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No black and white: Shown are the fascinating shades of individuality. In this artistic representa-
tion, all the variants of a healthy human being (NIH assembly identifier: NA12878) are displayed. 
They are organized on several circles, representing the different chromosomes, according to 
their position on the chromosome. The size and color of the variants were chosen according to 
the severity of the impact on the function of the genome. For example, you can see the many 
gray variants that do not fall on any gene and are therefore difficult to classify. This contrasts with 
the black and dark variants, which cause a severe defect in the affected genes. This shows how a 
considerable number of gene defects can be found even in healthy people as they are compen-
sated by the healthy gene copy from the other parent.
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�Access

We are searching the key to understand life – this is how bioinformatics is oriented nowa-
days! It has evolved from data processing, just the assistant and auxiliary science for large 
amounts of data, to now establish quantitative theoretical biology. For the first time, theo-
ries about something as complex as living beings no longer remain pure theory, but are 
directly verifiable and measurable, and have already led to remarkable results and prog-
ress – from drugs against cancer and HIV to new insights, for example into the exciting 
question of why our cells and we age.

Nevertheless, my main motivation for studying medicine and later becoming a bioin-
formatician was not so much the prospect of ploughing through large amounts of data, but 
the fascination that biology has always had for people, the eternal questions about the key 
to the language of life, about the “water of life” that heals everything. I wanted to recog-
nize and understand what holds us together in our innermost self, that is, how our con-
sciousness and our brain function. Tracing these great questions is precisely the purpose 
of this book. Because today’s bioinformatics is doing this to an increasing extent, and 
because one can also start from very small, simple examples, we will begin with these. We 
provide case-based examples for each chapter and a tutorial in the appendix for you to play 
with and discover for yourself. The new English edition 2021 brings everything up to date 
and adds further important aspects.

The unbelievable has happened silently: Whereas before the computer was just a stupid 
data storage device, new insights into life and the world and ourselves are now emerging 
in simulations. This is only possible because life itself is not dead and is permeated by 
numerous recognition processes. These are, for example, key-lock relationships between 
molecules, but also memory and molecular languages at all levels of life. We want to 
explore this in more detail here, first looking at the “how” of bioinformatics, in order to 
then better understand in Part II why bioinformatics is so successful right now – similar to 

Part I
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theoretical physics in the first half of the last century. This will also prepare us to explore 
the fascination of information processing in living beings and its reflection in the computer 
model (Part III), whether we want to better fight infections, understand cancer, or even 
understand ourselves.

�Short Instructions for Usage of the Book

A classical textbook should (i) teach you the practice of bioinformatics and (ii) provide 
accurate definitions. For these two points, we have (i) prepared not only exercises in each 
chapter, but also tutorials for the most important software examples along with tips for use, 
and (ii) included a number of definitions in the glossary so that important terms are defined 
and explained.

Nevertheless, the book here is deliberately not a classical textbook. We want to convey 
joy and interest in bioinformatics. You can and are welcome to read the examples and 
chapters at your leisure and then, if you are interested in certain analyses in more detail, to 
practice them, work through the questions, look at the tutorials and do everything in more 
detail. Systematically, all current areas of bioinformatics are presented in a broad over-
view, and each end of chapter briefly summarizes the presented area again in a conclusion. 
We can only provide a stimulating introduction here. Without practicing and working 
through several examples for each of the software, it is not possible to gain sufficient expe-
rience for your own analyses. A sound knowledge of biology is also important, since you 
should be able to critically examine the program outputs with your knowledge. A number 
of suggested books on molecular biology but also on the national research data and medi-
cal informatics initiative are listed in the chapters. For students who enjoy programming, 
appropriate references for further reading are given in the introduction to the tutorials. 
Since bioinformatics lives on databases and software, we have summarized databases and 
programs and their basic use in the chapters and in the appendix.

How Does Bioinformatics Work?
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1Sequence Analysis: Deciphering 
the Language of Life

Abstract

Sequence analysis is a central tool of bioinformatics with relevant databases (NCBI, 
GenBank, Swiss-Prot) and software to detect sequence similarity (BLAST) and domain 
databases (Pfam, SMART). Crucial is the ability to know and use such software on the 
web, the tutorials and exercises encourage this. Programming sequence comparison 
software and databases only makes sense if it enables a better analysis of the biological 
question, in particular for large-scale analysis – in all other cases, it is better to use the 
numerous software that already exist, the internet is only a mouse click away.

Bioinformatics requires data on living organisms, processes them and then designs a cor-
responding model of the living process that is thereby mapped. A good simple example is 
when a polymerase chain reaction (PCR) is used to detect a virus in the blood. Polymerases 
copy DNA (deoxyribonucleic acid) and were originally derived from bacteria. Hereby 
they also duplicate their genetic information. PCR is a modern method of molecular biol-
ogy. Using such a chain reaction, so much of a molecule (if, for example, there is only one 
virus molecule in the blood) is produced by constant doubling of the molecules with the 
help of polymerase that it can be easily detected in the laboratory and, above all, the 
sequence can be read.

Nowadays, this can be deciphered quite easily by a sequencing machine. However, this 
initially leaves us with a salad of letters that lists the nucleotides, i.e. the genetic material, 
of the virus in sequence, such as tgtcaacata ... (Fig. 1.1).
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Fig. 1.1  Sequence analysis allows identification of HIV virus sequences. HIV sequence identifica-
tion using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Shown is the sequence comparison of 
an initially unknown sequence against a database using the program BLAST. The result line indi-
cates that the unknown sequence is an HIV-1 N434 retrovirus strain from Venezuela (result line: 
Venezuela gag coat protein and pol polymerase protein; the result link then leads to the detailed 
sequence comparison)

Collect, Compare and Understand Data  In order to now know which virus we have in 
front of us (in practice, usually even much more precisely, namely which virus strain), we 
have to let the computer identify this sequence. 

Collect Data  This is particularly easy if you have created a database of virus sequences. 
You already know their sequence because you have sequenced them before. As an exam-
ple, let us consider HIV, the human immunodeficiency virus. With the help of the database, 
it is easy to find out whether the sequence found by PCR for a virus in the blood matches 
one of the entries in the database. Databases are fundamental in bioinformatics. They store 
all the information and can then be used for further investigations.
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Analyze and Compare Data
So this is how you do a sequence comparison (also called sequence analysis). You look to 
see which sequence in the database is most similar to the new sequence. This can be done 
over the entire length of the sequence, i.e. globally. However, because a virus can be rela-
tively strange and one would then usually like to know whether it is not at least similar in 
sections, one typically performs a section-by-section local comparison, which thereby 
yields the most similar sequence section (Fig. 1.1). But in order for the computer to do 
anything at all, you have to tell it what to do down to the last detail, until it finally presents 
a result of the computation. All the instructions for this, e.g. to perform such a comparison 
up to the final result, are together a program. In the past, programs were written using 
instructions that the machine understood particularly well. But these could only be very 
short, because they were written in machine language, which essentially contained simple 
register instructions (clear 1 bit, write, move or check). Today, however, a richer language 
is used that contains far more complicated instructions, which is therefore called a higher 
programming language (e.g. Perl, Java, Python, C++ or R, currently the most popular 
programming languages in bioinformatics).

Let us return to our sequence example: What do we see as a result in Fig. 1.2? This is a 
so-called Basic Local Alignment, the corresponding tool in bioinformatics is called 
BLAST, for Basic Local Alignment Search Tool (Altschul et al. 1990), where the result 
indicates a veritable diagnosis for the patient.

The sequence comparison shows that it is an HIV strain from Venezuela. It becomes 
clear that one can actually make a diagnosis (HIV infection, probably acquired in South 

Fig. 1.2  Drug design, example of HIV infection. The HI virus is blocked in its activities (dark 
molecule around the drug) by a drug (centre, white). Computer representation of the three-
dimensional structure of the HIV-1 protease (molecular structure consisting of leaflets [red], loop 
regions [blue] and helices [yellow]) and its inhibitor ritonavir (shown as a sphere and edge model). 
The aim of such bioinformatic drug designs is to design a suitable therapy on the computer, in this 
case, for example, the inhibition of the protease for the treatment of an HIV-1 infection, so that the 
virus can no longer produce new viral envelopes - its protease no longer functions

1  Sequence Analysis: Deciphering the Language of Life



6

America) with this computer program, which only writes letters as optimally as possible 
among each other (hence sequence comparison or alignment). The decisive prerequisite 
for this is that one knows and understands the results correctly in their biological mean-
ing - and this is precisely the work of the bioinformatician.

Understanding Data
Finally, there is a third area of work in bioinformatics: “understanding data”. In addition 
to collecting data (databases) and comparing data (e.g. using BLAST), one ultimately 
wants to understand the data and use it appropriately, for example to develop new thera-
peutic approaches. This can happen, among other things, by integrating the data in a suit-
able bioinformatics model and then modelling it. This modelling can be a simulation, for 
example if I am looking for new drugs against HIV and want to destroy the sequence of 
the virus. Since the virus consists of nucleic acids, as we have already seen above, I can, 
for example, insert the wrong nucleotides into the virus and thus also destroy its poly-
merase (the copying enzyme with which the virus reproduces). A complex but highly suc-
cessful modelling technique consists of reproducing the three-dimensional structure of 
this polymerase in the computer and then selecting from a database of molecules which 
best fits into the polymerase in such a way that it is blocked, i.e. the virus can no longer 
reproduce (Fig. 1.2 shows an example of this drug design). Such methods have been very 
successful with HIV in particular. There are now more than 20 drugs that target the virus 
with the wrong nucleotides, by inhibiting its nucleic acid or its enzymes. The result is 
remarkable, the combination therapy (highly active antiretroviral therapy; HAART, 
Antiretroviral Therapy Cohort Collaboration 2008) works so well that one has an almost 
normal life expectancy, while one can only withstand the viral infection for a few years 
without therapy (Hoog et al. 2008). This illustrates that bioinformatics can strongly sup-
port medicine for instance regarding therapy.

What would you actually have to pay special attention to if, for example, you now per-
form such sequence comparisons yourself? It is important to know that the BLAST search 
is not completely accurate (heuristic), but it delivers faster results than a 1:1 comparison 
over the entire sequence length against the database. Therefore, such hits are only credible 
if the probability of getting such a hit by chance is low enough. As a first rule of thumb you 
can remember: The E-Value (i.e. the expected value of a random hit) should be less than 
1 in one million. This is then already a very convincing value. In borderline cases (random 
expectation value at 1 in 1000), you can also take the hit sequence and see if you can find 
the initial sequence again (called “reverse search” in technical jargon). If we keep in mind 
that this is a local search, then we also understand why we should search the whole hit 
length (given in the example, sequence similarity over the whole sequence length). But 
there are also BLAST results where only one subsequence in the protein has high similar-
ity and the rest instead shows no similarity. In this case, the BLAST search turned up only 
one protein domain, the one with the highest similarity in the whole database. To deter-
mine the remaining parts of the sequence in terms of function as well, you then need to use 
only those domains that do not yet have database hits again, without the first sequence part 
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for the search. In this way, you can match domain by domain in the protein with a new 
BLAST search each time for the sequence portion that has not yet been matched by the 
search. Finally, in difficult cases, the BLAST search may only reveal a similarity to a data-
base entry that has no clear function. In this case (protein sequence), you can use the 
“position-specific iterative BLAST”, or Psi-BLAST for short, which then searches with all 
the still unrecognized sequences at the same time (a so-called “profile”) until it lands a hit 
to which a sequence can be assigned. This almost always works, but may take several 
repetitions. You should also only continue searching with Psi-BLAST if something 
changes in the repeat search, otherwise the search is “converged” in vain.

However, the drug search shown in Fig. 1.2 is a somewhat involved process, requiring 
many intermediate results to be obtained and calculations and comparisons to be made. 
What can be done, on the other hand, is to perform direct databases that provide additional 
secondary information besides the primary sequence information. These are also called 
secondary databases. An example would be to search for the HIV protease in the protein 
database PDB (https://www.rcsb.org/pdb/home/home.do). In addition to the protein 
sequence, this database also holds the coordinates of the protein’s three-dimensional struc-
ture, as well as other details about its structure and function. There is a great deal of further 
information available on the HIV structure in particular, including information on the 
drug design.

1.1	� How Do I Start My Bioinformatics Analysis? Useful Links 
and Tools

Generally speaking, we first look at the function of the molecule we want to bioinformati-
cally determine by comparing it directly to a database. The best known example is the 
direct sequence comparison with BLAST, which we have already discussed in detail. The 
next step is to use other databases or programs for analyses and comparisons to obtain 
additional information. A simple example is to search for secondary data, and our first 
example of this was the protein database. As a primary database, it contains the three-
dimensional coordinates of protein structures, but it also contains a lot of secondary data 
about these proteins where this structure determination was successful. As a third step, we 
can finally follow up with detailed analyses.

In the following, useful supporting sites for these steps are briefly presented. The 
BioNumbers database describes number relationships in biology (https://bionumbers.hms.
harvard.edu). This was established at Harvard University by students who first calculated 
these biological problems and then made these numbers available to the interested reader.

Unfortunately, most bioinformatics websites are in English, including this book. This is 
due to the fact that the Anglo-Americans were simply faster with many initial develop-
ments than German bioinformatics. In addition, English is now the language of science, 
and the creator of a bioinformatics website would like everyone to be able to use this site.
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Already Prepared Results: “BioNumbers”

cc https://bionumbers.hms.harvard.edu/

So here you can find out how different sizes and numbers are related in biology. Just 
look it up and learn about the exciting world of sizes and numbers in different organisms 
and diseases, but also in humans.

For a better understanding, we would like to show a simple screenshot of a list of useful 
biological quantities and numbers from the BioNumbers database (Fig. 1.3). It is best to 
simply look at it yourself and be amazed at the interesting correlations and differences.

MEDLINE as a Large Online Library
One of the main problems in all bioinformatics work is to get a quick overview of the 
knowledge that exists about the object of study. This is the only way to assess the accuracy 

Fig. 1.3  Listing of useful biological quantities and numbers from the literature in the BioNumbers 
database (for details see text)
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and also the value of your results. For this purpose MEDLINE, the online version of the 
library at the National Institute of Health, is an indispensable tool. A large, worldwide 
open library about medicine and biology:

cc MEDLINE (or also PubMed)

cc https://www.ncbi.nlm.nih.gov/pubmed

It is the online version of the library. Only here, in Betheds (near Washington), the 
Health Research Center of the United States of America, has it been possible to keep a 
sufficiently large staff of service scientists permanently on hand to ensure easy use of the 
web pages and to keep the data constantly up to date. This is a truly extraordinary achieve-
ment, which is precisely why it looks and feels child’s play to use.

Here you can search for keywords (“HIV”, “sequence analysis”, “aging”), for authors 
(“Dandekar-T”, “Kunz-M”), journals (“Nature”, “Science”). For each article found, a 
table of contents will then appear, but also links to related articles (including search 
options). A steadily increasing number of articles also offer a directly readable full-text 
link (“Open Access  ”, even for current articles already more than 30%, for articles one to 
2 years old it is now even the majority). It is possible for the experienced to search for an 
article much more precisely and with many more criteria (“advanced search”). It is helpful 
to have a look at the PubMed tutorials or our tutorial in the appendix. In addition, PubMed 
also provides important textbooks online and a variety of other resources.

How Do I Get the Sequence to My Molecule?
Many bioinformatics studies start with the sequence of a molecule and analyze it. 
Interestingly, this important starting information, i.e. what sequence the molecule I am 
interested in has, is already known for many millions of entries. This is especially true for 
important organisms such as humans, the bacterium Escherichia coli (E. coli), plants such 
as Arabidopsis, mice, the worm Caenorhabditis elegans (C. elegans), and the fruit fly 
Drosophila melanogaster. To check if my sequence for this protein or term is already 
known, look it up at NCBI in particular. If it is known, the sequence for DNA, RNA 
(option “nucleotide” or “gene”) or proteins (option “protein”) can easily be found here, 
e.g. for “HIV” there are hundreds of thousands of entries:

cc https://www.ncbi.nlm.nih.gov/protein/?term=hiv

One of the first offers from the long list of hits is an artificial sequence for the “TAR 
protein”:

cc https://www.ncbi.nlm.nih.gov/protein/AAX29205.1

The now mostly quite long header entry explains already existing information about the 
respective protein:
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LOCUS         AAX29205    367 aa linear    SYN 29-MAR-2005
DEFINITION    TAR, partial [synthetic construct].
ACCESSION     AAX29205
VERSION       AAX29205    .1 GI:60653021
DBSOURC       Eaccession     AY892288.1
KEYWORDS      Human     ORF project
SOURCE        synthetic     construct
ORGANISM      synthetic     construct

... and so on. In particular, you can find information about the authors of the sequence, 
journal articles about it and the exact properties of the sequence, that is, from where to 
where, for example, the protein, the region and specific binding sites go:

Protein      1..>367
             /product="TAR"
Region       30  ..95
             /region_name="DSRM"
             �/note="Double-stranded RNA binding motif. Binding is not 

sequence specific but is highly specific for double stranded 
RNA. Found in a variety of proteins including dsRNA depen-
dent protein kinase PKR, RNA helicases, Drosophila staufen 
protein, E. coli RNase III; cd00048"

             /db_xref="CDD:238007"
Site         order(30,36..37,78..81,84)
             /site_type="other"
             /note="dsRNA binding site [nucleotide binding]"
             /db_xref="CDD:238007"
Region       159    ..222
             /region_name="DSRM"
             /note="Double-stranded RNA binding motif. Binding is not
             sequence specific but is highly specific for double
             stranded RNA. Found in a variety of proteins including
             dsRNA dependent protein kinase PKR, RNA helicases,
             Drosophila staufen protein, E. coli RNase III; cd00048"
             /db_xref="CDD:238007"
             Siteorder(159,165..166,208..211,214)
             /site_type="other"
             /note="dsRNA binding site [nucleotide binding]"

Finally, this is followed by the original sequence as determined by the authors and used 
in their research. In the example:

ORIGIN
           �1  �mseeeqgsgt ttgcglpsie qmlaanpgkt pisllqeygt rigktpvydl 

lkaegqahqp
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           �6  �1nftfrvtvgd tsctgqgpsk kaakhkaaev alkhlkggsm lepaledsss 
fspldsslpe

          �12  �1dipvftaaaa atpvpsvvlt rsppmelqpp vspqsecnp vgalqelvvq 
kgwrlpeytv

         181  �tqesgpahrk eftmtcrver fieigsgtsk klakrnaaak mllrvhtvpl 
dardgnevep

         �241  �dddhfsigvg srldglrnrg pgctwdslrn svgekilslr scslgslgal 
gpaccrvlse

        �301l  �seeqafhvs yldieelsls glcqclvels tqpatvchgs attreaarge 
aarralqylk

         361  �imagskl

The NCBI site brings a lot more information for bioinformatics:

https://www.ncbi.nlm.nih.gov/guide/ ...

All resources A detailed overview of molecular and literature analysis and data banks
Chemicals and 
bioassays

Bioinformatic analyses should eventually lead to new experiments to confirm 
the results; the necessary ingredients and measurement methods are collected 
here: Chemicals and biological measurement methods (bioassays)

Data and 
software

Here we find numerous databases and programs

DNA and RNA Software and tools for the analysis of DNA and RNA
Domains and 
structures

Analysis of protein domains (small folding units) and large structures

Genes and 
expression

Analysis of the transcription of genes under different conditions

Genetics and 
medicine

Numerous genetic information

Genomes and 
maps

Useful maps to find your way around genomes

Homology Similarity comparisons to proteins, but at the structural level. In particular, it 
is thus possible to calculate one’s own protein structure by pointing out a 
similar three-dimensional structure

Literature In addition to MEDLINE (see above), there are many articles that can be 
found on the site and read online, as well as important textbooks

Proteins General analyses of protein sequence, structure and function. In particular, 
the protein domains, i.e. the functional building units in the protein, are also 
examined in more detail

Sequence 
analysis

Other programs besides BLAST that examine the sequence of a protein or a 
nucleic acid

Taxonomy Classification of a sequence in a catalogue of all species. Many of the results 
are presented as phylogenetic trees

Training and 
tutorials

Highly recommended for a first start, see: https://www.ncbi.nlm.nih.gov/
guide/training-tutorials/
Especially the BLAST search and the taxonomy are explained in a very nice 
beginner tutorial

Variation How do I do justice to biodiversity and variety?
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In addition to the NCBI site, which is certainly the best known bioinformatics site, 
there are also good introductory sites at the European Bioinformatics Institute (EBI). 
These are especially helpful for those people who also like programming modules and are 
looking for information at an advanced level:

cc https://www.ebi.ac.uk

For example:

cc https://www.ebi.ac.uk/services

“We maintain the world’s most comprehensive range of freely available and up-to-date 
molecular databases.” This refers to the wealth of data that the EBI site offers. The differ-
ence to the NCBI website is that it is easier to download the entire data of the database and 
not only to perform individual queries via the web interface.

It is also important that the EMBL database is located here, which provides comparably 
detailed sequence information as GenBank at the NIH. However, there are small differ-
ences in the preferences and the offer, but also in the preparation of the entries. In addition, 
there is somewhat more and somewhat faster information on new sequences identified in 
Europe (NCBI is more detailed and faster for American sequences).

Other important sites can be found at the Swiss Bioinformatics Institute (see next chap-
ter) and at the Japanese gene bank DDBJ (DNA Data Bank of Japan).

cc https://www.ddbj.nig.ac.jp

Again, there is a daily comparison with the EMBL and NCBI databases in order to keep 
“all known” sequences available. This time, however, this is done from the Japanese point 
of view; it is precisely the sequences from Japan that are particularly complete and quickly 
recorded here.

Finally, reference should also be made to the new German National Research Data 
Infrastructure, in which targeted digitisation and infrastructure is being promoted in 
numerous areas.

cc https://www.nfdi.de, https://www.nfdi.de/konsortien-2

For biology, for example, DataPlant (plant databases), the German Human Genome-
Phenome Archive, NFDI4BioDiversity and NFDI4microbiota. This is also where very 
useful data for bioinformatics analysis is concentrated and made available as an infrastruc-
ture for all.
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cc https://nfdi4microbiota.de (Dandekar is an affiliate).

In addition, within the framework of the Medical Informatics Initiative of the Federal 
Ministry of Education and Research, there are several Germany-wide consortia to which 
university hospitals and other partners (research institutes, universities, companies) have 
joined forces.

cc https://www.medizininformatik-initiative.de/de

For example, ten universities and university hospitals, two universities and one industrial 
partner are working together in the MIRACUM consortium (Medical Informatics in Research 
and Care in University Medicine) to establish an IT infrastructure for data from research and 
patient care (data integration centres) and to make it usable for research projects in the long 
term, for example for the development of predictive models and precision medicine.

cc https://www.miracum.org/ (consortium leader Medical Informatics FAU Erlangen-
Nürnberg, Kunz is a partner).

1.2	� Protein Analysis Is Easy with the Right Tool

An important special case is the analysis of proteins. Many experiments in molecular biol-
ogy focus on this particularly important type of molecule. Typically, general properties are 
first determined by experiments, such as certain binding sites, the weight of the protein, 
appearance, cofactors or catalytic properties. This is followed by detailed biochemical 
analyses. The Swiss Bioinformatics Institute has compiled a detailed software package for 
these numerous ways of analysing proteins. The site is again in English because such 
analyses are carried out here from all over the world, namely with regard to the properties 
of the protein sequence (secondary structure, amino acid composition and properties, anti-
genicity, etc.) as well as the protein structure, including the properties of the independent 
folding units in the protein, the protein domains.

Analysis with BLAST
A good first step is the already mentioned BLAST. This allows a protein sequence (blastp) 
to be compared for similar entries in a database, and also identifies conserved domains and 
motifs, such as catalytic and active sites.

In addition, there are more precise and specific tools, which are presented below.

Entry Page on the Web: ExPASy (https://www.expasy.org)
The Swiss Bioinformatics Institute had initially (1990s) built up the Swiss-Prot database 
under the direction of Amos Bairoch. It was particularly carefully maintained and still has 
a very high degree of correctness and correction of entries, even though it has now essen-
tially been absorbed into the UniProt Knowledge base (UniProt KB):
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cc https://web.expasy.org/docs/swiss-prot_guideline.html

takes the interested person to this link. As explained on the page, there are also detailed 
comments on the sequence here. These so-called “header entries” provide a wealth of 
information about protein sequences, followed by the actual sequence.

How Do I Quickly Analyze Protein Data?
The ExPASy site brings expert help to get started with protein analysis. “Proteomics” 
means the analysis of large amounts (“omics”) of protein data.

cc https://www.expasy.org/proteomics

In addition to various databases, you can also find a lot of bioinformatics informa-
tion here:

Proteomics Large-scale analyses of proteins
Protein sequences 
and identification

Identification of proteins by sequence

Mass spectrometry 
and 2-DE data

Identification of peptides found in mass spectroscopy or protein spots 
found in 2D gel. Evaluation software and databases for these steps

Protein 
characterisation and 
function

Domain analyses in particular

Families, patterns 
and profiles

Proteins with the same function form a family. In particular, always the 
same (“conserved”) amino acids, patterns and position-specific 
frequencies of amino acids for these families are summarized here

Post-translational 
modification

After production at the ribosome, proteins are further modified, these are 
the post-translational modifications

Protein structure Finding or calculating the three-dimensional protein structure. A fast 
homology prediction via the SWISS-MODEL server is also offered here

Protein-protein 
interaction

Predicting which protein interacts with which other protein

Similarity search/
alignment

There are also a number of alternatives to BLAST here. Multiple protein 
sequences can also be compared

Genomics How are the associated genes related to the proteins they encode?
Structural 
bioinformatics

In particular, the properties of protein structures are determined, for 
example globular proteins are particularly soluble

Systems biology A nice introductory page on system effects of proteins, for example 
protein signalling cascades and phosphatases to switch off such signals

Phylogeny/evolution Proteins develop according to specific patterns; in particular, building 
units, the protein domains, are assembled to form new proteins

Population genetics How are important proteins and protein properties distributed in a 
population? What are the different types?

Transcriptomics How are protein and its coding mRNA related?

(continued)
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(continued)

Biophysics What are the biophysical properties (solubility, stability, helix content, 
etc.) of my protein?

Imaging How can proteins be visualized and images analyzed?
IT infrastructure Computer infrastructure, service
Drug design Helping to create new drugs to specifically target a protein
Glycomics How sugar residues further modify proteins. In particular, this is how 

cells recognise their cell neighbours, bacteria cling to glycoproteins. 
Sugar-binding proteins are called lectins

How Do I Identify Important Amino Acids for Protein Function?
The PROSITE page is particularly helpful for this.

cc https://prosite.expasy.org

This examines an entered protein sequence to determine whether or not certain sequence 
motifs are preserved, for example signatures (hand-curated) or profiles (automatically cal-
culated, consensus sequences, taking different sequences into account) that indicate a par-
ticular enzyme function.

This allows me to check whether my protein sequence is really an active enzyme (then 
all amino acids for catalysis are complete) or whether it only looks like one. If this happens 
in a genome sequence, this is termed a “pseudogene”, a “false” gene regarding the enzyme 
function because important catalytic amino acids are missing and the enzyme therefore 
cannot function.

In addition, the independent folding units in the protein, the protein domains, are also 
examined to see whether they are present in the protein, e.g. whether all parts, i.e. domains, 
are present for a functional enzyme: at least one catalytic domain (50–150 amino acids) 
that carries out the enzymatic reaction. This is then often joined by numerous other types, 
e.g. DNA interaction if it is a transcription factor. Examples are:

•	 cofactor-binding domains (if the enzyme binds a cofactor),
•	 regulatory domains (for switching the enzyme on and off),
•	 interaction domains (with other proteins or to form dimers of two identical protein units 

for the enzyme, e.g. glutathione reductase only functions as a dimer, so needs an inter-
action domain for its function),

•	 structural domains (e.g., if it is a structural protein, like collagen).

How Can I Estimate the Protein Structure?
Structure prediction with homology modelling, for example by SWISS-MODEL, is help-
ful for this.

cc https://swissmodel.expasy.org

SWISS-MODEL offers the possibility to predict the three-dimensional structure of the 
protein based on the sequence.
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This is a relatively quick prediction, and the three-dimensional coordinates are then 
available for the user to download. However, it requires a protein with a known three-
dimensional structure as a template in order to calculate how much the user’s sequence 
differs from this in its three-dimensional structure. Whether a template can be found is 
determined by a special sequence comparison with the proteins in the SWISS-MODEL 
database.

SWISS-MODEL is a very solid, fast and often confirmed approach to determine a 
three-dimensional structure according to protein template. However, there are many other, 
often much more complex ways of calculating the protein structure (e.g. homology model-
ling with MODELLER):

cc https://salilab.org/modeller/tutorial/

Since structures are not always available that can serve as a template, so-called ab initio 
and optimization algorithms calculate an approximate solution for the structure determi-
nation based on the sequence and the minimization of the free enthalpy. Prominent repre-
sentatives here are neural networks, evolutionary algorithm or Monte Carlo simulation. 
One example is the QUARK server from the Zhang lab:

cc https://zhanglab.ccmb.med.umich.edu/QUARK/

Marking of the Known Structural Parts in the Protein Sequence
For independent verification, we offer at the chair a labeling of the known three-dimensional 
structural domains to any sequence (the technical language says domain annotation, that is 
why our tool is called “AnDom”). This is a slightly different procedure and works for any 
sequence. It just looks to see if at least a small piece of the sequence is not similar to a 
known three-dimensional protein structure. Thus, it is completely independent of the 
ExPASy predictions and can check them. In general, independent databases and softwares 
from different authors and methods check each other. This allows to significantly increase 
the quality of the predictions, e.g. to collect all structure predictions (broad search) or to 
accept only those found by both websites (particularly validated predictions).

This then sometimes makes the predictions a bit tight. This happens when only short 
parts of the sequence have sufficient similarity to the structural databases that AnDom has. 
It can also happen that the protein structure is new, i.e. not similar enough to any known 
structure to allow prediction. Just as when using BLAST, very small random expectation 
values (1 in one million and lower probabilities) mean that the assignment using AnDom 
has been very successful in revealing a structure similarity. In contrast, a random similarity 
can be recognized by a high random hit rate (higher than 1 in 1000). It may even happen 
that such a small similarity is found several times even by a random sequence. In this case, 
the expected value is e.g. 4, if on average a random sequence would find four such hits in 
the AnDom structure database.

1  Sequence Analysis: Deciphering the Language of Life

https://salilab.org/modeller/tutorial/
https://zhanglab.ccmb.med.umich.edu/QUARK/


17

cc https://andom.bioapps.biozentrum.uni-wuerzburg.de/index_new.html

Again, the HI virus from Fig. 1.1 will serve as an example here (Fig. 1.4). AnDom finds 
a protease domain in the protein sequence (top: b.50.1.1 according to the SCOP classifica-
tion). The alignment is also shown (bottom), which once again shows the high degree of 
agreement between the search sequence (query) and the protease domain found (Sbjt = sub-
ject) (93% identical). Please also use our tutorial for further information.

Conclusion

•	 In this first chapter, you have already quite actively learned and practiced the most 
important technique in bioinformatics, namely sequence analysis, especially of protein 
sequences. Modern molecular biology generates sequences in abundance. The steady 
increase of databases (NCBI, GenBank, Swiss-Prot) allows one to quickly find out 
which previous sequences are close to this new sequence by sequence similarity 
(BLAST tool). Domain databases and analyses allow to dissect a protein into its folding 
units, each of which carries a specific molecular function. RNA and DNA sequences 
are also quickly assigned a function through sequence comparisons.

Protease-
Domäne

Alignment

Fig. 1.4  Search with the AnDom software for protein domains for the HI virus (for details see text). 
The result shows a high similarity (E-Value 2e-61, 93% identities) with the human HIV-1 protease 
domain (SCOP-ID b.50.1.1) and the corresponding alignment (see text and tutorial)

1.2  Protein Analysis Is Easy with the Right Tool
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•	 Undeniably, sequence analysis is currently the field of bioinformatics that is growing 
the fastest, producing the quickest results, and allowing initial insights into biology. 
Hence, in the later chapters, there is sequence analysis software that allows us to quickly 
trace partial results. It is crucial to be able to learn about this software on the web and 
practice the different setting options.

•	 The tutorials and exercises encourage you to do so. Results from different software 
programs check each other. If they all examine the same sequence, it is always about 
the same biology, and contradictions then indicate that something was overlooked in 
the function assignment and must be checked. Sound biological knowledge should cri-
tique the results, experiments or further data then corroborate the bioinformatic results. 
Programming sequence comparison software and databases is useful if this enables a 
better analysis of the biological question  - in all other cases, it is better to use the 
numerous software that is already available. The internet is only a mouse click away. ◄

Outlook
In addition to protein sequence analysis (Chap. 1), RNA (Chap. 2) and DNA sequences 

(Chap. 3) are important for rapid bioinformatics analysis and description of important 
molecules of the cell. Next, one would like to understand how these important molecules 
of the living cell (DNA, RNA, and proteins) interact in networks. These bioinformatic 
analyses happen either in metabolic networks (Chap. 4) or signaling networks (Chap. 5). 
Since these are already the most important analysis techniques of current bioinformatics, 
we then offer an in-depth look at basic strategies of bioinformatics working methods in 
Part II and look at fascinating examples of current bioinformatics results and develop-
ments in Part III. 

1.3	� Exercises for Chap. 1

In the exercises, important parts of the book will be dealt with in more detail in order to 
consolidate and practise what you have learned. Tasks marked as examples serve as appli-
cation tasks in which you are to work independently with the computer in order to become 
more familiar with bioinformatics. In addition, we have provided numerous tutorials in the 
appendix, which also support the material of the textbook and the exercises and should 
contribute to a better understanding.

We recommend that you briefly review the material from Chap. 1 at Chap. 6 using the 
exercises.

Task 1.1
(a)	 What is and does bioinformatics do (feel free to explain with an example)?
(b)	 There are three areas of bioinformatics, informatically speaking: Databases, 

Programs/Software, and Modeling/Simulations. Describe important differences 
between these areas.

1  Sequence Analysis: Deciphering the Language of Life
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Task 1.2
An important task of bioinformatics is the collection and management of data and the 
provision of helpful tools. Name and describe two databases containing information on, 
for example, genes and gene expression datasets.

Task 1.3
Example:

The MEDLINE database (also known as PubMed) is a large, worldwide open library 
about medicine and biology. Here you can find publications and sequences as well as a lot of 
other information and links. So PubMed is a good first entry site to use when starting a search. 
Familiarize yourself with the PubMed database (https://www.ncbi.nlm.nih.gov/pubmed) and 
find out about the artificial sequence for the “TAR protein”. Hint: Search with “synthetic”, all 
searches are in English after all; the search is only limited enough by keywords if only one 
sequence is found by the query. Only then can you clearly answer the following questions.

	1.	 Which of the following statements about sequence length (amino acid  =  aa) is 
correct?
A.	 The protein sequence is 267 aa long.
B.	 The protein sequence is 367 aa long.
C.	 The protein sequence is 276 aa long.
D.	 The protein sequence is 376 aa long.

	2.	 Which of the following statements about the title is correct?
A.	 The sequence was filed under the title “Cloning of human full-length CDS in 

Creator (TM) recombinational vector system” in PubMed.
B.	 The sequence has been filed under the title “Uploading of human full-length 

CDS” in PubMed.
C.	 The sequence has been filed under the title “Uploading of recombinational 

vector system” in PubMed.
D.	 The sequence has been filed under the title “Cloning of recombinational vec-

tor system” in PubMed.
	3.	 Which of the following statements is correct?

A.	 Hines et al. submitted the sequence to the journal Biological Chemistry and 
Molecular Pharmacology, Harvard Institute of Proteomics on 05-JAN-2015.

B.	 Darwin et al. submitted the sequence to the journal Biological Chemistry and 
Molecular Pharmacology, Harvard Institute of Proteomics on 05-JAN-2005.

C.	 Hines et al. submitted the sequence to the journal Biological Chemistry and 
Molecular Pharmacology, Harvard Institute of Proteomics on 05-MAR-2005.

D.	 Hines et al. submitted the sequence to the journal Biological Chemistry and 
Molecular Pharmacology, Harvard Institute of Proteomics on 05-JAN-2005.

Task 1.4
Bioinformatics has taken off since the mid-1990s, when the first genome projects were 
successfully completed, because of its rapid sequence analyses. Sequence comparison (for 

1.3  Exercises for Chap. 1
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example with the BLAST software) is thus a particularly frequently used and popular 
bioinformatics method for identifying genes or proteins in the genome.

Explain the BLAST algorithm (hint: it is sufficient to describe how the algorithm can 
become so fast). Also describe its usefulness for biology. If both are still unclear, simply 
refer to the chapter again.

Task 1.5
Develop a simple program that examines a sequence for possible sequence similarities in 
a database (hint: enumerate what parts this program would consist of).

Task 1.6
Which of the following statements about BLAST is correct (multiple answers possible)?

	A.	 BLAST = Basic Local Alignment Search Tool.
	B.	 BLAST = Basic Low Alignment Search Tool.
	C.	 BLAST is an algorithm for finding locally similar sequence segments in a database.
	D.	 BLAST uses a heuristic search and here the two-hit method (2-hit method).

Task 1.7
Example: The sequencing of a diseased person has revealed the following protein sequence:
>unknownsequence 1.7

PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKMIGGIGGFIKVRQYDQIL 
IEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNF

Which BLAST algorithm would you choose for your patient sequence?

	A.	 blastn.
	B.	 blastp.
	C.	 blastx or tblastx.
	D.	 tblastn.

Task 1.8
You now want to know exactly which virus the person has contracted. Perform a BLAST 
search yourself using the protein sequence (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Which of the following statements is correct (multiple answers possible)?

	A.	 The sequence is almost certainly the pol protein and protease of the HIV-1 virus.
	B.	 The unknown sequence shows low similarity to the pol protein and protease of the 

HIV-1 virus.
	C.	 When searching for a sequence that is as similar/identical as possible, a match 

should always have as large an E-value as possible and a low identity.
	D.	 The E-Value (expected value) shows how likely it is that the hit will be found again 

in the database with a similar or better score.

1  Sequence Analysis: Deciphering the Language of Life
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Task 1.9
What is a dot plot and what can I use it for (hint: look up this software on the internet)?

Task 1.10
Example: Dotplot by hand.

	1.	 By hand, perform a dot plot of the word BIOINFORMATICS to compare the word 
with itself.

	2.	 Use software (e.g., Dotter [https://sonnhammer.sbc.su.se/Dotter.html], JDotter 
[https://athena.bioc.uvic.ca/virology-ca-tools/jdotter/], or Cheetah [https://mips.
gsf.de/services/analysis/gepard]) and perform a dot plot of the following sequence 
with yourself:

>unknownsequence 1.10

PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKMIGGIGGFIKVRQYDQI 
LIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNF

Useful Tools and Web Links

Perl https://www.perl.org/
Java https://www.oracle.com/technetwork/java/index.html
Python https://www.python.org/
C++ https://www.cplusplus.com/
R https://www.r-project.org/
BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi
PDB https://www.rcsb.org/pdb/home/home.do
BioNumbers https://bionumbers.hms.harvard.edu/
PubMed https://www.ncbi.nlm.nih.gov/pubmed/
EBI https://www.ebi.ac.uk/services
DDBJ https://www.ddbj.nig.ac.jp
ExPASy https://www.expasy.org
PROSITE https://prosite.expasy.org
SWISS-MODEL https://swissmodel.expasy.org
MODELLER https://salilab.org/modeller/tutorial/
QUARK https://zhanglab.ccmb.med.umich.edu/QUARK/
AnDom https://andom.bioapps.biozentrum.uni-wuerzburg.de/

index_new.html

Literature

Altschul SF, Gish W, Miller W et  al (1990) Basic local alignment search tool. J Mol Biol 
215(3):403–410

Antiretroviral Therapy Cohort Collaboration (2008) Life expectancy of individuals on combination 
antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. 
Lancet 372(9635):293–299. https://doi.org/10.1016/S0140-6736(08)61113-7

Literature

https://sonnhammer.sbc.su.se/Dotter.html
https://athena.bioc.uvic.ca/virology-ca-tools/jdotter/
https://mips.gsf.de/services/analysis/gepard
https://mips.gsf.de/services/analysis/gepard
https://www.perl.org/
https://www.oracle.com/technetwork/java/index.html
https://www.python.org/
https://www.cplusplus.com/
https://www.r-project.org/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.rcsb.org/pdb/home/home.do
https://bionumbers.hms.harvard.edu/
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ebi.ac.uk/services
https://www.ddbj.nig.ac.jp
https://www.expasy.org
https://prosite.expasy.org
https://swissmodel.expasy.org
https://salilab.org/modeller/tutorial/
https://zhanglab.ccmb.med.umich.edu/QUARK/
https://andom.bioapps.biozentrum.uni-wuerzburg.de/index_new.html
https://andom.bioapps.biozentrum.uni-wuerzburg.de/index_new.html
https://doi.org/10.1016/S0140-6736(08)61113-7


22

Hoog R, Lima V, Sterne JA et al (2008) Life expectancy of individuals on combination antiretro-
viral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet 
372(9635):293–299. https://doi.org/10.1016/S0140-6736(08)61113-7

Further Reading

Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new gen-
eration of protein database search programs. Nucleic Acids Res 25(17):3389–3402 (Review. 
PubMed PMID: 9254694 *The classic 1990 paper on the best-known sequence comparison 
algorithm, the Basic Alignment Sequence Research Tool [BLAST]. Surprisingly, it was not until 
1997 that gaps were considered [“gapped BLAST”], and it became possible to repeat the search 
with multiple sequences if the function was not yet clear [“position specific iterative” BLAST 
or psi-BLAST])

Bienert S, Waterhouse A, Beer TA de et al (2017) The SWISS-MODEL Repository-new features 
and functionality. Nucleic Acids Res 45(D1):D313–D319. https://doi.org/10.1093/nar/gkw1132 
(PubMed PMID: 27899672; PubMed Central PMCID: PMC5210589 *This is the latest version of 
the homology program Swiss-Model, a very convenient program that predicts from the sequence 
of a protein its three-dimensional structure, just send by e-mail the sequence to the server)

Gaudermann P, Vogl I, Zientz E et al (2006) Analysis of and function predictions for previously con-
served hypothetical or putative proteins in Blochmannia floridanus. BMC Microbiol 2006(6):1 
(*This paper provides a good introduction to how one can still determine the function of a protein 
with sequence and structural analyses, even if BLAST initially finds no evidence of function)

Gupta SK, Bencurova E, Srivastava M et al (2016) Improving re-annotation of annotated eukaryotic 
genomes. In: Wong K-C (Herausgeber) Big data analytics in genomics. Springer, S171–195. 
https://link.springer.com/chapter/10.1007%2F978-3-319-41279-5_5 (*In this work, we explain 
how to improve annotation [labeling] in a higher [eukaryotic] genome)

NCBI Resource Coordinators (2017) Database resources of the National Center for Biotechnology 
Information. Nucleic Acids Res 45(D1):D12–D17. doi:https://doi.org/10.1093/nar/gkw1071 
(PubMed PMID: 27899561; PubMed Central PMCID: PMC5210554 *This explains the bioin-
formatics opportunities at NCBI, the world’s premier bioinformatics entry site)

SIB Swiss Institute of Bioinformatics Members (2016) The SIB Swiss Institute of Bioinformatics’ 
resources: focus on curated databases. Nucleic Acids Res 44(D1):D27–D37. doi:https://doi.
org/10.1093/nar/gkv1310 (*Hier werden die Bioinformatik-Möglichkeiten am Schweizer 
Bioinformatik-Institut erklärt)

Srivastava M, Malviya N, Dandekar T (2015) Application of biotechnology and bioinformatics tools 
in plant-fungus interactions. In: Bahadur B, Rajam MV, Sahijram L, Krishnamurthy KV (Hrsg) 
Plant Biol Biotechnol. Springer India, S 49–64 (*Here we explain how to bioinformatically study 
protein interactions)

1  Sequence Analysis: Deciphering the Language of Life

https://doi.org/10.1016/S0140-6736(08)61113-7
https://doi.org/10.1093/nar/gkw1132
https://link.springer.com/chapter/10.1007/978-3-319-41279-5_5
https://doi.org/10.1093/nar/gkw1071
https://doi.org/10.1093/nar/gkv1310
https://doi.org/10.1093/nar/gkv1310


23

2Magic RNA

Abstract

About half of the human genome is actively transcribed as RNA, new regulatory and non-
protein-coding RNA types such as miRNAs and lncRNAs in higher cells and the CRISPR/
Cas9 system from bacteria underline the importance of RNA for molecular biology. 
Typically, one analyzes RNA sequence, structure, and folding energy orientationally first 
using RNAAnalyzer software, Rfam database, and RNAfold server. GEO and GeneVestigator 
databases show gene expression differences that can be analyzed in more depth using 
R and Bioconductor as scripting language and program framework. Both are important 
tools, but they have to be learned like a language in order to be able to write instructions 
for biostatistical analysis (so-called “scripts”). Non-coding RNA is also important for 
diseases, and bioinformatics helps to uncover this, e.g. chast-lncRNA in heart failure.

2.1	� RNA Sequences Are Biologically Active

What does magic mean? It means that words are immediately translated into action! For 
example, you mutter an incantation of the air spirit, and the medicine man uses it to set the 
air in motion. In everyday life, you can’t do that, or only if you have a lot of money. Then 
with this “wishing machine”, the money, one can also put every purchasable wish into action.

So in our everyday world, the thought (easy) and the deed (sweaty, grueling, tiring) are 
well separated. But in the molecular world this is not so, in particular RNA has even magi-
cal properties in this sense.

We can form single words especially with RNA building blocks (“nucleotides”), but at 
the same time this chain of RNA building blocks then already has active properties, can 
accelerate biochemical reactions or even make them possible in the first place  - in a 
word: magic!

© Springer-Verlag GmbH Germany, part of Springer Nature 2023
T. Dandekar, M. Kunz, Bioinformatics, 
https://doi.org/10.1007/978-3-662-65036-3_2
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This is due, on the one hand, to the smallness of the dimensions on which we are moving 
here, namely a few angstroms (Å, i.e. ten billionths of a metre), as well as to the special 
properties of RNA. It is not as stable as deoxyribonucleic acid, i.e. DNA, which is therefore 
very suitable as a long-term storage medium. RNA stores for shorter times, after which it can 
either be digested with its additional OH group or otherwise continue to react. And this is 
also the reason for its “magic” activity, it can accelerate or advance a reaction at the same time.

This also makes it clear what existed before today’s division of labor between genetic 
information (DNA) and enzymatic action (proteins): namely, the RNA world. That was 
more than 3 billion years ago. The first cells were just coming into being, and it was there 
that RNA nucleotides of varying lengths both stored information and accelerated reac-
tions. The oldest molecule was an RNA polymerase made of RNA, which catalytically 
transcribed its description, faster than it was destroyed by environmental stresses. If you 
still want to know what was before RNA: metabolism on surfaces that held certain mole-
cules and obtained energy from sulfur compounds until the first membranes and first 
nucleotides accumulated more and more on these surfaces (Scheidler et al. 2016).

Since that time, RNA has been essential for all life. The protein factories (ribosomes) 
of the body consist of RNA in their central parts. All peptide bonds in the ribosome are 
made by catalytic ribosomal RNA (rRNA), and many vitamins and excipients in our 
enzymes are still made of nucleotides (especially adenine, e.g. FAD, NAD, NADH, NADP, 
NADPH, cAMP, ATP, etc.).

But that’s not all: RNA can not only build proteins (with the help of tRNA and rRNA), 
whereby the genes are transcribed via mRNA (messenger RNA), but there are also numer-
ous regulatory functions of RNA. As microRNA (miRNA), it degrades messenger RNA 
more quickly (and one small molecule directs many, sometimes hundreds of messenger 
RNAs), as long non-coding RNA (lncRNA) it even switches off entire chromosomes, as 
smallRNA (sRNA) in bacteria it switches off or on promoters or individual genes, as a 
riboswitch (e.g. riboswitch finder [https://riboswitch.bioapps.biozentrum.uni-wuerzburg.
de/]) it allows or rejects the translation of genes.

It can be seen that an important part of bioinformatics is trying to identify and describe 
the function and hidden signals in RNA molecules. The basic question is: Where is the 
signal in the RNA molecule? First, in the order of its building blocks, i.e. in the nucleotides 
(the so-called sequence), but then also in the folding of the RNA, the secondary structure, 
how the RNA forms. In addition, one can also look at how stable the folding of the RNA 
is, the so-called folding energy.

So, with these three characteristics, I can check a wide range of RNA molecules if I know 
what sequence, secondary structure, and energy the RNA molecule must have for a particu-
lar property. For example, one can check all three characteristics for a number of molecules 
using the RNAAnalyzer program or look up exciting RNA types in the Rfam database.

If you want to write such an RNA detection program yourself, you first need access to 
very many RNA sequences under which RNA molecules with a certain property (a 

2  Magic RNA
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“regulatory element”) are hidden. Then you have to check which RNA molecules do not 
show these properties by chance (false-positive alarm), but actually possess them. In doing 
so, one must also not hastily discard molecules that may have this property after all. In 
practice, it takes a lot of trial and error to look more and more closely at the sequence, 
secondary structure and energy until regulatory RNA elements can be accurately identi-
fied. One example is iron-responsive elements (IREs) in messenger RNA. A protein, the 
IRE binding protein (IRE-BP), binds to these when the iron level is low. This then prevents 
further reading of the mRNA (always read from the beginning, the 5′-end, to the end, the 
3′-end). The reading frame, i.e. the protein building instructions in the mRNA, is located 
downstream of the IRE. If the iron level is higher, the protein binds to iron, and the mes-
senger RNA containing the iron-sensitive element is translated. In practice, it also helps to 
look at the biological function of the messenger RNA, because that must have something 
to do with iron metabolism if you suspect such an RNA element in that messenger RNA. So 
that’s an important way to test this and come up with meaningful results. Interestingly, for 
a structure in RNA that mediates regulation, that is a so-called RNA element, both second-
ary structure and primary sequence and folding energy play important roles. In an IRE, for 
example, one finds the consensus sequence CAGUGN and a C alone without G as a part-
ner in the opposite strand (“bulged”), a loop stem-loop structure consisting of two stems 
on top of each other (in between is the unpaired C), and a folding energy between −2.1 to 
−6.7 kcal/mol (Fig. 2.1).

RNA is therefore at the root of life and is a particularly active intermediate carrier of 
information. Just recently, much faster sequencing techniques than in the past have made 
it possible to read virtually all RNA molecules in the cell. Because bioinformatics can 
classify this large amount of sequenced RNA quickly enough (Chang et al. 2013), we are 
only now beginning to recognize the many functions that RNA mediates. Examples of 
such newly recognized RNA molecules are the regulatory miRNAs and lncRNAs that have 
been newly described for the past 5–10 years (Kunz et al. 2015, 2016, 2017; Fiedler et al. 
2015). These play essential roles in various diseases, and bioinformatics can make an 
important contribution to uncovering this. To this end, we have developed various methods 
and analytical tools for integrative analysis of RNAs (Kunz et al. 2018, 2020; Stojanović 
et al. 2020; Fuchs et al. 2020). For example, our bioinformatics work could help to uncover 
the function of Chast-lncRNA in heart failure (Viereck et al. 2016) or molecular mecha-
nisms of miRNA-21 in cardiac fibrosis (Fuchs et al. 2020).

2.2	� Analysis of RNA Sequence, Structure and Function

A number of options are available for analysing RNA, e.g. databases such as Rfam, soft-
ware such as the RNAAnalyzer and RNAfold. In the following, we would like to intro-
duce these.

2.2 � Analysis of RNA Sequence, Structure and Function
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Fig. 2.1  Bioinformatic analysis of a regulatory RNA element. Representation of the RNAAnalyzer 
of an IRE with associated sequence, structure and folding energy

Rfam: All Known Families of RNA in One Database

cc https://rfam.xfam.org/

One possibility is to collect all RNA molecules in a database. For this purpose, Rfam, 
for example, provides an overview of all RNA molecules (Gardner et al. 2011) that have 
been characterized in more detail to date. In particular, RNA molecules can be grouped 
into families. This means that a certain structure with which the RNA performs its function 
was retained in evolution and is then found in quite a large number of organisms.

IREs are one example. If such an RNA structure is present, the subsequent further 
mRNA sequence is only read and a protein that uses or utilises iron in some form is then 
produced by the ribosome if the iron level is sufficiently high.

cc https://rfam.xfam.org/search/keyword?query=IRE

Rfam searches with the keyword “IRE”, the correct entry is then:

2  Magic RNA
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cc https://rfam.xfam.org/family/RF00037

Those who want to read more in-depth information about techniques and RNA func-
tions in context can check out our books on regulatory RNA at Google-Books (Dandekar 
and Bengert 2002; Dandekar and Sharma 1998).

RNAAnalyzer: A Quick Analysis for Each RNA Molecule

cc https://rnaanalyzer.bioapps.biozentrum.uni-wuerzburg.de

Another way to understand RNA and regulatory elements is to analyze the secondary 
structure and sequence motifs through a program. In our program developed for this pur-
pose, the RNAAnalyzer, you can enter any RNA sequence, which is then searched for 
regulatory elements. The result is a list of regulatory element hits and important further 
descriptions, such as whether there is a lot of secondary structure, whether proteins can 
bind to the RNA or whether the RNA molecule is perhaps an mRNA, but also numerous 
other pieces of information (Bengert and Dandekar 2003).

One way to further check or supplement these results is to use the AnDom software (cf. 
Chap. 1, Protein analyses). For regulatory RNA, another alternative is the RegRNA server 
from Taiwan (https://regrna2.mbc.nctu.edu.tw/), which also offers a rapid analysis for 
RNA using related methods independently.

RNAfold and mFold Show RNA Structure
Another important method to analyze the RNA structure is to check the RNA folding with 
the pairing scheme: A always pairs with U (two hydrogen bonds), G with C (three hydro-
gen bonds). With the help of these rules and other rules (G pairs with U, only one hydrogen 
bond; thermodynamic parameters such as the Tinocco parameters), it is possible to sys-
tematically try out with the computer which structural folding of the RNA will lead to the 
highest number of base pairings and, in particular, hydrogen bonds and energy. This is also 
known as dynamic programming (Eddy 2004), because the sequence is broken down into 
small substrings and the optimal RNA structure is calculated iteratively (for longer RNA 
molecules, more and more memory is allocated dynamically for the base pairings).

Simple approaches such as the Nussinov algorithm are based on the optimal base pair-
ing of the RNA, whereas extensions additionally consider the folding energy. The best 
known is the prediction algorithm of Zuker and Stiegler (1981), e.g. mFold server (https://
unafold.rna.albany.edu/?q=mfold; out of operation since November 1, 2020.) or its further 
developments such as the RNAfold server (https://rna.tbi.univie.ac.at/cgi-bin/
RNAWebSuite/RNAfold.cgi). The Sankoff algorithm takes phylogeny into account in 
addition to alignment and folding energy (e.g. LocARNA tool; https://www.bioinf.uni-
freiburg.de/Software/LocARNA/). However, other software for RNA folding is also avail-
able (e.g., ViennaRNA package; https://www.tbi.univie.ac.at/RNA/; Freiburg RNA tools; 
https://rna.informatik.uni-freiburg.de/). By looking at several folding types (i.e., still the 
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second- and third-best structure), I can see what remains conserved. These are usually also 
the structural regions actually present in the cell. In parallel with experiments, this gives a 
precise idea of what the RNA structure looks like in the living cell.

Conclusion   
•	 RNA is an important level of information processing. About half of the human genome 

is actively transcribed and new RNAs such as miRNA and lncRNAs highlight the 
importance of deciphering the information encoded in RNA. In this chapter, we have 
therefore focused on the analysis of RNA sequence, structure and folding energy.

•	 RNA and regulatory RNA elements can initially be analysed with the RNAAnalyzer 
software, the Rfam database and the RNAfold server. For those who want to learn 
more, the tutorials show further steps (practice is important here, the tutorials offer a 
first introduction) to systematically analyze the transcriptome of a cell (e.g. GEO and 
GeneVestigator databases). For more in-depth statistical analysis of gene expression 
differences, R and Bioconductor are available. Both are important tools and have to be 
learned like a language in order to be able to write instructions for biostatistical analysis 
(so-called “scripts”, both are scripting languages).

•	 In the field of computational analysis of RNA, new surprises and insights can be 
expected in the coming years, e.g. strong genetic engineering and matching software 
through the CRISPR/Cas9 system and the pathophysiology of newly discovered small 
RNAs in many bacteria and infectious agents (sRNAs). Non-coding RNA is also impor-
tant in disease and bioinformatics is helping to uncover this, e.g. chast-lncRNA in heart 
failure (Viereck et al. 2016). ◄

2.3	� Exercises for Chap. 2

In the exercises, important parts of the book will be dealt with in more detail in order to 
consolidate and practise what you have learned. Tasks that are marked as examples serve 
as application tasks in which you are to work independently with the computer in order to 
become more familiar with bioinformatics. In addition, we have provided numerous tuto-
rials in the appendix, which also support the material of the textbook and the exercises and 
should contribute to a better understanding.

We recommend that you briefly review the material from Chap. 2 in Chap. 3 using the 
exercises.

Task 2.1
Example: As a result of transcription, a complete RNA sequence (mRNA, but also non-
coding miRNA, lncRNAetc.) is formed, i.e. a copy of the DNA, whereby the nucleotides 
of the DNA (A, T, G and C) are translated into the nucleotides of the RNA (A, U, G and 
C) and the deoxyribose is exchanged for ribose. An RNA can form a secondary structure 
(alpha-helix and beta-sheet), which can be predicted bioinformatically.

2  Magic RNA
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Perform RNA folding with RNAfold using the following sequence (https://rna.tbi.uni-
vie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi):
> RNAsecondary structure

ATAAGAGACCACAAGCGACCCGCAGGGCCAGACGTTCTTCGCCGAGAGTCGTCGGG 
GTTTCCTGCTTCAACAGTGCTTGGACGGAACCCGGCGCTCGTTCCCCACCCCGGC 
CGGCCGCCCATAGCCAGCCCTCCGTCACCTCTTCACCGCACCCTCGGACTGCCCCAA 
G G C C C C C G C C G C C G C T C C A G C G C C G C G C A G C C A C C G C C G C C G C C G C C G C C T C T C 
CTTAGTCGCCGCCATGACGACCGCGTCCACCTCGCAGGTGCGCCAGAACTACCACC 
AGGACTCAGAGGCCGCCATCAACCGCCAGATCAACCTGGAGCTCTACGCCTCCTACG 
TTTACCTGTCCATGTCTTACTACTTTGACCGCGATGATGTGGCTTTGAAGAACTTTGC 
C A A A T A C T T T C T T C A C C A A T C T C A T G A G G A G A G G G A A C A T G C T G A G A A A C T G A T 
GAAGCTGCAGAACCAACGAGGTGGCCGAATCTTCCTTCAGGATATCAAGAAACCAG 
A C T G T G A T G A C T G G G A G A G C G G G C T G A A T G C A A T G G A G T G T G C A T T A C A 
T T T G G A A A A A A A T G T G A A T C A G T C A C T A C T G G A A C T G C A C A A A C T G G C C A C T G A 
C A A A A A T G A C C C C C A T T T G T G T G A C T T C A T T G A G A C A C A T T A C C T G A A T G A G 
CAGGTGAAAGCCATCAAAGAATTGGGTGACCACGTGACCAACTTGCGCAAGATGGGAGC 
GCCCGAATCTGGCTTGGCGGAATATCTCTTTGACAAGCACACCCTGGGAGACAGTGATAA 
TGAAAGCTAAGCCTCGGGCTAATTTCCCCATAGCCGTGGGGTGACTTCCCTGGTCACCAAGGC 
A G T G C A T G C A T G T T G G G G T T T C C T T T A C C T T T T C T A T A A G T T G T A C C A A A A C A T 
CCACTTAAGTTCTTTGATTTGTACCATTCCTTCAAATAAAGAAATTTGGTACCCAGG 
TGTTGTCTTTGAGGTCTTGGGATGAATCAGAAATCTATCCAGGCTATCTTCCAGATTCCTT 
AAGTGCCGTTGT

	1.	 Which of the following statements about RNA folding is correct (multiple answers 
possible)?
(A)	 An RNA secondary structure should always have a very high folding energy, 

then it is most stable.
(B)	 RNAfold does not find a possible secondary structure for the exercise 

example.
(C)	 For the exercise example, RNAfold calculates a minimum free energy (fold-

ing energy) of −360.20 kcal/mol.
(D)	 RNA folding (also bioinformatically predicted) is, from this point of view, a 

very simple process, since there is only one linear structure.
(E)	 RNA folding (also bioinformatically predicted) is a complex process from 

this point of view, since there are, for example, several secondary structural 
forms (e.g. stem- and hairpin-loop).

	2.	 Create a short random RNA sequence (approx. 20–25 nucleotides) and let RNAfold 
fold it. Subsequently, double the sequence length and fold it again.

How do the amounts of the released energies of the short and long sequence relate to 
each other?

2.3 � Exercises for Chap. 2
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Task 2.2
There are also certain RNA motifs, also called regulatory RNA elements, that perform a spe-
cific function. Name and explain different RNA elements, such as IREs or riboswitches.

Task 2.3
What criteria do I have to consider in order to analyze an RNA (RNA molecule) for 
RNA motifs?

Task 2.4
Explain how to identify regulatory RNA elements.

Task 2.5
Which of the following statements about regulatory RNA elements is correct (multiple 
answers possible)?

	 (A)	Regulatory RNA elements are not found in humans.
	 (B)	For RNA motif searches, it’s enough if I just look at the sequence.
	 (C)	 I can find many RNA families in the Rfam database.
	 (D)	IRE and riboswitches are examples of regulatory RNA elements.
	 (E)	 It is best to combine several criteria (sequence, structure and energy) for an RNA 

motif search.

Task 2.6
Example: Find by hand (Ctrl + F or grep or Perl script) a typical conserved IRE motif 
(CAGUGN or CAGTGN) in the following sequence:
> RNAanalyzer.

A T A A G A G A C C A C A A G C G A C C C G C A G G G C C A G A C G T T C T T C G C C G A G A G T C G 
TCGGGGTTTCCTGCTTCAACAGTGCTTGGACGGAACCCGGCGCTCGTTCCCCACCCC 
GGCCGGCCGCCCATAGCCAGCCCTCCGTCACCTCTTCACCGCACCCTCGGACTGCCCC 
A A G G C C C C C G C C G C C G C T C C A G C G C C G C G C A G C C A C C G C C G C C G C C G C C G C C T C 
TCCTTAGTCGCCGCCATGACGACCGCGTCCACCTCGCAGGTGCGCCAGAACTACC 
A C C A G G A C T C A G A G G C C G C C A T C A A C C G C C A G A T C A A C C T G G A G C T C T A C G C C 
T C C T A C G T T T A C C T G T C C A T G T C T T A C T A C T T T G A C C G C G A T G A T G T G G C T T T 
G A A G A A C T T T G C C A A A T A C T T T C T T C A C C A A T C T C A T G A G G A G A G G G A A C A T 
G C T G A G A A A C T G A T G A A G C T G C A G A A C C A A C G A G G T G G C C G A A T C T T C C T T 
C A G G A T A T C A A G A A A C C A G A C T G T G A T G A C T G G G A G A G C G G G C T G A A T G C A 
ATGGAGTGTGCATTACATTTGGAAAAAAATGTGAATCAGTCACTACTGGAACTGCA 
CAAACTGGCCACTGACAAAAATGACCCCCATTTGTGTGACTTCATTGAGACACAT 
TACCTGAATGAGCAGGTGAAAGCCATCAAAGAATTGGGTGACCACGTGACCAACTTGCGCAA 
GATGGGAGCGCCCGAATCTGGCTTGGCGGAATATCTCTTTGACAAGCACACCCTGGGAG 
ACAGTGATAATGAAAGCTAAGCCTCGGGCTAATTTCCCCATAGCCGTGGGGTGACT 
TCCCTGGTCACCAAGGCAGTGCATGCATGTTGGGGTTTCCTTTACCTTTTCTATAAG 
TTGTACCAAAACATCCACTTAAGTTCTTTGATTTGTACCATTCCTTCAAATAAAG 
AAATTTGGTACCCAGGTGTTGTCTTTGAGGTCTTGGGATGAATCAGAAATCTATCCAGGC 
TATCTTCCAGATTCCTTAAGTGCCGTTGT
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	1.	 Can a potential IRE motif be found?
	2.	 Now use the RNAAnalyzer (https://rnaanalyzer.bioapps.biozentrum.uni-

wuerzburg.de/) for this examination.
Which of the following statements is correct (multiple answers possible)?

	 (A)	The exercise example is an IRE.
	 (B)	Besides the IRE, the RNAAnalyzer does not find any other elements for the exer-

cise example, e.g. no “Catalytic RNA”.
	 (C)	The RNAAnalyzer finds an IRE at position 71 for the exercise example.
	 (D)	One IRE is the consensus sequence “CAGUGN”, the RNAAnalyzer also found 

this in the exercise example.

Task 2.7
Example: Perform a search with the Riboswitch Finder (https://riboswitch.bioapps.biozen-
trum.uni-wuerzburg.de/) using the following sequence (please just use the sequence exam-
ple from the Riboswitch Finder page): Streptococcus pyogenes STPY1 (https://riboswitch.
bioapps.biozentrum.uni-wuerzburg.de/examples.html).

Which of the following statements is correct (multiple answers possible)?

	 (A)	The Riboswitch Finder finds three possible hits for a riboswitch for the example 
sequence, they are all on the minus strand.

	 (B)	All hits found for the example sequence are of poor quality (sequence, structure, 
energy), thus indicating no possible riboswitches.

	 (C)	The Riboswitch Finder finds three possible riboswitches on the plus strand at 
position 1288 for the example sequence.

	 (D)	The hits found for the example sequence have, among others, three stem-loops in 
their secondary structure.

	 (E)	 Riboswitches are the only regulatory RNA elements in prokaryotes.

Task 2.8
Example: Analyze the 18 S-rRNA gene from Cordulegaster boltonii (GenBank ID: 
FN356072.1) for a possible ITS2 secondary structure using the ITS2 database (https://its2.
bioapps.biozentrum.uni-wuerzburg.de/).

Task 2.9
Example:

	 (a)	Familiarize yourself with non-coding RNAs (e.g. miRNAs and lncRNAs). Use e.g. 
https://www.microrna.org, https://www.mirbase.org, https://lncipedia.org/ and 
https://www.targetscan.org, but also our two articles (Kunz M et al. Bioinformatics 
of cardiovascular miRNA biology. J Mol Cell Cardiol 2015 Dec;89(Pt A):3–10. 
https://doi.org/10.1016/j.yjmcc.2014.11.027; Kunz M et al. Non-Coding RNAs in 
Lung Cancer: Contribution of Bioinformatics Analysis to the Development of 
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Non-Invasive Diagnostic Tools. Genes (Basel) 2016 Dec 26;8(1). pii: E8. https://
doi.org/10.3390/genes8010008).

	 (b)	Become familiar with different target prediction algorithms and their different 
parameters (e.g., TargetScan, miRanda, and PITA).

Useful Tools and Web Links

Rfam https://rfam.xfam.org/
RNAAnalyzer https://rnaanalyzer.bioapps.biozentrum.uni-wuerzburg.de/
mFold web server https://unafold.rna.albany.edu/?q=mfold (out of service since November 

1, 2020)
RNAfold web 
server

https://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi (replaces 
mfold since 1.11.20)

ViennaRNA 
Package

https://www.tbi.univie.ac.at/RNA/

Freiburg RNA 
Tools

https://rna.informatik.uni-freiburg.de/

regRNA https://regrna2.mbc.nctu.edu.tw/
Riboswitch Finder https://riboswitch.bioapps.biozentrum.uni-wuerzburg.de/

Dandekar and Bengert (2002) RNA Motifs and Regulatory Elements. Springer Verlag, 2002 
(https://books.google.de/books?id=hOLtCAAAQBAJ&hl=de)
Dandekar and Sharma (1998) Regulatory RNA. Springer Verlag, 1998 (https://books.google.
de/books?id=j7LoCAAAQBAJ&hl=de)

	 (c)	Look for miRNAs that indicate a possible interaction with Brca1 (e.g. https://www.
microrna.org and https://www.targetscan.org – do miRNAs find each other?).
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3Genomes: Molecular Maps of Living 
Organisms

Abstract

Based on sequence comparisons, special algorithms assemble the sequence fragments 
of modern sequencing techniques. After bacterial genomes and the yeast cell genome 
were completely sequenced and bioinformatically analysed in the 1990s, human 
genomes and numerous other eukaryotic (cells with a cell nucleus) genomes followed 
from 2001. The function of individual genes is identified by sequence comparisons: 
Protein function analysis (see Chap. 1), but also annotation of regulatory genome ele-
ments (ENCODE consortium) are main tasks of genome analysis. The genome sequence 
is available for almost all known organisms. It is thus possible to successfully predict 
the essential molecular components of these organisms.

3.1	� Sequencing Genomes: Spelling Genomes

In the previous chapter we dealt with RNA as a “magic” molecule. But what about the 
permanent storage of information in the cell, the totality of DNA, the genome?

DNA means deoxyribonucleic acid, abbreviated to DNA in English, and is an excellent 
storage medium for information that living organisms have been using for almost 3 billion 
years. As is the case with our modern storage media, the read-in and read-out technology 
is quite important, because mostly only transcripts are produced, via RNA (see previous 
chapter). If, on the other hand, a unicellular organism reproduces or a multicellular organ-
ism grows, the cells of the body divide. And before they split into two halves, the genetic 
information in the cells has to be duplicated. There is an enzyme for this, the polymerase, 
and with it, adenine, guanine, cytosine and thymidine pair up as a new DNA strand to the 
opposite strand. With many nucleotides per second, an exact copy is thus produced. This 
process was first used by Frederick Sanger to read genetic information. He marked the 
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newly produced DNA radioactively, but also mixed dideoxy adenine triphosphate with the 
normal deoxy adenine triphosphate, so that the enzyme always stutters at the adenine and 
breaks off with about 1% probability at each adenine. This way, you can then visualize all 
the adenines in the sequence after sorting the radiolabeled fragments by size and putting 
on a film. If I use other dideoxy nucleotides, I also read the other nucleotides. I can also 
replace the radioactivity with nucleotides of different luminosity and use a laser to deter-
mine the nucleotides online. All this led to the fact that one could determine the DNA 
sequences ever faster, in order to store the sequence flood finally in large computer data 
bases. After the sequencing reaction and the separation of the fragments had been minia-
turised further and further, the sequencing speed increased further and further so that it is 
now possible to read many millions of nucleotides per track and process many tracks 
simultaneously. In order to determine the genome sequence, the DNA of an organism is 
first chopped up (“shotgun” method) and then all these small pieces are sequenced simul-
taneously at lightning speed. However, this makes another task more and more difficult, 
namely to put the many sequence snippets together in the right way, i.e. to determine the 
genome sequence correctly from the snippets found by putting them together (“mapping” 
and “assembly” of the genome sequence). In particular, regions in which sequences are 
repeated again and again (repeat regions) are difficult to represent correctly in terms of 
their length and number of repeats.

Then we can begin to read the finished genome sequence, i.e. to understand its content 
(cf. Fig. 3.1). Many parts can be understood by sequence comparison, for example with 
the program BLAST. If this sequence section resembles an already labeled piece of DNA 
from another organism, I assume that this is also the function of this gene section in the 
newly sequenced organism. However, since similarities can be weak, labeling the genome 
sequence at the dissimilar sites can cause problems (technical term annotation; checking 
an existing label is called reannotation). As a simple rule of thumb, one adopts only those 
BLAST results that have an expected chance (E-value) of less than 1 in 1 million.

For the other parts of the genome sequence, which do not reveal their function so easily 
by high similarity, one has to analyse them in more detail. Here, machine learning and 
artificial intelligence methods (Chap. 14) help to understand the sequence. For example, 

Fig. 3.1  The figure shows a finished piece of the genome sequence. (Figure from Gibson et al. 2008)
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stochastic models such as hidden Markov models (Sean R Eddy 2004) allow hidden sys-
tem states (e.g. exon, intron) to be predicted from a sequence (observations, e.g. ATCCCTG 
...) using a Markov chain (Bayesian network; supervised machine learning). Hidden 
Markov models are widely used for genome annotation (exon-intron region; e.g. GenScan 
program), but also for protein domain prediction (e.g. Pfam, SMART, HMMER, InterPro 
databases) and network regulation (e.g. signal peptides; SignalP, TMHMM programs).

In addition, there are numerous special software that detect RNA sequences (e.g. Rfam, 
tRNAscan), viral sequences, repeat regions (e.g. Repeat Masker) and other sites in the 
genome (e.g. enhancers, miRNAs, lncRNAs) and label them accordingly.

An important step is also to take a closer look at the promoter. Transcription factors 
bind to DNA sequence motifs (Patrik D’haeseleer 2006) in the promoter (so-called tran-
scription factor binding sites, TFBS) and thus regulate gene expression (transcription). 
These conserved DNA patterns, usually consisting of 8–20 nucleotides, can be recognized 
by computers using binding site pattern recognition algorithms based on experimental 
data, such as chromatin immunoprecipitation DNA sequencing (Chip-Seq). A distinction 
is made between probabilistic (binding site; position weight matrix), discriminant (sites + 
non-functional sites) and energy (site + binding free energy) TFBS models (Stormo 2010, 
2013). Databases such as Transfac and JASPAR contain the TFBS matrices for different 
organisms. These can be used, for example, to search a sequence for TFBS to understand 
gene expression (e.g. MotifMap, Alggen Promo, TESS, etc. programs), but also to find 
possible regulation via modular TFBS (TF modules) (e.g. using the Genomatix program). 
Besides, ab initio approaches (e.g. MEME Suite and iRegulon) try to find recurrent 
sequence patterns in multiple sequences via multiple alignment, which are then compared 
to known TFBS motifs for similarity. For example, we showed in one paper that heart 
failure-associated Chast-lncRNA is regulated by promoter binding of Nfat4 (Viereck 
et al. 2016).

In this way, from 1995 onwards (with E. coli and the yeast cell), the first genomes 
began to be completely labelled and published. This was followed by the genomes of 
eukaryotes (cells with a cell nucleus), which were about a thousand times larger, in par-
ticular that of humans (2001) and many other higher organisms (fly, mosquito, mouse, rat, 
chimpanzee, chicken, fish, etc.).

Another aspect is then to assemble the encoded proteins, RNAs and elements into 
higher networks. For example, a single enzyme does not stand alone, but forms metabolic 
networks (see next chapter). In the same way, a transcription factor that binds to the pro-
moter of a gene does not stand alone, but is part of the overall regulation (so-called regula-
tory networks, see next but one chapter). The precise description of individual genes often 
requires not only DNA but also RNA (“transcriptome”), in particular in order to precisely 
determine the beginnings and ends of the segments overwritten in RNA. An integrative 
analysis yields the most accurate results here, even in the case of viruses with their com-
pact genome (Whisnant et al. 2020).

One organism that has a fairly compact genome and yet is a fully viable self-contained 
cell is Mycoplasma genitalium (just over 580,000 nucleotides in size). In three exciting 

3.1 � Sequencing Genomes: Spelling Genomes
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papers from 2009, Luis Serrano (experiments) and Peer Bork (bioinformatics) nicely illus-
trated these different levels of understanding the genome sequence, understanding the 
transcriptome and proteins, and understanding metabolism and regulation (Güell et  al. 
2009; Yus et al. 2009; Kühner et al. 2009). Figure 3.1 illustrates a completed piece of the 
genome sequence. We show here the “origin of replication” from Gibson et  al. 2008, 
because in the case of bacteria in particular, this is where one starts to number the genes in 
their genome.

3.2	� Deciphering the Human Genome

The deciphering of the human genome was a milestone in research. The sequencing tech-
niques of the 1990s (capillary gel electrophoresis, automatic reading with a laser) were 
used systematically and intensively. Craig Venter, in particular, decided to go ahead in an 
industrial way and to finish much faster with the help of the first sequencing robots (only 
3 years after 1998; Venter et al. 2001) than the group of typical university scientists and 
professors who had been working on the project for more than 10 years.

This race has certainly greatly accelerated the sequencing of the human genome, but 
also the development of the sequence analyses of bioinformatics that are necessary with it 
in order to put everything together “correctly”. On the other hand, Craig Venter cannot be 
said to have “won”. On the one hand, both working groups finished at about the same rate, 
but on the other hand, it has been the case that the map (i.e., collecting genetic markers, 
restriction sites, positional cloning of genes, etc.) of the public consortium under Erik 
Lander has been instrumental in enabling Venter to put his sequences together so quickly 
in the first place. Then in 2001, both consortia, the private company consortium and the 
public research consortium, published a first “draft” sequence of the genome (Lander et al. 
2001; review in Lander 2011) – a rough map, but not only of the genes, but precisely of all 
the nucleotides that encode each gene.

This was the first time that the human genome had been “spelled out”. However, the 
groundbreaking work of the ENCODE consortium (2012), for example, showed that after 
spelling, reading only really begins with a hundredfold better genome and, above all, tran-
scriptome coverage, and one begins to understand the content and the subtleties of the 
human genome.

These results, which have continued to grow over the years, are now available on vari-
ous entry pages.

For example, one can also seek out these results at NCBI for questions and analysis, 
e.g., via the link https://www.ncbi.nlm.nih.gov/geo/info/ENCODE.html.

Entry Page of the Human Genome Project
A particularly good general access to human genome analysis and its history is provided 
by the entry page of the Human Genome Project.
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cc https://www.genome.gov/human-genome-project

The result is explained on “All About The Human Genome Project (HGP)”.

cc https://www.genome.gov/10001772

An alternative view has the entry page of the “Department of Energy”. Here, many 
large-scale projects in physics were managed, which is why this page also highlights the 
“Big Data” aspect.

cc https://genomics.energy.gov

A detailed review of all data is available in the archive of the Human Genome Project.

cc https://web.ornl.gov/sci/techresources/Human_Genome/index.shtml

3.3	� A Profile of the Human Genome

So what does our own genome look like? It is important to know that the human genome 
comprises about 3.2 billion base pairs (haploid, a complete set, for example in a sex cell) 
and is distributed in all body cells as a diploid total stock on 46 chromosomes: 44 auto-
somes, one pair of each chromosome (1 to 22) as well as two sex chromosomes, XX 
(woman) or XY (man). There are about 23,700 genes coding for proteins in the human 
genome (current status to be looked up at https://www.ensembl.org/Homo_sapiens/Info/
Index). There are also many thousands of RNA genes.

Since only 2–3% of the genome is needed for protein reading frames and only about 
10% of the genome for the additional regulatory signals in mRNA, RNA precursors and 
finally genes with promoter sequences, the genome was initially seen to be loaded with up 
to 90% ballast. In particular, with selfish DNA distributed throughout the genome as short 
(SINE, small interspersed elements) and long elements (LINE, large interspersed ele-
ments, e.g. ALU sequences). Other such elements are transposons and former retroviral 
sequences. Other repetitive regions characterize promoters (GC regions). Stabilizing, 
structural DNA (around centromeres, at chromosome ends e.g. telomeres etc.) also occu-
pies some space in the chromosome.

