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Preface

As the title of the book suggests, this book is indeed
for “beginners.” It is not intended for advanced stu-
dents of bioinformatics or practicing bioinformaticians.
This book has been written from the perspective of an
end-user who wants to use the freely available web-
based databases and tools for bioinformatic analysis.
The audience of this book could include any scientist
or student who has a background in basic molecular
biology but has not used web-based databases and
tools for sequence analysis, or has not done bioinfor-
matic analysis on a regular basis. The total number of
chapters is only nine. This is because related sections
have been combined into one chapter for coherence and
understanding. These sections could have been easily
split into separate stand-alone chapters to increase the
number of chapters.

More than a decade into the first human genome
sequencing, the use of bioinformatic analysis has been
steadily increasing. There are more web-based freely
available databases and analytical tools than ever
before. Modern biology has pervaded even the social
sciences. For example, sociologists and psychologists
are now probing how the epigenomic effects of envi-
ronmental factors (including social factors) might
shape the personality and behavior of the offspring
postnatally. The National Center for Biotechnology
Information has established an epigenomics database,
which will be immensely useful to scientists in the near
future. Thus, bioinformatics has been slowly but steadily
pervading all branches of biology and beyond. In keep-
ing with this, more and more bioinformatics books are
being written for experts, which do not necessarily cater
to the needs of the non-experts.

Because this book is about bioinformatic analysis
using web-based databases and tools, the emphasis is
on sequence analysis. Global gene-expression profiling
has not been emphasized other than a short discussion.
The makers of gene-expression analysis platforms pro-
vide necessary software for analysis. Lastly, it is not
possible to show every type of analysis in a book with
a defined word count; nor is it possible to discuss all
the links and all the functions associated with a database
or analysis. Therefore, this book should serve as an
initial guide, and it is expected that the reader will
take it upon himself/herself to explore further using
the databases and tools. Terms such as program, tool,
algorithm, and web server have been used interchange-
ably throughout the book. These terms essentially mean
the same thing in the context of this book. However, the
term web server could be used to mean both the hard-
ware and the software.

Because the principal audience of the book is
supposed to be non-specialists, it was felt necessary to
introduce the science and some core concepts of geno-
mics as well as some important genomic techniques
before embarking on the bioinformatic analysis. By the
same token, some fundamental aspects of molecular
evolution have been discussed in this book because the
goal of many applications of bioinformatics is to trace
the signatures of molecular evolution, as well as study
the relatedness of taxa. In order to minimize the num-
ber of references in the text, reviews are cited wher-
ever possible.

Supratim Choudhuri
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1.1 BIOLOGICAL MACROMOLECULES,
GENOMICS, AND BIOINFORMATICS

Genetic information is stored in the cell in the form
of biological macromolecules, such as nucleic acids
and proteins. The genetic information not only drives
the functioning of the whole organism, but also drives
the evolutionary engine. Thus, an understanding of the
molecular basis of life is fundamental to understanding
how genetic information shapes life and drives its
evolution. The following discussion captures some
fundamental aspects of the structure and function of
genes and genomes with special notes (in boxes) on the
applications of this information.

1.2 DNA AS THE UNIVERSAL
GENETIC MATERIAL

With some exceptions, deoxyribonucleic acid (DNA)
is the universal genetic material. In some viruses, termed
RNA viruses, RNA is the genetic material. The term
ribovirus is used for viruses with single- and double-
stranded RNA genomes, including retroviruses, which
are RNA-based for a portion of their life cycle.1

Among the RNA viruses, retroviruses are well known;
they include the notorious AIDS virus. Retroviruses
are unique because in their life cycle they have both
RNA and DNA versions of their genome. A complete
retrovirus contains an RNA genome. The RNA genome
encodes some protein products that are necessary for
converting the single-stranded RNA genome into a
double-stranded DNA genome and then its subsequent
integration into the host genome. One such protein
product of the retroviral genome is the reverse
transcriptase (RT) enzyme. Upon entry into the cell, the
reverse transcriptase is produced from the viral RNA
genome using the host cellular machinery. The RT then

copies the single-stranded RNA genome into a single-
stranded DNA, which then produces a double-stranded
viral DNA genome. The double-stranded viral DNA
genome is referred to as the provirus, which gets incor-
porated into the host genome from where it keeps pro-
ducing more retrovirus particles with single-stranded
RNA genomes.

1.3 DNA DOUBLE HELIX

The structure of the DNA double helix and its
building blocks are described in all biology textbooks.
Here, some other aspects are also highlighted, including
the information in Box 1.1. DNA is a double-stranded
right-handed helix; the two strands are complementary
because of complementary base pairing, and antiparallel
because the two strands have opposite 50230 orientation
(Figure 1.1A). The diameter of the helical DNA molecule
is 20 Å (52 nm). The helical conformation of DNA
creates the alternate major groove and minor groove
(Figure 1.1B).

1.3.1 Structural Units of DNA

DNA is composed of structural units called nucleo-
tides (deoxyribonucleotides). Each nucleotide is com-
posed of a pentose sugar (20-deoxy-D-ribose); one of
the four nitrogenous bases—adenine (A), thymine (T),
guanine (G), or cytosine (C); and a phosphate. The pentose
sugar has five carbon atoms and they are numbered 10

(1-prime) through 50 (5-prime). The base is attached to the
10 carbon atom of the sugar, and the phosphate is attached
to the 50 carbon atom (Figure 1.1A). The sugar and base
form a nucleoside, whereas nucleoside plus phosphate
makes a nucleotide. Hence, nucleoside5 sugar1 base,
whereas nucleotide5 sugar1 base1phosphate. Table 1.1
shows the naming of nucleosides and nucleotides.

BOX 1.1

1. The major grooves in DNA can bind proteins. This

is an important property of DNA structure because

the major grooves in the upstream regulatory regions

of a gene bind transcription-regulatory proteins.

For example, for Zn-finger transcription factors,

each Zn finger recognizes and binds to a specific

trinucleotide sequence in the major groove of DNA.2

2. Any double-stranded nucleic acid (whether DNA

double strand, DNA�RNA hybrid double strand,

or RNA�RNA double strand) is antiparallel in

nature. The complementary and antiparallel nature

of double-stranded nucleic acids is an important

property to remember while designing

synthetic oligonucleotides for hybridization

(probes or primers).

3. By convention, nucleic acid (DNA or RNA)

sequence is written 50-30 from left to right, such as

50-ATGTAAGCAC-30. If the 50-30 designation is not

mentioned, it is assumed that the sequence has been

written in a 50-30 direction, following convention.

2 1. FUNDAMENTALS OF GENES AND GENOMES
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Each nucleotide in DNA (as well as in RNA) has one
replaceable hydrogen, which is what makes the DNA
(and RNA) acidic.

1.3.2 Linkage between Nucleotides

The nucleotides are joined by 50�30 phosphodiester
linkage; that is, the 50-phosphate of a nucleotide is
linked to the 30-OH of the preceding nucleotide by a
phosphodiester linkage. In a linear DNA molecule, the
50-end has a free phosphate and the 30-end has a free
OH group (Figure 1.1A). Each phosphodiester bond
has two sides: a 30-side that is linked to the 30-end of
the preceding nucleotide, and a 50-side that is linked to
50-end of the following nucleotide. The 30-side is called

TABLE 1.1 Naming of Nucleosides and Nucleotides

Base

Nucleoside

(base1 sugar)

Nucleotide

(base1 sugar1phosphate)

Adenine Deoxyadenosine
(sugar5deoxyribose)

Deoxyadenylic acid OR
deoxyadenosine monophosphate

Guanine Deoxyguanosine
(sugar5deoxyribose)

Deoxyguanylic acid OR
deoxyguanosine monophosphate

Cytosine Deoxycytidine
(sugar5deoxyribose)

Deoxycytidylic acid OR
deoxycytidine monophosphate

Thymine Deoxythymidine
(sugar5deoxyribose)

Deoxythymidylic acid OR
deoxythymidine monophosphate

Uracil
(in RNA)

Uridine (in RNA)
(sugar5 ribose)

Uridylic acid OR uridine
monophosphate

FIGURE 1.1 DNA structure. (A) Two nucleotides of the DNA double helix, showing their antiparallel orientation, two H-bonds between
A and T and three H-bonds between G and C; (B) the DNA double helix showing the major and minor grooves as well as the diameter of
the molecule; (C) the convention of classifying the two sides of the phosphodiester bond and the products generated from their cleavage;
(D) the front side (Watson�Crick edge) and the back side (Hoogsteen edge) of a purine; (E) how Hoogsteen H-bonding aids in the formation
of the triple helix (see Section 1.3.3); (F) the anti and the syn conformations of bases around the N-glycosidic bond.

31.3. DNA DOUBLE HELIX
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the A side by convention and its cleavage generates
a 50-PO4 product. The 50-side is called the B side by
convention and its cleavage generates a 30-PO4 product
(Figure 1.1C).

1.3.3 Base-Pairing Rules, Double Helix,
and Triple Helix

In the double-stranded DNA, A pairs with T by two
hydrogen bonds and G pairs with C by three hydrogen
bonds (Figures 1.1A and 1.1B); thus GC-rich regions
of DNA have more hydrogen bonds and consequently
are more resistant to thermal denaturation. Each
nucleotide pair (AaT and GaC) has a molecular
weight of approximately 660 Da (sodium salt; 610
without sodium). In the helical double-stranded DNA
molecule, the sugar�phosphate backbone lies outside
and the bases are inside. Base pairs are stacked and
horizontal; hence they are perpendicular to the axis
of DNA. Because of the stacked nature of the base
pairs in DNA, spatially flat molecules can intercalate
between them. Of the four bases, A and G are purines
whereas T and C are pyrimidines. In double-stranded
DNA, a purine pairs with a pyrimidine (A with T and G
with C). Therefore, total amount of purine should
equal total amount of pyrimidine; in other words, the
purine/pyrimidine ratio should be 1.0 or close to 1.0.
This purine�pyrimidine equivalence in double-stranded
DNA is called Chargaff’s rule.

In the bases, the side with the N1 position of
the heterocyclic ring is the “front,” also called the
Watson�Crick edge (Figure 1.1D); the opposite side is
the “back,” also called the Hoogsteen edge. Purines
have an imidazole ring, which forms the “back”; so in
purines, the N7 position of the imidazole ring is part
of the Hoogsteen edge (Figure 1.1D). The Hoogsteen
edge of the bases is located towards the edge (outside)

of the DNA double helix, whereas the Watson�Crick
edge is internal. In normal base pairing in DNA and
RNA (Watson�Crick base pairing), the Watson�Crick
edge (i.e. the front) of the two complementary bases
is involved. However, the Hoogsteen edge provides an
additional hydrogen bonding site. Therefore, the AaT
and GaC base pairs in the normal double helix can
form additional hydrogen bonds (Hoogsteen hydro-
gen bonds) to give rise to a triple helix involving the
Hoogsteen edge of the purines, i.e. N7 of A and G
for the third strand (Figure 1.1E). Hoogsteen hydrogen
bonds can also form in RNA. In nucleic acids, the
presence of a stretch of homopurine allows a stretch
of homopyrimidine to hybridize through Hoogsteen
hydrogen bonding to form a section of DNA triple
helix. The homopyrimidine-containing third strand is
oriented parallel to the oligopurine strand (Figure 1.1E),
whereas the homopurine-containing third strand is oriented
antiparallel to the oligopurine strand (see Box 1.2).3�5

For bases, two conformational variations are possi-
ble. The bond joining the 10-carbon of the deoxyribose
sugar to the base is the N-glycosidic bond. Rotation
about this base-to-sugar glycosidic bond gives rise to
syn and anti conformations. The anti conformation is
the most common one (Figure 1.1F); however, the syn
conformation can trigger the formation of triple helix
(Figure 1.1E) and also play a role in transversion muta-
tion (see Molecular basis of mutation, Section 2.3.1 in
Chapter 2).

1.3.4 Single-Stranded DNA

Many DNA viruses have single-stranded DNA (for
example, ϕX-174, parvoviruses). RNA viruses have
RNA as the genetic material, and the RNA genome can
be single or double stranded. Single-stranded DNA does
not have base equivalence and hence does not follow
Chargaff’s base equivalence rule.

BOX 1.2

1. Each phosphate has three replaceable H1;

phosphodiester-bond formation between two

nucleotides leaves one replaceable H1. These

replaceable H1 make the DNA (and RNA) acidic

(Figures 1.1 and 1.3).

2. The intercalation property of spatially flat molecules

is utilized to visualize DNA (and RNA) in a gel using

flat aromatic molecules that fluoresce under UV,

such as ethidium bromide and acridine orange.

The intercalation of these molecules can also cause

frameshift mutation during DNA replication.

3. The purine�pyrimidine equivalence can be

utilized to determine if a DNA molecule from an

unknown source is double stranded or single

stranded. In a double-stranded DNA molecule,

the purine/pyrimidine ratio should be 1.0 (or close

to 1.0); in contrast, in a single-stranded DNA

molecule this equivalence is lacking.

4. The differential thermal stability of AT-rich versus

GC-rich regions in double-stranded nucleic acids

is taken into consideration while designing

oligonucleotides for hybridization for different

4 1. FUNDAMENTALS OF GENES AND GENOMES
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1.3.5 Base Sequence and the Genetic Code

The genetic information—that is, the genetic code
with information for the amino acid sequence of the
protein—lies in the sequence of bases in DNA.
Genetic code exists in the form of a sequence of three
bases; each three-base sequence is called a codon,
which codes for an amino acid. Transcription of
mRNA copies the codons from DNA to mRNA,
which is translated to yield the protein (polypeptide)
product. ATG in DNA (corresponding to AUG in
RNA) is the start codon that codes for methionine.
Translation begins by recognizing the start codon
and incorporating methionine as the first amino
acid. Similarly, TAG (amber), TGA (opal), and TAA
(ochre) (corresponding to UAG, UGA, and UAA,
respectively, in mRNA) are the three stop codons
that do not code for any amino acids (exceptions to
this rule are discussed below). In addition to being
triplet (read as three-nucleotide codons), genetic
code is (almost) universal, non-overlapping (adja-
cent codons do not share nucleotides), and degener-
ate (most amino acids can be coded by more than
one codon). There are 64 (43) possible codons (61
coding and 3 noncoding). Genetic code normally
codes for 20 standard amino acids. The two known
cases of direct incorporation of non-standard amino
acids are that of selenocysteine (the 21st amino acid)
and pyrrolysine (22nd amino acid). Selenocysteine
has been found in lower as well as higher organisms,
including mammals, while pyrrolysine has so far
been found in certain archaebacteria. Both these
amino acids are encoded by stop codons; selenocys-
teine is encoded by UGA and pyrrolysine is encoded
by UAG in mRNA.

1.4 CONFORMATIONS OF DNA

There are three major conformations of DNA:
B-DNA, A-DNA, and Z-DNA. The DNA structure that
Watson and Crick proposed was the B form of DNA
(B-DNA), and this is the physiological form of DNA.
In B-DNA, the diameter of the helix is 2 nm (520 Å).
Each pitch—that is, one complete turn (360�)—is 3.4 nm
(534 Å) long and contains 10 base pairs. A-DNA has
been identified in vitro under different salt concentra-
tions, as well as in DNA�RNA hybrids. It is also a
right-handed helix. The diameter of the helix is 2.3 nm
(523 Å). Each pitch is 2.6 nm (526 Å) and contains
11 base pairs. So, for a given length, the A-form is wider
and shorter than the B-form. Z-DNA is a left-handed
helix (Z5 zigzag). This form has been identified both
in vitro and within the cell. Small, localized regions
within the physiological B-form of DNA can attain a
left-handed conformation. Formation of the left-
handed Z-DNA conformation is dictated by regions of
alternating purines and pyrimidines residues, such as
50-GCGCGCGCGCGCGCGC-30. In Z-DNA, the diameter
of the helix is 1.8 nm (518 Å). Each pitch is 3.7 nm
(537 Å) long and contains 12 base pairs. Thus, the
Z-form is narrower and longer than the B-form. It is
thought that local Z-DNA conformations may play
important roles in gene transcription.

1.5 TYPICAL EUKARYOTIC
GENE STRUCTURE

According to the classical view of transcription, for
any given gene, one of the two strands of DNA is

BOX 1.2 (cont’d)

purposes, such as high-stringency hybridization,

primers for polymerase chain reaction (PCR), or for

sequencing. For example, an oligoprobe that will be

used for high-stringency hybridization can

have$ 55% G1C content.

5. If the molecular weight of an unknown double-stranded

DNA is determined, the total base-pair content of the

DNA can be calculated based on the fact that each

nucleotide pair has an approximate molecular weight

of 660 Da. By the same token, if the total number of

base pairs in a DNA molecule is known, its molecular

weight can be determined as well.

6. Hoogsteen hydrogen bonding can create short

transient stretches of triple helix in vivo; triple helix

formation can also be induced under experimental

conditions. Synthetic oligodeoxynucleotides that can

form triple helix have been used in vitro to inhibit

gene expression in cells. Triple-helix-forming

oligonucleotides coupled to DNA-modifying agents

can be introduced into cells to modify the DNA

target in a highly sequence-specific manner. This

tool can be used to introduce genome modification,

modulate specific gene expression, or even

repair DNA.6,7

51.5. TYPICAL EUKARYOTIC GENE STRUCTURE
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transcribed, the other is nota. The DNA strand that
is NOT transcribed is called the sense or plus (1 ) or
coding strand because it has the same sequence as that of
the mRNA (except for U in RNA and T in DNA)—that is,
the same sequence of codons in the same 50-30 direction,
so that the polypeptide sequence can be predicted from
the sense strand sequence (see Box 1.3). In contrast, the
strand that is transcribed is called the template or anti-
sense or minus (2) or noncoding strand because its
sequence is complementary to the coding sequence;
hence, the polypeptide sequence cannot be predicted
from the template strand sequence. A typical mRNA-
coding eukaryotic gene has three major parts: a

transcribed region, a 50-flanking region, and a 30-flankng
region (Figure 1.2). In eukaryotes, different types of
RNAs are transcribed from the DNA by different RNA
polymerases: RNA polymerase I (pol I) transcribes ribo-
somal RNA (rRNA), RNA polymerase II (pol II) tran-
scribes messenger RNA (mRNA), RNA polymerase III
(pol III) transcribes transfer RNA (tRNA). For mRNA, the
primary transcript that contains both exons and introns is
called the heterogeneous nuclear RNA (hnRNA) or pre-
mRNA. The hnRNA is processed to remove the introns
(splicing), add a 7-methyl guanine cap at the 50-end by
50�50 linkage (Figure 1.2 inset), and add a poly(A) tail at
the 30-end, which is about 200 bp long in mammals.

FIGURE 1.2 Gene�hnRNA�mRNA�protein relationship. Exon 1 is noncoding. Thus, the 50-untranslated region (50-UTR) is derived
from exon 1, and the 30-UTR is derived from the noncoding part of exon 5, which is the last and the longest exon. The sense strand of DNA
has a “T” where the mRNA has “U”—for example, the poly(A) signal sequence in the sense strand is AATAAA, but in RNA it is AAUAAA.
The transcription initiation site is 11 and the base to the left (upstream) of it is 21; there is no 0 position. Also, note that RNA polymerase
transcribes well beyond the poly(A) site; this extra part of the transcript is degraded and does not form part of the last exon. Inset shows the
mRNA cap (7-MeG) and its 50�50 linkage with the first base of mRNA. nt, nucleotide; ORF, open reading frame.

aThe classical view of transcription is an oversimplification. Deep sequencing and global transcriptome analysis have demonstrated

that a significant proportion of the genome can produce both sense and antisense transcripts. When the sense and antisense

transcripts are produced from the opposite strands of DNA in the same genomic locus, the antisense transcript is called a

cis-antisense transcript because its target is the sense transcript. In contrast, trans-antisense transcripts are transcribed from a

different location than their targets (e.g. microRNAs).

6 1. FUNDAMENTALS OF GENES AND GENOMES
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1.5.1 Transcribed Region

The nucleotide sequence of a gene that is transcribed
into mRNA is composed of discrete sequences called
exons and introns. Introns are also known as intervening
sequences (abbreviated as IS) (Figure 1.2). After tran-
scription of the gene, a longer primary transcript (the
hnRNA or pre-mRNA) is produced. The hnRNA has the
same exon�intron organization as the gene: exons are
interrupted by introns. The hnRNA is processed to pro-
duce the mature mRNA. Exons are maintained in the
mature mRNA, while introns are spliced out (in most
cases). The structural unit of mRNA is the ribonucleotide
(Figure 1.3). Introns do not contain information for the
coding of the polypeptide. However, some introns, usu-
ally at the 50-end of the gene, contain signals for tran-
scriptional regulation. Introns of many genes also
contain nested genes that have distinct expression pro-
files.8 In mRNAs, a few terminal exons are noncoding,
whereas the internal exons code for amino acids. These
terminal noncoding exons form the 50- and 30-untrans-
lated regions (UTRs) of the mRNA. In most mRNAs,
the last exon (at the 30-end) is usually the longest of all
exons, and is partially coding (see Box 1.4).

1.5.1.1 Intron-Splicing Signals

Most introns in genes have GT at the 50-splice site
(in the DNA sense strand; hence GU in the hnRNA),
called the splice donor site, and AG at the 30-splice

site, called the splice acceptor site. These introns are
referred to as GTaAG introns. However, introns may
also contain GC or AT as the splice donor sites, and
AC as the splice acceptor site (hence, GCaAG introns,
ATaAC introns).

In most eukaryotic genes, the nucleotides surrounding
the splice donor and acceptor sites show a great degree
of conservation. The usual nucleotide distribution around
the splice sites is as follows:

50-splice site: 50-. . .NNNAGgtannn. . .30 (gt5 splice
donor site in the intron; N5 any nucleotide in the exon;
n5 any nucleotide in the intron; bases underlined are
usually conserved; AG are the last two bases of the
preceding exon, and a is the base that immediately
follows the splice donor site).

30-splice site: 50-. . .nnncagNNN. . .30 (ag5 splice accep-
tor site in the intron; N5 any nucleotide in the following
exon; n5 any nucleotide in the intron; the base under-
lined is usually conserved; c is the base immediately
preceding the splice acceptor site).

Two other important sequence elements are the branch
point and the polypyrimidine tract in the introns. The
branch point is located 20�50 nucleotides upstream from
the splice acceptor site. The consensus sequence of the
branch point site is (C/T)(T/C)(A/G)A(C/T), in which
the A-residue is conserved in all genes. This A-residue
is called the branch point and it plays a crucial role in
splicing. The polypyrimidine tract is located downstream
from the branch point.

BOX 1.3

1. An easy way to remember the sense and antisense

designations is to remember just one fact: that the

sequence of mRNA is sense. This is because the

codons can be found in the coding sequence of

mRNA; as a result the amino acid sequence of the

polypeptide can be predicted from the mRNA coding

sequence. Hence, any sequence that is same as the

mRNA sequence along with the same 50-30 polarity

is also sense. That is why the DNA strand that has

the same sequence and polarity as the mRNA is also

sense. Likewise, any sequence that is complementary

to the mRNA sequence, along with the opposite

50-30 polarity, is antisense. Hence, the template

DNA strand is antisense (Figure 1.4A).

2. By the same token, the probe used to detect mRNA

in northern blot or in situ hybridization is antisense

because it is complementary and has an opposite

polarity to the mRNA. When designing antisense

DNA oligoprobes for RNA or DNA hybridization,

the complementary and antiparallel sequence of

the sense strand of DNA is used. For example, in

Figure 1.4, the mRNA partial sequence shown is

50-AUG UGU AGA UCG AUG A-30. That region of

the antisense DNA probe will have the sequence

30-TAC ACA TCT AGC TAC T-50. Following

convention, the DNA probe sequence has to be

rewritten in a 50-30 direction from left to right.

Hence, this DNA probe partial sequence will be

rewritten (for reporting the sequence) as 50-TCA TCG

ATC TAC ACA T-30 (Figure 1.4B).

3. In the nucleotide databases, such as in National

Center for Biotechnology Information (NCBI), DNA

Data Bank of Japan (DDBJ), or The European

Molecular Biology Laboratory (EMBL), the reported

mRNA sequences do not contain U but instead

contain T. This is because the mRNA sequence is

reported as the sense strand of the cloned

complementary DNA (cDNA).
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FIGURE 1.3 Alkaline hydrolysis of RNA. In an alkaline pH, the OH2 can abstract the H from the 20-OH of ribose, generating the
nucleophile 20aO2, which carries out a nucleophilic attack on the δ1 P of the phosphate. This results in the cleavage of the phosphodiester bond
and the formation of 20230 cyclic nucleotide; the cyclic nucleotide hydrolyzes into ribonucleoside 20- and 30-monophosphate end products.

FIGURE 1.4 Sense and antisense strands of DNA. (A) The two strands of DNA have been drawn in different colors so that their
respective 50- and 30-ends could be easily distinguished. The figure shows that mRNA and the sense strand have the same sequence
(except for “U” in RNA and “T” in DNA) and the same 50�30 polarity. (B) The mRNA and antisense probe relationship.
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1.5.1.2 Effect of Intron Phase
on Alternative Splicing

Introns can be divided into three types based
on phases: phase 0, phase 1, and phase 2. A phase 0
intron does not disrupt a codon, a phase 1 intron
disrupts a codon between the first and second bases,
whereas a phase 2 intron disrupts a codon between
the second and third bases. An exon flanked by two
introns of the same phase is called a symmetrical
exon, whereas an exon flanked by two introns of
different phases is called an asymmetrical exon.
Intron phase determines which exons may or may not
be targeted for alternative splicing. With a few rare

exceptions, exons that are subjected to alternative
splicing are always symmetrical exons—that is, exons
flanked by same-phase introns. In contrast, asymmet-
rical exons—that is, exons flanked by different-phase
introns—cannot be alternatively spliced because such
alternative splicing will throw the normal open read-
ing frame (ORF) out of frame beyond the 30-splice site
(Figure 1.5). Such frameshift results in the creation
of premature stop codon and truncation of the ORF.
Intron phase determines exon shuffling potential,
which determines protein domain shuffling during
protein evolution and the evolution of organismal
complexity (discussed in Chapter 2; see Box 1.5).

BOX 1.4

1. Sometimes an intron may be retained in the mature

mRNA and perform specific regulatory functions.

For example, migration stimulatory factor (MSF) is

a truncated oncofetal isoform of fibronectin. Two

types of MSF mRNAs have been detected: a shorter

2.1-kbb transcript and a longer 5.9-kb transcript,

which differ only in the length of their 30-UTRs.

In the smaller transcript, the intron-derived

30-nucleotide (nt) coding sequence is followed by

a 165-nt intron-derived 30-UTR. This makes a total

of 195-nt intron-derived sequence in the smaller

transcript.9 This intron-derived 30-UTR also provides

the polyadenylation signal. The smaller transcript is

transported to the cytoplasm and eventually secreted,

while the larger transcript is retained in the nucleus.

2. After a gene is cloned and sequenced, the

exon�intron boundaries are identified by comparing

the gene sequence with its complementary DNA

(cDNA) (mRNA) sequence. Identification of the

exon�intron boundaries of a gene is essential when

attempting to manipulate the DNA, such as making a

gene-targeting construct.

3. The majority of internal exons in vertebrate genes

are less than 300 bp; the average length being 135 bp;

exons larger than 800 bp are rare.10

4. For most genes, the last exon (at the 30-end) is the

longest exon (could be well over 1 kb) and partially

coding.

5. For most genes, the 50-UTR is derived from more

than one exon. Of these 50 noncoding exons, the

most downstream one is usually partially noncoding

because the open reading frame (ORF) begins at

some place in this exon, making it partially

noncoding and partially coding.

6. For most genes, the 30-UTR is three to five times

longer than the 50-UTR, particularly in vertebrates.

7. In vertebrates, exons are small and introns are large.

In contrast, in lower eukaryotes, the opposite is

true.11

8. The transcription start site (1 1) in most genes begins

with a purine (mostly an “A”).

bkb, kilobase5 1000 bases; Mb, megabase5 1000 kb; Gb,
gigabase5 1000 Mb. In the context of DNA, these mean base pairs
(hence, kbp, Mbp, and Gbp).

BOX 1.5

Knowledge of the intron phases helps predict which

exon(s) can or cannot be targeted for alternative splicing.

Exceptions to this rule have also been reported in the litera-

ture. For example, the alternative splicing of rat liver-specific

organic anion transporter pre-mRNA, generating a functional

mRNA, involves the removal of exon 10, which is an asym-

metrical exon flanked by a phase 1 and a phase 2 intron.

The creation of a frameshift mutation in this unusually

spliced mRNA is averted by retaining 91 bp from the

50-end of exon 10 in the mature mRNA.12
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1.5.1.3 Evolution of Introns

After the initial discovery of introns in 1977, the
introns-early theory was proposed to explain the origin
and evolution of introns. According to the introns-early
theory, introns were present as intergenic regions in the
genome of the common ancestor of prokaryotes and
eukaryotes. These intergenic genomic regions were
subsequently lost in all prokaryote lineages; in contrast
they were maintained in eukaryotes as introns owing
to the appearance of the spliceosomal machinery. Walter
Gilbert suggested that the presence of introns allowed
exon shuffling, which resulted in genomes being more
complex and diversified. The accumulation of genomic
data has helped reconstruct the evolutionary history
of introns and replace the introns early theory with the
introns-late theory. According to the introns-late theory,
self-splicing introns (also known as retrointrons) first

invaded eukaryotic genomes, and spliceosomal introns
were subsequently derived from self-splicing introns.
Hence, spliceosomal introns only appeared in eukaryotes.
Spliceosomal machinery evolved as a means of removing
spliceosomal introns. Therefore, the last common ancestor
of eukaryotes had a spliceosomal-intron-rich genome.
The intron-containing genomes probably spread due
to population bottlenecksc. Further massive intron inva-
sion of the genome was likely limited only to those
genomes that underwent significant evolutionary innova-
tions. Intron loss in many lineages also occurred, resulting
in the present-day intron-poor species.13,14

Introns-late theory envisages that early introns had
no functions; hence their presence was deleterious for
the genomes. However, early introns were transcribed
and were free from selective constraints; hence, at
some point during evolution, they might have gained

FIGURE 1.5 The effect of intron phase on alternative splicing. (A) Alternative splicing involving the removal of a symmetrical exon
(flanked by introns of the same phase; 0�0) does not cause a frameshift in the ORF except for the deletion of the amino acids encoded by the
removed exon; (B) alternative splicing involving the removal of an asymmetrical exon (flanked by introns of different phase; 2�1) causes
a frameshift in the ORF downstream from the 30-splice site. Such frameshift results in the creation of a premature stop codon and truncation
of the ORF.

cPopulation bottleneck is a phenomenon in which the population size is drastically reduced through events like environmental

disaster, habitat destruction, or massive predation and hunting. As a result, only a small fraction of the genetic diversity of the

original population survives. When the population multiplies, the surviving genetic diversity spreads in the population. Thus, if the

intron-containing genome survived through a population bottleneck, it subsequently spread in the resulting population. In general,

population bottleneck results in a drastic reduction of the gene pool and genetic diversity in the resulting population. Owing to the

loss of genetic variation, the new population could be genetically distinct from the original population. Loss of genetic diversity,

particularly in a small population, can cause genetic drift and rare alleles face increased chance of being lost.
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some functions. One of the best known functions of
introns is their ability to increase transcription and
ultimately protein expression of intron-bearing genes
compared to intronless genes. In making transgenic
organisms, particularly transgenic plants, specific
introns are frequently included in the construct to
increase the expression of the transgene.

Introns are now known to mediate their function by
modulating every possible step of transcription: initiation,
elongation, termination, mRNA maturation, nuclear
export, and mRNA stabilization. The mechanism of action
of many introns is not known. However, the functions of
introns can be sequence-dependent, length-dependent,
position-dependent, and splicing-dependent.15

1.5.2 50-Flanking Region of Transcribed Genes

The 50-flanking region of transcribed genes contains
the promoter. The promoter contains specific sequences
for binding the proteins necessary for transcription
by RNA polymerase. The specific sequence in the
promoter that positions the pol II is called the TATA
box (consensus 50-TATAAA-30; some variants exist).
Typically, the TATA box is located 25�30 bp upstream
of the transcription start site (that is, 2 25 to 2 30 bp
position), and for any given gene the position of the
TATA box is fixed. However, many gene promoters
lack the TATA box (TATA-less promoters). Accurate
positioning of pol II in TATA-less promoters is thought
to be mediated by two other cis-acting sequence ele-
ments, the initiator element (Inr) and the downstream
promoter element (DPE). Inr has a consensus sequence
of Y-1 1-N-T/A-Y-Y (where Y is a pyrimidine, 11 is
the transcription initiation site, N is any nucleotide),
and DPE has a consensus sequence of (A/G)128G(A/T)
(C/T)(G/A/C)132. Therefore, Inr occurs around the
transcription start site and DPE occurs between 28 and
32 bases downstream from the transcription start site.
Many variants of the Inr sequence have been reported.

DPE has been most extensively studied in Drosophila.
Some other sequences in the promoter that are found in
most genes are the CAAT-box (around 2 75 to 2 80 bp
position) and the GC-box (around 2 90 bp position).

Various regions of the promoter have been termed
the core (or basal), proximal, and distal promotor
depending on their distance from the transcription
start site. The core promoter is about 35 bp long and
extends 35 bp upstream or downstream from the tran-
scription site (235 to 135), the proximal promoter
is around 250 bp long, whereas the distal promoter
is located further upstream. Therefore, the TATA
box, Inr, and DPE are all contained within the core
promoter, whereas the CAAT-box and the GC-box are
contained within the proximal promoter. Core, proxi-
mal, and distal promoter elements cooperate to regulate
transcription.

The proximal promoter contains additional cis-acting
sequences that are necessary for the regulation of gene
expression in response to specific stimuli. These
sequences are called response elements or regulatory
elements (RE). For example, genes that are induced by
glucocorticoids have a glucocorticoid response element
(GRE) in their promoters. Many such response elements
have been identified so far in a number of animal and
plant gene promoters. These response elements bind
specific transcription regulatory proteins called transcrip-
tion factors that control gene expression. Regulatory
elements can also be found far upstream of the TATA
box, far downstream in the 30-flanking sequence, and
even within introns. These elements typically act as
enhancers because they significantly upregulate the
expression of genes (see Box 1.6).

1.5.3 30-Flanking Region of Transcribed Genes

Although it is often said that the 30-flanking region
contains the transcription termination signal, eukaryotic
pol II does not terminate transcription at any definitive

BOX 1.6

Promoter-bashing experiments help identify the

importance of specific promoter sequences in regulating

gene expression. These experiments make use of dele-

tion mutations to narrow down the region of interest;

then individual bases are mutated to define the core

functional sequence involved in regulating transcription.

Bioinformatic software uses the available information

on various identified transcriptional activator- or

repressor-binding sequences, and scans the 50-flanking

sequences of a gene to predict putative binding sites in

the promoter. However, many of the putative binding

sites predicted through bioinformatic analysis may turn

out to have no effect on transcription when verified

through promoter-bashing experiments. Thus, predicted

regulatory sequences are only a rough guide and need

functional verification through experimentation.
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termination signals in the DNA. For most eukaryotic
protein-coding genes, pol II transcribes the template
strand 500�2000 nucleotides beyond the polyadenylation
site (Figure 1.2). Transcription termination is facilitated
by a number of protein factors (such as Cleavage and
Polyadenylation Specificity Factor (CPSF), Cleavage
Stimulation Factor (CStF), etc.) that become associated
with the pol II as soon as the enzyme leaves the pro-
moter. These factors, along with capping and splicing fac-
tors, ride on the C-terminal domain (CTD) tail of pol II.
Transcription of the poly(A) signal sequence triggers the
endonucleolytic cleavage of the nascent transcript, degra-
dation of the downstream cleavage product, and termina-
tion of transcription. The pausing of pol II downstream
from the poly(A) site appears to be an obligatory step
leading to termination, which involves the displacement
of pol II from the template. The 50- and 30-ends of a gene are
the same as the 50- and 30-ends of the sense strand.

1.6 MUTATIONS IN THE DNA
SEQUENCE

The sequence that codes for a polypeptide is referred
to as the coding region or open reading frame (ORF).
Various mutations in the ORF may or may not lead to
changes in the amino acid sequence in the polypeptide
product. If a mutation in DNA leads to an amino acid
change in the polypeptide, it is called amissense or non-
synonymous mutation; if a mutation does not lead to an
amino acid change in the polypeptide, it is called a silent
or synonymous mutation. Traditional wisdom assumes
that a synonymous mutation does not alter the protein
function because there is no change in the amino acid.
However, recent findings indicate that, in many proteins,
synonymous mutations may also alter protein function
because they result in an altered conformation of the
protein. Because protein folding is a co-translational pro-
cess, proper protein folding is tightly linked to the speed
of translation. Synonymous mutations that affect codon
usage may disrupt this process resulting in a wrongly
folded polypeptide. In fact, some human diseases could
be linked to such synonymous mutations.16

1.7 SOME FEATURES OF RNA

In traditional molecular biology, a discussion on
RNA focused on three types of RNA associated with
protein synthesis: ribosomal RNA (rRNA), messenger
RNA (mRNA), and transfer RNA (tRNA), of which
rRNA and tRNA are noncoding, whereas mRNA is pro-
tein coding. The world of functional noncoding RNA

molecules has since been greatly expanded (discussed
later). As mentioned above, RNA is the genetic material
in retroviruses. An RNA molecule is single stranded,
except in regions where base complementarity makes
the molecule fold back on itself forming double-
stranded segments. Like DNA, RNA is also composed
of nucleotides (ribonucleotides). However, there are
two differences from DNA: the sugar is ribose and
the base uracil (“U”) is present instead of “T”; thus the
base pairing is between “A” and “U.” Of the three
RNAs associated with translation (rRNA, mRNA, and
tRNA), the following discussion focuses on mRNA.

1.7.1 Instability of mRNA

Apart from the ubiquitous presence of the enzyme
RNAse that can easily degrade mRNA, the structure of
mRNA itself also contributes to its instability. The
ribose sugar makes RNA less stable than DNA, espe-
cially at alkaline pH. At alkaline pH, the 20-OH of the
ribose sugar undergoes alkaline hydrolysis, which
results in the breakage of the phosphate bond between
adjacent nucleotides, and formation of the 20�30 cyclic
nucleotide (Figure 1.3). Hydrolysis of this 20�30 cyclic
nucleotide gives rise to a mixture of ribonucleoside 20-
and 30-monophosphate products. In contrast, in DNA
the 20 carbon has an H instead of an OH, which pre-
vents the formation of the 20�30 cyclic nucleotide; this
prevents alkaline hydrolysis and makes DNA stable at
alkaline pH. At acidic pH, however, phosphodiester
bond hydrolysis occurs in both DNA and RNA.
Because RNA undergoes rapid alkaline hydrolysis,
particularly around 37�C, use of NaOH (even ice-cold)
to denature RNA is not recommended.

1.7.2 50- and 30-Untranslated Regions
of mRNA

A typical eukaryotic mRNA has three regions: a 50-
untranslated region (50-UTR), a coding region or ORF,
and a 30-untranslated region (30-UTR). The translational
start codon is AUG, and there is one of the three
translational stop codons, UAA, UGA, and UAG. The
50-end of mRNA has the cap (7-methyl GTP) attached
to the first base through a 50�50 linkage. The 50- and
30-UTRs are composed of noncoding exons or noncoding
parts of partially coding exons, whereas the ORF is com-
posed of coding exons. The last exon at the 30-end is
usually the longest. The 30-UTR of mRNAs contains the
poly(A) signal sequence 50-AAUAAA-30, which
is located 10�30 nucleotides upstream of the polyadeny-
lation site (see Box 1.7). The poly(A) tail is around 200
bp long in mammals. The cap at the 50-end and the poly

12 1. FUNDAMENTALS OF GENES AND GENOMES

BIOINFORMATICS FOR BEGINNERS



(A) tail at the 30-end help in translation and also aid in
the stability of the mRNA. If the 30-UTR of an mRNA
contains multiple poly(A) signal sequence, the mRNA
may undergo alternative polyadenylation, producing
transcripts with very different stability. Alternatively
polyadenylated mRNAs also differ in the length of their
30-UTRs; they can be observed in different tissues or at
different developmental stages where the half-life of
the same mRNA may markedly vary.17 Many mRNAs
with more than one poly(A) signal sequence have been
reported in the database, but not all of them have
been experimentally tested to confirm the generation of
alternatively polyadenylated transcripts.

The 50-UTR of mRNA controls the initiation of
translation. An important sequence relevant for
translation initiation and identification of the correct
AUG codon (translation start codon) is called the
Kozak sequence, after its discoverer, Marilyn Kozak.
The original Kozak sequence described was 50-
CCRCCAUGG-30 where AUG is the translation start
codon, and R is a purine. Later on, a shorter yet highly
effective version of the Kozak sequence was described
as 50-ACCAUGG-30. Although many mRNAs contain
the consensus Kozak sequence or some variant of it,
there are many other mRNAs that do not contain any
Kozak sequence at all.

The 50-and 30-UTRs of mRNAs can also regulate
gene expression and mRNA stability by interacting
with proteins or nonprotein ligands. For example,
the expression of feritin mRNA is regulated by the
binding of specific regulatory proteins to its 50-UTR,
whereas the stability of transferrin receptor mRNA is
regulated by the binding of specific regulatory pro-
teins to its 30-UTR. In contrast to protein ligands, in
bacteria certain mRNAs can regulate gene expression
by binding specific nonprotein ligands. The part of
the mRNA that binds to the small molecule and acts
as the genetic switch is called a riboswitch. Some
examples include coenzyme-B12-binding riboswitch,

flavin mononucleotide (FMN)-binding riboswitch,
thiamine or thiamine pyrophosphate (TPP)-binding
riboswitch—all located in the 50-UTR of the relevant
mRNAs.18

1.7.3 Secondary Structures in RNA

RNA crystallography has revealed the existence of a
rich variety of base pairing, giving rise to a multitude of
complex tertiary structural motifs. Leontis and Westhof19

proposed that the planar edge-to-edge hydrogen-
bonding interactions between RNA bases involve one
of three distinct edges: the Watson�Crick edge, the
Hoogsteen edge, and the sugar edge (which includes
the 20-OH). About 60% of the bases participate in canon-
ical Watson�Crick base pairs. The original geometric
nomenclature and classification has been recently
revisited by Abu Almakarem et al.,20 who developed a
classification scheme that is predicted to help identify
recurrent base triplets (referred to as “base triples” in
the publication) that can substitute for each other while
conserving RNA three-dimensional structure. Hence,
the system has applications in RNA three-dimensional
structure prediction and analysis of RNA sequence
evolution. Taking into consideration the spatial
orientations in which bases can interact, Leontis and
Westhof identified 12 basic geometric types with
at least two H-bonds connecting the bases. In other
words, Leontis and Westhof defined 12 base-pair
families. Using the combinatorial enumeration of these
12 base-pair families, Abu Almakarem and coworkers
predicted the existence of 108 potential geometric
base-triple (triplet) families. Searching representative
atomic-resolution RNA three-dimensional structures
revealed instances of 68 of the 108 predicted base-
triple families. Further model building suggested that
some of the remaining 40 families may be unlikely to
form for steric reasons.

BOX 1.7

1. Bioinformatic analysis of any sequence that

might code for a polypeptide will produce a total

of six reading frames: three in sense, three in

antisense. Of these, one reading frame is always

the longest, providing the legitimate ORF.

Some software produces only three sense-frame

output.

2. The polyadenylation (poly(A)) signal sequence is

highly conserved. The canonical poly(A) signal

sequence identified in cloned complementary DNA

(cDNA)/gene sequence is AATAAA (AAUAAA in

the mRNA). The only other known functional variant

of the poly(A) signal sequence is ATTAAA

(AUUAAA in the mRNA).
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1.8 CODING VERSUS NONCODING RNA

In addition to rRNA and tRNA, a few other classes
of ncRNAs have been known for some time, such as
snRNA (small nuclear RNA), snoRNA (small nucleolar
RNA), gRNA (guide RNA), Xist (X inactive-specific
transcript) and Tsix (an antisense regulator of Xist),
H19, Air, and Kcnq1ot1 (potassium channel Q1 overlap-
ping transcript 1). These ncRNAs are very different
in length (e.g. 50�70 nucleotides (nt), such as gRNA,
to more than 100 kb, such as Air ncRNA), and they
serve diverse functions. For example, snRNAs are
essential for mRNA splicing, snoRNAs are important
in methylation of rRNAs, gRNAs are essential in RNA
editing, whereas Xist, Tsix, H19, Air, and Kcnq1ot1
are all involved in the epigenetic regulation of gene
and genome expression; for example, Xist and Tsix are
involved in X-chromosome inactivation in mammals
whereas H19, Air, and Kcnq1ot1 are associated with
imprinted loci and genomic imprinting. Since the
1990s, the RNA universe has been producing regular
surprises that have enriched our idea about RNA’s
role in gene regulation, and the breadth of the cellular
gene regulatory network itself.

1.8.1 Small Noncoding RNA, Long
Noncoding RNA, Competing Endogenous
RNA, and Circular RNA

In recent years, a new class of ncRNAs, the small
ncRNAs (B20�30nt long), has been identified as
very powerful regulators of gene expression. Examples
include microRNA (miRNA, abbreviated as miR),
small interfering RNA (siRNA), and Piwi-interacting
RNA (piRNA).21,22

These small ncRNAs are generated through the
processing of double-stranded segments of long precur-
sor RNAs. Accordingly, software has been developed
to identify putative genomic sequences that may
give rise to small ncRNAs, as well as potential target
sequences of these putative ncRNAs. These theoretical
predictions have to be experimentally confirmed. An
ever-increasing number of studies have implicated
miRNAs and siRNAs in human health and disease,
ranging from metabolic disorders to diseases of various
organ systems, including various forms of cancer. More
than 30% of all human genes have been predicted to
be miRNA targets. Consequently, a number of freely
accessible web-based miRNA databases have been
developed that contain both predicted and experimen-
tally verified miRNA sequences. One such database is
the miRBase (http://microrna.sanger.ac.uk/), which is
one of the most comprehensive miRNA databases.
Release 19.0 (August 2012) of the miRBase reports a

total of 21,264 identified miRNAs in different species, of
which 2214 are identified in humans. Examples of some
other miRNA databases are:

miRNAviewer (http://cbio.mskcc.org/mirnaviewer/)
miRWalk (http://www.umm.uni-heidelberg.de/

apps/zmf/mirwalk/)
MicroRNA.org (http://www.microrna.org/

microrna/home.do)
miRGator (http://genome.ewha.ac.kr/miRGator/).

Long noncoding RNAs (lncRNAs) are . 200
nucleotides in length and do not code for protein. The
lncRNAs are the least understood among the ncRNAs,
but evidence suggests that they play important roles
in a broad range of biological processes.23 The Air,
Xist, Tsix, and Kcnq1ot1 RNAs discussed above are all
lncRNAs. A good lncRNA database can be accessed at
http://www.lncrnadb.org/.24

Just as an efficient regulatory network should have
multiple control points, the regulation of gene expres-
sion by miRNAs is further regulated by other RNAs.
Two such recently discovered miRNA-regulatory
RNAs are competing endogenous RNA (ceRNA) and
the most recently reported circular RNA (circRNA).
Functionally, both these RNAs antagonize the effects
of miRNA. The discovery of these anti-miR RNA
molecules will trigger a reevaluation of the model of
the RNA regulatory network, and the gene regulatory
potential of miRNAs.

As the name implies, competing endogenous RNAs
(ceRNAs) are noncoding RNA molecules that contain
binding sites for miRNAs, referred to as miRNA
response elements (MREs), and thus compete with the
miRNA targets to bind the miRNAs. In sequestering the
miRNAs, the ceRNAs allow the miRNA target RNAs to
be expressed. According to this definition of ceRNA, the
RNA products of expressed pseudogenes containing
miRNA binding sites will qualify as ceRNAs. Likewise,
lncRNA can act as ceRNA as well. For example,
linc-MD1 is a validated cytoplasmic lncRNA expressed
during myoblast differentiation; it acts as a ceRNA for
miR-133 and miR-135 targets. Phosphatase and tensin
homolog (PTEN) is a tumor suppressor gene whose
expression is frequently altered in many human cancers.
The regulation of PTEN expression by a whole plethora
of miRNAs is further modulated by ceRNAs, such as
VAPA and CNOT6L.25

The circular RNAs (circRNAs) with a functional
role are the latest addition to the RNA universe. The
existence of RNAs in circular form at a low level had
been reported earlier; these were treated as unique,
sporadic observations. The extensiveness of circRNA
expression was reported in 2012.26 The authors
concluded that a non-canonical mode of RNA splicing,
resulting in a circular RNA isoform, is a general
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feature of the gene-expression program in human cells,
and that the expression of circRNAs is more prevalent
and widespread than once thought. However, the
regulatory role of circular RNAs was highlighted by
two recent publications.27,28 Both these publications
described highly stable circular RNAs in human and
mouse brain (termed CDR1as, for antisense (as) to
the cerebellar-degeneration-related protein 1 tran-
script CDR1, by Memczak et al., and ciRS-7 for circu-
lar RNA sponge for miR-7, by Hansen et al.). These
circRNAs bind many copies of miR-7 and terminate
miR-7-mediated suppression of target mRNAs. These
circular RNAs contain approximately 70 conserved
binding sequences for miR-7. Overexpression of this
circRNA reversed the miR-7-mediated suppression of
the target mRNAs; hence, expressing this circRNA or
deleting the miR-7 had the same phenotypic outcome.
Hansen et al. also reported that the testis-specific
circRNA Sry (sex-determining region Y) serves as a
miR-138 sponge.

The existence of the different forms of noncoding
regulatory RNAs makes sense from the standpoint
of building robustness in the regulatory network.
However, it is tempting to speculate that the coexis-
tence of various forms of noncoding RNAs may also
determine the degree of titration needed to reach the
threshold of effects in a cell-specific manner.

1.9 PROTEIN STRUCTURE
AND FUNCTION

Proteins (polypeptides) are translated from the
mRNA, which carries the amino acid sequence informa-
tion for the polypeptide. Translation proceeds from the
N-terminal to C-terminal direction of the polypeptide
being synthesized. Proteins are made up of structural
units called amino acids. All amino acids are α-amino
acids. They are called α-amino acids because the amino
group (aNH2) is attached to the α-carbon atom—that is,
the carbon atom linked to the carbonyl carbon of the
carboxyl group (aCOOH). The basic formula of an
amino acid is shown in Figure 1.6A.

1.9.1 Configuration and Chirality
of Amino Acids

All amino acids except glycine (R5H) are chiral
because the α-carbon is chiral or asymmetric. So, except
for glycine all amino acids can have two mirror-
image stereoisomers (enantiomers). According to the
DL system of Fischer, all natural amino acids are in
L-configuration (as opposed to monosaccharides, which
exist in D-configuration) (Figure 1.6B); according to the
RS system of Cahn�Ingold�Prelog, all natural amino

FIGURE 1.6 Amino acid structure and peptide bond. All amino acids except glycine (in which R = H) are chiral because the α-carbon is
asymmetric. (A) Basic formula of amino acids; (B) L-configuration of amino acid per Fischer’s system; (C) S-configuration of amino acid per
Cahn�Ingold�Prelog rules; (D) the numbering of carbon atoms for lysine; (E) the peptide bond is a trans bond on the amide plane (in color).
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acids are in the S-configuration (Figure 1.6C). So, the
S-form is analogous to the L-form (see Box 1.8). Located
on the alpha carbon is the “R” group, called the side
chain. The nature of this side chain determines the iden-
tity of a particular amino acid. Glycine is the simplest
amino acid because R5H. Amino acid side chains can
be polar or nonpolar. Polar side chains may be charged
or neutral. For example, two negatively charged amino
acids are aspartic acid and glutamic acid. Two positively
charged (i.e. protonated) amino acids are lysine and
arginine. Figure 1.6D shows the numbering of carbon
atoms of lysine. A small fraction of histidine is also posi-
tively charged at physiological pH. Proline is the only
amino acid that has an imino group rather than an
amino group. Although there are many more amino
acids known so far, only 20 of them are standard
amino acids used by all organisms during translation
to synthesize proteins because they are encoded by the
genetic code.

1.9.2 Ionic Character of Amino Acids

In solution at physiological pH (7.4), amino acids
exist as dipole ions or zwitterions, where the amino
group (NH2) exists as an ammonium ion (NH3

1) and
the carboxyl group (COOH) exists as a carboxylate ion
(COO2) (Figure 1.6A). An amino acid can therefore
act as a base as well as an acid, and hence is an ampho-
lyte (having amphoteric properties). In a zwitterion,
the1 and2 charges cancel each other to give the
molecule a net charge of zero. However, at pH that is
significantly higher or lower than physiological pH,
amino acids undergo ionization. At acidic pH that is sig-
nificantly lower than 7.4, the amino group has a positive

charge while the carboxyl is neutral. At alkaline pH
that is significantly higher than 7.4, the amino group is
neutral while the carboxyl has a negative charge.

Amino acids of proteins in solution accept or lose
protons depending on the nature of the side chains.
The pKa values of amino acids (i.e. the tendency of
amino acids to lose protons) play an important role in
determining the pH-dependent properties of a protein
in solution. Internal ionizable groups in proteins are
essential for catalysis. During a cycle of function, these
internal ionizable groups can experience different
microenvironments, and their pKa values and charged
states adjust accordingly.29

1.9.3 Relationship between Protein
Function and the Location of Amino Acids
in the Polypeptide Chain

The location of amino acids in the folded conforma-
tion of a protein is relevant for the protein’s function
and its interaction with the environment. For example,
proteins located in a hydrophobic environment, such as
membrane, have nonpolar (hydrophobic) side chains
on the surface interacting with the membrane lipids. In
contrast, proteins located in an aqueous environment,
such as cytosol, have polar side chains (hydrophilic) on
the surface interacting with the aqueous environment.

Arginine and lysine carry positive charges, and are
often located on the interacting surface of proteins
that interact with negatively charged molecules.
Predictably, arginine and lysine are found on the
surface of DNA-binding proteins that interact with
the negatively charged phosphate group of DNA.

BOX 1.8

1. The DL system of denoting enantiomers, originally

introduced by Emil Fischer, is an old way of denoting

the chirality of biological macromolecules. A more

recent system is the RS system introduced by Robert

Cahn, Christopher Ingold, and Vladimir Prelog.

Naturally occurring amino acids have L-configuration

according to the DL system, and S-configuration

according to the RS system. In the RS system, first

the priority of the groups attached to the chiral center

is established. Then the order from the highest

priority group to the second highest priority group,

and so on, is established. If the order is clockwise, the

molecule is said to have the R- (rectus) configuration;

if the order is anticlockwise, the molecule is said

to have S- (sinistrus) configuration. In Figure 1.6,

NH3
1 has the highest priority (because the atomic

number of N is 7), followed by COO2 (because the

atomic number of C is 6). If the first atom of two

groups has the same atomic number, then the

priority of the group is determined by the second

atom and so on. Thus, COOH will have higher

priority than CH2OH.

2. The presence of two H atoms makes the α-carbon of

glycine achiral (not chiral) or symmetric. As a result,

glycine does not have any enantiomer (D/R or

L/S isomer) and has no optical activity (dextro or levo).
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Similarly, aspartic acid and glutamic acid carry
negative charges, and are often located on the interact-
ing surface of proteins that interact with positively
charged molecules. Aspartic acid and glutamic acid
in calmodulin bind Ca11 ions, which carry a comple-
mentary positive charge. Many proteins in halophilic
archaebacteria, which live in an extremely salty
environment, have high localized concentrations (high
charge density) of acidic amino acids on the surface.
Such high charge density of acidic amino acids very
effectively sequesters sodium ions, thus preventing
denaturation and precipitation of cellular proteins.
In fact, these proteins are denatured if placed in low
salt concentration because the removal of sodium ions
leaves many closely placed negative charges exposed,
which strongly repel each other.

Serine, threonine, and tyrosine have hydroxyl
groups (2OH) in their side chains. These OH groups
can serve as phosphate attachment sites during phos-
phorylation. Many receptors that are involved in signal
transduction are phosphorylated for activation, and
consequently have these amino acid residues in their
active sites. Phosphorylation causes conformational
change in these receptors.

The sulfhydryl (-SH) group in cysteine is ideal for
binding metals through metal—thiolate bonds. Naturally,
cysteines are prevalent in many storage proteins that bind
heavy metals. For example, in metallothionein,
the intracellular metal-binding protein, one third of the
amino acid residues are cysteines. The -SH group is also
ideal for forming strong covalent disulfide linkages that
stabilize the conformation of proteins. Expectedly,
cysteines are found in many enzymes that function
in harsh conditions of salt and pH, such as digestive
enzymes like pepsin and chymotrypsin. The structure of
many small proteins, such as insulin and ribonuclease, is
stabilized by cysteine disulfide linkages. Cysteine disul-
fide linkages also confer rigidity to protein tertiary struc-
ture and are found in proteins like keratin in hair.

Proline occurs near the bend of polypeptide chains,
and its ring forms a useful kink in the protein chain.
Therefore, proline helps redirect the protein chain back
inwards or around a tight corner.

Glycine and alanine, being very small, are flexible
and can easily fit into tight spots. For example, glycine
is the most abundant amino acid in the tight triple
helix of collagen (about one-third of all amino acids).
Alanine, being small and chemically inconspicuous,
can be accommodated on the inside as well as outside
of proteins. Alanine residues are very common in
proteins. Attempts to confirm the functional role of
specific amino acid residues in proteins involve muta-
genesis experiments, and oftentimes the target amino
acid is replaced by alanine.

1.9.4 Linkage between Amino
Acids—The Peptide Bond

Amino acids are linked together by peptide bonds
(alpha peptide bonds), which are simply amide
linkages between the NH2 and COOH groups of
neighboring amino acids. The peptide bond has
unique characteristics, which contribute to the overall
structure of proteins. The peptide bond has a partial
double-bond character. Thus, it is rigid and planar
and not free to rotate. The plane on which it lies is
called the amide plane. Peptide bonds are generally
trans bonds—that is, the carbonyl oxygen and amide
hydrogen are in trans position (Figure 1.6E). The
CαaC bonds are not rigid and they can freely rotate,
being only limited by the size and character of the
R groups. In lysine, the ε-amino group (Figure 1.6D)
also participates in the formation of a peptide bond,
which is called an isopeptide bond because it does not
involve the usual α-amino group.

1.9.5 Four Levels of Protein Structure

Proteins have four levels of structure: primary,
secondary, tertiary, and quaternary. Primary structure
refers to the amino acid sequence of a protein.
Secondary structure refers to the conformation of the
polypeptide backbone. Examples of secondary structures
are helices (α-helix), pleated sheets (β-pleated sheet),
and bends or turns (β-bend). Tertiary structure of a
protein refers to its three-dimensional structure—that is,
further folding of the secondary structure in the
three-dimensional space. Quaternary structure refers to
a structure achieved by proteins composed of more than
one polypeptide chain. Each polypeptide chain, called a
subunit, has its own primary, secondary, and tertiary
structure. In quaternary structure, protein chains (subu-
nits) can associate with one another to form dimers,
trimers, and other higher orders of oligomers. Recent
studies have shown that despite having definitive struc-
ture, many proteins have specific regions that are intrin-
sically disordered (see Box 1.9).

1.9.6 Acidic and Basic Proteins

At physiological pH (7.4), acidic proteins tend to be
negatively charged and have a higher proportion of
acidic amino acids (e.g. aspartic acid, glutamic acid),
whereas basic proteins tend to be positively charged
and have a higher proportion of basic amino acids
(e.g. arginine, lysine).

Hydrophilic and charged amino acids are frequently
associated with antigenic determinants (epitopes),
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such as arginine, lysine, aspartic acid, glutamic acid,
asparagine, glutamine, serine, and threonine.

1.9.7 Nonstandard Amino Acids
in Polypeptide Chains

As indicated earlier, selenocysteine and pyrrolysine are
the two nonstandard amino acids that are incorporated
directly into the polypeptide chain during translation.
Selenocysteine has been found in lower as well as higher
organisms (including mammals), while pyrrolysine has
so far been found in certain archaebacteria. However,
their occurrence in proteins is not nearly as universal as
the 20 standard amino acids.

1.10 GENOME STRUCTURE
AND ORGANIZATION

The genomic DNA in the nucleus exists in combina-
tion with histone proteins; the DNA�protein complex
is known as chromatin. The unit of chromatin is the
nucleosome; thus, chromatin can be envisioned as a
repeat of regularly spaced nucleosomes. A nucleosome
core particle is composed of a histone octamer and
the DNA that wraps around the octamer (Figure 1.7).
Histones are globular basic proteins with a flexible
N-terminal end (the so-called “tail”) that is subject to var-
ious covalent modifications (epigenetic modifications).
The histone octamer is composed of two molecules
each of histones H2A, H2B, H3, and H4. DNA wraps

around the octamer in a left-handed supercoil of about
1.75 turns that each contain approximately 150 bp.
Histone H1 is the linker histone that, along with linker
DNA, physically connects the adjacent nucleosome
core particles. Each nucleosome has a diameter of
10 nm, and the nucleosomes are compacted into a sole-
noid fiber structure of 30 nm (see Box 1.10). The 30-nm
solenoid fibers undergo further progressive compaction
into 300-nm filament, and ultimately into a 700-nm
chromosome. During cell division, when the chromo-
somes duplicate, a 1400-nm metaphase chromosome is
produced, containing two chromatids, each chromatid
being 700 nm (Figure 1.7).

The major non-histone proteins associated with
chromatin are the high mobility group (HMG) proteins.
Whereas histones increase the compactness of the
chromatin, HMG proteins decrease its compactness.
By decreasing the compactness of the chromatin, HMG
proteins facilitate the accessibility of various regulatory
factors to DNA. HMG proteins can also bind to DNA
and cause significant bending of the DNA. DNA bend-
ing is important for the interaction between transcription
factors and coregulators (coactivators/corepressorsd)
in regulating transcription.

Various protein�DNA interactions can make the
chromatin undergo changes in its conformation in
response to various cellular metabolic demands. Altered
chromatin conformation, in turn, can limit or enhance the
accessibility and binding of the transcription machinery,
thereby regulating transcription. Some of these regula-
tory effects could be mediated epigenetically.

BOX 1.9

INTR INS ICALLY D I SORDERED PROTE INS : THE “UNSTRUCTURAL ”
ASPECT OF STRUCTURAL B IOLOGY 3 0

It has long been known that structural flexibility exists

in proteins and aids in ligand binding. Nevertheless,

the “structure�function paradigm”—that is, that pro-

teins possess definitive three-dimensional structures in

order to perform their function—has been the standard

paradigm in protein biochemistry. Experimental evi-

dence accumulating since the turn of the millennium

has brought to light a unique aspect of protein structure

that challenges this traditional structure�function para-

digm once thought to be a universal theme applicable

to all proteins. These findings demonstrate that under

native functional conditions, many proteins or specific

regions of some proteins are intrinsically disordered,

existing as molten globules, collapsed or extended

random coils, transiently structured forms, etc. These

proteins are called intrinsically disordered proteins

(IDPs). IDPs lack a unique three dimensional structure,

either entirely or in part, when alone in solution. About

10�35% of prokaryotic and about 15�45% of eukaryotic

proteins are estimated to contain disordered regions that

are at least 30 amino acid residues in length. A signifi-

cant number of IDPs are involved in regulatory and

signaling functions; hence, IDPs are more prevalent

in eukaryotes than in prokaryotes. IDPs and IDP data-

bases are discussed in section 8.11 (Chapter 8).

dCoactivators and corepressors are proteins that do not bind DNA themselves, but interact with DNA-binding proteins, to either

upregulate or downregulate transcription.
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1.10.1 The Structure of a Representative
Genome—The Human Genome

The human genome is discussed here as the repre-
sentative genome.32�34 The human genome consists of
3.2 billion (3.23 109) base pairs (53.2 Gbp), distributed

in 23 pairs of chromosomes (22 pairs of autosomes1XX
or XY sex chromosomes). There areB21,000 protein-
coding genes, and the protein-coding fraction of the
DNA constitutesB1.5�2% of the entire genomic DNA.
About two-thirds of the protein-coding genes have
1:1 orthologse across placental mammals. Regulatory

FIGURE 1.7 The hierarchy of organization from chromosome to nucleosome. Inset shows the relative position of histone monomers with
respect to one another and the direction of wrapping of DNA around nucleosomes. (Figure reproduced from Choudhuri et al. (2010) Toxicol. Appl.
Pharmacol. 245: 378�393, with some modifications.)

BOX 1.10

CHROMAT IN F I B ERS : 3 0 NM OR 1 0 NM ?

Figure 1.7 shows the prevailing model of genome

organization, which is the subject of textbooks. This model

has been in existence since the mid-1970s, and it describes

chromatin as a 30-nm fiber, which is formed by the coiling

of the basic 10-nm fiber. Recent experimental evidence has

challenged this traditional concept of chromatin organiza-

tion.31 By combining electron spectroscopic imaging with

tomography, the authors generated a three-dimensional

image that revealed that both open and closed chromatin

domains in mouse somatic cells comprise 10-nm fibers.

This indicates that the 30-nm chromatin model does not

reflect the true regulatory structure in vivo. So, why was

chromatin fiber reported to be 30 nm? This puzzle remains

to be solved to the satisfaction of chromatin biologists. It

has been suggested that it could be a combination of meth-

odological artifact associated with chromatin isolation, as

well as the inability to detect and distinguish the existence

of the 10-nm fibers in the background of 30-nm fibers.

Additional studies are expected to resolve this issue in the

near future.

eGenes in different species but related by speciation events are called orthologous genes or orthologs. Depending on the number of

genes found in each species, the relationship of orthologs could be 1:1, 1:many, and many:many.
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sequences constitute B3�3.5% of the genome. The
genome also codes for a significant number of noncod-
ing regulatory RNAs. Initial studies suggested that
more than 10% of the genome is represented in mature
transcripts, andB20% of the genome may be function-
ally important. These estimates have been revised and
significantly expanded based on the findings of the
Encyclopedia of the DNA Elements (ENCODE) project,
discussed later. The genomes of two humans are about
99.9% identical.

Repeat sequences account forB50% of the human
genome; hence repeat sequences constitute a signifi-
cant source of genetic diversity. Repeat sequences
are of various types: simple repeats (e.g. (A)n,
(CA)n, (CGG)n), tandem repeat blocks (e.g. centro-
meric repeats, telomeric repeats, ribosomal gene
clusters), segmental duplications (e.g. blocks of
1�200 kb or longer repeats copied from one region
of the genome and integrated into another region of
the genome), interspersed repeats (transposable-
element-derived), and processed pseudogenes. In
addition to the repeat content, further functional
genetic diversity is imparted by single nucleotide
polymorphism (SNP) and copy number variation
(CNV), also called copy number polymorphism
(CNP). According to older definition, a point muta-
tion has to occur in at least 1% of the population
in order to qualify as an SNP, but this is no longer
strictly followed; all point mutations are called
SNPs. In the human genome,. 65% of all SNPs are
C-T transition mutations.

Recent evidence suggests that the human genome
is extensively transcribed. However, the fraction of
the genome that is transcribed into functional non-
coding transcripts is yet to be estimated precisely.
The findings from the Encyclopedia of the DNA
Elements (ENCODE) project suggest that the noncod-
ing yet functional fraction of the genome may vary
significantly from chromosome to chromosome. There
is also evidence for both sense and antisense tran-
scription in the human genome. There is extensive
alternative splicing of transcripts so that there are
well above 100,000 proteins encoded by the human
genome.

The G1C-rich regions of the genome are gene-
dense, and the genes in these regions are smaller and
more compact due to smaller intron size. Conversely,
A1T-rich regions are gene-poor and the genes in
these regions are longer because of longer intron size.
Average G1C content of the entire human genome
is 41%, but local G1C contents may vary significantly.
An important component of the G1C-rich genomic

regions is the CpG sequence, which may or may not
occur in clusters. CpG clusters are called CpG islands.
The human genome contains about 0.8% CpG islands.
However, based on the G1C content (B41%), the
CpG island frequency should beB4%. The difference
is due to the fact that the cytosine of the CpG island is
methylated, and over evolutionary time the methyl
cytosine (meC) tends to spontaneously deaminate to
thymine, hence converting CpG to TpG. The meC-T
mutation creates a TaG mismatch in the DNA double
strand and is normally repaired; however, it some-
times escapes the repair machinery (e.g. if it happens
before replication and strand separation). The CpG
islands are associated with the 50-ends of many genes.
Identification of CpG islands thus helps define the
50-ends of genes. Methylation of the C of CpG is associ-
ated with transcriptional silencing, and the absence
of methylation is associated with active transcription.
Thus, unmethylated CpG islands are associated with
the promoters of transcriptionally active genes, such as
housekeeping genes, and genes showing tissue-specific
expression.

The birth of new genes and the death of existing
genes in the genome are important events that con-
tribute to genome evolution. New genes can be born
or acquired by a genome. New genes can be
born through one of multiple genomic events, such
as gene duplication, de novo gene origination,
and transposable element (TE) domestication.
Duplicated genes can diverge and acquire new func-
tion. These genes are called paralogous genes or
paralogsf. New genes can be born de novo by func-
tionalization of a previously noncoding region of the
DNA. Sometimes genomes can recruit TEs and use
the TE-encoded protein as the cellular protein. New
genes can also be acquired through lateral gene
transfer. Genome evolution is discussed in more
detail in Chapter 2.

Gene death occurs when genes acquire inactivating
mutations and lose function. Pseudogenization is a
common mechanism of gene death. Pseudogenes may
be non-processed pseudogenes or processed pseudo-
genes. Non-processed pseudogenes are an inactivated
form of a gene that has acquired inactivating muta-
tions; hence they may have intact exon�intron organi-
zation but the ORF is disrupted. In contrast, processed
pseudogenes result from the reverse transcription of
mRNA into complementary DNA (cDNA), followed
by the integration of the cDNA into the genome.
Thus, processed pseudogenes may have a poly(A) tail
but they lack a promoter and other 50-regulatory ele-
ments. (see Box 1.11)

fParalogous genes or paralogs are produced through gene duplication within a genome. Paralogs may evolve new functions or may

become pseudogenes.
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1.10.2 Functional Sequence Elements
in the Genome

Functional sequence elements of the genome regulate
genome expression. These are promoters, enhancers,
silencers, locus control regions (LCRs), and insulators.
Elements that aid in the termination of transcription
(terminators) are not discussed here.

