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No black and white: Shown are the fascinating shades of individuality. In this artistic representa-
tion, all the variants of a healthy human being (NIH assembly identifier: NA12878) are displayed.
They are organized on several circles, representing the different chromosomes, according to
their position on the chromosome. The size and color of the variants were chosen according to
the severity of the impact on the function of the genome. For example, you can see the many
gray variants that do not fall on any gene and are therefore difficult to classify. This contrasts with
the black and dark variants, which cause a severe defect in the affected genes. This shows how a
considerable number of gene defects can be found even in healthy people as they are compen-
sated by the healthy gene copy from the other parent.
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Partl

How Does Bioinformatics Work?

Access

We are searching the key to understand life — this is how bioinformatics is oriented nowa-
days! It has evolved from data processing, just the assistant and auxiliary science for large
amounts of data, to now establish quantitative theoretical biology. For the first time, theo-
ries about something as complex as living beings no longer remain pure theory, but are
directly verifiable and measurable, and have already led to remarkable results and prog-
ress — from drugs against cancer and HIV to new insights, for example into the exciting
question of why our cells and we age.

Nevertheless, my main motivation for studying medicine and later becoming a bioin-
formatician was not so much the prospect of ploughing through large amounts of data, but
the fascination that biology has always had for people, the eternal questions about the key
to the language of life, about the “water of life” that heals everything. I wanted to recog-
nize and understand what holds us together in our innermost self, that is, how our con-
sciousness and our brain function. Tracing these great questions is precisely the purpose
of this book. Because today’s bioinformatics is doing this to an increasing extent, and
because one can also start from very small, simple examples, we will begin with these. We
provide case-based examples for each chapter and a tutorial in the appendix for you to play
with and discover for yourself. The new English edition 2021 brings everything up to date
and adds further important aspects.

The unbelievable has happened silently: Whereas before the computer was just a stupid
data storage device, new insights into life and the world and ourselves are now emerging
in simulations. This is only possible because life itself is not dead and is permeated by
numerous recognition processes. These are, for example, key-lock relationships between
molecules, but also memory and molecular languages at all levels of life. We want to
explore this in more detail here, first looking at the “how” of bioinformatics, in order to
then better understand in Part IT why bioinformatics is so successful right now — similar to
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theoretical physics in the first half of the last century. This will also prepare us to explore
the fascination of information processing in living beings and its reflection in the computer
model (Part IIT), whether we want to better fight infections, understand cancer, or even
understand ourselves.

Short Instructions for Usage of the Book

A classical textbook should (i) teach you the practice of bioinformatics and (ii) provide
accurate definitions. For these two points, we have (i) prepared not only exercises in each
chapter, but also tutorials for the most important software examples along with tips for use,
and (ii) included a number of definitions in the glossary so that important terms are defined
and explained.

Nevertheless, the book here is deliberately not a classical textbook. We want to convey
joy and interest in bioinformatics. You can and are welcome to read the examples and
chapters at your leisure and then, if you are interested in certain analyses in more detail, to
practice them, work through the questions, look at the tutorials and do everything in more
detail. Systematically, all current areas of bioinformatics are presented in a broad over-
view, and each end of chapter briefly summarizes the presented area again in a conclusion.
We can only provide a stimulating introduction here. Without practicing and working
through several examples for each of the software, it is not possible to gain sufficient expe-
rience for your own analyses. A sound knowledge of biology is also important, since you
should be able to critically examine the program outputs with your knowledge. A number
of suggested books on molecular biology but also on the national research data and medi-
cal informatics initiative are listed in the chapters. For students who enjoy programming,
appropriate references for further reading are given in the introduction to the tutorials.
Since bioinformatics lives on databases and software, we have summarized databases and
programs and their basic use in the chapters and in the appendix.
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Sequence Analysis: Deciphering
the Language of Life

Abstract

Sequence analysis is a central tool of bioinformatics with relevant databases (NCBI,
GenBank, Swiss-Prot) and software to detect sequence similarity (BLAST) and domain
databases (Pfam, SMART). Crucial is the ability to know and use such software on the
web, the tutorials and exercises encourage this. Programming sequence comparison
software and databases only makes sense if it enables a better analysis of the biological
question, in particular for large-scale analysis — in all other cases, it is better to use the
numerous software that already exist, the internet is only a mouse click away.

Bioinformatics requires data on living organisms, processes them and then designs a cor-
responding model of the living process that is thereby mapped. A good simple example is
when a polymerase chain reaction (PCR) is used to detect a virus in the blood. Polymerases
copy DNA (deoxyribonucleic acid) and were originally derived from bacteria. Hereby
they also duplicate their genetic information. PCR is a modern method of molecular biol-
ogy. Using such a chain reaction, so much of a molecule (if, for example, there is only one
virus molecule in the blood) is produced by constant doubling of the molecules with the
help of polymerase that it can be easily detected in the laboratory and, above all, the
sequence can be read.

Nowadays, this can be deciphered quite easily by a sequencing machine. However, this
initially leaves us with a salad of letters that lists the nucleotides, i.e. the genetic material,
of the virus in sequence, such as tgtcaacata ... (Fig. 1.1).

© Springer-Verlag GmbH Germany, part of Springer Nature 2023 3
T. Dandekar, M. Kunz, Bioinformatics,
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Fig. 1.1 Sequence analysis allows identification of HIV virus sequences. HIV sequence identifica-
tion using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Shown is the sequence comparison of
an initially unknown sequence against a database using the program BLAST. The result line indi-
cates that the unknown sequence is an HIV-1 N434 retrovirus strain from Venezuela (result line:
Venezuela gag coat protein and pol polymerase protein; the result link then leads to the detailed
sequence comparison)

Collect, Compare and Understand Data In order to now know which virus we have in
front of us (in practice, usually even much more precisely, namely which virus strain), we
have to let the computer identify this sequence.

Collect Data This is particularly easy if you have created a database of virus sequences.
You already know their sequence because you have sequenced them before. As an exam-
ple, let us consider HIV, the human immunodeficiency virus. With the help of the database,
it is easy to find out whether the sequence found by PCR for a virus in the blood matches
one of the entries in the database. Databases are fundamental in bioinformatics. They store
all the information and can then be used for further investigations.
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Analyze and Compare Data

So this is how you do a sequence comparison (also called sequence analysis). You look to
see which sequence in the database is most similar to the new sequence. This can be done
over the entire length of the sequence, i.e. globally. However, because a virus can be rela-
tively strange and one would then usually like to know whether it is not at least similar in
sections, one typically performs a section-by-section local comparison, which thereby
yields the most similar sequence section (Fig. 1.1). But in order for the computer to do
anything at all, you have to tell it what to do down to the last detail, until it finally presents
a result of the computation. All the instructions for this, e.g. to perform such a comparison
up to the final result, are together a program. In the past, programs were written using
instructions that the machine understood particularly well. But these could only be very
short, because they were written in machine language, which essentially contained simple
register instructions (clear 1 bit, write, move or check). Today, however, a richer language
is used that contains far more complicated instructions, which is therefore called a higher
programming language (e.g. Perl, Java, Python, C++ or R, currently the most popular
programming languages in bioinformatics).

Let us return to our sequence example: What do we see as a result in Fig. 1.2? This is a
so-called Basic Local Alignment, the corresponding tool in bioinformatics is called
BLAST, for Basic Local Alignment Search Tool (Altschul et al. 1990), where the result
indicates a veritable diagnosis for the patient.

The sequence comparison shows that it is an HIV strain from Venezuela. It becomes
clear that one can actually make a diagnosis (HIV infection, probably acquired in South

Fig. 1.2 Drug design, example of HIV infection. The HI virus is blocked in its activities (dark
molecule around the drug) by a drug (centre, white). Computer representation of the three-
dimensional structure of the HIV-1 protease (molecular structure consisting of leaflets [red], loop
regions [blue] and helices [yellow]) and its inhibitor ritonavir (shown as a sphere and edge model).
The aim of such bioinformatic drug designs is to design a suitable therapy on the computer, in this
case, for example, the inhibition of the protease for the treatment of an HIV-1 infection, so that the
virus can no longer produce new viral envelopes - its protease no longer functions
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America) with this computer program, which only writes letters as optimally as possible
among each other (hence sequence comparison or alignment). The decisive prerequisite
for this is that one knows and understands the results correctly in their biological mean-
ing - and this is precisely the work of the bioinformatician.

Understanding Data

Finally, there is a third area of work in bioinformatics: “understanding data”. In addition
to collecting data (databases) and comparing data (e.g. using BLAST), one ultimately
wants to understand the data and use it appropriately, for example to develop new thera-
peutic approaches. This can happen, among other things, by integrating the data in a suit-
able bioinformatics model and then modelling it. This modelling can be a simulation, for
example if I am looking for new drugs against HIV and want to destroy the sequence of
the virus. Since the virus consists of nucleic acids, as we have already seen above, I can,
for example, insert the wrong nucleotides into the virus and thus also destroy its poly-
merase (the copying enzyme with which the virus reproduces). A complex but highly suc-
cessful modelling technique consists of reproducing the three-dimensional structure of
this polymerase in the computer and then selecting from a database of molecules which
best fits into the polymerase in such a way that it is blocked, i.e. the virus can no longer
reproduce (Fig. 1.2 shows an example of this drug design). Such methods have been very
successful with HIV in particular. There are now more than 20 drugs that target the virus
with the wrong nucleotides, by inhibiting its nucleic acid or its enzymes. The result is
remarkable, the combination therapy (highly active antiretroviral therapy; HAART,
Antiretroviral Therapy Cohort Collaboration 2008) works so well that one has an almost
normal life expectancy, while one can only withstand the viral infection for a few years
without therapy (Hoog et al. 2008). This illustrates that bioinformatics can strongly sup-
port medicine for instance regarding therapy.

What would you actually have to pay special attention to if, for example, you now per-
form such sequence comparisons yourself? It is important to know that the BLAST search
is not completely accurate (heuristic), but it delivers faster results than a 1:1 comparison
over the entire sequence length against the database. Therefore, such hits are only credible
if the probability of getting such a hit by chance is low enough. As a first rule of thumb you
can remember: The E-Value (i.e. the expected value of a random hit) should be less than
1 in one million. This is then already a very convincing value. In borderline cases (random
expectation value at 1 in 1000), you can also take the hit sequence and see if you can find
the initial sequence again (called “reverse search” in technical jargon). If we keep in mind
that this is a local search, then we also understand why we should search the whole hit
length (given in the example, sequence similarity over the whole sequence length). But
there are also BLAST results where only one subsequence in the protein has high similar-
ity and the rest instead shows no similarity. In this case, the BLAST search turned up only
one protein domain, the one with the highest similarity in the whole database. To deter-
mine the remaining parts of the sequence in terms of function as well, you then need to use
only those domains that do not yet have database hits again, without the first sequence part
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for the search. In this way, you can match domain by domain in the protein with a new
BLAST search each time for the sequence portion that has not yet been matched by the
search. Finally, in difficult cases, the BLAST search may only reveal a similarity to a data-
base entry that has no clear function. In this case (protein sequence), you can use the
“position-specific iterative BLAST”, or Psi-BLAST for short, which then searches with all
the still unrecognized sequences at the same time (a so-called “profile”) until it lands a hit
to which a sequence can be assigned. This almost always works, but may take several
repetitions. You should also only continue searching with Psi-BLAST if something
changes in the repeat search, otherwise the search is “converged” in vain.

However, the drug search shown in Fig. 1.2 is a somewhat involved process, requiring
many intermediate results to be obtained and calculations and comparisons to be made.
What can be done, on the other hand, is to perform direct databases that provide additional
secondary information besides the primary sequence information. These are also called
secondary databases. An example would be to search for the HIV protease in the protein
database PDB (https://www.rcsb.org/pdb/home/home.do). In addition to the protein
sequence, this database also holds the coordinates of the protein’s three-dimensional struc-
ture, as well as other details about its structure and function. There is a great deal of further
information available on the HIV structure in particular, including information on the
drug design.

1.1 How Do | Start My Bioinformatics Analysis? Useful Links
and Tools

Generally speaking, we first look at the function of the molecule we want to bioinformati-
cally determine by comparing it directly to a database. The best known example is the
direct sequence comparison with BLAST, which we have already discussed in detail. The
next step is to use other databases or programs for analyses and comparisons to obtain
additional information. A simple example is to search for secondary data, and our first
example of this was the protein database. As a primary database, it contains the three-
dimensional coordinates of protein structures, but it also contains a lot of secondary data
about these proteins where this structure determination was successful. As a third step, we
can finally follow up with detailed analyses.

In the following, useful supporting sites for these steps are briefly presented. The
BioNumbers database describes number relationships in biology (https://bionumbers.hms.
harvard.edu). This was established at Harvard University by students who first calculated
these biological problems and then made these numbers available to the interested reader.

Unfortunately, most bioinformatics websites are in English, including this book. This is
due to the fact that the Anglo-Americans were simply faster with many initial develop-
ments than German bioinformatics. In addition, English is now the language of science,
and the creator of a bioinformatics website would like everyone to be able to use this site.


https://www.rcsb.org/pdb/home/home.do
https://bionumbers.hms.harvard.edu
https://bionumbers.hms.harvard.edu
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Already Prepared Results: “BioNumbers”

>

https://bionumbers.hms.harvard.edu/

So here you can find out how different sizes and numbers are related in biology. Just
look it up and learn about the exciting world of sizes and numbers in different organisms
and diseases, but also in humans.

For a better understanding, we would like to show a simple screenshot of a list of useful
biological quantities and numbers from the BioNumbers database (Fig. 1.3). It is best to
simply look at it yourself and be amazed at the interesting correlations and differences.

MEDLINE as a Large Online Library
One of the main problems in all bioinformatics work is to get a quick overview of the
knowledge that exists about the object of study. This is the only way to assess the accuracy
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human ~40 bases/s. Transcription by
RNA polymerase 10-100 bases/s

1 'I'ranslawn rate by ribosome 10-20 aa's

~6 kJ/mol ~60 maV ~2 kgT

DDiffusion and Catalysis Rate
21. Diffusion coefficient for an "average™

protein: in cytoplasm D~5-15 pmé/s >
~10 millisec 10 traverse an E. cof >~10s
10 traverse a mammalian (Hela) cell; small
metabolite in water D~500 umé/s

2 Diffusion kmited on-rate for characteristic

protein ~108-109 M- > for a protein
substrate of concentration ~1uM the
diffusion kmited on-rate is ~100-1000 s
thus miting the catalytic rate k.,

Genome sizes & Ermor Rates
3. Genome size: E. coli ~5 Mbp;

S. coravisias (yeast) ~12 Mbp;
C. elegans (nematodea) ~100 Mbp;
D. melanogaster (fruit fiy) ~120 Mbp;
A thaliana (arabidops:s) ~120 Mbp;
M. musculus (mouss) ~2.5 Gbp;

H. sapiens (human) ~2.9 Gbp;

T. aesthum (wheat) ~16 Gbp

24. Number of protein-coding genes:

E. coli ~4,000

S. cerevisias ~6,000;

C. elegans, A thaliana, M. musculus,
H. sapiens ~20,000

5. Mutation rate in DNA

~104-10* per bp

26. Misincorporaton rate:

' urmanefih-eeamm
protein half life = cell cycle time

wabaite.
ww.wmmwm

study including

vth mathod of

~10r* par nucleotid
transiation ~102-10 per amino-acid

Click on a number to see full
description and reference
www.BioNumbers.org

Fig. 1.3 Listing of useful biological quantities and numbers from the literature in the BioNumbers

database (for details see text)
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and also the value of your results. For this purpose MEDLINE, the online version of the
library at the National Institute of Health, is an indispensable tool. A large, worldwide
open library about medicine and biology:

p MEDLINE (or also PubMed)
P https://www.ncbi.nlm.nih.gov/pubmed

It is the online version of the library. Only here, in Betheds (near Washington), the
Health Research Center of the United States of America, has it been possible to keep a
sufficiently large staff of service scientists permanently on hand to ensure easy use of the
web pages and to keep the data constantly up to date. This is a truly extraordinary achieve-
ment, which is precisely why it looks and feels child’s play to use.

Here you can search for keywords (“HIV™, “sequence analysis”, “aging”), for authors
(“Dandekar-T”, “Kunz-M”), journals (“Nature”, “Science”). For each article found, a
table of contents will then appear, but also links to related articles (including search
options). A steadily increasing number of articles also offer a directly readable full-text
link (“Open Access 7, even for current articles already more than 30%, for articles one to
2 years old it is now even the majority). It is possible for the experienced to search for an
article much more precisely and with many more criteria (“advanced search”). It is helpful
to have a look at the PubMed tutorials or our tutorial in the appendix. In addition, PubMed
also provides important textbooks online and a variety of other resources.

How Do I Get the Sequence to My Molecule?

Many bioinformatics studies start with the sequence of a molecule and analyze it.
Interestingly, this important starting information, i.e. what sequence the molecule I am
interested in has, is already known for many millions of entries. This is especially true for
important organisms such as humans, the bacterium Escherichia coli (E. coli), plants such
as Arabidopsis, mice, the worm Caenorhabditis elegans (C. elegans), and the fruit fly
Drosophila melanogaster. To check if my sequence for this protein or term is already
known, look it up at NCBI in particular. If it is known, the sequence for DNA, RNA
(option “nucleotide” or “gene’) or proteins (option “protein”) can easily be found here,
e.g. for “HIV” there are hundreds of thousands of entries:

P https://www.ncbi.nlm.nih.gov/protein/?term=hiv

One of the first offers from the long list of hits is an artificial sequence for the “TAR
protein’:

P https://www.ncbi.nlm.nih.gov/protein/AAX29205.1

The now mostly quite long header entry explains already existing information about the
respective protein:


https://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/protein/?term=hiv
https://www.ncbi.nlm.nih.gov/protein/AAX29205.1
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LOCUS AAX29205 367 aa linear SYN 29-MAR-2005
DEFINITION TAR, partial [synthetic construct].
ACCESSION AAX29205

VERSION AAX29205 .1 GI:60653021

DBSOURC Eaccession AY892288.1

KEYWORDS Human ORF project

SOURCE synthetic construct

ORGANISM synthetic construct

... and so on. In particular, you can find information about the authors of the sequence,
journal articles about it and the exact properties of the sequence, that is, from where to
where, for example, the protein, the region and specific binding sites go:

Protein 1..>367
/product="TAR"
Region 30 ..95

/region name="DSRM"
/note="Double-stranded RNA binding motif. Binding is not
sequence specific but is highly specific for double stranded
RNA. Found in a variety of proteins including dsRNA depen-
dent protein kinase PKR, RNA helicases, Drosophila staufen
protein, E. coli RNase III; cd00048"
/db_xref="CDD:238007"

Site order (30,36..37,78..81,84)
/site type="other"
/note="dsRNA binding site [nucleotide binding]"
/db_xref="CDD:238007"

Region 159 ..222
/region name="DSRM"
/note="Double-stranded RNA binding motif. Binding is not
sequence specific but is highly specific for double
stranded RNA. Found in a variety of proteins including
dsRNA dependent protein kinase PKR, RNA helicases,
Drosophila staufen protein, E. coli RNase III; cd00048"
/db_xref="CDD:238007"
Siteorder (159,165..166,208..211,214)
/site type="other"
/note="dsRNA binding site [nucleotide binding]"

Finally, this is followed by the original sequence as determined by the authors and used
in their research. In the example:

ORIGIN
1 mseeeqgsgt ttgcglpsie gmlaanpgkt pisllgeygt rigktpvydl
lkaeggahgp
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The NCBI site brings a lot more information for bioinformatics:

https://www.ncbi.nlm.nih.gov/guide/ ...

All resources

A detailed overview of molecular and literature analysis and data banks

Chemicals and

Bioinformatic analyses should eventually lead to new experiments to confirm

bioassays the results; the necessary ingredients and measurement methods are collected
here: Chemicals and biological measurement methods (bioassays)

Data and Here we find numerous databases and programs

software

DNA and RNA Software and tools for the analysis of DNA and RNA

Domains and Analysis of protein domains (small folding units) and large structures

structures

Genes and Analysis of the transcription of genes under different conditions

expression

Genetics and Numerous genetic information

medicine

Genomes and

Useful maps to find your way around genomes

maps

Homology Similarity comparisons to proteins, but at the structural level. In particular, it
is thus possible to calculate one’s own protein structure by pointing out a
similar three-dimensional structure

Literature In addition to MEDLINE (see above), there are many articles that can be
found on the site and read online, as well as important textbooks

Proteins General analyses of protein sequence, structure and function. In particular,
the protein domains, i.e. the functional building units in the protein, are also
examined in more detail

Sequence Other programs besides BLAST that examine the sequence of a protein or a

analysis nucleic acid

Taxonomy Classification of a sequence in a catalogue of all species. Many of the results

are presented as phylogenetic trees

Training and

Highly recommended for a first start, see: https://www.ncbi.nlm.nih.gov/

tutorials guide/training-tutorials/
Especially the BLAST search and the taxonomy are explained in a very nice
beginner tutorial

Variation How do I do justice to biodiversity and variety?



https://www.ncbi.nlm.nih.gov/guide/
https://www.ncbi.nlm.nih.gov/guide/training-tutorials/
https://www.ncbi.nlm.nih.gov/guide/training-tutorials/
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In addition to the NCBI site, which is certainly the best known bioinformatics site,
there are also good introductory sites at the European Bioinformatics Institute (EBI).
These are especially helpful for those people who also like programming modules and are
looking for information at an advanced level:

P https://www.ebi.ac.uk
For example:
P https://www.ebi.ac.uk/services

“We maintain the world’s most comprehensive range of freely available and up-to-date
molecular databases.” This refers to the wealth of data that the EBI site offers. The differ-
ence to the NCBI website is that it is easier to download the entire data of the database and
not only to perform individual queries via the web interface.

It is also important that the EMBL database is located here, which provides comparably
detailed sequence information as GenBank at the NIH. However, there are small differ-
ences in the preferences and the offer, but also in the preparation of the entries. In addition,
there is somewhat more and somewhat faster information on new sequences identified in
Europe (NCBI is more detailed and faster for American sequences).

Other important sites can be found at the Swiss Bioinformatics Institute (see next chap-
ter) and at the Japanese gene bank DDBJ (DNA Data Bank of Japan).

> https://www.ddbj.nig.ac.jp

Again, there is a daily comparison with the EMBL and NCBI databases in order to keep
“all known” sequences available. This time, however, this is done from the Japanese point
of view; it is precisely the sequences from Japan that are particularly complete and quickly
recorded here.

Finally, reference should also be made to the new German National Research Data
Infrastructure, in which targeted digitisation and infrastructure is being promoted in
numerous areas.

P https://www.nfdi.de, https://www.nfdi.de/konsortien-2

For biology, for example, DataPlant (plant databases), the German Human Genome-
Phenome Archive, NFDI4BioDiversity and NFDI4microbiota. This is also where very
useful data for bioinformatics analysis is concentrated and made available as an infrastruc-
ture for all.


https://www.ebi.ac.uk
https://www.ebi.ac.uk/services
https://www.ddbj.nig.ac.jp
https://www.nfdi.de
https://www.nfdi.de/konsortien-2
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P https://nfdi4microbiota.de (Dandekar is an affiliate).

In addition, within the framework of the Medical Informatics Initiative of the Federal
Ministry of Education and Research, there are several Germany-wide consortia to which
university hospitals and other partners (research institutes, universities, companies) have
joined forces.

P https://www.medizininformatik-initiative.de/de

For example, ten universities and university hospitals, two universities and one industrial
partner are working together in the MIRACUM consortium (Medical Informatics in Research
and Care in University Medicine) to establish an IT infrastructure for data from research and
patient care (data integration centres) and to make it usable for research projects in the long
term, for example for the development of predictive models and precision medicine.

P https://www.miracum.org/ (consortium leader Medical Informatics FAU Erlangen-
Niirnberg, Kunz is a partner).

1.2  Protein Analysis Is Easy with the Right Tool

An important special case is the analysis of proteins. Many experiments in molecular biol-
ogy focus on this particularly important type of molecule. Typically, general properties are
first determined by experiments, such as certain binding sites, the weight of the protein,
appearance, cofactors or catalytic properties. This is followed by detailed biochemical
analyses. The Swiss Bioinformatics Institute has compiled a detailed software package for
these numerous ways of analysing proteins. The site is again in English because such
analyses are carried out here from all over the world, namely with regard to the properties
of the protein sequence (secondary structure, amino acid composition and properties, anti-
genicity, etc.) as well as the protein structure, including the properties of the independent
folding units in the protein, the protein domains.

Analysis with BLAST
A good first step is the already mentioned BLAST. This allows a protein sequence (blastp)
to be compared for similar entries in a database, and also identifies conserved domains and
motifs, such as catalytic and active sites.

In addition, there are more precise and specific tools, which are presented below.

Entry Page on the Web: ExPASy (https://www.expasy.org)

The Swiss Bioinformatics Institute had initially (1990s) built up the Swiss-Prot database
under the direction of Amos Bairoch. It was particularly carefully maintained and still has
a very high degree of correctness and correction of entries, even though it has now essen-
tially been absorbed into the UniProt Knowledge base (UniProt KB):


https://nfdi4microbiota.de
https://www.medizininformatik-initiative.de/de
https://www.miracum.org/
https://www.expasy.org
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P> https://web.expasy.org/docs/swiss-prot_guideline.html

takes the interested person to this link. As explained on the page, there are also detailed
comments on the sequence here. These so-called “header entries” provide a wealth of
information about protein sequences, followed by the actual sequence.

How Do I Quickly Analyze Protein Data?
The ExPASy site brings expert help to get started with protein analysis. “Proteomics”
means the analysis of large amounts (“omics”) of protein data.

P https://www.expasy.org/proteomics

In addition to various databases, you can also find a lot of bioinformatics informa-

tion here:

Proteomics Large-scale analyses of proteins
Protein sequences Identification of proteins by sequence
and identification

Mass spectrometry
and 2-DE data

Identification of peptides found in mass spectroscopy or protein spots
found in 2D gel. Evaluation software and databases for these steps

Protein Domain analyses in particular

characterisation and

Jfunction

Families, patterns Proteins with the same function form a family. In particular, always the
and profiles same (“conserved”) amino acids, patterns and position-specific

frequencies of amino acids for these families are summarized here

Post-translational
modification

After production at the ribosome, proteins are further modified, these are
the post-translational modifications

Protein structure

Finding or calculating the three-dimensional protein structure. A fast
homology prediction via the SWISS-MODEL server is also offered here

Protein-protein

Predicting which protein interacts with which other protein

interaction

Similarity search/ There are also a number of alternatives to BLAST here. Multiple protein

alignment sequences can also be compared

Genomics How are the associated genes related to the proteins they encode?

