, 258(19)
Oil additives, 54(125)
Oil pipeline, 294(59), 701(42), 743(49)
Oil pipeline pressure, 432(38), 650(11)
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Oil pressure, 808(24), 809(28)
Oil production, 485(35), 530(87),  

741(4), 767(44)
Oil pump, 169(20)
Oil spill, 681(32)
Oil storage tank capacity, 94(31), 113(66), 

259(55), 476(46), 571(54), 717(28), 
749(57), 812(47), 871(40)

Oil tanker, 216(49)
Oil viscosity, 655(11, 12, 13, 14, 15, 16)
Oil well drilling, 11(61), 47(26)
Pipeline flow, 114(83), 189(67), 237(60), 

701(42)
Specific gravity of oil, 498(19)
Trans-Alaska pipeline, 262(90)

Photography
Aerial photography, 84(57)
Camera flash, 373(37), 391(48)
Camera focal length, 232(48), 482(56)
Camera lens, 136(40), 505(44)
Camera magnification, 103(50)
Camera on Mars, 134(9)
Cartridge exposures, 36(51)
Photographic film image, 45(52), 552(49)
Photography, 47(20, 24), 185(65), 216(44), 

218(120)

Physics
Bending moment, 434(53)
Centre of mass, 811(27)
Coefficient of friction, 498(13), 845(63, 65)
Displacement, 277(34), 759(50)
Elastic collision, 415(58)
Elasticity, 189(73)
Energy and momentum, 406(32)
Force and acceleration, 504(41), 706(52), 

843(31), 909(38)
Force components, 277(31)
Gravitational force, 41(49), 747(32), 808(11)
Kinetic energy, 47(19), 927(37)
Mechanical advantage, 94(30)
Mechanics, 46(10), 53(85)
Moment of inertia, 803(3, 4, 5, 6), 811(35)
Moments of forces, 53(87)
Momentum, 53(90)
Pressure, 898(34)
Relative density, 219(129)
Relativity, 340(93), 669(66), 927(37)
Solid state physics, 218(89)
Specific gravity, 717(25)
Torque, 218(118)
Work, 218(115) 
Work and power, 787(43)

Police Science
Ballistics test, 47(22), 268(8), 293(45), 968(38)
Bullet impact, 613(101)
Bullet line of fire, 134(8), 294(58), 572(58)
Drivers exceeding speed limit, 640(21)

Legal highway speed, 476(44)
Police helicopter, 612(85), 829(26)
Police radar, 656(31, 32, 33, 34, 35, 36)

Refrigeration and Air 
Conditioning
Air conditioning, 46(8)
Air conditioning damper, 294(57)
Air conditioning duct, 94(36)
Energy used by refrigerator-freezer, 836(50)
Freezer temperature, 41(50), 114(85), 

690(51), 709(77)
Performance coefficient, 504(36)
Refrigerant freon, 653(7)
Refrigeration, 47(29, 36)

Space Technology
Apollo 11 (moon spacecraft), 613(98)
Astronaut’s weight, 102(46)
Communications satellite, 53(106), 136(38), 

287(35), 577(58)
Earth satellite, 84(59), 294(61), 307(39), 

312(7, 8), 338(68), 340(90), 472(55), 
613(103), 846(70)

Escape velocity, 505(46), 1001(90)
Lunar lander, 781(10)
Lunar rover, 288(36)
Object in space, 333(69), 726(31)
Pioneer space probe to Jupiter, 272(34)
Rocket flight path, 159(49), 293(48), 

318(61), 406(31), 485(41), 545(54), 
582(50), 809(36), 819(55)

Rocket fuel, 218(110), 225(42), 482(54), 
808(15)

Rocket height, 102(44), 108(48), 253(71), 
319(72), 493(78), 558(73), 650(9), 
717(24), 732(47), 749(54), 787(45), 
822(51)

Rocket motion, 960(38)
Rocket nose cone, 812(45), 875(34)
Rocket thrust, 732(42)
Rocket velocity, 280(10), 377(64), 387(54)
Rocket weight, 94(25), 114(2)
Satellite power, 519(50), 843(25)
Satellite velocity, 281(24), 725(18)
Space probe, 498(23)
Space shuttle, 134(12), 178(83), 280(21), 

726(35)
Space vehicle, 852(40), 867(48), 894(83)
Spacecraft acceleration and velocity, 

721(15), 722(17), 726(32)
Spacecraft altitude, 572(63), 746(25),  

829(31)
Spacecraft circling Moon, 262(93)
Spacecraft launch to moon, 582(51)
Weight in space, 482(59)

Statics
Chains support crate, 152(33)
Force on weld, 211(63)

Forces on: 
balloon, 269(47)
beam, 476(40)
boat, 272(28), 349(39)
bolt, 272(32), 293(49), 352(42), 507(45), 

560(101)
box, 248(54), 846(86)
car, 268(4)
chain holding engine, 280(18)
crane, 178(73)
girder, 169(21)
hockey puck, 280(3)
lever, 45(50), 179(87), 272(29), 281(27), 

506(7), 507(37), 572(62)
pin joint, 175(45)
structure, 145(29), 338(70)
tower, 340(101)
tree, 280(4)
wheelbarrow, 272(31)

Object on inclined plane, 558(58)
Removing equipment from mud, 280(5)
Ropes support crate, 269(48), 280(12), 

287(28, 34), 292(34)
Tension in cable, 21(100), 287(29), 368(91), 

811(11)
Torque, 159(50)
Unloading car from ship, 272(23)

Strength of Materials
Beam deflection, 38(64), 47(38), 53(95), 

185(69), 432(35), 434(7, 53), 582(52), 
706(51), 709(73, 79), 732(46), 742(37), 
748(43), 776(54), 782(30), 927(35), 
988(26), 997(37), 1001(89)

Beam design, 196(65), 216(46)
Beam stiffness, 504(11), 743(46)
Beam strength, 237(55), 628(50), 829(35)
Cantilever beam, 803(28), 988(25)
Cantilever column, 310(30)
Concrete beam, 413(44)
Concrete column, 218(124), 397(83)
Concrete slab, 702(46)
Diving board deflection, 686(50)
Pillar crushing load, 898(39)
Pipe deflection, 749(49)
Slenderness ratio of column, 506(12)
Steel column, 702(47)
Strain on beam (Mohr’s circle), 577(61)
Strength of materials, 211(64), 686(51)
Stress on bar, 545(60)
Stress on pipe, 967(21)
Stretched wire, 914(38)
Support column, 432(34)
Suspended cable, 415(55)
Tensile strength, 845(64)
Vinyl sheet, 909(39)

Surveying
Azimuth, 561(107)
Barometric levelling, 507(46)



 Index of Applications D.9

Bridge height, 295(71)
Building location, 280(9)
Cliff height, 135(26)
Head-Smashed-In Buffalo Jump height, 

294(54)
Irregular shoreline, 113(75)
Land elevations, 141(14)
Land measurements, 138(69), 178(82), 

260(60), 261(71), 287(26), 293(42), 
829(32)

Marker distances, 822(52)
River width, 66(52)
Security restricted area, 294(64)
Surveying, 46(7)
Surveyor’s formula, 165(40)
Utility pole location, 295(3)

Thermal
Boiling point of water, 237(59)
Cooling object, 668(53), 681(25), 681(31), 

685(45, 46), 843(27), 909(37)
Cooling steam, 111(9, 10)
Heat flow, 185(64)
Heat intensity, 726(33)
Heat of vapourization, 506(11)
Heated liquid, 657(60)

Hot metal bar, 395(37), 909(43)
Ice forming on weather balloon, 748(33)
Isotherms, 714(23), 905(31)
Melting ice, 504(33), 685(46), 726(27)
Newton’s law of cooling, 846(81), 967(25, 26)
Temperature and pressure, 398(99)
Temperature change, 571(53), 962(18)
Temperature in blast furnace, 759(55)
Temperature readings, 11(57), 38(60), 

47(43), 108(58), 398(100), 476(37, 42), 
519(49), 529(79), 571(49), 612(83, 84), 
657(60), 782(28), 809(32), 837(52), 
955(41), 1000(71)

Thermal expansion, 53(96), 185(71), 
218(101), 434(8), 653(6), 718(29), 
909(37), 914(41)

Thermal resistance, 53(93)

Thermodynamics
Absolute zero, 651(14), 856(44)
Adiabatic expansion of gas, 395(32), 

504(10), 698(51), 1000(66)
Boyle’s law, 498(25), 726(29)
Energy in metal at lower temperature, 767(49)
Entropy, 893(71)
Expansion of gas, 698(51)

Gas molecules, 844(43), 852(37)
Gas volume and pressure, 856(42)
Gas-liquid equilibrium, 422(57)
General gas law, 505(52), 914(43)
Isothermal change, 377(67)
Otto cycle, 325(68)
Pressure of gas, 898(31)
Pressure, volume and temperature of  

a gas, 701(41)
Radiant energy emission, 38(62), 185(68), 

189(76)
Speed of oxygen molecules, 505(49)
Thermodynamic surface, 905(35)
Thermodynamic temperature, 398(98), 

527(52), 690(46, 54), 701(41),  
898(35)

Thermodynamics, 195(62), 197(28, 31), 
211(60), 216(43)

Vapour pressure, 843(29)
Volume expansivity, 914(36)

Wastewater Technology
Chemical waste holding tank, 812(49)
Draining holding tank, 232(56), 504(39), 

522(31)
Wastewater pump, 488(53)



1.1 Numbers D.10Index of Writing Exercises
The final exercise in each chapter is a writing 
exercise. Each of these 31 exercises will re-
quire at least a paragraph to provide a good 
explanation of the problem presented. There 
are also about 400 other exercises throughout 
the text marked with a green circle before the 
exercise number or instructions that require 
at least one complete sentence (up to a para-
graph) to provide the explanation needed.