Nevertheless, after closer analysis, much more meaningful information is available in 
the human genome. First of all, there are the many splice variants from the protein genes, 
which increase the variance of the proteins in the different organs and life stages (espe-
cially in the embryo). There are numerous other genes, especially for the 22-nucleotide 
miRNAs that are excised from precursors, and the long non-coding RNAs (Liu et al. 2017). 
Therefore, the total amount of encoded genetic information is even higher. In total (genetic 
estimates), about 100,000 genetic traits are passed from generation to generation through 
the genome. Figure 3.2 makes this graphically clear.
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Fig. 3.2  What is in our genome? If we look at the figure, it becomes clear that we only consist of 
about 25% genes, of which only 2–3% code for proteins (the majority are selfish DNA, LINE and 
SINE). (Image from https://upload.wikimedia.org/wikipedia/commons/6/64/Components_of_the_
Human_Genome.jpg)

Interestingly, the publication of the human genome in 2001 was more of a race than an 
exhaustive analysis. This very elaborate detailed analysis is the goal of the ENCODE 
project. We should therefore also take a look at the subsequent, detailed analyses of the 
ENCODE consortium:

cc https://www.encodeproject.org

This consortium.

cc also: https://www.genome.ucsc.edu/ENCODE/

has further investigated the human genome in great detail after its first sequencing, 
intensively re-sequenced all areas, but also investigated contained DNA elements and cre-
ated an encyclopaedia:
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cc https://www.genome.gov/10005107, ENCyclopedia Of DNA Elements.

In particular, the ENCODE consortium was able to show that at least half of the genome 
is transcribed at least some of the time, in addition to protein genes, especially vari-
ous RNAs.

Numerous ENCODE publications (ENCODE 2011) continue to reveal new details of 
regulation in the human genome:

cc https://www.nature.com/encode/#/threads

For example, in the regulation of histones, RNA, the transcriptome and promoters. In 
the meantime, the human genome has been sequenced many times, among other things to 
determine individual differences. A current project is even examining 10,000 human 
genomes (Telenti et al. 2016).

Conclusion

•	 Based on sequence comparisons, special algorithms assemble the sequence fragments 
of modern sequencing techniques (see tutorials). After bacterial genomes and the yeast 
cell genome were completely sequenced and bioinformatically analysed in the 1990s, 
human genomes and numerous other eukaryotic (cells with a cell nucleus) genomes 
followed from 2001. The function of individual genes is identified by sequence com-
parisons. Protein function analysis (see Chap. 1), but also annotation of regulatory 
genome elements (ENCODE consortium) are main tasks of genome analysis.

•	 Eukaryotic genomes are billions of nucleotides in size, bacterial genomes only a few 
million. This means that there is room for long introns in the eukaryotic genome. Half 
of the human genome is transcribed, but there is also plenty of room for short (SINE) 
and long (LINE) repetitive elements and transposons.

•	 This combination of genome sequencing and bioinformatics means that the genome 
sequence is available for almost all known organisms. Bioinformatics can thus success-
fully predict the essential molecular components of these organisms: we live in the age 
of post-genomics (whenever the genome sequence is known). ◄

3.4	� Exercises for Chap. 3

It is a good idea to briefly review the exercises for Chap. 2. You should also briefly look at 
the exercises for Chap. 3 later for repetition at Chaps. 5 and 7.

Task 3.1
Describe how the human genome is constructed.
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Task 3.2
Describe what is meant by annotation or reannotation of a genome.

Task 3.3
Name and describe different sequencing techniques.

Task 3.4
Describe important steps in genome sequencing (also address bioinformatics challenges or 
important hurdles). Do you know any important pioneers of genome sequencing?

Task 3.5
Think about the bioinformatics requirements/challenges of ever-improving sequencing 
techniques, but also associated hurdles/limitations.

Task 3.6
Name and describe databases where you can find information about the genome.

Task 3.7
Explain how to bioinformatically screen a promoter sequence for transcription factor bind-
ing sites (name and briefly describe software/databases). What are the advantages of com-
paring e.g. several software/databases?

Task 3.8
Develop a simple program that reads in a promoter sequence, examines it for transcription 
factor binding sites, and outputs the result back. What parts would this program consist of? 
Also consider what challenges and sources of error this program would have to deal with.

Task 3.9
Analyze a sample RNA sequence:

Using the following sequence, perform a promoter search for possible transcription 
factor binding sites using ALGGEN PROMO software (https://alggen.lsi.upc.es/cgi-bin/
promo_v3/promo/promoinit.cgi?dirDB=TF_8.3):

>FP018429 BRCA1_1
TTCCAAGGAACAGTGTGGCCAAGGCCTTTCGTTCCGCAATGCATGTTGGAAATAGTAGTTCTT 
T C C C T C C A C C T C C C A A C A A T C C T T T T A T T T A C C T A A A C T G G A G A C C T C C A 
T T A G G G C G G A A A G A G T G G G G T A A T G G G A C C T C T T C T T A A G A C T G C T T T G G A C A C 
T A T C T T A C G C T G A T A T T C A G G C C T C A G G T G G C G A T T C T G A C C T T G G T A C A G C 
A A T T A C T G T G A C G T A A T A A G C C G C A A C T G G A A G C G T A G A G G C G A G A G G G C G 
GGCGCTTTACGGCGAACTCAGGTAGAATTCTTCCTTTTCCGTCTCTTTCTTTTTATGTCACCAGG 
GGAGGACTGGGTGGCCAACCCAGAGCCCCGAGAGATGCTAGGCTCTTTCTGTCCC 
G C C C T T C C T C T G A C T G T G T C T T G A T T T C C T A T T C T G A G A G G C T A T T G C T C A G C 
GGTTTCCGTGGCAACAGTAAAGCGTGGGAATTACAGATAAATTAAAACTGTGGAA 
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CCCCTTTCCTCGGCTGCCGCCAAGGTGTTCGGTCCTTCCGAGGAAGCTAAGGCCGCGTTGGG 
GTGAGACCCTCACTTCATCCGGTGAGTAGCACCGCGTCCG

Which of the following statements are correct (multiple answers possible)?
	 (A)	� ALGGEN PROMO does not find transcription factor binding sites in the DNA 

sequence.
	 (B)	� All hits found are also actual transcription factor binding sites, so in each case it 

is sufficient to predict them bioinformatically only.
	 (C)	 Transcription factors bind to DNA motifs, I can predict these bioinformatically.
	 (D)	� ALGGEN PROMO finds a transcription factor binding site for NF-AT2 in the 

promoter (with the “matrix dissimilarity rate” setting of 15). I can then use this 
information for further experimental studies, such as whether NF-AT2 has an 
influence on transcription, in this case of BRCA1.

Task 3.10
Explain a Hidden Markov Model (feel free to use an example).

Useful Tools and Web Links

Pfam https://pfam.xfam.org/
Rfam https://rfam.xfam.org/
SMART https://smart.embl-heidelberg.de/
ProDom https://prodom.prabi.fr/prodom/current/html/home.php
UniProt https://www.uniprot.org/
GenScan https://genes.mit.edu/GENSCAN.html
HMMER https://hmmer.org/
SignalP https://www.cbs.dtu.dk/services/SignalP/
TMHMM https://www.cbs.dtu.dk/services/TMHMM/
Transfac https://www.gene-regulation.com/pub/databases.html
TESS https://www.cbil.upenn.edu/tess/
MotifMap https://motifmap.ics.uci.edu/
Alggen Promo https://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.

cgi?dirDB=TF_8.3
Genomatix https://www.genomatix.de/
MEME Suite https://meme-suite.org/
iRegulon https://iregulon.aertslab.org/
tRNAscan https://lowelab.ucsc.edu/tRNAscan-SE/
Repeat Masker https://www.repeatmasker.org/
ENCODE https://www.encodeproject.org
NIH https://www.genome.gov
Genomic Science 
program

https://genomics.energy.gov

Human Genome 
Project

https://web.ornl.gov/sci/techresources/Human_Genome/index.
shtml

Ensembl https://www.ensembl.org/Homo_sapiens/Info/Index
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4Modeling Metabolism and Finding New 
Antibiotics

Abstract

Metabolic modelling allows metabolism to be analysed in detail. Biochemical knowl-
edge and databases such as KEGG determine the set of all enzymes involved. It is then 
possible to calculate which metabolic pathways and enzyme chains keep the metabo-
lites in a network in equilibrium (flux balance analysis), which of these are also no 
longer decomposable (elementary mode analysis) and which of these are sufficient to 
represent all real metabolic situations by combining a few pure flux modes (extreme 
pathway analysis). To calculate the flux strength, one needs further data, e.g. gene 
expression data and software (e.g. YANA programs). Further analyses look at meta-
bolic control (metabolic control theory) and describe the rates (kinetics) of the enzymes 
involved more precisely. This allows a better description and understanding of metabo-
lism, prediction of essential genes and resulting antibiotics as well as metabolic 
responses, for example in tumour growth.

The genome sequence allows bioinformatics to gain a much better overview of the organ-
ism. In particular, this allows us to determine much better than before which enzymes and 
metabolic pathways occur in an organism.

Is it possible for the bioinformatician to calculate, for a given set of enzymes, what 
metabolism might come out of it?

The surprising answer is “yes”; so-called metabolic modeling (Mavrovouniotis et al. 
1990; Schuster and Schuster 1993) can indeed answer this question.

© Springer-Verlag GmbH Germany, part of Springer Nature 2023
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4.1	� How Can I Model Metabolism Bioinformatically?

The reasoning is as follows: All metabolic sources (“sources”) serve, after all, to nourish 
and supply the organism, and in the same way there are excretions which dispose of the 
unnecessary metabolic products (“sinks”). But for all other metabolites (“internal metabo-
lites”), the body and each cell of the body must ensure that they are supplied and degraded 
in the same amount over time, so that this internal metabolite is neither permanently miss-
ing nor increasing. This can be translated into a mathematical calculation (algorithm) to 
calculate which enzyme chains balance all the internal metabolites involved (programs we 
have developed for this purpose include YANA and Metatool; an overview of numerous 
other programs for this purpose is provided by Dandekar et al. 2014). Interestingly, this 
initially somewhat abstract result (all “elementary flux modes”) is an accurate description 
of all metabolic possibilities for this organism with these enzymes. Figure 4.1 provides a 
general overview of metabolic modeling, and Fig. 4.2 of elemental mode analysis.

We have investigated this in more detail, e.g. for the metabolic network of glycolysis 
and the pentose phosphate pathway, and were able to show (Schuster et al. 2000) that by 
exact mathematical calculation one can also find additional alternatives from these two 
metabolic pathways, e.g. other enzyme combinations that nevertheless balance all the 
internal metabolites used. These allow the organism to adapt to completely different meta-
bolic conditions, e.g. to produce a lot of NADPH, energy or nucleotides (Fig. 4.3).

However, apart from marvelling at the numerous metabolic possibilities that even sim-
ple bacteria have as well as higher cells, these flow analyses can also be used for various 
applications.

e.g. metabolic pathways from KEGG database:
- Glycolysis: sugar/glucose pyruvic acid/pyruvate
Citric acid cycle (pyruvate, oxaloacetate citrate; etoglutarate) Respiration
(respiratory chain 3 ATP) ATP, energy
-Lipids, fats: ß-oxidation; lipid synthesis; unsaturated fatty acids.

Elementary Mode Analysis (EMA): Program Metatool
- Adaptation of the flux distribution to experimental data/specific situation:  
program YANA, YANAsquare (with error minimization)
- Metabolic control by enzymes: control theory
- Detailed dynamics: concentration changes over time Depend on
the concentration present Differential equations, parameter estimates:
Power law analysis software

Metabolism

Metabolic calculations

-Protein modifications (sugar or lipid attachment 
(e.g. aspartate, lysine); hydroxyproline, -lysine (e.g. 
collagen))
-Glycolipids (e.g. in the nervous system the cerebrosides
and gangliosides from sphingosine)

Intermediary metabolism
- Nerve cells: e.g. biogenic amines (adrenaline, noradrenaline)
- Peptides (e.g. non-ribosomal)
- Hormones, receptors, secondary messengers (2nd messengers): cAMP; steroids
- Cell wall synthesis (teichoic acids, murein, chitin ...)
- Xenobiotics (degradation of foreign substances, e.g. drugs)
- Muscle filaments, structural proteins, blood coagulation cascade, immune response

Secondary metabolism

Fig. 4.1  Overview of metabolic modelling
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Stoichiometric matrix

All "elementary flow modes" from 
metabolites and enzymes, which 
provide a description of all metabolic 
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Fig. 4.2  Overview of 
elemental mode analysis
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5) 5 Hexose + ATP 6R5P + ADP

6) PPP (much NADPH, not much NADH or ATP)
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- 4 for exchange Ribose Hexose
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Fig. 4.3  Overview of the metabolic network of glycolysis and pentose phosphate pathway
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In particular, I can use it to investigate how I can achieve the best possible yield of a 
product (the “sinks”, see above) with starting products (the “sources”), for example if I 
want to biotechnologically produce citric acid for the kitchen or nanocellulose for trans-
parent displays – to give a well-known and a very modern example. Similarly, I can now 
compare all the metabolic possibilities for one organism with various other organisms and 
in this way see what peculiarities are present or even what diversions and alternatives one 
organism has and the other does not. You can also see in this way that different strains of 
bacteria, such as meningococci, use different pathways to achieve the same rate of growth, 
allowing both a pathogenic, disease-causing lifestyle and a more benign lifestyle with 
greater effort on amino acid synthesis but less aggressiveness against the human host 
(Ampattu et al. 2017).

It is important to validate the modelled (and thus only predicted) metabolic differences 
by further experimental data. Since individual errors are corrected by the metabolic flux 
network model (in a metabolic flux, all enzymes must work together at the same rate), data 
such as RT-PCR measurements on the mRNA expression of metabolically active enzymes 
can also be used, for example. These mRNA measurements are “indirect” because only the 
mRNA is measured and not the protein or enzyme activity; however, this works well in 
practice, with only 5–10% error for fluxes from a network of 30–100 enzymes, as con-
firmed by metabolite measurements (Cecil et al. 2011, 2015). Examples of applications 
include the changing lifestyle of chlamydiae (bacteria) during infection (as elementary 
bodies and subsequently as reticular bodies; Yang et al. 2019) or the mutual metabolic and 
regulatory responses to infection events in fungal infections of fungus and host (Srivastava 
et al. 2019).

This is particularly interesting if I want to use it for medical purposes, for example to 
develop an antibiotic. Then I am interested in the metabolic pathways that as many bacte-
ria as possible have in common, but which are absent in the sick person and can therefore 
be blocked by the antibiotic without endangering the sick person, but at the same time 
killing all bacteria that have this metabolic pathway.

The flux calculations also open up the possibility of identifying individual enzymes that 
are particularly critical for the survival of the bacteria (because the failure of a particular 
enzyme affects, for example, all flux modes that provide an essential cofactor for the bac-
terium and not just a few). This may also help in finding new drugs against insidious fun-
gal infections. One can also re-examine the detailed effects of an antibiotic with gene 
expression analyses and a calculation of the resulting metabolite fluxes as well as single 
metabolite measurements (Cecil et al. 2011; YANAsquare program). This then helps to 
find new drugs against multidrug-resistant staphylococci, for example (Cecil et al. 2015).

At present, we also want to link the different modelling levels (Chaps. 1, 2, 3, 4 and 5) 
more intensively in order to better protect plants against drought stress and infections, for 
example by identifying key enzymes that have an alternative regulatory function (e.g. 
aconitase, which, in addition to its metabolic function in the citric acid cycle, also regu-
lates IRE in mRNAs, see Sect. 2.2) and alter regulation favourably for drought stress or 
resistance to infection.
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4.2	� Useful Tools for Metabolic Modelling

As we have already learned, all metabolic sources serve to nourish and supply the organ-
ism (“sources”). In addition, there are excretions (“sinks”), but also internal metabolites, 
which must be supplied and degraded to the same extent. In this context, mathematical 
algorithms can calculate the existing metabolic fluxes for all enzymes and reactions 
involved and are a helpful tool for metabolic modelling. Table 4.1 presents a number of 
applications of metabolic modelling.

Table 4.2 shows next how the modeling is then technically performed, whereby this is 
again only a selection of useful programs.

Metatool (Table 4.2) has been in use since 2005 (von Kamp and Schuster 2006). It 
allows the calculation of the stable metabolic pathways available to the metabolism for a 
given set of enzymes. It is constantly being further developed. In addition to the integer 
version 4.9, which runs stably on Windows, there is a new version 5.1 and variants for 
Linux and Windows.

The YANA programs, which are programmed in Java and can therefore be used flex-
ibly on any computer, can be used to calculate not only the different flux possibilities for 
metabolism, but also how strong the flux is in a particular situation, especially through a 
single enzyme. The programs can analyze larger and larger networks faster and faster; a 
genome-wide network is described in the 2011 paper (Schwarz et al. 2005, 2007; Cecil 
et al. 2011).

CellNetAnalyzer (CNA) is a MATLAB toolbox. Via a graphical user interface, various 
computer methods and algorithms are offered for the analysis of the structure of metabolic 
networks as well as for the analysis of signaling networks and regulatory networks.

Metabolic networks are modeled using a stoichiometric matrix and boundary condi-
tions. Thus, CNA uses very similar principles of flux balancing as Metatool does with 
elementary mode analysis. Their calculation is also offered as well as “minimal cut sets” 
(how do I safely cut a metabolic pathway?). The different algorithms are also offered for 
the construction of strains as well as for metabolic engineering (e.g. optimal yields in 
biotechnology).

Table 4.1  Applications of metabolic modelling. (Dandekar et al. 2014)

Metabolic fluxes (“modes”) that occur only in 
bacteria but not in humans

Antibiotics

Yield (final product) for given starting 
product(s)

Biotechnology

Growth equation Calculation of growth in plants, bacteria, 
pathogens

Metabolic overview Characterization of microbes and organisms
(Often from genome sequence) Characterization of the adaptation potential, 

identification of organisms
Calculation of robustness Prediction of essential genes

4.2 � Useful Tools for Metabolic Modelling
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Table 4.2  Programs for metabolic modeling

Metatool https://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool/
YANA https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/

yanasquare/
CellNetAnalyzer https://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html
COPASI https://copasi.org/
Flux Balance Analysis https://systemsbiology.ucsd.edu/Downloads/FluxBalanceAnalysis
COBRA Toolbox https://opencobra.github.io/

CNA also uses Boolean networks as well as multi-digit logic and interaction graphs and 
can thus also model signal networks and regulation. The stable system states are deter-
mined and the dynamics are simulated with differential equations (via a so-called plugin, 
an additional program that uses the software ODEfy). Finally, one can also consider net-
work properties such as the signal network length and any feedback loops that may be 
present.

The COPASI “Biochemical System Simulator” allows to analyze biochemical net-
works in their structure and dynamics (Kühnel et al. 2008; Kent et al. 2012; Bergmann 
et al. 2016). It is also possible to read in models (in SBML format) and model the network 
using differential equations (“ODEs”) or stochastic (“Gillespie’s stochastic simulation”), 
so that random events (e.g. nutrient supply) can be simulated well.

Flux Balance Analysis (FBA) is the software of the world-famous old master of meta-
bolic simulations, Bernhard Palsson. You can also model metabolic and, with extensions, 
signal networks.

The COBRA toolbox (Kent et al. 2012) is useful for metabolic modeling and signaling 
cascades. A detailed tutorial, including the starting metabolic model for E. coli, is avail-
able and a whole community of users and developers. Orth et  al. (2010) introduce an 
instructive E. coli metabolism model in a separate paper.

Conclusion

Metabolism is fundamental to the nutrition, growth and reproduction of all living 
beings. Metabolic modelling allows us to look at this in detail. Bioinformatics first uses 
biochemical knowledge and databases such as KEGG to determine the set of all 
enzymes involved. It is then possible to calculate (see exercises and tutorials) which 
metabolic pathways and enzyme chains keep the metabolites in a network in equilib-
rium (flux balance analysis), which of these are also no longer decomposable (elemen-
tary mode analysis) and which of these are sufficient to represent all real metabolic 
situations by combining a few pure flux modes (extreme pathway analysis).

In order to calculate the flux strength, one needs further data, e.g. gene expression 
data and software (e.g. YANA programs). Further analyses look at metabolic control 
(metabolic control theory) and describe the rates (kinetics) of the enzymes involved in 
more detail. This is mathematically complex, but leads to deeper insights into their 
regulation and function.
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Bioinformatics thus makes it possible to better describe and understand metabolism, 
to predict essential genes and resulting antibiotics as well as metabolic responses, for 
example in tumour growth or for bacterial cell wall synthesis. ◄

4.3	� Exercises for Chap. 4

As an introduction, it is advisable to work through the exercises in Chap. 11 (Sect. 11.1, 
11.2, 11.3, 11.4, 11.5, and 11.6).

Modelling metabolic networks:

Task 4.1
Describe how metabolic pathways can be calculated bioinformatically. Also state possible 
problems with metabolic modelling.

Task 4.2
Name a computational program for metabolic pathways.

Task 4.3
Explain how to compile all the enzymes of glycolysis for a metabolic pathway. What 
advantages do you have in each case when you compare several databases?

Task 4.4
Explain what is meant by elemental mode analysis.

Task 4.5
You want to develop a new antibiotic. Which enzymes in your metabolic pathway could be 
interesting antibiotic targets?

Task 4.6
Perform elementary mode analysis on the citrate cycle/citric acid cycle in E. coli. First 
download Metatool (https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/meta-
tool_4_5/). Then create the Metatool file for the citrate cycle/citric acid cycle in E. coli 
yourself and carry out an analysis.

Look at the metabolic network in Metatool and answer the following questions:

	1.	 How many modes do I get?
	2.	 How do I interpret my found modes in terms of finding drugs/targets against 

bacteria?

To better understand an elemental mode analysis, you should also answer the following 
questions:

4.3 � Exercises for Chap. 4
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	3.	 What happens to the number of modes when I change a metabolite from internal to 
external? Why does this happen?

	4.	 What happens to the number of modes if I set all metabolites from external to inter-
nal? Why does this happen?

	5.	 What happens to the number of modes when I change an enzyme from irreversible 
to reversible? Why does this happen?

	6.	 What happens to the number of modes if I change all the enzymes from reversible 
to irreversible? Why does this happen?

Task 4.7
Perform elementary mode analysis for pyrimidine metabolism. In doing so, compare the 
metabolism between humans and S. aureus. Proceed according to Example 4.6 and answer 
the following questions:

	1.	 How many modes do I get in humans and S. aureus?
	2.	 Are there differences in pyrimidine metabolism between humans and S. aureus?
	3.	 How do I interpret my found fashions in terms of finding drugs/points of attack 

against diseases?

Useful Tools and Web Links

Database Information on metabolism can be found, for example, in the KEGG database 
(https://www.genome.jp/kegg/), Roche Biochemical Pathways (https://www.roche.
com/sustainability/what_we_do/for_communities_and_environment/philanthropy/
science_education/pathways.htm) and EcoCyc (https://ecocyc.org/). Since 2020, 
KEGG now has a new small grey box “change pathway type” in the upper left 
corner, which shows the selection of available enzymes for an organism (green 
boxes), missing ones are shown in white

Software A tutorial about Metatool can be found at: https://pinguin.biologie.uni-jena.de/
bioinformatik/networks/metatool/metatool5.0/metatool5.0.html. Also important 
are YANA (https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/
yanasquare/), YANAsquare (https://www.bioinfo.biozentrum.uni-wuerzburg.de/
computing/yanasquare/), COPASI (https://copasi.org/) and CellNetAnalyzer 
(https://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html)
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5Systems Biology Helps to Discover Causes 
of Disease

Abstract

The systems biology modelling of signalling cascades and protein networks allows 
deeper insights into the function of the proteins involved and thus helps to understand 
the causes of diseases, to better describe infection processes and immune responses, or 
to elucidate complex processes in biology such as cell differentiation and neurobiology. 
Stronger mathematical models describe signalling networks precisely in terms of 
changes over time and their speed using differential equations. This explains the pro-
cess exactly, but spends additional time e.g. determining the velocities (kinetics; time 
series analysis). Boolean models, on the other hand, only require information about 
which proteins are involved in the network and which protein interacts with which 
other proteins in what way (activating or inhibiting). Simulations based on a Boolean 
model (e.g. with SQUAD or Jimena) must be checked iteratively in many cycles to see 
whether the behaviour in the computer model also matches the actual outcome observed 
in the experiment, at least qualitatively. The computer model is thus adapted to the data 
step by step (data-driven modeling).

Let us now turn to systems biology in application. Bioinformatics models also allow us to 
gain new insights into system effects, and in particular to understand how a signalling 
cascade functions as a whole. The easiest way to understand this is to think of a disease, 
such as stroke or heart attack. Not only the heart is “broken”, but the whole person is 
affected. Often his/her life is in danger, and only decisive and the best modern medicine 
can still save people with heart attacks. But is it not hopeless to model and even understand 
such a complex system as a whole? Well, this question always arises when I want to look 
at a system in its entirety. For example, all living things, including humans, are part of an 
environment. And only when I also model this, do I understand everything, which in turn 
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is not so easy, because the region, the country, indeed the whole world are again part of an 
even greater whole. That is why half of the work is actually done when we succeed in 
defining an interesting section that we can model sufficiently to gain new insights from it. 
For example, how does a heart attack happen? Often it happens in a sudden flash. But simi-
larly often a heart failure, the so-called cardiac insufficiency, announces itself, gets worse 
and worse, and only then does the heart attack occur. Can we perhaps stop this process, can 
modern medicine and bioinformatics help here?

5.1	� Application Example: How Does Phosphorylation Cause 
Heart Failure?

This is a section of the overall context around heart failure and heart attack that can be 
modeled quite well. New research shows that in heart failure, an important growth stimu-
lus comes from a growth signal, a phosphorylation, on the Erk protein. Normally, the Erk 
protein is only doubly phosphorylated (Thr183 and Tyr185). But when the heart is over-
loaded, the protein gets a third phosphorylation (Thr188), migrates into the nucleus and 
leads to genes being read (“transcription factor”; together with other transcription factors, 
e.g. NFATc4 and GATA4), which now cause the cardiac muscle cell and thus the cardiac 
muscle to grow (“hypertrophy”; Fig. 5.1). If we want to simulate this process in the model, 
we first need the partner proteins of the Erk signaling cascade and the most important 
alternative signaling pathways (Figs. 5.1 and 5.2). Only then can we see whether we can 
change something in this fateful cascade by administering a drug (receptors on the cell 
membrane, above in Fig. 5.1). To do this, we first need to compile the signalling cascade 
(knowledge, literature, experiments, databases) and then translate it into a network using 
a machine-readable drawing program. This can be done by programs such as Cytoscape or 
CellDesigner. Just as with a drawing program, one draws in proteins and their connections 
(“interactions”), noting whether these are inhibitory (as a “truncated line”) or activating 
(as an “arrow”) connections. But the advantage of the above-mentioned programs is that 
they save the illustration e.g. inXML (Extensible Markup Language) or SBML (Systems 
Biology Markup Language) format, so that now the computer also understands the draw-
ing (“machine-readable”). This then opens up numerous further evaluation possibilities 
through already well-established software. For example, it is possible to display which 
different pathways are involved in a given set of proteins (“Gene Ontology” analysis, see 
Appendix).

But what is so fatal in our cascade? Is it not good if the heart reacts to stress with growth 
and thus becomes stronger? Well, we have identified Erk kinase and its third phosphoryla-
tion as an important switch in our model. We could simulate in the model whether we 
could perhaps strengthen or weaken Erk phosphorylation by stimulating the receptors of 
the cardiac muscle cell (see Figs. 5.1 and 5.2) (see legend to the figure). It is interesting to 
note that an enlarged heart goes through a detrimental circle (“circulus vitiosus”), and a 
poorer supply of blood (due to arterial calcification, for example) leads to less oxygen in 
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Fig. 5.1  Representation and simulation of the signalling cascade in heart failure. Using various 
databases, a signalling network can be reconstructed in which the individual interactions of the pro-
teins/molecules involved represent, in simplified form, important molecular relationships leading to 
heart failure (activation as →, inhibition as -|; here by the CellDesigner software)

the heart muscle. But this is a stimulus for the third Erk phosphorylation, so that the 
muscle grows. But since the normal heart is already optimally adapted, the enlargement of 
the heart muscle cell results in an even poorer oxygen supply and so on and so forth. So 
the question arises: What is the best way to intervene in this system?

5.1 � Application Example: How Does Phosphorylation Cause Heart Failure?
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Fig. 5.2  Simulation of the signal cascade in heart failure. Subsequently, the network from Fig. 5.1 
can be used for dynamic simulation, whereby the logical interconnection of the interactions is 

(continued)
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For this purpose, our network, which is already available in machine-readable form, is 
next dynamically simulated by software. In this process, the logical interconnection is 
translated into dynamics, since various differential equations, e.g. exponential function, 
simulate the rise and fall of the respective signal strength in the network. Here, first the 
receptor is stimulated, then a protein directly below it, finally the Erk protein is phosphory-
lated and so on. This is done, for example, by the software SQUAD (Standardized 
Qualitative Dynamical Modeling Suite) or, alternatively, by the software CellNetAnalyzer 
(CNA), if we provide the network in a machine-readable form in each case. Now we can 
compare different signals on the cell membrane, such as the effect when I stimulate the 
beta receptors (e.g. an adrenaline rush going through our body, the heart then beats faster 
and we fight or run away). Then I get phosphorylation at the Erk protein, which then 
makes the heart muscle stronger (positive inotropic effect), it can then beat faster. The 
third phosphorylation is added during overexertion. Our network section shows us that we 
achieve this via two other signalling pathways, each of which is stimulated by different 
signals (Fig. 5.2).

Once this is understood through bioinformatics simulations, it also becomes clear how 
we need to control our system: It is important to prevent the Erk switch from turning on 
further genes in the nucleus of the cardiac muscle cell, which in the situation of cardiac 
insufficiency under consideration lead to an increase in stress and oxygen deficiency in the 
cardiac muscle cell. This prevents further unfavourable growth and overstretching of the 
heart muscle. One possibility that is currently being tested in pharmacology (although 
only in cell culture for the time being) is suitable peptides that prevent one Erk protein 
from hitting another Erk protein (“dimerisation inhibitor”). Without its peer (“dimerisa-
tion”), however, it cannot enter the cell nucleus at all and activate genes there. In this way, 
one could achieve that, on the one hand, the two “good” phosphorylations of the Erk pro-
tein are still supported with heart-strengthening drugs (“positively inotropic”, as the medi-
cal profession says, i.e. the path on the far right in the model of Fig. 5.1), but, on the other 
hand, the “bad” third phosphorylation of the Erk protein and the further, here harmful, 
enlargement of the heart muscle are prevented.

translated into mathematical functions (e.g. exponential functions) in order to reproduce the respec-
tive signal strength, i.e. the activation state of the individual proteins/molecules. In this way, it is 
possible to simulate, for example, the activation of the RTK receptor by a hypertrophic stimulus, 
which activates the Raf1 protein and subsequently phosphorylates the Erk protein, which then 
switches on genes in the cell nucleus (with further transcription factors, such as NFATc4 and 
GATA4) that cause the heart muscle cell to grow. Shown is the change in the network in response to 
a hypertrophic stimulus (time 2, Top) and a non-hypertrophic (mitogenic) stimulus (also at time 2, 
Bottom). It can be seen that different transcription factors are turned on over time in response to a 
hypertrophic stimulus (e.g., c-Myc and Elk1). It is also clear that ERK TEY phosphorylation (Thr183 
and Tyr185) is active first, followed by Thr-188 phosphorylation (simulated here by SQUAD soft-
ware). With the help of such systems biology descriptions, one can effectively model a biological 
system and is thus able to understand the system behavior, such as how heart failure occurs or how 
one can intervene in the cascade (e.g. possible therapy)

5.1 � Application Example: How Does Phosphorylation Cause Heart Failure?
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The diagram once again illustrates the system behaviour of these signalling cascades. 
On the one hand, bioinformatic simulation enables us to understand how a cell with its 
signalling cascades reacts in a healthy or pathological way to external signals. On the other 
hand, it is also possible to test individual strategies in detail and determine which signals 
are stronger or weaker and what then prevails in each case. Of course, one could also find 
this out directly with many experiments, but this is much more time-consuming and also 
requires many, many experiments.

The model description we have just used is “semi-quantitative”, i.e. we explain exactly 
which is stronger or weaker, which signal is important first, second and last. But we are not 
yet exactly quantitative, so that one already has exact quantities/concentrations. Of course, 
there are such exact quantitative models in bioinformatics. However, the disadvantage of 
such models is that they need much more additional information, in particular how fast the 
most important processes change with time, or how strong the signals are at the beginning 
and at least at four further time points. Then I can calculate with which function I describe 
the change with time, i.e. I can set up the so-called differential equation of this property. 
This makes sense, for example, if I want to thin the blood and I do not want to make the 
platelets too weak or too strong for this purpose. That’s why we set up a fairly accurate 
model with differential equations for this (and collected a lot of experimental data before-
hand). In many other cases, however, one does not have the time to measure everything so 
precisely experimentally, and a semi-quantitative model is then already very good for 
describing the corresponding system effects, for example when we want to protect plants 
against pests or heat stress, to give a completely different example. To do this, we then 
looked more closely at the effect of plant hormones (“cytokinins”), with which you would 
spray the plant in the event of a bacterial infestation, for example, and then you have a 
completely biological and readily degradable pest control agent (Naseem et al. 2012a). In 
order to find the right cytokinin, the complex further effects were simulated more precisely 
in a systems biology model, as shown above for the heart (cytokinins also control many 
other processes, for example in the growth of plants).

In summary, then, systems biology descriptions are an important area of bioinformatics 
today for better understanding systems behavior and signal processing in cells and organ-
isms. Often, relatively few data are sufficient for this purpose, because even a rather small 
semi-quantitative model answers the questions about the best or most interesting system 
effect, as in the case of heart failure, blood thinning, plant pests or, another exciting topic, 
for example, cancer and cancer drugs (antibodies, cytostatics). These drugs need to be 
optimally combined and correctly dosed – ideally even individually and patient-specific. 
This is precisely where bioinformatics can calculate the best strategy for the patient.

There is often also more informatic preliminary work to the semiquantitative model. 
This applies to biological systems and their system effects, which are hidden in large 
amounts of data (e.g. gene expression data, genome sequences, metabolites, pharmaceuti-
cal levels, etc.) and where the decisive system components must first be filtered out using 
statistics or even complex sequence analysis programs. This is also an important and 
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laborious task for bioinformatics. But nevertheless, one would subsequently set up again a 
semi-quantitative or also an exactly quantitative model of the system in order to describe 
it more precisely, exactly as just illustrated.

5.2	� Generalization: How to Build a Systems Biology Model?

Can we generalize our approach? Yes, it is one way to describe the systems biological 
relationships,

	1.	 First gather all the components (consider the “topology” of the model, that is, its 
structure).

	2.	 Then I take this structure and now simulate the system behavior in the computer 
(“simulation”).

First: Gather All Components of the System (Its Network or Topology)
Each of the steps has its own challenges. For step 1 to work, I need to write my network 
with software so that the output is an image that a machine can read. For example, the 
CellDesigner and Cytoscape software allow such network descriptions. Their output for-
mat, an XML format (i.e. all parts of the image are marked in a computer-readable way), 
can be read by a program. The two softwares differ only in minor details. In any case, how-
ever, they work by connecting proteins (“nodes”) with each other (“edges”). This creates a 
network. In order for this network to predict what will actually happen in the cell, Boolean 
logic is important in linking, i.e. which protein is linked to another protein and how (activat-
ing or inhibiting). In addition, it is important to pay attention to “And”, “Or” and “Not”, i.e. 
whether, for example, activation only occurs when two proteins jointly activate a third (an 
“And”), whether one of the two is sufficient for this (then corresponds to an “Or” linkage) 
or whether one must not be there (“Not” as well as with SQUAD, “Nor”, “And not”).

In practice, this requires taking into account many sources about the biological system 
as well as collecting missing information from databases or determining it from one’s own 
domain and sequence analyses (consider phosphorylation sites, function of the proteins 
involved, existing interaction domains or known substrate-enzyme relations).

In addition, it is important to be clear about how to decide which article or finding is 
most likely in the case of conflicting sources (see Sect. 6.2). It is best to store this informa-
tion in a separate table so that you can later prove on the basis of which data the model was 
arrived at.

Second: Simulate the Network and Its Dynamics
It is now possible to follow Boolean logic and thus make statements about signal chains. 
One way to do this is to construct a Petri net (Li et al. 2011; Schlatter et al. 2012) from the 
network using appropriate software and thus reproduce the signal cascade in a first form.

5.2 � Generalization: How to Build a Systems Biology Model?
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However, a so-called semiquantitative model reproduces the processes somewhat more 
accurately. Starting from the Boolean network, differential equations, e.g. exponential 
functions, are linked in such a way that they reproduce this logic, but by means of the 
mathematical transformation between the completely switched-on or switched-off state, 
they lay a compensation curve (“interpolate”). In order to reproduce the logic in the net-
work correctly, the software SQUAD, for example, creates chained exponential terms 
(uses exponential function), which also take into account the “and”, “or” and “not”. It 
reads networks written with CellDesigner e.g. as SBML format and requires a Windows 
XP or Linux operating system. These limitations no longer apply to the Jimena software 
(Karl and Dandekar 2013a). It runs platform-independently using Java and can read YeD 
files, among others, but also various versions of CellDesigner. Surprisingly, this way I also 
get all order relations in the model correctly, i.e. which receptor is excited before which 
one and which link in a signal chain is activated earlier or later. In most cases, the mole-
cules close to the receptor are excited first, followed by the later, mediating proteins. If the 
topology (structure) of the model provides for a feedback loop, this can then return the 
signal to the beginning of the signal chain, either inhibiting (negative feedback) or activat-
ing (positive feedback, sometimes also called “feedforward loop”).

This brings us to another important point. The software can only simulate correctly 
what is also reproduced correctly in the network. This means that a period of constant test-
ing and trial and error begins until the simulation reproduces the correct sequence of 
events in this signal network as faithfully as possible.

Since this is a semi-quantitative model, the next step is to normalize the different units 
of the model according to the experimental data. This means that the typical times of the 
signal cascade, receptor excitation, phosphorylation of kinases, etc. are determined 
(so-called data-driven modeling). Hundreds of biological problems have already been 
simulated in this way in recent years. The Boolean semiquantitative model is therefore 
quite popular in biology, because one can begin to describe the biological system with 
relatively little information, and then step by step learn more and more about the model 
through simulations and experiments.

If so much data is put into the model, one can of course wonder what new insights the 
model can bring out. But it is the case that a few experiments are sufficient to normalize 
the model and to qualitatively confirm the correctness of all links (correct stimulus 
response and sequence). With the model, I can now predict the outcome for all times and 
all signal and switching sequences that are possible in the network.

For example, we used this approach to simulate the behavior of lung carcinoma 
(Stratmann et al. 2014; Göttlich et al. 2016a) and colon carcinoma cells (Baur et al. 2019) 
and then tested through new combinations and options for therapies in addition to standard 
therapies.

With regard to the Erk signaling network, the interesting thing was that through the 
bioinformatic model we can mimic new approaches to treating heart failure (Brietz et al. 
2016a), such as the negative feedback loop through Rkip or the approach of using 
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dimerization inhibitors against Erk dimerization – both ways to prevent heart failure at the 
molecular level. Furthermore, the bioinformatic model also clarifies the downstream 
targets (i.e. target proteins) of heart failure, which can also be pharmacologically influ-
enced to prevent or favourably influence heart failure.

Alternatives to Semiquantitative Modeling
If further data is known, especially about the velocity and stimulus strength in the signal 
chain, the data-driven modeling can be taken even further and the exact velocities, affini-
ties and chemical equilibria can be calculated more precisely. With this, enough informa-
tion is then available to represent this process with exact equations, so-called differential 
equations, which thus have the change of a quantity on the left side and describe this 
change on the right side via the quantity itself and further determining factors. If I know 
all the influencing factors, I know the constants and kinetic properties of the signal cascade 
(in mathematical terms, this is called the “parameters” of the differential equation), and I 
can then use them to model the system accurately and precisely. An example is the inhibi-
tory cAMP and cGMP signalling pathways in the platelet, which thus dampen the platelet 
in its activation. Here we had enough information from experiments that we patiently 
repeated over and over again for several years to set up such a model (Wangorsch et al. 
2011). This area of accurate modeling is also being pursued by many systems biology 
groups. A simple approach to set up such models oneself is the software PLAS (Power law 
analysis and simulation; https://enzymology.fc.ul.pt/software/plas/), which also intro-
duces one to all the steps for this more accurate simulation via tutorials. However, as a 
beginner you have to make many decisions about the parameters. But if there are too many 
“free” parameters, one runs very easily the risk that the system is described incorrectly, 
because one can always choose the free parameters in the equations in such a way that the 
system seems to fit the little available data, but then very easily misses the mark with new 
experiments or data. This is easily prevented in the semiquantitative models. This is 
because these are coarser, but have fewer free parameters and therefore are not as quick to 
be wrong in their predictions as the much more accurate quantitative models. Finally, it is 
worth mentioning that one can also stop at step 1 and also just examine the structure of the 
model in detail. This works for signaling cascades as well as for metabolism. For the latter, 
glycolysis or the citric acid cycle, for example, are very illustrative textbook examples, 
which are followed by further insights from, for example, the linear metabolic pathway of 
glycolysis and from the cyclic pathway of the citric acid cycle for metabolism. An over-
view of these different systems biology methods and approaches is provided in the English 
textbook by Klipp et al. (2016).

Finally, we have collected an introductory selection of our own work on Boolean 
models and semiquantitative modeling based on them (see below), which should give an 
overview of the basics, but also various examples of applications, and help the interested 
reader to continue learning.

5.2 � Generalization: How to Build a Systems Biology Model?
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Biological Examples for Boolean Modeling
Basics:

In a review paper, we systematically compared different approaches to Boolean modeling and 
dynamic modeling, e.g. SQUAD, ODEFY, and CellNetAnalyzer (Schlatter et  al. 2012). Another 
good starting publication is Di Cara et al. (2007) on SQUAD. Our software Jimena is a nice further 
development (Karl and Dandekar 2013a). Jimena also offers to distinguish between direct and 
dynamic network control quantitatively and qualitatively in networks (Karl and Dandekar 2015).

Specific models for different cells and processes:

•	 heart: Brietz et al. (2016a) and Breitenbach et al. (2019a, b),
•	 liver: Philippi et al. (2009),
•	 immune cells: Czakai et al. (2016),
•	 tumours: Stratmann et al. (2014), Göttlich et al. (2016a), Baur et al. (2020), and Kunz 

et al. (2020),
•	 plants (hormones and infections): Naseem et  al. (2012, 2013a, b), and Kunz 

et al. (2017),
•	 bacteria: Audretsch et al. (2013),
•	 platelets: Mischnik et al. (2013a, b).

Extension of such semi-quantitative models to fully dynamic models:

Two papers on dynamic modeling via platelets are helpful here for comparison:
Mischnik et al. (2014) describe the function of the signal molecule Src, but now with differential 

equations and estimates of the velocities of all processes (“kinetic parameters”). It is crucial to 
switch between active and inactive platelets. In the process, the mathematical description was also 
verified in detail experimentally.

Wangorsch et al. (2011) again describe the function of inhibitory cyclic nucleotides in the platelet 
using differential equations that take into account the different rates of the processes involved and the 
absolute signal strength. In particular, I can cause the platelet to become inactive by increasing the level 
of cAMP. This can be used medically, for example, to prevent a new blood clot in the case of strokes. 
The behaviour for different active substances and their combination is described in detail in the paper.

In both works, this was used to accurately estimate the kinetic parameters through experimental 
data and then develop corresponding optimal fitting differential equations (ODEs). One can also calcu-
late in general what the optimal pharmacological intervention should be (Breitenbach et al. 2019a, b).

In addition to this selection of one’s own work on the topic, there are of course also large reposi-
tories of models, so that one can compare models from many authors or search for the optimal one 
for a question, which one can then possibly adapt to one’s own question, for example:

https://systems-biology.org/resources/model-repositories/ (from the journal “Systems Biology 
and Applications”).

celldesigner.org/models.html (from the software CellDesigner, very nicely linked to the Panther 
Pathway database).

https://www.ebi.ac.uk/biomodels/ (The “Biomodels Database” of the EBI, with many mathemat-
ical, pharmacological and physiological dynamic models collected from the literature).

The examples above show that semiquantitative models can be used to cover the entire 
range of systems biology regulation and biological signalling networks. The particular 
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advantage of the method lies in the fact that it is possible to model processes without pre-
cise data on the speed (“kinetics”). If, on the other hand, one wants to model a dynamic 
process, in particular a signal cascade, in more detail, one must determine these data about 
the velocity. This is done by methods of time series analysis: If one has measured the pro-
cess (for example the phosphorylation of a kinase that transmits a signal in the cell) for 
five or more time points, there is enough data to estimate how fast this process proceeds. 
It is therefore possible to describe the speed (kinetics) precisely in mathematical terms 
using a parameter (in the example: the speed). There are a number of bioinformatics tools 
for estimating parameters. Easy to learn and good to use for this parameter estimation is 
the software Potters Wheel (https://www.potterswheel.de/Pages/; Maiwald and Timmer 
2008) and its successor Data2Dynamics (Steiert et al., 2019).

This software can also be used to investigate which parameters need to be accurately 
estimated and which do not (sensitivity analysis). It also allows to see which of the param-
eters can be well estimated from the data (identifiability analysis) and which cannot (either 
because the data are not sufficient or because the network is wired in such a way that, for 
example, the parameter always depends on another one that cannot be estimated either or 
because the parameter is simply not determined by this data at all).

Conclusion

•	 Systems biology modelling of signalling cascades and protein networks allows deeper 
insights into the function of the proteins involved and thus helps to understand the 
causes of diseases, to better describe infection processes and immune responses, or to 
elucidate complex processes in biology, such as cell differentiation and neurobiology. 
Stronger mathematical models describe signalling networks precisely in terms of 
changes over time and their speed using differential equations. This explains the pro-
cess exactly, but additional time is needed, e.g. with the determination of the velocities 
(kinetics, data driven modeling, time series analysis).

•	 Boolean models only require information about which proteins are involved in the net-
work and which protein interacts with which other proteins and how (activating or 
inhibiting). Therefore, they are well suited for an introduction. If you want to reproduce 
one of the presented examples yourself, it is easy (use the same components and links 
and software). However, if you want to create your own new model, many cycles are 
necessary, because you have to check again and again in simulations based on the 
Boolean model (e.g. with SQUAD or Jimena) whether the behaviour in the computer 
model also matches the outcome actually observed in the experiment, at least qualita-
tively, and thus adapt the computer model to the data step by step.

•	 Conversely, the model then allows to describe all situations that have not yet been mea-
sured or reproduced in the experiment. In particular, the effect of drugs and their com-
binations, the activity of all proteins involved, the effect of signals, mutations or even 
immune substances (e.g. cytokines). Systems biology modeling can be described as the 
central, current field of bioinformatics. It is also called network analysis, dynamic mod-
elling or interactomics in order to emphasize these aspects more strongly. ◄

5.2 � Generalization: How to Build a Systems Biology Model?
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5.3	� Exercises for Chap. 5

It is useful to repeat these tasks in Chap. 7.
This part of the exercise will focus on bioinformatic models in order to better under-

stand possible system effects and the organism as a whole. A bioinformatic model can 
provide various information about the network topology, e.g. a Boolean model about the 
logical interconnection of the signaling components (e.g. activation, inhibition, 
feedback/feedforward regulation) or a kinetic model about metabolic pathways, but also 
predict the resulting network behavior. Bioinformatics models can answer any number of 
questions. Usually, the function of the signaling cascade and how it can be used therapeuti-
cally is of particular interest.

Task 5.1
The basis for a bioinformatics model includes interactions, such as protein-protein interac-
tions. You can find these in various databases and thus generate a corresponding signal 
network.

Which of the following statements are correct (multiple answers possible)?

	A.	 The STRING database provides little information on protein-protein interactions.
	B.	 One of the things I find in the PlateletWeb database is protein-protein interactions 

in platelets.
	C.	 In the KEGG, iHOP and HPRD database I find protein-protein interactions.
	D.	 Signaling cascades are, in this sense, a type of protein-protein interaction.
	E.	 Proteins can interact with each other directly or as complexes.

Task 5.2
Name and describe databases/software where you can get information about interaction 
partners, e.g. of proteins.

Task 5.3
Explain how to bioinformatically screen a protein for potential interaction partners (name 
and briefly describe two software/databases). What do they output in each case? What are 
the advantages of comparing several software/databases with each other?

Task 5.4
An interaction database is the STRING server. What is the difference to other databases, 
such as PlateletWeb or HPRD?

Task 5.5
Explain how to create a protein-protein interaction network.
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Task 5.6
Example:

We want to take a closer look at protein-protein interactions and turn to network analy-
sis and modelling of regulatory networks. You now have the opportunity to generate a 
network and then examine it for its biological function, for example, to detect well-
connected proteins in a network, so-called hub proteins. Please note that for training pur-
poses we have only chosen a small network around BRCA1 (BReast CAncer 1, also 
known as breast cancer gene 1). Normally, however, the network to be investigated is 
always much larger and more complex, which makes a comprehensive network analysis 
necessary.

Now search for all human interaction partners of BRCA1 from the string database 
(https://string-db.org/). Which of the following statements are correct (multiple answers 
possible)?

	A.	 The interaction of BRCA1 and ESR1 was found experimentally and has a very low 
score (close to 0).

	B.	 For the interaction of BRCA1 and ESR1 I get a high score (>0.99).
	C.	 Each indicated interaction for BRCA1 was simultaneously found and predicted 

experimentally.
	D.	 All indicated interactions with a score >0.99 were found experimentally.

Task 5.7
Describe a simple method for creating an interaction network and analyzing it for function.

Task 5.8
Example:

Now download all human interaction partners of BRCA1 from the string database 
(https://string-db.org/). Please use the parameter “Experiments” (i.e. only all experimental 
interactions) and a “confidence score” of 0.9. Save the network (under “save” as text sum-
mary; TXT – simple tab delimited flatfile).

Now that you have downloaded all experimentally determined interaction partners, you 
can visualize and further analyze your small network. For this purpose, please inform 
yourself about the software Cytoscape (https://cytoscape.org/) and download the free ver-
sion 2.8.3. To make sure that the interactions match, please compare your network with the 
one in the solution section and please adjust it accordingly. Please save your network (cur-
rently still as .txt) also as .sif (simple interaction file), because Cytoscape needs this for-
mat. Now you just have to import your created interaction file BRCA1.sif into Cytoscape 
via File → Import Network (Multiple File Type) and you are ready to go.

Which of the following statements will you see after loading the BRCA1.sif file?

5.3 � Exercises for Chap. 5
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	A.	 Network contains 11 nodes and 18 edges.
	B.	 Network contains 18 nodes and 11 edges.
	C.	 Network contains 1 nodes and 8 edges.
	D.	 Network contains 8 nodes and 1 edges.
	E.	 Network contains 111 nodes and 181 edges.

Task 5.9
Example:

Now your actual network analysis begins. For this, Cytoscape has numerous plugins to 
choose from, such as the Biological Networks Gene Ontology Tool (BiNGO). Please 
briefly inform yourself about Cytoscape (https://cytoscape.org/) or Plugin → Manage 
Plugins – Search BiNGO (you can also download the current BiNGO version here). Now 
perform a BiNGO search for all proteins of the network (Plugins → Start BiNGO 2.44; 
please use the preset default parameters, but use Homo sapiens as organism).

Which of the following statements are correct (multiple answers possible)?

	A.	 The BiNGO analysis identifies relatively few biological processes (less than 20).
	B.	 In addition to the functions, the BiNGO analysis also shows me the p-value and 

which genes are involved.
	C.	 For example, the BiNGO analysis shows me the biological process cell cycle 

checkpoint (GO-ID 75) with a BRCA1 involvement.
	D.	 The BiNGO analysis identifies the biological process induction of apoptosis (GO-

ID 6917) as significant (p-value < 0.05), but also that all proteins of the network are 
involved.

Task 5.10
Describe what a Gene Ontology is and how the GO terms are organized.

Task 5.11
Example:

Now take a look at the network topology. Please use the NetworkAnalyzer plugin for 
this. Please also inform yourself about this beforehand via Cytoscape (https://cytoscape.
org/) or via Plugin → Manage Plugins  – Search NetworkAnalyzer. Here you can also 
download the current NetworkAnalyzer version. Now perform an analysis (Plugins → 
NetworkAnalysis → AnalyzeNetwork → Treat the network as undirected) and familiarize 
yourself with the various parameters and plots (then use, for example, “Parameter average 
number of neighbors” and “Plot Node Degree Distribution”).

Which of the following statements are correct (multiple answers possible)?
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	A.	 Among other things, I can use the NetworkAnalyzer to identify important hub 
proteins, i.e. strongly networked nodes.

	B.	 The NetworkAnalyzer identifies an “average number of neighbors” of less than 1.
	C.	 The NetworkAnalyzer identifies an “average number of neighbors” of more than 3.
	D.	 Looking at the Node Degree Distribution plot, I see five nodes with three interac-

tions and ten nodes with five interactions.
	E.	 Looking at the Node Degree Distribution plot, I see one node with five interac-

tions – this represents a hub node given the average number of neighbors parameter.

Mathematical modeling of regulatory networks:

Task 5.12
Name and describe software for mathematical modeling of biological networks.

Task 5.13
Describe three different approaches to mathematical modeling of biological networks 
(Boolean, quantitative, and semiquantitative).

Task 5.14
State advantages and disadvantages of mathematical modeling of biological networks.

Task 5.15
Describe how one would bioinformatically model a biological network, e.g., the cAMP 
pathway (briefly describe: what data, what steps, what possible software).

Task 5.16
Which statements about the mathematical modeling of regulatory networks are correct 
(multiple answers possible)?

	A.	 Boolean, quantitative, and semiquantitative modeling are three mathematical mod-
eling methods.

	B.	 Boolean modeling always considers the on/off (0/1) state of a system.
	C.	 Quantitative modeling is not able to consider the system state in the interval 

between 0 and 1 and thus cannot model kinetic data, e.g. via Michaelis-Menten 
kinetics.

	D.	 Semiquantitative modeling is a combination of Boolean and quantitative modeling, 
where I do not necessarily need information about kinetics.

Task 5.17
What is meant by a “steady state” condition of a network?

5.3 � Exercises for Chap. 5
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Useful Tools and Web Links

SQUAD https://www.vital-it.ch/software/SQUAD
Jimena https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/

jimena_c/
CellNetAnalyzer https://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html
PLAS https://enzymology.fc.ul.pt/software/plas/
Odefy https://www.helmholtz-muenchen.de/icb/software/odefy/

index.html
Cytoscape https://www.cytoscape.org/
CellDesigner https://www.celldesigner.org/
PottersWheel https://www.potterswheel.de/Pages/
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After we have become acquainted with the sequence analysis of proteins, RNA molecules 
and DNA as basic techniques of bioinformatics and have already looked at their interac-
tion in the form of metabolic and regulatory networks (Part I), we will now provide an 
in-depth insight into basic strategies of bioinformatic working methods in Part II.

�From a Computer-Technical (Informatics) Point of View, Three Points 
Are Interesting

	1.	 In order to cope with the large amounts of data, good databases are important, in which 
one can search particularly efficiently and accurately (e.g., database indexing). 
Likewise, because of the abundance of data, search capabilities that are as fast as pos-
sible are crucial to shorten exact, lengthy computations as efficiently as possible (heu-
ristic searches, Chap. 6, e.g., BLAST).

	2.	 Actually, bioinformatics is always about cracking codes to understand biological pro-
cesses. How does one measure (according to Shannon) the amount of information hid-
den in biological messages? And how do you crack the codes as efficiently as possible 
(Chap. 7, e.g. with sequence analyses)?

	3.	 How long do computers actually need for a calculation? Problems become especially 
difficult with built-in combinatorics. In this case, the computer needs a multiple of 
computing time for just one unit more (NP problems). We get to know typical problems 
of this kind from bioinformatics, how they are solved and when only a larger computer 
helps (Chap. 8).

Part II

How Do I Understand Bioinformatics?
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�From a Biological Point of View, the Following Points Are 
Generally Important

	1.	 Bioinformatics analyzes biological systems. However, these all behave similarly in 
principle. What are the principles? How and with which software do I get the system 
behavior out? It is very important that a biological system adapts to the environment as 
optimally as possible and actively controls itself. These capabilities do not reside in 
individual components, but only emerge through the interaction of all parts (emer-
gence). Pioneers of systems biology have summarized these principles (Chap. 9).

	2.	 Every living being today is the result of millions of years of evolution of the population 
that produced it. Therefore, a good bioinformatics strategy is also to look at the evolu-
tion of a protein sequence, a protein structure, an organism. We will learn basic tech-
niques for this (Chap. 10).

	3.	 Finally, we can also look at the concrete implementation of design principles in a cell 
to efficiently address bioinformatics problems, i.e., in particular, to understand which 
molecular component we are looking at and how it acts in the cell. For this, we look at 
the flow of genetic information from genome to RNA to protein, as well as the control 
of genetic information and gene expression data. We look at how proteins find their 
place in the cell, how the cell moves, organizes metabolism and differentiates. Again, 
the information that is important for each of these can be quickly analyzed and recog-
nized using bioinformatics algorithms (e.g., localization signals, enzyme network 
lookup in biochemical metabolism database, and even use it to make custom proteins; 
Chap. 11).

This lays the foundation for Part III, which explores fascinating results and current 
developments in bioinformatics.

How Do I Understand Bioinformatics?
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6Extremely Fast Sequence Comparisons 
Identify All the Molecules That Are Present 
in the Cell

Abstract

With the BLAST server at NCBI (National Center of Biotechnology Information), you 
can get an answer in seconds to a few minutes. This is made possible by fast, but not 
entirely accurate, searches. Almost all of the fast bioinformatics programs on the net 
use such heuristics. In BLAST, for example, two short but perfect match alignments are 
first pretested in a database entry before an exact alignment with the database entry is 
performed, thus saving a lot of computing time: indexing the database (after all, you 
also look up this book via the table of contents much faster than by browsing through 
it). Besides speed, sensitivity (do I recognize all relevant entries?) and specificity (do I 
not get too many irrelevant entries?) are also important for a good heuristic search.

How and why do bioinformatic analyses actually work? A very basic step towards under-
standing is to understand which biomolecule you have in front of you. For this purpose, 
bioinformatics uses the analysis of the molecular sequence. It is important to remember 
that we first need the experimentally determined sequence. However, this sequence does 
not tell us which molecule is present. However, this can be solved by comparing the 
respective molecular sequence with all entries in a database (cf. Chap. 1). The interesting 
thing is that bioinformatics has developed very fast computational recipes (algorithms) for 
this task. This was necessary because the sequences have grown so quickly that we are 
now dealing with many millions of stored sequences and many billions of stored letters. 
How do you speed up bioinformatics algorithms so that they can cope with these large 
amounts of data?

© Springer-Verlag GmbH Germany, part of Springer Nature 2023
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6.1	� Fast Search: BLAST as an Example for a Heuristic Search

The following accelerations are used for sequence comparisons (technical term: sequence 
alignment):

A so-called indexing first considers whether the database entry contains single short 
words (3 letters for protein sequences or 11 nucleotides for nucleic acid sequences) that 
are similar to the sequence of the molecule. If this is the case (a first “hit” or “hit” is 
found), the system immediately searches whether there is another hit not too far away 
(predefined window length). Only when this second hit is found does the BLAST algo-
rithm start checking whether the remaining sequence letters of this database entry match 
the search sequence. This exact comparison of the two letter sequences (“alignment”) is 
also accelerated by “dynamic programming”, so that step by step more memory is avail-
able for the comparison of search sequence and database entry.

Thus, we see two principles of bioinformatics: Since all important biomolecules (DNA, 
RNA, proteins, but also, for example, carbohydrates and lipids) are built from recurring 
building units, most biomolecules can be recognized by the sequence of these building 
units, i.e. by their letter sequence (with each class of molecules using its own alphabet).

In the meantime, however, so much information about biomolecules has been stored in 
large databases that a major part of the informatics work in bioinformatics consists of 
using fast computational rules (algorithms) and conveniently constructed databases to 
cope with this flood of information so well that the correct biomolecule can be identified 
as quickly as possible (see Mount et al., 2004).

If you use BLAST on the NCBI website (https://blast.ncbi.nlm.nih.gov/Blast.cgi), for 
example, I get a result very quickly (a few seconds, sometimes one to 2 minutes). In that 
time, BLAST actually screens several billion nucleotides and many millions of sequence 
entries. This is an amazing speed-up. We now want to understand how to speed up bioin-
formatics searches in general so that you get a result quickly. This usually happens by 
foregoing the perfect search and taking a program that uses shortcuts to get a near-perfect 
solution.

When searching for a similar sequence, one way to do an exact search would be to 
compare letter by letter to determine exactly where a local match with high similarity is. 
Local similarity is therefore a popular choice for protein function searches, because you 
can then move on from a subsequence whose similarity was found in the database to the 
next best similarity. After I have recognized that a partial sequence, usually a protein 
domain, has a certain function, I shorten my protein by this domain and now search for a 
hit in the database with the remaining sequence, which then not so rarely assigns the next 
piece of the sequence, often a whole domain again, with a suspected function, and so on.

On the other hand, if I want to save time, I forgo the exact but slow calculation and do 
a less exact but fast search instead. This is exactly what a heuristic is. Figure 6.1 summa-
rizes how BLAST speeds up the search using an index search followed by an exact local 
alignment between two hits of the upstream heuristic search (Hansen 2013; see tutorial for 
more information).

6  Extremely Fast Sequence Comparisons Identify All the Molecules That Are Present…
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Fig. 6.1  Two-hit method of BLAST and GenBank example entry. The left side shows the index 
search of BLAST (Figure from Hansen 2013) and the right side shows an example database entry 
for S. cerevisiae with name, label and start of sequence from GenBank (BLAST would search 
against this database entry)

6.2	� Maintenance of Databases and Acceleration of Programs

For database searches, I need good bioinformatics databases in any case. Figure  6.2 
explains an exemplary well-maintained database for this purpose, the UniProt database. 
This database carries the older Swiss-Prot database. Even earlier, this database was the 
personal project of Amos Bairoch. He looked at protein families and made notes on which 
amino acid residues were typical for zinc finger proteins, for example, which deviations 
occurred and whether an entire protein family could be described by a certain pattern. For 
example, zinc fingers can be described by two cysteines at a distance of three amino acids 
from each other, i.e.

Cysteine - - Cysteine ... Cysteine - - Cysteine,

in the single-letter code then finally.

CXXC [3..5 X] CXXC.

He then compiled such signatures into the PROSITE signature database, but the pre-
cisely labelled protein sequences (according to their family membership, structure in 
domains, sequence properties) as entries in the Swiss-Prot database. After some time, the 
work became too much for one person, and so the PROSITE database was gradually cre-
ated. Around the turn of the millennium, it was concluded that protein labelling could no 
longer be a single task for one country because of the ever-increasing number of sequences. 
Together with the EBI in Cambridge and American scientists, the UniProt database was 
founded.

6.2 � Maintenance of Databases and Acceleration of Programs
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Fig. 6.2  The example shows the header lines and the actual data part (only the function is shown 
here). The header shows whether the entry is “trusted”, i.e. manually reviewed (Reviewed), or 
computer-annotated (e.g. DataMining; Unreviewed), but also how much information is available 
(annotation score)

This historical overview also summarizes briefly the essential problems and tasks of 
databases: Ideally, each sequence is viewed by hand, analyzed with various bioinformatics 
programs, and then accurately labeled. This is a lot of work, typically referred to as data-
base maintenance. Since data sets in bioinformatics usually grow very quickly, this data-
base maintenance is a chronic problem, often exacerbated by the fact that new databases 
are usually created by a new project and then not maintained after the PhD thesis or post-
doctoral project ends. Only a few large institutions, which are mentioned here and at other 
places in the book, have enough staff to nevertheless maintain really well-maintained data, 
in particular the NCBI, the EBI and the SBI (Swiss Bioinformatics Institute).

Other problems of databases are cross-linking to other data (this is also difficult due to 
the constant growth of data), maintenance of content (especially when new types of con-
tent are added), the number of errors or outdated entries.

For the protein databases UniProt and PDB (one of the oldest bioinformatics databases, 
since the 1960s of the last century), as for many other databases, the uniform formatting 
of entries is a problem. And of course it is not only difficult for BLAST to find entries 
quickly and accurately in constantly growing databases. There are the two problems of 
recall (sensitivity; how many of the hits are also stored in the database as real entries?) and 
precision (specificity; do I find exactly what I am looking for or does my program suspect 
that it could be half the database?).

6  Extremely Fast Sequence Comparisons Identify All the Molecules That Are Present…
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In any case, it is advisable to always take a look at the quality parameters of the data-
bases first in order to be able to assess the actual information content and the usability of 
the information provided for one’s own scientific work and resulting statements.

Figure 6.2 explains again very nicely the high quality of a UniProt data entry, here for 
our well-known example of the HIV-1. Each entry is divided into a header and the actual 
data part (here only a section shown for the function). A look at the header already gives a 
first important hint about the information content of the database entry (status). It shows 
how “trustworthy” the information is. UniProt distinguishes between Reviewed (manual/
Swiss-Prot-annotated) and Unreviewed (computer-annotated from TrEMBL). In our 
example the entries were manually annotated and reviewed by UniProt curators, so they 
are trustworthy in this case. In addition, an annotation score is calculated for the provided 
information (maximum score of 5), which also indicates how much information is avail-
able for the respective entry, i.e. how well it is annotated. For HIV-1 UniProt displays the 
maximum score.

Users should therefore always take a look at the quality parameters before using the 
information provided.

So with that, we understand how bioinformatics now works so quickly and soundly. 
There are fast and yet surprisingly accurate programs used (heuristics). And there are 
good, highly sophisticated databases where you can trust the entries and yet they are very 
well maintained.

Therefore, a few other notable heuristics should be mentioned here. Besides BLAST 
sequence search, BLAT search is another speedup, as is Mega-BLAST (the expert then 
knows what is more easily overlooked by these variants of BLAST).

Even 3-D structures are made faster and shorter by heuristic searches. In particular, 
many reasonably fast modeling programs use the homology modeling step, that is, using 
known structures to model the unknown structure if it is sufficiently similar. This heuristic 
is not an exact model and assumes that the new structure is too similar to something. The 
heuristic is even more stringent in threading. Here it is assumed that even an unknown 3-D 
structure can be predicted by combining and testing known 3-D structures. To do this, the 
unknown structure is threaded onto the known 3-D structures on the basis of the sequence. 
One then calculates which region is best covered by which known structure. Not exact, just 
a heuristic.

One can be surprised at the protein interaction database STRING (EMBL) how quickly 
the interactions are calculated. A trick is used that is also used by a number of other data-
bases. Here, all interactions are calculated in many weeks with each update of the data-
base. The single database query now only looks up where the best entry for the query is 
located in the database. If one or more sequences are entered, this is done via a sequence 
comparison (with BLAST), if a keyword is entered, this is done via a fast text search.

Metabolic models often make the heuristic assumption of steady-state equilibrium and 
then calculate the underlying enzyme chains for this equilibrium (flux balance analysis; 
the same principle used: elementary mode analyses). Even if, for example, YANAsquare 
calculates flux strengths, it makes the simplified assumption that gene expression data 

6.2 � Maintenance of Databases and Acceleration of Programs
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already correctly reflect the different activities of the metabolic pathways (which is only 
true on statistical average or for sufficiently large networks).

Finally, even the semiquantitative models for signal modeling use heuristics, in particu-
lar the kinetics is estimated only from the Boolean networks of the process to be modeled. 
This allows me to get started with such a model when little is known in detail about the 
speed and nature of the proteins, enzymes, kinases, etc. involved.

How can you now program a heuristic search yourself?
The BioPerl and Biojava modules (https://bioperl.org/, https://biojava.org/) at the EBI 

(European Bioinformatic Institute) are a good way to quickly program a heuristic search 
or even a simple program or a larger program composed of simple parts. They provide 
ready-written modules (program parts) for reading, output, but also for web servers or 
database searches for the user. The PERL Cookbook (Christiansen and Torkington 2003) 
offers a lot of tips for concrete implementation with the PERL programming language. 
Even more tips are found in further publications (Angly et al., 2014; Vos et al., 2011; 
Stajich et al., 2002; Tisdal et al., 2001).

For calculations, the book “numerical recipies” (https://numerical.recipes) is a real trea-
sure trove. Originally a book (Press et al., 2007), it now explains online in a clear way how I 
can quickly and easily compute small calculations or even surprisingly complex ones, which, 
however, come up again and again in many problems. Similar to a cooking recipe, the prin-
ciples are explained and codes are provided, for example to make a Matlab code run faster 
(tutorial: https://numerical.recipes/nr3_matlab.html) or to use a “C+ +” code for even faster 
calculations instead. Examples of applications for these numerical recipes, also in bioinfor-
matics, are e.g. efficient matrix and vector calculations (calculate metabolic fluxes effi-
ciently), but also routines for geometric tasks (calculate protein structures) or the generation 
of random numbers (for population simulations in ecology).

Conclusion

In this chapter we have tried to look a little behind the façade of the fast bioinformat-
ics programs on the net, such as the BLAST server at the NCBI (National Center of 
Biotechnology Information) in Washington. In most cases, you can get an answer in 
seconds to a few minutes. This is made possible by fast but not entirely accurate 
searches (heuristics), and we have seen some tricks for doing this. For example, in 
BLAST, the heuristic is to first find two short but perfect match alignments in the same 
database entry before I check over the whole sequence length to see what the similarity 
is to the question sequence.

It is equally important to make the database (e.g. GenBank, UniProt) quickly read-
able, for example by indexing it (after all, you look up this book much more quickly via 
the table of contents than by leafing through it). In addition to speed, sensitivity (do I 
recognise all relevant entries?) and specificity (do I not get too many non-relevant 
entries?) are also important for a good search.
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In the tutorial in the appendix a short introduction to programming including install-
ing BLAST or in general a web server is given. Generally speaking, web-based pro-
grams and good bioinformatics algorithms and scripts for bioinformatics analysis are 
still developing rapidly and there are many fascinating programming tasks. ◄

6.3	� Exercises for Chap. 6

You are welcome to work on the tasks of Chap. 1 for this chapter as well.

Task 6.1
A simple illustration: How do you look something up in a book? Discuss different 
approaches.

Task 6.2
Comparison “fast” and “super fast”: How do BLAST, FASTA and Psi-BLAST differ in 
terms of their search strategy?

Task 6.3(a)
What is BLAT (not a typo, bioinformatics question)?

Task 6.3(b)
What are the advantages of BLAST as sequence comparison tool?

Task 6.4
Which sequence comparison search is fastest? Give some examples and consider which is 
the very fastest. Compare the advantages and disadvantages.

Task 6.5
Which annotation is best? Compare: Annotations in GenBank, UCSC Genome Browser 
and Swiss-Prot/UniProt.

Task 6.6
In your opinion, how should an “ideal” database/server be constructed (what basic parts 
should the database/server consist of)?

Task 6.7
List ways in which ideally a database should be maintained and kept up to date.

6.3 � Exercises for Chap. 6
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Useful Tools and Web Links
BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi
NCBI https://www.ncbi.nlm.nih.gov/pubmed/
EBI https://www.ebi.ac.uk/services
SBI https://www.sib.swiss/
UniProt https://www.uniprot.org/
PDB https://www.rcsb.org/pdb/home/home.do
STRING https://string-db.org/
YANAsquare https://www.bioinfo.biozentrum.uni-wuerzburg.de/

computing/yanasquare/
BioPerl https://bioperl.org/
Biojava https://biojava.org/
Numerical recipies https://numerical.recipes/
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O’Reilly Media, Beijing (Final Release Date: August 2003, Pages: 968 *This book is simply very 
well written and provides a very good introduction to the Perl programming language)
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Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes, 3rd edn. The art 
of scientific computing (English) Bound edition. Cambridge University Press, New York. isbn 
978-0-521-88068-8

Here are some more book suggestions for Perl and its programming that are not explicitly discussed 
in the chapter. For other programming languages please look in the tutorial (later chapter in 
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7How to Better Understand Signal Cascades 
and Measure the Encoded Information

Abstract

Shannon has made it possible to measure how much information is contained in a mes-
sage. It is calculated how many bits of information are contained in each part (word, 
nucleotide, etc.) of a message. Interestingly, this can identify any number of codes, 
languages, and encodings in the cell. Since living cells are not computers, but numerous 
biochemical reactions run simultaneously side by side and sometimes quite disorderly, 
causing a lot of commotion and disturbance, it is important to send this information as 
clearly as possible, for example to amplify signals by signal cascades. The more pre-
cisely the signal is understood and implemented in the cell, the better the cell survives. 
Therefore, survival pressure already ensured that the genetic information is well coded 
and well transferred into various other codes. These codes can again be “cracked” by 
bioinformatics for good predictions, for example for sequence analysis.

7.1	� Coding with Bits

How much data have I actually collected in a specific case, how do I measure the abun-
dance of data? In order to measure the cellular messages (e.g. messenger RNA between 
cell nucleus and cytoplasm or hormone between endocrine gland and other body cells), the 
Shannon entropy is a useful measure: one bit of information is the smallest unit of infor-
mation, a “yes” or “no” decision. Shannon entropy now calculates (Fig. 7.1, left) for each 
piece of information transmitted how many “yes/no” decisions are hidden in it. A letter is, 
after all, one of 26 possibilities, so it contains about four and a half bits (because with 4 
“yes/no” decisions you can distinguish between 16 possibilities, and with one more ques-
tion you can even cover 32 possibilities [2 to the power of n, abbreviated written 2**n 
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Fig. 7.1  Schematic representation of the Shannon entropy. The Shannon entropy calculates the 
expected information value of a message. Typical units are binary bits, i.e. yes/no decisions that can 
be encoded and decoded. The figure shows the limits of the maximum information units that can be 
transported from the sender via channel to the receiver, which are subjected to signal noise

possibilities]). Shannon developed this system further, so that words and sentences are 
then assigned their information content according to their length.

Next, one can compare the quality of different signal sources: For example, the infor-
mation value is very low if the same character is always sent, but very high if very different 
characters are always sent in a new sequence, such as a radio station.

After all, you have to take into account what it looks like inside living cells: Countless 
reactions take place, there is a lot of hustle and bustle. Therefore, biological signals are 
often amplified in signal cascades, so that one can still understand the signal despite the 
“noise” (all the other reactions and signals taking place). The quality of the signal depends 
on the ratio of signal to background noise (signal-to-noise). Shannon has set up a whole 
theory on how communication via communication channels can run as optimally as pos-
sible despite interference.

If the bioinformatician wants to model and better understand cell growth, differentia-
tion or the death of cells, these theories are taken into account and the amplification, 
weakening and modelling of cellular signals in different signalling cascades is investi-
gated, as well as the weakening of kinase cascades by phosphatases, for example, so that 
the cell stops growing again. At this complex level (function of the various signalling 
cascades in the cell), a deeper understanding of the processes surrounding cell growth and 
cell differentiation is then indeed possible.

7.2	� The Different Levels of Coding

Now that we have discussed how to calculate information in principle and send it clearly 
enough to be understood despite the background noise (biological noise): In the forest, in 
the environment, in the nervous system or even in the cell, there are always disturbances 
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and sources of noise), we can now start to look more closely at how the cell encodes infor-
mation at different levels with an adapted code (Fig. 7.1, right).

The figure shows a selection. Each two bits corresponding to Shannon coding or 
Shannon entropy are represented by a nucleotide. If you look at proteins, there are 20 
amino acids encoded with 64 codons, i.e. 6 bits (because 2 to the power of 6 or 2**6 is 64).

The three-dimensional protein structure code is much more complex. There are so 
many possibilities here that the information value of a defined protein structure is very 
high (to be calculated in a simplified way by the number of bits that a PDB structure file 
has when it is downloaded, which is already hundreds of thousands of bits). Informatically 
clever is the use of internal coordinates to encode protein structures with few bits: Only the 
path from one amino acid to the next is ever specified. This can be done with the angles 
phi and psi at the central carbon atom (alpha-C atom) of each amino acid (AlQuraishi 
2019). If I then use four or eight standard conformations to merely represent the protein 
structure in a highly simplified way, I only need 2 or 3 bits for each amino acid position in 
a protein folding simulation (Saxena et al. 1997).

Finally, there are other codes, for example at the cell membrane (membrane lipids, but 
also specific membrane modifications), the RNA sequence structure code within the cell 
for regulatory RNA, metabolic regulation (e.g. iron) as well as localisation in the cell, and 
finally the sugar code at the cell surface, with which cells recognise each other and via 
which transplant rejection is also coded. Finally, there are phospholipids that, for example 
via gangliosides and cerebrosides (i.e. sugar-lipid structures), assign the wiring in the 
brain and different neuronal structures to each other in detail in order to ensure the plastic-
ity of our brain during embryology.

All these codes are not only used and needed in the cell, but you can also decode them 
with bioinformatics, especially via sequence.

In this way, it is possible to translate the fairly universal genetic code (program 
“Translate” from the Expert Protein Analysis System, EXPASY, at the “Swiss Institute of 
Bioinformatics” https://web.expasy.org/translate/) and better understand its rarer variants 
for certain codons, for example in mitochondria, some bacteria and also protozoa (Heaphy 
et al. 2016) (https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi). Similarly, sig-
nals in regulatory RNA can be analyzed, for example with the RNA analyzer (https://rna-
analyzer.bioapps.biozentrum.uni-wuerzburg.de/), but also, for example, sugar codes 
(https://www.functionalglycomics.org/; https://ncfg.hms.harvard.edu/) or code analyses in 
lipids, for example to assign lipids to the correct type after mass spectrometry (Ahmed 
et al. 2015).

7.3	� Understanding Coding Better

So what can we take away as insights? It’s a lot like a conversation in a busy pub. The 
signals of the cell are constantly fighting against the background noise. Apart from our 
own signalling cascade, which we are currently interested in, such as the Erk kinase 
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cascade (see Chap. 5), all other signalling pathways are also active. The cell works with 
biochemical reactions and not like a digital silicon computer. Therefore, signals can only 
reach their destination if they are amplified in a cascade. Nice examples are the blood 
clotting cascade, so that the broken vessel is guaranteed to be closed again safely and 
quickly, and also the opposite blood clot dissolving cascade (plasminogen cascade). In the 
blood, for example, there is then also the complement cascade for the immune system and 
so on. So in general, biology has to come up with a lot of things to cope with the noise. 
One possibility to reach highest sensitivity is given for example by the photoreceptors of 
our eye, where three inhibitory mechanisms all together return to the resting state and the 
initial situation is a hyperpolarization.

A computer or even you yourself with the next transfer with IBAN number use check 
bits to be sure that nothing has been changed by mistake. This mechanism also exists. First 
of all, all kinds of sequence signals are used for this purpose, which you can find out with 
the ELM server, for example, and which ensure in a relatively error-tolerant way that every 
protein gets to the right place. However, the stability signals and signals that ensure that a 
“wrong” protein, for example one that is too short, is rapidly degraded (so-called “non-
sense mediated decay”, NMD, for stopping too early in the case of mRNA from eukary-
otes) are also a kind of check bit for proteins. Similar check bits exist for RNA, such as 
various methylguanosine caps that mark different types of RNA as mature and regulate the 
nuclear or cytoplasmic transport of that RNA and its proteins. Another strategy to better 
understand the notoriously complex codes in biological systems is simplification (techni-
cal term: dimensionality reduction). The aim is to transform and visualise high-dimensional 
data in a new coordinate system (usually 2D). For this purpose, methods of multivariate 
statistics such as PCA (Principal Component Analysis; for examples in R see our web 
application [Fuchs et al. 2020] or https://rpubs.com/amos593/419546) are applied (explor-
ative data analysis). Through dimensionality reduction, one wants to get an overview of 
the data and reduce its complexity by decomposing it into principal components. Through 
this structuring one wants to extract relevant variables (features) and groups, for example 
for the construction of predictive models (Chap. 14), but also to make visible possible 
batch effects in the data that may need to be corrected (especially in omics analyses). For 
example, the pattern of gene expression is determined by the interaction of many 1000 
genes. To get an overview of the most important components involved, PCA can be used 
to calculate the two main components of the differences between datasets, giving a quick 
overview of which combination of important genes decisively determines the differences. 
The method is applicable to all complex datasets, e.g. cardiac fibrosis (Fuchs et al. 2020), 
but also in ecology, for example to quickly screen bacterial communities (Kim et al. 2020).