Structural In particular, the properties of protein structures are determined, for

bioinformatics example globular proteins are particularly soluble

Systems biology A nice introductory page on system effects of proteins, for example
protein signalling cascades and phosphatases to switch off such signals

Phylogeny/evolution | Proteins develop according to specific patterns; in particular, building

units, the protein domains, are assembled to form new proteins

Population genetics

How are important proteins and protein properties distributed in a
population? What are the different types?

Transcriptomics

How are protein and its coding mRNA related?

(continued)


https://web.expasy.org/docs/swiss-prot_guideline.html
https://www.expasy.org/proteomics
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(continued)

Biophysics What are the biophysical properties (solubility, stability, helix content,
etc.) of my protein?

Imaging How can proteins be visualized and images analyzed?

IT infrastructure Computer infrastructure, service

Drug design Helping to create new drugs to specifically target a protein

Glycomics How sugar residues further modify proteins. In particular, this is how
cells recognise their cell neighbours, bacteria cling to glycoproteins.
Sugar-binding proteins are called lectins

How Do I Identify Important Amino Acids for Protein Function?
The PROSITE page is particularly helpful for this.

P> https://prosite.expasy.org

This examines an entered protein sequence to determine whether or not certain sequence
motifs are preserved, for example signatures (hand-curated) or profiles (automatically cal-
culated, consensus sequences, taking different sequences into account) that indicate a par-
ticular enzyme function.

This allows me to check whether my protein sequence is really an active enzyme (then
all amino acids for catalysis are complete) or whether it only looks like one. If this happens
in a genome sequence, this is termed a “pseudogene”, a “false” gene regarding the enzyme
function because important catalytic amino acids are missing and the enzyme therefore
cannot function.

In addition, the independent folding units in the protein, the protein domains, are also
examined to see whether they are present in the protein, e.g. whether all parts, i.e. domains,
are present for a functional enzyme: at least one catalytic domain (50—150 amino acids)
that carries out the enzymatic reaction. This is then often joined by numerous other types,
e.g. DNA interaction if it is a transcription factor. Examples are:

» cofactor-binding domains (if the enzyme binds a cofactor),

* regulatory domains (for switching the enzyme on and off),

* interaction domains (with other proteins or to form dimers of two identical protein units
for the enzyme, e.g. glutathione reductase only functions as a dimer, so needs an inter-
action domain for its function),

* structural domains (e.g., if it is a structural protein, like collagen).

How Can I Estimate the Protein Structure?
Structure prediction with homology modelling, for example by SWISS-MODEL, is help-
ful for this.

P https://swissmodel.expasy.org

SWISS-MODEL offers the possibility to predict the three-dimensional structure of the
protein based on the sequence.


https://prosite.expasy.org
https://swissmodel.expasy.org
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This is a relatively quick prediction, and the three-dimensional coordinates are then
available for the user to download. However, it requires a protein with a known three-
dimensional structure as a template in order to calculate how much the user’s sequence
differs from this in its three-dimensional structure. Whether a template can be found is
determined by a special sequence comparison with the proteins in the SWISS-MODEL
database.

SWISS-MODEL is a very solid, fast and often confirmed approach to determine a
three-dimensional structure according to protein template. However, there are many other,
often much more complex ways of calculating the protein structure (e.g. homology model-
ling with MODELLER):

P~ https://salilab.org/modeller/tutorial/

Since structures are not always available that can serve as a template, so-called ab initio
and optimization algorithms calculate an approximate solution for the structure determi-
nation based on the sequence and the minimization of the free enthalpy. Prominent repre-
sentatives here are neural networks, evolutionary algorithm or Monte Carlo simulation.
One example is the QUARK server from the Zhang lab:

P https://zhanglab.ccmb.med.umich.edu/QUARK/

Marking of the Known Structural Parts in the Protein Sequence

For independent verification, we offer at the chair a labeling of the known three-dimensional
structural domains to any sequence (the technical language says domain annotation, that is
why our tool is called “AnDom”). This is a slightly different procedure and works for any
sequence. It just looks to see if at least a small piece of the sequence is not similar to a
known three-dimensional protein structure. Thus, it is completely independent of the
ExPASy predictions and can check them. In general, independent databases and softwares
from different authors and methods check each other. This allows to significantly increase
the quality of the predictions, e.g. to collect all structure predictions (broad search) or to
accept only those found by both websites (particularly validated predictions).

This then sometimes makes the predictions a bit tight. This happens when only short
parts of the sequence have sufficient similarity to the structural databases that AnDom has.
It can also happen that the protein structure is new, i.e. not similar enough to any known
structure to allow prediction. Just as when using BLAST, very small random expectation
values (1 in one million and lower probabilities) mean that the assignment using AnDom
has been very successful in revealing a structure similarity. In contrast, a random similarity
can be recognized by a high random hit rate (higher than 1 in 1000). It may even happen
that such a small similarity is found several times even by a random sequence. In this case,
the expected value is e.g. 4, if on average a random sequence would find four such hits in
the AnDom structure database.


https://salilab.org/modeller/tutorial/
https://zhanglab.ccmb.med.umich.edu/QUARK/
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P https://andom.bioapps.biozentrum.uni-wuerzburg.de/index_new.html

Again, the HI virus from Fig. 1.1 will serve as an example here (Fig. 1.4). AnDom finds
a protease domain in the protein sequence (top: b.50.1.1 according to the SCOP classifica-
tion). The alignment is also shown (bottom), which once again shows the high degree of
agreement between the search sequence (query) and the protease domain found (Sbjt = sub-
Jject) (93% identical). Please also use our tutorial for further information.

Conclusion

In this first chapter, you have already quite actively learned and practiced the most
important technique in bioinformatics, namely sequence analysis, especially of protein
sequences. Modern molecular biology generates sequences in abundance. The steady
increase of databases (NCBI, GenBank, Swiss-Prot) allows one to quickly find out
which previous sequences are close to this new sequence by sequence similarity
(BLAST tool). Domain databases and analyses allow to dissect a protein into its folding
units, each of which carries a specific molecular function. RNA and DNA sequences

are also quickly assigned a function through sequence comparisons.

AnDom-Server 2.0

RPSBLAST 2.2.30+

Query: HIVSequence

X
.
—
————
I
———
I
—
——
—— Protease-
[Total length: §9 aa Domaéane
Score E
Sequences preducing significant alignments: (Bits) Value
scop Chain ID and description
b.50.1.1 {A:) Human izzuncdeficiency virus type 1 protease {Hum... 183  2e-61

> b.50.1.1 (A:) Human immuncdeficiency virus type 1 protease {Human
immunocdeficiency virus type 1 [TaxId: 11676]}
Length=33

Score = 183 bits (466), Expect = 2e-61
Identities = 92/9% (93%), Positives = 37/39 (98%), Gaps = 0/93 (0%)

Query 1 PQITLWQRPLVIINIGGQLHEALLDIGADDIVLEEMNLPGRWHPEMIGGIGGEIKVRQYD €0
BQITLW+RPLVIIKIGGQLEEALLDIGADDT ++EEM+LPGRWKPFMIGGIGGE IKVRQYD
Sbjet 1 FQITLWHRPLVT IKIGGQLEERLLDIGADDT IIEEMSLPGRWHKPEMIGGIGGFIKVRQYD &0

Query &1 QILIEICGHMRIGIVLVGEIFVNIIGRNLLIQIGCILNE 99
QI+IEI GHRAIGIVLVGPIFVNIIGRNLLIQIG ILNF
Sbjet €1 QIIIEIAGHERIGTVLVGFTEVNIIGRNLLIQIGAILNF 59

<+——————— | Alignment

Fig. 1.4 Search with the AnDom software for protein domains for the HI virus (for details see text).
The result shows a high similarity (E-Value 2e-61, 93% identities) with the human HIV-1 protease
domain (SCOP-ID b.50.1.1) and the corresponding alignment (see text and tutorial)
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* Undeniably, sequence analysis is currently the field of bioinformatics that is growing
the fastest, producing the quickest results, and allowing initial insights into biology.
Hence, in the later chapters, there is sequence analysis software that allows us to quickly
trace partial results. It is crucial to be able to learn about this software on the web and
practice the different setting options.

* The tutorials and exercises encourage you to do so. Results from different software
programs check each other. If they all examine the same sequence, it is always about
the same biology, and contradictions then indicate that something was overlooked in
the function assignment and must be checked. Sound biological knowledge should cri-
tique the results, experiments or further data then corroborate the bioinformatic results.
Programming sequence comparison software and databases is useful if this enables a
better analysis of the biological question - in all other cases, it is better to use the
numerous software that is already available. The internet is only a mouse click away. <

Outlook

In addition to protein sequence analysis (Chap. 1), RNA (Chap. 2) and DNA sequences
(Chap. 3) are important for rapid bioinformatics analysis and description of important
molecules of the cell. Next, one would like to understand how these important molecules
of the living cell (DNA, RNA, and proteins) interact in networks. These bioinformatic
analyses happen either in metabolic networks (Chap. 4) or signaling networks (Chap. 5).
Since these are already the most important analysis techniques of current bioinformatics,
we then offer an in-depth look at basic strategies of bioinformatics working methods in
Part II and look at fascinating examples of current bioinformatics results and develop-
ments in Part IIL.

1.3  Exercises for Chap. 1

In the exercises, important parts of the book will be dealt with in more detail in order to
consolidate and practise what you have learned. Tasks marked as examples serve as appli-
cation tasks in which you are to work independently with the computer in order to become
more familiar with bioinformatics. In addition, we have provided numerous tutorials in the
appendix, which also support the material of the textbook and the exercises and should
contribute to a better understanding.

We recommend that you briefly review the material from Chap. 1 at Chap. 6 using the
exercises.

Task 1.1
(a) What is and does bioinformatics do (feel free to explain with an example)?
(b) There are three areas of bioinformatics, informatically speaking: Databases,
Programs/Software, and Modeling/Simulations. Describe important differences
between these areas.
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Task 1.2

An important task of bioinformatics is the collection and management of data and the
provision of helpful tools. Name and describe two databases containing information on,
for example, genes and gene expression datasets.

Task 1.3
Example:

The MEDLINE database (also known as PubMed) is a large, worldwide open library
about medicine and biology. Here you can find publications and sequences as well as a lot of
other information and links. So PubMed is a good first entry site to use when starting a search.
Familiarize yourself with the PubMed database (https://www.ncbi.nlm.nih.gov/pubmed) and
find out about the artificial sequence for the “TAR protein”. Hint: Search with “synthetic”, all
searches are in English after all; the search is only limited enough by keywords if only one
sequence is found by the query. Only then can you clearly answer the following questions.

1. Which of the following statements about sequence length (amino acid = aa) is
correct?
A. The protein sequence is 267 aa long.
B. The protein sequence is 367 aa long.
C. The protein sequence is 276 aa long.
D. The protein sequence is 376 aa long.

2. Which of the following statements about the title is correct?

A. The sequence was filed under the title “Cloning of human full-length CDS in
Creator (TM) recombinational vector system” in PubMed.

B. The sequence has been filed under the title “Uploading of human full-length
CDS” in PubMed.

C. The sequence has been filed under the title “Uploading of recombinational
vector system” in PubMed.

D. The sequence has been filed under the title “Cloning of recombinational vec-
tor system” in PubMed.

3. Which of the following statements is correct?

A. Hines et al. submitted the sequence to the journal Biological Chemistry and
Molecular Pharmacology, Harvard Institute of Proteomics on 05-JAN-2015.
B. Darwin et al. submitted the sequence to the journal Biological Chemistry and
Molecular Pharmacology, Harvard Institute of Proteomics on 05-JAN-2005.
C. Hines et al. submitted the sequence to the journal Biological Chemistry and
Molecular Pharmacology, Harvard Institute of Proteomics on 05-MAR-2005.
D. Hines et al. submitted the sequence to the journal Biological Chemistry and
Molecular Pharmacology, Harvard Institute of Proteomics on 05-JAN-2005.

Task 1.4
Bioinformatics has taken off since the mid-1990s, when the first genome projects were
successfully completed, because of its rapid sequence analyses. Sequence comparison (for
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example with the BLAST software) is thus a particularly frequently used and popular
bioinformatics method for identifying genes or proteins in the genome.

Explain the BLAST algorithm (hint: it is sufficient to describe how the algorithm can
become so fast). Also describe its usefulness for biology. If both are still unclear, simply
refer to the chapter again.

Task 1.5
Develop a simple program that examines a sequence for possible sequence similarities in
a database (hint: enumerate what parts this program would consist of).

Task 1.6
Which of the following statements about BLAST is correct (multiple answers possible)?

A. BLAST = Basic Local Alignment Search Tool.

B. BLAST = Basic Low Alignment Search Tool.

C. BLAST is an algorithm for finding locally similar sequence segments in a database.
D. BLAST uses a heuristic search and here the two-hit method (2-hit method).

Task 1.7
Example: The sequencing of a diseased person has revealed the following protein sequence:
>unknownsequence 1.7

POITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKMIGGIGGFIKVRQYDQIL
IEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNF

Which BLAST algorithm would you choose for your patient sequence?

A. blastn.
B. blastp.
C. blastx or tblastx.
D. tblastn.

Task 1.8

You now want to know exactly which virus the person has contracted. Perform a BLAST

search yourself using the protein sequence (https://blast.ncbi.nlm.nih.gov/Blast.cgi).
Which of the following statements is correct (multiple answers possible)?

A. The sequence is almost certainly the pol protein and protease of the HIV-1 virus.

B. The unknown sequence shows low similarity to the pol protein and protease of the
HIV-1 virus.

C. When searching for a sequence that is as similar/identical as possible, a match
should always have as large an E-value as possible and a low identity.

D. The E-Value (expected value) shows how likely it is that the hit will be found again
in the database with a similar or better score.


https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Task 1.9
What is a dot plot and what can I use it for (hint: look up this software on the internet)?

Task 1.10
Example: Dotplot by hand.

1. By hand, perform a dot plot of the word BIOINFORMATICS to compare the word
with itself.

2. Use software (e.g., Dotter [https://sonnhammer.sbc.su.se/Dotter.html], JDotter
[https://athena.bioc.uvic.ca/virology-ca-tools/jdotter/], or Cheetah [https://mips.
gsf.de/services/analysis/gepard]) and perform a dot plot of the following sequence
with yourself:

>unknownsequence 1.10

POITLWORPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKMIGGIGGFIKVRQYDQI
LIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNF

Useful Tools and Web Links

Perl https://www.perl.org/

Java https://www.oracle.com/technetwork/java/index.html
Python https://www.python.org/

C++ https://www.cplusplus.com/

R https://www.r-project.org/

BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi
PDB https://www.rcsb.org/pdb/home/home.do
BioNumbers https://bionumbers.hms.harvard.edu/
PubMed https://www.ncbi.nlm.nih.gov/pubmed/
EBI https://www.ebi.ac.uk/services

DDBJ https://www.ddbj.nig.ac.jp

ExPASy https://www.expasy.org

PROSITE https://prosite.expasy.org
SWISS-MODEL https://swissmodel.expasy.org
MODELLER https://salilab.org/modeller/tutorial/

QUARK https://zhanglab.ccmb.med.umich.edu/QUARK/
AnDom https://andom.bioapps.biozentrum.uni-wuerzburg.de/
index_new.html
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Magic RNA

Abstract

About half of the human genome is actively transcribed as RNA, new regulatory and non-
protein-coding RNA types such as miRNAs and IncRNAs in higher cells and the CRISPR/
Cas9 system from bacteria underline the importance of RNA for molecular biology.
Typically, one analyzes RNA sequence, structure, and folding energy orientationally first
using RNA Analyzer software, Rfam database, and RNAfold server. GEO and Gene Vestigator
databases show gene expression differences that can be analyzed in more depth using
R and Bioconductor as scripting language and program framework. Both are important
tools, but they have to be learned like a language in order to be able to write instructions
for biostatistical analysis (so-called “scripts”). Non-coding RNA is also important for
diseases, and bioinformatics helps to uncover this, e.g. chast-IncRNA in heart failure.

2.1 RNA Sequences Are Biologically Active

What does magic mean? It means that words are immediately translated into action! For
example, you mutter an incantation of the air spirit, and the medicine man uses it to set the
air in motion. In everyday life, you can’t do that, or only if you have a lot of money. Then
with this “wishing machine”, the money, one can also put every purchasable wish into action.

So in our everyday world, the thought (easy) and the deed (sweaty, grueling, tiring) are
well separated. But in the molecular world this is not so, in particular RNA has even magi-
cal properties in this sense.

We can form single words especially with RNA building blocks (“nucleotides”), but at
the same time this chain of RNA building blocks then already has active properties, can
accelerate biochemical reactions or even make them possible in the first place - in a
word: magic!

© Springer-Verlag GmbH Germany, part of Springer Nature 2023 23
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This is due, on the one hand, to the smallness of the dimensions on which we are moving
here, namely a few angstroms (A, i.e. ten billionths of a metre), as well as to the special
properties of RNA. It is not as stable as deoxyribonucleic acid, i.e. DNA, which is therefore
very suitable as a long-term storage medium. RNA stores for shorter times, after which it can
either be digested with its additional OH group or otherwise continue to react. And this is
also the reason for its “magic” activity, it can accelerate or advance a reaction at the same time.

This also makes it clear what existed before today’s division of labor between genetic
information (DNA) and enzymatic action (proteins): namely, the RNA world. That was
more than 3 billion years ago. The first cells were just coming into being, and it was there
that RNA nucleotides of varying lengths both stored information and accelerated reac-
tions. The oldest molecule was an RNA polymerase made of RNA, which catalytically
transcribed its description, faster than it was destroyed by environmental stresses. If you
still want to know what was before RNA: metabolism on surfaces that held certain mole-
cules and obtained energy from sulfur compounds until the first membranes and first
nucleotides accumulated more and more on these surfaces (Scheidler et al. 2016).

Since that time, RNA has been essential for all life. The protein factories (ribosomes)
of the body consist of RNA in their central parts. All peptide bonds in the ribosome are
made by catalytic ribosomal RNA (rRNA), and many vitamins and excipients in our
enzymes are still made of nucleotides (especially adenine, e.g. FAD, NAD, NADH, NADP,
NADPH, cAMP, ATP, etc.).

But that’s not all: RNA can not only build proteins (with the help of tRNA and rRNA),
whereby the genes are transcribed via mRNA (messenger RNA), but there are also numer-
ous regulatory functions of RNA. As microRNA (miRNA), it degrades messenger RNA
more quickly (and one small molecule directs many, sometimes hundreds of messenger
RNAs), as long non-coding RNA (IncRNA) it even switches off entire chromosomes, as
smallRNA (sRNA) in bacteria it switches off or on promoters or individual genes, as a
riboswitch (e.g. riboswitch finder [https://riboswitch.bioapps.biozentrum.uni-wuerzburg.
de/]) it allows or rejects the translation of genes.

It can be seen that an important part of bioinformatics is trying to identify and describe
the function and hidden signals in RNA molecules. The basic question is: Where is the
signal in the RNA molecule? First, in the order of its building blocks, i.e. in the nucleotides
(the so-called sequence), but then also in the folding of the RNA, the secondary structure,
how the RNA forms. In addition, one can also look at how stable the folding of the RNA
is, the so-called folding energy.

So, with these three characteristics, I can check a wide range of RNA molecules if I know
what sequence, secondary structure, and energy the RNA molecule must have for a particu-
lar property. For example, one can check all three characteristics for a number of molecules
using the RNA Analyzer program or look up exciting RNA types in the Rfam database.

If you want to write such an RNA detection program yourself, you first need access to
very many RNA sequences under which RNA molecules with a certain property (a


https://riboswitch.bioapps.biozentrum.uni-wuerzburg.de/
https://riboswitch.bioapps.biozentrum.uni-wuerzburg.de/
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“regulatory element”) are hidden. Then you have to check which RNA molecules do not
show these properties by chance (false-positive alarm), but actually possess them. In doing
s0, one must also not hastily discard molecules that may have this property after all. In
practice, it takes a lot of trial and error to look more and more closely at the sequence,
secondary structure and energy until regulatory RNA elements can be accurately identi-
fied. One example is iron-responsive elements (IREs) in messenger RNA. A protein, the
IRE binding protein (IRE-BP), binds to these when the iron level is low. This then prevents
further reading of the mRNA (always read from the beginning, the 5’-end, to the end, the
3’-end). The reading frame, i.e. the protein building instructions in the mRNA, is located
downstream of the IRE. If the iron level is higher, the protein binds to iron, and the mes-
senger RNA containing the iron-sensitive element is translated. In practice, it also helps to
look at the biological function of the messenger RNA, because that must have something
to do with iron metabolism if you suspect such an RNA element in that messenger RNA. So
that’s an important way to test this and come up with meaningful results. Interestingly, for
a structure in RNA that mediates regulation, that is a so-called RNA element, both second-
ary structure and primary sequence and folding energy play important roles. In an IRE, for
example, one finds the consensus sequence CAGUGN and a C alone without G as a part-
ner in the opposite strand (“bulged”), a loop stem-loop structure consisting of two stems
on top of each other (in between is the unpaired C), and a folding energy between —2.1 to
—6.7 kcal/mol (Fig. 2.1).

RNA is therefore at the root of life and is a particularly active intermediate carrier of
information. Just recently, much faster sequencing techniques than in the past have made
it possible to read virtually all RNA molecules in the cell. Because bioinformatics can
classify this large amount of sequenced RNA quickly enough (Chang et al. 2013), we are
only now beginning to recognize the many functions that RNA mediates. Examples of
such newly recognized RNA molecules are the regulatory miRNAs and IncRNAs that have
been newly described for the past 5—10 years (Kunz et al. 2015, 2016, 2017; Fiedler et al.
2015). These play essential roles in various diseases, and bioinformatics can make an
important contribution to uncovering this. To this end, we have developed various methods
and analytical tools for integrative analysis of RNAs (Kunz et al. 2018, 2020; Stojanovié¢
et al. 2020; Fuchs et al. 2020). For example, our bioinformatics work could help to uncover
the function of Chast-lncRNA in heart failure (Viereck et al. 2016) or molecular mecha-
nisms of miRNA-21 in cardiac fibrosis (Fuchs et al. 2020).

2.2  Analysis of RNA Sequence, Structure and Function

A number of options are available for analysing RNA, e.g. databases such as Rfam, soft-
ware such as the RNAAnalyzer and RNAfold. In the following, we would like to intro-
duce these.
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Iron-resp egg..:
Position: 44

Structure:

-5.900000 kcal/mol Quality: good
Structure: -6.200000 kcal/mol Quality: good
Structure: -6.100000 kcal/mol Quality: good
Structure: -6.200000 kcal/mol Quality: good

Fig.2.1 Bioinformatic analysis of a regulatory RNA element. Representation of the RNA Analyzer
of an IRE with associated sequence, structure and folding energy

Rfam: All Known Families of RNA in One Database
P https://rfam.xfam.org/

One possibility is to collect all RNA molecules in a database. For this purpose, Rfam,
for example, provides an overview of all RNA molecules (Gardner et al. 2011) that have
been characterized in more detail to date. In particular, RNA molecules can be grouped
into families. This means that a certain structure with which the RNA performs its function
was retained in evolution and is then found in quite a large number of organisms.

IREs are one example. If such an RNA structure is present, the subsequent further
mRNA sequence is only read and a protein that uses or utilises iron in some form is then
produced by the ribosome if the iron level is sufficiently high.

P https://rfam.xfam.org/search/keyword?query=IRE

Rfam searches with the keyword “IRE”, the correct entry is then:


https://rfam.xfam.org/
https://rfam.xfam.org/search/keyword?query=IRE
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> https://rfam.xfam.org/family/RF00037

Those who want to read more in-depth information about techniques and RNA func-
tions in context can check out our books on regulatory RNA at Google-Books (Dandekar
and Bengert 2002; Dandekar and Sharma 1998).

RNAAnalyzer: A Quick Analysis for Each RNA Molecule
P https://rnaanalyzer.bioapps.biozentrum.uni-wuerzburg.de

Another way to understand RNA and regulatory elements is to analyze the secondary
structure and sequence motifs through a program. In our program developed for this pur-
pose, the RNAAnalyzer, you can enter any RNA sequence, which is then searched for
regulatory elements. The result is a list of regulatory element hits and important further
descriptions, such as whether there is a lot of secondary structure, whether proteins can
bind to the RNA or whether the RNA molecule is perhaps an mRNA, but also numerous
other pieces of information (Bengert and Dandekar 2003).

One way to further check or supplement these results is to use the AnDom software (cf.
Chap. 1, Protein analyses). For regulatory RNA, another alternative is the RegRNA server
from Taiwan (https://regrna2.mbc.nctu.edu.tw/), which also offers a rapid analysis for
RNA using related methods independently.

RNAfold and mFold Show RNA Structure
Another important method to analyze the RNA structure is to check the RNA folding with
the pairing scheme: A always pairs with U (two hydrogen bonds), G with C (three hydro-
gen bonds). With the help of these rules and other rules (G pairs with U, only one hydrogen
bond; thermodynamic parameters such as the Tinocco parameters), it is possible to sys-
tematically try out with the computer which structural folding of the RNA will lead to the
highest number of base pairings and, in particular, hydrogen bonds and energy. This is also
known as dynamic programming (Eddy 2004), because the sequence is broken down into
small substrings and the optimal RNA structure is calculated iteratively (for longer RNA
molecules, more and more memory is allocated dynamically for the base pairings).
Simple approaches such as the Nussinov algorithm are based on the optimal base pair-
ing of the RNA, whereas extensions additionally consider the folding energy. The best
known is the prediction algorithm of Zuker and Stiegler (1981), e.g. mFold server (https://
unafold.rna.albany.edu/?q=mfold; out of operation since November 1, 2020.) or its further
developments such as the RNAfold server (https://rna.tbi.univie.ac.at/cgi-bin/
RNAWebSuite/RNAfold.cgi). The Sankoff algorithm takes phylogeny into account in
addition to alignment and folding energy (e.g. LocARNA tool; https://www.bioinf.uni-
freiburg.de/Software/LocARNA/). However, other software for RNA folding is also avail-
able (e.g., ViennaRNA package; https://www.tbi.univie.ac.at/RNA/; Freiburg RNA tools;
https://rna.informatik.uni-freiburg.de/). By looking at several folding types (i.e., still the
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second- and third-best structure), I can see what remains conserved. These are usually also
the structural regions actually present in the cell. In parallel with experiments, this gives a
precise idea of what the RNA structure looks like in the living cell.