Following is a listing of these writing  
exercises. The first number shown is the 
page number, and the numbers in parenthe-
ses are the exercise numbers. The * denotes 
the final review exercise of the chapter.

Chapter 1: Basic Algebraic  
Operations
5(21, 22, 33)
6(34, 35, 36, 43)
10(50)
11(51, 52, 53, 54, 56)
20(83, 84)
21(88, 94)
26(58, 60)
32(51)
36(55, 56)
38(53, 54)
53(109, 110)
54(129*)

Chapter 2: Geometry
59(39, 40)
65(30, 32, 33, 34)
68(25, 26, 29)
69(39)
73(33, 36, 47)
76(1, 2, 3, 4)
78(17, 18, 19, 20)
83(43, 44)
85(73*)

Chapter 3: Functions and Graphs
90(29, 30, 31, 32, 33, 34, 35, 36, 47)
94(11, 12)
95(41, 50)
97(32, 34)
103(55, 57, 58, 61, 62)
108(54, 56, 59, 60)
112(45)
113(55, 56)
114(87*)

Chapter 4: The Trigonometric 
Functions
122(36)
126(45, 46, 47, 48)
131(44)
137(54)

138(56)
140(89, 95*)

Chapter 5: Systems of Linear 
Equations; Determinants
159(55, 56)
170(28)
177(41, 42, 43, 44)
178(82)
179(95*)

Chapter 6: Factoring and Fractions
185(80)
189(61, 62)
196(74)
197(36, 37, 38)
202(65, 66, 67, 68)
211(58)
219(133*)

Chapter 7: Quadratic Equations
231(44)
236(25, 26, 27, 28, 29, 30)
238(78, 83*)

Chapter 8: Trigonometric 
Functions of Any Angle
248(45, 46, 47, 48)
253(70)
258(18)
259(57)
262(81, 93*)

Chapter 9: Vectors and Oblique 
Triangles
268(5, 6, 7, 8)
281(24)
291(22, 24, 25)
292(40)
293(38)
295(72*)

Chapter 10: Graphs of the 
Trigonometric Functions
306(31, 32, 33, 34)
307(41, 42, 43, 44)
312(19)
317(39, 40)
318(68)
319(74, 83*)

Chapter 11: Exponents and 
Radicals
325(58, 60)
328(62)
329(63)
332(68)

335(46, 47)
338(60)
340(101*)

Chapter 12: Complex Numbers
345(61, 62, 64)
347(60, 61, 62)
349(35, 36, 37, 38)
360(52)
366(24)
369(97*)

Chapter 13: Exponential and 
Logarithmic Functions
377(60, 62, 71, 72)
381(57, 58, 59, 63)
387(38)
398(105*)

Chapter 14: Additional Types 
of Equations and Systems of 
Equations
403(36)
413(19, 20, 41)
414(39, 40)
415(52, 71*)

Chapter 15: Equations of Higher 
Degree 
422(47, 48, 53, 54)
426(27, 28)
432(46)
433(41, 42, 45)
434(46, 63*)

Chapter 16: Matrices; Systems of 
Linear Equations
439(35, 44)
444(38)
449(36, 38)
453(29, 30)
465(68)
466(90*)

Chapter 17: Inequalities
471(1)
472(25, 26, 27, 28, 48, 51)
481(45, 46)
485(29, 35)
492(20)
493(57, 58)
494(83*)

Chapter 18: Variation
504(13, 14, 15, 16, 40, 41)
505(42)
509(78*)
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 Index of Writing Exercises D.11

Chapter 19: Sequences and the 
Binomial Theorem
515(35, 36, 58)
519(29, 54, 55, 56)
522(30)
523(36)
527(39, 45)
530(91, 93*)

Chapter 20: Additional Topics in 
Trigonometry
537(63, 64)
541(28, 42)
552(41)
557(1)
558(72)
561(115*)

Chapter 21: Plane Analytic 
Geometry
571(39, 40, 53)
572(56, 59)
577(43, 44, 47)
581(43)
586(37, 38)
587(48)
592(46)
599(39, 40, 41, 42)
606(60)
609(53, 54)
614(107*)

Chapter 22: Introduction to 
Statistics
620(31, 32)
628(43, 44, 45, 46)
633(1)
634(8, 21, 23, 24, 32)
640(22)
645(3, 4)
658(71*)

Chapter 23: The Derivative
668(21, 22, 23, 24)
669(64, 65, 66)

677(39)
681(28)
685(40, 42)
689(36)
698(44)
708(49, 50)
709(84, 87*)

Chapter 24: Applications of the 
Derivative
714(19)
717(19, 20, 22)
722(28)
731(33, 34, 35)
732(54)
736(19, 20)
747(36, 40)
749(52)
750(81*)

Chapter 25: Integration
754(39)
759(41, 42, 43, 44, 45, 46)
760(60)
764(24, 25, 26, 27, 28)
767(35, 39, 46)
771(17)
774(2)
775(27, 28, 33, 37)
776(59*)

Chapter 26: Applications of 
Integration
782(20)
787(31, 36)
793(27, 28, 32)
799(29)
803(28)
809(29, 34)
813(57*)

Chapter 27: Differentiation of 
Transcendental Functions
818(37, 38)
822(39, 40)

825(35, 36, 40)
833(35, 36, 47, 48, 49)
836(33, 34)
843(15, 16)
847(99*)

Chapter 28: Methods of 
Integration
855(32)
859(30)
862(31)
867(41)
871(31, 32, 33, 34, 35)
875(1, 2)
878(1, 2)
893(49, 50, 53)
875(85*)

Chapter 29: Partial Derivatives 
and Double Integrals
898(27)
904(27)
909(36, 40)
912(26)
914(33, 45, 47*)

Chapter 30: Expansion of 
Functions in Series
919(36)
923(29, 30)
930(33)
931(37)
934(39, 40, 41, 42)
948(75*)

Chapter 31: Differential Equations
954(15)
960(29, 30)
962(15)
976(38, 39)
982(37)
993(28)
1001(75, 92*)



1.1 Numbers D.12Index
Abscissa, 96
Absolute error, 745
Absolute inequality, 468
Absolute value, 3; of complex numbers, 

350; in inequalities, 482; order of  
operations, 8

Acceleration, 279, 704, 719, 778, 842;  
angular, 256

Accuracy of number, 15, 123; approximate 
number, 18

Addition: of algebraic expressions, 32; alge-
braic method of solving three linear 
equations, 166; of approximate numbers, 
19; of complex number, 345, 357; of 
cubes, 196; of fractions, 206; of matrices, 
437; of ordinates, 313; of radicals, 333; 
of signed numbers, 7; solution of system 
of equations, 404; of vectors, 266, 273

Adjacent angles, 57
Agnesi, Gaetana, 733
Agnesi, Maria, 849
Algebraic expressions, 24, 32
Algebraic operations, 32
Alternate-exterior angles, 58
Alternate-interior angles, 58
Alternating current, 311, 361, 531
Altitude, 61
Ambiguous case, 286
Ampere, 364
Amplitude of sine curve, 298
Analytic geometry, 562
Angle, 56, 116; acute, 56; bisectors, 61; cen-

tral, 70; of depression, 132; double-angle 
formulas, 542; of elevation, 132; half- 
angle formulas, 545; inscribed, 71; nega-
tive, 116, 247; obtuse, 56; phase, 303; 
quadrantal, 117, 247; radian measure, 71; 
reference, 243; right, 56; of rotation, 600; 
standard position, 117; straight, 56; sum 
and difference of two, 537

Angular acceleration, 256
Angular velocity, 255
Antiderivative, 753
Antilogarithm, 382
Apollo 11, 503
Applied maximum and minimum  

problems, 737
Approximate numbers, 15, 17, 121;  

operations, 18
Arc, 70
Arc length, 253
Area: of circle, 70; of circular sector, 254; 

under a curve, 760; element of, 782; of 
geometric figures, 61; by integration, 
782; lateral, 78; of quadrilateral, 67; of 
triangle, 62; between two curves, 783