1.10.2.1 Promoters

The 50-flanking region of the gene is the region
upstream of the transcription start site (1 1). It con-
tains the promoter and other cis-acting transcription
regulatory sequence elements. A promoter is a cis-
acting transcription regulatory element that initiates
the transcription of a gene. The various regions of the
promoter are termed the core (or basal) promoter,
proximal promoter, and distal promoter, based
on their distance from the transcription start site.
Typically, the core promoter is about 35 bp long, and
can extend between the 235- and 135-nt position
(with respect to the 11 site). The core promoter may
contain two or more of the following sequence motifs:
TATA box, initiator (Inr) element, and downstream
promoter element (DPE). Upstream of core promoter
is the proximal promoter, which is about 250-bp
long and can extend between the2 250 and1 250-nt
position. However, in the literature, sequences far
upstream of2 250 have also been referred to as proxi-
mal promoter sequences. Sequences that are further
upstream of the proximal promoter elements are called
the distal promoter. In general, the transcription start
site is determined by the TATA box and the initiator
element, or in the case of TATA-less promoters, by
the initiator element and the downstream promoter
element, all located within the core promoter.18

1.10.2.2 Enhancers

Enhancers bind specific transcriptional activators and
enhance the rate of transcription. Enhancers can be

located close to the transcription start site, upstream or
downstream from the transcription start site, and even
within introns. An enhancer can regulate more than one
gene in a position- and orientation-independent man-
ner. The mechanism of enhancer action is thought to
involve looping of the DNA, thereby bringing the
enhancer-bound transcriptional activators close to the
promoter-bound transcription factors. In doing so,
enhancers increase the concentration of activators near
the promoter, which directly or indirectly interact
with the promoter to initiate transcription. The interac-
tion of enhancer-bound transcriptional activators and
promoter-bound transcription factors is mediated by
coactivators. Coactivators are proteins that do not
bind DNA themselves but interact with DNA-bound
transcriptional activator proteins, thereby facilitating
protein�protein interaction. Some examples of coactiva-
tor proteins are CBP/p300, p160, p300/CBP-interacting
protein (p/CIP), p300/CBP-associated factor (p/CAF),
yeast transcriptional adaptor GCN5, steroid receptor
coactivator-1 (SRC-1), and there are many others.
The opposite of enhancers are silencers, which bind
transcriptional suppressor proteins and suppress
transcription, thereby acting as negative regulatory
elements. Like enhancers, silencers can also function in
an orientation-, position-, and distance-independent
manner, and they can also be located within introns.

1.10.2.3 Locus Control Regions

A locus control region (LCR) enhances the transcrip-
tion of a cluster of linked genes by inducing a more
open conformation of the chromatin flanking the locus.
The LCR of the human β-globin locus has been well
studied. The transcription-enhancing activity of LCRs
is mediated by the binding of specific transcriptional
activator proteins. Because LCRs can induce conforma-
tional change of chromatin, they play important roles in
regulating the transcriptional activity of the euchromatic
regions of chromosomes.

BOX 1.11

More than a decade after genome sequencing, we are

still far from understanding many aspects of structural and

functional genomics, such as the exact number of protein-

coding and non-protein-coding genes and their genomic

locations; the genome-wide distribution of functional

regulatory elements; the regulation and coordination of

gene expression at different levels and regulation of the

regulators; chromatin dynamics; epigenetic editing of

the language of DNA; gene and protein networks;

protein�protein interactions; regulation of interaction

specificity in biological systems and the specificity determi-

nants, such as protein interaction specificity and signaling

specificity; the correlation between genetic diversity and

disease susceptibility; the molecular determinants of

humanness, that is, what it means to be a human at the

molecular level; and many such similar questions.
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1.10.2.4 Insulators

Insulators are gene-boundary elements; these are
DNA sequence elements that, when bound to insulator-
binding proteins, shield a promoter from the effects
of nearby regulatory elements. There are two types of
insulator functions: an enhancer-blocking function and
a heterochromatin barrier function. When an insulator
is located in between a promoter and an enhancer, the
enhancer-blocking function of the insulator shields
the promoter from the transcription-enhancing influence
of the enhancer. The heterochromatin barrier function of
an insulator prevents a transcriptionally active euchro-
matic region from turning into transcriptionally inactive
heterochromatin by the inactivating effect of the
invading adjacent heterochromating. An example of an
enhancer-blocking insulator is the gypsy insulator
in Drosophila. The chicken β-globin insulator (cHS4),
which is highly rich in G1C and the most extensively
studied vertebrate insulator, has both enhancer-blocking
and heterochromatic barrier functions. The mechanism
of the enhancer-blocking function may involve DNA
looping, but it is yet to be established. However, the
mechanism of heterochromatic barrier function under-
standably involves the maintenance of active chromatin
configuration through histone modifications at the
boundary. Various proteins that bind to these insulator
sequences have been identified.35

1.10.3 Epigenetic Modifications of the Genome
Can Edit the Language Written in the DNA
Sequence and Add an Extra Layer of
Complexity in Genome Expression

Epigenetics is the study of mitotically or meiotically
heritable changes in gene function that cannot be
explained by changes in the DNA sequence.36

Epigenetic inheritance involves the transmission of epi-
genetic marks not encoded in the DNA sequence, from
parent cell to daughter cells and from generation to
generation. Epigenetic regulation of genome expression
is mediated by three main mechanisms: (1) DNA meth-
ylation, (2) histone modification and chromatin con-
formation change, and (3) regulation of gene
expression by ncRNAs. DNA methylation involves the
covalent addition of a methyl group to the carbon-5
position of cytosine to form 5-methylcytosine (5-mC)
in CpG dinucleotides. Methylation is catalyzed by
three major DNA methyltransferases (DNMTs),
and the methyl group donor is S-adenosylmethionine

(SAM). The de novo methylation establishes the parent-
specific methylation pattern, and maintenance methyla-
tion replicates the methylation pattern of the parent
strand to the daughter strand during DNA replication.
This is accomplished by first recognizing the hemi-
methylated CpG sites at the replication foci, followed
by the addition of methyl groups to cytosines on the
nascent DNA strand to re-establish the parent-specific
methylation pattern. The de novo methyltransferases
are DNMT3A and DNMT3B, whereas the maintenance
methyltransferase is DNMT1.

Methylation of the C of CpG is associated with tran-
scriptional silencing, and the absence of methylation is
associated with active transcription. Thus, unmethylated
CpG islands are associated with the promoters
of transcriptionally active genes, such as housekeeping
genes and genes showing tissue-specific expression.
Transcriptional silencing by DNA methylation is medi-
ated by a condensed state of chromatin. Conversely, tran-
scriptionally active genes maintain an open state of
chromatin.

Covalent histone modification—such as acetylation,
methylation, phosphorylation, ubiquitination, or sumoy-
lation of specific amino acid residues, such as lys (K),
arg (R), ser (S) and others, but mainly lys residues
of different histone subunits—can either upregulate or
downregulate gene expression. All known histone
acetylation and phosphorylation modifications are
transcription-activating, whereas all known sumoyla-
tions are transcription-silencing. Histone methylation
and ubiquitination can be transcription-activating or
silencing, depending on the specific residue modified.
Table 1.2 shows some transcriptional-activating and
repressing histone modifications. Epigenetic orchestra-
tion of genome expression is a tightly regulated process
and it involves the cross-talk between DNA methylation
and histone modifications.37

Regulation by small ncRNAs (e.g. miRNAs, siRNAs)
is another means of epigenetic regulation of gene and
genome expression. Small ncRNA-mediated silencing of
gene expression, known as RNA interference (RNAi), is
achieved either by translational repression (by miRNA)
or by mRNA degradation (by siRNA).22

Some of the relatively well studied examples of
epigenetic phenomena regulating gene and genome
expression are transvection (observed in dipteran
insects), genomic imprinting, X-chromosome inactiva-
tion, paramutation, and heterochromatin spread and
position effect variegation.38 Although epigenetic
mechanisms can edit the language of DNA written in its

gSometimes, indiscriminate propagation of heterochromatin into adjacent euchromatin results in silencing of genes located in close

proximity to the propagating heterochromatin. The silencing is often not complete; the genes are silenced in some cells, but in other

cells they are expressed, resulting in a so-called variegated (patchy) expression pattern. Because this expression pattern is brought

about by the proximity of the genes to the heterochromatin, the phenomenon is called position-effect variegation (PEV).
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base sequence, thereby altering genome expression, epi-
genetic modulation of gene and genome expression
needs further characterization. For example, much needs
to be understood in terms of the correlative versus causal
effects between exposure to various environmental fac-
tors and epigenetic changes. Additionally, we are not yet
able to distinguish between adaptive and adverse epige-
netic changes. Normal epigenetic changes associated
with age and different life stages need to be thoroughly
characterized as well. Some preliminary data are avail-
able but more work is underway.

1.10.3.1 Histone Code

Strahl and Allis39 coined the term histone code to
describe the concept that specific histone modifications
could act sequentially or in combination to form a
recognizable “code” that could regulate transcription as
well as the state of chromatin condensation. Turner40

used the term epigenetic code, which was conceptually
same as the histone code. For example, phosphorylation
of histone H3 serine 10 (H3S10) stimulates acetylation of
histone H3 lysine 14 (H3K14), which is a transcription-
activating modification; monoubiquitination of histone
H2B lysine 120 (H2BK120) stimulates methylation of his-
tone H3 lysine 4 (H3K4), which is also a transcription-
activating modification.41 See Box 1.12 regarding symmet-
rical and asymmetrical histone code.

TABLE 1.2 Some Transcription-Activating and Repressing
Histone Modifications

Some Transcription-Activating Modifications

Acetylation

Histone H2A: K5, K9, K13; Histone H2B: K5, K12, K15, K20;
Histone H3: K9, K14, K18, K23, K56; Histone H4: K5, K8, K13, K16

Phosphorylation

Histone H3: T3, S10, S28, Y41; Histone H2AX: S139
(for DNA repair)

Methylation (me1/me2/me3)

Histone H3: K4, K9 (me1), K36, K79, R17, R23;
Histone H4: R3

Ubiquitination

Histone H2B: K120, K123 (yeast)

Some Transcription-Silencing Modifications

Methylation (me1/me2/me3)

Histone H3: K9 (me2, me3), K27; Histone H4: K20

Ubiquitination

Histone H2A: K119

Sumoylation

Histone H2A: K126 (yeast); Histone H2B: K6, K7 (yeast);
Histone H4: K5, K8, K12, K16, K20

BOX 1.12

ASYMMETR ICAL MOD I F I CAT ION OF H I STONE
AND ASYMMETR ICAL H I STONE CODE

The traditional view assumes that histone code is

symmetrical; that is, both molecules of the same histone in

a nucleosome are modified in the same way. However,

recent experimental evidence challenges this long-held

view.42 Using preparations of chromosomal mononucleo-

somes from embryonic stem cells, mouse embryonic

fibroblasts, and cultured HeLa cells, the authors showed

the existence of di- and trimethylation of lysine 27

of histone H3 (H3K27me2/3) both symmetrically and

asymmetrically in native chromatin in approximately

equal proportions. When the H3K27me2/3 mark occurred

asymmetrically there was a different methylation mark

on the sister histone, either H3K4me3 or H3K36me2/3.

In other words, in a nucleosome, one of the two H3 mole-

cules contains one mark, while the other H3 contains a

different mark. Whereas H3K4me3 or H3K36me2/3 are

transcription-activating modifications, H3K27me2/3 is

transcription-repressing modification. The coexistence of

such antagonizing histone modification marks might

facilitate rapid and efficient regulation of transcription

because the removal of one of these marks may be

sufficient to rapidly induce transcriptional activation or

repression. The existence of asymmetric histone modifica-

tions also shows that histone code could be symmetric

or asymmetric. The possibility of existence of asymmetric

histone modification marks throughout the genome

significantly expands the scope of epigenetic regulation,

particularly when the combinatorial aspect of such

modifications and their effect on transcription are taken

into account.
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1.10.3.2 The Dynamics of Epigenetic Changes

Epigenetic modifications, particularly DNA methyla-
tion, have been traditionally regarded as static modifica-
tions. Progress in epigenetics during the past few years
has demonstrated that epigenetic modifications of the
genome are lot more dynamic than initially thought. A
recent study in mice43 suggests that epigenetic modifica-
tions can even control circadian rhythms of gene expres-
sion, thereby regulating circadian-rhythm-driven
physiological processes. The authors observed circadian
oscillations of several antisense RNA, long noncoding
RNA, and microRNA transcripts coupled with rhythmic
histone modifications in promoters, gene bodies, or
enhancers in adult mouse livers. Promoter DNA methyl-
ation levels were relatively stable. The authors identified
a set of 1262 (9% of expressed) oscillating transcripts, of
which 1160 were protein-coding, including genes impli-
cated in metabolic regulation, such as Arntl, Cry1, Per1,
Per2, Per3, Rorc, Foxo3, and many others. The five investi-
gated histone modifications—H3K4me1, H3K4me3,
H3K9ac, H3K27ac, and H3K36me3—were enriched
in actively transcribed genes and correlated with tran-
script levels. The oscillating expression of an antisense
transcript (asPer2) to the gene encoding the circadian
oscillator component Per2 was also identified. Robust
transcript oscillations often accompanied rhythms in
multiple histone modifications and recruitment of
multiple chromatin-associated clock components. The
findings of this study, as well as some other studies
before it, demonstrate that epigenetic modifications
could be very dynamic and may even control rapid and
short-term regulation of gene expression.

1.10.4 Lessons Learned from the Second
Phase of the ENCODE Project about
the DNA Elements in the Human Genome
and its Epigenetic Modifications

The Encyclopedia of DNA Elements (ENCODE)
project has been a logical continuation of the big
science that was launched with the human genome
sequencing project. ENCODE aims to delineate all
functional elements encoded in the human genome.
A functional element is defined as a discrete genome segment
that either encodes a product (e.g. protein or noncoding
RNA) or displays a reproducible biochemical signature
(e.g. protein binding, or a specific chromatin structure).
Following the initial success of the first phase of
ENCODE, initiated in 2003 to characterize 1% of the
human genome, the scope of ENCODE has been
broadened since 2007 to study DNA elements in the
whole human genome. The work in the second phase
involved integration of results from experiments
involving 147 different cell types, and all ENCODE

data, with other resources, such as candidate regions
from genome-wide association studies (GWAS) and
evolutionarily constrained regions.44,45

Based on the analysis, about 80% of the genome was
assigned some kind of genetic function, either RNA-
associated or chromatin-associated. About 95% of the
genome was found to lie within 8 kb of a DNA�protein
interaction, and 99% within 1.7 kb of at least one of the
biochemical events measured by ENCODE. The analy-
sis annotated 8801 small RNA and 9640 long noncoding
RNA-coding loci. Greater than 62% of the genomic
bases were found to be represented in. 200-nt-long
RNA molecules. Most transcribed bases were found to
be within annotated genes or in overlapping annotated
gene boundaries; that is, in noncoding DNA. Also,
11,224 pseudogenes were annotated, of which 863 are
transcribed and associated with active chromatin.

An initial set of 399,124 regions with enhancer-like
features and 70,292 regions with promoter-like features
were annotated. A total of 62,403 transcription start
sites were identified, of which 27,362 (44%) are within
100 bp of the 50-end of an annotated or known tran-
script. The remaining regions predominantly lie across
exons and 30-UTRs, some exhibiting cell-type-restricted
expression, representing possible start sites of novel
cell-type-specific transcripts. The binding locations of
119 different DNA-binding proteins and a number
of RNA polymerase components in 72 cell types were
mapped using chromatin immunoprecipitation fol-
lowed by deep sequencing (ChIP-seq); 87 (73%) were
sequence-specific transcription factors. Overall, 636,336
binding regions covering 231 megabases (8.1%) of the
genome were found to be enriched for regions bound
by DNA-binding proteins across all cell types.

Statistical models to analyze genome-wide
transcription-factor-binding data identified six differ-
ent types of genomic region, based on the binding
data of transcription-related factors (TRFs). These six
different types of genomic region form three pairs:
(1) binding-active regions (BARs) and binding-inactive
regions (BIRs), (2) promoter-proximal regulatory
modules (PRMs) and gene-distal regulatory modules
(DRMs), and (3) high-occupancy of TRF (HOT) regions
and low-occupancy of TRF (LOT) regions. Region
types from different pairs may overlap. For example,
DRMs are subsets of BARs, and some HOT regions
overlap with PRMs and DRMs. Each of these regions,
however, exhibits some unique properties. The six
types of region were found to occupy from about
15.5 Mbp (equivalent to 0.50% of the human genome)
to 1.39 Gbp (equivalent to 45% of the human genome)
in the different cell lines. Expectedly, the distribution
of BARs correlates with gene density. Also, about 70 to
80% of the HOT regions were mapped within 10 kb of
annotated coding and noncoding genes.
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Assay for histone modifications and variants in
46 cell types showed a great deal of variability across
cell types, in accordance with changes in transcrip-
tional activity. For example, monomethylation of lysine 4
of histone H3 (H3K4me1) was found as a mark of
regulatory elements associated with enhancers and
other distal elements, H3K4me2 was found as a mark
of regulatory elements associated with promoters and
enhancers, whereas H3K4me3 was found as a mark
of regulatory elements primarily associated with pro-
moters/transcription starts. In contrast, H3K9me3 is
the repressive mark found associated with constitutive
heterochromatin and repetitive elements.

In conclusion, the map created by ENCODE reveals
that cell type is important. In other words, cell-type-
specific regulation of genome expression in multicellular
organisms might hold the key to explaining not only
differential regulation of gene expression, but also the
development of disease.
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2.1 BIOINFORMATICS, MOLECULAR
EVOLUTION, AND PHYLOGENETICS

Probably, the shortest classical definition of evolution
is descent with modification from the ancestor. Evolutionary
changes lead to changes in the inherited characters in a
populationa. The ultimate outcome of evolution is the

formation of new species (speciation), but evolution
can generate diversity at all possible levels of biological
organization including at the level of macromolecules,
such as DNA and proteins.

Molecular evolution is a relatively recent discipline
that has developed since DNA and protein sequence
information became available. Simply stated, molecular

�The opinions expressed in this chapter are the author’s own and they do not necessarily reflect the opinions of the FDA, the DHHS,

or the Federal Government.
aA population is composed of members of a species occupying a geographic area. A community is composed of members of different

populations occupying the same geographic area.
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evolution is evolution at the level of nucleic acids and
proteins. At the molecular level, the primary cause of
evolution is the accumulation of changes in genomic
sequence (hence proteins as wellb). Therefore, evolution
results in alteration of the genetic composition (gene
pool) of a population over time. Changes in gene
pool are associated with changes in gene frequency in a
populationc.

The work of Emile Zuckerkandl and Linus Pauling
between 1960 and 1965, particularly their seminal publi-
cation in 1965,1 is credited with ushering in a change
in evolutionary thinking from the level of species to the
level of macromolecular sequence. Such a paradigm
shift in evolutionary thinking from population to mac-
romolecular sequence essentially paved the way for the
birth of a new field, molecular evolution. The classical
definition of evolution as descent with modification refers
to the event of speciation—that is, the formation of new
species from an ancestral species. The same definition
and concepts also apply to molecular evolution except
for the fact that the targets of molecular evolution are
nucleic acid and protein sequences. The causes of
molecular evolution, such as mutation, recombination,
gene conversion, duplication and divergence of genes,
de novo origin of new genes, and structural and func-
tional evolution of genomes, as well as changes in gene
frequency in a population, are also at the heart of evolu-
tion at the level of species and beyond.

The availability of the complete genome sequence of
many species provides a wealth of data and information
for molecular evolutionary studies and comparative
genomics. Evolutionary biology provides the scientific context
and bioinformatic analysis utilizes the analytical tools for
comparative genomics. In the context of evolutionary biol-
ogy, the goal of various applications of bioinformatics,
such as sequence alignment, sequence identity/similarity
search, motif analysis, sequence homology analysis, chro-
mosomal synteny analysis, and making phylogenetic
trees, is to trace the signature and determine the rate of
molecular evolution, as well as study the relatedness of
taxa. Following the spirit of the now-famous statement
by Dobzhansky that “nothing in biology makes sense
except in the light of evolution, ”Higgs and Attwood
(2005) have stated, “nothing in bioinformatics makes
sense except in the light of evolution”.2 This is a very

astute way of summarizing the relationship between
bioinformatics and molecular evolution.

It has become a standard practice in studies
involving DNA or protein sequence to obtain a phy-
logenetic tree and assess sequence divergence. Freely
available software on the web has made it almost
effortless to input the data and quickly get an out-
put. Because of such widespread use of DNA and
protein sequence analysis and phylogenetic infer-
ence, it is important to understand the principles of
molecular evolution. The following narrative sum-
marizes some fundamental concepts of molecular
evolution that help in understanding the evolution-
ary foundations of bioinformatics.

2.2 BIOLOGICAL EVOLUTION AND
BASIC PREMISES OF DARWINISM

Biological evolution is most simply defined as
descent with modification; the modification may be small
scale (e.g. changes in gene/protein sequence) or large
scale (e.g. speciation). After life had originated on Earth
about 3.6 billion (3600 million) years ago, it evolved
from simple to progressively complex forms, all from
one primordial ancestral form, called the last universal
common ancestor (LUCA). The evolutionary history of
the descendants of LUCA constitutes the tree of life.

Evolution of life is a continuous process involving
splitting of lineages, divergence of the descendants,
and adaptive radiation into different environments
(ecological niches) creating phenotypic diversity, and
ultimately leading to reproductive isolation and the
formation of new species (speciation). It is important
to note in this context that even though “species” is an
accepted taxonomic category, the concept of species
and speciation is a hotly debated issue even 150 years
after the publication of Darwin’s On the Origin of
Species. We will follow the most widely used definition
of species, provided by the biological species concept.

Two pioneering architects of the biological species
concept were Theodosius Dobzhansky and Ernst
Mayr. According to Mayr’s classical definition of
species, “species are groups of actually or potentially
interbreeding natural populations that are reproduc-
tively isolated from other such groups”d.3 In other

bChanges in genomic sequence include changes in the sequence of protein-coding genes, non protein-coding genes, and regulatory

sequences, as well as intergenic regions. Such changes may result in altered gene expression and trigger genome evolution.
cA small-scale change within a population below the species level, such as a change in allele frequencies, is called microevolution.

Microevolution can be observed over a short period of time, such as across a few generations (e.g. development of resistance).

In contrast, large-scale changes and evolution at or above the species level and over a long period of time are called macroevolution.
dThis definition of species was originally proposed in Mayr’s now-classic book Systematics and the Origin of Species (1942, Columbia

University Press, New York). However, Mayr’s definition of species owed its origin to the concept of species proposed by

Dobzhansky in his famous book Genetics and the Origin of Species (1937, Columbia University Press, New York). Dobzhansky

conceptualized species as “that stage in the evolutionary process at which the once actually or potentially interbreeding array of

forms becomes segregated in two or more separate arrays which are physiologically incapable of interbreeding.”
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words, a species is a reproductive community that
represents a unique gene pool. Genetic exchange
between members of two different gene pools is usually
not successful in producing fertile offspring that could
perpetuate the existence of the species. When popula-
tions within a species become isolated by geography,
mate selection, or other means that interfere with mat-
ing, they may start to diverge and over time may evolve
into new species.

Darwin’s theory of evolution by natural selection
states that (1) variations exist among the organisms
of a population, (2) the resources (food and space)
are limited, (3) the scarcity of resources would lead
to competition among individuals, and (4) indivi-
duals with favorable variations are more likely to
survive in the competition whereas those that do not
have the favorable variations simply die out. Those
that survive will reproduce, increase in number, and
occupy a specific environment. This process, which
removes some organisms from the population but
favors (selects) others, is called natural selection
and it is a passive process acting like a sieve. Natural
selection could be purifying (negative) selection
that removes deleterious variations, and positive
(Darwinian) selection that fixes the beneficial varia-
tions in the population and promotes the emergence
of new phenotypes. When the organisms with favor-
able variations reproduce, the variations spread
in the population and help the population to better
adapt to the environment. Over many generations,
the population adapted to a specific environment
evolves into a new species that becomes reproduc-
tively isolated from other such groups. The coupling
of Darwinism with modern genetics transformed
classical Darwinism into neo-Darwinism (also
known as modern synthesis or the synthetic theory
of evolution).

The Darwinian evolutionary process predicts that
the pace of evolution is gradual because an evolving
population accumulates small variations over a long
period of time. Hence, the divergence of lineages is
slow, steady, and stepwise. For example, for a species
A to evolve into species B, it should go through many
stages, such as A1, A2, A3 . . . An until it evolves into B.
This gradual pace of evolution through incremental
changes is known as phyletic gradualism. However,
the fossil records for most species are incomplete and
they do not show the existence of small incremental
changes on the way to the new speciese. To account for
the lack of fossil records showing phyletic gradualism,

paleontologists Stephen J. Gould and Niles Elredge4

put forth a competing hypothesis, which claims that
species are generally stable, changing little over long
periods of time. This condition of little or no change is
called stasis. The stasis is punctuated by rapid bursts
of evolutionary changes that result in the formation of
new species. As a result, this process leaves few fossils
behind, which can explain the absence of many inter-
mediate forms in the fossil record. Gould and Elredge
termed this phenomenon punctuated equilibrium. In
reality, both phyletic gradualism and punctuated equi-
librium could have played a role in evolution.

A basic assumption of the Darwinian theory is that
new mutations, both advantageous and deleterious,
constantly arise in the population independent of
need, and evolution is caused by natural selection acting
through beneficial mutations by fixing them in the popula-
tion. Darwinian evolution does not consider neutral
mutations that do not confer any selective advantage
or disadvantage to be of any importance in the evolu-
tionary process. This long-held view of Darwinian
evolution was challenged by the neutral theory of
molecular evolution. The neutral theory is discussed
later in this chapter.

2.2.1 First Experimental Demonstration
of Evolutionary Principles in the Test Tube

Sol Spiegelman and colleagues5 first demonstrated
that Darwinian evolutionary principles—that is,
variation, selection, and amplification—could lead
to the evolution of biological macromolecules in the
test tube in an extracellular environment. Spiegelman
and coworkers explored the evolutionary conse-
quences for a self-duplicating nucleic acid molecule
put under selection pressure for faster growth.
Bacteriophage Qβ is an RNA phage with an RNA
genome (B3500 nucletotides (nt)) that codes for
four proteins: viral coat protein, attachment protein,
maturation protein, and β1 replicase, also called Qβ-
replicase, which is an RNA-dependent RNA poly-
merase. When Qβ-replicase is incubated with
Qβ-RNA template in the presence of ribonucleotides,
it synthesizes new Qβ-RNA molecules.

The goal of the experiment was to determine how
molecules evolve if the selection pressure is allowed to
only select for molecules that can multiply increasingly
faster. The experimental procedure involved serial
transfer of the reaction mix in which the incubation
time was progressively reduced over time. The first

eAmong living species, the fossil record of the modern-day horse from Hyracotherium (previously known as Eohippus) to Equus,

spanning a period of about 55 million years, is one of the better-preserved fossil records that show macroevolutionary changes. Most

fossil records are not as well preserved.
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reaction was allowed to proceed for 20 minutes, after
which an aliquot was used to start the second reaction,
and so on for the first 13 reactions. After the first
13 reactions, the incubation periods were reduced
to 15 min (transfers 14�29), 10 min (transfers 30�38),
7 min (transfers 39�52), and 5 min (transfers 53�74).
The progressive reduction in the incubation intervals
between transfers maintained the selection pressure
for the evolution of the most rapidly multiplying RNA
template molecules. As the experiment progressed, the
rate of RNA synthesis increased and the product
became smaller. By the 74th transfer, the size of the
replicating molecule had becomeB17% of its original
size by deleting most of the original genome, and
replicated 15 times faster than the complete viral RNA.
This short RNA template variant was found to have
experienced a significant change in base composition
as well. The fact that this RNA template variant
replicated 15 times faster than the complete viral RNA
suggested that in addition to becoming smaller, the
variant increased the efficiency with which it inter-
acted with the replicase. Therefore, the RNA molecules
adapted to the new conditions by throwing away any-
thing not needed for fast replicationf.

It should be emphasized in this context that
Spiegelman’s experiment was a demonstration of
directed evolution because selection pressure was
applied to achieve a predetermined evolutionary out-
come. The goal of Spiegelman’s experiment as stated
by Mills et al. was, “What will happen to the RNA
molecules if the only demand made on them is the
Biblical injunction, multiply, with the biological pro-
viso that they do so as rapidly as possible?” In con-
trast, natural evolutionary processes are not directed.
Genetic variations are random and spontaneous; hence
they arise in the population independent of need.
The advantages or disadvantages of such variations
become apparent only when selection pressure arises.
Thus, the natural evolutionary process works as a
blind watchmaker, as Richard Dawkins calls it to
underscore the lack of purpose and direction in the
process. However, in recent years, the concept of
directed (adaptive) mutation and directed evolution in
bacteria, originally proposed in 1988 by John Cairns
and coworkers,6 has garnered some support. This idea
is still not mainstream in evolutionary biology and is
beyond the scope of this book.

Since the experiment of Spiegelman, many more
extracellular Darwinian experiments have been con-
ducted to direct the evolution of desired traits in bio-
logical macromolecules, and many laboratories have
reported some remarkable findings.

2.3 MOLECULAR BASIS OF
HERITABLE GENETIC VARIATIONS—

THE RAW MATERIALS FOR EVOLUTION

Genetic variations in a population evolve irrespective
of need. Most genetic variations are deleterious or at
best neutral, but some may be beneficial in a specific
environment. It is the selection pressure that reveals the
utility of a beneficial genetic variation. Four important
sources of molecular genetic variations are mutation,
recombination, gene flow, and creation of new genes.

2.3.1 Molecular Basis of Mutation

Mutation is the change of genomic sequence.
Mutation can be a point mutation (alteration of just
one nucleotide), a frameshift mutation (alteration of
the open reading frame (ORF) of the gene), or a chromo-
somal mutation—that is, large-scale alterations of the
chromosomal DNA (insertion, deletion, inversion,
duplication, translocation) (Figure 2.1A). Chromosomal
mutations can result in gene duplication and divergence,
exon shuffling, retrotransposition, gene fission/fusion,
and gene deletion; each of these events creates genetic
diversity.

Based on the effect on the polypeptide product,
a point mutation can be missense, nonsense, or silent.
A missense point mutation changes an amino acid in
the polypeptide; a nonsense point mutation creates a
stop codon, thereby prematurely truncating the ORF and
ending translation of the polypeptide; a silent point
mutation does not change the amino acid sequence
of the polypeptide (Figure 2.1B). Splice donor or acceptor
site mutations as well as splicing signal site mutations
can result in the exonization of a previous intron
sequence or intronization of a previous exon sequence;
these types of mutations frequently have pathological
consequences. There are a number of reports in the
literature describing such mutations.

Based on the type of base altered, a point mutation
can be classified as a transition or a transversion
mutation. A pyrimidine replaced by another pyrimi-
dine (C-T or T-C) or a purine replaced by another
purine (A-G or G-A) is a transition mutation.
A common mechanism of transition mutations is the
formation of tautomeric forms (amino-imino tauto-
mer as occurs in A and C; and keto-enol tautomer
as occurs in G and T), and mispairing of bases
(Figure 2.1C). If the mispairing survives the DNA
repair machinery (e.g. if the mispairing occurs during
replication), then by the following replication cycle the

fThe small, rapidly duplicating RNA template variant was later termed the Spiegelman monster.
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affected position of DNA has the base pair replaced by
transition mutation (Figure 2.1D). Another mechanism
of transition mutation in genomes is the spontaneous
oxidative deamination of methylated C to form T,
resulting in CG-TA transition over time. In contrast
to transition mutation, a purine replaced by a pyrimi-
dine or a pyrimidine replaced by a purine is a trans-
version mutation. Chemicals such as aflatoxin B1 can
cause transversion mutation through adduct forma-
tion. Aflatoxin B1 forms an adduct at the N-7 position
of guanine. This ultimately results in the removal of G
and the formation of an AP-site (apurinic site).
Depending on the base inserted for repair, a transi-
tion or transversion mutation can result. However,
GC-TA transversion is the most prevalent type
(Figure 2.1E).7 Oxidation of guanine can also lead to
transversion. A typical lesion in guanine resulting
from oxidative stress is the formation of 8-oxoG. The
8-oxoG lesion in DNA is normally repaired by the

dedicated enzyme 8-oxoG DNA glycosylase, which
removes the oxoG with the concomitant cleavage of the
DNA backbone. If the removal fails to take place,
8-oxoG tends to form the syn conformer, which then
pairs with A by Hoogsteen H-bond during replication.
In the following replication cycle, the A pairs with T,
creating a GC-TA transversion (Figure 2.1F).8 As men-
tioned above, transition mutations are far more prevalent
than transversion mutations. In earlier literature, a point
mutation was called a single nucleotide polymorphism
(SNP) if it occurred in at least 1% of the population, but
currently, any point mutation is regarded as an SNP.
In the human genome, . 65% of all SNPs are C-T
transition mutations. SNPs and copy number varia-
tions (CNVs, also called copy number polymorph-
isms or CNPs) together constitute a significant source
of inter-individual variation in a population.

In addition to the classical mutations described
above, expansion or contraction of repeat sequences

FIGURE 2.1 Molecular basis of mutation. (A) Various types of mutations affecting long DNA fragments, i.e. a chromosome. (B) Various
effects of a one-base-pair mutation in DNA (only sense strand is shown). A missense mutation alters the amino acid sequence of a protein;
a nonsense mutation disrupts the ORF and prematurely stops translation, whereas a silent mutation does not change the amino acid sequence
of the protein. (C) Mechanism of transition mutation due to tautomeric shift in adenine resulting in 6-iminopurine from 6-aminopurine.
(D) Wrong base pairing by imino tautomer of adenine results in AT-to-GC transition mutation in two replication cycles. (E) The mechanism
of aflatoxin-B1-mediated transversion mutation (see text for details). (F) The mechanism of 8-oxoG-mediated transversion mutation (see text
for details).
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constitutes another class of mutations. Repeat
sequences in DNA can be expanded during replica-
tion. Two mechanisms can result in the expansion
of repeat sequences: replication slippage (also called
slipped strand mispairing) and unequal crossing
over. In replication slippage, a long stretch of repeat
sequences in the DNA folds back and pairs on itself,
forming an internal hairpin or stem�loop structure,
during replication. As a result, there is a net increase
in the repeat sequences following replication in the
daughter strand while the repeat length in the parent
strand remains the same. The increased length of one
strand propagates through subsequent rounds of repli-
cation (Figure 2.2). Misalignment of DNA involving
blocks of the same repeat sequences may also occur
during crossing over (unequal crossing over). As a
result, in one chromosome the repeat length increases
(insertion) while in the other chromosome it decreases
(deletion), as shown in Figure 2.3.

The presence of uninterrupted trinucleotide repeats
(triplet repeats) makes the sequence unstable and
prone to further expansion through replication slippage.
Increased numbers of triplet repeats are associated with

a number of heritable genetic disorders in humans,
such as Huntington’s disease (CAG repeats), myotonic
dystrophy (CTG repeats), fragile-X syndrome (CGG
repeats). A higher number of uninterrupted triplet
repeats is usually correlated with an earlier onset and a
greater severity of the disease. In contrast, interruption of
the triplet repeats may reduce the predisposition of the carrier
to the disease. For example, fragile-X syndrome in humans
is associated with the expansion of the CGG triplet
repeats in the FMR1 (fragile-X mental retardation 1)
gene. However, if these CGG repeats are interspersed
with AGG triplet repeats, the predisposition towards
developing the disease is significantly reduced.9

Populations that have a disproportionately large number
of uninterrupted CGG-repeat-containing alleles, such as
the Tunisian Jews, have a much higher incidence of
fragile-X syndrome.10

Most mammals possess a small number of the CGG
repeats in the FMR1 gene (mean5 86 0.8), but primates
have a greater number of repeats (mean5 206 2.3).
Interestingly, nonhuman primates do not have fragile
sites in the FMR1 gene because they have many more
interruptions in the CGG sequences.11

FIGURE 2.2 Mechanism of expansion of triplet repeats through replication slippage. The �C�T�G� triplet repeats in the gene are
highlighted except the one forming loop. The increase in the number of repeats through replication slippage is a random process; it may be as
few as one triplet or it may be multiple triplets. The figure shows an increase of three �C�T�G� triplet repeats in the gene in two rounds
of replication. The strand of DNA containing the �C�T�G� triplets (highlighted) is the sense strand; therefore, the mRNA will have the
same repeats as �C�U�G�.
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2.3.2 Recombination and Generation
of Genetic Diversity

In sexually reproducing organisms, meiotic recom-
bination during gamete formation provides a means
of creating genetic variation. In genetic recombination,
a DNA segment moves from one DNA molecule to
another DNA molecule. Recombination can take place
between two homologous sequences or two nonho-
mologous sequences. Recombination between two
homologous sequences is called homologous recom-
bination and it occurs during meiosis between two
homologous DNA molecules (homologous chromo-
somes) by crossing over. The frequency of homologous
recombination is low. Recombination between two
nonhomologous sequences can be mediated by site-
specific recombination. Site-specific recombination
occurs when two nonhomologous DNA molecules
have only a small region of sequence identity; recom-
bination occurs using this small region. Recombination
apparently depends on short stretches (could be as short as
B30 bp) of complete identity rather than long stretches
of general similarity.12 Site-specific recombination helps
in the integration of phage DNA into a bacterial
chromosome; it can also help integrate transposable
elements into the host DNA. Therefore, site-specific
recombination provides a mechanism for introducing
genetic diversity in the recipient genome.

Recombination between homologous chromosomes
begins with double-strand breaks (DSBs). Because the
non-sister chromatids of homologous chromosomes
may not be identical in terms of their DNA sequence,

mismatch repair synthesis during recombination
may result in gene conversion. The mismatch repair
enzyme corrects the sequence mismatch by partial
resection of the broken DNA molecule followed by
resynthesis of one of the strands using the corre-
sponding DNA strand of the non-sister chromatid as
the template. This results in a unidirectional transfer
of the donor sequence to the acceptor sequence.
It is easy to contemplate that if an allele is removed
during resection, that allele is created during resyn-
thesis based on the sequence of the allele of the
donor strand. This phenomenon leads to gene con-
version. Therefore, gene conversion involves nonre-
ciprocal exchange of genetic material in which one
sequence remains unchanged and the other sequence
is altered.

Homologous recombination can also take place
between two stretches of DNA that are not allelic.
This is called non-allelic homologous recombination
(NAHR). NAHR is driven by sequence identity, and it
results in deletion in one chromosome and duplication
in the other chromosome. Duplicated segments are
predisposed to further NAHR. NAHR may lead to loss
or increased copy number of specific genes, resulting
in copy number variations (CNVs) of specific genes
within the deleted or duplicated region. Such CNVs
have major implications in health and disease as well
as genome evolution. In general, repeats provide hotspots
of major structural alterations in the genome, ranging from
microduplication and microdeletion to major segmental
duplication and deletion, as well as repeat expansion and
contraction.

FIGURE 2.3 Unequal crossing over altering the repeat length. The block of repeat sequence used here as an example
is �CAG�CTG�GAG�TTG�CAA�. The presence of blocks of the same repeat sequence makes the chromosomal misalignment and unequal
crossing over possible.
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2.3.3 Gene Flow and Introduction
of Genetic Diversity

Gene flow is also called gene migration. Gene
flow is the transfer of genetic material from one pop-
ulation to another. Gene flow can take place between
two populations of the same species through migra-
tion, and is mediated by reproduction and vertical
gene transfer from parent to offspring. Alternatively,
gene flow can take place between two different
species through horizontal gene transfer (HGT, also
known as lateral gene transfer), such as gene transfer
from bacteria or viruses to a higher organism, or
gene transfer from an endosymbiont to the host.
HGT is discussed in detail later in this chapter. Gene
flow within a population can increase the genetic vari-
ation of the population, whereas gene flow between
genetically distant populations can reduce the genetic
difference between the populations. Because gene flow
can be facilitated by physical proximity of the popula-
tions, gene flow can be restricted by physical barriers
separating the populations. Incompatible reproductive
behaviors between the individuals of the populations
also prevent gene flow.

2.3.4 Origin of New Genes, Creation of
Genetic Diversity and Genome Evolution

Generation of new genes is an important mechanism
for creating genetic novelties; hence, it is an important
driving force of evolution in all organisms. New genes
can be created by two major processes, (1) processes
that use coding sequences (pre-existing genes) as the
raw materials, and (2) processes that use noncoding
sequences as the raw material.

2.3.4.1 Origin of New Genes from Coding
Sequences (Pre-existing Genes)

These processes are better understood and include
gene duplication, exon shuffling, gene fusion and fission,
and lateral gene transfer.

2.3.4.1.A GENE DUPLICATION AND

THE 2R HYPOTHESIS

Gene duplication creates paralogs. Susumu Ohno’s
seminal book Evolution by Gene Duplication (1970)13

popularized the concept that gene duplication plays an
important role in evolution. By comparing the genome

size of different groups of non-vertebrate chordates
and vertebrates, Ohno argued that the complexity of
vertebrate genomes during evolution was achieved
by whole-genome duplications in the lineage leading
to vertebrates. Analysis of orthologous genes (ortho-
logsg) showed that compared to urochordates (e.g. sea
squirts), the genomes of jawless vertebrates, such as
lamprey and hagfish, contain at least two orthologs
and the genomes of mammals contain three or more
orthologs. Ohno proposed that the ancestors of rep-
tiles, birds, and mammals had experienced at least one
tetraploid evolution either at the stage of fish or at the
stage of amphibians. Since the turn of the millennium,
the modern version of Ohno’s hypothesis, known as the
two rounds (2R) hypothesis, has resurfaced and gained
popularity. There are disagreements regarding the stages
of evolution when genome duplications took place. The
most popular version of the 2R hypothesis proposes that
one round of genome duplication took place at the root
of the vertebrate lineage—that is, after the emergence of
urochordates—followed by another around the time
Agnatha (jawless vertebrates, e.g. lamprey and hagfish)
and Gnathostomata (jawed vertebrates) split—that is,
before the radiation of jawed vertebrates.14�16 There are,
however, debates about the 2R hypothesis, but that is
beyond the scope of this section.

Ohno considered whole-genome duplication to be
more important as an evolutionary mechanism than
individual gene duplication, but gene duplication is
now known to be a major mechanism for the creation
of novel genetic material and an important driver of
genome evolution. Genome sequencing shows that gene
duplication is prevalent in all three domains of life
(Bacteria, Archaea, Eukarya). In multicellular eukar-
yotes, including humans, B40�60% genes have been
produced through duplication, depending on the spe-
cies. Several publications have reported on the rate of
gene duplication in various eukaryotic species, but
the results vary significantly. For example, based on
observations from the genomic databases for several
eukaryotic species, Lynch and Conery estimated that
in eukaryotes the average rate of gene duplication is
approximately 0.01 per gene per million years (i.e. the
probability of duplication of a eukaryotic gene is
at least 1% per million yearsh,i).17,18 However, Cotton
and Page estimated a gene duplication rate that is one
order of magnitude lower than the estimate of Lynch
and Conery.19 Many duplicated genes are inactivated

gOrthologous genes or orthologs are homologs in different species—that is, they evolved from a common ancestral gene through

speciation. Orthologs often retain the same or similar function(s).
hThe duplication event per gene per million years was estimated to be 0.0023 for Drosophila melanogaster, 0.0083 for Saccharomyces

cerevisiae, and 0.0208 for Caenorhabditis elegans, the average beingB0.01. So, it was the highest for C. elegans.
iThe duplication event per gene per million years was estimated to be 0.009 for humans. In this publication, the rates calculated were

slightly lower for Drosophila, yeast, and C. elegans, but the average was stillB0.01.
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by accumulating degenerative mutations and become
pseudogenes. Gene duplication can result from
unequal crossing over, retrotransposon insertion, seg-
mental duplication, and chromosomal (whole-genome)
duplication.

If the rate of gene duplication is assumed to be
somewhere in between the two estimates cited above,
then it becomes close to the rate of fixed nucleotide
substitutions, particularly in protein-coding genes.
Using data from human and rodents, and assuming
80 million years as the time of divergence between
the two lineages, the average fixed nucleotide substi-
tution rate in protein-coding genes was calculated
to be 0.74 per nonsynonymous site and 3.51 per
synonymous site per billion (109) years.20 However,
such average estimates could still vary significantly in
different species.

Unequal crossing over usually generates tandem
duplication, which could involve the entire gene or part
of a gene. Figure 2.3 shows duplication of a section of
the gene through unequal crossing over. Duplication
of the entire gene involves duplication of the introns
as well as the regulatory sequences. The insertion of
processed (retrotransposed) pseudogenes can also
introduce genetic variability to the genome, particularly
if the retrotransposed pseudogenes recruit new promo-
ters and become functional. Some expressed pseudo-
genes regulate the mRNA expression of the normal
gene. For example, Makorin1-p1 in mice is a transcribed
pseudogene, which regulates the expression of the nor-
mal gene Makorin1.21 Pseudogenes are of two main
types: (I) duplicated (nonprocessed) and (II) retrotran-
sposed (processed). Duplicated pseudogenes arise from
genomic DNA duplication or unequal crossing over.
They retain the original exon�intron organization of
the functional gene (hence nonprocessed), but their
protein-coding potential is lost because of the loss of
transcription regulatory elements, such as promoters
or enhancers, or mutations disrupting the ORF, such
as frameshifts or premature stop codons. In contrast,
processed pseudogenes result from retrotransposition—
that is, they arise from reverse transcription of mRNA
into complementary DNA (cDNA) followed by the
integration of the cDNA into the genome. As a result,
processed pseudogenes lack introns and promoter, and
they typically contain the poly(A) tail. Because they are
retrotransposed, they are flanked by direct repeats.
Processed pseudogenes are usually nonfunctional unless
they are integrated under the influence of an active pro-
moter, or recruit new promoters over time to become
functional. Another type of pseudogene is known as the
unitary pseudogene. A unitary pseudogene is a regular
gene that has lost the protein-coding potential because
of spontaneous mutation in the coding region; so it is
neither duplicated nor retrotransposed. Because most

pseudogenes are nonfunctional, they are not under
selection pressure and are free to accumulate further
mutations and increasingly diverge from the parent
sequence from which they were derived. Pseudogenes
have been identified in all known genomes, but their
numbers greatly vary. For example, the estimated num-
ber of pseudogenes is 10,000�20,000 in humans, but
only 110 in Drosophila.22

Human genome sequencing has revealed the wide-
spread occurrence of segmental duplications, which
often involve blocks of 1�200-kb (or longer) sequences
that have been copied from one region of the genome
and integrated into another region. Hence, segmental
duplications create paralogous loci. The duplicated
regions represent low-copy repeats and have . 90%
identity. Such strong sequence identity suggests that
they are relatively recent in origin. The finished sequence
of the human genome reported about 5.3% of the
genome as segmental duplications.

Chromosomal (whole-genome) duplication is thought
to arise by the breakdown of the normal mitotic or meiotic
process. If chromosomes duplicate but do not separate
(chromosomal non-disjunction) and are maintained in
the same cell, a diploid gamete is produced. Fertilization
of a diploid gamete by a normal haploid gamete would
produce a triploid organism. The same mechanism can
produce tetraploidy and even higher ploidy. In addition
to the above mechanism of polyploidy, termed auto-
polyploidy, genome duplication and polyploidy can also
be produced by hybridization of two related species
that produce viable offspring. Such polyploidy is called
allopolyploidy, and allopolyploids produce a diverse set
of gametes. During evolution, whole-genome duplication
resulting in polyploidy occurred frequently in plants but
infrequently in animals.

The evolutionary fate of duplicated genes involves
either acquiring new function or becoming nonfunctional.
In most cases, the duplicated genes are free to acquire
degenerative mutations and become pseudogenes
(pseudogenization) because there are no functional
constraints and the genes are not under selection
pressure. Thus, pseudogenization is a neutral process.
In order for the gene to escape pseudogenization and
functional death, selection pressure must force the
duplicated gene to drift towards fixation through
neofunctionalization. Gene duplication followed by
neofunctionalization of the duplicated gene provides
an important mechanism for the genome to diverge
both structurally and functionally. Neofunctionalization
involves acquiring new function by the duplicated gene
at the expense of the ancestral function—that is, the
duplicated gene acquires a function that was not present
in the ancestral gene. For example, the type III antifreeze
protein (AFPIII) gene in the Antarctic zoarcid fish evolved
from a sialic acid synthase (SAS) gene after duplication,
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divergence, and neofunctionalization. The SAS is an old
cytoplasmic enzyme present in microbes through verte-
brates, whereas AFPIIIs are secreted plasma proteins
that bind to invading ice crystals and arrest ice growth
to prevent fish from freezing. The SAS gene possesses
both sialic acid synthase and rudimentary ice-binding
activities. Following duplication, the N-terminal SAS
domain was deleted and replaced by a nascent signal
peptide needed for the extracellular export of the
mature protein. Further optimization of the C-terminal
domain’s ice-binding ability through amino acid
changes led to the evolution of AFPIII as a neofunctio-
nalized secreted protein capable of non-colligative
freezing-point depression.23 Another example is the
retinoic acid receptor (RAR) gene. Mammals have three
RAR paralogs—RARα, β, and γ—created by genome
duplications at the time of origin of vertebrates. Using
pharmacological ligands selective for specific paralogs,
it was demonstrated that RARβ kept the ancestral
RAR role, whereas RARα and RARγ diverged both
in ligand-binding capacity and in expression patterns.
Therefore, neofunctionalization occurred at both the
expression and the functional levels to shape RAR roles
during development in vertebrates.24 Many other exam-
ples of neofunctionalization have been reported in the
literature.

Neofunctionalization does not always have to arise
following gene duplication. A beneficial mutation of the
wild-type gene may create a mutant allele with new
function. If the beneficial mutant allele is maintained by
balancing selection, the carrier (heterozygote) will have
increased fitness. If the beneficial mutant allele becomes
the source of the duplicated gene, then the duplicated
gene will be quickly fixed in the population by positive
selection.25

Another functional outcome of gene duplication
and divergence is subfunctionalization. Like pseudo-
genization, subfunctionalization is also a neutral process.
Subfunctionalization occurs when the duplicated copies
(paralogs) partition the attributes of the ancestral
gene, such as function and/or expression. Following a
duplication event, both paralogs experience a period
of relaxed selection and accelerated evolution. This is
because natural selection does not distinguish which
paralog should be under selection and which paralog
should be free from selective constraint. Thus, both
genes might accumulate mutations that impair ancestral
gene function. Under this condition, each paralog may
retain one part of the function (subfunction) of the
ancestral gene. Alternatively, each individual paralog
may lose its ability to substitute for the ancestral gene

function, but together the two paralogs may still be able
to complement each other in producing ancestral gene
function. Subfunctionalization has been proposed as an
alternative mechanism driving duplicate gene retention
in organisms with small effective population sizes.26

A model to explain the high retention of duplicated
genes through subfunctionalization was provided early
on by the duplication�degeneration�complementation
(DDC)model.27 According to the DDC model, originally
proposed in the context of cis-regulatory elements,
subfunctionalization is driven entirely by degenerative
mutations. Degenerative changes occur in regulatory
sequences of both duplicated copies such that the
expression pattern of the original gene can only be
achieved when the two duplicated genes can comple-
ment each other. Therefore, degenerative mutations in
the regulatory elements may increase the chance of
duplicate gene retention. An implication of the DDC
model is that the paralogs can not accumulate same
inactivating mutations that would interfere with their
ability of complementation. A number of examples
of subfunctionalization have been reported in the
literature. A common example is the normal human
hemoglobin, which is composed of two α-chains and
two β-chains (α2β2) encoded by α-globin and β-globin
genes, respectively. The α- and β-globin genes are
products of gene duplication and subsequent subfunc-
tionalization because they complement each other in
producing normal functional hemoglobin.28 An exam-
ple of subfunctionalization in terms of differential
expression of paralogs is that of the pax6a and pax6b
genes in zebrafish; these paralogs arose following a
whole-genome duplication event about 350 million
years ago. The expression patterns of pax6a and pax6b
have diverged from each other since the duplication
event. Whereas pax6a is widely expressed in the brain
compared to pax6b, only pax6b is expressed in the
developing pancreas. Such differential expression of
pax6b in brain and pancreas is due to the loss of a brain-
specific downstream regulatory element but gain of
an upstream pancreas enhancer element.29 An example
of subfunctionalization has also been reported in
Archaea. When Tocchini-Valentini and coworkers
searched the genome of Sulfolobus solfataricus (Archaea;
Crenarchaeota) for homologsj of Methanocaldococcus jan-
naschii (Archaea; Euryarchaeota) tRNA endonuclease,
they found two paralogs of the tRNA endonuclease
gene of M. jannaschii in the genome of the S. solfataricus.
Characterization of these two paralogous gene products
revealed that both are required for tRNA endonuclease
activity, each complementing the other for complete

jHomologous genes, or homologs, are related to each other by descent from a common ancestral gene. Homologs may or may not

have the same or similar function. Therefore, the orthologs and paralogs described above are two different types of homologous

genes.
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activity. Detailed analysis of the amino acid sequences
of the two proteins demonstrated that these two
sequences had evolved by duplication of the ancestral
sequence followed by divergence and subfunctionaliza-
tion of the sequences.30 Figure 2.4 shows the three fates
of duplicated genes discussed here (pseudogenization,
neofunctionalization, subfunctionalization) using cis-
regulatory modules as targets of divergence.

2.3.4.1.B EXON SHUFFLING

The natural process of creating new combinations of
exons by intronic recombination is called exon shuf-
fling.31 Following the discovery of introns, Walter
Gilbert suggested that the presence of introns allowed
exon shuffling, which resulted in genomes being more
complex and diversified. Exon shuffling is largely
responsible for protein-domain shuffling.32 The diversity
of protein-domain combinations increased with the

evolution of organismal complexity. However, most
protein domains are ancestral; only few new domains
have been invented in the vertebrate lineage. For
example, about 7% of the protein families in human
genome seem to be specific to vertebrates. The major-
ity of the proteins necessary for the maintenance of
basic cellular functions evolved early. Hence, the
evolution of proteome complexity was driven by
the reshuffling of pre-existing components into a richer
collection of domain architectures.33 Therefore,
protein-domain shuffling, which refers to the duplica-
tion of a domain or the insertion of a domain from
one gene into another, has been a major factor in the evo-
lution of human phenotypic complexity. Kaessmann
et al.34 systematically analyzed intron phase distributions
in the coding sequence of human protein domains to
identify signatures of exon shuffling resulting in domain
shuffling. Introns of symmetrical phase combinations

FIGURE 2.4 Three possible fates of duplicated genes: pseudogenization (nonfunctionalization), neofunctionalization, and subfunctio-

nalization using cis-regulatory modules as targets of divergence. Duplicated genes are not under selection pressure; hence, there are no
functional constraints and a duplicated gene is free to acquire degenerative mutations and become a pseudogene. Sometimes, the acquisition
of new function by the duplicated gene (neofunctionalization) provides an important mechanism for the genome to diverge both structurally
and functionally. The newly acquired function is not present in the ancestral gene. Subfunctionalization occurs when the duplicated copies
(paralogs) partition the attributes of the ancestral gene, such as function and/or expression. The figure shows that degenerative changes
occurred in regulatory sequences of both paralogs such that the expression pattern of the original gene can only be achieved when the two
duplicated genes complement each other (see text for examples).
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(i.e. 0�0, 1�1, and 2�2k) were found to be predominant
at the boundaries of domains, whereas non-boundary
introns showed no excess symmetry, suggesting that
exon shuffling primarily involved rearrangement of
structural and functional domains. Domains flanked by
phase 1 introns (i.e. 1�1 symmetrical domains) were
found to have dramatically expanded in the human
genome due to domain shuffling. The observation of pre-
dominance and extracellular location of 1�1 symmetrical
domains among metazoan protein-specific domains
suggested an association with the evolution of multicellu-
larity. In contrast, 0�0 symmetrical domains were found
mostly overrepresented among ancient protein domains
that are shared between the eukaryotic and prokaryotic
kingdoms. Franca et al.35 investigated the intron phase
distribution in 10 genomes to generate a catalog of puta-
tive exon shuffling events in several eukaryotic species,
including non-metazoans (choanoflagellate Monosiga
brevicollis), early branching metazoans (the sea anemone
Nematostella vectensis), the smallest chordate (urochordate
Ciona intestinalis), and representative species from all
vertebrate lineages except reptiles (zebrafish, Xenopus,
chicken, mouse, and human). They confirmed previous
observations that exon shuffling mediated by phase 1
introns (1�1 exon shuffling) is the predominant kind in
multicellular animals, whereas exon shuffling mediated
by phase 0 introns (0�0 exon shuffling) is the predomi-
nant type in non-metazoan species. They also concluded
that such a pattern was achieved since the early steps of
animal evolution.

Intronic recombination generating exon shuffling
was most likely facilitated by two important events
at a later stage during the evolution of eukaryotes: the
emergence of spliceosomal introns, and the insertion
of repetitive sequences within spliceosomal introns.36

Although the presence of repetitive sequences in
introns could facilitate intron recombination, insertion
of repetitive sequences in self-splicing introns would
not have been tolerated because self-splicing introns
encode an essential function. In contrast, insertion of
repetitive sequences would have been tolerated in
spliceosomal introns because of the lack of such

functional constraints. Hence, recombination involving
self-splicing introns early in life’s evolution could not
have played an important role in exon shuffling, and
consequently in the evolution of ancient proteins. Exon
shuffling most likely increased in parallel with the evo-
lution and expansion of spliceosomal introns and the
concomitant appearance of less compact genomes.

Patthy analyzed the evolutionary distribution of
some proteins that could be identified as modular
proteins (containing specific functional modules) and
seemingly evolved by intronic recombination. His
analysis revealed that modular multidomain proteins
produced by exon shuffling are restricted in their
evolutionary distributionl. The majority of these
proteins are functionally linked to the evolution of
multicellularity of animals, such as constituents of the
extracellular matrix, proteases involved in tissue remo-
deling, various proteins of body fluids, and proteins
associated with cell�cell and cell�matrix interactions.
Some examples include selectins, interleukin-2 receptor,
cartilage link protein, follistatin, C-type lectin, and tol-
loid. The results suggest that exon shuffling acquired
major significance at the time of metazoan radiation.

2.3.4.1.C GENE FUSION AND FISSION

During evolution, many complex proteins were
apparently produced by gene fusion and less complex
proteins by gene fission. Gene fusion results in the
creation of a composite protein. In contrast, gene fission
results in the creation of two or more smaller, split
proteins. For example, the basic biochemistry of fatty
acid synthesis is very similar from E. coli to mammals.
However, the six enzymes and the acyl carrier protein
involved in fatty acid synthesis exist as independent
polypeptides in E. coli, whereas in mammals these exist
as one composite polypeptide containing all the activi-
ties because of the fusion of genes encoding them.

Snel and coworkers37 analyzed all ORFs of 17
completely sequenced bacterial genomes using the
Smith�Waterman sequence comparison algorithm;
the analysis showed evidence for numerous cases of
gene fusion and fission. In general, they observed that

kAs mentioned in Chapter 1, introns can be divided into three types based on phases: phase 0, phase 1, and phase 2. A phase 0 intron

does not disrupt a codon, a phase 1 intron disrupts a codon between the first and the second bases, and a phase 2 intron disrupts a

codon between the second and third bases. An exon flanked by two introns of the same phase (e.g. 0�0, 1�1, 2�2) is called a

symmetrical exon, whereas an exon flanked by two introns of different phases (e.g. 0�1, 1�2, 2�0, etc.) is called an asymmetrical

exon. Legitimate alternative splicing involves the removal of a symmetrical exon. In contrast, alternative splicing involving an

asymmetrical exon results in a change of the ORF downstream of the 30-splice site (Figure 1.5), but this is very rare.
lIn the analysis, protein modules were considered to be generated through exon shuffling if: (1) the modules were homologous

(i.e. modules derived from a common ancestor) but present in otherwise nonhomologous proteins, and (2) the transposition of the

module was mediated by exon shuffling through intronic recombination. Evidence of exon shuffling through intronic recombination

was considered if the module was flanked by introns of same phase. Thus, the introns of these modular proteins were shown to

have a marked intron-phase bias.
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fusion occurred more often than fission. Using the
same approach (sequence-based comparison) Enright
and Ouzounis38 identified 7224 components and
2365 composite unique proteins across the 24 species
considered in the study. These 24 genomes included
those of bacteria and eukaryotes, including Drosophila
melanogaster and Caenorhabditis elegans. They found a
number of functional associations. For example, MXR1
(peptide methionine sulfoxide reductase, involved
in antioxidative processes) and YCL033C (function
unknown) were predicted to be functionally associated
by virtue of gene fusion in three species—Helicobacter
pylori, Haemophilus influenzae, and Treponema pallidum—
and this observation was supported by experimental
results. Likewise, Yanai et al.39 identified groups of
closely related proteins that have undergone fusion or
fission. For example, the genes for glycolytic enzymes
triosephosphate isomerase (TPIA), phosphoglycerate
kinase (PGK), and glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) in the parasitic bacterium Mycoplasma
genitalium, are linked by fusion events in other species,
such as TPIA1PGK in Thermotoga maritima and TPIA1

GAPDH in Phytophthora infestans.
Using domain architecture comparison, Kummerfeld

et al.40 performed a comprehensive analysis of divergent
sequences in distantly related organisms to identify
evidence of gene fusion and fission during evolution.
The authors considered proteins at the level of domain
architecture because structural domains reveal more
about distant evolutionary relationships than simple
sequence alignment. The domain information was
collected from the Structural Classification of Proteins
(SCOP) database, which provides an evolutionary defini-
tion of domains based on three-dimensional structure.
The authors studied proteins across 131 genomes
(17 Archaea, 98 Bacteria, and 16 Eukarya), and investi-
gated 7116 domain architectures to identify protein
domains that evolved by fusion or fission. In order to do
that, the authors looked for domain architectures that
were present as a single protein (i.e. the composite form)
in at least one genome, and as a set of shorter proteins
(i.e. the split forms) in other genomes, which would
suggest that the composite protein was split by fission or
the split proteins were fused at some stage during
evolution. The authors identified 2869 groups of multi-
domain proteins as a single protein in certain organisms
and as two or more smaller proteins with equivalent
domain architectures in other organisms. They also
found that fusion events were approximately four times

more common than fission events, which is consistent
with the observation by Snel et al. The authors discussed
the possible contribution of horizontal gene transfer
in the evolution of composite proteins, which is more
prevalent in Bacteria and Archaea.

2.3.4.1.D HORIZONTAL GENE TRANSFER

Horizontal gene transfer, also known as lateral
gene transfer, refers to nonsexual transmission of
genetic material between unrelated genomes; hence,
horizontal gene transfer involves gene transfer across
species boundaries. The phenomenon of horizontal
gene transfer throws a wrench in the concepts of last
common ancestor, syntenic relationship between gen-
omes, phylogeny and the evolution of discrete species
units, taxonomic nomenclature, etc.m The majority of
examples of horizontal gene transfer are known in
prokaryotes. In bacteria, three principal mechanisms
can mediate horizontal gene transfer: transformation
(uptake of free DNA), conjugation (plasmid-mediated
transfer), and transduction (phage-mediated trans-
fer). In plants, introgression can mediate horizontal
gene transfer; this means gene flow from one gene
pool to another gene pool—that is, from one species
to another species by repeated backcrossing between
an interspecific hybrid and one of its parent species.
Therefore, introgression depends on the extent of
reproductive isolation between the two species.
Introgression has also been reported between duck
species, between butterfly species involved in mim-
icry, and between human and Neanderthal.41

Horizontal gene transfer in animals is not common,
but there are some reports. For example, Acuña et al.42

identified the gene HhMAN1 from the coffee berry
borer beetle, Hypothenemus hampei, which shows clear
evidence of horizontal gene transfer from bacteria.
HhMAN1 encodes the enzyme mannanase, which
hydrolyzes galactomannan. Phylogenetic analyses of
the mannanase from both prokaryotes and eukaryotes
revealed that mannanases from plants, fungi, and ani-
mals formed a distinct eukaryotic clade, but HhMAN1
was most closely related to prokaryotic mannanases,
grouping with the Bacillus clade. HhMAN1 was not
detected in the closely related species H. obscurus,
which does not colonize coffee beans. The authors
hypothesized that the acquisition of the HhMAN1 gene
from bacteria was likely an adaptation in response to
need in a specific ecological niche.

mDuring evolution, different lineages split from a common ancestor (the last common ancestor of those lineages) and evolve to

ultimately form reproductively isolated groups (species). However, lineages descending from a common ancestor still maintain many

ancestral genes in groups and in the same order but scattered in different chromosomes (syntenic relationship between genomes).

This scenario of evolution does not consider the possibility of exchange of genetic material between groups belonging to different

lineages. The phenomenon of horizontal gene transfer is an exception to this paradigm.
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There are also some examples of horizontal gene
transfer from fungi to arthropods, such as aphids
(insects) and mites (arachnids). Phylogenetic analysis
revealed the evidence of horizontal transfer of genes
encoding carotenoid desaturase and carotenoid
cyclase�carotenoid synthase from fungi to pea aphid,43

and to spider mite.44 Notably, the fused carotenoid
cyclase�carotenoid synthase gene is characteristic of
fungi but not of plants or bacteria. The authors dis-
cussed the possible mechanism of such gene transfer.
Gene transfer into a single arthropod ancestor of both
spider mites and aphids is not likely because it would
require subsequent loss of these genes in most other liv-
ing arthropod taxa. The most likely scenario is the
transfer of these genes through symbiosis, which proba-
bly occurred independently in both aphids and spider
mites. It has been suggested that the frequent associa-
tion of mites with viruses makes them ideal horizontal
gene transfer vectors, including incorporation of mobile
genes into their own genomes.

2.3.4.2 Origin (de Novo) of New Genes
from Noncoding Sequences

The processes of how a new gene is created de novo
from noncoding sequence are not well understood.
For a noncoding DNA to give birth to a protein-coding
gene, two features are needed: the DNA must be tran-
scription-competent, and the DNA must acquire an
open reading frame. It is being increasingly appre-
ciated that a rare but consistent feature of eukaryotic
genomes is the evolution of new genes de novo.
Every genome contains genes that lack homologs in
other taxonomic lineages. These new genes are called
orphan genes. Orphan genes may arise by duplication
and rearrangement followed by rapid divergence, but
their de novo origin from noncoding DNA appears to
be a very important mechanism.45 If orphan genes are
born through a duplication�divergence mechanism,
they have to diverge beyond recognition as paralogs.
In contrast, the de novo origin of orphan genes from
noncoding DNA requires the emergence of sequence
features forming functional signals, such as transcrip-
tion initiation signal, polyadenylation signal, splice
signal, etc., and finally the sequence would have to
come under regulatory control in order for the gene
to be expressed. Further accumulation of additional
regulatory elements can expand the tissue expression
pattern of a newly evolved orphan gene. One character-
istic of genes originated de novo is that these genes are
usually simple (mostly single exon) so that their evolution
de novo would be possible.

In recent years, following the sequencing of many
genomes, there have been multiple reports of identifi-
cation of genes born de novo from noncoding DNA.
Begun and coworkers,46,47 reported de novo origin of

orphan genes from noncoding DNA in Drosophila.
By comparing the genome sequences of various species
of Drosophila, Levine et al. described five novel genes
in D. melanogaster that were derived from noncoding
DNA. These genes have no homologs in any other
species. Begun et al. subsequently used testis-derived
expressed sequence tags (ESTs) from D. yakuba to
identify genes that have likely arisen either in D. yakuba
or in the D. yakuba/D. erecta ancestor. They identified
eleven such genes. The genes described in these two
publications are mostly X-linked, expressed in the testis,
and have male germ-line functions. Zhou et al.48 identi-
fied nine genes that originated de novo, and estimated
that about 12% of the new genes that originated in the
Drosophila lineage had arisen de novo. In recent years,
efforts have turned to the human genome in order
to find genes that most likely originated de novo. By
building blocks of conserved synteny between human
and chimpanzee genome and using 1:1 orthologs identi-
fied as BLASTP hits (hits in the protein database using
Basic Local Alignment Search Tool (BLAST)) with no
other similarly strong hits, Knowles and McLysagh
reported three human protein-coding genes—CLLU1,
C22orf45, and DNAH10OS—that seemingly had de novo
origin in the human genome. Each of these three genes is
a single-exon gene; however, they do contain introns in
the untranslated regions. In order to minimize the chance
that the genes could be annotation artifact, the authors
only considered human genes that are classified as
“known” by Ensembl and that have expressed sequence
tag (EST) support for transcription.49 Another de novo
protein-coding gene, C20orf203, which is associated with
brain function in humans, was reported in 2010.50

More recently, the identification of the most exten-
sive set of human genes born de novo from noncoding
DNA was reported by Wu et al.51 Using a similar
approach as that of Knowles and McLysaght, they
reported 60 new protein-coding genes that apparently
originated de novo in the human lineage since its
divergence from the chimpanzee. Their data are sup-
ported by both transcriptional and proteomic evidence.
Using RNA sequencing, the highest expressions of
these genes were found to be in the cerebral cortex
and testes, suggesting that these genes may contribute
to phenotypic traits that are unique to humans, includ-
ing the development of cognitive ability. Interestingly,
the earlier finding of Knowles and McLysagh on the
three human genes identified as having a de novo
origin (CLLU1, C22orf45, and DNAH10OS) was not
supported by the findings of Wu et al. The discrepancy
was due to changes in gene annotation in the different
versions of the databases used by these two groups
(version 46 used by Knowles and McLysaght versus
version 56 used by Wu et al.). This discrepancy also
underscores the fundamental challenge of identifying
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genes of de novo origin accurately based on annotated
genome. A major challenge remains to demonstrate
the functionality of these genes.

Exonization of previous intron sequences through
mutation and abolition of splice sites is another
mechanism of increasing the proportion of coding
sequences derived from noncoding sequences in the
genome. Examples include exonization of intronic Alu
sequences,52,53 and of intronic sequences in the colla-
gen IV gene.54 However, exonization of introns may
also be associated with pathological outcomes.55,56

2.4 FACTORS THATAFFECT GENE
FREQUENCY IN A POPULATION

The mechanism of molecular evolution also
involves the accumulation of genetic diversity, which
leads to changes in gene frequency and genetic struc-
ture of the population. Changes in allele frequency

initially result in microevolution, which introduces
genetic variations in a population through processes
such as mutation, migration, selection, genetic drift,
population bottlenecks, and even relaxation of purify-
ing selection.