Conclusion

* RNA is an important level of information processing. About half of the human genome
is actively transcribed and new RNAs such as miRNA and IncRNAs highlight the
importance of deciphering the information encoded in RNA. In this chapter, we have
therefore focused on the analysis of RNA sequence, structure and folding energy.

* RNA and regulatory RNA elements can initially be analysed with the RNA Analyzer
software, the Rfam database and the RNAfold server. For those who want to learn
more, the tutorials show further steps (practice is important here, the tutorials offer a
first introduction) to systematically analyze the transcriptome of a cell (e.g. GEO and
GeneVestigator databases). For more in-depth statistical analysis of gene expression
differences, R and Bioconductor are available. Both are important tools and have to be
learned like a language in order to be able to write instructions for biostatistical analysis
(so-called “scripts”, both are scripting languages).

e In the field of computational analysis of RNA, new surprises and insights can be
expected in the coming years, e.g. strong genetic engineering and matching software
through the CRISPR/Cas9 system and the pathophysiology of newly discovered small
RNAs in many bacteria and infectious agents (SRNAs). Non-coding RNA is also impor-
tant in disease and bioinformatics is helping to uncover this, e.g. chast-IncRNA in heart
failure (Viereck et al. 2016). <

2.3  Exercises for Chap. 2

In the exercises, important parts of the book will be dealt with in more detail in order to
consolidate and practise what you have learned. Tasks that are marked as examples serve
as application tasks in which you are to work independently with the computer in order to
become more familiar with bioinformatics. In addition, we have provided numerous tuto-
rials in the appendix, which also support the material of the textbook and the exercises and
should contribute to a better understanding.

We recommend that you briefly review the material from Chap. 2 in Chap. 3 using the
exercises.

Task 2.1

Example: As a result of transcription, a complete RNA sequence (mRNA, but also non-
coding miRNA, IncRNAetc.) is formed, i.e. a copy of the DNA, whereby the nucleotides
of the DNA (A, T, G and C) are translated into the nucleotides of the RNA (A, U, G and
C) and the deoxyribose is exchanged for ribose. An RNA can form a secondary structure
(alpha-helix and beta-sheet), which can be predicted bioinformatically.
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Perform RNA folding with RNAfold using the following sequence (https://rna.tbi.uni-
vie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi):
> RNAsecondary structure

ATAAGAGACCACAAGCGACCCGCAGGGCCAGACGTTCTTCGCCGAGAGTCGTCGGG
GTTTCCTGCTTCAACAGTGCTTGGACGGAACCCGGCGCTCGTTCCCCACCCCGGC
CGGCCGCCCATAGCCAGCCCTCCGTCACCTCTTCACCGCACCCTCGGACTGCCCCAA
GGCCCCCGCCGCCGCTCCAGCGLCCGLCGCAGLCCACLCGLCCGCCGCCGCCGLCCTCTCC
CTTAGTCGCCGCCATGACGACCGCGTCCACCTCGCAGGTGCGCCAGAACTACCACC
AGGACTCAGAGGCCGCCATCAACCGCCAGATCAACCTGGAGCTCTACGCCTCCTACG
TTTACCTGTCCATGTCTTACTACTTTGACCGCGATGATGTGGCTTTGAAGAACTTTGC
CAAATACTTTCTTCACCAATCTCATGAGGAGAGGGAACATGCTGAGAAACTGAT
GAAGCTGCAGAACCAACGAGGTGGCCGAATCTTCCTTCAGGATATCAAGAAACCAG
ACTGTGATGACTGGGAGAGCGGGCTGAATGCAATGGAGTGTGCATTACA
TTTGGAAAAAAATGTGAATCAGTCACTACTGGAACTGCACAAACTGGCCACTGA
CAAAAATGACCCCCATTTGTGTGACTTCATTGAGACACATTACCTGAATGAG
CAGGTGAAAGCCATCAAAGAATTGGGTGACCACGTGACCAACTTGCGCAAGATGGGAGC
GCCCGAATCTGGCTTGGCGGAATATCTCTTTGACAAGCACACCCTGGGAGACAGTGATAA
TGAAAGCTAAGCCTCGGGCTAATTTCCCCATAGCCGTGGGGTGACTTCCCTGGTCACCAAGGC
AGTGCATGCATGTTGGGGTTTCCTTTACCTTTTCTATAAGTTGTACCAAAACAT
CCACTTAAGTTCTTTGATTTGTACCATTCCTTCAAATAAAGAAATTTGGTACCCAGG
TGTTGTCTTTGAGGTCTTGGGATGAATCAGAAATCTATCCAGGCTATCTTCCAGATTCCTT
AAGTGCCGTTGT

1. Which of the following statements about RNA folding is correct (multiple answers
possible)?

(A) AnRNA secondary structure should always have a very high folding energy,
then it is most stable.

(B) RNAfold does not find a possible secondary structure for the exercise
example.

(C) For the exercise example, RNAfold calculates a minimum free energy (fold-
ing energy) of —360.20 kcal/mol.

(D) RNA folding (also bioinformatically predicted) is, from this point of view, a
very simple process, since there is only one linear structure.

(E) RNA folding (also bioinformatically predicted) is a complex process from
this point of view, since there are, for example, several secondary structural
forms (e.g. stem- and hairpin-loop).

2. Create a short random RNA sequence (approx. 20-25 nucleotides) and let RNAfold
fold it. Subsequently, double the sequence length and fold it again.
How do the amounts of the released energies of the short and long sequence relate to
each other?
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Task 2.2
There are also certain RNA motifs, also called regulatory RNA elements, that perform a spe-
cific function. Name and explain different RNA elements, such as IREs or riboswitches.

Task 2.3
What criteria do I have to consider in order to analyze an RNA (RNA molecule) for
RNA motifs?

Task 2.4
Explain how to identify regulatory RNA elements.

Task 2.5
Which of the following statements about regulatory RNA elements is correct (multiple
answers possible)?

(A) Regulatory RNA elements are not found in humans.

(B) For RNA motif searches, it’s enough if I just look at the sequence.

(C) Ican find many RNA families in the Rfam database.

(D) IRE and riboswitches are examples of regulatory RNA elements.

(E) Itis best to combine several criteria (sequence, structure and energy) for an RNA

motif search.

Task 2.6

Example: Find by hand (Ctrl + F or grep or Perl script) a typical conserved IRE motif
(CAGUGN or CAGTGN) in the following sequence:

> RNAanalyzer.

ATAAGAGACCACAAGCGACCCGCAGGGCCAGACGTTCTTCGCCGAGAGTCG
TCGGGGTTTCCTGCTTCAACAGTGCTTGGACGGAACCCGGCGCTCGTTCCCCACCCC
GGCCGGCCGCCCATAGCCAGCCCTCCGTCACCTCTTCACCGCACCCTCGGACTGCCCC
AAGGCCCCCGCCGCCGCTCCAGCGCCGCGCAGLCCACCGCCGCCGCCGCCGCCCTCC
TCCTTAGTCGCCGCCATGACGACCGCGTCCACCTCGCAGGTGCGCCAGAACTACC
ACCAGGACTCAGAGGCCGCCATCAACCGCCAGATCAACCTGGAGCTCTACGCC
TCCTACGTTTACCTGTCCATGTCTTACTACTTTGACCGCGATGATGTGGCTTT
GAAGAACTTTGCCAAATACTTTCTTCACCAATCTCATGAGGAGAGGGAACAT
GCTGAGAAACTGATGAAGCTGCAGAACCAACGAGGTGGCCGAATCTTCCTT
CAGGATATCAAGAAACCAGACTGTGATGACTGGGAGAGCGGGCTGAATGCA
ATGGAGTGTGCATTACATTTGGAAAAAAATGTGAATCAGTCACTACTGGAACTGCA
CAAACTGGCCACTGACAAAAATGACCCCCATTTGTGTGACTTCATTGAGACACAT
TACCTGAATGAGCAGGTGAAAGCCATCAAAGAATTGGGTGACCACGTGACCAACTTGCGCAA
GATGGGAGCGCCCGAATCTGGCTTGGCGGAATATCTCTTTGACAAGCACACCCTGGGAG
ACAGTGATAATGAAAGCTAAGCCTCGGGCTAATTTCCCCATAGCCGTGGGGTGACT
TCCCTGGTCACCAAGGCAGTGCATGCATGTTGGGGTTTCCTTTACCTTTTCTATAAG
TTGTACCAAAACATCCACTTAAGTTCTTTGATTTGTACCATTCCTTCAAATAAAG
AAATTTGGTACCCAGGTGTTGTCTTTGAGGTCTTGGGATGAATCAGAAATCTATCCAGGC
TATCTTCCAGATTCCTTAAGTGCCGTTGT
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1. Can a potential IRE motif be found?
2. Now use the RNAAnalyzer (https://rnaanalyzer.bioapps.biozentrum.uni-
wuerzburg.de/) for this examination.
Which of the following statements is correct (multiple answers possible)?

(A) The exercise example is an IRE.

(B) Besides the IRE, the RNA Analyzer does not find any other elements for the exer-
cise example, e.g. no “Catalytic RNA”.

(C) The RNAAnalyzer finds an IRE at position 71 for the exercise example.

(D) One IRE is the consensus sequence “CAGUGN”, the RNAAnalyzer also found
this in the exercise example.

Task 2.7
Example: Perform a search with the Riboswitch Finder (https://riboswitch.bioapps.biozen-
trum.uni-wuerzburg.de/) using the following sequence (please just use the sequence exam-
ple from the Riboswitch Finder page): Streptococcus pyogenes STPY 1 (https://riboswitch.
bioapps.biozentrum.uni-wuerzburg.de/examples.html).

Which of the following statements is correct (multiple answers possible)?

(A) The Riboswitch Finder finds three possible hits for a riboswitch for the example
sequence, they are all on the minus strand.

(B) All hits found for the example sequence are of poor quality (sequence, structure,
energy), thus indicating no possible riboswitches.

(C) The Riboswitch Finder finds three possible riboswitches on the plus strand at
position 1288 for the example sequence.

(D) The hits found for the example sequence have, among others, three stem-loops in
their secondary structure.

(E) Riboswitches are the only regulatory RNA elements in prokaryotes.

Task 2.8

Example: Analyze the 18 S-rRNA gene from Cordulegaster boltonii (GenBank ID:
FN356072.1) for a possible ITS2 secondary structure using the ITS2 database (https://its2.
bioapps.biozentrum.uni-wuerzburg.de/).

Task 2.9
Example:

(a)Familiarize yourself with non-coding RNAs (e.g. miRNAs and IncRNAs). Use e.g.
https://www.microrna.org, https://www.mirbase.org, https://Incipedia.org/ and
https://www.targetscan.org, but also our two articles (Kunz M et al. Bioinformatics
of cardiovascular miRNA biology. J] Mol Cell Cardiol 2015 Dec;89(Pt A):3-10.
https://doi.org/10.1016/j.yjmcc.2014.11.027; Kunz M et al. Non-Coding RNAs in
Lung Cancer: Contribution of Bioinformatics Analysis to the Development of
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Non-Invasive Diagnostic Tools. Genes (Basel) 2016 Dec 26;8(1). pii: E8. https://
doi.org/10.3390/genes8010008).

(b)Become familiar with different target prediction algorithms and their different
parameters (e.g., TargetScan, miRanda, and PITA).

Useful Tools and Web Links

Rfam https://rfam.xfam.org/

RNAAnalyzer https://rnaanalyzer.bioapps.biozentrum.uni-wuerzburg.de/

mkFold web server | https://unafold.rna.albany.edu/?q=mfold (out of service since November
1,2020)

RNAfold web https://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi (replaces

server mfold since 1.11.20)

ViennaRNA https://www.tbi.univie.ac.at/RNA/

Package

Freiburg RNA https://rna.informatik.uni-freiburg.de/

Tools

regRNA https://regrna2.mbc.nctu.edu.tw/

Riboswitch Finder | https://riboswitch.bioapps.biozentrum.uni-wuerzburg.de/

Dandekar and Bengert (2002) RNA Motifs and Regulatory Elements. Springer Verlag, 2002
(https://books.google.de/books?id=hOLtCAAAQBAJ&hl=de)

Dandekar and Sharma (1998) Regulatory RNA. Springer Verlag, 1998 (https://books.google.
de/books?id=j7LoCAAAQBAJ&hl=de)

(c)Look for miRNAs that indicate a possible interaction with Brcal (e.g. https://www.
microrna.org and https://www.targetscan.org — do miRNAs find each other?).

Literature

Bengert P, Dandekar T (2003) A software tool-box for analysis of regulatory RNA elements. Nucl
Acids Res 31:3441-3445

Chang TH, Huang HY, Hsu JB et al (2013) An enhanced computational platform for investigating the
roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinformatics 14(2):4

Dandekar T, Bengert P (2002) RNA motifs and regulatory elements. Springer. https://books.google.
de/books?id=hOLtCAAAQBAIJ&hl=de

Dandekar T, Sharma K (1998) Regulatory RNA. Springer. https://books.google.de/books?id=j7Lo
CAAAQBAJ&hl=de

Eddy SR (2004) How do RNA folding algorithms work? Nat Biotechnol 22:1457-1458

Gardner PP, Daub J, Tate J et al (2011) Rfam: Wikipedia, clans and the “decimal” release. Nucleic
Acids Res 39(Database issue):D141-D145. https://doi.org/10.1093/nar/gkq1129


https://doi.org/10.3390/genes8010008
https://doi.org/10.3390/genes8010008
https://rfam.xfam.org/
https://rnaanalyzer.bioapps.biozentrum.uni-wuerzburg.de/
https://unafold.rna.albany.edu/?q=mfold
https://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
https://www.tbi.univie.ac.at/RNA/
https://rna.informatik.uni-freiburg.de/
https://regrna2.mbc.nctu.edu.tw/
https://riboswitch.bioapps.biozentrum.uni-wuerzburg.de/
https://books.google.de/books?id=hOLtCAAAQBAJ&hl=de
https://books.google.de/books?id=j7LoCAAAQBAJ&hl=de
https://books.google.de/books?id=j7LoCAAAQBAJ&hl=de
https://www.microrna.org
https://www.microrna.org
https://www.targetscan.org
https://books.google.de/books?id=hOLtCAAAQBAJ&hl=de
https://books.google.de/books?id=hOLtCAAAQBAJ&hl=de
https://books.google.de/books?id=j7LoCAAAQBAJ&hl=de
https://books.google.de/books?id=j7LoCAAAQBAJ&hl=de
https://doi.org/10.1093/nar/gkq1129

Literature 33

Scheidler C, Sobotta J, Eisenreich W et al (2016) Unsaturated C3,5,7,9-monocarboxylic acids by
aqueous, one-pot carbon fixation: possible relevance for the origin of life. Sci Rep 6:27595.
https://doi.org/10.1038/srep27595 (PubMed PMID: 27283227; PubMed Central PMCID:
PMC4901337)

Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermody-
namic and auxiliary information. Nucl Acid Res 9:133-148

Own RNA Analysis Examples Together with Method Protocols

Fiedler J, Breckwoldt K, Remmele CW et al (2015) Development of long noncoding RNA-based
strategies to modulate tissue vascularization. J] Am Coll Cardiol 66(18):2005-2015. https://doi.
org/10.1016/j.jacc.2015.07.081

Fuchs M, Kreutzer FP, Kapsner LA et al (2020) Integrative bioinformatic analyses of global tran-
scriptome data decipher novel molecular insights into cardiac anti-fibrotic therapies. Int J Mol
Sci 21(13):4727. https://doi.org/10.3390/ijms21134727

Kunz M, Xiao K, Liang C et al (2015) Bioinformatics of cardiovascular biology. J] Mol Cell Cardiol
89(Pt A):3-10. https://doi.org/10.1016/j.yjmcc.2014.11.027

Kunz M, Wolf B, Schulze H et al (2016) Non-coding RNAs in lung cancer: contribution of bioinfor-
matics analysis to the development of non-invasive diagnostic tools. Genes (Basel) 8(1):pii:E8.
https://doi.org/10.3390/genes8010008

Kunz M, Géttlich C, Walles T et al (2017) MicroRNA-21 versus microRNA-34: lung cancer promot-
ing and inhibitory microRNAs analyzed in silico and in vitro and their clinical impact. Tumour
Biol 39(7). https://doi.org/10.1177/1010428317706430

Kunz M, Pittroff A, Dandekar T (2018) Systems biology analysis to understand regula-
tory miRNA networks in lung cancer. Methods Mol Biol 1819:235-247. https://doi.
org/10.1007/978-1-4939-8618-7_11

Kunz M, Wolf B, Fuchs M et al (2020) A comprehensive method protocol for annotation and inte-
grated functional understanding of IncRNAs. Brief Bioinform 21(4):1391-1396. https://doi.
org/10.1093/bib/bbz066

Stojanovi¢ SD, Fuchs M, Fiedler J et al (2020) Comprehensive bioinformatics identifies key microrna
players in ATG7-deficient lung fibroblasts. Int J Mol Sci 21(11):4126. https://doi.org/10.3390/
ijms21114126

Viereck J, Kumarswamy R, Foinquinos A et al (2016) Long noncoding RNA chast promotes cardiac
remodeling. Sci Transl Med 8(326):326ra22. https://doi.org/10.1126/scitranslmed.aaf1475


https://doi.org/10.1038/srep27595
https://doi.org/10.1016/j.jacc.2015.07.081
https://doi.org/10.1016/j.jacc.2015.07.081
https://doi.org/10.3390/ijms21134727
https://doi.org/10.1016/j.yjmcc.2014.11.027
https://doi.org/10.3390/genes8010008
https://doi.org/10.1177/1010428317706430
https://doi.org/10.1007/978-1-4939-8618-7_11
https://doi.org/10.1007/978-1-4939-8618-7_11
https://doi.org/10.1093/bib/bbz066
https://doi.org/10.1093/bib/bbz066
https://doi.org/10.3390/ijms21114126
https://doi.org/10.3390/ijms21114126
https://doi.org/10.1126/scitranslmed.aaf1475

l‘)

Check for
updates

Genomes: Molecular Maps of Living
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Abstract

Based on sequence comparisons, special algorithms assemble the sequence fragments
of modern sequencing techniques. After bacterial genomes and the yeast cell genome
were completely sequenced and bioinformatically analysed in the 1990s, human
genomes and numerous other eukaryotic (cells with a cell nucleus) genomes followed
from 2001. The function of individual genes is identified by sequence comparisons:
Protein function analysis (see Chap. 1), but also annotation of regulatory genome ele-
ments (ENCODE consortium) are main tasks of genome analysis. The genome sequence
is available for almost all known organisms. It is thus possible to successfully predict
the essential molecular components of these organisms.

3.1 Sequencing Genomes: Spelling Genomes

In the previous chapter we dealt with RNA as a “magic” molecule. But what about the
permanent storage of information in the cell, the totality of DNA, the genome?

DNA means deoxyribonucleic acid, abbreviated to DNA in English, and is an excellent
storage medium for information that living organisms have been using for almost 3 billion
years. As is the case with our modern storage media, the read-in and read-out technology
is quite important, because mostly only transcripts are produced, via RNA (see previous
chapter). If, on the other hand, a unicellular organism reproduces or a multicellular organ-
ism grows, the cells of the body divide. And before they split into two halves, the genetic
information in the cells has to be duplicated. There is an enzyme for this, the polymerase,
and with it, adenine, guanine, cytosine and thymidine pair up as a new DNA strand to the
opposite strand. With many nucleotides per second, an exact copy is thus produced. This
process was first used by Frederick Sanger to read genetic information. He marked the
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newly produced DNA radioactively, but also mixed dideoxy adenine triphosphate with the
normal deoxy adenine triphosphate, so that the enzyme always stutters at the adenine and
breaks off with about 1% probability at each adenine. This way, you can then visualize all
the adenines in the sequence after sorting the radiolabeled fragments by size and putting
on a film. If I use other dideoxy nucleotides, I also read the other nucleotides. I can also
replace the radioactivity with nucleotides of different luminosity and use a laser to deter-
mine the nucleotides online. All this led to the fact that one could determine the DNA
sequences ever faster, in order to store the sequence flood finally in large computer data
bases. After the sequencing reaction and the separation of the fragments had been minia-
turised further and further, the sequencing speed increased further and further so that it is
now possible to read many millions of nucleotides per track and process many tracks
simultaneously. In order to determine the genome sequence, the DNA of an organism is
first chopped up (“shotgun” method) and then all these small pieces are sequenced simul-
taneously at lightning speed. However, this makes another task more and more difficult,
namely to put the many sequence snippets together in the right way, i.e. to determine the
genome sequence correctly from the snippets found by putting them together (“mapping”
and “assembly” of the genome sequence). In particular, regions in which sequences are
repeated again and again (repeat regions) are difficult to represent correctly in terms of
their length and number of repeats.

Then we can begin to read the finished genome sequence, i.e. to understand its content
(cf. Fig. 3.1). Many parts can be understood by sequence comparison, for example with
the program BLAST. If this sequence section resembles an already labeled piece of DNA
from another organism, I assume that this is also the function of this gene section in the
newly sequenced organism. However, since similarities can be weak, labeling the genome
sequence at the dissimilar sites can cause problems (technical term annotation; checking
an existing label is called reannotation). As a simple rule of thumb, one adopts only those
BLAST results that have an expected chance (E-value) of less than 1 in 1 million.

For the other parts of the genome sequence, which do not reveal their function so easily
by high similarity, one has to analyse them in more detail. Here, machine learning and
artificial intelligence methods (Chap. 14) help to understand the sequence. For example,
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Fig.3.1 The figure shows a finished piece of the genome sequence. (Figure from Gibson et al. 2008)
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stochastic models such as hidden Markov models (Sean R Eddy 2004) allow hidden sys-
tem states (e.g. exon, intron) to be predicted from a sequence (observations, e.g. ATCCCTG
...) using a Markov chain (Bayesian network; supervised machine learning). Hidden
Markov models are widely used for genome annotation (exon-intron region; e.g. GenScan
program), but also for protein domain prediction (e.g. Pfam, SMART, HMMER, InterPro
databases) and network regulation (e.g. signal peptides; SignalP, TMHMM programs).

In addition, there are numerous special software that detect RNA sequences (e.g. Rfam,
tRNAscan), viral sequences, repeat regions (e.g. Repeat Masker) and other sites in the
genome (e.g. enhancers, miRNAs, IncRNAs) and label them accordingly.

An important step is also to take a closer look at the promoter. Transcription factors
bind to DNA sequence motifs (Patrik D’haeseleer 2006) in the promoter (so-called tran-
scription factor binding sites, TFBS) and thus regulate gene expression (transcription).
These conserved DNA patterns, usually consisting of 8-20 nucleotides, can be recognized
by computers using binding site pattern recognition algorithms based on experimental
data, such as chromatin immunoprecipitation DNA sequencing (Chip-Seq). A distinction
is made between probabilistic (binding site; position weight matrix), discriminant (sites +
non-functional sites) and energy (site + binding free energy) TFBS models (Stormo 2010,
2013). Databases such as Transfac and JASPAR contain the TFBS matrices for different
organisms. These can be used, for example, to search a sequence for TFBS to understand
gene expression (e.g. MotifMap, Alggen Promo, TESS, etc. programs), but also to find
possible regulation via modular TFBS (TF modules) (e.g. using the Genomatix program).
Besides, ab initio approaches (e.g. MEME Suite and iRegulon) try to find recurrent
sequence patterns in multiple sequences via multiple alignment, which are then compared
to known TFBS motifs for similarity. For example, we showed in one paper that heart
failure-associated Chast-IncRNA is regulated by promoter binding of Nfat4 (Viereck
et al. 2016).

In this way, from 1995 onwards (with E. coli and the yeast cell), the first genomes
began to be completely labelled and published. This was followed by the genomes of
eukaryotes (cells with a cell nucleus), which were about a thousand times larger, in par-
ticular that of humans (2001) and many other higher organisms (fly, mosquito, mouse, rat,
chimpanzee, chicken, fish, etc.).

Another aspect is then to assemble the encoded proteins, RNAs and elements into
higher networks. For example, a single enzyme does not stand alone, but forms metabolic
networks (see next chapter). In the same way, a transcription factor that binds to the pro-
moter of a gene does not stand alone, but is part of the overall regulation (so-called regula-
tory networks, see next but one chapter). The precise description of individual genes often
requires not only DNA but also RNA (“transcriptome”), in particular in order to precisely
determine the beginnings and ends of the segments overwritten in RNA. An integrative
analysis yields the most accurate results here, even in the case of viruses with their com-
pact genome (Whisnant et al. 2020).

One organism that has a fairly compact genome and yet is a fully viable self-contained
cell is Mycoplasma genitalium (just over 580,000 nucleotides in size). In three exciting
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papers from 2009, Luis Serrano (experiments) and Peer Bork (bioinformatics) nicely illus-
trated these different levels of understanding the genome sequence, understanding the
transcriptome and proteins, and understanding metabolism and regulation (Giiell et al.
2009; Yus et al. 2009; Kiihner et al. 2009). Figure 3.1 illustrates a completed piece of the
genome sequence. We show here the “origin of replication” from Gibson et al. 2008,
because in the case of bacteria in particular, this is where one starts to number the genes in
their genome.

3.2 Deciphering the Human Genome

The deciphering of the human genome was a milestone in research. The sequencing tech-
niques of the 1990s (capillary gel electrophoresis, automatic reading with a laser) were
used systematically and intensively. Craig Venter, in particular, decided to go ahead in an
industrial way and to finish much faster with the help of the first sequencing robots (only
3 years after 1998; Venter et al. 2001) than the group of typical university scientists and
professors who had been working on the project for more than 10 years.

This race has certainly greatly accelerated the sequencing of the human genome, but
also the development of the sequence analyses of bioinformatics that are necessary with it
in order to put everything together “correctly”. On the other hand, Craig Venter cannot be
said to have “won”. On the one hand, both working groups finished at about the same rate,
but on the other hand, it has been the case that the map (i.e., collecting genetic markers,
restriction sites, positional cloning of genes, etc.) of the public consortium under Erik
Lander has been instrumental in enabling Venter to put his sequences together so quickly
in the first place. Then in 2001, both consortia, the private company consortium and the
public research consortium, published a first “draft” sequence of the genome (Lander et al.
2001; review in Lander 2011) — a rough map, but not only of the genes, but precisely of all
the nucleotides that encode each gene.