Argument of complex number, 350
Aristotle, 86
Arithmetic mean, 620

Arithmetic sequence, 511
Array, 616
Associative law, 6, 438
Asymptote, 100, 588, 733
Attribute, 616; control chart for, 641
Auxiliary equation of differential equation, 

970; complex roots, 974; repeated  
roots, 973

Average value, 807
Average velocity, 659
Axes: rotation of, 599; translation of, 593
Axes, coordinate, 96
Axis: of ellipse, 583; of hyperbola, 588;  

of parabola, 578; polar, 603

Babbage, Charles, 417
Bar, 34
Barrow, Isaac, 752
Base: of exponents, 21, 371; of logarithms, 

382, 385; of solid, 78; of trapezoid,  
66; units, 13

Basic identities, 532
Becquerel, Henri, 964
bel, 383
Bell, Alexander Graham, 383
Benford’s law, 398
Benz, Karl, 737
Bernoulli, Johann, 837
Binomial, 33
Binomial formula, 523, 525
Binomial series, 526
Binomial theorem, 523, 682
Braces, 34
Brackets, 8, 25, 34
Briggs, Henry, 370

Calculator, 11, 104, 150, 245, 370, 448;  
scientific notation, 28; solving systems  
of equations, 401

Calculus, 659, 667, 711
Cancellation, 199
Capacitance, 361, 781
Capacitor, voltage across, 779
Carbon dating, 964
Cardioid, 607
Catenary, 392
Cauchy, Augustin-Louis, 399, 667
Cayley, Arthur, 435
Center of mass, 793
Central angle, 70
Central line, 642
Central tendency, 620
Centre of circle, 69
Centre of mass, 793
Centroid, 61, 793; of solid of revolution, 

797; of thin, flat plate, 795
Chain rule, 691
Change, time rate of, 827
Character of roots, 230

Charles’ law, 500
Chebychev’s theorem, 626
Chord, 69
Circle, 69, 400, 573
Circular paraboloid, 901
Circumference, 70
Class, 616
Class mark, 617
Coefficient, 33, 155
Cofunction, 128
Colossus computer, 214
Column of determinant, 160
Common difference, 511
Common logarithms, 382
Common ratio, 516
Commutative law, 6, 440
Complementary angles, 57, 127
Complementary solution of differential 

equation, 977
Completing the square, 225, 575, 595
Complex fraction, 209
Complex number, 2, 341, 343, 345; division, 

356; exponential form, 352; multiplication, 
355; polar form, 350

Complex plane, 348
Complex roots, 424, 430
Components of vector, 269, 273
Composite function, 690
Composite trigonometric curves, 313
Computer, 903
Concavity, 728
Conditional equation, 41
Conditional inequality, 468
Cone, 78
Confidence intervals, 634
Congruent triangles, 64
Conic sections, 400, 598
Conjugate: axis of hyperbola, 588; of  

complex number, 344
Constant, 4, 963; combining, 877; derivative 

of, 682; of integration, 755, 758; of  
proportionality, 500, 501

Constraint, 488
Continuity, 660
Contradiction, 42
Control charts, 641
Convergent, 916
Conversion of angle measurements, 249
Conversion of angles, 116
Conversion of units, 116
Coordinates: cylindrical, 903; polar,  

603; rectangular, 95
Copernicus, Nicolaus, 586
Correlation, 651
Corresponding angles, 58, 119
Corresponding segments, 58
Corresponding sides, 63, 119
Cosecant: of angle, 120; graph of, 307;  

integration of, 859

D.12
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Cosine: of angle, 120; derivative of, 823; of 
double angle, 542; graph of, 297; half angle, 
545; half-range Fourier series, 944; integra-
tion of, 863; of sum of two angles, 537

Cosines, law of, 282, 288
Cotangent: of angle, 120; graph of, 307;  

integration of, 859
Coterminal angles, 116, 243
coulomb, 364
Cramer, Gabriel, 142, 162
Cramer’s rule, 142, 162, 172, 460
Critical value, 477
Cube, 78; difference, 196; special products, 

183–184; sum, 196
Cube roots, 358
Cumulative frequency, 618
Current, 361, 780
Curve: area between two, 783; area under, 

760; finding, given slope, 963; graphing 
smooth, 109; identifying, 601; in polar 
coordinates, 606; sketching, 727, 732, 
825, 841; slope of tangent to, 669; in 
three dimensions, 899

Curve in space, 900
Curvilinear motion, 718, 828
Cycle, logarithmic scale, 393
Cyclotron, 604
Cylinder, 78
Cylindrical coordinates, 903
Cylindrical shell, 789
Cylindrical surface, 903

d’Alembert, Jean, 264
Damped simple harmonic motion, 983
Dantzig, George, 467
Decibel, 383
Decimal, repeating, 2, 521
Decision variables, 488
Definite integral, 765
Deflection of beams, 986
Degree: of differential equation, 950; as 

measure of angle, 56, 116; of polynomial, 
33; of term, 33

Delta method, 670
DeMoivre, Abraham, 357
DeMoivre’s theorem, 357
Denominate number, 4, 323
Denominator: rationalizing of, 331
Dependent system of equations, 152, 163
Dependent variable, 87
Derivative, 659, 673; of a constant, 682; of a 

constant times a function, 683; of cosine 
function, 815; curve sketching, 727; of  
exponential function, 834; higher, 702; of 
implicit function, 700; of inverse trigono-
metric functions, 822; of logarithmic func-
tion, 830; partial, 895; of a polynomial, 682; 
of a power of a function, 690; of a product, 
686; of a quotient, 686; as a rate of change, 
677; second, 702; of sine function, 815; of a 
sum, 684; of trigonometric functions, 819

Derived units, 13
Descartes, René, 320, 343, 400, 427, 562
Descartes’ rule of signs, 428
Determinant, 142; higher-order, 457;  

properties of, 459; second-order, 160; 
third-order, 170, 459

Deviation, 647; standard, 623
Diagonal, 66
Diagonal of determinant, 161
Diameter, 69
Difference: of matrices, 438; of squares, 665
Difference, common, 511
Difference engine, 417
Differential, 743, 827
Differential calculus, 659
Differential equation, 949; Laplace transforms, 

994; linear, 969; numerical solutions, 960
Differentiation, 674; of implicit functions, 

699; series formed by, 925; of transcen-
dental functions, 814

Diocles, 220
Direct current, 531
Direction, 720
Directrix of parabola, 578
Direct variation, 500
Disc, 788
Displacement, 268, 778; of sine curve, 304
Distance, related rates and, 723
Distance formula, 563, 739
Distances, related rates and, 724
Distributive law, 6
Divergent, 916
Dividend, 39
Division: of algebraic expressions, 38; of 

complex numbers, 345, 356; of fractions, 
202; of radicals, 336; with remainder, 
418; of signed numbers, 7; synthetic, 
419; by zero, 9, 99

Divisor, 39
Domain, 91, 675, 733
Double-angle formulas, 542
Double integral, 895, 909

e (irrational number), 352, 385, 834
Edison, Thomas, 296, 362, 531
Einstein, Albert, 45
Electric circuits, 965, 985, 995
Element: of area, 782; of determinant, 160; 

of matrix, 436; of volume, 788, 910
Elements (Euclid), 510
Elimination by addition or subtraction,  

154, 404
Ellipse, 400, 582, 594, 601
Elliptic hyperboloid, 901
Engineering notation, 28
ENIAC, 214
Equal sign (=), 19
Equations, 41; conditional, 41; curves 

sketched from, 606; differential, 950;  
exponential, 388; graphical solution, 104, 
146; higher-degree, 417; involving 

fractions, 212; linear, 142; literal, 45; 
logarithmic, 389; polynomial, 424; quad-
ratic form, 407; with radicals, 410; roots 
of, 419, 423; second-degree, 596; solving 
graphically, 104–106; systems of linear, 
144, 160, 166, 401, 460; systems of 
quadratic, 400; trigonometric, 548

Equilibrium, 279
Eratosthenes, 115
Estimating, 19
Euclid, 55, 510
Euler, Leonhard, 240, 352, 711, 814, 895, 

949, 960
Euler’s formula, 925
Euler’s method, 960
Even function, 940
Exact number, 15; and approximate  

numbers, 19
Explicit functions, 699
Exponential equations, 388
Exponential form, 856; of complex  

number, 352
Exponential function, 370; derivative of, 

834; graph of, 392; integration of, 854
Exponential value, 928
Exponents, 21, 320, 322
Extraneous roots, 407
Extraneous solution, 214
Extrapolation, 110
Extreme point, 233

Faces, 78
Factor, 32, 197, 419; canceling, 199
Factorial notation, 524
Factoring, 181, 185; common factor and  

difference of squares, 185; complete, 
188; difference of two squares, 187; by 
grouping, 188, 194; quadratic equations, 
222; trinomials, 190