A simple model for calculating gene frequency in a
diploid population is provided by the Hardy�Weinberg
equilibrium principle (see Box 2.1). It states that the gene
frequency in a diploid population remains constant through
generations provided five conditions are met: no mutation, no
migration, no selection, no genetic drift, and panmixis (ran-
dom mating). For example, two alleles A1 and A2 can pro-
duce three possible genotypes: A1A1, A1A2, and A2A2.
According to the Hardy�Weinberg principle, if the fre-
quency of A1 is p, and the frequency of A2 is q (q5 12 p,
because p1 q5 1, i.e. 100%), then the frequencies of
A1A1, A1A2, and A2A2 are p2, 2pq, and q2, respectively,
and p21 2pq1 q2 will also be 1 (i.e. 100%). A population
in which the genotypic ratios are maintained is said to
be in Hardy�Weinberg equilibrium.

BOX 2.1

Hardy�Weinberg Equilibrium at a Single
Locus with Two Alleles

Sperm

A1 (p) A2 (q)

Egg
A1 (p) A1A1 (p

2) A1A2 (pq)

A2 (q) A1A2 (pq) A2A2 (q
2)

Hence, the frequencies are: A1A15 p2, A1A25 2pq,

A2A25 q2.

The sum of the frequencies of alleles as well as the

genotypes is always 1.

Hence, for the alleles, p1 q5 1 (5100%), and for the

genotype, (p1 q)25 1, or p21 2pq1 q25 1 (5100%).

Example: If the frequency of A15 0.7 and the frequency

of A25 0.3 (512 0.7), then the frequencies of the genotypes

in the population are as follows:

A1A15 (0.7)25 0.495 49%;

A1A25 2(0.7)(0.3)5 0.425 42%;

A2A25 (0.3)25 0.095 9%.

Hardy�Weinberg Equilibrium at a Single
Locus with Three or More Alleles
(Multiple Alleles)

If the locus under study has three or more alleles

(multiple alleles), the derivation of frequencies is

similar to that used for two alleles. If the alleles are A1,

A2, and A3, and the frequencies are, p, q, and r respec-

tively, then:

The gene frequency p (A1)1 q (A2)1 r (A3)5 1.

The genotype frequency (p1 q1 r)25 1, or

p2 (A1A1)1 q2 (A2A2)1 r2 (A3A3)1 2pq (A1A2)1 2pr

(A1A3)1 2qr (A2A3)5 1.

Hardy�Weinberg Equilibrium
at Two or More Loci

Let’s assume, at one locus, the alleles are A1 and A2

and their frequencies are p and q, respectively.

At a separate, independently assorting locus, the

alleles are B1 and B2, and their frequencies are r and s,

respectively. Hence, p1 q5 1, and r1 s5 1.

The four types of allelic combinations in the

gametes are: A1B1, A1B2, A2B1, and A2B2; their frequen-

cies will be pr, ps, qr, and qs, respectively, and

pr1 ps1 qr1 qs5 1.

If all the alleles are at equilibrium, then the genotype

frequencies will be (pr1 ps1 qr1 qs)2. The genotype fre-

quencies of offspring can also be easily calculated using the

Punnett square; for example, a cross A1A2B1B23A1A2B1B2

will yield p2r2 A1A1B1B1; 2p
2rs A1A1B1B2; 2pqr

2 A1A2B1B1; . . .

q2s2 A2A2B2B2.
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The Hardy�Weinberg equilibrium principle is a
very simplistic representation of the maintenance of
gene frequencies in a population, and it does not take
into account most of the complexities associated with
actual populations. The conditions that need to be
met for a population to remain in Hardy�Weinberg
equilibrium also underscore the conditions that can
introduce genetic variations in a population and cause
microevolution, as discussed below.

2.4.1 Mutation

Genetic variation in a population is derived from a
wide assortment of different alleles. Mutation or change
in the genetic material is one of the primary sources
of generation of genetic diversity in the population.
As discussed above, a mutation can be a point mutation,
a change in the open reading frame of a gene, or a
chromosomal mutation. Chromosomal mutations are
large-scale changes in chromosomal structure and
organization, exemplified by insertion�deletion (indel),
inversion, duplication, and translocation (Figure 2.1A).

The spontaneous point mutation rate (see Box 2.2)
varies depending on the gene and the species. The
mutation rate can be expressed differently. Studies uti-
lizing breeding of control mice and monitoring muta-
tions in five coat-color loci demonstrated an average
mutation rate of B123 1026 per locus per gamete for
forward mutations from the wild type, and B23 1026

per locus per gamete for reverse mutations from reces-
sive alleles.57,58 Mouse mutation data summarized

from different radiation experiments showed a for-
ward mutation rate of 6.63 1026 per locus per genera-
tion.59 The average forward mutation rate of the
hypoxanthine phosphoribosyltransferase (HPRT) gene
of the human promyelocytic leukemia cell line HL-60
was reported to be B2�63 1027/cell/generation.60

When the mutation rate is calculated based on the evo-
lution of pseudogenes, it turns out to be one or two
orders of magnitude higher. This is expected because
pseudogenes are mostly free from selective constraints.
For example, the mutation rate based on the evolution
of pseudogenes in humans was estimated to be
B23 1028 per base per generation.61 However, a dif-
ferent estimate, based on determining the substitution
rate in pseudogenes, calculated the average mutation
rate in mammalian nuclear DNA to be 3�53 1029

nucleotide substitutions per nucleotide site per year.62

Therefore, changes in allele frequency due to muta-
tions alone are very small. Nevertheless, for a large
population, the cumulative effect of mutation over
many generations can be significant. Recently, it was
demonstrated that natural genetic variations in the
human genome are caused by small insertions and
deletions.63 The authors reported almost 2 million
small insertions and deletions (indels) ranging from 1
to 10,000 bp in length in the genomes of 79 diverse
humans. These variants include 819,363 small indels
that map to human genes. Small indels were fre-
quently found in the coding exons of these genes, and
several lines of evidence indicate that such variations
are a major determinant of human biological diversity.

BOX 2.2

E ST IMAT ION OF MUTAT ION RATE

The mutation rate in haploid organisms can be directly

measured because the mutation will be expressed and the

mutant phenotype can be observed.

Determination of the mutation rate in diploid organ-

isms is more challenging because a recessive mutation can

be masked by the dominant allele. Hence, the expression

of the mutant phenotype and the actual occurrence of the

mutation can be separated by many generations. Some

major contributions on the estimation of mutation rate

in mammals were made by a number of different groups

from the 1950s to the 1970s. The contributions of Gunther

Schlager and Margaret Dickie (cited above) of the Jackson

Laboratory, Bar Harbor, Maine, are worth mentioning

simply because of the volume of the work they did. They

analyzed in excess of 7 million mice over many years for

five coat-color loci (nonagouti, brown, albino, dilute, leaden)

for estimating the average mutation rate.

For direct estimation, as done by Schlager and Dickie,

the mutation rate in a single generation is used. In this

scenario, the parental genotypes are known. If the

offspring shows a mutant phenotype, it is backcrossed

with the parents, and also crossed with a mouse homo-

zygous for that mutation, and with a mouse that does

not carry the mutation, in order to confirm the mutation.

The mutation rate is calculated as follows:

µ5 x=2N;

where µ5mutation rate, x5number of mutant offspring,

and N5 total number of offspring examined. The factor 2

is used because each offspring develops from fertilization

involving two haploid gametes. Each haploid gamete

contains one allele that can potentially be the mutant

allele. Therefore, the mutation rate calculated this way

is expressed as “per locus per gamete.” When using cell
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2.4.2 Migration (Gene Flow)

Migration is the movement of organisms from one
location to another. It involves movement from one
subpopulation to another subpopulation, or dispersal of
groups of individuals from one central population into
different geographic locations. The various subpopula-
tions of a species that has broad geographic distribution
do not have the same genetic makeup; therefore, the
relative frequency of various alleles may differ signifi-
cantly. In such cases, migration of individuals from
one subpopulation to another can add significant genetic
variation to the receiving subpopulation. If the indivi-
duals from the two subpopulations then mate (panmixis),
the relative frequencies of various alleles and genotypes
eventually change and come to equilibrium again. In con-
trast, if groups of individuals move out of one central
population into different geographic locations, then over
time those subpopulations accumulate genetic variations
independently and consequentially genetically diverge
form one another.

The gene frequencies in the resulting population
can be calculated by taking into account the fraction of
the migrant subpopulation, the fraction of the native
subpopulation, and the gene frequencies in those
subpopulations, as exemplified in Box 2.3.

2.4.3 Natural Selection

Natural variations exist among the individuals in
any population. Many of these differences do not affect

survival or reproductive fitness (e.g. the eye color
variations in humans), but some differences may
improve the chances of survival of a particular group
of individuals. Natural selection results in the fixation
of these advantageous variations in the population,
leading to greater adaptability to and reproductive
success in the environment. Thus, natural selection
drives the evolutionary engine.

Natural selection can be of two types, based on
its effect on the fate of genetic variations: purifying
(negative) selection and positive (Darwinian) selection.
Purifying selection removes deleterious variations,
whereas positive selection fixes beneficial variations
in the population and promotes the emergence of
new phenotypes. As a result, natural selection acts on
populations to determine the allele frequency and
distribution of quantitative traitsn over generations.
The principal types of selection determining the distri-
bution of traits across a population are directional,
stabilizing, disruptive, and balancing selection.

Directional selection favors the advantageous allele
so that its proportion (and the associated phenotype)
increases in the population. As a result, both the allele
frequency and the phenotype are skewed in one direction
and away from the average phenotype (Figure 2.5A).
A popular example is the phenomenon of industrial
melanism in the peppered moth (Biston betularia). This
species has both light- and dark-colored phenotypes.
Before the industrial revolution in England, the light-
colored phenotype was predominant. During the indus-
trial revolution, the trees on which the peppered moths

BOX 2.2 (cont’d)

culture, the mutation rate can also be expressed “per cell

division.”

Example: If eight offspring are born with a mutant

phenotype out of 1 million (106) progeny, and if three of

those offspring had affected parents, then five offspring

were born with the new mutation. Therefore, the

mutation rate will be 5/(23 106)5 2.53 1026 per locus

per gamete.

Because an accurate estimation of mutation rate

involves using animals with known genotype, many

forward crosses and backcrosses with parents, and

careful analysis of a large number of progeny, it may

be difficult to determine the true mutation rate if

parental genotype information is not available. In this

situation, the mutation frequency (instead of mutation

rate) can be calculated using the same formula. The

mutation frequency does not tell when the mutation

first appeared in the population; however, mutation

frequency can provide an approximation of the true

mutation rate.

nA quantitative trait is a phenotype that is influenced by multiple genes as well as by the environment. Each gene involved in

influencing a quantitative trait segregates according to Mendel’s law. Because of polygenic influence, quantitative traits vary over a

continuous range; hence, they are also known as continuous traits. As the name implies, quantitative traits can be measured. Some

examples of quantitative trait phenotype in humans are skin color, height, blood pressure, and IQ. The (statistical) analysis that helps

find the association between the phenotype and the molecular data in order to explain the genetic basis of complex traits is known as

quantitative trait locus (QTL) analysis.
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rested were blackened by soot. The darker background
gave the dark-colored moths an advantage in hiding
from predatory birds and at the same time made the
light-colored moth more visible and prone to predation.
As a result, over time the dark-colored moths proliferated
and became the predominant phenotype while the
light-colored moth population was significantly reduced.
Through regulation and legislation, the environment
started clearing up. As a result, the balance between
light-colored and dark-colored varieties was reversed
and the light-colored variety proliferated again.

Stabilizing selection is known to be the most
prevalent type of natural selection; it favors the
intermediate (average) phenotype of the trait, and
in doing so it removes the extreme phenotypes of
the trait from the population (Figure 2.5B). Thus,
stabilizing selection reduces genetic variability in the
population. It is generally accepted that stabilizing
selection maintains the DNA and protein sequences over
evolutionary time. However, Kimura64 demonstrated

that under stabilizing selection, extensive neutral
evolution can occur through random genetic drift. In
other words, many cryptic neutral genetic changes
may occur in natural populations while maintaining
the phenotype unchanged. A common example of
stabilizing selection is the mortality and birth weight
in human babies. It is well known that both very
large and very small human babies suffer high mor-
tality rates; hence, the intermediate weight is the most
favored phenotype for survival.

Disruptive selection (diversifying selection) favors
the two extreme phenotypes of the trait and minimizes
the average phenotype. Thus, disruptive selection cre-
ates a bimodal distribution of a trait in the population;
consequently, it is the opposite of stabilizing selection
in the outcome (Figure 2.5C). Disruptive selection is an
important driving force behind sympatric speciationo.
An example of disruptive selection is provided by
the mimicry and survival of the African butterfly
Pseudacraea eurytus. In this species, the coloration

BOX 2.3

E F F ECT OF M IGRAT ION ON GENE AND GENOTYPE FREQUENC I E S

If a migrant subpopulation M migrates into a native

subpopulation N, forming the resulting population R,

the fraction of the migrant population in the resulting

population is M/R, and that of the native population

is N/R; hence, M/R1N/R5 1 (i.e. 100%).

If:

The frequency of A15 pM and that of A25 qM in

subpopulation M

The frequency of A15 pN and that of A25 qN in

subpopulation N

The frequency of A15 pR and that of A25 qR in the

resulting population R

then:

pR5 [(M/R3 pM)1 (N/R3 pN)]

qR5 [(M/R3 qM)1 (N/R3 qN)].

Example: If 300 individuals from a subpopulation

(M) migrate into a native subpopulation (N) of 700 indi-

viduals, the resulting population (R) will contain 1000

individuals.

So, M/R5 (300/1000)5 0.3 (i.e. 30% of the resulting

population is migrant population); N/R5 (700/1000)5

0.7 (i.e. 70% of the resulting population is native

population).

Originally, if:

The frequency of A1 in subpopulation M (pM)5 0.45,

and that of A2 (qM)5 0.55

The frequency of A1 in subpopulation N (pN)5 0.75,

and that of A2 (qN)5 0.25

then:

The frequency of A1 in the resulting population R

(pR)5 [(M/R3 pM)1 (N/R3 pN)]5 [(0.33 0.45)1

(0.73 0.75)]5 0.66

The frequency of A2 in the resulting population R

(qR)5 [(M/R3 qM)1 (N/R3 qN)]5 [(0.33 0.55)1

(0.73 0.25)]5 0.34

Therefore, the frequencies of A1 and A2 in the resulting

population are different from those of both the migrant

and native populations.

With the change in gene frequencies, the genotype

frequencies of A1A1, A1A2, and A2A2 in the resulting

population R would change as well, and can be calculated

following the Hardy�Weinberg equilibrium principle.

oSympatric speciation is the process by which new species evolve from an ancestral species through the evolution of reproductive

barriers while inhabiting the same geographic region. This is in contrast to allopatric speciation, in which geographical isolation

separates two populations of a species resulting in reproductive isolation and speciation.
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ranges from reddish yellow to blue, with some
intermediate colors. The extreme colors mimic other
butterflies that are not normally preyed upon by the
local predatory birds. In contrast, butterflies with inter-
mediate coloration are devoured by the predators in
greater numbers. Therefore, butterflies with extreme
coloration survive in greater proportion compared to
those with intermediate coloration. Another example
of disruptive selection is the selection of the two
extreme trophic phenotypes in the spadefoot toad
(Spea multiplicata). Using a mark-recapture experiment
in a natural pond, Martin and Pfennig65 showed
that the spadefoot toad can have different trophic
phenotypes depending on the resource availability.
However, disruptive selection favors the two extreme
phenotypes, the small-headed “omnivore phenotype,”
which feeds mostly on detritus, and a large-headed
“carnivorous” phenotype, which feeds on and whose
phenotype is induced by the fairy shrimp. By foraging
more effectively on the two alternative resource types,

these extreme phenotypes avoid competition for food
resources and are favored by disruptive selection,
whereas the intermediate phenotypes are reduced
in number.

Balancing selection (balanced polymorphism)
maintains polymorphism in the population with
respect to an allele of a trait. Therefore, balancing
selection maintains genetic diversity in the popula-
tion. A classic example of balancing selection is the
heterozygote advantage in areas in Africa with
high incidence of malaria. Sickle cell anemia reduces
life expectancy and is caused if an individual is
homozygous for a variant of hemoglobin (HbS/HbS).
A red blood cell (RBC) containing HbS becomes sickle-
shaped and is extremely sensitive to oxygen deprivation.
However, the malarial parasite Plasmodium cannot
survive in such sickle-shaped RBCs. Thus, heterozygous
individuals, containing one normal copy and one variant
copy of the hemoglobin gene (HbA/HbS), are at a sur-
vival advantage in areas with high incidence of malaria.
In contrast, individuals homozygous for normal hemo-
globin (HbA/HbA) are at an increased risk of death by
malaria. Thus, selection maintains the apparently delete-
rious HbS allelic variant in the population, and balances
between strong selection against both HbA/HbA and
HbS/HbS genotypes by providing a selective advantage
to the HbA/HbS genotype.

Based on the scale of changes, selection can lead to
microevolution and macroevolution. Microevolution
means small changes in the genome and is also associ-
ated with changes in gene frequency in a population.
Over time, the accumulated small changes collectively
can be significant enough to create certain new traits
so that the group possessing those traits could be
assigned an infra-species category, such as a subspe-
cies or variety under the original species. In contrast,
macroevolution means evolutionary changes leading
up to the formation of species or higher taxa. The
mechanisms for both micro- and macroevolutionary
processes are generally the same.

2.4.4 Genetic Drift

Genetic drift (also called random genetic drift)
means a change in the gene pool strictly by chance
fixation of alleles. The effects of genetic drift can be
acute in small populations and for infrequently occur-
ring alleles, which can suddenly increase in frequency
in the population or be totally wiped out. The alleles
thus fixed by chance (genetic sampling error) may be
neutral—that is, they may not confer any survival or
reproductive advantage. Therefore, for small popula-
tions, genetic drift can result in a significant change in
gene frequency in a short period of time.

FIGURE 2.5 Three types of natural selection. (A) Directional
selection; (B) stabilizing selection; (C) disruptive selection. See text
for details.
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Genetic drift can be caused by a number of chance
phenomena, such as differential number of offspring
left by different members of a population so that
certain genes increase or decrease in number over
generations independent of selection, sudden immi-
gration or emigration of individuals in a population
changing gene frequency in the resulting population,
or population bottleneck. Of these, population bottle-
neck can cause a radical change in allele frequencies
in a very short time. A population bottleneck occurs
when a population suddenly shrinks in size owing to
random events, such as sudden death of individuals
due to environmental catastrophe, habitat destruction,
predation, or hunting. When the small number of
surviving individuals gives rise to a new population,
there is a radical change in the gene frequency in
the resulting population, in which certain genes
(including rare alleles) of the original population may
radically increase in proportion while others may
radically decrease or be wiped out completely,
independently of selection. Additionally, the resulting
population contains a small fraction of the genetic
diversity of the original population. The founder effect
is a severe case of population bottleneck and happens
when a few individuals migrate out of a population
to establish a new subpopulation. Random genetic
drift accompanies such founder effect, to severely
reduce the genetic variation that exists in the original
population. In the new population, the founder effect
can rapidly increase the frequency of an allele whose
frequency was very low in the original population.
If the allele is a disease-related allele, the founder
effect can lead to the prevalence of the disease in the
new population. An increase in a specific disease in a
human population due to the founder effect is seen in
the Old Order Amish of eastern Pennsylvania,66 and
in the Afrikaner population of South Africa.67

The current Amish population has descended from
a small number of German immigrants who settled
in the United States during the eighteenth century.
The incidence of Ellis�van Creveld syndrome (a form
of dwarfism with polydactyly, abnormalities of the
nails and teeth, and heart problems) is many times
more prevalent in this Amish population than in the
American population in general. The origin of this
disease can be traced back to one couple, Samuel King
and his wife, who came to the area in 1744. The
mutated gene that causes the syndrome was passed
along from the Kings and their offspring. The Amish
population practices endogamy (individuals tend to
mate within their own subgroup). Additionally, in
this community the gene flow is centrifugal—that is,
members may leave the community but outsiders do
not join the community—therefore, there has been no
introduction of exogenous genes into the Amish gene

pool. As a result, the frequency of the disease gene has
rapidly increased over generations.

Another example of founder effect comes from the
Afrikaner population of South Africa, which is mainly
descended from one group of European (mainly Dutch,
but also German and French) immigrants that landed
there in 1652. The present-day Afrikaner population has
a very high prevalence of Huntington’s disease; over
200 affected individuals in more than 50 supposedly
unrelated families have been found to be ancestrally
related through a common progenitor in the seventeenth
century. Thus, the root of the disease can be traced
back over 14 generations to a common progenitor who
supposedly carried the gene for Huntington’s disease.
Huntington’s disease is an autosomal dominant disease
caused by triplet (CAG) repeat expansion in the gene
(and the mRNA), containing 40 to. 100 CAG triplets.
The onset and severity of the disease is directly corre-
lated with the number of repeats.

2.4.5 Nonrandom Mating

Changes in gene frequency by genetic drift are
influenced in a large part by the breeding structure
of the population—that is, whether the population
practices random mating or nonrandom mating.
Inbreeding is the most common form of nonrandom
mating. Inbreeding occurs when genetically related
individuals preferentially mate with each other
(e.g. mating between relatives). The most extreme
form of inbreeding is self-fertilization. Inbreeding
produces a larger excess of homozygotes in the popu-
lation than would be expected from random mating.
Consequently, inbreeding also increases the fre-
quency of homozygotes of rare alleles, including rare
recessives, which will be subject to selection. If a rare
allele is deleterious, its frequency can rise through
homozygosity because of significant inbreeding in a
normally outbreeding population. This phenomenon
is called inbreeding depression.

Inbreeding is measured by the inbreeding coeffi-
cient (F), which is a measure of the probability that two
alleles are identical by descent. This means the degree
to which two alleles are more likely to be homozygous
than heterozygous simply because the parents are
genetically related. The value of F can theoretically
range from 0 (0%; hence no inbreeding, completely
random mating) to 1 (100%; hence complete inbreeding,
all alleles are identical by descent).

If the frequency of allele A is p and the frequency of
allele a is q, and the value of F is known, then the fre-
quencies of genotypes AA, Aa and aa are determined
as follows:

AA5p21Fpq; Aa52pq22Fpq; Aa5q21Fpq: ð2:1Þ
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2.5 THE NEUTRALTHEORY
OF EVOLUTION

The Darwinian theory of evolution by natural
selection is based on the assumption that new muta-
tions that constantly arise in the population are
mostly adverse but some are beneficial. Natural selec-
tion filters out the adverse mutations, while fixing
beneficial mutations in the population. In other
words, evolution is caused by natural selection acting
through beneficial mutations fixed in the population.
Thus, it is an underlying assumption by Darwinian
evolutionists that neutral mutations that do not confer
any selective advantage or disadvantage are very
rare, if they exist at all. A corollary to this assumption
is that genetic drift, which causes chance fixation of
neutral alleles, could not have played any role in
evolution.

This long-held view of molecular evolution was
challenged by the neutral theory of molecular evolu-
tion, proposed by Kimura.68 In brief, the neutral theory
postulates that evolutionary changes at the molecular
level are not caused by natural selection alone acting
only on advantageous mutations, but are mostly
caused by random chance fixation of selectively neu-
tral or near-neutral alleles (genetic drift). Therefore,
genetic drift plays an important role in molecular evo-
lution. To expand the concept, according to neutral
theory, the majority of new mutations are either delete-
rious or neutral. Deleterious mutations adversely affect
the fitness of the carrier whereas neutral mutations do
not affect the fitness of the carrier (hence, selectively
neutral). Fitness in the context of evolution means the abil-
ity to reproduce, and contribute to the gene pool of the next
generation. Deleterious mutations that adversely affect
fitness are removed from the population by purifying
selection. In contrast, neutral mutations are subject to
chance sampling and random fixation in every genera-
tion. In this process, some neutral mutations are fixed
randomly by sheer chance while others are removed
from the population. Once a neutral mutation is fixed
by chance, its frequency increases by genetic drift,
which leads to genetic polymorphism in the population.
These genetic variations in the population provide the
raw materials for molecular evolution. The allele carry-
ing the new fixed mutation is called a derived allele, as
opposed to the ancestral allele from which it is derived.
As mentioned above, extensive neutral evolution can
occur through random genetic drift while the pheno-
type is still maintained unchanged under stabilizing
selection.64

It should be remembered that neutral theory does
not deny the role of natural selection in evolution—
that is, it does not deny the importance of positive
selection in the origin of adaptations—it simply

complements the Darwinian view by emphasizing the
role of neutral mutations as additional raw materials
for evolution and genetic drift as an additional mecha-
nism of evolution. The neutral theory also predicts that
purifying selection is ubiquitous, but positive selection
is rare.69

2.5.1 Synonymous and Nonsynonymous
Substitutions, Constraints on Changes in Gene
and Protein Sequence, and Evolution

A nucleotide substitution that changes the corre-
sponding amino acid in the protein is called a nonsy-
nonymous substitution (denoted as KA), whereas a
nucleotide substitution that does not change the amino
acid in the protein is called a synonymous substitution
(denoted as KS).

The neutral theory predicts that synonymous
substitutions will be tolerated, but nonsynonymous
substitutions will be removed by purifying selection.
Consequently, nonsynonymous substitutions will be
fewer than synonymous substitutions. Consistent with
this prediction, it is known that synonymous substitu-
tions typically exceed nonsynonymous substitutions
in protein-coding genes, and functionally constrained
regions of genes evolve at a slower rate than regions
that are not functionally constrained. However, if a
nonsynonymous substitution confers some selective
advantage, then it will be rapidly fixed in the popula-
tion by positive selection. The average rates of synony-
mous and nonsynonymous substitutions previously
calculated were 4.7 substitutions/synonymous site
versus 0.88 substitutions/nonsynonymous site per 109

(billion) years, respectively.70 This estimate was subse-
quently revised to 3.51 substitutions/synonymous
site versus 0.74 substitutions/nonsynonymous site per
109 (billion) years in rodents and humans, as stated
earlier in this chapter.

2.5.2 Signatures of Positive Selection

A prediction of the neutral theory is that if the
substitutions are all neutral, then for a given protein-
coding gene the KA/KS ratio between two species
should be very similar to the same ratio within spe-
cies (null hypothesis), and it is the deviation from this
prediction that provides support for positive selection
(with some exceptions, such as relaxation of purifying
selection and population bottleneck). McDonald and
Kreitman71 proposed a simple method to determine
signatures of positive selection in protein sequence
(see Box 2.4). The test relies on determining statisti-
cally significant deviation from the prediction of the
neutral theory (the null hypothesis) that if the
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substitutions are all neutral, then for a given protein-
coding gene, the KA/KS ratio at divergent sites
between species should be very similar to the same
ratio at polymorphic sites within species. Deviation
from the null hypothesis will constitute evidence of
positive selection.

Signatures of positive selection, however, are not
very widespread, except in some select groups of genes,
such as genes important in host�pathogen interactions,
as well as in sex-related genes. For example, strong
signatures of positive selection, with KA/KS ratios rang-
ing from 1.36 to 5.15, were observed when two proteins

(16 and 18 kDa) in the acrosomal vesicle of abalone
spermatozoa were compared. These values were among
the highest for full-length sequences analyzed so far.72

2.5.3 Selective Sweep
and the Hitchhiking Effect

If a new mutation offers increased fitness to the
carrier, it is fixed in the population through positive
selection, and its frequency rapidly increases. Such
rapid fixation of an advantageous mutation is called
selective sweep. As the frequency of the new mutation

BOX 2.4

THE MCDONALD�KRE ITMAN TEST

The McDonald�Kreitman method tests the neutral

theory as the null hypothesis (H0) against the (positive)

selection hypothesis as the alternative hypothesis (H1).

In this test, two DNA sequences are aligned. Nucleotide

substitutions in the coding region are classified in

two ways: (1) synonymous versus replacement, and

(2) fixed difference versus polymorphic.

1. Synonymous versus replacement substitutions:

Synonymous substitutions result in a synonymous

codon and no amino acid change in the protein,

whereas replacement (or nonsynonymous)

substitutions result in a nonsynonymous codon

and amino acid change.

2. Fixed difference versus polymorphic substitutions:

Polymorphic substitutions show variations within

species, whereas fixed difference (also called fixed

divergence) substitutions differ between species but

not within species. Such dual classification allows the

use of a 23 2 table. McDonald and Kreitman studied

the sequence evolution of the Adh gene in Drosophila

melanogaster, Drosophila simulans, and Drosophila

yakuba. Tabulating the alignment data provided the

following table:

McDonald and Kreitman used the G-test for statisti-

cal independence to determine if the cells in the 23 2

table were independent. In other words, whether the

proportion of replacement versus synonymous changes

was independent of whether the changes were fixed

or polymorphic; similarly whether the proportion of

fixed difference versus polymorphism was indepen-

dent of whether the changes were synonymous or

replacement.

The replacement/synonymous substitution ratio

(KA/KS) of the fixed differences between species is

7/17 (5 0.41), whereas the same ratio of the polymor-

phic sites within species is 2/42 (5 0.048). Thus, there is

a more than eight-fold excess of replacement mutations

between species compared to polymorphic mutations within

species. Similarly, the fixed difference/polymorphic

substitution ratio among synonymous sites is 17/42

(5 0.40), whereas the same ratio among replacement

sites is 7/2 (5 3.5). Thus, there is a more than eight-fold

excess of replacement substitutions compared to synonymous

substitutions between species. If all these substitutions

were neutral, no such statistically significant differ-

ences would be expected. Therefore, the result of the

G-test of independence indicates deviation from the

assumptions of neutral evolution, thereby signifying a

strong signature of positive selection.Fixed

Difference

(between

species)

Polymorphism

(within

species)

Synonymous (KS)

(no amino acid change)

17 42

Replacement (KA)

(amino acid change)

7 2

G5 7.43; P5 0.0006.
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increases, the frequency of the genes/sequences around
it that are very closely linked and not easily separated
by recombination also increases. The net result is a loss
of sequence variability around the newly fixed mutation
in the population. The increase in frequency of the
neighboring genes/sequences, simply because of their
close proximity to the newly fixed mutation, is called
the hitchhiking effect, or genetic hitchhiking. Selective
sweep and the hitchhiking effect are the results of
strong positive selection. The hitchhiking effect may
also lead to an increase in the proportion of some-
what disadvantageous or deleterious mutations in the
population.73

2.6 MOLECULAR CLOCK HYPOTHESIS
IN MOLECULAR EVOLUTION

Kimura’s neutral theory derived support from the
molecular clock hypothesis. The molecular clock
hypothesis states that the rate of molecular evolution
of a gene (the rate of nucleotide substitution) or a pro-
tein (the rate of amino acid substitution) is approxi-
mately constant over evolutionary time. In other
words, the number of replacements in the gene or pro-
tein is proportional to the time since their origin—that
is, the number of replacements per unit time is similar.
The hypothesis was based on the initial observation of
amino acid substitutions in human and horse hemo-
globin by Zuckerkandl and Pauling in 1962. This was
followed by similar observations on cytochrome c
from seven different eukaryotic species: horse, human,
pig, rabbit, chicken, tuna, and baker’s yeast.74 The
term “molecular clock hypothesis” was coined by
Zuckerkandl and Pauling in 1965. The concept of the
molecular clock fits well with Kimura’s neutral

theory because the rate of neutral evolution is equal
to the mutation rate of neutral alleles, as shown in
Box 2.5.

However, after more protein sequences were stud-
ied in the 1970s, it was realized that the rate of substi-
tution could differ significantly in different proteins
and different organisms. Nonetheless, the molecular
clock represents a valuable tool in studies of evolution
and molecular systematics, and it has been widely
used in estimation of divergence times and reconstruc-
tion of phylogenetic trees.

2.7 MOLECULAR PHYLOGENETICS

Phylogeny refers to the evolutionary history of
organisms or populations. Phylogenetics is the study
of phylogenies—that is, the study of the evolutionary
relationships among various organisms and popula-
tions. According to evolutionary theory, the similarity
among organisms and groups of organisms is
attributable to their descent from a common ancestor.
This similarity extends even to the structure and
function of molecules, such as DNA and proteins.
Traditional phylogenetics considered morphological
features. Modern phylogenetics uses information from
DNA and protein sequences. The use of DNA and
protein sequence information and their change over
evolutionary time in order to infer the evolutionary
relationship among a set of homologous genes or
proteins is referred to as molecular phylogenetics.
The goal of molecular phylogenetics is to estimate the
evolutionary divergence of the DNA and protein
sequences from a common ancestral sequence, and
thus reconstruct the correct evolutionary relationships
among these sequences in the form of a phylogenetic

BOX 2.5

NEUTRAL EVOLUT ION�MUTAT ION RELAT IONSH I P

1. The probability of fixation of a mutation (p) in a

diploid population of size N is 1/2 N (i.e. p5 1/2 N).

2. The rate of substitution per unit time (k) in a diploid

population of size N5 the number of mutations fixed

per unit time in a diploid population of size N3 the

probability of fixation of a mutation (p).

3. Because the number of mutations fixed per unit time

is the mutations rate µ, and the number of any gene

in a diploid population of size N is 2 N, the number

of mutations fixed per unit time in a diploid

population of size N5 2 N3 µ.

4. Hence, point (2) stated above can be expressed as

k5 2N3 µ3 p.

5. Because p5 1/2N, p can be substituted for 1/2N and

point (2) can be rewritten as k5 2N3 µ3 1/2N;

or k5 µ.

6. In other words, the rate of substitution per unit

time—i.e. the rate of neutral evolution (k)—is equal

to the mutation rate (µ) of neutral alleles, and is

independent of the population size.
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tree. With the advent of molecular biology techniques,
particularly DNA sequencing, molecular phylogenetic
studies have become very common. Sometimes molec-
ular phylogenetics is used to infer the evolutionary
relationships among organisms. In general, inference
on evolutionary relationships based on protein sequences is
preferred to that based on nucleic acid sequences.

2.7.1 From Systematics and Biological
Classification to Molecular Phylogenetics

Systematics is the scientific study of the kinds and diver-
sity of organisms and of any and all relationships among
them . . . Classification of organisms is an activity that belongs
exclusively to systematics. G. G. Simpson75

Biological classification is concerned with ordering
(arranging) organisms or groups of organisms, both
living (extant) and fossil (extinct), into hierarchical
and multilevel categories based on their evolutionary
relationships. Therefore, the conceptual foundation of
the science of systematics and the activity of biological
classification is the evolutionary (phylogenetic) rela-
tionship among taxa. The expression phylogenetic
systematics (also known as cladistics, discussed in
Section 2.7.2.2) underscores the link between systemat-
ics and phylogeny. Because classification of organisms
takes into consideration their evolutionary relation-
ships, the revision of older classification schemes with
modern data, particularly ancestral and derived char-
acters and homology (discussed later under cladistics),
has affected only minor details.76 With the availability
of the vast amount of molecular data and analytical
tools, molecular phylogenetics has become the norm for
studying the evolutionary relationships. Nevertheless,
for historical reasons it is appropriate to consider molec-
ular phylogenetics against the backdrop of systematics
and biological classification.

The first systematic way of classifying organisms
was introduced by the Swedish botanist Carl
Linnaeus. Linnaeus’s classification scheme involved
categorizing organisms based solely on morphological
characters without any evolutionary context. He pub-
lished his work as a book called Systema Naturae. The
10th edition of Systema Naturae, published in 1758, is
considered to be the beginning of biological classifica-
tion and the binomial nomenclature system in biol-
ogy. In binomial nomenclature, an organisms is given
a name composed of two parts, usually using latinized
expression; the first part identifies the genus to which
the species belongs and the second part identifies the
species within the genus. The original Linnaean classi-
fication scheme is called Linnaean hierarchy, and it
had seven categories: kingdom, phylum, class, order,
family, genus, and species. These categories are called

taxonomic categories. Organisms that are the subjects
of classification are called taxa (singular: taxon). Modern
biological classification systems have many more taxo-
nomic categories compared to the seven originally
proposed by Linnaeus.

Linnaeus introduced his system of classification
100 years before the theory of evolution was proposed
by Darwin; hence, it had no evolutionary context.
Linnaeus’s classification scheme was based on choos-
ing “similar” characters, and such choice was more
or less arbitrary. With a greater understanding of
genetics—including population genetics, mechanism
of evolution, and relationships among the living and
extinct organisms at the biochemical and molecular
levels—it became apparent that biological classifica-
tion should reflect the relationships among organisms
or groups of organisms by their descent from a
common ancestor during evolution. The meaning of
“similarity” in modern biological classification is ancestral
similarity (homology).

2.7.2 Systems of Biological Classification

The three main systems of modern biological classi-
fication are phenetics, cladistics, and evolutionary
classification. For all practical purposes, phenetics is
no longer used as a phylogenetic method, whereas
cladistics has become the most widely used method
for molecular phylogenetic analysis.

2.7.2.1 Phenetics and Phenograms

Phenetics, also known as numerical taxonomy, was
introduced in the 1950s.77 Phenetics attempts to group
species into higher taxa based on overall similarity,
usually in morphology or other observable traits, and
regardless of their phylogeny or evolutionary relation-
ships. Many different characteristics are used to calculate
a similarity coefficient, varying between 0 (no similarity)
to 1 (highest similarity), between all pairs of organisms
that are subjects of phenetic classification. Similarity coef-
ficients are used to create a similarity matrix and develop
a phenogram, which is a tree-like network expressing
phenetic relationships. According to the proponents of
phenetics, similarity is expected among the descendants
of a common ancestor; therefore, grouping together the
most similar taxa automatically produces phylogenetic
classification. Although phenetics is not used anymore,
its historical importance lies in introducing computer-
based numerical algorithms, which are now essential in
all modern phylogenetic analyses.

2.7.2.2 Cladistics, Clades, and Cladograms

The main proponent of cladistics was the German
entomologist Willi Hennig in the mid-twentieth century.
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Cladistics is also known as phylogenetic systematics or
phylogenetic classification. Cladistics classifies organ-
isms based on shared derived characters. Therefore, taxa
that share specific derived characters are grouped more
closely together than those who do not. The groups are
called clades; each clade consists of an ancestor and all
of its descendants. The relationships between clades are
shown in a branching hierarchical tree called a clado-
gram. Depending on the branching of the cladogram,
it is possible to identify smaller clades within a larger
clade; the smaller clades are called nested clades.
Figure 2.6 shows nested clades within a larger clade in a
phylogenetic tree. The phylogenetic tree has been repre-
sented as a typical cladogram on the left and as a typical
dendrogram on the right. The dendrogram is sometimes
loosely called a cladogram. In a phylogenetic tree
(cladogram), each branching point (node) represents the
last common ancestor (LCA) of the lineages (including
nodes) arising from this point. The separation of taxa
along the cladogram is driven by evolutionary innovation
of new characters (evolutionary novelties or apomor-
phies, discussed below).

2.7.2.2.A SOME IMPORTANT TERMINOLOGY

OF CLADISTICS

Terms used to describe various character states that are
relevant in the discussion of cladistics include apomor-
phy, synapomorphy, plesiomorphy, symplesiomorphy,
autapomorphy, and homoplasy. The terms are described
below with examples.

A primitive or ancestral character state is called
plesiomorphy (plesiomorphic character), and a shared
plesiomorphy is called a symplesiomorphy. For

example, hair is a unique mammalian character that
evolved with the evolution of mammals. Mammalian
evolution was followed by further evolution of various
mammalian groups and subgroups based on evolu-
tionary novelties. For example, primates form a more
recently evolved mammalian group. Therefore, hair
is a plesiomorphy (ancestral character) for primates.
Because hair, as an ancestral mammalian character,
is shared by all primates, it is also a symplesiomorphy
(shared plesiomorphy) for primates in general.

In contrast to an ancestral character state, a derived
character state (evolutionary novelty) is called apomor-
phy (apomorphic character), and a shared apomorphy
is a synapomorphy. For example, hair is an apomorphy
for mammals as a group because it distinguishes
mammals from other vertebrate clades, such as reptiles.
Because hair is shared by all mammals, it is also the
synapomorphy (shared apomorphy) for mammals in
general. Among mammals, different groups have their
own apomorphies. For example, an opposable thumb is
an apomorphy for primates because it is an evolutionary
novelty for primates and is not found in non-primate
mammals. Similarly, the feather is an apomorphy for
birds. Therefore, an apomorphy for a larger clade can be
a plesiomorphy for a smaller nested clade within that
larger clade.

An apomorphy that is unique to a taxon is called
autapomorphy. An example of a non-anatomical
autapomorphy in modern humans is speech, which is
unique to humans.

A character state that evolved because of conver-
gent evolution but was not acquired through common
evolutionary lineage is called homoplasy, and the

FIGURE 2.6 Nested clades within a larger clade in a phylogenetic tree. A typical cladogram on the left and a typical dendrogram on
the right. In a phylogenetic tree, each branching point (node) represents the LCA of the lineages (including nodes) arising from this point.
A branch preceding a node represents the shared evolutionary history of lineages that split from the node.
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character is called a homoplastic character. Homoplastic
characters evolve independently in multiple taxa in dif-
ferent evolutionary lineages in response to adaptation;
these characters are not present in their common ances-
tor. For example, fins evolved independently in sharks
(cartilaginous fish) and dolphins (mammals) to perform
the same function, but they are structurally different
and were not derived from their common ancestor.
Hence, the fin is a homoplastic character for sharks and
dolphins. In contrast to homoplasy, homology is a
character state shared by a set of species and is present
in their common ancestor. The term homology is perva-
sive in the evolutionary literature, including molecular
evolution.

2.7.2.3 Evolutionary Classification

The third system of modern biological classification
is referred to as evolutionary classification, also
known as Darwinian classification, evolutionary
taxonomy, and evolutionary systematics. It is actually
the oldest of the three approaches and its strongest
proponents include renowned evolutionary biologists
such as Ernst Mayr, George Gaylord Simpson, and
Julian Huxley. Mayr and Bock78 emphasized that, con-
trary to the general belief, not all biological classifica-
tions are evolutionary classifications. They opined that
evolutionary classification is more inclusive than
ordering systems (e.g. phenetics and cladistics), which
are based on just the pattern of branching points.
Nevertheless, ordering systems producing dendro-
grams and cladograms are still useful phylogenetic
classification schemes. Proponents of evolutionary clas-
sification maintain that classifications should reflect
the two aspects of evolutionary change: (1) the split-
ting of the phyletic lineages—that is, the branching
in the phylogenetic tree—and (2) the invasion of
new environmental niches—that is, adaptation and
evolutionary divergence. Therefore, the amount of
evolutionary change after the branching points is an
important consideration in evolutionary classification.
In order to take account of this, evolutionary classifica-
tion weighs the evolutionary innovations (apomorphic
characters) that determine the branching point in the
tree. Major evolutionary innovations that help a new
phyletic lineage adapt to a new environment and drive
adaptive evolution are given greater weight. Therefore,
evolutionary classification tries to tell the evolutionary
history of the taxonomic group.

Each of the three methods discussed above has its
own strengths and shortcomings, and the proponents
of each method claim that their method is the best.
However, cladistics has become the method of choice for
molecular phylogenetic analysis because of the molecular
(sequence) data used to measure divergence from an
ancestral taxon. This is probably why the use of cladistics

has progressively increased with the increase in the
number of entries in DNA and protein sequence data-
bases, and has now become commonplace in molecular
phylogenetic analysis.

2.7.3 Phylogenetic Tree

A phylogenetic tree or evolutionary tree is a
diagrammatic representation of the evolutionary rela-
tionship among various taxa. The phylogenetic tree,
including its reconstruction and reliability assessment,
is discussed in more detail in Chapter 9. The terms
evolutionary tree, phylogenetic tree, and cladogram
are often used interchangeably to mean the same
thing—that is, the evolutionary relationships among
taxa. The term dendrogram is also used interchange-
ably with cladogram, although there are subtle differ-
ences, discussed in Chapter 9. Thus, it is important to
be aware that usage of the vocabulary is not always
consistent in the literature, although the context is the
same, that is, representation of the evolutionary rela-
tionships of taxa.
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3.1 ADVANCES IN GENOMICS

Advances in genomics have broadened the scope of
many already existing techniques from the gene scale to
the genome scale with a concomitant drop in cost;
DNA-sequencing and gene-expression-measurement
technologies being the greatest beneficiaries. Genomics
has two broad aspects: structural and functional.
Structural genomics attempts to study the three-
dimensional (3D) structure of proteins encoded by a
genome. Therefore, the structural genomics approach
requires the knowledge of the genome sequence, which
is integrated with experimental and modeling data to
predict the 3D structure of proteins. As the name
implies, functional genomics aims to study gene (and
protein) functions and interactions. Thus, functional
genomics focuses on processes, such as transcription,
translation, and protein�protein interaction. In reality,
structural and functional aspects of genomics have

overlaps simply because they both require knowledge
of the genome sequence.

With the advancement of genomics, traditional
molecular biology techniques—such as cloning, nucleic
acid amplification, sequencing, mutagenesis, mutation
detection, gene and protein interaction and expression
studies—have been significantly improved in terms
of their efficiency, cost, and high-throughput nature. Of
these techniques, DNA-sequencing and gene-expression
technologies have been revolutionized the most, and
the scope of these techniques has been improved
from the gene scale to the genome scale.

3.2 FROM SANGER SEQUENCING
TO PYROSEQUENCING

Genome sequencing is the most direct method
of detecting mutations, such as single nucleotide

�The opinions expressed in this chapter are the author’s own and they do not necessarily reflect the opinions of the FDA, the DHHS,

or the Federal Government.
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polymorphisms (SNPs) and copy number variations
(CNVs). The development of the dideoxy method of
DNA sequencing was a major step forward for the sci-
ence of molecular biology. The dideoxy method of DNA
sequencing was published by Sanger and colleagues in
1977.1 The technique is based on the chain-termination
principle—that is, when DNA polymerase elongates the
DNA chain, the incorporation of a dideoxynucleotide
causes the termination of further chain elongation. This
technique is not discussed any further because it is now
the subject of textbooks. About 20 years after the devel-
opment of Sanger’s dideoxy sequencing, Pal Nyren
introduced the pyrosequencing technique.2 The pyrose-
quencing technique paved the way for the development
and commercialization of large-scale, high-throughput,
massively parallel sequencing technology, popularly
referred to as next-generation sequencing or next-gen
sequencing (NGS) technology.

3.3 PYROSEQUENCING, MUTATION
DETECTION, AND SNP GENOTYPING

Pyrosequencing is based on the sequencing by syn-
thesis principle. When DNA polymerase elongates the
DNA chain, pyrophosphates are released. Each released
pyrophosphate triggers a series of reactions that gener-
ates a detectable quantum of light. Therefore, pyrose-
quencing enables real-time detection of the sequence of
a gene. Consequently, this technique is useful in the
rapid detection of point mutations in the sequence and
in SNP genotyping, including genotyping of microbes.

The DNA template that needs to be sequenced is first
amplified by polymerase chain reaction (PCR). The
amplicon (double-stranded amplified fragment) length
is usually less than 200 bp for efficient pyrosequencing,
but could be longer. While the number of cycles in reg-
ular PCR is around 30, the number of cycles in PCR for

pyrosequencing is around 50. This is to ensure that the
primers and the free nucleotides are utilized as much as
possible. One of the two PCR primers is biotinylated at
the 50-end. The PCR amplicon containing a biotinylated
end is captured on streptavidin-coated sepharose beads,
denatured by alkali, and purified prior to pyrosequen-
cing. The biotinylated strand is used as the template for
pyrosequencing. A pyrosequencing primer (the third
primer) is added to the purified biotinylated PCR
strand and pyrosequencing is carried out.

Pyrosequencing is conducted in 96-well plates.
During this process, the sequencing primer is first
allowed to anneal with the DNA template in the
presence of four enzymes—DNA polymerase, ATP sul-
furylase, luciferase, and apyrase—and two substrates—
adenosine 50-phosphosulfate (APS) and luciferin—but
without the deoxynucleotide triphosphates (dNTPs).
Then, individual dNTPs are added to the reaction sequen-
tially in a fixed order, which is programmed before
the run. Out of the four dNTPs, only dATP is replaced
by deoxyadenosine alpha-thio triphosphate (dATPαS).
If the added dNTP is complementary to the base in the
template strand, it is incorporated by the DNA polymer-
ase and a pyrophosphate (PPi) is released. ATP sulfury-
lase uses this PPi and APS to generate ATP. The ATP is
utilized by luciferase to oxidize luciferin into oxyluciferin
with the concomitant emission of light, which is recorded
by a charge-coupled device (CCD) camera in the form
of a peak. Because of the stoichiometry of the reaction,
the peak height is directly proportional to the number
of nucleotides incorporated in tandem. Thus, if two of
the same bases are incorporated back to back, the
peak height becomes double, and so on. If the injected
dNTP is not complementary to the template base, no
signal is produced. Unutilized dNTPs are degraded by
apyrase. The apyrase reaction is very important to keep
the background noise level low. The readout of the
pyrosequencing is called a pyrogram (Figure 3.1).

FIGURE 3.1 A hypothetical pyrogram showing the

sequence determination. The peak height is proportional
to the number of contiguous bases. There are four “G”s,
two “A”s and two “T”s in this sequence. No peak was
found at C in the middle and at A at the far right. The
sequence for this window is ATGGGGGAATGTT.
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By comparing the pyrogram of the query DNA
(sample) with that of the wild-type DNA (reference),
SNPs can be detected. The algorithm involves statistical
analysis for significance. The enzymatic reactions of
pyrosequencing are:

1. DNAn1dNTP-DNAn111PPi (catalyzed by DNA
polymerase)

2. PPi1APS-ATP (catalyzed by ATP sulfurylase)
3. ATP1 luciferin1O2-oxyluciferin1 light quanta

(catalyzed by luciferase)
4. Unincorporated dNTP-dNMP1 2 Pi (catalyzed

by apyrase)

3.4 NEXT-GENERATION SEQUENCING
PLATFORMS

Next-generation sequencing (NGS) is high-throughput,
massively parallel sequencing. NGS is also referred to
as second-generation sequencing technology (the first
generation being the original sequencing techniques of
Sanger, and Maxam and Gilbert). The proposed cost
of the first human genome sequencing was $3 billion
($3000 million). The sequencing of the genome of Dr
J. Craig Venter reportedly cost $100 million, whereas
the sequencing of the genome of Dr James Watson cost
less than $1 million.3 It is obvious that since the turn of
the millennium, there has been a tremendous improve-
ment in sequencing technology in terms of automation,
high-throughput nature, and lowering the cost. The
ultimate dream is to bring the sequencing cost down
to $1000 per genome so that the genome of an individ-
ual can be sequenced for the purpose of personalized
medicine and personalized nutrition.

Essentially, all NGS platforms discussed below
utilize the following steps: DNA (sequencing) library
preparation, immobilization of library fragments on a
solid support, amplification of the fragments, massively
parallel sequencing of the fragments, and computer-
aided assembly of the sequencea. In this process, each
nucleotide base incorporated is detected by a “wash-
and-scan” method; millions of reactions are imaged per
run to achieve the massively parallel sequencing; each
read length is short. A DNA-sequencing library for use
in NGS platforms is a collection of surface-anchored

single-stranded fragments. The preparation of the
sequencing library is a crucial step. Therefore, the NGS
technology does not need the DNA fragments to be cloned for
sequencing. Three popular NGS platforms discussed
below are Roche 454, Illumina Solexa, and ABI SOLiD.
All these technologies directly read the sequence of
individual fragments without the need for cloning the
fragments.

3.4.1 Roche 454

Roche 454 was the first NGS platform, introduced in
the market in 2005. It is a high-throughput, large-scale,
parallel pyrosequencing system. The 454 GS-FLX1

system can sequence roughly 0.7 gigabases (1 Gb5 109

bases) of DNA per run; the run time being 23 hours.4

The coverage is 103b. By 2013, the average read length
was 700�800 bases. These numbers are arbitrary because
they keep improving with time.

The 454 NGS platform represents a single-molecule
improvement to standard pyrosequencing. In this tech-
nique, the sequencing library is amplified via emulsion-
PCR (em-PCR), while pyrosequencing chemistry is
used for sequencing the fragments. In em-PCR, a single
DNA template molecule is clonally amplified in an
oil/water emulsion (Figure 3.2). In brief, the technique
comprises the following steps: (1) DNA-sequencing
library preparation (DNA fragmentation1 adapter liga-
tion), (2) one fragment�one bead complex formation,
(3) fragment amplification by em-PCR, (4) purification,
and (5) sequencing by synthesis.

The process begins with shattering of a large DNA
molecule, such as genomic DNA, into approximately
800�1000-bp-long fragments. These double-stranded
DNA (dsDNA) fragments are blunt ended (polished)
and end ligated with universal adapters (A and B).
These adapters provide priming sequences for both
amplification and sequencing. The A/B-adapter-ligated
dsDNA fragments are selected using streptavidin�biotin
purification discussed before, denatured into single
strands, and combined with an excess of micrometer-
sized DNA capture beads or in a 1:1 DNA/bead ratio
(but not an excess of DNA, in order to ensure generation
of monoclonal beads). The surface of these beads
carries oligonucleotides complementary to the adapter
sequences on the fragment library. Next, the DNA

aIf a genome is resequenced, the fragment assembly can be performed with the aid of the reference genome, called reference

assembly. If a genome is sequenced for the first time, its assembly is called de novo assembly.
bCoverage denotes the number of times a genome (or a target sequence) has been sequenced. Thus, a 103 coverage for a sequenced

genome means that the entire genome has been sequenced 10 times over. So, the higher the coverage, the greater is the depth of

sequencing (hence the term deep sequencing). A high coverage ensures that the base calling is accurate. Coverage (C)5 [read

length (L)3number of reads (N)]/G (haploid genome length). Thus, if a target sequence of 5000 bp is assembled from 100 reads with

an average read length of 300 nucleotides, the coverage is (3003 100)/50005 63 . Intuitively, a 63 sequence coverage for the genome

appears to mean that each base of the genome has been read 6 times over, but in reality that may not be the case because some parts of

the genome of higher eukaryotes are not easily amenable to sequencing, such as intronic sequences and highly repeated sequences.
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fragments, beads, and PCR reagents are combined
within an aqueous mixture, which is then mixed
with synthetic oil and vigorously shaken. The shaking
results in the formation of water-in-oil emulsion
droplets (micro-reactors). Typically, most droplets
contain only one bead and one DNA fragment each,
surrounded by the aqueous layer, which, in turn,
is surrounded by the oil layer. The DNA fragment in
each droplet is PCR amplified into clonally amplified
copies. This PCR process is called emulsion-PCR
(em-PCR). Thus, each bead will bear on its surface
PCR products that have been amplified from a single
molecule from the template library; these beads are
therefore called monoclonal beads. In these bead-
immobilized amplicons, the hybridized strand is
washed away leaving the beads with surface-anchored
single strands.

Next, the beads are screened from the oil and
cleaned. The amplified DNA sequencing library, thus
generated, is then loaded onto a picotiter plate (PTP)

for pyrosequencing. The PTP contains 1.6 million
wells; each well is approximately 44 µm in diameter
and 75 picoliters in volume.5,6 Each well can accom-
modate only a single capture bead. The pyrosequen-
cing reaction mix is also packed into these wells. The
PTP is loaded onto an automated pyrosequencing
platform, such as the Roche 454 GS-FLX1 system,
and the DNA fragments are subjected to high-
throughput parallel pyrosequencing. The beads that
do not contain DNA are eliminated, and the beads
that hold more than one type of DNA fragment
(polyclonal beads) will be readily filtered out during
sequencing signal processing.

3.4.2 Illumina Solexa

Solexa was founded in 1998 in the UK to develop
high-throughput sequencing using fluorescently labeled
nucleotides and a sequencing-by-synthesis approach,

FIGURE 3.2 Principles of 454 sequencing. A DNA sequencing library is prepared by ligating adapters to end-polished DNA fragments.
Single-stranded (ss) fragments are combined with DNA capture beads containing oligonucleotides complementary to the adapters. The DNA
fragments, beads, and PCR reagents are combined within an aqueous mixture, mixed with synthetic oil, and vigorously shaken, which results
in the formation of water-in-oil emulsion droplets. Typically, most droplets contain only one bead and one DNA fragment each. The DNA
fragment is amplified in emulsion-PCR (em-PCR). The PCR products are purified, denatured, and sequenced in a picotiter plate (PTP) using
pyrosequencing chemistry.
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like 454. However, while 454 employs pyrosequencing
chemistry for sequencing, Solexa employs fluorescent
reversible terminator chemistryc. The first Solexa
sequencer (Genome Analyzer) was introduced in 2006,
and could sequence 1 Gb in a single run. In 2007,
Illumina acquired Solexa, and by 2011 this sequencing
capability had increased to 600 Gb in a single run.7 The
coverage is 303. By 2013, the run time in the HiSeq
2000/2500 platform was 11 days (regular mode) or
2 days (rapid run mode), and the average read length
was B100 bases.4 As indicated earlier, these numbers are
arbitrary because they keep improving with time. The main
steps in the Solexa technology are the following:
(1) DNA-sequencing library preparation (DNA frag-
mentation1 adapter ligation), (2) addition to flow-cell
channels, (3) bridge amplification, (4) cluster generation,
and (5) sequencing by synthesis.

For DNA-sequencing library preparation, long DNA
is randomly fragmented by ultrasonication; fragments
are blunt ended and adapter ligated at both ends. The
adapter-ligated fragments are size selected for a length
of 250�350 bp, and subjected to small-cycle (10�15
cycles) PCR to increase the yield, which is verified by
gel analysis. The desired fragment size pool is isolated
and used as the source of the DNA-sequencing library.
The dsDNA fragments are denatured and added to
the flow-cell channels. The flow-cell channels already
contain surface-anchored oligonucleotide primers
that immobilize these single-stranded fragments by
hybridizing to the adapters. The next step is cluster
generation. First, the immobilized fragments are
subjected to standard PCR amplification so that
many copies of the original fragment are produced
and localized in a tight cluster. The double-stranded
PCR products in the cluster are denatured and the
original strands (hybridized to the surface-anchored
primers providing the template for amplification) are
washed away leaving the newly synthesized strands,
which are now surface anchored. These surface-
anchored single strands flip over to hybridize with
their nearest surface-anchored primers, forming a
bridge-like appearance. Polymerase in the PCR mix
extends the hybridized primer, forming a double-
stranded bridge. This process of PCR amplification
is called bridge amplification. When the double-
stranded bridge is denatured, two single-stranded
molecules are obtained, each of which is now surface
anchored. The bridge amplification PCR cycles are

repeated to obtain dense clusters of amplified single-
stranded products. In this way, several million dense
clusters are generated in each channel of the flow
cell. These initial clusters have both forward and
reverse strand clusters. Next, the reverse strands are
cleaved and washed away, leaving the forward
strand clusters (Figure 3.3).

The strands are then sequenced using sequencing
primers. The first sequencing cycle is initiated by
adding all four fluorescently labeled reversible termi-
nator bases (each base contains a different fluoro-
phore), sequencing primers, and DNA polymerase to
the flow cell. The polymerase can perform only single
base extension; thus, only the base complementary to
the template strand is incorporated and the extension
stops because of the blocked 30-end of the added base.
Next, the unincorporated bases are removed and the
added base is subjected to laser excitation. Following
laser excitation, the emitted fluorescence is captured
by a CCD camera. Thus, the first base is imaged. The
first base of each fragment is similarly recorded and
imaged. Then the fluorophore and the terminal 30-OH
end block of the first base are chemically removed,
allowing the second cycle to take place. In a similar fash-
ion, the second base added is imaged for all fragments.
The cycle is repeated to determine the sequence of bases
in each fragment, one base at time. The sequence is
assembled by computer software using a reference
genome (reference assembly). If there is no reference
genome and the sequence is new, the sequence assembly
is done by the de novo assembly method. To score
SNPs, the sequence obtained is aligned and compared
to a reference (e.g. reference genome) and sequence
differences are identified.

3.4.3 ABI SOLiD

Applied Biosystems commercialized its SOLiD
platform in 2008. The acronym SOLiD stands for
sequencing by oligonucleotide ligation and detec-
tion. Unlike the 454 and Solexa platforms that
use a sequencing-by-synthesis approach, the SOLiD
platform uses a sequencing-by-ligation approach,
and employs sequencing-by-ligation chemistry for
sequencing.

Most recent SOLiD platforms, such as the SOLiD 4
system, produce 80�100 Gb of usable DNA data per

cIn reversible terminator chemistry, each of the four types of dNTPs is labeled with a unique removable fluorophore at the base.

Additionally, the 30-OH end is chemically blocked, but the 50-PO4 end is free. After the fluorophore-conjugated dNTP is incorporated

by DNA polymerase into the DNA chain, the fluorescence image of the fluorophore is captured using laser excitation. Next, the

fluorophore and the 30-OH block are chemically removed. The resulting 30-OH end of the newly incorporated dNTP is ready to

accept the next incoming nucleotide. This cycle is repeated.
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run.8 The coverage is 303 . By 2013, the average
read length of SOLiD sequencing wasB50 bases. As
indicated above, these numbers are arbitrary because they
keep improving with time. In brief, the technique
comprises the following steps: (1) DNA-sequencing
library preparation (DNA fragmentation1 adapter
ligation), (2) one fragment�one bead complex forma-
tion, (3) fragment amplification by em-PCR, (4) puri-
fication, (5) bead immobilization on glass slide, and
(6) sequencing by ligation.

The sequencing library preparation for SOLiD
sequencing involves shearing of large DNA molecules
into 400�600-bp fragments. The fragments are end
repaired, adapter ligated, and immobilized on para-
magnetic beads. The dilution and anchoring process
ensures that only one template per location is tethered.
The fragments on the beads are amplified by em-PCR,
the beads with extended templates are separated out
from undesired beads, the extended templates on the
beads are 30-end modified, and then the beads are
immobilized on a glass slide.

The sequencing-by-ligation chemistry utilizes a
di-base (two-base) query system for interrogating the
sequence and a fluorescent dye for detection. This is
also known as two-base encoding. The system uses
four fluorescent dyes to interrogate all sixteen (42)

possible two-base combinations. This system utilizes
a number of probes; each probe is eight nucleotides
(nt) long (8-mer), in which the first two bases at the
50-end represent the unique two-base combination,
and the fluorophore is at the 30-end. The process
begins when a sequencing primer is allowed to
hybridize with the universal adapter. Next, a probe
that contains the two-base combination complemen-
tary to the two bases immediately 30 to the adapter
hybridizes. The base pairing results in the ligation
of the 8-mer to the sequencing primer, thereby
extending the sequencing primer. The ligation step is
followed by fluorescence detection and base calling.
Next, a regeneration step removes three 30 bases
from the ligated 8-mer (including the fluorescent
group). This prepares the extended primer for
another round of ligation. This process is repeated
until a specific read length is achieved. Then this
extended hybridized sequence is melted away, and
the process is repeated with new 8-mers (primer
reset) (Figure 3.4).

There are even fully automated benchtop versions
of these sequencing instruments available, such as the
454 GS Junior of Roche, MiSeq of Illumina, and Ion
Personal Genome Machine and Ion Proton, both of
Life Technologies (discussed below).

FIGURE 3.3 Principles of Illumina Solexa sequencing. The DNA-sequencing library is prepared by ligating adapters to the end-polished
DNA fragments. The single-stranded fragments are allowed to hybridize with surface-anchored oligonucleotides that are complementary
to the adapters. Initial PCR amplification of the strands followed by bridge (PCR) amplification results in the generation of single-stranded
clusters. The strands are then sequenced using fluorescent reversible terminator chemistry (see text for details).
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3.5 NEXT-NEXT-GENERATION
SEQUENCING TECHNOLOGY

The invention of DNA sequencing technology was
pioneered by Fred Sanger in the UK, and by Alan
Maxam and Walter Gilbert in the USA. Sanger’s
dideoxy-chain-termination method ultimately became
the sequencing method of choice because it was techni-
cally easier to perform and could be scaled up. These
methods are popularly referred to as first-generation
sequencing technology. The read lengths of these
methods are typically 600�800 bp, but could be longer.
The original human genome sequencing project
largely relied on the automated and scaled-up version
of first-generation sequencing technology. The main
drawbacks of first-generation sequencing technology
are the slow progress, because only a small amount of
DNA could be sequenced per unit time (low through-
put), and high cost (cost per base sequenced).

The introduction of second-generation sequencing
technology (also known as next-generation sequenc-
ing technology), three popular platforms of which
are discussed above, was an attempt to solve the
two major problems of first-generation sequencing
technology—that is, to introduce high-throughput

sequencing technology for a lower cost of sequencing.
However, the second-generation sequencing technol-
ogy platforms have their own technical problems; for
example, a PCR-generated DNA-sequencing library
may have PCR-introduced bias and errors, fluorescent
nucleotide labeling is not fully efficient, exonucleases
are inefficient with labeled nucleotides, detection of
single-molecule fluorescence has a high error rate
because of the inherent noise in a fluorescence-driven
base call, and the same strand can not be “re-read.”
The noise is due to the fact that the base addition
is, 100% efficient; as a result, as the number of
incorporation cycles increases, the population of mole-
cules becomes asynchronous, which results in errors in
sequencing read. Although the very high-throughput
nature of these methods tends to alleviate some of these
problems, the future goal is to develop next-next-
generation sequencing technology that will be more effi-
cient and free from the technical problems encountered
in second-generation sequencing technology.

Next-next-generation sequencing technology9 is
third-generation sequencing technology, although the
boundary between the second-generation and third-
generation technologies may not be distinct. Ideal
desired features of the true third-generation sequencing

FIGURE 3.4 Principles of SOLiD sequencing. The DNA-sequencing library is prepared by ligating adapters to the end-polished DNA
fragments, and immobilized on paramagnetic beads. The dilution and anchoring process ensures that only one template per location is teth-
ered. The fragments on the beads are amplified by em-PCR, the extended templates on the beads are 30-end modified, and the beads are
immobilized on a glass slide. The sequencing-by-ligation chemistry utilizes a two-base encoding query system for interrogating the sequence
and a fluorescent dye for detection (see text for details).
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technology will probably include the following: single-
molecule sequencing technology, no PCR amplification,
less complex sample preparation, no pausing of sequenc-
ing after each base incorporation (hence increase in
sequencing rate), increased read length, and decreased
cost. Some of the currently available sequencing tech-
nologies that are at the border between the current
second-generation and the futuristic third-generation
include Life Technologies’ Ion Torrent semiconductor
sequencer that employs a sequencing-by-synthesis
approach and uses pH change (from the released
hydrogen ion during the polymerization of nucleotides)
to detect nucleotide incorporation, and Helicose’s
Genetic Analysis Platform that employs a sequencing-
by-synthesis approach of a single molecule using
a defined primer and works by imaging individual
DNA molecules as they are extended. The Ion Torrent
workflow involves generation of the sequencing library,
amplification of the library fragments onto proprietary
Ion Sphere particles by em-PCR, deposition of the
Ion Sphere particles coated with template in the Ion
chip, and sequencing. The average read length is up to
200 bases.

The only truly third-generation sequencing approach
so far introduced seems to be the single-molecule
real-time (SMRT) sequencing technology developed by
Pacific Biosciences (PacBio). It employs a sequencing-
by-synthesis approach and allows for direct observation
of the synthesis of a single strand of DNA by DNA
polymerase in real time. The SMRT technology of
PacBio utilizes what is called a zero-mode waveguide
(ZMW). A ZMW is a hole, tens of nanometers in diame-
ter, fabricated in a 100-nm metal film deposited on a
glass substrate. An active polymerase is immobilized at
the bottom of each ZMW chamber. The ZMW, being so
small, prevents visible laser light from passing entirely
through it; the laser exponentially decays as it enters
the ZMW. Because of this property, a laser passed
through the glass into the ZMW only illuminates the
bottom 30 nm of the ZMW chamber. Nucleotides are
allowed to diffuse into the ZMW chamber; each base is
labeled with a different fluorescent dye. The incorpo-
rated base can be recognized based on the fluorescence
emission, which happens within the illuminated section
of the nanochamber, and the synthesis of a single
DNA molecule is directly recorded.10 In this method,
the same DNA molecule can be resequenced by creat-
ing a circular DNA template and separating the newly
synthesized DNA strand from the template. In the
PacBio RS platform, the average read length is about
3000 bases and the run time is very short, about
20 min4 Various other approaches are being tested,
such as transmission electron microscopy to directly
image single DNA molecules, and a nanopore-based
single-molecule sequencing approach. The sequencing

community has been eagerly waiting to get their hands
on third-generation sequencing technology.

3.6 HIGH-DENSITY
OLIGONUCLEOTIDE-PROBE-BASED

ARRAY TO INVESTIGATE
GENOME EXPRESSION

Microarray and global gene-expression profiling is
a crucial genomic technology. The term microarray
is often used synonymously with DNA microarray
and high-throughput gene-expression measurement.
However, it can also be used in the context of expres-
sion profiling of proteins, carbohydrates, and tissues.
The current discussion on microarray will focus
on gene expression. Gene-expression microarray is a
nucleic-acid-hybridization-based technique. Studies
on nucleic-acid hybridization were pioneered inde-
pendently by Paul Doty and Sol Spiegelman and
their colleagues. The DNA�RNA hybridization prin-
ciples were utilized to develop a number of widely
used techniques to study gene expression, such as
in situ hybridization, Northern blot, and solution
hybridization.11 These techniques mostly measure the
expression of a single gene in multiple tissues and at
multiple time points. Before the advent of genomics,
a number of techniques were also developed to ana-
lyze differential gene-expression profiles, involving
a large number of samples, multiple target sequences
(a large number of transcripts), and many tissues
at the same time; for example, ribonuclease (RNAse)
protection assay (RPA), subtractive hybridization,
differential display, serial analysis of gene expression
(SAGE), and branched DNA (bDNA) signal amplifi-
cation technique.12

However, global gene-expression profiling was rev-
olutionized with the advent of the microarray. In 1996,
Affymetrix commercialized its oligonucleotide-based
DNA chip under the proprietary name GeneChips.
A microarray can be either a complementary DNA
(cDNA) microarray or an oligonucleotide microarray.
Currently, high-density oligonucleotide microarray is
the method of choice. In an oligonucleotide microar-
ray, an array of oligonucleotide probes (usually 20�80-
mer) are synthesized either on-chip (on the platform)
or by conventional synthesis followed by immobiliza-
tion on the platform. An example of on-chip synthesis
of oligonucleotides is the photolithographic technique,
which is used by Affymetrix (Figure 3.5A). Another
related technology uses an ink jet to spray oligonucleo-
tide probes on the microarray. The fabrication of an
oligonucleotide array is carried out by high-speed
robotics. These robots rely on pins or needles to trans-
fer the sample from a reservoir to the platform. The
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pin diameter and shape, solution viscosity, and platform
characteristics determine the volume transferred and
how far the solution will spread. The number of spots
on the microarray can vary between a few thousand to
30,000 on a 253 75-mm slide, each spot representing the
product of a specific gene, and is generated by deposit-
ing between 1 and 10 nl (1 nl5 1023 µl) of PCR product
representing that specific gene, usually at concentration
of 100�500 µg/ml. The spot diameter can be between 75
and 200 µm, and the distance between spots is about
200 µm.11 In a cDNA microarray format, customized
cDNA probes are immobilized on a solid surface (glass
or nylon membrane). The DNA fragments can be PCR
amplified or be library clones. Thus, the array density is
lower than in DNA chip, and the spotted cDNAs are
longer than oligonucleotide probes.