This was the first time that the human genome had been “spelled out”. However, the
groundbreaking work of the ENCODE consortium (2012), for example, showed that after
spelling, reading only really begins with a hundredfold better genome and, above all, tran-
scriptome coverage, and one begins to understand the content and the subtleties of the
human genome.

These results, which have continued to grow over the years, are now available on vari-
ous entry pages.

For example, one can also seek out these results at NCBI for questions and analysis,
e.g., via the link https://www.ncbi.nlm.nih.gov/geo/info/ENCODE.html.

Entry Page of the Human Genome Project
A particularly good general access to human genome analysis and its history is provided
by the entry page of the Human Genome Project.


https://www.ncbi.nlm.nih.gov/geo/info/ENCODE.html
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P https://www.genome.gov/human-genome-project

The result is explained on “All About The Human Genome Project (HGP)”.
b https://www.genome.gov/10001772

An alternative view has the entry page of the “Department of Energy”. Here, many
large-scale projects in physics were managed, which is why this page also highlights the
“Big Data” aspect.
P https://genomics.energy.gov

A detailed review of all data is available in the archive of the Human Genome Project.

P https://web.ornl.gov/sci/techresources/Human_Genome/index.shtml

3.3 A Profile of the Human Genome

So what does our own genome look like? It is important to know that the human genome
comprises about 3.2 billion base pairs (haploid, a complete set, for example in a sex cell)
and is distributed in all body cells as a diploid total stock on 46 chromosomes: 44 auto-
somes, one pair of each chromosome (1 to 22) as well as two sex chromosomes, XX
(woman) or XY (man). There are about 23,700 genes coding for proteins in the human
genome (current status to be looked up at https://www.ensembl.org/Homo_sapiens/Info/
Index). There are also many thousands of RNA genes.

Since only 2-3% of the genome is needed for protein reading frames and only about
10% of the genome for the additional regulatory signals in mRNA, RNA precursors and
finally genes with promoter sequences, the genome was initially seen to be loaded with up
to 90% ballast. In particular, with selfish DNA distributed throughout the genome as short
(SINE, small interspersed elements) and long elements (LINE, large interspersed ele-
ments, e.g. ALU sequences). Other such elements are transposons and former retroviral
sequences. Other repetitive regions characterize promoters (GC regions). Stabilizing,
structural DNA (around centromeres, at chromosome ends e.g. telomeres etc.) also occu-
pies some space in the chromosome.

Nevertheless, after closer analysis, much more meaningful information is available in
the human genome. First of all, there are the many splice variants from the protein genes,
which increase the variance of the proteins in the different organs and life stages (espe-
cially in the embryo). There are numerous other genes, especially for the 22-nucleotide
miRNAs that are excised from precursors, and the long non-coding RNAs (Liu et al. 2017).
Therefore, the total amount of encoded genetic information is even higher. In total (genetic
estimates), about 100,000 genetic traits are passed from generation to generation through
the genome. Figure 3.2 makes this graphically clear.
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Fig. 3.2 What is in our genome? If we look at the figure, it becomes clear that we only consist of
about 25% genes, of which only 2-3% code for proteins (the majority are selfish DNA, LINE and
SINE). (Image from https://upload.wikimedia.org/wikipedia/commons/6/64/Components_of_the
Human_Genome.jpg)

Interestingly, the publication of the human genome in 2001 was more of a race than an
exhaustive analysis. This very elaborate detailed analysis is the goal of the ENCODE
project. We should therefore also take a look at the subsequent, detailed analyses of the
ENCODE consortium:

P https://www.encodeproject.org
This consortium.
P also: https://www.genome.ucsc.edu/ENCODE/
has further investigated the human genome in great detail after its first sequencing,

intensively re-sequenced all areas, but also investigated contained DNA elements and cre-
ated an encyclopaedia:
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P https://www.genome.gov/10005107, ENCyclopedia Of DNA Elements.

In particular, the ENCODE consortium was able to show that at least half of the genome
is transcribed at least some of the time, in addition to protein genes, especially vari-
ous RNAs.

Numerous ENCODE publications (ENCODE 2011) continue to reveal new details of
regulation in the human genome:

P https://www.nature.com/encode/#/threads

For example, in the regulation of histones, RNA, the transcriptome and promoters. In
the meantime, the human genome has been sequenced many times, among other things to
determine individual differences. A current project is even examining 10,000 human
genomes (Telenti et al. 2016).

Conclusion

* Based on sequence comparisons, special algorithms assemble the sequence fragments
of modern sequencing techniques (see tutorials). After bacterial genomes and the yeast
cell genome were completely sequenced and bioinformatically analysed in the 1990s,
human genomes and numerous other eukaryotic (cells with a cell nucleus) genomes
followed from 2001. The function of individual genes is identified by sequence com-
parisons. Protein function analysis (see Chap. 1), but also annotation of regulatory
genome elements (ENCODE consortium) are main tasks of genome analysis.

* Eukaryotic genomes are billions of nucleotides in size, bacterial genomes only a few
million. This means that there is room for long introns in the eukaryotic genome. Half
of the human genome is transcribed, but there is also plenty of room for short (SINE)
and long (LINE) repetitive elements and transposons.

* This combination of genome sequencing and bioinformatics means that the genome
sequence is available for almost all known organisms. Bioinformatics can thus success-
fully predict the essential molecular components of these organisms: we live in the age
of post-genomics (whenever the genome sequence is known). <

3.4  Exercises for Chap. 3

It is a good idea to briefly review the exercises for Chap. 2. You should also briefly look at
the exercises for Chap. 3 later for repetition at Chaps. 5 and 7.

Task 3.1
Describe how the human genome is constructed.
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Task 3.2
Describe what is meant by annotation or reannotation of a genome.

Task 3.3
Name and describe different sequencing techniques.

Task 3.4
Describe important steps in genome sequencing (also address bioinformatics challenges or
important hurdles). Do you know any important pioneers of genome sequencing?

Task 3.5
Think about the bioinformatics requirements/challenges of ever-improving sequencing
techniques, but also associated hurdles/limitations.

Task 3.6
Name and describe databases where you can find information about the genome.

Task 3.7

Explain how to bioinformatically screen a promoter sequence for transcription factor bind-
ing sites (name and briefly describe software/databases). What are the advantages of com-
paring e.g. several software/databases?

Task 3.8

Develop a simple program that reads in a promoter sequence, examines it for transcription
factor binding sites, and outputs the result back. What parts would this program consist of?
Also consider what challenges and sources of error this program would have to deal with.

Task 3.9
Analyze a sample RNA sequence:

Using the following sequence, perform a promoter search for possible transcription
factor binding sites using ALGGEN PROMO software (https://alggen.Isi.upc.es/cgi-bin/
promo_v3/promo/promoinit.cgi?dirDB=TF_8.3):

>FP018429 BRCAL 1

TTCCAAGGAACAGTGTGGCCAAGGCCTTTCGTTCCGCAATGCATGTTGGAAATAGTAGTTCTT
TCCCTCCACCTCCCAACAATCCTTTTATTTACCTAAACTGGAGACCTCCA
TTAGGGCGGAAAGAGTGGGGTAATGGGACCTCTTCTTAAGACTGCTTTGGACAC
TATCTTACGCTGATATTCAGGCCTCAGGTGGCGATTCTGACCTTGGTACAGC
AATTACTGTGACGTAATAAGCCGCAACTGGAAGCGTAGAGGCGAGAGGGCG
GGCGCTTTACGGCGAACTCAGGTAGAATTCTTCCTTTTCCGTCTCTTTCTTTTTATGTCACCAGG
GGAGGACTGGGTGGCCAACCCAGAGCCCCGAGAGATGCTAGGCTCTTTCTGTCCC
GCCCTTCCTCTGACTGTGTCTTGATTTCCTATTCTGAGAGGCTATTGCTCAGC
GGTTTCCGTGGCAACAGTAAAGCGTGGGAATTACAGATAAATTAAAACTGTGGAA


https://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3
https://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3
https://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3
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CCCCTTTCCTCGGCTGCCGCCAAGGTGTTCGGTCCTTCCGAGGAAGCTAAGGCCGCGTTGGG
GTGAGACCCTCACTTCATCCGGTGAGTAGCACCGCGTCCG

Which of the following statements are correct (multiple answers possible)?
(A) ALGGEN PROMO does not find transcription factor binding sites in the DNA

sequence.

(B) All hits found are also actual transcription factor binding sites, so in each case it
is sufficient to predict them bioinformatically only.
(C) Transcription factors bind to DNA motifs, I can predict these bioinformatically.
(D) ALGGEN PROMO finds a transcription factor binding site for NF-AT?2 in the
promoter (with the “matrix dissimilarity rate” setting of 15). I can then use this
information for further experimental studies, such as whether NF-AT2 has an
influence on transcription, in this case of BRCAI.

Task 3.10
Explain a Hidden Markov Model (feel free to use an example).

Useful Tools and Web Links

Pfam https://pfam.xfam.org/

Rfam https://rfam.xfam.org/

SMART https://smart.embl-heidelberg.de/

ProDom https://prodom.prabi.fr/prodom/current/html/home.php

UniProt https://www.uniprot.org/

GenScan https://genes.mit.edu/GENSCAN.html

HMMER https://hmmer.org/

SignalP https://www.cbs.dtu.dk/services/SignalP/

TMHMM https://www.cbs.dtu.dk/servicess TMHMM/

Transfac https://www.gene-regulation.com/pub/databases.html

TESS https://www.cbil.upenn.edu/tess/

MotifMap https://motifmap.ics.uci.edu/

Alggen Promo https://alggen.lIsi.upc.es/cgi-bin/promo_v3/promo/promoinit.
cgi?dirDB=TF_8.3

Genomatix https://www.genomatix.de/

MEME Suite https://meme-suite.org/

iRegulon https://iregulon.aertslab.org/

tRNAscan https://lowelab.ucsc.edu/tRNAscan-SE/

Repeat Masker https://www.repeatmasker.org/

ENCODE https://www.encodeproject.org

NIH https://www.genome.gov

Genomic Science https://genomics.energy.gov

program

Human Genome https://web.ornl.gov/sci/techresources/Human_Genome/index.

Project shtml

Ensembl https://www.ensembl.org/Homo_sapiens/Info/Index


https://pfam.xfam.org/
https://rfam.xfam.org/
https://smart.embl-heidelberg.de/
https://prodom.prabi.fr/prodom/current/html/home.php
https://www.uniprot.org/
https://genes.mit.edu/GENSCAN.html
https://hmmer.org/
https://www.cbs.dtu.dk/services/SignalP/
https://www.cbs.dtu.dk/services/TMHMM/
https://www.gene-regulation.com/pub/databases.html
https://www.cbil.upenn.edu/tess/
https://motifmap.ics.uci.edu/
https://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3
https://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3
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https://meme-suite.org/
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Modeling Metabolism and Finding New
Antibiotics

Abstract

Metabolic modelling allows metabolism to be analysed in detail. Biochemical knowl-
edge and databases such as KEGG determine the set of all enzymes involved. It is then
possible to calculate which metabolic pathways and enzyme chains keep the metabo-
lites in a network in equilibrium (flux balance analysis), which of these are also no
longer decomposable (elementary mode analysis) and which of these are sufficient to
represent all real metabolic situations by combining a few pure flux modes (extreme
pathway analysis). To calculate the flux strength, one needs further data, e.g. gene
expression data and software (e.g. YANA programs). Further analyses look at meta-
bolic control (metabolic control theory) and describe the rates (kinetics) of the enzymes
involved more precisely. This allows a better description and understanding of metabo-
lism, prediction of essential genes and resulting antibiotics as well as metabolic
responses, for example in tumour growth.

The genome sequence allows bioinformatics to gain a much better overview of the organ-
ism. In particular, this allows us to determine much better than before which enzymes and
metabolic pathways occur in an organism.

Is it possible for the bioinformatician to calculate, for a given set of enzymes, what
metabolism might come out of it?

The surprising answer is “yes”; so-called metabolic modeling (Mavrovouniotis et al.
1990; Schuster and Schuster 1993) can indeed answer this question.

© Springer-Verlag GmbH Germany, part of Springer Nature 2023 47
T. Dandekar, M. Kunz, Bioinformatics,
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4.1 How Can | Model Metabolism Bioinformatically?

The reasoning is as follows: All metabolic sources (“‘sources”) serve, after all, to nourish
and supply the organism, and in the same way there are excretions which dispose of the
unnecessary metabolic products (“sinks”). But for all other metabolites (“internal metabo-
lites™), the body and each cell of the body must ensure that they are supplied and degraded
in the same amount over time, so that this internal metabolite is neither permanently miss-
ing nor increasing. This can be translated into a mathematical calculation (algorithm) to
calculate which enzyme chains balance all the internal metabolites involved (programs we
have developed for this purpose include YANA and Metatool; an overview of numerous
other programs for this purpose is provided by Dandekar et al. 2014). Interestingly, this
initially somewhat abstract result (all “elementary flux modes”) is an accurate description
of all metabolic possibilities for this organism with these enzymes. Figure 4.1 provides a
general overview of metabolic modeling, and Fig. 4.2 of elemental mode analysis.

We have investigated this in more detail, e.g. for the metabolic network of glycolysis
and the pentose phosphate pathway, and were able to show (Schuster et al. 2000) that by
exact mathematical calculation one can also find additional alternatives from these two
metabolic pathways, e.g. other enzyme combinations that nevertheless balance all the
internal metabolites used. These allow the organism to adapt to completely different meta-
bolic conditions, e.g. to produce a lot of NADPH, energy or nucleotides (Fig. 4.3).

However, apart from marvelling at the numerous metabolic possibilities that even sim-
ple bacteria have as well as higher cells, these flow analyses can also be used for various
applications.

Metabolism

e.g. metabolic pathways from KEGG database:

- Glycolysis: sugar/glucose - pyruvic acid/pyruvate >

Citricacid cycle (pyruvate, oxaloacetate¢ - citrate; a—Ketoglutarate)}>Respiration
(respiratory chain > 3 ATP) > ATP, energy

-Lipids, fats: B-oxidation; lipid synthesis; unsaturated fatty acids.

Intermediary metabolism

Secondary metabolism

-Protein modifications (sugar or lipid attachment - Nerve cells: e.g. biogenic amines (adrenaline, noradrenaline)

(e.g. aspartate, lysine); hydroxyproline, -lysine (e.g. - Peptides (e.g. non-ribosomal)

collagen)) - Hormones, receptors, secondary messengers (2nd messengers): cAMP; steroids
-Glycolipids (e.g. in the nervous system the cerebrosides - Cell wall synthesis (teichoic acids, murein, chitin ...)

and gangliosides from sphingosine) - Xenobiotics (degradation of foreign substances, e.g. drugs)

- Muscle filaments, structural proteins, blood coagulation cascade, immune response

Metabolic calculations

Elementary Mode Analysis (EMA): Program Metatool

- Adaptation of the flux distribution to experimental data/specific situation:
program YANA, YANAsquare (with error minimization)

- Metabolic control by enzymes: control theory

- Detailed dynamics: concentration changes over time - Depend on

the concentration present > Differential equations, parameter estimates:
Power law analysis software

Fig. 4.1 Overview of metabolic modelling



4.1 How Can | Model Metabolism Bioinformatically? 49

Fig.4.2 Overview of
elemental mode analysis

Flux mode calculation

Flux distribution equilibrium:
Elementary, non-decomposable
modes

Elementary mode calculation

All "elementary flow modes" from
metabolites and enzymes, which
provide a description of all metabolic
possibilities

|

List of reactions
(internal/external metabolites;
reversible/irreversible)

|

Stoichiometric matrix

Combine linearly the enzyme reaction
so that the internal metabolites are in
equilibrium and the modes (linear
combination of reactions) are really
no longer decomposable.

|

List of all

Elementary Modes

Any observable situation:
Linear combination of the
calculated modes

Glycolysis and pentose
phosphate cycle network|

6 additional metabolic pathways

7 elementary modes
1) Glycolysis
2), 3) G6P - Pyruvate + CO2, ATP, NADPH, NADH
4) G6P > R5P + CO2
5) 5 Hexose + ATP - 6R5P + ADP
6) PPP (much NADPH, not much NADH or ATP)

7) PFK ¢ >FBP

from reversible ribose metabolism
- 2 for nucleotide digestion

- 4 for exchange Ribose € - Hexose

Fig. 4.3 Overview of the metabolic network of glycolysis and pentose phosphate pathway
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In particular, I can use it to investigate how I can achieve the best possible yield of a
product (the “sinks”, see above) with starting products (the “sources”), for example if |
want to biotechnologically produce citric acid for the kitchen or nanocellulose for trans-
parent displays — to give a well-known and a very modern example. Similarly, I can now
compare all the metabolic possibilities for one organism with various other organisms and
in this way see what peculiarities are present or even what diversions and alternatives one
organism has and the other does not. You can also see in this way that different strains of
bacteria, such as meningococci, use different pathways to achieve the same rate of growth,
allowing both a pathogenic, disease-causing lifestyle and a more benign lifestyle with
greater effort on amino acid synthesis but less aggressiveness against the human host
(Ampattu et al. 2017).

It is important to validate the modelled (and thus only predicted) metabolic differences
by further experimental data. Since individual errors are corrected by the metabolic flux
network model (in a metabolic flux, all enzymes must work together at the same rate), data
such as RT-PCR measurements on the mRNA expression of metabolically active enzymes
can also be used, for example. These mMRNA measurements are “indirect” because only the
mRNA is measured and not the protein or enzyme activity; however, this works well in
practice, with only 5-10% error for fluxes from a network of 30—100 enzymes, as con-
firmed by metabolite measurements (Cecil et al. 2011, 2015). Examples of applications
include the changing lifestyle of chlamydiae (bacteria) during infection (as elementary
bodies and subsequently as reticular bodies; Yang et al. 2019) or the mutual metabolic and
regulatory responses to infection events in fungal infections of fungus and host (Srivastava
etal. 2019).

This is particularly interesting if I want to use it for medical purposes, for example to
develop an antibiotic. Then I am interested in the metabolic pathways that as many bacte-
ria as possible have in common, but which are absent in the sick person and can therefore
be blocked by the antibiotic without endangering the sick person, but at the same time
killing all bacteria that have this metabolic pathway.

The flux calculations also open up the possibility of identifying individual enzymes that
are particularly critical for the survival of the bacteria (because the failure of a particular
enzyme affects, for example, all flux modes that provide an essential cofactor for the bac-
terium and not just a few). This may also help in finding new drugs against insidious fun-
gal infections. One can also re-examine the detailed effects of an antibiotic with gene
expression analyses and a calculation of the resulting metabolite fluxes as well as single
metabolite measurements (Cecil et al. 2011; YANAsquare program). This then helps to
find new drugs against multidrug-resistant staphylococci, for example (Cecil et al. 2015).

At present, we also want to link the different modelling levels (Chaps. 1, 2, 3, 4 and 5)
more intensively in order to better protect plants against drought stress and infections, for
example by identifying key enzymes that have an alternative regulatory function (e.g.
aconitase, which, in addition to its metabolic function in the citric acid cycle, also regu-
lates IRE in mRNAs, see Sect. 2.2) and alter regulation favourably for drought stress or
resistance to infection.
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4,2  Useful Tools for Metabolic Modelling

As we have already learned, all metabolic sources serve to nourish and supply the organ-
ism (“sources”). In addition, there are excretions (“sinks”), but also internal metabolites,
which must be supplied and degraded to the same extent. In this context, mathematical
algorithms can calculate the existing metabolic fluxes for all enzymes and reactions
involved and are a helpful tool for metabolic modelling. Table 4.1 presents a number of
applications of metabolic modelling.

Table 4.2 shows next how the modeling is then technically performed, whereby this is
again only a selection of useful programs.

Metatool (Table 4.2) has been in use since 2005 (von Kamp and Schuster 2006). It
allows the calculation of the stable metabolic pathways available to the metabolism for a
given set of enzymes. It is constantly being further developed. In addition to the integer
version 4.9, which runs stably on Windows, there is a new version 5.1 and variants for
Linux and Windows.

The YANA programs, which are programmed in Java and can therefore be used flex-
ibly on any computer, can be used to calculate not only the different flux possibilities for
metabolism, but also how strong the flux is in a particular situation, especially through a
single enzyme. The programs can analyze larger and larger networks faster and faster; a
genome-wide network is described in the 2011 paper (Schwarz et al. 2005, 2007; Cecil
etal. 2011).

CellNetAnalyzer (CNA) is a MATLAB toolbox. Via a graphical user interface, various
computer methods and algorithms are offered for the analysis of the structure of metabolic
networks as well as for the analysis of signaling networks and regulatory networks.

Metabolic networks are modeled using a stoichiometric matrix and boundary condi-
tions. Thus, CNA uses very similar principles of flux balancing as Metatool does with
elementary mode analysis. Their calculation is also offered as well as “minimal cut sets”
(how do I safely cut a metabolic pathway?). The different algorithms are also offered for
the construction of strains as well as for metabolic engineering (e.g. optimal yields in
biotechnology).

Table 4.1 Applications of metabolic modelling. (Dandekar et al. 2014)

Metabolic fluxes (“modes”) that occur only in | Antibiotics
bacteria but not in humans

Yield (final product) for given starting Biotechnology

product(s)

Growth equation Calculation of growth in plants, bacteria,
pathogens

Metabolic overview Characterization of microbes and organisms

(Often from genome sequence) Characterization of the adaptation potential,

identification of organisms
Calculation of robustness Prediction of essential genes
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Table 4.2 Programs for metabolic modeling

Metatool https://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool/

YANA https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/
yanasquare/

CellNetAnalyzer https://www?2.mpi-magdeburg.mpg.de/projects/cna/cna.html

COPASI https://copasi.org/

Flux Balance Analysis | https://systemsbiology.ucsd.edu/Downloads/FluxBalance Analysis

COBRA Toolbox https://opencobra.github.io/

CNA also uses Boolean networks as well as multi-digit logic and interaction graphs and
can thus also model signal networks and regulation. The stable system states are deter-
mined and the dynamics are simulated with differential equations (via a so-called plugin,
an additional program that uses the software ODEfy). Finally, one can also consider net-
work properties such as the signal network length and any feedback loops that may be
present.

The COPASI “Biochemical System Simulator” allows to analyze biochemical net-
works in their structure and dynamics (Kiihnel et al. 2008; Kent et al. 2012; Bergmann
et al. 2016). It is also possible to read in models (in SBML format) and model the network
using differential equations (“ODEs”) or stochastic ( “Gillespie’s stochastic simulation”),
so that random events (e.g. nutrient supply) can be simulated well.

Flux Balance Analysis (FBA) is the software of the world-famous old master of meta-
bolic simulations, Bernhard Palsson. You can also model metabolic and, with extensions,
signal networks.

The COBRA toolbox (Kent et al. 2012) is useful for metabolic modeling and signaling
cascades. A detailed tutorial, including the starting metabolic model for E. coli, is avail-
able and a whole community of users and developers. Orth et al. (2010) introduce an
instructive E. coli metabolism model in a separate paper.

Conclusion

Metabolism is fundamental to the nutrition, growth and reproduction of all living
beings. Metabolic modelling allows us to look at this in detail. Bioinformatics first uses
biochemical knowledge and databases such as KEGG to determine the set of all
enzymes involved. It is then possible to calculate (see exercises and tutorials) which
metabolic pathways and enzyme chains keep the metabolites in a network in equilib-
rium (flux balance analysis), which of these are also no longer decomposable (elemen-
tary mode analysis) and which of these are sufficient to represent all real metabolic
situations by combining a few pure flux modes (extreme pathway analysis).

In order to calculate the flux strength, one needs further data, e.g. gene expression
data and software (e.g. YANA programs). Further analyses look at metabolic control
(metabolic control theory) and describe the rates (kinetics) of the enzymes involved in
more detail. This is mathematically complex, but leads to deeper insights into their
regulation and function.


https://pinguin.biologie.uni-jena.de/bioinformatik/networks/metatool/
https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/yanasquare/
https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/yanasquare/
https://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html
https://copasi.org/
https://systemsbiology.ucsd.edu/Downloads/FluxBalanceAnalysis
https://opencobra.github.io/

4.3 Exercises for Chap. 4 53

Bioinformatics thus makes it possible to better describe and understand metabolism,
to predict essential genes and resulting antibiotics as well as metabolic responses, for
example in tumour growth or for bacterial cell wall synthesis. <

4.3  Exercises for Chap. 4

As an introduction, it is advisable to work through the exercises in Chap. 11 (Sect. 11.1,
11.2,11.3,11.4,11.5, and 11.6).
Modelling metabolic networks:

Task 4.1
Describe how metabolic pathways can be calculated bioinformatically. Also state possible
problems with metabolic modelling.

Task 4.2
Name a computational program for metabolic pathways.

Task 4.3
Explain how to compile all the enzymes of glycolysis for a metabolic pathway. What
advantages do you have in each case when you compare several databases?

Task 4.4
Explain what is meant by elemental mode analysis.

Task 4.5
You want to develop a new antibiotic. Which enzymes in your metabolic pathway could be
interesting antibiotic targets?

Task 4.6
Perform elementary mode analysis on the citrate cycle/citric acid cycle in E. coli. First
download Metatool (https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/meta-
tool_4_5/). Then create the Metatool file for the citrate cycle/citric acid cycle in E. coli
yourself and carry out an analysis.

Look at the metabolic network in Metatool and answer the following questions:

1. How many modes do I get?
2. How do I interpret my found modes in terms of finding drugs/targets against
bacteria?

To better understand an elemental mode analysis, you should also answer the following
questions:


https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/metatool_4_5/
https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/metatool_4_5/

54 4  Modeling Metabolism and Finding New Antibiotics

3. What happens to the number of modes when I change a metabolite from internal to
external? Why does this happen?

4. What happens to the number of modes if I set all metabolites from external to inter-
nal? Why does this happen?

5. What happens to the number of modes when I change an enzyme from irreversible
to reversible? Why does this happen?

6. What happens to the number of modes if I change all the enzymes from reversible
to irreversible? Why does this happen?