Factor theorem, 419
Family of curves, 963
Farad, 364
Feasible point, 488
Fermat, Pierre de, 562, 752
First-derivative test, 727
First-quadrant angle, 116
Focus: of ellipse, 582; of hyperbola, 587;  

of parabola, 578
Folium, 701
Force: liquid pressure, 806; related rates, 

724; unit of, 277
Forced vibrations, 985
Formula, 45; binomial, 523; distance, 563; 

quadratic, 228
Fourier, Jean, 915, 934
Fourier series, 934, 940, 980
Fraction, 2–3, 181; addition, 30, 206; com-

plex, 209; division, 202; equations, 212; 
equivalent, 197; as exponent, 325; multi-
plication, 202; partial, 879, 883; simplest 
form, 198
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Frequency, 312; arithmetic mean, 621;  
distribution, 616; polygon, 617

Frustum, 79
Function, 87, 554; average value, 807;  

composite, 690; exponential, 371; finding  
zeros of, 104; functional notation, 88; im-
plicit, 699; interval notation, 91; inverse, 
375, 553; logarithmic, 371; quadratic, 
220; series formed by functional notation, 
924; trigonometric, 120, 240; of two vari-
ables, 896; from verbal statements, 92–94

Fundamental laws of algebra, 6
Fundamental principle of fractions, 197
Fundamental theorem of algebra, 417, 423

Gabor, Dennis, 413
Galileo, 86, 220
Galton, Francis, 615
Gauss, Karl, 343, 417, 423, 454, 513, 628
Gaussian elimination, 435, 454
Gauss-Jordan method, 446
General equation: of circle, 575; quadratic, 

220; of straight line, 568
General power formula, 850
General solution of differential equation, 950
Geometric sequence, 510, 516
Geometry, 55
Googol, 29
Graph: derivatives to find features of, 729; 

of exponential function, 371, 392; of 
function, 97; functions, 733; on graphing 
calculator, 104–107; inequalities, 468; of 
linear function, 146; of logarithmic func-
tion, 375; on logarithmic paper, 393; in 
polar coordinates, 606; of quadratic func-
tion, 232; sketch a graph, 841; of specific 
values, 619; of trigonometric equations, 
549; of trigonometric functions, 296; us-
ing intercepts and traces to sketch, 900

Graphical representation of complex  
numbers, 348

Graphical solution of equations, 104, 149, 
232, 400

Graphical solution of inequalities, 481, 485
Graunt, John, 615
Gravitation, universal law of, 495, 501
Gravity Recovery and Interior Laboratory 

(GRAIL), 495
Great circle, 254
Greater than, 4, 468
Grouping: factoring trinomial by, 194–195

Half-angle formulas, 545
Half-line, 56
Half-range expansion, 943
Half-wave rectifier, 938
Halley, Edmond, 615
Harmonic sequence, 515
Heaviside, Oliver, 949
Height: of solid geometric figures, 78; of  

triangle, 61

henry, 364
Hero’s formula, 62
Hertz, 312
Hertz, Heinrich, 296, 311, 341
Hexagon, 60
Higher-order determinants, 457
Hipparchus, 115
Histogram, 617
Holography, 413
Homogeneous differential equation, 969
Hooke, Robert, 804
Hooke’s law, 804
Hyperbola, 101, 401, 587, 594, 601
Hyberbolic cosine, 837
Hypotenuse, 60, 120

Identity, 7, 34, 39, 42; matrix, 441;  
trigonometric, 532

Imaginary axis, 348
Imaginary number, 2, 31, 342;  

graphing, 100
Imaginary roots, 31
Impedance, 362
Implicit function, 699; derivative of, 700; 

differentiation of, 699
Improper integral, 989
Inclination, 564
Inconsistent system of equations, 151, 163
Increment, 744
Indefinite integral, 755, 778
Independent variable, 87
Indeterminate, 9
Indeterminate form, 837
Index: of radical, 329
Inductance, 361
Inequalities, 4, 467; algebraic solution of, 

468; graphical solution of, 485; involving 
absolute values, 485; properties of, 469; 
with two variables, 485

Infinite series, 520, 916
Infinity, 521, 733; limit as x approaches, 664
Initial point of vector, 266
Initial side of angle, 116
Instantaneous acceleration, 704
Instantaneous rate of change, 659, 

672, 677
Instantaneous velocity, 659, 678
Integer, 2
Integral: approximating with Simpson’s 

rule, 772; definite, 765; double, 895, 909; 
indefinite, 755

Integrating combinations, 955
Integration, 752; areas by, 782; of exponen-

tial forms, 854; of inverse trigonometric 
forms, 867; limits of, 765; of logarithmic 
forms, 850; methods of, 849; by partial 
fractions, 879, 883; by parts, 871; of 
powers, 850; as summation, 763; by ta-
bles, 888; of trigonometric forms, 854, 
859; by trigonometric substitution, 876; 
by use of series, 926; volumes, 788

Intercepts, 104, 148, 733
Intersect, 56
Interval of convergence, 920
Inverse functions, 375, 553; trigometric 

functions, 123, 554
Inverse Laplace transform, 992
Inverse logarithm, 383
Inverse matrix, 441, 445
Inverse trigonometric functions, 123, 246, 553; 

derivatives of, 822; integral forms, 867
Inverse variation, 500
Irrational numbers, 2
Irrational roots, 430
Iterative method, 715

Jacobi, Carl, 905
Joint variation, 501
j-operator, 364
Jordan, Wilhelm, 446
joule, 322
Joule, James Prescott, 322

kelvin, 326
Kirchhoff, Gustav, 142
Kirchhoff’s current law, 142
Kirchhoff’s voltage law, 142
Kutta, Martin, 961

Lagrange, Joseph Louis, 264, 915
Laplace, Pierre, 370, 628, 949, 989
Laplace transforms, 989, 994
Latitude, 254
Law: of cosines, 282, 288; of sines, 282
Least squares, method of, 647
Least-squares line, 648
Leibniz, Gottfried Wilhelm, 160, 765, 814, 

849, 895
Lemniscate, 608
Length, 66
Less than, 4, 468
L’Hospital, Marquis de, 837
L’Hospital’s rule, 837
Libby, Willard, 964
Like terms, 33
Limaçon, 607
Limit, 520, 660; e as a, 834; of a function, 

662; numerical verification of, 839; of 
sin  u>u, 815

Limits of integration, 765
Line, 56; slope of, 563
Linear approximation, 745
Linear differential equation, 957, 969
Linear equation, 143; graph of, 146; matri-

ces, 449; solving by determinants, 460
Linear extrapolation, 110
Linear factors, repeated, 883
Linear inequalities, 472
Linear interpolation, 110
Linearity property, 991
Linearization, 745
Linear programming, 467, 488



 Index D.15

Linear regression, 646
Linear simultaneous systems, 144
Lissajous, Jules, 315
Lissajous figures, 314
Literal number, 4
Locus, 573
Logarithmic equations, 389
Logarithmic function, 373; derivative of, 

830; integral form, 850
Logarithmic paper, 393
Logarithmic scale, 392
Logarithmic value, 929
Logarithms, 370, 385; to base 10, 382; basic 

form, 852; computations by, 383; natural, 
385; of a product, 378; properties of, 377

Longitude, 254
Lord Kelvin, 326
Lower control limit (LCL), 642
Lowest common denominator (LCD), 206

Maclaurin, Colin, 142, 921
Maclaurin series, 919
Magnitude, 720
Major axis of ellipse, 583
Matrix, 171, 435; addition, 437; elements of, 

436; identity, 441; inverse, 441, 445; lin-
ear equations, 449; multiplication, 439; 
square, 436; subtraction, 438; zero, 436

Maximum and minimum problems, 727
Maximum points, 233, 727
Maxwell, James, 341
Mean: arithmetic, 620; large sample  

confidence intervals, 635
Measurement, 12; control chart for, 641;  

estimating errors in, 745
Median, 61, 620
Members of inequality, 468
Method of least squares, 647
Method of partial fractions, 879
Method of undetermined coefficients, 977
Middle term, 190
Minimum points, 233, 727
Minor, 458
Minor axis of ellipse, 583
Minute (measure of angle), 116
Mode, 116, 622
Modulus of complex number, 350
Mohr’s circle, 577
Moivre, Abraham de, 628
Moment of inertia, 799; of a mass, 793;  

of a solid, 801
Monomial, 33; common factors, 186;  

dividing, 38; multiplying, 36
Motion, in resisting medium, 966
Multinomial, 33
Multiplication: of algebraic expressions, 36; 

of complex numbers, 345, 355; of fractions, 
202; of matrices, 439; order of operation, 
322; of radicals, 335; scalar, 438; series 
formed by, 924; of signed numbers, 7

Multiplicity of a root, 222

Napier, John, 370
Natural logarithm, 385
Negative angle, 116, 247
Negative direction, 3
Negative exponents, 23, 124; solving an 

equation containing, 408
Negative numbers, 343; plotting, 98
Nested parentheses, 35
Newton (N), 277
Newton, Sir Isaac, 277, 279, 320, 435, 495, 