To detect gene expression, the microarray is hybrid-
ized with the labeled target, which is the reverse-
transcribed copy of the mRNA. The mRNA-derived
cDNA is labeled, in most cases by fluorescent dyes, such
as Cy3 and Cy5. Purified poly(A)1 mRNA is usually
recommended as the starting material for improving
the signal/noise ratio—that is, for increased sensitivity
and low background. Hybridization spots containing
fluorescent dyes are detected by laser scanning of the
microarray. The laser scanner is hooked to a confocal
microscope and a CCD camera. The fluorescent tags are
excited by the laser, while the microscope and the

camera work together to create a digital image of
the array. The results are then analyzed using special
analysis software (Figure 3.5B).

For cDNA microarrays spotted on nylon membrane,
the target cDNA population is radioactively labeled.
Radiolabeled hybridization spots can be detected and
analyzed by a phosphoimager (Figure 3.5C). Differences
in the expression of specific sequences can be further val-
idated using other conventional methods, such as
Northern blot, reverse transcriptase-polymerase chain
reaction (RT-PCR), RNAse protection assay, or bDNA
assay.

Microarray data can be transformed into a colored
graphical representation, the so-called heat map
(Figure 3.5B inset). In the heat map, increased expression
is displayed by the intensity of a certain color (such as
red), whereas decreased expression is displayed with
another color (such as green), and a third color (black,
the absence of other colors) may represent no changes in
expression pattern.

3.6.1 Tiling Array as a Versatile Tool
to Interrogate the Whole Genome

A tiling array is an oligonucleotide-based whole-
genome microarray, and has proved to be very useful
for whole-genome functional analysis beyond simple

FIGURE 3.5 High-density oligonucleotide-based array. (A) Microarray fabrication by photolithographic synthesis, which involves
repeated cycles of targeted deprotection, coupling, and protection of the coupled bases. (B) Microarray using fluorescent-dye-labeled targets
and competitive hybridization of the two probes on the same array slide. The inset shows what a heat map could look like. (C) Microarray
using radiolabeled targets. (D) Use of tiling array to identify a genomic region that was previously not known to be transcriptionally active.
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gene-expression profiling. Because the tiling array is
a variation of the microarray, it is conducted in the
same way as a regular expression microarray, the
main difference being the probe design. Tiling arrays
probe for known contiguous sequences, such as a
genomic region whose expression is not known. The
resolution power of tiling arrays depends on the probe
design—that is, whether the probes are spaced apart
(gapped) or overlapping.

Whole-genome tiling arrays can be used for the inter-
rogation of genomic regions for transcription, antisense
transcription, and alternative splicing; interrogation
of transcription-factor-binding sites and genomic poly-
morphism, and mapping of genomic methylation sites;
and comparative genomic hybridization (CGH).13,14

Figure 3.5D shows just one application of the tiling
array, how a tiling array can be used to detect a
region of the genome that was not previously known
to be transcriptionally active. Tiling arrays designed to
detect SNPs utilize overlapping probes so that every
base is interrogated for mutation. The number of
oligoprobes used in a whole-genome tiling array
can be many millions. For example, in order to com-
prehensively identify coding sequences in the human
genome, Bertone et al.15 used genome tiling arrays by
designing about 52 million oligoprobes (36-nt long)
positioned every 46 nt, on average. These probes cover
1.5 Gb of nonrepetitive genomic DNA, both sense and
antisense strands.

Tiling array platforms are designed and fabricated
in the same way as the regular expression microarray
platforms described above.

3.7 GENOME-WIDE MUTAGENESIS,
GENOME EDITING, AND

INTERFERENCE OF GENOME
EXPRESSION

The best way to study the function of a gene is to
silence its expression and analyze the resulting pheno-
type. The principal method of silencing the expression
of a gene is gene targeting (gene knockout) by homolo-
gous recombination in embryonic stem (ES) cells. Using
homologous recombination, a specific genetic locus
can be disrupted (knockout) or replaced with another
functional open reading frame (ORF) (knock-in) in ES
cells of mice. By replacing the endogenous mouse gene
with a human ortholog, a humanized mouse model can
also be produced. The targeting construct contains an
expression cassette that is flanked by two long stretches
of genomic DNA. These two stretches of genomic DNA,
called homology arms, have the same sequence as that
of the genomic DNA flanking the target locus. Thus, the
homology arms facilitate recombination and integration
of the construct into the locus, thereby disrupting
the endogenous ORF (Figure 3.6). The gene-targeting
technique is limited to the generation of mouse models
because it requires knowledge of the ES cells in which
the targeting is done to mutate the gene. Currently,
the biology of mouse ES cells is well understood. As a
result, gene knockout models are mouse models, and
this technique cannot be routinely performed in other
animal models.

The only organism where systematic targeting of a
vast number (96%) of the annotated ORFs has been

FIGURE 3.6 Gene targeting. The upper
panel shows the generation of a null allele
through gene targeting. The targeting
construct is integrated through homolo-
gous recombination, which has a low
frequency. In homologous recombination,
the thymidine kinase (tk) gene, which is
a negative selection marker, is not inte-
grated. Only the neo gene, which is the
positive selection marker, is integrated
through legitimate recombination. The
lower panel shows the random integration
of the entire targeting construct by non-
homologous recombination, which has
a higher frequency than homologous
recombination.
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achieved is yeast (Saccharomyces cerevisiae).16 Each
ORF was precisely targeted and replaced by mitotic
recombination with the KanMX targeting cassette. The
KanMX gene (which confers kanamycin resistance) in
each cassette is flanked by yeast sequence that facili-
tates recombination and integration of the cassette in
the yeast genome; in addition to the yeast sequence,
the KanMX gene is also flanked by two distinct 20-nt
sequences that serve as molecular barcodes to uniquely
identify each deletion mutant.

Such an achievement could be a reality even for
the mouse a few years from now. The International
Knockout Mouse Consortium (IKMC) has been work-
ing to mutate all protein-coding genes in the mouse
using a combination of gene trapping and gene target-
ing in C57BL/6 mouse ES cells.17 Gene trapping is
an insertional mutagenesis technique that randomly
generates ES cells with well-characterized mutations.
A gene-trap vector construct, called the trap cassette,
contains a promoterless reporter cassette (such as lacZ).
There is an upstream splice acceptor site and a down-
stream poly(A) sequence in the trap cassette. The splice
acceptor sequence is not bypassed by the RNA-splicing
machinery. The trap cassette reporter is used to identify
the ES cells where the gene-trap construct is integrated.
The gene-trap construct can be electroporated into the
ES cells, or delivered using a retroviral vector. In some
ES cells, the construct will be correctly integrated in an
intron to produce incorrect splicing of the target gene,
such that all exons downstream of the insertion site are

not expressed. The endogenous functional promoter
of the target gene will drive transcription producing
fusion transcripts. The fusion protein translated from
the fusion transcript provides a means of rapid identifi-
cation of the disrupted gene. The targeted gene is
identified by sequencing of the transcribed product.
Figure 3.7 shows the gene-trap technique.

The limitations of classical gene targeting could soon
be overcome by zinc-finger nuclease (ZFN) or TAL
effector nuclease (TALEN) technology. A Zn finger is
a small protein structural motif that has a Zn ion in a
coordination complex with either four cysteines (Cys4)
or two cysteines and two histidines (Cys2His2) to stabi-
lize the so-called finger-like fold (Figure 3.8 inset).
A large class of transcription factors containing a Zn
finger bind to the major groove of DNA through their
Zn-finger DNA-binding domains; each domain actually
recognizes a specific trinucleotide sequence in the DNA.
A ZFN is an engineered synthetic protein that consists of
an engineered Zn-finger DNA-binding domain fused
to the cleavage domain of the FokI restriction endonucle-
ase. FokI is a type IIS restriction endonuclease. Type IIS
restriction endonucleases cleave the DNA outside of the
recognition sequence, to one side. FokI recognizes an
asymmetric nucleotide sequence and cleaves one strand
9 nt downstream and the other strand 13 nt upstream
of the recognition site, as follows: 50-GGATG(N)9

£-30/
30-CCTAC(N)13¢-5

0. The FokI cleavage domain induces
double-strand breaks (DSBs) in specific DNA sequences,
which triggers DNA repair. Eukaryotic cells repair

FIGURE 3.7 Gene trapping is an

insertional mutagenesis technique.
Random insertion of the trap cassette in
the genome generates ES cells with well-
characterized mutations. The trap cassette
reporter is used to identify the ES cells
where the gene-trap construct is inte-
grated. Rapid amplification of cDNA
ends (RACE) using trap-cassette-specific
primers is employed to identify the
trapped genes in the ES cells. Where the
construct is correctly integrated into an
intron, this produces incorrect splicing
of the target gene, such that all exons
downstream of the insertion site are not
expressed.
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DSBs using homology-directed repair (HDR) or non-
homologous end-joining (NHEJ) pathways, and these
repair pathways can be utilized to edit the genome.
For example, by providing template (homologous)
donor DNA along with ZFNs for HDR, information
encoded on the introduced template can be used to
repair the DSB, and in that process some nucleotides
can be changed (gene editing including correction),
or it is even possible to add a new gene at the site
of the break. The NHEJ repair pathway ligates the
two broken ends, with occasional small insertions or
deletions at the site of the break, resulting in frame-
shift and disruption of the target gene (Figure 3.8).
Thus, the genome-editing function of ZFNs is based
on the introduction of site-specific DNA DSBs into
the locus of interest. By fusing FokI to different types
of Zn fingers that recognize different trinucleotide
sequences, the ZFNs can be targeted to different parts
of the genome for desired genome editing. ZFN tech-
nology has been successfully used to manipulate the
genomes of many plant and animal species.

One of the major achievements of ZFN technology
has been the generation of gene knockout models in spe-
cies other than mice, which was not possible using the
standard gene-targeting technique. By microinjection of
ZFNs designed to target an integrated reporter and two
endogenous rat genes, immunoglobulin M (IgM) and
Rab38, in a one-cell rat embryo, successful gene targeting
was reported. A high frequency of animals had 25 to
100% disruption at the target loci and these mutations

were faithfully and efficiently transmitted through the
germline. Transcription-activator-like effector nuclease
(TALEN) technology is similar to ZFN technology. The
main difference is in the DNA-targeting protein, which
is the TAL effector (TALE) protein. The TALE protein
can be fused to FokI to generate the TALEN. Unlike ZFN
and TALEN that are protein-guided genome editing
tools, CRISPR-Cas system is a RNA-guided genome edit-
ing tool. CRISPR stands for Clustered Regularly
Interspaced Short Palindromic Repeats, and Cas is
CRISPR-associated nuclease. Target recognition by Cas
nuclease requires a ’’seed sequence’’ within CRISPR
RNA (crRNA) that acts as a guide to Cas. Thus, almost
any DNA sequence can be targeted by redesigning the
crRNA seed sequence. In prokaryotes, the CRISPR-Cas
system acts as RNA interference (RNAi, discussed in the
following section) based immune system to defend
against invading viral DNA because the short crRNAs
that guide the recognition of targets for degradation are
produced by the processing of a long transcript.18

RNA interference (RNAi) is another way of knocking
down (instead of knocking out) genome expression and
studying the phenotype. In Caenorhabditis elegans, the
effect of silencing gene expression on a large scale has
been studied by multiple groups, who were able to
study about a third of the predicted genes. Using a
reusable RNAi library of 16,757 bacterial clones, Kamath
et al.19 were able to knock down the expression of about
86% of the 19,427 predicted genes. Each bacterial strain
in the library was capable of expressing dsRNA

FIGURE 3.8 Gene and genome manipu-

lation using Zn-finger nuclease. The
figure shows a pair of ZFNs bound to their
target site. Three Zn-finger domains are
marked ZnF1, 2, and 3. Each three-finger
array binds to a 9-bp half-site and is associ-
ated with a FokI nuclease domain. A ZFN
pair cleaves its target site within the
variable-length spacer sequence between the
half-sites. There are three possible outcomes
of the DSB repair. The inset shows two types
of Zn-finger motifs, a Cys4 and a Cys2His2
motif.
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designed to correspond to a single gene. Mutant pheno-
types for 1722 genes were identified; about two-thirds of
these were not previously associated with a phenotype.
Such genome-wide RNAi analysis has also been accom-
plished in Drosophila.20 The authors applied an RNAi
screen of 19,470 dsRNAs in cultured cells to characterize
the function of nearly 91% of predicted Drosophila genes
in cell growth and viability. Interestingly, the authors
found 438 dsRNAs that identified essential genes,
among which 80% lacked mutant alleles.

3.8 SPECIAL TOPIC: OPTICAL
MAPPING OF DNA

Michael L. Kotewicz, Ph.D., Office of Applied Research

and Safety Assessment, CFSAN, FDA

3.8.1 Introduction

In chromosomes, which range from 1�6 million bp
in bacteria to 100 million bp in humans, what graphic
software tools allow one to locate and distinguish
details as small as single nucleotide polymorphisms,
mid-sized chromosomal changes (10,000�200,000 bp),
and inversions across millions of base pairs? No graphic
tool, to date, performs ideally at both these extremes.
One software tool well suited for the fine-scale mapping
of nucleotides and detailed chromosome alignments
is Mauve.21 Mauve and the updated progressiveMauve
are extremely powerful desktop graphic tools for
aligning chromosomes and defining both homologous
genome segments and single-nucleotide differences. At
the opposite scale, the graphic software in MapSolvert
was designed to work with optical maps of chromo-
some restriction fragments and in silico sequence-based
maps of reference bacterial chromosomes. MapSolver’s
strengths are its easy graphic ability to ramp up and
down thousands and millions of base pairs and to
detail differences in aligned optical maps and reference
in silico chromosome maps.

Optical maps are physical maps assembled from
overlapping restriction-fragment maps of long chromo-
somal pieces, and they represent a sample of the
sequence across the complete chromosome. For each
restriction fragment, the cut site at the beginning of the
fragment and the cut site at the end score the presence of
these sequence pairs; for example, a BamHI map scores
GGATCC pair sets in the chromosome as well as mea-
suring the nucleotide distance between those sequence
pairs. The map could be considered a digital chromo-
some. Within the limits of fragment size measurements,
1�2%, where sets of fragments in a new isolate’s optical
map align to fragments from a reference sequenced
genome, there is a direct correlation of the map frag-
ments with the reference sequences and genes in those

fragments. The alignment scores represent the strength
of the correlation of map and sequence, where the limit
of detection for differences such as insertions and dele-
tions is 1�5 kb in the optical map. The optical mapping
software optimally presents a simple graphic, best suited
to detect, measure, and display chromosome differences
from about 5000 to millions of bp. Differences created
by events such as close-proximity multiple prophage
insertions can span 300,000 bp and complex multiple
inversions can span several million bp. In contrast,
Mauve is like a street map, detailed to seeing single
nucleotide addresses, and just as one would not use a
street map to find continents on a globe, Mauve is not
quite as well suited for rapidly determining and viewing
these larger chromosomal differences; something that
optical maps do extremely well. What optical maps
lose in terms of resolution and nucleotide detail, they
make up for in ease of use and perspective. It is worth
testing a set of alignments in both software packages and
comparing the advantages and limitations of each for
examining chromosome differences (Figure 3.9). Mauve
gives a sequence-based segmental view of compared
chromosomes, while MapSolvert gives a difference-
based alignment of restriction fragments. For maps, the
sequence information is correlated, albeit indirectly, with
sequences in aligned reference fragments.

3.8.2 Optical Maps

Optical maps are physical maps generated from
long chromosomal DNA preparations attached and
restriction digested on surfaces. For a number of
reasons—including G/C content, average fragment
size generated for a given genome, and overall number
of cuts—optical maps are usually generated using
six-base-cutter restriction enzymes, such as BamHI
(GGATCC) or NcoI (CCATGG), although there is some
flexibility in enzyme of choice. In addition to display-
ing the physical DNA maps, MapSolvert software is
used to generate reference in silico maps from sequence
data. These annotated reference genomes are used to
define the differences found in comparative alignments
with optical maps.

There is an additional use for MapSolvert: higher
resolution mini-maps, usually generated on shorter
DNA sequences ranging from 5000 to 1 million bp using
more-frequently cutting restriction enzymes, such as
four-base-recognition enzymes. These mini-maps are
useful in several regards. One is for comparative geno-
mic studies determining the structures of chromosomal
variations. The other is for the rapid display of sequenc-
ing misassemblies. Initially, mini-maps were conceived
as allowing a more detailed map to be constructed
by sub-cutting sites within larger fragments of in silico

673.8. SPECIAL TOPIC: OPTICAL MAPPING OF DNA

BIOINFORMATICS FOR BEGINNERS



BamHI (GGATCC) maps with Sau3AI (GATC) fragmen-
tation. Dr. David Lacher has refined mini-mapping
in our laboratory. He noted that Sau3AI produces a
much more heterogeneous mixture of large and small
fragments, and that other four-base cutters such as HhaI
(GCGC) and even other six-base cutters such as HpaI
(GTTAAC) provide a more evenly distributed, higher
density set of fragments in these in silico mini-maps,
especially for E. coli. For example, the six BamHI frag-
ments for the 112-kb TW14359 yehV prophage region
produce a Sau3AI mini-map with 344 fragments; HhaI
produces a much more homogenous set of 725 fragments
that yields better coverage of differences. The HhaI
mini-map of the yehV region of TW14359 and Sakai
(Figure 3.10) shows the detail of two 1.3-kb insertion/
deletions (indels) in the left flanking chromosomal DNA
outside the prophages. The mini-map clearly shows two
distinctive differences within the two yehV prophages,
but in addition the mini-map details another 1.3-kb
indel, a 12.6-kb region containing Shiga toxin genes
in Sakai, and a quite different, unaligned 14.5-kb set of
fragments, hence different sequence, in TW14359. The
remaining 28 mini-map fragments (7.0 kb) are homolo-
gous in the two prophages, delineating the variant Shiga
toxin region within otherwise homologous regions.

Optical mapping is a also a corroborative technology
for sequencing; it is independent of amplification tech-
nologies, and importantly, mistakes in DNA assemblies
are readily identified, notably across ribosomal RNA
and repeated conserved regions of multiple pro-
phages.22 It is also a complementary and refining tech-
nology for traditional low-resolution pulsed-field gel

electrophoresis (PFGE) analysis, the gold standard for
bacterial epidemiological identification.23 A contiguous
600-fragment map locates chromosomal markers, and it
greatly exceeds the 40-fragment resolution of PFGE.
Most importantly, the optical maps define the contigu-
ous relationships of all the fragments, while PFGE gives
no direct band correlation with chromosomal position.
Optical mapping accurately identifies both large frag-
ments not resolved by PFGE and small fragments not
detected by PFGE (Figure 3.11).

Optical maps are fundamentally shorthand represen-
tations of the sequences of chromosomes generated by
mapping restriction-enzyme cut sites; they are reflec-
tions of whole-chromosome sequences. For a typical
bacterial chromosome of 4�6 Mbp, six-base-recognition
restriction enzymes such as BamHI (GGATCC) or NcoI
(CCATGG)—for Escherichia coli and Salmonella enterica
isolates—generate a map with 400�600 contiguous
restriction fragments. Changes in genome sequences
ablate or create cut sites, creating restriction fragment
length polymorphisms (RFLPs). More importantly,
differences in chromosomes between related strains
generate changes in the sizes and distribution of frag-
ments that light up in aligned maps. Optical mapping
allows the rapid construction of ordered restriction
fragment maps for chromosomes that can be as small as
150�200-kb bacterial plasmids, but optical maps are
optimally suited for detecting differences in chromo-
somes of bacteria which range from 1�10 million bp.
Overall, the 5-Mbp chromosomes of bacteria can be
sized to within 10�20 kb, an accuracy of about 0.1 to
0.3%.24 Whereas single nucleotide polymorphisms are

FIGURE 3.9 The alignment of the in silico optical maps of two related strains of E. coli O157:H7: TW14359 from the 2006 US spinach-

associated outbreak, and Sakai, the Japanese outbreak associated with sprouts. (A) Two pairs of aligned maps using MapSolvert, the non-
aligned regions of the chromosomes are white, aligned regions are green; in the lower aligned pair, regions of interest have been “painted”
from the sequence-based annotations. Prophages are yellow/orange, prophages carrying the Shiga toxin genes are red, and pathogenicity
islands are blue. (B) Mauve alignment of the same two sequenced chromosomes, where similarly colored sections reflect sequence matches;
note white streaks within colored boxes, indicating short unaligned sequences within larger aligned sequence blocks.
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crucial for differentiating highly clonal Salmonella
isolates, Escherichia coli strains, particularly pathogens
such as E. coli O157:H7 isolates, differ by prophages and
insertions and deletions.25

There are two other related technologies for deter-
mining the structure of chromosomes with comparable
mid to long molecule resolution, one involving fluidic

separation of large DNA molecules from Pathogenetix,
Woburn, MA, and the other involving nanochannel flu-
idic chips that spread out confined native long genome
fragments labeled at restriction-enzyme-nicked sites with
fluorescent tags, from BioNano, San Diego, CA. This dis-
cussion is focused on optical mapping using hardware
(the Argus mapping station) and software (MapSolvert)

FIGURE 3.11 Optical limit of detection. Upper two unaligned maps: XbaI (42 fragments) versus BamHI (642 fragments) in silico TW14359
maps; lower two maps: aligned painted in silico (642 fragments) versus optical map (529 fragments) of spinach-outbreak strain, isolates
TW14359 and EC4045. A total of 113 fragment differences are in small fragments, 21 to 1000 bp, at the optical limit of detection.

FIGURE 3.10 Mini-maps: six-base cutter BamHI (GGATCC) versus four-base cutter HhaI (GCGC). Three successively enlarged
MapSolvert views of the yehV prophages.
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for comparative genomics, from OpGen, Gaithersburg,
MD.

There are a number of other nucleotide-based soft-
ware packages for looking at long regions of DNA
molecules, including DNASTAR’s Lasergene and a
number of retired (2007) Genetics Computer Group
(GCG) available within the European Molecular
Biology Open Software Suite, an open-source software
analysis package at EMBOSS (http://helix.nih.gov/
Applications/emboss.html). Software packages from
next-generation sequencing companies are continually
upgrading and although designed and useful for exam-
ining sequence contigs (consensus regions of DNA
derived from sets of overlapping DNA segments) and
assemblies and although not necessarily optimized for
comparative genomics, they are moving in that direction.

3.8.3 Overview; Making an Optical Map

Optical maps have been generated for a wide range
of bacterial species involved in industrial microbiology,
clinical illnesses, and food-borne bacterial outbreaks,
as well as for larger chromosomes from fungal and
mammalian sources. For a bacterium, the optical map of
its chromosome is generated by growing up cells from
an isolate or a set of isolates and gently lysing them
to release high-molecular-weight DNA (Figure 3.12A).
The DNA molecules are loaded into carefully designed
microfluidic channels (Figure 3.12B, in this case

40 channels in a 23 2 cm area. DNA molecules attach
by charge interactions with the derivatized glass sur-
face and distribute as long linear individual molecules
onto the surface (Figure 3.12C).

The attached molecules are digested with an appro-
priate restriction enzyme and the DNA is stained with

FIGURE 3.12 Preparation of high-molecular-weight DNA.
(A) Bacterial cells prior to lysis; (B) forty-microfluidic-chamber device on
coverslip; (C) DNA in one channel attached to derivatized glass surface.

FIGURE 3.13 Restriction-digested

DNA attached to the cover slip surface

as seen under the Argus microscope and
assembly platform. The image is from an
assembly data set; molecular weights of
fragments are indicated. The multicolored
strand to the right of the figure center line
is a molecule from the assembled map, for
examination of details. Note the extent of
linearity or wiggle in each restriction frag-
ment and the gap sizes. These are some of
the quality control parameters used to
judge data sets.
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the fluorescent dye JOJO-1. The salt conditions of the
wash after staining cause the DNA to constrict a slight
amount such that a small measurable gap is created
at the cut sites, but the restriction fragments remain
attached to the surface. Automated software is used
to measure the sizes and positions of contiguous
restriction fragments along thousands of chromosome-
fragment molecules. Depending on the size of the
genome of the organism being mapped, molecules
are collected, each containing 10 to 100 contiguous
restriction fragments. For example, 2000 to 50,000
molecules are usually collected for analysis for a 1 to
6-million-bp bacterial chromosome. The attached,
digested DNA fragments range from 250 to 400 kb;
some are as large as 1.5 Mbp. The limit of detection of
fragments is about 500 bp (Figure 3.13).

The data from these thousands of molecules are
assembled into complete genomic maps by overlapping
same-sized fragment runs, similar to the assembly of
overlapping DNA sequencing runs (Figure 3.14A).
In these assemblies, the minimum coverage for each
fragment is 303 (Figure 3.14B and C). The completed
assemblies are usually oriented to a defined start refer-
ence or origin and scaled to a reference sequence.

3.8.4 Conclusions

Optical mapping provides information on the
genome that cannot be obtained from PFGE profiles
and a perspective very different from comparing
whole-chromosome sequences. Optical mapping is a
powerful tool for studying structural genomics because
it provides a bird’s eye view of chromosomal morphol-
ogy and architecture. Consequently, optical mapping
can be used to visualize and compare different genomes,
such as genomes of related species/strains, as well as
genomes of pathogenic and nonpathogenic strains
within a bacterial species. Optical mapping can also be
used to study the same genome in different states.

Since some of the first publications in 1993, optical
mapping has been developed and extended from siz-
ing restriction fragments on bacteriophage lambda and
bacterial artificial chromosome (BAC) clones (48,500 to
150,000 bp), to scaffolding larger chromosomes such as
those in Candida albicans (8 chromosomes, 16 Mbp),26

Plasmodium falciparum (14 chromosomes, 23.3 Mbp),27

rice (24 chromosomes, 389 Mbp),28 maize (20 chromo-
somes, 2300 Mbp),29 mouse (40 chromosomes,
2500 Mbp),30 humans (46 chromosomes, 3000 Mbp),31

and most recently the goat genome (60 chromosomes,
2900 Mbp).32,33

With its mid-range resolution and graphic flexibilities,
optical mapping is ideal for the examination of whole

FIGURE 3.14 Assembly of collected molecules. (A) In a typical
matching of an alignment of 1500 to 50,000 molecules, overlapping
restriction fragments grow the chromosome until ends cease growth,
or for circular chromosomes, until overlap to previous fragment sets
occurs. (B) An enlargement of the overlapping molecule assembly.
(C) A graphic representation of the like-colored fragments assem-
bling, in this case into a circular chromosome. In all cases, a criterion
of a minimum 30 molecules representation for each restriction frag-
ment is set. More often, there are hundreds of fragments present for
many assemblies, adding to the statistical reliability of fragment-size
determinations.
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chromosomes extending from viruses to humans, for
independently validating sequence assemblies, for scaf-
folding higher-order 10�100-Mbp chromosome sequence
contigs, and for rapidly detecting differences between the
chromosomes of outbreak strains of bacteria.34�36
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4.1 MARGARET DAYHOFF, RICHARD
ECK, ROBERT LEDLEY, AND THE
BEGINNING OF BIOINFOMATICS

Although bioinformatics is one of the buzzwords in
the post-genomic era, it is by no means a completely
new discipline. The beginning of the pioneering work
by Margaret Dayhoff, Richard Eck, and Robert Ledley
in computer-aided analysis of protein data goes back
to the period around 1960. Dayhoff, Eck, and Ledley
capitalized on their experience and training in comput-
ing, mathematics, and life sciences in collecting and
organizing protein sequences, sequence analysis, and
studies of protein evolution.1,2,3 Their work could be
regarded as the direct ancestor of modern bioinformat-
ics. In 1965, Dayhoff, Eck, and a couple of colleagues
compiled the first Atlas of Protein Sequence and
Structure, which had B50 sequences known at the
time. The second volume was published in 1966 and
had a little over 100 sequences. This compilation of
protein sequence and structure information was the
predecessor of the current gene and protein data-
bases that form the backbone of contemporary
bioinformatics. In subsequent years, as more and
more protein sequences were reported, the Atlas
grew in size and popularity under the leadership
of Dayhoff. Eventually, this database became The

Protein Information Resource (PIR) database, now
maintained at Georgetown University.

Margaret Dayhoff was a professor at Georgetown
University Medical Center. As an independent
researcher, Dayhoff brought her background of mathe-
matics, chemistry, and computing to address problems
in biology, particularly protein chemistry, and became
the pioneer in the application of mathematics and
computational methods to biochemistry. One of her
most important contributions was developing, together
with Richard Eck, the single-letter code for amino
acids that is used by all protein analysis tools. She
developed a computer algorithm for protein-sequence
alignment, which was (correctly) thought to reveal
their evolutionary history.

Richard Eck studied chemical engineering and plant
biology. In 1961, Eck published a paper in Nature in
which he compared all the sequences of hemoglobin
variants, and other proteins such as insulin, from dif-
ferent species. He realized that the information on
amino-acid sequences could be organized in different
ways in order to produce specific patterns. He also
identified numerous amino-acid substitutions in pro-
teins and noted that the pattern of substitutions was
not random. In a conference in 1964, Eck presented a
cryptogrammic method to trace the evolution of pro-
teins. He suggested that, using this result, one could

�The opinions expressed in this chapter are the author’s own and they do not necessarily reflect the opinions of the FDA, the DHHS,

or the Federal Government.
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calculate the degree of relatedness of each protein with
reference to its ancestors, and draw a family tree in
which the distances between the branches represented
a quantitative measure of relatedness. Thus, Eck out-
lined the basis of reconstruction of a phylogenetic tree.

Robert Ledley, who studied theoretical physics and
dentistry, envisioned an important application of com-
puters to sequence analysis. He suggested that after
the polypeptide chain is cut into many overlapping
fragments, whose sequences could be determined by
peptide sequencing, the fragment reassembly of partial
sequences to obtain full sequences could be done using
computers. Thus, Ledley suggested that computers
could assist biochemists in their efforts to determine
protein sequences. He invited Dayhoff to join the staff
of National Bureau of Standards (NBRF; later the
National Institute of Standards and Technology, or
NIST) in 1960 to continue investigating this question.
Dayhoff and Ledley wrote FORTRAN programs that
could direct the assembly of partial peptide sequences
in the right order in less than 5 minutes.

Both Dayhoff and Eck became involved in evolu-
tionary studies of proteins while Ledley continued
with his interest in the application of computers in
biology. Dayhoff started playing an increasingly
important role in protein-sequence analysis and con-
tinued to contribute to evolutionary biology based on
her studies on protein sequences. She published the
first reconstruction of a phylogenetic tree using a maxi-
mum parsimony method, discussed in Chapter 9. She
also developed the first amino-acid substitution matrix
for studying protein evolution, called the PAM matrix.
PAM stands for point accepted mutation (also referred
to as percent accepted mutation) because it represents
accepted point mutation per 100 amino acid residues.
A publication by Dayhoff in the popular science jour-
nal The Scientific American, entitled Computer Analysis of
Protein Evolution,4 can be regarded as one of the most
important initial publications in bioinformatics and
molecular phylogenetics. For her enormous pioneering
contributions, Margaret Dayhoff is popularly regarded
as the founder of modern bioinformatics.

4.2 DEFINITION OF BIOINFORMATICS

The term “bioinformatics” was coined by Paulien
Hogeweg and Ben Hesper in 1978.5 In a recent review
article recapitulating the history of bioinformatics,
Hogeweg stated that the term had been used by
Hogeweg and Hesper since the beginning of the 1970s,
but was formally coined in 1978 in an article written in
Dutch. In the beginning, the term was used to mean
the study of informatic processes in biotic systems.

Bioinformatics is basically informatics as applied to
biology—that is, computer-aided analysis of biological
data. There are many definitions/descriptions of bioin-
formatics; some of these definitions make no distinction
between bioinformatics and computational biology as a
whole. Luscombe et al.6 defined bioinformatics as
follows:

Bioinformatics is conceptualizing biology in terms of
molecules (in the sense of physical-chemistry) and then
applying “informatics” techniques (derived from disciplines
such as applied math, CS, and statistics) to understand and
organize the information associated with these molecules, on
a large-scale.

Higgs and Attwood7 provided two definitions of
bioinformatics that are same in spirit but stated in two
different ways:

(1) Bioinformatics is the development of computational
methods for studying the structure, function, and evolution of
genes, proteins and whole genomes; and (2) bioinformatics is
the development of methods for the management and analysis
of biological information arising from genomics and high-
throughput experiments.

Therefore, for molecular biologists, bioinformatics is
the discipline of computer-aided analysis of information
relating to genes, genomes, and their products. In other
words, for all practical purposes, bioinformatics can be
regarded as computational molecular biology, that uses
computational techniques to study the structure, func-
tion, regulation, and interactive network of genes and
proteins. The ultimate goal is to analyze and predict
the structure, organization, function, regulation, and
dynamics of the entire genome of an organism.

4.3 BIOINFORMATICS VERSUS
COMPUTATIONAL BIOLOGY

Computational biology is an umbrella term that
includes any subdiscipline in biology that uses
computer-aided analysis, modeling, and prediction.
Some examples include the modeling of predator�prey
relationships in an ecosystem, the modeling and predic-
tion of population and community dynamics in an
ecosystem, quantitative structure�activity analysis and
prediction of the biological effects of chemicals,
prediction of metabolic fate of chemicals in vivo, and
pharmacokinetic modeling of drugs and xenobiotics,
etc. In contrast, bioinformatics can be regarded as
computational molecular biology, as indicated above.
Therefore, according to the definitions discussed in this
book, computational biology is much broader in scope
and bioinformatics is a part of it. Bioinformatics, like
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other areas of computational biology, is essentially a
multidisciplinary science because it uses techniques
and concepts from a number of disciplines, such as
molecular biology and biochemistry, computer science,
statistics and mathematics, and informatics (informa-
tion science).

4.4 GOALS OF BIOINFORMATIC
ANALYSIS

The ultimate goal of bioinformatics is to be able
to predict the biological processes in health and dis-
ease. In order to acquire such an ability, a thorough
understanding of the biological processes is necessary.
Therefore, the proximate goal of bioinformatics is to
develop such an understanding through analysis and
integration of the information obtained on genes and
proteins, as well as to develop new tools and continu-
ously improve the existing set of tools for diverse
types of analyses. Bioinformatics also aims to develop
tools that help in the management of and access to
data and information, including improved search and
retrieval capability of genomic data and information
from various types of databases. Some examples of
common bioinformatic tools and analyses that are
continuously being improved and refined are: data
capture and storage capability; the usability of data-
bases; data analysis; nucleic acid and protein sequence
analysis and sequence annotation; structural analysis
of proteins and prediction of protein structure, includ-
ing three-dimensional (3D) structure; protein domain
prediction; gene prediction; analysis of functional stud-
ies; analysis of gene and protein networks; and phylo-
genetic analysis.

The analytical tools in bioinformatics are computer
algorithms and statistics. Improvements in the capacity
of existing tools and the development of new tools are
both driven by the need for newer dimensions and
greater speed of analysis, as well as the ability to han-
dle an ever-increasing amount of data. However, the
success and prediction accuracy of bioinformatic anal-
ysis ultimately depends on our knowledge of the biol-
ogy of organisms. Therefore, as more data accumulate
in the databases and more scientific information
becomes available, the progress of science and its
prognostic ability will require and hence dictate the
development of new bioinformatic tools. Acquisition
of more data and information, storage of all that infor-
mation, expansion of databases, new strategies needed
for analysis, and advances in computing power are all
expected to facilitate the analysis of large volumes of
data and discovery of new biological principles and
insights from which unifying principles of life and its
evolution can be discerned.

4.5 BIOINFORMATICS TECHNICAL
TOOLBOX

Bioinformatic analysis requires data (such as
sequence information), databases, and analysis tools.
Databases are built from data obtained through wet
laboratory experiments. Some of the original nucleo-
tide- and protein-sequence databases were created
more than 30 years ago. Subsequently, information
from these original databases was utilized to create
curated and more refined databases to meet specific
research needs. With the advances in genomics, prote-
omics, and metabolomics, particularly with the devel-
opment of disciplines like pharmacogenomics and
toxicogenomics, the need for storage of and access to
the newly created datasets has led to the development
of further specialized databases. Through the collabo-
ration of academic, corporate, and regulatory scientists,
standards have been developed as to how to submit a
specific type of data to the relevant databases. A more
detailed discussion of various databases will be under-
taken in Chapter 5.

The bioinformatics technical toolbox provides analysis
tools (algorithms) and visualization techniques of the
data generated through high-throughput experiments,
such as high-throughput sequencing, microarray analy-
sis, mass spectrometry, and other proteomic techniques.
The analysis tools are computer based (software), and
the development of newer tools is driven by various
needs, such as an increased need for handling the huge
body of data, faster analysis, expanded scope of the
analysis, multiple simultaneous analyses, to name a few.
A few examples of software-driven analysis that have
tremendously facilitated bioinformatics research are:

Analysis of nucleotide sequences
Detection of single nucleotide polymorphisms

(SNPs) and copy number variation (CNV)
Understanding the sequence features and

differences between coding and noncoding
regions

Alignment of nucleotide sequences
Prediction of open reading frames (ORFs),

restriction-enzyme cutting sites in DNA,
various cis-acting regulatory DNA elements
in the gene, and putative miRNA-encoding
sequences in the genome

Gene-expression analysis
Designing probes and primers
Analysis of protein sequences
Alignment of amino-acid sequences
Prediction of protein structure (including

3D structure), protein�protein interactions,
post-translational modifications of proteins,
hydrophilicity/hydrophobicity and potential
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antigenicity of proteins, and various protein
domains, such as transmembrane domains

Prediction of phylogenetic relationships among
proteins.

In addition, gene-expression analysis information
has led to the development of systems biology tools
that can perform simulation, steady-state analysis, net-
work identification, complex behavior analysis of the
system, and various other tasks.
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5.1 GENOMIC DATA

A publication by Mark Gerstein and colleagues
dating as far back as 2001 was entitled, Interrelating
Different Types of Genomic Data, from Proteome to
Secretome: ’Oming in on Function.1 This title captures the
scope of different types of genomic data. In genomic
parlance, the suffix “ome” means the entire collection of
an entity. For example, a transcriptome is the entire
collection of all RNA transcripts in a cell/tissue at a
given time point. Although transcriptome includes all
RNA molecules, such as mRNA, rRNA, tRNA, and
other noncoding RNAs, it is mostly used in the context
of mRNAs. Similarly, the proteome is the entire collec-
tion of all proteins, miRNome means the entire collection
of all microRNAs (miRNAs) in a cell/tissue at a given
time point, and interactome means the collection of all
possible molecular interactions (or a subset of molecular
interactions) in a cell. Mapping interactomes represents a
major effort in the study of the cellular regulatory networks.

The bulk of the raw genomic data that were accumu-
lating even before the beginning of human genome
sequencing are the DNA-sequence data (gene and
mRNA sequence, the latter in the form of the sense
stranda of complementary DNA (cDNA)). The collection
of sequence data exploded as a result of the sequencing
of the human genome and the genomes of other species.
With DNA sequencing becoming increasingly refined
and cheaper, there has been a corresponding increase
in the quantity and quality of DNA-sequence data.
Keeping pace with the DNA-sequence data has grown
the gene- and protein-expression data. Again, this
has been facilitated by the availability of techniques to
study gene and protein expression; foremost among
these techniques is the microarray, which has revolution-
ized the study of global gene expression. Such study
of global gene expression profiling—that is, the study of
transcriptomes—is called transcriptomics.

In addition to the sequence and expression data,
there are other kinds of data that are genomic data
in a broader sense, such as genome-wide monoallelic
expression data, proteome data, metabolome data,
protein�protein interaction data, protein structural
data, protein�DNA interaction data, gene and protein
network data, and small noncoding RNA (ncRNA) data.
The latest addition to this list is probably genome-wide
epigenetic modification data.

Collectively, all these data are expected to help us
understand the structure, function, and interaction of

cells with one another as well as with the environment.
Interaction data should also shed light on the modular
organization of the cell.

5.2 SEQUENCE DATA FORMATS

At the core of all genomic data are the sequence
data. A sequence data format is a specific layout or
arrangement of text characters, symbols, keywords,
and description that identify a sequence and contain
information about its various attributes. Sequence
data file formats are American Standard Code for
Information Interchange (ASCII) text files. A typical
ASCII file includes text, numbers, and simple signs
(such as @, #, $, parenthesis signs, etc.) that a computer
can read and are printable; it has no special formatting,
such as bold, italics, or underscoring. However, most
modern ASCII-based formats support many additional
characters.

Currently, many sequence formats exist; some are
more common than others. Most databases that store
sequence data, and various analysis packages that
need sequence input for analysis, have developed their
own formats for storing the data, as well as specific
data-input formats for analysis.

A widely used input sequence format for the purpose
of analysis is the FASTA format. A different input
sequence format is required by the PHYLIP for phyloge-
netic analysis; these are discussed below.

5.2.1 FASTA Format

FASTA (pronounced fast “A”) stands for “fast all”.
Many sequence-analysis programs, such as many
sequence-alignment programs, need the data to be
entered in FASTA format. The minimum amount of
input information required in a typical FASTA format
is as follows: the first line is the definition (or descrip-
tion) line that starts with the “.” sign, which is a
crucial element in FASTA format. Analysis programs
that need the sequence data input in FASTA format
will fail to read the sequence if the “.” sign is not
included. The “.” sign is followed by a definition
(identifier) of the sequence. There should be no space
between the “.” sign and the first letter of the defini-
tion line. FASTA format can allow more information
on the definition line, as shown in the example below.
The lines of the text should preferably contain less

aOut of the two strands in a gene or cDNA, the sequence and polarity (50-30) of one strand is the same as that of mRNA (except for

the fact that DNA has “T” and mRNA has “U”). This strand is called the sense strand/coding strand/plus (1) strand. In a gene, the

sense strand is NOT transcribed. The transcribed strand is called the template strand/antisense strand/noncoding strand/minus (2)

strand. The term “sense” means that the sequence of codons can be obtained from it; hence, the sequence of encoded amino acids can

be predicted from it. In the database, the sequence of the DNA sense strand is submitted.
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than 80 characters. A sequence in FASTA format can
be written with or without gaps.

The following are examples of FASTA sequence
format (actual sequence truncatedb).

Example 1:

.Mouse Oatp-5 protein

MGEPGKRVGI HRVRCFAKIK VFLLALIWAY ISKILSGVYM

. . . . . . . . .

Example 2:

.Mouse Oatp-5 mRNA

atccattcac tgactaacac aaggacaagt ttggagtgat

. . . . . . . . .

Example 3:

.gij12619376jgbjAF213260.1j Mus musculus

kidney-specific organic anion transporting

polypeptide 5 mRNA, complete cds

atccattcac tgactaacac aaggacaagt ttggagtgat

. . . . . . . . .

Example 3 has both the GI (GeneInfo identifier) and
the GenBank accession number in the FASTA format.

Note that although the sequence states mRNA it
does not have any “U” but has “T” instead. This is
because it is the sequence of the sense strand of cDNA.
This is how sequences are submitted to the nucleotide
databases.

5.2.2 PHYLIP Format

PHYLIP stands for “phylogeny inference package.” It
was developed by Dr Joe Felsenstein of The University
of Washington, Seattle, in the mid-1980s. PHYLIP is a
phylogenetic analysis package that can carry out many
different analyses, such as parsimony, distance matrix,
and likelihood methods, including bootstrapping and
consensus treesc. Data types that can be handled
include DNA and protein sequences, gene frequencies,
restriction sites, distance matrices. The simplest version
of the PHYLIP input file format for methods like parsi-
mony, compatibility, and maximum likelihood pro-
grams is shown below. The first line of the input file
shows the number of species (in this example, four) and
the number of characters (in this example, 16 nucleo-
tides) in text format, separated by a space only. The
information for each species starts with a 10-character
species name. If the species name is not 10 characters
long, then a space is introduced to make it 10-character
equivalent. In the example, H. sapiens has a space
before “sapiens,” but other species names do not have
any such space. DNA and protein sequence may start
immediately after the species name and the sequence

can be separated by a space, such as a space every
10 nucleotides.

4 16

M.musculusggtcgtgcgc aggccc

R.norvegicatcacgctcc tagaac

H. sapiensaccacgccct ccacgt

P.troglodyacgcctcccc caagtc

5.3 CONVERSION OF SEQUENCE
FORMATS USING READSEQ

In order to change a given sequence format to any
one of the common sequence formats used in sequence
analysis or phylogenetic analysis, the Readseq program
can be used. It is a free web-based sequence file format
conversion tool that reads the input sequence data
and converts the input format to the format chosen by
the user in a drop-down menu. A total of 19 different
file formats are supported by Readseq. Some examples of
common formats supported by Readseq are GENBANK,
NBRF, EMBL, GCG, DNA Strider, FASTA, PHYLIP, PIR,
MSF, and CLUSTAL. Readseq was developed by Dr Don
Gilbert at Indiana University and is available at http://
iubio.bio.indiana.edu/cgi-bin/readseq.cgi. Various sites
on the webmaintain mirror sites of Readseq, such as those
of the US National Center for Biotechnology Information
(NCBI; http://www-bimas.cit.nih.gov/molbio/readseq/)
and the European Molecular Biology Laboratory’s
European Bioinformatics Institute (EMBL-EBI; http://
www.ebi.ac.uk/cgi-bin/readseq.cgi).

5.4 PRIMARY SEQUENCE
DATABASES—GENBANK,
EMBL-BANK, AND DDBJ

Primary sequence databases are archival in nature.
They contain raw sequence data (experimental results)
with some interpretation and explanation, but the data
are not curated. There are also redundancies in the pri-
mary databases—that is, the same sequence might be
submitted by different laboratories, sometimes under
different names. A great majority of protein sequences
in the primary databases are derived from computa-
tional translation of the open reading frame (ORF);
hence they have not been experimentally verified for
the most part. There are three primary databases
that contain all the sequence data so far generated.
These are GenBank, EMBL database, also called the
EMBL-Bank, and DDBJ (DNA Databank of Japan).

bThe details of the mouse Oatp-5 sequence along with the reference are shown later under sequence flatfile format.
cThese are discussed in Chapter 9 in more detail.
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GenBank, EMBL-Bank, and DDBJ are interconnected; so,
data submitted to any one of these databases are shared by,
and hence can be retrieved from, all three.

5.4.1 History

GenBank was created in 1979 at the Los Alamos
National Laboratory and was called the Los Alamos
Sequence Database. It was renamed GenBank in 1982
and became a public database. During 1989 to 1992,
GenBank transitioned to the newly created NCBI,
a division of the National Library of Medicine (NLM),
located on the campus of the US National Institutes of
Health (NIH) in Bethesda, MD. GenBank is built and
distributed by the NCBI. NCBI began accepting direct
submissions to GenBank in 1993. Since its creation,
GenBank has grown at an exponential rate, doubling
in size every 18 months.2,3 The NCBI home page is
http://www.ncbi.nlm.nih.gov/.

The EMBL was founded in July 1974 on the basis
of an intergovernmental treaty of nine European coun-
tries plus Israel. It has grown in membership since then;
Luxembourg became the twentieth member in 2007, and
Australia joined as an associate member in 2008. The
EMBL is located in Heidelberg, Germany. An outstation
of EMBL is the European Bioinformatics Institute (EBI),
located at Hinxton, near Cambridge, UK. The EMBL
database as a central depository of nucleotide sequence
was created in 1981 and was known as the EMBL Data
Library. The EMBL Data Library moved to the EBI in
1993, and became the precursor to the current EMBL-
Bank, which is also maintained at the EBI. The expression
“EMBL-Bank” is not frequently used. In the literature,
the EMBL-Bank is mostly referred to as EMBL nucleotide
sequence database or EMBL database. In this book,
the expression EMBL-Bank will be frequently used. The
EMBL-Bank is now part of the European Nucleotide
Archive (ENA), which consists of three main databases:
the Sequence Read Archive (SRA), the Trace Archive
(these are discussed later), and the EMBL-Bank. The ENA
is developed and maintained at the EMBL-EBI under
the guidance of the International Nucleotide Sequence
Database Consortium (INSDC; discussed below).4�7

The EMBL-EBI home page is http://www.ebi.ac.uk/.
Various databases and tools maintained by EMBL-EBI
and made freely available for use can be accessed using
EMBL Services at http://www.ebi.ac.uk/services.

DDBJ has been in operation since 1986 and it is main-
tained at the National Institutes of Genetics at Mishima,
Japan. DDBJ is the sole nucleotide-sequence data bank
in Asia. The DDBJ home page is http://www.ddbj.nig
.ac.jp/. A few recent publications discuss many
improvements and added features of DDBJ.8�11

The INSDC (http://www.insdc.org/), a collaborative
consortium, was initiated between GenBank, EMBL

(ENA), and DDBJ to connect these three databases.
This collaboration created the International Nucleotide
Sequence Database (INSD). For over 30 years, the INSDC
has maintained the primary nucleotide-sequence data-
base.12 The INSDC advisory board is composed of
members of each of the databases’ advisory bodies. The
INSDC has a policy of providing free and unrestricted access to
all the available data to scientists worldwide.13

5.4.2 Sequence Submission to the Databases

During the early years of these databases, sequence
data were obtained from the published literature and
entered manually into the database. GenBank began
accepting direct submissions in 1993. Sequence informa-
tion can be submitted to the databases irrespective of
publication of the information in a journal. However,
any author reporting the cloning of a gene or an mRNA
(as cDNA) in a publication needs to submit the sequence
first to any one of the three primary databases, get an
accession number, and provide that accession number
with the publication.

5.4.2.1 Submission to NCBI/GenBank

Sequences can be submitted to the GenBank database
using its web-based sequence submission tool called
BankIt, which is available at http://www.ncbi.nlm.nih.
gov/BankIt/oldbankit.html. Until several years ago,
a gene sequence had to be submitted using BankIt
one exon at a time, where each exon submission was
given a unique accession number. Now, however, a set
of sequences can be submitted at the same time.
Therefore, one entire sequence containing exons and
introns can be submitted by entering a proper identifier
of each sequence segment during submission. This is all
explained in BankIt submission help. Complex submis-
sions containing long sequences, multiple annotations,
gapped sequences, or phylogenetic and population stud-
ies should be submitted using the Sequin submission
tool (http://www.ncbi.nlm.nih.gov/Sequin/). A single
Sequin file should contain less than 10,000 sequences
for maximum performance. Larger submissions should
be made with tbl2asn (http://www.ncbi.nlm.nih.gov/
genbank/tbl2asn2/). In contrast to BankIt, which is web
based, both Sequin and tbl2asn are NCBI’s stand-alone
submission tools, and are available for download from
the file transfer protocol (FTP) site for use on Mac,
PC, and UNIX platforms. Therefore, the submitter can
download Sequin or tbl2asn, work off-line to prepare the
submission in the required format, and finally submit.

At the NCBI, in addition to GenBank, various other
types of sequence data can be submitted to various
other databases, such as the Sequence Read Archive
(SRA; stores raw sequencing data from various
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next-gen sequencing platforms), the Trace Archive
(stores sequencing data from gel/capillary platforms
such as Applied Biosystems ABI 3730), dbSNP (stores
mutation data, such as single nucleotide polymorph-
isms, insertion/deletions, non-polymorphic variants
etc.), dbVar (stores data on genomic structural varia-
tions), and GEO (stores MIAME-compliant gene-
expression data; MIAME is discussed in a footnote
later in the chapter). There are links to these databases
from the NCBI website, at http://www.ncbi.nlm.nih.
gov/guide/howto/submit-data/. A 2013 publication
provides updates on the database resources at the
NCBI14 and another article on GenBank discusses the
improvements and many added features of GenBank.3

5.4.2.2 Submission to ENA/EMBL-Bank

Sequences can be submitted to EMBL-Bank using
its web-based sequence submission tool called Webin.
Webin allows submission of single and multiple
sequences as well as very large numbers of sequences
(bulk submissions). Webin link and directions
are available at http://www.ebi.ac.uk/ena/about/
embl_bank_submissions. In the past, the sequence
length of a database record was limited to 350,000 bp.
This restriction was lifted in June 2004; as of 2013,
entries of any length are permitted in the database.
An entire chromosome can now be represented in a
single entry. Some genomes that were split in the past
in order to comply with the 350,000-bp limit have
now been updated into single entries.15 As mentioned
before, EMBL-Bank maintains the Sequence Read
Archive (SRA) and Trace Archive.

5.4.2.3 Submission to DDBJ

The web page for sequence submission in DDBJ
has recently undergone a complete makeover (http://
www.ddbj.nig.ac.jp/faq/datasub-e.html). DDBJ recom-
mends using the new web-based submission tool
called the Nucleotide Sequence Submission System
(NSSS; http://www.ddbj.nig.ac.jp/sub/websub-e.html).
The NSSS has replaced Sakura, beginning November,
2012. Sakura was used for sequence submission for about
17 years (from 1995). However, if the sequences are very
long or a large number of sequences are to be submitted
at the same time, DDBJ recommends using its Mass
Submission System (MSS), which is available at http://
www.ddbj.nig.ac.jp/sub/mss_flow-e.html. Like the NCBI
and EMBL-Bank, DDBJ also maintains a Sequence Read
Archive (SRA) andDDBJ Trace Archive (DTA), which is
a permanent repository of DNA sequence chromatograms
(traces), base calls, and quality estimates for single-pass
reads from various large-scale sequencing projects. Two
publications discuss recent progress of the DDBJ.9,11

The SRA was established as a public repository for
next-generation sequence data and is operated by the

INSDC; partners include the NCBI, EMBL-EBI, and
DDBJ. The SRA is accessible at http://www.ncbi.nlm
.nih.gov/Traces/sra from the NCBI, at http://www
.ebi.ac.uk/ena from the EBI, and at http://trace.ddbj
.nig.ac.jp from DDBJ.10,16

5.4.3 Availability of the Submitted
Sequence to the Public

During submission of a sequence, the submitter
may choose to release the sequence information to the
public at a later date (many months later than the
actual date of submission to the database) by giving
instruction during submission. This usually happens
if there are multiple laboratories working on the same
gene/protein, and the work of the scientist submitting
the sequence is still not completed for publication
(at the time the sequence information is submitted).
If such a later release date is not chosen, the sequence
is released as soon as the database staff is done with
verifying the submission and related information.

5.4.4 Sequence Flatfile Format

During sequence submission, the submitter has to
provide some relevant information about the sequence,
such as the name of the mRNA/gene, the source,
annotation, open reading frame, and putative transla-
tion product. All this information is displayed, along
with the sequence, in a flatfile. The GenBank and DDBJ
formats of a sequence flatfile are almost identical except
for two fields: (1) GenBank entries contain GI numbers;
each GI number is unique to a GenBank entry only;
(2) DDBJ entries contain information about the total
number of “A,” “C,” “G,” and “T” in the sequence;
GenBank entries do not have this. Like DDBJ, the
EMBL-Bank entries also contain information about
the total number of “A,” “C,” “G,” and “T” in the
sequence. The GI number (also written as “gi”) stands
for GeneInfo Identifier and was an early system used
to access GenBank and related databases. The GI num-
bers are assigned consecutively to each sequence record
processed by NCBI; a GI number of a sequence has no
resemblance to the accession number of that sequence.17

The EMBL-Bank format looks a little different, although
the same information is contained in all. Each database
maintains a detailed discussion about its flatfile format.
The websites where the respective flatfile formats are
discussed are as follows:

GenBank: http://www.ncbi.nlm.nih.gov/Sitemap/
samplerecord.html

DDBJ: http://www.ddbj.nig.ac.jp/sub/ref10-e.html
EMBl-Bank: ftp://ftp.ebi.ac.uk/pub/databases/embl/

release/usrman.txt (EMBL-Bank User Manual).
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Specific sequence information from GenBank can be
retrieved from the nucleotide database if the accession
number or GI number is known. If the accession num-
ber or GI number is not known, sequence information
can still be retrieved from the nucleotide database using
a combination of keywords, such as species name,
sequence name, author’s name (if known), etc. In this
situation, many sequence information records may be
retrieved, depending on the search terms used, and
the search may have to be further narrowed to get the
desired sequence. Gene and mRNA sequence records
can also be obtained from the Gene database/portal.

Specific sequence information from the EMBL-Bank
can be retrieved using dbfetch, as well as the EMBL-
SVA (ENA Sequence Version Archive) if the accession

number is known. If the accession number is not
known, the EB-eye (EBI) search can be performed
using keywords, such as a combination of species
name, sequence name, etc. (figures indicated later).

Specific sequence information from DDBJ can be
retrieved using the getentry retrieval system if the
accession number is known. If the accession number
is not known, sequence information can be retrieved
using ARSA (All-round Retrieval of Sequence and
Annotation), using a combination of keywords, as
before. Examples cited in the text will be mostly from
NCBI/GenBank.

5.4.4.1 GenBank Sequence Flatfile Format

Mus musculus kidney-specific organic anion transporting polypeptide 5 mRNA,

complete cds

GenBank: AF213260.1

FASTA Graphics

LOCUS       AF213260                2798 bp    mRNA    linear

DEFINITION  Mus musculus kidney-specific organic anion transporting polypeptide

5 mRNA, complete cds.

ACCESSION   AF213260

VERSION     AF213260.1  GI:12619376

KEYWORDS    .

SOURCE      Mus musculus (house mouse)

ORGANISM  Mus musculus

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;

Sciurognathi; Muroidea; Muridae; Murinae; Mus; Mus.

REFERENCE   1  (bases 1 to 2798)

ROD 31-JAN-2001*

AUTHORS   Choudhuri,S., Ogura,K. and Klaassen,C.D.

TITLE     Cloning, expression, and ontogeny of mouse organic

anion-transporting polypeptide-5, a kidney-specific organic anion

transporter
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source          1..2798

/organism="Mus musculus"

/mol_type="mRNA"

/strain="BALB/c"

/db_xref="taxon:10090"

/tissue_type="kidney"

CDS 179..2191

/note="Oatp5; transport protein"

/codon_start=1

/product="kidney-specific organic anion transporting

polypeptide 5"

/protein_id="AAG60350.1"

/db_xref="GI:12619377"

/translation="MGEPGKRVGIHRVRCFAKIKVFLLALIWAYISKILSGVYMSTML

TQLERQFNISTSIVGLINGSFEMGNLLVIVFVSYFGTKLHRPIMIGVGCAVMGLGCFI

ISLPHFLMGRYEYETTISPTSNLSSNSFLCVENRSQTLKPTQDPAECVKEIKSLMWIY

VLVGNIIRGIGETPIMPLGISYIEDFAKSENSPLYIGILEVGKMIGPILGYLMGPFCA

NIYVDTGSVNTDDLTITPTDTRWVGAWWIGFLVCAGVNVLTSIPFFFFPKTLPKEGLQ

JOURNAL   Biochem. Biophys. Res. Commun. 280 (1), 92-98 (2001)

PUBMED   11162483

REFERENCE   2  (bases 1 to 2798)

AUTHORS   Choudhuri,S., Ogura,K. and Klaassen,C.D.

TITLE     Direct Submission

JOURNAL   Submitted (08-DEC-1999)Pharmacology, University of Kansas Medical

Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA

FEATURES             Location/Qualifiers

DNGDGTENAKEEKHRDKAKEENQGIIKEFFLMMKNLFCNPIYMLCVLTSVLQVNGVAN

IVIYKPKYLEHHFGISTAKAVFLIGLYTTPSVSAGYLISGFIMKKLKITLKKAAIIAL

CLFMSECLLSLCNFMLTCDTTPIAGLTTSYEGIQQSFDMENKFLSDCNTRCNCLTKTW

DPVCGNNGLAYMSPCLAGCEKSVGTGANMVFQNCSCIRSSGNSSAVLGLCKKGPDCAN
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181 gggagaacct gggaaaaggg ttggaatcca cagggtcagg tgctttgcca agatcaaggt

241 gtttctgttg gcattaatat gggcatatat atccaaaata ctatcaggag tttacatgag

301 tactatgctc acacaattag agagacaatt caatatttcc acatctatag ttggacttat

361 caatgggagc tttgagatgg gtaacctttt ggtgattgta ttcgtgagtt attttggaac

421 aaaactgcat agacctatca tgattggtgt tggttgtgca gttatgggcc tagggtgttt

481 cataatatca ctacctcatt tcctcatggg cagatacgaa tatgaaacaa caatttcacc

541 tacaagcaac ttgtcctcaa acagcttttt gtgtgtggaa aacagatccc agaccttaaa

601 gccaacacaa gacccagcag agtgtgtgaa agaaattaaa tcattaatgt ggatatatgt

661 actggtagga aacattatac gtggaattgg tgaaactccc atcatgcctt taggtatttc

721 ctatatagaa gactttgcca aatcagaaaa ttctccttta tacattggaa ttttagaagt

781 tgggaagatg attggcccaa tacttggata tttgatggga cctttctgtg caaacattta

841 tgtagacaca gggtctgtga atacagatga cctgaccata actcccactg atacacgctg

901 ggtcggtgct tggtggattg gctttttggt ctgtgcagga gtgaatgtcc tgaccagcat

961 cccctttttc ttctttccaa aaacactccc aaaggaagga ttacaggata atggggatgg

1021 aactgaaaat gccaaagagg agaagcacag agacaaggcc aaggaggaaa accaaggaat

1081 cattaaagaa ttcttcctta tgatgaagaa cctcttctgt aaccctattt acatgctttg

1141 cgtccttaca agtgtgctcc aggtaaatgg agttgccaat attgtgattt acaagcctaa

1201 atacctggaa catcattttg gaatctccac agcaaaggca gtcttcctca ttggtcttta

1261 taccacacct tcagtatctg ctggatattt aattagtggt tttattatga agaagttgaa

KLQYFLIITVFCCFFYSLATIPGYMVFLRCMKSEEKSLGIGLQAFFMRLFAGIPAPIY

FGALIDRTCLHWGTLKCGEPGACRTYEVSSFRRLYLGLPAALRGSIILPSFFILRLIR

KLQIPGDTDSSEIELAETKPTEKESECTDMHKSSKVENDGELKTKL"

ORIGIN      

1 atccattcac tgactaacac aaggacaagt ttggagtgat ctgaactctg ggaagcctgt

61 ggccagggaa gcctgcactg aggacagctg cttcctcagc tgctgtgtag actgagttcc

121 atcaggcagt ggtaggactt tgaaagcaga gacatcctta aacaatcaga agaacaaaat

1321 gattactctc aagaaagctg caatcatagc actttgccta ttcatgtctg agtgcctttt

1381 atccctttgt aactttatgc taacctgtga taccactcca attgccggct taactacctc

1441 ttatgaagga attcagcagt cttttgatat ggagaataag tttctttctg actgcaacac

1501 aaggtgtaac tgcttaacaa aaacatggga tccagtgtgt gggaacaatg gcctagcata
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In this example, the following information is provided
by the data flatfile:

1. The first line, called the LOCUS line or LOCUS
field, contains the locus name, the length of the
sequence, and a three-letter word indicating the
GenBank database division this sequence belongs
to. In this example, ROD in the right-hand top
corner indicates that the sequence is a rodent

sequenced. The sequence was originally submitted
to the database on 8 December, 1999 (highlighted).
The date in the LOCUS field is the date of last
modification. In this example, the sequence
was last modified on 31 January, 2001. This
modification date may be same as the release
date, but there is no way to know that just
by looking at the record.

1921 gaaatgtggt gagccaggag catgcaggac ctatgaagtc agtagtttca ggcgcctcta

1981 tcttggattg cctgcagctc taagaggatc aatcattctt ccttcattct tcattctaag

2041 acttatcagg aaactccaaa tccctgggga cactgactct tcagaaattg aacttgcaga

2101 gacgaagccc acagagaagg aaagtgagtg cacagacatg cacaaaagtt ctaaggtcga

2161 gaacgatgga gaactgaaaa ctaagctgta atgaggtttc tactggccta tgcaaggcca

2221 cgaacagaat actcatttca tttcctttga atcataagag aaataatagg aaccctcatc

2281 tttaaggacc tcaaaagcta tttttctcat tataaaaata attactgata ttattttcag

2341 aacttcaggg tagcacttaa gattttccta gtgaagactt taatggtgac ccccaccctg

2401 gactttaaaa agccttcgtt ttcaaagagc attttctctt taaactcagt caaaggaaat

2461 gtgtgtttct tgcatatctt caagtagatt tcatttcact taatttcatt gaatttacat

2521 ttcaatattg gaggtaatta gagctgaaag tatgccttct ggttgtgtca tattgaaata

2581 aattgttcag attcatcctt tccatgtgca aggtgtctgc atgtgtcttt aactctttgg

2641 gagctgttat ctttcttttc tcattctaga cttttgatgc ttcagagatt agactctcac

2701 taatgtgtca tctcgtgttt tcaattccct ctttcattat tcatgtcaca tatttgatca

2761 ttttgtttag aactctgaca aatttaaaca ggttatta

1561 catgtcacct tgccttgcag gctgtgaaaa gtctgttgga acaggagcca acatggtgtt

1621 tcaaaattgc agctgcattc ggtcatcagg aaactcatct gcagtcctgg ggctgtgtaa

1681 gaaaggccct gactgtgcta acaagcttca gtacttttta atcataacgg tattttgctg

1741 cttcttctac tcgttagcaa ccatacctgg gtacatggtt tttctgagat gtatgaagtc

1801 tgaagagaag tcacttggaa ttggattaca ggcatttttc atgagactat ttgctggtat

1861 tcctgcacct atttactttg gcgctttgat agacagaaca tgcttacatt ggggaactct

*This is the GenBank flatfile of an original submission. The publication is indicated in the REFERENCE

field of the submission.

dThe GenBank sequence database has 18 divisions. ROD stands for the division that contains rodent sequences. This topic is

discussed later in this chapter.
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2. The sequence is mouse (Mus musculus)
kidney-specific organic anion transporting
polypeptide-5 (Oatp5) mRNA sequence. Oatp-5
is also known as Slc21a13 and Slco1a6. Although
it is an mRNA sequence, note that there are
no “U” residues; instead there are “T” residues
in the sequence. This is because the sense strand
sequence of the cDNA is submitted to the
database as a convention. The sense strand
has the same polarity (50-30) and the same
sequence as the mRNA except for “T” in DNA
and “U” in RNA.

3. This submission is version 1 of the original
submission because the sequence has not been
modified since it was first submitted. This is
revealed by the version of the accession number
(accession number is AF213260; first version is
AF213260.1). It should be remembered that the
reason why a version is replaced is not indicated
in the flatfile. However, the date when a particular
version is replaced by a newer version is indicated
in the COMMENT field of the flatfile, along
with the GI number of the replaced version. The
GI number can be clicked to obtain the replaced
version. This gives the user the opportunity to
compare the different versions and identify the
changes. This particular flatfile does not have
the COMMENT field because there is no special
note associated with this sequence. The original
sequence may be modified by the submitter
for various reasons. For example, resequencing
of clones may reveal some error in the earlier
sequencing; hence, the original sequence may need
to be corrected. Sometimes, in the case of cDNA
cloning using 50 and 30 rapid amplification of cDNA
ends (RACE), the 50- or the 30-end of the clone may
be incomplete, even though the ORF is complete.
Subsequent mapping of the transcription start
site often detects additional sequence that was
missing from the 50-end of the original sequencee.
Reporting this additional sequence modifies the
original submission. In this way, every time
the original sequence is modified, the accession
number remains the same, but the version number
increases from dot 1 (.1) to dot 2 (.2) to dot 3 (.3),
and so on. As already mentioned, the GI number
(highlighted) is unique to the GenBank sequence
flatfile; it is not found in EMBL-Bank or DDBJ
sequence flatfiles.

4. The coding sequence (CDS), or the open reading
frame (ORF), spans from base 179 to 2191.
This means that the “A” of the ATG (translation
start codon) is the 179th base and the second “A”
of the TAA (translation stop codon) is the
2191st base.

5. The 50- and 30-untranslated region (UTR)
sequences span bases 1�179 and bases 2192�2798,
respectively. The sequence information does not
contain any indication about the transcription
start site (cap site) and thus the completeness of the
50-UTR cannot be ascertained (although in this case
the 50-UTR is complete). If the 50-UTR is known to
be incomplete, this can be indicated by a “, 1” sign
(e.g. ,1. . .100), meaning that the beginning of the
50-UTR lies upstream of base 1 of the sequence.
The completeness of the 30-UTR can be verified by
checking for the canonical poly(A) signal sequence
“aataaa” or its variant “attaaa.” The poly(A) signal
sequence in an mRNA is usually located B10�30
bases upstream of the polyadenylation site. In this
example, the first “A” of the “aataaa” is the
2577th base, but the 30-UTR is still longer than
2798 bases. This indicates that this mRNA may
have alternatively polyadenylated forms; a shorter
form that is polyadenylated 12 nt downstream from
the first poly(A) signal,18 and a longer form that is
polyadenylated further downstream. The poly(A)
signal sequence for this longer form is not present
in the sequence, indicating that the present 30-UTR
is not complete. This is further supported by the
RefSeq accession number NM_023718 (version
NM_023718.3), which shows that the complete
mouse Oatp-5 (Slco1a6) sequence is 2804 bases
long and contains the second poly(A) signal
sequence. Thus, the cited sequence here is shorter
than the full-length sequence by only 6 bases.
These extra 6 bases show the location of
the second poly(A) signal sequence, which is
“attaaa.” In fact, in the cited example, the sequence
is truncated right within the second poly(A)
signal sequence.