One can also look at the challenges of reliable signal transmission and coding in the cell 
in a mathematically exact way for signal cascades and the phosphatases that switch off the 
signal and thus better understand how these cellular signals are formed and transmitted 
(Heinrich et al. 2002). Phosphatases are important for the regulation of signal amplitude, 
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signal frequency, and signal duration because the phosphatase must shut down fast enough. 
Kinases are important for the regulation of signal amplitude and signal height, because the 
kinase must amplify strongly enough.

Finally, however, the recognition and decoding of such signals with the aid of bioinfor-
matics is also medically important. An important example, for example, was the third 
phosphorylation in Erk kinase, which supports heart failure (see Chap. 5). Many cancers 
arise from the fact that a mutation in a body cell causes a growth kinase to be constantly 
turned on. An important example is the B-Raf kinase. Unmutated, it allows skin cells to 
grow. In the mutated version, such as from too much UV radiation while tanning at the 
beach, it leads to melanoma, or black skin cancer. How good it is that sunburns cause the 
skin to exfoliate: These skin cells have all voluntarily perished (via the cell death or apop-
tosis pathway) so they don’t harm us as cancer cells. This apoptosis pathway is another 
equivalent of check bits in a computer: in particular, the p53 protein makes sure that either 
DNA repair still works successfully and is carried out, or the cell goes into apoptosis. The 
miRNAs are also important regulators in cancer (Lujambio and Lowe 2012). Constant 
coding and decoding is vital to us, and it is exciting to trace this using bioinformatics 
(Richard et al. 2016).

Conclusion
•	 Shannon has made it possible to measure how much information is contained in 

a message. It is calculated how many bits of information are contained in each 
word of the message. For example, a nucleotide in DNA comes in four forms. To 
identify one, I have to answer two yes/no questions (is it a purine/pyrimidine? 
Which of the two purines/pyrimidines is it?), so a nucleotide carries two bits .

•	 Interestingly, one can thus identify any number of codes, languages and codings 
in the cell. Since living cells are not computers, but numerous biochemical reac-
tions run simultaneously side by side and sometimes quite disorderly, thus caus-
ing a lot of commotion and disturbances, it is important to send this information 
as clearly as possible, for example to amplify signals through signal cascades. 
The more precisely the signal is understood and implemented in the cell, the bet-
ter the cell survives. Therefore, survival pressure already ensured that the genetic 
information is well encoded and well transferred into various other codes.

•	 Bioinformatics only has to replicate this in the computer programs used and can 
then decipher and “crack” code after code in the cell quite accurately. A good 
starting point for using this are the numerous programs for sequence analysis, 
which are explained here from the first chapter onwards. Sequence analyses have 
therefore also become the most important basic tool in bioinformatics.

7.3 � Understanding Coding Better
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7.4	� Exercises for Chap. 7

Task 7.1
Encoding signals: How many bits are in a message that encodes the number seven with 
dual numbers?

Task 7.2
How many bits do I need to represent the number one thousand (1000) as a bit?

Task 7.3
Of course you can do this with a nice webtool, can you find one?

Task 7.4
How many bits does a word have, e.g. the word “WORD”?

Task 7.5
How many bits does a biological word have?

So we are already in the middle of biology and the tasks and problems in the cell:

Task 7.6
How does a signal reach its receiver safely despite the loud noise in the cell? Put together 
some examples that are biologically exciting (e.g. from this chapter/book).

Task 7.7
Calculation of the amplification of a signalling cascade: The Ras-Raf-Mek-Erk cascade 
amplifies the cellular signal by a factor of ten at a time. What happens when the receptor 
activates a Ras molecule?

Task 7.8
Importance of the Ras-Raf-Mek-Erk cascade: Give a biological example of what this sig-
nal is important for. Also tell what can go wrong in the process.

Task 7.9
Set up the differential equation of the Ras-Raf-Mek-Erk cascade.

Task 7.10
What mathematical models of protein kinase signal transduction do they know?

Task 7.11
How does a metabolic signal safely reach its location? Put together important factors 
for this.
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Task 7.12
What are “moonlighting” enzymes? Find an example.

Task 7.13
Higher sensitivity of metabolic regulation due to simultaneous outward and reverse 
reaction:

	(a)	 Consider for which biochemical processes it can actually make sense what is con-
stantly going on in the cell (in the “bubbling soup”), namely that outward and 
reverse reactions can take place simultaneously.

	(b)	 Carry out a calculation example for this.

Useful Tools and Web Links

PDB https://www.rcsb.org/pdb/home/home.do
RNAAnalyzer https://rnaanalyzer.bioapps.biozentrum.uni-wuerzburg.de/
Functional Glycomics https://www.functionalglycomics.org/; https://ncfg.hms.harvard.

edu/
ENCODE https://www.encodeproject.org (see Diehl and Boyle 2016).

• �This is an important link to the human genetic code, namely the famous “Encyclopedia of 
DNA Elements” of the human genome, which you can both look up and analyze here. There 
is also much original literature describing it.
OMIM: https://www.omim.org

• �“Online Mendelian Inheritance in Man” makes it very clear how a wrong letter (a genetic 
mutation) leads to disease.
Lipid-Pro: https://www.neurogenetics.biozentrum.uni-wuerzburg.de/services/lipidpro/

• �This is the software we developed that helps classify lipids and decode their code.
Bionumbers: https://bionumbers.hms.harvard.edu

• �Here, the number codes that play a role in numerous biological processes are explained 
nicely and engagingly (Milo et al. 2010).
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8When Does the Computer Stop Calculating?

Abstract

The question of when a bioinformatics problem will be completed is difficult to answer 
for problems with built-in combinatorics. Alan Turing generally modeled all comput-
able problems using the Turing machine, an idealized abstract computer. All non-Turing 
computable problems cannot be solved by computers and remain tasks for humans. 
Many particularly interesting problems in bioinformatics are NP (nondeterministic 
polynomial complexity) problems, such as protein structure prediction and most net-
work and signal computation or image processing. In general, more powerful comput-
ers, the bundling of many computer nodes (parallelisation) and application-specific 
chips can also directly increase computer performance, for example with omics data.

We remember that bioinformatics analyses biological data with programs (Sect. 2.1), col-
lects them in databases (Sect. 2.2) and then maps the biological relationships in models. 
But how good are bioinformatic models? Well, bioinformatics tries to use computers to 
make “good” and comprehensible biology. One can have fundamental reservations about 
this. After all, life is a quality rather than a quantity. Experiences are not seldom simply 
indescribable, and also a bacterium or also your own mind and even the brain are not sim-
ply a kind of chip (bacterium) or supercomputer (we ourselves). We are infinitely much 
more, and who cannot understand this at all, should now go to a good theater play (no 
cinema effect, it is better to experience this “live”) or talk for a few minutes with a patient 
in a psychiatric ward, then may be he will better fathom what we want to say.
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8.1	� When Does It Become a Challenge for the Computer?

However, the moment we recognise that this may be the unavoidable limitation of our 
computational approach and that we naturally systematically do not take these imponder-
able, qualitative aspects into account in our bioinformatic models, we are already a signifi-
cant step further. So let’s keep in mind: bioinformatics tries to describe biological reality 
in clear, transparent models, for example how a normal cell becomes a cancer cell. By 
using the computer and experimental data, I make myself blind in terms of experience and 
other direct interactions with nature, but I have the undeniable advantage of having quan-
titative statements about the biological process through numbers and measures (“give 
numbers to the arrows” is what Leroy Hood once called it). This alone, through these 
quantitative glasses, prevents being drowned in too much unprovable theory. For example, 
the model predicts that 80% of cancer cells will die from treatment. We can simply mea-
sure in experiments how far this is true. This also brings up another important implication 
for all bioinformatics analyses. For example, if we have found a related sequence to a 
sequence of which we know more about the function by sequence comparison, then we 
should continue this chain of reasoning (from sequence comparison to sequence compari-
son) until we have a clear experiment on the last sequence that biochemically or molecu-
larly confirms the function of the protein associated with the sequence. Only then do we 
have solid ground within the framework of our model.

So much for the bioinformatic model, which should therefore always base its own cal-
culations on solid, experimental data. Now a few sentences about the calculations: After 
all, it could be that these calculations take a very long time, and anyone who has ever 
“kicked” his computer with such a complicated, lengthy calculation knows the problem of 
wondering, “When will this limited computational box finally stop calculating?” The 
problems where this is unresolved are called NP problems (NP stands for nondeterministic 
polynomial time). There is no simple formula (a polynomial) that allows one to calculate 
how long the computer will compute based on the length of the input. Unfortunately, most 
biologically exciting problems are such NP problems. This is because biomolecules and 
all higher processes in the cell are usually modular, made up of similar or identical units 
(see Part 1). Thus, the addition of only one further unit leads to a multiple increase in 
computation time, and such combinatorial problems (“combinatorial explosion”) there-
fore almost always occur in our biological modelling. This leads to corresponding uncer-
tainties in the computation time. However, one can help oneself with fixed specifications, 
so-called “stopping criteria“, i.e. stopping specifications for the computer, e.g. “please 
stop after one hour of computing time”. But more important is the fact that with a fixed 
calculation time it is not possible to estimate how good the solution found up to that point 
is in comparison to the best or optimal solution. But that’s just life: Not so easy to grasp!

To conclude this chapter, it is therefore worth pointing out that the outstanding mathe-
matician Alan Turing succeeded in defining the capabilities of a computer quite precisely 
(Hodges 2014). He devised an abstract machine, the so-called Turing machine (Fig. 8.1), 
which could only perform five basic operations. He was able to show that every exact 
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$ T U R I N G 2 0 1 7 $

Infinite input tape with 
character fields

Read-Write Program

States/characters
on input tape

Fig. 8.1  Simplified representation of a Turing machine. The Turing machine consists of an infi-
nitely long input tape with separated character fields, a read-write program (can read/write in both 
directions) and the characters of the input tape. The read-write program reads the input tape field by 
field and can change the characters according to the program instruction (transfer function). This 
procedure can be used to determine which calculations are bioinformatically computable with the 
computer (Turing-computable, non-Turing-computable)

computation possible at all was also performed by (usually very many) concatenating the 
five operations of his abstract machine. This allows us to determine very precisely which 
computations in bioinformatics can be done at all with computers (no matter how modern 
they are or will become) (“Turing-computable“) and which cannot (“not Turing-
computable“). So much for the limits and restrictions of bioinformatics models and of 
modelling in general.

8.2	� Complexity and Computing Time of Some Algorithms

Let’s now turn to another problem: How much longer does my calculation take when the 
task becomes more difficult? This question is generally called the complexity of a compu-
tational problem.

Polynomial Complexity
In this case, everything is not too computationally intensive. A simple calculation expres-
sion, a so-called polynomial, gives the calculation time as a function of the length.

For example, if an RNA has a length of n nucleotides and is to be folded (i.e., the sec-
ondary structure is calculated), each nucleotide is typically juxtaposed with every other 
one along its entire length, and thus sampled for all possible pairs. So this computational 
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task is quadratically complex, taking 100 time units for 10 nucleotides and 10,000 time 
units for 100 nucleotides. Therefore, RNA folds are only calculated for molecules that are 
not too large, and database searches are usually not fast for complete molecule folds.

Many computational tasks, e.g. the sequence comparison of protein sequences in the 
genome, i.e. again each protein with every other protein, are typically quadratic in their 
time requirements. The same applies to pairwise calculations of phylogenetic trees with 
phylogenetic software, such as when one calculates a sequence alignment with CLUSTAL 
and associated phylogenetic trees with the Neighbor-Joining method.

Many database searches here again require a quadratic or cubic amount of time (sifting 
through 10 times more data requires 1000 times more time).

Non-deterministic Polynomial Complexity (NP-Problems)
The case is quite different when the problem becomes many times more difficult with each 
step. These are problems that grow exponentially, for example (complexity EXP). The 
complexity class NP is now the set of all problems solvable by nondeterministic Turing 
machines in polynomial time. Put simply: All problems solvable in polynomial time by a 
computer that can randomly select multiple computational paths. This subset of EXP con-
tains a very large number of relevant problems. Since the problems from P can be solved 
non-deterministically in polynomial time if they must, P is a subset of NP. These NP-hard 
problems are very hard to estimate in computational time. It is true that if the solution is 
correct (given by a good fairy, for example), one can check it in polynomial time to see if 
it is correct. But from this one does not find it fast or at all without the good fairy.

The best-known problem is the travelling salesman problem (“TSP”), who wants to 
visit many cities with an optimally short route on his way. One can only be really sure after 
quite long calculations, but these become more than 100 times more complex with each 
additional city, for example, with the 200th city even more than 200 times more difficult 
with each additional city.

Actually, many problems of real interest in bioinformatics are NP-complete, i.e., equiv-
alent to TSP, theorem of Cook (1971) and Levin (1973), respectively. The Theorem of 
Cook (1971) founded a new class of problems in terms of computation time, more gener-
ally, complexity theory. Cook showed that there exists a subset of the class NP to which all 
problems from NP can be reduced. Named after him, Cook’s theorem states namely that 
the satisfiability problem of propositional logic, SAT, is NP-complete. Thus, the SAT 
problem is representative of NP-problems, and all problems that can be transformed into 
a SAT problem are equivalent to it (class of NP-complete problems). Levin (1973) showed 
this important insight, i.e., when a computer cannot find a solution and finish, quite inde-
pendently and in its own way. An example is for instance the protein folding problem, i.e. 
the prediction of the protein structure, where each additional amino acid makes the com-
putation of the coordinates of the three-dimensional structure many times harder. 
Homology modeling or the calculation of system states also belong to this class. 
Accordingly, each additional kinase or phosphatase makes the problem at least twice as 
difficult, and usually even more ambiguous. In any case, this should be taken into account 
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Table 8.1  Degree of difficulty of a P problem (sequence alignment) compared to an NP problem 
(protein folding)

Algorithm Runtime complexity (m, n = sequence length of a, b)
Heuristic algorithms:
Blast O(n*m)
Dynamic algorithms:
Needleman-Wunsch Cubic: O(n3); e.g. at 5 = 125
Smith-Watermann Quadratic: O(n2); e.g. with 5 = 25
Protein folding:
For x possible folds Exponential: xn (e.g. for 2 convolutions: 2n; for 7 

convolutions: 7n)

in bioinformatic considerations. Table 8.1 shows the degree of difficulty of a P-problem in 
comparison to an NP-problem using the example of a sequence alignment versus protein 
folding with combinatorics.

8.3	� Informatic Solutions for Computationally Intensive 
Bioinformatics Problems

Many interesting problems in biology and bioinformatics have a built-in combinatorics 
and thus a very large, difficult to understand solution space, which therefore has the diffi-
culty NP (solution very difficult to find and computation time not foreseeable - if you show 
me the solution, I can usually confirm it relatively quickly). All in all, however, computa-
tional time problems are computer science problems, which can therefore also be tackled 
directly with tools from computer science and computer technology.

Tip 1: Use Modern Computer
This is often effective in practice. First, if you have a difficult or computationally intensive 
bioinformatics problem, you should not use a web server (otherwise you might wait until 
you black out!). However, most bioinformaticians have already taken this into account 
when designing their programs. Protein structure predictions, for example, are often not 
done online on the web server, but one receives (after a few hours or even days) the result 
by e-mail (for example, when using SWISS-MODEL for homology models or ab-initio 
predictions by the QUARK software from the Zhang lab). For own calculations I should 
first use a notebook or PC as up-to-date as possible. Workstations or small computer clus-
ters have even more computing power at first. For larger calculations, local (university 
mainframes) or central computer clusters (e.g. Leibniz Computing Centers in Munich, 
etc.) are then available. Tier 1 or Tier 0 mainframes such as JUQUEEN in Jülich then 
provide the greatest performance (6 million billion floating point operations per second) 
with 5.9 petaflops per second (https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercom 
puters/JUQUEEN/JUQUEEN_node.html).
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Tip 2: Heuristics
We have already seen in Chap. 6 that due to the large amounts of data in bioinformatics, 
one tries to use algorithms that are as fast as possible, even if this comes at the expense of 
accuracy (heuristics such as BLAST). For informatics tips and tricks for better and faster 
programming, the “numerical recipies” as described there are highly recommended. 
Another commendable and non-profit activity is “Project Jupyter” to advance freely avail-
able software, open standards and services for interactive work with dozens of program-
ming languages such as Julia, Python and R. For this purpose, Jupyter notebooks and the 
JupyterLab were developed, which have a high reusability and good documentation.

Tip 3: Parallelization
Finally, an important technique for complex calculations is to use many processors in 
parallel. For this, the computational task must also be “parallelized”, i.e. rewritten in such 
a way that the distribution to several processors (or computer nodes) actually saves time 
and does not lead to a mess and a lot of additional communication.

There are also particularly suitable programming languages for this purpose (e.g. 
Popjava, PopC or the network-friendly web-based environment from the Jupyter note-
books). Another programming language is Julia (https://julialang.org). It was released in 
2012 after 3 years of development. It is a higher level Matlab-like programming language 
for numerical and scientific computing usable for Mac, LINUX and Windows alike with 
quite fast execution speed. The compiler with its own standard library was written in C, C 
+ + and Scheme. Important are multimethods, LISP-like macros and metaprogramming, 
direct call to C and Python functions. Designed for parallel programming and distributed 
computing, co-routines allow easy multithreading by Julia.

These are important ways to equip and use a computer with many processors with 
appropriate operating software.

In general, it should be remembered that computers are stronger in a network. Even 
simple computers (PCs) can help solve difficult problems via networking on the Internet 
when their computing power is not otherwise needed (from SETI@home to Bitcoins to 
scientific projects, e.g. https://blog.exabyte.io/enabling-new-science-through-accessible- 
modeling-and-simulations-6710098a294).

�Other Possibilities Include

Virtualization
Alternatively, various LINUX or UNIX computers can be interconnected by suitable soft-
ware to form a virtual, parallel computer (e.g. use of PVM, https://www.csm.ornl.gov/
pvm/). In the meantime, there are also commercial providers of cloud computers, i.e. a 
virtual computer environment with many node computers is made available to interested 
customers by these providers via the Internet.
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Application Specific Chips (ASICs)
Finally, it is also possible to use special computer chips on which exactly one computer 
program runs “hard-wired”, so to speak, i.e. one computer chip for exactly one program. 
This is then an Application Specific Chip (ASIC). Field-programmable gate arrays 
(FPGAs) are much more expensive, but more flexible and allow to pre-test different ASICs 
in their properties after appropriate programming of the FGPR.  ASICs have been and 
continue to be used for special programs. For example, the company Paracell had devel-
oped a chip for BLAST. The sequence comparison then runs much faster on this ASIC, 
and the Paracell computer was thus able to identify words very quickly and use them for 
BLAST (likewise the American secret service to monitor the Internet, s. Chap. 16). Even 
at present there are a number of such special computer chips for bioinformatics. However, 
these are used less frequently than the other solutions in this paragraph.

8.4	� NP Problems Are Not Easy to Grasp

At least for mathematicians and computer scientists the difficult NP-problems exert a strong 
fascination. This is especially due to the fact that the existence of the correct (optimal) solu-
tion can usually be solved in a reasonable computing time (i.e. a so-called P-problem, with 
polynomial computing time), but nevertheless, without already knowing the solution, one 
does not know when the computer will stop searching for solutions if the correct solution is 
not yet known (non-deterministic polynomial). One can most easily understand this with 
the traveling salesman (TSP) problem already mentioned (Fig. 8.2). One can easily confirm 
an optimal solution at least very well. But the combinatorics of the cities, which makes the 
problem many times harder with each city more, leads to very long computation times for 
systematic trial and error. In addition, the distances between the cities can also be different, 
which makes the calculation more complex (Fig.  8.2, left: symmetric TSP with equal 
lengths; right: asymmetric TSP with different lengths between the cities).

Therefore, computer scientists, mathematicians and bioinformaticians keep trying to 
show that there is a way to trace NP-problems back to P-problems in general. So far, 
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Fig. 8.2  Simplified representation of the travelling salesman problem
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however, this has been in vain. The list of failures or, in some cases, highly intelligent 
attempts to solve the problem is quite exciting to read. Even clearer and more exciting are 
the articles by Scott Aaranson (2003, 2005), which show quite amusingly what one can 
learn here about computers and complex problems. However, another aspect is perhaps 
even more fascinating: limitations of decisions, but especially formally exact computer-
based decisions. This is masterfully illustrated in an article by Chaitin (2006), and the 
relations to Turing computability are also made well clear. The important point here is that 
humans, as thinking, feeling, and evaluating creatures, can obviously still make decisions 
that a computer, or more generally a Turing machine, can no longer make (see Chaps. 14 
and 16). The Turing Award is the highest award for computer science. Laureates such as 
Martin Hellmann (pretty-good-privacy-encryption of e-mails) show that they are fully 
aware of this human responsibility (https://nuclearrisk.org; see Chap. 16).

Conclusion
•	 Alan Turing has generally reproduced all computable problems with the help of 

the Turing machine. All non-Turing computable problems cannot be solved by 
computers and remain tasks for humans. The question of when a bioinformatics 
problem will be completed is difficult to answer for problems with built-in 
combinatorics.

•	 Unfortunately, many particularly interesting problems in bioinformatics are NP 
(nondeterministic polynomial complexity) problems, for example, protein struc-
ture prediction as well as most network computations (e.g., the traveling sales-
man problem: How does he optimally plan his city route?). Computer clusters are 
needed for processing large omics datasets and in modeling genome-wide meta-
bolic networks, but also for modeling complex signaling cascades, for ab initio 
protein folding simulations, and for complex image processing (e.g., 3-D tomo-
grams, deep learning), as well as for large in silico drug screens and molecular 
dynamics simulations.

•	 In general, more powerful computers, the bundling of many computer nodes (par-
allelisation) and application-specific chips can also directly increase computer 
performance. In addition, the search for faster heuristics and new, clever algo-
rithm strategies and procedures is a current task in bioinformatics, since the data 
are rapidly becoming more and more complex. Simpler problems (P-problems), 
on the other hand, require very manageable computing time, for example all 
sequence analyses, because a database search or query only grows linearly with 
the size of the database and the length of the query sequence, i.e. quadratically 
overall (quadratic polynomial problem P), as do predictions on RNA folding.
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8.5	� Exercises for Chap. 8

Task 8.1
How much does the computation time increase with different algorithms?

Compare the RNA folding algorithm RNAfold, a BLAST search, and protein folding. 
With BLAST, also try to clarify at the same time how the E-value moves favorably down-
ward, to smaller values, with a smaller database.

Just try out the different calculation times with your own test examples.

Task 8.2
So how do you deal with the hard problems that biological systems present you with? 
Please list some different search strategies that you have learned about in the book or that 
you can think of (don’t worry, the best ones will be discussed in a moment).

Task 8.3
What general search strategies for complex problems in bioinformatics do you know?

Task 8.4
Explain what is meant by NP-problems or P-problems in bioinformatics? How is a diffi-
cult computational problem defined informatically? Make this clear with an example.

Useful Tools and Web Links
https://baba.sourceforge.net

• �Here basic algorithms of bioinformatics like local and global alignment are 
presented very nicely and exemplarily.
https://discrete.gr/complexity/

• �This page gives a nice introduction to computing complexity.
Turing machine:
�https://www.alanturing.net/turing_archive/pages/reference%20articles/
what%20is%20a%20turing%20machine.html

• �There are many representations of this, but this one is right on the Turing net-
work and descriptive.
NP problems pitfalls:
https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

• �This page shows a bit of how not to do it (or how easy it is to fail at this prob-
lem). For solid work, see Aaranson 2003, 2005, respectively.
Introduction to parallel programming (for time-consuming calculations):
Parallel Programming with C+ + :
https://gridgroup.hefr.ch/popc/doku.php
Message Passing Interface (MPI):
Parallelization (Introduction to parallel programming)
https://mpitutorial.com/tutorials/mpi-introduction/
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9Complex Systems Behave Fundamentally 
in a Similar Way

Abstract

Biological systems are self-regulating and maintain their own system state (attractor). 
Negative feedback loops help to prevent overshooting, while positive activation loops 
(feedforward loops) activate the system when it is too weak (e.g. heartbeat). 
Bioinformatics is able to selectively tap central key elements (e.g. central signalling 
cascades; highly linked proteins in the centre, so-called “hubs”; sequence and system 
structure analyses, e.g. with interactomics and gene ontology), through whose concur-
rence the system behaviour essentially comes about (“emergence”). The starting point 
is the machine-readable description of the system structure (software Cytoscape, 
CellDesigner, etc.), which is then used to simulate the dynamics (e.g. SQUAD, Jimena, 
CellNetAnalyzer), whereby the comparison with experiments requires many (“itera-
tive”) model improvements. Systems biology is the most important future field of bio-
informatics, especially in combination with molecular medicine, neurobiology and 
systems ecology, modern omics techniques and bioinformatic analysis (R/statistics; 
read mapping and assembly; metagenome).

9.1	� Complex Systems and Their Behaviour

Now that we have become acquainted with the basic limitations of computer calculations, 
we can next consider how the computability of living systems looks in general. In princi-
ple, there is a clear contrast here: although biological systems are virtually digital in struc-
ture, and therefore consist of clear building blocks, the emerging system is difficult to 
manage because of chaotic system effects, although this “natural chaos” and the underly-
ing principles can be very fascinating (Gleick 2008).
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So there are the clear letters and units of information in the cell that can be determined 
by sequencing RNA and DNA molecules. There are technical limitations, but with today’s 
modern sequencing methods it is possible to sequence almost any amount of nucleic acids 
and thus have any amount of this form of information available in a short time to answer a 
question. For example, “transcriptomics”, i.e. the reading out of the RNA inventory of a 
cell, enables us not only to find out globally which information is stored in all mRNA 
molecules of a cell, but also to read out very precisely the inventory of switched-on genes 
(“expressed genes”) that are active in this cell. In this way, a rapid inventory of the system 
status of an immune cell or a cancer cell is obtained. In the future, this will be used more 
and more intensively, for example to better design chemotherapy against cancer in patients, 
or to know whether the immune defence is in good condition. So: No problem, a lot of 
information about the living cell can be measured, at least with regard to DNA and RNA.

Nevertheless, there is a fundamental limitation for biological systems and even for all 
sufficiently complex systems. Their behaviour is said to be “chaotic”, i.e. predictable only 
over short periods. This is perhaps easiest to see if you think of the best-known chaotic 
system: the weather. There, too, we can only predict what the weather will be like tomor-
row in, say, Würzburg, Erlangen or Amberg. Accordingly, this can only be described with 
a certain probability, and over several days such a forecast is always relatively uncertain. 
On the other hand, we know that the climate here in Lower Franconia, Middle Franconia 
and the Upper Palatinate is a typical Central European one, we will neither expect a tropi-
cal storm nor deserts or glaciers here. This can be generalized: biological and more gener-
ally, so-called chaotic systems, can only be described exactly over relatively short periods 
of time. Their long-term behaviour, however, is kept within fixed limits. In the case of 
weather, this is called climate. More generally, such a confined system state is called an 
“attractor” because it draws nearby system states into this stable ground state. A good 
example from biology is our own health. Even there it is clear, sometimes I can be out of 
breath or sweating, have a fast pulse etc., after a few minutes everything is back to normal. 
On the other hand, if I catch germs, live unhealthy and that over longer periods, my system 
state can also change radically, especially I can get sick. That is then a different attractor. 
Because once you are sick, it takes some time and some effort to change from the sick 
system state back to a healthy one. Many people, especially older people, nevertheless 
remain chronically ill: the pathological condition is too strong, even with medicine the 
person remains ill.

With this we already have the most important terms for the system description together 
and can state: Biological systems can only be described exactly for a short time, but remain 
attached to stable system states, so-called attractors, over longer periods of time. However, 
if the system is disturbed or changed just enough, a new system state can then suddenly 
exist, which then reinforces itself again. A so-called tipping point is reached. For example, 
the forest has suddenly become a savannah or even a grass steppe or desert, to name a few 
ecological examples at this point. It is therefore important to understand systems in terms 
of their behaviour. Whenever they have feedbacks (positive, negative) and reinforcements, 
small changes can build up – and this is exactly the reason why systems are then called 
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“chaotic”. Only by measuring the state of the system with very high accuracy can I accu-
rately describe how my system is evolving for short periods of time. But any error grows 
over time. And in “chaotic” systems it doubles within a short time, so that already after ten 
such time units the error is more than 1000 times larger after these ten doubling steps (2 to 
the power of 10 = 1024). For this reason, the behaviour of such systems over longer peri-
ods of time cannot be described exactly. On the other hand, it is precisely the negative 
feedbacks that keep the system within fixed limits (climate in the case of the weather at a 
particular location, health in humans). Only if strong positive feedbacks transform the 
respective system state, it is possible that it changes rapidly (tipping point) and one then 
suddenly has a new state (climate change or in humans a disease). The sudden system 
change when crossing tipping points was considered mathematically by Rene Thom 
(catastrophe theory, because systems then change catastrophically and rapidly).

It is interesting that we can in principle also understand a chronic illness well with this. 
Because here, too, strong feedbacks must be at work that prevent a return to the healthy 
state. If we recognize and treat these causes, a return to the healthy system state will also 
be possible. For example, by changing the way of life (stress reduction, more exercise and 
sport, reducing overweight) I can bring high blood pressure, recognised in time, back into 
balance and become healthy again. However, if no lifestyle change is made or possible and 
treatment is lacking, then subsequent regulation of blood pressure is often only possible 
through chronic medication. However, this is again clearly a symptomatic treatment, 
because I have to keep taking my medication, the disease-producing feedbacks will other-
wise cause my blood pressure to skyrocket again and again. Unfortunately, at this stage, a 
(causal) therapy based on the actual causes, such as a permanent correction of the blood 
pressure regulation, is not yet possible. However, modern systems medicine can use large 
amounts of data, for example on gene expression, to show exactly what the main effects 
(intended: here blood pressure reduction) and side effects (harmful, e.g. liver damage) of 
a drug are and thus help to improve these drugs (Fig. 9.1).

The main effect of a drug is often the blocking of a receptor, i.e. the blocking of signal 
transduction via this receptor molecule. In Sect. 5.1 we gave the example of receptors in 
the cardiac muscle cell, which then lead to heart failure via phosphorylation of Erk kinase.

Ideally, that would then be all the effects of the drug. Would we then also see this in the 
gene expression experiment, i.e. only a down-regulation of the messenger RNA for the 
ß-adrenergic receptor, if, for example, we carefully creep in a beta-blocker against the 
increased blood pressure and the heart failure? Interestingly, we wouldn’t see that exactly 
because the receptor is made (“expressed”) via the mRNA, just as it is without the drug 
administration. If this were not the case, the drug could not bind to it at all. If the receptor 
does not transmit its signal, the heart has less work to do and the patient feels better. This 
is the intended and proven heart-protecting effect of beta-blockers. This can only be done 
by carefully increasing the dosage. Unfortunately, beta-blockers do lead to an improve-
ment in symptoms, but not to a prolongation of life. This is due to the fact that the cause, 
the ageing heart, is not really combated without future methods such as stem cells for new 
cardiomyocytes. This is exactly why we are doing intensive research on stem cells in our 
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Fig. 9.1  Illustration of the effect of a drug. A drug usually shows a main effect, i.e. an optimal 
therapy related to the cause of the disease (centre). However, there are also other genes (light and 
dark circles) that are altered by the intended molecular main effect, but do not show a change due to 
the disease itself (left). In addition, however, there are also side effects, so-called side effects, 
whereby, among other things, other receptors (light and dark triangles) are affected by the drug 
(Right). Nowadays, it is standard practice, for example in newly developed therapeutic approaches, 
to investigate the effect of a drug by means of gene expression experiments and then to analyse it 
bioinformatically in order to identify the changes in gene expression (e.g. mRNA upregulated [light] 
or downregulated [dark] after drug administration, compared with the untreated state [disease]). In 
this way, it is easy to overlook whether the actual main effect of the drug is achieved and which other 
genes are additionally affected (positively as well as negatively) by the therapy in order to develop a 
drug effectively. The aim is always to develop a drug as specifically as possible and to keep the side 
effects as low as possible for the patient

own department, especially since there are increasing possibilities to generate them from 
adult cells, especially the old cells of the patient and the patient (ethically safer method, 
but more difficult). But this is still a long way off. Therefore, let us now look at the further 
effects of the beta-blocker on gene expression, because these can already be given (just as, 
for example, the lowering of blood pressure by ACE inhibitors, which even now has a 
favourable effect on life expectancy). The beta blocker, amazingly, changes numerous 
other genes in expression, namely because the signaling cascade is now downregulated 
and this downregulates many genes as well as upregulating some others. Even stronger 
(and a little slower in its effect) is the heart-protective effect: genes for the further growth 
of the heart are somewhat down-regulated by the heart failure. However, some genes are 
transcribed more strongly again.

Finally, there is another factor when giving a drug (a pharmacon): very often these 
drugs hit the intended receptor, but more or less fit other receptors as well. The resulting 
gene expression changes are the side effects. Applied to our example, it is particularly the 
case that there are beta receptors not only in the heart, but also in many other organs, for 
example in the lungs. Although there are slightly different beta receptors there, namely 
beta2 receptors as opposed to beta1 receptors of the heart. Still, the risk of getting a bad 
side effect in the lungs this way is high enough that people try not to give beta blockers in 
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asthma, for example. This is because they would seal the lungs because the beta2 receptors 
that keep the airways clear would then be blocked. So often the side effects of a drug come 
from other receptors besides the intended receptor being hit and blocked by the drug. 
However, when I measure gene expression, I only see the side effects if I also measure in 
a tissue where such side effects come into play. For example, especially in the lungs, but 
also in other tissues where beta2-receptors are present, these effects would cause the 
receptors to be less active, again changing numerous genes.

Of course, one can still more generally require that the main effect only fixes exactly 
the defect (causal therapy) and does not change anything else (no side effect). But this is 
not the case for most drugs because the body is too complex. A good example is diabetes 
treatment (diabetes mellitus, diabetes) by insulin. Actually, this is exactly the substance 
that the diabetic lacks. But since even insulin pumps cannot control insulin as precisely as 
the healthy body can with the help of the pancreas, the sick person has to deal with many 
small over- and underdoses of insulin all the time and in every cell of the body at 
the moment.

Bioinformatics can therefore be used to effectively evaluate the large amounts of data 
(DNA: so-called genomics, RNA: so-called transcriptomics, proteins: so-called pro-
teomics, metabolism: so-called metabolomics) that describe in detail how biological sys-
tems react to drugs or environmental influences. There are fundamental limits to the 
short-term exact describability that apply to all systems controlled with feedback loops, 
such as living cells or even our weather. Therefore, it is important to know the range to 
which such systems are set and into which they always fall back, the attractors of the sys-
tem. You have already learned about these in Sect. 5.1. There we introduced them simply 
as “stable system states”. Stewart Kaufmann is an important researcher and founder of 
system sciences who has described natural and biological systems in general terms.

9.2	� Opening Up Complex Systems Using Omics Techniques

Figure 9.2 illustrates how genomics, transcriptomics, proteomics and metabolomics all 
contribute together, for example, to accurately infer the effects and side effects of pharma-
ceuticals. In addition to our gene expression measurements from Sect. 9.1 (called tran-
scriptomics, but any measurement of RNA, for example by large-scale RNA sequencing), 
we can measure exactly what happens to the proteins in the treated heart muscle cells 
(proteomics), how the metabolites, for example the sugar level, change under treatment 
(metabolomics). And of course we can also look at the patient’s gene sequence (genomics, 
e.g. genetic predisposition to heart failure).

Genome sequencing using ultrafast sequencing technologies, such as the 454 or Solexa 
technology, is now a common method that enables the rapid and cost-effective sequencing 
and annotation of genomes (nucleotide sequence in DNA). The ever-improving sequenc-
ing technologies also allow for increasingly high-resolution sequencing, which means that 
newer and newer genes can be annotated. Numerous genomic data are accessible through 
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Fig. 9.2  Omics techniques

genome browsers (e.g. Ensembl or UCSC). Specific genomic mutations, for example in 
human tumors or heart failure, are also deposited in various databases (e.g. OMIM) and 
can be used by users. DNA sequencing thus makes it possible to sequence unknown 
genomes, such as new resistant bacterial strains, or to determine the underlying mutations 
in diseases in medical diagnostics.

Transcriptome sequencing (gene expression sequencing) provides insights into gene 
expression, i.e. into the activation of gene transcripts. Common methods are microarray 
experiments or newer high-throughput methods such as RNA sequencing. These measure 
gene expression (mRNA level) and thus provide information on the corresponding changes 
in mRNA (up- or down-regulated), for example after infection or treatment. Meanwhile, 
there are increasingly efficient methods that can, for example, measure the expression of 
the host and the pathogen in parallel in one cell and thus provide insights into the changes 
in both organisms after an infection (dual RNAseq). Subsequent bioinformatic gene 
expression analysis can then examine the RNA secondary structure (e.g., RNAfold), the 
RNA sequence for regulatory RNA elements such as IRE (e.g., RNAAnalyzer) or in more 
detail with regard to possible interaction partners, for example RNA-protein (e.g., catR-
APID, NPInter) or miRNA-mRNA interactions (e.g., miRanda, TargetScan). Numerous 
databases already contain gene expression datasets (e.g. GEO, cBioPortal, TCGA or 
GENEVESTIGATOR), information on RNA sequence, structure and binding motifs (e.g. 
Rfam) or information on specific RNA classes (e.g. miRNA [miRBase], lncRNA 
[LNCipedia]) and can be used for own analyses.

Protein sequencing can be done with mass spectroscopy or protein microarrays and 
provides information on the amino acid sequence in the protein. It is often of great interest 
how the proteome changes under certain conditions, for example after an infection or 
therapy. However, one is usually also interested in the changes or modifications in the 
amino acid sequence, for example in the functional side, and their effect on protein 
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function. For this purpose, one can bioinformatically perform a domain annotation, i.e. 
which binding domains and functional sites are present, which thus provide information 
about binding factors, but also the regulation and function of proteins. Databases such as 
SMART, Prodom and Pfam provide information on proteins and domains and can also be 
used to search a protein sequence for existing domains. Other important tools are the 
BLAST algorithm, conserved domain or ELM servers, which allow the analysis and pre-
diction of domains in unknown sequences.

Information on the metabolome (metabolism) can be obtained using mass spectroscopy 
or gas chromatography. Metabolome sequencing is of interest to see how, for example, 
metabolites change after a pathogenic infection or a drug, or how the metabolism of 
humans and the pathogen differs. This is important, for example, for a potential pharma-
ceutical to specifically affect the metabolism of a bacterium, but without producing a toxic 
effect in humans. Important databases on biochemical metabolism include Roche 
Biochemical Pathways, KEGG. The Metatool, YANA, YANAsquare or PLAS (Power Law 
Analysis and Simulation) software are useful for investigating metabolism in more detail, 
e.g. which metabolic fluxes are present or what effect changes in metabolic pathways have.

The large amounts of data that we can generate with modern techniques obviously help 
much better to describe a biological system, such as the heart muscle.

On the other hand, it is clear that the crucial thing is to understand the underlying prin-
ciples, as just explained for main and side effects and further illustrated by other central 
system building blocks in this chapter. Therefore, one has two possibilities to describe a 
complicated biological system:

First of all, knowledge-based research is used to elucidate the basic principles of the 
biological system (for the myocardial cell in heart failure, see Figs. 5.1 and 5.2). Next, one 
uses new data, preferably a great deal of it (nothing else is meant by “big data”), to sub-
stantiate or modify the insights and hypotheses gained.

As you can see, relying only on the amount of data and large data sets is more a sign of 
bias or inexperience. If I don’t have a clear hypothesis about the behavior of the system, I 
have a much harder time reading the right thing from the data, or better yet, verifying it.

Even worse: “hypothesis free” research is mostly bad, even if advocates claim that one 
would then be unbiased towards the results, because it is very easy to fall prey to chance.

Let’s illustrate this again with the gene expression dataset in heart failure. Let us assume 
that we have measured 20,000 mRNAs and now want to understand, without a clear 
hypothesis, which ones are increased in heart failure. Now, even if no objective differences 
can be shown between drug and no drug, given 20,000 mRNAs, we would then purely by 
chance find 1000 mRNAs that show a difference in expression between the two groups 
with a p-value <0.05. Bioinformaticians and statisticians or experimenters, as experts in 
large data sets, know this and therefore correct the statistics for such large data sets. This 
is the correction for multiple testing, for example according to Bonferroni. In this correc-
tion for many comparisons, the p-value is divided by the number of tests (n). For example, 
for the 20,000 mRNAs, one would only accept differences with a p-value <0.0000025 
(adjusted p-value). This is a very hard correction, but it applies to any distribution of 
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measurements. Other “multiple testing” corrections are not quite so hard, because the dis-
tribution of the results usually satisfies a normal distribution.

Nevertheless, it can be generally stated that it is much easier to carry out such evalua-
tions with clear hypotheses and less likely to fall prey to random deviations or come to 
false conclusions from the large data sets.

9.3	� Typical Behaviour of Systems

How do systems behave in general? Surprisingly, there is a simple answer strategy. One 
distinguishes between the different kinds of systems that can exist at all. There are three 
types of systems: ordered, random and chaotic systems. These differ fundamentally 
(Table 9.1):

Ordered systems can be described by simple mathematical equations, for example the 
flight behaviour of a rocket or an airplane (function in time as independent variable, with 
the x, y and z coordinates for the position) or of a train (route plan). As we can see, this 
behaviour is predictable and can be described exactly for the entire period of the flight or 
train journey.

In addition, the system can also be easily controlled, for example by the aircraft pilot 
using the joystick or the acceleration/deceleration of the train by the train driver. The so-
called state space of the system (where the train or the plane is at which point in time) can 
be described exactly, for every hour, for every minute.

A random system cannot be predicted at all for the next moment. The ideal example is 
a dice roll. No one can predict whether the next roll will be a one, a two, or a three, or even 
a six. And it stays that way. Also, the next roll is just as random as the previous one. This 

Table 9.1  System behaviour (ordered, random, chaotic) with typical properties

System Order Mayhem Random
Example Clocks, planets Clouds, weather Noise (sound), dice
Single event 
predictable

Very accurate Only briefly (weather 
forecast)

Not at all
→ simple laws

Effect of small 
disturbances

Very small Escalating over time, 
explosive

No effect, random 
disturbances are averaged 
out

Possible states Few pure states Many: Circling around 
attractor

Noise of all possibilities 
(1 to 6 on the dice)

Dimension Finally Low, e.g. circular 
orbital plane, healthy 
pulse

Infinite (any sequence is 
possible)

Control Simply Difficult, but effective Barely (dice)
Attractor Clear point, exact 

circular path (strange, 
fractal)

Scattered around the 
attractor

No attractor: Any state 
possible
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is called a random Markov chain (also Markov process, after Andrei Andreyevich Markov; 
other spellings Markov chain, Markoff chain, Markof chain). By knowing only a limited 
antecedent history (e.g. last litter), only as good prognoses about the future development 
will be possible as by knowing the whole antecedent history. But which ones? Here we see 
amazing things: while we can’t predict the next litter at all (it’s random, after all), we can 
predict the outcome space for all futures: It can only be a one through six.

So we see: with random systems, everything is not predictable at all in the short term. 
But the long-term prediction is surprisingly simple. The entire value frame is swept 
according to a random function (in our case: one sixth of the dice is a one, a two, a three 
... a six; a more complex solution for a different system could be a Gaussian distribution) - 
this is the description of the entire future. Finally however, the result can never be con-
trolled, a random system is and remains random.

And what about the biological systems? The fascinating thing is that the biological 
systems are a mixture between both extremes, between randomness and total order. These 
systems are called chaotic systems. We have already seen an example from everyday life: 
the weather. Here there is only a more or less certain weather forecast for the next day or 
even 2 weeks, but no certainty for longer periods. On the other hand, the result space is 
quite fixed, namely the climate of the place, which is e.g. temperate and sets the frame of 
possible weather forecasts.

This applies analogously to biological systems, for example heart rate and blood pres-
sure (Fig.  9.3). Both can change rapidly, but as long as we are healthy, a fixed frame 
remains (e.g. pulse between 60 and 80, blood pressure between 80 and 120 mmHg). What 
is important for all such systems is that it takes considerable effort to move the system 

Pulse

Malfunction 1 Malfunction 1
Malfunction 2

Malfunction 3

Malfunction 2

Malfunction 3
100

50

Pulse

100

50

50 150 Blood pressure 50 150 Blood pressure

Health Disease

Fig. 9.3  Representation of the biological system state healthy versus diseased state. Biological 
systems are, as long as we are healthy (left: system state health as green circle), in a stable, fixed 
frame, e.g. pulse between 60 and 80, blood pressure between 80 and 120 mmHg. The system moves 
within its tolerated limits (tolerance range; here pulse and blood pressure) and can compensate for 
external influences (e.g. exertion or anger, as disturbances 1–3). However, if the external distur-
bances are too strong, the system exceeds its tolerance range and the previous, stable system state 
(health) is abandoned. The patient becomes ill (right: system state illness, e.g. high blood pressure, 
as red circle due to too strong disturbance 1)
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away from the healthy state. This is because after an effort (pulse) or anger (blood pres-
sure) the system returns to the normal state. That is why the healthy state is called a system 
attractor (“system-attracting”). The attractor of a system can only be left in case of stron-
ger disturbances (e.g. continued anger, stress at work), which can lead to a disease (e.g. 
high blood pressure). If this is a chronic condition, everything is now reversed. One must 
constantly exert force (such as taking an antihypertensive) to keep blood pressure within 
tolerable limits. An attractor for a sick state has then been reached, in the example it is the 
disease high blood pressure. Only a causal (cause-oriented) therapy can change this again. 
In particular, the system control must be adjusted to a different blood pressure value again, 
which is not yet possible in practice, since blood pressure regulation is extremely complex.

Why are such systems called chaotic? The reason is, they are only predictable for a 
short time. This is because biological systems, but also the weather and chaotic systems in 
general, are not controlled linearly. That is, a small change in control, just like a small error 
in description, doubles with each time step. For example, if I have only 1 per mil error in 
the description, just ten time steps later I have more than 100% error and can no longer 
predict the system state. The time scale on which this no longer describability happens 
varies among systems and is a characteristic time. However, the result is the same for all 
chaotic systems. Even for relatively short periods of time, one no longer knows what their 
concrete state is, since one never knows the starting state with infinite precision, and small 
errors always build up exponentially (the definition of a chaotic system). On the other 
hand, controlling such a system is very effective (the so-called butterfly effect, since even 
the smallest changes are always amplified exponentially). Finally, we now also know that 
the result space of the system sets clear bounds, as does the climate of a place. Even if I 
can’t predict the system in the short term, I can predict what the system will stay within in 
the long term based on the attractor. For the same reason, stronger disturbances of the 
system are very dangerous. Then it can happen that the system not only gets out of bal-
ance, but permanently leaves its previous system state and changes into a new “sick” state 
(crossing a “tipping point”, see Chap. 16).

9.4	� System Credentials: Emergence, Modular Construction, 
Positive and Negative Signal Return Loops

Even if we analyse large amounts of data with these “omics” technologies, there are a 
number of recurring concepts that help us to understand such biological systems – regard-
less of the level, i.e. whether we are looking at molecules at the lowest level, cells, tissues, 
organisms or even entire ecosystems. “Scale invariance” in this context means that at each 
size scale, the same phenomenon occurs in a similar way. Benoit Mandelbrot, for example, 
has looked at how self-similar at large and small scales such chaotic systems often are. 
Well-known examples include clouds (which repeat at every scale from the smallest cloud 
to huge weather fronts) and coastlines (which also look the same when viewed at every 
scale). Since all of these effects, which recur at different levels of order, rely on existing 
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system control through regulation, we need only consider in detail what control capabili-
ties the system has. Of particular importance are feedback loops (Fig. 9.4) that return an 
output signal back to the system. Subsequently, this signal given back (feed-back) can 
amplify the system response (“positive feedback loops” or loops), for example, faster cell 
division, stronger excitation, the system becomes more and more excited. However, other 
feedback signals can also dampen the system (“negative feedback loops” or loops), thereby 
preventing an excessive response or excitation, the system is stabilized. In addition, all 
biological systems are made up of many identical units (“modular”). At the lowest level, 
these are the building blocks for nucleic acids and proteins, i.e. nucleotides and amino 
acids respectively. But this is how it continues to larger and larger building units in the cell 
(filaments, organelles are formed from molecular networks). The cells in turn form tissues, 
these then form the organism and many individual organisms then networks of interacting 
organisms and whole ecosystems. The building blocks therefore alternate and thus always 
form new patterns and properties (“combinatorics”).

Therefore, another general phenomenon is the study of network effects that arise anew 
as components come together, called emergence. A system is much more than the sum of 
its parts. At each new level, fundamentally new effects and phenomena occur that did not 
exist at the lower level and that breathe new properties into life through the interaction of 
the components. One example is the circulatory system, which is more than the many 
individual blood and heart muscle cells and supplies the body with nutrients and oxygen, 
resulting in system properties such as blood pressure and pulse. Another fine example is 
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Fig. 9.4  Feedback loops: positive, negative; modular structure
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human consciousness, where instead of individual nerve cells or brain regions, a whole 
new quality of existence and perception emerges.

Finally, in this chapter we would like to introduce five important representatives of 
complex systems theory. We begin with Alan Turing, who thought in general terms about 
the computer and its limits. This is followed by Rene Thom, who founded the general 
theory about the behavior when crossing system boundaries. In addition, Benoit Mandelbrot 
is introduced, who founded his own field with his fractals, to elucidate natural system 
behavior and structures with simple principles, the fractals, as well as Leroy Hood, who is 
an example as a highly recognized representative of the younger systems biology and its 
application in medicine (there are many who could also be mentioned, not only in the 
USA, but also from Europe. So he provides here only a strong example). Reinhart Heinrich 
concludes the book, representing all non-US efforts in systems biology, which already 
produced exciting initial results in the Soviet Union and the former GDR, for example on 
phosphorylation cascades.

9.5	� Pioneers of Systems Science

Alan Turing
Alan Turing has the merit (Hodges 2014) of having already mathematically thought out 
what a computer would be capable of even before most computers were built. This makes 
him at least one of the greatest computer scientists who ever lived. In his memory there has 
been the “Turing Award” for the best computer scientist since 1966. Turing was English 
and lived from June 1912 (London) to June 1954 (stigmatized for his homosexuality since 
1952, died of a cyanide overdose, suicide/accident). With the help of the concept of the 
Turing machine (Fig. 8.1) he was able to show clearly which problems computers and 
formal systems can decide and which cannot (“On Computable Numbers, with an 
Application to the Decision Problem”; 1936; Alonso Church’s lambda calculus showed 
something similar earlier, but without this ingenious machine). In particular, it is impos-
sible to decide algorithmically when a Turing machine holds. Of his many other contribu-
tions to mathematics, logic and computers, it is worth mentioning that he deciphered the 
code of the German cipher machine “Enigma” with the help of the first English large-scale 
computer “Colossus” during the Second World War.

Rene Thom
Professor Rene Thom (02.09.1923–25.10.2002) was a mathematician. His “catastrophe 
theory” attempts to describe specifically the discontinuous, erratic behavior of dynamical 
systems (Poston and Stewart 1998). His theory studies the branching behavior of solutions 
(bifurcations) as parameters vary as a mathematical treatment of chaos theory. His “theory 
of singularities of differentiable mappings” means here the seven possibilities for mathe-
matical functions to change suddenly and abruptly its seven “normal types”.
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Fig. 9.5  Fractals (Yami89, CC 
BY-SA 3.0). (https://upload.
wikimedia.org/wikipedia/
commons/d/d2/M2_1024.png)

Benoit Mandelbrot
Benoit Mandelbrot (20.11.1924–14.10.2010) was born in Warsaw. As an intelligent Jew 
he had to flee from Poland to Paris in 1936, first learning mathematics from his uncle 
Szolem Mandelbrojt. He then lived with his family in Tulle, undetected by the Nazis. He 
was able to return to Paris to study at the École Polytechnique from 1944, and at the 
California Institute of Technology from 1947 to 1949, graduating with a master’s degree 
in aeronautics (aircraft design). He received his PhD in mathematics from the University 
of Paris in 1952, and was a CNRS member (French national researcher) from 1949. He 
was an IBM Fellow from 1958 and did research there for 35 years, although there were 
also stays at Harvard and many other scientific honours during this time.

In 1975 he created the term fractals for scale-free structures (Fig. 9.5), which therefore 
look the same at any distance. Popular examples are coastlines, clouds, trees, the lungs, 
blood vessels and many more. He was able to show convincingly that these are mathemati-
cal objects that are often assumed in nature (but then always with a lower and upper limit) 
and not computer errors (technical term: “artefacts”, i.e. caused by programming and not 
occurring in reality). He explored numerous properties of these fractals. Important books 
of him are “Fractals: Form, Chance and Dimension” (Mandelbrot 1975) as well as “The 
Fractal Geometry of Nature” (Mandelbrot 1982). With these books he founded an entire 
field of research that is still being intensively investigated. His creativity and ability to give 
himself time to let ideas mature are exemplary. He would never have called himself a bio-
informatician. But he used computer programs to first study and describe fractals, and then 
showed what profound insights about nature, especially biology, are possible when one 
sees how fractals determine many processes in nature or are simply beautiful (e.g. 
snowflakes).

Leroy Hood
Leroy Edward Hood (born October 10, 1938 in Missoula, Montana) is an American sys-
tems biologist. B.Sc. degree from the California Institute of Technology (1960), medical 
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degree (1964) from John Hopkins University (MD), then Ph. D. in biochemistry in 1968. 
1975 Professor of Biology at Caltech, 1989 Director of the NSF Science and Technology 
Center for Molecular Biotechnology at the National Science Foundation (NSF), 1992 
Professor University of Washington. Since 1999, Hood has directed the Institute for 
Systems Biology. His merits lie in particular in his work on the automation of DNA 
sequencing (see Automated Sequencing) and on the diversity of possible antibodies of an 
individual through recombination of genetic information (see V[D]J recombination).

This short selection of papers shows that Leroy Hood cares a lot about molecular medi-
cine (Qin et al. 2016), personalized medicine (Sagner et al. 2016), systematic proteomics 
(Kusebauch et al. 2016), and Big Data analysis (Toga et al. 2015).

Reinhart Heinrich
Reinhart Heinrich was an East German biophysicist, born in Dresden on April 24, 1946, 
died in Berlin on October 23, 2006. He first lived with his parents in Kuibyshev in the 
Soviet Union, received his doctorate in 1971 on solid state physics, B doctorate in 1977 
(then habilitation), lecturer in 1979 and worked as a professor of biophysics at Humboldt 
University from 1993. He is one of the pioneers of systems biology. His contributions to 
metabolic control theory, which date back to the 1970s, are exciting and instructive. 
Fundamental works appeared together with Tom Rapoport. His theoretically elegant and 
impressive works on regulation (Schuster and Heinrich: The Regulation of Cellular 
Systems. Springer Verlag New York, 1996) and signal cascades (Heinrich et al. 2002). In 
particular, he succeeded in defining more precisely general properties of phosphatases and 
kinases for signal processing. This concerns phosphatases for the regulation of signal 
amplitude, signal frequency, signal duration (the phosphatase must switch off fast enough 
for both) and kinases for the regulation of signal amplitude and signal height (the kinase 
must amplify strongly enough). His work has influenced a number of German systems 
biologists in their school days (e.g. Edda Klipp, Stefan Schuster, Thomas Höfer) and even 
more bioinformaticians.

Comparable work with different terminology has been done by Henrik Kacser and Jim 
Burns at the University of Edinburgh. This also applies, for example also to German 
research personalities such as Jens Reich (emeritus group leader at the Max Delbrück 
Center for Molecular Medicine Berlin; member of the Berlin-Brandenburg Academy of 
Sciences), Peer Bork (EMBL in Heidelberg, internationally perhaps the best-known 
German bioinformatician, many strong publications on genomics, metagenomics; Nature 
Mentoring Award), Thomas Lengauer (MPI for Informatics Saarbrücken, member of the 
presidium of the Leopoldina) and Martin Vingron (MPI for Molecular Genetics Berlin, 
member of the Leopoldina). In addition, there would be a long list of bioinformatician 
friends in Berlin, Bielefeld, Dortmund, Freiburg, Greifswald, Hamburg, Jena, Heidelberg, 
Mainz, Munich, Tübingen etc. (in alphabetical order of cities). (alphabetical order of cit-
ies) and elsewhere. For each of them, I can only stress that the high quality of all these 
contributions only becomes fully apparent when you really get to grips with the individ-
ual papers.
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This already shows: our selection of persons can only be exemplary. Especially in bio-
informatics, it would fill a book of its own if one wanted to acknowledge all the important 
contributions of even just the important people.

With this overview we can see that systems biology can be traced back to clear basic 
principles (first part), but is also characterised in a very interdisciplinary way by important 
principles from neighbouring fields (second part: presentation of the five research person-
alities in systems biology).

But how do we use these insights in practice? Modeling software is available for this 
purpose, but we only understand its results if we do not forget the principles and keep them 
in mind.

9.6	� Which Systems Biology Software Can I Use?

As we have already learned, one typically proceeds in two steps. First, one assembles the 
necessary components for the system description and then proceeds to a systems biology 
modeling of the dynamics, i.e. the time course in a semiquantitative model. Semiquantitative 
here also means that we learn from the model the sequence of processes, i.e. what is stron-
ger and what is weaker, but not the absolute strength of the signals or the exact “kinetics”, 
i.e. the precise pace of the processes. This requires yet more data, especially experiments 
that accurately measure the speed. These data can then be used to incorporate them into 
the models as accurately as possible. This is then the final third step, the exact mathemati-
cal modelling. There are numerous ways to do this (see also the nice textbook “Systems 
Biology” by Klipp et al. (2016)). Here, only particularly well-known and easy-to-use tools 
can be mentioned, without claiming to be exhaustive. Above, we have already presented 
some tools that can be used for metabolic modeling, but which also work well for signal 
cascades:

In particular, modeling with the convenient programming languages R and MATLAB 
is recommended. For the R language, as well as for MATLAB, there is an R Systems 
Biology Suite, and for the evaluation of gene expression data and systems biology based 
on it, there is the Bioconductor Software package, which also uses R.

CellNetAnalyzer, COPASI, COBRA (Table 4.2) and Odefy (Krumsiek et  al. 
2010) should be mentioned here. SQUAD (di Cara et al. 2007) and Jimena (Karl and 
Dandekar 2015) have also been mentioned.

9.6 � Which Systems Biology Software Can I Use?
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Conclusion
•	 Complex biological systems are self-regulating and try to keep their own system 

state stable. The system state is therefore an attractor. Negative feedback loops 
help to prevent overshooting. Positive activation loops (feedforward loops) acti-
vate the system when it is too weak. For example, the heartbeat, pulse and body 
temperature of a healthy person remain stable within a narrow range and only 
oscillate around this range (limit cycle; so-called van der Pol oscillator), similar 
to the way a place has its fixed climate.

•	 Just as for the weather, exact predictions are only possible to a limited extent. 
Errors in system measurements increase exponentially. For this reason, complex 
systems can be described much better today using large amounts of data, for 
example with the help of omics techniques and statistics (scripting language R, 
important exercise, see tutorials). Alternatively, central key elements can be tar-
geted (e.g. central signalling cascades, highly linked proteins in the centre, so-
called “hubs”, sequence and system structure analyses, e.g. with interactomics 
and gene ontology, important), through whose combination the system behaviour 
essentially comes about, i.e. in none of the components (modules) alone (“emer-
gence”): the modules are correctly linked with each other, and the system proper-
ties only occur then.

•	 The systems sciences initially described important systems insights for physical 
systems (climate, chaos; Mandelbrot: fractals, Thom: catastrophe theory) and 
have since transferred them to biological systems (systems biology; e.g. 
Kaufmann, Hood, Reinhart) in order to place organisms, ecosystems, organ sys-
tems and brains (consciousness: extreme emergence, a fulguration), but also 
medicine and therapy on a new basis. Today’s systems biology modeling soft-
ware starts from the system structure described in machine-readable terms 
(Cytoscape software, CellDesigner and others), then recreates the dynamics in an 
easy-to-learn manner (e.g., SQUAD, Jimena, CellNetAnalyzer), with compari-
son to experiments requiring many (“iterative”) model improvements. Systems 
biology is the most important future field of bioinformatics, especially in combi-
nation with molecular medicine, modern omics techniques (e.g. transcriptomics, 
metagenomics, next generation sequencing) and bioinformatic analysis (R/statis-
tics, read mapping and assembly; bar coding, metagenome analysis), neurobiol-
ogy (e.g. C. elegans conectome, Blue Brain project: Chap. 16) or ecology 
(systems ecology, e.g. modelling of climate change).

9  Complex Systems Behave Fundamentally in a Similar Way
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9.7	� Exercises for Chap. 9

Task 9.1
Name and describe typical behaviors (ordered, random, and chaotic) of biological systems.

Task 9.2
Describe basic elements of biological systems.

Task 9.3
Name and describe various omics techniques.

Task 9.4
What is meant by emergence? Make this clear with an example.

Task 9.5
Draw a simple network consisting of a feedback or feedforward loop.

Task 9.6
Describe erythropoietin (EPO) production: (1) first qualitatively (set up control loop), (2) 
then identify possible quantitative relationships.

Task 9.7
Consider water: what different system states do you know?

Task 9.8
Cardiac hypertrophy simulation: which different system states could be distinguished for 
cardiac force stimulation if an increase in cardiac force can occur via a sympathetic and a 
hypertrophic stimulus?

Useful Links

Ensembl https://www.ensembl.org/Homo_sapiens/Info/Index
UCSC https://genome.ucsc.edu/
OMIM https://www.omim.org/
RNAfold https://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
RNAAnalyzer https://rnaanalyzer.bioapps.biozentrum.uni-wuerzburg.de/
catRAPID https://s.tartaglialab.com/page/catrapid_group
NPInter https://www.bioinfo.org/NPInter/
miRanda https://www.microrna.org/microrna/home.do
TargetScan https://www.targetscan.org/vert_71/

(continued)
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GEO https://www.ncbi.nlm.nih.gov/geo/
GENEVESTIGATOR https://genevestigator.com/gv/
Rfam https://rfam.xfam.org/
miRBase https://www.mirbase.org/
LNCipedia https://www.lncipedia.org/
SMART https://smart.embl-heidelberg.de/
ProDom https://prodom.prabi.fr/prodom/current/html/home.php
Pfam https://pfam.xfam.org/
BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi
Conserved domains https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
ELM https://elm.eu.org/
KEGG https://www.genome.jp/kegg/
YANA https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/

yanasquare/
YANAsquare https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/

yanasquare/
COPASI https://copasi.org/
COBRA https://opencobra.github.io/
SQUAD https://www.vital-it.ch/software/SQUAD (Di Cara et al. 2007).
Jimena https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/

jimena_c/ (Karl and Dandekar 2013, 2015)
CellNetAnalyzer https://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html
PLAS https://enzymology.fc.ul.pt/software/plas/
Odefy https://www.helmholtz-muenchen.de/icb/software/odefy/index.html
Roche pathways https://www.roche.com/sustainability/what_we_do/for_communities_

and_environment/philanthropy/science_education/pathways.htm
Metatool https://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool/

metatool5.0/metatool5.0.html

Useful Links  (continued)
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10Understand Evolution Better Applying 
the Computer

Abstract

The evolution of populations creates new species; the individual living being or protein 
is, after all, determined within narrow limits by the specific genome. New populations 
with ever new typical characteristics (through mutation and, in the case of sexual repro-
duction, through recombination) are always created, which allow an almost optimal 
adaptation to the prevailing environment, less environmentally related characteristics 
are less often passed on in the population (selection). However, many variants are also 
neutral or new structures only appear abruptly when enough mutations are present 
(neutral pathways in RNA structures; “punctuated equilibrium” according to Gould). 
Phylogeny helps to infer the evolution of different species on the basis of shared or non-
shared characteristics via calculated predecessors. There are faster (neighbor joining) 
and more accurate methods (parsimony, most accurate maximum likelihood). 
Accompanying sequence and secondary structure analyses reveal conserved and vari-
able regions as well as the evolution of functional domains. Most accurate phylogenetic 
trees require much practice and systematic comparison of all available information 
(e.g. alternative phylogenetic trees; marker proteins).

It is important for the understanding of evolution that it can only affect a whole population. 
In this respect, I have an even more complex task before me here than describing a com-
plex individual system (Chap. 9): Cells or individual genes or proteins can change in an 
individual in the course of life. But since this mostly affects somatic cells (“somatic muta-
tions”), they are not passed on to the next generation. But across generations, if you look 
at a whole population, there are changes over time due to the numerous mutations that 
happened in single genomes of germ cells and even passed on to new born individuals. 
Generally, this results in the population being better adapted to the environment that is 
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currently prevailing. Random changes (mutations), natural selection, and reproduction 
(replication) work together to achieve this. Sexual reproduction also allows new gene 
combinations in the offspring through recombination of the paternal and maternal genome. 
Depending on the environment, a mutation can thus be beneficial or detrimental or insig-
nificant (neutral). Although this makes the evolution of genetic material a very complex 
process in populations, it is now possible to determine how these representative sequences 
change over time and how different they are in different populations by systematic 
sequence comparison of typical sequences for a population. One can then calculate from 
many such sequence comparisons (see Sects. 10.3 and 10.4) how different different popu-
lations are (one often compares species) and can then calculate back how the precursor 
populations looked (also extinct species).

This is all surprisingly difficult when looked at in detail, e.g. which sequences are rep-
resentative of the population? Answer: The most frequent sequences in the population. So 
ideally you have to sequence many individuals, like in the 1000 genomes project for the 
human genome. However, when do I have a new species? This is not a problem for verte-
brates and mammals, but it is not at all easy to determine with certainty for all other living 
organisms. Originally, individuals were classified morphologically (differing in appear-
ance) and then simply called species. Later, a species was defined as a sexually fertile 
reproductive community between individuals in a population. This does not work for bac-
teria. Here, genetic exchange is complex with many transitions and reproduction is usually 
asexual, so that a three percent difference in the genome is often pragmatically defined as 
a new species. One also has to look carefully at the resulting phylogenetic trees in order 
not to make any mistakes, for example whether one can determine an original species 
(“root”) or whether it is better not to do so because of the unclear data situation. Another 
example error in reconstruction is the tree-building error (long branch attraction), since 
systematic errors can often occur, in particular distantly related species are wrongly con-
sidered closely related or closely related species are wrongly considered unrelated, which 
arises when sequences of different lengths are compared or when a single sequence is 
quite long and the taxa have a different number of mutations.

10.1	� A Brief Overview of Evolution from the Origin of Life 
to the Present Day

Evolution always takes place in a population. The individual living being or protein is, 
after all, determined within a narrow framework by the specific genome. There are always 
new species (colloquially: “living beings always evolve over time”). In reality, there are 
always new populations with always new typical characteristics (by mutation and, in the 
case of sexual reproduction, by recombination) that allow near-optimal adaptation to the 
prevailing environment. Less environmentally related traits are less often passed on in the 
population (selection). However, many variants are also neutral. Even more exciting is that 
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in RNA molecules, for example, new structures suddenly appear abruptly if enough muta-
tions are present. These so-called neutral pathways in RNA structures can be thought of as 
follows: As long as the mutation does not change the base pairings, it changes the stability 
of the RNA only slightly. An identical base pairing, i.e. the replacement of an A-U pair by 
a C-G pair, is called a “conserved substitution”. In addition, a structure can simply 
“endure” a series of minor mutations (i.e., remains stable enough) until eventually the 
stability is no longer enough, and then the RNA suddenly refolds. This then separates one 
RNA structure from the next via such a neutral pathway. So each pathway accumulates 
many neutral mutations. A similar thing happens when you look at protein structures in 
three dimensions (it’s just more complex): Again, I can have a whole bunch of mutations 
associated with the same structure (“neutral path”), but eventually I have so many muta-
tions that my structure suddenly flips. In evolution, this new structure only survives if it is 
beneficial to the prevailing environment. This has also led to a specific perspective on 
evolution: “punctuated equilibrium” according to Stephen J. Gould (1989) assumes that 
there are always “hot phases” of change in a population, because then suddenly mutations 
are no longer neutral and lead to new structures that are, among other things, advanta-
geous. After that, everything remains similar for a long time (equilibrium). In reality, how-
ever, more and more neutral mutations accumulate in all structures until suddenly, due to 
decisive mutations, one or more RNA or protein structures “tip”, i.e. change rapidly. This 
is followed by another period of quiescence in which mutations accumulate but no struc-
tural change occurs. This model explains at least relatively much about the predominant 
observed pattern of evolution. Over time, then, there has been no directed “higher develop-
ment” in evolution, but rather the genetic material in the various populations continues to 
change through complex processes over time, while other populations die out altogether 
and new ones emerge.

Nevertheless, the overall effect on life as a whole in the 3.5 billion years since its origin 
has been considerable: about 450 million years ago, i.e. since the upper Silurian or lower 
Devonian age, higher (eukaryotic, see glossary) life spread to the land and shortly after-
wards to the air. Over time, life has formed more and more species on average and the 
biomass has also grown more and more despite several mass extinction events.

The still numerically clearly dominant bacterial (prokaryotic) cells have consolidated. 
It can be shown that today’s enzymes have been very well optimized in their catalytic 
activity. The same is true for metabolic pathways that have led to more and more, increas-
ingly complex metabolites and have also become more and more efficient and robust. 
However, this then applies to the overall trend, across all bacteria (prokaryotes, i.e. eubac-
teria and archaebacteria). For a single species, specific environmental adaptations domi-
nate, interspersed with neutral mutations, and the set of adapted mutations keeps changing 
as the environment changes. So, up close, variance and neutral change dominate. By the 
same token, evolution would never repeat itself the same way even when restarted, but 
would always find new species (or “solutions” if you will). Moreover, one must keep in 
mind that for every species alive now, there are 1000 others that are already extinct.
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Each species lives about 1 million years, with a large range of variance: The pearl boat, 
an octopus, for example, has survived effortlessly through the last half billion years, 
including global mass extinctions in the Permian and Cretaceous, as has the cockroach.

With eukaryotes, there was also the possibility of investing in complexity. After all, 
these higher cells with nuclei are able to store about a hundred to a thousand times more 
genetic information than bacteria. This allows much more material for evolution. Splicing 
can also combine one and the same gene into numerous different proteins. And sexual 
reproduction also allows something new to be tried out in a diploid chromosome set in one 
allele of a gene (i.e. the variant from the father or the mother), since initially the already 
fairly optimal original variant of the gene in the other parent also pre-exists in the cell. This 
led to more and more complex organisms, and these also showed more and more complex 
behaviour. Until the appearance of humans, insects dominated on land among the higher 
organisms (eukaryotes) and among these the state-forming ants. With the appearance of 
humans, the total biomass of insects is still greater among higher organisms, but our civi-
lization (including buildings and industry) has now become the dominant species on the 
planet for the ecological footprint and thus also at least for the necessary consumption of 
biomass (since 1950, is referred to by geologists as the “Anthropocene”, new age). Before 
that, however, mammals gradually evolved higher since the Jurassic (200–140 million 
years before our era) and, with the extinction of the dinosaurs 65 million years ago, clearly 
outranked their present-day descendants, the birds, in occupying the ecological niches. 
But insects were still the dominant species. However, hymenoptera (bees, ants, wasps) 
only developed massively with the appearance of flowering plants, also in the Tertiary 
period (from about 65 million years ago).

The brief overview shows: It is not easy to interpret evolution correctly, and one also 
needs detailed data on the Earth’s ages and the predominant species as well as the geologi-
cal and climatic conditions. This book cannot do that. We will next look in more detail at 
how phylogeny (family tree science) can be used to infer the evolution of different species 
based on shared or unshared characteristics via calculated ancestors. The most accurate 
phylogenetic trees require a lot of practice and systematic comparison of all available 
information (e.g. alternative phylogenetic trees).

One should also know the species exactly in their macroscopic characteristics. It is also 
important to look at several molecular sequences, which are used for a phylogenetic tree, 
especially since proteins tolerate mutations at different rates. “Molecular clocks” go at 
different rates: Histone proteins hardly change at all because they are central and interact 
with many proteins. In contrast, less important proteins, or those that interact with few 
other proteins, can change much faster. Marker proteins can provide clarity here: fre-
quently described molecules that occur in very many species, such as ribosomal RNA or, 
in the case of proteins, pyruvate kinase.

Phylogeny and other data from paleontology and molecular biology thus show, for 
example, how cytochromes (also important marker proteins) have evolved in comparison 
to hemoglobins. Such studies are supported by protein structure analysis. Interestingly, 
embryology can also often help: In order to form a new structure (for example, when a 
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worm becomes a fly with wings), there must be matching mutations, which, after all, origi-
nate from the preform. This leads to the fact that in developmental biology, the earlier 
stages of evolution are often caught up (Häckel’s law: every ontogeny, i.e. every individual 
development, recapitulates phylogenesis, i.e. the phylogeny). Genetics, for example with 
the help of the OMIM database, also helps to uncover gene relationships and mutation 
possibilities. More recently, better and better computer simulations have also become pos-
sible and allow insights (e.g. with regard to transposons) into a genome or, as an example 
from our own work, with regard to phage infection and cell wall metabolism (Winstel 
et al. 2013). Indeed, such processes accelerate evolution in the affected organisms (trans-
posons jump and disrupt or modify genes) or slow it down (in our example, modified cell 
wall synthesis prevented infection with certain bacteriophages, which allowed the bacteria 
to evolve more separately from other staphylococci). In this way, both through phyloge-
netic trees and sophisticated new computational models, bioinformatics allows a new, 
detailed and more accurate analysis of evolution and its mechanisms (Connallon and Hall 
2016). This also underpinned fascinating new insights into the evolution of life such as the 
endosymbiont hypothesis (e.g. bioinformatics analysis of organelle gene sequences trans-
ferred to the nucleus) and the RNA world (e.g. computational elucidation of ribosome 
structure, which revealed that peptide binding in the ribosome occurs through catalytic 
ribosomal RNA).

Since the advent of next generation sequencing, a very fast sequencing method, it has 
been possible to sequence environmental samples and characterise the mixture of organ-
isms present in the sample without having to cultivate the organisms. The individual 
sequence fragments must be assigned to the individual genomes (metagenomics). The sum 
of the DNA in such an environmental sample is called a metagenome. With the usual cul-
ture methods, cultivation is only successful for 1–2% of organisms. Metagenomics thus 
significantly expands our knowledge of biological diversity. A synopsis of the new micro-
bial diversity including detailed evolutionary analyses and new phylogenetic trees is given 
by Castelle and Banfield (2018). Five times more bacterial phyla (“strains”, comparable to 
all vertebrates or all arthropods) are revealed than were recognized before these new meth-
ods. One can also prove very clearly with it that the higher cells (cells with real cell 
nucleus) represent indeed clearly a side branch of the Euryarchaeota, thus go back to the 
Archaebacteria and then have taken up additionally as energy factories with the mitochon-
dria gamma-Proteobacteria or with the chloroplasts former blue-green algae, which drive 
then photosynthesis in the plants. With the higher cells (with cell nucleus, the eukaryotes), 
there are besides the animals and plants (“kingdoms”) on the same level also the fungi. But 
this is only a small side branch of the archaebacteria in the phylogenetic tree. All bacteria 
(prokaryotes) make up the mass of the diversity of life, the archaebacteria seem only 
slightly less diverse than the eubacteria (the typical bacteria like gram-negative coliform, 
gram-positive like staphylococci and Bacillus subtilis, and completely new groups). All 
other life (animals, plants, fungi, higher protozoa) is just a small side branch. And to make 
matters worse, the impressive bacterial diversity is five times greater than was even thought 
possible just a few years ago.
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10.2	� Considering Evolution: Conserved and Variable Areas

The view of things just mentioned describes the fascinating control behaviour of biologi-
cal systems and tries to understand this aspect as well as possible (systems biology). 
However, we can also ask ourselves how these wonderful adaptations of living beings 
came about in the first place. Bioinformatics also tries to better explore and understand 
this. The focus here is on sequence comparisons, evolution and phylogenetic trees. But 
this is perhaps a bit theoretical to start with. Evolution, in particular the common root of 
all life, on the other hand, can also be experienced first hand. All it takes is lunch. We can 
eat vegetables and meat, and indeed all vegetables, fruits, but also (at least as a non-
vegetarian) all kinds of meat, fish and even crustaceans and shellfish. This is only possible 
because all of these creatures are related and even share the same genetic code. If this were 
not the case, the animal species that incorporate other amino acids into their proteins 
would be indigestible and probably even highly toxic to us. So the genetic code common 
to all living things can be tasted at lunch and is a strong indication of the “last common 
ancestor”, the last common ancestor of all life.

Of course, evolution can be studied much more precisely by comparing the sequences 
of biomolecules. For example, all cells with a nucleus are related to each other (all ani-
mals, plants and fungi, more precisely: all eukaryotes). This can be seen, for example, by 
finding basic RNA molecules, such as U4 RNA, which is important for the production of 
messenger RNA from a long precursor (splicing process), in different organisms. 
Figure 10.1 shows the comparison of the U4 RNA between brewer’s yeast and humans.

10.3	� Measuring Evolution: Sequence and Secondary Structure

Figure 10.1 shows that even over great evolutionary distances RNA does not change its 
shape if it is important for function. Here, this is the very long time that has passed since 
humans and yeast cells still looked the same and the first cells with a cell nucleus emerged 
(about 1.5 billion years). Preserved is the shape of the RNA (secondary structure) and also 
single nucleotides (left, to be seen more clearly, each dot means preserved nucleotides). 
Boxes show that often even both have been preserved at this point. The figure also shows 
base pairings where there is also a base pair in the yeast cell, but a different base pairing 
than in humans (e.g., just above the GA-bulge, in the middle, right [box], the yeast cell has 
a GC pair, but humans have a UA pair). The whole molecule is much larger overall, but 
only the “front end”, i.e. the 5′-part of the molecule, is shown. The high conservation 
stems from the fact that any mutation here could interfere with the splicing of the mes-
senger RNA. For such important functions in the cell, base changes rarely occur because 
it is usually not advantageous to change anything else in the process.

Both the sequence and the base pairing possibilities that give RNA its structure are 
considered (both are highlighted in Fig. 10.1).
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Fig. 10.1  Comparison of the U4 RNA secondary structure and primary sequence from brewer’s 
yeast and humans. Conserved features of secondary structure (right, boxes) and primary sequence 
(left, capital letters) are highlighted. Only the 5’terminus is shown (full structure is about 128 nts)

Interestingly, it turns out that both important elements of structure, but also of sequence, 
have been conserved in this important RNA molecule over the huge evolutionary distance 
of two billion years during which the three organisms baker’s yeast (S. cerevisiae), brew-
er’s yeast (S. pombe) and humans have evolved from each other. Of course, this is not so 
much the case with less important molecules, and there are enough molecules that are only 
found in humans but not in either of the yeasts and so on.

Importantly, however, looking at RNA folding and RNA sequence allows us to see 
important conserved structures in organisms by comparison, and based on that, how evolu-
tion causes such structures to form and adapt.

It is easy to imagine a mutation swapping one or more letters. And it is indeed the case 
that the sequence already changes much faster than the structure in a relatively short time 
(“short evolutionary distance”). Yet short evolutionary distances mean millions of years. If 
a letter of such an important molecule is successfully exchanged, it takes thousands of 
generations until this happens by chance and is not immediately eliminated by disadvan-
tages for the cell (negative mutation) (because the organism dies). Thus, over “short evo-
lutionary distances” (typically millions of years, many thousands of generations), a few 
nucleotides can be exchanged, but the structure remains the same (as can easily be seen in 
the figure). Over even further distances (many millions of years – like humans and yeast 
cells, which separated their evolutionary lineages about two billion years ago), even the 
structure can change. This happens so slowly because when the structure changes, the 
partner molecules must also adapt. Such combined mutations take time to occur randomly 
in the generational sequence. The easiest to understand is a combined mutation that does 
not change the structure of the single molecule at all, a so-called compensatory mutation.