Task 4.7

Perform elementary mode analysis for pyrimidine metabolism. In doing so, compare the
metabolism between humans and S. aureus. Proceed according to Example 4.6 and answer
the following questions:

1. How many modes do I get in humans and S. aureus?

2. Are there differences in pyrimidine metabolism between humans and S. aureus?

3. How do I interpret my found fashions in terms of finding drugs/points of attack
against diseases?

Useful Tools and Web Links

Database Information on metabolism can be found, for example, in the KEGG database
(https://www.genome.jp/kegg/), Roche Biochemical Pathways (https://www.roche.
com/sustainability/what_we_do/for_communities_and_environment/philanthropy/
science_education/pathways.htm) and EcoCyc (https://ecocyc.org/). Since 2020,
KEGG now has a new small grey box “change pathway type” in the upper left
corner, which shows the selection of available enzymes for an organism (green
boxes), missing ones are shown in white

Software | A tutorial about Metatool can be found at: https://pinguin.biologie.uni-jena.de/
bioinformatik/networks/metatool/metatool5.0/metatool5.0.html. Also important
are YANA (https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/
yanasquare/), YANAsquare (https://www.bioinfo.biozentrum.uni-wuerzburg.de/
computing/yanasquare/), COPASI (https://copasi.org/) and CellNetAnalyzer
(https://www?2.mpi-magdeburg.mpg.de/projects/cna/cna.html)
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Systems Biology Helps to Discover Causes
of Disease

Abstract

The systems biology modelling of signalling cascades and protein networks allows
deeper insights into the function of the proteins involved and thus helps to understand
the causes of diseases, to better describe infection processes and immune responses, or
to elucidate complex processes in biology such as cell differentiation and neurobiology.
Stronger mathematical models describe signalling networks precisely in terms of
changes over time and their speed using differential equations. This explains the pro-
cess exactly, but spends additional time e.g. determining the velocities (kinetics; time
series analysis). Boolean models, on the other hand, only require information about
which proteins are involved in the network and which protein interacts with which
other proteins in what way (activating or inhibiting). Simulations based on a Boolean
model (e.g. with SQUAD or Jimena) must be checked iteratively in many cycles to see
whether the behaviour in the computer model also matches the actual outcome observed
in the experiment, at least qualitatively. The computer model is thus adapted to the data
step by step (data-driven modeling).

Let us now turn to systems biology in application. Bioinformatics models also allow us to
gain new insights into system effects, and in particular to understand how a signalling
cascade functions as a whole. The easiest way to understand this is to think of a disease,
such as stroke or heart attack. Not only the heart is “broken”, but the whole person is
affected. Often his/her life is in danger, and only decisive and the best modern medicine
can still save people with heart attacks. But is it not hopeless to model and even understand
such a complex system as a whole? Well, this question always arises when I want to look
at a system in its entirety. For example, all living things, including humans, are part of an
environment. And only when I also model this, do I understand everything, which in turn
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is not so easy, because the region, the country, indeed the whole world are again part of an
even greater whole. That is why half of the work is actually done when we succeed in
defining an interesting section that we can model sufficiently to gain new insights from it.
For example, how does a heart attack happen? Often it happens in a sudden flash. But simi-
larly often a heart failure, the so-called cardiac insufficiency, announces itself, gets worse
and worse, and only then does the heart attack occur. Can we perhaps stop this process, can
modern medicine and bioinformatics help here?

5.1 Application Example: How Does Phosphorylation Cause
Heart Failure?

This is a section of the overall context around heart failure and heart attack that can be
modeled quite well. New research shows that in heart failure, an important growth stimu-
lus comes from a growth signal, a phosphorylation, on the Erk protein. Normally, the Erk
protein is only doubly phosphorylated (Thr183 and Tyr185). But when the heart is over-
loaded, the protein gets a third phosphorylation (Thr188), migrates into the nucleus and
leads to genes being read (“transcription factor”; together with other transcription factors,
e.g. NFATc4 and GATA4), which now cause the cardiac muscle cell and thus the cardiac
muscle to grow (“hypertrophy”; Fig. 5.1). If we want to simulate this process in the model,
we first need the partner proteins of the Erk signaling cascade and the most important
alternative signaling pathways (Figs. 5.1 and 5.2). Only then can we see whether we can
change something in this fateful cascade by administering a drug (receptors on the cell
membrane, above in Fig. 5.1). To do this, we first need to compile the signalling cascade
(knowledge, literature, experiments, databases) and then translate it into a network using
a machine-readable drawing program. This can be done by programs such as Cytoscape or
CellDesigner. Just as with a drawing program, one draws in proteins and their connections
(“interactions”), noting whether these are inhibitory (as a “truncated line”) or activating
(as an “arrow”) connections. But the advantage of the above-mentioned programs is that
they save the illustration e.g. inXML (Extensible Markup Language) or SBML (Systems
Biology Markup Language) format, so that now the computer also understands the draw-
ing (“machine-readable”). This then opens up numerous further evaluation possibilities
through already well-established software. For example, it is possible to display which
different pathways are involved in a given set of proteins (“Gene Ontology” analysis, see
Appendix).

But what is so fatal in our cascade? Is it not good if the heart reacts to stress with growth
and thus becomes stronger? Well, we have identified Erk kinase and its third phosphoryla-
tion as an important switch in our model. We could simulate in the model whether we
could perhaps strengthen or weaken Erk phosphorylation by stimulating the receptors of
the cardiac muscle cell (see Figs. 5.1 and 5.2) (see legend to the figure). It is interesting to
note that an enlarged heart goes through a detrimental circle (“circulus vitiosus™), and a
poorer supply of blood (due to arterial calcification, for example) leads to less oxygen in
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Fig. 5.1 Representation and simulation of the signalling cascade in heart failure. Using various
databases, a signalling network can be reconstructed in which the individual interactions of the pro-
teins/molecules involved represent, in simplified form, important molecular relationships leading to
heart failure (activation as —, inhibition as -I; here by the CellDesigner software)

the heart muscle. But this is a stimulus for the third Erk phosphorylation, so that the
muscle grows. But since the normal heart is already optimally adapted, the enlargement of
the heart muscle cell results in an even poorer oxygen supply and so on and so forth. So
the question arises: What is the best way to intervene in this system?
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Fig. 5.2 Simulation of the signal cascade in heart failure. Subsequently, the network from Fig. 5.1
can be used for dynamic simulation, whereby the logical interconnection of the interactions is

(continued)
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For this purpose, our network, which is already available in machine-readable form, is
next dynamically simulated by software. In this process, the logical interconnection is
translated into dynamics, since various differential equations, e.g. exponential function,
simulate the rise and fall of the respective signal strength in the network. Here, first the
receptor is stimulated, then a protein directly below it, finally the Erk protein is phosphory-
lated and so on. This is done, for example, by the software SQUAD (Standardized
Qualitative Dynamical Modeling Suite) or, alternatively, by the software CellNetAnalyzer
(CNA), if we provide the network in a machine-readable form in each case. Now we can
compare different signals on the cell membrane, such as the effect when I stimulate the
beta receptors (e.g. an adrenaline rush going through our body, the heart then beats faster
and we fight or run away). Then I get phosphorylation at the Erk protein, which then
makes the heart muscle stronger (positive inotropic effect), it can then beat faster. The
third phosphorylation is added during overexertion. Our network section shows us that we
achieve this via two other signalling pathways, each of which is stimulated by different
signals (Fig. 5.2).

Once this is understood through bioinformatics simulations, it also becomes clear how
we need to control our system: It is important to prevent the Erk switch from turning on
further genes in the nucleus of the cardiac muscle cell, which in the situation of cardiac
insufficiency under consideration lead to an increase in stress and oxygen deficiency in the
cardiac muscle cell. This prevents further unfavourable growth and overstretching of the
heart muscle. One possibility that is currently being tested in pharmacology (although
only in cell culture for the time being) is suitable peptides that prevent one Erk protein
from hitting another Erk protein (‘“dimerisation inhibitor””). Without its peer (“‘dimerisa-
tion”), however, it cannot enter the cell nucleus at all and activate genes there. In this way,
one could achieve that, on the one hand, the two “good” phosphorylations of the Erk pro-
tein are still supported with heart-strengthening drugs (“positively inotropic”, as the medi-
cal profession says, i.e. the path on the far right in the model of Fig. 5.1), but, on the other
hand, the “bad” third phosphorylation of the Erk protein and the further, here harmful,
enlargement of the heart muscle are prevented.

translated into mathematical functions (e.g. exponential functions) in order to reproduce the respec-
tive signal strength, i.e. the activation state of the individual proteins/molecules. In this way, it is
possible to simulate, for example, the activation of the RTK receptor by a hypertrophic stimulus,
which activates the Rafl protein and subsequently phosphorylates the Erk protein, which then
switches on genes in the cell nucleus (with further transcription factors, such as NFATc4 and
GATAA4) that cause the heart muscle cell to grow. Shown is the change in the network in response to
a hypertrophic stimulus (time 2, Top) and a non-hypertrophic (mitogenic) stimulus (also at time 2,
Bottom). It can be seen that different transcription factors are turned on over time in response to a
hypertrophic stimulus (e.g., c-Myc and Elk1). It is also clear that ERK TEY phosphorylation (Thr183
and Tyr185) is active first, followed by Thr-188 phosphorylation (simulated here by SQUAD soft-
ware). With the help of such systems biology descriptions, one can effectively model a biological
system and is thus able to understand the system behavior, such as how heart failure occurs or how
one can intervene in the cascade (e.g. possible therapy)
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The diagram once again illustrates the system behaviour of these signalling cascades.
On the one hand, bioinformatic simulation enables us to understand how a cell with its
signalling cascades reacts in a healthy or pathological way to external signals. On the other
hand, it is also possible to test individual strategies in detail and determine which signals
are stronger or weaker and what then prevails in each case. Of course, one could also find
this out directly with many experiments, but this is much more time-consuming and also
requires many, many experiments.

The model description we have just used is “semi-quantitative”, i.e. we explain exactly
which is stronger or weaker, which signal is important first, second and last. But we are not
yet exactly quantitative, so that one already has exact quantities/concentrations. Of course,
there are such exact quantitative models in bioinformatics. However, the disadvantage of
such models is that they need much more additional information, in particular how fast the
most important processes change with time, or how strong the signals are at the beginning
and at least at four further time points. Then I can calculate with which function I describe
the change with time, i.e. I can set up the so-called differential equation of this property.
This makes sense, for example, if I want to thin the blood and I do not want to make the
platelets too weak or too strong for this purpose. That’s why we set up a fairly accurate
model with differential equations for this (and collected a lot of experimental data before-
hand). In many other cases, however, one does not have the time to measure everything so
precisely experimentally, and a semi-quantitative model is then already very good for
describing the corresponding system effects, for example when we want to protect plants
against pests or heat stress, to give a completely different example. To do this, we then
looked more closely at the effect of plant hormones (“cytokinins™), with which you would
spray the plant in the event of a bacterial infestation, for example, and then you have a
completely biological and readily degradable pest control agent (Naseem et al. 2012a). In
order to find the right cytokinin, the complex further effects were simulated more precisely
in a systems biology model, as shown above for the heart (cytokinins also control many
other processes, for example in the growth of plants).

In summary, then, systems biology descriptions are an important area of bioinformatics
today for better understanding systems behavior and signal processing in cells and organ-
isms. Often, relatively few data are sufficient for this purpose, because even a rather small
semi-quantitative model answers the questions about the best or most interesting system
effect, as in the case of heart failure, blood thinning, plant pests or, another exciting topic,
for example, cancer and cancer drugs (antibodies, cytostatics). These drugs need to be
optimally combined and correctly dosed — ideally even individually and patient-specific.
This is precisely where bioinformatics can calculate the best strategy for the patient.

There is often also more informatic preliminary work to the semiquantitative model.
This applies to biological systems and their system effects, which are hidden in large
amounts of data (e.g. gene expression data, genome sequences, metabolites, pharmaceuti-
cal levels, etc.) and where the decisive system components must first be filtered out using
statistics or even complex sequence analysis programs. This is also an important and
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laborious task for bioinformatics. But nevertheless, one would subsequently set up again a
semi-quantitative or also an exactly quantitative model of the system in order to describe
it more precisely, exactly as just illustrated.

5.2  Generalization: How to Build a Systems Biology Model?

Can we generalize our approach? Yes, it is one way to describe the systems biological
relationships,

1. First gather all the components (consider the “topology” of the model, that is, its
structure).

2. Then I take this structure and now simulate the system behavior in the computer
(“simulation”).

First: Gather All Components of the System (Its Network or Topology)

Each of the steps has its own challenges. For step 1 to work, I need to write my network
with software so that the output is an image that a machine can read. For example, the
CellDesigner and Cytoscape software allow such network descriptions. Their output for-
mat, an XML format (i.e. all parts of the image are marked in a computer-readable way),
can be read by a program. The two softwares differ only in minor details. In any case, how-
ever, they work by connecting proteins (“nodes”) with each other (“‘edges”). This creates a
network. In order for this network to predict what will actually happen in the cell, Boolean
logic is important in linking, i.e. which protein is linked to another protein and how (activat-
ing or inhibiting). In addition, it is important to pay attention to “And”, “Or” and “Not”, i.e.
whether, for example, activation only occurs when two proteins jointly activate a third (an
“And”), whether one of the two is sufficient for this (then corresponds to an “Or” linkage)
or whether one must not be there (“Not” as well as with SQUAD, “Nor”, “And not”).

In practice, this requires taking into account many sources about the biological system
as well as collecting missing information from databases or determining it from one’s own
domain and sequence analyses (consider phosphorylation sites, function of the proteins
involved, existing interaction domains or known substrate-enzyme relations).

In addition, it is important to be clear about how to decide which article or finding is
most likely in the case of conflicting sources (see Sect. 6.2). It is best to store this informa-
tion in a separate table so that you can later prove on the basis of which data the model was
arrived at.

Second: Simulate the Network and Its Dynamics

It is now possible to follow Boolean logic and thus make statements about signal chains.
One way to do this is to construct a Petri net (Li et al. 2011; Schlatter et al. 2012) from the
network using appropriate software and thus reproduce the signal cascade in a first form.
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However, a so-called semiquantitative model reproduces the processes somewhat more
accurately. Starting from the Boolean network, differential equations, e.g. exponential
functions, are linked in such a way that they reproduce this logic, but by means of the
mathematical transformation between the completely switched-on or switched-off state,
they lay a compensation curve (“interpolate”). In order to reproduce the logic in the net-
work correctly, the software SQUAD, for example, creates chained exponential terms
(uses exponential function), which also take into account the “and”, “or” and “not”. It
reads networks written with CellDesigner e.g. as SBML format and requires a Windows
XP or Linux operating system. These limitations no longer apply to the Jimena software
(Karl and Dandekar 2013a). It runs platform-independently using Java and can read YeD
files, among others, but also various versions of CellDesigner. Surprisingly, this way I also
get all order relations in the model correctly, i.e. which receptor is excited before which
one and which link in a signal chain is activated earlier or later. In most cases, the mole-
cules close to the receptor are excited first, followed by the later, mediating proteins. If the
topology (structure) of the model provides for a feedback loop, this can then return the
signal to the beginning of the signal chain, either inhibiting (negative feedback) or activat-
ing (positive feedback, sometimes also called “feedforward loop”).

This brings us to another important point. The software can only simulate correctly
what is also reproduced correctly in the network. This means that a period of constant test-
ing and trial and error begins until the simulation reproduces the correct sequence of
events in this signal network as faithfully as possible.

Since this is a semi-quantitative model, the next step is to normalize the different units
of the model according to the experimental data. This means that the typical times of the
signal cascade, receptor excitation, phosphorylation of kinases, etc. are determined
(so-called data-driven modeling). Hundreds of biological problems have already been
simulated in this way in recent years. The Boolean semiquantitative model is therefore
quite popular in biology, because one can begin to describe the biological system with
relatively little information, and then step by step learn more and more about the model
through simulations and experiments.

If so much data is put into the model, one can of course wonder what new insights the
model can bring out. But it is the case that a few experiments are sufficient to normalize
the model and to qualitatively confirm the correctness of all links (correct stimulus
response and sequence). With the model, I can now predict the outcome for all times and
all signal and switching sequences that are possible in the network.

For example, we used this approach to simulate the behavior of lung carcinoma
(Stratmann et al. 2014; Gottlich et al. 2016a) and colon carcinoma cells (Baur et al. 2019)
and then tested through new combinations and options for therapies in addition to standard
therapies.

With regard to the Erk signaling network, the interesting thing was that through the
bioinformatic model we can mimic new approaches to treating heart failure (Brietz et al.
2016a), such as the negative feedback loop through Rkip or the approach of using
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dimerization inhibitors against Erk dimerization — both ways to prevent heart failure at the
molecular level. Furthermore, the bioinformatic model also clarifies the downstream
targets (i.e. target proteins) of heart failure, which can also be pharmacologically influ-
enced to prevent or favourably influence heart failure.

Alternatives to Semiquantitative Modeling

If further data is known, especially about the velocity and stimulus strength in the signal
chain, the data-driven modeling can be taken even further and the exact velocities, affini-
ties and chemical equilibria can be calculated more precisely. With this, enough informa-
tion is then available to represent this process with exact equations, so-called differential
equations, which thus have the change of a quantity on the left side and describe this
change on the right side via the quantity itself and further determining factors. If I know
all the influencing factors, I know the constants and kinetic properties of the signal cascade
(in mathematical terms, this is called the “parameters” of the differential equation), and I
can then use them to model the system accurately and precisely. An example is the inhibi-
tory cAMP and cGMP signalling pathways in the platelet, which thus dampen the platelet
in its activation. Here we had enough information from experiments that we patiently
repeated over and over again for several years to set up such a model (Wangorsch et al.
2011). This area of accurate modeling is also being pursued by many systems biology
groups. A simple approach to set up such models oneself is the software PLAS (Power law
analysis and simulation; https://enzymology.fc.ul.pt/software/plas/), which also intro-
duces one to all the steps for this more accurate simulation via tutorials. However, as a
beginner you have to make many decisions about the parameters. But if there are too many
“free” parameters, one runs very easily the risk that the system is described incorrectly,
because one can always choose the free parameters in the equations in such a way that the
system seems to fit the little available data, but then very easily misses the mark with new
experiments or data. This is easily prevented in the semiquantitative models. This is
because these are coarser, but have fewer free parameters and therefore are not as quick to
be wrong in their predictions as the much more accurate quantitative models. Finally, it is
worth mentioning that one can also stop at step 1 and also just examine the structure of the
model in detail. This works for signaling cascades as well as for metabolism. For the latter,
glycolysis or the citric acid cycle, for example, are very illustrative textbook examples,
which are followed by further insights from, for example, the linear metabolic pathway of
glycolysis and from the cyclic pathway of the citric acid cycle for metabolism. An over-
view of these different systems biology methods and approaches is provided in the English
textbook by Klipp et al. (2016).

Finally, we have collected an introductory selection of our own work on Boolean
models and semiquantitative modeling based on them (see below), which should give an
overview of the basics, but also various examples of applications, and help the interested
reader to continue learning.
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Biological Examples for Boolean Modeling
Basics:

In a review paper, we systematically compared different approaches to Boolean modeling and
dynamic modeling, e.g. SQUAD, ODEFY, and CellNetAnalyzer (Schlatter et al. 2012). Another
good starting publication is Di Cara et al. (2007) on SQUAD. Our software Jimena is a nice further
development (Karl and Dandekar 2013a). Jimena also offers to distinguish between direct and
dynamic network control quantitatively and qualitatively in networks (Karl and Dandekar 2015).

Specific models for different cells and processes:

e heart: Brietz et al. (2016a) and Breitenbach et al. (2019a, b),

* liver: Philippi et al. (2009),

e immune cells: Czakai et al. (2016),

e tumours: Stratmann et al. (2014), Gottlich et al. (2016a), Baur et al. (2020), and Kunz
et al. (2020),

e plants (hormones and infections): Naseem et al. (2012, 2013a, b), and Kunz
et al. (2017),

e Dbacteria: Audretsch et al. (2013),

e platelets: Mischnik et al. (2013a, b).

Extension of such semi-quantitative models to fully dynamic models:

Two papers on dynamic modeling via platelets are helpful here for comparison:

Mischnik et al. (2014) describe the function of the signal molecule Src, but now with differential
equations and estimates of the velocities of all processes (“kinetic parameters”). It is crucial to
switch between active and inactive platelets. In the process, the mathematical description was also
verified in detail experimentally.

Wangorsch et al. (2011) again describe the function of inhibitory cyclic nucleotides in the platelet
using differential equations that take into account the different rates of the processes involved and the
absolute signal strength. In particular, I can cause the platelet to become inactive by increasing the level
of cAMP. This can be used medically, for example, to prevent a new blood clot in the case of strokes.
The behaviour for different active substances and their combination is described in detail in the paper.

In both works, this was used to accurately estimate the kinetic parameters through experimental
data and then develop corresponding optimal fitting differential equations (ODEs). One can also calcu-
late in general what the optimal pharmacological intervention should be (Breitenbach et al. 2019a, b).

In addition to this selection of one’s own work on the topic, there are of course also large reposi-
tories of models, so that one can compare models from many authors or search for the optimal one
for a question, which one can then possibly adapt to one’s own question, for example:

https://systems-biology.org/resources/model-repositories/ (from the journal “Systems Biology
and Applications”).

celldesigner.org/models.html (from the software CellDesigner, very nicely linked to the Panther
Pathway database).

https://www.ebi.ac.uk/biomodels/ (The “Biomodels Database” of the EBI, with many mathemat-
ical, pharmacological and physiological dynamic models collected from the literature).

The examples above show that semiquantitative models can be used to cover the entire
range of systems biology regulation and biological signalling networks. The particular
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advantage of the method lies in the fact that it is possible to model processes without pre-
cise data on the speed (“kinetics”). If, on the other hand, one wants to model a dynamic
process, in particular a signal cascade, in more detail, one must determine these data about
the velocity. This is done by methods of time series analysis: If one has measured the pro-
cess (for example the phosphorylation of a kinase that transmits a signal in the cell) for
five or more time points, there is enough data to estimate how fast this process proceeds.
It is therefore possible to describe the speed (kinetics) precisely in mathematical terms
using a parameter (in the example: the speed). There are a number of bioinformatics tools
for estimating parameters. Easy to learn and good to use for this parameter estimation is
the software Potters Wheel (https://www.potterswheel.de/Pages/; Maiwald and Timmer
2008) and its successor Data2Dynamics (Steiert et al., 2019).

This software can also be used to investigate which parameters need to be accurately
estimated and which do not (sensitivity analysis). It also allows to see which of the param-
eters can be well estimated from the data (identifiability analysis) and which cannot (either
because the data are not sufficient or because the network is wired in such a way that, for
example, the parameter always depends on another one that cannot be estimated either or
because the parameter is simply not determined by this data at all).

Conclusion

» Systems biology modelling of signalling cascades and protein networks allows deeper
insights into the function of the proteins involved and thus helps to understand the
causes of diseases, to better describe infection processes and immune responses, or to
elucidate complex processes in biology, such as cell differentiation and neurobiology.
Stronger mathematical models describe signalling networks precisely in terms of
changes over time and their speed using differential equations. This explains the pro-
cess exactly, but additional time is needed, e.g. with the determination of the velocities
(kinetics, data driven modeling, time series analysis).

* Boolean models only require information about which proteins are involved in the net-
work and which protein interacts with which other proteins and how (activating or
inhibiting). Therefore, they are well suited for an introduction. If you want to reproduce
one of the presented examples yourself, it is easy (use the same components and links
and software). However, if you want to create your own new model, many cycles are
necessary, because you have to check again and again in simulations based on the
Boolean model (e.g. with SQUAD or Jimena) whether the behaviour in the computer
model also matches the outcome actually observed in the experiment, at least qualita-
tively, and thus adapt the computer model to the data step by step.

* Conversely, the model then allows to describe all situations that have not yet been mea-
sured or reproduced in the experiment. In particular, the effect of drugs and their com-
binations, the activity of all proteins involved, the effect of signals, mutations or even
immune substances (e.g. cytokines). Systems biology modeling can be described as the
central, current field of bioinformatics. It is also called network analysis, dynamic mod-
elling or interactomics in order to emphasize these aspects more strongly. <
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5.3  Exercises for Chap. 5

It is useful to repeat these tasks in Chap. 7.

This part of the exercise will focus on bioinformatic models in order to better under-
stand possible system effects and the organism as a whole. A bioinformatic model can
provide various information about the network topology, e.g. a Boolean model about the
logical interconnection of the signaling components (e.g. activation, inhibition,
feedbacklfeedforward regulation) or a kinetic model about metabolic pathways, but also
predict the resulting network behavior. Bioinformatics models can answer any number of
questions. Usually, the function of the signaling cascade and how it can be used therapeuti-
cally is of particular interest.

Task 5.1
The basis for a bioinformatics model includes interactions, such as protein-protein interac-
tions. You can find these in various databases and thus generate a corresponding signal
network.

Which of the following statements are correct (multiple answers possible)?

A. The STRING database provides little information on protein-protein interactions.

B. One of the things I find in the PlateletWeb database is protein-protein interactions
in platelets.

C. In the KEGG, iHOP and HPRD database I find protein-protein interactions.

D. Signaling cascades are, in this sense, a type of protein-protein interaction.

E. Proteins can interact with each other directly or as complexes.

Task 5.2
Name and describe databases/software where you can get information about interaction
partners, e.g. of proteins.

Task 5.3

Explain how to bioinformatically screen a protein for potential interaction partners (name
and briefly describe two software/databases). What do they output in each case? What are
the advantages of comparing several software/databases with each other?

Task 5.4
An interaction database is the STRING server. What is the difference to other databases,
such as PlateletWeb or HPRD?

Task 5.5
Explain how to create a protein-protein interaction network.
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Task 5.6
Example:

We want to take a closer look at protein-protein interactions and turn to network analy-
sis and modelling of regulatory networks. You now have the opportunity to generate a
network and then examine it for its biological function, for example, to detect well-
connected proteins in a network, so-called hub proteins. Please note that for training pur-
poses we have only chosen a small network around BRCA1 (BReast CAncer 1, also
known as breast cancer gene 1). Normally, however, the network to be investigated is
always much larger and more complex, which makes a comprehensive network analysis
necessary.

Now search for all human interaction partners of BRCA1 from the string database
(https://string-db.org/). Which of the following statements are correct (multiple answers
possible)?

A. The interaction of BRCA1 and ESR1 was found experimentally and has a very low
score (close to 0).

B. For the interaction of BRCA1 and ESR1 I get a high score (>0.99).

C. Each indicated interaction for BRCA1 was simultaneously found and predicted
experimentally.

D. All indicated interactions with a score >0.99 were found experimentally.

Task 5.7
Describe a simple method for creating an interaction network and analyzing it for function.