6. The amino-acid (aa) sequence of the putative
translation product (670 aa long) is also part
of the submission. It contains the accession
number of the protein database (AAG60350.1;
highlighted).

7. There is information about the publication and the
authors in the REFERENCE field.

eFor certain applications, such as during the construction of a knockout construct, it is important to know the beginning of the

transcription start site (hence the complete 50-UTR) as well as the ORF, but it is not necessary to know the entire 30-UTR.
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5.4.4.2 EMBL-Bank Sequence Flatfile Format

(Same sequence as above.)

ID   AF213260; SV 1; linear; mRNA; STD; MUS; 2798 BP.

XX

AC   AF213260;

XX

DT   31-JAN-2001 (Rel. 66, Created)

DT   23-SEP-2008 (Rel. 97, Last updated, Version 2)

XX

DE   Mus musculus kidney-specific organic anion transporting polypeptide 5 mRNA,

DE   complete cds.

XX

KW   .

XX

OS   Mus musculus (house mouse)

OC   Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;

OC   Eutheria; Euarchontoglires; Glires; Rodentia; Sciurognathi; Muroidea;

OC   Muridae; Murinae; Mus; Mus.

XX

RN   [1]

RP   1-2798

RX   DOI; 10.1006/bbrc.2000.4072

RX   PUBMED; 11162483.

RA   Choudhuri S., Ogura K., Klaassen C.D.;

RT   "Cloning, expression, and ontogeny of mouse organic anion-transporting

RT   polypeptide-5, a kidney-specific organic anion transporter";

RL   Biochem. Biophys. Res. Commun. 280(1):92-98(2001).

XX

RN   [2]

RP   1-2798
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RT   ;

RL   Submitted (08-DEC-1999) to the INSDC.

RL   Pharmacology, University of Kansas Medical Center, 3901 Rainbow Blvd.,

RL   Kansas City, KS 66160, USA

XX

DR   Ensembl-Gn; ENSMUSG00000079262; Mus_musculus.

DR   Ensembl-Tr; ENSMUST00000111827; Mus_musculus.

XX

FH   Key             Location/Qualifiers

FH

FT   source 1..2798

FT                   /organism="Mus musculus"

FT                   /strain="BALB/c"

FT                   /mol_type="mRNA"

FT                   /tissue_type="kidney"

FT                   /db_xref="taxon:10090"

FT   CDS 179..2191

FT                   /codon_start=1

FT                   /product="kidney-specific organic anion transporting

FT                   polypeptide 5"

FT                   /note="Oatp5; transport protein"

FT                   /db_xref="GOA:Q99J94"

FT                   /db_xref="InterPro:IPR004156"

FT                   /db_xref="InterPro:IPR011497"

FT                   /db_xref="InterPro:IPR016196"

FT                   /db_xref="InterPro:IPR020846"

FT                   /db_xref="MGI:1351906"

RA   Choudhuri S., Ogura K., Klaassen C.D.;
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FT                   /translation="MGEPGKRVGIHRVRCFAKIKVFLLALIWAYISKILSGVYMSTMLT

FT                   QLERQFNISTSIVGLINGSFEMGNLLVIVFVSYFG

FT                   LPHFLMGRYEYETTISPTSNLSSNSFLCVENRSQTLKPTQDPAECVKEIKSLMWIYVLV

FT                   GNIIRGIGETPIMPLGISYIEDFAKSENSPLYIGILEVGKMIGPILGYLMGPFCANIYV

FT                   DTGSVNTDDLTITPTDTRWVGAWWIGFLVCAGVNVLTSIPFFFFPKTLPKEGLQDNGDG

FT                   TENAKEEKHRDKAKEENQGIIKEFFLMMKNLFCNPIYMLCVLTSVLQVNGVANIVIYKP

FT                   KYLEHHFGISTAKAVFLIGLYTTPSVSAGYLISGFIMKKLKITLKKAAIIALCLFMSEC

FT                   LLSLCNFMLTCDTTPIAGLTTSYEGIQQSFDMENKFLSDCNTRCNCLTKTWDPVCGNNG

FT                   LAYMSPCLAGCEKSVGTGANMVFQNCSCIRSSGNSSAVLGLCKKGPDCANKLQYFLIIT

FT                   VFCCFFYSLATIPGYMVFLRCMKSEEKSLGIGLQAFFMRLFAGIPAPIYFGALIDRTCL

FT                   HWGTLKCGEPGACRTYEVSSFRRLYLGLPAALRGSIILPSFFILRLIRKLQIPGDTDSS

FT            EIELAETKPTEKESECTDMHKSSKVENDGELKTKL"

XX

SQ   Sequence 2798 BP; 815 A; 544 C; 578 G; 861 T; 0 other;

atccattcac tgactaacac aaggacaagt ttggagtgat ctgaactctg ggaagcctgt        60

ggccagggaa gcctgcactg aggacagctg cttcctcagc tgctgtgtag actgagttcc       120

atcaggcagt ggtaggactt tgaaagcaga gacatcctta aacaatcaga agaacaaaat       180

gggagaacct gggaaaaggg ttggaatcca cagggtcagg tgctttgcca agatcaaggt       240

gtttctgttg gcattaatat gggcatatat atccaaaata ctatcaggag tttacatgag       300

tactatgctc acacaattag agagacaatt caatatttcc acatctatag ttggacttat       360

caatgggagc tttgagatgg gtaacctttt ggtgattgta ttcgtgagtt attttggaac       420

aaaactgcat agacctatca tgattggtgt tggttgtgca gttatgggcc tagggtgttt       480

cataatatca ctacctcatt tcctcatggg cagatacgaa tatgaaacaa caatttcacc       540

tacaagcaac ttgtcctcaa acagcttttt gtgtgtggaa aacagatccc agaccttaaa       600

gccaacacaa gacccagcag agtgtgtgaa agaaattaaa tcattaatgt ggatatatgt       660

actggtagga aacattatac gtggaattgg tgaaactccc atcatgcctt taggtatttc       720

ctatatagaa gactttgcca aatcagaaaa ttctccttta tacattggaa ttttagaagt       780

tgggaagatg attggcccaa tacttggata tttgatggga cctttctgtg caaacattta       840

tgtagacaca gggtctgtga atacagatga cctgaccata actcccactg atacacgctg       900

FT                   /db_xref="UniProtKB/Swiss-Prot:Q99J94"

FT                   /protein_id="AAG60350.1"
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cccctttttc ttctttccaa aaacactccc aaaggaagga ttacaggata atggggatgg      1020

aactgaaaat gccaaagagg agaagcacag agacaaggcc aaggaggaaa accaaggaat      1080

cattaaagaa ttcttcctta tgatgaagaa cctcttctgt aaccctattt acatgctttg      1140

cgtccttaca agtgtgctcc aggtaaatgg agttgccaat attgtgattt acaagcctaa      1200

atacctggaa catcattttg gaatctccac agcaaaggca gtcttcctca ttggtcttta      1260

taccacacct tcagtatctg ctggatattt aattagtggt tttattatga agaagttgaa      1320

gattactctc aagaaagctg caatcatagc actttgccta ttcatgtctg agtgcctttt      1380

atccctttgt aactttatgc taacctgtga taccactcca attgccggct taactacctc      1440

ttatgaagga attcagcagt cttttgatat ggagaataag tttctttctg actgcaacac      1500

aaggtgtaac tgcttaacaa aaacatggga tccagtgtgt gggaacaatg gcctagcata      1560

catgtcacct tgccttgcag gctgtgaaaa gtctgttgga acaggagcca acatggtgtt      1620

tcaaaattgc agctgcattc ggtcatcagg aaactcatct gcagtcctgg ggctgtgtaa      1680

gaaaggccct gactgtgcta acaagcttca gtacttttta atcataacgg tattttgctg      1740

cttcttctac tcgttagcaa ccatacctgg gtacatggtt tttctgagat gtatgaagtc      1800

tgaagagaag tcacttggaa ttggattaca ggcatttttc atgagactat ttgctggtat      1860

tcctgcacct atttactttg gcgctttgat agacagaaca tgcttacatt ggggaactct      1920

gaaatgtggt gagccaggag catgcaggac ctatgaagtc agtagtttca ggcgcctcta      1980

tcttggattg cctgcagctc taagaggatc aatcattctt ccttcattct tcattctaag      2040

acttatcagg aaactccaaa tccctgggga cactgactct tcagaaattg aacttgcaga      2100

gacgaagccc acagagaagg aaagtgagtg cacagacatg cacaaaagtt ctaaggtcga      2160

gaacgatgga gaactgaaaa ctaagctgta atgaggtttc tactggccta tgcaaggcca      2220

cgaacagaat actcatttca tttcctttga atcataagag aaataatagg aaccctcatc      2280

tttaaggacc tcaaaagcta tttttctcat tataaaaata attactgata ttattttcag      2340

aacttcaggg tagcacttaa gattttccta gtgaagactt taatggtgac ccccaccctg      2400

gactttaaaa agccttcgtt ttcaaagagc attttctctt taaactcagt caaaggaaat      2460

gtgtgtttct tgcatatctt caagtagatt tcatttcact taatttcatt gaatttacat      2520

ttcaatattg gaggtaatta gagctgaaag tatgccttct ggttgtgtca tattgaaata      2580

aattgttcag attcatcctt tccatgtgca aggtgtctgc atgtgtcttt aactctttgg      2640

gagctgttat ctttcttttc tcattctaga cttttgatgc ttcagagatt agactctcac      2700

taatgtgtca tctcgtgttt tcaattccct ctttcattat tcatgtcaca tatttgatca      2760

ttttgtttag aactctgaca aatttaaaca ggttatta                              2798

ggtcggtgct tggtggattg gctttttggt ctgtgcagga gtgaatgtcc tgaccagcat       960
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Explanation for the two-letter abbreviations in
EMBL-Bank flatfiles: ID, identification; SV, sequence
version; AC, accession number; DT, date; DE, descrip-
tion; KW, keyword; OS, organism species; OC, organ-
ism classification; RN, reference number; RP, reference
positions; RX, reference cross-reference; RA, reference
author; RT, reference title; RL, reference location; DR,
database cross-reference; CC, comments; FH, feature
table header; FT, feature table data; SQ, sequence
header; XX, spacer line.

As mentioned already, the EMBL-Bank and DDBJ
sequence flatfile (DDBJ flatfile is not shown here) has
the “A,” “T,” “G,” and “C” content of the sequence
listed (highlighted). The GenBank sequence flatfile does
not contain this field. The EMBL flatfile maintains the
sequence version number separately as SV, and does not
tag it with the accession number. The date of the original
submission as well as the last update of 23 September,
2008, creating version 2, are also highlighted.

5.4.5 Sequence Accession Numbers
and Redundancy in Primary Databases

An accession number is a unique identifier for
a sequence record, which applies to the complete
record. It is usually a combination of a letter(s) and
numbers. The databases GenBank, EMBL-Bank, and
DDBJ all receive sequence submissions, assign acces-
sion numbers, and exchange data. Assignment of
accession numbers is done following prior agreement
within the INSDC collaboration. When assigning acces-
sion numbers, each database uses certain accession prefix
that it “owns.” In other words, the prefix of an accession
number indicates the database where the sequence informa-
tion was originally submitted. For example, AJ271682
and AF208545 are two different accession numbers
of the same mRNA sequence. The mRNA (as cDNA)
was cloned by two different laboratories. From the
accession number prefix it is clear that AJ27168219

(termed Oatp4) was submitted to EMBL-Bank,
whereas AF20854520 (termed rlst-1a) was submitted
to GenBank. This mRNA is currently known by vari-
ous names, such as Oatp4/rlst-1a/Oatp1b2/Slc21a10/
Slco1b3. The accession number format for the nucleo-
tide and protein sequence, as well as the details of
the accession prefix used by different databases, can
be found on the NCBI websitef.

Nucleotide: 1 letter1 5 numerals (e.g. J00750)
or 2 letters1 6 numerals (e.g. AF208545)
Protein: 3 letters1 5 numerals (e.g. AAG60350,
CAB92299).

As indicated by the examples above, the sequence
information of a specific gene/mRNA can be submitted
by multiple authors in the primary databases because
different groups may end up cloning the same mRNA
and gene. Therefore, there is redundancy of sequence
information in the primary databases. Although not
frequent, some submitted sequences may also be con-
taminated with transposon sequence or unremoved
vector sequence, adapter sequence, etc. Various sources
of contamination of submitted sequence are discussed
on the NCBI web page http://www.ncbi.nlm.nih.gov/
VecScreen/contam.html. In order to help sequence
submitters check their cloned sequence for possible
contamination with vector sequences, the NCBI offers
the VecScreen program (http://www.ncbi.nlm.nih.gov/
VecScreen/VecScreen.html) that checks the sequence
against the UniVec vector sequence database. VecScreen
also detects contamination with many of the adapters,
linkers, and PCR primers commonly used in the most
popular cDNA cloning strategies.

5.4.6 Divisions of the NCBI Primary
Sequence Database

As stated above, GenBank is the NCBI primary
sequence database, which is a collection of nucleotide
and amino-acid sequences from many sources. This
primary sequence database has been divided into many
categories in order to organize the sequence information
in many different ways to facilitate the search and use
of a specific type of sequence information. For example,
the Entrez Nucleotide database consists of three sub-
divisions: the expressed sequence tag database (dbEST),
genome survey sequence database (dbGSS), and
coreNucleotide database (all other nucleotides); a search
in the coreNucleotide database returns results from all
three. The EST (expressed sequence tag) database is a
collection of short single-pass sequence reads of cDNAs
(hence mRNA derived); the GSS (genome survey
sequence) database is a collection of short single-pass
sequence reads of genomic DNA; HomoloGene is a
system or tool that retrieves homolog information in
response to a query from completely sequenced eukary-
otic genomes; the HTG (high-throughput genome)
sequence database is a collection of both unfinished and
finished high-throughput genome sequences produced
by large-scale genome sequencing centers; the SNP
(single nucleotide polymorphism) database is a database
of various single nucleotide substitutions, short deletion-
insertion polymorphisms (DIPs), retroposable element
insertions, and microsatellite repeat variations (short
tandem repeats or STRs), where each entry includes

fFor detailed information on accession number and prefix, visit http://www.ncbi.nlm.nih.gov/Sequin/acc.html.
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the sequence surrounding the polymorphism, the occur-
rence frequency of the polymorphism (by population
or individual), and the metadata, such as experimental
method(s) and conditions21; the RefSeq (reference
sequence) database is a collection of non-redundant,
curated, and richly annotated sequences; the STS
(sequence tagged sites) database is a collection of STSs
(each STS occurs only once in the genome, hence is
a unique sequence); the UniGene database is a collection
of transcript sequences (ESTs, full-length mRNA
sequences, alternatively spliced forms) that are derived
from the same transcription locus, including pseudo-
genes, together with information on gene expression,
protein similarities, etc.

The GenBank sequence database is also divided in a
different way into 18 divisions. The GenBank division to
which a record belongs is indicated with a three-letter
abbreviation, as shown in Table 5.1.22 The organismal
divisions (such as PRI, ROD, MAM) are a convenient
way to divide the larger sequence database into smaller
segments for those who want to FTPg the database.

5.4.6.1 More on the Reference Sequence
(RefSeq) Database

The Reference Sequence (RefSeq) database of the
NCBI provides a solution to the redundancy and other

potential errors in the primary databases. The RefSeq
database is a collection of non-redundant, curated, and
annotated sequences. RefSeq provides a single record
for each natural biological molecule (DNA, RNA, or
protein) for major organisms ranging from viruses to
bacteria to eukaryotes. Each RefSeq sequence record
is created by integrating all or a large fraction of the
relevant available information into one non-redundant
and richly annotated sequence. In other words,
RefSeq is a synthesis of all the information obtained
and integrated from multiple sources. Although the
RefSeq database is non-redundant, the RefSeq collection
does include alternatively spliced transcripts encoding
the same protein or distinct protein isoforms, orthologs,
paralogs, and alternative haplotypes.23 A RefSeq flatfile
looks like the regular GenBank flatfile shown above,
except that it has a RefSeq accession number and a
COMMENT section. The RefSeq flatfile lists all the
sources from where information about the sequence has
been obtained, and the COMMENT section cites the
accession number(s) of the sequence record(s) used to
derive the RefSeq sequence. The COMMENT section
also indicates the status of the record—that is, whether
the sequence information has been finalized and vali-
dated by NCBI review, as well as information about the
protein product.

For example, as discussed above, the accession num-
bers AJ271682 and AF208545 represent the same mRNA
molecule. Subsequent to its cloning, various other
laboratories published on the function and expression
of this gene as well. The information from 10 such
published references was utilized to create a RefSeq
sequence record about the rat (Rattus norvegicus) solute
carrier organic anion transporter mRNA, with the
RefSeq accession number NM_031650. Version 1 of
the RefSeq record (NM_031650.1) identified it as Slco1b2
mRNA, but version 2 (NM_031650.2) changed the
nomenclature to Slco1b3 mRNA. The NM_031650.1 and
NM_031650.2 versions were not reviewed and curated
by the NCBI; hence indicated as PROVISIONAL RefSeq
in the COMMENT sections of these versions. The final
NCBI review of this sequence record resulted in the
validated RefSeq record with version 3 (NM_031650.3).
Accordingly, the COMMENT section of version 3 states
VALIDATED RefSeq. The COMMENT section cites the
primary references used to derive the RefSeq sequence,
and also shows other information about the sequence,
such as function, transcript variants, etc., and states that
the RefSeq record includes a subset of the publications
that are available for this gene. The RefSeq record of
rat Slco1b3 full-length transcript (transcript variant 1) is
shown below, up to the comment section (the sequence
is not shown).

TABLE 5.1 Three-Letter Abbreviations of GenBank Divisions

1 PRI Primate sequences

2 ROD Rodent sequences

3 MAM Other mammalian sequences

4 VRT Other vertebrate sequences

5 INV Invertebrate sequences

6 PLN Plant, fungal, and algal sequences

7 BCT Bacterial sequences

8 VRL Viral sequences

9 PHG Bacteriophage sequences

10 SYN Synthetic sequences

11 UNA Unannotated sequences

12 EST Expressed sequence tag sequences

13 PAT Patent sequences

14 STS Sequence tagged sites sequences

15 GSS Genome survey sequences

16 HTG High-throughput genomic sequences

17 HTC Unfinished high-throughput cDNA sequences

18 ENV Environmental sampling sequences

gFTP (file transfer protocol) is a standard protocol to transfer files from one location to another through the Internet.
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RefSeq sequences have a different format of
accession numbers for different entities compared
to the accession number format in the primary
databases; each accession number has a two-letter
prefix and a multiple-number segment separated by
an underscore sign. The two-letter prefix indicates
the type of sequence. For example, NM_123456
indicates an mRNA sequence, NP_123456 indicates
a protein sequence, and NC_123456 indicates a
chromosome sequence. The key to RefSeq accession

number prefixes is discussed in detail on the NCBI
website (http://www.ncbi.nlm.nih.gov/refseq/ -

Click “Accession” or directly at http://www.ncbi.
nlm.nih.gov/books/NBK21091/table/ch18.T.refseq_
accession_numbers_and_mole/?report=objectonly).

The following shows the RefSeq record of the full-
length mRNA of rat Slco1b3 (Oatp4/rlst-1a/Oatp1b2/
Slc21a10) (the record is shown up to the COMMENT
section; the rest is truncated; the fields discussed in the
text are highlighted).

Rattus norvegicus solute carrier organic anion transporter family, member 1b3  

(Slco1b3), transcript variant 1, mRNA

NCBI Reference Sequence: NM_031650.3

FASTA Graphics

LOCUS       NM_031650               3218 bp    mRNA    linear   ROD 25-FEB-2013

DEFINITION  Rattus norvegicus solute carrier organic anion transporter family,

member 1b3 (Slco1b3), transcript variant 1, mRNA.

ACCESSION   NM_031650

VERSION     NM_031650.3 GI:396080334

KEYWORDS    .

SOURCE      Rattus norvegicus (Norway rat)

ORGANISM  Rattus norvegicus

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;

Sciurognathi; Muroidea; Muridae; Murinae; Rattus.

REFERENCE   1 (bases 1 to 3218)

AUTHORS   Takashima,T., Hashizume,Y., Katayama,Y., Murai,M., Wada,Y.,

Maeda,K., Sugiyama,Y. and Watanabe,Y.

TITLE     The involvement of organic anion transporting polypeptide in the

hepatic uptake of telmisartan in rats: PET studies with

[(1)(1)C]telmisartan

JOURNAL   Mol. Pharm. 8 (5), 1789-1798 (2011)

PUBMED   21812443
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REFERENCE   2 (bases 1 to 3218)

AUTHORS   Richert,L., Tuschl,G., Abadie,C., Blanchard,N., Pekthong,D.,

Mantion,G., Weber,J.C. and Mueller,S.O.

TITLE     Use of mRNA expression to detect the induction of drug metabolising

enzymes in rat and human hepatocytes

JOURNAL   Toxicol. Appl. Pharmacol. 235 (1), 86-96 (2009)

PUBMED   19118567

REFERENCE   3 (bases 1 to 3218)

AUTHORS   Weiss,M., Hung,D.Y., Poenicke,K. and Roberts,M.S.

TITLE     Kinetic analysis of saturable hepatic uptake of digoxin and its

inhibition by rifampicin

JOURNAL   Eur J Pharm Sci 34 (4-5), 345-350 (2008)

PUBMED   18573335

REFERENCE   4 (bases 1 to 3218)

AUTHORS   Aoki,K., Nakajima,M., Hoshi,Y., Saso,N., Kato,S., Sugiyama,Y. and

Sato,H.

TITLE     Effect of aminoguanidine on lipopolysaccharide-induced changes in

rat liver transporters and transcription factors

JOURNAL   Biol. Pharm. Bull. 31 (3), 412-420 (2008)

PUBMED   18310902

REFERENCE   5 (bases 1 to 3218)

AUTHORS   Donner,M.G., Schumacher,S., Warskulat,U., Heinemann,J. and

Haussinger,D.

TITLE     Obstructive cholestasis induces TNF

-alpha- and IL-1 -mediated

periportal downregulation of Bsep and zonal regulation of Ntcp,

Oatp1a4, and Oatp1b2

JOURNAL   Am. J. Physiol. Gastrointest. Liver Physiol. 293 (6), G1134-G1146

(2007)

REMARK    GeneRIF: investigation of role of OATP1B3 in drug

metabolism/distribution: Data indicate that hepatic uptake of

telmisartan mainly consists of a saturable process mediated by

OATP1B3.
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REFERENCE   6 (bases 1 to 3218)

AUTHORS   Cattori,V., van Montfoort,J.E., Stieger,B., Landmann,L.,

Meijer,D.K., Winterhalter,K.H., Meier,P.J. and Hagenbuch,B.

TITLE     Localization of organic anion transporting polypeptide 4 (Oatp4) in

rat liver and comparison of its substrate specificity with Oatp1,

Oatp2 and Oatp3

JOURNAL   Pflugers Arch. 443 (2), 188-195 (2001)

PUBMED   11713643

REFERENCE   7 (bases 1 to 3218)

AUTHORS   Ismair,M.G., Stieger,B., Cattori,V., Hagenbuch,B., Fried,M.,

Meier,P.J. and Kullak-Ublick,G.A.

TITLE     Hepatic uptake of cholecystokinin octapeptide by organic

anion-transporting polypeptides OATP4 and OATP8 of rat and human

liver

JOURNAL   Gastroenterology 121 (5), 1185-1190 (2001)

PUBMED   11677211

REFERENCE   8 (bases 1 to 3218)

AUTHORS   Choudhuri,S., Ogura,K. and Klaassen,C.D.

TITLE     Cloning of the full-length coding sequence of rat liver-specific

organic anion transporter-1 (rlst-1) and a splice variant and

partial characterization of the rat lst-1 gene

JOURNAL   Biochem. Biophys. Res. Commun. 274 (1), 79-86 (2000)

PUBMED   10903899

REFERENCE   9 (bases 1 to 3218)

AUTHORS   Cattori,V., Hagenbuch,B., Hagenbuch,N., Stieger,B., Ha,R.,

Winterhalter,K.E. and Meier,P.J.

TITLE     Identification of organic anion transporting polypeptide 4 (Oatp4)

as a major full-length isoform of the liver-specific transporter-1

(rlst-1) in rat liver

PUBMED   17916651
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REFERENCE   10 (bases 1 to 3218)

AUTHORS   Kakyo,M., Unno,M., Tokui,T., Nakagomi,R., Nishio,T., Iwasashi,H.,

Nakai,D., Seki,M., Suzuki,M., Naitoh,T., Matsuno,S., Yawo,H. and

Abe,T.

TITLE     Molecular characterization and functional regulation of a novel rat

liver-specific organic anion transporter rlst-1

JOURNAL   Gastroenterology 117 (4), 770-775 (1999)

PUBMED   10500057

COMMENT     VALIDATED REFSEQ: This record has undergone validation or

preliminary review. The reference sequence was derived from

AF208545.2 and AABR06034119.1.

On Jul 19, 2012 this sequence version replaced gi:284055291.

Summary: mediated uptake of a variety of organic anions including

taurocholate, bromosulfophthalein and steroid conjugates [RGD, Feb

2006].

Transcript Variant: This variant (1) represents the longest

transcript and encodes the longest isoform (1).

Sequence Note: This RefSeq record was created from transcript and

genomic sequence data to make the sequence consistent with the

reference genome assembly. The genomic coordinates used for the

transcript record were based on transcript alignments.

Publication Note:  This RefSeq record includes a subset of the

publications that are available for this gene. Please see the Gene

record to access additional publications.
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As indicated in the COMMENT section of the
RefSeq record, one of the two primary records from
which this RefSeq is derived has the accession num-
ber AF208545.2. This is version 2 of the original
submission (REFERENCE #8). The other primary
record, with the accession number AABR06034119.1,
is a contribution from the Rat Genome Sequencing
Consortium.

5.5 SECONDARY DATABASES

Secondary databases are curated, non-redundant
databases that are derived from the primary (archival)
databases. Multiple entries of the same sequence in
primary databases are merged to create a single
sequence in the secondary database with extensive
annotation derived from all available information on
the sequence. The sequence and all the information
about it are manually curated. The final sequence
flatfile has links to all the original entries about the
sequence. For example, the NCBI RefSeq database23 is
a secondary database that is a collection of curated,
non-redundant, well-annotated sequences including
genomic DNA, transcripts, and proteins. In addition to
providing a curated, non-redundant, well-annotated
set of sequences, the RefSeq database also provides a
lot of other information about these sequences, such
as characterization, mutation, polymorphism analysis,
expression studies, and comparative analyses.
As indicated above, the RefSeq database, although non-
redundant, does include alternatively spliced transcripts
encoding the same protein or distinct protein isoforms,
in addition to orthologs, paralogs, and alternative
haplotypes.

5.5.1 An Example of a Non-Redundant,
Curated Secondary Database of
Proteins—The Swiss-Prot

One of the best non-redundant and curated second-
ary databases of proteins is Swiss-Prot. Swiss-Prot
is now a part of the larger database system called
the Universal Protein Resource Knowledgebase
(UniProtKB), which was initiated in 2002 by the
UniProt consortium. The UniProtKB consists of two
parts: UniProtKB/Swiss-Prot (reviewed, manually
annotated) and UniProtKB/TrEMBL (unreviewed,
automatically annotated; TrEMBL5 translated EMBL).
UniProtKB/Swiss-Prot contains manually annotated
records and information obtained from the literature
and curator-evaluated computational analysis, whereas

UniProtKB/TrEMBL contains computationally ana-
lyzed records that still need full manual annotation.
The source of the protein sequences in UniProtKB can
be multiple, such as translated coding sequence
from EMBL-Bank/GenBank/DDBJ nucleotide-sequence
databases, Protein Data Bank (PDB) database, Protein
Information Resource (PIR) database, and sequences
submitted directly to UniProtKB. Differences found
between various sequencing reports are analyzed
and fully described in the feature table, such as alterna-
tive splicing events and polymorphisms. Once in
UniProtKB/Swiss-Prot, a protein entry is removed from
UniProtKB/TrEMBLh.

UniProt actually comprises four databases: UniProtKB,
UniProt Reference Clusters (UniRef), UniProt Archive
(UniParc), and UniProt Metagenomic and Environmental
Sequences (UniMES). Of these, UniProtKB (Swiss-Prot
and TrEMBL), UniParc, and UniRef are non-redundant
databases (hence secondary databases).24 However, the
definition of “non-redundant” varies among these three
databases. For UniProtKB/TrEMBL, non-redundancy
means one record for 100% identical full-length sequences
in one species; for UniProtKB/Swiss-Prot, non-redundancy
means one record per gene in one species; for UniParc,
non-redundancy means one record for 100% identical
sequences over the entire length, regardless of the species; and
for UniRef100, non-redundancy means one record for 100%
identical sequences, including fragments, regardless of the
species. In UniParc, each record is characterized by a
unique identifier, or UPI. The format of the UniParc iden-
tifier is “UPI” followed by a combination of numbers and
letters, to a total of 10. For example, identical ubiquitin
sequences from various organisms can be found in
UniParc record UPI00000006C4. For UniRef, there are
three databases—UniRef100, UniRef90, and UniRef50;
they merge sequences automatically across species.
UniRef100 is non-redundant because identical sequences
and subfragments are presented as a single entry.25

A 2013 article provides updates on the activities at the
UniProt resource.26

The Swiss-Prot database, which is widely used
for sequence and other information on proteins, can be
directly accessed at www.uniprot.org or it can be
accessed through the Expert Protein Analysis System
(ExPASy; http://www.expasy.org/). The ExPASy is a
resource portal of the Swiss Institute of Bioinformatics
(SIB). ExPASy provides access to scientific databases as
well as bioinformatic analysis tools. From the ExPASy
home page, the “Resources A..Z” link on the left can
be clicked to go the alphabetically organized resource
page and then the needed link, whether database or
analytical tool, can be clicked for further analysis.
A UniParc link is also available on this page.

hhttp://www.uniprot.org/
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5.6 SOME EXAMPLES OF PUBLICLY
AVAILABLE SECONDARY AND

SPECIALIZED DATABASES

There are many secondary databases on nucleic acid
and protein sequences, as well as on their various attri-
butes, such as expression, structure, function, interac-
tions, etc. In addition, there are also organism-specific
databases, disease-oriented databases, toxicogenomic
and toxicoproteomic databases, allergen databases, etc.
Some of the publicly available databases are listed in
Table 5.2.

In Table 5.2, only a few secondary and specialized
databases that are publicly available have been men-
tioned. There are still many other specialized curated
databases developed and maintained by various consortia
or universities. All these databases could not be discussed
because of space limitations.

5.6.1 A Special Note on Various
NCBI Databases

It was indicated earlier in this chapter that most
examples will be cited from the NCBI/GenBank. A wide

TABLE 5.2 Publicly Available Secondary and Specialized Databases

Database Comments (with URLs)

Universal Protein Resource
Knowledgebase (UniProtKB)

The UniProt Knowledgebase (UniProtKB) is the central repository for the collection of sequence and
functional information on proteins with accurate, consistent, and rich annotation. UniProtKB is the product of
UniProt, which is an international consortium between the European Bioinformatics Institute (EBI), the Swiss
Institute of Bioinformatics (SIB) and the Protein Information Resource (PIR) at the Georgetown University
Medical Center. In 2002, EBI, SIB, and PIR started collaboration to create a single high-quality database of
protein sequence and function, by unifying the Swiss-Prot, TrEMBL, and PIR-PSD databases. Before this
collaboration, EMBL-EBI maintained TrEMBL, SIB maintained Swiss-Prot, and PIR maintained the Protein
Sequence Database (PIR-PSD). These data sets coexisted with different protein-sequence coverage and
annotation priorities26,27

(www.uniprot.org)

UniProtKB has two sections: UniProt/Swiss-Prot and UniProt/TrEMBL. UniProt/Swiss-Prot contains
sequences that are manually annotated, compared, and verified (curated) based on information from
literature and curator-evaluated computational analysis. UniProt/TrEMBL (TrEMBL5 translated EMBL)
contains computationally annotated, unreviewed sequences. TrEMBL sequences are eventually manually
curated to become part of Swiss-Prot and removed from TrEMBL

Before becoming part of UniProt, PIR-PSD was the oldest annotated and curated protein-sequence
database, established in 1984 as a successor to the original National Biomedical Research Foundation
(NBRF) Protein Sequence Database. It was developed over a 20-year period by the late Margaret Dayhoff
and published as the “Atlas of Protein Sequence and Structure” from 1965 to 1978. The link to PIR-PSD
is http://pir.georgetown.edu/28

Worldwide Protein Data Bank
(wwPDB)

Experimentally determined structures of proteins, and complex assemblies. wwPDB is a publicly available
archive of macromolecular structural data29

(http://www.wwpdb.org/)

Structural Classification of
Proteins (SCOP) database

The SCOP database aims to provide a detailed and comprehensive description of the structural and
evolutionary relationships between all proteins whose structure is known, including all entries in the PDB.
Proteins are classified into families (clear evolutionarily relationship; this generally means that pairwise
residue identities between the proteins are 30% and greater), superfamilies (probable common
evolutionary origin), and folds (major structural similarity)30

(http://scop.mrc-lmb.cam.ac.uk/scop/)

Class, Architecture, Topology,
Homology (CATH) database

CATH is a manually curated classification of protein domain structures. Each protein is chopped into structural
domains and assigned into homologous superfamilies (groups of domains that are related by evolution). This
classification procedure uses a combination of automated and manual techniques, which include computational
algorithms, empirical and statistical evidence, literature review, and expert analysis31

(http://www.cathdb.info/)

PROSITE database This consists of a large collection of biologically meaningful signature patterns or profiles. These
signatures are not easily revealed by standard sequence alignment. Each signature can be linked to
useful biological information on the protein family, domain, or functional site. Therefore, the database
can be used to rapidly and reliably identify which known family of protein (if any) the new sequence
belongs to. The PROSITE database uses two kinds of signatures, patterns and generalized profiles,
to identify conserved regions32

(http://prosite.expasy.org/)

(Continued)
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TABLE 5.2 (Continued)

Database Comments (with URLs)

PRINTS database This is a compendium of protein fingerprints; a fingerprint is a group of conserved motifs used to
characterize a protein family33

(http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/index.php)

Protein Family (Pfam) database Pfam is a comprehensive database of protein families; members of a family share significant similarity,
thereby suggesting homology. Pfam allows the analysis of sequence data in order to search for related
proteins in the database based on domains. Domains are regions of the protein, which in different
combinations can determine the protein’s function. Thus, proteins can be viewed as built from a specific
combination of domains. Pfam contains two types of families: high-quality manually curated Pfam-A
families and automatically generated Pfam-B families. Pfam uses multiple sequence alignments and
hidden Markov models (HMM)34

(http://www.sanger.ac.uk/resources/databases/pfam.html)

InterPro database InterPro integrates various predictive protein signatures from diverse source repositories, such as Gene3D,
PANTHER, Pfam, PIRSF, PRINTS, ProDom, PROSITE, SMART, SUPERFAMILY, and TIGRFAMs. Protein
signatures from various databases are integrated into InterPro manually. Curators combine signatures
representing the same protein family, domain, or site into single database entries, and, where possible,
trace biological relationships between the constituent signatures35

(http://www.ebi.ac.uk/interpro/)

Biological General Repository for
Interaction Datasets (BioGRID)

The BioGRID database is an online repository of interactions in which data are curated from both
high-throughput data sets and individual focused studies, as derived from over 40,000 publications in
the primary literature. The current compilation (as of July, 2013) has more than 700,000 raw protein and
manually annotated genetic interactions from major model organisms. All BioGRID interaction records
are directly mapped to experimental evidence in the supporting publication36

(http://thebiogrid.org/)

Molecular Interaction database
(MINT)

MINT is a public repository for protein�protein interactions reported in peer-reviewed journals. It focuses
on experimentally verified protein�protein interactions mined from the scientific literature by expert
curators. Currently it contains over 240,000 interaction data captured from over 4750 publications37,38

(http://mint.bio.uniroma2.it/mint/)

Münich Information System for
Protein Sequences (MIPS)
database

The MIPS mammalian protein�protein interaction database is a resource of high-quality experimental
protein-interaction data. The content is based on published experimental evidence that has been processed
by human expert curators. MIPS also contains large-scale secondary data of protein similarities, currently
containing 38 million non-redundant protein sequences39,40

(http://mips.helmholtz-muenchen.de/proj/ppi/)

IntAct IntAct is a freely available, open source molecular interaction database populated by data either curated
from the literature or from direct data depositions. As of September 2011, IntAct contained approximately
275,000 curated binary interaction evidence records from over 5000 publications. The IntAct database
also captures protein�small molecule (including phospholipids), protein�nucleic acid, and protein�gene
locus interactions41

(http://www.ebi.ac.uk/intact/)

Structural Database of Allergenic
Proteins (SDAP)

SDAP is a web server that integrates a database of allergenic proteins with various computational
tools that can assist structural biology studies related to allergens, including predicting the
IgE-binding potential of food proteins. This database allows bioinformatic analysis as recommended by the
Codex Alimentarius and UN Food and Agriculture Organization (FAO)/World Health Organization (WHO)
Expert Committee on potential allergenicity of foods derived through modern biotechnologya

(http://fermi.utmb.edu/SDAP/)

AllergenOnline/FARRP database
(FARRP5 Food Allergy Research
and Resource Program at the
University of Nebraska-Lincoln)

AllergenOnline provides access to a peer-reviewed allergen list and sequence searchable database
intended for the identification of proteins, including food proteins, that may present a potential risk
of allergenic cross-reactivity. The objective is to identify proteins that may require additional tests,
such as serum IgE binding, basophil histamine release, or in vivo challenge to evaluate potential
cross-reactivity
(http://www.allergenonline.org/)

Allermatch database The Allermatch database allows the comparison of a protein sequence with sequences of allergenic
proteins in the database, in order to predict whether the protein being evaluated can be allergenic.
This database allows bioinformatic analysis as recommended by the Codex Alimentarius and FAO/WHO
Expert Committee on potential allergenicity of foods derived through modern biotechnology42

(http://www.allermatch.org/)
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TABLE 5.2 (Continued)

Database Comments (with URLs)

Online Mendelian Inheritance in
Man (OMIM) database

OMIM is a comprehensive compendium of human genes and genetic-disease-associated phenotypes.
The full-text referenced overviews in OMIM contain information on all known Mendelian disorders and
over 12,000 genesb

(http://www.ncbi.nlm.nih.gov/omim/ and http://omim.org/)

ArrayExpress database A public database of microarray gene-expression data at the EBI. It accepts data generated by sequencing
or array-based technologies and currently contains data from almost a million assays, from over 30,000
experiments. Experiments are submitted directly to ArrayExpress or are imported from the NCBI GEO
database.43 ArrayExpress uses the minimum information about a microarray experiment (MIAME)
annotation standardc

(http://www.ebi.ac.uk/arrayexpress/)

Gene Expression Omnibus
(GEO) database

The GEO is a public repository that archives and freely distributes MIAME-compliant microarray data,
next-generation sequencing data, and other forms of high-throughput functional genomic data submitted
by the scientific community. It is one of three international functional genomics public data repositories,
alongside ArrayExpress at the EBI and the DDBJ Omics Archive44,45

(http://www.ncbi.nlm.nih.gov/geo/)

ArrayTrack database A public database of microarray gene-expression data at the US Food and Drug Administration.
ArrayTrack provides an integrated solution for managing, analyzing, and interpreting microarray
gene-expression data and experimental parameters associated with pharmacogenomics or toxicogenomics
studies—that is, studies on the effects of drugs or other chemicals on gene expression. ArrayTrack
supports MIAME-compliant data46

(http://www.fda.gov/ScienceResearch/BioinformaticsTools/Arraytrack/default.htm)

Comparative Toxicogenomic
database (CTD)

This is a public database of information built on curated data from the scientific literature about
interactions between environmental chemicals and gene products and their relationships to diseases.
As of 2013, CTD contains over 15 million toxicogenomic relationships. A user can look up specific
literature-based information about genes, gene products, and toxicants of interest and their interactions47

(http://ctdbase.org/)

Chemical Effects in Biological
Systems (CEBS) database

The CEBS database has been developed by the National Center for Toxicogenomics within the National
Institute for Environmental Health Sciences (NIEHS). CEBS integrates data obtained using ’omics
technologies (transcriptomics, proteomics, metabolomics) as well as from traditional toxicology studies.
Thus, CEBS combines the molecular genetic data with traditional clinical chemistry and histopathology
data. This combination allows researchers to fully capture information on dose response, time response,
and environmental-stress-induced gene expression. The database captures information from multiple
species, such as humans, rats, mice, and Caenorhabditis elegans48

(http://www.niehs.nih.gov/research/resources/databases/cebs/index.cfm)

DrugMatrix database DrugMatrix is a toxicogenomic and molecular toxicology database and informatics system developed by
the National Toxicology Program (NTP). It contains data from standard toxicological experiments along
with large-scale gene-expression data from various organs and tissues. DrugMatrix contains toxicogenomic
profiles for 638 different compounds that include approved drugs, withdrawn drugs, and industrial and
environmental toxicantsd

(https://ntp.niehs.nih.gov/drugmatrix/index.html)

FlyBase database FlyBase is the leading database and web portal for genetic and genomic information focusing on Drosophila
melanogaster, but also including data on other Drosophila species and related drosophilids. The current
content of FlyBase comprises. 200,000 references, including. 87,000 research papers from. 2400 different
journals, with publication dates ranging from the seventeenth century through to the present day49,50

(http://flybase.org/)

NCBI databases Collection of various databases. This is separately discussed below, in Section 5.6.1
(http://www.ncbi.nlm.nih.gov/)

aPublications can be accessed at http://fermi.utmb.edu/SDAP/sdap_pub.html.
bOMIM is authored and edited at the Victor McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, under the direction of Dr Ada

Hamosh. The official home page is www.omim.org.
cThe minimum information about a microarray experiment (MIAME) is a microarray experimental data submission standard that is needed to enable the interpretation of the

results of the experiment unambiguously and potentially to reproduce the experiment. The six most critical elements contributing towards MIAME are: (1) the raw data for each

hybridization; (2) the final processed (normalized) data; (3) essential sample annotation, including experimental factors and their values (e.g. compound and dose in a

dose�response experiment); (4) the experimental design, including sample data relationships (e.g. which raw data file relates to which sample, which hybridizations are technical,

which are biological replicates); (5) sufficient annotation of the array (e.g. gene identifiers, genomic coordinates, oligonucleotide probe sequences, or reference commercial array

catalog number); (6) the essential laboratory and data-processing protocols (e.g. what normalization method has been used to obtain the final processed data).51,52

dPublications can be accessed at https://ntp.niehs.nih.gov/drugmatrix/contributors.html.
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variety of high-quality resources, such as databases and
tools, are made accessible to the public by the NCBI
through a common retrieval system.53,54 The databases
are visible in the drop-down menu from the NCBI home-
page. Some of the common databases are named below.
Additionally, the link “Resource List (A-Z)” located at
the left-hand top corner of the NCBI home page can be
clicked to obtain links to all resources, including all the
databases, browsers etc., organized alphabetically. Below
the “Resource List (A-Z)”, there is the link “All
Resources.” This link lists a specific class of resources
under one tab; hence the “databases” tab lists all data-
bases, “tools” tab lists all analysis tools, etc. (Figure 5.1).

Some of the widely used databases are PubMed (bib-
liographic database); OMIM (Online Mendelian
Inheritance in Man; described above); the Entrez
Nucleotide database (described above); the Gene
Expression Omnibus (GEO) database (described above);
the Protein database (curated sequences are in RefSeq);
theGenome database (contains information on sequence,
annotation, maps, chromosomes, and assemblies of all
organisms whose genomes have been sequenced so far,
and provides graphic display through the genomic
browser Map Viewer); the Structure database (contains
three-dimensional images of proteins); the Gene databa-
sei (contains information about individual genes from
among the genomes represented in the RefSeq); the

Taxonomy database (contains the names of all organisms
that are represented by nucleotide or protein sequences);
the UniGene database (contains non-redundant
information on computationally identified transcripts
from the same locus across species; described above);
and the Epigenomics database (a relatively new database
that provides epigenomic data in the context of biological
sample information).

5.7 DATA RETRIEVAL

Data retrieval from different databases requires a
search capability using a data retrieval system (tool).
Some common data retrieval systems are Entrez/GQuery,
DBGET/LinkDB, Sequence Retrieval System (SRS), and
retrieval system from EMBL-EBI. Retrieval systems are
capable of simultaneously searching multiple linked data-
bases in response to a single search query and retrieve
related data from multiple databases. It is worth emphasiz-
ing at the outset that the appearance and functionality of
various web-based resources are subject to frequent change.
Therefore, various screenshots displayed here may change by the
time this book is published. Nevertheless, knowing how to use
the tools by following the screenshots presented in the book
should still help the readers to understand and cope with
the changes.

FIGURE 5.1 Partial view of the NCBI home page (http://www.ncbi.nlm.nih.gov/; as of June, 2013). A specific database can be selected
from the drop-down menu and then the search term can be entered in the space shown. Hitting the “search” button returns the entries.

iGene is described as a searchable database of genes in the NCBI “Resource” section. However, Gene is also described as a portal

that integrates gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data,

using information from a wide range of resources, such as RefSeq maps, pathways, and genome- and locus-specific resources. From a

user’s perspective, Gene acts as a single-source specialized database containing information on specific genes across different species.
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5.7.1 Search and Retrieval
Using Entrez/GQuery

Entrez (GQuery, or global query; http://www.ncbi
.nlm.nih.gov/sites/gquery) is a user-friendly, versatile,
text-based search and retrieval system developed by
the NCBI. It searches linked databases using a single
word or combination of words entered as search
term. Thus, Entrez provides a global query system and
forms a web of connections with the databases (nodes
in the web of connections). The search at the NCBI can
be performed either using a specific database, or using
Entrez across databases simultaneously.

Figure 5.1 shows the databases (partial list) that can
be selected from the drop-down menu on the NCBI
home page, and then the search term can be entered
in the space shown. Hitting the “search” button will
usually return a number of entries. Depending on the
database selected for search and retrieval, the primary
source of some of the retrieved entries may be other
related but specialized databases. For example, the
Nucleotide, RefSeq, EST, GSS, and Gene databases all
have entries on the same nucleotide sequence or part
thereof, under database-specific accession numbers
and descriptors. Because all these databases are linked,
selecting the Nucleotide database for searching a
sequence will retrieve all entries related to the sequence
from other related and specialized databases as well.
However, selecting a specialized database will retrieve a
smaller number of entries.

Alternatively, the user can access the Entrez
home page and perform a search across all databases
simultaneously by entering the search term in the space
shown. Hitting “Search” will return the number
of entries available in each database, which is displayed
next to the database name. The Entrez home page has
recently undergone a change in appearance.
Figures 5.2A and 5.2B show a partial view of the Entrez
home page. A screenshot of the Entrez home page cap-
tured in March 2013 is shown in Figure 5.2A, whereas a
screenshot captured in June 2013 is shown in
Figure 5.2B. These two screenshots are shown to under-
score the fact that the appearance or versions
of bioinformatic tools and database home pages are sub-
ject to change, although the utility pretty much remains
the same and is mostly improved. The Entrez home
page states GQuery (global query) now, and the order of
database display has been reorganized in the new ver-
sion. Both Figures 5.2A and 5.2B show only the top por-
tion of the retrieved information that was obtained by
performing a search using the search term “Mus muscu-
lus Slco1a6.” Figures show the number of hits in various
databases; PubMed has 2 and PubMed Central has 10
entries (as of June 2013), Nucleotide database has 10
entries (visible in Figure 5.2A but not in Figure 5.2B).

Other databases not shown in the figure also have differ-
ent numbers of entries. Clicking on the number or on the
database name will return all the entries from that data-
base. Without the data retrieval system, such simulta-
neous searching across multiple databases by entering
the search term only once is not possible and individual
databases have to be searched separately.

The simultaneous search capability and all-in-one
display of results from multiple databases make the
NCBI Entrez (GQuery) a user-friendly search and
retrieval system for general users.

5.7.2 Search and Retrieval Using
DBGET/LinkDB

DBGET/LinkDB (http://www.genome.jp/dbget/
dbget_manual.html) is an integrated text-based search
and retrieval system for major biological databases
at GenomeNet. GenomeNet is the Japanese network of
database and computational services for genome
research and related biomedical research; it is operated
by the Kyoto University Bioinformatics Center (http://
www.bic.kyoto-u.ac.jp/). DBGET searches and extracts
entries from a wide range of molecular biology data-
bases, and LinkDB searches and computes links
between entries in divergent databases. Databases
being searched can exist in different servers, but from
the user’s point of view, they all exist in a single
DBGET server.55

DBGET/LinkDB uses three basic commands for
performing search and retrieval of database entries:
bfind, bget, and blink. bget retrieves database entries
based on a search combination (name:identifier), bfind
retrieves database entries by keywords, whereas blink
retrieves related entries in a given database as well as
all databases.

5.7.3 Search and Retrieval Using
Sequence Retrieval System

Examples of some publicly available Sequence
Retrieval System (SRS) servers are http://www.emb-
net.sk:8080/srs81/; http://www.dkfz.de/srs/; http://
iubio.bio.indiana.edu/srs/. There are many other such
web-based servers, too. Figure 5.3 shows various ser-
vices available from EMBL-EBI (http://www.ebi
.ac.uk/services) that includes sequence retrieval func-
tions as well. These can be accessed by clicking the
“DNA & RNA” as well as “Proteins” links. A search
in dbfetch (http://www.ebi.ac.uk/Tools/dbfetch/
dbfetch/) requires the accession number, as shown in
Figure 5.4. A search for multiple sequences can also be
made by using multiple search terms and separating
them using a comma.
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5.8 AN EXAMPLE OF RETRIEVAL
OF MRNA/GENE INFORMATION

Information about an mRNA or genej can be retrieved
by selecting the “Nucleotide” (database) from the drop-
down menu on the NCBI home page (Figure 5.1). The
Nucleotide (database) provides a link to the grand

collection of all nucleotide sequences from the primary as
well as the specialized databases. A search using the
mRNA or gene name in the Nucleotide databases
retrieves many records, and depending on the search
term the number of records may sometimes be too many
to go through individually. The Nucleotide database can
be searched in different ways to focus the search more

FIGURE 5.2 Partial view of the Entrez home page at two different dates. (A) A screenshot of the Entrez home page captured in
March 2013. (B) A screenshot of the Entrez home page captured in June 2013. These two screenshots are shown to underscore the fact that the
home page is subject to change, although the utility pretty much remains the same and is mostly improved. The Entrez home page states
GQuery now. A user can perform a search across all the databases simultaneously by entering the search term in the space shown. Hitting
“Search” will return the number of entries available in each database, displayed next to the database name. This may change with time as
new information is added to various databases.

jThe display of information output associated with any database is subject to change from time to time. This is because there is

continuing effort to improve the information output and display features. Therefore, the graphic displays shown in the figures are

not expected to remain the same all the time. Nevertheless, knowing how to harness and use the information should prepare readers

to deal with any such changes.
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FIGURE 5.3 Data Retrieval at EMBL-EBI. Nucleotide sequence data can be retrieved by clicking the “DNA & RNA” link and accessing the
ENA resource. Protein sequence data can be retrieved by clicking the “Protein” link and accessing the protein resource, such as UniProt.
(Source: EMBL-EBI, http://www.ebi.ac.uk/services).

FIGURE 5.4 Search and retrieval using dbfetch, ENA, and EB-eye. Specific sequence information from the EMBL-Bank can be retrieved
using dbfetch (upper panel), ENA (middle panel), and EB-eye (lower panel). These are partial screenshots.
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narrowly, such as by utilizing the accession or
GI number or even using the names of the authors of a
submission. Of course, the user has to know this type
of information. If the accession number or GI number of
a sequence is known, the exact record can be directly
retrieved. Currently, the GenBank nucleotide record
provides a link to graphics of the sequence.

For example, Figure 5.5 (upper panel) shows the top
portion of the GenBank record of the original submis-
sion of mouse Oatp-5 mRNA.56 Mouse Oatp-5 was later
given other names, such as Slc21a13 and Slco1a6, of
which Slco1a6 is the name used in all databases.
Slco1a6 stands for “solute carrier organic anion trans-
porter (Slco) member 1a6.” In the text that follows, both
the terms Oatp-5 and Slco1a6 will be used. The flatfile
of this original submission (accession: AF213260) has
been shown before. Figure 5.5 upper panel shows the
link to the graphics (circled). Clicking the graphics link
will return the graphics of the mRNA and the protein

and other relevant information shown in Figure 5.5
lower panel, Figure 5.6, and Figure 5.7, along with
various links and tools that can help visualize different
aspects of the sequence. The same graphical representa-
tion (and more) can also be retrieved by using the
Gene database (discussed later). The red-colored track
represents the mouse Oatp-5 protein. If the cursor is
brought onto the track, a drop-down box appears that
contains information about the red track; for example,
the Oatp-5 coding sequence spans from base 179 to
2191, and the Oatp-5 protein contains 670 amino acids
(Figure 5.5, lower panel). The figure shows a sliding
zoom-in/out button; moving the button to the right first
zooms in the figure and ultimately reveals the nucleotide
sequence on the black track at the top, along with the
corresponding amino-acid sequence on the red track.
Alternatively the “zoom-to-sequence” link can be clicked
to reveal the sequence. This automatically moves the
sliding zoom-in/out button all the way to the right.

FIGURE 5.5 GenBank information on mouse Oatp-5. The upper panel shows the top portion of the GenBank record of the original
submission of mouse Oatp-5 mRNA along with its accession number and the version. Below the accession number is the link to the graphics
(circled). Clicking the graphics link will return the graphics of the mRNA and the protein shown in the lower panel. The lower panel also
shows various links and tools in the Graphics page that can help visualize different aspects of the sequence as described in the text. (Source:
http://www.ncbi.nlm.nih.gov/-Nucleotide, information as of June 2013)
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The zoom-in state showing the sequence is shown in
Figure 5.6 (partial sequence shown). It shows the nucleo-
tide sequence of Oatp-5 cDNA at the top associated with
the black track, and the amino-acid sequence of the
Oatp-5 protein along with the codons for each amino
acid associated with the red track. It is clear from

Figure 5.6 that the coding sequence begins from base
179, which is the “A” of “ATG.” Figure 5.7 is a modified
composite figure (see the legend for Figure 5.7).

Compared to the the original submission (AF213260.1),
the RefSeq record of Oatp-5 (called Slco1a6, with an
accession number NM_023718 version 3) has more

FIGURE 5.6 The zoom-in state of the record shown in Figure 5.5 (lower panel), showing the sequence. The figure shows the nucleotide
sequence of Oatp-5 cDNA at the top, associated with the black track; and the amino-acid sequence of the Oatp-5 protein along with the codons
for each amino acid, associated with the red track. The coding sequence begins from base 179, which is the “A” of “ATG.” (Source: http://www.
ncbi.nlm.nih.gov/-Nucleotide, information as of June 2013)

FIGURE 5.7 A modified composite screenshot of the record shown in Figure 5.5 (lower panel). The information on all the tracks in
Figure 5.5 (lower panel) were separately captured and pasted to artificially create this figure. The figure shows the individual drop-down
information boxes associated with each track. Note that it is not possible to obtain all the information drop-down boxes at the same time. This
is because the cursor can be held only on one track at a time to obtain the drop-down information box.
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graphics available. Figure 5.8 shows the graphics of
the RefSeq record, which identifies Oatp-5 as Slco1a6.
The graphics of the RefSeq record show additional infor-
mation that was not present in the original submission
(Figures 5.5 and 5.6), such as information on the length
and span of exons in mRNA and on transmembrane
regions in the protein.

Figure 5.9 was created by first zooming in Figure 5.8
to reveal the sequence and then separately capturing
and pasting the information about all the tracks to the
screenshot; hence Figure 5.9 is an artificially created
screenshot. As mentioned above, all the drop-down
information boxes cannot be obtained at the same time;
the cursor can be held on one track at a time so that the
information about that track appears in the drop-down
box. In these graphics, the green track represents the
entire length (1. . .2804) of the Slco1a6 (Oatp5) mRNA,
and is associated with an information box. The red track
represents the Slco1a6 protein along with the amino-
acid codons; hence the red track also shows the coding
sequence (base 175. . .2187). The graphics of the RefSeq
record also displays information about all the exons.
Figure 5.9 shows that exon 3, for example, is 142 bp
long (235. . .376). Thus, base 235 through 376 of the
Slco1a6 mRNA is derived from exon 3 of the Slco1a6
gene. Slco1a6 is a membrane transporter with more than
10 transmembrane regions (transmembrane domains or

TMDs). Figure 5.9 shows that the first TMD of Slco1a6 is
20 amino acids long and spans from amino acid 21 to 40
(21. . .40). The UniProtKB/Swiss-Prot accession number
of mouse Slco1a6 is Q99J94, and this is a curated entry;
hence, the information has been validated.

Note that the original submission (AF213260.1) shows the
coding sequence spanning from base 179 to 2191, but the
RefSeq record (NM_023718.3) shows the coding sequence
spanning from base 175 to 2187. This difference reflects an
adjustment of four bases in the 50-UTR of the RefSeq
record compared to the original record. This was done
during the creation and validation of the RefSeq record,
which involved comparison with the Slco1a6 gene
sequence record from the mouse reference genome.57

Therefore, the information in the RefSeq record should
be regarded as more accurate and up to date.

At the left-hand top corner of Figure 5.9, there is
a link to “Display Settings”; next to it is “Graphics”
(circled). The “Display Settings” is a drop-down menu
that provides many options for viewing the sequence
information. When the “Graphics” option is chosen, the
information is displayed as graphics as in Figure 5.9 and
other similar figures. Figure 5.10 shows information
about the sequence in a different (“Revision History”)
format. Choosing the “Revision History” option from
the “Display Settings” drop-down menu displays the
entire history of revision of the sequence. Figure 5.10

FIGURE 5.8 The graphics of the RefSeq record for Oatp-5. In the RefSeq record, Oatp-5 is identified as Slco1a6. The graphics of the
RefSeq record show additional information that was not present in the original submission, such as information on the length and span of
exons in mRNA, and the transmembrane regions in the protein. (Source: http://www.ncbi.nlm.nih.gov/-Nucleotide, information as of June 2013)

1075.8. AN EXAMPLE OF RETRIEVAL OF MRNA/GENE INFORMATION

BIOINFORMATICS FOR BEGINNERS

http://www.ncbi.nlm.nih.gov/


FIGURE 5.9 A modified composite screenshot of the record shown in Figure 5.8 showing the individual drop-down information boxes

associated with each track. See text for details.

FIGURE 5.10 The “Revision History” of Slco1a6. The upper panel shows the upper part of the list and the lower panel shows the lower
part of the list. By selecting two specific entries a comparison can be made to find out the revisions made in the sequence. The
figure shows that the first and the last entry of the Slco1a6 mRNA sequence have been selected for comparison. (Source: http://www.ncbi.nlm.
nih.gov/-Nucleotide, information as of June 2013)

108 5. DATA, DATABASES, DATA FORMAT, DATABASE SEARCH, DATA RETRIEVAL SYSTEMS, AND GENOME BROWSERS

BIOINFORMATICS FOR BEGINNERS

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/


upper panel shows the upper part of the list and the
lower panel shows the lower part of the list (the whole
list is too long to display in one page). By selecting two
specific entries, a comparison can be made to find out
the revisions made in the sequence. Figure 5.10 shows
that the first and the last entry of the Slco1a6 mRNA
sequence have been selected for comparison. Figure 5.11

shows the result of that comparison. Figure 5.11 upper
panel shows that the comparison format chosen from
the drop-down menu is BLAST pairwise alignment.
The lower panel shows only the first 60 bases from
the pairwise alignment. It shows that the alignment
starts from base 5 of the original sequence entry
(Query; GI number 12963796), indicating that the

FIGURE 5.11 Results of the comparison of the two versions of Slco1a6 mRNAs selected in Figure 5.10. The upper panel shows that the
comparison format of the revision history from Figure 5.10 is BLAST pairwise alignment. The lower panel shows only the first 60 bases from
the pairwise alignment. Base 1 of the Sbjct sequence starts aligning with base 5 of the Query sequence; this suggests that the original sequence
entry (Query) with the GI number 12963796 had four extra bases at the beginning of the sequence that are not present in the latest entry
(Sbjct) with the GI number 194440679. (Source: http://www.ncbi.nlm.nih.gov/-Nucleotide, information as of June 2013)
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original sequence entry had four extra bases (atcc) at
the beginning of the sequence that are not present in
the latest entry (Sbjct; GI number 194440679). Hence,
base 1 of the Sbjct sequence starts aligning with base 5
of the Query sequence; the rest of the Query and Sbjct
sequences are identical. These extra four bases (atcc)
could have been a cloning/sequencing artifact in the
original submission. This is why the original submission
(AF213260.1) shows the coding sequence spanning from
base 179 to 2191, but the RefSeq record (NM_023718.3)
shows the coding sequence spanning from base 175 to
2187, reflecting an adjustment of four bases.

In the screenshots shown in Figures 5.5�5.9, there is
a link to a “Tools” drop-down menu, which is shown
expanded in Figure 5.12 to show the available options.
Three such options are circled. The “Go To” option allows
the user to go to a specific position in the sequence; the
“Flip Strands” option allows the user to flip the polarity
of the sequence; the “Sequence Text View” option allows
the user to view the entire nucleotide sequence as well as
the amino-acid sequence.

A search for Oatp-5/Slco1a6 can also be performed
using the Gene database. Figure 5.13 shows the results
of a query in the Gene database using the search term
“Oatp-5” (circled in the figure) performed in June
2013. The search retrieved just two records, one for
mouse, and one for rat. As indicated before, Oatp-5 is
also known by two other names, Slco1a6 and Slc21a13.
Each entry shows the official symbol, name, other

aliases, other designations, chromosomal location, map
position, and the RefSeq annotation information. For
example, the second entry is mouse Oatp-5. Its official
symbol is Slco1a6, other alias is Slc21a13, it is located on
chromosome 6, it spans from nucleotide (nt) 142085768
to nt 142186149 on the reverse strand. Therefore, the
mouse Oatp5 gene is 100,382 bp long, and the Gene
database ID is 28254, which can be used to retrieve the
record directly from the Gene database.

If the mouse Slco1a6 result is clicked to open the
detailed record, this record contains 10 information
fields. These fields, shown in Figure 5.14, have been
collapsed to fit the screen. Three fields will be discussed
here: the “Summary” field, the “Genomic context” field,
and the “Genomic regions, transcripts, and products”
field. Other fields can be likewise expanded and explored
for their information content.

The “Summary” field with its detailed information
content is shown in Figure 5.15; the figure also shows
the detailed information content of the “Genomic con-
text” field. The “Summary” field shows that the official
symbol Slco1a6 is provided by the Mouse Genome
Informatics (MGI) groupk.58 The Slco1a6 gene has an
ID MGI:1351906, which can be used to search for it in
MGI databases. The link to MGI:1351906 can be clicked
to obtain the Slco1a6 page of MGI (Figure 5.16). The
inset in Figure 5.16 is actually located to the far right
on the Slco1a6 page; it has been moved to fit the
screenshot. The MGI Slco1a6 page shows its map

FIGURE 5.12 The expanded “Tools” drop-down menu, showing its options. See text for explanation. (Source: http://www.ncbi.nlm.nih.gov/
-Nucleotide, information as of June 2013)

kMGI (http://www.informatics.jax.org/) is the international database resource that provides integrated genetic, genomic, and

biological data for the laboratory mouse.
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FIGURE 5.13 The result of a query in the Gene database using the search term “Oatp-5” (circled). See text for explanation. (Source:
http://www.ncbi.nlm.nih.gov/-Gene, information as of June 2013)

FIGURE 5.14 The detailed record for the mouse Slco1a6 entry in Figure 5.13. The detailed record shows 10 information fields. Each field
can be clicked to expand. (Source: http://www.ncbi.nlm.nih.gov/-Gene, information as of June 2013)
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FIGURE 5.15 The detailed information content of the “Summary” and “Genomic context” fields from the mouse Slco1a6 detailed

record in Figure 5.14 after the fields are expanded. The “Summary” field (upper panel) shows that the official symbol Slco1a6 is provided by
the Mouse Genome Informatics (MGI) group. The Slco1a6 gene has an ID MGI:1351906, which can be used to search for it in the MGI database.
The “Genomic context” field (lower panel) shows the chromosomal and genomic location of the Slco1a6 gene. (Source: http://www.ncbi.nlm.nih.
gov/-Gene, information as of June 2013)

FIGURE 5.16 Truncated screenshot of the MGI Slco1a6 page. The figure in the inset is located to the far right on the actual Slco1a6 page.
Because of the truncation of the Slco1a6 page to fit the figure, the inset has been copied and pasted close to the rest of the information. The
page shows the genetic map position of the Slco1a6 gene. The Slco1a6 page provides a lot of information and links to other information
resources (see text). (Source: http://www.informatics.jax.org/-MGI Slco1a6 page, information as of March 2013)
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position as 73.42 cMl, which is with respect to position
0 at one end of the chromosome. Mouse chromosome 6
is an acrocentric chromosome—that is, the centromere is
located almost at one end, creating an extremely short p
arm and a very long q arm. The 0 position in the genetic
map starts at one end of the chromosome near the
centromere; so the Slco1a6 gene with its genetic map
position at 73.42 cM lies very close to the other end
of chromosome 6 (Figure 5.17, upper panel). The MGI
Slco1a6 page provides links to sequence map display
on four genome browsers: VEGA, Ensembl, UCSC,
and NCBI Map Viewer (Figure 5.16). However, the
“Summary” field of the Gene database search record
itself also provides links to the Ensembl and VEGA
genome browsers (Figure 5.15). The “Sequence Map”
field of the MGI Slco1a6 page also provides a “Get
FASTA” link to the entire gene sequence in FASTA

format from VEGA annotation of mouse genome build
38 (GRCm38m). Note that the total number of nucleo-
tides is 122,761 bp (higher than 100,382 bp mentioned
earlier; Figure 5.16, “Sequence Map” field, link circled).
The Slco1a6 page has much more information (not shown
here), that can be clicked and explored. Figure 5.17 is
a composite figure that has been created by pasting
three partial screenshots. The upper panel was obtained
by clicking the “Detailed Genetic Map6 1 cM” link
from Figure 5.16. It shows the chromosomal location of
the Slco1a6 locus in greater resolution with respect to the
surrounding loci. The middle and the lower panels
were obtained by clicking the “Mouse Genome Browser”
link (shown in the inset in Figure 5.16). Viewing sequence
maps on genome browsers will be discussed later. Other
links on the Slco1a6 page can be clicked to explore more
information.

FIGURE 5.17 Figure created by pasting three partial screenshots from the MGI pages on Slco1a6. The upper panel was obtained by
clicking the “Detailed Genetic Map6 1 cM” link from Figure 5.16. It shows the chromosomal location of the Slco1a6 locus in greater resolution
with respect to the surrounding loci. The middle and lower panels were obtained by clicking the “Mouse Genome Browser” link shown in the
inset in Figure 5.16. (Source: http://www.informatics.jax.org/-MGI Slco1a6 page, information as of March 2013)

l1 centiMorgan (1 cM)5 1 map unit distance between two genes or genetic markers.
mGRC is an acronym for Genome Reference Consortium and m38 means the 38th version (build 38) of mouse genome sequence

assembly. The GRC is responsible for assembling the human and mouse reference genomes, and in that process correct

misrepresented loci and close remaining assembly gaps. The members of GRC include The Genome Center at Washington

University, the Wellcome Trust Sanger Institute, the EBI, and the NCBI. The GRC website (http://www.genomereference.org) is

available to view the progress of various projects, and communicate with the scientific community in general.
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The “Genomic context” field with its detailed
information content is shown in Figure 5.15, lower
panel. The “Location” line on the left of the Genomic
context field (Figure 5.15, lower panel) shows 6G2.
This means that the Oatp5/Slco1a6 gene maps to
region G, band 2 of chromosome 6. Because mouse
chromosomes are acrocentric (centromere almost at
the end of the chromosome), creating an extremely
short p arm and a very long q arm, sometimes the
q arm is not mentioned. Therefore, the location can be
expressed as both 6G2 and 6qG2. Below the location
line is the “Sequence” line that shows “Chromosome: 6;
NC_000072.6 (142085768. . .142186149, complement).”
The NC_000072.6 is the RefSeq ID (accession number) for
Mus musculus chromosome 6 (see Table 5.3), version 6;
the “142085768. . .142186149” means that the Oatp5/
Slco1a6 gene spans from nt 142085768 to 142186149;
hence, the gene is 100382 bp long. The “complement”
means that the gene is located on the reverse strand of
the chromosomen. Note that this nucleotide location
span of the gene is based on the build 38 (GRCm38),
which is the latest version of mouse genome sequence
assembly as this section is being written. Below the
location field, there is a diagram showing the chromo-
somal location of Oatp5/Slco1a6 in relation to other
closely linked genes, such as Slco1a1, and Slco1a5. The
direction of the arrow is from right to left, indicating
that the Oatp5/Slco1a6 gene is on the reverse (minus)
strand of the chromosome. In other words, the direction
of transcription is from right to left.

Another direct way of obtaining the gene, mRNA,
and protein sequences through the Gene database is the
“NCBI Reference Sequence (RefSeq)” field. Figure 5.14
shows this field circled towards the bottom. Expanding
this field provides links to the Slco1a6 gene sequence
in chromosome 6, Slco1a6 mRNA, and Slco1a6 protein
(with their respective RefSeq accession numbers). By
clicking these links one can directly obtain the gene,
mRNA, and protein sequences.

The “Genomic regions, transcripts, and products”
field with its detailed information content is shown
in Figure 5.18. The upper panel shows the gene (as a
horizontal green line) with all the exons and introns,
whereas the lower panel shows the sequence. The
gene information is based on build 38 of the mouse
genome assembly (GRCm38; circled); the field also
shows the chromosome information (chromosome 6).
If the “Graphics” link in the right-hand top corner
(circled) is clicked, the chromosome 6 graphics page

appears (Figure 5.19). The mRNA and protein sequences
of Slco1a6 can be directly obtained by clicking the
“Go to reference sequence details” link in the right-hand
top corner (circled) (Figure 5.18).