10.3 � Measuring Evolution: Sequence and Secondary Structure
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For example, if I originally have a GC base pairing in my molecule, I could also use an 
AU, UA, or CG base pair for it, but all other nucleotide exchanges no longer result in 
strong base pairings (a “weak” GU or UG pair can help transition from one stable pair to 
another). These compensatory base pairings within a molecule happen somewhat more 
easily, but everything else happens over time, so the U4 RNA changes in structure depend-
ing on the organism, and interacting partner molecules also change to a greater or lesser 
extent. In our example, this is in particular the catalytically active, mRNA-splicing RNA 
U6, which is initially kept inactive by the U4 RNA because the U4 RNA fits like a cap on 
the U6 RNA (this structure was called the Y model because of its shape).

By analyzing many U4 RNA structures in this example, we can see how evolution 
works. Thus, one can see how first (over short periods of time, in closely related organisms) 
single mutations change the sequence already in a short time and then over longer periods 
of time (in more distantly related organisms) the structure also changes, perhaps even new 
partner molecules are found or simply the gene doubles so that the second copy can per-
form a completely new function and mutates more easily. Evolution by mutation and selec-
tion of mutations with adaptive advantage can be traced in detail by RNA structure analysis. 
The comparison of the RNA structure in many organisms helps in this process.

10.4	� Describing Evolution: Phylogenetic Trees

To do this, one only has to calculate phylogenetic trees for a widespread gene, i.e. on the 
one hand see which organisms are closely or distantly related according to their sequence 
and also try to work out the earlier branchings and precursor molecules. Although these 
are very rarely actually handed down (only if, for example, the already extinct mammoth 
can be thawed from the ice and re-sequenced), the information about the precursor mole-
cules is hidden in the existing sequences. In this context, bioinformatics allows us to work 
out the precursors. There are several ways to do this. The easiest to calculate is the neigh-
bour joining method. Here, one first sorts the molecules that one wants to connect in the 
phylogenetic tree according to their similarity and then always calculates the respective 
ancestors for direct neighbours.

A somewhat more elaborate procedure is “parsimony”, i.e. starting similarly, but calcu-
lating the mostly not directly observable ancestors of today’s molecules in such a way that 
one can generate all observed today’s sequences with as few mutations of these precursor 
sequences as possible. This reflects the actual conditions surprisingly well, because each 
individual mutation is very rare. A phylogenetic tree that introduces an unnecessarily large 
number of mutations is therefore a priori less likely than a phylogenetic tree that manages 
with as few mutations as possible.

It stands to reason that a pedigree that does not simply consider the most exact proba-
bilities possible for the ancestors, but calculates them for each individual mutation, is the 
most accurate. This can be done by means of the so-called maximum-likelihood method, 
i.e. the calculation of the most probable path for all mutations. For this, one has to estimate 
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from the observed sequences how probable which mutation is at which position, i.e. com-
pile a very large table (more precisely: a matrix of transition probabilities) and then calcu-
late the phylogenetic tree. This third method is particularly computationally intensive and 
time-consuming, but of course particularly accurate.

In practice, it is still important that the faster methods are also more easily off the mark 
when things get complicated. Depending on the calculation rule used, the result is more or 
less easily falsified. This happens especially when sequences of different lengths are com-
pared or when a single sequence is quite long (“long branch attraction”). The infobox 
summarizes a number of tools.

Thus, bioinformatics enables us to describe evolution more precisely and to understand 
important aspects of it by analysing many such phylogenetic trees, but also genomes and, 
in particular, by taking a detailed look at individual gene families. In particular, by analys-
ing the amino acid sequences involved, but also the available structural data of important 
enzymes, it is possible to describe and analyse exactly how they function, which amino 
acid residues are important for the chemical reaction they catalyse and which functional 
subunits they consist of. These subunits are also known as protein domains. They are typi-
cally 100–150 amino acids long, fold stably (hence their size – if they were longer they 
would fold into multiple sections, if they were smaller they would not fold at all) and each 
has a specific function. For example, there are catalytic domains, regulatory domains, 
interaction domains, those that bind cofactors (often vitamins), and those that allow for a 
solid structure in the protein (e.g. fibrils or fibers). Looking at protein families can shed 
light on how a protein function changes or adapts across different organisms and how, for 
example, additional mutations can turn a catalytic domain into a regulatory domain.

Phylogenetics Tools
Phylogeny

Family trees resemble real trees if there is a clear root (origin), for example by 
including a distant species (“outgroup”).

Basically, there are three ways to calculate family trees:

•	 Always merge and calculate direct neighbours: neighbor joining. This can be 
done quickly and is implemented excellently and efficiently in the CLUSTALW 
software, for example.

•	 Parsimony tries to calculate the family tree with as few mutations as possible. 
This is already more computationally expensive.

•	 Maximum likelihood considers the most computationally expensive procedure. 
Each nucleotide exchange is considered according to its (often estimated) prob-
ability and then the most probable phylogenetic tree is calculated.

10.4 � Describing Evolution: Phylogenetic Trees
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10.5	� Protein Evolution: Recognizing Domains

As we have just learned, protein families are subject to evolutionary processes such as natu-
ral selection. However, most mutations have no direct influence on fitness, i.e. they do not 
lead to any advantage or disadvantage (neutral evolution). In addition, random changes in 
the sequence (gene drift) or larger sequence regions or even entire genes (gene shift) can 
also occur, which can influence the function, e.g. catalytic domain or functional side. Thus, 
it is possible that a domain occurs in several proteins, but the remaining functional domains 
in the protein differ, which may contribute to new functions, for example. Domains thus 
provide an important clue to the origin and function of a protein. Proteins are thus grouped 
into protein families on the basis of their domains and similar functions and stored in data-
bases or can be used bioinformatically to predict domains and functions of unknown 
sequences (see tutorials). Known functional domains of proteins can be found, for example, 
on UniProt (https://www.uniprot.org/), bioinformatically predicted with InterPro (https://
www.ebi.ac.uk/interpro/), Pfam (https://pfam.xfam.org/), SMART (https://smart.embl-
heidelberg.de/) or with Eukaryotic Linear Motif (ELM; https://elm.eu.org/).

In addition, proteins and metabolites are interconnected in signalling cascades (path-
ways), some of which are different, and which have also evolved over time. There are 
several theories about the evolutionary processes responsible for the emergence of signal-
ling pathways and their cellular functions (Fig. 10.2; from Schmidt et al. 2003). Initially, 
there is de novo evolution (all enzymes and reactions evolved independently). Soon (after 
two to three billion years), the available material led to new possibilities: duplication of 
existing signalling pathways, retroevolution (selective pressure leads to the formation of 

a) Re-creation 

b) From the last 
step backwards 

c) Specialization 
of enzymes  

d) Doubling 

e) Recruit 
enzymes

? 

Fig. 10.2  Metabolic pathway 
evolution. (Figure from 
Schmidt et al. 2003)
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an optimal end product), by gathering (recruitment) of enzymes from different signalling 
pathways or by specialisation of a multifunctional enzyme.

One can also compare different engines of evolution in bioinformatic analyses, e.g. 
gene duplication for new enzyme activities that are simply tried out, with other methods of 
recruiting new enzymes to a metabolic pathway (Schmidt et al. 2003).

So we have learned some nice examples of processes that drive and shape evolution, 
first in domains, then in metabolic pathways. There is really a lot of research on engines of 
evolution, and the two examples only illustrate this.

Apparently, evolution via metabolites and adaptable protein structures (so-called 
changer folds that can bind and process many substrates in related enzyme structures) is 
rapid and efficient. On the other hand, this evolution has a necessarily limited starting 
material: simple molecules that serve as metabolites and 20 amino acids. Can this starting 
material constrain evolution? Interestingly, Stephen J. Gould, among others, has been able 
to show how building blocks determine and constrain evolution (Gould 1997). Certainly, 
an exciting new possibility is that the chemist, or humans in general, can use their intelli-
gence and also try evolution on a completely new chemistry. Here a very well-known 
example is the SELEX process, i.e. the breeding of new RNA molecules by enrichment 
and subsequent propagation via the polymerase chain reaction. Jeff Szostak was awarded 
the Nobel Prize in 2009 for such experiments on telomerase (protection of the chromo-
some ends). In addition, however, he was able to show that RNA molecules can be grown 
for any basic function that a protein enzyme also performs (Adamala et al. 2015). However, 
such RNA experiments demonstrate the adaptability of RNA and are important evidence 
for an early phase of evolution in which both information storage and enzymatic catalysis 
were particularly carried by RNA. Here bioinformatics is enabling exciting new design 
experiments with ever new building blocks, for example unprecedented protein folding 
types (Garcia et al. 2016; Huang et al. 2016; Bhardwaj et al. 2016 are three recent papers 
from David Baker’s internationally leading group), new amino acids (Wang et al. 2016), 
artificial new ribosomes (Neumann et al. 2010) or new nucleic acids (Chen et al. 2016). 
We can throw off the shackles of our building blocks!

However, there is still a lot to discover about evolution itself with the help of bioinfor-
matics, and the subject of evolution itself is quite a broad field. For example, one can also 
look at the already mentioned “neutral evolution” (Maruyama and Kimura 1980; Prof. 
Kimura was one of the first and very great in this field). This has already been suggested 
by Fig. 10.1 of the U4 RNA, that many evolutionary changes simply happen because time 
passes, but without changing fitness, so that even without special selection organisms split 
up and become more and more dissimilar. This has been well studied in the case of influ-
enza viruses, for example, since we always want to have the best possible influenza vac-
cine, but the influenza virus continues to change by chance due to individual mutations 
(“drift”), sometimes even more strongly (“shift”). Depending on the point of view, one 
can be more interested in this neutral evolution (since a neutral mutation naturally occurs 
much more frequently as a single event than a positive mutation) or in the positive and 
negative selection processes (which then accumulate more and more over millions of years 
as existing, “fixed” mutations with a fitness advantage for the organism).

10.5 � Protein Evolution: Recognizing Domains



134

Quite other important processes of evolution are, for example, genome modifications by 
selfish DNA, repetitive DNA and jumping gene elements (transposons). For illustration, 
there is a recent review of mobile genes in the human microbiome and how they are con-
structed (Brito et al. 2016). Other important factors in evolution include sexual selection 
(Connallon and Hall 2016), parasite-host interplay (Tellier et al. 2014), and the newly dis-
covered important role of RNAs in genome evolution (e.g., pi-RNAs; Vourekas et al. 2016).

What is significant for the fascination of bioinformatics is that with the new data and 
their evaluation by bioinformatics, but also with new simulations and calculations about 
evolution, the formative diversity of these processes of evolution is revealed.

Conclusion
•	 Evolution is central to understanding the development of life. It always takes 

place in a population. The individual living being or protein is, after all, deter-
mined within a narrow framework by the specific genome. There are always new 
species (colloquially: “living beings always evolve”). In reality, there are always 
new populations with always new typical characteristics (by mutation and, in the 
case of sexual reproduction, by recombination) that allow a near-optimal adapta-
tion to the prevailing environment. Less environmentally related characteristics 
are less often passed on in the population (selection).

•	 However, many variants are also neutral, or new structures only appear abruptly when 
enough mutations are present (neutral pathways in RNA structures; “punctuated 
equilibrium” according to Gould). Over time, there has been no directed “higher evo-
lution”. But there has been spread of life to the land and air, more species and biomass 
formed. Bacterial (prokaryotic) cells, still clearly dominant in numbers, have consoli-
dated and become increasingly robust. In the case of eukaryotes, in addition to many 
new species (99.9% are extinct!), more and more complex organisms and complex 
behaviour emerged (dominant on land: insects, from the Tertiary onwards the state-
forming insects; from Holocene onwards: humans and civilisation).

•	 Phylogeny (family tree science) helps to infer the evolution of different species 
based on shared or non-shared traits via calculated ancestors. There are faster 
(neighbour joining) and more accurate methods (parsimony, most accurate maxi-
mum likelihood). Accompanying sequence and secondary structure analyses 
reveal conserved and variable regions as well as the evolution of functional 
domains. Basic techniques for this are easy to learn (see tutorials). Most accurate 
phylogenetic trees require much practice and systematic comparison of all avail-
able information (e.g. alternative phylogenetic trees, also macroscopic features, 
molecular sequences, marker proteins). Phylogeny and other data from paleon-
tology and molecular biology as well as from protein structure analyses, embry-
ology, genetics and simulations also allow the analysis of evolution. This provides 
fascinating new insights into the evolution of life, such as the endosymbiont 
hypothesis and the RNA world, but also into the mechanisms of evolution.
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10.6	� Exercises for Chap. 10

�Evolution Tasks

Task 10.1
Describe what is meant by evolution. Also elaborate on different mechanisms of speciation.

Task 10.2
Eigen’s ball games simulate evolution:

A chessboard, at least two colors of game pieces, and two octahedron cubes are needed. 
Additional information and game instructions can be found in Eigen and Winkler (1975).

Game variant normal evolution:
If a die roll hits a color but no square is empty, that piece is removed from the game. If, 

on the other hand, a die roll hits the piece and a square is empty, then that colour is also 
placed in the previously empty square.

Just observe what happens when you’ve rolled a total of about 64 times (hitting each 
square once on average) or when you’ve rolled a total of about 700 times (an afternoon, 
worth it). Feel free to try multiple colors as well.

Task 10.3
For advanced players:

Interpret the observations obtained in terms of neutral evolution, directed evolution, 
“survival of the fittest”.

Task 10.4
Hypercycle evolution:

Same playing field, but four colors. Two always form a tandem of information store and 
replicating enzyme (a so-called “hypercycle” is such a tandem of enzyme and information 
store). Now play the game according to the rule so that whenever a DNA (blue or red 
chips) is hit and a square is free, it makes the corresponding enzyme (yellow or green 
chips). Whenever an enzyme is hit and a field is free, the corresponding DNA is polymer-
ized (so if yellow, the blue DNA; such a chip into the field or if green enzyme then the red 
DNA). Whenever all fields are occupied, a color is randomly thrown out by an octahe-
dron roll.

Question: What happens now in the game, which tandem wins and how fast? Also test 
whether it is now easier or more difficult (compared to game 10.2) for a tandem to grow 
up. To understand this, let a rare tandem compete against a dominant tandem that has 
already occupied many fields.

10.6 � Exercises for Chap. 10
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�Phylogeny Tasks

Task 10.5
Describe various methods of phylogenetic tree analysis.

Task 10.6
You want to build an HIV pedigree on HIV-1 polymerase, how do you go about it?

Task 10.7
How would you construct a phylogenetic tree for RNA polymerase II?

Task 10.8
Calculate a phylogenetic tree using CLUSTAL and MUSCLE. What are the similarities/
differences?

Task 10.9
What is multiple alignment and what can I use it for?

Task 10.10
Familiarize yourself with the SMART/Pfam database and look at a domain family/seed 
alignment using an example of your own choosing.

Useful Tools and Web Links

UniProt https://www.uniprot.org/
InterPro https://www.ebi.ac.uk/interpro/
Pfam https://pfam.xfam.org/
SMART https://smart.embl-heidelberg.de/
ELM https://elm.eu.org/
ITS2 https://its2.bioapps.biozentrum.uni-wuerzburg.de/
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11Design Principles of a Cell

Abstract

The design principles of a cell can be bioinformatically decoded in detail by sequence 
analyses and more elaborate methods. Regulation, the localization of proteins, their trans-
port and secretion are also precisely encoded in the cell and are crucial for the ordered 
structure of the cell. Modern imaging techniques and imaging software help to validate 
these predictions. It is also important to classify all cellular processes by analyzing the 
gene ontology. Combined with information on the protein-protein interactome, the result-
ing cellular network can be traced using software such as CellDesigner or Cytoscape, e.g. 
motor proteins and the actin-myosin cytoskeleton are crucial for cell movement. Metabolic 
“design” is quickly queried via databases such as KEGG or more accurately calculated 
via metabolic modeling (e.g., with YANA or Metatool). Complex signalling networks are 
important for fast responses (stress response, chemotaxis in bacteria) and especially for 
multicellularity. They are modelled in detail with dynamic modelling (cell differentiation, 
tumorigenesis, embryology, inflammatory processes, nervous system).

Evolution (last chapter) and systems biology (penultimate chapter) work together when 
the cell successfully asserts itself in the environment and organisms persist and reproduce. 
By combining both factors, cells are amazingly optimally engineered. Cells are and have 
always been exemplary “natural engineers”, which once again makes it clear that the ques-
tion of “intelligent design” posed by creationists is unfortunately always completely 
wrong. Just when living beings are so wonderfully organized by completely natural pro-
cesses, this should arouse our admiration and sharpen our view for higher and highest 
levels of such processes and how wonderful our world is, in which such processes are 
naturally possible spontaneously and self-organized. This is no accident, but for this par-
ticular world, selection processes are again at work, but on a truly high level – a truly suc-
cessful creation that subtly defies easy interpretation.
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11.1	� Bioinformatics Provides an Overview of the Design of a Cell

The design principles of a cell are derived from molecular biology: The flow of genetic 
information follows from the genome via RNA to individual proteins. This can be decoded 
bioinformatically in detail by sequence analyses and more elaborate methods. 
Bioinformatics thus enables a deeper, previously unattained insight into the molecular 
biology of the cell and the underlying design principles through the analysis of large 
sequence data and other types of data.

Let us now turn to the fundamental question: How can bioinformatics be used to under-
stand what happens where with which molecule in a cell? The different molecules can be 
analysed, for example, on the basis of their sequence. In particular, the localisation of 
proteins within higher cells (eukaryotes: humans, animals, plants, fungi) can be deter-
mined by recognising signal sequences (software: SignalP) and cellular localisation sig-
nals (LocP, nucloc) as well as signals for attachment in the cell membrane (e.g. TMHMM), 
for example with hidden Markov models (Chap. 3). In the diagram (Fig. 11.1), pyruvate 
carboxylase is marked in black (localization in the mitochondrion) and nup36 in white 
(nuclear pore protein 36 in the nucleus). However, numerous predictions are also possible 
on the basis of linear sequence motifs (e.g. whether the protein is attached to cell mem-
branes with a GPI anchor or is marked for lysosomes or other locations with the aid of 
glycosylations). Phosphorylation positions can also be readily identified, although too 
many are easily predicted. The ELM server (Eukaryotic Linear Motif Server) bundles 
together a whole set of such predictions. This bundling (one server for server) is called a 
metaserver in this context. Even without the sequence, one can predict properties of pro-
teins and their functional building units (the independently folding protein domains) based 
on the biochemical features (tool: domain databases such as Pfam and SMART), espe-
cially about the mediated function (e.g. catalytic  – specific enzyme family; regulatory 
domain, structural domain and cofactor-binding domains). However, this can only be done 
if one is expert enough to nail down the domain finely enough about the function (e.g. SH2 
or SH3 domain if protein interactions between proteins are mediated by these domains). 
Once the domain has been determined, domain databases come up with a lot of additional 
information, e.g. about the sequence, three-dimensional structure, important motifs, inter-
actions and detailed description of the function.

11.2	� Bioinformatics Provides Detailed Insights into the Molecular 
Biology of the Cell

Complementary to Fig. 11.1, I can also start from the main cellular processes (Alberts 
2013; Simon et al. 2013; Watson 2013) and use the main bioinformatics algorithms for 
analysis for each of these processes (Table 11.1).
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Fig. 11.1  Bioinformatic view into the interior of a cell. (Image from https://commons.wikimedia.
org/wiki/File:Aufbau_einer_Tierischen_Zelle.jpg)

How Do Cells Read Their Genome?
Well, cells read their genome with the help of special enzymes called polymerases. They 
use them to translate the genome into RNA molecules and then into new proteins via pro-
tein translation. This is where the NCBI website first comes in handy in order to find DNA 
sequences that have been sequenced before or are currently being sequenced. There are 
now millions of such sequences and billions of base pair sequence information. The 
European EMBL database also has comparable information. The EBI website still has 
ready-made program modules for the bioinformatician. For all sequence comparisons, the 
BLAST sequence algorithm is a very good starting point. It quickly compares sequences 
from genomes, but also from RNA molecules and proteins with the large relevant data-
bases for these molecules. Subsequently, a functional overview of all RNA molecules is 
obtained using the Rfam database. The RNAAnalyzer software identifies subtleties of 
RNA such as regulatory elements, secondary structure, energy and sequence motifs. 
RNAfold is used to understand structures in RNA. An overview of protein functions based 
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Table 11.1  Molecular biology foci and important databases and software

Molecular biology 
focus Important databases/software
How do cells read their 
genome?

NCBI, EMBL, EBI, BLAST, Rfam, RNAAnalyzer, RNAfold, SMART, 
PDB, SCOP, CATH, ProDom, Pfam

How do cells control 
gene expression?

GEO, GENEVESTIGATOR, cBioPortal, TCGA, TESS, ALGGEN 
PROMO, Genomatix, MEME Suite, iRegulon, miRanda, TargetScan, 
STRING, KEGG, Roche Biochemical Pathways, STITCH, DrumPID

How cells localize, 
transport and secrete 
proteins

KEGG, PyMOL, RasMol, Ramachandran Plot, ELM Server, TMHMM

How cells build a solid 
skeleton and move 
actively

ExPASy, PROSITE, ProDom, PlateletWeb, MUSCLE, EMA, Metatool, 
YANAsquare

How do cells 
communicate?

STRING, iHOP, PRODORIC, SQUAD, Jimena, SWISS-MODEL, 
I-TASSER, LOMETS, QUARK, Rosetta

on a given function or sequence is provided by domain databases; in addition to SMART 
and EMBL, ProDom and Pfam are particularly important. The three-dimensional structure 
of many proteins is stored in the protein structure database PDB, details of the architecture 
in the structure databases SCOP and CATH.

How Do Cells Control Gene Expression?
Interestingly, at any given moment, only a fraction of the genome information is translated 
into RNA molecules. The question is: How do I quickly find out bioinformatically which 
RNA is synthesized in which cell type? For this purpose, the GEO (Gene Expression 
Omnibus) database is good, which holds numerous data from gene expression experiments 
for different organisms, tissues and diseases in detail. A similar database is 
GENEVESTIGATOR. The cBioPortal and The Cancer Genome Atlas (TCGA) databases 
focus on cancer. In particular, because usually all transcripts of a cell are measured, these 
experiments can also be used to infer from previous data how one’s desired gene is regu-
lated. For this purpose, GEO, GENEVESTIGATOR, cBioPortal and TCGA also hold sta-
tistical analysis. Next, there is promoter analysis software. This allows me to determine 
which regulatory sequences regulate the turning on and off of a gene. There are simple 
programs for this, such as TESS or ALGGEN PROMO, which simply reveal numerous 
binding sites for transcription factors, and usually far too many possibilities. In addition, 
there are better, but often commercial programs such as Genomatix, which, among other 
things, compare which of the many binding sites within a gene family are conserved and 
thus presumably actually regulate transcription, so-called modules (e.g. consisting of three 
specific transcription factors), for example to specifically transcribe liver genes, such as 
Liver-specific-transcription-factor-1 modules. Ab initio approaches such as MEME Suite 
and iRegulon offer another possibility to find unknown TF motifs and regulatory TF factors.

For regulation in the cell, it is also important that proteins control each other. For this, 
the protein interaction database STRING (EMBL) is very good and broad (and there are 
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numerous other protein interaction databases). Similarly, RNA molecules control each 
other. For this, TargetScan and miRanda indicate possible binding sites between mRNAs 
and miRNAs (small RNAs that regulate mRNAs). Finally, cell compartments through 
membranes control that certain reactions take place in specific cell regions. This can be 
easily reconstructed using biochemical databases, e.g. KEGG or Roche Biochemical 
Pathways. It is also of interest to look at the interaction between a drug and its target. The 
STITCH database or the DrumPID database developed by us are helpful for this. 
Regulation, in particular through control of gene expression, is thus an important design 
principle that is bioinformatically analysed through analyses of RNA and statistical analy-
ses of gene expression, on which network analyses are then based.

How Cells Localize, Transport and Secrete Proteins
This is already described in Fig. 11.1 (identification of the corresponding signal sequences). 
Individual proteins can be viewed in detail using visualization software such as PyMOL or 
RasMol. The localization of proteins, their transport and secretion are also precisely 
encoded in the cell and is crucial for the ordered structure of the cell. This can be elucidated 
in particular by sequence analyses (localization signals, secretion signals, transport signals).

Modern imaging techniques now even achieve optical resolution down to 1 nm (Stefan 
Hell, Nobel Prize winner for superresolution microscopy): Using clever tricks, namely 
combining flashing (with the DSTORM technique down to 10 nm) and quenching fluores-
cence signals (also goes down to 10 nm), where integrating over time is critical, one can 
actually resolve structures much smaller than half the wavelength of visible light 
(400–800 nm), which was the classical lowest resolution limit of optical microscopy. In 
these techniques, software is indispensable for high resolution. Further bioinformatics 
software is required for localization. For example, one can use common microscopy image 
processing software such as ImageJ and write scripts for it (called macros) that allow one 
to filter out individual features of the image from large amounts of data, for example for 
the detection of synaptic vesicles. An introduction to such techniques is provided by 
Kaltdorf et al. (2017), including a tutorial on how to learn the software.

It is also important to classify all cellular processes by analyzing the gene ontology. 
Combined with information about the protein-protein interactome, the resulting cellular 
network can be traced using software such as CellDesigner or Cytoscape. For example, 
motor proteins and the actin-myosin cytoskeleton are crucial for cell movement.

The Gene Ontology Consortium has hierarchically classified all processes in the cell 
according to three criteria (https://www.geneontology.org): molecular function (e.g. 
enzyme and which enzyme), cellular compartment (such as in the cytoplasm or in an organ-
elle) and cell biological process (e.g. a signalling cascade such as apoptosis). Thus, with an 
analysis of the gene ontology of the proteins involved, an overview of the design of a pro-
tein network can be quickly obtained by bioinformatics. For example, one can easily evalu-
ate the proportions of the proteins involved in the processes determined with the help of the 
Gene Ontology (as also described in Chap. 5, Task 5.9 BiNGO analysis and Task 5.10).
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How Cells Build a Solid Skeleton and Move Actively
Interestingly, cells also need a solid skeleton to be able to move actively. This is composed 
of various structural proteins, in particular actin, tubulin and myosin. Bioinformatically, 
structural proteins can be identified by the fact that only a few amino acids are always 
repeated, resulting in a stable structure in that protein. Such repeats can be found with the 
help of repeat recognition software (available, for example, on the ExPASy website). 
Protein-specific signatures can also be detected using PROSITE software, which, for 
example, displays actin signatures when the actin sequence is entered. Similarly, one can 
recognize structural proteins again using protein domains and matching databases, for 
example, the ProDom domain database. Equally important for active movement is enough 
energy. This energy is available in the form of ATP, which is provided from metabolism. 
To calculate the resulting metabolic fluxes, we naturally use metabolic modeling software 
(see penultimate chapter). An orderly and efficient metabolism in the cell is essential for 
survival. Its “design” is quickly queried via databases such as KEGG or calculated more 
precisely via metabolic modelling (e.g. with YANA or Metatool).

How Do Cells Communicate?
The considerations and algorithms from Chap. 5 are particularly useful here. However, the 
messages that cells exchange are also subject to the principles of Chap. 7. And, of course, each 
passing of messages from one protein to the next (for example, in a signalling cascade with 
kinases to switch on and phosphatases to switch off) can also be analysed with the aid of 
interactome software and databases (e.g. STRING database at EMBL, “information hyper-
linked over proteins” website, iHOP), for example, checked for completeness and function of 
the components and simulated with a mathematical model (e.g. SQUAD, Jimena).

Looking a little closer at the communication of individual organisms, bacterial cells 
have quite direct communication, with mRNAs mostly being translated directly into pro-
teins. Besides the standard promoter, there is a second binding site (PRODORIC is a very 
good database for bacterial promoters for this), the sigma factor, which determines whether 
“everything is fine” (70-S sigma factor) or whether different types of stress or lack of food 
are present and then other raw factors are used.

Eukaryotic cells in higher organisms, on the other hand, have much more complex 
communication. First, hormones circulate in the bloodstream. These in turn excite recep-
tors in specific organs. Now a second messenger is often sent off, e.g. cAMP, which then 
sends signals into the nucleus. There, a complex combination of transcription factors 
(three and more) first determines the cell type, then the metabolic situation and then the 
general transcription (a good software for the analysis of such promoters is the Genomatix 
software).

Differentiation as well as all switching processes in the nervous system are based on 
the fact that cellular communication first determines the cell types and tissues involved. 
Subsequently, different brain regions, but also all different differentiation pathways, result 
starting from stem cells (and again this can be modeled fully dynamically or semiquanti-
tatively, see Chap. 10).

11  Design Principles of a Cell



145

First, the genetic material in the cell nucleus contains all the information necessary for 
the survival of the cell. Depending on the conditions, this information is used to produce 
proteins that are always optimally adapted to the environment via RNA molecules that 
migrate into the cell plasma (mRNA) with the help of the protein factories (ribosomes) of 
the cell. Complex signalling networks are important for rapid reactions (stress response, 
chemotaxis in bacteria) and in particular for multicellularity (cell differentiation, tumour 
development, embryology, inflammatory processes, nervous system). These are modelled 
in detail with dynamic modelling (see Chaps. 5 and 9), but can also be clearly described 
again with the aid of protein networks and, taking the processes into account, with the aid 
of gene ontology.

What does this look like, for example, for a cell from our own body (i.e. a cell with a 
nucleus, a so-called higher or eukaryotic cell in contrast to the bacterium, which does not 
yet have a nucleus)? The deeper insight provided by bioinformatics (Fig. 11.1; diagram of 
eukaryotic cell) enables us to understand (Table 11.1) what is contained in the genome 
(“annotation” of the genome), to understand when gene information is read out (“promoter 
analysis”), but also how the fine regulation of gene expression works (for example, via the 
analysis of large RNA data sets). Subsequently, proteins are synthesised. The function of 
each individual protein can be analysed in detail using domain databases, and often also in 
terms of its three-dimensional structure. Another important aspect is to ensure that each 
protein reaches its correct location (protein sorting). For this purpose, too, there are now 
powerful algorithms that can accurately predict the location within the cell nucleus, but 
also in individual organelles or in the membrane, as well as individual protein modifica-
tions. Cells can also deform and move. In general, cell biological functions are the result 
of cellular networks. These can be studied in much greater detail than before, both bioin-
formatically (structure, components) and systems biologically (dynamics, new emergent 
effects, over time). Particularly active research is also being conducted into how signals 
are processed in the cell itself, how different cells communicate with each other, how the 
cell transforms into other cell types (differentiation) and where this process goes wrong 
(cancer, but also diseases of old age).

Since bioinformatics precisely detects and examines the signals in the cell using vari-
ous algorithms, it is also particularly powerful in uncovering details in cellular communi-
cation, in differentiation and in disturbed cell communication, but also in the 
computer-assisted search (“in silico screening”) for new drugs.

We should note, however, that these groundbreaking achievements in modern molecu-
lar biology are always team efforts. It is true that all these results are also based on the 
analysis of large amounts of molecular data and are inconceivable without this analysis, 
but progress requires equally state-of-the-art machines for generating data in experiments 
and is, however, in my opinion not sufficiently appreciated today, intelligently planned 
experiments as well as intelligent interpretation of the results seen.

Were there any surprises in the design of the cell? Of course countless, but many con-
cern the details of the individual pathways involved (e.g. Wnt signalling in differentiation 
and cancer) or important genes (e.g. the P53 gene in apoptosis). It was great and also 
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surprising that for all the systems biology properties discussed in Sect. 5.1, we can now 
tell through concrete data analysis which molecules are involved in the individual feed-
back loops, in signalling cascades and in the individual building units (modules).

But larger contours are also becoming visible. For example, the importance of RNA as 
an important level of cell regulation had previously been underestimated, as has only been 
fully realised in recent years with the discovery of lncRNAs (long non-coding RNAs) and 
miRNAs (microRNAs) in higher cells and sRNAs (small RNAs) in bacteria. For example, 
an important lncRNA inactivates the second X chromosome in females (xist RNA) and is 
therefore involved in this fundamental difference between males and females. In contrast, 
miRNA-21 stops phosphatases such as PTEN and stimulates tumor growth, thus being an 
important tumor marker. For understanding this new level of cellular regulation, integra-
tive bioinformatic analysis of the transcriptome (and its interplay with other omics 
domains) is a crucial prerequisite (e.g. two of our papers Fuchs et al. 2020 and Stojanović 
et al. 2020 showing a link of RNA and proteome to miRNA regulation in cardiac and pul-
monary fibrosis).

A second example for a deeper understanding of the design principles of our cells is 
tissue replacement by artificial tissue or stem cells. Here, bioinformatics is essential to 
uncover signaling pathways and generate suitable tissue or reprogram stem cells.

Another current application of the cell’s design principles is protein design: bioinfor-
matics and experiments that systematically change protein structures to investigate how a 
protein acquires new properties. This now works well enough with the large number of 
protein structures (e.g. 3D coordinates from the PDB database) that this is being used 
more and more actively. First of all, the protein structure has to be predicted. This can be 
done particularly well using a template (protein with a known structure; “homology mod-
elling”), for example using the SWISS-MODEL software (Waterhouse et al. 2018). All 
known structural domains in a protein can be found with AnDOM (3D domain annota-
tion). If there is insufficient (approximately 62% same/similar amino acids) similarity to a 
known protein structure, one can determine the best matching structure by threading the 
sequence on all known structures (“threading”; e.g., server I-TASSER; Zheng et al. 2019a) 
or LOMETS (Zheng et  al. 2019b), or by protein folding simulations (“ab-initio”; e.g., 
QUARK server; Zheng et al. 2019a).

This is followed by the design step: for about three decades, ligands and pharmaceuti-
cals have been optimized to better fit the protein structure, e.g. the receptor. Drugs against 
HIV infection have often been achieved by design. More recently, one actively incorpo-
rates protein structures into simulations and predictions, using high-throughput experi-
mental methods (Lam et al. 2018; Dominguez et al. 2017), and also understands catalysis 
in enzymes or receptor function better and better (Mahalapbutr et al. 2020; Sgrignani et al. 
2020). However, protein structure can also be used to selectively alter protein structure 
itself, for example to improve enzyme activities (Leman et al. 2020; Rosetta software) and 
to systematically change protein building units, even to combine them into logic circuits 
(Chen et al. 2020), where it is now easy to add or swap secondary structure in particular.
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11.3	� Exercises for Chap. 11

Task 11.1
Describe how a linear RNA code becomes a three-dimensional protein structure.

Task 11.2
Describe how to bioinformatically perform protein structure analysis.

Task 11.3
Name methods for predicting a protein structure from a sequence.

Task 11.4
What is a Ramachandran Plot and what can I use it for?

Conclusion
•	 The design principles of a cell are derived from molecular biology: The flow of 

genetic information follows from the genome via RNA to individual proteins. 
This can be deciphered bioinformatically in detail by sequence analyses and 
more elaborate methods. Regulation, particularly through control of gene expres-
sion, is an important design principle that is bioinformatically analyzed through 
analyses of RNA and statistical analyses of gene expression, upon which network 
analyses are then built. Protein and drug design use protein building principles.

•	 The localization of proteins, their transport and secretion are also precisely 
encoded in the cell and are crucial for the ordered structure of the cell. This can 
be elucidated in particular by sequence analyses (localization, secretion, trans-
port signals). Modern imaging techniques and advanced imaging software help to 
validate these predictions. It is also important to classify all cellular processes by 
analyzing the gene ontology. Combined with information on the protein-protein 
interactome, the resulting cellular network can be traced using software such as 
CellDesigner or Cytoscape. For example, motor proteins and the actin-myosin 
cytoskeleton are crucial for cell movement.

•	 An orderly metabolism is important. Its “design” is quickly queried via databases 
such as KEGG or calculated more precisely via metabolic modelling (e.g. with 
YANA or Metatool). Complex signalling networks are important for fast reac-
tions (stress response, chemotaxis in bacteria) and especially for multicellularity 
(cell differentiation, tumorigenesis, embryology, inflammatory processes, ner-
vous system). These are modelled in detail with dynamic modelling (see Chaps. 
5 and 9), but can also be clearly described with the aid of protein networks and, 
taking the processes into account, with the aid of gene ontology.
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Task 11.5
Name databases/software where they can find information on proteins.

Task 11.6
Name software they can use to visualize and analyze protein structures and interactions.

Task 11.7
What can be found in the SCOP and CATH databases? What are the similarities and 
differences?

Task 11.8
To get a conclusion about the possible function, it is helpful to examine a protein sequence 
for specific protein domains and sequence motifs. How can the function of a protein 
sequence that has not yet been assigned a function from experiments be investigated using 
different software or database queries? In doing so, highlight differences between the 
programs.

Task 11.9
Name and describe databases/software that can be used to screen a protein sequence for 
conserved regions/domains.

Task 11.10
Describe how to identify conserved motifs using multiple alignment.

Task 11.11
You have ten different sequences and want to examine them for conserved sequence 
regions. Name databases/software that you can use to perform such a multiple alignment.

Task 11.12
Example:

Now download the protein sequence for the “TAR protein” and perform a search with 
the PROSITE database (https://prosite.expasy.org/) and the AnDom software (https://
andom.bioapps.biozentrum.uni-wuerzburg.de/index_new.html) in the next step.

Which of the following statements are correct (multiple answers possible)?

	A.	 Both programs find a double stranded RNA-binding domain (dsRBD).
	B.	 Neither program finds a match for a protein domain.
	C.	 AnDom performs a structural analysis based on the SCOP classification.
	D.	 Based on the dsRBD domain I found, I can assume that my protein binds to double-

stranded RNA molecules.
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Task 11.13
Example:

Visualize and model the inhibition of HIV-1 protease with indinavir (PDB ID: 1HSG) 
in PyMOL (please download PyMOL [https://www.pymol.org/] and the sequences from 
PDB [https://www.rcsb.org/pdb/home/home.do] beforehand). Answer the following 
questions:

•	 How to bring together the complex of protease and ligand?
•	 How are the charges distributed at the point of contact?
•	 Where is the catalytic center? What holds the center together?

Task 11.14
How can we bioinformatically predict the localization of a protein?

Task 11.15
Describe how to bioinformatically screen a protein for its localization (e.g. membrane 
protein, transcription factor) in eukaryotes/prokaryotes (name software/database and 
briefly describe).

Task 11.16
Describe what is meant by neural (machine) learning. Are there any differences between 
this and human learning?

Task 11.17
Name databases/software where you can get information on signal peptides (e.g. sequence 
or localization).

Task 11.18
Develop a simple program that examines a sequence for its localization. Also enumerate 
what parts this program would consist of.

Task 11.19
Cellular communication can also be viewed informatically. Briefly explain how to calcu-
late the information content of a message and show an example.

Task 11.20
Biological communication has problems with the transmission of information, what? How 
are these problems solved biologically by the cell (explain with an example)?
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Task 11.21
Describe examples of cellular communication (e.g. what can I look at/describe 
bioinformatically?).

Task 11.22
The TMHMM server is used to detect transmembrane motifs in proteins that are partially 
located in a membrane. Find the link to it and analyze a matching sequence.

Task 11.23
Locate NucPred/LocSigDB for nuclear localization and analyze a matching sequence.

Task 11.24
Find SignalP for secretion signals in proteins and analyze a matching sequence.

Task 11.25
PROSITE finds motifs in proteins. Find the PROSITE database and analyze a matching 
sequence.

Task 11.26
The ELM server outputs all this in bundles. Find this one as well and analyze a matching 
sequence.

Task 11.27
The Gene Ontology annotation (GO annotation) brings bioinformatics “order” to a cell. 
Learn about the GO annotation and the three classifications used: molecular function, 
biological process and cellular compartment.

Task 11.28
Describe how to draw a network in the cell using Cytoscape.

Task 11.29
How to study the drawn network with the BiNGO plugin?

Task 11.30
Using the PlateletWeb database as an example, how can you study a particular cell type? 
Perform a simple query, looking through the design (where do I put or insert the antico-
agulant?) and export the network (then you could reconnect the previous network analysis 
and mathematical modelling tasks).
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Useful Tools and Web Links
ALGGEN PROMO https://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.

cgi?dirDB=TF_8.3
AnDOM https://andom.bioapps.biozentrum.uni-wuerzburg.de/index_new.

html
BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi
CATH https://www.cathdb.info/
cBioPortal https://www.cbioportal.org/
DrumPID https://drumpid.bioapps.biozentrum.uni-wuerzburg.de/compounds/

index.php
ELM https://elm.eu.org
EMBL-EBI https://www.ebi.ac.uk/services
ExPASy https://www.expasy.org
GENEVESTIGATOR https://genevestigator.com/gv/
Genomatix https://www.genomatix.de/
GEO https://www.ncbi.nlm.gov/geo/
iHOP https://www.ihop-net.org/UniPub/iHOP/
iRegulon https://iregulon.aertslab.org/
I-TASSER https://zhanglab.ccmb.med.umich.edu/I-TASSER/
Jimena https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/jimena_c/
KEGG https://www.genome.jp/kegg/
LOMETS https://zhanglab.ccmb.med.umich.edu/LOMETS/
MEME Suite https://meme-suite.org/
Metatool https://pinguin.biologie.uni-jena.de/bioinformatik/networks/

metatool/metatool5.0/metatool5.0.html
miRanda https://www.microrna.org/microrna/home.do
MUSCLE https://www.ebi.ac.uk/Tools/msa/muscle/
NCBI https://www.ncbi.nlm.nih.gov/pubmed/
Nucloc https://www.nucloc.org/
PDB https://www.rcsb.org/pdb/home/home.do
Pfam https://pfam.xfam.org/
PlateletWeb https://plateletweb.bioapps.biozentrum.uni-wuerzburg.de/

plateletweb.php
ProDom https://prodom.prabi.fr/prodom/current/html/home.php
PRODORIC https://prodoric.tu-bs.de/
PROSITE https://prosite.expasy.org
PyMOL https://www.pymol.org/
QUARK https://zhanglab.ccmb.med.umich.edu/QUARK/
Ramachandran Plot https://mordred.bioc.cam.ac.uk/~rapper/rampage.php
RasMol https://www.openrasmol.org/
Rfam https://rfam.xfam.org/
RNAAnalyzer https://rnaanalyzer.bioapps.biozentrum.uni-wuerzburg.de
RNAfold https://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi

(continued)
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https://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3
https://andom.bioapps.biozentrum.uni-wuerzburg.de/index_new.html
https://andom.bioapps.biozentrum.uni-wuerzburg.de/index_new.html
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.cathdb.info/
https://www.cbioportal.org/
https://drumpid.bioapps.biozentrum.uni-wuerzburg.de/compounds/index.php
https://drumpid.bioapps.biozentrum.uni-wuerzburg.de/compounds/index.php
https://elm.eu.org
https://www.ebi.ac.uk/services
https://www.expasy.org
https://genevestigator.com/gv/
https://www.genomatix.de/
https://www.ncbi.nlm.gov/geo/
https://www.ihop-net.org/UniPub/iHOP/
https://iregulon.aertslab.org/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/jimena_c/
https://www.genome.jp/kegg/
https://zhanglab.ccmb.med.umich.edu/LOMETS/
https://meme-suite.org/
https://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool/metatool5.0/metatool5.0.html
https://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool/metatool5.0/metatool5.0.html
https://www.microrna.org/microrna/home.do
https://www.ebi.ac.uk/Tools/msa/muscle/
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.nucloc.org/
https://www.rcsb.org/pdb/home/home.do
https://pfam.xfam.org/
https://plateletweb.bioapps.biozentrum.uni-wuerzburg.de/plateletweb.php
https://plateletweb.bioapps.biozentrum.uni-wuerzburg.de/plateletweb.php
https://prodom.prabi.fr/prodom/current/html/home.php
https://prodoric.tu-bs.de/
https://prosite.expasy.org
https://www.pymol.org/
https://zhanglab.ccmb.med.umich.edu/QUARK/
https://mordred.bioc.cam.ac.uk/~rapper/rampage.php
https://www.openrasmol.org/
https://rfam.xfam.org/
https://rnaanalyzer.bioapps.biozentrum.uni-wuerzburg.de
https://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
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Roche Biochemical 
Pathways

https://www.roche.com/sustainability/what_we_do/for_communities_
and_environment/philanthropy/science_education/pathways.htm

ROSETTA https://www.rosettacommons.org/software/
SCOP https://scop.mrc-lmb.cam.ac.uk/scop/ updated latest version at: 

https://scop.berkeley.edu; SCOPe (enhanced)
SignalP https://www.cbs.dtu.dk/services/SignalP/
SMART https://smart.embl-heidelberg.de/
SQUAD https://www.vital-it.ch/software/SQUAD
STRING https://string-db.org/
STITCH https://stitch.embl.de/
SWISS-MODEL https://swissmodel.expasy.org
TargetScan https://www.targetscan.org/vert_71/
TCGA https://www.cancer.gov/about-nci/organization/ccg/research/

structural-genomics/tcga
TESS https://www.cbil.upenn.edu/tess/
TMHMM https://www.cbs.dtu.dk/services/TMHMM/
YANAsquare https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/

yanasquare/

Useful Tools and Web Links     (continued)
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Bioinformatics helps biologists with the increasingly needed integration and analysis of 
large amounts of data, but of course the deeper connections that numerous individual bio-
informatic analyses reveal about life are much more fascinating. So in this part, we want 
to do more “computational biology” and get to the bottom of biological information pro-
cessing, and here we describe some fascinating insights emerging in the currently tumultu-
ous fields of bioinformatics omics, synthetic biology, artificial intelligence and 
neurobiology, and ecosystem modeling. Other current areas of bioinformatics, such as 
image processing and drug design, also provide exciting new insights, but seem somewhat 
less central as other pacesetters in modern bioinformatics.

Biology is the key science of the twenty-first century and bioinformatics is its compu-
tational spearhead. Sequence analysis of DNA, RNA and proteins as well as the analysis 
of metabolic and regulatory networks lay the foundations of today’s bioinformatics (Part I).

Heuristics and good databases, encoded molecular information and clever strategies to 
solve NP problems with combinatorics approximately and quickly, along with increas-
ingly powerful computers, are the informatics arm that has made modern bioinformatics 
so strong. The insight into the molecular biological design of the cell and the system 
effects, the knowledge of biological signals and their decoding with neural networks, 
sequence analysis or hidden Markov models enabled a systems biology view in bioinfor-
matics that can model or at least analyze almost any process in the cell. Today, the observa-
tion of evolution, for example of protein sequences, allows the functionally important 
conserved regions in an enzyme to be determined and labelled in a matter of seconds and 
also the domain composition to be understood, at least functionally (Part II).

The upswing in bioinformatics can be seen very tangibly in current genomics. For 
example, we can now describe much better how individual our genome is. Every person 
has his or her SNPs, indels and copy number variations (a total of several percent indi-
vidual differences). Fascinating insights into the individuality of each person are only now 
possible through modern genome informatics (entry).

Part III

What Is Catching and Fascinating About 
Bioinformatics?
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One can also say that bioinformatics does not decipher the language of life, but all of 
them. And these languages are characterized by the fact that they are all defined by the 
context, the coherence of meaning in the living cell (Chap. 12). In fact, life is always 
inventing new levels of language. Humans and our civilization do similar things: modern 
communication media, natural languages, programming languages, and even the Internet. 
We now know the molecular language of life so well that we can use it deliberately (syn-
thetic biology), for example, to make new biological computer chips from nanocellulose, 
DNA, and light-guided proteins (Chap. 13). Mutations lead to misunderstandings in bio-
logical signalling resulting for example in cancer (Chap. 14).

Modern bioinformatics benefits greatly from advances in artificial intelligence 
research. We can describe more and more precisely how and where humans differ from 
computers and how this can again be used for new bioinformatic insights (Chap. 14). Even 
the presumably most complex object of our universe to which we have direct access, our 
brain, its neurobiology as well as even higher brain processes as a prerequisite for our 
consciousness can be described, modelled and analysed much better by bioinformatics 
and simulations and models than before (Chap. 15). More generally, the systems biology 
insights of bioinformatics, the unimagined large amounts of data now available to us, also 
allow global insights, for example, into bioinformatics models of ecosystems (e.g., cli-
mate and population dynamics). Increasing digitization will soon lead to the “Internet of 
Things.” Where is each thing and how do all the components interact? However, global 
digitalisation can also lead to control, synchronisation and steering via the internet. 
Countermeasures are transparency, protection of personal freedom and personality on the 
Internet. However, bioinformatics also helps to positively translate the “Internet of 
Things” into modern molecular biology, supports new biotechnology, molecular medi-
cine and accelerated drug design, and sheds light on pandemics such as COVID-19 
(Chap. 16).

3.1	 �No Black and White: Fascinating Shades of Individuality

As an introduction, Fig. 1 shows an individual genome in an artistic representation. The 
author and computer graphic artist is Dr. Beat Wolf (University of Fribourg, Switzerland). 
His artistic images were presented at the VIZBI 2014 congress, among others. In his main 
profession, he is a bioinformatician and works on genome analysis pipelines. His work is 
based on the NA12878 exome sequence from the 1000 Genomes Project.

The page https://software.broadinstitute.org/gatk/guide/article?id = 7869#1.3 shows a 
tutorial on how to bioinformatically process this genome sequence.

Everyone, all of us like that, carries around a significant amount of small, medium, and 
more severe genetic “errors” (in various shades in the figure). However, whether these 
come to fruition depends on (i) the unpredictable combination of parental chromosomes, 
often the diploid chromosome sets rebalance, and (ii) the environment in which we live.

What Is Catching and Fascinating About Bioinformatics?
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Fig. 1  No black and white: A look at the fascinating shades of individuality. In this artistic repre-
sentation, all mutations of a human genome (identifier: NA12878) are displayed. They are organized 
on several circles, representing the different chromosomes, according to their position on the chro-
mosome. The size and shading were chosen according to the severity of the effects on the function 
of the genome. For example, one can see the many gray variants that do not fall on any gene and are 
therefore difficult to classify. This contrasts with the black and dark variants that cause a severe 
defect in the affected genes. This shows how a considerable number of gene defects can be found 
even in human reference genomes. Therefore, in each body cell there is almost always a double set 
of chromosomes, so that only rarely do gene defects dominate the other copy. (Coloured version of 
Fig. 1: coloured cover picture on page 2)

For example, in one gene combination a singled out “gene defect” can lead to schizo-
phrenia and mental illness, in another to a creative original, in a third, archaic one to a 
shaman who talks to the dead and advises the tribe.

Genetic diversity therefore means artistic freedom, and it is something to behold. We 
should by no means sort into “good” and “bad” people. No genome is black or white, 

everyone carries his or her shades. We would do well to place each person in his or her 
appropriate environment, where all his or her abilities and colors are brought to bear as 

positively as possible.

What Is Catching and Fascinating About Bioinformatics?
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12Life Continuously Acquires New Information 
in Dialogue with the Environment

Abstract

All molecules of a cell are closely related to each other. Only this context-related infor-
mation has real meaning. It conveys the cell’s behavior, which is important and correct 
for survival. Print errors are constantly selected away in the population. Database 
searches and sequence comparisons unlock this biological meaning (in practice, usu-
ally the function of the compared molecule). This is strongly tied to sequence elements 
and a defined structure; random sequences make no biological sense. Even the domains 
in an enzyme relate to each other, e.g. in the case of glutathione reductase: For the cata-
lytic domain, there are the matching two cofactor domains (for FAD, NAD), the opti-
mal regulatory domain and also the dimerisation domain, otherwise the enzyme would 
not function. Similarly, one checks the consistency of sequence analyses. Everything 
must fit together; if contradictions arise, one of the partial analysis results was not yet 
correctly classified. Also on the level of protein networks everything relates to each 
other, it can be deciphered by network analyses: Central proteins (‘hubs’), signaling 
cascades and interfering signals, and modifying input (‘cross-talk’). A fascinating and 
illustrative example are the KEGG maps of cancer pathways.

First of all, it is fascinating that the central molecule of life, DNA, does nothing but store 
information. Obviously, storing information is an important aspect for living beings. 
Information is encoded in genes via the DNA molecule. Then the information is tran-
scribed into RNA, transported out of the cell nucleus, and these are then the building 
instructions for proteins with which the cell performs its tasks. Originally, this main direc-
tion of information processing in living cells was called the central dogma of molecular 
biology. In the meantime, information processing in the opposite direction is also known, 
in particular from RNA to DNA, for example via the enzyme reverse transcriptase (for 

© Springer-Verlag GmbH Germany, part of Springer Nature 2023
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example in HIV infection; see Sect. 1.1). Above all, it is clear that life is information, 
which is the only reason why bioinformatics works at all! The success of bioinformatics 
and computer-assisted modelling of life processes is not due to the recent abundance of 
data and the discovery of the computer, but exactly the opposite. Because we are informa-
tion in our innermost being, we have been able to discover all this and then produce so 
much data recently with self-built machines.

12.1	� Molecular Words Only Ever Make Sense in the Context 
of the Cell

But in the following we want to come a little closer to the nature of stored information in 
living beings. Of course, there is a quick answer that could be interpreted esoterically in 
any direction. It is living information, as distinguished, for instance, from the dead, “cold” 
information in a computer. However, since Friedrich Wöhler (who in 1828 became world 
famous for his synthesis of urea from ammonium cyanate) showed that organic molecules 
could be easily synthesized in a retort, one has been skeptical about simply ascribing dif-
ferent properties to building blocks in living things than outside (such as by a mysterious 
“vis vitalis”, a force of life; McKie 1944).

But incidentally, the special properties of information in living organisms can also be 
experienced very nicely in concrete terms, and we want to trace this right now. In the first 
chapter, you have already become acquainted with the rapid sequence comparison using 
the “BLAST” algorithm (Altschul et al. 1990). This can be used, for example, to track 
down protein sequences in a database. Our Figs. 12.1 and 12.2 illustrate this using the 
protein sequence of glutathione reductase (Q03504_HUMAN glutathione reductase from 
UniProt database), which, as the result shows, also occurs in humans (Fig. 12.1). In addi-
tion to the annotation, the BLAST search also provides other helpful information, such as 
protein classification or conserved domains (Fig. 12.2). Thus, it can be seen that glutathi-
one reductase belongs to the class of FAD-dependent oxidoreductases, which influence 
iron-sulfur proteins. According to the BLAST result, it has five conserved domains, e.g. 
glutathione reductase domain (gluta_reduc_1, Accession: TIGR01421, Position 1–229) or 
FAD/NAD binding domain (Pyr_redox; Accession: pfam00070, Position 108–171) (fol-
low the link in BLAST for a better representation). Thus, it can be seen that it is a rust 
protector against oxidation and thus one of the biochemical helpers that allow us to reach 
old age.

Are there also differences in the information that BLAST would recognize? If one were 
to blast any German text at this point, e.g. “Bioinformatik macht jede Menge Freude” 
(Bioinformatics is a lot of fun), compared to a biological sequence and with a normal 
German text, the six letter codons, namely J, U, Z, B, O and X, would not be assigned to 
any codon and would simply be omitted from the BLAST server during the comparison 
(mnemonic “JUZBOX”, i.e. juke-box). In this case, BLAST would find no similarity and 
say that this is not a protein in a cell (Fig. 12.3, here, for example, the O). So this is a first 
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Fig. 12.1  BLAST sequence comparison with a natural protein sequence. The figure shows the 
glutathione reductase found in humans

Fig. 12.2  Important conserved domains of the glutathione reductase sequence are shown, e.g. FAD/
NADH binding domain

12.1 � Molecular Words Only Ever Make Sense in the Context of the Cell
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Fig. 12.3  BLAST sequence comparison with any German text: no hits in the NCBI database

Fig. 12.4  BLAST sequence comparison with a random nucleotide sequence: no hits in the NCBI 
database

difference of information in living cells and say in German texts, BLAST makes big dif-
ferences here. Similarly, one can try this with nucleotides. A random nucleotide sequence 
is rarely found in the NCBI databases (Fig. 12.4), but a sequence corresponding to a bio-
logical signal is (see Fig. 1.1, HIV-1).

Apparently, only certain words in protein sequences or nucleotide sequences of cells 
are understood, namely those with a biological composition (i.e. sufficient similarity to 
biological sequences and biological signals). But this immediately reveals a second prop-
erty of biological information units. Each word, each molecule is in a context, it is only 
evaluated as a biological signal and integrated into the cell metabolism if it fits the context 
of the other molecules. In addition to the sequence, the interaction context is equally 
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important. This is illustrated in Fig. 12.5. Our useful example sequence, glutathione reduc-
tase (black box), interacts with many other proteins (e.g. shown here STRING database 
result) and in this way is only properly “understood” by the cell if no mutation disturbs 
these interactions or enzyme function.

In conclusion, biological information is always context-related, whereby the linguistic 
space that delimits the terminology and words used or understood is the respective cell 
itself (i.e. the totality of all stored information in this cell, represented by the many types 
of molecules: Nucleic acids, proteins, lipids, carbohydrates, but all with very specific 
sequences).

Of course, numerous experiments have already been carried out that have shown that a 
certain word (a gene or protein variant) is “understood” in one cell, i.e. that it triggers a 
certain effect that it does not trigger in other cells.

For example, the third Erk phosphorylation (Chap. 5) triggers cardiac enlargement only 
in the heart.

The Language of Life
In addition to the clear restriction of the vocabulary and the contextuality of all informa-
tion, a third characteristic distinguishes biological information that is stored genetically. 
Information is only newly or additionally stored if this increases the overall probability of 
survival or the adaptability to the environment.

Fig. 12.5  Context of proteins: protein interaction networks of glutathione reductase from the 
STRING database

12.1 � Molecular Words Only Ever Make Sense in the Context of the Cell
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In this sense, cells are constantly storing and developing (from each generation to the 
next, after the selection of harmful mutations) new information that is essential for sur-
vival in dialogue with the environment.

Each word of this “language of life” only makes sense in the narrow context of the 
limited vocabulary of the respective cell. But what is newly learned or spoken is always 
determined by the success of adaptation to the environment. On higher levels, this leads to 
ever better coordinated processes of homeostasis, i.e. ever stronger abilities to keep cell 
conditions optimal in relation to the environment. By the way, it is possible to check for 
each real protein or nucleotide sequence whether it is really under a selection pres-
sure or not.

Again, it is with the selection pressure on the individual words so similar to our consid-
erations on evolution. Each word is more or less strongly neutral, i.e. variants are tolerated 
or strongly persecuted – how strongly this is the case is decided by the context of the cel-
lular processes.

12.2	� Printing Errors Are Constantly Selected Away in the Cell

The information in cells must be maintained and preserved. If biochemical reactions, oxi-
dation, destruction by free radicals, etc. destroy individual proteins, these can be rebuilt on 
the basis of the building instructions in the cell nucleus. But if the building instructions 
change or are destroyed, the defect can no longer be repaired. And if the resulting error is 
bad enough, the cell perishes.

That the printing error leads to something new, positive, on the other hand, is much 
rarer (positive mutation).

For illustration, this is shown in Fig. 12.6 for observed mutations to penicillin resis-
tance in the enzyme beta-lactamase (from Khan et al. 2011). Interestingly, in evolution, 
mutations in the sequence are only allowed if this is not an unfavorable (negative) muta-
tion (Khan et al. 2011). Therefore, only a limited number of pathways exist to achieve 
maximum resistance. All other “paths of evolution” are not available to the bacteria, as 
their chance of survival against antibiotics then decreases in between.

In the case of proteins and RNA, selection pressure is therefore strongly linked to 
sequence elements and a defined structure; random sequences usually make no biological 
sense. Fascinatingly, this allows me to model in detail, for example, how antibiotic resis-
tance develops in bacteria (combination of protein structure and phylogenetic tree analy-
sis; Fig. 12.6) or how a protein code is optimally formulated for an organism (for example, 
if I want to produce insulin with optimal yield).

We can generalize this. Figure 12.7 uses the example of the genetic code to explain 
where mutations are most likely to be tolerated. The genetic code codes triplet by triplet 
one amino acid at a time. But in the third position, the code is characterized by frequently 
encoding the same amino acid for each nucleotide (Fig. 12.7).
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Fig. 12.6  Antibiotic resistance: Only a path of always positive mutations with fitness increase is 
viable for evolution. The figure shows the 32 possible genotypic combinations for five mutations in 
the beta-lactamase gene. Colored gradation shows the fitness relative to the ancestral strain (anc). 
(anc = ancestral strain, r = rbs operon, t = topA promoter, s = spoT promoter, g = glmUS promoter, 
p = pykF). (Figure from Khan et al. 2011)

This type of genetic information, due to its defined vocabulary, its contextuality and its 
selection for survival advantage, thus differs significantly from other types of information, 
for example from physics (physical state bits, for example in transistors, quantum bits, 
Bekenstein entropy, physical entropy), computer science (Shannon, computer bits) or 
chemistry (Gibbs entropy, chemical energy).

As a bioinformatician, you can look at a protein sequence and calculate how much 
selection pressure is on the sequence. Since, according to the genetic code (Fig. 12.7), 
selection on the third nucleotide letter is weakest (usually a mutation there does not change 
the encoded amino acid), one can calculate for a given protein sequence, after phyloge-
netic comparison of the coding gene sequences, how much selection lies on the individual 
sequence regions, but also compare this with the phylogenetically conserved locations of 
the protein sequence.

Figure 12.2 illustrates this by an analysis of the conserved domains and sequence posi-
tions in glutathione reductase (result from sequence analysis with BLAST shown here, but 
domain analysis also possible with PROSITE and AnDom). The contextuality of biologi-
cal information is thus repeated at all levels. The domains in an enzyme relate to each 
other, for example here in glutathione reductase: To the catalytic domain there are the 
matching two cofactor domains (for FAD, NAD), the optimal regulatory domain and also 
the dimerization domain, otherwise the enzyme would not function (FAD-/NADH-binding 
domain at position 22–228; Pyr_redox_2, Accession: pfam07992).

In the same way, the consistency of sequence analyses is checked for proteins: 
Everything must fit together. If contradictions arise, one of the partial analysis results has 
not yet been correctly classified or determined. For example, a transcription factor 
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Fig. 12.7  The genetic code – where is it fault-tolerant? (Figure from https://upload.wikimedia.org/
wikipedia/commons/7/70/Aminoacids_table.svg)

(determined by BLAST sequence comparison with high sequence similarity to a biochem-
ically verified protein) should then also have a nuclear localization signal (determined, for 
example, by the ELM server, the “eukaryotic linear motif server”), and the domain com-
position (determined by the SMART database; Letunic et al. 2015) should confirm the 
transcription factor found by a DNA-binding domain. After all, everything has to match 
because we always assumed the same sequence. Conversely, the different bioinformatics 
algorithms check and correct each other. In a living cell, the domains in the protein have 
to fit together correctly.

Learning to better understand this genetic “language of life” was, at least for me, a 
major reason to learn bioinformatics – and the computer is only one, albeit very powerful, 
tool for this.

Another way to approach this aspect of the language of life is through the proteins 
themselves. Their richness can be viewed directly with the Pfam database (all protein 
families; pfam.xfam.org) or UniProt (database of all known proteins and protein sequences; 
https://www.uniprot.org). This makes it much easier to understand the huge number of different 
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protein families and associated proteins, which can be found in ever new combinations of 
domains. An overview of protein domain families can be found in the SMART database 
(https://smart.embl-heidelberg.de). Alternatively, one uses the “conserved domains”, 
which enables independent verification (Lu et al. 2020).

If one wanted to look at the underlying genes, the “clusters of orthologous groups” 
(COGs) first gave an overview starting from bacteria (https://www.ncbi.nlm.nih.gov/
COG/). Then eukaryotic gene groups were also considered (COGs; eukaryotic ortholo-
gous groups; https://mycocosm.jgi.doe.gov/help/kogbrowser.jsf). In this context, a group 
cluster of genes means that the same gene is found in very many organisms and thus the 
same protein is always required and encoded in very different organisms: An “ortholog” 
because the domain composition is the same. Eventually, these orthologous groups were 
systematically extended, called eggNOGs (Huerta-Cepas et al. 2017). Excitingly, it can 
also be well shown that the original richness of forms was much smaller, because the 
primitive cell underlying all present-day life (the “LUCA”, last universal common 
ancestor; Weiss et  al. 2018), already using the same genetic code, had only about 
1000–1500 proteins, which are still found today as highly conserved protein families in 
virtually all organisms (similar, but not completely congruent, with the COGs). The protein 
language is universal and only grew from a relatively manageable inventory to its current 
richness over billions of years of evolution.

In order for everything to relate correctly to each other at the next higher level, the level 
of protein networks, there is considerable biological redundancy and robustness. This is 
necessary to ensure that every signal is correctly understood and does not get lost in the 
noise (see Chap. 7):

Signals are further amplified in signal cascades. All this can be deciphered by network 
analysis. This is a very efficient way of finding central proteins (hubs) that have a large 
number of neighbours (e.g. network analysis with Cytoscape). The structure of the net-
work also detects interfering signals as well as modifying and reciprocal input (cross-talk).

A fascinating and illustrative example can be found at the KEGG (Kyoto Encyclopedia 
of Genes and Genomes) pathway database. These are the “maps of cancer pathways”, 
which illustrate important stages of cancer (supporting and inhibiting pathways) for the 
user, whereby one can look at the different pathway inventory for different organisms. 
Building on these foundations, modeling pathways in cancer development and finding bet-
ter drugs against them is certainly a fascinating topic in bioinformatics (see Chap. 13). 
Again, the contextuality of all molecules helps to systematically identify the promoting 
and inhibiting pathways, for example, by gene expression analyses of healthy cells and 
cancer cells (where thus almost all important observed changes in gene expression interact 
to further spark cancer).

Redundancy is also reflected by the fact that several synthetic pathways are possible in 
metabolic networks for important and many other metabolites. This simultaneously pro-
tects against numerous genetic mutations that could otherwise disrupt the network, but 
also allows us to cope much better with fluctuations in the metabolites present in the 
environment.
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Moreover, this can also be used to define life as we know it very well. Our earthly life 
understands the genetic language of DNA.

The nice thing about this definition is that it can of course be extended to any other kind 
of life. But this (e.g. synthetic life; Bedau 2003) would then again use other storage mol-
ecules (e.g. PNA, so-called peptide nucleic acids; Nielsen et al. 1991; Nelson et al. 2000) 
because of “once-for-all selection” (Eigen and Schuster 1979; Eigen and Winkler 1975) 
during natural emergence. One then defines for these other types of living organisms again 
central storage molecules, survival-coded, cellular processes and analyzes the contextual-
ity of the remaining molecules in the cell and what this then implies again evolution, 
metabolism and replication.

Conclusion
•	 Life is always developing new information in dialogue with the environment. It 

is important to see that all molecules of a cell are closely related to each other and 
help together so that all processes run in an orderly manner and metabolism and 
signalling cascades united help that the cell has optimal chances of survival. Only 
this contextual information has real meaning. It conveys the behavior of the cell 
that is important and correct for survival. Misprints are constantly selected away 
in the population.

•	 Molecular words only ever make sense in the context of the cell. Database 
searches and sequence comparisons reveal the biological meaning (in practice, 
usually the function of the compared molecule). This is strongly linked to 
sequence elements and a defined structure. Random sequences usually do not 
make biological sense. Fascinatingly, this allows me to model in detail, for exam-
ple, how antibiotic resistance develops in bacteria (combination of protein struc-
ture and phylogenetic tree analysis) or how a protein code is optimally formulated 
for an organism (for example, if I want to produce insulin with optimal yield).

•	 The contextuality of biological information is repeated at all levels. The domains 
in an enzyme relate to each other, e.g. in glutathione reductase: To the catalytic 
domain there are the matching two cofactor domains (for FAD, NAD), the opti-
mal regulatory domain and also the dimerization domain, otherwise the enzyme 
would not function. Similarly, I check the consistency of sequence analyses. 
Everything must fit together; if contradictions arise, one of the partial analysisv 
results was not yet correctly classified. Since everything relates correctly to each 
other at the protein network level, there is considerable biological redundancy 
and robustness. This can be deciphered by network analyses to very efficiently 
identify central proteins (hubs), signaling cascades and interfering signals, and 
modifying input (cross-talk). A fascinating and illustrative example are the 
KEGG maps of cancer pathways.
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12.3	� Exercises for Chap. 12

Task 12.1
Test senseless and meaningful oligonucleotide sequences: By now you already know 
BLAST. Now test more precisely which sequences are recognized and which are not: 
Compare a sequence from Genbank with a random sequence generated by random key 
strokes from the keyboard. Which different types of answers do you get from the server? 
What does the E-value mean in the result?

Task 12.2
Search the protein database for words from our language:

	 (a)	Search with a word, such as “DNA” or “JAMES WATSON”.
	 (b)	Which letters never occur in the first letter amino acid code?
	 (c)	What are so-called wobble codons?

Task 12.3
What does the “Universal Code” look like (hint: https://www.ncbi.nlm.nih.gov/Taxonomy/
Utils/wprintgc.cgi)?

Task 12.4
Applied example: Pick out the design of insulin expression for optimal expression in yeast 
cells. Put together the differences that directly catch the eye!

Useful Tools and Web Links
GATK https://software.broadinstitute.org/gatk/guide/

article?id=7869#1.3
BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi
UniProt https://www.uniprot.org/
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13Life Invents Ever New Levels of Language

Abstract

Life keeps inventing new levels of language: DNA, neurons, human language, com-
puter code, Internet. Finally, the Internet makes bioinformatics software and biological 
knowledge (PubMed, open access publications), among other things, accessible world-
wide. For this purpose, a Domain Name Server (DNS) is used to rewrite the Internet 
Protocol (IP) address into easily readable addresses. Synthetic biology uses all col-
lected knowledge on biological processes for technical applications, e.g. classical bio-
technology (microorganisms produce citric acid, erythropoietin or insulin), more 
modern are whole circuits (MIT parts list or Biobricks, IGEM competition). Such pro-
cesses are described in the GoSynthetic database and the MIT BioBricks. Drug design 
using in silico screens and molecular dynamics simulations also noticeably shortens 
drug development. Natural and analog computing, for example, use slime molds for 
complex calculations. The nanocellulose chip is potentially superior to today’s com-
puter chips. It uses DNA for storage and light-controlled polymerases and exonucleases 
for reading in and out the stored information. Modulating proteins and processes act 
electronically across the nanocellulose membrane. New combinations of molecular 
biology, nanotechnology and modern electronics have huge future technology potential.

Apart from the genetic “language of life“, another aspect is very fascinating: Life is always 
inventing new levels of language (see Sect. 12.1).
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13.1	� The Different Languages and Codes in a Cell

First, at the molecular level, we have the DNA code studied in Sect. 3.1, but of course then 
the next language is RNA transcription. Interestingly, the signal to transcribe or not this 
very RNA is encoded quite complexly in the DNA structure of the promoter upstream of 
the transcription start of the RNA and further “upstream” (5′-end to be precise) binding 
transcription factors. The next step, the translation of messenger RNA into proteins, called 
translation, also uses, after all, its own language, the universal genetic code, in which the 
64 possible nucleotide triplets encode the 20 (“proteinogenic”) amino acids (including 
dialects that assemble proteins in organelles such as mitochondria, for example, or in bac-
teria such as mycoplasmas; freely available from NCBI at the following link: https://www.
ncbi.nlm.nih.gov/protein. This can be used to determine any protein sequence in any bio-
logical dialect).

For example, we can start from a normal human body cell (Fig. 13.1). Then there is first 
the genetic information in the cell nucleus, in the DNA. At first glance, this information is 
translated directly into protein sequences via the genetic code (Fig. 12.7).

Of course, we already know from the previous chapters that it is not quite that simple, 
there are really two steps:

DNA → RNA as well as RNA (in the cell nucleus) → mRNA at the ribosome. Only 
then is the mRNA translated into amino acids according to Fig. 12.7 and the genetic code.

Memb ran/sugar code

genetic code
Transport code

genetic code

rRNA code
protein/transport code

Enemy detection

mtDNA code
Transport code

Stability codes (protein, RNA)

Secretion code

Localization code

Cytoskeleton code
Signal processing

Fig. 13.1  Different languages and “codes“in our body cells, e.g. regulatory RNA, translation, 3-D 
protein structure, stability and instability sequences in protein. (Figure modified from https://com-
mons.wikimedia.org/wiki/File:Aufbau_einer_Tierischen_Zelle.jpg)
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However, in order for these two other processes to take place in the cell in a regulated 
and regulated manner, they again have their own language or code. Figure 13.1 summa-
rizes these different codes a little.

Transcription Code
The first code, transcription, determines when and how intensively a gene is read, in par-
ticular on the basis of promoter sequences.

Transcription factor binding sites are encoded by short nucleotide sequences, several of 
which act together to regulate readout in nucleated cells.

Some programs that can examine a promoter in more detail, such as TESS and 
Genomatix, have already been introduced in Chap. 11. However, there are also other data-
bases, such as TRANSFAC (https://www.gene-regulation.com/pub/databases.html), 
MotifMap (https://motifmap.igb.uci.edu/) and JASPAR (https://jaspar.genereg.net/). Some 
of these are publicly available for reading and searching transcription factor binding sites. 
However, some have now become commercial and are no longer free to use.

But the closer one looks, the more unclear the transcription code is, in particular which 
transcription factors that are still unidentified must also be taken into account, but also more 
distant sequences that lead to increased (“enhancer”) or decreased transcription (“silencer”).

RNA Codes
However, the next step, the processing and splicing of precursor RNA, also follows its own 
codes. Here, the splicing sequences that distinguish between intron and exon have already 
been relatively well characterized. But it turns out that each organism has its own dialect 
for deciding what to splice and how. A good program that is adaptive and species-specific 
in predicting such sequences is the Augustus program (https://bioinf.uni-greifswald.de/
augustus/). It can be specially trained on new species and uses hidden Markov models for 
prediction (Stanke et al. 2008).

However, one can look at numerous other codes in the RNA, in particular sequences 
that decide whether the mRNA leaves the nucleus or not (in the case of mRNA in general 
only one modified nucleotide, the 7-methylguanosine cap) and numerous other sequences 
that regulate the translation, localisation as well as stability of the RNA (see first part; a 
standard program to read these codes is the RNAAnalyzer: https://rnaanalyzer.bioapps.
biozentrum.uni-wuerzburg.de).

Protein Codes
Once the protein has been translated according to the genetic code, the question arises as 
to whether it is modified post-translationally, i.e. whether sugar residues (e.g. aspartic acid 
residues), lipids or acetate groups (e.g. lysine residues) are added to individual amino acids.

Next, based on its sequence, the protein folds into a molten globule (“molten globule”) 
usually within milliseconds after its synthesis via the formation of a secondary structure, 
and then (seconds) it arranges itself into its final three-dimensional structure. This com-
plex 3-D code has not yet been “cracked” either. Neither are the biophysical codes known 
in detail, nor do we have powerful enough computers to predict the structure accurately. In 
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contrast, methods that first find out whether the protein sequence is similar enough to a 
known structure and then predict the 3-D structure after “copying” it are surprisingly pow-
erful due to the sheer size of the data (tens of thousands of known protein structures with 
their x-y-z coordinates in the protein database).

Then, when the protein is completed to that point, its stability is determined by different 
amino acid codons at the 3′-terminus. For example, there are specific instability sequences 
at the C-terminus of the protein that determine its stability.

In general, it can be said that bioinformatics for deciphering these codes practically 
always starts with the sequence, but then uses other features, especially the structure, but 
for RNA, for example, the energy. For proteins, protein structure prediction is still compu-
tationally time intensive and very difficult for new folding types. Also, the decoding of 
transcription, DNA control sequences, and even new types of RNA (e.g., for lncRNAs 
(long non-coding RNAs) and miRNAs (microRNAs), one must correctly predict their tar-
gets) are only partially understood. On the other hand, increasingly complete large datas-
ets of total transcription from a wide variety of cell types are available, gradually 
supplemented by proteome datasets and metabolite data.

13.2	� New Molecular, Cellular and Intercellular Levels and Types 
of Language Are Emerging All the Time

The exciting thing, however, is that these types of languages are only the beginning. For 
example, at the molecular level there is also a sugar code (glycosylations and these sugar 
residue-binding proteins, so-called lectins), which regulates, among other things, which 
cells come together to form tissue associations and, for example, are simply ignored by the 
affected cancer cells when metastases form. There are also other codons for cell-cell com-
munication (lipids, desmosomes and so on), until we finally arrive at one of the most com-
plex systems of all, the immune system, which in each of us performs the task of reliably 
distinguishing between self and foreign. There is already a great deal of data on the immune 
system, for example on the white blood cells, where we can distinguish between lympho-
cytes (antibody-producing B cells and directly defending T cells; the latter are subdivided 
into helper cells, native killer cells and CD8 T cells and then into ever new subtypes), and 
on other defence cells, in particular monocytes, dendritic cells and macrophages. But that’s 
the beginning. The immunologist and immunologist distinguish very fine subtypes depend-
ing on the surface receptors that white blood cells have and their specific subfunction. In 
addition, there are platelets that also support the immune response. We study these cell 
types intensively and find that for each of these defense cells, again, you can make a sepa-
rate systems biology model. The language diversity and complex coding of the various 
immune responses are only surpassed in complexity by our nervous system. Both systems 
have only been deciphered in their various codes and language levels in rough outline. So 
there are still many open questions and exciting secrets that still want to be deciphered.

In evolutionary terms, the different levels of the languages of life can be simplified as 
shown in the box: Starting from preforms of life (about 3.3 billion years ago), as is still the 
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case today with the virus, there is first a hypercycle between nucleotide genome and poly-
merase. Then soon (about 2.8 billion years ago) the first prokaryotic organisms form, the 
typical bacterium then already has the three classical “language levels” of DNA → 
RNA → protein. Incidentally, we can only use the protein sequences to bioinformatically 
identify the last common ancestor of all life (LCA), which lived about 2.5 billion years 
ago. The earlier alternative forms are no longer preserved as sequences.

In the eukaryotic unicellular organism (about 2 billion years ago; at least brewer’s yeast, 
baker’s yeast and our ancestors separated in different directions at that time), everything is 
already considerably more complex (see Chap. 10). DNA is translated according to different 
codes. But also the RNA code is now already quite complexly divided into different lan-
guage levels (precursor, splicing, export, translation, localization, stability). Proteins, too, are 
now already quite complexly coded and regulated (translation, modification, stability).

In multicellular organisms, we then already have a very high number of language levels, 
first of all, all those from the previous step within the cell. Then there are various external cell 
codes for communication with other cells (sugar, lipid codes). From this, tissues are formed, 
which then again establish new language levels and codes (tissue codes, locomotor system, 
immune, nervous, circulatory, digestive system) and finally together form an organism.

Evolutionary View of the Language Levels of Living Systems
Virus
•	 Nucleotide genome ↔ polymerase.

Bacteria
•	 DNA → RNA → Protein

Eukaryotic protozoa
•	 DNA → RNA (precursor, splicing, export, translation, localization, stability)
→ Protein (translation, modification, stability)

Multicellular
•	 Cell (sugar, lipid codes) →
Tissue (tissue codes, musculoskeletal, immune, nervous,
circulatory, digestive system)
→ Organism

Social community
•	 Cell (sugar, lipid codes) →
Tissue (tissue codes, musculoskeletal, immune, nervous,
circulatory, digestive system)
→ Organism (innate triggering mechanisms, body language, gestures, spoken lan-

guages, etc.)
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As already mentioned in Chap. 5 on systems biology, another astonishing basic 
property of life is to build up ever higher levels of regulation and thus of biological 
languages (see box). If you look closely, this principle is already indicated in Sect. 3.1. 
The ever higher levels allow us to adapt to the environment in an ever better and more 
far-sighted way. First jumps to a language level between cells are thus made possible 
by the sugar code, this then helps neurons, among others, to come together to form dif-
ferent brain tissues and thus to form a brain. The neuronal languages have been 
described quite well in many details, starting with chemical synapses (e.g. in our brain), 
electrical synapses (e.g. in insects) and the fast electrical conduction via ion channels 
along the long sprouts of the nerve cells via axons. However, as can easily be seen in 
well-studied brains of, say, humans, mice, ants and bees, it becomes very complex and 
unmanageable in the details. In each brain region, there are different mixtures of nerve 
cells, different glial cells appear, the ion channels vary (slow and fast, activating and 
inhibiting) and since also, really mysterious (see below) new processes become possi-
ble, such as our different types of memory.