501, 659, 715, 814, 849, 983
Newton’s method, 714, 826, 842
Niépce, Joseph, 409
Nightingale, Florence, 615
Nonhomogeneous differential equations, 

969, 977
Nonlinear inequalities, 476
Nonlinear regression, 651
Nonrepeated linear factors, 879
Nonrepeated quadratic factors, 885
Normal distribution, 628
Normal line, 712
Number: approximate, 15, 18; changing to 

scientific notation, 27; complex, 2, 341; 
denominate, 4; exact, 15; imaginary, 2, 
31, 343; irrational, 2; natural, 2; negative, 
2; rational, 2; real, 2; roots, 30

Numerical coefficient, 33
Numerical integration, 768

Objective function, 488
Oblique triangle, 264, 282, 290
Octant, 899
Odd function, 940
Ogive, 618
Ohm’s law, 361
Operations with zero, 9
Operator, 969
Optimal solution, 489
Order: of differential equation, 950; of  

operations, 8, 24; of radical, 329; of  
trigonometric functions, 125

Ordinate, 96
Ordinates, addition of, 313
Origin, 3, 95
Orthogonal trajectories, 963

Parabola, 220, 232, 400, 578, 594, 601
Parallel, 56, 565
Parallelogram, 66; method of adding  

vectors, 267
Parameter, 616, 718
Parametric equations, 314
Parametric form, 718
Parentheses, 8, 34; nested, 35
Partial derivative, 895, 905
Partial fractions, 879
Partial sum, 916
Particular solution of differential  

equation, 950, 977
pascal, 322

Pascal, Blaise, 525, 777
Pascal’s triangle, 525
Pentagon, 60
Perfect square, 30, 330
Perimeter, 61; of quadrilateral, 67; of  

triangle, 61
Period of sine curve, 298
Perpendicular, 56, 565
Phase angle, 303–306, 363
Phase shift, 304
Phasor, 364
Pi, 70
Pixel, 104
Plane, 56, 168, 900
Point, 56; continuous at a, 660; of inflection, 

729; locating, 96, 348; polar coordinates 
of, 603

Point estimate, 634
Point-slope form of straight line, 567
Polar axis, 603
Polar coordinates, 603; curves, 606
Polar form of complex number, 350; addition, 

357; division, 356; multiplication, 355
Pole, 603
Polygon, 60; method of adding vectors, 266
Polynomial, 33; antiderivative, 753; deriva-

tive of, 682; dividing, 39–40; indefinite 
integral, 755; multiplying, 36; rational 
roots, 427

Polynomial function, 418
Polyphase generator, 531
Population, 616
Power: antiderivative of, 753; of complex 

number, 357; derivative of, 682, 686; 
general power formula, 850; integration 
of, 850; of number, 25; series, 920

Power rule, 756
Precision, 15, 18
Pressure, 777; liquid, 806
Prime factor, 185
Principal root, 30
Prism, 78
Product: of complex numbers, 345, 355;  

derivative of, 687; logarithm of, 378; of 
matrices, 438; special, 182

Progression: arithmetic, 511; geometric, 516
Projection, 310
Proportion, 43, 496; large sample confidence 

intervals, 638
Pyramid, 78
Pythagoras, 62
Pythagorean theorem, 120

Quadrant, 95
Quadrantal angle, 117, 247
Quadratic equation, 220, 407; solving  

graphically, 235
Quadratic equation in form, 407
Quadratic factors, nonrepeated, 885
Quadratic formula, 228
Quadrilateral, 60, 66



D.16 Index

Quantitative variable, 616
Quotient, 40; of complex numbers, 345, 356; 

derivative of, 688; of polynomials, 881

Radian, 71, 117, 249, 297
Radicals, 320, 329; addition of, 333;  

division of, 336; equations with, 410; 
multiplication of, 335; simplest form, 
329, 331; subtraction of, 333

Radical sign, 30
Radicand, 329
Radioactivity, 964
Radius, 69, 573; of gyration, 799; related 

rates, 723
Range, 91, 106, 554, 623, 733
Rate of change, 672
Ratio, 43, 496; equality, 119
Rationalizing: denominator, 331;  

numerator, 331, 665
Rational number, 2
Rational roots, 427
Raw data, 616
Ray, 56
Reactance, 361
Real axis, 348
Real numbers, 2, 91
Reciprocal, 4, 124
Rectangle, 66, 409; area under a curve, 760
Rectangular coordinate system, 95, 604, 899
Rectangular form of complex number, 343
Rectangular solid, 78
Rectifier: half-wave, 938
Reference angle, 244
Regression, 646
Related rates, 722
Relation, 93
Relative error, 745
Relative frequency, 617
Relative maximum and minimum  

points, 727
Remainder, 418
Remainder theorem, 418
Repeated quadratic factors, 887
Repeating decimal, 521
Resistance, 361
Resolving vector, 269
Resonance, 365
Resultant of vectors, 266
Rhombus, 66
Rice, Kellogg, 489
Right triangle, 62, 126
Roemer, Olaf, 591
Root-mean-square value, 866
Roots, 30, 427, 430; complex, 974; of com-

plex numbers, 358; double, 222; of equa-
tion, 419, 423; extraneous, 407; of linear 
equations, 143; of polynomial equation, 
429; of quadratic equation, 222; rational, 
427; repeated, 973; repeated complex, 975

Rose, 608
Rotation of angles, 116

Rotation of axes, 599
Rounding off, 17
Row of determinant, 160
Row operations, 446
Runge, Carl, 961
Runge-Kutta method, 961

Salt solution, 965
Sample, 616
Sampling distributions, 632
Scalar, 265; multiple of vector, 267;  

multiplication, 437
Scale drawing, 63
Scientific notation, 26
Scott, David, 86
Secant, 69; of angle, 120; graph of, 307;  

integration of, 863; line, 69, 669
Second (measure of angle), 116
Second-degree equation, 596
Second derivative, 702
Second-derivative test, 729
Section, 901
Sector, 70, 254
Segment, 56, 71
Semilogarithmic (semilog) paper, 392
Semimajor axis of ellipse, 583
Sense of inequality, 468
Separation of variables, 952
Sequence, 510, 511; arithmetic, 511; finite, 

511; geometric, 516; infinite, 916
Series, 520, 923; binomial, 523; computa-

tions with, 928; Fourier, 915, 934; 
Maclaurin, 921

Shell (element of volume), 789
Shewhart, Walter, 615
Shifing a graph, 106
Signed numbers, 7
Significant digits, 15, 27, 123
Signs: factors differing only in, 200; laws of, 

7; of trigonometric functions, 241
Signs of inequality, 4
Sikorsky, Igor, 284
Similar terms, 33
Simple harmonic motion, 310, 982, 995
Simpson, Thomas, 75, 716
Simpson’s rule, 75, 771
Sine: of angle, 120; derivative of, 823; graph 

of, 297; of half-angle, 545; half-range 
Fourier series, 944; integration of, 863; 
inverse, 553; of sum of two angles, 537; 
Taylor series, 932

Sines, law of, 282
SI prefixes, 14; engineering notation, 28; 

scientific notation, 28
Sixth roots: by DeMoivre’s theorem, 359
Slant height, 78
Slope, 146, 563; curve, finding, 963; of linear 

function, 146; of tangent line, 669, 818
Slope-intercept form of straight line, 

147, 567
Slug, 966

Solution: of differential equation, 950; of 
equation, 144; of inequality, 468, 485; of 
linear equation, 143; of quadratic equa-
tion, 222; of system of linear equations, 
144, 149, 160, 166, 450, 460; of triangle, 
126, 283; of trigonometric equations, 
548; of two sides and angle opposite one 
of them, 285

Special products, 182
Sphere, 78
Spread, measures of, 623
Square, 66
Square matrix, 436
Square root, 30, 181; antiderivative, 753;  

by DeMoivre’s theorem, 359; evaluating 
using Taylor series, 932; solving an 
equation, 408

Squares, difference of, 665
Square wave, 936
Standard deviation, 623
Standard equation: of circle, 573; of ellipse, 

583; of hyperbola, 588; of parabola, 578
Standard error of the mean, 632
Standard errors, 632
Standard normal distribution, 630; table of 

areas, 631
Standard position of angle, 117
Statistical process control, 640
Statistics, 615, 616
Steady-state solution, 986
Straight line, 109, 146, 567
Subscripts, 45, 46
Substitution, 41; elimination by, 150, 404; 

solution of a system of equations by, 
153, 403; trigonometric, 876

Subtraction: of algebraic expressions, 32;  
algebraic method of solving three linear 
equations, 166; of complex numbers, 
345; of cubes, 196; of fractions, 208; of 
matrices, 438; of radicals, 333; of signed 
numbers, 7; solution of system of equa-
tions, 404; of vector, 267