Task 5.8
Example:

Now download all human interaction partners of BRCA1 from the string database
(https://string-db.org/). Please use the parameter “Experiments” (i.e. only all experimental
interactions) and a “confidence score” of 0.9. Save the network (under “save” as text sum-
mary; TXT — simple tab delimited flatfile).

Now that you have downloaded all experimentally determined interaction partners, you
can visualize and further analyze your small network. For this purpose, please inform
yourself about the software Cytoscape (https://cytoscape.org/) and download the free ver-
sion 2.8.3. To make sure that the interactions match, please compare your network with the
one in the solution section and please adjust it accordingly. Please save your network (cur-
rently still as .txt) also as .sif (simple interaction file), because Cytoscape needs this for-
mat. Now you just have to import your created interaction file BRCA1.sif into Cytoscape
via File — Import Network (Multiple File Type) and you are ready to go.

Which of the following statements will you see after loading the BRCA 1 sif file?
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. Network contains 11 nodes and 18 edges.

. Network contains 18 nodes and 11 edges.

. Network contains 1 nodes and 8 edges.

. Network contains 8 nodes and 1 edges.
Network contains 111 nodes and 181 edges.

Mmoo 0wy

Task 5.9
Example:

Now your actual network analysis begins. For this, Cytoscape has numerous plugins to
choose from, such as the Biological Networks Gene Ontology Tool (BiNGO). Please
briefly inform yourself about Cytoscape (https://cytoscape.org/) or Plugin — Manage
Plugins — Search BiNGO (you can also download the current BINGO version here). Now
perform a BiNGO search for all proteins of the network (Plugins — Start BINGO 2.44;
please use the preset default parameters, but use Homo sapiens as organism).

Which of the following statements are correct (multiple answers possible)?

A. The BiNGO analysis identifies relatively few biological processes (less than 20).

B. In addition to the functions, the BINGO analysis also shows me the p-value and
which genes are involved.

C. For example, the BINGO analysis shows me the biological process cell cycle
checkpoint (GO-ID 75) with a BRCA1 involvement.

D. The BiNGO analysis identifies the biological process induction of apoptosis (GO-
ID 6917) as significant (p-value < 0.05), but also that all proteins of the network are
involved.

Task 5.10
Describe what a Gene Ontology is and how the GO terms are organized.

Task 5.11
Example:

Now take a look at the network topology. Please use the NetworkAnalyzer plugin for
this. Please also inform yourself about this beforehand via Cytoscape (https://cytoscape.
org/) or via Plugin — Manage Plugins — Search NetworkAnalyzer. Here you can also
download the current NetworkAnalyzer version. Now perform an analysis (Plugins —
NetworkAnalysis — AnalyzeNetwork — Treat the network as undirected) and familiarize
yourself with the various parameters and plots (then use, for example, “Parameter average
number of neighbors” and “Plot Node Degree Distribution”).

Which of the following statements are correct (multiple answers possible)?
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A. Among other things, I can use the NetworkAnalyzer to identify important hub
proteins, i.e. strongly networked nodes.

B. The NetworkAnalyzer identifies an “average number of neighbors” of less than 1.

C. The NetworkAnalyzer identifies an “average number of neighbors” of more than 3.

D. Looking at the Node Degree Distribution plot, I see five nodes with three interac-
tions and ten nodes with five interactions.

E. Looking at the Node Degree Distribution plot, I see one node with five interac-
tions — this represents a hub node given the average number of neighbors parameter.

Mathematical modeling of regulatory networks:

Task 5.12
Name and describe software for mathematical modeling of biological networks.

Task 5.13
Describe three different approaches to mathematical modeling of biological networks
(Boolean, quantitative, and semiquantitative).

Task 5.14
State advantages and disadvantages of mathematical modeling of biological networks.

Task 5.15
Describe how one would bioinformatically model a biological network, e.g., the cAMP
pathway (briefly describe: what data, what steps, what possible software).

Task 5.16
Which statements about the mathematical modeling of regulatory networks are correct
(multiple answers possible)?

A. Boolean, quantitative, and semiquantitative modeling are three mathematical mod-
eling methods.

B. Boolean modeling always considers the on/off (0/1) state of a system.

C. Quantitative modeling is not able to consider the system state in the interval
between 0 and 1 and thus cannot model kinetic data, e.g. via Michaelis-Menten
kinetics.

D. Semiquantitative modeling is a combination of Boolean and quantitative modeling,
where I do not necessarily need information about kinetics.

Task 5.17
What is meant by a “steady state” condition of a network?
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Useful Tools and Web Links

SQUAD https://www.vital-it.ch/software/SQUAD

Jimena https://www.bioinfo.biozentrum.uni-wuerzburg.de/computing/
jimena_c/

CellNetAnalyzer https://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html

PLAS https://enzymology.fc.ul.pt/software/plas/

Odefy https://www.helmholtz-muenchen.de/icb/software/odefy/
index.html

Cytoscape https://www.cytoscape.org/

CellDesigner https://www.celldesigner.org/

PottersWheel https://www.potterswheel.de/Pages/
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Partll

How Do | Understand Bioinformatics?

After we have become acquainted with the sequence analysis of proteins, RNA molecules
and DNA as basic techniques of bioinformatics and have already looked at their interac-
tion in the form of metabolic and regulatory networks (Part I), we will now provide an
in-depth insight into basic strategies of bioinformatic working methods in Part II.

From a Computer-Technical (Informatics) Point of View, Three Points
Are Interesting

1. In order to cope with the large amounts of data, good databases are important, in which
one can search particularly efficiently and accurately (e.g., database indexing).
Likewise, because of the abundance of data, search capabilities that are as fast as pos-
sible are crucial to shorten exact, lengthy computations as efficiently as possible (heu-
ristic searches, Chap. 6, e.g., BLAST).

2. Actually, bioinformatics is always about cracking codes to understand biological pro-
cesses. How does one measure (according to Shannon) the amount of information hid-
den in biological messages? And how do you crack the codes as efficiently as possible
(Chap. 7, e.g. with sequence analyses)?

3. How long do computers actually need for a calculation? Problems become especially
difficult with built-in combinatorics. In this case, the computer needs a multiple of
computing time for just one unit more (NP problems). We get to know typical problems
of this kind from bioinformatics, how they are solved and when only a larger computer
helps (Chap. 8).
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From a Biological Point of View, the Following Points Are
Generally Important

1. Bioinformatics analyzes biological systems. However, these all behave similarly in
principle. What are the principles? How and with which software do I get the system
behavior out? It is very important that a biological system adapts to the environment as
optimally as possible and actively controls itself. These capabilities do not reside in
individual components, but only emerge through the interaction of all parts (emer-
gence). Pioneers of systems biology have summarized these principles (Chap. 9).

2. Every living being today is the result of millions of years of evolution of the population
that produced it. Therefore, a good bioinformatics strategy is also to look at the evolu-
tion of a protein sequence, a protein structure, an organism. We will learn basic tech-
niques for this (Chap. 10).

3. Finally, we can also look at the concrete implementation of design principles in a cell
to efficiently address bioinformatics problems, i.e., in particular, to understand which
molecular component we are looking at and how it acts in the cell. For this, we look at
the flow of genetic information from genome to RNA to protein, as well as the control
of genetic information and gene expression data. We look at how proteins find their
place in the cell, how the cell moves, organizes metabolism and differentiates. Again,
the information that is important for each of these can be quickly analyzed and recog-
nized using bioinformatics algorithms (e.g., localization signals, enzyme network
lookup in biochemical metabolism database, and even use it to make custom proteins;
Chap. 11).

This lays the foundation for Part III, which explores fascinating results and current
developments in bioinformatics.
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Extremely Fast Sequence Comparisons
Identify All the Molecules That Are Present
in the Cell

Abstract

With the BLAST server at NCBI (National Center of Biotechnology Information), you
can get an answer in seconds to a few minutes. This is made possible by fast, but not
entirely accurate, searches. Almost all of the fast bioinformatics programs on the net
use such heuristics. In BLAST, for example, two short but perfect match alignments are
first pretested in a database entry before an exact alignment with the database entry is
performed, thus saving a lot of computing time: indexing the database (after all, you
also look up this book via the table of contents much faster than by browsing through
it). Besides speed, sensitivity (do I recognize all relevant entries?) and specificity (do I
not get too many irrelevant entries?) are also important for a good heuristic search.

How and why do bioinformatic analyses actually work? A very basic step towards under-
standing is to understand which biomolecule you have in front of you. For this purpose,
bioinformatics uses the analysis of the molecular sequence. It is important to remember
that we first need the experimentally determined sequence. However, this sequence does
not tell us which molecule is present. However, this can be solved by comparing the
respective molecular sequence with all entries in a database (cf. Chap. 1). The interesting
thing is that bioinformatics has developed very fast computational recipes (algorithms) for
this task. This was necessary because the sequences have grown so quickly that we are
now dealing with many millions of stored sequences and many billions of stored letters.
How do you speed up bioinformatics algorithms so that they can cope with these large
amounts of data?
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6.1 Fast Search: BLAST as an Example for a Heuristic Search

The following accelerations are used for sequence comparisons (technical term: sequence
alignment):

A so-called indexing first considers whether the database entry contains single short
words (3 letters for protein sequences or 11 nucleotides for nucleic acid sequences) that
are similar to the sequence of the molecule. If this is the case (a first “hit” or “hit” is
found), the system immediately searches whether there is another hit not too far away
(predefined window length). Only when this second hit is found does the BLAST algo-
rithm start checking whether the remaining sequence letters of this database entry match
the search sequence. This exact comparison of the two letter sequences (“alignment”) is
also accelerated by “dynamic programming”, so that step by step more memory is avail-
able for the comparison of search sequence and database entry.

Thus, we see two principles of bioinformatics: Since all important biomolecules (DNA,
RNA, proteins, but also, for example, carbohydrates and lipids) are built from recurring
building units, most biomolecules can be recognized by the sequence of these building
units, i.e. by their letter sequence (with each class of molecules using its own alphabet).

In the meantime, however, so much information about biomolecules has been stored in
large databases that a major part of the informatics work in bioinformatics consists of
using fast computational rules (algorithms) and conveniently constructed databases to
cope with this flood of information so well that the correct biomolecule can be identified
as quickly as possible (see Mount et al., 2004).

If you use BLAST on the NCBI website (https://blast.ncbi.nlm.nih.gov/Blast.cgi), for
example, I get a result very quickly (a few seconds, sometimes one to 2 minutes). In that
time, BLAST actually screens several billion nucleotides and many millions of sequence
entries. This is an amazing speed-up. We now want to understand how to speed up bioin-
formatics searches in general so that you get a result quickly. This usually happens by
foregoing the perfect search and taking a program that uses shortcuts to get a near-perfect
solution.

When searching for a similar sequence, one way to do an exact search would be to
compare letter by letter to determine exactly where a local match with high similarity is.
Local similarity is therefore a popular choice for protein function searches, because you
can then move on from a subsequence whose similarity was found in the database to the
next best similarity. After I have recognized that a partial sequence, usually a protein
domain, has a certain function, I shorten my protein by this domain and now search for a
hit in the database with the remaining sequence, which then not so rarely assigns the next
piece of the sequence, often a whole domain again, with a suspected function, and so on.

On the other hand, if I want to save time, I forgo the exact but slow calculation and do
a less exact but fast search instead. This is exactly what a heuristic is. Figure 6.1 summa-
rizes how BLAST speeds up the search using an index search followed by an exact local
alignment between two hits of the upstream heuristic search (Hansen 2013; see tutorial for
more information).
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Fig. 6.1 Two-hit method of BLAST and GenBank example entry. The left side shows the index
search of BLAST (Figure from Hansen 2013) and the right side shows an example database entry
for S. cerevisiae with name, label and start of sequence from GenBank (BLAST would search
against this database entry)

6.2  Maintenance of Databases and Acceleration of Programs

For database searches, I need good bioinformatics databases in any case. Figure 6.2
explains an exemplary well-maintained database for this purpose, the UniProt database.
This database carries the older Swiss-Prot database. Even earlier, this database was the
personal project of Amos Bairoch. He looked at protein families and made notes on which
amino acid residues were typical for zinc finger proteins, for example, which deviations
occurred and whether an entire protein family could be described by a certain pattern. For
example, zinc fingers can be described by two cysteines at a distance of three amino acids
from each other, i.e.

Cysteine - - Cysteine ... Cysteine - - Cysteine,
in the single-letter code then finally.
CXXC [3..5 X] CXXC.

He then compiled such signatures into the PROSITE signature database, but the pre-
cisely labelled protein sequences (according to their family membership, structure in
domains, sequence properties) as entries in the Swiss-Prot database. After some time, the
work became too much for one person, and so the PROSITE database was gradually cre-
ated. Around the turn of the millennium, it was concluded that protein labelling could no
longer be a single task for one country because of the ever-increasing number of sequences.
Together with the EBI in Cambridge and American scientists, the UniProt database was
founded.
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Fig. 6.2 The example shows the header lines and the actual data part (only the function is shown
here). The header shows whether the entry is “trusted”, i.e. manually reviewed (Reviewed), or
computer-annotated (e.g. DataMining; Unreviewed), but also how much information is available
(annotation score)

This historical overview also summarizes briefly the essential problems and tasks of
databases: Ideally, each sequence is viewed by hand, analyzed with various bioinformatics
programs, and then accurately labeled. This is a lot of work, typically referred to as data-
base maintenance. Since data sets in bioinformatics usually grow very quickly, this data-
base maintenance is a chronic problem, often exacerbated by the fact that new databases
are usually created by a new project and then not maintained after the PhD thesis or post-
doctoral project ends. Only a few large institutions, which are mentioned here and at other
places in the book, have enough staff to nevertheless maintain really well-maintained data,
in particular the NCBI, the EBI and the SBI (Swiss Bioinformatics Institute).

Other problems of databases are cross-linking to other data (this is also difficult due to
the constant growth of data), maintenance of content (especially when new types of con-
tent are added), the number of errors or outdated entries.

For the protein databases UniProt and PDB (one of the oldest bioinformatics databases,
since the 1960s of the last century), as for many other databases, the uniform formatting
of entries is a problem. And of course it is not only difficult for BLAST to find entries
quickly and accurately in constantly growing databases. There are the two problems of
recall (sensitivity; how many of the hits are also stored in the database as real entries?) and
precision (specificity; do I find exactly what I am looking for or does my program suspect
that it could be half the database?).
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In any case, it is advisable to always take a look at the quality parameters of the data-
bases first in order to be able to assess the actual information content and the usability of
the information provided for one’s own scientific work and resulting statements.

Figure 6.2 explains again very nicely the high quality of a UniProt data entry, here for
our well-known example of the HIV-1. Each entry is divided into a header and the actual
data part (here only a section shown for the function). A look at the header already gives a
first important hint about the information content of the database entry (status). It shows
how “trustworthy” the information is. UniProt distinguishes between Reviewed (manual/
Swiss-Prot-annotated) and Unreviewed (computer-annotated from TrEMBL). In our
example the entries were manually annotated and reviewed by UniProt curators, so they
are trustworthy in this case. In addition, an annotation score is calculated for the provided
information (maximum score of 5), which also indicates how much information is avail-
able for the respective entry, i.e. how well it is annotated. For HIV-1 UniProt displays the
maximum score.

Users should therefore always take a look at the quality parameters before using the
information provided.

So with that, we understand how bioinformatics now works so quickly and soundly.
There are fast and yet surprisingly accurate programs used (heuristics). And there are
good, highly sophisticated databases where you can trust the entries and yet they are very
well maintained.

Therefore, a few other notable heuristics should be mentioned here. Besides BLAST
sequence search, BLAT search is another speedup, as is Mega-BLAST (the expert then
knows what is more easily overlooked by these variants of BLAST).

Even 3-D structures are made faster and shorter by heuristic searches. In particular,
many reasonably fast modeling programs use the homology modeling step, that is, using
known structures to model the unknown structure if it is sufficiently similar. This heuristic
is not an exact model and assumes that the new structure is too similar to something. The
heuristic is even more stringent in threading. Here it is assumed that even an unknown 3-D
structure can be predicted by combining and testing known 3-D structures. To do this, the
unknown structure is threaded onto the known 3-D structures on the basis of the sequence.
One then calculates which region is best covered by which known structure. Not exact, just
a heuristic.

One can be surprised at the protein interaction database STRING (EMBL) how quickly
the interactions are calculated. A trick is used that is also used by a number of other data-
bases. Here, all interactions are calculated in many weeks with each update of the data-
base. The single database query now only looks up where the best entry for the query is
located in the database. If one or more sequences are entered, this is done via a sequence
comparison (with BLAST), if a keyword is entered, this is done via a fast text search.

Metabolic models often make the heuristic assumption of steady-state equilibrium and
then calculate the underlying enzyme chains for this equilibrium (flux balance analysis;
the same principle used: elementary mode analyses). Even if, for example, YANAsquare
calculates flux strengths, it makes the simplified assumption that gene expression data



82 6 Extremely Fast Sequence Comparisons Identify All the Molecules That Are Present...

already correctly reflect the different activities of the metabolic pathways (which is only
true on statistical average or for sufficiently large networks).

Finally, even the semiquantitative models for signal modeling use heuristics, in particu-
lar the kinetics is estimated only from the Boolean networks of the process to be modeled.
This allows me to get started with such a model when little is known in detail about the
speed and nature of the proteins, enzymes, kinases, etc. involved.

How can you now program a heuristic search yourself?

The BioPerl and Biojava modules (https://bioperl.org/, https://biojava.org/) at the EBI
(European Bioinformatic Institute) are a good way to quickly program a heuristic search
or even a simple program or a larger program composed of simple parts. They provide
ready-written modules (program parts) for reading, output, but also for web servers or
database searches for the user. The PERL Cookbook (Christiansen and Torkington 2003)
offers a lot of tips for concrete implementation with the PERL programming language.
Even more tips are found in further publications (Angly et al., 2014; Vos et al., 2011;
Stajich et al., 2002; Tisdal et al., 2001).

For calculations, the book “numerical recipies” (https://numerical.recipes) is a real trea-
sure trove. Originally a book (Press et al., 2007), it now explains online in a clear way how I
can quickly and easily compute small calculations or even surprisingly complex ones, which,
however, come up again and again in many problems. Similar to a cooking recipe, the prin-
ciples are explained and codes are provided, for example to make a Matlab code run faster
(tutorial: https://numerical.recipes/nr3_matlab.html) or to use a “C+ +” code for even faster
calculations instead. Examples of applications for these numerical recipes, also in bioinfor-
matics, are e.g. efficient matrix and vector calculations (calculate metabolic fluxes effi-
ciently), but also routines for geometric tasks (calculate protein structures) or the generation
of random numbers (for population simulations in ecology).

Conclusion

In this chapter we have tried to look a little behind the facade of the fast bioinformat-
ics programs on the net, such as the BLAST server at the NCBI (National Center of
Biotechnology Information) in Washington. In most cases, you can get an answer in
seconds to a few minutes. This is made possible by fast but not entirely accurate
searches (heuristics), and we have seen some tricks for doing this. For example, in
BLAST, the heuristic is to first find two short but perfect match alignments in the same
database entry before I check over the whole sequence length to see what the similarity
is to the question sequence.

It is equally important to make the database (e.g. GenBank, UniProt) quickly read-
able, for example by indexing it (after all, you look up this book much more quickly via
the table of contents than by leafing through it). In addition to speed, sensitivity (do I
recognise all relevant entries?) and specificity (do I not get too many non-relevant
entries?) are also important for a good search.
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In the tutorial in the appendix a short introduction to programming including install-
ing BLAST or in general a web server is given. Generally speaking, web-based pro-
grams and good bioinformatics algorithms and scripts for bioinformatics analysis are
still developing rapidly and there are many fascinating programming tasks. ¢

6.3  Exercises for Chap. 6
You are welcome to work on the tasks of Chap. 1 for this chapter as well.

Task 6.1
A simple illustration: How do you look something up in a book? Discuss different
approaches.

Task 6.2
Comparison “fast” and “super fast”: How do BLAST, FASTA and Psi-BLAST differ in
terms of their search strategy?

Task 6.3(a)
What is BLAT (not a typo, bioinformatics question)?

Task 6.3(b)
What are the advantages of BLAST as sequence comparison tool?

Task 6.4
Which sequence comparison search is fastest? Give some examples and consider which is
the very fastest. Compare the advantages and disadvantages.

Task 6.5
Which annotation is best? Compare: Annotations in GenBank, UCSC Genome Browser
and Swiss-Prot/UniProt.

Task 6.6
In your opinion, how should an “ideal” database/server be constructed (what basic parts
should the database/server consist of)?

Task 6.7
List ways in which ideally a database should be maintained and kept up to date.



84 6 Extremely Fast Sequence Comparisons Identify All the Molecules That Are Present...

Useful Tools and Web Links

BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi
NCBI https://www.ncbi.nlm.nih.gov/pubmed/
EBI https://www.ebi.ac.uk/services
SBI https://www.sib.swiss/
UniProt https://www.uniprot.org/
PDB https://www.rcsb.org/pdb/home/home.do
STRING https://string-db.org/
YANAsquare https://www.bioinfo.biozentrum.uni-wuerzburg.de/
computing/yanasquare/
BioPerl https://bioperl.org/
Biojava https://biojava.org/
Numerical recipies https://numerical.recipes/
Literature

Christiansen T, Torkington N (2003) Perl cookbook. Solutions & examples for Perl programmers.
O’Reilly Media, Beijing (Final Release Date: August 2003, Pages: 968 *This book is simply very
well written and provides a very good introduction to the Perl programming language)

Hansen A (2013) Bioinformatik: Ein Leitfaden fiir Naturwissenschaftler. Birkhaeuser, Basel.
(Erstveroffentlichung 2004, isbn 3-7643-6253-7, Taschenbuchauflage — 4. Oktober 2013)

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes, 3rd edn. The art
of scientific computing (English) Bound edition. Cambridge University Press, New York. isbn
978-0-521-88068-8

Here are some more book suggestions for Perl and its programming that are not explicitly discussed
in the chapter. For other programming languages please look in the tutorial (later chapter in
the book)

Angly FE, Fields CJ, Tyson GW (2014) The bio-community Perl toolkit for microbial ecology.
Bioinformatics 30(13):1926—-1927. https://doi.org/10.1093/bioinformatics/btu130

Mount D (2004) Bioinformatics: sequence and genome analysis, 2. Aufl. Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, New York (© 2004 * 665pp., illus., appendices, index
paperback, isbn 978-087969712-9 *David Mount also does a very good job of introducing the
underlying algorithms of sequence analysis. However, it is aimed at somewhat advanced stu-
dents. Also used as a textbook at LMU Munich)

Stajich JE, Block D, Boulez K et al (2002) The bioperl toolkit: Perl modules for the life sciences.
Genome Res 12(10):1611-1618

Tisdall J (2001) Beginning Perl for bioinformatics an introduction to Perl for biologists. 1. Aufl.
O’Reilly Media, Sebastopol, Kalifornien, USA (Final Release Date: October 2001, Pages 386)

Vos RA, Caravas J, Hartmann K et al (2011) BIO: phylo-phyloinformatic analysis using Perl. BMC
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How to Better Understand Signal Cascades
and Measure the Encoded Information

Abstract

Shannon has made it possible to measure how much information is contained in a mes-
sage. It is calculated how many bits of information are contained in each part (word,
nucleotide, etc.) of a message. Interestingly, this can identify any number of codes,
languages, and encodings in the cell. Since living cells are not computers, but numerous
biochemical reactions run simultaneously side by side and sometimes quite disorderly,
causing a lot of commotion and disturbance, it is important to send this information as
clearly as possible, for example to amplify signals by signal cascades. The more pre-
cisely the signal is understood and implemented in the cell, the better the cell survives.
Therefore, survival pressure already ensured that the genetic information is well coded
and well transferred into various other codes. These codes can again be “cracked” by
bioinformatics for good predictions, for example for sequence analysis.

71 Coding with Bits

How much data have I actually collected in a specific case, how do I measure the abun-
dance of data? In order to measure the cellular messages (e.g. messenger RNA between
cell nucleus and cytoplasm or hormone between endocrine gland and other body cells), the
Shannon entropy is a useful measure: one bit of information is the smallest unit of infor-
mation, a “yes” or “no” decision. Shannon entropy now calculates (Fig. 7.1, left) for each
piece of information transmitted how many “yes/no” decisions are hidden in it. A letter is,
after all, one of 26 possibilities, so it contains about four and a half bits (because with 4
“yes/no” decisions you can distinguish between 16 possibilities, and with one more ques-
tion you can even cover 32 possibilities [2 to the power of n, abbreviated written 2**n
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Fig. 7.1 Schematic representation of the Shannon entropy. The Shannon entropy calculates the
expected information value of a message. Typical units are binary bits, i.e. yes/no decisions that can
be encoded and decoded. The figure shows the limits of the maximum information units that can be
transported from the sender via channel to the receiver, which are subjected to signal noise

possibilities]). Shannon developed this system further, so that words and sentences are
then assigned their information content according to their length.

Next, one can compare the quality of different signal sources: For example, the infor-
mation value is very low if the same character is always sent, but very high if very different
characters are always sent in a new sequence, such as a radio station.

After all, you have to take into account what it looks like inside living cells: Countless
reactions take place, there is a lot of hustle and bustle. Therefore, biological signals are
often amplified in signal cascades, so that one can still understand the signal despite the
“noise” (all the other reactions and signals taking place). The quality of the signal depends
on the ratio of signal to background noise (signal-to-noise). Shannon has set up a whole
theory on how communication via communication channels can run as optimally as pos-
sible despite interference.

If the bioinformatician wants to model and better understand cell growth, differentia-
tion or the death of cells, these theories are taken into account and the amplification,
weakening and modelling of cellular signals in different signalling cascades is investi-
gated, as well as the weakening of kinase cascades by phosphatases, for example, so that
the cell stops growing again. At this complex level (function of the various signalling
cascades in the cell), a deeper understanding of the processes surrounding cell growth and
cell differentiation is then indeed possible.

7.2  The Different Levels of Coding

Now that we have discussed how to calculate information in principle and send it clearly
enough to be understood despite the background noise (biological noise): In the forest, in
the environment, in the nervous system or even in the cell, there are always disturbances
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and sources of noise), we can now start to look more closely at how the cell encodes infor-
mation at different levels with an adapted code (Fig. 7.1, right).

The figure shows a selection. Each two bits corresponding to Shannon coding or
Shannon entropy are represented by a nucleotide. If you look at proteins, there are 20
amino acids encoded with 64 codons, i.e. 6 bits (because 2 to the power of 6 or 2#%6 is 64).