At the next higher level, languages are used for communication between organisms - in 
other words, what we call language in everyday life. This requires a sufficiently complex 
brain. However, a few million neurons are sufficient in state-forming insects to use innate 
languages across the entire state and also to communicate new observations with this 
innate vocabulary, e.g. the already proverbial bee dance for honey sources.

We can thus finally attempt to decode these different language levels using the optimal 
bioinformatics methods in each case. Figure 13.2 compares important biological language 
levels and possible bioinformatics analysis options.

Human language is once again a significant step further developed, since it is newly 
learned by a sufficiently large brain, has a very broad vocabulary and also allows the 

Flow of genetic information

Level
DNA

Coding
2-bit code

Analysis option
ATCG →

genetic code Triplet code 64 -> 20 amino acids → transcriptome analysis

Genome
Analysis

Protein (3D code) Amino acid sequence 3D structure, Interactions →Proteome analysis

Numerous other codes

RNA code Sequence, Structure,
energy

IRE: CAGUGN, Stem-Ioop, -2.1 to -6.7 kcal/mol→RNA-/
functional analysis.

Sugar, lipid,
cell-cell code

Membranes are create
at membranes Structure. Interaction partner → Functional analysis

→
→

→
→

→
→

Fig. 13.2  Examples of the levels of coding and possible bioinformatic analysis possibilities
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formation of ever new concepts. The levels of abstraction that humans can manage are also 
far higher than in animals. It is true that in individual aspects other highly developed 
brains, especially in mammals and birds, can keep up here - but in the integrative overall 
performance definitely not.

13.3	� Innovation: Synthetic Biology

Building on this background, one can of course also see our human society, including 
technology, as the field par excellence in which ever new levels of language are also cre-
ated using technical aids. Strictly speaking, this is the reason why bioinformatics is pos-
sible at all. We are now consciously learning the molecular languages of life. But because 
this would otherwise be too complex for us, we use our own tool, the computer, to decode 
them and thus achieve an unprecedented direct link between these different languages. 
Interestingly, however, this can be applied even more strongly to biology.

In this chapter, we will first consider the new levels that technical communication 
brings, with both the computer and the Internet of course being particularly impressive 
examples of information processing, both of which are essential to bioinformatics.

In the meantime, however, bioinformatics has brought to light some astonishing cross-
links between molecular information processing and computers. The technical use of bio-
logical processes is generally referred to as synthetic biology, a field of biology that is 
currently growing rapidly.

The focus is on achieving something new, on solving technical problems much better 
and innovatively by combining (molecular) biology and technology (usually computer 
technology, nanotechnology, modern chemistry or molecular sciences). It used to be inno-
vative to use new organisms for biotechnology (since the 1980s, patenting of molecular 
cloning of genes in plasmid rings by Prof. Cohen, Stanford University (Stanford 
Universität)). This is indeed still being pursued and advanced. However, it has long been 
recognized that this is very useful for the production of substances (e.g. insulin, citric acid, 
antibiotics, etc.), but to see “new kinds of life” at the center is nonsensical. We do not have 
sufficient knowledge to achieve anything useful here, nor would we be able to ensure that 
there are not undesirable side effects on ecosystems or control of these new life forms. 
Even in the design of synthetic organisms, therefore, special attention is paid nowadays to 
these safety aspects, which are also easy to comply with in practice. For example, erythro-
poietin (a very useful hormone that stimulates blood formation and, for example, helps the 
sick person with severe kidney disease to be able to produce enough red blood cells) is 
produced in proprietary fermenters that provide the optimum temperature and medium for 
bacterial production, and the bacteria are not viable outside this environment. The focus of 
today’s synthetic biology is thus the improved solution to a technical problem by merging 
different areas of technology with biology.
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A first area we will look at is “natural computing”, i.e. computing with molecules or 
even with whole living organisms. Although this is in principle very unconventional, it 
promises to be superior to conventional computers for certain problems, at least in the 
future, since many molecules or organisms work on the computational problem in parallel 
and thus bring insights to light more quickly than a computer.

Next, we will use the nanocellulose chip developed in our own laboratory (Bencurova 
et al., 2022) to show how the next generation of computer chips could also function much 
better than at present by using biomolecules, in particular more environmentally friendly, 
more durable, faster and with better memory properties.

However, this is at the same time an illustrative example of synthetic biology, so that 
we will subsequently give an overview of other approaches from synthetic biology. It is 
important to keep in mind that the entire theory of design in synthetic biology is based on 
bioinformatics. This is because it is the only way to know which biomolecules should be 
assembled in what way, to know their properties and also to be able to use simulations, 
database searches and calculations to estimate which properties come into play in the 
technical problem so that a technically satisfactory and correct solution can also be 
achieved.

13.4	� New Levels of Communication Through Technology

We have special features due to human civilization. In particular, humans develop 
devices for tool making, for example. We have culture and lore, mirror neurons and 
imitative instinct. Humans describe an emergent loop in that new inventions and forms 
of expression (“languages”) lead to ever new inventions and forms of expression. Money 
and the general possibility of exchanging any commodity for another also accelerate 
innovation, creativity, and development (money as a “desire machine”; Ridley 2010). In 
this sense, steps in which a new transmission of information is achieved are always 
important for the advancement and continuation of our civilization (see box). The devel-
opment of everyday human language into high-level, technical and scientific language, 
for example, is exciting.

However, new levels of data storage followed, first through writing (handwriting), 
then through letterpress, newspaper and typewriter. Finally, however, through electrical 
current, such as Morse code, telephone and telefax. Then, after the Second World War, 
transistors, integrated chips and finally the modern computer were added via elec-
tron tubes.
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13.5	� The Internet – A New Level of Communication

In the early 1990s, bioinformatics was still a matter for specialists. Programs were sent to 
acquaintances by mail, one installed the program or even received protein coordinates 
specifically by e-mail. Now, in the Internet age (since about 1995, local differences), any-
one can use a program that is offered as software via the Internet. Also the data of the 
databases are available worldwide for every user. All computers are networked in such a 
way that via the Internet protocol information about data packets can safely reach the 
reader at the computer. For this purpose, a Domain Name Server (DNS) transcribes the 
Internet Protocol (IP) address into easily readable addresses. In particular, the Internet 
opens up the possibility of making bioinformatics software and biological knowledge and 

New Levels of Human and Technical Communication

•	 Starting points in animals: chemical communication, later sign language, 
vocalizations.

•	 Human language.
•	 First realizations of writing (bone carvings, cuneiform, papyrus, paper).
•	 Permanent storage realization of the writing: book, archive, microfiche, glass 

(LASER scratched).
•	 On the other hand, unstable: CD, DVD, stick (already unreliable after about 

10 years).
•	 Technical realizations of type (letterpress, screen printing, rotary printing, 3-D 

printer ...).Electronic communication
•	 Power generator, Morse code, telephone, fax...
•	 Power grid, electronic tubes, first transistor ...
•	 First computer: Zuse, Enigma, Colossus (cracks Enigma)Generations of semi-

conductor technology

First integrated chip, CMOS technology, X-ray lithography ...New versions of the 
Internet

•	 Internet: Conceptualization of the Internet as super-robust communications 
despite nuclear war by DARPA and Paul Brennan (1973).

•	 Minitel in France (early 1980s).
•	 Use of the Internet as WWW at CERN (1987).
•	 World Wide Web Worm (1990).
•	 Mosaic Browser (1994).
•	 Mozilla, Google, cloud computing, Android phones, wearables, Internet of Things ...
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data, as well as scientific literature (PubMed), accessible to readers worldwide, especially 
via the Open Access   publications that can be found there.

Therefore, here are some key points about the Internet. After all, it is the basis of the 
worldwide availability of today’s bioinformatics.

The Internet Protocol
This protocol is used to pass data packets from computer to computer, and to do so as 
quickly as possible. In order to maintain a communication option even in the event of 
atomic shocks, the Internet was originally theorized by DARPA in the early 1960s. It was 
only the intensive use at CERN around 1985 that led to the initial spark for worldwide 
distribution.

Domain Name Server
Each computer has a four-part number (e.g. 132.187.25.1), via which all computers that 
are open to the Internet are then connected to the Internet protocol. Here, 132 means 
Germany, 187 means the University of Würzburg (Universität Würzburg), 25 means a 
subnet, and the last number means a specific computer in the subnet. However, since 
people typically browse the Internet by name, the Domain Name Server (DNS) translates 
the names (e.g. www.ncbi.nlm.nih.gov) into the real IP addresses (i.e. the four-part 
numbers).

Node Computer
The information that is passed from computer to computer on the Internet is bundled at 
central points. These central computers are then called Internet nodes. Unfortunately, the 
node computers are not the property of all nations, but the most important ones are located 
in America and generally in individual countries. The allocation of domains and Internet 
names is also in the hands of an American company, ICAM. True, it would be nicer if the 
Internet belonged to everyone. But if it is already controlled by one country, America is 
always better than alternatives, such as authoritarian states, which then control informa-
tion even more selectively than the USA.

The Internet has many emergent new properties, such as being super-resilient. Even 
when many computers are down, whether due to disasters, government oppression, or 
even war or even nuclear weapons, message packets continue to be transmitted efficiently 
through the Internet. Through intense communication, people are moving closer together 
to form the global village. In addition, the Internet has the property of not forgetting any-
thing. Search engines, moreover, make it possible to keep track of this, but they themselves 
develop a life of their own, in particular which pages are offered to which user (i.e. which 
image of the world is reflected to the user).

https://www.icann.org: The Internet Corporation for Assigned Names and Numbers 
(ICANN) is a non-profit organization:

Today, 1 October 2016, the contract between the Internet Corporation for Assigned 
Names and Numbers (ICANN) and the United States Department of Commerce National 
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Telecommunications and Information Administration (NTIA), to perform the Internet 
Assigned Numbers Authority (IANA) functions, has officially expired. This historic moment 
marks the transition of the coordination and management of the Internet’s unique identi-
fiers to the private-sector, a process that has been committed to and underway since 1998.

13.6	� A Parallel Language Level: Natural 
and Analogue Computation

Another exciting new area of bioinformatics uses natural processes to perform computa-
tions. An initial study by Prof. Adleman (1994) in the top journal “Science” showed that 
DNA molecules can be glued together like little sticks to perform addition, but also to 
solve simple traveling salesman problems (e.g., figuring out optimal routes for six cities so 
that the visit uses as little path length as possible) (Fig. 13.3, left, from Adleman 1994). 
More generally, natural computation uses the built-in parallelism of biomolecules, that is, 

Fig. 13.3  Natural computation. (Figure left from Adleman 1994, right from Tero et al. (2010))
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that many molecules simultaneously perform a large computation together, like a large 
computer cluster, but in molecular dimensions. Later studies showed that it is also possible 
to compute with RNA, proteins and cells. For example, one research group was able to 
logically switch RNA aptamers (i.e., RNA molecules that can recognize other molecules) 
(Nomura and Yokobayashi 2015). This then allowed the RNA switches to measure the 
concentrations of Valium and diazepam, compare them, and then perform a logical deci-
sion. Another very nice result was recently achieved with slime molds (Fig. 13.3, right, 
from Science News, January 22, 2010). Here, food was distributed to different locations, 
mimicking the exact position of stops on the Tokyo subway, the number of passengers by 
the amount of food. Then, by growing and collecting food, the slime mold manages quite 
accurately to recreate the optimal network of stops in Tokyo, as then shown by comparison 
with computer calculations and the real subway map (Tero et al. 2010).

Thus, “natural computing“(often also referred to as “analog computing“, when, as in 
the case of the slime mold, only an analog task is solved, but it is also calculated analogly 
and not digitally) has already achieved great success. However, the electronic computer is 
still used for difficult tasks. However, this may soon change due to advances in molecular 
biology.

13.7	� Future Level of Communication: The Nanocellulose Chip

It is interesting to note that bioinformatics can be used to elaborate, but also to advance, 
the idea that a new level of language is within our grasp. However, it is essential that we 
also reach this level in concrete terms, so that the stability and security that the Internet 
already gives us for the transmission of information also applies to other aspects of our 
production, to computer technology and to everyday life. At the same time, the new tech-
nology is also sustainable, without electronic waste and will not be destroyed by radioac-
tive radiation or nuclear weapons. Let us take a closer look at this example as a particularly 
gripping subject area for the new branch of bioinformatics (theory) and molecular biology 
(practice, experiments).

How can you know that and how is that possible? Well, it is a technique that uses DNA 
as a storage medium, polymerases to synthesize and read in sequences, and exonucleases 
to degrade and read out the sequences. Nanocellulose provides a matrix for the enzymes 
and DNA. Crucially, however, light-controlled protein domains allow the polymerases, 
exonucleases and other molecules to all be driven by light of different wavelengths. All of 
these building blocks already occur naturally in bacteria. The light-sensitive control 
domains are so-called blue light-sensitive protein domains (e.g., the BLUF domains in 
Escherichia coli; Tschowri et al. 2009), which in bacteria ensure that when blue light is 
incident, a stress response protects the bacterium against harsh environmental conditions 
and UV light. Similarly, polymerases and exonucleases from coli bacteria, for example, 
have long been used in a targeted manner. The fact that DNA enables a very high informa-
tion storage density (1 g DNA stores up to 10 to the power of 18 bits, i.e. an exabyte) was 
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already shown in 2012 by Church’s research group in the USA (Church et al. 2012). A 
working group at the European Bioinformatics Institute (Goldman et  al. 2013) then 
showed that it is possible to read longer texts, images and also sound recordings into DNA 
very well and also encode them securely with an appropriate error correction code. By 
considering the error codes and sequencing the DNA twice, all this information can also 
be read out very reliably. What’s more, in 2015 the research group led by Prof. Stark at 
ETH Zurich showed that vitrification of the DNA makes it possible to store this informa-
tion unchanged for up to a million years. Add in the fact that optical switches like the 
BLUF domain also switch very quickly (within femtoseconds), and the outlines of a tech-
nology that is much faster (a million times) and more durable (100,000 times longer) than 
our computer, and also has a much higher storage density (exabytes versus terabytes), 
become visible here. In the process, optical switches would replace transistors, DNA 
would replace memory disks, and the silicon matrix would be replaced by nanocellulose. 
Nature, especially bacteria, show us that this technology has been working smoothly in its 
components for billions of years, we just need to put them together efficiently.

This is what a finished nanocellulose chip could look like (Fig. 13.4a), which stores 
information for thousands of years, switches very quickly (femtoseconds, i.e. millions of 
times faster than today’s computer chips, since light is used here instead of electronics for 
the switching processes) and also has an extremely high storage density (exabytes per 
gram of DNA; Church et al. 2012). It has already been shown that DNA is very good at 
storing information digitally, unit by unit of information (Church et al. 2012). This works 
for texts, phonograms and images alike, and for thousands of years (Goldman et al. 2013). 
The only important thing here is to sequence twice. In this way, one prevents, for example, 
that an image can only be seen blurred because errors have crept into individual image 
points (“pixels”). If the DNA is additionally conserved, for example by vitrification, this 
information can even last for millions of years (Grass et al. 2015). We are currently work-
ing (Fig. 13.4b; Dandekar et al. 2013) on an approach that rapidly reads in and reads out 
these storage capabilities of DNA (Goldman et al. 2013) using light-controlled polymer-
ases and exonucleases (Dandekar 2013). Specifically, blue light-responsive (BLUF) 
domains turn on the enzymes; without blue light, they are turned off. Various nucleotides 
are also selected and incorporated in a light-controlled manner (rotating a histidine, which 
is important for substrate specificity) (Fig. 13.4c). Rapid readout by the exonucleases is 
most easily accomplished by using fluorescent nucleotides. The distribution of different 
DNA molecules to many small pots (storage sites) can be achieved using digital picoliter 
PCR (Hoffmann et al. 2012). Nanocellulose serves as the chip matrix or basis for this new 
computer chip (Jozala et al. 2016; Fig. 13.4a). Such an approach has many other advan-
tages. In particular, all materials can be produced sustainably, and no electronic waste is 
generated. Moreover, unlike “microbes gone wild” (“grey goo” syndrome: living nano-
technology assimilates everything into nanorobots; Drexler 1986), such a technology can 
never take on a life of its own. The chip is dead and not a living thing, and all working 
molecules are directly directed and controlled by light. Pores (again light-controlled, but 
with specific sequences) in the nanocellulose membrane also yield electronic properties, 
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Fig. 13.4  The nanocellulose chip. (a) Light replaces electronics (symbol: flashes, control by light 
signals) and does not control transistors but light-controlled polymerases (left, for reading in infor-
mation) and exonucleases (right, for reading out). DNA is used for storage (blue rectangles in the 
middle). The results are read out via fluorescence or protein expression (“printer”). The nanocellu-
lose matrix is responsible for durability and electronic modulation (pore; blue, top centre). (b) Light 
instead of electronics is used in various other processes in semiconductor technology, but special and 
new in the nanocellulose chip are proteins controlled with light. These can theoretically switch much 
faster than transistors (femtoseconds), which can be used to specifically synthesize RNA by fusing 
a light-control domain to an RNA polymerase that does not need a template (so-called mu polymer-
ases; green) (BLUF domain, blue). c shows that the substrate pocket can be changed via light (tilting 
of a histidine residue) in such a way that an adenine is now incorporated instead of a uracil. Such 
changes can be mediated very quickly via light (petahertz chip). In addition, the high storage density 
(exabytes per gram of DNA) and long shelf life (thousands or millions of years) is a great advantage, 
as is the absence of scrap or other environmental damage, and the extreme robustness of the nanocel-
lulose chip (even against various types of radiation or the electromagnetic pulse, as well as all com-
puter viruses). We can also take advantage of the fact that digital picoliter PCR can already store a 
lot of different information in a very small space

so the new chip can be well interconnected with other conventional computer chips. One 
can go even further, and use self-assembled DNA and DNA conducting pathways (previ-
ously made light-controlled by the enzymes) and also make the nanocellulose itself semi-
conducting by iodine doping, and then even use single-electron transistors made of 
nanocellulose (Bencurova et al., 2022)  - at least all of this can be bioinformatically 
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modeled very convincingly and in principle reproduced in laboratory experiments. Finally, 
it can be shown that such a nanocellulose chip can also be easily manufactured in principle 
with the aid of a 3-D printer.

13.8	� Using the Language of Life Technically with the Help 
of Synthetic Biology

These are all promising properties for our new nanocellulose chips. But it is not at all 
important to produce this new generation of bio-enhanced computer chips exactly the 
same way, but the great direction should be explored as intensively as possible in research 
to solve current problems of computer technology and electronics in a very sustainable, 
environmentally friendly, flexible, faster and better way than before. A current, simpler 
example than the nanocellulose chip shown above with new optogenetically switched 
enzymes and DNA as the storage medium is to achieve sustainable electronics by continu-
ing to use commercially available electronic components and memory chips, but printing 
them thinly on nanocellulose paper in a much more environmentally friendly way than 
before (but still using electronic waste as opposed to above) (Jung et al. 2015). Another 
interesting marriage of electronics and proteins is electrically modifiable proteins (Ganesan 
et al. 2016; Hekstra et al. 2016). Even more generally, this is called synthetic biology, 
which we have already learned about. Biological molecules are recombined, allowing 
them to achieve new, technically desirable properties. As mentioned above, it can be prob-
lematic to create new organisms with new properties, since such organisms are capable of 
reproduction. On the one hand, beer as well as bread and cheese have been produced with 
biotechnologically bred organisms for centuries, i.e. with the help of organisms systemati-
cally genetically modified through breeding. But since this has been going on for centu-
ries, it is perceived by the population as “natural” (a bit irrational). On the other hand, 
however, the potential danger posed by radically new synthetic organisms (such as new 
viruses, fusion of very different cell types, etc.) is already significantly higher than that 
posed by centuries-old biotechnology. However, since typical synthetic biology processes 
focus on design rather than on a whole organism, there are of course ways and means of 
keeping the risks within limits. The safest way is simply to use parts of an organism. These 
can then achieve new properties, but are not themselves capable of reproduction. One can 
also deliberately incorporate further control steps (as explained above with the BLUF 
domains).

Some useful links on the topic of synthetic biology are presented again below (see box). 
This shows above all that there are many efforts in this field that are innovative and often 
already relatively successful.

If, on the other hand, one turns to the design of individual proteins, the necessary bio-
informatic techniques and the experiments coupled to them are called protein design. 
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Figure 13.2 shows how the work on individual building blocks and proteins is designed, 
which bioinformatic steps are important here so that desired properties can be achieved. 
After analyzing the function and domains in the protein, one tries to determine its structure 
and then finally to further develop the protein specifically in the direction of desired prop-
erties. This fascinating interdisciplinary field, in which bioinformatics is not an auxiliary 
science but helps to plan and design new technology like an engineer, is called protein 
design for individual proteins and synthetic biology for new, unprecedented processes. 
One has to be particularly careful with whole organisms. On the other hand, biotechno-
logically used organisms have been part of our culture for centuries, from beer and baker’s 
yeast to citric acid from aspergilli and insulin from bacteria. There is also interesting work 
extending the language of life itself, such as introducing two additional entirely new 
nucleotides into the genome and passing them on stably (Zhang et al. 2017), or even fitting 
in new amino acids via recoding of the genetic code (via matching tRNAs or an adapted 
ribosome). This allows the incorporation of entirely new substances into DNA or proteins 
and thus even synthetic chemistry in microorganisms for biotechnology and drug 
production.

So much for future technologies and efforts in the field of synthetic biology.
Why should we develop synthetic biology so intensely? Well, for one thing, to achieve 

technological progress. Nanotechnology, molecular biology and electronics are our future 
technologies, and if we can make electronics much faster with optical methods, we should 
strive for this. The steps towards this are already showing great progress, such as picoliter 
computer PCR, which would make it possible to place a million or so different DNA mol-
ecules on a slide and thus greatly speed up vaccine production, for example. On the other 
hand, such efforts have the general advantage of simultaneously merging information stor-
age, cellular programming, and also synthesis and microfabrication. Precisely this also 
results in a very robust and very environmentally friendly way of producing, as bacteria 
and blue-green algae have been demonstrating to us for billions of years. The introduction 
of light-controlled protein switches, however, makes it possible to switch each molecule 
on and off in a very targeted manner and thus also to achieve a previously unattained preci-
sion of synthesis and information processing. In particular, the construction principle pre-
vents the technology from taking on a life of its own, something that was not considered 
in the 1980s and 1990s when nanotechnology was propagated with living bacteria. On the 
other hand, our current technology is not very robustly designed, always has to contend 
with raw material problems (today’s electronics, for example, have a shortage of rare 
earths), produces dangerous waste (electronic waste) and is very susceptible to disrup-
tions, interruptions in world trade and, even more so, to catastrophes or armed conflicts. 
Reason enough, therefore, to intensively pursue this molecular technology with the help of 
bioinformatics, which has combined three particularly strong exponents of nanotechnol-
ogy here for illustration (own proposal: DNA, nanocellulose and light-controlled protein 
domains; Dandekar 2013), but has also already achieved very considerable success with 
other biomolecules.
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�Synthetic Biology: Important Links and Applications for Bioinformatics

Previous work of my own has led to this database, which examines various biological 
circuits and the resulting engineering properties.

At MIT, important molecular circuits and their descriptions are bundled and made 
available to the general public as a “repository”, i.e. a collection of construction manuals.

There is also a race for the 3D printers to get and program better and better instructions 
for such three-dimensional printer templates. It is also possible to print various cells and 
tissues. Finally, people are also trying to make a 3-D printer themselves with a 3-D printer. 
I’m somewhat skeptical of the latter enterprise, but it’s amusing to read (because of the 
danger of overly active self-reproducing machines, but also because of fundamental limi-
tations of this approach, e.g. plastic remains plastic, other components are missing).

The possibilities of DNA as an extremely good and very compact digital storage for 
information are explained in the film. The concept was first demonstrated using Next 
Generation Sequencing by Church et  al. (2012). Ultra-long storage was published by 
Grass et  al. (2015), and the encoding of images, sounds, and texts was analyzed by 
Goldman et al. (2013). Thus, image files can be effortlessly determined from long DNA 
sequences using double sequencing and next generation sequencing.

GoSynthetic Database
https://gosyn.bioapps.biozentrum.uni-wuerzburg.de/index.php

MIT BioBricks
https://biobricks.org/

Rep-Repro/Darwin 3-D Printer
Rep-Repro/Darwin 3-D Printer: https://bigrep.com/de/

“Eternal” (Thousands or Millions of Years) Permanent Storage via DNA
DNA storage: https://www.3sat.de/wissen/nano/dna-als-datenspeicher-100.html
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�Emerging Technology Competition

This is a Europe-wide competition for new technologies, in which our approach to DNA 
storage using light-guided polymerases and exonucleases was also presented in the final in 
2015 (Dandekar and Lopez 2015; see Dandekar et al. 2013). The Emerging Technology 
Competition also pits a number of other fascinating new approaches against each other 
each year.

This is a competition on synthetic biology to use new molecular circuits to trigger new 
technically helpful developments. Harvard and MIT’s global competition is deliberately 
aimed at students who want to advance molecular design and synthetic biology with 
new ideas.

Emerging Technology Competition of the Royal Society
https://www.rsc.org/competitions/emerging-technologies/

Active DNA Storage by Light-Controlled Proteins
https://register.dpma.de/DPMAregister/pat/PatSchrifteneinsicht?docId=
DE102013004584A1

Helpfully, Dandekar (2015, 2016) and Shityakov et al. (2019) describe all the 
details and our current experiments on the nanocellulose chip for replication.

Analysis of the Function and Domains in the Protein
It is important not only to consider the function of the domains of the natural protein, but 
also to look for suitable domains for the new functions that the protein is to have. For 
example, a BLUF domain is used for control by light, and a kinase domain (for phosphory-
lation), a cofactor-binding domain or a DNA-binding domain (so that transcription can be 
specifically activated) is used for other new enzyme properties.

The insertion of individual sequence sections can also be pretested in this way.

https://www.uniprot.org/

https://smart.embl-heidelberg.de/

Synthetic Biology Competition
https://igem.org/Main_Page
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Protein Structure Analysis
It is not uncommon that the basic type of protein structure is already known. Then you can 
get the three-dimensional structure coordinates from the protein database and then use a 
protein visualization program to insert the mutations that you would like to plan.

We have already got to know RasMol as a visualization program and the PDB database 
for the three-dimensional protein structure coordinates.

For proteins that have similarity to a protein sequence, we can make a homology model 
(see Sect. 1.2), for example with SWISS-MODEL or MODELLER. Again, remember to 
be conscientious about comparing original sequence and modification.

Prediction of the New Protein Properties
Next, one considers how the protein then changes overall. Various methods for mutation 
prediction exist, e.g. large protein alignments of related proteins enable the comparison of 
correlated mutations to identify even distant regions that influence each other in coopera-
tive structural changes (e.g. working group of Prof. Ranganathan). This method is 
described in detail in Poelwijk et al. (2016). A case study investigates how allostery and 
protein structures can be specifically changed using this method (Raman et al. 2016).

A nice, simple start-up software package to plan molecular biology experiments is the 
Geneious software or the Husar software at DKFZ. Both software packages allow a lot of 
molecular biology for new proteins and the individual steps for this: the planning and 
recognition of DNA interfaces for cloning experiments, the prediction of secondary struc-
ture, amino acid composition, optimal protein expression, translation of nucleotide 
sequences, protein modification, etc. (we have already used the Expert Analysis System as 
a general introduction). (As a general introduction, we already got to know the Expert 
Protein Analysis System (ExPASy) from Switzerland in Part I).

https://www.geneious.com/

https://genius.embnet.dkfz-heidelberg.de/menu/biounit/tools_db.shtml

https://fold.it/portal/info/science

More ambitious protein design experiments are building on this. The current world 
leader is David Baker’s lab at the Institute for Protein Design (Institut für Protein-Design) 
at the University of Washington (Universität Washington; https://www.ipd.uw.edu). A nice 
introduction is the game “Fold it” (first link below), the second link below gives a com-
plete overview of modern protein design.
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Of course, one can also look the other way around, that a molecule works well as a 
drug to influence a receptor, or a protein is itself used as a drug (e.g. the tissue plasmin 
activator, TPA, after effect extension by removing an inactivation loop). This type of 
protein engineering, which aims at a drug effect, is therefore called drug design. The 
first step is to look in detail at the three-dimensional protein structure in order to mark 
promising changes in the protein or to see how well a drug (or, more generally, a molec-
ular ligand) fits into the protein structure. We can practice this with programs like 
RasMol or PyMOL by using this software to turn the three-dimensional structural coor-
dinates into a colorful, spatial image of the protein structure and look at how well ligand 
molecules fit in here (Fig. 1.2). On the other hand, if you want to test a large number of 
molecules, you can do this automatically using a substance database with the computer. 
In this way, thousands or even millions of compounds are pretested in the computer 
(technical term in silico screening) in order to then test the best molecules in the screen 
(those with the lowest binding energy) pharmacologically in the experiment. Other cri-
teria (e.g. whether the substance is easy to synthesise) are usually taken into account 
when selecting substances. Such an in silico screen is bioinformatically a work of sev-
eral weeks or longer. In addition, molecular dynamics can be considered: The computer 
starts from the protein and ligand structure and now systematically samples how the 
interaction between the two changes over time. This too now allows accurate predictions 
of the effect and how it is best achieved on the protein by the ligand molecule. However, 
we can recreate such complex calculations in an introductory way by querying a data-
base where many such results are systematically stored. The DrumPID database (https://
drumpid.bioapps.biozentrum.uni-wuerzburg.de/compounds/index.php), for example, 
thus gives numerous substance suggestions for a protein for which one is looking for 
pharmaceuticals and also takes into account filter criteria such as tolerability (e.g. 
Lipinski’s rule of five) and whether already approved by the FDA or experimental (Kunz 
et al. 2016; a tutorial here also explains its use in more detail).

One step higher, one would like to link different protein components with each other to 
form new networks and circuits. This is made possible by our GoSynthetic Database, 
which then also directly compares natural networks with technical processes.

https://gosyn.bioapps.biozentrum.uni-wuerzburg.de

https://www.bakerlab.org

13  Life Invents Ever New Levels of Language

https://drumpid.bioapps.biozentrum.uni-wuerzburg.de/compounds/index.php
https://drumpid.bioapps.biozentrum.uni-wuerzburg.de/compounds/index.php
https://gosyn.bioapps.biozentrum.uni-wuerzburg.de
https://www.bakerlab.org


191

Conclusion
•	 Life is always inventing new levels of language. Starting with the cell with molecu-

lar codes, higher levels are cellular and intercellular codes, then neurobiological via 
nerve cells, and at the level of individuals, scent signals, behaviour, gestures and 
language. In the case of humans, this is followed by the rapidly developing levels of 
technical communication – up to and including the Internet. In particular, the Internet 
opens up the possibility of making bioinformatics software and biological knowl-
edge (PubMed, open-access publications) accessible worldwide. All computers are 
networked in such a way that information via data packets securely reaches the read-
ers at the computer via the Internet protocol. To this end, a Domain Name Server 
(DNS) transcribes the Internet Protocol (IP) address into easily readable addresses.

•	 Synthetic biology profits from this world-wide knowledge and attempts to 
describe and understand biological processes so well that they can be used for 
technical applications, such as biotechnology (microorganisms produce citric 
acid, erythropoietin or insulin). However, numerous circuits and parts from cells 
that are interesting in their effects are now also being used (MIT parts list, 
BioBricks, iGEM competition). Bioinformatics is crucial to describe and direc-
tionally modify these parts and processes, for example through database tools 
(work benches) such as the GoSynthetic database and MIT BioBricks. Synthetic 
biology can be quite fruitful this way. In contrast, our knowledge of “artificial 
life” is too limited, and if one really wants to produce artificial organisms (e.g., 
modified viruses), it is important here to have sufficient, strong safeguards against 
release as well as built-in controls on the organisms (genetic engineering laws 
and regulations). The structure of individual proteins is optimised by protein 
design. This, too, can now show a number of successes (e.g. removal of a loop 
region in the tissue plasminogen activator leads to an extension of the effect). 
Drug design using in silico screening and molecular dynamics simulations also 
significantly shortens the development of drugs because only the best compounds 
then need to be tested experimentally in a time-consuming manner.

•	 Natural and analog computing uses biological or even physical processes to perform 
complex calculations by having many molecules working in parallel. This allows, 
for example, the Tokyo subway map to be efficiently reproduced using slime moulds. 
Nevertheless, no convincing application of such techniques has yet succeeded in 
being superior to a normal computer made of silicon chips. The nanocellulose chip, 
on the other hand, is potentially superior to today’s computer chips. It uses DNA to 
store information and, via a BLUF or LOV domain, light-controlled polymerases 
and exonucleases to read in and out the stored information. Further modulating pro-
teins and membrane pores are used for electronic signals via the nanocellulose 
membrane. This promises higher storage density (exabytes), longer storage (millen-
nia or more) and faster switching (by light, up to petahertz) than conventional silicon 
chips. But more generally, the combination of molecular biology, nanotechnology 
and modern electronics offers huge future technological potential.

13.8 � Using the Language of Life Technically with the Help of Synthetic Biology
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13.9	� Exercises for Chap. 13

In addition to this part, please work on the exercises in Chaps. 10 and 11.

Task 13.1
Give examples of domain databases and find them on the web.

Task 13.2
Where do I find protein structures? Which database do I use? Get an overview of the 
wealth of forms. Also find out about SCOP and CATH.

Task 13.3
Protein design: locate artificial folds in the PDB database.

Task 13.4
Can you show the Tissue Plasminogen Activator and the engineering of the loop structure 
with RasMol to understand the design?

Task 13.5
How does the inhibition of the HIV protease actually work? Please refer to the following 
figure: https://www.hiv.lanl.gov/content/sequence/STRUCTURE/PROTEASE.HTML

1A30: Biochemistry. 1998 Feb 24;37(8):2105–2110.
HIV-1 protease complexed with tripeptide inhibitor from HIV-1 trans-frame region.
Now describe exactly what you see, that is, how inhibition works.

Task 13.6
Protein helix permutations: Might there be general design principles for proteins? Search 
for relevant papers by David Baker in Nature or Science in PubMed.

Task 13.7

	1.	 Use the GoSynthetic database. How would one find the GoSynthetic database on 
the net?

	2.	 Oncolytic virus

Oncolytic viruses are a fine example of successful synthetic biology. The idea is that the 
cancer-dissolving virus multiplies preferentially in cancer cells, dissolving them (“oncoly-
sis”) while leaving the healthy cells largely alone. The immune system then removes these 
viruses from the recovered body.

Thus, in order to convert a normal virus into such an oncolytic virus, the natural virus 
must be modified in such a way that it preferentially replicates in cancer cells.

Find more information about this.
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Task 13.8
Using the DrumPID database: How do I actually find out whether a protein is hit by a drug 
or proteins that match a drug effect? This can be investigated using databases such as 
DrumPID (Uni Würzburg) or STITCH (EMBL, Heidelberg). Find these databases on 
the net.

Task 13.9
Identify papers on natural computing from PubMed.

Task 13.10
A light-targeted protein domain gives a protein new properties. How do you go about 
designing it?

Useful Tools and Web Links

NCBI Domains/
Structures

https://www.ncbi.nlm.nih.gov/guide/domains-structures/

NCBI proteins https://www.ncbi.nlm.nih.gov/protein
TESS https://www.cbil.upenn.edu/tess/
Genomatix https://www.genomatix.de/
TRANSFAC https://www.gene-regulation.com/pub/databases.html
MotifMap https://motifmap.igb.uci.edu/
RNAAnalyzer https://rnaanalyzer.bioapps.biozentrum.uni-wuerzburg.de
ICANN https://www.icann.org
GoSynthetic https://gosyn.bioapps.biozentrum.uni-wuerzburg.de/index.php
DrumPID https://drumpid.bioapps.biozentrum.uni-wuerzburg.de/

compounds/index.php
BioBricks https://biobricks.org/
UniProt https://www.uniprot.org/
SMART https://smart.embl-heidelberg.de/
RasMol https://www.openrasmol.org/
PDB https://www.rcsb.org/pdb/home/home.do
JASPAR https://jaspar.genereg.net/
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14We Can Think About Ourselves – 
The Computer Cannot

Abstract

A computer cannot think about itself, because formal systems have basic barriers here 
(exactly proved by Gödel and Turing). Humans (and living beings in general) do not 
think formally exactly, but therefore can think more successfully about themselves or 
all basic questions. Goals and values therefore must and should always be set by 
humans, especially as computers become ever more powerful. Artificial intelligence, 
especially deep learning algorithms and neural networks are helping computer capa-
bilities to soar even higher. The more features of a living being are replicated (e.g., 
acting in an artificial environment; replicating language and emotions), the more pow-
erful the capabilities of such a machine become. Bioinformatically, the properties of 
artificial intelligence can be used directly, for example, for modern image processing, 
but also more generally for the recognition of complex properties (“feature extrac-
tion“), pattern recognition from large amounts of data (“training data set”) and then 
also for individual molecules or sequences (predictions, for example, for the secondary 
structure in the protein, for the localisation in the cell, etc.).

What could be more fascinating than synthetic biology, man’s ability to create new biol-
ogy (with all the limitations to be considered)? Well, no question, it is man himself. In 
particular, his ability to think about himself marks him out as unique. Computers, after all, 
can’t do that. Among higher mammals, there are at least some that recognize themselves 
as themselves in the mirror. On the other hand, there is no animal species known that can 
do detailed introspection based on this or even philosophy like us humans.

© Springer-Verlag GmbH Germany, part of Springer Nature 2023
T. Dandekar, M. Kunz, Bioinformatics, 
https://doi.org/10.1007/978-3-662-65036-3_14
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14.1	� People Question, Computers Follow Programs

Computers often calculate so fast that one is tempted to assume they can think. However, 
there are numerous differences to living beings. In particular, computers are not alive, so 
they do not operate in an environment and cannot reproduce. Therefore, meaning (e.g., 
food, fear, freedom, etc.) in the strict sense is also not possible for a computer; the com-
puter, on the other hand, formally reason with logical chains of reasoning. But for formal 
systems it is true that they are either closed and then one cannot formulate provable state-
ments for these closed systems or they are not clearly delimited. More precisely, there are 
the two Gödel incompleteness theorems.

The first incompleteness theorem proves that there are always unprovable statements in 
sufficiently strong, contradiction-free systems. The second incompleteness theorem shows 
that sufficiently strong, non-contradictory systems cannot prove their own non-
contradiction. So for such fundamental statements, the computer remains in the undecid-
able. In contrast, we can at least think about our fundamentals any time we like. But it is 
also clear that humans do not always think and decide without contradictions. This is also 
true in general: Biological systems are primarily not decision-making or computational 
systems, but living beings that have to survive, especially in their environment. For the 
same reason, decisions, even of a fundamental nature (e.g. should a cell divide or not), 
quickly become fuzzy (sometimes even a bit random). But evolution ensures that this 
fuzziness is adjusted precisely so that we can survive as well as possible with the resulting 
decisions and we also have a sufficiently accurate picture of the environment in which we 
act as living beings for this purpose.

Basically, this phenomenon is also easy to understand. Formal systems are either 
closed, then one can drive them into a contradiction or at least into a statement undecidable 
for them, if they have to think about their foundations, or they are not closed (then one can 
formally add additional statements in case of emergency). People, on the other hand, do 
like to think about themselves, and they also (usually) manage to get back to everyday 
work afterwards. It is important to realize that this is a very basic barrier between humans 
and computers. As long as the computer closes correctly and logically exactly like a for-
mal system, it will not get beyond this “Gödel limit“, i.e. it will never really be able to 
think about itself. There is no concept of meaning and no real life in a real environment. 
Instead, if you would create artificial life, you would be able to cross this border, but every 
type of life in nature is equal, has the same right to live, be it human, an insect or bacteria, 
including also any future type of artificial life. However, as we are not even treating all 
humans equal, we are not ethical mature enough to try to create artificial life. Luckily, the 
technological hurdles towards artificial life are also enormous.

After this consideration of clear boundaries of computers as formal systems versus 
humans as living, feeling and acting beings, the infobox gives some cornerstones of artifi-
cial intelligence. The important thing to take away is that humans should at least be 
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capable partners with computers, and should actually use their human foresight to verify 
the computer’s calculated results, rather than blindly (or even “subordinately”) believing 
them. Needless to say, in fact, the relationship between the two subjects is rather cordial. 
Artificial intelligence research and bioinformatics intensively cross-fertilize each other. 
For example, a number of sophisticated search strategies of artificial intelligence have 
been inspired by biological phenomena. Conversely, neuronal networks (and also Hidden 
Markov Models; Chap. 3) are used for many sequence or even more complex predictions 
in bioinformatics (e.g. for signal sequences).

Figure 14.1 illustrates one example, namely image recognition using deep learning.
Figure 14.1a shows the task: Electron microscopic images of C. elegans (left) are to be 

analysed with the aid of a neural network (centre). Since the number of neurons converges 
in the middle, namely from 100 to only 50, it is a so-called deep learning network. Then a 
response is shown schematically, bright spots are detected at the top (1), not at the bottom 
(0). Below this, the learning curve of the network for many trials is shown. During train-
ing, the network performs very well (blue curve), during the validation test (red curve) 
more training is needed first, then the results become as good as the training data set. With 
mature deep learning networks, the performances are of course better than in the scheme 
(7% error is still a bit high, but this is just a snapshot of the development).

This is clearly demonstrated in Fig. 14.1b, where one can see how this algorithm learns 
image properties (left) and recognizes them in the image (right, red circles). Among the 
expert systems, “Wolfram Mathematica” was also mentioned, since this is able to solve 
differential equations independently or to calculate complex integrals.

Some Cornerstones of Artificial Intelligence

	 (a)	Principle: neural networks in general
	 (b)	Software that uses neural networks:

NucLocP; SignalP or for transmembrane proteins: TMHMM

	 (c)	Deep learning and other modern methods (Fig. 14.1)
	 (d)	Expert systems

–– Example area medical informatics:
e.g. infections, burns, anaesthesia

–– Wolfram Mathematica

14.1 � People Question, Computers Follow Programs
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Fig. 14.1  (a) Deep learning architecture and learning curves. (b) Algorithm learns image properties

14.2	� Artificial Intelligence

How do you detect artificial intelligence? A first possibility is the Babbage test. The com-
puter scientist Charles Babbage proposed the following competition between humans and 
computers. Both are hidden behind a cloth, and people on the outside are asked to guess 
who is who. If a computer succeeds in deceiving people into thinking it is human, then the 
computer has passed Babbage’s test and “possesses” artificial intelligence. Although com-
puter scientists think this test is great, I don’t find it particularly impressive. After all, the 
test is probably easy to win if the human behind the cloth is trying hard to be as 
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Fig. 14.2  Sensorimotor feedback loop

monosyllabic as a computer. So the computer might be able to fool us well (pass the 
Babbage test), but it won’t become a living being from that either, but only with evolution 
and active representation of the environment (which after all might be possible to repro-
duce later).

How does biological self-programming work? Well, by actively acting itself in an 
environment and then satisfying urges or not and then, of course, being able to actively 
perceive the environment and itself. A computer that programs itself in this way has at 
least a real knowledge of meaning, just as a living being does (Fig. 14.2).

Moreover, a computer can also be designed stochastically. For example, efforts to care 
for the elderly in Japan are going towards making computers as human-like as possible in 
appearance, responses, etc. This is called emulation, and it can emulate a human very well, 
but with normal programming it has the same limitations as mentioned above. But you can 
also equip computers with neuronal networks and let them gain experience in an artificial 
environment and equip them with drives, etc. And if you add a certain amount of insecurity 
to it, you can also use it to simulate a human being. And if a certain fuzziness is added, the 
whole design is already very close to a living being. This means that the fundamental lim-
its for formal systems can be overcome more and more easily. However, the problem is 
then exacerbated as to how a relationship can be formed between these artificial, increas-
ingly human-like machines and the people concerned. Again, a human (and not machine-
like) solution can only be found if humans remain self-aware and specify human values.

If the computer then reproduces itself, it is a real living being. The only thing missing 
then is the ability to evolve – but that’s exactly what we don’t want, not only because of 
security concerns, but also because of ethical concerns.

Current Examples of Artificial Intelligence
The most famous example of artificial intelligence and computer successes are probably 
chess computers, especially Deep Thought’s 1988 victory over Grandmaster Bent Larsen, 
losing to World Champion Garri Kasparov in 1989. Deep Junior won the 2011 and 2013 
World Computer Chess Championships, and played Garri Kasparov to a draw in 2003.

14.2 � Artificial Intelligence
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Fig. 14.3  Deep learning and AlphaGo. The figure shows the optimization of AlphaGo with deep 
learning (top, Monte Carlo search in four simulation steps) and a winning AlphaGo game (bottom, 
AlphaGo in white, moves are shown as numbers). (Figure from Silver et al. 2016)

An exciting technique is the so-called deep learning. Here, the neuron layers learn by 
back propagation of the result. This was not optimally built in for a very long time, but 
around 2005 this was corrected (Fig. 14.3; Silver et al. 2016). Since then, deep learning 
networks have become increasingly powerful. As a result, it has recently been possible to 
beat at least one Go grandmaster even in a strategic board game (https://www.nature.com/
nature/journal/v529/n7587/full/nature16961.html).

More generally, the strength of artificial intelligence programs is based on partially 
emulating biology so that autonomous learning is possible, e.g. neural networks or through 
hidden Markov models (Maccorduck 2004). Such strategies are used in bioinformatics, for 
example, for genome annotation (exon-intron domain; e.g., GenScan program) or for the 
prediction of domains (e.g., Pfam, SMART databases), signal proteins (e.g., the SignalP 
program), and membrane regions in proteins (e.g., the TMHMM program; Käll et  al. 
2004) (Chap. 3). For complex optimization problems, such as in protein folding, artificial 
evolution by genetic algorithms is also used. Evolutionary strategies are another important 
method of artificial intelligence. The more efficiently learning is replicated, the closer one 
gets to artificial intelligence. Deep learning seems to bring a new quality to it. We are cur-
rently using this for image recognition, for example, of microscopic images.

In general, we can say that artificial intelligence is very good at simulating the recogni-
tion of complex features (technical term: feature extraction; pattern recognition). To do 
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this, we need large amounts of data (a “training data set”) and feedback to the neuronal 
network (by itself: unsupervised learning; from the outside: supervised learning) as to 
whether the computer’s prediction was correct or incorrect afterwards, even for individual 
molecules or sequences (predictions, for example, for the secondary structure in the pro-
tein, for the localisation in the cell, etc.).

Genetic algorithms are a sophisticated search strategy that I myself have used enthusias-
tically for many years. Here, solutions are bred in the computer with the help of artificial 
evolution through selection, mutation and recombination of digitally programmed chromo-
somes. These chromosomes then encode the problem you want to solve. This works sur-
prisingly well, given sufficient populations of individuals and several hundred generations 
of evolution. For example, one can obtain protein structures from the sequence by using 
appropriate selection parameters with small error to the observable structure (Dandekar and 
Argos 1994, 1996, 1997). The “catch” with this approach is only how to code the protein 
structure efficiently enough in the chromosomes (e.g., by “internal coordinates”) and how 
to design the selection “correctly” (many years of work and then requires a sufficient num-
ber of known, experimentally resolved crystal structures). Another clever search strategy 
for complex problems with a huge, often high-dimensional search space is to do like the 
ants (ant colony optimization). Here, an anthill is electronically programmed, and the indi-
vidual virtual ants scour the solution space. In doing so, they leave behind a scent trail. This 
trail is amplified and turned into a virtual ant trail in the computer if there are particularly 
good solutions along the searched route. This method is also surprisingly powerful for 
complex problems, but also requires a lot of patience until one has sufficiently mapped the 
problem one wants to solve in the real world into this virtual “forest of ants” so that the 
solutions are tractable. A breakthrough in predicting 3D structures of proteins was recently 
achieved by Senior et al. (2020) and Tunyasuvunakool et al. (2021).

14.3	� Current Applications of Artificial Intelligence 
in Bioinformatics

The high-dimensional data in biology and medicine contain various variables (features), 
e.g. diagnosis, expression values, age, weight. In addition, there are complex relationships 
and correlations, but also confounders (confounding variables), batch effects and multicol-
linearity between the variables. In short, it is very time-consuming to find out which vari-
ables are relevant and which are not. An application from artificial intelligence research 
that has been used for a long time is machine learning (machine learning; Tarca et al. 2007; 
Sommer and Gerlich 2013) in bioinformatics to structure the data and extract relevant 
features, but also to develop classification models (predictive models). We have already 
learned about PCA (Chap. 7) to decompose high-dimensional data into principal compo-
nents and reduce their complexity (dimensionality reduction). Other methods are cluster 
and regression analyses. While cluster analysis is used to classify data into groups (clus-
ters) with similar characteristic structures (characteristics), regression analysis is used to 
find correlations and relationships between variables.
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Clustering  In cluster analysis (group analysis), a distinction is made between supervised 
(groups known) and unsupervised clustering (groups unknown). An example of super-
vised clustering is the k-nearest-neighbour algorithm, in which new data (e.g. patient) are 
classified into predefined groups (the k-nearest neighbour [e.g. k = 3 considered 3-nearest 
neighbours] is always considered and then assigned to a cluster). This allows, for example, 
to assign a diseased person to an optimal therapy (e.g. radiation, chemotherapy) according 
to the gene expression profile. If, on the other hand, one wants to find clusters in one’s 
data, one can apply unsupervised clustering, such as k-means (non-hierarchical; often for 
NP problems) or complete-linkage (hierarchical). 

Regression  Regression analyses examine the relationship between a dependent (regres-
sand, criterion, “response variable”) and independent (predictor, “predictor variable”) 
variable. For example, a linear regression can be used to examine the relationship between 
weight (independent variable) and blood pressure (dependent variable). The prerequisite is 
that the dependent and independent variables are metric. The calculation is done with the 
least-squares estimator, which tries to minimize the least-squares error of the residuals 
(distance from the data point to the regression line) to get the best fit to the data (you put 
a regression line in the data). How well the regression model represents the data (goodness 
of fit) is usually calculated with a t-test (p-value < 0.05) and the R2 (coefficient of determi-
nation, between 0 [no correlation] and 1 [high linear correlation]).

If, on the other hand, the dependent variable is a binary/dichotomous (yes/no) variable, 
logistic regression can be used. Here is a popular analysis question: What is the probability 
(the correlation) of developing high blood pressure (or heart failure) if you are overweight? 
The calculation is done using the logit function [log(p/1−p)] and maximum likelihood 
method (you put a sigmoidal curve in the data). To assess the model quality, one uses, for 
example, a chi-square test (p-value <0.05), the R2 and the AIC (Akaike Information 
Criterion; adjusts model fitting to the number of parameters used).

Often one also has time points (time data) for a dependent variable, for example in the 
context of a follow-up study. Cox regression is used for this (survival time analysis, “time 
to event” analysis). Survival time analyses are of interest if one wants to know, for exam-
ple, what the influence of a mutation or therapy is on the 5-year survival time. The calcula-
tion is done using the Kaplan-Meier estimator (hazard function calculates risk [failure 
rate] that event actually occurred; censored data [no exact information about event] are not 
included in the calculation). The survival rates are represented in a Kaplan-Meier curve, 
and the model quality is assessed using a log-rank test and Cox proportional hazards.

A nice overview of regression analysis is provided by Worster et al. (2007), Schneider 
et al. (2010), Singh and Mukhopadhyay (2011) and Zwiener et al. (2011). The two recent 
papers on remdesivir (Wang et al. 2020) and lopinavir-ritonavir (Cao et al. 2020) treatment 
in COVID-19 should also be mentioned here.

Logistic regression and Cox regression are popular for the analysis of diagnostic and 
prognostic signatures, i.e. the optimal combination of genes (Vey et  al. 2019) or 
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metabolites (Schweitzer et al. 2019) whose strong or weak expression indicates a disease 
or its (in)favourable course. Classification models (prediction models) are being devel-
oped for this purpose.

Classification Model (Prediction Model)  Classification models are often used in bioin-
formatics for the classification between two categories (binary), for example for the diag-
nosis of a disease (sick/healthy). This is done using a classification table (confusion matrix, 
truth matrix), which summarizes the prediction (test) and actual observation (reference) of 
a classifier (Table 14.1). 

Here we classify between positive (“sick”, alternatively: yes, 1, correct) and negative 
(“healthy”, alternatively: no, 0, wrong) as follows:

•	 True Positive (TP; true positive cases): test and reference positive (test and refer-
ence “sick”)

•	 False Positive (FP; false positive cases): test positive, reference negative (test “sick”, 
reference “healthy”)

•	 False Negative (FN; false negative cases): test negative, reference positive (test 
“healthy”, reference “sick”)

•	 True Negative (TN; true negative cases): test and reference negative (test and reference 
“healthy”)

In order to be able to assess how meaningful (accurate) a classification model (predictive 
test) is, i.e. whether the classification made is correct or incorrect, there are various statisti-
cal quality criteria/measures (performance metrics). These are:

•	 Sensitivity (true positive rate, sensitivity; positives detected as positive)” = 
TP

TP FN+

•	 False positive rate (“false alarm”, positives that are actually negative) �
�
FP

TN FP
= 1 

specificity

•	 Specificity (negatives detected as actual negatives) = 
TN

FP TN+

•	 Positive predictive value (PPV, precision; probability of actually being posi-
tive) = TP

TP FP+

Table 14.1  Overview confusion matrix for a classification model

Reference
 + −

Test (prediction) + TP FP
− FN TN
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•	 Negative predictive value (NPV, segregancy; probability of actually being nega-
tive) = 

TN

TN FN+

•	 Accuracy (correct classification rate) = 
TP TN

TP FP TN FN

+
+ + +

•	 Misclassification rate = 
FP FN

TP FP TN FN

+
+ + +

•	 Prevalence (proportion of actually positive persons in the total 
number) = TP FN

TP FP TN FN

+
+ + +

For the graphical representation, a ROC curve (Receiver Operating Characteristic; x-axis: 
false positive rate, y-axis: sensitivity) is often used, where the AUC (Area Under the 
Curve) is a measure of the quality of the classification (higher AUC value = better classi-
fication). An ideal classification model has a 100% true positive rate (100% sensitivity) 
and 0% false positive rate (100% specificity). But this is not always the case in reality. For 
example, in a recent paper, we were able to show that a novel real-time PCR has better 
predictive power for the detection of Trypanosoma cruzi in a Chagas disease and is supe-
rior to previous PCR methods here, but is just not 100% accurate (Kann et al. 2020). In any 
case, it is advisable to always create a prediction model on the basis of a training and test 
data set and to validate it on at least one independent data set in order to be able to reliably 
assess its predictive power for a possible application, such as a clinical decision sup-
port system.

Artificial Neural Networks  Another possibility for machine learning is the use of simple 
neural networks, which consist of input a simple intermediate layer and an output. 
Connections between these three layers are strengthened or weakened so that the output is 
as accurate as possible. To do this, the neural network is trained on a training dataset (auto-
matically: unsupervised; with human review: supervised) and then its accuracy is checked 
on another test dataset. This can then be used to generate an optimal prediction for helix 
and beta boundary regions in protein structures (PredictProtein software, https://predict-
protein.org) and to determine protein localization.  The deep learning approach extends 
the simple neural network by several layers of intermediate neurons, which in particular 
then get by with fewer neurons in the later layers (and thus bring results together, “con-
verge”). This replicates – in very simplified terms – an abstraction of the many inputs to 
more general terms. These networks are more complex to train (“back-propagation” and 
other steps) but, often further improved with other strategies from artificial intelligence 
research, also create amazing things, such as optical image recognition of leukemia cells 
through improved swarm optimization (Sahlol et al. 2020) or the automatic recognition of 
secondary structure and oligonucleotides in electron micrographs (Mostosi et al. 2020), so 
that eventually even antibiotics can be discovered with this deep learning approach (Stokes 
et al. 2020) or the energy potentials and thus also the three-dimensional structure of pro-
teins (Senior et al. 2020), now culminating in large-scale and accurate deep-learning based 
prediction of human proteins (Tunyasuvunakool et al. 2021).
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14.4	� Biological Intelligence

But how do living beings escape the Gödel limit? Biological systems like humans can 
solve fundamental problems without being stuck with unsolvable decision problems. 
Why? Well, we hinted at that in our systems biology chapters above. Biological systems 
are selected to quickly make the most optimal (in the sense of “adapted to the environ-
ment”) decisions possible. Whereby a bacterium, of course, does not really think about 
itself. But the division rate (i.e. the decision about itself, “to divide or not”?) is constantly 
adapted to the environment as optimally as possible (for maximum chances of survival). 
We can immediately see the difference between this and formal systems, and this then also 
applies to important decision-making processes in higher organisms. A biological system 
will, in case of doubt (so that it does not die out from doubt), make a decision between 
several variants stochastically (i.e. randomly), but the random weights have again been 
selected by evolution in such a way that the resulting action guarantees the best survival 
success on average.

Of course, modern neurobiology has already come astonishingly far, especially with 
the help of bioinformatics. We made it clear in our chapter introduction that it is important 
to recognise that biological brains and computers can basically both perform calculations 
amazingly well, but that they come from two different worlds. The computer is accurate 
and often amazingly fast. In biology, it is rather amazing that brains are capable of such 
fast and accurate computations. Because all these capabilities are only a means to an end, 
they are always primarily about survival.

If you like, you can take this away as an important self-knowledge. Our brain may think 
a lot, make art or dream of the next galaxy, but it was not designed for that. It is only the 
most powerful survival machine this planet has produced, including the risk of speeding 
up the evolutionary game so fast that no one can keep up, not even our brain (see next 
chapter). Of course, we can do philosophy and even overcome the logical Gödel limit for 
computers. But our brains were not selected to think particularly clearly about the world, 
but to survive successfully in that world, no matter how difficult the environment. For 
example, we got a final evolutionary boost from the Ice Age and a first one about two and 
a half million years ago when the savannah expanded. First bipedal pre-humans started 
living there, started hunting with hands, hand axes and then spears, while chimpanzees, 
since they separated from us about seven million years ago, continued to stay peacefully 
in the trees in the forest (and as our closest relatives, deserved much more protection than 
they currently get). Let’s now take a closer look at that natural high-performance intelli-
gence, the human brain, next.
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14.5	� Exercises for Chap. 14

Task 14.1
What does Gödel’s theorem say?

Task 14.2
What does “Turing-computable” or “non-Turing-computable” mean?

Task 14.3
What’s the Babbage test?

Task 14.4

(a)	 Find out about neural networks. Find TMHMM on the net and use it.
(b)	 Look at the ELM server, what predictions of the ELM server do neural net-

works use?
(c)	 The protein secondary structure prediction “PredictProtein” uses neural net-

works. Get an overview by using the software and the given references.

Task 14.5
Find a neural network software.

Conclusion
•	 A computer (as conceived by Turing as a Turing machine) cannot reason about 

itself. Formal systems have basic bounds (exactly proved by Gödel and Turing), 
what they can prove or decide and what not. Humans (and living beings in gen-
eral) may not think formally exactly, but therefore can think about themselves 
and, in general, all fundamental questions more successfully. Therefore, goals 
and values must and should always be set by humans, especially when computers 
become more and more powerful.

•	 Artificial intelligence, in particular deep learning algorithms and neural net-
works, is giving a further boost to the capabilities of computers. The more fea-
tures of a living being are emulated (e.g. acting in an artificial environment, 
emulating language and emotions), the stronger its capabilities become.

•	 In bioinformatics, the properties of artificial intelligence can be used directly for 
modern image processing, for example, but also in general for the recognition of 
complex properties (feature extraction), for pattern recognition in large data sets 
(training data set) and then also for individual molecules or sequences (predic-
tions, for example, for the secondary structure in the protein, for the localization 
in the cell, etc.).
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Task 14.6
How does deep learning work? An example of a deep learning network is AlphaGo – can 
you find the movie?

Task 14.7
What is meant by a bioinformatics prediction model that is a classification model (feel free 
to explain with an example)?

Task 14.8
Explain PCA, clustering, linear regression, logistic regression, and survival time analysis. 
What are the similarities and differences?

Useful Tools and Web Links

•	 Bent Larsen:
https://www.chessgames.com/player/bent_larsen.html

* Of course you can also look at completely different chess games and players at 
this link.

•	 Deep Junior (chess computer):
https://www.hiarcs.com/pc-chess-deep-junior.htm

* Deep Junior 13.8 was the best chess computer at the World Computer 
Championship in 2013. Authors are Amir Ban and Shay Bushinsky. The prefix 
Deep refers to the correspondingly strong multiprocessor version for 
tournaments.

•	 Game of Go (won by computer):
https://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

•	 TMHMM (hidden Markov model predicts membranes):
https://www.cbs.dtu.dk/services/TMHMM/

•	 SignalP (neural network predicts signal peptides or secretion):
https://www.cbs.dtu.dk/services/SignalP/
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15How Is Our Own Extremely Powerful Brain 
Constructed?

Abstract

Our brain gets the ability to think through its modular construction. In the process, 
nerve cell associations are trained like neuronal networks in a computer. Training and 
exercise strengthen or delete synapses. In the associative regions of our cerebrum, there 
are so many nerve connections that it becomes advantageous to process information in 
an integrated rather than localized manner. Interference patterns similar to a hologram 
emerge. Bioinformatics decodes neuromolecular signals at many levels: Genetic fac-
tors of neuronal maturation and disease, which can be elucidated using the OMIM 
database, genome and transcriptome analyses. At the neuronal level, protein structures, 
in particular receptors and their activation can be described in detail using protein struc-
ture analyses, molecular dynamics and databases (e.g. DrumPID, PDB database), as 
well as underlying cellular networks, protein-protein interactions and signalling cas-
cades involved. Brain blueprints, so-called connectomes, are already available for 
C. elegans and are being intensively developed for other model organisms and humans. 
Numerous special software are available for clinical evaluations (EEG, computer tomo-
grams) (‘medical informatics’), but also for neurobiological experiments (e.g. a neuro-
nal activity detection tool).

Our excursions into systems biology (especially Chap. 5) provide a first important answer: 
modular, of course, made up of identical units, which then reassemble at the next level as 
emergent, new components (with entirely new properties) and thus finally enable us to 
think. First we have to feel the hunger, then we learn to see the light. Then, at the age of a 
little more than 2 years, the ability to say “I” forms, to play as a person in our world at first, 
then to act in an increasingly complex way, and gradually to consider, act and evaluate 
one’s own position in the world.
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15.1	� Modular Construction Leads to Ever New 
Properties – Up to Consciousness

Bioinformatically, we can go through these stages in order. First, we have the genome. But 
what is important is the concrete inventory of mRNA in a nerve cell. Even at this level, 
there is much to discover and analyse. In this context, there is, for example, interesting 
work that shows how strong experiences also change the brain in its regulation, i.e. epigen-
etic regulation, via the peptide abundance in nerve cells or how, for example, the synaptic 
circuitry in individual synapses functions (although model organisms are often used here) 
(Hassouna et al. 2016). In short, the analysis of large amounts of genomic and transcrip-
tomic data is of great help here.

The next level concerns individual neuronal circuits, with patterns forming through a 
juxtaposition of inhibitory and activatory circuits. It should be emphasized here that ini-
tially such pattern formations are important for the neuronal differentiation and emergence 
of the individual brain region. These two processes can be well reproduced with semi-
quantitative dynamic models and Boolean models (see Chap. 5).

The next higher level concerns the formation of individual brain tissues, for example 
the primary visual cortex or the hippocampus. Here we can already describe a lot. However, 
much is not yet understood, e.g. how the final perception of optical images occurs. Equally 
not understood are the fabulous properties of the hippocampus to give events time stamps 
and thus make us a person with our own biography and memories. One’s own bioinformat-
ics work only helps here by evaluating data and getting the statistics right. Since more, 
more complex and deeper experiments are needed here, this complex and high level is 
clearly the domain of experimental neurobiology. However, bioinformatics can help here 
mainly by evaluating and interpreting complex data.

And yet this is nothing compared to perhaps the most puzzling phenomenon of our very 
existence: consciousness. Interestingly, there is so little unambiguous data available here 
that it may again make sense to map individual aspects through a dedicated bioinformatics 
model and better understand some of the enigmatic, extremely powerful capabilities of 
human consciousness. We have worked out a simulation that, building on early work, is 
now capable of simulating a holographic model of human consciousness. What does that 
mean? The brilliant physicist David Bohm (who only didn’t get a chance to expand on his 
findings in the USA because of alleged communist machinations) had thought early on 
(Bohm and Hiley 1985) about how the holistic view of consciousness, that inseparable 
unity we feel (at least in a healthy state) when we talk about our person, could probably be 
explained physically. He was thinking of how images can be stored holistically as holo-
grams. In doing so, the object’s light waves hit a fundamental rhythm and interfere with it. 
The resulting image is therefore an interference image. Let us look at such a photograph 
(Fig. 15.1).

How exactly the information is processed in the cerebrum, nobody knows at the 
moment. It is clear, however, that in addition to serial information processing, more global 
processing and not local information is processed (detailed analysis in our own preprint: 
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https://www.biorxiv.org/content/10.1101/2019.12.19.883124v1). Processing in the form 
of excitation waves may result in conscious integration of all information in a single inter-
ference image for the whole cortex. This is what we have simulated here. What can be seen 
through the simulation are interference images, through interpenetrating neuronal excita-
tion waves. Simplified, the simulation assumes only two signals that directly interfere with 
each other. Detailed models are highly compatible with EEG and other data. The exact 
proportion of non-locally processed information in the cerebrum is still unclear.

When we look at the wave pattern, we may be a little disappointed because the original 
image is no longer recognizable. Instead, we only see a wave interference pattern, like on 
a pond when several wave trains overlap: an interference image. But that’s not so surpris-
ing, because that’s exactly what we did to capture the image. To make the original image 
we wanted to store visible again, we now have to beam the carrier background wave onto 

Fig. 15.1  Non-local information processing. Shown is the wave-like (non-local) information pro-
cessing in the brain. This happens in regions such as the associative cortex of humans or associative 
regions in the hippocampus. The wave pattern reaches all points of the water surface and gives the 
same information to all neurons involved. This could be a basis for consciousness, because all the 
neurons involved are reacting as a unit, participating in the same wave pattern. In each point exactly 
the same information (about 150 bits, changing every 3 s) can be tapped

15.1 � Modular Construction Leads to Ever New Properties – Up to Consciousness

https://www.biorxiv.org/content/10.1101/2019.12.19.883124v1


216

the photo with the interference image, and then we see the holographically stored image 
in front of us again. So far so good. But what is amazing now is that we can tear the inter-
ference image in half, or smaller pieces, and each of these halves shows the complete 
original image again when the fundamental wave is beamed in. The only thing that gets 
worse is the image sharpness when I tear the interference image into smaller and 
smaller pieces.

Such interference images are thus particularly well suited to reflect the holistic, holistic 
aspect of human consciousness quite well. If our conscious brain (more precisely: the 
associative regions of the neocortex, higher regions of the hippocampus) works in the 
same way, then the conscious contents are distributed as interference images like rippled 
wave trains over these entire regions and are equally and completely accessible in every 
point (more precisely: every “Mountcastle Column”) of these conscious brain regions. In 
this model for consciousness, on which we are currently working intensively in our depart-
ment with computer simulations, we have the advantage that we can recreate this directly 
on the computer, calculate the storage volume for conscious stimuli (the conscious present 
is 3 s, in each second 50 bits can be consciously perceived, so a total of 150 bits) and many 
concrete properties fit very well with neurobiological findings. Moreover, this would make 
it easy to understand how consciousness can develop gradually and also spontaneously. If 
I have a critical mass of neurons that are “freely” available, then sensory information 
(from sense organs and also self-perceiving signals, called proprioception) can interfere 
with basic rhythms of activity in the brain just as freely as motor information (from muscle 
movements). This wave pattern is equally available as a holistic interference pattern at 
every point of the conscious brain regions. It arises so spontaneously because there is no 
higher region to which the signal has to be passed on. Because stimuli from the body itself 
as well as from outside are stored in the interference picture, a picture of oneself as well 
as of the environment is created. Since at the same time the motor activity is “freely” avail-
able as a signal in the interference image to all conscious brain regions, a sensorimotor 
feedback (see Fig. 15.1) can gradually develop, an actively acting and awake I, which is 
then confronted with the world model that also develops as an interference image. This 
results in a simultaneously simple but also impressively strong and integrating picture for 
our consciousness. With our concrete simulation model we can also estimate well that 
below several hundred million neurons it is simply too uneconomical to free neurons only 
for “free interference images”, i.e. conscious perception should only develop in higher 
mammals. But if you don’t really have many “free”, i.e. associative neurons, as humans 
do, the subjective present (in humans, as I said, about three seconds) is simply far too short 
(tenths of a second or even shorter) to be able to really plan any conscious action. There is 
only reflexive, rapid response. It is true that this current simulation model of human con-
sciousness is far from being confirmed or experimentally validated by us, but that is not 
the point here. We only wanted to show why it can be particularly fascinating to approach 
human consciousness with bioinformatics. It is also very interesting that this model can 
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help to better understand typical psychiatric disorders. For wave interference images and 
their stable storage, it is important that the wave trains are freely transmitted and that the 
nerve cells work in a correlated manner, i.e. that they are well synchronized. However, 
recent work shows (Voytek and Knight 2015) that precisely a disruption in the correlation 
of larger neuronal assemblies and groups essentially underlies schizophrenia. In the model, 
the range of the interference image is then limited. Thus, it is no longer possible to inte-
grate all motor and sensory inputs. The patient then experiences him/herself as remotely 
controlled (motor impulses without control, but also “thoughts from outside”) and “hears 
voices” (sensory input).

It would be very fascinating if we were right with this model. But at least we can state 
that other studies also suggest that in schizophrenia the integration capacity of the brain is 
decisively disturbed, that the cardinal symptoms of this disease arise from this, and that we 
are pursuing a very fundamental, holistic approach here, which was originally conceived 
by David Bohm.

15.2	� Bioinformatics Helps to Better Describe the Brain

How can we use bioinformatics, for example, to better help patients with what is perhaps 
the worst disease of all, destroyed personality, schizophrenia or schizophrenia? Well, 
interestingly, that too will probably soon be better done by examining large genomic data-
sets. Genome-wide association studies (GWAS) are important here. Family studies have 
always been used to try to identify important genes for schizophrenia and mental function. 
In the past, a major disadvantage was that these studies often found only family-specific 
genes and mutations. In the meantime, however, it is possible to sequence very large 
amounts of data and in this way also detect weak signals (more precisely “low load score”) 
more accurately. A major improvement has been proposed by Prof. Hannelore Ehrenreich 
(MPI for Experimental Medicine, Göttingen). By precise diagnostics one can divide global 
diseases (like schizophrenia, depression) into subtypes (in schizophrenia for example 
autistic, paranoid, catatonic etc.), so that one can detect much more precisely the specific 
signal of mutations which are then important for the respective single aspect. This is a very 
important approach, which can now be approached in a very promising way with the help 
of large transcriptome analyses. Once the molecular findings for these subtypes have been 
determined with the help of data analysis, it is then possible to analyse the protein struc-
tures involved in detail and develop new drugs that can then help specifically with the 
respective subtype – the success story of atypical neuroleptics shows how much good we 
could then do. Thus, GWAS already bring good results for specific diseases, whenever the 
signal is clear enough (Hammer et al. 2014).

Another possibility is the analysis of single nucleotide polymorphisms (SNPs). Often 
the DNA sequence is altered at exactly one nucleotide. This can be neutral in its health 
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effects (most of the time), but can also lead to negative effects (rarer) or to positive effects 
(even rarer) – and rarely detected, because it then does not lead to any complaints, on the 
contrary. For example, we investigate an SNP that has an effect on the psyche. A sequence 
analysis first provides information on which DNA segments with a known function the 
gene resembles. This is followed by further analyses to determine whether the SNP also 
appears as RNA in the brain or even as a protein. Based on this, the RNA or protein struc-
ture is then analysed and how the difference of one nucleotide affects this. Subsequently, 
one can try to predict (from databases and with prediction algorithms, a first start is the 
tool STRING at the EMBL: https://string-db.org) with which proteins there are interac-
tions here. In this way, one can determine step by step what effects this small change has.

Of course, there is also everything in between. Smaller or longer insertions or deletions 
in the genome sequence on the affected chromosome and also very large modifications, 
such as additional chromosomes (the best known is trisomy 21, Down syndrome) or incor-
rectly assembled chromosomes (“translocations”). The database “Online Mendelian 
Inheritance in Man” (OMIM; https://www.omim.org) provides a detailed overview. Genes, 
proteins and sequences involved in the structure of the nervous system, for example at 
synapses, are thus assigned to their function with the aid of genome, sequence and domain 
analyses (as already practised on other topics).

However, neurobiological processes can also be viewed using a wide variety of other 
bioinformatics techniques. The structure of important receptors involved can be modelled, 
e.g. the seven transmembrane helices that build up a GPCR receptor, as well as other 
important activatory (e.g. glutamate) and inhibitory receptors (e.g. glycine). At the next 
level, neuronal networks can be represented by semiquantitative simulations, but also 
receptor excitations, for example by differential equations. Individual circuit diagrams can 
be recreated in the computer, for example for memory (Rolls 2013a) or for the whole net-
work of the cordworm C. elegans (Connectome C. elegans). For the hippocampus, there 
are already ideas about how it recognizes and separates patterns (Rolls 2013b). There is 
even a quantitative theory of the function of individual layers in the hippocampus (Rolls 
2013a). Higher processes can also be modelled with the help of computers (Markram et al. 
2015). In particular, however, omics studies again provide an overview of the brain (espe-
cially, but not only, of humans, e.g. an atlas of gene expression in the human brain; 
Hawrylycz et al. 2015). Much is also taking place on the model organism mouse.

An overview of the pathology is equally important. Bioinformatics can help here, for 
example, to better understand the regeneration processes in the old and young brain in 
stroke using transcriptome data (Buga et al. 2012) or, for example, to decipher regenera-
tion in the hippocampus using various data via statistical analyses, whereby erythropoietin 
apparently has a supporting effect (Hassouna et al. 2016). Meanwhile, there are a whole 
bunch of ways to boost memory performance using growth factors, stem cells, pharmaceu-
ticals, or even memory training. But a clinical breakthrough, for example in Alzheimer’s 
disease, will still require a lot of work and studies (Schneider et al. 2020).
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15.3	� Brain Blueprints

The human brain is certainly the most complex object we can study with bioinformatics. 
Certainly, this is a kind of “moon landing” that we still have to do in this century: to under-
stand what our consciousness actually is. But of course there are plenty of other tasks (see 
previous and next chapter to define other “big goals”). However, a recurrently quite suc-
cessful strategy in bioinformatics is to start “small”. What if one could understand the 
brain of a small organism perfectly, in its entire blueprint? And what if you could disclose 
the blueprint and put it on the web worldwide, as “open source” software, so to speak? 
That is exactly what has already happened.

Here is the link to the rotifer brain blueprint: https://www.openconnectomeproject.org. 
The infobox shows details of the entry page on the Internet.

This is the so-called “Open Connectome” project of C. elegans. Here we know “every-
thing”, so to speak. How every neuron in C. elegans is connected to every other neuron? 
And the next most complicated brains are currently being worked on in terms of a model, 
a circuit diagram, for example for ants and mice. Even for humans there is already the 
Brain Activity Atlas and the SMART computing pipeline charted the rhesus monkey brain 
at micrometer resolution (Xu et al. 2021) – these are exciting times for bioinformatics.

With the help of the “connectome”, i.e. the wiring diagram for all neurons in C. ele-
gans, it is possible to understand how the nervous system of a simple animal works. In 
C. elegans, there are only exactly 302 neurons in each animal, but 118 classes of neuron 
types. This is why, in addition to the open-connectome-in-silico modelling project, there is 
also the Worm Atlas (see infobox). This is also a growing area of bioinformatics. In addi-
tion to the digital anatomy atlas, the hippocampus region with detailed circuit diagram and 
the detection of neuroactivity are shown here.

Brain Blueprints in Computer Models

The link to the entry-level “Open Connectome” project of C. elegans can be found 
at: https://www.openconnectomeproject.org. For C. elegans there is also the 
WormAtlas (https://www.wormatlas.org/) or WormWiring (https://wormwir-
ing.org/).

Links to the projects for the next most complicated brains can be found here:
Insects: Virtual Insect Brain Lab (https://www.neurofly.de/).
Mouse: Allen Mouse Brain Connectivity Atlas (https://mouse.brain-map.org/

static/atlas).
Human: Brain Activity Atlas (https://www.brainactivityatlas.org/).
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�Brain Complexity Directly Mapped Digitally

There are also numerous anatomical data.

Wiring Diagrams of Brain Regions
Humans are much more complex (over ten billion neurons), but for this there are only five 
classes of component neurons here. For the rat hippocampus, there is detailed information 
and circuit diagrams on the net:

Neuroactivity Detection
In order to see individual nerve cells in their activity, i.e. to pay attention to them, we have 
developed a tool ourselves: The “activity detection tool” uses a Fourier transform. A nice 
introduction to such approaches is a paper that works in particular with segmentation and 
ImageJ (Schulze et al. 2013):

15.4	� Possible Objectives

What should be the next step? Well, bioinformatics is very good at analysing sequences, 
identifying domains and thus elucidating functions of proteins in the nervous system very 
well. Receptors can also be modelled in terms of their structure and their detailed dynam-
ics and function can be investigated in detail. Finally, larger network analyses, in particular 
on the “connectome”, the connection of nerve cells, are already planned for several organ-
isms and their nervous systems (mouse, human, insects and others) or have already been 
completely carried out in first drafts (cordworm C. elegans, molluscs). Therefore, it is safe 
to say that bioinformatics is doing good work in the areas of understanding neurobiol-
ogy and basic research.

The same applies to medical causal research, although here the impetus from bioinfor-
matics is particularly concerned with uncovering the molecular causes of diseases, 
thereby supporting diagnosis or even predicting innovative therapies.

More ethically and technically challenging is work on artificial intelligence or on con-
sciousness. Here, it is an ethical imperative to leave all central, moral or ethical decisions 
to humans, to take this into account already when structuring the problem and the decision 

The Sausage Atlas
https://www.wormatlas.org/neuronalwiring.html

https://www.temporal-lobe.com/background/connectome

https://www.ncbi.nlm.nih.gov/pubmed/23537512
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line, and not to cross the threshold to a living being, because the current ethical maturity 
of humans is not sufficient for this. “Conscious machines” are also in principle uncontrol-
lable and risky. Fortunately, however, we are relatively far away from this in bioinformatic 
modelling because of a number of breakthroughs that are still necessary. Nevertheless, it 
is advisable to take great care already during the design phase (for example, of increas-
ingly powerful Internet tools or increasingly autonomous weapon systems) to ensure that 
the design prevents the worst-case scenario (the greatest accident that can be assumed), 
namely the autonomous machine with consciousness or superior intelligence that begins 
to control or kill humans, from the outset.

Conclusion
•	 Our brain is given the ability to process information very well due to its modular 

design. Our genome encodes different proteins that lead to different activating 
and inhibiting nerve cell connections (synapses) in numerous different nerve 
cells, depending on the cell type. Nerve cell associations thus have new proper-
ties (emergence). In particular, our brain is particularly good at recognizing pat-
terns. Human nerve cell associations are trained in the same way as neuronal 
networks in computers (see previous chapter). Training and practice strengthen 
or erase synapses. Practice thus optimizes learning success over time. There are 
so many nerve connections in the associative regions of our cerebrum that it 
becomes advantageous to process information in an integrated rather than local-
ized manner. Interference patterns similar to a hologram are created.