Summation symbol, 622
Sum of n terms, 513, 517
Supplementary angles, 57
Supplementary units, 13
Surface, 899
Symbols of grouping, 8, 34
Symmetry, 574, 733
Synthetic division, 419
System: of linear equations, 144, 149,  

160, 166, 403, 450, 460; of quadratic 
equations, 400

Tables, integration by use of, 888
Tangent, 69; of angle, 120; to curve, 669; 

derivative of, 824; of double angle, 542; 
to earth’s surface, 930; graph of, 307;  
integration of, 863; line, 69, 669, 712

Taylor, Brook, 931
Taylor series, 931
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Temperature, 722
Terminal point of vector, 266
Terminal side of angle, 116
Terms, 32, 190; common factor same as, 

186; of fractions, 199; of sequences, 511, 
916; similar, 32

Tesla, Nikola, 531
3D, compared to 2D, 902
Time rate of change, 827, 842
Trace, 105, 900
Transcendental functions, 814; derivatives 

of, 815; differentiation of, 814
Transient term, 986
Translation of axes, 593
Transversal, 58
Transverse axis of hyperbola, 588
Trapezoidal rule, 74, 768
Triangle, 60; congruent, 64; equilateral, 60; 

isosceles, 60; oblique, 264, 288; Pascal’s, 
525; right, 60, 126; scalene, 60; similar, 
63, 119; solution of, 126, 283

Trigonometric equations, 548
Trigonometric form of complex numbers, 

350
Trigonometric functions, 115, 120; of angles 

measured in degrees, 122; of angles of 
right triangle, 120; of any angle, 240;  
derivatives of, 819; graphs of, 296;  

integration of, 859, 876; inverse, 553;  
of negative angles, 246; signs, 241

Trigonometric identities, 532
Trigonometric value, 928
Trinomial, 33, 190; factoring, 190
2D, compared to 3D, 902

Unbiased rounding, 17
Uncertainty, of measured value, 12
Units: conversion, 14; writing, 13
Units of measurement, 12, 322
Universal law of gravitation, 495, 501
Unknown, 41
Upper control limit (UCL), 642

Variable, 4–5, 616; dependent, 87;  
independent, 87

Variables, functions of two, 896
Variables, separation of, 952
Variation, 495, 500, 739
Vectors, 264
Velocity, 720, 778; angular, 255; approxi-

mation, 929; average value, 807; linear, 
255; parametric form, 718

Vertex: of angle, 56, 116; of ellipse, 583; of 
hyperbola, 588; of parabola, 233, 578

Vertical angles, 57
Vertical asymptotes, 308

Vertical line test, 102
Viète, François, 181
volt, 364
Voltage, 361, 363, 722; across capacitor, 

779; variations caused by, 641
Volumes: element of, 910; of geometric  

figures, 78; by integration, 788; under a 
plane, 911; related rates, 723; under a 
surface, 910, 911

Wallis, John, 320, 520
watt, 101
Watt, James, 615
Weighted mean, 621
Westinghouse, George, 362, 531
Width, 66
Witch of Agnesi, 733
Word problems, 48, 106, 151
Work, 804

x-axis, 95; areas below, 785
x-intercept, 104, 146

y-axis, 95
y-intercept, 147, 568

Zero, 2; as exponent, 23; matrix, 436; opera-
tions with, 9; trailing, 16

Zoom, 105
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m��n����a � mn��a
n��a

���a (b�0)____ n __
n��b b

FACTORING AND SPECIAL PRODUCTS

F.O.I.L. rule: (a�b)(c�d) � ac�ad�bc�bd
a(x�y) � ax�ay
(x�y)(x�y) � x2�y2

(x�y)2 � x2�2xy�y2

(x�y)2 � x2�2xy�y2

(x�a)(x�b) � x2�(a�b)x�ab
(ax�b)(cx�d) � acx2�(ad�bc)x�bd
(x�y)3 � x3�3x2y�3xy2�y3

(x�y)3 � x3�3x2y�3xy2�y3

x3�y3 � (x�y)(x2�xy�y2)
x3�y3 � (x�y)(x2�xy�y2)

QUADRATIC EQUATION

ax2�bx�c � 0 has solution form x �
�b������b2�4ac___________

2a
Four possible solutions based on discriminant 
D � b2�4ac
– If D � 0 and a perfect square, then roots are

real, rational, and unequal.
– If D � 0 and not a perfect square, then roots

are real, irrational, and unequal.
– If D � 0, then roots are real, rational, and equal.
– If D � 0, then roots contain imaginary numbers,

and are unequal.

COMPLEX NUMBERS
– The symbol j represents the imaginary number 

���1 such that j2 � �1
– Note: ���a � j��a where a�0
Operations with complex numbers:

Addition: (a�bj)�(c�dj) � (a�c)�(b�d)j
Subtraction: (a�bj)�(c�dj) � (a�c)�(b�d)j
Multiplication:

(a�bj)	(c�dj) � (ac�bd)�(ad�bc)j
Division:

a�bj
�

(a�bj)(c�dj)
�

(ac�bd)�(bc�ad)j____ ___________ ________________
c�dj (c�dj)(c�dj) c2�d2

Rectangular form: x�yj
Polar form: r(cos
�jsin
) � r�


Product in polar form:
r1(cos
1�jsin
1)	r2(cos
2�jsin
2) �

(r1�
1)(r2�
2) � r1r2�(
1�
2)
Quotient in polar form:

EXPONENTS AND LOGARITHMS

Exponential function: y � bx

Logarithmic function: y � logbx
Properties of logarithms:

logbxy � logbx�logby

logb
x

� logbx�logby
_
y

M AT H N O T E S
A Study Chart for Technical Mathematics

JOHN JENNESS

ALGEBRA

ORDER OF OPERATIONS (BEDMAS)
1. Simplify contents of Brackets [ ], parentheses ( ),

and braces { } working from the innermost out-
ward, and working separately above and below
the fraction lines.

2. Simplify Exponents and Roots working from
left to right.

3. Do Multiplication and Division in the order
that they appear from left to right.

4. Do Addition and Subtraction in the order that
they appear from left to right.

PROPERTIES OF NUMBERS

Commutative Law: a�b � b�a and
ab � ba

Associative Law: a�(b�c) � (a�b)�c and
a(bc) � (ab)c

Note: Commutative Law does not apply to
Subtraction or Division.

Distributive Law: a(b�c) � ab�ac
Signs: a�(�b) � a�b and

a�(�b) � a�b and
a�b � �(b�a)

NUMBER SET DEFINITIONS

Natural (or Counting) Numbers: {1, 2, 3, 4, ...}
Whole Numbers: { 0, 1, 2, 3, 4, ...}
Integers: {... , –3, –2, –1, 0, 1, 2, 3, ...}
Rational Numbers: {x/y such that x, y are integers

but y � 0}
Irrational Numbers: x is a real number but not a
Rational number {e.g. �, e}
Real Numbers include both Rational and
Irrational Numbers.
Imaginary Numbers: of the form x x

where x is a real number and 
such that 2 � �1

Complex Numbers: of the form: x � yj
where x is a real number and y
imaginary number.

EXPONENTS, ROOTS AND RADICALS

am	an � am�n

am
� am�n, a�0 or am

�     
1

, a�0__ ____
an an�m

(am)n � amn

(ab)n � anbn

a n
�

an
(b�0)�__� __

b bn

a0 � 1 (a�0)

a�n �
1

(a�0)__
an

a1/n � n��a
am/n � n��am � (n��a )m

n��an � a
n��a n��b � n��ab

logb (xn) � nlogbx
logb1 � 0
logbb � 1
logb(bn) � n

Changing bases of logarithms:

logbx �
logax_____
logab

1nx �
logx____
loge

logx �
lnx____

1n10

VARIATION, RATIO AND PROPORTIONS 

ratio or proportion: a
�

c_ _
b d

direct variation: y � kx
inverse variation: y � k/x
joint variation: y � kxz

where: x, y, z are variables,
k is constant of proportionality, and k�0

GEOMETRY

PLANE SHAPES

Triangles: 3 sides, all angles add to 180°
Scalene: no two sides are equal in length
Isosceles: two sides are equal in length
Equilateral: all sides are equal in length
Right: one angle is 90°

Area: A � 1/2bh
Hero’s formula: A � ���������s(s�a)(s�b)(s�c)

where s �
1 (a�b�c)_
2

Quadrilaterals: 4 sides
Square: all sides are equal in length, all 
angles 90°

Area: A � s2

Rhombus: all sides are equal in length, angles
not 90°

Area: A � bh

Rectangle: opposite sides are equal in length,
all angles 90°

Area: A � lw
l

w

b

h

s

an
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r1(cos
1�jsin
1) �
r1�
1 �

r1 �(
1�
 )_____________ _____      __
r2(cos
2�jsin
2) r2�
2 r2

2

j

j is an 

i)j (or 
j is a number



Surface area: A � �r2��rs

Volume: V �
1

�r2h_
3

Lateral surface area (excluding base): S � �rs
Regular pyramid:

Lateral surface area (excluding base):
S � (base perimeter)	s

Volume: (base area)	h

Sphere:

Surface area: 4�r2

Volume: �r3

TRIGONOMETRIC FUNCTIONS 

Basic relationships:

sin� � � 

cos� � � 

tan� � � 

sec� � � 

csc� � � 

cot� � � 

csc � � 

sec � � 

cot � � 

tan � � 

cot � � 

sin2�� cos2��1
1�tan2� � sec2�

1�cot2� � csc2�

Sum and difference identities:
sin(���) � sin� cos��cos� sin�

cos(���) � � cos� � sin�

tan(���) �

Double-angle formulae:
sin2� � 2sin� cos�

cos2� � cos2��sin2�

� 2cos2��1
� 1�2sin2�

tan��tan�
1tan� tan�

cos �
sin �

sin �
cos �

1
tan �

1
cos �

1
sin �

side adjacent �
side opposite �

x
y

hypotenuse
side opposite �

r
y

hypotenuse
side adjacent �

r
x

side opposite �
side adjacent �

y
x

side adjacent �
hypotenuse

x
r

side opposite �
hypotenuse

y
r

y

x

y
r

x

�

O

(x, y)

4
3

r

1
3

1
2

h

s

Half-angle formulae:

sin �������

Inverse trigonometric functions:
y � sin�1x �� �y� �

� �sin�1x�

0�cos�1x��

� �tan�1x�

0�cot�1x��

0�sec�1x�� �sec�1x � �

TRIG FUNCTIONS OF ANY ANGLE 
– Unless specified otherwise all angles are 

measured counter-clockwise from the positive
x axis.

– Note: When manipulating angles using a 
calculator, verify the quadrant of the answer.
Positive functions:

First quadrant: all
Second quadrant: sin� and csc�

Third quadrant: tan� and cot�
Fourth quadrant: cos� and sec�

Law of Sines: � �

Law of Cosines: a2 � b2�c2�2bc cos A
b2 � a2�c2�2ac cos B
c2 � a2�b2�2ab cos C

VECTORS ADDITION

Step 1: break original vectors into 
x and y components: A � Ax�Ay

Step 2: add x pieces to x pieces to get Rx, add y
pieces to y pieces to get Ry

Step 3: apply Pythagorean formula to get 
magnitude resultant R,

Step 4: use � � tan�1 to get angle.

GRAPHS OF TRIG FUNCTIONS

amplitude � �a �

period �

displacement � �

PLANE ANALYTIC GEOMETRY 

distance formula: d � ������������(x2�x1)2�(y2�y1)2

slope: m � and m � tan� (0°���180°)
y2�y1
x2�x1

c
b

2�
b

y

x

�a

a

0

2�
b

2�
b

c
�b

c
� b

y � a sin (bx � c), c � 0

(a)
y

x

�a

a

0

2�
b

2�
b

c
�b

c
� b

y � a sin (bx � c), c � 0

(b)

For each

a � 0, b � 0

Since c � 0,

�c/b is positive

Ry
Rx

c
sin C

b
sin B

a
sin A

�
2

�
2

�
2

�
2

�
2

�
2

�
2

1�cos�
2

�
2

→

Parallelogram: opposite sides are equal in
length, angles not 90°

Area: A � bh

Trapezoid: sides of unequal length, angles 
not 90°

Area: A � 1/2h(b1�b2)

Circle: 360° � 2�radians � 1revolution

and 1radian �
180°�57.30°___
�

Perimeter (or circumference): c � 2�r
Area: A � �r2

Arc length: s � �r where r is radius, � is
angle in radians

SOLIDS

Rectangular solid:

Surface area: A � 2lw�2lh�2wh
Volume: V � lwh

Cube:

Surface area: A � 6e2

Volume: V � e3

Right circular cylinder:

Surface area: A � 2�r2�2�rh
Volume: V � �r2h
Lateral surface area (excluding base): S � 2�rh

Right prism:

Lateral surface area (excluding ends):
S � (base perimeter)	h

Volume: V � (base area)	h
Right circular cone:

h
s

r

h

h

r

e

h

l

w

b2

b1

h

b

h

cos sin

cos α2
1+ cosα

2���

−
2 csc−1x 2 csc−1x 0� � ���



parallel lines: m1 � m2
perpendicular lines: m2 � � or m1m2 � �1
straight line: point slope
form: y�y1� m(x�x1) or

slope-intercept form: y � mx�b or
general form: Ax�By�C � 0

circles: centred on origin: x2�y2 � r2

centred on: (h, k): (x�h)2�(y�k)2 � r2

parabolas: centred on origin parallel to x axis:
y2 � 4px

centred on origin parallel to y axis:
x2 � 4py

ellipses: centred on origin major axes parallel to

x axis: � � 1, a � b

centred on origin major axes parallel to 

y axis: � � 1, a � b

hyperbolae: centred on origin foci on x axis:

� � 1, a � b

centred on origin foci on y axis:

� � 1, a � b

translation of axes: x � x'�h and y � y'�k

FUNCTIONS

BASIC DEFINITIONS 

A function is defined as a relationship between
two variables such that for every value of the first
(independent) variable, there is only one corre-
sponding value of the second (dependent) variable.

The complete set of possible values of the 
independent variable is called the domain of the
function. The corresponding complete set of 
dependent variable values is called the range of
the function.
Linear equation in one unknown: ax�b � 0
Linear equation in two unknowns: ax�by � c

LINEAR EQUATIONS AND
DETERMINANTS

Given two linear equations of the form:
a1x�b1y � c1
a2x�b2y � c2

The determinant of the second order is defined as:
�a1 b1�

� a1b2�a2b1�a2 b2�
Cramer’s Rule gives solution forms:

�c1 b1� �a1 c1�

x �
�c2 b2�

and y �
�a2 c2�

�a1 b1� �a1 b1�
�a2 b2� �a2 b2�

EQUATIONS OF HIGHER DEGREE 

Polynomial function: f(x) � a0xn�a1xn�1�…�an
Remainder theorem: f(x) � (x�r)q(x)�R

where f(r) � R

Rational roots: rr �

MATRICES 

A matrix is any rectangular array of numbers. If
the number of rows and columns is equal, then it
is a square matrix. A determinant is a specific
value associated with a square matrix.

factor of an
factor of a0

x2

b2
y2

a2

y2

b2
x2

a2

x2

b2
y2

a2

y2

b2
x2

a2

1
m1

Basic laws for matrices:
Commutative law: A�B � B�A
Associative law: A�(B�C) � (A�B)�C
k(A�B) � kA�kB
A�0 � A
AA�1 � A�1A � I

A system of linear equations: a1x�b1y � c1
a2x�b2y � c2

can be represented in matrix form as: AX � C

where A �	a1 b1
 , X � 	x
 and C � 	c1
a2 b2 y
 c2


and using the inverse: X � A�1C

SEQUENCE AND SERIES

SEQUENCES AND SERIES

Factorial notation: n! � n(n�1)(n�2)…(2)(1)
Arithmetic sequences: an � an�1�d

nth term: an � a1�(n�1)d

Sum of n terms: Sn � (a1�an)

Geometric sequences: an � ran�1
nth term: an � a1rn�1

Sum of n terms: Sn � where (r�1)

Sum of geometric series: S � �

where (�r��1)
Binomial formula:

(a�b)n � an�nan�1b� an�2b2�…�bn

Binomial series:
(1�x)n � 1�nx� x2�

x3�… where  (�x��1)

EXPANSION OF FUNCTIONS IN SERIES 

Infinite series: an � a1�a2�a3�…�an�…

Power series: f(x) � a0�a1x�a2x2�…�anxn�…
MacLaurin series: f(x) � f(0)�f '(0)x�

� �…� �…

Taylor series: f(x) � f(a)�f '(a)(x�a)�

�…

Special series:

ex � 1�x� � �…

sin x � x� � � �…

cos x � 1� � � �…

1n(1�x)� x� � � �…  where (�x��1)

Fourier series:
f(x)�a0�a1cosx�a2cos2x�…�ancosnx�…�

b1sinx�b2sin2x�…�bnsinnx�…

Fourier coefficients for period 2�:

a0 � ��

-�
f(x)dx

an � ��

-�
f(x)cos nx dx

bn � ��

-�
f(x)sin nx dx

Fourier coefficients for period 2L:

a0 � �L

-L
f(x)dx

1
2L

1
�

1
�

1
2�

x4

4
x3

3
x2

2

x6

6!
x4

4!
x2

2!

x7

7!
x5

5!
x3

3!

x3

3!
x2

2!

f"(a)(x�a)2

2!

f (n)(0)xn

n!
f"'(0)x3

3!
f"(0)x2

2!