The three-dimensional protein structure code is much more complex. There are so
many possibilities here that the information value of a defined protein structure is very
high (to be calculated in a simplified way by the number of bits that a PDB structure file
has when it is downloaded, which is already hundreds of thousands of bits). Informatically
clever is the use of internal coordinates to encode protein structures with few bits: Only the
path from one amino acid to the next is ever specified. This can be done with the angles
phi and psi at the central carbon atom (alpha-C atom) of each amino acid (AlQuraishi
2019). If I then use four or eight standard conformations to merely represent the protein
structure in a highly simplified way, I only need 2 or 3 bits for each amino acid position in
a protein folding simulation (Saxena et al. 1997).

Finally, there are other codes, for example at the cell membrane (membrane lipids, but
also specific membrane modifications), the RNA sequence structure code within the cell
for regulatory RNA, metabolic regulation (e.g. iron) as well as localisation in the cell, and
finally the sugar code at the cell surface, with which cells recognise each other and via
which transplant rejection is also coded. Finally, there are phospholipids that, for example
via gangliosides and cerebrosides (i.e. sugar-lipid structures), assign the wiring in the
brain and different neuronal structures to each other in detail in order to ensure the plastic-
ity of our brain during embryology.

All these codes are not only used and needed in the cell, but you can also decode them
with bioinformatics, especially via sequence.

In this way, it is possible to translate the fairly universal genetic code (program
“Translate” from the Expert Protein Analysis System, EXPASY, at the “Swiss Institute of
Bioinformatics™ https://web.expasy.org/translate/) and better understand its rarer variants
for certain codons, for example in mitochondria, some bacteria and also protozoa (Heaphy
et al. 2016) (https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi). Similarly, sig-
nals in regulatory RNA can be analyzed, for example with the RNA analyzer (https://rna-
analyzer.bioapps.biozentrum.uni-wuerzburg.de/), but also, for example, sugar codes
(https://www.functionalglycomics.org/; https://ncfg.hms.harvard.edu/) or code analyses in
lipids, for example to assign lipids to the correct type after mass spectrometry (Ahmed
et al. 2015).

7.3  Understanding Coding Better

So what can we take away as insights? It’s a lot like a conversation in a busy pub. The
signals of the cell are constantly fighting against the background noise. Apart from our
own signalling cascade, which we are currently interested in, such as the Erk kinase
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cascade (see Chap. 5), all other signalling pathways are also active. The cell works with
biochemical reactions and not like a digital silicon computer. Therefore, signals can only
reach their destination if they are amplified in a cascade. Nice examples are the blood
clotting cascade, so that the broken vessel is guaranteed to be closed again safely and
quickly, and also the opposite blood clot dissolving cascade (plasminogen cascade). In the
blood, for example, there is then also the complement cascade for the immune system and
so on. So in general, biology has to come up with a lot of things to cope with the noise.
One possibility to reach highest sensitivity is given for example by the photoreceptors of
our eye, where three inhibitory mechanisms all together return to the resting state and the
initial situation is a hyperpolarization.

A computer or even you yourself with the next transfer with IBAN number use check
bits to be sure that nothing has been changed by mistake. This mechanism also exists. First
of all, all kinds of sequence signals are used for this purpose, which you can find out with
the ELM server, for example, and which ensure in a relatively error-tolerant way that every
protein gets to the right place. However, the stability signals and signals that ensure that a
“wrong” protein, for example one that is too short, is rapidly degraded (so-called “non-
sense mediated decay”, NMD, for stopping too early in the case of mRNA from eukary-
otes) are also a kind of check bit for proteins. Similar check bits exist for RNA, such as
various methylguanosine caps that mark different types of RNA as mature and regulate the
nuclear or cytoplasmic transport of that RNA and its proteins. Another strategy to better
understand the notoriously complex codes in biological systems is simplification (techni-
cal term: dimensionality reduction). The aim is to transform and visualise high-dimensional
data in a new coordinate system (usually 2D). For this purpose, methods of multivariate
statistics such as PCA (Principal Component Analysis; for examples in R see our web
application [Fuchs et al. 2020] or https://rpubs.com/amos593/419546) are applied (explor-
ative data analysis). Through dimensionality reduction, one wants to get an overview of
the data and reduce its complexity by decomposing it into principal components. Through
this structuring one wants to extract relevant variables (features) and groups, for example
for the construction of predictive models (Chap. 14), but also to make visible possible
batch effects in the data that may need to be corrected (especially in omics analyses). For
example, the pattern of gene expression is determined by the interaction of many 1000
genes. To get an overview of the most important components involved, PCA can be used
to calculate the two main components of the differences between datasets, giving a quick
overview of which combination of important genes decisively determines the differences.
The method is applicable to all complex datasets, e.g. cardiac fibrosis (Fuchs et al. 2020),
but also in ecology, for example to quickly screen bacterial communities (Kim et al. 2020).

One can also look at the challenges of reliable signal transmission and coding in the cell
in a mathematically exact way for signal cascades and the phosphatases that switch off the
signal and thus better understand how these cellular signals are formed and transmitted
(Heinrich et al. 2002). Phosphatases are important for the regulation of signal amplitude,
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signal frequency, and signal duration because the phosphatase must shut down fast enough.
Kinases are important for the regulation of signal amplitude and signal height, because the
kinase must amplify strongly enough.

Finally, however, the recognition and decoding of such signals with the aid of bioinfor-
matics is also medically important. An important example, for example, was the third
phosphorylation in Erk kinase, which supports heart failure (see Chap. 5). Many cancers
arise from the fact that a mutation in a body cell causes a growth kinase to be constantly
turned on. An important example is the B-Raf kinase. Unmutated, it allows skin cells to
grow. In the mutated version, such as from too much UV radiation while tanning at the
beach, it leads to melanoma, or black skin cancer. How good it is that sunburns cause the
skin to exfoliate: These skin cells have all voluntarily perished (via the cell death or apop-
tosis pathway) so they don’t harm us as cancer cells. This apoptosis pathway is another
equivalent of check bits in a computer: in particular, the p53 protein makes sure that either
DNA repair still works successfully and is carried out, or the cell goes into apoptosis. The
miRNAs are also important regulators in cancer (Lujambio and Lowe 2012). Constant
coding and decoding is vital to us, and it is exciting to trace this using bioinformatics
(Richard et al. 2016).

Conclusion

e Shannon has made it possible to measure how much information is contained in
a message. It is calculated how many bits of information are contained in each
word of the message. For example, a nucleotide in DNA comes in four forms. To
identify one, I have to answer two yes/no questions (is it a purine/pyrimidine?
Which of the two purines/pyrimidines is it?), so a nucleotide carries two bits .

 Interestingly, one can thus identify any number of codes, languages and codings
in the cell. Since living cells are not computers, but numerous biochemical reac-
tions run simultaneously side by side and sometimes quite disorderly, thus caus-
ing a lot of commotion and disturbances, it is important to send this information
as clearly as possible, for example to amplify signals through signal cascades.
The more precisely the signal is understood and implemented in the cell, the bet-
ter the cell survives. Therefore, survival pressure already ensured that the genetic
information is well encoded and well transferred into various other codes.

* Bioinformatics only has to replicate this in the computer programs used and can
then decipher and “crack” code after code in the cell quite accurately. A good
starting point for using this are the numerous programs for sequence analysis,
which are explained here from the first chapter onwards. Sequence analyses have
therefore also become the most important basic tool in bioinformatics.
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7.4  Exercises for Chap. 7

Task 7.1
Encoding signals: How many bits are in a message that encodes the number seven with
dual numbers?

Task 7.2
How many bits do I need to represent the number one thousand (1000) as a bit?

Task 7.3
Of course you can do this with a nice webtool, can you find one?

Task 7.4
How many bits does a word have, e.g. the word “WORD”*?

Task 7.5
How many bits does a biological word have?
So we are already in the middle of biology and the tasks and problems in the cell:

Task 7.6
How does a signal reach its receiver safely despite the loud noise in the cell? Put together
some examples that are biologically exciting (e.g. from this chapter/book).

Task 7.7

Calculation of the amplification of a signalling cascade: The Ras-Raf-Mek-Erk cascade
amplifies the cellular signal by a factor of ten at a time. What happens when the receptor
activates a Ras molecule?

Task 7.8
Importance of the Ras-Raf-Mek-Erk cascade: Give a biological example of what this sig-
nal is important for. Also tell what can go wrong in the process.

Task 7.9
Set up the differential equation of the Ras-Raf-Mek-Erk cascade.

Task 7.10
What mathematical models of protein kinase signal transduction do they know?

Task 7.11
How does a metabolic signal safely reach its location? Put together important factors
for this.
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Task 7.12
What are “moonlighting” enzymes? Find an example.

Task 7.13

Higher sensitivity of metabolic regulation due to simultaneous outward and reverse
reaction:

(a) Consider for which biochemical processes it can actually make sense what is con-
stantly going on in the cell (in the “bubbling soup”), namely that outward and
reverse reactions can take place simultaneously.

(b) Carry out a calculation example for this.

Useful Tools and Web Links

PDB https://www.rcsb.org/pdb/home/home.do

RNAAnalyzer https://rnaanalyzer.bioapps.biozentrum.uni-wuerzburg.de/

Functional Glycomics | https://www.functionalglycomics.org/; https://ncfg.hms.harvard.
edu/

ENCODE https://www.encodeproject.org (see Diehl and Boyle 2016).

* This is an important link to the human genetic code, namely the famous “Encyclopedia of
DNA Elements” of the human genome, which you can both look up and analyze here. There
is also much original literature describing it.

OMIM: https://www.omim.org

* “Online Mendelian Inheritance in Man” makes it very clear how a wrong letter (a genetic
mutation) leads to disease.

Lipid-Pro: https://www.neurogenetics.biozentrum.uni-wuerzburg.de/services/lipidpro/

* This is the software we developed that helps classify lipids and decode their code.
Bionumbers: https://bionumbers.hms.harvard.edu

* Here, the number codes that play a role in numerous biological processes are explained
nicely and engagingly (Milo et al. 2010).
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When Does the Computer Stop Calculating?

Abstract

The question of when a bioinformatics problem will be completed is difficult to answer
for problems with built-in combinatorics. Alan Turing generally modeled all comput-
able problems using the Turing machine, an idealized abstract computer. All non-Turing
computable problems cannot be solved by computers and remain tasks for humans.
Many particularly interesting problems in bioinformatics are NP (nondeterministic
polynomial complexity) problems, such as protein structure prediction and most net-
work and signal computation or image processing. In general, more powerful comput-
ers, the bundling of many computer nodes (parallelisation) and application-specific
chips can also directly increase computer performance, for example with omics data.

We remember that bioinformatics analyses biological data with programs (Sect. 2.1), col-
lects them in databases (Sect. 2.2) and then maps the biological relationships in models.
But how good are bioinformatic models? Well, bioinformatics tries to use computers to
make “good” and comprehensible biology. One can have fundamental reservations about
this. After all, life is a quality rather than a quantity. Experiences are not seldom simply
indescribable, and also a bacterium or also your own mind and even the brain are not sim-
ply a kind of chip (bacterium) or supercomputer (we ourselves). We are infinitely much
more, and who cannot understand this at all, should now go to a good theater play (no
cinema effect, it is better to experience this “live”) or talk for a few minutes with a patient
in a psychiatric ward, then may be he will better fathom what we want to say.
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8.1 When Does It Become a Challenge for the Computer?

However, the moment we recognise that this may be the unavoidable limitation of our
computational approach and that we naturally systematically do not take these imponder-
able, qualitative aspects into account in our bioinformatic models, we are already a signifi-
cant step further. So let’s keep in mind: bioinformatics tries to describe biological reality
in clear, transparent models, for example how a normal cell becomes a cancer cell. By
using the computer and experimental data, I make myself blind in terms of experience and
other direct interactions with nature, but I have the undeniable advantage of having quan-
titative statements about the biological process through numbers and measures (“give
numbers to the arrows” is what Leroy Hood once called it). This alone, through these
quantitative glasses, prevents being drowned in too much unprovable theory. For example,
the model predicts that 80% of cancer cells will die from treatment. We can simply mea-
sure in experiments how far this is true. This also brings up another important implication
for all bioinformatics analyses. For example, if we have found a related sequence to a
sequence of which we know more about the function by sequence comparison, then we
should continue this chain of reasoning (from sequence comparison to sequence compari-
son) until we have a clear experiment on the last sequence that biochemically or molecu-
larly confirms the function of the protein associated with the sequence. Only then do we
have solid ground within the framework of our model.

So much for the bioinformatic model, which should therefore always base its own cal-
culations on solid, experimental data. Now a few sentences about the calculations: After
all, it could be that these calculations take a very long time, and anyone who has ever
“kicked” his computer with such a complicated, lengthy calculation knows the problem of
wondering, “When will this limited computational box finally stop calculating?” The
problems where this is unresolved are called NP problems (NP stands for nondeterministic
polynomial time). There is no simple formula (a polynomial) that allows one to calculate
how long the computer will compute based on the length of the input. Unfortunately, most
biologically exciting problems are such NP problems. This is because biomolecules and
all higher processes in the cell are usually modular, made up of similar or identical units
(see Part 1). Thus, the addition of only one further unit leads to a multiple increase in
computation time, and such combinatorial problems (“‘combinatorial explosion™) there-
fore almost always occur in our biological modelling. This leads to corresponding uncer-
tainties in the computation time. However, one can help oneself with fixed specifications,
so-called “stopping criteria®, i.e. stopping specifications for the computer, e.g. “please
stop after one hour of computing time”. But more important is the fact that with a fixed
calculation time it is not possible to estimate how good the solution found up to that point
is in comparison to the best or optimal solution. But that’s just life: Not so easy to grasp!

To conclude this chapter, it is therefore worth pointing out that the outstanding mathe-
matician Alan Turing succeeded in defining the capabilities of a computer quite precisely
(Hodges 2014). He devised an abstract machine, the so-called Turing machine (Fig. 8.1),
which could only perform five basic operations. He was able to show that every exact
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Fig. 8.1 Simplified representation of a Turing machine. The Turing machine consists of an infi-
nitely long input tape with separated character fields, a read-write program (can read/write in both
directions) and the characters of the input tape. The read-write program reads the input tape field by
field and can change the characters according to the program instruction (transfer function). This
procedure can be used to determine which calculations are bioinformatically computable with the
computer (Turing-computable, non-Turing-computable)

computation possible at all was also performed by (usually very many) concatenating the
five operations of his abstract machine. This allows us to determine very precisely which
computations in bioinformatics can be done at all with computers (no matter how modern
they are or will become) (“Turing-computable®) and which cannot (“not Turing-
computable®). So much for the limits and restrictions of bioinformatics models and of
modelling in general.

8.2 Complexity and Computing Time of Some Algorithms

Let’s now turn to another problem: How much longer does my calculation take when the
task becomes more difficult? This question is generally called the complexity of a compu-
tational problem.

Polynomial Complexity
In this case, everything is not too computationally intensive. A simple calculation expres-
sion, a so-called polynomial, gives the calculation time as a function of the length.

For example, if an RNA has a length of n nucleotides and is to be folded (i.e., the sec-
ondary structure is calculated), each nucleotide is typically juxtaposed with every other
one along its entire length, and thus sampled for all possible pairs. So this computational
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task is quadratically complex, taking 100 time units for 10 nucleotides and 10,000 time
units for 100 nucleotides. Therefore, RNA folds are only calculated for molecules that are
not too large, and database searches are usually not fast for complete molecule folds.

Many computational tasks, e.g. the sequence comparison of protein sequences in the
genome, i.e. again each protein with every other protein, are typically quadratic in their
time requirements. The same applies to pairwise calculations of phylogenetic trees with
phylogenetic software, such as when one calculates a sequence alignment with CLUSTAL
and associated phylogenetic trees with the Neighbor-Joining method.

Many database searches here again require a quadratic or cubic amount of time (sifting
through 10 times more data requires 1000 times more time).

Non-deterministic Polynomial Complexity (NP-Problems)

The case is quite different when the problem becomes many times more difficult with each
step. These are problems that grow exponentially, for example (complexity EXP). The
complexity class NP is now the set of all problems solvable by nondeterministic Turing
machines in polynomial time. Put simply: All problems solvable in polynomial time by a
computer that can randomly select multiple computational paths. This subset of EXP con-
tains a very large number of relevant problems. Since the problems from P can be solved
non-deterministically in polynomial time if they must, P is a subset of NP. These NP-hard
problems are very hard to estimate in computational time. It is true that if the solution is
correct (given by a good fairy, for example), one can check it in polynomial time to see if
it is correct. But from this one does not find it fast or at all without the good fairy.

The best-known problem is the travelling salesman problem (“TSP”), who wants to
visit many cities with an optimally short route on his way. One can only be really sure after
quite long calculations, but these become more than 100 times more complex with each
additional city, for example, with the 200th city even more than 200 times more difficult
with each additional city.

Actually, many problems of real interest in bioinformatics are NP-complete, i.e., equiv-
alent to TSP, theorem of Cook (1971) and Levin (1973), respectively. The Theorem of
Cook (1971) founded a new class of problems in terms of computation time, more gener-
ally, complexity theory. Cook showed that there exists a subset of the class NP to which all
problems from NP can be reduced. Named after him, Cook’s theorem states namely that
the satisfiability problem of propositional logic, SAT, is NP-complete. Thus, the SAT
problem is representative of NP-problems, and all problems that can be transformed into
a SAT problem are equivalent to it (class of NP-complete problems). Levin (1973) showed
this important insight, i.e., when a computer cannot find a solution and finish, quite inde-
pendently and in its own way. An example is for instance the protein folding problem, i.e.
the prediction of the protein structure, where each additional amino acid makes the com-
putation of the coordinates of the three-dimensional structure many times harder.
Homology modeling or the calculation of system states also belong to this class.
Accordingly, each additional kinase or phosphatase makes the problem at least twice as
difficult, and usually even more ambiguous. In any case, this should be taken into account
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Table 8.1 Degree of difficulty of a P problem (sequence alignment) compared to an NP problem
(protein folding)

Algorithm ‘ Runtime complexity (m, n = sequence length of a, b)

Heuristic algorithms:

Blast ' O(n*m)

Dynamic algorithms:

Needleman-Wunsch Cubic: O(n’); e.g. at 5= 125

Smith-Watermann Quadratic: O(n?); e.g. with 5 =25

Protein folding:

For x possible folds Exponential: xn (e.g. for 2 convolutions: 2n; for 7
convolutions: 7n)

in bioinformatic considerations. Table 8.1 shows the degree of difficulty of a P-problem in
comparison to an NP-problem using the example of a sequence alignment versus protein
folding with combinatorics.

8.3 Informatic Solutions for Computationally Intensive
Bioinformatics Problems

Many interesting problems in biology and bioinformatics have a built-in combinatorics
and thus a very large, difficult to understand solution space, which therefore has the diffi-
culty NP (solution very difficult to find and computation time not foreseeable - if you show
me the solution, I can usually confirm it relatively quickly). All in all, however, computa-
tional time problems are computer science problems, which can therefore also be tackled
directly with tools from computer science and computer technology.

Tip 1: Use Modern Computer

This is often effective in practice. First, if you have a difficult or computationally intensive
bioinformatics problem, you should not use a web server (otherwise you might wait until
you black out!). However, most bioinformaticians have already taken this into account
when designing their programs. Protein structure predictions, for example, are often not
done online on the web server, but one receives (after a few hours or even days) the result
by e-mail (for example, when using SWISS-MODEL for homology models or ab-initio
predictions by the QUARK software from the Zhang lab). For own calculations I should
first use a notebook or PC as up-to-date as possible. Workstations or small computer clus-
ters have even more computing power at first. For larger calculations, local (university
mainframes) or central computer clusters (e.g. Leibniz Computing Centers in Munich,
etc.) are then available. Tier 1 or Tier 0 mainframes such as JUQUEEN in Jiilich then
provide the greatest performance (6 million billion floating point operations per second)
with 5.9 petaflops per second (https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercom
puters/JUQUEEN/JUQUEEN_node.html).
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Tip 2: Heuristics

We have already seen in Chap. 6 that due to the large amounts of data in bioinformatics,
one tries to use algorithms that are as fast as possible, even if this comes at the expense of
accuracy (heuristics such as BLAST). For informatics tips and tricks for better and faster
programming, the “numerical recipies” as described there are highly recommended.
Another commendable and non-profit activity is “Project Jupyter” to advance freely avail-
able software, open standards and services for interactive work with dozens of program-
ming languages such as Julia, Python and R. For this purpose, Jupyter notebooks and the
JupyterLab were developed, which have a high reusability and good documentation.

Tip 3: Parallelization

Finally, an important technique for complex calculations is to use many processors in
parallel. For this, the computational task must also be “parallelized”, i.e. rewritten in such
a way that the distribution to several processors (or computer nodes) actually saves time
and does not lead to a mess and a lot of additional communication.

There are also particularly suitable programming languages for this purpose (e.g.
Popjava, PopC or the network-friendly web-based environment from the Jupyter note-
books). Another programming language is Julia (https://julialang.org). It was released in
2012 after 3 years of development. It is a higher level Matlab-like programming language
for numerical and scientific computing usable for Mac, LINUX and Windows alike with
quite fast execution speed. The compiler with its own standard library was written in C, C
+ + and Scheme. Important are multimethods, LISP-like macros and metaprogramming,
direct call to C and Python functions. Designed for parallel programming and distributed
computing, co-routines allow easy multithreading by Julia.

These are important ways to equip and use a computer with many processors with
appropriate operating software.

In general, it should be remembered that computers are stronger in a network. Even
simple computers (PCs) can help solve difficult problems via networking on the Internet
when their computing power is not otherwise needed (from SETI@home to Bitcoins to
scientific projects, e.g. https://blog.exabyte.io/enabling-new-science-through-accessible-
modeling-and-simulations-6710098a294).

Other Possibilities Include

Virtualization

Alternatively, various LINUX or UNIX computers can be interconnected by suitable soft-
ware to form a virtual, parallel computer (e.g. use of PVM, https://www.csm.ornl.gov/
pvm/). In the meantime, there are also commercial providers of cloud computers, i.e. a
virtual computer environment with many node computers is made available to interested
customers by these providers via the Internet.
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Application Specific Chips (ASICs)

Finally, it is also possible to use special computer chips on which exactly one computer
program runs “hard-wired”, so to speak, i.e. one computer chip for exactly one program.
This is then an Application Specific Chip (ASIC). Field-programmable gate arrays
(FPGAs) are much more expensive, but more flexible and allow to pre-test different ASICs
in their properties after appropriate programming of the FGPR. ASICs have been and
continue to be used for special programs. For example, the company Paracell had devel-
oped a chip for BLAST. The sequence comparison then runs much faster on this ASIC,
and the Paracell computer was thus able to identify words very quickly and use them for
BLAST (likewise the American secret service to monitor the Internet, s. Chap. 16). Even
at present there are a number of such special computer chips for bioinformatics. However,
these are used less frequently than the other solutions in this paragraph.

8.4 NP Problems Are Not Easy to Grasp

At least for mathematicians and computer scientists the difficult NP-problems exert a strong
fascination. This is especially due to the fact that the existence of the correct (optimal) solu-
tion can usually be solved in a reasonable computing time (i.e. a so-called P-problem, with
polynomial computing time), but nevertheless, without already knowing the solution, one
does not know when the computer will stop searching for solutions if the correct solution is
not yet known (non-deterministic polynomial). One can most easily understand this with
the traveling salesman (TSP) problem already mentioned (Fig. 8.2). One can easily confirm
an optimal solution at least very well. But the combinatorics of the cities, which makes the
problem many times harder with each city more, leads to very long computation times for
systematic trial and error. In addition, the distances between the cities can also be different,
which makes the calculation more complex (Fig. 8.2, left: symmetric TSP with equal
lengths; right: asymmetric TSP with different lengths between the cities).

Therefore, computer scientists, mathematicians and bioinformaticians keep trying to
show that there is a way to trace NP-problems back to P-problems in general. So far,

Fig. 8.2 Simplified representation of the travelling salesman problem
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however, this has been in vain. The list of failures or, in some cases, highly intelligent
attempts to solve the problem is quite exciting to read. Even clearer and more exciting are
the articles by Scott Aaranson (2003, 2005), which show quite amusingly what one can
learn here about computers and complex problems. However, another aspect is perhaps
even more fascinating: limitations of decisions, but especially formally exact computer-
based decisions. This is masterfully illustrated in an article by Chaitin (2006), and the
relations to Turing computability are also made well clear. The important point here is that
humans, as thinking, feeling, and evaluating creatures, can obviously still make decisions
that a computer, or more generally a Turing machine, can no longer make (see Chaps. 14
and 16). The Turing Award is the highest award for computer science. Laureates such as
Martin Hellmann (pretty-good-privacy-encryption of e-mails) show that they are fully
aware of this human responsibility (https://nuclearrisk.org; see Chap. 16).

Conclusion

* Alan Turing has generally reproduced all computable problems with the help of
the Turing machine. All non-Turing computable problems cannot be solved by
computers and remain tasks for humans. The question of when a bioinformatics
problem will be completed is difficult to answer for problems with built-in
combinatorics.

* Unfortunately, many particularly interesting problems in bioinformatics are NP
(nondeterministic polynomial complexity) problems, for example, protein struc-
ture prediction as well as most network computations (e.g., the traveling sales-
man problem: How does he optimally plan his city route?). Computer clusters are
needed for processing large omics datasets and in modeling genome-wide meta-
bolic networks, but also for modeling complex signaling cascades, for ab initio
protein folding simulations, and for complex image processing (e.g., 3-D tomo-
grams, deep learning), as well as for large in silico drug screens and molecular
dynamics simulations.

e [n general, more powerful computers, the bundling of many computer nodes (par-
allelisation) and application-specific chips can also directly increase computer
performance. In addition, the search for faster heuristics and new, clever algo-
rithm strategies and procedures is a current task in bioinformatics, since the data
are rapidly becoming more and more complex. Simpler problems (P-problems),
on the other hand, require very manageable computing time, for example all
sequence analyses, because a database search or query only grows linearly with
the size of the database and the length of the query sequence, i.e. quadratically
overall (quadratic polynomial problem P), as do predictions on RNA folding.
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8.5 Exercises for Chap. 8

Task 8.1
How much does the computation time increase with different algorithms?

Compare the RNA folding algorithm RNAfold, a BLAST search, and protein folding.
With BLAST, also try to clarify at the same time how the E-value moves favorably down-
ward, to smaller values, with a smaller database.