•	 We describe with our own current simulations that environmental stimuli, but 
also one’s own position as well as one’s own actions can be encoded in a holo-
gram for all neurons participating in the pattern equally and simultaneously. Such 
new emergent effects in our particularly complex brain presumably underlie our 
consciousness (“fulguration” according to Konrad Lorenz). However, bioinfor-
matics already makes important contributions to neurobiology by decoding and 
describing coded molecular signals at all levels. First of all, this concerns genetic 
factors of neuronal maturation and diseases, which can be elucidated with the 
help of the OMIM database, genome and transcriptome analyses. At the level of 
the nerve cell, protein structures, in particular receptors and their activation, can 
be described in detail using protein structure analyses, molecular dynamics and 
databases (e.g. DrumPID, PDB database), as well as underlying cellular net-
works, protein-protein interactions and signalling cascades involved.

•	 Brain blueprints, so-called connectomes, are already available for C. elegans and 
are being intensively developed for other model organisms and humans. A connec-
tome contains computer-readable information on how each nerve cell is linked to 
another and which receptors and ion channels play a role in this process. Suitable 
programming languages allow the direct simulation of information processing in 
the brain, especially for C. elegans. Numerous special software are available for 
clinical evaluations (EEG, computer tomograms) (“medical informatics”), but also 
for neurobiological experiments (e.g. a neuronal activity detection tool).

15.4 � Possible Objectives
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15.5	� Exercises for Chap. 15

Task 15.1
What is the neuron software? Get an overview on the Internet.

Task 15.2
What is the OpenWorm project? Get an overview on the Internet.

Task 15.3
Find a link to the human connectome, which is all the neural connections in the human 
brain. What can you learn about neuroanatomy from this?

Task 15.4
Optical illusions arise from contrast enhancement and other neural mechanisms such as 
size constancy in the brain. Find a suitable reference to this on the Internet.

Task 15.5
The Necker cube (Necker’s cube) gives a clue to the subjective present. Find a suitable 
reference to this on the Internet.

Task 15.6
One way to understand diseases of the nervous system is the OMIM database. What does the acro-
nym stand for? What can you say about the data on alcoholism or schizophrenia in the database?

Useful Tools and Web Links

Allen Institute https://alleninstitute.org
Allen Institute for Brain Science https://www.braininitiative.org/alliance/

allen-institute-for-brain-science/
European Human Brain Project (HBP) https://www.humanbrainproject.eu
Brain Mapping by Integrated Neurotechnologies 
for Disease Studies (Brain/MINDS) in Japan

https://brainminds.jp/en/

String database https://string-db.org
OMIM https://www.omim.org
Connectome project https://www.openconnectomeproject.org
Sausage Atlas https://www.wormatlas.org/
WormWiring https://wormwiring.org/
Virtual Insect Brain Lab https://www.neurofly.de/
Mouse Brain Connectivity Atlas https://mouse.brain-map.org/static/atlas
Brain Activity Atlas https://www.brainactivityatlas.org/
Temporal lobe https://www.temporal-lobe.com/

background/connectome
Neuroactivity detection https://www.ncbi.nlm.nih.gov/

pubmed/23537512
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16Bioinformatics Connects Life 
with the Universe and All the Rest

Abstract

Bioinformatics helps to better understand life. Whether one admires more adaptation 
(phylogeny, sequence analysis), metabolism (metabolic modeling, enzyme databases), 
or the regulation of these adaptations (systems biology). A common thread in all the 
great challenges of bioinformatics is to successfully master a new level of language and 
thus approach more deeply the very essence of biological regulation, understand for-
ward and feedback loops, recognize stable system states, consider ecosystem modeling, 
climate or evolution. Actively questioning dangerous digitalization protects the creative 
freedom of everybody and of the internet. Bioinformatics helps to better understand the 
Internet and support the “Internet of Things” through software and databases. 
Bioinformatics helps drive new, creative and sustainable technologies (synthetic biol-
ogy, nanotechnology, 3D printers, artificial tissues, etc.). Digitization with the help of 
bioinformatics is a pacesetter in molecular medicine. Bioinformatics also reveals limits 
to growth in mathematical models of ecosystems (e.g., the Verhulst equation for bacte-
rial growth) and boosts according sensible, adapted system strategies.

We can sum up the fascination with bioinformatics like this: We use computers as tools to 
better understand life. Bacteria are already marvels of survival, efficiency and vitality. But 
with the help of bioinformatics, we can understand a little better how these fantastic feats 
work, whether we admire more adaptation (phylogeny, sequence analysis), metabolism 
(metabolic modeling, enzyme databases), or the regulation of those adaptations (systems 
biology). It is also clear that higher organisms are not only much more complex, but also 
often an even more exciting subject, whether you want to better understand plants or ani-
mals. Or, one might immediately attend to the most fascinating creature on this planet, 
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humans, and perhaps want to better cure their diseases or simply better understand and 
recognize how they are built and what separates humans from animals (anthropology). 
Consider, both our now very good anti-viral drugs for HIV infection and our modern tar-
geted therapies for cancer (Duell et al. 2017) require bioinformatics computations to a 
very significant degree. For example, the Antiretroviral Therapy Cohort Collaboration 
(2008) showed that even with HIV disease, one has a near normal life expectancy with 
early therapy. The new approaches found for this, as well as the countless molecular ther-
apy successes in the last two decades, would not have been possible without the support of 
molecular experiments by bioinformatics. Intriguingly, the article by Lengauer et  al. 
(2014) describes how bioinformatics can help develop optimal individualized therapy 
against HIV. Similarly, Stratmann et al. (2014), Göttlich et al. (2016) and Baur et al. (2020) 
step by step improve a targeted cancer therapy using bioinformatics and cell culture exper-
iments. The same is true for attempts to better understand the human brain. Here, com-
puter models are important and are currently also being massively funded as an EU lead 
project (“Blue Brain” project of the EU). Perhaps a better strategy is to simply listen 
carefully to the brain and not immediately think of new computer architectures. This is 
precisely the goal of the US government’s Brain Activity project, which is even three times 
more heavily funded than the EU project.

16.1	� Solving Problems Using Bioinformatics

A common thread in all the great challenges of bioinformatics is climbing to a new level 
of language. Whether it is understanding the genetic (protein prediction) and genomic 
(gene prediction) code and correctly predicting proteins from foreign genomes or translat-
ing the sequence of a protein into three-dimensional protein structures, one is always 
climbing a new language level. Of course, this is even more true when doing systems biol-
ogy, i.e., approaching the very essence of biological regulation in a deeper way and under-
standing forward and feedback loops, recognizing stable system states and can be said in 
the same way for ecosystem modeling (Kriegler et al. 2009). Thus, an important starting 
point for bioinformatics is first of all interest in the biological problem one wants to 
explore. Once one has delved a bit deeper into the problem, it is a matter of finding the 
right language to now build a suitable model for this phenomenon. This makes a great deal 
clear from the outset: we do not have the truth. It could well be that with a different lan-
guage, with new software or even just a different perspective on the biological question, 
completely different insights will be possible than with the first approach just chosen. It is 
equally clear that only close collaboration with experimental biologists can help to figure 
out the best models. “True”, i.e., internally consistent and correct, should be as consistent 
as possible in any model. But which model I then actually use is determined solely by the 
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lowest possible deviation from experiment that is achieved. It is certainly much more 
important in bioinformatics to be able to correctly assess and correct the computer results, 
i.e., to have enough knowledge and overview to be able to evaluate and classify the com-
puter results, than to be able to program oneself (which is nevertheless never a disadvan-
tage). However, it is necessary not to be afraid of computers and to be able to use at least 
some programs, as well as to have a real interest in a biological question. If you want to do 
quite well, you should above all get enough exercise and do sports instead of wasting away 
in front of the computer or the book (“Mens sana in corpore sano”, i.e., a healthy mind in 
a healthy body). In addition, one should also have a genuine willingness and interest to 
enjoy nature, biology, animals and plants, but also the encounter with fellow human beings 
(bioinformatics is an interdisciplinary subject).

Biology and of course its theoretical parts, such as bioinformatics, systems biology and 
theoretical biology, are together a key science of the twenty-first century. Here, experts are 
trained for complex systems that sometimes even overtake physics in their biological com-
plexity. There are many problems that are pressing on our minds, whether they concern 
organisms, cells, molecules or the ecological balance. Equally important are medical prob-
lems or the biological part of research on artificial intelligence and neurobiology.

As indicated in the last two chapters, a new industrial revolution is upon us. Industry 
4.0 or the “Internet of All Things” are important pacesetters for this approach. One simply 
knows exactly where which part is at any given time and electronically controls when it is 
installed where and how. The biological counterpart simply combines important individ-
ual aspects of bioinformatics, including the computer with synthetic biology, protein 
design and smart molecular biology (see infobox).

The infobox contrasts different approaches to the “Internet of Things”. Here, the 
Internet notes or models where each thing is. This leads to faster, safer and cheaper pro-
duction (Industry 4.0), increases the quality of life and sustainability in cities (Smart City) 
or optimises traffic (Smart Traffic). In biology, and thus in bioinformatics, one of the first 
steps towards this was the Gene Ontology Consortium (database catalog of all proteins, 
always answers: What is localized where in the cell? What is its molecular function? What 
cellular process is this?). Proprietary work includes the GoSynthetic Database, which 
compares synthetic biology and technical constructs, and the DrumPID Database, which 
compares drugs and protein-protein interactions (see infobox). Particularly impressive are 
the BioBricks from MIT, which, similar to our database but now underpinned with specific 
experiments, allow the artificial combination of biological control circuits. In addition, the 
systems biology achievements of the iGEM competitions in new synthetic biology are also 
impressive.
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One can think of new technologies such as the nanocellulose computer chip, so that one 
can also control molecules individually here (especially via light-controlled protein 
domains, i.e., LOV or BLUF domains). Modern biology will be crucial in order not to 
have a technical proliferation here, but to create a stable, resilient and environmentally 
compatible new technology as a real basis of life for our civilisation.

However, it is also a general development in biology to use bioinformatics and large 
amounts of data to understand the cell more and more like an “Internet of Things”. This 
includes the fact that modern methods allow us to know much better where each molecule 
is (e.g., with super resolution light microscopy) and that we can then really control a pro-
cess (synthetic biology, protein design, nano factories, nano printers, etc.). The same 

“Internet of Things” (In Silico Knowledge of Where Each Thing Is Located)
Technical examples

Industry 4.0:

https://www.plattform-i40.de/I40/Navigation/DE/Home/home.html

Smart City:

https://www.bioinfo.biozentrum.uni-wuerzburg.de/teaching/smart_city/
https://www.smart-cities.eu

Smart Traffic:

https://www.izeus.de/projekt/smart-traffic.html

Bioinformatics Examples
Gene Ontology:

https://www.geneontology.org

GoSynthetic Database:

https://gosyn.bioapps.biozentrum.uni-wuerzburg.de/index.php

DrumPID Database:

https://drumpid.bioapps.biozentrum.uni-wuerzburg.de

MIT BioBricks:

https://web.mit.edu/jagoler/www/biojade/biobricks.html

iGEM Parts:

https://igem.org/Main_Page
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applies on a large scale: remote sensing, but also environmental samples of the microbi-
ome of ecosystems (metagenomics) not only create new floods of data, but I also know 
more and more precisely where which object is located and how it is currently changing.

This also makes it increasingly possible to understand how our environment is chang-
ing and in what direction. This also increases the possibilities to actively change it. We 
must not be under any illusions. Even if we all “do nothing” (Plan A: “Business as 
usual”), the general activity of humans has a strong influence on our environment locally 
and also globally on the climate and biodiversity (Barnosky et al. 2011).

At present, it is clear that we have not yet achieved this stable basis for life. We are still 
living on borrowed time. We are steadily increasing our carbon dioxide emissions, we are 
struggling with global warming, overpopulation and dangerous nuclear armament, raw 
materials are becoming scarce, and electronic waste and environmental toxins are on the 
increase. But for these complex problems, there are good answers not only from technol-
ogy, but also from biology and bioinformatics. It is clear that this must now be imple-
mented decisively before our basis of life is irretrievably damaged and our current, 
outdated technology collapses, but also positive trends become visible (Lehman et al. 2021).

16.2	� Model and Mitigate Global Problems

Bioinformatics approaches can contribute a great deal to global problems. This is because 
our entire world can also be viewed as an overall ecosystem and modelled in systems biol-
ogy using computers. In addition, all the typical steps that otherwise have to be taken in 
bioinformatic modelling are there. In particular, one is forced to simplify strongly in some 
cases. One performs many simulations, and when the solution space becomes even more 
complex, one tries to represent and explore important combinations of conditions in indi-
vidual models (so-called “scenarios”). Important problems, unfortunately, arise especially 
because of our success as a modern, technological civilization. This success, and in par-
ticular a certain prosperity, was increasingly achieved after the Second World War. This is 
also centrally important to pull the poorest strata of humanity (these have only one dollar 
a day at their disposal) out of hunger and disease, especially since only with four dollars a 
day of earnings is it possible to go to school and with 16 dollars a day to study, and only 
with at least 32 dollars a day is there so much prosperity that there is time for reflection, 
reading and real planning for the future (Rosling et al. 2019; illustrative: there is only dif-
ferent prosperity, otherwise all cultures are always the same people, to be seen in Hans 
Rosling’s “Dollarstreet” https://www.gapminder.org/dollar-street/). The solution must not 
be to go back to the past (after general collapse only hunger and suffering) but to advance 
sustainability, digitalization and environmental and species protection as well as interna-
tional cooperation and education. This is particularly important in the case of the five 
systemic risks of global war, global warming, economic crisis, pandemic and dictatorship 
(supported by digitalisation, for example). In contrast to smaller catastrophes, the systemic 
risks pose the danger of weakening our civilisation as a whole to such an extent that a 
downward spiral can occur.
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Nuclear Armament and the Arms Race
Both are highly dangerous. A nuclear or even a major conventional war gets out of control 
all too quickly and destroys everything. Moreover, the risk of such an uncontrolled devel-
opment has been exacerbated for a few years by nationalist and isolationist tendencies and 
new armaments on all sides, including nuclear ones. 2020 will witness the expiry of both 
the Strategic Nuclear Forces Agreement and the Intermediate-Range Nuclear Forces 
Agreement.

Game Theory  Interestingly, one can describe rearmament, arms races, nuclear exchange, 
but also quite generally combat and competition strategies very well with the help of game 
theory (and a lot of specific knowledge as an expert). Unfortunately, the explosive nature 
of this new arms race is currently being suppressed, presumably because no one wants to 
deal with this immanent and clearly too high risk in a seriously affected manner. Instead, 
the fear is directed towards other, more tangible dangers, such as international terrorism or 
radioactivity from nuclear power plants, both of which are negligible dangers. After all, 
the UN has just begun the process of outlawing nuclear weapons since October 2016. 
Moreover, one can deduce from systems biology considerations that it is important to 
continuously make our current peaceful state more robust: Disarmament, especially 
nuclear weapons, but also confidence-building measures are very important to prevent 
exacerbations here. Manageable own examples of modeling attack and defense strategies 
from infectious biology can be found in Dühring et al. (2015). Generally speaking, game 
theory (Amann and Helbach 2012) and evolutionary strategies (Bäck et al. 2013) are 
good bioinformatics approaches for modeling even such highly complex problems with 
many parameters. 

�Global Warming

Ecosystem Models  Another explosive problem is global warming. Here, it is the other 
way around. The problem is not suddenly devastating, but will only strike in full force 
around the year 2100. Since it is also the case that, as with fishing, the temptation is very 
high to quickly grab a piece for oneself at the expense of others, there has so far been an 
unbroken trend for more and more carbon dioxide in our atmosphere. Although the Paris 
climate agreement of December 2015 gives us hope that concrete action will perhaps be 
taken against this, only time will tell whether the amount of savings will be sufficient. 
Here, of course, bioinformatics computer simulations directly help to simulate exactly 
how the climate will change in the future. And other models (from satellite data, for exam-
ple) are used to measure exactly how the climate is changing right now. This is a blind spot 
without bioinformatics, so it’s an ideal example of how bioinformatics approaches can 
actively help here. A nice introduction to modeling such problems is provided by the paper 
Lenton et al. (2008).
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Metabolic Modelling and Synthetic Biology  There are also a number of innovative 
research measures that can help save a lot of carbon dioxide in the longer term. 
Bioinformatics can help optimize these processes using metabolic modeling and synthetic 
biology. For example, green plants fix carbon dioxide from the air using the enzyme 
Rubisco. This enzyme is from an ancient time (two billion years ago) and is, therefore, a 
little too sensitive to oxygen. It is now possible to try to replace this set of enzymes with 
alternative, better signalling pathways that are not sensitive to oxygen. New artificial 
enzyme cycles by Tobias Erb are particularly promising in this regard, which together can 
then replace Rubisco (e.g., CTECH cycle; Schwander et al. 2016). A slightly older paper 
from the USA gives a general overview (Bar-Even et al. 2010). There are also specific 
bioinformatics approaches to such metabolic design tasks (Lee et al. 2014). For example, 
coupling the CTECH cycle with a glycolate transport mutant that prevents the loss of car-
bon dioxide through light respiration theoretically results in a five-fold improvement in 
carbon dioxide harvest from the air (overview of this and other possibilities in Naseem 
et al. 2020; first experimental tests in Roell et al. 2021). 

Global Cooling (“Nuclear Winter”) – Possible Climate Consequences of 
Nuclear Warfare
These are comparable steps to the simulation of global warming. The main problem in a 
nuclear war is the climate impact. Soot and dust from destroyed cities penetrates into the 
stratosphere and changes the climate there by a general cooling of four degrees Celsius 
over about 10 years, which would lead to worldwide crop failures and hunger.

Climate Simulations  Distressingly, even the replacement of about 100 nuclear weapons 
can cause significant global cooling (Mills et al. 2008). Whereby this will not always be 
the case, if not too many cities burn down with a big firestorm, because then the soot is 
only transported up to the stratosphere. The ozone layer, on the other hand, is always 
attacked when so many nuclear weapons are used. Again, this leads to skin cancer and the 
death of food crops and, again, worldwide famine. Although climate models are of course 
only approximations, there are now already a number of models and scenarios that make 
it very likely that these models are right in principle and that nuclear disarmament is urgent.

Overpopulation
Here, there are different models to model population growth.

Modelling with Scenarios  The calculations show that the best results are to be achieved 
by rewarding environmentally friendly behaviour and consistently expanding helpful tech-
nologies (Hatfield-Dodds et al. 2015). This works better than dirigiste approaches or social 
re-education etc. A global solution (“Plan B”; Brown 2009) can only be a coordinated 
strategy that restores the Earth’s so-called carrying capacity via education, more rights for 
women, family planning, equitable distribution of resources, sufficient and good job 
opportunities, but especially sustainability in agriculture, energy production, manufactur-
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Fig. 16.1  Population growth models: left, exponential growth (curve, ex equation); middle, growth 
with carrying capacity limit T (curve, Verhulst equation); right, growth phases of a bacterial culture 
(curve, sections): (a) lag phase, (b) exponential growth (as left curve, note logarithmic scale), (c) 
stationary phase, the population remains constant and at the carrying capacity limit T, (d) decay and 
disintegration phase

ing, conservation and landscape management. For such highly complex modelling, look-
ing at different scenarios is most effective, because otherwise too many parameters would 
have to be tested. 

Population Modelling  We can take an introductory look at three different simple models 
of population growth, which are particularly easy to observe in bacteria but apply to all 
animals (Fig. 16.1): The figure shows exponential growth in the left curve (exponential 
curve, ex equation, the bacteria keep doubling because nutrients are abundant). In the mid-
dle we see what inevitably happens after some time: Growth has reached the carrying 
capacity limit. The curve flattens out, and the population eventually remains constant. This 
is described by the Verhulst equation simplified in the figure in the middle. Finally, the 
right curve in the figure shows the growth phases of a bacterial culture (curve, sections). 
The lag phase (a), in which the bacteria adapt to the current environment and nutrients, is 
then followed by exponential growth if the nutrient medium is rich (b, same as left curve), 
but note the logarithmic scale in this partial figure. Once the food is depleted, the station-
ary phase (c) follows, the population remains constant, it is close to the carrying capacity 
limit T. It is interesting to note here that the microbes evolve many adaptations, in particu-
lar the switch from glycolysis to citric acid cycle (better yield of sugar), followed by the 
use of ketone bodies when they are present but the sugar is already completely depleted. 
This can be mimicked bioinformatically using various metabolic modeling tools (e.g., 
Liang et al. 2011). If still no new food is found, the degradation and decay phases follow 
in (d) (usually a somewhat slower exponential descent).

In “real life”, i.e., when the bacteria have to survive under natural conditions, they often 
do not grow continuously, so that a complex mixture of these different curves then results, 
depending on the environment present.
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Interestingly, there are also labs for Computational Population Biology (e.g., https://
compbio.cs.uic.edu/). There is also a metasite for this, the Biology WebDirectory (https://
www.biologydir.com/over-population/p1.html), which offers many more other terms.

Pandemic
Global epidemics that cover almost all countries with infections are called pandemics. 
These occur about every 60 years. Since November 2019, the SARS-CoV-2 virus and the 
disease it causes, COVID-19, initially in China, have come to the attention of the global 
public, now a pandemic. Bioinformatics is critically important (Zimmerman et al. 2020) to 
rapidly decipher the genome sequence for such a new pathogen, to model the spread of 
infection and frequency of infection, but also to describe protein interactions as quickly as 
possible (especially with the human host, such as the spike protein of SARS-CoV-2, Shang 
et al. 2020). Bioinformatics also helps to develop therapies (e.g., antivirals, Bojkova et al. 
2020), vaccines and neutralizing antibodies (Pinto et al. 2020).

Pivot Point Limited Carrying Capacity
The global problems of mankind are each partial aspects of a biological system (man, 
other animal and plant species and the whole environment). They are all naturally inter-
connected and can therefore be modelled using systems biology methods. They are a typi-
cal problem that every species faces when the carrying capacity of its ecosystem is 
exceeded, if no adaptation to this situation takes place (“Plan A”: do nothing or change 
nothing, but economic growth at any price). The important thing now, then, is to adapt 
decisively to carrying capacity through sustained system adjustments (“Plan B”; Brown 
2009). If this happens too slowly, very robust, sustainable technologies are crucial (“Plan 
C”, what to do if the system buckles?) to avoid serious damage. Here bioinformatics, 
together with molecular biology, computational technology, synthetic biology, and nano-
technology, can point to important approaches (see Chap. 13). We must adapt now, but it 
is not too late. Our generation and our children will have to do this to get ahead of natural 
processes (Barnosky et al. 2011; Lehman et al. 2021). As humans, we have a good chance 
of doing this in an intelligent and social way, rather than solving this naturally through a 
hard degradation and decay phase, following our bacterial example.

16.3	� Global Digitalisation and Personal Space

Sample Task for this: The Growth of the Internet and Social Media, how Better to 
Predict It?
The simple answer is: with the right model! An example work is for instance Barberá et al. 
(2015). Here it is clearly explained how to extend a diffusion model for Internet messages 
appropriately, in particular to better account for the special network nodes at the edge. 
However, there are also very basic properties for networks that grow naturally. This is 
most easily seen in the case of a network of friend(s). For naturally growing networks it is 
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Fig. 16.2  Growth and properties of a natural network. Shown is a network that grows naturally 
(“agglomeration”): The nodes with particularly strong networks grow particularly quickly (in red), 
the less strongly networked nodes grow more slowly, and the very weakly networked nodes at the 
edge grow most slowly (in cyan). This growth affects many natural phenomena, such as networks of 
friends, but also the growth of the Internet, of electricity networks, of trade and traffic, etc., but also 
the growth in molecular biology, for example of metabolic networks or of protein families

true that the highly networked nodes become even more networked particularly quickly (in 
the friend network: the star gets to know new people particularly quickly and is popular 
with more and more people), while the less networked nodes (the “wallflowers”) grow 
their network particularly slowly (keep to themselves). This natural growth is illustrated in 
Fig. 16.2 with an example network.
Such networks are also called scale invariant because they look the same at every scale, 
similar to a fractal (see Sect. 9.5, Benoit Mandelbrot). Each section of a subnetwork of the 
large network again looks exactly the same. Again, there are a few central nodes (in red) 
that grow rapidly, and many marginal ones that grow very little or very slowly (in cyan). 
Bioinformatic analyses then calculate further properties, such as the diameter of the net-
work (how far apart are the nodes?), how quickly information is passed on, how dominant 
individual nodes are (“centrality”), and the like. The Cytoscape software already men-
tioned is very useful for this purpose. It has numerous plug-ins for various network bio-
logical analyses, such as the Network Analyzer (https://apps.cytoscape.org/apps/
networkanalyzer).
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The Challenge: Growth of the Internet and Information Technology
In the same way, it is clear that computers and information technology are penetrating 
more and more areas of our lives. At first glance, of course, everyone assumes they don’t 
want it, don’t need it, and so on. But the ubiquity of the Internet and mobile phones, 
WhatsApp and Facebook show that our civilisation is heading for an ever more intensive 
partnership with the computer, not only because of Industry 4.0 and new bionanotechnolo-
gies, but also because of its need for communication. However, we must also be ethically 
mature for this. Otherwise, without an enlightened use of the Internet and the computer, 
there will be a “silent takeover” by authoritarian forces, which will then subtly control the 
entire population via the computer and the media, including all their communications. 
This is no longer a utopia (as in George Orwell’s novel “1984”, source: Orwell 1949; cur-
rent edition Orwell 2003), but there is now already the “Citizen Score”, which classifies 
the Chinese citizen according to his or her loyalty to the regime and his or her reference 
persons – as well as gradually controlling him or her more and more remotely.

Freedom is the most important good of a thinking being with consciousness, creativity, 
the freedom of thinking, to meet reference persons, to help people, to make art or also to 
solve a scientific problem (Schiller 1789). This is exactly what we should preserve, this 
freedom to shape our lives freely and not only in bioinformatics by an enlightened use of 
the computer and modern media improve, increase and secure this freedom for later gen-
erations (see box: “Digital Manifesto”). Then, and only then, will increasingly powerful 
computers become a powerful way to live out our freedom and free communication. For 
under a computer-based dictatorship, on the other hand, we face dark times ahead. For the 
background, see the “Digital Manifesto” box.

Digital Manifesto (from Spektrum der Wissenschaft)
The Digital Manifesto was written as a joint statement by eight scientists in 2015 
(https://www.spektrum.de/thema/das-digital-manifest-algorithmen-und-big-data-
bestimmen-unsere-zukunft/1375924). This call fits perfectly with our Chap. 16. It 
reflects both the threats and our tasks and opportunities in the face of the concen-
trated power of the internet and artificial intelligence. For this reason, the call is 
reproduced verbatim below:

Big Data, Nudging, Behaviour Control: Are we threatened by the automation of 
society through algorithms and artificial intelligence? A joint appeal to safeguard 
freedom and democracy.

Everything is becoming intelligent: soon we will not only have smartphones, but 
also smart homes, smart factories and smart cities. Will we end up with smart 
nations and a smart planet? We are currently experiencing the greatest historical 
upheaval since the end of the Second World War: the automation of production and 
the invention of self-driving vehicles is now being followed by the automation 
of society. This puts humanity at a crossroads where great opportunities are 
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(continued)
emerging – but also considerable risks. If we make the wrong choices now, it could 
threaten our greatest societal achievements. The evolution is from programming 
computers to programming people. In effect, “Big Nudging” aims to bring many 
individual actions into line and manipulate perceptions and decisions. This brings it 
close to the deliberate disenfranchisement of citizens through state-planned behav-
ior control. We fear that the effects could be fatal in the long run, especially consid-
ering the above-mentioned, partly culture-destroying effect.

Looking to China: Is this what the future of society looks like (Feudalism 2.0)?

	1.	 By tracking and measuring all activities that leave digital traces, a transpar-
ent citizen is created whose human dignity and privacy fall by the wayside.

	2.	 Decisions would no longer be free, because a wrong choice from the point of 
view of the government or company that sets the criteria of the points system 
would be punished. The autonomy of the individual would be abolished in 
principle.

	3.	 Every little mistake would be punished, and no person would be unsuspected. 
The principle of the presumption of innocence would be invalidated. With 
“predictive policing”, even anticipated rule violations could be punished.

	4.	 However, the underlying algorithms cannot work completely error-free. This 
would mean that the principle of fairness and justice would give way to a new 
arbitrariness against which it would hardly be possible to defend oneself.

	5.	 With the external specification of the target function, the possibility of indi-
vidual self-development would be abolished and with it democratic pluralism.

	6.	 Local culture and social norms would no longer be the standard for appropri-
ate, situational behavior.

	7.	 Steering society by a one-dimensional objective function would lead to con-
flicts and thus to a loss of security. Serious instabilities would be to be 
expected, as we already know from our financial system.

Solution: Collective creativity and freedom
Centralized top-down control is a solution of the past, suitable only for systems 

of low complexity. Therefore, federal systems and majority rule are the solutions of 
the present. However, with economic and cultural development, societal complexity 
continues to increase. The solution of the future is collective intelligence: citizen 
science, crowd sourcing and online discussion platforms are therefore eminent new 
approaches to harness more knowledge, ideas and resources. Collective intelligence 
requires a high degree of diversity. However, this is reduced by today’s personalized 
information systems in favor of reinforcing trends. Sociodiversity is as important 
as biodiversity. It is the basis not only for collective intelligence and innovation,

(continued)
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16.4	� What Are the Tasks for Modern Bioinformatics 
in the Internet Age?

What is very interesting is that the ten basic principles of the digital manifesto naturally 
help a great deal in moving all bioinformatics activities in a user-friendly, creative and 
developmental direction:

Develop and Network Own Data Locally (Ad 1, 7 and 9)
In addition to central databases and repositories, it is also important to make one’s own 
data accessible locally, but also to network and collaborate (a particularly burning issue for 
medical data for bioinformatics).

(continued)
but also for societal resilience – the ability to cope with unexpected shocks. Reducing 
sociodiversity often also reduces the ability of economies and societies to function 
and perform. This is the reason why totalitarian regimes often end up in conflict with 
their neighbours. Typical long-term consequences are political instabilities and 
wars, as they have repeatedly occurred in our history. Plurality and participation 
should therefore not be seen primarily as concessions to the citizens, but as decisive 
functional prerequisites of efficient, complex, modern societies.

This can be done by adhering to the following basic principles:

•	 to decentralise the function of information systems to a greater extent,
•	 to support informational self-determination and participation,
•	 improve transparency for increased trustworthiness,
•	 reduce information distortion and pollution,
•	 enable user-controlled information filters,
•	 promote social and economic diversity,
•	 improve the ability of technical systems to work together,
•	 create digital assistants and coordination tools,
•	 support collective intelligence and
•	 to promote citizens’ maturity in the digital world – a “digital enlightenment”.

With this agenda, we would all benefit from the fruits of the digital revolution: 
Business, government and citizens alike. What are we waiting for?

16.4  What Are the Tasks for Modern Bioinformatics in the Internet Age?
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Self-Determination and Participation (Ad 2 and 6)
Self-determination, participation and social diversity are supported by open source pro-
grams, joint development projects, among other things. In general, it is simply important 
to be responsive to the user and to listen to feedback in self-developed bioinformatics 
software.

Transparency and Clarity (Ad 3, 4 and 10)
Where does my data come from? What is its quality? Where do my conclusions come 
from? Indication of all sources! These are general principles (“good scientific practice”) 
and mean, for example in bioinformatics and also in the sense of the Manifesto, that the 
data are freely accessible and so are the programs. In the best case, this also includes the 
source code. However, this also depends on whether the source code is being further devel-
oped. In this case, it is important to make at least the executable freely accessible and to 
explain transparently in a tutorial what the program does. The same applies to bioinfor-
matics articles: As a reader, you should be mature and really understand the article, and as 
an author, you should make an effort to present the unfortunately mostly quite complex 
subject matter as clearly and transparently as possible.

Free Working and Collaborative Coordination on the Network (Ad 5 and 8)
An easy start is to use https://www.startpage.com/ as a browser, which does not immediately 
pass on all data to Google etc.. But you should generally use “free browsers”, delete cookies 
regularly and use a new web browser from time to time. Digital assistants and coordina-
tion tools (Ad 8) we constantly explain here with regard to bioinformatics and a lot is direct 
analysis software (i.e., a digital assistant for bioinformatics). But databases also help to coor-
dinate activities. But bioinformatics in particular has real coordination tools, such as the R 
community, which jointly writes the R language, but especially numerous R programs for 
statistical and bioinformatics analyses, or the numerous collaborations on the GNU project 
and other open source activities (Biojava, Bioperl, etc.). The best example is Wikipedia, 
which also attracts a steadily increasing share of bioinformatics wikis (e.g., www.wikidata.
org or introductory https://de.wikipedia.org/wiki/Transkriptionsfaktor).

Conclusion

•	 We use the computer as a tool to better understand life. Bacteria are already mar-
vels of survival, efficiency and vitality. But with the help of bioinformatics, we 
can understand a little better how these fantastic feats work, whether we admire 
more the adaptation (phylogeny, sequence analysis), the metabolism (metabolic 
modelling, enzyme databases) or the regulation of these adaptations (systems 
biology). Convincing results are drug design, for example in infectious diseases 
and cancer, but also progress in brain modelling.

(continued)
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(continued)

•	 A common thread in all the great challenges of bioinformatics is establishing a 
new level of language. This is true whether it is a matter of understanding the 
genetic (protein prediction) and genomic (gene prediction) code and correctly 
predicting proteins from foreign genomes or translating the sequence of a protein 
into three-dimensional protein structures. Of course, this is even more true when 
doing systems biology, i.e., approaching the very essence of biological regulation 
more deeply and understanding forward and feedback loops, recognizing stable 
system states. This can be used in particular for ecosystem modelling. Especially 
with regard to climate (global warming and nuclear winter), but also species con-
servation, biodiversity and population dynamics, such systems biology models 
provide important insights.

•	 Our lives are becoming increasingly digitalised. The dangers of this digitalisation 
of our society are in the increasing control of citizens (e.g., NSA in the USA, 
“Citizen Score” in China, steering and opinion-making via the Internet and social 
forums: “post-factual society”). Active questioning of false information, personal 
rights and protection on the Internet, but also transparency, diversity of opinion, 
pluralism and democracy, as well as free information filters (browsers) controlled 
by the users, are important contributions to protecting and improving digital civil 
rights in the Internet age. Bioinformatics reinforces positive aspects of digitalisa-
tion: it helps to model the growth of social networks in biological models, to 
better understand the Internet and also to support the “Internet of Things” through 
software and databases. Bioinformatics helps drive new, creative and sustainable 
technologies (synthetic biology, nanotechnology, 3D printers, artificial tissues, 
etc.). Digitization with the help of bioinformatics is a pacesetter of molecular 
medicine. In mathematical models of ecosystems, bioinformatics digitization 
reveals limits to growth (e.g., Verhulst equation for bacterial growth) and result-
ing sensible system strategies.

16.5	� Exercises for Chap. 16

Task 16.1
The Digital Manifesto. Familiarize yourself with the content!

Task 16.2
Global Warming, how does it work?

Task 16.3
What is Doomsday Clock and can you find it on the internet?

16.5  Exercises for Chap. <ExternalRef><RefSource>16</RefSource><RefTarget…
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17Conclusion and Summary

Abstract

Bioinformatics is now all the rage because of big data. However, computational biology 
also uses computers to provide unprecedented valuable biology insights, which is our 
main concern. With more and more new data and the application of data analysis to 
fundamental biological questions that can only now be answered by these new data in 
the first place, we will enter the fascinating new territory of modern molecular medi-
cine and molecular biology in this century. With the help of bioinformatics this data 
flood makes us more knowledgeable; without bioinformatics, we will rather drown in 
the next big data wave.

In principle, bioinformatics is simple (Part 1): Sequence analyses, such as sequence 
comparison with BLAST, allow the language of life to be deciphered, whereby DNA and 
RNA sequences can be translated into proteins relatively easily with the computer. 
Numerous programs look at protein sequences in particular. The ExPASy server of the 
Swiss Bioinformatics Institute is important here. We learned about useful tools for RNA 
analysis, such as the RNA Analyzer. Numerous DNA sequences, databases and many elec-
tronic books, tips and programs for this purpose are available at the NCBI (National Center 
of Biotechnology Information) as well as all important publications (MEDLINE). With 
these techniques, we can detect viruses, determine the function of proteins, but also dis-
cover new RNA molecules that play a role in cancer or heart failure, for example. In order 
to model the metabolism of a cell, we need a list of all enzymes and metabolites that need 
to be kept in balance within the cell. From this, the computer can then calculate all possi-
ble metabolic pathways, and with a little more data (e.g., on gene expression), it is also 
possible to determine flux levels. This makes it possible to find targets for antibiotics, but 
also to better understand how bacteria grow, adapt to the environment or optimise the yield 
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of useful products such as citric acid or insulin. Finally, we have seen that regulation in 
cells is very logical. If we want to recreate this with a computer, we first have to find out 
which protein interacts with which. This can be done using protein interaction databases 
such as STRING and KEGG. Then you can assemble the logical (Boolean) network into 
a regulatory circuit in the cell. If this is made computer-readable (e.g., XML format), a 
program can then simulate the dynamics of regulation without having to know exactly 
how fast the process takes place. For this, the model is then only “semi-quantitative”, i.e., 
it only tells what comes sooner or later, what is more or less activated in the cell. 
Nevertheless, this helps to describe how our nervous system works or to find new drugs 
against heart failure.

Principles for understanding bioinformatics and modern biology we have learned in 
the second part. Heuristic, i.e., fast, but not completely accurate searches speed up mod-
ern bioinformatics programs. Bioinformatics decodes coded information in cells, and liv-
ing cells use different codes and levels of language. The analysis tasks for the computer 
are either easy, meaning that in the foreseeable future the computer can handle them, or 
they are unpredictably long. This happens especially easily when many combinations 
are tested.

Every organism is a complex system, but they behave in fundamentally similar ways. 
One can infer their behavior through big data, such as omics techniques. Emergence is at 
the heart of this, i.e., the appearance of completely new system properties as components 
come together, especially in human consciousness when a critical number of neurons 
come together in a previously unfounded way. Modular structure, positive and negative 
feedback loops are basic properties. A basic theme of biology is the consideration of evolu-
tion. Bioinformatics likes to use phylogenetic trees and evolutionary comparisons to 
quickly identify basic properties (many organisms; conserved regions in a protein 
sequence) and specific properties.

All these data analyses allow detailed insights into the molecular biology of the cell by 
looking step by step at involved protein sequences, their localization in the cell and their 
properties.

Bioinformatics becomes fascinating (Part 3) when data analysis provides surprising 
biological insights. For example, modern genome analysis makes it figuratively clear that 
genetic modifications affect every human genome and that everyone carries “good” and 
“bad” genes with them, useful or harmful depending on the environment. Molecular 
sequences only ever make sense in the context of the cell. Understanding this language can 
be used for synthetic biology and protein design, such as the nanocellulose chip. 
Bioinformatics is also making the powerful structure of our brains and limitations for 
natural and artificial intelligence clearer. Bioinformatic modelling and simulations also 
encompass ecosystems, infections (currently: Covid19 pandemic) and climate models, the 
internet and sharpen the view for chances and problems of our digital society.

Conclusion  Bioinformatics uses computers to better understand biological problems, 
i.e., to find similarities between molecules, for example at the sequence level. It can break 
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down processes in the cell, for example with pathway databases, or even reproduce bio-
logical processes in the model, such as the growth, differentiation and death of cells.  The 
goal is biology and its understanding, the means are the computer and experimental data 
or new experiments to substantiate the gained understanding as solid as possible. That is 
why it is always important to be critical of the results of one’s own computer analyses. 
One’s own expertise and knowledge of the correlations should always critically question 
and accompany the results - otherwise one can be very far off the mark. Finally, it should 
be emphasized that for mathematical (Turing computability) as well as biological reasons 
(we are living beings, the computer is not) it remains our very own task to set goals, tasks 
and directions for biology and our work, no matter how modern the computers may be.

This brings us to the end of this introduction to bioinformatics. Bioinformatics is the 
way to the new biology of the twenty-first century, an intensive theoretical biology by and 
with computers. It helps us to make a new biology, to know better what life is, what is in 
bacteria, genomes, plants and protein structures, but also to get closer to the mystery of 
man in all its facets, one’s own consciousness being a particularly deep mystery. This book 
wants to motivate us to this new biology, not only as a textbook, but also so that we can 
successfully and actively better shape our future with the help of bioinformatics. There are 
more than enough pressing future problems and important, motivating future tasks.

17  Conclusion and Summary
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18Glossary

Abstract

The glossary explains and defines important terms in bioinformatics. We can only 
explain the most important terms here. The field is developing rapidly and is, after all, 
situated between two disciplines, biology and computer science. It is thus a bit more 
challenging in the set of basic terms than if it were just about one subject. First we give 
a short definition, then explain details and give examples for complex terms.

The glossary explains and defines important terms in bioinformatics. We can only explain 
the most important terms here. The field is developing rapidly and is also still located 
between two disciplines, biology and computer science, and thus also somewhat more 
demanding in the amount of basic terms than if it were only about one subject. First we 
give a short definition, then explain details and give examples for complex terms.

Ab Initio Protein Structure Prediction  Method for predicting protein structure from a 
sequence based on the biophysical properties (e.g. hydrogen bonds or hydrophobic effects) 
of proteins.

Amino Acids  Carbon compounds, consist of an amino and an acid group at the C-alpha 
carbon atom and a characterizing amino acid residue. Proteinogenic amino acids are the 
20 that are incorporated into proteins with the genetic code. 

Artificial Intelligence  Properties of a computer to reproduce biological facts so that inde-
pendent learning is possible, e.g. neuronal network or also through hidden Markov models.
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Attractor  Limited system state that pulls nearby system states into this stable basic state, 
e.g. health (immune system can cope with slight infections or pulse, returns to normal after 
exertion; however, if the disturbances are too great, then the stable system state changes 
and one becomes ill; again a new attractor that can last longer until one becomes 
healthy again).

Babbage Test  Test for artificial intelligence in which outside people are asked to distin-
guish between a human and a computer (both undercover). If the computer succeeds in 
deceiving people into thinking it is human, then the computer has artificial intelligence.

Big Data  Refers to the flood of large amounts of data generated in the course of modern 
experimental methods, which, for example, have to be analysed bioinformatically in order 
to gain new and exciting insights.

BiNGO  Cytoscape plugin that identifies overrepresented biological functions (with 
p-value and corresponding genes) using Gene Ontology grouping in a network (see also 
Gene Ontology, GO). 

Bioinformatics  Bioinformatics, or computational biology, is the study of biological 
questions using computers. In this process, information (“data”) and findings (“models”) 
about organisms are collected (in databases), analysed (by experts, the bioinformaticians, 
who use various computer programs for these analyses) and reproduced in models (“simu-
lations”). Essential properties (system properties) for the biological phenomenon under 
investigation are worked out (“systems biology”). Biologists often focus on plants and 
animals, fungi or lower organisms (bacteria, viruses). The latter are easier to understand 
and thus to reproduce in the computer, e.g. the metabolism of bacteria or the reproduction 
of viruses. For doctors, other medical professions (human geneticists, molecular physi-
cians) and many interested biologists, however, the focus is on humans. Both health 
(“physiology”) and disease are described in detail. The starting point of many bioinfor-
matic studies is the flow of genetic information from DNA (the genome) through tran-
scription (in higher cells in the cell nucleus) to RNA and after translation in the ribosome 
via the genetic code to proteins. Programs and software are used to study biological func-
tion. This is done, for example, by means of sequence analyses in order to obtain informa-
tion about a pathogen, but also, for example, to obtain differences between the organisms 
involved (e.g. humans and parasites) by genome comparisons. In the case of proteins, but 
also regulatory and catalytic RNA, the analysis of the structure helps to better decipher 
their function (protein structure analysis, RNA analysis). It is also possible to create meta-
bolic networks and compare them with each other, and finally, for example, to calculate 
drugs for important proteins in the parasite that optimally block the parasitic protein but 
are tolerated by humans. Signalling networks can also be modelled and studied to better 
understand cell maturation (differentiation, embryology) and to better combat or prevent 
diseases such as cancer, heart failure and stroke (together over 75% of all causes of death). 
Predictions are verified with the help of experimental data. In the meantime, other mole-
cules can also be measured intensively (more complex), such as metabolites (e.g. lipids, 
sugars, vitamins, cofactors), proteins, nucleotides. Also new is an increasing amount of 
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image data, both from microscopy and remote sensing, for which proprietary powerful 
algorithms are available for processing (image processing). The same applies to functional 
assays (e.g. ChIPseq, CLIP; RNAi screens; transposon screens) and high-throughput 
screening (HTS), for example for drugs, for which the use of computers is essential for the 
evaluation and in silico pre-testing of often many more candidate molecules. Bioinformatics 
is thus able to answer basic biological and medical questions much better than was previ-
ously possible, based on theoretical knowledge and ever new data. Bioinformatics has 
become the spearhead of modern biology, in that ever better computer predictions (espe-
cially via the Internet, with the help of modern Deep Learning, neural networks, neuro-
computing, but also with ever better search possibilities through PSSMs and HMMs) help 
to advance these current research areas even faster. This is, for example, research on stem 
cells, ecosystem modelling, neurobiology, nanotechnology, nanobiotechnology as well as 
modern molecular biology with protein design and synthetic biology. Molecular medicine 
in particular is becoming much stronger with the help of bioinformatics through insight 
into the complex regulation of, for example, the immune system (help with allergies, rheu-
matism) regenerative medicine (help with chronic diseases) and the human genome. 
However, this only applies if the ethical aspects are internalised and incorporated into all 
problem solutions: Human dignity, respect for the individual, quality of life; effective 
control and already at the planning stage safe, intelligent design of related technology, be 
it computers, microorganisms, (human) cells or nanotechnology (cf. digital manifesto).

Bit  A bit of information is the smallest unit of information, a “yes” or “no” decision.

BLAST (Basic Local Alignment Search Tool)  Bioinformatics algorithm that allows 
protein and nucleotide sequences to be compared with a large database in terms of their 
local similarity. In this process, a sequence is compared for its similarity with reference 
sequences in a database, i.e. with sequences that are already known, and can provide infor-
mation, e.g. which virus a patient has contracted. BLAST uses a heuristic search and here 
the two-hit method (2-hit method): A short word list (lookup table) is first compared with 
the short word lists of the database (indexed database). If at least one matching short word 
is found in an entry, the system immediately checks whether there is another short word 
hit in the vicinity (fixed distance). Only then the alignment is calculated. In all other cases, 
the algorithm blasts ahead to the next database entry.

CATH (Classification by Class, Architecture, Topology and Homology) 

Classification of protein structure by class (structure of secondary structure), architec-
ture (high similarity of secondary structure but no homology), topology (similar properties 
of secondary structure) and homology (evolutionary ...), based on experimentally deter-
mined three-dimensional protein structures from the protein database PDB.
Chaotic Systems  Description of systems (complex systems) whose behaviour is predict-
able (can be described exactly) only over short periods of time, but whose long-term 
behaviour is kept within fixed limits (“attractor”).
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Clustering (Cluster Analysis)  Statistical procedure to classify (group) objects into 
groups (clusters) with similar characteristic structures (characteristics). A distinction is 
made between supervised (groups known) and unsupervised clustering (groups unknown).

Code  Specification for the unambiguous representation or assignment of characters with 
the aid of a given character sequence (e.g. genetic code using base triplets to represent the 
20 amino acids).

COGs  (clusters of orthologous genes) see last universal common ancestor. 

Computers  are data processing machines. To this end, they now typically consist of 
hardware (electronic switches, transistors, integrated chips) and other parts (input and 
output devices, housings, etc.). They process instructions (software) in sequence to gener-
ate new results from the data, e.g. calculations, sequences, result lists or networks (typical 
results in bioinformatics calculations). 

Consensus Sequence  Conserved sequence of motifs in a multiple alignment of several 
sequences, such as nucleotides of an enzyme (see also PSSM).

Corona virus  see Pandemic.

Databases  Different databases (software component) integrate and collect biological 
data and make it available to the general public over the Internet using a serviceable com-
puter (hardware component called a “server”). Databases hold all the data that people look 
up. Typically, this is done in many records. Different properties about a particular record 
are held in individual data fields. How this looks in detail is determined by the data model. 
Finally, the data can be searched using a query (database query). A simple query language 
popular in bioinformatics for simple, smaller databases is the “Structured Query 
Language” (in short: “SQL”), and such a database is then an SQL database. Important 
bioinformatics databases are listed many times in the book, e.g. GenBank (genome and 
nucleotide sequence data) and UniProt/Swiss-Prot for protein sequences. 

Data-Driven Modeling  Normalization of the different units of the bioinformatic model 
according to the experimental data, i.e. the typical times of the signaling cascade, receptor 
excitation, phosphorylation of kinases, etc. are determined by this. 

Dimension Reduction  see Principal Component Analysis (PCA).  DNA (deoxyribo-
nucleic acid, DNA for short)

Biochemically, a mixture of nucleotides that are all connected via a deoxy-ribose sugar 
and a phosphate “backbone” to form a long molecule, the DNA single strand. 
Bioinformatically centrally important because DNA contains all the genetic material 
(hereditary material, also called the genome) and thus all the hereditary information of an 
organism. The DNA single strand pairs on its own with its counterpart strand, so that DNA 
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typically exists as a twisted double strand, i.e. a double helix. Deoxyribose has one less 
oxygen atom than ribose, making it more stable. The double helix protects the genetic 
information and allows repair via the opposite strand. Both lead to the fact that DNA stores 
information much better than RNA.

Domain Name Server  Specific number (IP address), e.g. 132.187.25.1, of a computer 
via which it is connected to the Internet protocol.

Dotplot  Allows to compare two sequences in a diagram (x-/y-axis) to find similar areas 
(represented as a dot).

Drug Design  A branch of bioinformatics that deals with the design of a drug with opti-
mal properties.

Dynamic Programming  Systematic trying of possibilities for optimizing solutions with 
the computer, such as secondary structure folding, dynamically allocating more and more 
memory. 

Elementary Mode Analysis  Part of metabolic modelling/metabolic modelling in which 
all metabolic sources, metabolic product/excretions (“sinks”) as well as involved enzymes, 
metabolites (internal/external) and metabolic reactions (reversible/irreversible) are trans-
lated into a mathematical calculation rule. It is calculated which enzyme chains (metabolic 
pathways) each put all internal metabolites involved into equilibrium (elemental flux 
modes). Elementary mode analysis is important, for example, in order to achieve the best 
possible yield of a product (sinks) with a starting product (sources) or to identify differ-
ences between organisms, for example, with regard to medical use (e.g. antibiotic that 
blocks metabolic pathways of the bacterium but does not cause a toxic effect in the patient). 

Emergence  System effect in which new effects and properties arise from the coming 
together of the components that cannot be attributed to the individual components, e.g. 
individual blood and heart muscle cells form the circulatory system with properties such 
as blood pressure and pulse.

ENCODE (ENCyclopedia of DNA Elements)  The ENCODE project (consortium) is 
the follow-up project to the Human Genome Project (sequencing of the human genome) 
and seeks to characterize the entire human genome and transcriptome in greater functional 
detail. 

Endosymbionts, Endosymbiont Hypothesis  Large organelles, especially mitochondria 
and chloroplasts, also contain DNA and a small ring-shaped DNA molecule (a few thou-
sand nucleotides). This indicates descent from free-living bacteria (endosymbiont 
hypothesis). 

Enzyme  see Protein. 
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Epidemic  see Pandemic. 

E-value  Statistical parameter that indicates whether my output alignment will be found 
again in the database with a similar or better score (expected value of a random hit; should 
be less than 1 in 1 million). It is therefore dependent on the size of the database (in contrast 
to the p-value).

Evolution  (from Latin evolvere, “to develop”) deals with the gradual changes over time 
(typically long periods of time up to millions of years) of genetic material and external 
appearance in individuals, populations, species up to entire ecosystems. When genetic 
material is passed on for the next generation during cell division, there are sometimes 
minor or major changes in the genetic material in addition to identical copies of the genetic 
material. The resulting appearance of the body (phenotype) may be better, worse, or 
equally adapted to the currently prevailing environment as a result of these genetic changes. 
Random changes (mutations), natural selection and reproduction (replication) work 
together to achieve this. Depending on the environment, a mutation can thus be advanta-
geous, disadvantageous or insignificant (neutral).

ExPASy Server  This is the most famous website of the Swiss Bioinformatics Institute, 
an expert system for protein sequence analysis (ExpertProteinAnalysis System). It is an 
example of a portal, i.e. a website where you can find numerous databases and software. 
For example, I can use different software options to check whether my protein sequence is 
really the enzyme I think it is (for example, if it is the BLAST result). The database and 
software PROSITE checks whether all the important catalytic amino acid residues are 
present or “peptide properties” checks whether the amino acid composition matches the 
protein, for example, whether the protein has enough hydrophobic amino acids to fit into 
the membrane.

False Positive Hits  Proportion of hits that are grouped incorrectly (e.g., potentially pre-
dicted interaction partners that are not experimentally validated or person grouped as sick 
but who are actually healthy).

FASTA  Storage format (text-based) of bioinformatics for sequences, such as gene 
sequences.

Feedback Loops  positive/negative feedback loops. 

First Gödel’s Incompleteness Theorem  Proves that there are always unprovable state-
ments in sufficiently strong contradiction-free systems (computer thus remains in the 
undecidable).

Genetic Drift  Random sequence change that can affect the function, e.g. of catalytic 
domains or functional sites. Stronger moves (e.g. insertion, deletion, clear direction) are 
called genetic shift and can lead e.g. to virus subtypes (e.g. in influence). 
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Gene  Section on DNA that codes for specific information and genes. 

Gene Expression  Provides information about the activation of a gene, which leads to the 
biosynthesis of a protein through transcription (RNA synthesis) and translation. 

Gene Ontology (GO)  Grouping of genes according to their species-specific known func-
tion in biological processes, cellular components and molecular function. Many tools use 
this grouping for initial functional analysis and characterization of genes, such as the 
Cytoscape plugin BiNGO (see BiNGO).

Genetic Algorithms  Search strategy in which solutions are bred in the computer using 
artificial evolution through selection, mutation and recombination of digitally programmed 
chromosomes (encode the problem). 

Genome  The entire genetic material (hereditary material, also called genome) and thus 
all genetic information of an organism. Only viruses can exceptionally contain a genome 
of RNA. Large organelles, especially mitochondria and chloroplasts, also contain DNA 
and a small ring-shaped DNA molecule (a few thousand nucleotides). This indicates their 
descent from free-living bacteria (endosymbiont hypothesis). The genome of viruses is 
typically a few thousand nucleotides in size (only the polymerase duplicates the genome), 
that of bacteria a few million base pairs (polymerase and correction enzymes), and that of 
higher organisms (with nucleus) several billion nucleotides (polymerase and sophisticated 
correction pathways). 

Genomics  Analysis of the genome, the totality of all genes. 

Genome-Wide Association Studies (GWAS)  Studies to identify genome-wide impor-
tant genes associated, for example, with a disease, in order to detect more precisely the 
specific signal of mutations that are then important for the particular individual aspect 
(disease, which exact subtype).

Genetic Shift  Random change of larger sequence regions or even entire genes that can 
influence function, e.g. catalytic domain or functional site. In contrast, gene drift is a 
smaller random change in allele frequency within the gene pool of a population. 

Global Alignment  Two sequences are compared with each other by comparing which 
amino acid residues are modified and which are conserved. One can either compare over 
the whole length or only a part of the sequence (see local alignment). For global align-
ment, there is an exact method, Needleman and Wunsch search, which is slow but accu-
rate, and various heuristic methods (inexact, but few errors and much faster). For example, 
for phylogenetic methods, CLUSTAL search works fast.

Gödel, Gödel’s Incompleteness Theorem  see second Gödel’s incompleteness theorem.
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Hardware  All the physical aspects of a computer (chassis, transistors, input and output 
devices such as printers, memory disks, etc.).

Hidden Markov model  Stochastic model that calculates certain transition probabilities 
from an observable system state on the basis of a Markov chain and allows statements 
about the hidden states.

Homology Protein Structure Prediction  Method for predicting protein structure, using 
known protein structures as templates.

Hypothesis-Free  On the positive side, this is research that looks at the results without 
bias and develops appropriate conclusions. On the other hand, it usually means expensive 
omics experiments. For these, it is not a good idea to just produce a lot of data without an 
initial scientific hypothesis and hope that the statistician will then find something “signifi-
cant”. The following paper explains this problem very well: Ioannidis JPA (2005) Why 
most published research findings are false. PLoS Med 2(8): e124. 

In Silico Analysis  with the computer, computer-assisted analysis. Literally: "in silicon" 
(Latin).

Internet Protocol (IP for Short)  Used to exchange data packets from computer to com-
puter, so that this is done as quickly as possible, making use of all free space and also 
coping with a major computer failure.

IP  Abbreviation for the Internet Protocol (see there).  Knowledge-based 

Bioinformatics work, such as the creation of a network, based on literature and 
expert knowledge. 

Last Universal Common Ancestor (LUCA) or LCA  Last common ancestor of all life, 
which can be inferred bioinformatically via protein sequences and protein families (lived 
about 2.5 billion years ago, 1000–1500 basic protein genes, the COGs [clusters of ortholo-
gous genes; bacterial sequence families to genes with the same function] give an approxi-
mate impression of these oldest genes).

Local Alignment  Two sequences are compared by contrasting which amino acid resi-
dues are modified and which are conserved (see also global alignment). In local alignment, 
one looks for only one piece, especially very well, to catch a local piece that is particularly 
similar, especially the domain that has the highest sequence similarity, i.e. a characteristic 
domain of the protein. But then please remember that after that you should also examine 
the other pieces in the protein and assign the function. For local alignment there is an exact 
method, the Smith and Waterman search. This is slow, but accurate. Various heuristic 
methods (not quite exact, but much faster with only a few errors) use this method, where 
after a (FASTA; fast alignment) or a double (BLAST) fast index search then an exact 
Smith and Waterman alignment is done.
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Long Branch Attraction  Form of systematic error (tree-building error) in which dis-
tantly related taxa are incorrectly considered to be closely related or closely related to be 
unrelated, resulting from comparing sequences of different lengths or when a single 
sequence is quite long and the taxa have different numbers of mutations.

Markov Chain  This is the name given to a random process (Markov chain; also Markov 
process, after Andrei Andreyevich Markov; other spellings: Markov chain, Markoff chain, 
Markof chain). A good example is the random results of dice rolls. By knowing only a 
limited past history (e.g. the last three throws), it will only be possible to make predictions 
about future developments that are as good as those made by knowing the entire past his-
tory of all previous throws: Each new throw has a random result, and the probability of a 
given number of dice is always one-sixth.

Markov Process  see Markov chain.

Mathematical Modelling  Mathematical modelling describes the representation of 
experimental data with mathematical equations. Here, there are the Boolean/discrete, 
quantitative and semi-quantitative methods. In principle, these methods consider the nodes 
(proteins) of a network according to their activation state, i.e. either activated (on; maxi-
mally activated = 1) or inhibited (off; maximally inhibited = 0). According to the initial 
state (how strongly is the node activated/deactivated), the further temporal course, i.e. how 
does the state of the node change over time, is calculated for each individual node of the 
network. In this way, the behavior or the network interconnection can be examined in 
more detail, whereby corresponding network effects, i.e. the respective effect of a node, 
also become clear. Boolean modeling always considers the on/off (1/0) state of a system, 
i.e., the node is either activated (on; 1) or inhibited (off; 0). Quantitative modeling is useful 
for kinetic data, such as Michaelis–Menten kinetics (example software: PottersWheel). 
Here, the system state of a network is considered using exact concentrations and mathe-
matical differential equations, but this requires information about the kinetics. 
Semiquantitative modeling combines both methods, which enables one to consider the 
system state in the interval between 0 and 1, which can also be done without knowledge 
about the kinetics (example software: SQUAD and Jimena). 

Maximum Likelihood Method  Phylogenetic method in which the most probable path-
way is calculated for all mutations (every single mutation is taken into account) (very 
computationally intensive and time-consuming, but particularly accurate). 

Medical Informatics  In common parlance, this is computer support in the clinic. In par-
ticular, this includes computers in intensive care monitoring and anaesthesia, the elec-
tronic infrastructure for patient documentation (doctor’s letters, findings, electronic 
medical records) and expert systems (such as databases on antidotes for poisoning or 
infections) as well as educational software (e.g. for anaesthesia, anatomy). In contrast, the 
modelling of diseases would be directly attributed to bioinformatics.
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MEDLINE (Medical Literature Analysis and Retrieval System Online)   A major bio-
informatics database operated by the National Center for Biotechnology Information 
(NCBI) that collects and provides medical information and literature. 

Metabolomics  Analysis of the metabolome, the totality of all metabolic products 
(metabolite). 

Modelling  Field of application of bioinformatics that deals with the computer-aided 
mathematical description of experimental data and system properties/effects. 

Modular  Recurring elements (units) in biological systems, e.g. amino acids for proteins. 
These are parts of molecular networks and form filaments that always form new patterns 
and properties (combinatorics).

Nanocellulose Chip  New technology that replaces silicon computer chips with nanocel-
lulose chips. By using light-controlled proteins, transistors are replaced. They have the 
potential to function much better, in particular to be more environmentally friendly, more 
durable (thousands of years), faster (petahertz frequency) and to have better storage prop-
erties (exabyte memory). DNA serves as the storage medium, polymerases to synthesize 
and read in sequences and exonucleases to degrade and read out, the nanocellulose is the 
matrix for the enzymes and the DNA. Polymerases, exonucleases and other molecules are 
controlled by light-controlled protein domains.

Natural Computing (also called “Analog Computing”)  Branch of synthetic biology that 
describes computing with molecules or even with entire living organisms.

Neighbor Joining  Phylogenetic procedure in which the family tree is based on neighbor 
similarity and the respective ancestors are calculated for direct neighbors. 

NetworkAnalyzer  Cytoscape plugin, which allows an analysis of the network topology, 
e.g. with respect to network interconnection (average number of interaction neighbors) or 
robustness (network centrality).

Neural Networks  see neural computing.

Neuronal Computing  Field of application/software in bioinformatics in which a pro-
gram recognizes certain patterns and properties of information processing in known data 
using artificial neuronal networks (neurons and their interconnections) and learns to pre-
dict these accordingly for unknown data sets. 

Node Computers  The information that is passed from computer to computer on the 
Internet is bundled at central points. These central computers are then called Internet nodes. 

NP Problems (Non-deterministic Polynomial Complexity)  Mathematical problems 
that are very computationally expensive and whose possibilities lead combinatorially to an 
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exponential growth of possibilities, e.g., the traveling salesman’s problem of driving to 
numerous cities along the most optimal route possible. The same is true for the prediction 
of protein structure (whether ab initio in three dimensions or as a homology model), the 
calculation of stable system states for pathways (for example, in the cancer cell), and 
metabolic modeling. Many exciting biological problems are NP problems. Typically, in an 
NP problem, I don’t know exactly when I will find the solution, no matter what computer 
algorithm I use. However, if I am shown the solution, I can confirm it in polynomial time 
(i.e., rather quickly).

Omics  Branch of biology that deals with the analysis of large amounts of biological data. 
Examples are proteomics, metabolomics, genomics, RNAomics, interactomics, which 
deal with big data about proteins, metabolites, genomes, RNA and interactions.

Ordered Systems  Description of systems by simple mathematical equations, where the 
behaviour is predictable and can be described exactly for the entire period of the flight or 
train journey, e.g. flight of a rocket. 

Pandemic  An epidemic spreading worldwide (epidemic = contagious disease, infectious 
disease). Currently (2020) a pandemic is caused by the virus Sars-CoV-2 (severe acute 
respiratory syndrome coronavirus 2). This is a coronavirus (cause respiratory disease; they 
have a ring, a “corona” of appendages around the spherical body). Pedigree analyses show 
high relatedness to the SARS virus (2002/2003 pandemic). Another relative is the MERS-
CoV (Middle East respiratory syndrome coronavirus). A pandemic with many millions of 
deaths was the “Spanish flu” after World War 1. Important for a pandemic are factors that 
ensure a steady spread of the disease across many national borders and thus worldwide 
(the factor R0, the infection rate per infected person always remains at least slightly above 
1, so that there are always more people infected). This can be well modelled bioinformati-
cally, as can the effect of control measures, mutation rates, mortality, changes in the infec-
tion rate. 

Parsimony  Phylogenetic procedure in which the mostly not directly observable ances-
tors are calculated in such a way that all observed present-day sequences can be generated 
with as few mutations of these ancestor sequences as possible.

Polymerase  enzyme that produces a new nucleic acid. This is usually done according to 
a template. There are RNA-producing RNA polymerases and DNA-producing DNA 
polymerases. 

Polymerase Chain Reaction (PCR)  Method of molecular biology that serves to double 
the genetic information (DNA) by means of a chain reaction (constant doubling of the 
DNA strands). In order to achieve this specifically for a certain DNA sequence, one needs 
the start of the desired sequence and determines a complementary initial sequence (start 
primer) and at the end of the sequence on the opposite strand a reverse primer that is again 
complementary to it. With the help of the two primers, one specifies where a new strand is 
to be synthesized for the polymerase that is also required. After about 1 min of DNA syn-
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thesis, the freshly synthesized molecules are separated again by heating each 1000 base 
pairs, and the two primers are then allowed to reattach to the new strands, thus obtaining 
more and more identical DNA strands as long as there are enough primer molecules and 
polymerase for the PCR. 

Polynomial Complexity  Problems that are not very computationally intensive and whose 
mathematical description is done with a polynomial (computation time depends on the 
length) (see also P-problems). 

Positive/Negative Feedback Loops  Feedback loops in networks that reinforce every-
thing and stabilize the system (positive feedback loops) or dampen excessive regulation 
(negative feedback loops).

P-problems  Problems that do grow polynomial as the sequence or number of units 
increases for which I make my prediction, but it happens exactly and clearly. So there is a 
safe solution strategy with clear computational timing. Examples are database searches or 
RNA folding. Both grow quadratically with sequence length for many related algorithms, 
where for databases it is the product of search sequence and total database length (see also 
polynomial complexity). 

Precision  (specificity) Correct-negative rate, i.e. the proportion of correctly negatively 
grouped hits out of the total of correctly negative hits, e.g. predicted as non-interacting 
interaction partners that also show no interaction experimentally, or people grouped as 
healthy who are actually healthy.

Primary Database  Databases that contain only the basic data and information, such as 
protein sequences.

Primary Metabolites  See secondary metabolism.

Primary Metabolism  see Secondary metabolism.

Principal Component Analysis  (PCA). 

Principal Component Analysis (PCA)  Method of multivariate statistics. It aims to 
transform high-dimensional data into a new coordinate system (usually 2D) in order to 
reduce complexity in the data and extract relevant variables (principal components). 

Programs  Tools (software) used to examine and analyze data sets or data from experi-
ments. Programs first consist of a declaration part, which defines the variables and data 
fields used, followed by the calculation part. Typically, the computational part consists of 
a read/input part, a main loop, and an output part. The main loop reads the input data and 
performs the calculations, often accesses subroutines itself, writes results to the output 
part, and monitors the sequence of the program through logical queries until the program 
finally processes everything and stops. In practice, stopping or halting a program is not 
always easy to predict.
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Programming Language  Instructions (syntax) to a computer to perform a calculation 
(algorithm or program), such as sequence analysis. Popular programming languages are, 
for example, Perl, Java, Python or C + +.

Promoter  gene readout start sequence.

Protein  see Proteins. 

Protein Domain  A self-contained folding unit in a protein, is about 100–150 amino acids 
in size, has a specific molecular function, e.g. catalytic function, cofactor binding (e.g. for 
cofactors such as NADH, FAD), interaction domain (between two domains in the protein 
or a whole protein) and regulatory function (e.g. DNA binding or transmitting a signal). 

Proteins  Proteins. Most important building material of the cell (proteos, the first): all 
enzymes (accelerate biochemical reactions in the cell) and important structural proteins 
(collagen, e.g. hair; albumin in the blood, etc.). Proteins are made up of amino acids. The 
20 most important (“proteinogenic amino acids”) are assembled with the help of the 
genetic code according to the building instructions of the mRNA in the ribosome. Proteins 
are therefore products of translation. Afterwards, proteins can be modified further (post-
translational modifications, e.g. sugar residues or lipid residues are retained). Proteins are 
large molecules (macromolecules) with specific functions, for example as enzymes or 
transcription factors. Their three-dimensional structure and amino acid sequence are deci-
sive for the function. 

Protein Kinases  Enzymes that transfer phosphate residues (phosphotransferases) and 
have an activating effect.

Protein Phosphatases  Enzymes that remove phosphate residues and have an inhibitory 
effect. 

Protein Structure  Structure of a protein that is responsible for its function. A distinction 
is made between primary structure (amino acid sequence), secondary structure (α-helix, 
β-sheet), tertiary structure (single protein chain from several secondary structures) and 
quaternary structure (several tertiary structures, i.e. several protein chains, often important 
for cooperative structural adaptation).

Proteomics  Analysis of the proteome, the totality of all proteins.  PSSM (Position-
Specific Scoring Matrix; Often also Called Position-Specific Weight Matrix, PSWM)

Alternative to the consensus sequence, which specifically allows the prediction of these 
motif patterns in other or new unknown sequences, such as transcription factor binding 
sites (see also consensus sequence). 
p-Value  Statistical parameter indicating how likely it is to get the hit by chance. 

Quaternary Structure  see protein structure. 
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Ramachandran Plot  Calculates the phi and psi torsion angles in the protein, providing a 
graphical overview of the distribution of α-helices and β-sheets.

Random Systems  Description of systems where the behavior is unpredictable for a short 
time, such as dice roll (you can’t predict the next roll, but the result space can be predicted, 
can only be one to six). 

Recall(Sensitivity)  Indicates how many of the hits are also stored in the database as real 
entries (correct-positive rate, i.e. proportion of correctly grouped hits out of the total of 
correct hits, e.g. potentially predicted interaction partners that are experimentally vali-
dated or persons grouped as ill who are actually ill).

Regression (Regression Analysis)  Statistical procedure to find correlations and relation-
ships between a dependent (explained variable, regressand) and independent (explanatory 
variable, regressor) variable(s). The most common are linear regression, logistic regres-
sion or Cox regression (survival time analysis).

Regulatory RNA Elements  Motifs of RNA (characterized by specific sequence, struc-
ture and folding energy) that perform important regulatory functions and regulate tran-
scription and translation, e.g. iron-responsive elements (IRE, regulate iron metabolism in 
humans and animals depending on the iron content of the cell) and riboswitches (regulate 
gene expression in prokaryotes). 

RNA (Ribonucleic Acid)  Biochemically, a mixture of nucleotides that are all linked by a 
ribose sugar and a phosphate “backbone” to form a long molecule, the RNA single strand. 
Product of transcription and serves as an information carrier (mRNA) for the synthesis of 
proteins. RNA can simultaneously store information, but also form secondary structures 
and, when folded appropriately, accelerate reactions like an enzyme, forming an RNA 
enzyme, called a ribozyme for short. Therefore, even before the genetic code, a few hun-
dred million years after the origin of life, there was the RNA world, in which RNA organ-
isms with ribozymes and RNA genomes were important forms of life. 

RNA World  see RNA. 

Sars-CoV  see Pandemic. 

Sars-CoV-2  see Pandemic.

Sars Virus  see Pandemic.

SBML (Systems Biology Markup Language)  Storage format of bioinformatics for sys-
tems biology. For example, this explains networks (e.g. metabolic or regulatory) well, 
making them machine-readable (as XML), such as for CellDesigner and SQUAD. 
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SCOP (Structural Classification of Proteins)  Classification of protein structure, based 
on structure and sequence and involving direct expert analysis by protein structure experts 
(in particular Alexey Murzin). There was initially the classical database (https://scop.mrc-
lmb.cam.ac.uk/legacy/). A comprehensive reclassification is SCOP2 (https://scop.mrc-
lmb.cam.ac.uk). For practical use (protein structure prediction and classification), SCOPe 
(Structural Classification of Proteins  – extended; https://scop.berkeley.edu) at the 
University of Berkeley (Universität Berkeley) is recommended, because the old classifica-
tion is simply extended and, for example, the ASTRAL structure databases are also used. 

Second Gödel’s Incompleteness Theorem  shows that sufficiently strong noncontradic-
tory systems cannot prove their own noncontradiction (a computer thus remains in the 
undecidable). The outstanding mathematician Kurt Gödel (1906–1978) deserves credit for 
proving, by means of mathematics, the existence of fixed limits for formal systems. 

Secondary Databases  Databases that integrate data and information from primary data-
bases and use them for further analyses, such as protein sequences for predicting protein 
structures or domains. 

Secondary Metabolism  Primary metabolites are central to metabolism and are found in 
many or nearly all (central metabolites) organisms. In particular, primary metabolism 
includes central carbohydrate metabolism (glycolysis, pentose phosphate pathway, and 
citric acid cycle), lipid metabolism (synthesis and beta-oxidation), and amino acid synthe-
sis and degradation, as well as nucleotide production, degradation, and recycling (sal-
vage). Secondary metabolites are additional metabolites that only occur in specific 
organisms and then have specific effects (pharmacological, neurotransmitters, ecological, 
signalling, etc.). 

Secondary Structure  In proteins, two important secondary structures, helices and beta 
strands, form from the sequence (also called primary sequence or primary structure) via 
hydrogen bonds. The latter can also assemble into beta-sheets. Here we can distinguish 
parallel and antiparallel ones, in the case of helices the frequent alpha helices (every 3.6 
amino acids one turn; i to i + 4 hydrogen bond, discovered by Pauling) and narrower ones 
(310-helix, every 3 amino acids one turn; i to i + 3 bridge) and wider ones (pi-helix, every 
4 amino acids one turn, i to i + 5 bridge). The secondary structure can be subdivided much 
more finely. Loops, the third type of secondary structure, are also more finely divided into 
bends, disordered regions, and typical loops. RNA also forms secondary structures, espe-
cially loops, stems, and pseudoknots (loop contact; true, stable knots would block RNA 
and do not occur in biology).

Sequence Comparison  Two sequences are compared by contrasting which amino acid 
residues are altered and which are conserved. You can either compare over the whole 
length (see global alignment), which is especially good for phylogenetic analyses, or only 
a piece (see local alignment), which is especially good to catch a local piece that is particu-
larly similar, especially the domain that has the highest sequence similarity, i.e. a charac-
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teristic domain of the protein. But then please remember that after that you should also 
examine the other pieces in the protein and assign the function. 

Server  see database.

Shannon Entropy  Measure of the information content of a message (unit: bit).

Signal Cascade  Signal path. 

Signalling Pthway  Signalling pathway. 

Signalling Pathway  Biological network that transmits a signal in which, for example, 
kinases and phosphatases (or several enzymes) interact (are interconnected) and regulate 
each other or each other in turn (e.g. activate and typically amplify cellular signals) and are 
responsible for certain functions and processes in the cell, e.g. cell growth and cell 
differentiation.

Simulation  see Modelling. 

Single Nucleotide Polymorphisms (SNPs)  Changes in the DNA sequence at exactly one 
nucleotide, which can lead to neutral, negative and positive health effects. Genes, proteins 
and sequences that are involved, for example, in the structure of the nervous system, such 
as at synapses, are thus assigned to their function with the aid of genome, sequence and 
domain analysis. A detailed overview of SNPs is provided, for example, by the database 
“Online Mendelian Inheritance in Man” (OMIM). 

Software  Commands (instructions) in the computer that are arranged in a meaningful 
way and perform a specific task, e.g. programs, databases, simulations, models (see also 
programs). 

Synthetic Biology  A branch of biology that deals with the technical use of biological 
processes.

Systems Biology Modelling  see mathematical modelling.

Tertiary Structure  see protein structure. 

Tipping Point  A new system state (attractor) is sought when the tipping point is passed. 
Because the old system state has been left far enough, the system will then enter a new 
state because the new attractor will then stabilize and reinforce itself again if the system is 
disturbed or changed enough.

Transcription  Part of gene expression that leads to the formation of RNA from DNA 
using a polymerase after the gene start sequence (promoter). 
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Transcription Factor Binding Sites  DNA motifs in the promoter to which a transcrip-
tion factor specifically binds. 

Transcription Factors  Bind in the promoter to specific DNA binding sites (DNA motifs, 
transcription factor binding sites) and regulate the transcription of a gene. 

Transcriptomics  Analysis of the transcriptome, the totality of all transcripts.

Translation  Part of gene expression that leads to the formation of proteins using an 
mRNA and the genetic code in the ribosome. 

Tree Formation Error  see long branch attraction. 

Turing-Computable  All calculations that a Turing machine can perform are therefore 
also called Turing-computable. The famous mathematician Alan Turing had considered 
and proved, how all possible mathematical calculations, especially of algebra, can be rep-
resented by five basic operations and a very long calculating tape. Of course, this also 
clearly defines the limits for formal systems and computability, such as for computers. In 
particular, aesthetic, ethical or moral judgments, but also self-reflection and, in mathemat-
ics, all numbers, quantities and concepts that cannot be described by an algorithm (calcu-
lation rule for computers) are not Turing-computable. 

XML (Extensible Markup Language)  Machine-readable language for Internet pages, 
used in bioinformatics to represent data as text files.
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19Tutorial: An Overview of Important 
Databases and Programs

Abstract

The tutorials are designed to walk you through important analysis steps and associated 
software that appear in the book, so that you learn to do the right thing as you practice. 
In doing so, we have tried to provide some tips as well. As always, practice is neces-
sary! It’s pretty easy to learn the software once by clicking, but learning to use it is only 
learned by repetition and by learning about the underlying algorithms and parameters. 
The tutorials and tips here are merely an aid to being able to do this a little more easily, 
but are of course no substitute for a course. Nevertheless, you can get to know the pro-
grams much better by practicing and using the tutorials alongside the book than by just 
reading the book: Because as everywhere, the same applies to bioinformatics: practice, 
practice, practice and look closely.

19.1	� Genomic Data: From Sequence to Structure and Function

Where Can I Find Genomic Data and Related Information?
Genome informatics is a “perennial” in bioinformatics. Classical genome databases such 
as Ensembl and UCSC provide an overview of annotation and genomic position. A well-
structured database is NCBI, which is a collection of various databases. It is a helpful entry 
site where one can find information on publications, genes, proteins, sequences, genomic 
positions, etc. For example, if one selects the gene database and searches for a gene (e.g. 
enter HIV-1 gag pol in the search window; Fig. 19.1), NCBI gives an overview of the 
genomic context, but also provides further information, such as interactions (Fig. 19.2).
The NCBI also offers an initial introduction to individual gene variants via the OMIM 
database (https://www.ncbi.nlm.nih.gov/omim). Here you can look up individual muta-
tions and genetic diseases or dispositions. To do this, simply select the OMIM database 
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Select in NCBI
gene database

Search Keyword:
HIV-1 gag pol

Press gag-pol

Fig. 19.1  Searching the gene database with the HIV-1 gag pol gene

Name and ID

Genomic 
context

More information about
individual reading

Fig. 19.2  Overview of the genomic context of the HIV-1 gag pol gene

and enter a search term (e.g. human immunodeficiency virus 1; Fig. 19.3). OMIM then 
displays information on pathogenesis and clinical data, for example, but also on the genes 
involved (e.g. IL-10) (Fig.  19.4). Interestingly, many of the statements also apply to 
homologous proteins in organisms that are not too distantly related (mammals, verte-
brates). Genome variability is studied more systematically in the 1000 Genomes Project 
(https://www.internationalgenome.org; including SNPs, insertions, deletions, copy num-
ber variation), but also in the ENCODE Project (https://www.encodeproject.org/).