The details of the exon and intron sequence infor-
mation can be obtained by clicking “Display Settings”
in the left-hand top corner and selecting “Gene Table”
from the drop-down menu (Figure 5.20; circled; this

TABLE 5.3 RefSeq IDs (Accession Numbers) of Various
Chromosomes in Human, Rat, and Mouse

RefSeq ID of Chromosomes

Chr # Homo sapiens Rattus norvegicus Mus musculus

1 NC_000001 NC_005100 NC_000067

2 NC_000002 NC_005101 NC_000068

3 NC_000003 NC_005102 NC_000069

4 NC_000004 NC_005103 NC_000070

5 NC_000005 NC_005104 NC_000071

6 NC_000006 NC_005105 NC_000072

7 NC_000007 NC_005106 NC_000073

8 NC_000008 NC_005107 NC_000074

9 NC_000009 NC_005108 NC_000075

10 NC_000010 NC_005109 NC_000076

11 NC_000011 NC_005110 NC_000077

12 NC_000012 NC_005111 NC_000078

13 NC_000013 NC_005112 NC_000079

14 NC_000014 NC_005113 NC_000080

15 NC_000015 NC_005114 NC_000081

16 NC_000016 NC_005115 NC_000082

17 NC_000017 NC_005116 NC_000083

18 NC_000018 NC_005117 NC_000084

19 NC_000019 NC_005118 NC_000085

20 NC_000020 NC_005119

21 NC_000021

22 NC_000022

X NC_000023 NC_005120 NC_000086

Y NC_000024 NC_000087

The version numbers are not shown here because they may change when a

new assembly is reported

nEach chromosome (in an unduplicated state) is composed of one DNA molecule; hence two DNA strands. The DNA strand whose

50-end is closer to the centromere is called the forward strand of the chromosome; the other strand is the reverse strand (or

complement). Therefore, the direction from p-q arm of the chromosome is the same as the 50- 30 direction of the forward strand.

The sense strand (coding strand) of some genes resides in the forward strand whereas that of others resides in the reverse strand

(complement) of the chromosome.
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FIGURE 5.18 The “Genomic regions, transcripts, and products” field from the mouse Slco1a6 detailed record in Figure 5.14 after the

field is expanded. Upper panel showing the gene with its exons and introns; lower panel showing the sequence. The gene information is
based on build 38 of the mouse genome assembly (GRCm38). The RefSeq links to the mRNA and protein sequences of Slco1a6 can be directly
obtained by clicking the “Go to reference sequence details” link in the right-hand top corner (circled). (Source: http://www.ncbi.nlm.nih.gov/
-Gene, information as of June 2013)

FIGURE 5.19 The chromosome 6 graphics page, from the “Graphics” link in Figure 5.18. The span of chromosome 6 shown is approxi-
mately 0.93 106 bp long, and it contains many genes, including many transporter genes. The vertical bars represent the exons. (Source: http://
www.ncbi.nlm.nih.gov/-Gene, information as of June 2013)
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figure is a partial screenshot showing the upper part
of the display). The lower part of the display shows
the details of the exon and intron sequence informa-
tion (Figure 5.21). Each exon or intron link can be
clicked to obtain the exon or intron sequence,
respectively.

Below the “Genomic regions, transcripts, and
products” field there is the “Bibliography” field

(Figure 5.14). If this field is expanded by clicking,
it shows a field called “GeneRIFs: Gene References
Into Functions.” The GeneRIF contains a link called
“Correction,” which provides an opportunity to the
scientific community to update and add more rele-
vant references in relation to the gene in question.
This information can be submitted to the NCBI
directly.

FIGURE 5.20 Exon and intron sequence information for mouse Slco1a6. Partial screenshot (upper part) of the details of the exon and
intron sequence information that can be obtained by clicking the “Display Setting” in the left-hand top corner and selecting the “Gene Table”
from the drop-down menu (circled). (Source: http://www.ncbi.nlm.nih.gov/-Gene, information as of June 2013)

FIGURE 5.21 Partial screenshot (lower part) of the details of the exon and intron sequence information (continuation of Figure 5.20).
Each exon or intron link can be clicked to obtain the exon or intron sequence, respectively.
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5.9 DATAVISUALIZATION IN
GENOME BROWSERS

A genome browsero is a graphical interface for users
to retrieve, browse, and analyze the sequence data of
both known and predicted genes. Genome browsers
stack annotation tracks underneath the genome coordi-
nate positions. This allows graphic display of different
types of information, such as gene density in a chromo-
some, distance between specific genes along the chro-
mosome (which might shed some light on their possible
coordinate regulation), map position of genes in specific
cytogenetic bands, map position of a disease-related
gene in a gene neighborhood, visualization of gene
prediction, proteins, expression, variation, comparative
analysis, etc. Therefore, annotated data are usually
derived from multiple sources, including genomic
databases. Each genome browser provides its own
annotation of the assembled sequence independently.
Information from many other databases can be over-
laid on the annotated sequence in the display window.
Genome assembly and annotation is a continuous and
ongoing process. Therefore, when comparing the data
output from different browsers, one should make sure
that the comparison is being made based on the same
genome-assembly version. On the browser “Gateway”
page, the user selects the genome, gene name, etc. to
initiate a search.

In addition to data visualization, genome browsers
also aid in data retrieval and analysis, and data custom-
ization. As discussed above, genome browsers integrate
various annotation data into a graphical view. Most of
the existing genome browsers support search functions
to locate genomic regions by coordinates, sequences, or
keywords. Genome browsers also provide a customiza-
tion platform for end-users to upload, create, and share
their own annotation data.

In order to meet the challenge of handling and
displaying genomic data, three genome browsers were
initially created, soon after the working draft of the
human genome was finished: the NCBI Map Viewer,
the Ensembl genome browser, and the University of
California Santa Cruz (UCSC) Genome browser.
Subsequently, many other genome browsers have
also been developed, some of which can be down-
loaded. One of these is the VEGA genome browser,
which has been built on the Ensembl database. These
four web-based genome browsers will be discussed
here.

5.9.1 Ensembl Genome Browser

Ensembl59 (www.ensembl.org/) is a collaborative
project between the EMBL-EBI and the Sanger Center in
the UK. It was started in 1999 with the goal to develop
an annotation software system that could provide auto-
mated annotation of the human genome, and making
the data available to scientists through the web. The
development of the Ensembl browser is the result of
this collaboration. With the sequencing of the genomes
of so many other species, the scope of Ensembl has
grown significantly; it now includes data on compara-
tive genomics and regulation as well.

The figures based on the Ensembl browser are created
using release 72 (Ensembl 72: June 2013, permanent link:
http://Jun2013.archive.ensembl.org/index.html). Ensembl cur-
rently maintains all archives for at least two years. By the
time this book is published, the release number will certainly
have changed, and some details of the visual display features
will have changed as well, although the overall display will
likely remain similar. Therefore, the reader should still be able
to use the browser function. Additionally, the reader can click
“View in archive site” at the left-hand bottom corner of the
Ensembl home page or use the permanent link cited above to
access release 72 for comparison.

Figure 5.22 is a partial screenshot of the Ensembl
home page. Entering the search term “Oatp-5” in the
mouse database returns the results page shown in
Figure 5.23. The upper panel of Figure 5.23 shows
the number of records retrieved. If the “Gene” or
“Transcript” link is clicked, a new window appears,
shown in the lower panel of Figure 5.23. The lower
panel shows that two important links in this page are
“Gene ID” and “Location” (circled). Clicking “Gene
ID” retrieves the gene information page shown in
Figure 5.24 (upper panel). It shows the link to the gene
(Location), the transcript (with all the known variants),
and the protein. There is also a link to the consensus
coding sequence (CCDS) database. The gene informa-
tion page also contains a gene summary and displays
(Figure 5.24, middle panel; partial view). Clicking the
“Transcript ID” link of Slco1a6-001 returns the
Transcript summary and display (Figure 5.24, lower
panel). Clicking the link on the gene “Location” field
retrieves the details of the gene in a new window.
Figure 5.25 upper panel shows the location of Slco1a6
on chromosome 6 (circled) and the detail of the region
showing the surrounding loci of Slco1a6. Ensembl iden-
tifies the chromosomal location as 6G2 (not 6qG2). By

oThe display of information output in any genome browser is subject to change. This is because there is continuing effort to improve

browser function, versatility, and display features. In addition, genomic databases are continuously updated. Therefore, the graphic

displays shown in the figures are not expected to remain the same over time. Nevertheless, knowing how to use the genome browser

should prepare the reader to deal with any such changes. The information discussed in this section and shown in the various

figures was obtained by accessing the Ensembl, UCSC, Map Viewer, and VEGA genome browsers in June 2013.
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clicking Slco1a6, a drop-down box appears that contains
more information. Figure 5.25 lower panel shows all
four transcripts (splice variants) identified for Slco1a6 as
well as the CCDS annotated transcript. Similar drop-
down boxes appear if the transcripts are clicked (not
shown in the figure).

The user can play with various links to obtain more
information and display about the gene, transcript, and

protein. For example, the protein display is not shown here
at all. Clicking the “Protein ID” link of Slco1a6-001
(Figure 5.24) displays the protein information, including the
relative location of all the transmembrane helices.

Clicking the “consensus coding sequence (CCDS)”
link of Slco1a6-001 (Figure 5.24) takes the user to the
CCDS database home page (not shown). The CCDS
project is a collaboration involving the EBI, NCBI,

FIGURE 5.22 Partial screenshot of the Ensembl home page. Entering the search term “Oatp-5” in the mouse database returns the results
page shown in Figure 5.23 upper panel. (Source: www.ensembl.org/, Ensembl release 72�January 2013 with permanent link http://jan2013.archive.
ensembl.org/index.html; information as of June 2013)

FIGURE 5.23 Results of searching Ensembl for Oatp-5. The upper panel shows the number of records retrieved by typing Oatp-5 as
the search term. If the “Gene” or “Transcript” link is clicked, a new window appears (lower panel). (Source: www.ensembl.org/, Ensembl release
72�June 2013 with permanent link http://Jun2013.archive.ensembl.org/index.html; information as of June 2013)
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FIGURE 5.24 Ensembl gene information page for Oatp-5. Clicking “Gene ID” (Figure 5.23, lower panel) retrieves the gene information
page (upper panel) with links to the gene location, the transcript (with all the known variants), and the protein, as well as the CCDS database.
The gene information page displays the gene summary (middle panel; partial view). Clicking the “Transcript ID” link of Slco1a6-001 returns
the transcript summary and display (lower panel). (Source: www.ensembl.org/, Ensembl release 72�June 2013 with permanent link http://Jun2013.
archive.ensembl.org/index.html; information as of June 2013)

FIGURE 5.25 Details of the gene information in Ensemble. Clicking the link on the gene “Location” field (Figure 5.23, lower panel) retrieves
the details of the gene. The upper panel shows the location of Slco1a6 on chromosome 6 (circled) and the detail of the region showing the surround-
ing loci of Slco1a6. The lower panel shows all four transcripts (splice variants) identified for Slco1a6 as well as the CCDS annotated transcript.
(Source: www.ensembl.org/, Ensembl release 72�June 2013 with permanent link http://Jun2013.archive.ensembl.org/index.html; information as of June 2013)
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UCSC, and the Wellcome Trust Sanger Institute60

(WTSI). The collaboration was developed in order to
identify a core set of protein-coding regions that are
consistently annotated on the reference mouse and
human genomes. Mouse and human genomes were
chosen because these genome sequences are now suffi-
ciently stable. The long-term goal is to support conver-
gence towards a standard set of gene annotations.
CCDS assigns a CCDS ID to the annotated protein and
these annotated proteins are represented on the NCBI
Map Viewer, Ensembl, and UCSC genome browsers
by links to the CCDS database. The CCDS ID of mouse
Slco1a6 protein is 39693, version 1 (39693.1). The infor-
mation in current CCDS (as of June 2013) is also based
on mouse genome build 38. The CCDS has links to the
NCBI, UCSC, Ensembl, and VEGA genome browsers,
as well as a link to the NCBI database.

After a search is initiated in the Ensembl browser, a
number of links appear in the left panel; of these, the
“Add your data” link can be used to upload new data.
Alternatively, on the Ensembl home page there are
links to “add custom tracks” and “upload and analyze
your data,” as well as a link to Ensemble tutorials.
These can be used to learn data retrieval, analysis, and
customization, such as how to add or remove annota-
tion tracks, and to upload and analyze users’ own

data. The Ensembl browser has detailed tutorials on
these topics.

5.9.2 UCSC Genome Browser

The UCSC genome browser61�63 (http://genome.
ucsc.edu/) has been developed and maintained by
the Genome Bioinformatics Group at the University of
California at Santa Cruz (UCSC). It is a very widely used
genome browser. It contains the reference sequence and
working draft assemblies for a large collection of gen-
omes. The browser zooms and scrolls over chromosomes
showing annotation. Figure 5.26 shows a screenshot of
the UCSC genome browser home page. The “Cite Us”
link on the left panel lists all the publications associated
with the development and updating of the UCSC
genome browser (Figure 5.26; link circled). Clicking the
“Genomes” or “Genome Browser” links (circled) takes
the user to the “(Species) Genome Browser Gateway,”
from where the search can be launched. Figure 5.27
shows the Mouse Genome Browser Gateway. The
gateway provides options for selecting the (organism)
group, the species whose genome will be searched (the
genome-assembly version is automatically selected as
the latest one available), and the search term.

FIGURE 5.26 Partial screenshot of the UCSC genome browser home page. Since March 2013 when this screenshot was captured, Gibbon
genome browser has been released (22 May 2013) and also the Ferret genome browser (12 June 2013). The UCSC genome browser home page
as of June 2013 contains these update announcements. (Source: http://genome.ucsc.edu/, information as of March 2013)
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Searching the UCSC genome browser for mouse
“Slco1a6” retrieves information from multiple sources
(Figure 5.28), such as the UCSC Gene (at the top,
highlighted), RefSeq Gene, and Ensembl Gene resources.
Right-clicking on any track produces a drop-down box
that offers various options. Note that the chromosomal
location is described as 6qG2 instead of 6G2. The page
also shows the chromosomal location and the length of
the gene as “chr6:142,085,768�142,186,149 100,382 bp”
(circled). The Slco1a6 gene organization and information
from multiple sources is represented graphically: at the
top (highlighted) is the “UCSC Genes” record (because it
is the UCSC browser), next is the “RefSeq Genes” record,
and the lower red line is the “Ensembl Genes” record.
Note that the mouse genome build is noted as GRCm38/
mm10. This is because mm10 is the UCSC version of
GRCm38.

The UCSC genome browser also provides various
other tools to retrieve genome-related data, such as
Gene Sorter, BLAT, Table Browser, VisiGene, and
Genome Graph. Each of these tools is useful in a unique
way. For example, Gene Sorter shows the expression,
homology, and other information on groups of related
genes, BLAT (BLAST-like Alignment Tool) maps an
input sequence to the genome, and VisiGene allows
the user to browse through in situ images to examine
the expression patterns. Genome Graph allows a user
to upload and display genome-wide data sets. UCSC
Table Browser64 provides text-based access to a large
collection of genome assemblies and annotation data
stored in the genome browser database. Thus, it pro-
vides an alternative to the graphical-based genome
browser. For example, Table Browser can be used to
retrieve the data associated with a track in text format,

FIGURE 5.27 The UCSC Mouse Genome Browser Gateway. The search term used was Slco1a6. (Source: http://genome.ucsc.edu/, information
as of June 2013)

FIGURE 5.28 UCSC Mouse Genome Browser record for Slco1a6. Browser display of the Slco1a6 record from different sources (UCSC,
RefSeq, Ensembl) represented as separate tracks. Right-clicking on any track produces a drop-down box that offers various options. (Source:
http://genome.ucsc.edu/, information as of June 2013)
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to calculate intersections between tracks, and to retrieve
DNA sequence covered by a track. The discussion
below will focus on Gene Sorter, BLAT, and VisiGene.

The Gene Sorterp program displays a table of genes
that are related to one another. This relationship
may be based on expression profiles, protein-level
similarities, genomic proximity, etc. The categories
by which relatedness is assessed are shown in the
drop-down menu next to “sort by” link (Figure 5.29).
The figure shows the results of a search in mouse
genome to find the proteins that are related to Slco1a6.
The search term selected was “Protein Homology �

BLASTP,” chosen from the drop-down menu. The
search retrieved 15 other proteins that bear the closest
relationship to Slco1a6 in terms of protein homologous
relationship. The “Genome Position” column of the
table shows the chromosomal location of these genes.
The “VisiGene” column (circled) provides a link to the
in situ images of the expression of the respective genes
in mouse brain.

The BLAT (BLAST-like Alignment Tool) was written
by Jim Kent at UCSC.65 BLAT is used to map the input
sequence to the genome—that is, to identify the location
of a sequence in the genome. Therefore, BLAT works
with the genomic context in memory, but it works
by alignment-based similarity search. BLAT works for
both DNA and proteins. For DNA, BLAT is designed
to find sequences with $ 95% similarity with the input
sequence, where the sequences are ideally 25 bases
or more in length. For proteins, BLAT is designed to

find sequences with$ 80% similarity with the input
sequence, where the sequences are ideally 20 amino
acids or moreq.

BLAT is different from BLAST because, unlike
BLAST, BLAT does not search the sequences from
GenBank/EMBL-Bank/DDBJ; rather, BLAT uses an
index derived from the genome assembly and it con-
sists of all non-overlapping 11-mers except the heavily
repeated sequences. For proteins, BLAT uses 4-mers.

Figure 5.30 shows the results of the BLAT analysis
of the Oatp5/Slco1a6 mRNA sequence. Various fea-
tures of the best match, at the top, are circled. Clicking
the “browser” link on the left shows a graphic display
of the genomic location of the sequence in the browser.
Clicking the “details” link shows the mapping of the
input sequence in the mouse genome. Figure 5.31
shows that mouse Oatp5/Slco1a6 mRNA sequence is
derived from 15 exons of the Oatp5/Slco1a6 gene.
These 15 exons are listed on the left as “block 1”
through “block 15.” Clicking on any “block” link
shows the location of the exon in the gene. The
analysis also shows that the input sequence belongs to
chromosome 6. The exon�intron sequences as well as
the flanking sequences are also visible by scrolling
up and down the sequence. Figure 5.32 is a composite
figure that shows four exons (“blocks”) mapped to
mouse chromosome 6, showing the exon sequence and
surrounding intron sequence, except for exon 1, which
is flanked on the left-hand side (upstream) by the
50-flanking sequence of the gene. The intronic splice

FIGURE 5.29 Results of a search in Gene Sorter on mouse genome to find the proteins that are related to Slco1a6. (Source: http://genome.
ucsc.edu/, information as of June 2013)

pThe UCSC Gene Sorter was designed and implemented by Jim Kent, Fan Hsu, Donna Karolchik, David Haussler, and the UCSC

Genome Bioinformatics Group (http://genome.ucsc.edu/cgi-bin/hgNear).
qSource: http://genome.ucsc.edu/cgi-bin/hgBlat?command5 start.
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FIGURE 5.30 The results of BLAT analysis of the Oatp5/Slco1a6 mRNA sequence. The RefSeq sequence was used for the analysis.
Clicking “browser” (circled) opens up the browser page shown in Figure 5.28. Clicking “details” (circled) opens up the record shown in
Figure 5.31. (Source: http://genome.ucsc.edu/, information as of June 2013)

FIGURE 5.31 Mouse Oatp5/Slco1a6 mRNA sequence is derived from 15 exons (“blocks”) of the Oatp5/Slco1a6 gene. (Source: http://genome
.ucsc.edu/, information as of June 2013)
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donor and acceptor sites (gt. . .ag) are circled. The
translation initiation codon ATG in exon 2 is also circled.
Thus, exon 1 is noncoding whereas exon 2 is partially
coding. Note that Figure 5.32 is not a true screenshot by
itself but has been created by copying separate screenshots
of BLAT display in order to show how BLAT maps the input
sequence to the genome.

The VisiGener Image Browser is like a virtual
microscope that provides in situ images. The search
term is entered in the search box. Hitting the search
button returns available images. Some search terms
will return a number of images; others return a few
or even only one, whereas still others return none. The
source of the images is acknowledged on the image
page. Figure 5.33 shows the VisiGene Image Browser
page (partial view).

On the left panel of the UCSC genome browser,
there is a link to “Genome Graphs,” where data can be
uploaded or imported into the database (Figure 5.26;
link circled). The “Genome Graphs” tool can be used
to display genome-wide data sets. The user can upload

his/her own data for display by the tool. In order
to display personal annotation tracks, the user has to
format the data in one of the supported formats and
upload the data into the Genome Browser using the
“add custom tracks” button on the “Genome Browser
Gateway” page (Figure 5.27). The UCSC genome
browser has a detailed tutorial on this topic.

5.9.3 NCBI’s Map Viewer

The genome browser of the NCBI is called Map
Viewer. The current version of Map Viewer displays
a chromosome as a vertical line. The direction of a
plus strand in a vertical representation is from top to
bottom, and that of the reverse or minus (complement)
strand is from bottom to top. Map Viewer allows
the visualization and search of an organism’s complete
genome and the chromosome maps, and retrieval of
greater levels of detailed information, down to the
sequence level, for a region of interest. Figure 5.34
shows the NCBI “Genome” home page with a link to

FIGURE 5.32 A composite figure created to show four exons mapped to mouse chromosome 6. Each exon sequence is shown in blue
capital letters whereas the surrounding intron sequence (and 50-flanking sequence for exon 1) is shown in black lowercase letters. The intronic
splice donor and acceptor sites (gt. . .ag) are circled. The translation initiation codon ATG in exon 2 is also circled.

rVisiGene was written by Jim Kent and Galt Barber (http://genome.ucsc.edu/cgi-bin/hgVisiGene?command5 start).
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Map Viewer (circled). Clicking the “Map Viewer” link
opens the Map Viewer home page (Figure 5.35). The
Map Viewer home page can be directly accessed at
http://www.ncbi.nlm.nih.gov/mapview/.

The data display in genome browsers is subject to change
and by the time this book is published, many of the
figures presented here may not exactly match but will be
helpful nonetheless.

A search with Mus musculus and Oatp-5 on the Map
Viewer home page takes the user to the Mus musculus

genome view, represented as 19 autosomes plus one X
and one Y chromosome (Figure 5.36). The location of
the gene (Oatp5/Slco1a6) is shown on chromosome 6
by a red mark. Below chromosome 6 there is “2” in
red, indicating that the search term Oatp-5 retrieved 2
records shown below: one from the mouse reference
genome and one from the Celera mouse genome
assembly. If, instead, the search is performed using
the search term Slco1a6, 102 records are retrieved (as
of June 2013; not shown). Clicking chromosome 6 or

FIGURE 5.33 Partial view of the VisiGene Image Browser page. The image pages resulting from a search show the in situ image and
acknowledge the source of the images. (Source: http://genome.ucsc.edu/, information as of June 2013)

FIGURE 5.34 NCBI “Genome” home page with a link to Map Viewer. (Source: http://www.ncbi.nlm.nih.gov/-Resource List (A�Z)-Map
Viewer; information as of June 2013)
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Slco1a6 under “Map element” retrieves the informa-
tion shown in Figure 5.37. In order to zoom the view
in or out, the line representing the gene can be clicked;
a new window appears that provides zoom-in and
zoom-out options (Figure 5.37). The view can be

zoomed in to view more detail of the Slco1a6 gene, or
zoomed out to view more genes on chromosome 6.
Some of these genes are on the plus strand (indicated
by a downward arrow in the Orientation (“O”)
column) whereas others are on the minus strand

FIGURE 5.35 Map Viewer home page. (Source: http://www.ncbi.nlm.nih.gov/-Resource List (A�Z)-Map Viewer; information as of June, 2013)

FIGURE 5.36 Mus musculus genome view in Map Viewer. The location of the gene (Oatp5/Slco1a6) on chromosome 6 is indicated by a
red mark. Below chromosome 6 there is “2” in red, indicating that the search term Oatp-5 retrieved 2 records. In contrast, if the search term is
Slco1a6, 102 records are retrieved. (Source: http://www.ncbi.nlm.nih.gov/-Resource List (A�Z)-Map Viewer; information as of June 2013)
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(indicated by upward arrow). Slco1a6 is on the minus
strand. The Map Viewer data is also based on mouse
genome-assembly build 38 (Annotation Release 103). In
Figures 5.37 and 5.39 there is a link to the previous
build (Build 37.2) that can be seen on the left panel.
There are a number of links next to the Slco1a6 gene: sv
(sequence viewer), pr (protein), dl (display and down-
load), ev (evidence viewer), hm (HomoloGene), and sts
(sequence tagged sites). Clicking each of these links
takes the user to a different screen showing specific
attributes that can be further explored. For example,
clicking “Slco1a6” takes the user to the gene page
discussed above. Likewise, clicking “ev” takes the user
to the “evidence viewer” page. The evidence viewer
is discussed below. The user should play with each of
these links to further explore the information available.
Therefore, the gene, the mRNA, and the protein
sequence information and their various attributes can
be retrieved in multiple ways from these links.

5.9.4 VEGA Genome Browser

The VEGA66 (Vertebrate Genome Annotation)
genome browser was built on the Ensembl database. The

difference between Ensembl and VEGA is that Ensembl
displays computationally curated sequences for a large
number of vertebrate and invertebrate species, whereas
the VEGA database houses high-quality manual annota-
tion of finished vertebrate genomic sequencess. The
HAVANA (Human and Vertebrate Analysis and
Annotation) group of the Wellcome Trust Sanger
Institute in the UK provides the manual annotation of
human, mouse, zebrafish, and other vertebrate genomes
that appears in the VEGA browser. Because VEGA is
built on Ensembl, the display of information in VEGA
is very similar to that in Ensembl. Therefore, only the
VEGA home page (http://vega.sanger.ac.uk/index.
html) is shown here. At the right-hand side of the home
page is a link to the gateway from where a search can be
launched (Figure 5.38).

5.10 USING MAP VIEWER TO
SEARCH THE GENOME

In the above examples, it was demonstrated how to
search and track a specific gene on a chromosome map
and retrieve information in specific databases, using

FIGURE 5.37 Master Map of Oatp-5 in Map Viewer. Clicking chromosome 6 or Slco1a6 under “Map element” on the page shown in
Figure 5.36 retrieves the information shown in this figure. In order to zoom the view in or out, the line representing the gene can be clicked; a
new window appears that provides zoom-in and zoom-out options. (Source: http://www.ncbi.nlm.nih.gov/-Resource List (A�Z)-Map Viewer;
information as of June 2013)

sSource: http://www.sanger.ac.uk/resources/databases/vega/.
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the mouse Oatp5/Slco1a6 gene. However, if one wants
to track all the genes identified in a chromosome, one
can also do that by using Map Viewer. Entering just
Mus musculus as the search term on the Map Viewer
home page retrieves the mouse genome view in the
form of all mouse chromosomes. A particular chromo-
some can be clicked to open another view with all the
genes mapped to that chromosome.

Figure 5.39 shows a partial view of the gene distri-
bution in chromosome 19. Chromosome 19 was chosen
because of its small size. The region displayed is
0�61 Mbp. One can select the “Data as Table View”
link (circled) from the column on the left to obtain the
list of genes in the form of a table. In the same column,
there is a link to “Map Viewer Help,” which can be
clicked to gather some more fundamental information
about Map Viewer. For example, the help link explains

that there are four levels of details displayed per
genome in Map Viewer. Briefly, the Home Page for an
organism summarizes the resources available for
that organism. The Genome View provides graphical
displays of the complete genome represented in the
form of chromosomes. Map View displays maps for a
selected chromosome and allows one to view regions
of interest at different levels of resolution. Sequence
View displays the sequence data for a specific chromo-
somal region. In addition, the reader is urged to
consult Chapters 20 and 24 of The NCBI Handbook
(2002, Edited by Jo McEntyre and Jim Ostell; http://
www.ncbi.nlm.nih.gov/books/NBK21101/) in order
to develop expertise on how to navigate through infor-
mation in Map Viewer.

Some other uses of Map Viewer links are discussed
below. Figure 5.40 shows a partial screenshot of two

FIGURE 5.38 VEGA genome browser home page. (Source: http://vega.sanger.ac.uk/index.html; as of June 2013)

FIGURE 5.39 Gene distribution in mouse chromosome 19 from Map Viewer. The list was obtained by selecting “Data As Table View”
from the left column. (Source: http://www.ncbi.nlm.nih.gov/-Resource List (A�Z)-Map Viewer; information as of June 2013)
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categories of information integrated into one view;
the upper panel shows a partial list of genes in chro-
mosome 19, which contains a total of 1016 genes as of
the latest annotation release. In the lower panel is the
detail of various attributes of the “Sequence Map”
with the option for viewing the relevant data. Clicking
the “ev” (Evidence Viewer) link associated with a
gene (Figure 5.40, upper panel) opens up the Evidence
Viewer screen that shows the evidence for a particular
gene model (Figure 5.41A). The gene model is gener-
ated based on alignment of mRNA sequences to the
human genomic assembly. Thus, the Evidence Viewer
displays graphically the cDNAs that align to the
genome in a particular region. Mismatches or inser-
tions/deletions are marked. These alignments pro-
vide clues to the intron/exon organization of a gene,
as annotated on the contigs. Figure 5.41A is a partial
screenshot showing only the upper part of the
Evidence Viewer display; scrolling down the screen
reveals the alignments. A quick discussion on the util-
ity and use of the Evidence Viewer is available at

http://www.ncbi.nlm.nih.gov/Web/Newsltr/Fall01/
evidence.html.

A few other links labeled in Figure 5.40 are expanded
in Figure 5.41 (see legends for Figure 5.41A through
5.41C). In Figure 5.41D, showing the tiling path used to
build each genomic contig (the tiling path is the mini-
mum set of closes that encompasses the whole sequence
of the contig), there is link to each clone that shows the
orientation (1 or 2 ) of the sequence of the clone,
the total number of “Bases,” and the “Status”
(Figure 5.41D). In the “Status” column, “finished HTG”
means finished high-throughput genomic sequencet.

UniGene is not a database of genes; rather, it provides an
overview of transcriptomes associated with transcribed loci.
Each UniGene entry is a set of transcript sequences
that appear to come from the same transcription locus
(gene or expressed pseudogene), together with infor-
mation on protein similarities, gene expression, cDNA
clone reagents, and genomic location. In most organ-
isms, the number of transcribed sequences is usually
much larger than the number of genes. This may be

FIGURE 5.40 Data as Table View. Clicking the “Data As Table View” link shown in Figure 5.39 retrieves the list of genes in chromosome
19 in the form of a table. The upper and the lower panels are partial screenshots of two fields integrated into one view. (Source: http://www.
ncbi.nlm.nih.gov/-Resource List (A�Z)-Map Viewer; information as of June 2013)

tThe initial high-throughput genomic (HTG) sequencing data could be single-pass sequencing data with gaps. These initial data

are “unfinished” HTG data. Usable data are defined as all sequences existing in contigs of. 2 kb. The unfinished HTG sequence data

are eventually converted to the “finished” state (complete contiguity with an error rate of 1024 or less) (see67).

1295.10. USING MAP VIEWER TO SEARCH THE GENOME

BIOINFORMATICS FOR BEGINNERS

http://www.ncbi.nlm.nih.gov/Web/Newsltr/Fall01/evidence.html
http://www.ncbi.nlm.nih.gov/Web/Newsltr/Fall01/evidence.html
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/


due to multiple reports on the same full-length mRNA
(as cDNA), often reported in the database under differ-
ent names; alternatively spliced variants; multiple
partial sequences reported; EST; etc. The existence of
many such reported sequences associated with one
transcribed locus makes the putative gene assignment
a challenging task. This is done computationally as a
cluster of transcripts associated with a transcribed
locus (hence UniGene Clusters).

In the examples discussed above, only a tiny frac-
tion of the available information has been explored.
The user should click the different links, explore, and
learn how to harness the wealth of information that is
available in and can be accessed through the various
genome browsers and databases.

5.11 A NOTE ON THE STATE OF
THE SEQUENCE-ASSEMBLY DATA

IN DIFFERENT DATABASES

At a given point in time, some inconsistencies may be
identified with regard to the genomic data in different
databases, or different links within the main database.
This is usually owing to the fact that different databases
may be updated at different times. The database mainte-
nance team may have limited resources and multiple
projects to handle; consequently, a priority is set for
handling different projects. Therefore, it is important for
the user to take note of the genome-assembly version
(build) as well as annotation version when using a
genomic database or any link within the database.

FIGURE 5.41 Screenshots of individual links (expanded) from Figure 5.40, in June 2013. (A) Clicking the “ev” link shown in Figure 5.40
retrieves the “Evidence Viewer” screen that shows the evidence for a particular gene model. The NCBI generates gene models based primarily
on alignment of mRNA sequences that provide the intron/exon organization of a gene, as annotated on the contigs. (B) Clicking the “Contig”
link shown in Figure 5.40 reveals the constructed genomic contig information. There are two constructed genomic contigs covering the
sequence of chromosome 19 that spans 0�61 Mbp. Each RefSeq contig accession number can be clicked to obtain further information about
the contig, including the sequence. By default, the NT_xxxxxx contigs are shown to reflect the current reference assembly. (C) Clicking the
“Clone” link shown in Figure 5.40 reveals that a total of 22,958 clones contain various parts of chromosome 19 sequence, and for the 0�61-
Mbp region of chromosome 19, this number is 22,397. The sequence can be obtained by clicking each associated link. (D) The “Component”
link in Figure 5.40 provides the tiling path used to build each genomic contig. The tiling path is the minimum set of clones that encompasses
the whole sequence of the genomic contig with minimum overlaps (discussed in Chapter 7). The tiling path of chromosome 19 comprises 432
component clones, whereas the tiling path of the 0�61-Mbp region comprises 430 component clones. The details of each clone can be obtained
by clicking the associated accession numbers. (E). Clicking the “UniGene Cluster” link shown in Figure 5.40 reveals the transcript information
relevant to the region in question. The figure shows a small partial list of transcripts from the UniGene Cluster. Each entry link can be clicked
to obtain further information. (Source: http://www.ncbi.nlm.nih.gov/-Resource List (A�Z)-Map Viewer; information as of June 2013)
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6.1 EVOLUTIONARY BASIS OF
SEQUENCE ALIGNMENT

As discussed in Chapter 2, evolution is defined as
“descent with modification” from a common ancestor.
At the molecular level, the modification means changes

in DNA and protein sequence, and corresponding
changes in protein function. As mutations accumulate in
sequences derived from an ancestral sequence, the
derived sequences diverge from one another over time,
but sections of the sequences may still retain enough
similarity to allow identification of a common ancestry.

�The opinions expressed in this chapter are the author’s own and they do not necessarily reflect the opinions of the FDA, the DHHS,

or the Federal Government.
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Evolutionary change in a sequence does not always have
to be large; slight changes in certain crucial sections of a
sequence can have profound functional consequences.

Expectedly, sequence comparison through sequence
alignment is central to most bioinformatic analysis.
It is the first step towards understanding the evolu-
tionary relationship and the pattern of divergence
between two sequences. The relationship between two
sequences also helps predict the potential function
of an unknown sequence, thereby indicating protein
family relationship.

6.2 THREE TERMS—SEQUENCE
IDENTITY, SEQUENCE SIMILARITY,
AND SEQUENCE HOMOLOGY—AND

THEIR PROPER USAGE

Sequence identity means the same residues being
present at corresponding positions in two sequences
being compared. For proteins, it means the same amino
acids; for nucleic acids, it means the same bases.

Sequence similarity means similar residues being
present at corresponding positions in the two sequences
being compared. For nucleic acids, sequence similarity
and sequence identity are the same. However, for pro-
teins, sequence similarity involves amino acids with
similar physicochemical and functional properties. For
example, substitution of lysine and arginine by one
another will be regarded as similar substitution because
both are positively charged hydrophilic amino acids.
Likewise, substitution of aspartic acid and glutamic acid
by one another will be regarded as similar substitution
because both are negatively charged hydrophilic amino
acids. Substitution of asparagine by aspartic acid and
substitution of glutamine by glutamic acid, or vice versa,
are also regarded as similar substitutions. Substitution
of isoleucine, leucine, and valine by one another will
be regarded as similar substitutions because they have
similar aliphatic hydrophobic side chains. Substitution
of serine and threonine by one another is also regarded
as similar substitution. Similar substitutions are also
referred to as conservative substitutionsa. A conserva-
tive amino acid substitution is not expected to disrupt
the structural/functional attributes of the protein.

Sequence homology is an evolutionary term that
has been misused the most in the literature to denote
sequence similarity or identity. Sequences are called
homologous if they have a common evolutionary

origin—that is, if they are derived from a common
ancestral sequence. So, sequences are either homologous
or not homologous and there is no quantitation of
homology. However, even now, expressions like “high
homology,” “significant homology,” and even specifying
a “% homology” are very widely used. Such usage has
no reference to the evolutionary underpinning of the
term homology. The root of the term homology goes
back to the early evolutionary literature, where organs
having similar structure and anatomical origin but
performing different functions (hence morphologically
different) were called homologous organs. Examples of
homologous organs are bats’ wings, whales’ flippers, and
human hands; these are all mammalian forelimbs that
are morphologically different because they are adapted
to perform different functions. Conversely, organs having
different structure and anatomical origin but performing
the same function (hence morphologically similar) were
called analogous organs. Such a character state (analo-
gous organs) shared by a set of species but not present
in their common ancestor is also called homoplasy.
Examples of analogous organs/homoplasy are bats’
wings and butterflies’ wings, and dolphins’ flippers and
sharks’ fins. Homoplasy is the result of convergent
evolution in which unrelated species develop similar
morphological structures because of adaptation to the
same or a similar environment.

In the case of nucleic acid or protein sequence,
a high degree of identity/similarity usually suggests
homology as well. However, conclusions about homol-
ogy are largely conjecture because we cannot go back
in time and test the sequence in the ancestor and the
descendants. Therefore, it is the quantitative identity/
similarity between the two sequences that is used to
conclude whether the two sequences are homologous
or not. For example, metallothionein-1 proteins in rat
and mouse (61 amino acids in both) are 95% identical
and 98% similarb. Rat and mouse diverged about
33 million years ago.1 Therefore, based on the substitu-
tion of three amino acids in 33 million years, the sub-
stitution rate per site per year can be calculated, and
it can be concluded with a great deal of certainty that
rat and mouse metallothionein-1 were derived from a
common ancestor, and have not changed much, proba-
bly because of functional constraints; hence, they are
homologous. Homologous genes in different species
performing the same function are called orthologs.
So, the metallothionein-1 genes in rat and mouse are
also orthologs. The problem in drawing conclusions on

aSimilar substitution and conservative substitution refer to amino acid substitution in protein. Synonymous substitution and

nonsynonymous substitution refer to nucleotide substitution in DNA. Synonymous substitution leads to no changes in amino acids in the

encoded protein, while nonsynonymous substitution leads to changes in amino acids in the encoded protein.
b95% identity (58 identical amino acids; hence (58/61)3 1005 95% identity); 98% similarity (58 identical amino acids1 2 similar

substitutions; hence (60/61)3 1005 98% similarity).
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homology arises when the similarity between two
sequences is low. Conclusions on homology, in this
case, are drawn on a case-by-case basis. Two proteins
can be considered homologous despite low similarity if
one or more of the following conditions are met: (1) the
similarity extends over a long stretch of sequence and
is statistically significant; (2) despite low sequence simi-
larity, the same pattern of identical and similar amino
acid residues is seen in multiple sequences; or (3) the
pattern of sequence similarity reflects the similarity
between experimentally determined structures of the
respective proteins, or at least corresponds to the known
key elements of one such structure.2

6.3 SEQUENCE IDENTITY AND
SEQUENCE SIMILARITY

Sequence identity and sequence similarity can be
calculated based on the proportion of identical and
similar amino acids, respectively:

% IdentityðPIDÞ

5 ð#of identical amino acids=#of total amino acidsÞ3100;

ð6:1Þ

%Similarity5fð#of identicalaminoacids

1#ofsimilar substitutionsÞ=#of totalaminoacidsg3100

ð6:2Þ

In the above formulae, the denominator (# of total
amino acids) can vary. For example, the denominator
could be (1) the length of the shortest sequence, (2) the
length of the longest sequence, (3) the mean length
of the sequences, (4) the length of the aligned region
(aligned positions excluding overhangs), etc. Therefore,
PID is a rough measure and can be influenced by how
it is calculated. However, because of the simplicity of
calculation, PID is widely used.3

The pairwise alignment in Figure 6.1 (National Center
for Biotechnology Information (NCBI) BLAST pairwise
alignment; http://blast.ncbi.nlm.nih.gov/-check the
“Align two or more sequences” link) and that in
Figure 6.2 (EMBOSS Needle of the European Molecular
Biology Laboratory’s European Bioinformatics Institute
(EMBL-EBI); http://www.ebi.ac.uk/Tools/psa/) show
that there are 560 identical amino acids and 53 similar
substitutions (making 5601 535 613 similar amino acids)
between the rlst-1a and mlst-1 proteinsc. This makes
the identity 81% and the similarity 88.7%. Note that the
NCBI designates % similarity as % positive.

6.4 GLOBALVERSUS LOCAL
ALIGNMENT

A global sequence-alignment method aligns and
compares two sequences along their entire length,
and comes up with the best alignment that displays
the maximum number of nucleotides or amino acids
aligned. The algorithm that drives global alignment is
the Needleman�Wunsch algorithm. A global alignment
algorithm starts at the beginning of two sequences and
adds gaps to each until the end of one is reached. Global
alignment works the best when the sequences are similar in
character and length. Because global alignment displays
the best alignment between two sequences using the
entire sequence, it may miss a small region of biological
importance. This is a trade-off in global alignment.

Two of the available web servers for pairwise global
alignment are EMBL-EBI EMBOSS (http://www.ebi
.ac.uk/Tools/psa/), and NCBI specialized BLAST
(look for the Global Sequence Alignment Tool link on
the NCBI BLAST home page under Specialized BLAST;
the URL is too long to include here). For EMBL-EBI
EMBOSS, the page that appears by clicking the link
provides separate options for protein and nucleotide
global alignment. EMBOSS Stretcher uses a modifica-
tion of the Needleman�Wunsch algorithm that allows
larger sequences to be globally aligned; it also provides
separate options for proteins and nucleic acids.

In contrast to global alignment, local sequence
alignment is intended to find the most similar regions
in two sequences being aligned. The algorithm that
drives local alignment is the Smith�Waterman algo-
rithm. A local alignment algorithm finds the region
of highest similarity between two sequences and
builds the alignment outward from this region. If there
are multiple regions of very high similarity, the same
principle applies. Obviously, local alignment is useful for
sequences that are not similar in character and length, yet
are suspected to contain small regions of similarity, such as
biologically important motifs.

The global and local alignments involving two
protein sequences that are significantly similar produce
identical results. For example, running a global align-
ment using the Needleman�Wunsch algorithm or a
local alignment using the Smith�Waterman algorithm
(discussed below) for the rlst-1a and mlst-1 proteins pro-
duces identical results. Pairwise global alignment using
both RNA (complementary DNA, or cDNA) and protein
sequences can identify alternatively spliced variants.
Figure 6.3 (EMBOSS Needle of the EMBL-EBI) shows
that rlst-1c protein, which is an alternatively spliced
form, lacks a segment of 33 amino acids that is present

cThe original submission accession number of rlst-1a is AF208545 and that of mlst-1 is AB031959.
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FIGURE 6.1 Pairwise alignment of rlst-1a and mlst-1 proteins using NCBI BLAST. NCBI BLAST pairwise alignment shows that these
two proteins share 81% identity but 88.7% similarity. The similar amino acids are highlighted in gray; many of these are hydrophobic amino
acids, charged polar amino acids, and neutral polar amino acids. In the NCBI BLAST pairwise alignment format, the identical amino acids
and similar substitutions between the query and the subject sequences are in the middle; and similar substitutions are indicated by a 1 sign.
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FIGURE 6.2 Pairwise global alignment of rlst-1a and mlst-1 proteins using EMBL-EBI EMBOSS. EMBOSS Needle (Needleman�Wunsch
algorithm) shows that these two proteins share 81% identity but 88.7% similarity. The similar amino acids are highlighted in grey.
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FIGURE 6.3 Pairwise global alignment of rlst-1a and rlst-1c proteins using EMBL-EBI EMBOSS. EMBOSS Needle (Needleman�Wunsch
algorithm) shows that the rlst-1c protein is an alternatively spliced form missing a 33-amino-acid segment that is present in the rlst-1a protein
(highlighted).
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in rlst-1a protein, which is the full-length form.4 The
pairwise alignment can also be performed using a
multiple alignment program, such as ClustalW (DNA
Data Bank of Japan (DDBJ); http://clustalw.ddbj.nig.ac
.jp/); the result of the analysis is the same (Figure 6.4).
Note that the alignments in Figures 6.1 through 6.4 have been
performed using tools from NCBI, EMBL-EBI, and DDBJ
in order to provide visual display of different output formats
for marking identical amino acids and similar amino acids.

6.5 PAIRWISE AND MULTIPLE
ALIGNMENT

As the name suggests, pairwise alignment aligns
two nucleic acid or two protein sequences to find
the best match. Multiple alignment performs the same
function using more than two sequences. The purpose
of alignment is to identify regions of similarity that
may have structural, functional, and evolutionary

FIGURE 6.4 Pairwise alignment of rlst-1a and rlst-1c proteins using DDBJ ClustalW. Analysis using the multiple alignment program
ClustalW (DDBJ). The result is the same as that depicted in Figure 6.3. The missing 33-amino-acid segment in rlst-1c is highlighted. (DDBJ; http://
clustalw.ddbj.nig.ac.jp/)
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consequences. Figures 6.1 through 6.4 are examples of
pairwise alignment.

Some widely used online pairwise alignment tools use
local alignment strategy (Smith�Waterman algorithm)
and are shown in Table 6.1.

The NCBI BLAST pairwise alignment tool, SIM,
and LALIGN not only show the overall alignment of
the two sequences, but will also display, as separate
output, multiple matching subsegments between the
two sequences being aligned. For example, Figure 6.5
shows the alignment of the partial sequence of mlst-1
and moatp-2 proteinsd using LALIGN (http://www.
ch.embnet.org/software/LALIGN_form.html), which
is also accessible from the EMBL-EBI page (http://
www.ebi.ac.uk/Tools/psa/lalign/). A hypothetical
sequence “THATISGREATANDFANTASTIC” was
added at the beginning of the mlst-1 protein and
the end of the moatp-2 protein. The two resulting
sequences were then aligned using LALIGN and
NCBI BLAST pairwise alignment. Both LALIGN
(Figure 6.5) and NCBI BLAST pairwise alignment
(Figure 6.6) produced an overall alignment of the two
input sequences, and also reported the matching sub-
segment in these two sequences, which is the added
hypothetical sequence. Therefore, these tools are very
useful in finding various motifs and conserved
sequences between two proteins being compared.

Multiple sequence alignments are useful in identifying
conserved sequence segments across the sequences
being aligned. Such conserved regions across multiple
sequences usually indicate an evolutionary relationship.
For an unknown protein, for example, such conserved
sequence segments identified through multiple align-
ment can be used in conjunction with other information
to predict functionally important and evolutionarily
conserved motifs within the proteins. Multiple alignment

is also needed for the construction of phylogenetic trees.
Figure 6.7 shows multiple alignment of five transporter
proteins (partial sequence used) from mouse and rat
using DDBJ ClustalW. The T-Coffee, CBRC
(Computational Biology Research Center at the National
Institute of Advanced Industrial Science and Technology,
Japan) MAFFT, and EMBL-EBI MUSCLE all use
ClustalW, so the output format is similar. NCBI COBALT
has a very different output format. Multiple alignment
is frequently done using Clustal programs, such as
ClustalW and more recently Clustal Omega. Clustal
Omega is a scaled-up version that enables thousands of
sequences to be aligned. In order to perform multiple
alignment, the ClustalW algorithm goes through a num-
ber of steps, as follows: it calculates all possible pairwise
alignments of the input sequences; computes the score of
each alignment, where the score reflects the distance
between the two sequences; creates a dendrogram (guide
tree) based on the matrix of the distance; and uses the
dendrogram as the basis to perform multiple alignment,
where closely related pairs of sequences are aligned first.

Multiple alignment programs can also be used to
run pairwise alignment. Some online multiple alignment
tools are shown in Table 6.2. Sequence input needs to be
in FASTA or other formats.

6.6 ALIGNMENTALGORITHMS,
GAPS, AND GAP PENALTIES

An algorithm is a step-by-step procedure that
utilizes a finite number of instructions for auto-
mated reasoning and the calculation of a function.
The algorithm that drives global alignment is the
Needleman�Wunsch algorithm, and the algorithm
that drives local alignment is the Smith�Waterman
algorithm. Both these algorithms are examples of
dynamic programming. Dynamic programming is a
method for solving complex problems by breaking
them down into simpler subproblems. In the case of
sequence alignment, dynamic programming involves
setting up a two-dimensional matrix in which one
sequence is listed vertically and the other sequence
is listed horizontally; then calculating the scores, one
row at a time. For example, a match can be given a 1,
a mismatch a 0, and a gap a 21. A 100% perfect align-
ment will produce a diagonal straight line (with a neg-
ative slope) spanning from the top left to bottom right.
If the alignment is not perfect, gaps are introduced
in the matrix. For the sequence represented horizon-
tally, gaps are introduced vertically, and for the
sequence represented vertically, gaps are introduced

TABLE 6.1 Online Pairwise Alignment Tools Using the
Smith�Waterman Algorithm

Online Tool URL

PIR SSEARCH http://pir.georgetown.edu/pirwww/search/
pairwise.shtml5

NCBI specialized
BLAST

bl2seq resource; look for the Align link on the
NCBI BLAST home page under Specialized BLAST

SIM http://web.expasy.org/sim/

LALIGN� http://www.ch.embnet.org/software/
LALIGN_form.html

�The LALIGN program is William Pearson’s, and it implements the algorithm of

X. Huang and W. Miller.6

dThe original submission accession number of mlst-1 is AB031959 and that of moatp-2 is AB031814. Partial sequence for each entry is

used to save space.
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horizontally, and the alignment is determined by a tra-
ceback step. The basic sequence alignment method is
the dot matrix or dot plot method. In this method, two
sequences being compared are written in the vertical
and horizontal axes of the matrix. Then each residue is
scanned and each match is given a dot; mismatches are
left blank. When enough dots are lined up, they are
connected (Figure 6.8).

In both global and local alignment, the final output
is given an alignment score. Gaps have to be intro-
duced to improve the alignment. The reason gaps
are introduced is because one of the sequences
may have gained or lost sequence characteristics
(insertion�deletion) during evolution that did not
happen with the other sequence. However, the num-
ber of gaps is kept to a minimum to keep the

FIGURE 6.5 LALIGN pairwise comparison. LALIGN output of pairwise comparison of mlst-1 (BAB03272.1; partial sequence) and moatp-
2 (BAB12445.1; partial sequence) each containing the hypothetical sequence “THATISGREATANDFANTASTIC.” LALIGN produces an overall
alignment of two protein sequences and also finds matching subsegments shared by these two input sequences. Note that in LALIGN the
identities are reported by two dots and similar substitutions are reported by one dot.
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alignment meaningful; otherwise an artificially high
alignment score can be obtained even when the
two sequences are not related. The gap penalty value
is subtracted from the gross alignment score to obtain
the final alignment score (alignment score and
scoring matrix are discussed in the next section).
The insertion of no more than 1 gap per 20 amino acid
residues is ideal but that is not possible in most cases.
For each gap opened, a gap-opening penalty value
is assigned, and for each gap extended, a gap-
extension penalty value is assigned. A gap-opening
penalty is always much higher than a gap-extension
penalty. Often, a default value of 210 for a gap-
opening penalty and 21 for a gap-extension penalty
are used. However, these values can be different and
can also be adjusted by the user. This type of differ-
ential penalty for gap opening and gap extension is
called affine gap penalty. There are other types of
gap penalties, such as constant gap penalty, linear
gap penalty, and proportional gap penalty, but for all
practical purposes affine gap penalty is the most

relevant for sequence alignment. Affine gap penalty
is calculated as follows:

Gt 5Go 1Ge 3Ln; ð6:3Þ

where Gt5 total gap penalty, Go5 gap-opening pen-
alty, Ge5 gap-extension penalty, and Ln5 length of the
extension gaps. For any given block of gaps, Ln5 # of
total gaps2 1, because the first gap is the opening, the
rest in the block are extensions.

When running an alignment, it is better to use the
default value with the default matrix. This is because there
is no rule for setting the best gap-opening and -extension
penalty values for a given pair of sequences being
compared; thus, changing the gap-opening and -extension
penalty values may influence the nature of the alignment.
For example, setting gap-opening and -extension penalty
values that are a lot higher than the default values creates
alignments that contain fewer internal gaps and more
end gaps; also local alignments containing gaps may be
split into several shorter alignments.

FIGURE 6.6 NCBI BLAST pairwise alignment. The two partial sequences depicted in Figure 6.5 were also aligned using NCBI BLAST
pairwise alignment. Like LALIGN, NCBI BLAST pairwise alignment also produces an overall alignment of two protein sequences, and
also finds matching subsegments shared by these two sequences. The hypothetical sequence “THATISGREATANDFANTASTIC” has been
identified as a subsegment of 100% identity between the two proteins.
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FIGURE 6.7 Multiple alignment using ClustalW from DDBJ. Five transporters from rat and mouse have been aligned. Identical amino
acids are indicated by a star (�), whereas similar substitutions are indicated by a colon (:). To save space, only the first 287 amino acids from
each transporter have been used for the alignment.

TABLE 6.2 Online Multiple Alignment Tools

Online Tool URL

COBALT (NCBI) http://www.ncbi.nlm.nih.gov/tools/cobalt/
cobalt.cgi?link_loc5BlastHomeLink7

ClustalW (DDBJ) http://clustalw.ddbj.nig.ac.jp/index.php?
lang5 en8,9

MAFFT (CBRC) http://mafft.cbrc.jp/alignment/server/10

MUSCLE
(EMBL-EBI)

http://www.ebi.ac.uk/Tools/msa/muscle/11

T-Coffee http://www.tcoffee.org/Projects/tcoffee/. Then
click any of the server links on this page, such as
http://www.tcoffee.org/ and from there the
type of alignment program needed for analysis12 FIGURE 6.8 Comparison of two sequences using dot matrix or

dot plot.
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6.7 SCORING MATRIX, ALIGNMENT
SCORE, AND STATISTICAL

SIGNIFICANCE OF SEQUENCE
ALIGNMENT

A raw alignment score can be calculated based on
the following simple formula:

S5Σi 1Σm 2Gt; ð6:4Þ

where S5 raw score, Σi5 total score for identities,
Σm5 total score for mismatches, and Gt5 total gap
penalty.

For both nucleic acids and proteins, the alignment
score is calculated using a scoring matrix. A scoring
matrix is a set of values representing the likelihood
of one residue being substituted by another during
sequence divergence through evolution. This is why
the scoring matrix is also known as the substitution
matrix.

A scoring matrix for comparing DNA sequences
can be simple because there are only four nucleotides
and the mutation frequencies are assumed to be equal
(the Jukes and Cantor assumption). A high positive
score (e.g. 5) is assigned for a match and a low nega-
tive score (e.g. 24) for a mismatch, thus creating a
simple model. However, the frequency of transition
mutations (purine replaced by purine or pyrimidine
replaced by pyrimidine) is higher than transversion
mutations (purine replaced by pyrimidine or vice
versa). To deal with this differential mutation fre-
quency, sophisticated statistical models have been
developed by Kimura and others. For generating a DNA
sequence-alignment score, the simple scoring matrix is
still used, such as the NUC4.2 and NUC4.4 DNA scoring
matrices. These matrices can be obtained from the NCBI
(ftp://ftp.ncbi.nih.gov/blast/matrices/).

Scoring matrices for amino-acid substitutions are
more complex, reflecting the similarity of physico-
chemical properties, as well as the likelihood of one
amino acid being substituted by another at a particular
position in homologous proteins. The scoring matrices
for proteins are 203 20 matrices. Two well-known
types of scoring matrices for proteins are PAM and
BLOSUM.

6.7.1 PAM Matrices

PAM (point accepted mutation—that is, accepted
point mutation—also called percent accepted mutation)
matrices were first developed by Margaret Dayhoff
and colleagues in 1978 and hence are also known as
Dayhoff PAM matrices. A PAM represents a substitu-
tion of one amino acid by another that has been fixed
by natural selection because either it does not alter the

protein function or it is beneficial to the organism.
In a PAM1 matrix, which is the original PAM matrix
generated, a PAM unit is an evolutionary time over which
1% of the amino acids in a sequence are expected to undergo
accepted mutations, resulting in 1% sequence divergence.
Construction of a PAM1 matrix begins with alignment
of the full-length sequences, reconstruction of the
phylogenetic tree, and determination of the ancestral
sequences for the internal nodes of the tree (see
Chapter 9 for a description of the phylogenetic tree).
Each computed ancestral sequence is then used to
calculate the number and frequency of substitutions in
the sequences along each branch arising from the node.
The values in the matrix represent the probability that
the amino acid in a column will be replaced by the
amino acid in row in a given evolutionary time (1 PAM
unit in a PAM1 matrix). From the computed probabil-
ity, the percent probability can be determined. A PAM1
matrix is often displayed after multiplying each entry
by 10,000.

The relationship between % amino acid substitution
and the number of PAM units is not linear; thus,
the above definition applies only when the divergence
between two sequences is low. As the divergence
increases beyond B20%, this relationship falls apart.
For example, a 100-PAM-unit divergence does not
mean 100% substitution. A 100-PAM-unit divergence
can be achieved by substituting B55% of the amino
acid residues, and a 200-PAM-unit divergence can be
achieved by substituting B75% of the amino acid resi-
dues. The PAM1 matrix was built by aligning closely
related protein sequences (71 protein families) that had
at least 85% sequence identity.

Subsequently, in order to deal with protein sequences
that are more diverged and distantly related, other PAM
matrices, such as PAM100 and PAM250, were generated.
These later PAM matrices were generated by multiply-
ing the PAM1 matrix by itself hundreds of times.
For example, the PAM250 matrix can be obtained by
multiplying the PAM1 matrix by itself 250 times over.
Figure 6.9 shows the PAM250 substitution matrix. The
values in the matrix are log odds scores (see Box 6.1).

6.7.1.1 PET91 Matrix

At the time PAM matrices were developed, the
number of available protein sequences and the amount
of protein family information as well as the knowledge
of protein three-dimensional structure were limited.
Obviously, PAM matrices could be prone to certain
inherent flaws, such as (1) the assumption that each
amino acid in a sequence is equally mutable, (2) multi-
plying a PAM1 matrix n number of times to obtain
a PAMn matrix can amplify any error in the original
matrix, and (3) the amino-acid-residue profiles of
the proteins used to generate a PAM matrix do not
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necessarily represent the residue profiles of all protein
families.

Jones et al.13 updated the PAM matrix by taking
into account 2621 families of sequences (.16,000
homologous protein sequences) from the Swiss-Prot
database. The sequences were clustered at 85% identity
level as was done in the original PAM matrix, and the
raw mutation frequency matrix was processed in
a similar way as in the PAM matrix. This updated
PAM matrix is called the PET91 matrix (PET915pair
exchange table for year 1991). Thus, PET91 takes into
account the substitutions that were poorly represented
in the original Dayhoff matrix. The overall character of
PAM and PET91 matrices is similar.

Each PAM matrix is designed to be used for com-
paring sequences that are evolutionarily diverged by a
specific number of PAM units—that is, by a specific
length of evolutionary time. The suffix (number) with
PAM indicates evolutionary distance; the greater the
number, the greater is the distance. For example, the
PAM120 matrix is ideal for comparing sequences that
have diverged by 120 PAM units during evolution.
Assuming B107 years (10 million years) as a PAM unit
of evolutionary time, 120 PAM units of evolutionary
time will correspond to 1203 107, or 1200 million
years. The higher the PAM suffix (number), the better
it is in aligning more divergent sequences. PAM matri-
ces have been developed based on the Markovian evo-
lutionary model. The Markovian evolutionary model is
the application of the Markov model to predict the
probability of the state of a variable over evolutionary
time, such as the probability of occurrence of an amino
acid at a particular position in a protein sequence.
For protein evolution, the Markov model can look at a

long sequence of amino acids and analyze the likeli-
hood that an amino acid will substituted by another.
The Markov model assumes that each substitution is
an independent, “memoryless” process.

6.7.2 BLOSUM

BLOSUM will be referred to as BLOSUM matrix here.
BLOSUM (blocks substitution matrices) scoring matrices
were proposed by Steven Henikoff and Jorja Henikoff
in 1992.14 BLOSUM represents an alternative set of
scoring matrices, which are widely used in sequence-
alignment algorithms. Like PAM, BLOSUM matrices
are also log-odds matrices. BLOSUM matrices were
developed based on multiple alignment of 500 groups of
related protein sequences, which yielded. 2000 blocks
of conserved amino-acid patterns. Blocks are ungapped
multiple sequence alignments corresponding to the most
conserved regions of the proteins involved. Henikoff
and Henikoff used their BLOCKS database of trusted
alignments. In each multiple alignment, the sequences
showing similar % identity were clustered into groups
and averaged. Using these groups, the substitution
frequencies for all pairs of amino acids were calculated
and the matrix was developed. Therefore, the blocks
of ungapped multiple sequence alignments, which are
the cornerstone of BLOSUM matrices, reveal the evolu-
tionary relationship between proteins. The BLOCKS
database was developed to host these multiple sequence
alignments that reveal the blocks. By 1996, there were
B3000 blocks reported, based on 770 protein families.15

Different BLOSUM matrices differ in the % sequence
identity used in clustering. Therefore, BLOSUM62

FIGURE 6.9 A PAM250 substitution matrix made

by writing the amino acids in alphabetical order.
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means that the sequences used to create this matrix
have approximately 62% identity. Substitution frequen-
cies weigh more heavily by protein sequences having
less than 62% identity. Therefore, BLOSUM62 is useful
for aligning and scoring proteins that show less
than 62% identity. Shown below is an example of an
ungapped multiple alignment. The conserved amino
acids are shaded for identification.

GSFEIGNLLLII

GSFEMGNLLVIV

GSFEIGNLLLIV

GGFEIGNLLVIV

GGFEIGNLLVIV

Henikoff and Henikoff tested the performance of
hierarchical multiple alignment of three serine pro-
teases using BLOSUM45, BLOSUM62, BLOSUM80,
PAM120, PAM160, and PAM250 matrices. All
BLOSUM matrices performed better than PAM matri-
ces; the number of residues misaligned was three to
five times lower when BLOSUM matrices were used
compared to PAM matrices. BLOSUM62 performed
slightly better than BLOSUM45 and BLOSUM80.
The reader is urged to read an excellent short primer
by Sean Eddy on how the BLOSUM62 matrix was
developed.16

BOX 6.1

PROBAB I L I TY, ODDS , LOG -ODDS , SCOR ING MATR IX

Probability is a measure of how often an event may

occur, whereas odds is a measure based on the probabil-

ity that an event may ever occur. Odds is the ratio of

probabilities.

1. Probability of event X5 # of events X/# of all possible

events

(e.g. when a die is rolled, the probability that the

die will land with the six-side up is 1/6. In this case,

the probability of the alternative event—that is, the

probability against the die landing with the six-side

up—is 5/6)

2. Odds of event X5probability of event X/probability

of the alternative event (i.e. probability against

event X)

(e.g. in the above example, the odds of the die

landing with the six-side up is the ratio of the two

probabilities—that is, (1/6)4 (5/6)5 1/5).

In the case of amino-acid substitution (mutation),

the odds of substitution means the ratio of the proba-

bility that one specific amino acid is preferentially

substituted by another specific amino acid during

evolution to the probability that such substitution is

random. By assigning a score (odds score) to all possi-

ble pairs of amino-acid substitution, a scoring matrix

can be obtained. Substitution matrices are scoring

matrices that use the logarithm of the odd score,

called the log-odds score. Use of the log-odds score

instead of the odds score (which is the ratio of proba-

bilities) allows for addition of the scores instead of

multiplication of the probabilities. All algorithms for

sequence comparison use some kind of scoring

scheme.

If the substitution of two residues i and j is considered,

the mathematical logic for the calculation of log-odds will

be as follows:

1. The probability that i and j are aligned based on their

evolutionary relationship of substitution is Pe5 fi3 fji
(fi5 frequency of residue i and fji5 frequency of

residue j substituting for i).

2. The probability that i and j are aligned by random

chance is Pr5 fi3 fj (fi5 frequency of residue i

and fj5 frequency of residue j).

3. Hence, the odds5Pe/Pr5 (fi3 fji)/(fi3 fj )5 fji/fj.

4. Log odds5 log (fji/fj).

5. If (fji/fj)5 1, then log (fji/fj)5 0. This means that the

odds of i and j being aligned based on their evolutionary

relationship of substitution is the same as that by

random chance.

6. If (fji/fj). 1, then log (fji/fj)5positive. This means

that the odds of i and j being aligned based on their

evolutionary relationship of substitution is greater

than by random chance.

7. If (fji/fj), 1, then log (fji/fj)5negative. This means

that the odds of i and j being aligned based on their

evolutionary relationship of substitution is lower than

even by random chance.

Therefore, a negative log-odds score means that the

cost of such substitution to the protein structure and

function is high, and normally such substitutions are

not encouraged by natural selection. For example, the

PAM250 matrix shows that the likelihood of valine being

substituted by isoleucine, another hydrophobic amino

acid, is higher (4) than by any one of the four hydrophilic

and charged amino acids—arginine, lysine, aspartic acid,

and glutamic acid (22 for each one).
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For a PAM matrix, the higher the suffix number,
the better it is in dealing with evolutionarily distant
protein alignment, and the lower the suffix number,
the better it is in dealing with evolutionarily closer
protein alignment. In contrast, for BLOSUM matrices,
the suffix numbering system is the opposite of
PAM matrices; hence, the higher the suffix number,
the better it is in dealing with evolutionarily closer
protein alignment. In their publication, Henikoff and
Henikoff drew equivalence between different PAM
and BLOSUM matrices based on relative entropye.
For BLOSUM matrices, relative entropy increases
nearly linearly with increasing clustering percentage.
Based on relative entropy, Henikoff and Henikoff
concluded the following:

PAM250�BLOSUM45 (relative entropy 0.4 bit)
PAM120�BLOSUM80 (relative entropy 1 bit)
PAM160�BLOSUM62 (relative entropy 0.7 bit).

BLOSUM62 is the most widely used amino-acid
scoring matrix (including by BLAST algorithms) for
scoring amino-acid alignment for database searches
(discussed below). Figure 6.10 shows a BLOSUM62
matrix. The NCBI FTP site from where various nucleic-
acid and protein scoring matrices can be downloaded
is ftp://ftp.ncbi.nih.gov/blast/matrices/.

To summarize, PAM and BLOSUM matrices can be
compared as follows:

1. PAM matrices are constructed based on an
evolutionary model—that is, from the estimation
of mutation rates through constructing phylogenetic
trees and inferring the ancestral sequence—but
BLOSUM matrices are constructed based on direct
observation of ungapped multiple alignment-driven
sequence relationships. Thus, PAM matrices are often
used for reconstructing phylogenetic trees, whereas
BLOSUM matrices are suitable for local sequence
alignments.

2. PAM matrix construction involves global
alignment of the full-length sequences consisting
of both conserved and diverged regions, but
BLOSUM matrix construction involves local
sequence alignment of conserved sequence blocks.
Additionally, when Henikoff and Henikoff
compared the two equivalent matrices PAM160
and BLOSUM62, they found that BLOSUM62 is less
tolerant to hydrophilic-amino-acid substitution,
but more tolerant to hydrophobic-amino-acid
substitution than PAM160. Also, for rare amino acids,
such as cysteine and tryptophan, BLOSUM62 is
typically more tolerant to mismatches than PAM160.

FIGURE 6.10 BLOSUM62 substitution matrix

made by writing the amino acids in alphabetical

order.

eRelative entropy (also known as Kullback�Leibler divergence) is a measure of the difference between two states or two probability

distributions P1 and P2. For example, P1 could be the frequency of occurrence of an amino acid at a given position in a multiple

alignment relative to the background frequency, P2, of a random sample. Thus, in the context of sequence alignment, relative entropy

can be calculated to determine sequence conservation relative to the background, and it is measured as the average information per

residue pair in bit units. When relative entropy is 0, the target (or observed) distribution of pair frequencies is the same as the

background (or expected) distribution. Relative entropy increases as two distributions become more distinguishable. An online tool

for the calculation of relative entropy within sequence alignment blocks is H-BLOX, which can be accessed at http://gecco.org.

chemie.uni-frankfurt.de/h-blox/hblox.html.
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Most bioinformatics analysis tools provide users with
a default matrix, but the default matrix may not be the
most suitable matrix for the user’s need. Therefore, it is
important to be mindful about the utility of a specific
matrix for a specific purpose. There are essentially three
levels of similarity-searching alignments: that of closely
related sequences, that of divergent sequences, and that
of sequences intermediate between the closely related
and divergent sequences. Both PAM and BLOSUM
matrices can be used for this purpose. The following
example shows the PAM�BLOSUM matrix equivalence,
and their preferred use:

In general, BLOSUM matrices are widely used for
detecting local alignments. BLOSUM62 is the most fre-
quently used matrix for detecting the majority of weak
protein similarities, and BLOSUM45 is very suitable for
detecting long and weak alignments.

While aligning unknown sequences, if one wants to
use the most appropriate matrix based on how similar
the sequences are, one has to first try multiple matrices
and then use the one that gives the highest ungapped
alignment score.

6.7.3 Scoring Sequence Alignment and
Statistical Significance of Sequence Alignment

The calculation of alignment scores involves addi-
tion of the match/mismatch values from the matrix for
every nucleotide base or amino acid residue involved
in the alignment to obtain a gross alignment score.
Then the total gap penalty is calculated. The total gap
penalty value is subtracted from the gross alignment
score value to obtain the final alignment score. The ter-
minal gaps may or may not be penalized, depending
on the program used. For example, in local alignment
(Smith�Waterman algorithm), a terminal gap penalty
does not make sense, whereas in global alignment
(Needleman�Wunsch algorithm), a terminal gap pen-
alty may be applied depending on the program.