Just try out the different calculation times with your own test examples.

Task 8.2

So how do you deal with the hard problems that biological systems present you with?
Please list some different search strategies that you have learned about in the book or that
you can think of (don’t worry, the best ones will be discussed in a moment).

Task 8.3
What general search strategies for complex problems in bioinformatics do you know?

Task 8.4
Explain what is meant by NP-problems or P-problems in bioinformatics? How is a diffi-
cult computational problem defined informatically? Make this clear with an example.

Useful Tools and Web Links
https://baba.sourceforge.net

* Here basic algorithms of bioinformatics like local and global alignment are
presented very nicely and exemplarily.
https://discrete.gr/complexity/

* This page gives a nice introduction to computing complexity.
Turing machine:
https://www.alanturing.net/turing_archive/pages/reference%20articles/
what%?20is%20a%?20turing %20machine.html

* There are many representations of this, but this one is right on the Turing net-
work and descriptive.
NP problems pitfalls:
https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

* This page shows a bit of how not to do it (or how easy it is to fail at this prob-
lem). For solid work, see Aaranson 2003, 2005, respectively.
Introduction to parallel programming (for time-consuming calculations):
Parallel Programming with C+ + :
https://gridgroup.hefr.ch/popc/doku.php
Message Passing Interface (MPI):
Parallelization (Introduction to parallel programming)
https://mpitutorial.com/tutorials/mpi-introduction/


https://baba.sourceforge.net
https://discrete.gr/complexity/
https://www.alanturing.net/turing_archive/pages/reference articles/what is a turing machine.html
https://www.alanturing.net/turing_archive/pages/reference articles/what is a turing machine.html
https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
https://gridgroup.hefr.ch/popc/doku.php
https://mpitutorial.com/tutorials/mpi-introduction/
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Complex Systems Behave Fundamentally
in a Similar Way

Abstract

Biological systems are self-regulating and maintain their own system state (attractor).
Negative feedback loops help to prevent overshooting, while positive activation loops
(feedforward loops) activate the system when it is too weak (e.g. heartbeat).
Bioinformatics is able to selectively tap central key elements (e.g. central signalling
cascades; highly linked proteins in the centre, so-called “hubs”; sequence and system
structure analyses, e.g. with interactomics and gene ontology), through whose concur-
rence the system behaviour essentially comes about (“emergence”). The starting point
is the machine-readable description of the system structure (software Cytoscape,
CellDesigner, etc.), which is then used to simulate the dynamics (e.g. SQUAD, Jimena,
CellNetAnalyzer), whereby the comparison with experiments requires many (“itera-
tive”’) model improvements. Systems biology is the most important future field of bio-
informatics, especially in combination with molecular medicine, neurobiology and
systems ecology, modern omics techniques and bioinformatic analysis (R/statistics;
read mapping and assembly; metagenome).

9.1 Complex Systems and Their Behaviour

Now that we have become acquainted with the basic limitations of computer calculations,
we can next consider how the computability of living systems looks in general. In princi-
ple, there is a clear contrast here: although biological systems are virtually digital in struc-
ture, and therefore consist of clear building blocks, the emerging system is difficult to
manage because of chaotic system effects, although this “natural chaos” and the underly-
ing principles can be very fascinating (Gleick 2008).

© Springer-Verlag GmbH Germany, part of Springer Nature 2023 103
T. Dandekar, M. Kunz, Bioinformatics,
https://doi.org/10.1007/978-3-662-65036-3_9

9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-65036-3_9&domain=pdf
https://doi.org/10.1007/978-3-662-65036-3_9

104 9 Complex Systems Behave Fundamentally in a Similar Way

So there are the clear letters and units of information in the cell that can be determined
by sequencing RNA and DNA molecules. There are technical limitations, but with today’s
modern sequencing methods it is possible to sequence almost any amount of nucleic acids
and thus have any amount of this form of information available in a short time to answer a
question. For example, “transcriptomics”, i.e. the reading out of the RNA inventory of a
cell, enables us not only to find out globally which information is stored in all mRNA
molecules of a cell, but also to read out very precisely the inventory of switched-on genes
(“expressed genes”) that are active in this cell. In this way, a rapid inventory of the system
status of an immune cell or a cancer cell is obtained. In the future, this will be used more
and more intensively, for example to better design chemotherapy against cancer in patients,
or to know whether the immune defence is in good condition. So: No problem, a lot of
information about the living cell can be measured, at least with regard to DNA and RNA.

Nevertheless, there is a fundamental limitation for biological systems and even for all
sufficiently complex systems. Their behaviour is said to be “chaotic”, i.e. predictable only
over short periods. This is perhaps easiest to see if you think of the best-known chaotic
system: the weather. There, too, we can only predict what the weather will be like tomor-
row in, say, Wiirzburg, Erlangen or Amberg. Accordingly, this can only be described with
a certain probability, and over several days such a forecast is always relatively uncertain.
On the other hand, we know that the climate here in Lower Franconia, Middle Franconia
and the Upper Palatinate is a typical Central European one, we will neither expect a tropi-
cal storm nor deserts or glaciers here. This can be generalized: biological and more gener-
ally, so-called chaotic systems, can only be described exactly over relatively short periods
of time. Their long-term behaviour, however, is kept within fixed limits. In the case of
weather, this is called climate. More generally, such a confined system state is called an
“attractor” because it draws nearby system states into this stable ground state. A good
example from biology is our own health. Even there it is clear, sometimes I can be out of
breath or sweating, have a fast pulse etc., after a few minutes everything is back to normal.
On the other hand, if I catch germs, live unhealthy and that over longer periods, my system
state can also change radically, especially I can get sick. That is then a different attractor.
Because once you are sick, it takes some time and some effort to change from the sick
system state back to a healthy one. Many people, especially older people, nevertheless
remain chronically ill: the pathological condition is too strong, even with medicine the
person remains ill.

With this we already have the most important terms for the system description together
and can state: Biological systems can only be described exactly for a short time, but remain
attached to stable system states, so-called attractors, over longer periods of time. However,
if the system is disturbed or changed just enough, a new system state can then suddenly
exist, which then reinforces itself again. A so-called tipping point is reached. For example,
the forest has suddenly become a savannah or even a grass steppe or desert, to name a few
ecological examples at this point. It is therefore important to understand systems in terms
of their behaviour. Whenever they have feedbacks (positive, negative) and reinforcements,
small changes can build up — and this is exactly the reason why systems are then called



9.1 Complex Systems and Their Behaviour 105

“chaotic”. Only by measuring the state of the system with very high accuracy can I accu-
rately describe how my system is evolving for short periods of time. But any error grows
over time. And in “chaotic” systems it doubles within a short time, so that already after ten
such time units the error is more than 1000 times larger after these ten doubling steps (2 to
the power of 10 = 1024). For this reason, the behaviour of such systems over longer peri-
ods of time cannot be described exactly. On the other hand, it is precisely the negative
feedbacks that keep the system within fixed limits (climate in the case of the weather at a
particular location, health in humans). Only if strong positive feedbacks transform the
respective system state, it is possible that it changes rapidly (tipping point) and one then
suddenly has a new state (climate change or in humans a disease). The sudden system
change when crossing tipping points was considered mathematically by Rene Thom
(catastrophe theory, because systems then change catastrophically and rapidly).

It is interesting that we can in principle also understand a chronic illness well with this.
Because here, too, strong feedbacks must be at work that prevent a return to the healthy
state. If we recognize and treat these causes, a return to the healthy system state will also
be possible. For example, by changing the way of life (stress reduction, more exercise and
sport, reducing overweight) I can bring high blood pressure, recognised in time, back into
balance and become healthy again. However, if no lifestyle change is made or possible and
treatment is lacking, then subsequent regulation of blood pressure is often only possible
through chronic medication. However, this is again clearly a symptomatic treatment,
because I have to keep taking my medication, the disease-producing feedbacks will other-
wise cause my blood pressure to skyrocket again and again. Unfortunately, at this stage, a
(causal) therapy based on the actual causes, such as a permanent correction of the blood
pressure regulation, is not yet possible. However, modern systems medicine can use large
amounts of data, for example on gene expression, to show exactly what the main effects
(intended: here blood pressure reduction) and side effects (harmful, e.g. liver damage) of
a drug are and thus help to improve these drugs (Fig. 9.1).

The main effect of a drug is often the blocking of a receptor, i.e. the blocking of signal
transduction via this receptor molecule. In Sect. 5.1 we gave the example of receptors in
the cardiac muscle cell, which then lead to heart failure via phosphorylation of Erk kinase.

Ideally, that would then be all the effects of the drug. Would we then also see this in the
gene expression experiment, i.e. only a down-regulation of the messenger RNA for the
3-adrenergic receptor, if, for example, we carefully creep in a beta-blocker against the
increased blood pressure and the heart failure? Interestingly, we wouldn’t see that exactly
because the receptor is made (“expressed”) via the mRNA, just as it is without the drug
administration. If this were not the case, the drug could not bind to it at all. If the receptor
does not transmit its signal, the heart has less work to do and the patient feels better. This
is the intended and proven heart-protecting effect of beta-blockers. This can only be done
by carefully increasing the dosage. Unfortunately, beta-blockers do lead to an improve-
ment in symptoms, but not to a prolongation of life. This is due to the fact that the cause,
the ageing heart, is not really combated without future methods such as stem cells for new
cardiomyocytes. This is exactly why we are doing intensive research on stem cells in our
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Fig. 9.1 Tllustration of the effect of a drug. A drug usually shows a main effect, i.e. an optimal
therapy related to the cause of the disease (centre). However, there are also other genes (light and
dark circles) that are altered by the intended molecular main effect, but do not show a change due to
the disease itself (left). In addition, however, there are also side effects, so-called side effects,
whereby, among other things, other receptors (light and dark triangles) are affected by the drug
(Right). Nowadays, it is standard practice, for example in newly developed therapeutic approaches,
to investigate the effect of a drug by means of gene expression experiments and then to analyse it
bioinformatically in order to identify the changes in gene expression (e.g. mRNA upregulated [light]
or downregulated [dark] after drug administration, compared with the untreated state [disease]). In
this way, it is easy to overlook whether the actual main effect of the drug is achieved and which other
genes are additionally affected (positively as well as negatively) by the therapy in order to develop a
drug effectively. The aim is always to develop a drug as specifically as possible and to keep the side
effects as low as possible for the patient

own department, especially since there are increasing possibilities to generate them from
adult cells, especially the old cells of the patient and the patient (ethically safer method,
but more difficult). But this is still a long way off. Therefore, let us now look at the further
effects of the beta-blocker on gene expression, because these can already be given (just as,
for example, the lowering of blood pressure by ACE inhibitors, which even now has a
favourable effect on life expectancy). The beta blocker, amazingly, changes numerous
other genes in expression, namely because the signaling cascade is now downregulated
and this downregulates many genes as well as upregulating some others. Even stronger
(and a little slower in its effect) is the heart-protective effect: genes for the further growth
of the heart are somewhat down-regulated by the heart failure. However, some genes are
transcribed more strongly again.

Finally, there is another factor when giving a drug (a pharmacon): very often these
drugs hit the intended receptor, but more or less fit other receptors as well. The resulting
gene expression changes are the side effects. Applied to our example, it is particularly the
case that there are beta receptors not only in the heart, but also in many other organs, for
example in the lungs. Although there are slightly different beta receptors there, namely
beta2 receptors as opposed to betal receptors of the heart. Still, the risk of getting a bad
side effect in the lungs this way is high enough that people try not to give beta blockers in
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asthma, for example. This is because they would seal the lungs because the beta2 receptors
that keep the airways clear would then be blocked. So often the side effects of a drug come
from other receptors besides the intended receptor being hit and blocked by the drug.
However, when I measure gene expression, I only see the side effects if I also measure in
a tissue where such side effects come into play. For example, especially in the lungs, but
also in other tissues where beta2-receptors are present, these effects would cause the
receptors to be less active, again changing numerous genes.

Of course, one can still more generally require that the main effect only fixes exactly
the defect (causal therapy) and does not change anything else (no side effect). But this is
not the case for most drugs because the body is too complex. A good example is diabetes
treatment (diabetes mellitus, diabetes) by insulin. Actually, this is exactly the substance
that the diabetic lacks. But since even insulin pumps cannot control insulin as precisely as
the healthy body can with the help of the pancreas, the sick person has to deal with many
small over- and underdoses of insulin all the time and in every cell of the body at
the moment.

Bioinformatics can therefore be used to effectively evaluate the large amounts of data
(DNA: so-called genomics, RNA: so-called transcriptomics, proteins: so-called pro-
teomics, metabolism: so-called metabolomics) that describe in detail how biological sys-
tems react to drugs or environmental influences. There are fundamental limits to the
short-term exact describability that apply to all systems controlled with feedback loops,
such as living cells or even our weather. Therefore, it is important to know the range to
which such systems are set and into which they always fall back, the attractors of the sys-
tem. You have already learned about these in Sect. 5.1. There we introduced them simply
as “stable system states”. Stewart Kaufmann is an important researcher and founder of
system sciences who has described natural and biological systems in general terms.

9.2 Opening Up Complex Systems Using Omics Techniques

Figure 9.2 illustrates how genomics, transcriptomics, proteomics and metabolomics all
contribute together, for example, to accurately infer the effects and side effects of pharma-
ceuticals. In addition to our gene expression measurements from Sect. 9.1 (called tran-
scriptomics, but any measurement of RNA, for example by large-scale RNA sequencing),
we can measure exactly what happens to the proteins in the treated heart muscle cells
(proteomics), how the metabolites, for example the sugar level, change under treatment
(metabolomics). And of course we can also look at the patient’s gene sequence (genomics,
e.g. genetic predisposition to heart failure).

Genome sequencing using ultrafast sequencing technologies, such as the 454 or Solexa
technology, is now a common method that enables the rapid and cost-effective sequencing
and annotation of genomes (nucleotide sequence in DNA). The ever-improving sequenc-
ing technologies also allow for increasingly high-resolution sequencing, which means that
newer and newer genes can be annotated. Numerous genomic data are accessible through
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genome browsers (e.g. Ensembl or UCSC). Specific genomic mutations, for example in
human tumors or heart failure, are also deposited in various databases (e.g. OMIM) and
can be used by users. DNA sequencing thus makes it possible to sequence unknown
genomes, such as new resistant bacterial strains, or to determine the underlying mutations
in diseases in medical diagnostics.

Transcriptome sequencing (gene expression sequencing) provides insights into gene
expression, i.e. into the activation of gene transcripts. Common methods are microarray
experiments or newer high-throughput methods such as RNA sequencing. These measure
gene expression (MRNA level) and thus provide information on the corresponding changes
in mRNA (up- or down-regulated), for example after infection or treatment. Meanwhile,
there are increasingly efficient methods that can, for example, measure the expression of
the host and the pathogen in parallel in one cell and thus provide insights into the changes
in both organisms after an infection (dual RNAseq). Subsequent bioinformatic gene
expression analysis can then examine the RNA secondary structure (e.g., RNAfold), the
RNA sequence for regulatory RNA elements such as IRE (e.g., RNAAnalyzer) or in more
detail with regard to possible interaction partners, for example RNA-protein (e.g., catR-
APID, NPInter) or miRNA-mRNA interactions (e.g., miRanda, TargetScan). Numerous
databases already contain gene expression datasets (e.g. GEO, cBioPortal, TCGA or
GENEVESTIGATOR), information on RNA sequence, structure and binding motifs (e.g.
Rfam) or information on specific RNA classes (e.g. miRNA [miRBase], IncRNA
[LNCipedia]) and can be used for own analyses.

Protein sequencing can be done with mass spectroscopy or protein microarrays and
provides information on the amino acid sequence in the protein. It is often of great interest
how the proteome changes under certain conditions, for example after an infection or
therapy. However, one is usually also interested in the changes or modifications in the
amino acid sequence, for example in the functional side, and their effect on protein
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function. For this purpose, one can bioinformatically perform a domain annotation, i.e.
which binding domains and functional sites are present, which thus provide information
about binding factors, but also the regulation and function of proteins. Databases such as
SMART, Prodom and Pfam provide information on proteins and domains and can also be
used to search a protein sequence for existing domains. Other important tools are the
BLAST algorithm, conserved domain or ELM servers, which allow the analysis and pre-
diction of domains in unknown sequences.

Information on the metabolome (metabolism) can be obtained using mass spectroscopy
or gas chromatography. Metabolome sequencing is of interest to see how, for example,
metabolites change after a pathogenic infection or a drug, or how the metabolism of
humans and the pathogen differs. This is important, for example, for a potential pharma-
ceutical to specifically affect the metabolism of a bacterium, but without producing a toxic
effect in humans. Important databases on biochemical metabolism include Roche
Biochemical Pathways, KEGG. The Metatool, YANA, YANAsquare or PLAS (Power Law
Analysis and Simulation) software are useful for investigating metabolism in more detail,
e.g. which metabolic fluxes are present or what effect changes in metabolic pathways have.

The large amounts of data that we can generate with modern techniques obviously help
much better to describe a biological system, such as the heart muscle.

On the other hand, it is clear that the crucial thing is to understand the underlying prin-
ciples, as just explained for main and side effects and further illustrated by other central
system building blocks in this chapter. Therefore, one has two possibilities to describe a
complicated biological system:

First of all, knowledge-based research is used to elucidate the basic principles of the
biological system (for the myocardial cell in heart failure, see Figs. 5.1 and 5.2). Next, one
uses new data, preferably a great deal of it (nothing else is meant by “big data”), to sub-
stantiate or modify the insights and hypotheses gained.

As you can see, relying only on the amount of data and large data sets is more a sign of
bias or inexperience. If I don’t have a clear hypothesis about the behavior of the system, I
have a much harder time reading the right thing from the data, or better yet, verifying it.

Even worse: “hypothesis free” research is mostly bad, even if advocates claim that one
would then be unbiased towards the results, because it is very easy to fall prey to chance.

Let’s illustrate this again with the gene expression dataset in heart failure. Let us assume
that we have measured 20,000 mRNAs and now want to understand, without a clear
hypothesis, which ones are increased in heart failure. Now, even if no objective differences
can be shown between drug and no drug, given 20,000 mRNAs, we would then purely by
chance find 1000 mRNAs that show a difference in expression between the two groups
with a p-value <0.05. Bioinformaticians and statisticians or experimenters, as experts in
large data sets, know this and therefore correct the statistics for such large data sets. This
is the correction for multiple testing, for example according to Bonferroni. In this correc-
tion for many comparisons, the p-value is divided by the number of tests (n). For example,
for the 20,000 mRNAs, one would only accept differences with a p-value <0.0000025
(adjusted p-value). This is a very hard correction, but it applies to any distribution of
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measurements. Other “multiple testing” corrections are not quite so hard, because the dis-
tribution of the results usually satisfies a normal distribution.

Nevertheless, it can be generally stated that it is much easier to carry out such evalua-
tions with clear hypotheses and less likely to fall prey to random deviations or come to
false conclusions from the large data sets.

9.3  Typical Behaviour of Systems

How do systems behave in general? Surprisingly, there is a simple answer strategy. One
distinguishes between the different kinds of systems that can exist at all. There are three
types of systems: ordered, random and chaotic systems. These differ fundamentally
(Table 9.1):

Ordered systems can be described by simple mathematical equations, for example the
flight behaviour of a rocket or an airplane (function in time as independent variable, with
the X, y and z coordinates for the position) or of a train (route plan). As we can see, this
behaviour is predictable and can be described exactly for the entire period of the flight or
train journey.

In addition, the system can also be easily controlled, for example by the aircraft pilot
using the joystick or the acceleration/deceleration of the train by the train driver. The so-
called state space of the system (where the train or the plane is at which point in time) can
be described exactly, for every hour, for every minute.

A random system cannot be predicted at all for the next moment. The ideal example is
a dice roll. No one can predict whether the next roll will be a one, a two, or a three, or even
a six. And it stays that way. Also, the next roll is just as random as the previous one. This

Table 9.1 System behaviour (ordered, random, chaotic) with typical properties

System Order Mayhem Random

Example Clocks, planets Clouds, weather Noise (sound), dice
Single event Very accurate Only briefly (weather | Not at all

predictable forecast) — simple laws

Effect of small Very small Escalating over time, No effect, random
disturbances explosive disturbances are averaged

out

Possible states

Few pure states

Many: Circling around
attractor

Noise of all possibilities
(1 to 6 on the dice)

Dimension Finally Low, e.g. circular Infinite (any sequence is
orbital plane, healthy | possible)
pulse

Control Simply Difficult, but effective | Barely (dice)

Attractor Clear point, exact Scattered around the No attractor: Any state

circular path (strange,
fractal)

attractor

possible
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is called a random Markov chain (also Markov process, after Andrei Andreyevich Markov;
other spellings Markov chain, Markoff chain, Markof chain). By knowing only a limited
antecedent history (e.g. last litter), only as good prognoses about the future development
will be possible as by knowing the whole antecedent history. But which ones? Here we see
amazing things: while we can’t predict the next litter at all (it’s random, after all), we can
predict the outcome space for all futures: It can only be a one through six.

So we see: with random systems, everything is not predictable at all in the short term.
But the long-term prediction is surprisingly simple. The entire value frame is swept
according to a random function (in our case: one sixth of the dice is a one, a two, a three
... a six; a more complex solution for a different system could be a Gaussian distribution) -
this is the description of the entire future. Finally however, the result can never be con-
trolled, a random system is and remains random.

And what about the biological systems? The fascinating thing is that the biological
systems are a mixture between both extremes, between randomness and total order. These
systems are called chaotic systems. We have already seen an example from everyday life:
the weather. Here there is only a more or less certain weather forecast for the next day or
even 2 weeks, but no certainty for longer periods. On the other hand, the result space is
quite fixed, namely the climate of the place, which is e.g. temperate and sets the frame of
possible weather forecasts.

This applies analogously to biological systems, for example heart rate and blood pres-
sure (Fig. 9.3). Both can change rapidly, but as long as we are healthy, a fixed frame
remains (e.g. pulse between 60 and 80, blood pressure between 80 and 120 mmHg). What
is important for all such systems is that it takes considerable effort to move the system

Pulse Pulse
Malfunction 1 Malfunction 1
Malfunction 2 Malfunction 2
Malfunction 3 Malfunction 3
100 100
Disease
50 50
T T T T T T
50 150 Blood pressure 50 150 Blood pressure

Fig. 9.3 Representation of the biological system state healthy versus diseased state. Biological
systems are, as long as we are healthy (left: system state health as green circle), in a stable, fixed
frame, e.g. pulse between 60 and 80, blood pressure between 80 and 120 mmHg. The system moves
within its tolerated limits (tolerance range; here pulse and blood pressure) and can compensate for
external influences (e.g. exertion or anger, as disturbances 1-3). However, if the external distur-
bances are too strong, the system exceeds its tolerance range and the previous, stable system state
(health) is abandoned. The patient becomes ill (right: system state illness, e.g. high blood pressure,
as red circle due to too strong disturbance 1)
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away from the healthy state. This is because after an effort (pulse) or anger (blood pres-
sure) the system returns to the normal state. That is why the healthy state is called a system
attractor (“‘system-attracting”). The attractor of a system can only be left in case of stron-
ger disturbances (e.g. continued anger, stress at work), which can lead to a disease (e.g.
high blood pressure). If this is a chronic condition, everything is now reversed. One must
constantly exert force (such as taking an antihypertensive) to keep blood pressure within
tolerable limits. An attractor for a sick state has then been reached, in the example it is the
disease high blood pressure. Only a causal (cause-oriented) therapy can change this again.
In particular, the system control must be adjusted to a different blood pressure value again,
which is not yet possible in practice, since blood pressure regulation is extremely complex.

Why are such systems called chaotic? The reason is, they are only predictable for a
short time. This is because biological systems, but also the weather and chaotic systems in
general, are not controlled linearly. That is, a small change in control, just like a small error
in description, doubles with each time step. For example, if I have only 1 per mil error in
the description, just ten time steps later I have more than 100% error and can no longer
predict the system state. The time scale on which this no longer describability happens
varies among systems and is a characteristic time. However, the result is the same for all
chaotic systems. Even for relatively short periods of time, one no longer knows what their
concrete state is, since one never knows the starting state with infinite precision, and small
errors always build up exponentially (the definition of a chaotic system). On the other
hand, controlling such a system is very effective (the so-called butterfly effect, since even
the smallest changes are always amplified exponentially). Finally, we now also know that
the result space of the system sets clear bounds, as does the climate of a place. Even if I
can’t predict the system in the short term, I can predict what the system will stay within in
the long term based on the attractor. For the same reason, stronger disturbances of the
system are very dangerous. Then it can happen that the system not only gets out of bal-
ance, but permanently leaves its previous system state and changes into a new “sick’ state
(crossing a “tipping point”, see Chap. 16).

9.4  System Credentials: Emergence, Modular Construction,
Positive and Negative Signal Return Loops

Even if we analyse large amounts of data with these “omics” technologies, there are a
number of recurring concepts that help us to understand such biological systems — regard-
less of the level, i.e. whether we are looking at molecules at the lowest level, cells, tissues,
organisms or even entire ecosystems. “Scale invariance” in this context means that at each
size scale, the same phenomenon occurs in a similar way. Benoit Mandelbrot, for example,
has looked at how self-similar at large and small scales such chaotic systems often are.
Well-known examples include clouds (which repeat at every scale from the smallest cloud
to huge weather fronts) and coastlines (which also look the same when viewed at every
scale). Since all of these effects, which recur at different levels of order, rely on existing
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system control through regulation, we need only consider in detail what control capabili-
ties the system has. Of particular importance are feedback loops (Fig. 9.4) that return an
output signal back to the system. Subsequently, this signal given back (feed-back) can
amplify the system response (“positive feedback loops™ or loops), for example, faster cell
division, stronger excitation, the system becomes more and more excited. However, other
feedback signals can also dampen the system (“‘negative feedback loops” or loops), thereby
preventing an excessive response or excitation, the system is stabilized. In addition, all
biological systems are made up of many identical units (“modular”). At the lowest level,
these are the building blocks for nucleic acids and proteins, i.e. nucleotides and amino
acids respectively. But this is how it continues to larger and larger building units in the cell
(filaments, organelles are formed from molecular networks). The cells in turn form tissues,
these then form the organism and many individual organisms then networks of interacting
organisms and whole ecosystems. The building blocks therefore alternate and thus always
form new patterns and properties (“‘combinatorics”).

Therefore, another general phenomenon is the study of network effects that arise anew
as components come together, called emergence. A system is much more than the sum of
its parts. At e