A collection of datasets (e.g. microarray and next-generation sequencing, summary of 
experiment, download) can be found, for example, in the Gene Expression Omnibus 
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Select OMIM in
NCBI database

Search Keyword: Human
immunodeficiency virus 1

Press entry

Fig. 19.3  Searching the OMIM database with HIV-1

All information about
individual reading

Further clinical
information

IL10 gene has an
influence

Fig. 19.4  Overview of HIV-1 in the OMIM database

(GEO), cBioPortal, TCGA and GENEVESTIGATOR databases. For example, the GEO 
database contains a large number of experimental datasets from numerous publications. In 
addition, it offers the option of storing even unpublished datasets and using them for inter-
nal work, but without making them publicly available to anyone. GEO is accessible via 
NCBI and allows direct searches with keywords (e.g. gene name or terms; Fig. 19.5). In 
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our example, searching with IL-10 as the gene name yields 2097 records, e.g., an experi-
ment in the mouse with a total of five records (GSE56444) that studied the effect of IL-10 
receptor deficiency on macrophages (Fig.  19.5). In addition to information about the 
experiment, one can download the data or analyze it directly via GEO (Fig. 19.6). In this 
context, it is helpful to always first look at databases to see whether a similar experiment 
already exists, in order to avoid unnecessary and lengthy experimental work. On the other 
hand, it can also be advantageous for bioinformatic work to use already existing datasets, 
for example to set up or validate a bioinformatic model or to support predictions.

How Do I Find a Nucleotide Sequence?
You can find a sequence in NCBI and any genome database (e.g. UCSC and Ensembl). To 
do this, simply select the nucleotide database in NCBI and search for a term in the search 
window (e.g. IL-10 human; Fig. 19.7). On the results page, press FASTA to go directly to 
the desired sequence (see Fig. 19.7; if you press GenBank and Graphics, you can also 
display additional information on the genomic position).

Search Keyword: IL-10

2097 records and
66258 profiles

Fig. 19.5  Searching the GEO database with IL-10

5 different
data sets

Effect of IL-10
receptor deficiency
on macrophages

Expression
analysis in GEO
possible

Fig. 19.6  Overview of the results in the GEO database on IL-10
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Select nucleotide
database in NCBI

Search Keyword:
IL-10 human

Press FASTA Promoter region of the IL-10 gene

Fig. 19.7  Overview of how to find a nucleotide sequence in the NCBI database

How Can I Evaluate Omics Data?
In the book, we learned about some omics techniques, such as genomics, transcriptomics, 
or proteomics, and how they are related. It is important to know that systems analysis is 
not so easy to formalize. However, it is easy to recognize important ingredients about 
biological systems if you have enough biological knowledge. In practice, however, one is 
mostly occupied with collecting and evaluating omics data (e.g. own experiments or from 
databases, such as GEO). In most cases, the statistical software R is used, which allows 
analysis and graphical representation and is also widely used, e.g. with the Bioconductor 
tool for high-throughput data analysis (see Sect. 19.6). There are numerous online tutorials 
and already prescribed scripts, it is best to simply go to https://www.r-project.org/ and 
https://www.bioconductor.org/ for information. In addition, several genome analysis pipe-
lines exist, e.g. GensearchNGS, in which we collaborate (Wolf B, Kuonen P, Dandekar T 
et al (2015) DNAseq workflow in a diagnostic context and an example of a user friendly 
implementation. Biomed Res Int 2015:403–497. https://doi.org/10.1155/2015/403497). 
For proteome and transcriptome, our two papers Stojanović SD, Fuchs M, Fiedler J et al. 
(2020) Comprehensive bioinformatics identifies key microRNA players in ATG7-deficient 
lung fibroblasts. Int J Mol Sci 21(11):4126. https://doi.org/10.3390/ijms21114126) and 
Fuchs M, Kreutzer FP, Kapsner LA et  al (2020) Integrative bioinformatic analyses of 
global transcriptome data decipher novel molecular insights into cardiac anti-fibrotic ther-
apies. Int J Mol Sci 21(13):4727. https://doi.org/10.3390/ijms21134727) provide a good 
overview. For this it is best to look at the publication, there you will find instructions and 
you can practice yourself.

If you want to look a little more into machine learning, you can check out our analysis 
pipeline for diagnostic and prognostic signatures (Vey J, Kapsner LA, Fuchs M et  al 
(2019) A toolbox for functional analysis and the systematic identification of diagnostic 
and prognostic gene expression signatures combining meta-analysis and machine learn-
ing. Cancers [Basel], 11(10). pii: E1606. https://doi.org/10.3390/cancers11101606). A 
nice application example is also shown in the paper Schweitzer S, Kunz M, Kurlbaum M 
et al (2019) Plasma steroid metabolome profiling for the diagnosis of adrenocortical car-
cinoma. Eur J Endocrinol 180(2):117–125. https://doi.org/10.1530/EJE-18-0782).
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In addition, there is further special software that evaluates mass spectroscopy data, for 
example lipids with the software Lipid-Pro (Ahmed Z, Mayr M, Zeeshan S et al (2015) 
Lipid-Pro: a computational lipid identification solution for untargeted lipidomics on data-
independent acquisition tandem mass spectrometry platforms. Bioinformatics. 
2015;31(7):1150–1153. https://doi.org/10.1093/bioinformatics/btu796. PubMed PMID: 
25,433,698). The software and a tutorial can be found at https://www.neurogenetics.
biozentrum.uni-wuerzburg.de/services/lipidpro/. On the other hand, isotopolog data can 
be analyzed using Isotopo (Ahmed Z, Saman Z, Huber C et al (2014) ‘Isotopo’ a Database 
Application for Facile Analysis and Management of Mass Isotopomer Data, Database: 
The Journal of Biological Databases and Curation, Oxford University Press). For the soft-
ware and a tutorial go to https://www.tr34.uni-wuerzburg.de/software_developments/iso-
topo/. These are just three examples from my own work. There is a great deal of other 
software and development work available for analysing omics data from many research 
groups around the world (this is where individual searches help, according to the biologi-
cal problem).

How Do I Perform a Sequence Analysis?
The best way to do this is to use BLAST (Basic Local Alignment Search Tool). As we have 
already learned, BLAST is a heuristic search algorithm that allows nucleotide and protein 
sequences to be compared with a large database in terms of their local similarity (two-hit 
method). Thus, homologous genes can be identified and the individual positions compared 
in order to annotate unknown sequences, but also to find corresponding differences in 
other organisms (e.g. for the development of an animal model). Important parameters are 
the E-value and p-value. The E-value (expected value) indicates how likely it is that the 
match with a similar or better score will be found again in the database (depending on the 
size of the database), whereas the p-value indicates how random the match found is. If you 
want to find a similar sequence in the database, the hit should always have the lowest pos-
sible E-value and p-value (at least <0.05) and a high identity. BLAST can perform a num-
ber of searches, such as blastn for a nucleotide sequence and blastp for a protein sequence 
(see Figs. 19.8 and 19.10). But it can do much more: blastx translates a nucleotide sequence 
into a protein sequence and then searches against the protein database, tblastn searches 
with a protein sequence against a translated nucleotide database, and tblastx searches with 
a translated nucleotide sequence against a translated nucleotide database. What is impor-
tant to practice at this point? Going through the practice tutorial, learning the two stages 
of function mapping, first via domain mapping by searching the Conserved Domain Server 
at least at NCBI on the website (a few thousand domains in a database, that’s very fast), 
and only then searching the large database with millions of sequence entries and billions 
of nucleotides. There are also very good tutorials available on the NIH site to practice 
these different types of BLAST. You should practice several searches with BLAST (even 
try a meaningless sequence; see Sect. 12.1). For comparison, you can also try other pro-
grams or servers (e.g. the BLAST at EMBL or in Switzerland). We will illustrate the 
sequence analysis with two examples (see Figs. 19.8, 19.9, 19.10 and 19.11). Since our 

19  Tutorial: An Overview of Important Databases and Programs

https://doi.org/10.1093/bioinformatics/btu796
https://www.neurogenetics.biozentrum.uni-wuerzburg.de/services/lipidpro/
https://www.neurogenetics.biozentrum.uni-wuerzburg.de/services/lipidpro/
https://www.tr34.uni-wuerzburg.de/software_developments/isotopo/
https://www.tr34.uni-wuerzburg.de/software_developments/isotopo/


273

Sequence

BLASTn
(nucleotides)

Megablast (high
similarity)

Non-
redundant
database (nr)

Fig. 19.8  Search with a nucleotide sequence in blastn

Fig. 19.9  Result of the blastn search
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Sequence

BLASTp
(protein)

Non-
redundant
database (nr)

Fig. 19.10  Searching with a protein sequence in blastp

BLAST also displays domains
and active pages

BLAST shows high similarity to HIV-1 protease (pol protein codes e.g. for HIV-1
protease and reverse transcriptase)

Fig. 19.11  Result of the blastp search
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first unknown sequence is a nucleotide sequence, we choose a blastn search (Fig. 19.8). In 
addition, we choose megablast so as to achieve a high similarity of our sequence with the 
entries deposited in the database. To avoid duplicate result hits, we also select the non-
redundant database (each entry exists only once). As a result of the BLAST search, we get 
an overview of all hits found (here 217) including further information e.g. on the identity 
or the E-value. In our example, BLAST finds a high similarity (E-value: 0, identity: 100%) 
to the HIV-1 isolate N434 from Venezuela (Fig. 19.9).

In our second sequence example, we choose a blastp search and also the non-redundant 
database (Fig. 19.10). Our result indicates a high similarity (E-value: close to 0, identity: 
100%) to the HIV-1 protease (Fig. 19.11). Furthermore, BLAST also identifies conserved 
domains (e.g. catalytic domain at position 25–27, DTG).

What Else Should Be Considered in a Sequence Analysis?
Importantly, now that you have found a hit, you should verify your result and back it up 
with additional software searches, such as whether all the motifs or amino acid residues 
are there that I need for the protein function (see also the PROSITE and AnDom exam-
ples). It is also important whether BLAST allows searching back, i.e. whether there is a hit 
in the database again when I re-enter the sequence I hit with my query. Otherwise, it is 
important that all the clues to my sequence (all the tests, all the data, all the other program 
results) match each other and thus confirm the search. For example, a transcription factor 
(according to the BLAST search, because it was most similar to it) should then also have 
at least one DNA-binding domain in the domain composition, but also a protein localiza-
tion signal in the protein sequence, for example.

How Do I Perform a Simple Genome Annotation?
In addition to sequence analysis, for example to find out which gene is present, it is neces-
sary to annotate the promoter region and to examine it for transcription factor binding sites 
(TFBS). The promoter region can be detected with the software Berkeley Drosophila 
Genome Project (https://www.fruitfly.org/seq_tools/promoter.html; for prokaryotes and 
eukaryotes) and PRODORIC (Prokaryotic Database of Gene Regulation; https://www.
prodoric.de/vfp/), the corresponding DNA motifs, e.g. TATA box, can be recognized and 
a promoter can be identified. Transcription factors bind to specific DNA motifs (DNA 
binding sites) in the promoter, called TFBS, and thus regulate transcription. If I know the 
consensus sequence of TFBS, I can easily bioinformatically screen an unknown promoter 
sequence for possible binding sites, which I can use for further experimental investiga-
tions. For this purpose, besides programs that list experimentally validated TFBS (such as 
MotifMap), there are also numerous programs that predict TFBS, e.g. ALGGEN PROMO, 
PRODORIC, TESS, TRANSFAC, JASPAR or Genomatix. We will briefly show this for 
the two tools MotifMap and ALGGEN PROMO.  MotifMap offers three ways to find 
TFBSs, e.g. via a direct gene search (here with IL-10 in humans [Genome hg19]), display-
ing the corresponding TFBSs (e.g. NFAT2 with additional information such as position, 
motif and region) (Fig. 19.12).
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select gene tests

select genome

select IL10

TFBS found with
corresponding position and
further information

C 

Fig. 19.12  Searching for TFBS with MotifMap

ALGGEN PROMO, on the other hand, is a direct prediction tool for a corresponding 
sequence, for which TFBS matrices from TRANSFAC are used. After selecting SearchSite 
in ALGGEN PROMO, you can insert your sequence into the search window. An important 
parameter to consider is the “dissimilarity rate”, which indicates how high the tolerated 
deviation of the predicted TFBS to the used matrix may be (here 15%; feel free to set other 
values and see how the number of hits changes). As a result, all predicted TFBS including 
position and dissimilarity (here, e.g., for NF-AT2 five TFBS; the corresponding consensus 
sequence and matrix can also be seen) are displayed in ALGGEN PROMO (Fig. 19.13).

As can be seen, these prediction programs are quite easy to use and provide a relatively 
quick first insight into possible TFBS, such as unknown sequences, but usually show a 
high abundance of predicted binding sites. In this context, it is important to know the exact 
parameters of the individual programs in order to obtain meaningful results for further 
experimental investigation. If one is careless and chooses, for example, a too high “dis-
similarity rate”, I may get hits that are biologically none at all. Consequently, for further 
investigations, the position with the lowest dissimilarity rate should always be selected for 
the desired TFBS, i.e. the one with a high match to the search template (here for NF-AT2 
e.g. position 632–640 with a dissimilarity rate of <5%). In any case, it is necessary to vali-
date bioinformatically predicted TFBSs experimentally. Only then can I be sure that the 
transcription factor found actually has an effect on gene expression, otherwise only the 
DNA nucleotides of the prediction match (which is why I got a hit), but this has no biologi-
cal relevance.

Finally, another option is to label the genome sequence, examine it with BLAST, and 
thereby immediately identify the proteins it contains. For example, Psi-BLAST allows me 
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Fig. 19.13  Search for TFBS with ALGGEN PROMO

to annotate an unknown protein on the second BLAST run by including the unknown 
sequences in my search on the first run, i.e. doing a position-specific iterative matrix search 
(which is what Psi is in Psi-BLAST). But if you want to do this well, you should make 
many additional predictions, including looking at the structure, the localization, the 
domains, and only then you get quite good results and insights into the function (see also 
examples PROSITE and AnDom). The work of Gaudermann P, Vogl I, Zientz E et  al 
(2006) Analysis of and function predictions for previously conserved hypothetical or puta-
tive proteins in Blochmannia floridanus. BMC Microbiol. 2006;6:1). If one wants to be 
more precise, like the ENCODE consortium, and find all regulatory elements in a genome 
(and not just the proteins or genes), then it is advisable to map out conserved regions via 
closely related genomes and also to use active motif search programs such as motif-based 
sequence analysis tools (MEME) (for this, read the paper https://www.sdsc.edu/~tbailey/
papers/meme.ml.pdf and refer to the web site https://meme-suite.org/doc/meme.html).

Very handy to identify repetitive elements (recurring units) is the general software 
RepeatMasker (https://www.repeatmasker.org). We have also developed our own server, 
L1base, which finds LINE elements, i.e. large, repetitive, selfish DNA sequences (https://
line1.bioapps.biozentrum.uni-wuerzburg.de/; here you are redirected to the Charité page, 
https://l1base.charite.de, which shows the current further development of the server and a 
documentation). Another possibility is to search for repeats in protein sequences, where 
the tool REPRO (based on local alignment, Smith-Waterman, and subsequent iterative 
clustering; https://www.ibi.vu.nl/programs/reprowww/) is very useful. Again, the docu-
mentation on the website is recommended. Genome annotation then quickly becomes a 
science in itself. For the human genome, relevant sites are already recommended in the 
book chapter, but also mentioned here. The ENCODE entry page already mentioned also 
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provides a wealth of information. It is important to remember that these are only func-
tional annotations of elements. Some of the elements have only weak or no selection pres-
sure. For a comparison between vertebrates including humans, the UCSC genome browser 
is recommended (https://genome.ucsc.edu), which meanwhile compares a whole zoo of 
different genomes with each other (https://genome-euro.ucsc.edu/cgi-bin/hgGateway), but 
also includes information e.g. from the ENCODE project, such as methylation data, or 
predictions by RepeatMasker, such as LINE.

How Can I Create a Phylogenetic Family Tree?
Phylogenetic trees provide an overview of functional and evolutionary relationships. A 
number of software options have been described in the book for this purpose. It is impor-
tant that even a simple program like CLUSTAL (https://www.ebi.ac.uk/Tools/msa/clust-
alo/ [newest version: CLUSTAL omega]; https://www.genome.jp/tools/clustalw/ 
[somewhat older version, aligns pairwise sequences over their whole length quite fast and 
draws a phylogenetic tree]) with experience brings better results (with CLUSTAL it is 
important to take sequences of approximately the same length; in addition, depending on 
the presumed evolutionary distance, one can correct with matrices here). The more com-
plex softwares are correspondingly more complex to use. An example for accurate phylo-
genetic tree analysis is the PHYLogeny Inference Package (PHYLIP; https://evolution.
genetics.washington.edu/phylip.html), which allows the construction of phylogenetic 
trees from sequences based on various methods, such as parsimony, likelihood, and boot-
strapping (see the website for detailed documentation). Another option is the software 
MUSCLE (Multiple Sequence Comparison by Log-Expectation; https://www.drive5.com/
muscle/), which, in addition to multiple alignment, computes a phylogenetic tree based, 
for example, on the methods UPGMA (Unweighted Pair Group Method with Arithmetic 
Mean; fast method if there are many sequences) or Neighbor joining (better approximation 
to the true tree, but slow if there are too many sequences). The results from MUSCLE can 
also be saved in a format compatible with PHYLIP (Newick) and used there. Detailed 
documentation on MUSCLE can be found on MUSCLE (https://www.drive5.com/muscle/
manual/) or on the EBI website (https://www.ebi.ac.uk/Tools/msa/muscle/help/).

19.2	� RNA: Sequence, Structure Analysis and Control 
of Gene Expression

How Do I Find and Analyze an RNA Sequence and Structure?
During transcription, an RNA is produced that has a secondary structure. One important 
database is Rfam. It is easy to look up and use and gives an overview of different RNA 
families including sequence and structure. There are different functional RNA classes, 
such as miRNAs and lncRNAs, which have an impact on gene expression. Important data-
bases include miRBase (https://www.mirbase.org/) and LNCipedia (https://www.lncipe-
dia.org/), which provide specific information on sequence, structure and functional 
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interaction partners. Numerous RNA interaction partners can also be predicted bioinfor-
matically, for example with miRanda or TargetScan. It is important to note that these pre-
diction algorithms are based on different parameters, such as prediction by seed region 
and/or folding energy, and often find too many potential interaction partners and have a 
high false positive rate. For a basic introduction and further information, we recommend 
our two review articles (https://www.ncbi.nlm.nih.gov/pubmed/25486579; https://www.
ncbi.nlm.nih.gov/pubmed/28035947), which introduce numerous databases and programs 
for the functional analysis of miRNAs and lncRNAs and discuss problems in the analysis. 
For practice, one can take a look at our analysis pipeline (https://academic.oup.com/bib/
article/21/4/1391/5553031).

If one has the RNA sequence, one can also have the secondary structures predicted 
bioinformatically (e.g., structure determination by energy minimization). RNA secondary 
structure folding is a complex process: In addition to a complementary sequence, the fold-
ing energy must also be considered. Not every fold is also thermodynamically optimal 
(should always have a low folding energy), especially since there are also many secondary 
structures (e.g. stem-, hairpin- and interior-loop; RNA is therefore not a linear structure). 
RNAfold and mFold are softwares that can do this and give you a reliable and easy RNA 
fold. Let’s show an example in RNAfold. After calling the server, one can enter the 
sequence in the search window, using the preset parameters minimum free energy of fold-
ing and partition function to get a single secondary structure (Fig. 19.14). As a result, one 

Fig. 19.14  Secondary structure folding with RNAfold
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Fig. 19.15  Result of secondary structure folding with RNAfold

then gets the optimal RNA folding including colored marking of the matching pairing as 
well as the corresponding base pairing and energy displayed (Fig. 19.15). However, in 
order to assess these correctly, it is important to have several folding variants displayed 
and to compare the conservation of the five best energy folds of the RNA in order to better 
assess the stability of the individual regions. It is therefore advisable to change the param-
eters for this purpose or to use mFold as well. If, in addition, a protein can presumably 
bind, the single-strand regions and protein-binding motifs are important (shown, for exam-
ple, by RNAAnalyzer or RegRNA). Overall, therefore, more difficult, rather something 
for experienced users and users.

In addition, there are certain RNA motifs, e.g. regulatory RNA elements, such as iron-
responsive elements (IRE) and riboswitches, which occur in humans, but also in bacteria. 
They take on regulatory functions and, for example, control translation depending on the 
iron content in order to regulate iron metabolism in humans and animals, e.g. 
IRE. Bioinformatically, it is of course also possible to find RNA motifs. It is best to use 
several criteria, such as sequence, structure and folding energy. Only if all parameters are 
correct, i.e. lie within a certain limit, should the program give a corresponding hit, thus 
achieving a higher accuracy. The RNAAnalyzer (https://rnaanalyzer.bioapps.biozentrum.
uni-wuerzburg.de/) gives a good overview of which regulatory elements are hidden in the 
RNA, but also whether it is a catalytic RNA, for example (also translates RNA into protein 
and allows structural analyses via AnDom). To do this, simply call up the page and enter a 
sequence in the search window (Fig. 19.16). The RNAAnalyzer then examines this for 
possible IREs and indicates the corresponding position (here at position 71), sequence, 
structure and folding energy (Fig. 19.17; in addition, further general information such as 
exon and UTR range and catalytic RNA motifs are also given).

Another helpful software is the Riboswitch Finder (https://riboswitch.bioapps.biozen-
trum.uni-wuerzburg.de/), which focuses on regulatory riboswitches. To do this, simply 
enter the desired sequence in the search window (Fig. 19.18). The program then indicates 
the riboswitch found with the corresponding position (here at position 1288), sequence, 
structure and folding energy (Fig. 19.19).
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Fig. 19.16  Searching for IRE elements with the RNAAnalyzer
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Fig. 19.17  Result of the IRE search with the RNAAnalyzer
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Fig. 19.18  Searching for riboswitches with the Riboswitch Finder

These are two examples from our own work and form a good introduction. In addition, 
there is also a variety of other software, such as the RegRNA server (https://regrna.mbc.
nctu.edu.tw/html/prediction.html), which identifies regulatory RNA and functional RNA 
motifs, e.g. splice site, ribosome binding site, riboswitches and RNA interaction sites for 
miRNAs, in a sequence (for more information see documentation https://regrna2.mbc.
nctu.edu.tw/documentation.html). As with all analyses, always check the output against 
each other using independent programs.

19.3	� Proteins: Information, Structure, Domains, Localization, 
Secretion and Transport

Where Can I Find Information on Proteins?
Information, for example on sequence and structure, can be found in the PDB database, 
where protein structures (experimentally determined structures) are deposited. This is a 
good entry page where you can get a lot of information. You can look at individual pro-
teins, but you can also directly download the three-dimensional structure as a PDB file or 
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Riboswitch on the plus strand
at position 1288 with corresponding
sequence, structure (base pairing)
and energy

RNA folding with riboswitch

Fig. 19.19  Result of the riboswitch search with the Riboswitch-Finder

FASTA with all the important information. In our tutorial we show the inhibition of the 
HIV-1 protease by ritonavir (Fig. 19.20). To do this, one can simply search for a keyword 
or directly with the PBD ID in the database (here 1HXW; Fig. 19.20). On the results page, 
one can, for example, view the structure of the complex (shown here), but also display 
further information, such as the sequence and annotation (see tab in the figure above) (the 
download can be accessed to the right of the PDB ID).
Another useful database is UniProt, which, in addition to sequence and structure, provides 
information on domains, interaction partners and function. Here, too, it is recommended 
to consult different databases for the relevant question and to compare the information. In 
addition, there are more specific databases and software that collect information on, for 
example, localisation, secretion and transport, e.g. the SPdb (Signal Peptide database) 
database. SPdb lists signal peptides and associated DNA and protein sequences from 
archaea, prokaryotes and eukaryotes based on Swiss-Prot and EMBL (a detailed tutorial 
can be found on the website https://proline.bic.nus.edu.sg/spdb/help.html). For example, 
if I know the localisation, I can make statements about the function and then in turn carry 
out further analyses, e.g. find all the enzymes and interaction partners involved for a sig-
nalling pathway, e.g. using the KEGG database. Bioinformatically, I use sequence and 
programs with neural networks or hidden Markov models. Using a training dataset of 
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Fig. 19.20  PDB entry of the inhibition of HIV-1 protease by ritonavir

proteins with known, experimentally verified localization, these programs learn to predict 
a particular localization based on the sequence and can then match unknown sequences or 
sequences of new interest accordingly. Example programs include SignalP (prediction and 
localization of signal peptides in prokaryotes and eukaryotes), ChloroP (prediction of 
chloroplast transit proteins), TargetP (prediction of subcellular localization of proteins in 
eukaryotes; based on ChloroP and SignalP), and TMHMM (prediction of transmembrane 
domains). For details on each program and underlying parameters, it is best to refer to the 
respective websites. In this tutorial we want to show an example with the TargetP server 
and choose a signal peptide (human ER protein 44; ERP44; UniProt ID Q9BS26) and 
again the HIV-1 protease (proteases localized in lysosomes or cytosol). On the page, we 
paste both sequences as FASTA format into the corresponding search window and select 
all default parameters (not shown here). On the results page, we then get an overview of 
the function and localization of the protein, distinguishing between mitochondrial target-
ing, chloroplast transit and signal peptide and another function (other) (Fig. 19.21), the 
localization accordingly between mitochondrion, chloroplast and ER (signal peptide). For 
our example, it shows that ERP44 is a signal peptide (score column: SP close to 1) and is 
localized in the ER (secretory pathway; S in column Loc), whereas HIV-1 protease has 
none of the defined functions (high score in column other), i.e., it does not contain mito-
chondrial targeting, chloroplast transit, and signal peptide (Fig. 19.21). To look if ERP44 
is a signal peptide, one can still check this afterwards with SignalP (not shown here). Thus, 
it can be seen that TargetP groups the two proteins correctly, so that it can assume that this 
would give meaningful predictions in the case of an unknown sequence. It is therefore 
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ERP44 is
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(does not contain mitochondrial targeting,
chloroplast transit and signal peptide).

Fig. 19.21  Signal peptide prediction with TargetP

helpful in this context to consult proteins with known function and localization for the 
analysis, in order to check on one’s own and make sure that the software also provides 
trustworthy predictions.

Which Software Can I Use to Display/Visualize a Protein Structure?
You can visualize and animate the protein structure with PyMOL or RasMol (enter file or 
PDB-ID). For this purpose, please work through the individual tutorials of the programs 
yourself. Useful especially for unknown structures is a Ramachandran plot, which shows 
the distribution of phi and psi torsion angles. An example software is the FOS server. Here 
one can enter a PDB ID (here 1hho, human oxyhemoglobin; multiple IDs are also allowed; 
Fig. 19.22, left). Since there is a different distribution of the phi and psi torsion angles of 
the proteins in the helix and leaflet structure (for more information on protein geometry 
and Ramachandran plot, see the website https://www.cryst.bbk.ac.uk/PPS95/course/3_
geometry/index.html), the software is able to calculate this defined arrangement. As a 
result, the distribution of proteins is displayed in a plot (Fig. 19.22, right). In our Fig. 19.22, 
a cloud of dots can be seen in the lower left square, indicating primarily right-handed 
alpha helices (if the cloud of dots were in the upper left, they would be primarily beta 
helices).

How Do I Find and Analyse Protein Structures/Domains (e.g. Tyrosine Kinases)?
Proteins have a very specific structure (e.g. secondary structure of helix and leaflet) and 
consist of domains, independent folding units that are responsible for very specific func-
tions. To get direct information about protein structures, you can use the databases SCOP 
(Structural Classification of Proteins) and CATH (Class Architecture Topology Homology) 
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(SCOP is shown later with AnDom). In these databases you can search for a protein and 
look at the corresponding structure and class, but also find, for example, related proteins 
of these families and associated homology models in other organisms. Have a look in the 
database yourself. The online tutorial (supplement) of our DrumPID database (https://
database.oxfordjournals.org/content/2016/baw041.full) is also helpful. Both of these data-
bases are knowledge-based and classify known proteins. To perform domain analysis, for 
example, the PROSITE or AnDom databases are helpful. AnDom is a domain annotation 
(domain analysis) software that uses SCOP classification. The ExPASy server (PROSITE) 
is the website from the Swiss Bioinformatics Institute (Schweizer Bioinformatik-Institut). 
As explained in the book, this is an expert system for protein sequence analysis. For exam-
ple, I can use various software options here to check whether my protein sequence is really 
the enzyme I suspect, if that would be the BLAST result, for example. To do this, you can 
use PROSITE to see if all the important catalytic amino acid residues are there, or “pep-
tide properties” to check if the amino acid composition to the protein is correct, e.g. if the 
protein has enough hydrophobic amino acids to fit into the membrane at all. This can then 
be checked with AnDom. Let us illustrate this with an example (Figs. 19.23 and 19.24). As 
a basis, we take the result of the blastp search, where we found a high similarity to the 
HIV-1 protease (e.g. catalytic domain at position 25–27, DTG) (see Fig. 19.11). To verify 
this, we analyze the sequence using PROSITE (Fig. 19.23). To do this, simply enter the 
protein sequence in the search window and start the search. As a result, a protease domain 
at position 20–89 and an active site of catalytic protease activation at position 25 can be 
detected (Fig. 19.23), which corresponds to the BLAST result.

To check this and additionally obtain the structure classification, one can additionally 
examine the sequence with AnDom (Fig. 19.24). To do this, also insert the sequence into the 

Fig. 19.23  PROSITE search with the HIV-1 protease
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search window and select the preset BLAST settings. AnDom then computes the available 
domains and associated SCOP classification based on a Reversed Position Specific BLAST 
(RPS-BLAST), a very fast sequence comparison against a domain database (alternatively, 
AnDom allows searching with the IMPALA algorithm, but this is 10 to 100 times slower). In 
our example, we again obtain an HIV-1 protease and the SCOP ID b.50.1.1 (Fig. 19.24).

In the further course, one can follow this SCOP ID and find out about the protein family 
(here retropepsin), its structural composition and associated protein domains, but also 
view and download the corresponding structure in more detail (Fig. 19.25). Alternatively, 
one can also search directly in the SCOP database for the HIV-1 protease or with the cor-
responding ID (not shown here).

Other useful databases are SMART (Simple Modular Architecture Research Tool; for 
annotation, search by name or sequence), Pfam or ProDom (Protein-Domain; based on 
consensus or multiple alignment of a protein or DNA sequence), please inform yourself on 
the corresponding pages.

In addition, domains and functional motifs (based on SMART and Pfam) of eukaryotic 
proteins can be identified with the ELM server (Eucaryotic Linear Motif), which can also 
predict signal peptides and provide information on secondary structure. Alternatively, one 
can also perform a multiple alignment of several sequences oneself in order to find domains 
or conserved regions and specific differences. For this purpose, the already mentioned 
software MUSCLE is a useful tool (see tutorial section phylogenetic tree). It can be used 
online on the EBI website (https://www.ebi.ac.uk/Tools/msa/muscle/), alternatively it can 
be installed and used locally (https://www.drive5.com/muscle/).

Fig. 19.24  AnDom search with the HIV-1 protease
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Fig. 19.25  Overview of the HIV-1 protease in the SCOP database

19.4	� Cellular Communication, Signalling Cascades, Metabolism, 
Shannon Entropy

Communication in prokaryotes usually takes place via two-component systems, which 
enables direct control (sensor activates responder, which then immediately initiates tran-
scription – thus responding quickly to an external stimulus). The situation is much more 
complex in eukaryotes: Here it is mostly indirect and connected with intracellular com-
munication, e.g. via glucocorticoids and second messengers. Often there is also combina-
torial regulation via complex signalling cascades. To understand this, it is advantageous to 
take a closer look at the RNA, DNA and protein networks.

Topological and Dynamic Modelling of Regulatory Networks
Protein–protein interactions (PPI) play an important role in the organism. One example is 
signaling cascades, in which different proteins interact with each other (e.g. activate one 
after the other) and typically regulate or amplify cellular signals. In addition to pairwise 
interactions (number of possible interactions [n2 − n]/2), there are of course also com-
plexes (number of possible complexes is 2n) between proteins, so that a large number of 
possible PPIs exist, which makes it difficult to detect all interaction partners experimen-
tally or to predict them bioinformatically. In some cases, there are also tissue-specific 
interactions.

How Do I Find and Analyse Protein Interactions and Networks?
The context of molecules is a current topic in bioinformatics, which is the so-called inter-
actomics. Examples of PPI can be found in the STRING (experimental and predicted PPI), 
PlateletWeb, KEGG, iHOP and HPRD databases (see individual tutorials on the pages). 
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Finally, entire interactome contexts are already being modeled. A nice example is the 
E-Cell Project (https://www.e-cell.org). It is important to know the basic properties of 
each database. The STRING database (Search Tool for the Retrieval of Interacting Genes/
Proteins) contains numerous experimentally determined or bioinformatically predicted 
(based on existing gene neighborhood, gene fusion, co-occurrence and co-expression) 
protein interactions. However, one also obtains a great deal of information about their 
functions. STRING scores the interactions according to its own scoring system (0–1). 
Good, trustworthy interactions have a high score, but one should always look where and 
how the interactions were found. The PlateletWeb database (our developed database) con-
tains interactions primarily for platelet, but also for other human cells, such as phosphory-
lations. The listed interactions in PlateletWeb are based on experimental datasets, e.g. 
proteomics, so are not bioinformatically predicted. We will show an example for the 
platelet-derived growth factor receptor beta (PDGFRB) (Fig. 19.26). For this, a total of 66 
interaction partners were found in human cells, of which 46 are platelet-specific interac-
tion partners, e.g. interaction with ARAF, based on proteomic data (Fig. 19.26). Another 
important database is KEGG (Kyoto Encyclopedia of Genes and Genomes). This contains 
numerous network maps for important signaling pathways, e.g., Wnt, MAPK, Ras-Raf-
Mek-Erk signaling pathways, apoptosis, or the cell cycle, but also provides a great deal of 
additional information, e.g., orthologous genes, on metabolism, enzymes, diseases, and 
drugs. The databases iHOP (information hyperlinked over proteins) and HPRD (Human 
Protein Reference Database) contain experimentally determined protein interactions and 
numerous related information. With all these databases, it is very easy to find individual 
interaction partners or entire signalling pathways (e.g. for a disease) with which one can 
then put together a network. This can then be studied in more detail, for example to 

Search PDGFRB

Example: ARAF
interaction in the platelet 

total 66
Interaction partners,
of which 46 Platelet-specific
interaction partners

Fig. 19.26  PlateletWeb database overview
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understand the network topology or intercellular communication: What goes wrong in the 
network so that a tumor develops? What happens after an infection with a pathogen? What 
is the effect of a drug? What is a potential drug target? But you can also easily find 
orthologous genes to identify commonalities or differences. This can be helpful, for exam-
ple if I want to do experiments in the mouse, it is beneficial to know what the commonali-
ties are in the interactions and networks. The network can also be used for dynamic 
modeling (in silico simulation) to better understand the behavior of the network after, say, 
infection or drug administration. With all that said, one should be aware that one needs to 
be careful even with the topology (machine-readable drawing software: CellDesigner, 
Cytoscape): If I miss an important network node (a regulatory protein, e.g. a kinase), all 
predictions will be wrong – at the edge of the network, in side cascades, I am much more 
likely to make a mistake, the network is robust here. In the same way, the semiquantitative 
models (e.g. with Jimena, SQUAD) are only approximate descriptions. If you want to 
describe a system more precisely, for example with differential equations, you need a lot 
of and time-resolved data. But even with the semiquantitative models, a number of cycles 
together with experimental verification (usually in collaborations) are necessary to ensure 
that I have sufficiently considered all the connections and components in my network that 
are important for the biological process.

How Do I Perform Network Analysis and Modeling of Regulatory Networks?
Best done by (a) network reconstruction, (b) network analysis, and (c) temporal analysis 
of a network (biological system).

	(a)	 A network reconstruction can be performed using a transcriptome-interactome map-
ping. For this, significantly expressed genes from an experimental dataset (own exper-
iments or e.g. microarrays from the GEO database; please always check here what 
exactly was investigated and how the experiment was performed [which cell and array 
type etc.]) are mapped to the interactome (e.g. PPI from STRING database). This can 
be done using, for example, a mySQL database, which is free database creation soft-
ware. To do this, simply upload the microarray dataset and the interactome as a table 
and reconstruct the network using the command Select * From ‘TableMA’, ‘TableI’ 
Where (‘TableMA’.id = ‘TableI’.A OR ‘TableMA’.id = ‘TableI’.C) (MA = microar-
ray; I = interactome; OR, since protein ID can occur in column A or C). Then save the 
result as .sif (simple interaction file) to be able to read it into Cytoscape later. For step 
a), it is best to refer to our two papers (https://www.ncbi.nlm.nih.gov/pubmed/24558299; 
https://www.ncbi.nlm.nih.gov/pubmed/28265997), which provide a methodological 
overview and a tutorial.

	(b)	 To visualize and functionally analyze the created network, you can use CellDesigner 
and Cytoscape. CellDesigner is a classical software for the creation of gene regulatory 
and biochemical networks, but also includes numerous tools and packages, e.g. for 
dynamic simulations and analyses. Cytoscape also allows the visualisation of a net-
work, but also data integration (e.g. microarray) and also has numerous plugins for 
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additional analyses, e.g. network and functional analysis (Cytoscape allows different 
formats to be loaded, for example .sif). The two plugins BiNGO (GO annotation) and 
ClueGO (GO annotation and other databases such as KEGG) are particularly helpful 
for detecting the associated functions and signalling pathways for all proteins. From 
this, you can in turn create a subnetwork of all proteins for a particular process or 
signaling pathway and examine it in detail. To examine the network topology, the 
plugin NetworkAnalyzer is suitable. Important topological network parameters are, 
for example, the average number of interaction partners, network centrality (provides 
information on robustness) and heterogeneity (provides information on organization/
distribution), which you should examine in any case. With the help of the analyses in 
Cytoscape, you can get a general overview of the network topology, but you are also 
able to detect important hubs (potential targets), which you can further investigate by 
means of mathematical modeling c) and then validate experimentally. For step b), 
please also refer to our two papers (https://www.ncbi.nlm.nih.gov/pubmed/24558299; 
https://www.ncbi.nlm.nih.gov/pubmed/28265997). Another option is provided by our 
paper miRNAs (https://pubmed.ncbi.nlm.nih.gov/30421407/). There is also a very 
helpful online tutorial on Cytoscape where you can learn about features, plugins, etc. 
In addition, other tools for functional analysis and visualization of omics data exist, 
such as g:Profiler, GSEA and EnrichmentMap (a nice overview is shown in the paper 
[https://www.nature.com/articles/s41596-018-0103-9]).

	(c)	 The mathematical modelling of regulatory networks is a widespread field of applica-
tion in bioinformatics. This enables us to analyze the behavior of a network over time 
in order to validate experimental data or to simulate experiments in silico in advance. 
For the mathematical modeling of regulatory networks, there are the Boolean, quanti-
tative and semiquantitative methods. In principle, these methods consider the nodes 
(proteins) of a network according to their state between 0 and 1, i.e. either activated 
(On; maximally activated = 1) or inhibited (Off; maximally inhibited = 0). According 
to the initial state (how much is the node activated/deactivated), the further time 
course, i.e. how does the state of the node change over time, is calculated for each 
individual node of the network. In this way, the behavior or the network interconnec-
tion can be examined in more detail, whereby corresponding network effects, i.e. the 
respective effect of a node, also become clear. Boolean modeling always considers the 
On/Off -(0/1-) state of a system, i.e. the node is either activated (On; 1) or inhibited 
(Off; 0). Quantitative modeling is useful for kinetic data, such as Michaelis–Menten 
kinetics. Here one can look at the system state of a network in the interval between 0 
and 1, but this requires information about the kinetics. A combination of both methods 
is semiquantitative modeling, whereby one is able to consider the system state in the 
interval between 0 and 1 as well, but this can be done without knowledge about the 
kinetics. An example software for semiquantitative modeling is SQUAD, where the 
system state of a network is first represented using a discrete system (Boolean sys-
tem), identifying all steady-state states, which is then transformed into a dynamic 
system (differential equation, exponential function). SQUAD identifies all steady 
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states using the reduced-order binary decision diagram (ROBDD) algorithm. A steady 
state is a network state to which the network returns, i.e. a stable state that is reached 
again even after changes or disturbances and does not change. Especially helpful is the 
perturbation function in SQUAD, with which one can write one’s own protocol and 
define exactly which activation a certain node has at a certain point in time, in order to 
map or predict the simulation e.g. according to the experimental data and the mutation 
background (administration of a drug, knockouts, activation of receptors). For step c), 
there is a good tutorial for SQUAD and an example network (T-helper cell network) 
that you can practice with to get started. In addition, you can practice a bioinformatics 
in silico simulation on your own by watching our online tutorial (https://www.ncbi.
nlm.nih.gov/pubmed/27077967). Here you will be shown all the necessary steps and 
can “recreate” it yourself (scripts for simulation can be found there as well). An alter-
native is our own software Jimena, which also has a nice online tutorial (https://www.
bioinfo.biozentrum.uni-wuerzburg.de/computing/jimena_c/).

How Do I Perform Metabolic Modeling of Metabolic Pathways/Fluxes?
It should be noted that one needs as input file for the elementary mode analysis a list of all 
enzymes (reversible or irreversible should be decided according to the physiological con-
ditions) and a list of all enzyme substrates. Then the given algorithms can calculate all 
modes effortlessly. But unfortunately, an enzyme can have more substrates than known in 
the KEGG database (https://www.genome.jp/kegg/). So, in addition, one has to consider 
biochemical knowledge, literature and databases like the BRENDA database (https://
www.brenda-enzymes.de), which collects very many substrates for an enzyme, along with 
information about Michaelis–Menten constant and biochemistry. Finally, metabolic 
enzymes without substrate or under special conditions (e.g. without iron) can suddenly 
acquire new regulatory functions.

It is interesting to note that dynamic modelling using gene expression data is only an 
approximation of the true fluxes, but in practice such gene expression data are much more 
likely to be available than the laborious determination of metabolite concentrations. 
Dynamic modelling can then also look at true concentrations and kinetics for metabolites, 
for example using the software PLAS (Power Law Analysis Software – modelled with 
power functions; https://enzymology.fc.ul.pt/software/plas/). In addition, for the calcula-
tion of metabolic pathways/fluxes (elementary mode analysis and flux mode calculation) 
there are our developed programs Metatool (calculation of all possible metabolic path-
ways; the Metatool input files have to be edited exactly, otherwise the simple program 
crashes. It is recommended to start with a simple example, see online tutorial, and then 
adapt the example file step by step) and YANAsquare (calculation possible for certain situ-
ations, e.g. exponential growth with glucose as nutrient source or without oxygen: which 
pathways are then active and how strongly, see exercise tasks for elementary mode analy-
sis). As a first introduction and good basis for metabolic analysis, the online tutorials for 
Metatool (https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/metatool_4_5/; 
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https://pinguin.biologie.uni-jena.de/bioinformatik/networks/) and YANAsquare (https://
www.bioinfo.biozentrum.uni-wuerzburg.de/computing/yanasquare/) are recommended at 
this point. Of course, one can look at enzymes in more detail, for example with the help of 
metabolic control theory. A good introduction is the book by David Fell and Keith Snell 
(1997), which shows how to calculate the strength with which an enzyme controls a meta-
bolic flux, regulatory coefficients and the like: Understanding the Control of Metabolism. 
Also helpful is the book by Reinhart Heinrich and Stefan Schuster (1996) The Regulation 
of Cellular Systems. More recent results can be found in numerous individual publications 
(just browse the Internet yourself).

How Can I Better Understand Signal Cascades by Measuring the Encoded 
Information?
Here we have learned about Shannon entropy. An encoding is done with bits, and there are 
different levels of encoding. The paper by Heinrich et  al. (2002) nicely translates the 
signal-to-noise problem into a biological application example, kinase signal cascade 
(Heinrich R, Neel BG, Rapoport TA (2002) Mathematical models of protein kinase signal 
transduction. Mol Cell 9(5):957–970).

The decoding of protein or nucleotide sequences using the genetic code is fast and reli-
able, but the other codes are much more difficult to decipher. For example, the three-
dimensional structure is difficult to predict from the protein sequence (something for 
specialists; the accuracy for the best methods [e.g. Zhang lab, QUARK server: https://
zhanglab.ccmb.med.umich.edu/QUARK/ as well as David Baker lab, Robetta: 
https://robetta.bakerlab.org], if the structure is not too complex and unknown, is about 4–6 
angstroms). Therefore, we focus more on 3-D predictions by homology modeling. True 
3-D predictions for RNA (more degrees of freedom) are even more difficult. Sugar code 
decoding is just beginning (https://www.ncbi.nlm.nih.gov/books/NBK1965/; NIH 
Bookshelf Glycomics; Chauhan JS, Bhat AH, Raghava GP, Rao A (2012) GlycoPP: a 
webserver for prediction of N- and O-glycosites in prokaryotic protein sequences. PLoS 
One 7(7):e40155. https://doi.org/10.1371/journal.pone.0040155). And the lipid code is 
even less understood.

Are There Also Problems for the Computer, and When Does It Become Difficult for 
the Computer?
This is an exciting topic for computer scientists. In practice one should be careful to think 
that there are simple general solutions how fast a computer will solve a given task. The 
Wikipedia page (https://en.wikipedia.org/wiki/P_versus_NP_problem) about this is 
already very instructive. But Gerhard J.  Woeginger’s page (https://www.win.tue.
nl/~gwoegi/P-versus-NP.htm) only opens the eyes how difficult, exciting and versatile this 
seemingly simple topic is, especially in the formulation: If the solution to a problem is 
easy to check for correctness, is the problem itself easy to solve? If so, all NP-problems are 
convertible into P-problems; but probably this is not the case, or at least it has been stub-
bornly open as a question for decades.
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19.5	� Life Always Invents New Levels of Language

Synthetic Biology: Where Can I Find Suitable Databases and Literature?
Concrete insights into the field of work could be mentioned here:

	 (a)	The GoSynthetic database (compares natural and engineered processes): Liang C, 
Krüger B, Dandekar T (2013) GoSynthetic database tool to analyse natural and 
engineered molecular processes. Database (Oxford) 2013:bat043. https://doi.
org/10.1093/database/bat043. PubMed PMID: 23,813,641; https://gosyn.bioapps.
biozentrum.uni-wuerzburg.de.

	 (b)	Our PCT application and description of nanocellulose computer chip: Dandekar T 
(2015) Invention “Intelligent nanocellulose film for improved smart cards” 
04/27/2015 File number DE 102015 005307.8 received. Dandekar T (2016) 
Modified bacterial nanocellulose and its uses in chip cards and medicine PCT 
U30719WO, published 3rd Nov 2016.

	 (c)	However, it is also very exciting to work through the other references (Church, 
Grass, Goldman) on the DNA topic or the current developments in the field of 
nanocellulose: Dumanlı AG (2016) Nanocellulose and its composites for biomedi-
cal applications. Curr Med Chem. PubMed PMID: 27,758,719; Abitbol T, Rivkin 
A, Cao Y et al (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin 
Biotechnol 39: 76–88. https://doi.org/10.1016/j.copbio.2016.01.002. Review. 
PubMed PMID: 26,930,621.

	 (d)	It is even better to put this in perspective and comparison with similar new develop-
ments. This makes it even better clear that it is a general development that we will 
soon have a new molecular technology between molecular biology, computational 
biology, electronics and nanotechnology, which will start a new industrial revolu-
tion after the computer, from which we can greatly benefit. Important technologies 
in this respect are in particular:

Optogenetics

Mühlhäuser WW, Fischer A, Weber W et al (2016) Optogenetics – bringing light into the 
darkness of mammalian signal transduction. Biochim Biophys Acta 1864(2):280–292. 
https://doi.org/10.1016/j.bbamcr.2016.11.009. [Epub ahead of print] Review. PubMed 
PMID: 27,845,208.
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3D Printer

Biomaterials: ‘Bones’ made with 3D printer. Nature. 2016 Oct 6; 538(7623): 8. https://doi.
org/10.1038/538008a. PubMed PMID: 27,708,302.

Coulais C, Teomy E, de Reus K et al (2016) Combinatorial design of textured mechanical 
metamaterials. Nature 535(7613):529–532. https://doi.org/10.1038/nature18960

Wehner M, Truby RL, Fitzgerald DJ et  al (2016) An integrated design and fabrication 
strategy for entirely soft, autonomous robots. Nature 536(7617): 451–455. https://doi.
org/10.1038/nature19100

Molecular Imprinting

Cutiongco MF, Goh SH, Aid-Launais R et al (2016) Planar and tubular patterning of micro 
and nano-topographies on poly(vinyl alcohol) hydrogel for improved endothelial cell 
responses. Biomaterials 84:184–195. https://doi.org/10.1016/j.biomaterials.2016.01.036

Molecular machines (the 2016 Nobel Prize in Chemistry, after all!):

https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/popular-
chemistryprize2016.pdf

Capecelatro AN (2007) From Auld Reekie to the City of Angels, and all the Meccano in 
between: A Glimpse into the Life and Mind of Sir Fraser Stoddart. The UCLA USJ, 
20, 1–7.

Feringa BL (2011) Ben L. Feringa. Angew. Chem. Int. ed., 50, 1470–1472.
Peplow M (2015) The Tiniest Lego: a tale of nanoscale motors, rotors, switches and 

pumps. Nature, 525, 18–21.
Stoddart JF (2009) The master of chemical topology. Chem Soc Rev., 38, 1521–1529.
Weber L, Feringa BL (2009) We must be able to show how science is beneficial to society. 

Chimia 63(6):352–356.
Current insights into this new subject area are developing at a rapid pace, incidentally also 

due to optogenetics:
Howe MW, Dombeck DA (2016) Rapid signalling in distinct dopaminergic axons during 

locomotion and reward. Nature 535(7613):505–510. PubMed PMID: 27,398,617; 
PubMed Central PMCID: PMC4970879.

Li N, Daie K, Svoboda K et al. (2016) Robust neuronal dynamics in premotor cortex dur-
ing motor planning. Nature 532 (7600):459–464. https://doi.org/10.1038/nature17643. 
PubMed PMID: 27,074,502; PubMed Central PMCID: PMC5081260.

Tovote P, Esposito MS, Botta P et  al (2016) Midbrain circuits for defensive behavior. 
Nature 534(7606): 206–212. https://doi.org/10.1038/nature17996. PubMed PMID: 
27,279,213.
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Bioinformatics models and approaches are then built on this data, which can then explain 
entirely new levels and answer questions, such as how our brain and consciousness func-
tion, or model global problems and master global digitalisation. Starting with simple bio-
informatics applications and calculations, these examples show a global context. Another 
way to globally integrate bioinformatics and your own results is the WikiMedia Foundation, 
especially Wikipedia (everyone can and should co-edit if they can contribute knowledge to 
a term). But it also makes sense to get familiar with the WikiMedia infrastructure, e.g. 
Wikidata (https://www.wikidata.org/wiki/Wikidata:Main_Page) and Query Service 
(https://query.wikidata.org).

19.6	� Introduction to Programming (Meta Tutorial)

Our book does not focus on programming. This is because we are initially concerned with 
the fascination of the topics, all of which can be dealt with using bioinformatics, and 
because we have had more and more bioinformatics software on the net since about 1995. 
So the difficulty is rather to keep track of the different possibilities of analysis and to use 
the right software.

Nevertheless, it is quite typical for bioinformaticians, after they have become suffi-
ciently familiar with their field, to program new software themselves, which then searches 
for exactly the motifs that interest them, or a database with exactly the data that they are 
investigating in detail, or a model, for example of a signal cascade. For this reason, we 
have compiled introductory materials here for readers fascinated by programming.

The areas in which writing your own programs for bioinformatics can happen are 
already clear from the book:

•	 Collect and store data (i.e. build your own database),
•	 Examine/analyze data (i.e., write programs in the strictest sense),
•	 Understand (or model) data.

Every program works the same way. After a header part, where the variables are declared, 
the actual program starts: There is a read-in part (e.g. all sequences), a main loop (process-
ing part for the calculations/tests), which can call further loops, and the output part (dis-
plays the calculation/results).

Collect and Store Data
A common task in bioinformatics would be to set up a web server yourself (https://perl-
webserver.sourceforge.net; https://sourceforge.net/projects/perlwebserver/files/perlweb-
server/). It is equally important to set up a database yourself (https://perlmaven.com/
simple-database-access-using-perl-dbi-and-sql). Depending on the needs and require-
ments, knowledge of common programming languages such as SQL, HTML and Java is 
necessary. However, there are helpful tutorials and ready-made scripts for this, which can 
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be used individually in each case. Another standard task is to run a web server that offers 
e.g. a software like BLAST, which in turn can be used by other users for their analyses. To 
do this, you can simply install the BLAST server yourself by downloading it from the 
NCBI website: https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_
TYPE=Download. However, it must be said that this requires some prior knowledge.

Examine/Analyze Data
Data can be analyzed particularly well with R, Perl and Python. In particular, Perl allows 
you to formulate so-called “regular expressions”, which test whether a certain expression 
occurs in a text, file, or database (e.g., with an A at the beginning or exactly two “t”s at the 
end of a line). https://regexr.com explains in more detail how to describe these searches 
correctly.

A tutorial for Perl is available here (https://perlmaven.com/perl-tutorial), which covers 
typical introductory topics for programming with Perl such as installation, debugging and 
command line, and explains terms such as scalars (strings, operators), files and arrays. 
Also useful is the book Perl in 21 days (by Patrick Ditchen; https://www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjI2PbduI
HrAhUDx4sKHZmCCwUQFjACegQIARAB&url=http%3A%2F%2Fstarkill.synology.
me%2Fuwe%2FPerl21%2F26393_21t_perl.pdf&usg=AOvVaw0FnAy8RM8Pv3CWeM
HN2r0-), which gives a step by step introduction to programming with Perl.

In addition, there are other programming languages such as C++ and Julia, but also 
web-based programming environments such as Jupyter Notebook, which support various 
languages such as Julia, Python and R. For this you are welcome to inform yourself on the 
internet depending on your interest.

Understand (or Model) Data
We have explained this in detail in the book and tutorial. This can be done especially well 
with the tools Cytoscape, CellDesigner and SQUAD or Jimena – and then more elabo-
rately with self-written programs.

This is already a brief overview of programming. But if you want to know more and 
practice, you will now find an overview of programming languages and what they do, 
including tutorials.

�Programming Languages and Tutorials

Perl
Perl (Practical Extraction and Report Language): This programming language is very 
popular in bioinformatics because it is very good for processing long lists and compiling 
them into new lists.
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You can learn this relatively easily with textbooks, such as the Perl Cookbook by Tom 
Christiansen and Nathan Torkington (2003). This book is just very well written and pro-
vides a very good introduction to the PERL programming language.

Or the book Beginning Perl for Bioinformatics by James Tisdall (2001).
There are of course countless tutorials on the net, e.g.

•	 https://www.perl.org/learn.html
•	 https://www.tutorialspoint.com/perl/
•	 https://wiki.selfhtml.org/wiki/Perl
•	 https://www-cgi.cs.cmu.edu/cgi-bin/perl-man

To be able to program faster in PERL yourself, there are also the BioPerl modules:

•	 https://en.wikipedia.org/wiki/BioPerl
•	 https://bioperl.org (is the entry page).

Here are three aspects of such recipes listed as article examples:

Angly FE, Fields CJ, Tyson GW (2014) The Bio-Community Perl toolkit for microbial ecol-
ogy. Bioinformatics 30(13):1926–1927. https://doi.org/10.1093/bioinformatics/btu130

Vos RA, Caravas J, Hartmann K et al (2011) BIO: phylo-phyloinformatic analysis using 
perl. BMC Bioinformatics 12:63. https://doi.org/10.1186/1471-2105-12-63

Stajich JE, Block D, Boulez K et al (2002) The Bioperl toolkit: Perl modules for the life 
sciences. Genome Res 12(10):1611–1618.

Java
This programming language by James Gosling (1991) runs on every major operating sys-
tem (“platform”, Windows, Mac and LINUX) and is so popular because you can write it 
once and then run it (especially over the Internet) on any platform. It is an object-oriented, 
modern programming language, so “objects” as complex concepts are central to it. Java‘s 
syntax is similar to C or C++, but Java‘s comfortable, high level language does not make 
it as easy to refer to single bit instructions (the machine language) as it is with C or C+ +.

Here, too, there is Biojava, i.e. ready-made program modules for bioinformatics:

And in addition a number of recipes and program modules (routines):

https://biojava.org

https://biojava.org/wiki/Main_Page/
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As soon as more complex calculations are the focus (instead of lists, data, web servers, 
databases or sequence properties), more languages such as C or C++ (computer languages 
that are also used intensively and developed further today, newer is e.g. c#, pronounced: c 
sharp, and similar more) and Fortran (Formula Translation) are used in bioinformatics, 
old but constantly modernised. For example, Fortran 2003 is object-oriented, and Fortran 
2008 even allows “concurrent programming”, i.e. parallel, instead of serial 
programming.

MATLAB

Allows complex computations to be efficiently expressed in this language in a mathe-
matical way.

MATLAB is matrix-based. Linear algebra in MATLAB looks like linear algebra in a 
textbook. This makes the code for these calculations easier to write, read, and analyze, and 
easy to manage. Numerical analyses are also easy to write. Another advantage is that com-
putations are distributed across multiple processors (“cores”), making them much faster. 
This makes parallelization easy. More information can be found here https://
de.mathworks.com/.

Programming Language R
If, on the other hand, the calculations are of a more statistical nature, i.e. deal directly with 
the analysis of large amounts of data, R is often used in bioinformatics:

R is also very easy to learn by following the link, installing R right there and learning 
it too. R is freely available and very useful for statistical analysis and graphical representa-
tion of biological data (results and graphs can also be used for scientific publications). It is 
command line based and can be used on different platforms and operating systems (e.g. 
Windows, Linux). In short, R is a really nice and easy to learn programming language, best 
try it yourself (there are also numerous online codes to use). Moreover, it is interconnected 
with other programming languages and platforms, such as Bioconductor, for even more 
specialized data analysis.

A good example of high-throughput data analysis is Bioconductor (https://www.bio-
conductor.org), which now has 1881 (as of August 4, 2020) software packages (https://
www.bioconductor.org/packages/devel/BiocViews.html).

https://de.mathworks.com/products/matlab.html

https://www.r-project.org
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In the following we want to show five short examples in R. The scripts are kept very 
simple and introductory, so that you can solve the problem quickly. However, the problem 
and the scripts are usually much more difficult and extensive.

We can now use a t-test to determine whether the mean ozone content in Gardens A and 
B is significantly different.

To answer this question, we need to formulate a test hypothesis. The corresponding null 
hypothesis (H0) would be: The ozone level is not significantly different, and the corre-
sponding alternative hypothesis (H1) would be: The ozone level is significantly different. 
We can reject the null hypothesis at a significance level of 5% (p-value < 0.05). We can 
calculate the test statistic in R. To do this, we would read in the data as follows:

> GardenA = c(3, 4, 4, 3, 2, 3, 1, 3, 5, 2)
> GardenB = c(5, 5, 6, 7, 4, 4, 3, 5, 6, 5)
> gardenC = c(3, 3, 2, 1, 10, 4, 3, 11, 3, 10)

For the t-test, we can use the R command t.test:

> t.test(gardenA, gardenB, var.equal=T)

Example 19.1
Concentrations of ozone (per 100 million particles, pphm) were measured in three 
gardens on ten summer days and summarized in Table 19.1.

Table 19.1  Ozone content in gardens (per 100 million particles, pphm)

Garden A Garden B Garden C
3 5 3
4 5 3
4 6 2
3 7 1
2 4 10
3 4 4
1 3 3
3 5 11
5 6 3
2 5 10
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As a result we get:

Two Sample t-test
data: GardenA and GardenB
t = -3.873, df = 18, p-value = 0.001115
alternative hypothesis: true difference in means is not equal to 
095 percent confidence interval:
-3.0849115 -0.9150885
sample estimates:
mean of x mean of y
3     5

Thus, we obtain a p-value of 0.001115. This means that we can reject the null hypoth-
esis. Accordingly, the mean ozone concentration in garden B is significantly higher than in 
garden A.

We can now use a t-test to determine whether the new therapy shows a significant 
improvement. Analogous to Example 19.1, we would first formulate the test hypothesis 
(p-value < 0.05). The null hypothesis (H0) would be: The new therapy does not affect or 
prolong the average duration of illness. The corresponding alternative hypothesis H1: The 
new therapy shortens the average disease duration (one-sided test).

In R, we would use the following script:

> groupA = c(7, 8, 11, 10, 9, 11, 13)
> groupB = c(9, 7, 9, 11, 6, 11, 11, 8)
> t.test(groupA,groupB,var.equal=T)

Example 19.2
The trial of a new therapy yielded the following data (Table 19.2).

Table 19.2  Effect of a new therapy (group A = conventional therapy; group B = new therapy; dura-
tion of illness in days)

Group A Group B
7 9
8 7
11 9
11 11
10 6
9 11
11 11
13 8
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And would get as a result:

Two Sample t-test
data: GroupA and GroupB
t = 1.0377, df = 14, p-value = 0.317
alternative hypothesis: true difference in means is not equal to 
095 percent confidence interval:
-1.066768 3.066768
sample estimates:
mean of x mean of y
10       9

A p-value of 0.317 was found, which means that we cannot reject the null hypothesis. 
Thus, the new therapy does not show any significant improvement with regard to the aver-
age duration of illness.

We can now use a chi-square test (test for independence) to determine whether the two 
variables are independent, that is, whether the number of airbags is independent of the 
type of car.

Analogous to the two previous examples, we must also formulate the test hypothesis 
here (p-value < 0.05). The null hypothesis (H0) would be: Both variables are independent. 
The alternative hypothesis H1: The number of airbags depends on the type of car.

In R we would use the following script (clipboard loads data from cache, just copy the 
table to do this):

> table<-read.table(clipboard)
> chisq.test(table)

And would get as a result:

Pearson's Chi-squared test
data: table

Example 19.3
In an investigation it should be determined whether there is a correlation between 
the airbag and car type (Table 19.3; see also library [MASS], car.data in R).

Table 19.3  Number of airbags in different car types

Compact Large Medium Small Sports Van
Driver/passenger 2 4 7 0 3 0
Driver 9 7 11 5 8 3
None 5 0 4 16 3 6
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X-squared = 33.0009, df = 10, p-value = 0.0002723
Warning message:
In chisq.test(table) : Chi-square approximation may be incorrect

The warning message in this case is due to the insufficient number of samples, can be 
neglected here (exercise example). The p-value is 0.0,002,723, so we can reject the null 
hypothesis, i.e. the number of airbags depends on the type of car.

We want to draw the graph in R and look at it more closely (e.g. attractors, stable state 
of the system [local minimum], tolerated disturbances that the system can still compensate 
for [local maximum]).

The R script would look like this:

> x<-seq(-5, 5, by=0.1)
> plot(x, -cos(x)-0.1*x^2, type="l")

The plot is shown in Fig. 19.27. The x-axis shows the blood loss or decay, the y-axis the 
blood production. The zero point reflects the maximum production when still healthy. An 
attractor would be the healthy state: If the disruption is not too severe, the system falls back 
to the minimum (x-axis at 0) (no erythrocytes are produced). If erythrocytes perish again, 
new ones are produced. Another attractor would be the sick state: as soon as the disturbance 
exceeds the two maxima (x-axis at ±2.596), catastrophe (sick state) occurs. To calculate the 
exact local minima and maxima, you have to set the first derivative to zero (not shown here).

Example 19.4
The state of biological systems can be described with mathematical formulas. The 
formula f(x) = − cos(x) − 0.1x2 describes (in a very simplified way) the equilibrium 
of the erythrocyte production in the body. Here, the x-axis shows the amount of red 
cells in the body, and the y-axis represents the energy the body invests to get back 
into balance. Small disturbances are easily compensated by the system, large distur-
bances affect the vital functions and can no longer be compensated.

Example 19.5
A cyclist is injected with a dose of erythropoietin (Epo). At the start time of the 
measurement t0, n0 molecules of Epo dock onto each hematopoietic cell. As Epo 
detaches from the receptors over time and is broken down by the body, only n0*e-t 
molecules are still docking at time t. Each molecule of Epo docked to the cell acti-
vates alpha-STAT transcription factors via a signaling cascade per unit time t by 
phosphorylating them. Phosphatases are permanently active in the cell, which 
remove the phosphate residue from the STAT transcription factors and thus deacti-
vate them. The phosphatases deactivate beta-% of the active transcription factors per 
time unit t – and this already from time t0.
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Fig. 19.27  Graphical representation of erythrocyte production in the body (x-axis: blood loss or 
decay, y-axis: blood production)

We want to know how many activated molecules STAT are present at time t = 3. To do 
this, we can calculate the solution in R and draw the graph of STAT concentration (in this 
example, n0 = 10, alpha = 5 and beta = 10%).

> n0 <-10 # number of Epo molecules at time t0.
> a <-5    # alpha
> b <-0.1 # beta
> stat <- 0
> stat[1] <-a*n0*(1-b) # Actually time t0, but R doesn't 
like 0 as index.
> for (t in 2:20) {stat[t] <-(stat[t-1]+a*n0*exp(-
t+1))*(1-b)} # A loop that always increments t by 1 and 
performs the calculation.

Looking at stat now, we always have to subtract 1 from the index to get the correct 
value. After all, we had already stored t0 as t1.

> stat
[1] 45.00000 57.05457 57.43921 53.93570 49.36634 44.73291 
40.37116 36.37508
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Fig. 19.28  Graphical representation of STAT concentration (x-axis: time, y-axis: STAT 
concentration)

[9] 32.75267 29.48296 26.53670 23.88378 21.49568 19.34622 17.41163 
15.67048
[17] 14.10344 12.69310 11.42379 10.28141

You can see it better in the graphic:

> t <- 0:19
> plot(t,stat, cex=1.5, pch=16)

The plot is shown in Fig. 19.28. The STAT concentration (y-axis) per time (x-axis) is 
shown. It can be seen that after a short sharp rise, the concentration slowly levels off again. 
In our example, 53.93,570 molecules of STAT are present at time t = 3.
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20Solutions to the Exercises

Abstract

In this part, we give suggested solutions and additional explanations to the exercises.

20.1	 Sequence Analysis: Deciphering the Language of Life

Questions 1.1 and 1.2

Bioinformatics, or computational biology, attempts to solve biological problems with the 
computer. The aim is to secure information and knowledge about organs and diseases in 
databases and make them accessible to everyone, but also to identify and understand the 
molecular causes associated with a disease and develop suitable models based on this. 
This means that the aim is to understand biological function on the basis of information 
about DNA, RNA and proteins through programs and software. This is done, for exam-
ple, by sequence analyses in order to obtain information about a pathogen, but also by 
genome comparisons in order to obtain differences between the organisms involved (e.g. 
humans and parasites). This in turn enables the creation and comparison of metabolic 
networks and, finally, the calculation of drugs for important proteins in the parasite that 
optimally block the parasitic protein but are tolerated by humans. Bioinformatics is thus 
able to better answer basic medical questions based on theoretical knowledge, such as 
why people age and die.

Three main areas can be distinguished: (i) Databases and servers integrate and collect 
biological data. (ii) Programs and software to study and analyse datasets or experiments. 
(iii) Bioinformatics models for modelling and simulation. This can then be used to under-
stand biological functioning, such as modelling the interaction of a drug with its target, or 
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simulating metabolism to understand how the metabolic signalling network works. 
Databases would include PubMed, Gene Expression Omnibus (GEO) and 
GENEVESTIGATOR.

Example 1.3

	1.	 Question: Answer B
	2.	 Question: Answer A
	3.	 Question: Answer D

Reply Comment

If you didn’t find the right answer, here is the corresponding protein sequence: https://www.
ncbi.nlm.nih.gov/protein/AAX29205.1. To do this, it is best to select Protein next to the 
search bar in PubMed and type HIV into the search bar, after which you should find the 
entry “TAR, partial [synthetic construct], Accession: AAX29205.1”. Here you will find all 
the information about the answers.

Question 1.4

The BLAST (Basic Local Alignment Search Tool) algorithm allows protein and nucleo-
tide sequences to be compared with a large database in terms of their local similarity. In 
this process, a sequence is compared for its similarity with reference sequences in a data-
base and can provide information on which virus a patient has contracted. BLAST uses a 
heuristic search and the two-hit method: A short word list (so-called lookup table) is first 
compared with the short word lists of the database (indexed database). If at least one 
matching short word is found in an entry, the algorithm immediately checks whether there 
is another short word hit in the vicinity (fixed distance), and only then calculates the align-
ment. In all other cases, the algorithm blasts ahead to the next database entry.

With a BLAST search, one is thus able to identify homologous genes and compare the 
individual positions in order to be able to identify unknown sequences, but also to find 
corresponding differences in other organisms (e.g. for the development of an animal 
model). However, sequence analysis can be taken much further bioinformatically. For 
example, the patient’s virus can be compared with other patient isolates, related viruses 
(HIV-1, HIV-2, etc.) and other sequences. In the clinic, by the way, HI viruses are now 
even routinely sequenced according to resistance mutations, so that it is possible to recog-
nise in good time how the virus population changes under antiretroviral therapy, in order 
to change and optimise the therapy accordingly. For further information, please use the 
link to BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Question 1.5

So, in your own program, you would first read in the sequence (input part), then use an 
algorithm (“two-hit method”) to calculate the similarity to the entries in the database 
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(processing or calculation part; of course, you have to have created the reference database 
first), and finally there is a nice output list (list of hits and statistical parameters).

Question 1.6

Answer A, C, D

Example 1.7
Answer B.

The BLAST algorithm can perform a number of searches, e.g. blastn for a nucleotide 
sequence and blastp for a protein sequence. But it can do much more, e.g. blastx translates 
a nucleotide sequence into a protein sequence and then searches against the protein data-
base, tblastn searches with a protein sequence against a translated nucleotide database, and 
tblastx searches with a translated nucleotide sequence against a translated nucleotide 
database.

Example 1.8
Answer A, D.

The sequence comparison with BLAST first tells what the function of the sequence is 
(which piece of which virus is here as a sequence). In the example, the blastp search 
should have found the pol protein and protease of HIV-1. Another important output is the 
E-value (expected value). This indicates that my output alignment will be found again in 
the database with a similar or better score, so it depends on the size of the database (unlike 
the p-value). If you are looking for the highest possible similarity, the selected BLAST hit 
should have the smallest possible e-value and a high identity.

If the blastp search did not find the pol protein and the protease of HIV-1, then try it best 
like this: Since it is a protein sequence, please select a blastp search and copy the unknown 
sequence into the search window, then simply start the BLAST search (please see if the 
non-redundant protein sequence database is set as default). As an example, four hits are 
shown as a result (Fig. 20.1).

Question 1.9 and Example 1.10

A dotplot allows you to compare two sequences on a graph (x−/y-axis) to find similar 
areas (represented as a dot). In both cases (by hand and software), your dotplot should find 
similar areas between the two exercise sequences.

20.2	 Magic RNA

Example 2.1
	1.	 Answer C, E

20.2  Magic RNA
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Fig. 20.1  blastp search with HIV-1

The secondary structures exert important functions of RNA in the regulation of transcrip-
tion, such as catalytic activity of ribosomes (ribozymes). RNA secondary structure folding 
is a complex process; in addition to a complementary sequence, the folding energy must 
also be considered. Whereby the following always applies: A pairs with U (two hydrogen 
bonds), G pairs with C (three hydrogen bonds). But there are also other rules, for example 
G pairs with U, only one hydrogen bond. In addition, the folding energy must also be 
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considered. Not every folding is thermodynamically optimal (it should always have a low 
folding energy, because the lower the free energy, the more stable the structure), especially 
since there are several secondary structure forms (e.g. stem-, hairpin- and interior-loop). 
Secondary structures can be predicted bioinformatically, but this is not easy. There are 
various algorithms for this purpose, which are all based on dynamic programming meth-
ods, but nevertheless work differently. For example, the Nussinov algorithm first calcu-
lates the maximum number of base pairs and then uses this information to calculate the 
secondary structure with the maximum base pairing. However, since RNA structures do 
not always have the maximum possible base pairing, this method does not always give 
useful results. A more optimal and faster solution for structure determination is provided 
by algorithms based on energy minimization. The Zuker algorithm calculates the optimal 
secondary structure with the minimum free energy, based on a thermodynamic model, e.g. 
mFold server. On the other hand, the Sankoff algorithm simultaneously folds and aligns 
two sequences using an energy model to minimize the free energy, e.g. LocARNA pro-
gram. A useful online web server for secondary structure prediction is ViennaRNA 
Webservices (https://rna.tbi.univie.ac.at/). There are many more tools for RNA analysis 
here. For additional information, see the book section or Kunz et al. (2015).

In the exercise example, RNAfold (also in ViennaRNA Webservices, also based on 
energy minimization) should find a possible secondary structure fold with a minimum free 
energy of − 360.20 kcal/mol.

If you did not get a secondary structure for the sequence example, your result should 
look like (Fig. 20.2; to search, simply copy the example sequence into the search window 
and use the default parameters).
	2.	 Here it is important to see that the change in energy released is not automatically equal 

to the sequence length, e.g. it is not double. For example, the sequence 
ATGCTACGCGATGCATCGAGCGCAT has an energy of −3.5 kcal/mol and twice the 

Fig. 20.2  RNA folding with RNAfold

20.2  Magic RNA

https://rna.tbi.univie.ac.at/
https://rna.tbi.univie.ac.at/


312

sequence length of −21.5  kcal/mol, whereas the sequence 
GCATGACGTAGCAGCCGTACGATAT has an energy of −2.10 kcal/mol and twice 
the length of −12.40 kcal/mol.

Question 2.2

Regulatory RNA elements are found in humans, but also in other organisms such as bac-
teria. Examples of regulatory RNA elements are iron-responsive elements (IRE) and ribo-
switches. They perform regulatory functions and control transcription and translation. IRE 
regulate iron metabolism in humans and animals, depending on the iron content of the cell. 
Riboswitches regulate gene expression in prokaryotes. Metabolites specifically bind a 
riboswitch, which leads to a conformational change of the riboswitch and thus switches 
genes on or off. However, there are also other RNA elements in prokaryotes, e.g. the 
6 S-RNA (general STOP signal) and the ppGpp (messenger). An important database for 
RNA families is Rfam, which lists quite a few different families (best take a look).

Questions 2.3 and 2.4

Bioinformatically, it is of course also possible to find regulatory RNA motifs. Here, it is 
best to combine several criteria, such as sequence, structure and folding energy, in order to 
achieve a higher degree of accuracy. An IRE can be recognised by these three criteria, 
among others:

•	 Matching consensus sequence “CAGUGN” and a C alone, without G as a partner in the 
opposite strand (“bulged“),

•	 structure (loop stem structure, stem-loop) of two stems on top of each other, in between 
is the unpaired C and

•	 energy (when this structural part is considered as a whole, −2.1 to −6.7 kcal/mol).

Only when all parameters are fulfilled, i.e. when all criteria for an RNA molecule are met, 
should the bioinformatic motif search produce a corresponding hit.

Regulatory RNA elements can be identified using programs such as RNAAnalyzer, 
Riboswitch Finder or RegRNA. Of course, a bioinformatically predicted hit should be 
checked experimentally. This is the only way to be sure that the element found actually 
performs a biological function.

Question 2.5

Answer C, D, E (please also look at the previous answers)
Example 2.6

	1.	 Question: You should find three positions (CAGTGC, CAGTGA, CAGTGC)
	2.	 Question: Answer A, C, D

The RNAAnalyzer finds an IRE at position 71 in the exercise example (you should also 
find it by hand). However, it also finds a catalytic RNA.
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Fig. 20.3  IRE example

If you did not get an IRE for the sequence example, your result should look like 
(Fig. 20.3); for search please just copy the example sequence into the search window and 
use the default parameters:
Example 2.7
Answer C, D.

Riboswitches regulate gene expression in prokaryotes. Metabolites specifically bind a 
riboswitch, which leads to a conformational change of the riboswitch and thus switches 
genes on or off. However, there are other RNA elements in prokaryotes, e.g. the 6 S-RNA 
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(general STOP signal) and the ppGpp (messenger). For the example sequence, the 
riboswitch finder should have found three possible riboswitches on the plus strand at posi-
tion 1288, which have three stem-loops in their secondary structure. These three different 
hits come from different folding possibilities of the secondary structure, where in this case 
two show a good quality of folding energy, i.e. have a more stable structure.

If you did not find a riboswitch for the sequence example, your result should look like 
(Fig.  20.4). For the search please copy the example sequence (corresponding example 
from the Riboswitch Finder page) into the search window and use the preset parameters.

Example 2.8
You should find the typical four helices of an ITS2 secondary structure (you can also 

use RNAfold to fold the secondary structure to check).
(Example sequence can be found here: https://www.ncbi.nlm.nih.gov/nuccor

e/260206998?report=fasta; simply copy it into the search window of the ITS2 database 
and use the default parameters).

Example 2.9

	(a)	 For this, look at the recommended sites and literature. It is important to know how 
both classes regulate gene expression (miRNAs in the nucleus mRNA binding; 
lncRNAs much more complex, for example in the nucleus and cytoplasm RNAs and 
proteins, but also chromatin and histone modifying) and how to analyze them.

	(b)	 Please have a look at the recommended pages. Then please also our work: Kunz M 
et al. (2015) Bioinformatics of cardiovascular miRNA biology. J Mol Cell Cardiol. 
2015 Dec; 89(Pt A): 3–10. https://doi.org/10.1016/j.yjmcc.2014.11.027 and Kunz M 
et  al. (2016) Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics 
Analysis to the Development of Non-Invasive Diagnostic Tools. Genes (Basel). 2016 
Dec 26; 8(1). pii: E8. https://doi.org/10.3390/genes8010008.

	(c)	 To do this, look at the recommended sites, for example, miRNA-132, miRNA-212 and 
miRNA-7 can be found. It is important to see that there are differences between the 
targets due to the different algorithms. Therefore, always know about the algorithms 
and parameters, compare programs and preferably choose common hits (if available, 
use experimentally validated hits).

20.3	 Genomes – Molecular Maps of Living Organisms

Question 3.1

For this you should know: 3.2 billion base pairs, about 23,700 genes, 2–3% of the genome 
for protein reading frames, most of it is “ballast” (selfish DNA, LINE and SINE). Best to 
read the book chapter again.
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Fig. 20.4  Riboswitch example
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Question 3.2

Annotation is to label the genome or genome sequence (usually unknown organisms), i.e. 
to understand its content and function. Reannotation is used to check an existing annota-
tion, for example in the case of new genes or sequencing techniques. It is best to read up 
on this again in the book chapter.

Question 3.3

There are now a number of different sequencing techniques. You should be familiar with 
the classical sequencing technique according to Sanger (chain termination synthesis) and 
the more advanced methods, so-called next generation sequencing, such as pyrosequenc-
ing (Roche 454) and sequencing by synthesis (Illumina) (second generation) and nanopore 
sequencing (third generation).

Question 3.4

Here you should know DNA labeling, sequencing (shotgun method), mapping, assembly 
and annotation. Challenges are, among others, the computer performance, but also the 
memory requirements, due to the flood of sequences, by sequencing techniques that are 
getting better and faster. Furthermore, there are also problems, especially with repeat 
regions, to represent them correctly in their length and number of repeats.

Important pioneers are Frederick Sanger (chain termination synthesis), Craig Venter 
and Erik Lander (first “draft” sequence of the human genome in 2001).

Question 3.5

We had already mentioned a few points here in Task 3.4 (computer performance, memory 
requirements). The secure handling and use of data (confidential treatment, avoidance of 
data misuse, data protection) etc. are certainly also important.

Question 3.6

Here, for example, there are the online libraries NCBI and EBI, but also the genome 
browsers UCSC and Ensembl.