Different alignments should not be directly compared
based on their raw score (S). For example, a not-so-good
long alignment may get a higher S than a very good short
alignment. Thus, different alignments should only be com-
pared after normalization. This is achieved by determining
the statistical significance of the score.

The statistical significance of the raw score, S, of
an alignment is assessed to determine whether the
observed alignment is specific or could be the result of

random chance. This is done by creating many random
sequences of the same length from one of the two
aligned sequences by shuffling the sequence and
running the alignment again. Typically this reshuffling
and realignment process is repeated 200 times or
more. Each alignment using these random sequences
produces an alignment score (s). These scores (s1. . .sn)
are plotted to generate a distribution pattern, a thresh-
old of significance is set, and the original score (S) is
compared against this distribution. If the S is located
at one end of the distribution (extreme value distribu-
tion) that means that the alignment is not likely to be
produced by random chance.

6.7.3.1 P-Value

The P-value of an alignment represents the proba-
bility of obtaining a score$ S by chance. For example,
if the P-value is 1025, it means that the probability of
obtaining an alignment with a score$ S is 1 out of 105.
Thus, different alignments can be compared based on
their P-values. The P-value ranges from 0 to 1; the
closer it is to 0, the better is the alignment.

6.7.3.2 Z-Score

In the statistical sense, Z is the distance between S and
the mean of scores obtained using randomized sequences.
The Z-score is calculated by repeating the reshuffling and
realignment process, as described above, and noting the
raw score (s) of each alignment using the randomized
sequences (s1. . .sn). The mean (x) and the standard devia-
tion (σ) of s1. . .sn are calculated and from these the Z-score
of the target alignment can be determined.

The calculation of the Z-score assumes that the
alignment of the shuffled random sequences shows a
normal distribution. Hence, the farther the alignment
raw score S is away from the x of s1. . .sn, the more
likely it is to be significant. In a statistical sense, the
Z-score reflects the extent to which S is an outlier from
the population. A Z5 5 means the S is 5σ above the x
of s1. . .sn. By convention, a Z. 7 indicates a significant
alignment and it is likely that the two sequences being
aligned are homologs; it also indicates that the align-
ment of the two sequences likely reflects the alignment
of structurally and functionally related amino acid
residues of the proteins. Another interpretation of the
Z-score is as follows17:

Z. 20: two sequences are definitely homologous
(Family)
Z between 10 and 20: two sequences most likely
homologous (Family/Superfamily)
Z between 6 and 8: two sequences are less likely to
be homologous
Z, 6: not significant.
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PRSS (current version PRSS3; http://www.ch.embnet.
org/software/PRSS_form.html)18 is freely available
web-based software that can be used to evaluate the
significance of a protein or DNA sequence-similarity
score. PRSS compares two sequences and calculates
the optimal similarity scores, and then repeatedly
shuffles the second sequence, and calculates optimal
similarity scores using the Smith�Waterman algo-
rithm. An extreme value distribution (EVD) is then fit
to the shuffled-sequence scores. In the PRSS output,
the left-most column represents the normalized simi-
larity scores; and the E ( ) column on the right repre-
sents the number of sequences expected to achieve
the score in the first column.

6.7.3.3 E-Value

This is particularly relevant in relation to sequence-
similarity searching using BLAST and FASTA, which
are discussed later in this chapter. The E-value is the
expectation value that indicates the number of align-
ments with a score$ S that one can expect to find by
chance in a database of size N. Hence, the E-value is
dependent on the database size and the query length.
The closer the E-value to 0, the better is the alignment.
For E, 1e2 2 (513 1022

5 0.01), P�E. The E-value is
the most widely used measure for estimating the quality
of sequence alignment—that is, the extent of sequence
similarity.

The typical threshold for the E-value when judging
homology, particularly using BLAST, is E# 1e2 5
(513 1025), and the lower the value, the better it is.
For BLAST (both nucleotide and protein), the default
E-value is set at 10 in the Expect threshold box under
Algorithm parameters (lower left corner of the
BLAST home page). This means that 10 matches are
expected to be found merely by chance, according to
the stochastic model of Karlin and Altschul (1990).19

It also means that the BLAST output will not report
any alignment with an E-value greater than 10.
Obviously, when the E-value is increased from the
default value of 10, a larger number of chance
matches will be reported. In contrast, lowering the
default value makes the search more stringent and
fewer chance matches are reported. The default
E-value should be increased if searching for short
sequence matches, because setting a lower E-value
will automatically exclude the short matches as
spurious and these will not be reported. In such cases,
the default value in the “Expect threshold” box can
be manually changed. Alternatively, the nucleotide and
protein BLAST programs of the NCBI automatically adjust
the E-value if the query, either nucleotide or amino
acid, is of length 30 or less.

6.7.3.4 Bit Score

The bit score (S0) is a normalized raw score
expressed in bits; it is an estimate of the search space
one has to search through—that is, the number of
sequence pairs one has to score—before one can come
across a raw alignment score$ S, by chance.

For example, a bit score of 30 means that, on aver-
age, one has to score 230 (51 billion) sequence pairs
before one will come across a score$ S, by chance.
Usually, good alignments produce a bit score. 50.
It should be emphasized that the bit score is dependent on
sequence length, and short sequences may not produce high
bit scores despite very high identity.

To summarize the utility of the statistical estimates
of sequence alignment in simple terms, the better the
alignment (e.g. homologous sequences), the lower
the P- and E-values, and the higher the Z- and bit
scores.

6.8 DATABASE SEARCHING WITH
THE HEURISTIC VERSIONS OF

THE SMITH�WATERMAN
ALGORITHM—BLASTAND FASTA

Alignment programs that use dynamic program-
ming algorithms, such as the Needleman�Wunsch
and Smith�Waterman algorithms, require long pro-
cessing times, particularly when searching a huge
database. In order to circumvent this computational
limitation, heuristic methods have been developed.
A heuristic method (algorithm) estimates the best
solution without considering every possible outcome;
thus, a heuristic method does not guarantee to
find the best solution, but finds good solutions, and
thereby has high speed and is time efficient. Two
examples of heuristic methods are the Basic
Local Alignment Search Tool (BLAST) and FAST-All
(FASTA). FASTA is pronounced “fast A”. It stands
for “FAST-All” because it is an extension of “FAST-P”
for proteins and “FAST-N” for nucleotides; therefore,
FASTA works with all alphabets associated with
proteins and nucleic acids.

6.8.1 BLAST and its Utility

Currently, the most widely used heuristic algorithm
is BLAST, developed by Altschul and colleagues.20

The BLAST algorithm allows a DNA or protein query
sequence to be compared with sequences in the
database. The main idea behind BLAST searching is
that homologous sequences are likely to contain a
short, high-scoring similarity region, called a word
or hit (W). Each word (hit) gives a seed that triggers
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the alignment and BLAST tries to extend on both
sides of the seed. The word size—i.e. the length of
the seed—may vary. For nucleotides (blastn), the
default word size is 11 and the smallest word size
is 7; for proteins (blastp), the default word size is
3 and the smallest word size is 2. For megablast
(highly similar sequences), the default word size is
28 and the smallest word size is 16 for nucleotides.
These parameters can be adjusted by clicking
“Algorithm parameters” in the lower left corner of
the BLAST page. For a nucleic-acid sequence align-
ment, the seed should match completely in order to
trigger the alignment; for proteins, the match may or
may not be exact. In order to create an alignment,
the BLAST algorithm breaks the query sequence into
short subsequences. Typically, BLAST is designed to
find local regions of similarity, but can be expected
to run about two orders of magnitude faster than the
Smith�Waterman algorithm. An important parame-
ter governing the sensitivity of BLAST searches is the
length of the initial words (hits).

Database searching is done for various reasons,
such as finding relationships between the query
sequence and other sequences in the databases, under-
standing the likely function of a sequence, identifying
regulatory elements, understanding genome evolu-
tion, or assisting in sequence assembly. In designing
probes and primers, the selected nucleic acid
sequence is compared with other sequences in the
database to determine the specificity and uniqueness
of the selected sequence. Therefore, a BLAST search
can help determine the identity of nucleic acid and
protein sequences, reveal whether these sequences
represent new genes and proteins, discover variants
of existing genes and proteins, discover potential
orthologs and paralogs of a sequence, determine
whether a gene or protein is present in other organ-
isms, or determine whether a nucleic acid sequence is
expressed.

In a BLAST search, the sequence that is subject to
comparison is termed the query. This query sequence is
subjected to BLAST search against all sequences in the
database. The search retrieves all sequences showing
similarity with the query sequence. These sequences are
called subject (or target).

6.8.2 Various BLAST Programs for Analysis

At the NCBI, there are several BLAST resources,
which can be grouped as basic BLAST and special-
ized BLAST.

Basic BLAST offers a few options, such as blastn
(searches a nucleotide database using a nucleotide
query), blastp (searches a protein database using a

protein query), blastx (searches a protein database using
a translated nucleotide query), tblastn (searches a
translated nucleotide database using a protein query),
and tblastx (searches a translated nucleotide database
using a translated nucleotide query).

Specialized BLAST provides many specialized/
advanced options, such as Primer-BLAST, trace archives,
conserved domains, conserved domain architecture,
gene expression profile (GEO), immunoglobulin search
(IgBLAST), single nucleotide polymorphism (SNP)
flank search, vector contamination screening (vecscreen),
Align, PubChem BioAssay search, searching SRA tran-
script and genomic libraries, Multiple Alignment Tool,
Global Sequence Alignment Tool, or searching the
RefSeqGene database.

For a detailed description of each of these different
BLAST programs and their use, refer to the NCBI ref-
erence resource (http://blast.ncbi.nlm.nih.gov/).

6.8.2.1 Megablast, Blastn, and Discontinuous
Megablast

Currently, the nucleotide BLAST program offers
three options for searching sequences for hits in the
database with different degrees of similarity. These are
megablast, blastn, and discontinuous megablast.

Megablast is optimized for highly similar
sequences. It efficiently finds long alignments between
highly similar (. 95%) sequences, and thus is the best
tool to find the identical match to the query sequence.
The default word size is 28 and the lowest word
size is 16.

Blastn is optimized for somewhat similar sequences.
The reason blastn is more sensitive than megablast is
because it uses a shorter default word size (11). Because
of this, blastn is better than megablast at finding
alignments to related nucleotide sequences from other
organisms. Reducing the word size from 11 (default)
to 7 (lowest) increases the sensitivity of search—that is,
increases the number of positive hits.

Discontinuous megablast is optimized for more
dissimilar sequences. Instead of using the exact word
match as seed for an alignment extension, discontinu-
ous megablast uses a noncontiguous word within a
longer window of template. As a result, discontinuous
megablast using the same size of the initial hit is even
more sensitive and efficient than standard blastn using
the same word size.

6.8.2.2 Searching for Short, Nearly
Exact Matches

For searching short nucleotide-sequence matches, algo-
rithm parameters can be manually adjusted as follows:
select blastn-select the non-redundant (nr) nucleotide
database (unless a specific database is needed)-select
“Somewhat similar sequences (blastn)”-click on
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“Algorithm parameters”-check the short queries
box-filterf setting to remain off-select the word size
7-change expect threshold to 1000 (or as necessary).
For searching short protein-sequence matches, algorithm
parameters can be manually adjusted as follows: select
blastp-select the non-redundant (nr) protein database
(unless a specific database is needed)-check the short
queries box-filter setting to remain off-select the
word size 2-change expect threshold to 10000 (or as

necessary)-select PAM30 as the scoring matrix. The
query needs to be at least twice the word size.
Theoretically therefore, a query of four amino acid resi-
dues should be searchable, but at least five residues are
recommended.21 Figure 6.11 shows a partial screenshot
of the BLAST home page. Alternatively, the nucleotide and
protein BLAST programs of NCBI automatically adjust the
E-value if the query, either nucleotide or amino acid, is of length
30 or less.

FIGURE 6.11 NCBI BLAST home page of nucleotide blast. By clicking the tabs at the top (circled), other BLAST tools can be obtained.
For regular BLAST, the sequence can be entered in plain text format. For pairwise alignment, the small box (indicated by an arrow) can be
checked and a second box appears where the other sequence can be entered. The “Algorithm parameters” can be clicked and the default
setting can be changed.

fBecause sequence-similarity searching aims to detect sequences that indicate structural and/or functional similarity, a sequence filter

is used to remove low-complexity regions during similarity searching. Examples of low-complexity regions are repeat sequences

(e.g. polyA tails, nucleotide sequences like AAAATTAAAAAT, proline-rich regions, amino-acid sequences like GGGGKDKKKKDD),

compositionally biased sequences etc. that are naturally abundant in most sequences. If low-complexity regions are not removed,

then the sequence alignment may produce artificially high scores that would not be a true reflection of homology. Blastn filters

low-complexity nucleotide sequences with the DUST algorithm, and blastp filters low-complexity amino-acid sequences with the

SEG or XNU algorithms. Low-complexity nucleotide sequence is substituted by “N” (e.g. NNNNNNN), whereas low-complexity

amino-acid sequence is substituted by “X” (e.g. XXXXXXX), and removed from the search.

1516.8. DATABASE SEARCHING WITH THE HEURISTIC VERSIONS OF THE SMITH�WATERMAN ALGORITHM—BLAST AND FASTA

BIOINFORMATICS FOR BEGINNERS



6.8.2.3 Suggested BLAST E-Value Cut-Off

For nucleic-acid-based search, the suggested thresh-
old (minimum significant hit) for the E-value is# 1e-6
(51026), and a sequence identity of$ 70%. For
protein-based search, the suggested threshold for the
E-value# 1e-4 (51024), with a sequence identity
of$ 35%g. However, typically for protein-based homol-
ogy search, the threshold used is E# 1e-5 (51025),
and the lower it is, the better. For example, an E-value
of 1e-25 (510225) will indicate a clear homology.

It should be borne in mind that the E-value is influenced by
the query length. A moderately good alignment involving two
very long sequences will produce a higher E-value than an
extremely good alignment involving two smaller sequences.

6.8.3 Typical Basic BLAST Output

Figure 6.12 shows the result of a BLAST search.
A 58-amino-acid segment was searched in the NCBI
database using BLAST. In order to tailor the search to

FIGURE 6.12 Result of the BLAST analysis of Slco1a6. The screenshot was captured in three different pieces (the upper, middle and
lower segments), which are put together in the figure. A 58-amino-acid segment was used for BLAST (blastp). The RefSeq protein database
was chosen to minimize the number of redundant hits. Alternatively, the Swiss-Prot could be chosen to obtain non-repetitive specific hits. The
result shows on the top that putative conserved domains have been detected. These are the Kazal domain and the MFS domain. Refer to
Chapter 8 for a more detailed discussion on this topic. From the analysis, only the first four entries are shown. From the BLAST hit diagram, a
specific line can be clicked to get to the alignment. The color key for alignment score is self explanatory.

gIt has been reported that protein pairs with similar structure and function are likely to have. 35% sequence identity22. The author

analyzed more than a million sequence alignments between protein pairs of known structures and noted that sequence alignments

could unambiguously distinguish between protein pairs of similar and non-similar structure when the pairwise sequence identity

was. 40% for long alignments. The signal, however, became blurred when the sequence identity was between 20 and 35%; this

20�35% range was termed the twilight zone of sequence identity.
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reduce the amount of less relevant output, the organ-
ism (Mus musculus) and the database (RefSeq protein
database) were chosen on the BLAST home page.
The search returns many entries; the highest similarity
was (predictably) with mouse Slco1b2 protein (Refseq
ID NP_065241). In the output, the subject sequences
are listed from the highest similarity at the top to
progressively lower similarities going down the list,
as depicted by the bit score (score) and the E-value.
The bit scores are listed from the highest value at the
top to progressively lower values going down the list,
whereas the E-values are listed from lowest value at
the top to increasingly higher values going down the
list. The detailed alignments are shown in Figure 6.13.

6.8.3.1 Searching for Distantly Related
Proteins—PSI-BLAST

Many homologous proteins have similar three-
dimensional structure, but in pairwise alignment
they may not show significant sequence similarity.
Therefore, regular protein BLAST (blastp) is not useful
in identifying these proteins. Position-Specific Iterative
BLAST (PSI-BLAST) is designed to detect weak relation-
ships between the query sequence and other sequences
in the database that are not necessarily detectable by
standard BLAST searches. When a new genome is

sequenced, PSI-BLAST can be used to identify the
homology of the predicted protein products. The proce-
dure of PSI-BLAST involves the following steps:

First step in PSI-BLAST involves standard
protein�protein BLAST using the default substitution
matrix, such as BLOSUM62. The input protein
sequence is compared to proteins in the database to
generate similarity hits. The high-scoring hits (default
threshold E-value5, 0.005) are used to generate
a multiple alignment. The original query sequence
serves as the template to drive the multiple align-
ment. PSI-BLAST analyzes the alignments position
by position and assigns a score to every position.
If the amino acid residue is highly conserved at a
particular position, that residue is assigned a high
positive score, and others are assigned high negative
scores. At weakly conserved positions, all residues
receive scores near zero. Using these scores, a profile
or position-specific scoring matrix (PSSM) is built.
In the next iteration of BLAST search, this PSSM
replaces the substitution matrix used in the previous
iteration of BLAST search; thus more proteins are
identified using this PSSM. The newly identified pro-
teins are then incorporated in the multiple alignment
to create a new PSSM, which replaces the previous
one. This process is repeated (iterative) until no new

FIGURE 6.13 The details of two alignments from Figure 6.12. In the alignment, the upper sequence is the query sequence (the sequence
submitted for search) and the lower sequence is the subject sequence (from the database); the identities and the similarities are in the middle.
The number of amino acids showing identity/similarity is indicated; identities indicate identical amino acids between the query and subject
sequences whereas positives indicate identical amino acids plus similar amino acids at the corresponding positions. Similar substitutions are
indicated by a1 sign. Each individual alignment also provides direct link to the original sequence in the database. If the subject sequence is
from an organism whose whole genome is known and sequenced, the alignment also provides links to the Gene and Map Viewer databases,
indicated on the right-hand side.
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proteins are found. In each repetition, a new PSSM is
generated, which replaces the old one and is used for
the new round of search. The PSI-BLAST output looks
like regular BLAST output.

Because of the nature of the algorithm, the main
source of error in PSI-BLAST is the corruption of the
profile (PSSM). In other words, for reasons unrelated to
true homology/functional characteristics (e.g. amino-
acid compositional bias), a position-specific amino acid
may be wrongly identified as a conserved residue and
assigned a high score. That position in the profile will
then adversely influence the next iteration to identify
more related proteins. Repeated iteration will amplify
the error corrupting the subsequent profiles. There are
several ways to address this problem, such as filtering
out compositionally biased regions using a filtering algo-
rithm, lowering the E-value from the default 0.005, or
visually inspecting each output and applying judgment
to discard the hits that appear spurious.

6.8.3.2 Searching for Pattern Hit—PHI-BLAST

Many proteins contain signature sequences (motifs)
that are characteristics of a protein family. These signa-
ture sequences are part of important structural or func-
tional domains. Pattern-hit-initiated (PHI)-BLAST is
designed to search the database for proteins that are
significantly related to the query sequence and also
contain a pattern. In other words, PHI-BLAST searches
for significantly similar sequences to both a query
sequence and a signature. This dual requirement is
supposed to reduce the number of database hits that
contain the pattern but are likely to have no true
homology to the query.

6.8.4 BLAT

Blast-like alignment tool (BLAT) has been discussed
in the context of the University of California Santa Cruz
(UCSC) Genome browser in Chapter 5. Also refer to
Figure 5.32 for BLAT output. Therefore, the discussion
here will be brief. BLAT is an alignment tool like BLAST,
but it is structured differently. BLAT is commonly used
to map the location of a query sequence in the genome,
or to determine the exon structure of an mRNA. DNA
BLAT works well within humans and primates, while
protein BLAT works well for terrestrial vertebrates and
even earlier organisms for conserved proteins.

6.8.5 FASTA

FASTA was developed for rapid biological-sequence
comparison.23 It was derived as a more sensitive and ver-
satile program from its predecessor program FASTP,
which was developed by the same authors 3 years earlier

for rapid protein-sequence comparison. Like BLAST,
FASTA also allows the user to compare a DNA or
protein query sequence against a large database. FASTA
searches for matching sequence patterns called k-tuples
(ktup), which are akin to the “words” (W) in BLAST. The
ktup length is usually user defined (e.g. defining ktup5 6
for a search involving DNA sequence will prompt the
algorithm to use 6 nucleotides as the matching sequence
pattern for the search). The FASTA search strategy
involves searching for words of length ktup common
to the query and target sequences. Using ktup, FASTA
builds a local alignment. Finally, FASTA scores this
alignment and provides the output as a list of sequences
similar to the query in descending order. The default ktup
is 2 for amino acids and 6 for nucleotides; hence, the default
window size in FASTA is smaller than that in BLAST.

Some web-based FASTA servers are provided in
Table 6.3.

6.8.5.1 Comparison of BLASTand FASTA

BLAST and FASTA are both heuristic algorithms that
perform database searches to find sequences related to a
query sequence. However, there are some differences
between the two:

1. BLAST begins a search by looking for matches
that include exact matches and conservative
substitutions; FASTA begins a search by looking
at exact matches.

2. BLAST scans a larger window size than FASTA;
hence, FASTA may produce better coverage for
homologs.

3. BLAST may produce multiple best-scoring
alignments (also called high-scoring segment pairs
or HSPs) from the same sequence; FASTA returns
only one alignment from one sequence.

4. BLAST automatically masks low-complexity
regions; FASTA does not employ such automatic
masking. Therefore, if the query sequence has non-
unique segments, such as repeats, compositionally
biased segments, etc., FASTA search may return
alignments with artificially high scores.

5. For a given sequence search, the BLAST output
is larger than that of FASTA.

6. For a given sequence search, BLAST is faster than
FASTA.

TABLE 6.3 Web-Based FASTA Servers

FASTA Server URL

GenomeNet, Japan http://www.genome.jp/tools/fasta/

EMBL-EBI http://www.ebi.ac.uk/Tools/sss/fasta/

University of
Virginia

http://fasta.bioch.virginia.edu/fasta_www2/
fasta_list2.shtml
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6.9 SEQUENCE COMPARISON, SYNTENY,
AND MOLECULAR EVOLUTION

Comparative genomics is the study of the evolu-
tionary relationships between the genes and genomes
of different species. Comparative genomic studies
are helpful in elucidating the structure, function, and
evolution of genomic elements and sequence features
that influence various aspects of genome biology.
From the macro to the micro scale, the similarity
between two genomic sequences can be studied
at the level of the whole genome, at the level of
chromosomal segments, and also at the level of spe-
cific genomic markers. This is because the genomes
of the descendants of a common ancestor are likely
to preserve at least some of the same genes in the
same order. A chromosomal segment that has been
inherited from the common ancestor during evolu-
tion without a major rearrangement of the order of
genes is called a syntenic block (or synteny block).
Syntenic blocks contain specific non-repetitive geno-
mic markers that are in the same order and orienta-
tion in the genomes being compared. These genomic
markers could be protein-coding genes, RNA-coding
genes, noncoding sequences, pseudogenes, etc., and
are called syntenic anchors (or synteny anchors).24

In other words, syntenic blocks are composed of
syntenic anchors present in consecutive order. Genes
within a syntenic block are likely to be orthologous.
While comparing two genomes, the overall sequence
similarity can be enhanced if the genomes are
segmented into syntenic blocks. For example, approx-
imately 40% of the human genome can be aligned
with the mouse genome, but over 90% of mouse
and human genomes can be segmented into blocks
of conserved synteny. Comparison of mouse chromo-
some 16 with the human genome shows regions of
conserved synteny with human chromosomes 3, 8,
12, 16, 21, and 22. A total of 11,822 syntenic anchors
map to chromosome 16; the mean length and identity

of these anchors are 198 bp and 88.1%, respectively.
Over 50% of these anchors are in runs of at least 128
in a row in the same order and orientation between
mouse chromosome 16 and the human chromosomes
sharing blocks of conserved synteny.24 Charting the
blocks of conserved synteny creates a synteny map,
which shows the large-scale evolutionary relation-
ships between genomes that are related through a
common ancestor, but have diverged during evolu-
tion. Shared genomic synteny and shared protein
functions can be used to enhance the identification of
orthologous gene pairs.25
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7.1 GENOME SEQUENCING

The traditional sequencing method involves the fol-
lowing steps: the DNA fragment to be sequenced is
cloned into a vector that provides known primer-
binding sites flanking the cloned sequence. The first
set of sequencing primers is designed based on these
known primer-binding sites. The sequencing runs on
both strands produce two sequencing reads. New pri-
mers are designed from the 30-end of the newly
obtained sequences (Figure 7.1A). In this process, the
sequence reads generated in one direction have
sequence overlaps. Using the sequence overlaps, these
contiguous sequence reads are assembled into a larger
sequence, called a contiga (from contiguous)
(Figure 7.1B; upper and lower panels). The sequencing
method described above involves sequential designing
of primers followed by new sequencing; hence, this
sequencing method is called primer walking. Primer

walking works well for sequencing a complementary
DNA (cDNA) or a large DNA fragment of finite size.
However, primer walking is costly and slow, and it
involves cloning of the fragment. Although it can be
scaled up, primer walking is still not a high-
throughput strategy for sequencing a genome.

Primer walking is an example of directed sequenc-
ing because the primer is designed from a known
region of DNA to guide the sequencing in a specific
direction. In contrast to directed sequencing, shotgun
sequencing of DNA is a more rapid sequencing strat-
egy. As the name suggests, shotgun sequencing
involves random fragmentation of the DNA into small
pieces followed by sequencing of these small frag-
ments. Shotgun sequencing can adopt either a hierar-
chical shotgun sequencing (top-down) approach, or a
whole-genome shotgun (WGS) sequencing (bottom-
up) approach. In the hierarchical shotgun sequencing
approach, the chromosomes are sorted, broken into

�The opinions expressed in this chapter are the author’s own and they do not necessarily reflect the opinions of the FDA, the DHHS,

or the Federal Government.
aA sequence read should not be confused with a sequence contig. In theory, at least two overlapping sequence reads are needed to

construct one sequence contig. In reality, a sequence contig is constructed from many sequence reads.
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large fragments and cloned into vectors that can hold
large DNA fragments, such as bacterial artificial chro-
mosomes (BACs) or yeast artificial chromosomes
(YACs)b. Both ends of each clone are sequenced, pro-
ducing an approximately 500�800-bp read each,
together called paired ends or mate pairs, and the

tiling path is determined based on sequence overlaps.
This is part of the physical mapping processc. The til-
ing path is the smallest set of overlapping clones (i.e.
clones with overlapping DNA fragments) that covers
the entire chromosome or contig (Figure 7.1C).
Therefore, the clones that produce the tiling path

FIGURE 7.1 Sequencing strategy. (A) Directed DNA sequencing by primer walking. This involves sequential designing of primers from a
known region. The first set of sequencing primers are designed based on the primer-binding sites flanking the cloned DNA. New primers are
designed from the 30-end of the newly obtained sequences. (B) The sequence reads have sequence overlaps that help put the contiguous
sequences together in proper order (upper panel). Many such sequence reads are assembled to obtain a sequence contig (lower panel). (C) In
the hierarchical shotgun sequencing approach, the chromosomes are sorted and broken into large fragments. Both ends of each clone are
sequenced and the tiling path is determined based on sequence overlaps. The tiling path (shown as green fragments) is the smallest set of over-
lapping clones that covers the entire chromosome or contig. Once the clones in the tiling path are identified, the larger fragments in these clones
are broken down into smaller fragments, which are then sequenced using a shotgun sequencing strategy. The sequence is put together by a
sequence assembler. (D) A scaffold, or supercontig, is a portion of the chromosome (or genome) sequence that is composed of contigs put
together in correct order. Scaffolds have gaps (upper panel); once the gaps are identified, the goal becomes sequencing those regions and closing
the gaps. The lower panel shows that the scaffold of these three contigs is held together by mate pairs. The thin lines connect the paired ends.

bBACs can hold DNA fragments up to 300 kbp, whereas YACs can hold fragments up to 3000 kbp.
cA physical map of a chromosome is a set of cloned DNA fragments whose position relative to each other in the chromosome is

known. In physical mapping, a large number of clones from the recombinant library of each chromosome are end sequenced to

obtain a fingerprint for each clone. A fingerprint is a unique sequence signature that identifies a specific clone. The information about

such signatures can be obtained by random sequencing or by examining sequence information already existing in the database. For

example, the sequence of a known unique gene in the chromosome will provide the fingerprint for a clone that contains this

sequence. This type of short DNA sequence (usually less than 500 bp) that occurs only once in the chromosome (or genome) is

known as a sequence tagged site (STS). Appropriate overlaps between clones are determined based on such clone-specific

fingerprints. Fingerprinting the clone contigs generates many genomic landmarks along the length of the chromosome. These

landmarks help in the process of accurate sequence assembly, particularly if the genome is rich in repetitive sequences.
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constitute a set of clone contigs (contiguous clones).
Once the clones in the tiling path are identified, the
larger fragments in these clones are broken down into
smaller fragments, which are then sequenced using a
shotgun sequencing strategy. The sequence is put
together by a sequence assembler. During assembly,
the contigs are assembled in correct order to produce
longer supercontigs, also called scaffolds. Scaffolds
usually have gaps (Figure 7.1D; upper panel). Once
the gaps are identified, special care is taken to
sequence the gapped regions; this is part of the finish-
ing process for genome sequencing and assembly
(Figure 7.1D; lower panel).

In the bottom-up WGS sequencing approach, the
DNA is randomly sheared into small pieces, fragments
are size selected and subcloned into a “universal” clon-
ing vector containing “universal” priming sites. Clones
are sequenced. Numerous sequence reads are gener-
ated from numerous small fragments. The sequence is
put together by a sequence assembler with very high
computing capacity. In 1988, Eric Lander and Michael
Waterman published a paper in which they demon-
strated mathematically that at least 8�10-fold sequenc-
ing coverage is needed for the successful assembly of
most of the genome, assuming an even distribution of
sequence reads.1

Both hierarchical shotgun sequencing and WGS
sequencing have advantages and disadvantages.
Hierarchical shotgun sequencing creates a physical
map of the genome; hence, it produces genomic land-
marks that can be helpful in sequence assembly if the
genome is rich in repetitive sequences (like the human
genome). However, hierarchical sequencing is slow
because it proceeds through many steps. The WGS
sequencing approach is rapid and direct, but the
assembly of sequences may run into problems if the
genome is rich in repetitive sequences. The number of
sequencing reads generated in WGS sequencing is
very high; therefore, the computing power needed for
WGS sequence assembly is very high. Currently, the
computing power is less of an issue, but it was an
issue in early days of genome sequencing. Current
genome-sequencing efforts adopt a combination of
both strategies for speed and accuracy. Use of the
next-generation (next-gen) sequencing technique has
further added to the speed because it does not need
cloning of the fragments.

7.2 SEQUENCE ASSEMBLY

Genome assembly from sequence reads is an
algorithm-driven automated process. DNA-sequence-
assembly programs have utilized sequence overlaps
for sequence assembly in correct order. The computa-
tional aspect of assembly algorithms is beyond the
scope of this book. Nevertheless, a few terms will be
discussed in plain language for the sake of familiarity.
Sequence assembly can be done using one of three
approaches: (1) greedy, (2) overlap-layout-consensus
(OLC) and Hamiltonian path, and (3) de Bruijn graph
and Eulerian pathd.

Greedy is a rapid-assembly algorithm, which joins
together the sequence reads that are the most similar to
each other based on as much sequence overlap as possi-
ble. In doing so, the greedy algorithm first compares all
fragments in a pairwise fashion to identify sequences
that have overlaps; next, the sequences that have the best
overlaps are merged; this merging process continues
(iterative process) until all the sequences with overlaps
have been merged. In this process, some reads may not
be assembled, which are shown as gaps. Paired-end
sequencing is used to close the gaps. Many early assem-
blers were based on the greedy algorithm and were
extremely useful, such as Phrap, TIGR assembler, and
CAP. The Phred�Phrap�Consed suite of programs has
been widely used. Phred and Phrap were developed by
Drs Phil Green and Brent Ewing at the University of
Washington, Seattle, in 1998 for the Human Genome
Sequencing project. Phred is base-calling software that
assigns a quality score to each base called. Phrap is de
novo shotgun sequence-assembly software. Consed is
the sequence-assembly editor companion to Phrap, and
it is a tool for viewing, editing, and finishing sequence
assemblies created with Phrap. Many such assembly
suites also include sequence-alignment tools.

The overlap-layout-consensus (OLC) algorithm is
based on all pairwise comparisons, and it generates a
directed graph using reads and overlapse. In the
graph, each sequence is created as a node and an edge
is created between any two nodes whose sequences
overlap. The algorithm then tries to find the
Hamiltonian traversal path of the graph, which con-
tains all the nodes (sequences) exactly once, and com-
bines the overlapping sequences in the nodes into the
sequence of the genome. Some assemblers that utilize

dIf the reader is interested to learn more about the computational aspects behind the key methods in simple terms, a good source to

consult is Bioinformatics for Biologists.2

eA graph is represented by a set of nodes (vertices) and a set of edges (arcs) between the nodes; hence, it can be conceptualized as

balls (nodes) in space with arrows (edges) connecting them. If the edges can be traversed in only one direction, the graph is known

as a directed graph. Each directed edge represents a connection from one “source node” to one “sink node”; the sink node of one

edge forms the source node for any subsequent nodes. The assembly process is like finding the path through the graph in a way that

the path visits every node only once.3
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the OLC algorithm are Arachne, CABOG (Celera
Assembler), Newbler, Minimus, Edena, and MIRA.
Overlap-based approaches have been mostly used for
longer reads (.200 bp). However, overlap-based
assemblers for short reads have also been developed.4

The de Bruijn�graph-based approach has been suc-
cessfully employed in assembling short reads
(,100 bp). However, de Bruijn graph assemblers have
also been successfully used with longer reads.4 Some
assemblers that utilize the de Bruijn�graph algorithm
are Euler-SR, Oases, Velvet, ALLPATH, ABySS, and
SOAPdenovo. Sequence assembly based on significant
sequence overlap, as done using the standard Sanger
method, works well when there are a finite number of
sequence reads to be assembled. However, next-gen
sequencing generates hundreds of millions of sequence
reads. The assembly of such a large number of
sequence reads cannot be done easily using this tradi-
tional method. The problem of scalability is solved by
using the de Bruijn graph. The de Bruijn graph does
not use the actual sequence reads for assembly, but
breaks each sequence read down to smaller sequences
called k-mers. These k-mers are aligned using (k2 1)
sequence overlaps. The actual size of k depends on
sequence coverage, read length, etc., but usually is not
less than half of the actual read length. For example, a
106-base read can be divided into 49 overlapping
58-mers (sequence read length2 k-mer length1 15 #
of k-mers; hence, 1062 581 15 49). Because breaking
one sequence read into k-mers increases the number of
short sequence reads (e.g. just one 106-base read gener-
ates 49 k-mers, each one 58 bases long), it is likely that
the resulting k-mers generated from all sequence reads
will represent nearly all k-mers from the genome for
sufficiently small k. This process seemingly compen-
sates for missing sequence reads—that is, the sequence
reads that could not be generated through sequencing
for a variety of technical reasons.5 Therefore, computa-
tional application of the de Bruijn graph helps alleviate
many problems of de novo sequence assembly, but it
is still not a fool-proof process.

With the improvement of sequence coverage and
computing power, software is being constantly being
developed or improved based on newer algorithms.
Sequence reads can now be accurately assembled
based on overlaps as small as 15 bp.6

A genome sequence assembly can be performed in
two ways: mapping and assembly, or de novo assem-
bly. If the genome has been sequenced before and a
reference genome sequence already exists, then the
newly obtained resequence reads are first mapped to
the reference genome through alignment and then
assembled in proper order; this mode of assembly is
called “mapping and assembly.” Bowtie is an ultrafast,
memory-efficient short-read aligner that helps in

mapping and assembly. It rapidly aligns large sets of
short sequencing reads to a reference sequence, at a
rate of over 25 million 35-bp reads per hour. For reads
longer than about 50 bp, Bowtie 2 is generally faster,
more sensitive, and uses less memory than the original
Bowtie (http://bowtie-bio.sourceforge.net/index.shtml).

In contrast, if there is no reference genome sequence
then the assembly is called “de novo assembly.” For
de novo assembly, paired reads work better than sin-
gle reads because paired reads help generate scaffolds.
Therefore, genome assembly is a hierarchical process;
it is performed in steps beginning from the assembly
of the sequence reads into contigs, assembly of the
contigs into scaffolds (supercontigs), and assembly of
the scaffolds into chromosomes. Many genome assem-
blies remain restricted to scaffold level for a long time
because the gaps can not be easily sequenced. Some
scaffolds can be placed within a chromosome, while
the chromosomal assignment of other scaffolds may
remain difficult.

The de novo genome assembly can be assessed
based on a number of parameters, such as the number
of contigs and scaffolds available and their size, and
the fraction of reads that can be assembled. One
widely used metric to evaluate the quality of assembly
is the contig and scaffold N50 value (see Box 7.1). An
N50 contig is the size of the shortest contig such that
the sum of contigs of that size or longer constitutes at
least 50% of the total size of the assembled contigs. For
example, an N50 contig of 100 kb means that when
contigs of 100 kb or longer are added up, the resulting
size represents at least 50% of the total size of all
assembled contigs. Likewise, an N50 scaffold size is
the length of the shortest scaffold such that the sum of
the scaffolds of that size or longer constitutes at least
50% of the total size of all assembled scaffolds.

Although genome sequencing has become high
throughput and very cheap, and the computational
power in genome-sequence assembly has tremen-
dously increased, the current methods have many pro-
blems, partly owing to the nature of the genome
sequence itself and partly owing to problems inherent
in the sequencing method. Consequently, de novo
sequence assembly is still a major challenge and can be
fraught with errors and missing sequence.7 This makes
finishing a genome sequence and assembly a continu-
ous and long-drawn-out process.

7.3 GENOME ANNOTATION

Genome annotation is the process by which biologi-
cal information is assigned to the genome sequence. It
involves the prediction of exons, introns, regulatory
elements, various signal sequences, alternatively
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spliced variants, noncoding RNAs, etc., that ultimately
reflects the function and sheds light on molecular
(sequence) evolution. Therefore, annotation has a struc-
tural aspect and a functional aspect. Annotation can be
done computationally or manually; the latter requires
human expertise. In reality, both computational and
manual annotations are used to optimize the annotation
process. Expectedly, the existence of similar annotated
genomes greatly facilitates the annotation of newly
sequenced genome. The median gene lengths are roughly
proportional to genome size; hence, bigger genomes have big-
ger genes. Thus, accurate annotation of a larger genome
requires a more contiguous genome assembly in order
to avoid splitting genes across scaffolds.8

In brief, at the beginning of genome annotation,
repeats are identified and masked computationally
(e.g. using RepeatMasker; created by Smit, A.F.A.,
Hubley, R., and Green, P.; http://www.repeatmasker
.org) because repeats, if not removed, can produce false
evidence of gene annotations through spurious BLAST
alignments. Repeats include low-complexity sequences
(homopolymeric runs of nucleotides) and transposable
elements, including long interspersed nuclear elements
(LINEs) and short interspersed nuclear elements
(SINEs). Computational masking of repeat sequence
frequently involves replacing the sequence with “N”.

After repeat masking, the genome assembly is
aligned to known expressed sequence tag (EST), RNA,
and protein sequences; these sequences may include
previously identified transcripts and proteins from the
same organism whose genome is being annotated, or
they may be from other organisms. When sequences
from other organisms are used, evolutionarily con-
served proteins provide useful information. The align-
ment process uses BLAST and BLAT (discussed in
Chapters 2, 5, and 6) in order to rapidly identify
approximate regions of homology. BLAT can also map
these sequences to the genome. The alignment data are
filtered to eliminate marginal alignments as revealed

by low % identity or % similarity. The filtered align-
ment data are then inspected for the presence of redun-
dant sequences, which would be removed. Further
alignment is performed to obtain greater precision of
exon boundaries using splice-site detecting alignment
algorithms, such as Splign (http://www.ncbi.nlm.nih.
gov/sutils/splign/splign.cgi) and Spidey (http://
www.ncbi.nlm.nih.gov/spidey/spideydoc.html). Both
Splign and Spidey compute mRNA/cDNA-to-genome
alignments, including spliced sequence alignments.
Splign was developed by Kapustin et al.9 and Spidey
was developed by Wheelan et al.10 Figure 7.2 shows
how Splign can be used online. The example used is
mouse Slco1a6 mRNA (cDNA) (RefSeq NM_023718.3),
which was mapped to and aligned with the mouse
genome to find the genomic location of the exons and
splice-junction sites. Figure 7.3 shows partial informa-
tion of Splign output.

The final stage of annotation is best done manually
but is being increasingly done computationally.
Although manual annotation is high quality, it is time
consuming, expensive, and labor intensive. In the age
of massive genomic data generation, available geno-
mic information, and increased computational power,
genome annotation projects are increasingly utilizing
automated annotation. The ultimate goal of annota-
tion is to obtain a synthesis of alignment-based evi-
dence with gene predictions to obtain a final set of
gene annotations. Annotation of a genome undergoes
repeated quality-control checks and it is a long ongo-
ing process. The target for annotation is to generate a
“high-quality draft” assembly that is at least 90%
complete.8 RNA sequencing (RNA-seq) data can be
used to greatly improve the accuracy of gene annota-
tions because such data provide strong evidence for
exons, splice sites, and alternatively spliced exons.
The interested reader is urged to read an excellent
overview of eukaryotic genome annotation by Yandell
and Ence.8

BOX 7.1

The N50 contig value can be determined by first sort-

ing all contigs in decreasing order of size, then adding

the contigs until the total added size reaches at least half

of the total size of all assembled contigs. The size of the

smallest contig used in this addition process represents

the N50. The scaffold N50 is calculated in the same fash-

ion using the scaffold size. For example, if the contigs

assembled are 0.43, 0.75, 1, 0.6, 0.8, 0.55, 0.32, and

0.25 Mbp, the total assembled size of all contigs is

4.7 Mbp. Now, organizing the contigs in decreasing

order of size, we get: 1, 0.8, 0.75, 0.6, 0.55, 0.43, 0.32, and

0.25 Mbp. Adding just 1, 0.8, and 0.75 yields 2.55 Mbp,

which is 54% of the total assembled size of all contigs.

The smallest contig used in this addition process is

0.75 Mbp. Therefore, the N50 contig is 0.75 Mbp. The

larger the N50 value, the better is the assembly. Using

the same concept, higher values of N are also used, such

as N60 and N80. If the N50 scaffold length is too short,

additional rounds of shotgun sequencing are

recommended.
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7.3.1 Gene Prediction

Gene prediction, which is part of genome annotation,
involves the identification of putative coding exons in an
unannotated DNA sequence. In other words, gene pre-
diction attempts to predict putative coding sequences.
The process is probabilistic and the putative exons are
scored for the probability of being a true exon.

Gene prediction in prokaryotes (Bacteria and
Archaea) involves fewer confounding factors than in
eukaryotes because in prokaryotes the genome size is
small and gene density is high, with B88% of the
genome containing coding sequences.11 Bacteria do not
have introns (Archaea have introns in rRNA and
tRNA genes12), and the genomes have fewer repeat
sequences. This is in contrast to eukaryotic genomes
that are very large and full of repeat sequences;
the majority of the eukaryotic genome is non-protein-
coding, and the protein-coding genes contain large
introns. Bacterial genes also have Shine�Dalgarno
sequence (consensus AGGAGGT), which is the ribo-
somal binding site that lies upstream of the transla-
tional initiation codon (ATG) but downstream of the
transcription start site. The end of the transcriptional
unit (operon) has a terminator sequence that can form
a stem�loop structure followed by a string of “T”s.

The frequency of certain codons is much higher
because of known codon preferences. These telltale sig-
nals, coupled with high gene density and fewer repeat
sequences in the genomes, tend to make gene predic-
tion in prokaryotes easier than in higher eukaryotes.

Gene prediction in an unannotated genome can be
performed by intrinsic or ab initio prediction, extrin-
sic or evidence-based prediction, and homology-
based prediction.

In the absence of any reference sequence (genome,
EST, protein) from a related organism, gene prediction
relies on intrinsic or ab initio prediction—that is, pre-
diction based on the identification and analysis of
telltale signals of protein-coding genes. In other words,
the prediction is based on the information contained in
the genomic sequence itself. Some of these signals are:
start and stop codons, known codon preferences,
intron splice signals, poly(A) signal sequence, TATA
boxes, cap sites, transcription-factor-binding sites,
Kozak sequence, and termination signals. In addition,
the nucleotide composition differences known to exist
between coding and noncoding regions as well as
many essential features of gene structure are also taken
into account, such as gene density, typical number of
exons/gene, typical exon length, and open reading
frame (ORF)-specific hexamer composition versus

FIGURE 7.2 The use of Splign online. In the box for cDNA, either the sequence or the accession number/GI number can be entered. The
sequence has to be entered in FASTA format. The example used is mouse Slco1a6 mRNA (cDNA) (RefSeq NM_023718.3). The goal is to map
the sequence to and align it with the mouse genome to find the genomic location of the exons and splice-junction sites. The default settings
were maintained.
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ORF-independent hexamer composition (in introns
and intergenic regions).

The nucleotide composition of coding versus noncod-
ing regions is analyzed using probabilistic statistics, such
as various versions of Markov models. For example, the
wobble base (third position in a codon) tends to be higher
in G1C content in a coding region. Thus, if the local
G1C content in a genomic region is significantly higher
than the background, it suggests the likelihood of an ORF
in that region. The sequence can be translated in all six
frames (three sense, three antisense). Because there are 3
stop codons plus 61 amino-acid codons, a random unbi-
ased distribution of bases should produce approximately
1 stop codon for every 20 codons in an ORF search. If the
region is rich in A1T, a stop codon is expected even
before 20 codons because the stop codons (TAA, TAG,
TGA) are A1T rich (7 A1T out of 9 bases). These fea-
tures and generalizations are expected for noncoding
regions, but not for coding regions. Therefore, if an ORF

search of a genomic region produces a translated ORF
that shows a significantly high number of codons, such
as . 50 or so, before a stop codon appears, it suggests
the likelihood of a legitimate ORF. With some exceptions,
the number of codons in most ORFs is far greater than
60; in fact, proteins containing,200 amino acids are still
considered to be small proteins and are known to play
important roles in development.13 Therefore, the ab initio
approach combines statistical analyses along with other
gene signals for gene prediction.

AUGUSTUS (http://bioinf.uni-greifswald.de/augus-
tus/submission) is an ab initio gene-prediction program
that uses the hidden Markov model (HMM; see Box 7.2).
The program has used a diverse training set of approxi-
mately 60 genomes belonging to four different groups of
organisms: animals; Alveolata (single-celled eukaryotes);
plants and algae; and fungi, and is therefore able to pre-
dict genes in a wide range of species. The original version
of AUGUSTUS utilized a purely ab initiomethod and was

FIGURE 7.3 Partial Splign output. Splign has aligned the input sequence to the mouse genome, and has created 15 segments, displayed
under “Segments” link on the left-hand side. In this example, each segment corresponds to one exon. Above the “Segments” link is the
exon�intron organization of the gene, in which each exon is represented by a vertical line. Above the gene diagram is the mRNA diagram, in
which each exon is represented by a box and the length of each box is proportional to the length of the exon. So, exon 15 (the last exon) is the
longest. Above the mRNA, the open reading frame (ORF) is represented by a line. The green line here shows that there is no frameshift in
the input sequence. Any frameshift would be represented by a partial red line. The green dot at the beginning and the red dot at the end
of the ORF denote the start and the stop codon, respectively. Although not shown here, mismatches are denoted by vertical red lines and
insertions/deletions (indels) are denoted by vertical blue lines inside the rectangular boxes representing exons. If the cursor is held close to an
exon in the gene (vertical line), its genomic location appears as long as the cursor is held in place (segment 1 in this example); similarly, if the
cursor is held close to an exon in the mRNA (rectangular box), its location in the mRNA appears (segment 15 in this example). Note that for
the mRNA, the orientation is 50-30 from left to right; hence, segment 15 (exon 15) is at the right, whereas for the gene, the orientation is
50-30 from right to left; hence segment 1 (exon 1) is at the right. This is because the gene is located in the reverse orientation in the genome,
which is indicated by the word “Flip” (right-hand side, circled). In the figure, the location of exon 15 (segment 15) of the mRNA and segment
1 (exon 1) in the genome are shown; one of them is copied and pasted separately in the figure. This is because only one at a time can be
obtained, not both. As soon as a segment is selected, the corresponding vertical line in the gene diagram becomes blue and the corresponding
rectangular box in the mRNA diagram becomes highlighted in yellow with its border becoming blue (in the figure, exon 1). Also, the align-
ment with the genomic sequence is displayed.
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BOX 7.2

THE H IDDEN MARKOV MODEL

Gene-prediction algorithms have become more

sophisticated with the incorporation of statistical meth-

ods, particularly the Markov model and its variants. A

Markov model is a stochastic model—that is, a model to

predict the outcome of a stochastic (random) process.

The simple Markov model is a Markov chain that repre-

sents an ordered sequence of discrete events, moving

from one “state” (event) to another with a certain proba-

bility, called the transition probability. In a Markov

chain, at any given point in time, each current state has

a previous state si, which has evolved into the current

state sj with a transition probability pij, and the current

state sj will evolve into a future state sk with a transition

probability pjk. In this sequence of events, pjk depends on

sj but not si. In other words, a Markov model assumes

that the probability of the future state depends on the

current state but NOT on the past state.

A Markov model predicts the evolution of an observ-

able event that depends on internal factors. The observ-

able event can be called an “output signal” and the

internal factor can be called a “state.” In a Markov model

prediction, both the “output signal” and the “state” are

observable. Markov models are used to predict many

events in day-to-day life, such as stock market perfor-

mance, to make weather forecasts, and so on. In contrast

to Markov models, in the hidden Markov model (HMM)

the “output signal” is observable but the “state” is not.

Examples of HMM from biology are DNA and protein

sequences. A DNA sequence is an observable output sig-

nal (from sequence determination) but the state of the

sequence—that is, whether the sequence belongs to exon

or intron or regulatory element or intergenic region—is

not directly observable. Similarly, the sequence of amino

acids in a protein is an observable output signal (from

sequence determination), but the state of the sequence—

that is, whether the sequence is part of a specific domain

(e.g. a transmembrane domain)—is not directly observ-

able. These hidden states can be modeled and predicted

with certain probabilities by HMM. Consequently, HMMs

have been used in, among other things, gene prediction,

pairwise and multiple sequence alignment, base-calling,

modeling DNA sequencing errors, protein secondary

structure prediction, noncoding RNA (ncRNA) identifica-

tion, RNA structural alignment, acceleration of RNA fold-

ing and alignment, and fast noncoding RNA annotation.14

Markov models can be fixed order or variable order,

as well as inhomogeneous or homogeneous. In a fixed-

order Markov model, the most recent state is predicted

based on a fixed number of the previous state(s), and this

fixed number of previous state(s) is called the order of the

Markov model. For example, a first-order Markov model

predicts that the state of an entity at a particular position

in a sequence depends on the state of one entity at the pre-

ceding position (e.g. in various cis-regulatory elements in

DNA and motifs in proteins). A second-order Markov

model predicts that the state of an entity at a particular

position in a sequence depends on the state of two entities

at the two preceding positions (e.g. in codons in DNA).

Similarly, a fifth-order Markov model predicts the state of

the sixth entity in a sequence based on the previous five

entities (e.g. in hexamers in coding sequence). It has been

observed that the probability of occurrence of pairs of

codons (hexamers) in a coding sequence is significantly

higher than in noncoding sequence. A fifth-order Markov

model calculates the probability of the sixth base based on

the previous five bases in the sequence. In addition to the

order, if the probability of occurrence of the state also

depends on the position within the sequence, the model is

called an inhomogeneous Markov model. In contrast, in a

homogeneous Markov model all positions in the sequence

are described by the same set of conditional probabilities.

Fifth-order Markov models are often used in gene

prediction. For example, GeneMark (http://opal.biology

.gatech.edu/GeneMark/) is a family of gene-prediction

programs that uses an inhomogeneous fifth-order Markov

model. However, a potential problem with a higher-order

(e.g. fifth-order) Markov model is having enough data for

the training set. For example, a fifth-order Markov model

will require 45 (54096) probabilities (probable combina-

tions) to be estimated from the training data. In order to

estimate these probabilities, many occurrences of all possi-

ble k-mers must be present in the data. The lack of avail-

ability of such huge amount of data may limit the

usefulness of a higher-order Markov model. The interpo-

lated Markov model (IMM) overcomes this problem by

combining probabilities from contexts of varying lengths

to make predictions, and by only using those contexts (oli-

gomers) for which sufficient data are available.15 The

IMM method involves sampling dimers (k5 1) to nine-

mers (k5 8) and adding the probabilities of all weighted

k-mers, placing less weight on rare k-mers and more

weight on more abundant k-mers. Therefore, the probabil-

ity of the model is the sum of all probabilities of all

weighted k-mers for which sufficient data are available.

GLIMMER (Gene Locator and Interpolated Markov

ModelER) is a microbial gene prediction and genome

annotation tool that uses IMM and is available to run

online at the NCBI (http://www.ncbi.nlm.nih.gov/

genomes/MICROBES/glimmer_3.cgi). The majority of

gene-prediction software uses HMM for prediction.
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found to be one of the best ab initio algorithms for gene
prediction.16 FGENESH is a very fast and accurate ab
initio gene-prediction program. The SoftBerry home page
(http://linux1.softberry.com/berry.phtml) provides link
to FGENESH and to a diverse set of other bioinformatics
applications. GENSCAN (http://genes.mit.edu/
GENSCAN.html) is another ab initio prediction tool
developed early on by Dr Chris Burge in the research
group of Samuel Karlin at Stanford University17; it also
utilizes HMM. GENSCAN was trained using 570 verte-
brate gene sequences.18 When tested on standardized
sets of human and vertebrate genes, GENSCAN accu-
rately predicted 75 to 80% of exons.17 Figure 7.4 shows
the GENSCAN home page, and Figure 7.5 shows a
GENSCAN analysis of a 932-bp input DNA fragmentf.19

Based on the G1C content, the input sequence is pre-
dicted to belong to isochore 3i (circled).

Ab initio prediction algorithms fail to accurately pre-
dict alternative splicing, very long or short exons,
nested and overlapping genes, any non-canonical

features associated with the gene (e.g. non-ATG start
codon, selenocysteine codons, split start or stop
codons, etc.). Purely ab initio predictions are generally
50% or less accurate at the gene level.

Another approach is extrinsic or evidence-based
prediction, in which some information is available,
such as mRNA, EST, or protein product information.
As more and more genomes have been sequenced and
annotated, and more and more genomic information
has become available, the pure ab initio prediction
algorithms have been modified to incorporate genomic
information and develop extrinsic prediction algo-
rithms. For example, the newer version of AUGUSTUS
combines the prediction ability of an ab initio algorithm
with extrinsic information, such as matches to protein
databases or alignments of genomic sequences, to
improve the prediction accuracy. Because of this
improvement, the new version of AUSGUSTUS is also
able to predict splice variants, which the original algo-
rithm could not do. MAKER 2 (http://www.yandell-lab

FIGURE 7.4 GENSCAN home page. Currently, GENSCAN can analyze an input sequence of up to 1 million bases (circled).

fGenBank: NC_000016.9, Region: 566424782 56643409
iIsochores have been defined as .300-kb-long DNA segments in warm-blooded vertebrates (birds and mammals) with a

characteristic, relatively homogeneous base composition. Based on the G1C content, isochores are classified in two “G1C-poor”

types (L1 and L2) and three “G1C-rich” types (H1�H3). The average G1C content of isochore 3 (H3) is the highest (B 54%) and it

constitutes B 3% of the genome. In general, genes with higher G1C content belong to G1C-rich isochores (types H1�H3). The H2

and H3 isochores together have been termed the “genome core” because of their higher gene concentrations, which makes up about

12% of the genome (9% for H2 and 3% for H3). In the human genome, the H3 isochore apparently contains 25% of the genes, and the

genome core (H21H3 combined) contains about 54% of the genes.
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.org/software/maker.html) is another gene-prediction
and genome-annotation program that combines ab initio
and extrinsic approaches to produce gene annotations
having evidence-based quality values. GenomeScan
(http://genes.mit.edu/genomescan.html) is the succes-
sor of GENSCAN and it performs gene prediction in
humans and other vertebrates. The algorithm utilizes
two principal sources of information: (1) models of
exon�intron and splice-signal composition; and (2)
sequence similarity information, such as BLASTX hits.
The probabilistic model used by GenomeScan is based
on that used by GENSCAN.

Homology-based prediction relies on identifying
significant matches of the query sequence with
sequences in known and annotated genome sequences
from related species. Thus, homology-based predic-
tion relies on comparative genomics, and has been
made possible because the genomes of many organ-
isms have been sequenced. Homology-based predic-
tion is based on the molecular evolutionary principle
that functionally important parts of the genome evolve
at a slower rate compared to the rest of the genome;
therefore, many gene sequences, particularly in related
species, should be highly conserved and therefore
be recognizable by the prediction algorithm.

Consequently, homology-based prediction has a
high level of accuracy, and the greater the number of
available genomes of related species, the greater
the accuracy and completeness of prediction. The
homology-based gene prediction tools align syntenic
regions of unannotated genomes, and utilize a probabi-
listic framework for gene structure prediction. Several
programs have been developed for homology-based pre-
diction, such as SLAM (http://baboon.math.berkeley
.edu/Bsyntenic/slam.html), CEM, and Twinscan/
N-SCAN (http://mblab.wustl.edu/software.html), and
EuGene’Hom (http://tata.toulouse.inra.fr/apps/
eugene/EuGeneHom/cgi-bin/EuGeneHom.pl); for
plant genomes. Comparative-genomics-based gene-
finding programs outperform ab initio gene-finding
programs.20,21

Many of these software programs can be down-
loaded for noncommercial and research purposes to
carry out sequence analysis and gene prediction. A list
of many gene-prediction software programs is avail-
able at the geneprediction.org website (http://www
.geneprediction.org/software.html). Many of these can
be accessed and run online by simply entering the
input sequence either in plain text format or in FASTA
format. The reader can try these links using known

FIGURE 7.5 GENSCAN analysis of a input DNA sequence fragment. The upper left panel shows the analysis output and also the length
of the input sequence (932 bp) and its G1C content (54.51%) (circled). Based on the G1C content, the input sequence is predicted to belong
to isochore 3 (circled). The lower left panel shows a 186-bp predicted ORF and a 61-amino-acid predicted protein. The abbreviations are
explained in the right-hand panel.
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genomic sequence (containing a known gene) and
learn firsthand how each algorithm performs gene pre-
diction and what the different outputs look like. A
flow-chart for practice activity is given below.

Go to the NCBI home page - select “Gene” from
the drop-down list of databases - enter Oatp-5 (or
Slco1a6) in the “Search” space and hit enter - from
the “Results” page, click “Mus musculus
Slco1a6”-scroll down the Slco1a6 page-under the
“NCBI Reference Sequences (RefSeq)” bar, locate the
section “Reference GRCm38.p1 C57BL/6J”-under
this section, locate the heading “NC_000072.6”-under
this heading, click the “GenBank” linkj.

This will take the user to the RefSeq nucleotide
sequence page of chromosome 6 showing VERSION
NC_000072.6 and GI: 372099104. The sequence is
100,382 bases long. Copy the sequence. Now open a
new web browser page - Google “Readseq” (the file
conversion tool) - open Readseq from any of the
sites, such as EBI, NIH, or Indiana University link -

paste the sequence - from the “Output format” drop-
down menu select the format as “Plain/Raw” if plain
text format is desired or “Pearson/Fasta” if FASTA
format is desired, and check the box for “Remove gap
symbols” (or “degap” if using the EBI link). “Submit”
the sequence and the desired sequence format will be
returned without base numbers and gaps. Now copy
this sequence and paste it in any of the gene prediction
tools and run gene prediction. The Readseq link at the
Indiana University site (http://iubio.bio.indiana.edu/
cgi-bin/readseq.cgi) provides an option to download
the sequence file, but the default is “View in browser.”

Although the three approaches have been discussed here sepa-
rately; in reality they are combined to increase the prediction
accuracy. The sequencing and annotation of an ever-
increasing number of prokaryotic and eukaryotic gen-
omes have made it possible to successfully combine all
three approaches. A common current approach for gene
finding involves the following activities: several sets of
gene predictions by different gene finders are compiled,
and alignments from ESTs and proteins to the genome
are constructed. All these data are combined to find the
most plausible gene sequence, either manually or by
using meta tools that combine several predictions and
alignments.16

7.4 PREDICTION OF PROMOTERS,
TRANSCRIPTION-FACTOR-BINDING
SITES, TRANSLATION INITIATION

SITES, AND THE ORF

Many free software packages are available online
for the prediction of putative promoter sequences,

transcription start sites, cis-regulatory elements, trans-
lation initiation sites, and the ORF.

Transcription of all classes of RNA (rRNA, mRNA,
tRNA) in prokaryotes is catalyzed by one RNA poly-
merase, which is a multi-subunit enzyme. It contains a
core polymerase that is composed of five subunits (αI,
αII, β, β0, ω), and a sigma (σ) factor. The sigma factor is
the initiation factor that helps position the core poly-
merase to the promoter. The promoter has two consen-
sus sequences, one at the210 position (TATAAT in
Escherichia coli), also known as the Pribnow box, and
the other at the235 position (TTGACA in E. coli) rela-
tive to the transcription start site. Bacteria possess dif-
ferent types of sigma factors. In E. coli and other
bacteria, the sigma factor that initiates transcription of
housekeeping genes and many other genes has a
molecular weight of 70 kDa (hence σ70). In prokaryotes,
a transcriptional unit (i.e. an operon) may contain one
gene or a number of genes under the control of one
promoter. The transcription of one gene produces
monocistronic RNA, whereas the transcription of
many genes produces polycistronic RNA. Therefore,
the promoter is located upstream of the first gene in a
polycistronic transcriptional unit. Wang et al.22 pre-
dicted operons in Staphylococcus aureus with . 90%
accuracy using a scoring system to annotate the inter-
section between two genes. In other words, this
method identified whether two adjacent genes belong
to the same operon. The scoring system was based on
a number of parameters, such as intergenic distance,
presence/absence of a terminator, comparison with
other known prokaryotic genomes, etc.

Transcription in eukaryotes is carried out by three dif-
ferent RNA polymerases—RNA polymerases I, II, and
III—which all bind to the promoter regions of the respec-
tive genes that will be transcribed. Of these, RNA poly-
merase II (pol II) produces translatable mRNAs. RNA
pol II binds to the promoter, and also interacts with vari-
ous other proteins for transcription. The DNA-binding
proteins bind to specific sequence elements, called cis-
response elements or cis-regulatory elements, that are all
located at variable distances upstream of the transcrip-
tion start site. The eukaryotic promoter can be divided
into the core (or basal), proximal, and distal promoter,
based on function and distance from the transcription
start site.

In general, the transcription start site is determined
by the TATA box (consensus TATAAA) and initiator
(Inr) element (consensus: Y-Y-1 1-N-T/A-Y-Y, where
Y5pyrimidine, 115 transcription start site, N5 any
nucleotide), or by the Inr element and downstream
promoter element (DPE; consensus: (A/G)128 G(A/T)
(C/T)(G/A/C)132) in the case of TATA-less promoters.

jThese commands are current as of July, 2013. They may change if the mouse genome assembly version changes.
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Typically, the core promoter is about 35 bp long, and
can extend either upstream or downstream of the tran-
scription start site (2 35 to1 35).23 The core promoter
may contain two or more of the following sequence
motifs: TATA box, Inr element, and DPE. In most
higher eukaryotic genes, the TATA box is located
approximately 25-nt upstream (usually between230
and225) from the transcription start site. In many
genes, a variation of the classic Inr may be present.24

The proximal promoter is about 250 bp long and can
extend between the2250 and 1250 nt positions, relative
to the transcription start site.25 Two transcription-
activating response elements found in the proximal pro-
moter are the CAAT box (binds the transcription factor
NF-I) and the GC box (binds the transcription factor
Sp1). The CAAT box is located B75 nt upstream of the
transcription start site and has a consensus sequence GG
(T/C)CAATCT. The GC box is located B90 nt upstream
of the transcription start site and has a consensus
sequence GGGCGG. The CAAT box and the GC box
operate as enhancer elements because they can activate
transcription in an orientation-independent manner.

Distal promoter sequences are further upstream of
the proximal promoter elements.26 The majority of
transcription-regulatory protein-binding sites are located
within 500 bp upstream of the transcription start site.
Some regulatory-protein-binding sites can also be
located downstream of the transcription start site.

Prediction of the translation initiation site (TIS) in a
genomic sequence is an important problem to address.
TIS prediction at the genome level is still not a trivial
task because of the noise in the data. Some algorithms
take into account weighted signal-based translation ini-
tiation site scores as well as the coding potential of
sequences flanking TISs. At the gene level, an impor-
tant sequence feature relevant for translation initiation
and identification of the correct ATG codon by the
translation initiation complex is the Kozak sequence.
The original functional Kozak sequence (in the sense
strand of DNA) was described as 50-GCCRCCATGG-30

(where R is a purine, which in most vertebrate
mRNAs is an “A”; ATG is the translation initiation
codon). A shorter and more effective version (50-
ACCATGG-30) of the original Kozak sequence was
also described later. The translation initiation region is
characterized by certain features. Many genes contain
the consensus Kozak sequence while others contain
some variant. Still others may not have any Kozak
sequence at all. The “G” after the ATG (i.e. ATGG) is
the most prevalent base in the vast majority of
mRNAs. If there is an ATG codon before the actual
start codon, the sequence context of that ATG codon—
such as lack of Kozak sequence around it, lack of a

“G” immediately following the ATG, etc.—can help
the ribosome bypass the incorrect ATG and detect the
right ATG codon through scanning (known as leaky
scanning). The incorrect ATG is usually out of frame
with respect to the true initiation codon. If translation
is initiated from the incorrect ATG codon that precedes
the correct ATG codon, the ribosome encounters a pre-
mature stop codon, which is in-frame with the incor-
rect ATG codon. In such cases, translation is initiated
again (reinitiation) from the correct initiation codon.

The National Center for Biotechnology Information
(NCBI) ORF prediction tool ORF Finderk (http://
www.ncbi.nlm.nih.gov/gorf/gorf.html) is a graphical
analysis tool that finds all ORFs of a selectable minimum
size in the six frames (three sense; three antisense), using
the standard or alternative genetic codes. The ORF trans-
lation in three frames is achieved by sliding the transla-
tional frame one base at a time. Because the genetic code
is triplet, moving by three bases will find all possible
frames. Figure 7.6A shows the graphics of computa-
tional translation of mouse Slco1a6 mRNA in six frames.
When the longest predicted ORF (top frame) is clicked,
the sequence and other details of the sequence are
displayed (Figure 7.6B). The entire sequence is not
displayed in the figure. Clicking the “SixFrames” link
shows the six frames (Figure 7.6C). In each of these
frames, the blue vertical lines represent the in-frame
ATG codons and the red lines represent in-frame STOP
codons. As is evident, each of these frames except the
top one is full of in-frame stop codons. The total number
of entries on the right-hand side (15), each with a small
blue square, corresponds to the total number of transla-
tional reading frames present in all six frames combined;
hence, each entry on the right corresponds to one trans-
lational reading frame. Clicking any blue square reveals
the corresponding translational reading frame (both
turn red), and the sequence of the reading frame is
revealed.

There are many online tools available for the predic-
tion of promoters and cis-regulatory elements. These
programs are not all trained on the same training data
set; consequently, the prediction outputs may not be
identical. Thus, it is a good idea to check the prediction
using multiple programs to find out at least the com-
mon elements predicted by different programs. It
should be remembered that the bioinformatic predictions of
the cis-regulatory elements (regulating transcription) as
well as the translation initiation site (i.e. the beginning of
the ORF) need to be experimentally verified. A more than
10% error rate in computationally predicted ORFs com-
pared to experimentally derived values has been reported.
The errors are due to the variation in predicting the
translation initiation site. Such error is partly due to

kTatiana Tatusov and Roman Tatusov are credited on the ORF Finder home page.
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the ORF-prediction algorithm used, and partly due to
the taxon examined. For example, genomes having
high G1C content are particularly susceptible to ORF-
prediction errors because of the existence of the alter-
native start codon GTG.27

Some of the publicly available online tools for the
prediction of promoters, cis-regulatory elements, tran-
scription start sites, translation initiation sites, and the
ORF are listed in Table 7.1. There are many more pre-
diction tools available. The reader can use these tools
to obtain a rapid prediction about an input sequence,
and compare the predictions of different tools.

7.5 RESTRICTION-SITE MAPPING
OF THE INPUT SEQUENCE

Experiments involving DNA often require the
experimenter to use various restriction enzymes.
Restriction enzymes may be used to simply cut the
DNA for gel electrophoresis or for advanced manipu-
lation of DNA, such as making a vector, or a trans-
genic or knockout construct. Two online resources that
can be used to analyze various restriction-enzyme

cutting sites and generate a restriction map of an
input DNA sequence are Webcutter 2.0l (http://rna
.lundberg.gu.se/cutter2/) and NEBCutter 2.038 (http://
tools.neb.com/NEBcutter2/).