�
�

n�1

n(n�1)(n�2)
3!

n(n�1)
2!

n(n�1)
2!

a1
1�r

lim Snn → �

a1(1�rn)
1�r

n
2

an � �L

-L
f(x)cos dx

bn � �L

-L
f(x)sin dx

STATISTICS

BASICS

Arithmetic mean x � �

Standard deviation:

����� ��������(x�x)2 n(�x2)�(�x)2
s �

n�1 �
n(n�1)

Normal distribution: y �

Standard normal distribution: y � e�x2
�2

Standard (z) score: z �

Standard error of x : �x �

Standard error of s: �s �

Least-squares line: y � mx�b

m �

b �

DERIVATIVES

BASICS RULES 

The limiting value of the ratio �x��y is known as
the derivative of the function. The derivative can
be interpreted as the instantaneous rate of change
of the dependent variable with respect to the inde-
pendent variable.

Derivative of a constant: � 0

Derivative of a polynomial: � nxn�1

Derivative of a constant times a function:

� c� �
Derivative of a sum: � �

Product rule: �u �v

Quotient rule: � � � �
v �u

v2

Chain rule: �

General power rule: � nun�1� � and

� u(p�q)�1� �
APPLICATIONS 

Newton’s Method: x2 � x1�

Curvilinear motion:
Velocity components: vx � and vy �

Acceleration components: ax � � and

ay � �

Magnitude: v ����� and a �����v2
x�v2

y a2
x�a2

y

Direction: tan�v � and tan�a �
ay
ax

vy
vx

d2y
dt2

dvy
dt

d2x
dt2

dvx
dt

dy
dt

dx
dt

f(x1)
f '(x1)

du
dx

p
q

du p�q

dx

du
dx

dun

dx

du
dx

dy
du

dy
dx

dv
dx

du
dxd(u�v)

dx
u
v

d
dx

du
dx

dv
dx

d(uv)
dx

dv
dx

du
dx

d(u�v)
dx

du
dx

d(cu)
dx

dxn

dx

dc
dx

(�x2)(�y)�(�xy)(�x)
n�x2�(�x)2

n�xy�(�x)(�y)
n�x2�(�x)2

�
��2n

�
��n

x��
�

1
��2�

e�(x��)2
�2�

2

���2�

�xf
�f

x1f1�x2f2�…�xnfn
f1�f2�…�fn

n�x
L

1
L

n�x
L

1
L

Sum of series: S= lim
n→∞

Sn = lim
n→∞ ∑ i=1

n ai



Differential form of a function y � f(x) is defined 
as dy � f '(x)dx

Linearization: L(x) � f (a)�f '(a)(x�a)

DERIVATIVE OF TRANSCENDENTAL
FUNCTIONS

�
d(s

d
in
x

u)
� � cos u �

d
d
u
x
�

�
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d
o
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d
d
u
x
�

�
d(t

d
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x
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d
d
u
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�

�
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d
o
x
t u)
� � �csc2 u �

d
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d
d
u
x
�

�
d(c

d
s
x
c u)
� � �csc u cot u �

d
d
u
x
�

�
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d

�

x
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d
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�

�
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d
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x
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d

�

x
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1 �
1

u2� �
d
d
u
x
�

�
d(lo

d
g
x
b u)
� � �

1
u

� logb e �
d
d
u
x
�

�
d(1

d
n
x

u)
� � �

1
u

� �
d
d
u
x
�

�
d(

d
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x
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�
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d
(e
x
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INTEGRATION

BASIC RULES 

Indefinite integral: �f (x)dx � F(x) � C

Integral of a constant: �c du � c�du � cu � C

Integral of sum: �(du � dv) � u � v � C

Power formula: �undu � �
n

n

�

�1

1
� � C

where (n � �1)
Area under a curve: Aab � 	�f(x)dx


b

a
� F(b) � F(a)

Definite integral: �b

a
f(x)dx � F(b) � F(a)

Trapezoid rule: �b

a
f(x)dx � �

�
2
x
� �y0 � 2y1 �

2y2 � … � 2yn�1 � yn�
Simpson’s rule: �b

a
f(x)dx � �

�
3
x
� �y0 � 4y1 � 2y2 � 

4y3 � 2y4 �… � 4yn�1 � yn�
where n is even

APPLICATIONS OF INTEGRATION 

velocity: v � �a dt � at � C1 and
displacement: s = �v dt

electric current: i � �
d
d
q
t
� and

electric charge: q � �i dt

voltage across a capacitor: Vc � �
C
1
��i dt

Areas:
Between a curve and the x axis:

A � �b

a
y dx � �b

a
f(x)dx

Between a curve and the y axis:

A � �d

c
x dy � �d

c
g(y)dy

Between two curves on x axis:

A � �b

a �y2 � y1�dx

1
�
�1 � u2

1
�
�1 � u2

Between two curves on y axis:

A � �d

c �x2 � x1�dy

Volumes of rotation:

About x axis: V � � �b

a
y2 dx � � �b

a 	f�x�
2
dx

About y axis: V � � �d

c
x2 dy � � �d

c 	g�y�
2
dy

Centre of mass: m1d1 � m2d2 � … � mndn �

�m1 � m2 � … �mn�d

Centroid of area: x � and

y �

Radius of gyration: m1d2
1� m2d2

2 � … � mnd2
n �

(m1 � m2 � … �mn)R2

Moment of Inertia of area: Iy � k �b

a
x2 �y2 � y1� dx

and Ix � k �d

c
y2 �x2 � x1� dy

Work: W � �b

a
f(x)dx

Force due to liquid pressure: F � w�b

a
lh dh

Average value: yavg �

Root-mean-square: yrms � ��
T
1

��T

0
y2�dx�

INTEGRATION OF TRANSCENDENTAL
FUNCTIONS

��
du
u� � ln�u�� C

�eudu � eu � C

�sin u du � �cos u � C

�cos u du � sin u � C

�sec2 u du � tan u � C

�csc2 u du � �cot u � C

�sec u tan u du � sec u � C

�csc u cot u du � �csc u � C

�tan u du � �ln�cos u� � C

�cot u du � ln�sin u� � C

�sec u du � ln�sec u � tan u� � C

�csc u du � ln�csc u � cot u� � C

� � sin�1 �
a
u

� C

����
a2 �

du
u2� � �

a
1

tan�1 �
a
u

� C

INTEGRATION METHODS 

Integration by parts: �u dv � uv � �v du
Trig substitutions:

For ��a2 � x2 use x � a sin


For ��a2 � x2 use x � a tan


For ��x2 � a2 use x � a sec


Square relation substitutions:
cos2 x � sin2 x � 1
1 � tan2 x � sec2 x
1 � cot2 x � csc2 x

du
�
��a2 � u2

�b

a
ydx

�
b � a

�d

c
y(x2 � x1)dx

���d

c
(x2 � x1)dx

�b

a
x(y2 � y1)dx

���b

a
(y2 � y1) dx

Cosine double angle substitutions:
2 cos2 x � 1 � cos2x
2 sin2 x � 1 � cos2x

DIFFERENTIAL EQUATIONS

BASICS

General form for nth order differential equation:

a0 �a1 �…�an�1 �an
y � b

alternately expressed using the differential 
operator notation D:
a0Dny � a1Dn�1y �…� an�1Dy � any � b

Solving first-order differential equations:
From given form: M(x, y)dx � N(x, y)dy � 0
Algebraically manipulate into general form:

A(x)dx � B(y)dy � 0
Using one of three methods:
1. Separation of variables
2. Integrable substitution combinations:

d(xy) � xdy � ydx
d(x2 � y2) � 2(x dx � y dy)

d� � � 

d� � � 

3. PQ Method for inseparable forms:
dy � Py dx � Q dx where P,Q are
functions of x with solution of the form:
ye�Pdx � �Qe�Pdx dx � C

Solving second-order differential equations:
General form: a0D2y � a1Dy � a2y � b

Homogeneous linear form where (b � 0)
non-homogeneous form where (b � 0)

Three possible homogeneous solution forms (see
quadratic discriminant) using auxiliary equation:

a0m2 � a1m � a2 � 0
1. If discriminant � 0, then 2 real roots,

solution form: y � c1em1x � c2em2 x

2. If discriminant � 0, then 2 identical real roots,
solution form: y � emx (c1 � c2x)

3. If discriminant � 0, then 2 complex roots,
solution form: y � e (c1sin�x� c2 x)

Non-homogeneous forms: y � yc � yp
where: yc is homogeneous solution,

yp is particular solution based on initial
conditions.

APPLICATIONS 

Electric RLC circuits: L � R � � E

Motion in a resisting medium: m � F � kv

LAPLACE TRANSFORMS 

F(s) � L(f) � ��

0
e�stf(t)dt

�	af(t) � bg(t)
 � a�(f) � b�(g)
�(f ') � s�(f) � f(0)
�(f") � s2�(f) � sf(0) � f '(0)
��1(F) � f(t)
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