Questions 3.7 and 3.8

The cell nucleus, also called the nucleus, contains the entire genetic material of an organ-
ism, i.e. the DNA. The DNA consists of genes that code for specific proteins, such as 
enzymes, hormones or transcription factors, which fulfil important tasks in the organism. 
In order to form a protein, i.e. the active form of a gene, the information of a gene must 
first be read. This process is also known as gene expression, whereby a distinction is made 
between the two processes of transcription (formation of mRNA on the basis of a DNA 
sequence) and translation. The analysis of DNA sequences is important, for example to 
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investigate the promoter region for transcription factor binding sites (TFBS). Transcription 
factors (TFs) recognize and bind to specific DNA motifs (DNA binding sites) in the pro-
moter, called TFBSs, and thus regulate transcription. If I know the consensus sequence of 
the TFBS (template), i.e. the DNA nucleotides to which the TF binds, I can also easily 
bioinformatically investigate an unknown sequence for possible binding sites, which I can 
then use for further experimental investigations. Appropriate software is already available 
for this purpose. Apart from programs that list experimentally validated TFBS (such as 
MotifMap), there are also numerous programs that predict TFBS, e.g. ALGGEN PROMO, 
PRODORIC (Prokaryotic Database of Gene Regulation), TESS (Transcription Element 
Search System) or Genomatix. It is useful to always use several programs to compare 
results and find common TFBS. As these programs disappear so often from the open 
accessible internet as they can be commercially used and sold, we recently published 
AIModules, which offers TFBS analysis including conserved TFBS modules in different 
promotor regions (Aydinli et al., 2022; https://aimodules.heinzelab.de/#/)

A computer program for promoter analyses would first “learn” the TFBS, this is done 
using stochastic models, e.g. PSSMs or HMMs. In a further step, the program would then 
read in a promoter sequence (read-in part) and then search for similarities with the 
consensus sequence found (internal calculation part, e.g. with a BLAST), which are then 
in turn output as hits (output part).

Possible challenges and sources of error are, for example, that several DNA sequences 
are necessary to create the template, i.e. the more binding sites the training data set con-
tains, the more accurately the template can also be trained. Statistical parameters should 
also be considered. TFs also often bind to DNA combinatorially at a certain distance from 
each other, and there are also other elements that influence transcription, such as enhanc-
ers. All these factors and challenges should be taken into account by a program to enable 
accurate prediction. In any case, it is advisable to validate bioinformatically predicted 
TFBS experimentally. Only then can I be sure that the TF actually has an effect on tran-
scription. Otherwise, only the DNA nucleotides of the prediction match (that’s why I got 
a hit; false positive hits), but this has no biological relevance.

Example 3.9
C, D (please also look at the previous answers).
ALGGEN PROMO should find numerous TFBS for the example sequence, including 
NF-AT2 [T01945].

If something did not work for you, then try it best like this. In ALGGEN PROMO, select 
the option “SearchSites” (under Step 2) and copy the sequence into the search window, then 
start the search (please make sure that the default “Maximum matrix dissimilarity rate“is set 
to 15; this specifies the maximum deviation from the actual DNA nucleotide sequence [tem-
plate] of the TFBS that is allowed, you can also change this parameter yourself and observe 
what happens). As output you will see all TFBS found, their position and score (under Data 
[txt] you can also display a list of the TFBS found and the corresponding TF).

Example 3.10
Hidden Markov models are stochastic probability models that predict hidden system 

states (e.g. exon, intron) from a sequence (observations, e.g. ATCCCTG...) using a Markov 
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chain (Bayesian network; supervised machine learning). We learned about several applica-
tion examples in the book, such as for genome annotation, protein domain prediction, and 
network regulation. For more details and information, see the article Sean R Eddy (2004; 
What is a hidden Markov model? Nature Biotechnology volume 22, pages 1315–1316. 
https://doi.org/10.1038/nbt1004-1315).

20.4	 Modeling Metabolism and Finding New Antibiotics

Questions 4.1 to 4.5

One algorithm to calculate metabolic fluxes is elementary mode analysis. It calculates 
enzyme chains that keep all internal metabolites in balance. That is, the enzymes consume 
as much of an internal metabolite as other enzymes involved in that metabolic pathway 
produce. External metabolites are source (e.g. glucose) and sink metabolites (e.g. pyruvate 
as the end product of glycolysis), these cannot and do not need to be kept in balance. 
Before starting the calculation, one makes a list of all enzymes and reactions, the stoichio-
metric matrix, which compiles the number of molecules each reaction consumes or pro-
duces. To assemble the metabolic enzymes and reactions correctly, one performs the 
metabolic reconstruction. One looks over which enzymes should be present in the genome 
based on the sequence analysis or completes this with further sequence analysis. Then you 
can compile a list of all reactions and enzymes that are known for the metabolic pathway 
(or metabolic network) you want to reconstruct in that organism. If I am careless and over-
look enzymes that are encoded in the genome, it may happen that individual reactions are 
not connected to the metabolic network at all or that I assume wrong reactions that cannot 
happen in the genome at all (best to always use and compare several databases). Enzymes 
and reactions can be obtained e.g. from the KEGG database (https://www.genome.jp/
kegg/pathway.html; with EC numbers for all enzymes) and the ExPASy Biochemical 
Pathways database (https://web.expasy.org/pathways). Enzymes found only in bacteria but 
not in humans are potentially interesting antibiotic targets. Example software for meta-
bolic modeling is Metatool and YANAsquare/YANAvergence (faculty-owned software). 
However, there are also other programs, e.g. CellNetAnalyzer (https://www2.mpi-
magdeburg.mpg.de/projects/cna/cna.html).
Examples 4.6 and 4.7
A detailed description including a tutorial can be found at https://www.bioinfo.biozen-
trum.uni-wuerzburg.de/computing/metatool_4_5/ or https://pinguin.biologie.uni-jena.de/
bioinformatik/networks/metatool/metatool.html.
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20.5	 Systems Biology Helps to Discover the Causes of Disease

Response Comments to Questions 5.1 to 5.5

Task 5.1: Answers B-E are correct
Protein–protein interactions (PPI) play an important role in the organism. One example is 
signaling cascades, in which different proteins interact with each other (e.g. activate one 
after the other) and regulate or typically amplify cellular signals. In addition to pairwise 
interactions (number of possible interactions [n2 − n]/2), there are of course also com-
plexes (number of possible complexes is 2n) between proteins, so there are a large number 
of possible PPIs, making it difficult to detect all interaction partners experimentally. In 
some cases, there are also tissue-specific interactions. Here, it can be quite useful to focus 
on only a few interesting interactions, such as tissue- or disease-specific, where interaction 
databases are helpful. The STRING database is an interaction database and contains 
numerous experimentally determined and bioinformatically predicted protein interactions. 
Thus, individual interaction partners can be found very well, e.g. to perform network anal-
yses or to better evaluate microarray experiments, but also to obtain orthologous genes 
(search for Cluster of Orthologous Groups, COG, included). The KEGG database contains 
network maps for important signalling pathways, e.g. Wnt, MAPK, Ras-Raf-Mek-Erk 
signalling pathway, apoptosis or the cell cycle, but also provides a lot of additional infor-
mation, e.g. on metabolism, enzymes and diseases. Thus, one can find entire signaling 
pathways (e.g. for a disease) and thus, for example, identify metabolic pathways involved 
or find drug targets. The PlateletWeb database (own chair database) contains protein inter-
actions primarily for the platelet, but also for other human cells, such as phosphorylations. 
The listed interactions in PlateletWeb are based on experimental data sets, e.g. proteomics 
data. The databases iHOP (information hyperlinked over proteins) and HPRD (Human 
Protein Reference Database) also contain experimentally determined protein interactions 
and numerous related information. However, there are many other databases, such as 
IntAct (https://www.ebi.ac.uk/intact), MINT (https://mint.bio.uniroma2.it/mint), and 
BioGRID (https://www.thebiogrid.org). In all these databases you can find numerous 
interactions with which you can then build a network. However, it is always advisable to 
use several databases and compare them with each other in order to find common and 
trustworthy interactions.

A protein–protein interaction network can be constructed using the following steps: i) 
network reconstruction and ii) network analysis. i) Network reconstruction can be done 
using different databases, e.g. protein–protein interactions from the STRING database. 
This network can be saved as .sif (simple interaction file) to be read into Cytoscape. ii) 
Network analysis can be done e.g. with the software Cytoscape (please have a look at 
www.cytoscape.org for a short description of Cytoscape). For this purpose Cytoscape has 
numerous plugins to choose from, e.g. BiNGO (biological process analysis), 
AllegroMCODE (analysis of functional modules and complexes) and NetworkAnalyzer 
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(topology analysis). This allows the identification of important biological functions or 
functional network proteins (potential therapeutic targets), which can then be further char-
acterized and experimentally validated.

The network created can then be examined in more detail later on, e.g. to understand 
intercellular networks and communication (what goes wrong in the network so that a 
tumour develops; what is a potential drug target). It can also be used for dynamic model-
ling (in silico simulation) to better understand the behaviour of the network, e.g. what 
happens after an infection or what effect does a drug have?

Example 5.6
Correct is B and D. To find all human interaction partners for BRCA1, you should enter 
BRCA1 as the search term and search, then select human as the organism.

Question 5.7

To do this, you need to reconstruct a network (e.g. STRING and KEGG databases), then 
load the network (e.g. as a .sif file) into Cytoscape and examine it with the BiNGO plugin 
(alternatively also ClueGO plugin) (see also previous answers).

Example 5.8
Answer A.

Correct is A. The network should look like this (Fig. 20.5):

Example 5.9
Answer B, C.

BiNGO identifies overrepresented biological functions (with p-value and correspond-
ing genes), so-called Gene Ontology (GO), in a network (https://www.ncbi.nlm.nih.gov/
pubmed/15972284). In the GO groups, genes are grouped according to their species-
specific known function into the categories of biological processes, cellular component 
and molecular function (https://www.geneontology.org/). One can thus find all processes 
involved for the network, which allows one to detect, for example, functions and proteins 
involved specifically for a process, such as the cell cycle. From this, one can then in turn 
create a subnetwork of all proteins for this process and investigate it in detail. In this case, 
the BiNGO analysis shows a large number of biological processes (well over 100), includ-
ing BRCA1 involvement in the cell cycle checkpoint (GO-ID 75).

Question 5.10

A Gene Ontology is a species-specific functional grouping (biological process, cellular 
component and molecular function) of genes (term). Allows a functional annotation (see 
also question 5.9).

Example 5.11
Answer A, C, E.
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Fig. 20.5  Network

Within the scope of a network analysis, the network topology should also be examined. 
This provides an overview of the network behavior, e.g. the interconnection and network-
ing of the nodes. This can help to detect important functional network nodes, so-called hub 
proteins or hubs. Hubs are highly interconnected nodes in a network, which are suitable as 
potential therapeutic drug targets, for example.

Questions 5.12 to 5.15

For the mathematical modelling of regulatory networks, there are the Boolean/discrete, 
quantitative and semi-quantitative methods. In principle, these methods consider the nodes 
(proteins) of a network according to their activation state, i.e. either activated (On; maxi-
mally activated = 1) or inhibited (Off; maximally inhibited = 0). According to the initial 
state (how much is the node activated/deactivated), the further temporal course, i.e. how 
does the state of the node change over time, is calculated for each individual node of the 
network. In this way, the behavior or the network interconnection can be examined in 
more detail, whereby corresponding network effects, i.e. the respective effect of a node, 
also become clear. Boolean modeling always considers the on/off (1/0) state of a system, 
i.e., the node is either activated (On; 1) or inhibited (Off; 0). Quantitative modeling is use-
ful for kinetic data, such as Michaelis–Menten kinetics. Here, the system state of a net-
work is considered using exact concentrations and mathematical differential equations, 
but this requires information about the kinetics. An example software for quantitative 
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modeling is PottersWheel (https://www.ncbi.nlm.nih.gov/pubmed/18614583). A combi-
nation of the two methods is semiquantitative modeling, whereby one is able to consider 
the system state in the interval between 0 and 1, although this can be done without knowl-
edge about the kinetics. An example software is SQUAD, where the system state of a 
network is first represented using a discrete system (Boolean system), identifying all 
“steady state” states, which is then transformed into a dynamic system using an exponen-
tial function. Another example is Jimena (teaching software). For example, to model the 
cAMP signaling pathway, one needs to assemble all the molecular components (cAMP, 
receptor, signaling cascade, different cell types). From this, one can then develop a 
dynamic model. This would then integrate the exact concentration levels using differential 
equations (exact kinetic data required through experiments) and, for example, model either 
the activity of the signalling cascade or even the drug effect in different cells as a function 
of the cAMP level (e.g. with PottersWheel).

In addition to the advantages, such as rapid observation of the network behavior even 
without complete experimental data, there are also disadvantages of mathematical model-
ing, such as only focused section of the living cell or intuitive observation of the network 
behavior.

Question 5.16

Answer A, B, D (see also previous answers).

Question 5.17

A steady state describes the network state to which the network returns, i.e. a stable state 
that is reached again even after changes/disturbances or does not change (see also previous 
answers).

20.6	 Extremely Fast Sequence Comparisons Identify all 
the Molecules that Are Present in the Cell

Question 6.1

When I want to look something up in a book, I can either flip through the book from front 
to back quickly (it’s easy to miss something). Or I look in the index, for example in this 
book under “super-fast sequence comparisons“. That means I can find the right page right 
away via the index. The acceleration of BLAST works the same way. Only those indices 
are examined more closely (with exact alignment) that are promising. Of course, this only 
works if the index is there. Creating a keyword directory for a database is called “index-
ing”, because an index (a keyword directory) is created. This has to happen with each new 
version of a database (i.e. a list of sequences) before the BLAST search can then go over 
the database so quickly.
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Question 6.2

With the BLAST search there is a double acceleration, because a second good index hit 
must be there before the exact alignment is started.

Here again as a reminder the tutorial on how to find a sequence:
https://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml
Now for comparison, here is a FASTA server that only works with one hit:
https://fasta.bioch.virginia.edu/fasta_www2/
For an unknown sequence, it can make sense to try both options, since both servers 

produce different results depending on the sequence. However, the BLAST server is faster.
Finally, the hits found can also be used in an alignment for the overall search:
https://www.ncbi.nlm.nih.gov/books/NBK2590/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE=Proteins&PROGRAM=b

lastp&RUN_PSIBLAST=on

Question 6.3

	(a)	 A further acceleration of the sequence comparison is e.g. the BLAT search:https://
genome.ucsc.edu/FAQ/FAQblat.html

	(b)	 The tutorial also explains the advantages, namely even faster than the BLAST 
search, index search goes over a whole genome. Disadvantage: Less “depth”, so 
distant similarities are not detected as reliably.

Question 6.4

An analogy: Nothing goes faster than the speed of light. That’s why you have to be pre-
pared for long waiting times (years!) when travelling to the stars. Therefore, the fastest 
way is not to go at all, but to think!

All our sequence comparisons try to find out which protein is present, i.e. what its 
annotation (bioinformatic functional description) or function is. We have just learned 
about examples: BLAST, Psi-Blast, FASTA, other BLAST variants. All these searches are 
heuristic, i.e. fast, but not quite exact. There are also exact searches. This is global sequence 
comparison using Needleman and Wunsch algorithm and local sequence comparison 
using Smith-Waterman algorithm. Further possibilities are searches in domain databases 
like SMART, ProDom, protein family databases like Pfam, finally also specialized searches 
like BLOCKS similarity search – but (see above): The fastest way is to use the correct 
annotation. Where is the best place to find it? Investigate this right away in task 6.5.

Question 6.5

•	 Annotation in GenBank is a very good standard annotation (detailed description of the 
properties of the gene or protein or RNA molecule). Here, however, the annotation is 
filed by the author after checking and proofreading by NCBI. In this respect, there are 
differences in the depth or detail of the annotation. This is particularly evident in the 
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case of draft genome sequences, where often little is known about the function and 
properties of the individual genes, or even when only an automatic annotation is given, 
for example only by sequence comparison to a domain database.

•	 The UCSC Genome Browser allows a detailed view of the human genome along with 
details on the properties of a gene. Particularly detailed are mRNA, exons, gene length 
information, etc. In addition, the UCSC Genome Browser systematically provides 
comparisons with other genomes (mammals, vertebrates).

•	 Swiss-Prot/UniProt: Here proteins are described particularly precisely and accurately. 
Originally (Swiss-Prot), all proteins were annotated and examined by hand by experts, 
but even now all annotations are checked in detail here.

The question of which annotation is most suitable cannot be answered in a general way, 
because this always depends on the biological question. Let us briefly illustrate this with 
our example of glutathione reductase. If we compare the annotation of the three different 
databases, we can see differences in the database ID for glutathione reductase, for example 
in GenBank and in the UCSD Genome Browser X54507 or in UniProt Q03504, despite 
the uniform name designations. Thus, when using different databases, it is advisable to 
always check if you actually have the same gene/protein between them. However, when 
looking closer at the databases, it also becomes clear that UCSC and GenBank focus on 
genomic position, whereas UniProt focuses more on biological function and interaction 
context. So if you are only interested in the sequence, e.g. protein, you will find this in 
GenBank and UniProt, whereas if you want to find out about the genomic region of the 
gene, e.g. antisense or neighbouring genes, you should rather use UCSC and GenBank 
(graphically visible). If you are looking for functional domains or interaction partners, you 
will find more information in the UniProt database. So you can see that databases are 
partly structured differently and have different foci, so it is up to you which database is 
best suited. But there is one thing you should always keep in mind: Comparing several 
databases is advisable in any case, because this way you can be sure to have found the right 
information.

Question 6.6

Here you can think for yourself. It is important that the database/server should contain 
trustworthy data (that it is also traceable where the data comes from), the user interface 
should be easy to use, understandable and clear, but also up to date. It is also advantageous 
to avoid overloaded pages and rather focus on one topic area, but provide further links (but 
make sure that the links are always up to date) for individual analyses (a nice example is 
our DrumPID database, which focuses on drugtarget interactions).

Question 6.7

It is important to check at regular intervals whether the data is still up to date or to enter 
new data, but also to see whether the methodology is still up to date or whether there are 
better procedures. Furthermore, you should make sure that cross-links to other websites or 
websites necessary for the operation of the database are up to date and functioning.
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Ideally, the project leader or first author should check the database at regular intervals to 
ensure that the data is still up-to-date. It also makes sense to link the databases to ongoing 
projects and to keep developing them so that they remain up to date. Useful is also infor-
mation about the last update (when and ideally also specifically what was done) of the 
website (include when programming), so that the user has an overview.

20.7	 How to Better Understand Signal Cascades and Measure 
the Encoded Information

Question 7.1

Well, I need three bits to do that, because LLL or 111 is the representation of the number 
seven in dual numbers.

Question 7.2

The representation starts with the 512 bit (2 to the ninth power), then there are 488 left, 
which fits the 256 (2 to the eighth power), then there are 232 left, with that I can fill the 2 
to the seventh power (128 bit), then there are 104 left, which corresponds to the 2 to the 
sixth power (64), then there are 40 left, which fits the 32 (2 to the fifth power), then there 
are 8 left (2 to the third power), all remaining digits are zeros:
1,111,101,000.

Question 7.3

An example is https://www.binaryhexconverter.com/decimal-to-binary-converter, which 
then gives as answer for the decimal number 1000 (one thousand): 0000001111101000.

Question 7.4

A letter has on average about 4.7 bits, i.e. one needs (depending on the coding scheme 
more bits) at least 5 bits to be able to represent a total of 32 different characters (26 letters, 
then there are ö, ä, ü, ß, comma and dot). The word “word” needs four times as much, i.e. 
at least 20 bits, to be encoded.

Question 7.5

What is important is the secure encoding of information with the aid of solidly stored bits. 
The bits thus measure the indispensably necessary amount of information for the encod-
ing. For example, each nucleotide has 2 bits because there are four nucleotides. One can 
also see how in RNA molecules this information content per bit is increased when biologi-
cally necessary, especially by nucleotide modifications, especially methylations (e.g. 
pseudouridine in tRNA) and other modifications. Here, this bit increase is important to 
increase the safety of protein synthesis, i.e. to increase the reading accuracy of the tRNA.
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Question 7.6

Important examples include: Signaling cascade amplifies signals, despite noise (technical 
term: noise) in the cell. Nice examples are the Ras-Raf-Mek-Erk cascade (intracellular 
cascade; high signal amplification; shutdown phosphatase; disease, by B-Raf mutation 
about cascade constantly on, leads to melanoma) or blood coagulation (extracellular cas-
cade; also very good signal amplification, extrinsic and intrinsic stimulus uptake, the vari-
ous clotting factors amplify the signal, finally this amplification via thrombin then produces 
fibrin polymers; here it is interesting that the opposite action, the dissolution of a blood 
clot, is again a cascade, via the plasminogen system).

Question 7.7

The Ras-Raf-Mek-Erk cascade is shown schematically in Fig. 20.6. The signal is ampli-
fied by a factor of ten in each case, so I get:
1 molecule Ras
10 molecules of Raf
100 molecules of Mek
1000 molecules of Erk
A 1000-fold stronger signal in the cell than at the beginning. Note: Exact data and kinetic 
modeling for this cascade can be found in Robubi et al. (2005).

Question 7.8

Growth signals are passed on via this cascade to further locations in the cell, in particular 
to transcription factors, which then switch on genes in the cell nucleus that then lead to cell 
growth. It is important that the signal is switched off again. This generally happens through 
phosphatases. A nice example is the Ras-Raf-Mek-Erk signalling pathway. Ras is a kinase 
that, when activated, regulates all other downstream components of the signalling path-
way, for example Raf and Mek, and thus influences proliferation, i.e. cell growth. However, 
if a mutation prevents the cellular Raf from being switched off, for example, the growth 
signal remains on all the time. A biological example is melanoma. Here, a B-Raf mutation 
is present, and then the cellular phosphatases can no longer switch off the cascade and set 
it to zero.

Question 7.9

Since the Ras signalling pathway is often deregulated in tumours and leads to unchecked 
tumour growth, it has developed as an interesting approach in research. In this context, the 
Ras signalling pathway can also be described mathematically, for example by means of a 
differential equation, in order to model the temporal behaviour of the entire signalling 
cascade on the computer. Our chair has already investigated the signal pathway in a paper 
from 2006 and used the following differential equation (Fig. 20.7; from Robubi et al. 2005):
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Fig. 20.6  Ras-Raf-Mek-Erk cascade

The figure shows the simplified wiring of the cascade (top) from Ras to Erk and its 
activation over time (input → signal path → output) as well as its mathematical description 
(bottom). Here, the concentration of the activated kinase (X) depends on the time (t). In 
addition, α describes the phosphorylation, β the corresponding dephosphorylation and C 
the total concentration of the kinase. This formula can be used to describe the whole cas-
cade in a simplified way and then model it in the computer, for example to better understand 
tumor growth (e.g., how does overexpression of the kinase affect proliferation or to derive 
new therapeutic approaches). For more information, see also Robubi et al. (2005) B-Raf 
and C-Raf signaling investigated in a simplified model of the mitogenic kinase cascade. 
Biol Chem. 386(11): 1165–1171.
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Fig. 20.7  Mathematical modelling of the Ras-Raf-Mek-Erk cascade. (From Robubi et al. 2005)

Question 7.10

As mentioned in the textbook section, there is a nice article on this by Heinrich et  al. 
(2002). It describes the properties of phosphatases and kinases, in particular signal ampli-
tude, signal frequency, signal duration (phosphatase must switch off fast enough for both) 
and of signal amplitude and signal height (kinase must amplify strongly enough) in signal 
cascades. Interestingly, this allows one to develop a mathematical theory that defines the 
regulation of the signaling cascade as a function of a finite number of key parameters. 
These models can then be used for linear kinase-phosphatase cascades, but also take into 
account feedback interactions, crosstalk to other pathways, the cytoskeletal framework 
and G proteins.

This mathematical description then shows even more clearly that phosphatases are 
more important in their effects on signal rate and duration, whereas signal amplitude is 
primarily controlled by kinases. Simple pathway models show good signal amplification 
(tasks here directly before) only at the expense of speed.

However, more complicated, realistic pathway models can also achieve high amplifica-
tion and signal rate. For this, a stable, switched-off state of the cascade is important. 
Moreover, different agonists can trigger either transient or continuous signals in the same 
signaling pathway. The accumulated knowledge of such a model can also be used for the 
design of signaling cascades.

Question 7.11

The signal must first be strong enough for this, i.e. the metabolic flux through this meta-
bolic pathway must be high enough. This is regulated by pacemaker enzymes that control 
the metabolic flux particularly strongly, i.e. have a particularly high metabolic control 
coefficient (see also the contributions by David Fell (2005), metabolic control analysis; 
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https://link.springer.com/chapter/10.1007%2Fb137745 or even more recently). Typically, 
such enzymes are located at the beginning or end of a metabolic pathway. Equally impor-
tant is the exactness of the coding (see above, e.g. Task 7.1.). If the enzymes involved have 
a broader specificity or the enzyme is poorly positioned (for example, at a metabolic 
branch), several pathways are thus altered at once, but this is sometimes biologically 
intended.

Question 7.12

Several enzymes are radically switched (“moonlighting”). As long as there is sufficient 
substrate, they function as metabolic enzymes. If there is too little substrate, however, 
these enzymes become regulatory active. A nice example is aconitase, which normally 
produces isocitrate from citrate as the first step in the citric acid cycle. In the case of iron 
deficiency, the iron-sulfur cluster in the active site is missing, and the enzyme then func-
tions instead as iron-responsive element-binding protein 1 and binds to RNA, namely iron-
responsive elements.

A good link to this are moonlighting databases, for example: https://www.moonlight-
ingproteins.org (even the cover image fits there ☺). Also nice is: https://www.uniprot.org/
database/DB-0189.

Question 7.13

	(a)	 On the one hand, this can be used for energy production, for example glycolysis 
and gluconeogenesis occur simultaneously (“futile cycles”). Happens in the brown 
fat of newborns (and other young mammals). This leads to a much more sensitive 
response to metabolic changes when both pathways run simultaneously (again, like 
the initial example of glycolysis and gluconeogenesis). Therefore, it is even pos-
sible to determine the futile cycles with the help of software such as Metatool or 
YANA (see Chap. 4), and the enzymes involved there are then quite often the 
enzymes that play a special role in regulation.

	(b)	 For example, flow 100  in BOTH directions. Net result is then zero, nothing is 
moved. But if I now have 10% enzyme change, without the futile cycle I would 
only have 10% change in one direction. So now that I have sacrificed some meta-
bolic energy through the futile cycle, I get a much higher sensitivity: execution 
changes from 100 to 110%. But the reverse direction changes from 100 to 90%. So 
now the net difference is twice as much, 20% regulation. Of course, this also goes 
further “down” for each real situation, so e.g. glycolysis is just at 110% and gluco-
neogenesis at 90%, the net result for glycolysis is then 20%. If I now have another 
10% change in regulation, glycolysis changes to 120% and gluconeogenesis only 
has 80%, but with that even a total of 40% difference and increase to glycolysis.
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20.8	 When Does the Computer Stop Calculating?

Question 8.1

Here some algorithms are compared in terms of their computation time, it results:

	(a)	 RNAfold with small RNA and large RNA (quadratic increase with sequence)
	(b)	 BLAST search (grows linearly with search sequence and database)

Short peptide example, long protein example. Search in the NRDB database, and only in 
the human sequences (use species option).

The E-value moves favorably downward, toward smaller values, for a smaller database. 
Why? Well, the larger the database, the higher the probability of random hits. So the 
expected value (E-value) for a random, non-biological, non-relevant hit gets higher. So the 
better I can narrow down where I expect my hit to be (e.g. a species-specific database), the 
more significant and meaningful my result will be.

	 (a)	Protein folding

This is an NP-hard problem, which means that the computation time increases many 
times with each additional amino acid. It is thus not at all clear how long the computer will 
take (non-polynomial complex problem), but at least if you get a solution you can deter-
mine in polynomial time how good it is. Nevertheless, protein structures can be predicted 
for many practical purposes, e.g. by comparison with known structures, e.g. with SWISS-
MODEL (but already here the answer comes only by e-mail, it takes time), or somewhat 
more precisely, but more computationally expensive, with MODELLER or actually “ab 
initio”, i.e. from the sequence, by folding, calculated by the Zhang lab (with QUARK etc.).

Question 8.2

A nice answer is given by this Youtube video, but unfortunately it is in English:
https://www.youtube.com/watch?v=SC5CX8drAtU.

Here are compared:
Greedy strategy: locally optimal choice at each stage; at each stage visit an unvisited 

city nearest to the current city. This heuristic need not find a best solution, but terminates 
in a reasonable number of steps; finding an optimal solution typically requires unreason-
ably many steps. In mathematical optimization, greedy algorithms solve combinatorial 
problems having the properties of matroids (a structure that captures and generalizes the 
notion of linear independence in vector spaces).

Local search strategy: Local search is a generic term for a number of metaheuristic 
search methods in combinatorial optimization. The methods are used in many variations 
to solve complicated optimization problems approximately (e.g., the traveling salesman 
problem). The basic principle is to find a better solution starting from a given initial 
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solution by locally changing the current solution to find a better solution from the neigh-
borhood under consideration.

Simulated annealing strategy: In each case, to solve the traveling salesman problem as 
well as possible.

Question 8.3

•	 Monte Carlo
•	 simulated annealing (since pointing to the protein folders, e.g. at SWISS-MODEL 

there is a refinement, which should be in the direction)
•	 evolutionary strategies
•	 genetic algorithm (is implemented in YANASquare, mention that then)
•	 optimizer (steepest descent, also mention the procedure for YANAvergence, the 

Broyden-Fletcher ...).

Question 8.4

A difficult computational problem is a bioinformatics problem in which many possibilities 
lead combinatorially to an exponential growth of possibilities, e.g., the traveling sales-
man’s problem of traveling to numerous cities along the most optimal route possible. 
These exponentially complex problems with very, very long computation time for system-
atic trial and error (longer than the universe exists, etc.) are contrasted with easier prob-
lems where the computation time grows only polynomially (P-problems), e.g. quadratically 
or cubically with the length of the query, such as the sequence length. However, almost all 
interesting bioinformatics problems are combinatorial (e.g. protein folding or possible 
protein complexes). It has also been shown that they are all analogous to the traveling 
salesman problem, i.e., they require non-polynomial computation time, are NP-hard.

20.9	 Complex Systems Behave Fundamentally in a Similar Way

Question 9.1

The behavior of ordered system is predictable and exactly describable for the whole 
period. Random systems are unpredictable in the short term, but the outcome space can be 
predicted (such as a dice, can only be one to six). In addition, there are chaotic systems that 
can only be described exactly over short periods of time, but remain within fixed limits 
(attractor) over the long term.

Question 9.2

Here we have learned about numerous systeming ingredients in the book: Modular units 
(nucleic and amino acids) have interactions and in turn form complexes and networks (e.g. 
feedback or feedforward loops), from which filaments, organelles, tissues and ultimately 
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cells, an organism and entire ecosystems develop (new patterns and properties always 
emerge, emergence).

Question 9.3

In the book, we learned about numerous methods such as genomics, transcriptomics, pro-
teomics and metagenomics (please refer to Sect. 9.2).

Question 9.4

New properties and effects that result from components coming together but are not attrib-
utable to the individual components (a system is much more than the sum of its parts). An 
example is the circulatory system (supplies body with nutrients and oxygen and has pulse 
and blood pressure, results from interaction of many individual blood and heart mus-
cle cells).

Question 9.5

The best way to do this is to look at Fig. 9.4 (links) and link the two networks.

Question 9.6

The EPO production with the help of quadratic function (see the task on R in the tutorial).

Question 9.7

The simplest way is to look at water and its flow behaviour: If it stands still, flow is dead 
(so also at living systems). If pressure is not too strong (e.g. look at Main at Würzburg, 
when flowing within its riverbed with normal amount of water), flow is nice and steady 
(“healthy state” at living systems). If the pressure is even stronger (e.g. at the weir under 
the old Main bridge), then the flow becomes swirled (“turbulent”) and uneven, chaotic (a 
sign of stress in chaotic systems). There are numerous educational films about systems 
biology, especially in English, e.g. Systems biology explained (Weizmann institute); 
https://www.youtube.com/watch?v=HCFoZDlV4FY.

Question 9.8

System state 1: Heart at rest, all is well.
System state 2: Heart in sympathetic activation, heart beats faster, but normal load, for 
example during sports (healthy).

System state 3: Heart has too much work, third Erk phosphorylation is activated (a tip-
ping point, when then more and more heart cells are switched this way, hypertrophy, is 
currently irreversible).

System state 4: Cardiac hypertrophy, now the heart has too little oxygen, therefore 
simultaneous activation of both activation pathways. Myocardial infarction, collapse: not 
shown here, but of course the late consequence of untreated heart failure.
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More details can be found in the paper (including details on the semiquantitative simu-
lation of the different system states): Brietz A et al. (2016) Analyzing ERK 1/2 signalling 
and targets. Mol Biosyst.

20.10	 Understand Evolution Better Applying the Computer

Question 10.1

Evolution is the change in characteristics of living organisms over time. Important mecha-
nisms are, for example, mutations, selection, gene drift and separation.

Questions 10.2 and 10.3

One color always prevails in the end. We have a Darwinian evolutionary approach here. 
The probability of being hit is directly proportional to the number of individuals. Random 
fluctuations, however, lead to the random extinction of individual colors until eventually 
only one color remains. This “game” vividly reproduces neutral evolution (all colors have 
exactly the same chance of winning at the start, and as colors become fewer, their die-off 
rate becomes proportionally lower). So just pure fluctuation, and yet one color eventually 
prevails. This simulates genetic drift very nicely.

Of course, it is also very easy to simulate selection for the “fitter” by modifying the 
rules of the game, e.g. that one color (red) simply gets two offspring for each hit and you 
always randomly roll two individuals for this case. Then red always wins. How fast this 
happens depends on randomness. So the result here is predictable, but the sequence of the 
individual steps is not.

True evolution is always a mixture of both, lots of drift involved, as perfectly illustrated 
in Stephen Jay Gould’s “A wonderful life”.

Question 10.4

Now the probability that a tandem of two colors asserts itself is proportional to the product 
of both colors. Thus, the more individuals there are for a tandem, the quadratically better 
the rates. This is why a “once and for all” selection occurs. Quite quickly a tandem of two 
colors asserts itself, and no other tandem can grow so high, because no population can 
compete with the super-exponential reproduction rate.

This simulation model nicely illustrates how over-exponential growth prior to the first, 
delimited cells led to selection from a population of mutually catalyzing molecules. In 
particular, it explains very well why only one genetic code (with minimal dialects) 
remained.

Additional task for those interested: write R code to recreate the three games (not dif-
ficult, but takes some time).
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Question 10.5

•	 Parsimony: The phylogenetic tree is calculated in such a way that the observed diver-
sity from the (not observed, but only calculated) precursor sequences is correctly repro-
duced with as little parsing as possible.

•	 ML, Maximum likelihood the phylogenetic tree is calculated as it probably has been 
(single probabilities for each nucleotide exchange are considered). Calculation point 
out, ideally take the same FASTA multisequence file.

Question 10.6

Take the NCBI download and also the taxonomy option of BLAST. First use a keyword 
search to find the HI virus together with the complete polymerase sequence, e.g. 
HIV1 human;

https://www.ncbi.nlm.nih.gov/protein/?term=HIV1+and+human+and+polymerase+co
mplete. Is so already feasible. But if you, for example, simply take HIV and protein and 
human as search terms, then you can search yourself to death with so many hits.
They then find for man:

>gi|1906384|gb|AAB50259.1| pol polyprotein (NH2-terminus 
uncertain) [Human immunodeficiency virus 1]
M S L P G R W K P K M I G G I G G F I K V R Q Y D Q I L I E I C G H K A 
IGTVLVGPTPVNIIGRNLLTQIGCTLNFPISPIETVPVKLKPGMDGPKVKQW 
P L T E E K I K A L V E I C T E M E K E G K I S K I G P E N P Y N T P V F A 
I K K K D S T K W R K L V D F R E L N K R T Q D F W E V Q L G I P H P A G 
L K K K K S V T V L D V G D A Y F S V P L D E D F R K Y T A F T I P S I N N E T 
P G I R Y Q Y N V L P Q G W K G S P A I F Q S S M T K I L E P F R K Q N P D I V I Y Q 
Y M D D L Y V G S D L E I G Q H R T K I E E L R Q H L L R W G L T T P D K K H Q K 
E P P F L W M G Y E L H P D K W T V Q P I V L P E K D S W T V N D I Q K L V 
G K L N W A S Q I Y P G I K V R Q L C K L L R G T K A L T E V I P L T E E A E L E L A 
E N R E I L K E P V H G V Y Y D P S K D L I A E I Q K Q G Q G Q W T Y Q I Y Q E P F 
K N L K T G K Y A R M R G A H T N D V K Q L T E A V Q K I T T E S I V I W G K T 
P K F K L P I Q K E T W E T W W T E Y W Q A T W I P E W E F V N T P P L V K L 
W Y Q L E K E P I V G A E T F Y V D G A A N R E T K L G K A G Y V T N R G R Q 
K V V T L T D T T N Q K T E L Q A I Y L A L Q D S G L E V N I V T D S Q Y A L G I 
I Q A Q P D Q S E S E L V N Q I I E Q L I K K E K V Y L A W V P A H K G I G G N E 
Q V D K L V S A G I R K V L F L D G I D K A Q D E H E K Y H S N W R A M A S D F 
N L P P V V A K E I V A S C D K C Q L K G E A M H G Q V D C S P G I W Q L D C T 
H L E G K V I L V A V H V A S G Y I E A E V I P A E T G Q E T A Y F L L K L A G R W 
P V K T I H T D N G S N F T G A T V R A A C W W A G I K Q E F G I P Y N P Q S Q G 
V V E S M N K E L K K I I G Q V R D Q A E H L K T A V Q M A V F I H N F K R K G G 
I G G Y S A G E R I V D I I A T D I Q T K E L Q K Q I T K I Q N F R V Y Y R D S R N P L 
W K G P A K L L W K G E G A V V I Q D N S D I K V V P R R K A K I I R 
DYGKQMAGDDCVASRQDED
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Fig. 20.8  Domain analysis

Now use BLAST:
https://blast.ncbi.nlm.nih.gov/Blast.cgi
Pay attention to the protein BLAST:
h t tps : / /b las t .ncb i .n lm.n ih .gov /Blas t . cg i?PROGRAM=blas tp&PAGE_

TYPE=BlastSearch&LINK_LOC=blasthome
Paste sequence into question form.
After the BLAST search has been performed, the analysis of the domains can be seen 

in the top result section (Fig. 20.8):
The phylogenetic tree should now show that the domains are well conserved. For this, 

you can look at the alignments in detail (lower part of the BLAST result). But very helpful 
is the phylogenetic tree report (click on “Taxonomy Report”). In particular, you will find 
all species listed and the number of found, related species sorted by organism groups 
(here, of course, because searched with HIV, mainly HIV polymerase sequences).

Question 10.7

Proceed analogously as in 10.6, but here the species richness is much greater, nice fam-
ily tree.

Question 10.8

CLUSTAL has the following link: https://www.ebi.ac.uk/Tools/msa/clustalo/. MUSCLE 
can be found here https://www.ebi.ac.uk/Tools/msa/muscle/. For orientation, Parsimony 
and ML are referred to here (see Sect. 10.5).

Question 10.9

With a multiple alignment, you can compare multiple sequences and identify similar or 
dissimilar regions.

Question 10.10

For this, all you have to do is look closely at the SMART domain analysis website and seek 
out the seed alignment. In particular, also look at the conserved and less conserved 
residues.
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20.11	 Design Principles of a Cell

Questions 11.1 to 11.7

Transfer RNA (tRNA) mediate the translation of the correct amino acids from the RNA 
code, this happens at the ribosomes. Biophysical laws determine the structure (e.g. hydro-
gen bonds, hydrophobic interaction), but also other effects such as crowding. However, 
these are so complex that the exact process of the formation of the three-dimensional 
protein structure has not yet been completely deciphered (e.g. via “molten globule“state). 
However, since many protein sequences and protein domains are known, much informa-
tion about function and structure can be obtained from databases. For example, much 
information and resolved three-dimensional structural coordinates together with annota-
tions for the protein can be found in the PDB (https://www.rcsb.org/pdb/home/home.do) 
and UniProt (https://www.uniprot.org/) databases. In addition, there are also classification 
databases, for example according to sequence and structural similarity such as SCOP 
(structural classification of proteins; https://scop.mrc-lmb.cam.ac.uk/scop/, from 2010 
continued with SCOP extended; https://scop.berkeley.edu) and CATH (classification by 
class, architecture, topology and homology; https://www.cathdb.info/), or according to 
protein families and function the databases PROSITE (https://prosite.expasy.org/) and 
Pfam (https://pfam.xfam.org/). Thus, it is possible to obtain predictions of protein struc-
ture and function through experiments and bioinformatic modelling (e.g. differential equa-
tions and simulations). In this context, there are different approaches to predict protein 
structure from a sequence, e.g. ab-initio and comparative predictions (e.g. homology mod-
eling, threading). Ab-initio predictions are based on the biophysical properties of proteins, 
whereas homology modeling uses known protein structures. There are many useful soft-
wares to visualize (e.g., hydrogen bonds or hydrophobic regions) and analyze (e.g., dock-
ing and modeling) protein structures, such as PyMOL (https://www.pymol.org/), RasMol 
(https://www.openrasmol.org/), and Swiss-PdbViewer (https://spdbv.vital-it.ch/). A pro-
tein structure analysis can be performed bioinformatically, e.g. with AnDom (contains 
three-dimensional structural domains based on SCOP classification), SWISS-MODEL 
(https://swissmodel.expasy.org/), I-TASSER (Iterative Threading ASSEmbly Refinement; 
https://zhanglab.ccmb.med.umich.edu/I-TASSER/) or with a Ramachandran plot, which 
provides information about possible structures, domains and function. A Ramachandran 
plot (e.g., RAMPAGE software; https://mordred.bioc.cam.ac.uk/~rapper/rampage.php) 
calculates the phi and psi torsion angles in the protein, thus providing a graphical overview 
of the distribution of alpha helices and beta leaflets.

Questions 11.8 to 11.11

I can find a possible function for a protein if I look in the sequence for possible sequence 
motifs and protein domains, i.e. independent folding units. This shows me, for example, 
whether an active site, a regulatory domain or interaction domains are present in my 
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protein, thus giving me information about the possible function of the protein. Example 
databases/programs include PROSITE, AnDom, SMART (https://smart.embl-heidelberg.
de/), and the ELM server (eukaryotic linear motifs; https://elm.eu.org/index.html). It is 
always best to use several programs and compare the results, because this is the only way 
to be sure that you have found a trustworthy match. Recurring conserved regions in mul-
tiple sequences can be found using multiple alignments. These allow to compare (align) 
several sequences with each other. There are various programs for this, such as MUSCLE 
(Multiple Sequence Comparison by Log-Expectation; https://www.ebi.ac.uk/Tools/msa/
muscle), MAFFT (Multiple Alignment using Fast Fourier Transform; https://www.ebi.
ac.uk/Tools/msa/mafft/) and Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/). 
Multiple sequence alignments can be used to find conserved regions, possible domains, or 
specific differences between different sequences. Another method is phylogenetic trees, 
which can be created with PHYLIP (Phylogeny Inference Package; https://evolution.
genetics.washington.edu/phylip.html), for example. In addition to a multiple sequence 
alignment, one can also find the evolutionary relationship between the sequences.

Question 11.12

Answer A, C, D.
In the chosen example for the “TAR protein”, both programs should have found a double 
stranded RNA-binding domain (dsRBD), suggesting that binding occurs via double 
stranded RNA molecules.

If something did not work for you, then try it best like this (Fig. 20.9). The correspond-
ing protein sequence can be found below the genebank number, then click on FASTA, 
which will automatically redirect you to the FASTA sequence (see also https://www.ncbi.
nlm.nih.gov/protein/60653021?report=fasta). Then copy this sequence and paste it into 
the search windows at PROSITE and AnDom. The output of both pages can be found in 
Fig. 20.9 below.

Question 11.13

For this: https://www.rcsb.org/pdb/explore/explore.do?structureId=1HSG. Then: 
https://thegrantlab.org/teaching/material/Structural_Bioinformatcs_Lab.pdf; https://sbcb.
bioch.ox.ac.uk/users/greg/teaching/docking-2012.html. Staining of hydrophobic residues 
in the center. Introduction PyMOL here: https://pymolwiki.org/index.php/
Practical_Pymol_for_Beginners.

Questions 11.14 to 11.21

Cellular communication is an essential process in eukaryotic and prokaryotic cells in order 
to regulate important processes or to react to an external stimulus. In prokaryotes, this is 
usually done by direct control, e.g. via two-component systems. A sensor activates a 
responder, which then immediately triggers transcription. In this way, a rapid response is 
made to an external stimulus. In eukaryotes, on the other hand, regulation is more complex 
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Fig. 20.9  PROSITE and AnDom

20  Solutions to the Exercises
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and usually occurs indirectly, e.g. via glucocorticoids, and is often also associated with 
intracellular communication. An example of cellular communication is second messen-
gers that allow rapid communication, such as ATP in the energy supply in the cell (ATP is 
critically important for movement). It is generated in the respiratory chain after energy-
rich compounds are broken down via glycolysis (anaerobic) and citric acid cycle (aerobic). 
The reduction equivalents (NADH, FADH) are oxidized in the respiratory chain and 
assembled into ATP molecules. Bioinformatically, I can look at metabolism and develop a 
kinetic (dynamic) model for this. Another example of cellular communication is differen-
tiation, which is cell-to-cell communication. Here, for example, haematopoiesis (blood 
formation) would be interesting. For this, one can bioinformatically look at the kinase 
network. Important for cell differentiation is the central organizer (Speman organizer), 
which determines the developmental axes in the embryo, which occurs via the Wnt signal-
ing pathway. This can also be considered bioinformatically, e.g. modeling with cellular 
automata or agent-based simulations. In most cases, it is therefore of interest to know the 
role of my protein and where it is localised, for example in the membrane or in the cell 
nucleus, in order to also draw conclusions about its function. For this purpose, there are 
already numerous databases in which I can find relevant interactions and information, e.g. 
PlateletWeb, KEGG, STRING and SPdb (Signal Peptide database; https://proline.bic.nus.
edu.sg/spdb/). Bioinformatically, I can also predict localization, for example with SignalP 
(localization of signal peptides; https://www.cbs.dtu.dk/services/SignalP) or TargetP 
(https://www.cbs.dtu.dk/services/TargetP). Given a training dataset of proteins with 
known, experimentally verified localization, these programs learn to predict a particular 
localization from the amino acid composition. The localization in the cell can thus be 
determined from the protein sequence with the help of programs with hidden Markov 
models or neuronal networks, and new sequences to be investigated can then be assigned 
accordingly. Specifically, a transcription factor should be localised in the nucleus, an acid 
protease in the lysosome, a storage protein in the Golgi, a secreted protein in the endoplas-
mic reticulum and a membrane protein (prediction with TMHMM) in the membrane, and 
so on. A program should also predict this accordingly. If you want to write your own pro-
gram, it should have an input and output part. In the middle is the processing part (predic-
tion part). This consists of either a neural network or a hidden Markov model.

The information content of a message can be described with the Shannon entropy: One 
bit of information is the smallest unit of information, a “yes” or “no” decision. Words and 
sentences can thus be assigned their information content according to their length. In a 
further step, one can include the different signal sources and consider the quality, i.e. how 
high or low the information value is, e.g. low if the same characters are always sent. This 
knowledge can also be transferred to biological systems, for example if one wants to take 
a bioinformatic look at cell differentiation or intracellular communication, such as a signal 
cascade between body cells via second messengers (e.g. cAMP). In this way, signal trans-
mission for cell growth and cell differentiation can be described in more detail, for exam-
ple by amplification or attenuation of cellular signals by kinases and phosphatases (the 
quality of the signal depends on the ratio of signal to background noise). In this way, it is 
possible to observe and model various complex cellular processes bioinformatically. One 
is thus in a position to understand them better.
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Question 11.22

The TMHMM server link is: https://www.cbs.dtu.dk/services/TMHMM/. Here, any 
sequence can be seen by simply pasting it into the question form in terms of transmem-
brane helices including graphics for the extra- or intracellular loops.

Question 11.23

The NucPred link is: https://www.sbc.su.se/~maccallr/nucpred/. Here I can determine all 
nuclear localization signals. There is also a database LocSigDB, from which one can 
derive many nuclear localization signals.

Question 11.24

The SignalP server link is: https://www.cbs.dtu.dk/services/SignalP/. Here, different neu-
ronal networks are combined to achieve the best possible prediction (for gram-negative 
and -positive bacteria and eukaryotes).

Question 11.25

The PROSITE server link is: https://prosite.expasy.org/scanprosite/. The PROSITE motifs 
also specify catalytic residues, protein modifications as well as typical amino acid residue 
combinations for enzyme families and a range of localization motifs and interaction motifs.

Question 11.26

The ELM server plays all this back in bundled form. It retrieves several programs that are 
installed there, i.e. it is a meta server (https://elm.eu.org).

Question 11.27

The link is: https://geneontology.org. A distinction is made between molecular function 
(MF), biological process (BP) and cellular compartment (CC).

Questions 11.28 and 11.29

Cytoscape can be found at: https://www.cytoscape.org. Downloadable e.g. from: https://
www.cytoscape.org/download.php. Protein networks are read in and can then be further 
analyzed by suitable subprograms (plugins) (see Sect. 20.5). BiNGO (https://apps.cyto-
scape.org/apps/bingo) calculates overrepresentations of biological processes and signaling 
pathways (GO terms). Please also have a look at the tutorial section.
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Question 11.30

The PlateletWeb can be found at: https://plateletweb.bioapps.biozentrum.uni-wuerzburg.
de/plateletweb.php. For a query, you can, for example, first enter the VASP protein and 
have all interactions of VASP calculated. Please also have a look at the tutorial section.

20.12	 Life Continuously Acquires New Information in Dialogue 
with the Environment

Question 12.1

The link to BLAST is: https://blast.ncbi.nlm.nih.gov/Blast.cgi.
Now test:
Enter random sequence: no hit.
True biological sequence: very small E-value (expected value for a random hit). For 

something very common, such as the letter “E” in the database, this value can reach 
100,000 or more (if that many E’s were found in an average search of the database). It is 
then not a random match, but the probability that this is just a random match is very small 
(e.g. less than 10−6, so less than 1 in 1 million). The larger the database, the easier it is to 
get random matches, so then the E-value becomes higher.

Question 12.2

The link leads to the protein blast, the database (“non-redundant protein sequences, nr, i.e. 
each known protein is contained only once in the database”) is found automatically:
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins.

	 (a)	Searching in a word: DNA is in the database for protein sequences, James Watson 
fails at the J and the O.

	 (b)	Use only meaningful characters: Never use JUZBOX, good counter test if the one-
letter sequence is correct.

	 (c)	Wobble codons denote several nucleotides that are possible at this position, for 
example R for purine (A or G) as well as Y for pyrimidine (C or T or in RNA U). 
Wobble codons for consensus, here would be optimal to recognize a good and a bad 
sequence (at wrong codons, but also at the many NNNNs, perhaps also a polyade-
nylation site).

Question 12.3

Check out the https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi page. Go to 
the NCBI page on codons. Now you can understand how to translate all the triplets from 
nucleic acid sequences to amino acids. There are also variants of the universal code, such 
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as in Mycoplasma. A protein translated to mycoplasma and universal code is different 
(STOP codon in mycoplasma means W). Or even a mitochondrial protein vividly demon-
strates how cellular languages are understood and translated somewhat differently.

Question 12.4

Get the appropriate codons from the codon table. What would be different about the codon 
usage in yeast (yeast) compared to the universal code?

Differences from the Standard Code:

Code   3Standard
AUA    Met MIle I
CUU    Thr TLeu L
CUC    Thr TLeu L
CUA    Thr Tleu L
CUG    Thr TLeu L
UGA    Trp WTer *
CGA    absentArg R
CGC    absentArg R.

20.13	 Life Always Invents New Levels of Language

Question 13.1

Domains are independent folding units in protein, ranging in size from 100 to 150 amino 
acids. The databases are particularly important:

InterPro https://www.ebi.ac.uk/interpro/
SMART https://smart.embl-heidelberg.de
Pfam https://pfam.xfam.org

Query in InterPro, SMART or even Pfam: Thousands of protein families are always stored. 
InterPro also has automatic annotation and collection of protein domains and proteins 
(fusion of previous, single databases such as ProDom). SMART assumes hand-annotated 
alignments for extracellular domains, whereas Pfam considers entire protein families 
(multiple domains). The recombination of protein domains during splicing allows the pro-
duction of many different protein variants from a single muscle gene. This is an advantage 
in the evolution of eukaryotes. This allows a much more complex generation of new pro-
teins than would be possible if this were not the case. This is why we have become much 
more easily complex multicellular organisms, while bacteria remain in a simple state with-
out splicing. The exon boundaries/reading frames are easily seen (indicated) in the SMART 
database. This also indicates recombination, even for “mile-long” genes, like the one for 
tittin in the human genebank. In a word: a huge evolutionary potential.
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Question 13.2

https://www.rcsb.org/pdb/home/home.do. This is the protein database, the large repository 
for all protein structures. Also relatively limited, reference to the PDB database. This has 
120,642 Biological Molecular Structures (July 2016; 100,848 X-ray crystal structures, 
10,078 NMR structures, 787 by electron microscopy). Funded by the Research 
Collaboratory for Structural Bioinformatics, rcsb.org (Rutgers University, UC San 
Diego, SDSC).

There is also the “Molecule of the Month” series, where one structure at a time is pre-
sented in detail in a very didactic way. The RCSB PDB Molecule of the Month: Inspiring 
a Molecular View of Biology; Goodsell DS, Dutta S, Zardecki C, Voigt M, Berman HM, 
et al. (2015) The RCSB PDB “Molecule of the Month”: Inspiring a Molecular View of 
Biology. PLOS Biology 13(5): e1002140. https://doi.org/10.1371/journal.pbio.1002140

Important main categories:

•	 Health and diseases
•	 Essential molecules of life
•	 Biotechnology and nanotechnology
•	 Structure and structural elucidation.

SCOP: Structural Classification of Proteins (scop.mrc-lmb.cam.ac.uk/scop/). SCOP 
classifies all protein structures and specifies how they are built in detail, e.g. beta-sheet 
with a helix packed against it.

Link to “Atlas of protein structures": https://www.bioinformatics.org/molvis/atlas/
atlas.htm.

But with protein design, these tight limits no longer apply (see follow-up tasks). CATH: 
Class, Architecture, Topology/fold, Homology read here https://www.cathdb.info/.

Question 13.3

For example, seek out the “Reactibody” by Carletti E et  al. (Released: 2011 Sep 21): 
https://www.rcsb.org/pdb/explore.do?structureId=2XZA (catalytic antibody).

Question 13.4

Tissue plasminogen activator and engineering of loop structure: An optimal response is to 
visualize the PDB structure 5BRR, such as with RasMol (5BRR Michaelis complex of 
tPA-S195A:PAI-1, Gong L, Liu M, Zeng T, Shi X, Yuan C, Andreasen PA, Huang M 
(2015) Crystal Structure of the Michaelis Complex between Tissue-type Plasminogen 
Activator and Plasminogen Activators Inhibitor-1. J. Biol. Chem. 290 p. 25795–25,804). 
There you can look at the loop regions of tPA (their removal would prolong the effect) and 
an inhibitor in complex with tPA. View the structure for this with RasMol or PyMOL.
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Question 13.5

This original paper describes exactly what you see: Hydrophilic peptides derived from the 
transframe region of Gag-Pol inhibit the HIV-1 protease (Louis JM, Dyda F, Nashed NT, 
Kimmel AR, Davies DR (1998). Hydrophilic peptides derived from the transframe region 
of Gag-Pol inhibit the HIV-1 protease. Biochemistry. 37(8):2105–10. https://doi.org/https://
doi.org/10.1021/bi972059x).

The HIV-1 transframe region (TFR) is between the structural and functional domains 
of the Gag-Pol polyprotein, flanked by the nucleocapsid and the protease domains at its N 
and C termini, respectively. Transframe octapeptide (TFP) Phe-Leu-Arg-Glu-Asp-Leu-
Ala-Phe, the N terminus of TFR, and its analogues are competitive inhibitors of the action 
of the mature HIV-1 protease. The smallest, most potent analogues are tripeptides: Glu-
Asp-Leu and Glu-Asp-Phe with Ki values of approximately 50 and approximately 20 
microM, respectively. Substitution of the acidic amino acids in the TFP by neutral amino 
acids and d or retro-d configurations of Glu-Asp-Leu results in a > 40-fold increase in Ki. 
Protease inhibition by Glu-Asp-Leu is dependent on a protonated form of a group with a 
pKa of 3.8; unlike other inhibitors of HIV-1 protease which are highly hydrophobic, Glu-
Asp-Leu is extremely soluble in water, and its binding affinity decreases with increasing 
NaCl concentration. However, Glu-Asp-Leu is a poor inhibitor (Ki approximately 7.5 mM) 
of the mammalian aspartic acid protease pepsin. X-ray crystallographic studies at pH 4.2 
show that the interactions of Glu at P2 and Leu at P1 of Glu-Asp-Leu with residues of the 
active site of HIV-1 protease are similar to those of other product-enzyme complexes. It 
was not feasible to understand the interaction of intact TFP with HIV-1 protease under 
conditions of crystal growth due to its hydrolysis giving rise to two products. The sequence-
specific, selective inhibition of the HIV-1 protease by the viral TFP suggests a role for TFP 
in regulating protease function during HIV-1 replication.

Chellappan S, Kiran Kumar Reddy GS, Ali A et al. (2007) Design of mutation-resistant 
HIV protease inhibitors with the substrate envelope hypothesis. Chem Biol Drug Des. 
2007 May; 69(5): 298–313.

There is a clinical need for HIV protease inhibitors that can evade resistance muta-
tions. One possible approach to designing such inhibitors relies upon the crystallographic 
observation that the substrates of HIV protease occupy a rather constant region within the 
binding site. In particular, it has been hypothesized that inhibitors which lie within this 
region will tend to resist clinically relevant mutations. The present study offers the first 
prospective evaluation of this hypothesis, via computational design of inhibitors predicted 
to conform to the substrate envelope, followed by synthesis and evaluation against wild-
type and mutant proteases, as well as structural studies of complexes of the designed 
inhibitors with HIV protease. The results support the utility of the substrate envelope 
hypothesis as a guide to the design of robust protease inhibitors.

CARB-AD37 docked into HIV protease from crystal structure. Inhibitors were tested 
against wild-type HIVP and a panel of three proteases with clinically relevant mutation 
sets: M1 (L10I/G48V/ I54V/L63P/V82A), M2 (D30N/L63P/N88D), and M3 (L10I/L63P/
A71V/ G73S/I84V/L90M).

20  Solutions to the Exercises

https://doi.org/10.1021/bi972059x
https://doi.org/10.1021/bi972059x
https://doi.org/10.1021/bi972059x


345

Question 13.6

Technically solve this task by querying PubMed: https://www.ncbi.nlm.nih.gov/
pubmed/?term=Baker-D+AND+Nature, i.e. query: “Baker-D AND Nature”. This results 
in the following articles, among others:

	1.	 Bale JB, Gonen S, Liu Y et al. (2016) Accurate design of megadalton-scale two-
component icosahedral protein complexes. Science. 2016 Jul 22; 353(6297): 
389–394. PubMed PMID: 27463675.

	2.	 Hsia Y, Bale JB, Gonen S et al. (2016) Design of a hyperstable 60-subunit protein 
icosahedron. Nature. 2016 Jul 7; 535(7610): 136–139. PubMed PMID: 27309817; 
PubMed Central PMCID: PMC4945409.

	3.	 Boyken SE, Chen Z, Groves B et  al. (2016) De novo design of protein homo-
oligomers with modular hydrogen-bond network-mediated specificity. Science. 
2016 May 6; 352(6286): 680–687. https://doi.org/10.1126/science.aad8865. 
Erratum in: Science. 2016 May 20; 352(6288). pii: aag1318. https://doi.
org/10.1126/science.aag1318. PubMed PMID: 27151862

	4.	 Huang PS, Feldmeier K, Parmeggiani F et al. (2016) De novo design of a four-fold 
symmetric TIM-barrel protein with atomic-level accuracy. Nat Chem Biol. 2016 
Jan; 12(1): 29–34. https://doi.org/10.1038/nchembio.1966. Epub 2015 Nov 23. 
PubMed PMID: 26595462; PubMed Central PMCID: PMC4684731.

	5.	 Doyle L, Hallinan J, Bolduc J et al. (2015) Rational design of α-helical tandem 
repeat proteins with closed architectures. Nature. 2015 Dec 24; 528(7583): 
585–588. https://doi.org/10.1038/nature16191. Epub 2015 Dec 16. PubMed PMID: 
26675735; PubMed Central PMCID: PMC4727831.

	6.	 Brunette TJ, Parmeggiani F, Huang PS et al. (2015) Exploring the repeat protein 
universe through computational protein design. Nature. 2015 Dec 24; 528(7583): 
580–584. https://doi.org/10.1038/nature16162. Epub 2015 Dec 16. PubMed PMID: 
26675729; PubMed Central PMCID: PMC4845728.

Now the next thing you can do is read these excellent articles as well. David Baker (and 
others) have come a good step closer to protein design in recent times.

Question 13.7

(a)	� This is the following link: https://gosyn.bioapps.biozentrum.uni-wuerzburg.de.

The descriptive publication can be found here: https://database.oxfordjournals.org/con-
tent/2013/bat043.full. Read the publication and/or work through the tutorial and database 
on the net. With the database you can actually do synthetic biology design yourself and 
compare technical and biological control.
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(b)	 Oncolytic virus

You can find information here:

–– https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303349/
–– https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105246/
–– https://www.genelux.com/leadership-in-oncolytic-virotherapy/oncolytic- 

virotherapy/.

Best to browse the internet yourself.

Question 13.8

Here is the link to DrumPID (https://drumpid.bioapps.biozentrum.uni-wuerzburg.de/com-
pounds/index.php), which is a database that combines protein interactions with drugs (i.e. 
chemical compounds). Here you can easily compare main and side effects, protein interac-
tions and pharmaceuticals.

Here is the related publication along with the tutorial: https://database.oxfordjournals.
org/content/2016/baw041.full. Also work through this database and the tutorial.

Another interesting and powerful database in this direction is the STITCH database 
at EMBL:

https://nar.oxfordjournals.org/content/early/2015/11/19/nar.gkv1277.full.pdf
https://stitch.embl.de

Question 13.9

Here are four beautiful breakthroughs gathered together:
Adleman LM (1994) Molecular Computation of Solutions to Combinatorial Problems. 
Science 266: 1021–1024. Leonard Adelman deserves credit for having recreated the trav-
eling salesman problem for simple cases (up to six cities) in DNA molecules by ligation.

Zimmer R (1998) Patent on parallel, universal and free-programmable information sys-
tem for general computing operations. WO9847077 (A1) 1998 Oct 22. Prof. Ralph 
Zimmer (LMU Munich) considered how to convert the lambda calculus into a universal 
calculating machine and implement it in living organisms.

Win MN, Smolke CD (2008) Higher-order cellular information processing with syn-
thetic RNA devices. Science 322, 456–460. Here, RNA aptamers that measure caffeine 
and diazepam have been interconnected with an RNA lever in such a way that they act like 
mini-sensors, switching to start only when the concentrations of either have a suit-
able range.

Tero A, Takagi S, Saigusa T et al. (2010) Rules for biologically inspired adaptive net-
work design. Science. 2010 Jan 22; 327(5964): 439–442. https://doi.org/10.1126/sci-
ence.1177894. The latest work calculates the optimal plan for the Tokyo metro system 
with the help of a slime mold that has been suitably distributed food.
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Question 13.10

Generally speaking, you first need a light driveable domain. For this, look for BLUF (blue 
light sensitive) or LOV (light operate voltage channel) domains. If you add such a domain, 
the protein suddenly becomes driveable by light with matching wavelength, in particular 
it becomes active only when this light wavelength hits, but stops otherwise.

20.14	 We Can Think About Ourselves – The Computer Cannot

Question 14.1

Gödel’s theorem states that in any complete mathematical system it is possible to formu-
late statements that the system cannot decide. Systems in which such statements do not 
occur, on the other hand, are incomplete. A very nice derivation is given by Douglas 
R. Hofstadter in his classic book “Gödel-Escher-Bach.”

Question 14.2

All general computable problems can be reproduced with the help of the Turing machine. 
All non-Turing-computable problems cannot be solved by computers and remain tasks 
for humans.

Question 14.3

Test for artificial intelligence: Human and computer are hidden behind a cloth, and outside 
people are now supposed to guess who is who. If the computer can fool the humans, then 
it has passed the Babbage test and possesses artificial intelligence.

Question 14.4

Get to know neuronal network:

(a)	 TMHMM (https://www.cbs.dtu.dk/services/TMHMM/) is already explained in 
Chap. 11 and Sect. 20.11, respectively.

(b)	 The ELM server (https://elm.eu.org) has also already been explained in Chap. 11 
and Sect. 20.11, respectively.

(c)	 PredictProtein secondary structure prediction uses neural networks.

Prof. Burkhard Rost has spent years working on neuronal networks and secondary struc-
ture predictions of proteins. Protein sequences are simply read into the server. A neural 
network then predicts whether the amino acids are able to form a helix, a second predicts 
the ability to form beta strands and a third predicts whether a loop region is present. A 
fourth neural network is trained to decide how best to make an overall prediction from 
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these three predictions, for example, if beta strand and helix but no loop region are pre-
dicted simultaneously by the three lower-level networks.

Further tricks additionally improve the predictions of this software. In particular, many 
sequences with similar structure are automatically added to the question sequence (mul-
tiple alignment). Thus, this secondary structure prediction allows an accuracy of up to 
80%. This is already very close to the theoretical optimum. The only way to become even 
more accurate is to predict the three-dimensional structure at the same time.

Question 14.5

One software is MemBrain (https://www.membrain-nn.de/index.htm; https://www.mem-
brain-nn.de/).

Question 14.6

Please search the internet for deep learning and inform yourself. Helpful is also the page: 
https://deeplearning.net/. For AlphaGo also on the Internet (https://deepmind.com/
research/alphago; https://www.youtube.com/watch?v=mzpW10DPHeQ).

Question 14.7

Classification models are used in bioinformatics for the classification between two catego-
ries (binary), for example for the diagnosis of a disease (sick/healthy). It is important here 
to become familiar with a classification table (confusion matrix; TP, FP, FN, TN), but also 
to look at the performance metrics (sensitivity, false positive rate, specificity, PPV, NPV, 
accuracy, misclassification rate, prevalence, ROC, AUC) for evaluating a classification 
model. Here it is also important to know what are, for example, differences between sen-
sitivity and PPV, but also between specificity and NPV. For example, let’s imagine: A 
person gets a positive (negative) test result from a predictive test that has a sensitivity of 
90%, specificity of 99%, a PPV of 80%, and a NPV of 99%. Here, the positive test result 
could only be trusted 80% to actually be positive (sick) (20% false positive, so fortunately 
healthy), whereas a negative test result could be trusted more to actually be healthy (1% 
false negative, so actually sick). Most diagnostic testing procedures take this into account 
and, in the case of a positive test result, carry out a second test to confirm the diagnosis 
(e.g. mammography screening). On the other hand, a test should in any case be accurate 
enough to identify a healthy person with a high probability (here it would be worse to send 
home a supposedly healthy person [negative test result] who is in fact sick [false negative] 
and thus does not get any helping therapy or infects other people with a virus [e.g. 
COVID-19]). In addition, one should think about problems (little data, etc.) in creating a 
classification model, but also what requirements a classification model should meet. To 
build a predictive model, it is advisable to use a training and test dataset (splitting 80/20%) 
and validate the model on at least one independent dataset to better evaluate the predic-
tive power.
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Question 14.8

Data in biology and medicine are usually high-dimensional, i.e. they contain different 
variables (features), correlations, confounders, batch effects and multicollinearity. For 
this, machine learning methods in bioinformatics are helpful to structure the data and 
extract relevant features, but also to develop classification models (predictive models). 
PCA tries to decompose high dimensional data into principal components and reduce their 
complexity (dimension reduction), but also to detect group differences. Cluster analyses 
try to classify data into groups (clusters) with similar feature structures (characteristics), 
e.g. healthy group (normal blood pressure) and diseased group (high blood pressure). 
Regression analyses attempt to find correlations and relationships between a dependent 
(“response variable”) and independent (“predictor variable”) variable, e.g. probability of 
developing high blood pressure (and subsequently dying of heart failure) if one is over-
weight. It is important to also look again at the underlying algorithms and statistical 
parameters to assess model goodness of fit. Further details and information can be found 
in the papers Worster et  al. (2007), Schneider et  al. (2010), Singh and Mukhopadhyay 
(2011) and Zwiener et al. (2011).

20.15	 How Is Our Own Extremely Powerful Brain Constructed?

Question 15.1

For this purpose, please refer to the website https://www.neuron.yale.edu/neuron/ (tuto-
rial: https://www.neuron.yale.edu/neuron/docs available).

Question 15.2

For more information, please visit the website https://www.openworm.org/index.html.

Question 15.3

For more information, please visit the website https://www.humanconnectomeproject.org/.

Question 15.4

To do this, simply search the Internet, for example, with size constancy in the brain, 
and inform.

Question 15.5

To do this, simply search the Internet and inform yourself (there are also nice Youtube 
videos about this).
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Question 15.6

OMIM stands for Online Mendelian Inheritance in Man. Go to the website (https://www.
ncbi.nlm.nih.gov/omim) and search for “alcoholism” and “schizophrenia”.

20.16	 Bioinformatics Connects Life with the Universe and all 
the Rest

Question 16.1

You can find the digital manifesto online here: https://www.spektrum.de/news/wie-
algorithmen-und-big-data-unsere-zukunft-bestimmen/1375933; https://www.spektrum.
d e / t h e m a / d a s - d i g i t a l - m a n i f e s t - a l g o r i t h m e n - u n d - b i g - d a t a - b e s t i m m e n - 
unsere-zukunft/1375924.

Question 16.2

Here is a brief explanation of global warming: https://www.climatehotmap.org/about/
global-warming-causes.html.

Question 16.3

Here you can find the Doomsday Clock (the clock of “doom”, i.e. how close people are to 
catastrophe), but is of course a bit exaggerated here to get people to act. Easily found at: 
https://thebulletin.org/timeline. Doomsday here refers to the general demise of humanity, 
quickly by nuclear weapons, slowly by global warming. Two years (2018, 2019) the situ-
ation was again so volatile that the clock was at 3–12 min. But in 2020 the clock switched 
to only 100 s before midnight – it’s really time to act.

Question 16.4

Here’s Plan B, a particularly carefully crafted plan (Version B 4.0) for sustainability and 
rebuilding our environment, promoted by the Earth Watch Institute: https://www.earth-
policy.org/books/pb4.

Question 16.5

Here is some information on Plan C: Sustainable, highly resilient and adaptable technolo-
gies that can help us stay strong in an emergency. A recent result is the coupling of 
enhanced CO2 fixation in plants together with an alternative pathway that minimizes CO2 
losses through light respiration: This would allow us to be 5 times better at removing CO2 
from the air while making plants more productive [6] (Naseem et al. 2020).

Other examples:
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	1.	 The internet (doesn’t break due to war, lost node computers are replaced by others 
on the fly). Many people are working to make the internet even more resilient. The 
nanocellulose chip without garbage already mentioned above, in which electronics 
are replaced by light, could be one of several possibilities.

	2.	 Greenhouses that would still bring food even in winter, drought, famine, but would 
also help against nuclear winter or destroyed UV layer.

	3.	 Using Flettner rotor ships to keep global warming down through low clouds (very 
effective, could stop all global warming; “Marine Cloud Brightening”; https://
en.wikipedia.org/wiki/Marine_cloud_brightening).
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�Overview of Important Databases and Programs 
and Their General Use

�Alignment/Tribes

CLUSTALW/Clustal Omega https://www.ebi.ac.uk/Tools/msa/clustalo/
MUSCLE https://www.ebi.ac.uk/Tools/msa/muscle/
PHYLIP https://evolution.genetics.washington.edu/phylip.

html

�Datasets on Biological Quantities/Biotechnology/Synthetic Biology

BioNumbers https://bionumbers.hms.harvard.edu
BioBricks https://biobricks.org/
GoSynthetic https://gosyn.bioapps.biozentrum.uni-wuerzburg.de/index.

php

�Dotplot

Yolk https://sonnhammer.sbc.su.se/Dotter.html
GEPARD https://mips.gsf.de/services/analysis/gepard
JDotter https://athena.bioc.uvic.ca/virology-ca-tools/

jdotter/

�Functional Databases

Functional Glycomics https://www.functionalglycomics.org/; https://ncfg.hms.
harvard.edu/

Gene Ontology https://www.geneontology.org
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�Brain Blueprints

Blue Brain Project (EU) https://bluebrain.epfl.ch/
Brain Activity Atlas https://www.brainactivityatlas.org/
Brain Activity Project (USA) https://www.braininitiative.nih.gov/
Connectome project https://www.openconnectomeproject.org
Mouse Brain Connectivity Atlas https://mouse.brain-map.org/static/atlas
Neuroactivity Detection https://www.ncbi.nlm.nih.gov/pubmed/23537512
Temporal lobe https://www.temporal-lobe.com/background/

connectome
Virtual Insect Brain Lab https://www.neurofly.de/
WormWiring https://wormwiring.org/
Sausage Atlas https://www.wormatlas.org/

�Genome Annotation/Sequence Analysis/Online Libraries/
Experimental Datasets

BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi
GenScan https://genes.mit.edu/GENSCAN.html
RepeatMasker https://www.repeatmasker.org/
ENCODE https://www.encodeproject.org
Ensembl https://www.ensembl.org/Homo_sapiens/Info/Index
GATK Workshop https://software.broadinstitute.org/gatk/guide/

article?id=7869#1.3
Genomic Science Program https://genomics.energy.gov
Human Genome Project https://web.ornl.gov/sci/techresources/Human_Genome/index.

shtml
UCSC https://genome.ucsc.edu/
DDBJ (DNA Data Bank of 
Japan)

https://www.ddbj.nig.ac.jp/

EBI https://www.ebi.ac.uk/services
iGEM Parts https://igem.org/Main_Page
MEDLINE/NCBI/PubMed https://www.ncbi.nlm.nih.gov/pubmed/
NIH https://www.genome.gov
OMIM https://www.omim.org/
Swiss Bioinformatics Institute https://www.sib.swiss/
WebDirectory https://www.biologydir.com/over-population/p1.html
Computational Population 
Biology

https://compbio.cs.uic.edu/

GENEVESTIGATOR https://genevestigator.com/gv/
GEO https://www.ncbi.nlm.nih.gov/geo/
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�Graphics Programs, Modeling and Network Analysis

CellDesigner https://www.celldesigner.org/
CellNetAnalyzer https://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html
Cytoscape https://www.cytoscape.org/
COBRA https://opencobra.github.io/
COPASI https://copasi.org/
Flux balance analysis https://systemsbiology.ucsd.edu/Downloads/FluxBalanceAnalysis
Jimena https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/jimena_c/
MATLAB https://de.mathworks.com/products/matlab.html
Metatool https://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool/
Odefy https://www.helmholtz-muenchen.de/icb/software/odefy/index.html
PLAS https://enzymology.fc.ul.pt/software/plas/
PottersWheel https://www.potterswheel.de/Pages/
SQUAD https://www.vital-it.ch/software/SQUAD
YANA/YANAsquare https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/yanasquare/

�Interaction Database, Drug Interaction Database

catRAPID https://s.tartaglialab.com/page/catrapid_group
HPRD https://hprd.org/
iHOP https://www.ihop-net.org/UniPub/iHOP/
KEGG https://www.genome.jp/kegg/
NPInter https://www.bioinfo.org/NPInter/
PlateletWeb https://plateletweb.bioapps.biozentrum.uni-wuerzburg.de/

plateletweb.php
Roche Pathways https://biochemical-pathways.com/#/map/1
STRING https://string-db.org
DrumPID https://drumpid.bioapps.biozentrum.uni-wuerzburg.de/

compounds/index.php
STITCH https://stitch.embl.de/
EcoCyc https://ecocyc.org/

�Localization/Motive Prediction

LocP https://ekhidna2.biocenter.helsinki.fi/LOCP/

LocSigDB https://genome.unmc.edu/LocSigDB/
nucloc https://www.nucloc.org/
NucPred https://www.sbc.su.se/~maccallr/nucpred/
SignalP https://www.cbs.dtu.dk/services/SignalP/
TMHMM https://www.cbs.dtu.dk/services/TMHMM/
Functional Glycomics https://www.functionalglycomics.org/
ELM https://elm.eu.org/
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�Programming Languages

Biojava https://biojava.org/
BioPerl https://bioperl.org/
C++ https://www.cplusplus.com/
Java https://www.oracle.com/technetwork/java/index.html
Perl https://www.perl.org/
Python https://www.python.org/
R https://cran.r-project.org/
Bioconductor https://www.bioconductor.org/

�Promoter Analysis

ALGGEN 
PROMO

https://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.
cgi?dirDB=TF_8.3

Genomatix https://www.genomatix.de/
JASPAR https://jaspar.genereg.net/cgi-bin/jaspar_db.pl
MotifMap https://motifmap.igb.uci.edu/
TESS https://www.cbil.upenn.edu/tess/
TRANSFAC https://www.gene-regulation.com/pub/databases.html

�Protein Analysis

AnDom https://andom.bioapps.biozentrum.uni-wuerzburg.de/
index_new.html

CATH https://www.cathdb.info/
Conserved Domains https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
ExPASy https://www.expasy.org
InterPro https://www.ebi.ac.uk/interpro/
MODELLER https://salilab.org/modeller/tutorial/
PDB https://www.rcsb.org/pdb/home/home.do
Pfam https://pfam.xfam.org/
ProDom https://prodom.prabi.fr/prodom/current/html/home.php
PRODORIC https://prodoric.tu-bs.de/
PROSITE https://prosite.expasy.org
PyMOL https://www.pymol.org/
QUARK https://zhanglab.ccmb.med.umich.edu/QUARK/
Ramachandran plot https://mordred.bioc.cam.ac.uk/~rapper/rampage.php
RasMol https://www.openrasmol.org/
SCOP (old) https://scop.mrc-lmb.cam.ac.uk/scop/
SCOP updated https://scop.berkeley.edu/
SMART https://smart.embl-heidelberg.de/
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https://prodoric.tu-bs.de/
https://prosite.expasy.org
https://www.pymol.org/
https://zhanglab.ccmb.med.umich.edu/QUARK/
https://mordred.bioc.cam.ac.uk/~rapper/rampage.php
https://www.openrasmol.org/
https://scop.mrc-lmb.cam.ac.uk/scop/
https://scop.berkeley.edu/
https://smart.embl-heidelberg.de/
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SWISS-MODEL https://swissmodel.expasy.org
UniProt/Swiss-Prot https://www.uniprot.org/

�RNA Analysis 
ITS2 https://its2.bioapps.biozentrum.uni-wuerzburg.de/
LNCipedia https://www.lncipedia.org/
microRNA.org/miRanda https://www.microrna.org/microrna/home.do
miRBase https://www.mirbase.org/
regRNA https://regrna2.mbc.nctu.edu.tw/
Rfam https://rfam.xfam.org/
Riboswitch Finder https://riboswitch.bioapps.biozentrum.uni-wuerzburg.de/
RNAAnalyzer https://rnaanalyzer.bioapps.biozentrum.uni-wuerzburg.de/
RNAfold web server https://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/

RNAfold.cgi
TargetScan https://www.targetscan.org
tRNAscan https://lowelab.ucsc.edu/tRNAscan-SE/
Vienna Package https://www.tbi.univie.ac.at/RNA/
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