7.6 RNA SECONDARY-STRUCTURE
PREDICTION

RNA is single stranded but it can form significant
secondary structure because of intrastrand base pair-
ing. The three-dimensional shape of an RNA is its sec-
ondary structure. Some secondary structures observed
in RNA are short duplexes, stem�loops (hairpin
stem�loops), bulges, internal loops, pseudoknots,
etc. (Figure 7.7A). The secondary structure of an RNA
plays an important role in its maturation, regulation,
and function. In fact, the formation of RNA secondary
structure is the key to some of its functions regulating
gene expression. For example, during translational
reprogramming, or recoding, the gene-encoded read-
ing frame is altered during translation, which allows
for the generation of multiple ORFs from the same
basic ORF encoded by the gene. This is achieved by

FIGURE 7.6 NCBI ORF Finder. (A) Computational translation of mouse Slco1a6 mRNA in six frames, three sense and three antisense. (B)
When the longest predicted ORF (top frame) is clicked, the sequence and other details of the sequence are displayed. Only the upper portion
of the entire sequence is displayed. (C) Clicking the “SixFrames” link shows the six frames.

lr1997 Max Heiman.
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TABLE 7.1 Some Online Tools for Prediction of Promoters, Cis-Regulatory Elements, Transcription Start and Initiation Sites, and the ORF

Online Analysis Tool Comments and URL

BPROM Bacterial promoter prediction. A SoftBerry utility that predicts putative transcription start positions of
bacterial genes regulated by sigma70 promoters. The prediction accuracy is about 80%; the specificity is
also about 80% when tested on equal numbers of promoter and non-promoter sequences. It uses the
signal and content information of the sequence (e.g. consensus sequence). BPROM should be run on a
region between two neighboring ORFs located on the same strand, or on a sequence upstream from an
ORF (most promoters are located within 150 bp upstream of the ORF). BPROM should not be used for
whole genomes, to avoid the many false positives
(http://linux1.softberry.com/berry.phtml?topic5bprom&group5programs&subgroup5gfindb)

Virtual Footprint Prokaryotic promoter prediction. Virtual Footprint is a software suite for analyzing transcription-factor-
binding sites in whole bacterial genomes and their underlying regulatory networks. The result is a list of
potential binding sites and corresponding genes defining the whole regulon. There are two types of
analysis: analysis of a whole prokaryotic genome with one regulator pattern, and analysis of a promoter
region with several regulator patterns28

(http://www.prodoric.de/vfp/vfp_promoter.php)

BDGP
(Berkeley Drosophila Genome
Project)

Prokaryotic and eukaryotic promoter prediction. Neural network promoter prediction (NNPP)-based.
NNPP is method that consists mainly of two recognition features for predicting eukaryotic promoters;
one for recognizing the TATA-box and one for recognizing the initiator element. Both features are
combined into one output unit, which gives output scores between 0 and 1. The default score is set at
0.8. The prediction accuracy for prokaryotic promoters is greater than that for eukaryotic promoters29

(http://www.fruitfly.org/seq_tools/promoter.html)

FindTerm Rho-independent-terminator prediction in the bacterial genome. A SoftBerry utility that predicts
terminators in the bacterial genome. The search utilizes certain known features of bacterial terminators,
such as T-rich regions, possible combinations of spacer lengths, all hairpins etc., and the result output
shows all putative terminators
(http://linux1.softberry.com/berry.phtml?topic5findterm&group5programs&subgroup5gfindb)

Promoter 2.0 Vertebrate pol II transcription start site (TSS) prediction. The program builds on principles that are
common to neural networks and genetic algorithms30

(http://www.cbs.dtu.dk/services/Promoter/)

Tfsitescan Eukaryotic promoter sequence and putative transcription-factor-binding site prediction. Works best
with sequences ofB500 nt. The output is in graphic display and shows expectation scores for the
putative binding sitesa

(http://www.ifti.org/cgi-bin/ifti/Tfsitescan.pl)

SoftBerry Search for promoters/
functional motifs

SoftBerry utility providing a suite of prediction tools for promoter/functional motif prediction. For
example:

1. Plant promoter prediction (TSSP)
2. Human pol II promoter prediction (TSSG and TSSW)
3. Human promoter prediction (FPROM)
4. Promoter prediction using orthologous sequences in eukaryotic genome (PromH(G) and PromH(W))
5. Regulatory motif prediction (Nsite)

(http://linux1.softberry.com/berry.phtml?topic5index&group5programs&subgroup5promoter)

WWW Signal Scan Eukaryotic transcriptional elements prediction based on scoring homologies of published cis-regulatory
transcriptional signal sequences (e.g. in TFD, TRANSFAC databases) in the input sequenceb,31

(http://www-bimas.cit.nih.gov/molbio/signal/)

WWW Promoter Scan Eukaryotic promoter prediction based on scoring homologies with eukaryotic pol II promoter
sequences. If the program finds a putative promoter sequence, it reports the sequence range of the
putative promoter, including the TATA box (if present) and the estimated transcription start site32

(http://www-bimas.cit.nih.gov/molbio/proscan/)

Human Core-Promoter Finder Transcription start site (TSS) prediction in human core-promoters. The input genomic DNA sequence
should be longer than 240 bp and less than 2001 bp. The functional core-promoter is assumed to span
between260 and140 nt with respect to the TSS (11). The program is able to localize a TSS to a 100-bp
intervalB60% of the timec.
(http://rulai.cshl.org/tools/genefinder/CPROMOTER/human.htm)

(Continued)
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TABLE 7.1 (Continued)

Online Analysis Tool Comments and URL

EP3 (Easy Promoter Prediction
Program)

Eukaryotic core promoter prediction. Performs very well in identifying regions in human genes that are
associated with transcription initiation. EP3 uses universal properties of the promoter to detect those
regions in a whole-genome context33 (downloadable)
(http://bioinformatics.psb.ugent.be/webtools/ep3/)

Eponine Transcription start site prediction in mammalian genomic sequence. A probabilistic method with
good specificity and excellent positional accuracy. Eponine is estimated to detect. 50% of transcription
start sites, withB70% specificity34 (downloadable from Sanger Center)
(http://www.sanger.ac.uk/resources/software/eponine/)

Footprinter Prediction of regulatory elements in DNA sequences based on phylogenetic footprinting.
Phylogenetic footprinting method identifies regions of DNA that are highly conserved across a set of
orthologous sequences35 (downloadable from the University of Washington (Motif Discovery link)
(http://bio.cs.washington.edu/software)

ORF Finder Open reading frame (ORF) prediction. A very user-friendly ORF finder on the web. It is a graphical
analysis tool that finds all ORFs in the input sequence, using the standard or alternative genetic codes.
The putative ORFs are displayed in six frames, three sense and three antisensed

(http://www.ncbi.nlm.nih.gov/gorf/gorf.html)

NetStart 1.0 Translation initiation site prediction. NetStart produces neural network predictions of translation start
sites in vertebrate and Arabidopsis thaliana nucleotide sequences. The program has been trained on
cDNA-like sequences; therefore, it shows better performance for cDNAs and ESTs. It has not been tested
on genomic data36

(http://www.cbs.dtu.dk/services/NetStart/)

ATGPr Translation initiation site prediction. ATGpr can be used to predict whether an initiation codon is
present or absent in a piece of cDNA, and predict which ATG is the initiation codon for cases where
there are multiple ATG codons. The method uses linear discriminant analysis, and has been tested on a
non-redundant data set of 660 sequences37

(http://atgpr.dbcls.jp/)

aMade available by the Institute for Transcriptional Informatics (IFTI) at the IFTI-MIRAGE website.
bWWW implementation by Robin Hart and Rao Parasa.
cThe web version is offered by Michael Zhang.
dTatiana Tatusov and Roman Tatusov are credited on the ORF Finder home page.

FIGURE 7.7 RNA secondary structure. (A) Some secondary structures of RNA. RNA pseudoknots can be more complex than the one
shown here. (B) The transfer-messenger RNA (tmRNA; 10Sa RNA) and trans-translation. Alanine-charged tmRNA helps resume translation of
a 30-end-truncated mRNA by first providing alanine and then providing its own coding sequence, which adds the 11-amino-acid sequence to
the C-terminal of the previously translated truncated polypeptide. The 11-amino-acid sequence tags the protein for degradation.

1717.6. RNA SECONDARY-STRUCTURE PREDICTION

BIOINFORMATICS FOR BEGINNERS

http://bioinformatics.psb.ugent.be/webtools/ep3/
http://www.sanger.ac.uk/resources/software/eponine/
http://bio.cs.washington.edu/software
http://www.ncbi.nlm.nih.gov/gorf/gorf.html
http://www.cbs.dtu.dk/services/NetStart/
http://atgpr.dbcls.jp/


switching the reading frame during translation by one
base, the so-called2 1 or1 1 frameshift mechanism.
The efficiency of frame shifting is directly correlated
with the extent of ribosomal pause. The cis-acting struc-
tural motifs of the mRNA that apparently facilitate
ribosomal pause and consequent frame shifting include
a heptanucleotide slippery sequence at the shift site,
and a pseudoknot secondary structure that begins five
or six nucleotides downstream from the shift site.

It is well recognized that the secondary structures of
tRNA and ribozyme are necessary for their function.
The telomerase RNAs in different species of ciliates and
vertebrates have very different sequences but they all
fold into similar secondary structures, strongly suggest-
ing that the conserved secondary structure is important
for the specific function of telomerase RNA.39

The transfer-messenger RNA (tmRNA) in bacteria
that mediates trans-translation also has a unique sec-
ondary structure that is needed for its function. The
phenomenon of trans-translation involves ribosomal
hopping, involving two distinct RNA templates in suc-
cession. In various bacteria, this 10Sa RNA species acts
as an alanyl tRNA because it is charged with alanine by
alanyl-tRNA synthetase. The 10Sa RNA also has mRNA
features because it encodes an 11-amino-acid oligopep-
tide that tags proteins for degradation. Because 10Sa
RNA possesses such dual features of tRNA and mRNA,
it is called transfer-messenger RNA (tmRNA). When
ribosomes carrying a peptidyl-tRNA pause at the end
of a 30-end-truncated mRNA and accept the alanyl-10Sa
RNA molecule as the alanyl-tRNA surrogate, the
alanyl-10Sa RNA first provides the alanine and then
provides its internal reading frame for the translation of
the 11-amino-acid oligopeptide tag. This results in the
incorporation of the oligopeptide tag to the already syn-
thesized truncated polypeptide, which is thus flagged
for degradation (Figure 7.7B).

An example of the importance of RNA secondary
structure in its maturation is the biogenesis of micro RNA
(miRNA). Transcription of a miRNA gene produces pri-
mary miRNA (pri-miRNA), which has a stem�loop
structure with additional internal loops. Processing of
pri-miRNA in the nucleus by Drosha produces precursor
miRNA (pre-miRNA) which has a shortened stem�loop
structure compared to pri-miRNA. Processing of pre-
miRNA in the cytoplasm produces miRNA. The second-
ary structure of these precursors is necessary for the bio-
genesis of miRNA. An RNA hairpin is an essential
secondary structure of RNA that can guide RNA folding,
determine interactions in a ribozyme, protect mRNA
from degradation, serve as a recognition motif for RNA-
binding proteins, and also regulate gene expression.40 A
recent study using a high-throughput sequencing-based
structure-mapping approach in Drosophila melanogaster
and Caenorhabditis elegans transcriptomes identified both

paired (double-stranded) and unpaired (single-stranded)
RNA components. The authors observed that these
RNAs are significantly correlated with specific epigenetic
modifications. They also uncovered highly base-paired
RNAs, many of which likely encode lncRNAs (long non-
coding RNAs). Additionally, they identified conserved
features of mRNA secondary structure that indicate that
RNA folding demarcates regions of protein translation.
Finally, they identified and characterized 546 mRNAs
whose folding pattern is significantly correlated between
these two species even though they are so far apart in
evolution, thereby suggesting that the observed mRNA
secondary structure has some function.41

The formation and stability of RNA secondary
structure are dependent on a number of factors. For
example, more GC base pairs and longer stem regions
result in greater stability of the secondary structure,
whereas unpaired bases, such as bulges and internal
loops, tend to decrease the stability of the secondary
structure. Similarly, the formation of hairpin loops
with more than 10 or less than 5 bases requires more
energy; hence, it reduces the stability of the secondary
structure. In general, a secondary structure is thermo-
dynamically favored (hence more stable) if its forma-
tion releases energy (∆G is negative, i.e. negative free
energy). Conversely, a secondary structure becomes
thermodynamically unfavorable (hence less stable) if
its formation requires energy (∆G is positive, i.e. posi-
tive free energy). This fact is used to predict the sec-
ondary structure of a particular sequence. Free
energies are additive, so one can determine the total
free energy of a secondary structure by adding all the
component free energies (as kcal/mole).

Given the importance of RNA secondary structure,
a number of prediction algorithms have been devel-
oped and are available online to analyze an RNA
sequence to predict its putative secondary structure.
Some of the publicly available online tools for RNA
secondary-structure prediction are listed in Table 7.2.

Secondary-structure-predicting algorithms often
generate an output made up of brackets and dots
(sometimes brackets and hyphens). The character
string denoted by brackets and dots represents the
number of residues of the input sequence and their
base-pairing status. In the bracket notation, the base
pairs are indicated by opening and closing parenthe-
ses. Some program outputs have these brackets and
dots above the bases. Some program outputs may con-
tain the base-pairing probability as well (Figure 7.8).

RNA secondary-structure prediction based on ther-
modynamic parameters has been in practice since the
1980s. Such predictions owe their success to the appli-
cation of various experimentally verified thermody-
namic parameters. However, like every other method,
thermodynamic predictions have their limitations. In
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order to circumvent this problem, various probabilistic
and statistical models have been developed that seem-
ingly outperform thermodynamic-parameter-based
predictions.54 Figure 7.8A shows secondary-structure
prediction of the input RNA sequence based on
minimal-free-energy (MFE) calculation by pknotsRG-
MFE. Figure 7.8B shows secondary-structure predic-
tion of the input RNA sequence based on the partition
functions and base-pair probabilities modelm by
IPKnot; the output is the McCaskill model. In contrast,
Figure 7.8C shows an alternative output by IPKnot,
based on a conditional log-linear probabilistic model

known as CONTRAfold.46 The figure also shows the
respective bracket notations of each model. The free
energy of a secondary structure is calculated by
summing energy parameters of respective loop sub-
structures, which can be experimentally determined
and computationally estimated.55

7.7 MICROARRAY ANALYSIS

Most researchers doing microarray experiments use
the analysis software provided by the manufacturer of

TABLE 7.2 Some Online Tools for RNA Secondary-Structure Prediction

Online Analysis Tool Comments and URL

RNAfold RNAfold predicts secondary structures of single-stranded RNA or DNA sequences based on the classic
minimum-free-energy algorithm of Zuker and Stiegler42 as well as the partition-function algorithm of
McCaskill.43 Current limits are 10,000 nt for minimum-free-energy-only predictions and 7500 nt for partition-
function calculations. The server function can be tested using the sample sequence provided44

(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi)

RNAsoft RNAsoft is a collection of online services for the computational prediction and design of RNA/DNA structures
based on a standard free-energy model.45 The underlying algorithms have been designed and implemented by
members of the Bioinformatics, Empirical and Theoretical Algorithmics (BETA) Lab at the Department of
Computer Science of the University of British Columbia
(http://www.rnasoft.ca/)

CONTRAfold CONTRAfold is a novel secondary-structure prediction method based on conditional log-linear models
(CLLMs), a flexible class of probabilistic models with high prediction accuracy46

(http://contra.stanford.edu/contrafold/server.html)

RNAstructure RNAstructure uses several secondary-structure prediction algorithms, including thermodynamic and partition-
function algorithms. It is a complete package for RNA and DNA secondary-structure prediction and analysis.
It can take different types of experiment mapping data to constrain or restrain structure prediction47

(http://rna.urmc.rochester.edu/RNAstructureWeb/)

IPKnot IPKnot performs integer-programming (IP)-based prediction of RNA pseudoknots. IPknot can also predict the
consensus secondary structure when a multiple alignment of RNA sequences is given48

(http://rna.naist.jp/ipknot/)

CYLOFOLD RNA secondary-structure (including pseudoknot) prediction tool. Some examples of RNA sequences are
provided that can be used to perform a test run. The bracket notation output is in brackets and hyphens instead
of brackets and dots�

(http://cylofold.abcc.ncifcrf.gov/)

CentroidHomfold and
CentroidFold

CentroidHomfold predicts the secondary structure of an input RNA sequence by employing automatically
collected homologous sequences of the target49,50

CentroidFold uses the CONTRAfold model as the default setting to calculate base-pairing probabilities, and
predicts RNA secondary structure using a γ-centroid estimator. Currently, the input sequence should be less
than or equal to 2000 bases51

(http://www.ncrna.org/)

pknotsRG pknotsRG is a tool for predicting RNA secondary structures, including the class of simple recursive
pseudoknots. It uses the thermodynamic energy model extended by some pseudoknot-specific values.52

The program on the BiBiserv is limited to sequences of length up to 800 bases
(http://bibiserv.techfak.uni-bielefeld.de/pknotsrg/submission.html)
pknotsRG will be discontinued and replaced by pKiss in the near future
(http://bibiserv2.cebitec.uni-bielefeld.de/pkiss)

�Made available by Dr Bruce A. Shapiro and his research group at the National Cancer Institute, Frederick, MD.

mPartition functions estimate statistical properties of a system with respect to thermodynamic probabilities, such as melting behavior

and base-pair probabilities; properties and probabilities of a myriad of alternative structures in thermodynamic equilibrium.
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the microarray platforms. Therefore, some basic con-
cepts of microarray data analysis are discussed here.

An outline of the microarray technique has been
discussed in Chapter 3. The system described is also
called two-color or two-channel microarrays because
it involves the use of two different fluorescently
labeled probes; one labeled with the fluorescent dye
Cy3n (fluorescein, with fluorescence emission at
B565 nm; hence green), and the other labeled with the
fluorescent dye Cy5 (biotin, with fluorescence emission
at B665 nm; hence red). The goal of DNA microarray
is to screen the expression profile of genes, and the
technique is useful because of its high-throughput
nature.

Scanning of the microarray slide is the first step
following post-hybridization processing and drying.
The slide is scanned by a laser scanner hooked to a

confocal laser microscope. The laser excites each spot
in the microarray and the fluorescence emission is cap-
tured through a photomultiplier connected to the con-
focal laser microscope. The scanning is done in both
green and red channels (at both wavelengths), each
producing an individual image. The individual images
are merged to obtain a composite image, in which the
spot images can be green, red, or yellow; yellow means
there are equal amounts of green and red fluorescence.
However, the color of all the spots may not be per-
fectly green, red, or yellow, and may show a range,
such as black/dark blue, blue, green, yellow, orange,
and red. The image is usually reported as the ratio of
Cy5 and Cy3 fluorescence intensity.

The next step is image processing. The features on
the array—that is, what is contained in each grid/
spot—are already defined. The image captured is a

FIGURE 7.8 RNA secondary-structure prediction by two web-based programs using default parameters. (A) Prediction using
pknotsRG-MFE of the Bielefeld University Bioinformatics Server (BiBiServ).53 (B and C) Integer-programming (IP)-based prediction using
IPKnot of the Nara Institute of Science and Technology, Japan. The default is the McCaskill model shown in (B); an alternative is the
CONTRAfold model shown in (C). The respective bracket notations are also shown. In the bracket notation, the base pairs are indicated by
opening and closing parentheses. Residues not involved in base pairing are denoted by dots. Every base with a “(” notation below is base-
paired with a downstream base with a “)” notation below it. Some program outputs may also contain the base-pairing probability.

nCy3 (cyanine 3) dye is red (dark pink) in color and Cy5 (cyanine 5) dye is blue in color. However, the absorption and florescence

emission maxima for Cy3 are B547 and B565 nm, respectively, whereas those of Cy5 are B647 and B665 nm, respectively. Hence,

Cy3 is detected as green florescence in the green channel, and Cy5 is detected as red florescence in the red channel. Therefore, the

physical colors of these dyes are not to be confused with their fluorescence emission colors.
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digital image, which is a rectangular array of intensity
values in the spot; each intensity value is a pixel. The
color depth is expressed as bits/pixel; hence the higher
the bits/pixel, the greater is the color depth. During
image processing, the spot boundaries are defined so
that the true signal and the background values can be
assigned. The median background value is then sub-
tracted to obtain the true signal value (Figure 7.9A).
The true signal is the fluorescence intensity due to
specific hybridization, whereas the background signal
is the fluorescence intensity due to non-specific hybrid-
ization that has survived post-hybridization washing,
as well as non-specific binding of the fluorescently
labeled nucleic acid fragments to a “sticky” surface, or
even any dirt on the slide.

The next step is data normalization. Following image
processing and analysis, the data are normalized. The
purpose of normalization is to adjust for differences in
labeling and detection efficiencies for Cy5 and Cy3, as
well as to adjust for any differences in the RNA samples.
Without normalization, the Cy5/Cy3 ratio could be artifi-
cially skewed. Normalized samples are ready for further
analysis. Normalization can be done by (1) the total inten-
sity normalization method, (2) the regression method, or
(3) the ratio statistics method. The regression method is
called the “Lowess” (locally weighted scatterplot
smoothing) method, which is a locally weighted linear
regression used to estimate systemic biases in the data. In
the regression method, which is often used, it is assumed
that mRNAs from closely related samples should be

FIGURE 7.9 Microarray image normalization and clustering. (A) The captured microarray image is digital in nature. A digital image is
composed of pixels, its smallest individual elements; each pixel has a value that represents the brightness of a given color at a point.
Microarray scanners typically capture the color images as 16 bits/pixel. Therefore, the higher the bits/pixel, the greater is the color depth. For
each spot, the true signal intensity is determined by subtracting the median background value. (B) Following image processing, the data are
normalized in order to adjust for differences in labeling and detection efficiencies for Cy5 and Cy3. In the Lowess (locally weighted scatterplot
smoothing; regression) method of normalization, it is assumed that mRNAs from closely related samples should cluster, producing a straight
line in a scatter plot of Cy5 versus Cy3 intensities (or their log2 values), with a slope value close to 1. If such linearity is missing, the data are
normalized to create the desired slope. If the cutoff for significant changes in expression is set at 2, the values ranging between 0.5 and 2 are
not considered to be significant. (C) Hierarchical clustering dendrogram and heat map commonly used to display microarray data. The den-
drogram represents relationships amongst genes and the branch lengths represent the degree of similarity in terms of their expression. In this
method, using a distant matrix method, the algorithm first joins the two closest genes into a cluster; then the next most similar genes are
joined together, and so on. This repetitive agglomeration first creates smaller clusters, which are similarly joined to form larger clusters. This
process continues until all of the genes are joined into one giant cluster.
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expressed at similar levels. Under this assumption these
mRNAs should cluster, producing a straight line in a
scatter plot of Cy5 versus Cy3 intensities (or their log2
values). The scatter plot is thus a ratio-intensity (R-I)
plot. If the labeling and detection efficiencies were the
same for both samples, the slope of the scatter plot
should be 1 or close to 1. If such linearity is missing,
Lowess normalizes the data to create the desired slope.
Normalized data are then used to report the expression
ratios of genes between the samples, such as between the
control and the experimental sample, or between normal
and disease tissue samples. The cutoff for significant
changes in expression can be set at 2—that is, values
ranging between 0.5 and 2 are not considered to be signif-
icant. In this scenario,. 2-fold difference means signifi-
cant upregulation of expression, and, 0.5-fold difference
means significant downregulation of expression.
However, these can be adjusted depending on the experi-
ment, as well as the variability of the data (Figure 7.9B).

Cluster analysis of microarray data is a very widely
used way to demonstrate gene-expression differences
between the objects being studied, such as normal ver-
sus diseased tissue, control versus treatment group.
Because genes involved in a common pathway, genes
that are coordinately regulated, and genes involved in
similar physiological response may be expressed simi-
larly, the expressions of these genes are related.
Microarray expression data can be used to find the
relationships between genes in terms of their expres-
sion and consequently categorize such genes. This
method is called cluster analysis. Therefore, in cluster
analysis, the genes that are upregulated or downregu-
lated in response to a specific condition (exposure, dis-
ease), can be identified and the biological relevance of
such gene expression can be further investigated.
Additionally, such gene expression can also be used as
a biological marker of specific physiological response.
Clustering can be supervised or unsupervised. In
supervised clustering, the expression pattern of the
gene(s) is known and this knowledge is used to group
genes into clusters. In unsupervised clustering, there
is no prior knowledge regarding the expression pattern
of the gene(s) in a specific condition. Similar expres-
sion profiles are then connected to form the groups
until all expression data have been included.

The most widely used method of unsupervised clus-
tering is known as hierarchical clustering. Hierarchical
clustering is commonly used in microarray as well as in
phylogenetic analysis because it computes a tree (den-
drogram). In DNA microarray analysis, the tree repre-
sents relationships amongst genes and the branch
lengths represent the degree of similarity in terms of
their expression. Hierarchical clustering is a bottom-up

agglomerative approach. In this method, the algorithm
starts by calculating the pairwise distance matrix for all
of the genes in the so-called “gene space.” Next, the
algorithm joins the two genes that are the closest into a
cluster. If there are multiple gene pairs that share the
same degree of similarity, then the first cluster is
formed based on some predetermined rule. Then, the
next most similar genes are joined together, and so on.
Once the small clusters are formed, the algorithm com-
putes the pairwise distance matrix for all of the clusters
in the so-called “cluster space.” Next, the algorithm
joins the two small clusters that are the closest into a
larger cluster. This repetitive agglomeration process
continues until all of the genes are joined into one giant
cluster (Figure 7.9C). The other means of unsupervised
clustering is known as k-means clustering. Contrary to
the hierarchical clustering, k-means clustering is a top-
down divisive approach. Obviously it does not produce
dendrograms; instead, in this method data are parti-
tioned into a prespecified set of k-clusters. Another divi-
sive clustering method based on neural networks is
self-organizing maps (SOM). The k-means clustering
and SOM methods will not be further discussed here.

The TM4 suite of tools (http://www.tm4.org/)56

consists of four major applications, Microarray Data
Manager (MADAM), The Institute for Genomic
Research (TIGR) Spotfinder, Microarray Data Analysis
System (MIDAS), and Multiexperiment Viewer (MeV).
TIGR Spotfinder is a microarray image-processing
and quantification tool, whereas TIGR’s MIDAS is a
normalization and filtering tool. Another microarray
image-analysis tool, ScanAlyze, is provided by the
Eisen Lab at http://rana.lbl.gov/EisenSoftware.htm.
The same link at Eisen Lab also provides Cluster and
TreeView, which are cluster-analysis and graphical
visualization software tools. They can perform hierar-
chical clustering, self-organizing maps (SOMs),
k-means clustering, and principal component analy-
sis.57 Another web server for the normalization
and standardization of DNA microarray data is
SNOMADo (http://pevsnerlab.kennedykrieger.org/
snomadinput.html), made available by the Pevsner
Lab at Johns Hopkins University School of Medicine.

7.8 DETECTION OF SEQUENCE
POLYMORPHISM AND THE SNP

DATABASE

Mutations can be point mutations, small deletions
and insertions, or large-scale changes in the chromo-
some. Point mutations can be common or rare types of
mutations. By definition, a point mutation that occurs

or 2000 by Carlo Colantuoni, George Henry, and Jonathan Pevsner.
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in at least 1% of the population is called a single nucle-
otide polymorphism (SNP; pronounced “snip”).

SNPs constitute a very important class of mutations;
they generally occur at a frequency of at least 0.1% (1/
1000 bases) in the genome but may occur more fre-
quently in certain regions. In the human genome,
.65% of all SNPs involve C-T transition mutations.
A set of linked SNPs that tend to inherit together as a
unit is referred to as SNP haplotype. SNPs can occur
in both coding and noncoding regions of genes. SNPs
in the coding region may alter the characteristics of the
protein while SNPs in the regulatory regions may alter
the expression profile of genes.

Some SNPs can predispose people to disease or influ-
ence their response to a drug. For example, two SNPs
in the ApoE gene result in three possible alleles of
the gene: E2, E3 (wild type), and E4. The correspond-
ing protein product of each gene differs by one amino
acid (ApoE2C112,C158, ApoE3C112,R158, ApoE4R112,R158).
Individuals inheriting two E4 alleles have the highest
chance of getting Alzheimer’s disease, while those
inheriting two E2 alleles are the least likely to get the
disease; so the order of risk associated with various
ApoE alleles is E4.E3.E2. Apparently, one amino
acid change in the ApoE protein alters its structure
and function enough to influence the risk of disease
development associated with each allele.58

The International HapMap Project is a multi-country
(USA, UK, Canada, Japan, China, and Nigeria) effort to
identify and catalog genetic similarities and differences
in human beings. In doing so, the project expects to iden-
tify and catalog SNPs and SNP haplotypes that confer
susceptibility/resistance to disease or therapy.

Sequence polymorphisms can be detected through
pairwise alignment of two DNA sequences from
two individuals. Deep resequencing of specific regions of
the genome can also identify sequence polymorphisms.

The NCBI SNP database (dbSNP; http://www.ncbi
.nlm.nih.gov/projects/SNP/ or http://www.ncbi.nlm
.nih.gov/snp/) is the largest public database of short
genetic variations (SNVs). The dbSNP is a broad collec-
tion of simple genetic polymorphisms, which includes
single-base nucleotide substitution (SNPs), small-scale
multi-base deletions or insertions (deletion�insertion
polymorphisms or DIPsp), and retroposable element
insertions and microsatellite repeat variations (also
called short tandem repeats or STRs). Each dbSNP
entry includes the sequence context of the actual poly-
morphism, such as the surrounding sequence; the
occurrence frequency of the polymorphism (by popula-
tion or individual); and the experimental method(s),
protocols, and conditions used to assay the variation.60

A new submission to dbSNP is assigned a unique ss#
(submitted SNP ID number). The submission is veri-
fied by alignment to the appropriate genomic contig. If
several ss# entries map to the same position, the records
are merged into a cluster that is given a unique rs# (ref-
erence SNP cluster ID).

A search was made for the mouse Slco1a6 gene in
dbSNP. The search produced 2092 hits as of July 2013
(Figure 7.10).

Selecting “Summary” from the “Display Settings”
drop-down menu returns the summary of information
on that SNP (figure not shown). Selecting “Graphic
Summary” from the drop-down menu returns the dis-
play shown in Figure 7.10. Clicking “rs266211819”
returns its cluster report. The top portion of the cluster
report is shown in Figure 7.11A. The “Variation Class”
field shows that it is a single nucleotide variation
(SNV), the “RefSNP Alleles” field shows that the SNV
is either A or C (circled). In other words, one of the
alleles would be termed the “A” allele and the other
allele would be termed the “C” allele, and the SNP is
located on the “forward strand” (“Fwd”; circled). The
information is organized into a few sections, such as
GeneView, Map, etc. Figure 7.11B shows that
rs266211819 is an intronic SNP. Clicking “view” in the
“Neighbor SNP” field (circled in Figure 7.11A) shows
that there are two SNPs within 100 bases upstream
and four SNPs within 100 bases downstream of
rs266211819 (Figure 7.12).

Figure 7.13 shows the graphic view of SNP
rs266211819.

The SNP cluster page also has a section on the submit-
ted SNP ID number (ss#) (Figure 7.14A). The
ss370364874 has the longest flanking sequence and is
shown. Clicking on the ss# (Figure 7.14A; circled) returns
the details of the submitted SNP (Figure 7.14B). In the
left-hand top corner there is “Submitter” information.
The “Handle” field provides the submitter information.
Clicking “SC_MOUSE_GENOMES” reveals the submit-
ter contact information. In this case, the submitter is
from the Wellcome Trust Sanger Institute, Cambridge,
UK. In the right-hand top corner is “Resource Links.”
The submission can be viewed by clicking the “view”
field (circled). Figure 7.15A shows the details of the origi-
nal submission, including the SNP (A/C) as well as the
50- and 30-flanking sequences. Note that the original sub-
mission shows the SNP as A/C, but in the NCBI cluster
report (the FASTA sequence part from the cluster report
is displayed in Figure 7.15B) this (A/C) is replaced by
M. This substitution of the original SNP is done follow-
ing the IUPAC (International Union of Pure and Applied
Chemistry) nucleotide codes shown in Table 7.3.

pDIP (deletion�insertion) or indel (insertion�deletion) polymorphisms consist of the presence or absence of short sequences

(typically 1�50 bp).59
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FIGURE 7.11 Clicking the first entry rs266211819 returns its cluster report. (A) The top portion of the cluster report is shown, see text for
explanation; (B) GeneView shows that the rs266211819 is an intronic SNP.

FIGURE 7.10 A search for the mouse Slco1a6 gene in the SNP database.
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FIGURE 7.12 Neighboring SNPs

of rs266211819. Information retrieved
by clicking “view” in the “Neighbor
SNP” field circled in Figure 7.11A,
showing six flanking SNPs.

FIGURE 7.13 The graphic view

of rs266211819. (A) Holding the cur-
sor next to the green bar with the
rsID (rs266211819) produces a drop-
down menu. (B) Selecting “Zoom to
Sequence At Marker” from this
drop-down menu returns the
sequence and the SNP. Selecting the
bar with the rs# returns the drop-
down menu shown. The drop-down
menu contains information about the
SNP (A/C).

FIGURE 7.14 Submitter infor-

mation for a SNP ID number. See
text for details.
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FIGURE 7.15 IUPAC designation of the SNP in the database. (A) The original submission showing the SNP (A/C) and the flanking
sequence. (B) The substitution of A/C by M in the SNP database following the IUPAC nucleotide codes, as shown in Table 7.3.

TABLE 7.3 IUPAC Codes for Nucleotides

A5 adenine T5 thymine G5guanine C5 cytosine

R5A/G Y5C/T S5G/C W5A/T K5G/T M5A/C

B5C/G/T D5A/G/T H5A/C/T V5A/C/G N5 any base

/ means “or” (e.g. A/G means A or G)
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8.1 PROTEIN STRUCTURE

Proteins have four levels of structure: primary, sec-
ondary, tertiary, and quaternary.

Primary structure is simply the amino-acid sequence
of the polypeptide, and is determined by the sequence of
codons in the gene encoding the polypeptide. Therefore,
the open reading frame (ORF)-prediction programs pre-
dict the primary structure of the encoded proteins.

Secondary structure is the hydrogen (H)-bonded
three-dimensional local conformation. The two most

common secondary structures are the α-helix and
β-pleated sheet. In addition, four other commonly
occurring secondary structures are the 310-helix,
π-helix (pi helix), β-turn, and Ω-loop (omega loop).
There are still other regions in proteins whose
secondary structure can not be classified under any
established categories; these have been traditionally
referred to as random coils, but can be more appropri-
ately referred to as unstructured regions.

An α-helix (radius5 2.3 Å) is a right-handed helix that
has 3.6 amino acids per helical turn (100� turn/residue),

�The opinions expressed in this chapter are the author’s own and they do not necessarily reflect the opinions of the FDA, the DHHS,

or the Federal Government.
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and the structure is stabilized by H-bonds formed
between the CQO of residue n and the NaH of residue
n1 4; both these groups are part of the helical backbone
and not the side chains (R groups) that protrude out of
the backbone. The pitch of the helix (vertical distance in
one complete helical turn) is 5.4 Å; hence, the rise per
residue along the helix axis is 1.5 Å. In an α-helix, the
H-bonds are intrachain and parallel to the axis of the
helix. The α-helix is a 3.613-helix, where 3.6 is the num-
ber of residues per turn and 13 is the number of atoms
in the H-bonded loop. The α-helix is the most abundant
secondary structure found in globular proteins, and it
accounts for 32�38% of all residues. The average length of
an α-helix is 10 residues.

A less common helical secondary structure found in
proteins is the 310-helix (radius5 1.9 Å), which has 3
amino acids per turn (120� turn/residue) and 10 atoms
in the H-bonded loop. In a 310-helix, H-bonds involve
residues n and n1 3 (instead of n1 4 as in the α-helix),
and the backbone conformational angles are slightly
different from those of the α-helix. The pitch of the
helix is 6.0 Å; hence, the rise per residue along the
helix axis is 2.0 Å. The length of the 310-helix may vary
from 3 to 10 residues. The ideal 310-helix is rare and
when it occurs, it tends to be at the C- and N-termini;
the 310-helix has been described in channels and mem-
brane proteins.1

Like the α-helix and 310-helix, the π-helix
(radius5 2.8 Å) is also a right-handed helix. There are 4.4
residues per turn (81.8� turn/residue) and 16 atoms in
the H-bonded loop; hence, the π-helix is a 4.416-helix.
The structure is stabilized by H-bonds formed between
the CQO of residue n and the NaH of residue n1 5
(compared to n1 4 in the α-helix, and n1 3 in the
310-helix). The pitch of the helix is 4.8 Å; hence, the rise
per residue along the helix axis is 1.1 Å. A π-helix can
be derived from an α-helix by the insertion of a single
amino acid. Such insertion tends to destabilize the
α-helix. As a result, the formation of π-helix is tolerated
only if it provides some selective advantage to the
protein. One such possibility involves affecting the func-
tional site of proteins. Consistent with this hypothesis,
the π-helix is typically found near the functional site of
proteins. About 15% of known protein structures contain
a π-helix. Naturally occurring π-helices are typically 7�10
residues in length, but are mostly composed of 7 residues;
they are found at the end of a regular α-helix or within
an α-helix—that is, a π-helix is flanked by α-helices.2

Two or more (two to seven) α-helices can wrap
around each other creating coiled coils, which are

superhelical (supersecondary) structures. In most
coiled coils, the α-helices are wrapped around each
other into a left-handed helical supercoil. The α-helical
coiled coil is a common structural motif in proteins
that facilitate subunit oligomerization. Coiled coils can
be composed of parallel or antiparallel helices. An
example of a functional protein with coiled coils is the
Fos-Jun heterodimer, known to regulate gene expres-
sion. Another example is tropomyosin. Each strand of
a coiled coil has a repeat of seven residues (heptads;
a-b-c-d-e-f-g). In these heptads, the first and the fourth
residues (a and d) are hydrophobic; they face the
helical interface and facilitate hydrophobic interac-
tions. Good candidate amino acids at these positions
are isoleucine, leucine, and valine. The other residues
are hydrophilic and exposed to the solvent. Of these,
the fifth and the seventh residues (e and g) confer speci-
ficity between the two helices through electrostatic
interactions. Good candidate amino acids at these posi-
tions are the charged amino acids, such as aspartic acid,
glutamic acid, lysine, and arginine. Discontinuities in
the heptad pattern are quite frequent. Algorithms that
predict coiled coils scan the sequence for the regular
patterns and heptad signatures using a window size
of 14, 21, or 28 amino acids.

In contrast to the helices, a β-pleated sheet (β-sheet)
involves two or more polypeptide chains and the
H-bonds are formed between residues that are part of
different polypeptide chains. Therefore, in a β-pleated
sheet, the H-bonds are interchain and are perpendicu-
lar to the polypeptide backbones. Each polypeptide
chain involved in the formation of a β-pleated sheet
is a β-strand; a β-pleated sheet can be two stranded or
multi-stranded. As the name suggests, the β-pleated
sheet has a zigzag appearance. After the α-helix, the β-sheet
is the major secondary-structural element in globular proteins,
accounting for 20�28% of all residues.

In a β-turn (also called β-bend) the direction of the
polypeptide chain is sharply reversed. The name
β-turn owes its origin to the fact that they often con-
nect antiparallel β-sheets. A β-turn is composed of four
amino acidsa. The Ω loop, as a secondary-structural
motif in globular proteins, was first described in 1986.3

These are a six-amino-acid or longer backbone motif.
The polypeptide reverses its direction over the course
of this six- (or more) amino-acid-long, omega-shaped
loop regionb.

The tertiary structure of a protein is the overall
folded structure in three-dimensional (3D) space. The
tertiary structure is formed by the interactions between

aDepending on the number of amino acids involved, other tight turns are named as the δ-turn (involves two amino acids), γ-turn

(involves three amino acids), α-turn (involves five amino acids), and π-turn (involves six amino acids).4

bThe existence of a variety of morphologies of loops (4 to 20 residues in length) as secondary-structural motifs has been reported in

proteins, such as strap loops (linear), omega loops (nonlinear and planar), zeta loops (nonlinear and non-planar, i.e. globular).5
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the side-chain R-groups, such as ionic interactions,
hydrophobic interactions, H-bonds, and disulfide bonds.
The amino-acid sequence (the primary structure) primar-
ily dictates how a protein should fold into a 3D tertiary
structure. However, proper folding is now known to
be achieved with the help of chaperone molecules.
In folded conformation (tertiary structure), most proteins
contain specific domains that are discrete structural and
functional units of the protein (discussed later).

Quaternary structure of proteins refers to the over-
all structure of multimeric proteins—that is, proteins
composed of two or more subunits, each subunit being
a monomer. Quaternary structures are stabilized by
non-covalent interactions as well as disulfide linkages.
Proteins with molecular weight .100 kD mostly con-
tain more than one polypeptide chain, and hence have
a quaternary structure.

The secondary, tertiary, and quaternary structures of pro-
teins are maintained by non-covalent forces, such as H-bonds,
electrostatic interactions, and van der Waals forces.

8.2 PEPTIDE BOND, PEPTIDE PLANE,
BOND ROTATION, DIHEDRAL ANGLES,

AND RAMACHANDRAN PLOT

Amino acids are linked together by peptide bonds.
Peptide bonds are amide linkages between the aNH2

and aCOOH groups of neighboring amino acids. The
peptide bond (CaN) has a partial double-bond charac-
ter. Thus, it is rigid and planar and not free to rotate.
The plane on which it lies is called the peptide plane
or amide plane. Peptide bonds are trans bonds—that
is, the carbonyl oxygen and amide hydrogen are in
trans position. However, the NaCα and CαaC bonds
are not rigid and they can freely rotate, being only lim-
ited by the size and character of the R-groups. The
angle of rotation (also called torsion angle or dihedral
angle) around the NaCα bond is called phi (ϕ) and
that around the CαaC bond is called psi (ψ)
(Figure 8.1A). These two angles largely determine the
3D shape of the polypeptide backbone of the protein.

FIGURE 8.1 Peptide bond, peptide plane, and the Ramachandran plot. (A) Peptide bond, peptide plane, phi and psi angles, and bond
rotation involving two amino acids. The NaCα and CαaC bonds are not rigid and can freely rotate, being only limited by the size and charac-
ter of the R-groups. (B) Diagram of a typical Ramachandran plot (ϕ/ψ plot). The regions marked “Core” correspond to conformations that do
not have any steric hindrance. The yellow areas labeled “Allowed” correspond to conformations that could be possible if the atoms could
come a little closer together. The white areas represent conformations that are sterically unfavorable (see text). (C) In computing a
Ramachandran plot, atoms are treated as hard spheres whose dimensions correspond to their van der Waals radii. The van der Waals radius
and covalent radius are depicted for comparison.
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Although ϕ and ψ are less restricted in terms of
rotation, the bulkiness of R-groups of the amino acids
tends to impose some restrictions on the rotation
through steric hindrance. This makes certain combina-
tions of ϕ and ψ preferred. The ϕ/ψ plot of the amino
acid residues in a peptide is called the Ramachandran
plot. It involves plotting the ϕ values on the x-axis
and the ψ values on the y-axis to predict the possible
conformation of the peptide. The angle spectrum in
each axis is from 2180� to 1180�. In computing a
Ramachandran plot, atoms are treated as hard spheres
whose dimensions correspond to their van der Waals
radii. Any angle that results in the collision of the
spheres is regarded as sterically unfavorable; hence,
such conformations are also sterically not allowed.
Figure 8.1B shows a simplified diagram of a
Ramachandran plot. The regions marked “Core” corre-
spond to conformations that do not have any steric
hindrance. The yellow areas labeled “Allowed” corre-
spond to conformations that could be possible if
slightly shorter van der Waals radii are used in the
calculation. In other words, if the atoms could come a
little closer together, then these conformations would
be possible. The white areas represent conformations
that are sterically unfavorable. The van der Waals
radius and covalent radius are depicted in Figure 8.1C.
The residues with a less bulky side chain or no side
chain, such as glycine (no side chain), can have many
possible combinations of ϕ and ψ (e.g. in a polyglycine
backbone) resulting in a larger allowable area on the
plot in all four quadrants, whereas residues with bulky
side chains, such as proline or phenylalanine, have
fewer possible combinations of ϕ and ψ, hence a smaller
allowable area on the plot.

The ϕ and ψ angles for each residue in a helical struc-
ture are very similar, and that is what confers regularity
to the helical structure. Positive angles correspond to clock-
wise rotation and negative angles correspond to anticlockwise
rotation. The ideal values of ϕ/ψ were determined to be
as follows: right-handed α-helix 257�/247�; left-handed
α-helix 157�/147�; right-handed 310 helix 274�/24�;
right-handed π-helix 257�/270�; parallel β-sheet
(uncommon) 2119�/1113�; antiparallel β-sheet (com-
mon) 2139�/1135�. The actual values differ somewhat
from these idealized values. Recent experimental data
have demonstrated that both ϕ and ψ can undergo
large rotations, which are usually coupled. See
Hovmöller, et al.6 for more details on experimental
determination of main-chain conformations in 1042
protein subunits.

Online tools are available from several sources for
the analysis of Ramachandran plots of proteins. One
such tool is available at the Uppsala Ramachandran
Server (http://eds.bmc.uu.se/ramachan.html). This
service is based on the Moleman2 program.7

8.3 PREDICTION OF PHYSICOCHEMICAL
PROPERTIES OF A PROTEIN

The physicochemical properties of a protein can be
deduced from its sequence. The ExPASy (Expert
Protein Analysis System; http://www.expasy.org/)
bioinformatics resource portal of the Swiss Institute
of Bioinformatics (SIB) provides many protein-analysis
tools. One such tool is ProtParam,8 which analyzes
the physicochemical properties of proteins based on
the sequence. ProtParam can be accessed directly
at http://web.expasy.org/protparam/, or it can be
accessed by first accessing ExPASy, then clicking
the “Resources A..Z” link on the left, and finding
ProtParam from the resource list. Mouse Slco1a6
protein was analyzed in ProtParam; the results are pre-
sented and explained in Figure 8.2. ProtParam analyzes
the sequence as is and does not take into account any
post-translational modifications. The output parameters
are explained in the “Documentation” link on the
ProtParam home page (http://web.expasy.org/protparam/
protparam-doc.html).

8.4 PREDICTION OF PROTEASE
DIGESTIBILITY

The protease digestibility prediction tool in ExPASy is
called PeptideCutter,8 which can be accessed directly at
http://web.expasy.org/peptide_cutter/. Alternatively,
it can be accessed by first accessing ExPASy, then click-
ing the “Resources A..Z” link on the left, and finding
PeptideCutter from the resource list. There is a list of
many proteases on the PeptideCutter home page.
Specific enzymes can be selected from this list to map
their cleavage sites in the protein. For example, analyz-
ing mouse Slco1a6 protein in PeptideCutter to find only
the pepsin cleavage sites (at pH . 2) revealed that there
are a total of 179 such sites (not shown). PeptideCutter
can return the output as table, as a map of cleavage
sites on the sequence itself, or both. The analysis output
marks the amino acid residue; the actual cleavage occurs at the
right-hand side (C-terminal side) of this marked residue.
PeptideCutter also predicts potential cleavage sites of
some chemicals in a given protein sequence.

8.5 HYDROPHOBICITY,
HYDROPHILICITY, AND ANTIGENICITY

PREDICTION, AND THE
HYDROPATHY PLOT

The R-group of an amino acid determines whether
it is hydrophobic or hydrophilic. Hydropathy is a
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measure of the hydrophobicity or hydrophilicity of an
amino acid. Proteins are composed of both hydropho-
bic and hydrophilic amino acids, but the localization
of these amino acids in the protein is related to the
subcellular localization of the proteins (see Chapter 1

for a discussion on this subject). For example, proteins
that are localized in an aqueous environment have
hydrophobic amino acids (and their hydrophobic
R groups) located towards the center of the molecule,
away from water. In contrast, an integral membrane

FIGURE 8.2 Partial ProtParam analysis output for Slco1a6. The actual analysis contains more information. ProtParam analyzes the
sequence as is and does not take into account any post-translational modifications. The extinction coefficient (E) indicates how much light a
protein absorbs at a certain wavelength (e.g. 280 nm). It is useful to have an idea about the E value of a protein when purifying it. An approxi-
mate E(Prot)2805Tyr�E(Tyr)1Trp�E(Trp)1 cystine�E(cystine); where E(Tyr)5 1490, E(Trp)5 5500, E(cystine)5 125 (cysteine does not absorb
appreciably at wavelengths. 260 nm but cystine does). The approximate Abs2805E(Prot)/MW (MW5molecular weight). For proteins rich in
cysteines that do not form cystine (e.g. metallothionein), this calculation may have 10% or more error. ProtParam predicts an estimated half-

life based on the “N-end rule,” which relates the in vivo half-life of a protein to the identity of its N-terminal residues.9 Note that ProtParam
does not consider post-translational modifications, so the N-terminal-end-based rule does not account for any N-terminal modifications, which
might significantly alter the predicted half-life. The instability index provides an estimate of the stability of the protein in a test tube.
Statistical analysis of 12 unstable and 32 stable proteins has revealed that the occurrence of certain dipeptides is significantly different in the
unstable proteins compared with the stable ones.10 Based on the statistically determined weight value of instability, an instability index can be
calculated. An instability index value, 40 predicts the protein to be stable; a value. 40 predicts that the protein may be unstable. The
aliphatic index (X) of a protein is defined as the relative volume occupied by aliphatic side chains (alanine, valine, isoleucine, and leucine).
X5X(Ala)1 a�X(Val)1 b�[X(Ile)1X(Leu)]; where X(Ala), X(Val), X(Ile), and X(Leu) are mole percent (100�mole fraction). The coefficients a
and b are the volume of the valine side chain (a5 2.9) and of the Leu/Ile side chains (b5 3.9) relative to the side chain of alanine.11 The
GRAVY value for a peptide or protein is calculated as the sum of hydropathy values (Kyte and Doolittle) of all the amino acids, divided by
the number of residues in the sequence. The hydropathy is discussed later in the chapter. A positive GRAVY value indicates that the protein
is hydrophobic and a negative value indicates that it is hydrophilic.
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protein always has a stretch of about 20 hydrophobic
amino acids on the surface to enable it to pass through
the membrane lipid bilayer. All hydrophilic amino
acids are pushed to the outside of the membrane.

The hydropathy of amino acids is assigned specific
values to create a hydropathy scale. There are different
hydropathic scales; each scale assigns slightly different
hydrophobicity or hydrophilicity values to the amino
acids. Using a specific hydropathic scale the overall
hydropathic character of a polypeptide can be deter-
mined, which is revealed by its hydropathy plot.
Therefore, the hydropathy plot shows the hydropho-
bicity and hydrophilicity along the length of a
polypeptide. Hydropathy is an important determinant
of protein folding. One of the most widely used
hydropathy plots is that of Kyte and Doolittle (1982).12

The standard Kyte and Doolittle plot is a hydrophobic-
ity plot. The plot is based on the consideration of the
hydrophobic and hydrophilic properties of the 20
amino acids, shown in Table 8.1. Computation of the
hydropathy plot requires setting a window size; the
default is usually set at 7. The computation starts with
the first window of amino acids (#1�7), the average
hydrophobicity score of the first window is calculated
and plotted as the midpoint of the window. Then the
window moves by one amino acid, the second window
spans amino acids #2�8, and the average hydropho-
bicity score of the second window is calculated and
plotted as the midpoint of the window. This reiterative
process continues until the last window at the end of
the proteinc. The averages are then plotted on a graph.
The y-axis represents the hydrophobicity scores and
the x-axis represents the window number/position of
the amino acids. ExPASy provides ProtScale8 (http://
web.expasy.org/protscale/) that can be accessed to
run the hydropathy plots. In addition to ExPASy, there
are many more links providing online tools for the
analysis of hydropathy plots of proteins. These links
can be obtained by simply Googling the term.

In a hydrophobicity plot, hydrophilic amino acids
receive negative values, whereas in a hydrophilicity
plot, hydrophobic amino acids receive negative values.

Figure 8.3A shows the hydrophobicity plot of
mouse Slco1a6 protein with a window size of 7. It is
a transmembrane protein. Changing the window size
to 21 clearly makes the transmembrane regions promi-
nent (Figure 8.3B). A window size of 19 can also be
used to visualize the transmembrane domains. Peaks
above the line corresponding to 0 represent the hydro-
phobic regions and peaks below this line represent

hydrophilic regions of the protein. The default window
size in a Kyte and Doolittle plot is usually set at 7 or 9.
An inverse Kyte and Doolittle plot will reverse these
regions—that is, hydrophilic amino acids will be
above the 0 axis and hydrophobic amino acids will
be below the 0 axis.

Another widely used hydropathy plot, based on the
Hopp and Woods hydropathy scale, is the Hopp and
Woods hydrophilicity/antigenicity plot.13 In this plot,
hydrophilic amino acids get positive scores and hydro-
phobic amino acids get negative scores (Table 8.1). The
Hopp and Woods hydropathy scale was developed for
predicting potential antigenic sites in a polypeptide,
which are likely to be rich in charged and polar
residues. The default window size is usually set at 6 or 7;
the regions of high hydrophilicity are likely to be
antigenic sites. Figure 8.3C shows the Hopp and
Woods plot of mouse Slco1a6 with a window size of 7.

TABLE 8.1 Hydrophobicity and Hydrophilicity Scores of
Different Amino Acids

Amino Acid Kyte�Doolittle Hopp�Woods

Alanine 1.8 20.5

Arginine 24.5 3.0

Asparagine 23.5 0.2

Aspartic acid 23.5 3.0

Cysteine 2.5 21.0

Glutamine 23.5 0.2

Glutamic acid 23.5 3.0

Glycine 20.4 0.0

Histidine 23.2 20.5

Isoleucine 4.5 21.8

Leucine 3.8 21.8

Lysine 23.9 3.0

Methionine 1.9 21.3

Phenylalanine 2.8 22.5

Proline 21.6 0.0

Serine 20.8 0.3

Threonine 20.7 20.4

Tryptophan 20.9 23.4

Tyrosine 21.3 22.3

Valine 4.2 21.5

cEffective length of a polypeptide for hydropathy analysis5 total # of windows of the desired size5 total # of amino acids in the

protein2window size1 1. For example, Slco1a6 has 670 amino acids. Hence, the effective length of Slco1a6 for hydropathy

analysis5 total # of windows of the desired size5 6702 71 15 664. In other words, after the 664th amino acid, there are no more

windows of 7 amino acids.
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When designing peptide antibodies, a Hopp and Woods
hydropathy plot can be used to determine the regions of the
polypeptide that are expected to have good antigenicity and
thus trigger an antibody response in an animal treated with
adjuvant-coupled peptide containing those sequence(s).
Recently, Jääskeläinen et al. (2010)14 investigated the
prediction accuracy of 56 hydropathy scales by corre-
lating predicted values with the accessible surface area
in known 3D structures of proteins. They found that
some epitopes are located among the most exposed
regions, thereby reinforcing the utility of the hydropa-
thy scales in predicting the antigenic regions of a
protein.

Another metric of the overall hydrophobicity/
hydrophilicity of a polypeptide is the GRAVY (grand
average of hydropathy) score. The GRAVY value of a
polypeptide is calculated by adding the hydropathy
values of all the constituent amino acids and dividing
the sum by the length of the sequence. A positive

GRAVY value indicates that the protein is hydrophobic
and a negative value indicates that it is hydrophilic.12

Therefore, membrane proteins have higher GRAVY
scores than globular proteins. ProtParam calculates the
GRAVY score (Figure 8.2). The GRAVY score of mouse
Slco1a6 is 0.267, indicating that it is a hydrophobic
protein.

8.6 PREDICTION OF POST-
TRANSLATIONAL MODIFICATION

AND SORTING

Proteins can be post-translationally modified in many
different ways, such as N-glycosylation, O-glycosylation
and many other post-translational modifications.
Proteins are also sorted (targeted) to various
subcellular compartments either during translation (co-
translational) or following translation (post-translational).

FIGURE 8.3 Hydropathy plots. Kyte and Doolittle plots and Hopp and Woods plot run in ProtScale at ExpaSy. (A) Kyte and Doolittle
hydrophobicity plot of mouse Slco1a6 protein with a window size of 7. As a result, the effective length is 664—that is, after the 664th amino
acid, another 7-amino-acid window is not available (the protein length is 670 amino acids). Peaks above the line corresponding to 0 represent
the hydrophobic regions and peaks below this line represent hydrophilic regions of the protein. (B) Slco1a6 is a transmembrane protein. Thus,
increasing the window size to 21 clearly makes the transmembrane regions prominent. This change makes the effective length 650. (C) Hopp
and Woods hydrophilicity/antigenicity plot with a window size of 7. Peaks above the line corresponding to 0 represent the hydrophilic
regions and peaks below this line represent hydrophobic regions of the protein.
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For example, a large number of secretory proteins,
membrane-bound proteins, and proteins in the
endoplasmic reticulum are sorted co-translationally,
whereas proteins targeted to the nucleus, mitochondria,
and chloroplast are sorted post-translationally. Protein
sorting requires specific signal sequences. In eukaryotic
proteins, signal sequences are present at the N-terminal
end of the protein. A comprehensive list of online
analysis tools for the prediction of various post-
translational protein modifications as well as protein
sorting and localization signals can be found at the
resources listed in Table 8.2.

8.7 SECONDARY-STRUCTURE
PREDICTION

Efforts to predict protein secondary structures began
long before the first protein structures were solved.
Two of the earliest methods, the Chou�Fasman method
and the GOR method, developed in the 1970s, have
been widely used and are still being used.

8.7.1 The Chou�Fasman and GOR Methods

The Chou�Fasman and GOR (Garnier�Osguthorpe�
Robson) methods were developed in the 1970s, and are
among the oldest secondary-structure prediction meth-
ods. They are still widely used. The latest version of the
GOR method is GOR V.15 Both the Chou�Fasman and
GOR methods are based on the analysis of the propensity
of different amino acids to be in α-helix, β-strand, or
β-turn. In these methods, the relative frequencies of
amino acids in helix, strand, and turn are calculated

based on known protein structures solved by X-ray crys-
tallography. These relative frequency values are used to
calculate the probability that an amino acid will appear
in a helix, strand, or turn in a protein.

The application of the Chou�Fasman method is
simple in principle. The sequence is scanned to identify
regions of high helix or strand probability. For α-helix,
a window size of six amino acids is used. If four
contiguous residues out of six have P(α-helix). 100,
that segment is called as a helix. Once the helix is
predicted, it is extended on both sides until at least
four contiguous residues with P(α-helix), 100 are
found. That region is called as the end of the helix. For
β-strand, a window size of five amino acids is used.
The sequence is scanned to identify regions where at
least three contiguous residues out of five have a value
of P(β-strand). 100. That region is called as a β-strand,
and is extended on both sides until a set of three con-
tiguous residues that have an average P(β-strand), 100
is reached. That region is called as the end of the
β-strand. If the residues in a region show the pro-
pensity of being in both α-helix and β-strand, the
prediction is made based on the following principle:
if Σ[P(α-helix)].Σ[P(β-strand)], the region is called
as a α-helix, otherwise a β-strand. Turns are also
evaluated in four-residue windows, and are identified
if P(β-turn). 0.000075, where P(β-turn)5 f(i)�f(i1 1)�

f(i1 2)�f(i1 3). Table 8.3 shows the relative propensity
values of amino acids as used by the Chou�Fasman
method. Online Chou�Fasman and GOR prediction
tools can be accessed from many sources (Table 8.4;
see also CFSSP link in Table 8.5).

Like the Chou�Fasman method, the original GOR
method also uses the propensity of amino acids to be
in a helix, strand, turn, or coil. However, the GOR
method uses a 17-residue window size and calculates
the propensity of the residues in that window to be in
each of the four states. The state with the highest score
is predicted to be the state of the central residue (9th
residue) of that window. Because the state of an amino
acid is often influenced by the states of the neighbor-
ing amino acids, the GOR method takes into account
the interactions of the neighboring residues.

With the availability of more sequences and more
solved protein structures, some of the older methods
have been revised and improved, such as GOR II, III,
and IV.

8.7.2 Advances in Secondary-Structure
Prediction

As the atomic detail of the structure of integral
membrane proteins was determined in the mid-1980s,
the homology-modeling method was developed as a

TABLE 8.2 Some Online Analysis Tools for Prediction of Post-
Translational Protein Modifications, Protein Sorting, Localization
Signals.

Online Tool URL

CBS Prediction Servers

(Center for Biological Sequence
Analysis, Technical University
of Denmark DTU)

http://www.cbs.dtu.dk/services/�

PSORT (Protein Sorting) http://psort.hgc.jp/†

Gene Infinity http://www.geneinfinity.org/sp/
sp_proteinptmodifs.html‡

�Check CBS access policy to prediction servers at http://www.cbs.dtu.dk/cgi-bin/nph-

access.
†PSORT program was coded by Kenta Nakai, Ph.D., Human Genome Center,

Institute for Medical Science, University of Tokyo, Japan. Various scientists and their

collaborators involved in developing different versions of the PSORT program are

acknowledged on the PSORT home page.
‡Check the Terms of Service on the Gene Infinity home page.
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way of predicting secondary structures. In homology
modeling, the secondary structure of the target protein
is predicted based on the known structure of homolo-
gous proteins (template). Hence, homology modeling
is based on sequence similarity/identity; obviously,
the higher the sequence similarity/identity between

the target and the template, the greater is the chance of
accuracy of prediction. Nevertheless, homology model-
ing may not accurately predict the side chains and
folds, making the overall predictions less accurate.

With advances in computation techniques, increase
in the number of database entries, and increased
knowledge of various protein folds, the concept of pro-
tein sequence�structure threading developed in the
1990s. In protein threading (fold recognition), target
sequence is mapped to known template structures
from the database. The sequence�structure compatibil-
ity is assessed by a scoring function. The method is
based on the premises that, (1) there is a far lower
number of unique folds among proteins than there are
known proteins, and (2) information on the physico-
chemical properties of amino acids and knowledge of
their occurrence in different structural environments
provide important clues to their potential occurrence
among different types of folds. Energy functions are
an important consideration because energetics is very
important in folding. During computation of threading,
the threading with minimum energy is assumed to represent
the most likely fold structure.

TABLE 8.3 Amino-Acid Relative Propensity Values Used by the Chou�Fasman Method

Amino Acid P (α-helix) P (β-strand) P (β-turn) f(i) f(i1 1) f(i1 2) f(i1 3)

Alanine 142 83 66 0.06 0.076 0.035 0.058

Arginine 98 93 95 0.070 0.106 0.099 0.085

Asparagine 67 89 156 0.161 0.083 0.191 0.091

Aspartic acid 101 54 146 0.147 0.110 0.179 0.081

Cysteine 70 119 119 0.149 0.050 0.117 0.128

Glutamic acid 151 037 74 0.056 0.060 0.077 0.064

Glutamine 111 110 98 0.074 0.098 0.037 0.098

Glycine 57 75 156 0.102 0.085 0.190 0.152

Histidine 100 87 95 0.140 0.047 0.093 0.054

Isoleucine 108 160 47 0.043 0.034 0.013 0.056

Leucine 121 130 59 0.061 0.025 0.036 0.070

Lysine 114 74 101 0.055 0.115 0.072 0.095

Methionine 145 105 60 0.068 0.082 0.014 0.055

Phenylalanine 113 138 60 0.059 0.041 0.065 0.065

Proline 57 55 152 0.102 0.301 0.034 0.068

Serine 77 75 143 0.120 0.139 0.125 0.106

Threonine 83 119 96 0.086 0.108 0.065 0.079

Tryptophan 108 137 96 0.077 0.013 0.064 0.167

Tyrosine 69 147 114 0.082 0.065 0.114 0.125

Valine 106 170 50 0.062 0.048 0.028 0.053

TABLE 8.4 Some Online Chou�Fasman and GOR Prediction
Tools

Chou�Fasman and
GOR Prediction Tool URL

University of Virginia http://fasta.bioch.virginia.edu/
fasta_www2/fasta_www.cgi?rm5misc1�

(select Chou�Fasman or GOR method)

ProtScale at ExPASy http://web.expasy.org/protscale/8

(select Chou�Fasman or GOR method)

Center for
Informational Biology,
Japan

http://cib.cf.ocha.ac.jp/bitool/MIX/†

(select Chou�Fasman or GOR method)

�r1988, 2006, by William R. Pearson and the University of Virginia.
†The home page cites the papers based on which the method implemented in this server

was developed. The Chou�Fasman and GOR papers are cited elsewhere in the text.
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TABLE 8.5 Some Online Tools for the Analysis of Possible Secondary Structure of a Protein

Online Tool Comments and URL

APSSP http://imtech.res.in/raghava/apssp/�

CFSSP (Chou�Fasman16

Secondary-Structure Prediction)
http://www.biogem.org/tool/chou-fasman/†

GOR IV GOR IV17; GOR I, the original GOR18

(http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page5npsa_gor4.html)‡19

HMMSTR HMM-based20,21

(http://www.bioinfo.rpi.edu/bystrc/hmmstr/server.php)

JPred 3 Combines the analysis from multiple prediction algorithms, such as DSC, JNET, PHD, and
PREDATOR22

(http://www.compbio.dundee.ac.uk/www-jpred/)

NPS@ (Network Protein Sequence
Analysis)

This site contains links to a number of prediction tools including GOR and PHD. However, GOR
and PHD are mentioned here separately as well. Pay attention to those that were developed in the
late 1990s. Compare the output from these tools‡19

(http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page5/NPSA/npsa_server.html)

PHD Neural-network-based23�25

(http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page5/NPSA/npsa_phd.html)

PredictProtein Meta-server that combines the analysis from multiple prediction algorithms such as Jpred, PHD,
PROF, and PSIPRED. It is a good secondary-structure prediction program��

(https://www.predictprotein.org/)

PROTEUS 2 Combination of HMM- and neural-network-based prediction26

(http://wishart.biology.ualberta.ca/proteus2/)

PSIPRED Combination of homology modeling and neural-network-based prediction. It is a good secondary-
structure prediction program27

(http://bioinf.cs.ucl.ac.uk/psipred/)

Quick2D Provides an overview of secondary-structure features like α-helices, extended β-sheets, coiled coils,
transmembrane helices, and disordered regions. Predictions by PSIPRED, JNET, Prof(Rost), Prof
(Ouali), Coils, MEMSAT2, HMMTOP, DISOPRED2 and VSL2††

(http://toolkit.tuebingen.mpg.de/quick2_d)

SCRATCH Protein Predictor The SCRATCH software suite includes predictors for a number of parameters, such as secondary
structure, relative solvent accessibility, disordered regions, domains, individual residue contacts,
tertiary structure, and more28

(http://scratch.proteomics.ics.uci.edu/index.html)

SSPro 4.0 Bidirectional recurrent neural network (BRNN)-based29,30

(http://download.igb.uci.edu/sspro4.html)

SYMPRED SYMPRED can be run using any combination of the following programs: PHD, PROF, SSPro2.01,
YASPIN, JNet, and PSIPRED. The consensus of the outputs is derived through dynamic
programming to achieve a higher level of prediction accuracy31

(http://www.ibi.vu.nl/programs/sympredwww/)

SOPMA An improved self-optimized prediction method (SOPM)32

(http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page5npsa_sopma.html)

YASPIN Neural-network-based33

(http://www.ibi.vu.nl/programs/yaspinwww/)

�An advanced version of the PSSP server.34

†r 2012, BioGem.Org.
‡Service supported by Ministère de la recherche (ACI IMPBio, ACC-SV13), CNRS (IMABIO, COMI, GENOME) and Région Rhône-Alpes (Programme EMERGENCE). The

“Abstract” link can be clicked to obtain all the original references.
��The website provides a link to the entire PredictProtein team.
††r 2008, Dept. of Protein Evolution at the Max Planck Institute for Developmental Biology, Tübingen.
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Advances in protein-threading algorithms have
allowed more accurate fold prediction. Secondary-
structure prediction has further benefited from the intro-
duction of methods like neural networks, hidden Markov
models (HMMs), and the ability to train new models on
an extensive set of sequence and structural data.

There are a number of online tools available for the
analysis of possible secondary structure of a protein.
ExPASy provides links to many of these tools. The links
in Table 8.5 are cited because the analysis can be done
in real time using most of these tools and the output is
quickly obtained. There are many more online secondary-
structure predictions tools that are not cited here.

These tools predict various secondary structures
that different parts of the polypeptide can assume,
such as the α-helix, 310-helix, π-helix, extended strand,
β-turn, random coil, or ambiguous state. Analyzing a
polypeptide sequence using different prediction tools
may not produce the same results. For example, ana-
lyzing mouse Slco1a6 using four of these tools pro-
duces the following results: the prediction of α-helix
varies between B23 and 38%, that of extended strand
varies between B11 and 27%, and that of random coil
varies between 42 and 51%. It is therefore advisable to
analyze the sequence using multiple programs. Some
of the standard notations in the output are as follows:
α-helix (H/h), 310-helix (G/g), π-helix (I/i), extended
strand (E/e), β-turn (T/t), random coil (C/c).

Online tools for the prediction of coiled coils and zip-
pers are shown in Table 8.6. The direct link for ExPASy
COILS is given in the table. It can also be accessed by
first accessing ExPASy (http://www.expasy.org/), then
accessing COILS by clicking “Resources A..Z”.

8.7.3 Predicting the Accuracy
of Secondary-Structure Prediction

A widely used metric to determine the overall accu-
racy of secondary-structure prediction is the Q3 score.
A Q3 score is a measure of the quality of prediction of
all three states (helix, strand, and coil), and it represents
the percentage of residues that are correctly predicted
(the states of the residues). The Q3 score can range from
0 to 1; 1 being the perfect prediction (100%). Currently,
almost all secondary-structure-prediction algorithms
achieve a Q3 score of 0.75 or higher. It should be remem-
bered that Q3 is not an absolute measure of the predic-
tion accuracy; there are other measures as well.

8.8 PREDICTION OF DOMAINS
AND MOTIFS

A domain is part of the tertiary structure of protein.
Each domain is a discrete globular unit that folds inde-
pendently of the rest of the protein. Domains have spe-
cific functional roles. Domains can be composed of as
few as 20�25 amino acids, but frequently much more
than 25. The average number of domains in a protein
is usually two to three, but can be more. By shuffling a
finite number of domains, nature has created proteins
with diverse functions during evolution. Thus, pro-
teins with similar functions are expected to contain
conserved regions that are associated with the func-
tion; the rest of the protein sequence may be different.
Examples of some familiar domains are the SH3 (Src-
homology 3) domain, which is around 50 amino acids
and involved in protein�protein interactions; the
chromo (chromatin organization modifier) domain,
which is 30�70 amino acids and involved in the
assembly of protein complexes on chromatin; and the
death domain, which is around 80�100 amino acids
and involved in apoptotic signal transduction.

As opposed to domains, a specific functional element
of the protein that usually does not fold independently
of the rest of the protein is called a motif, such as a
sequence motif or a structural motif (e.g. a stretch of sec-
ondary structure). Domains contain within themselves
specific motifs that are critical to domain function.
Some examples of structural motifs in proteins are vari-
ous loop and turns, such as omega loops, beta turns,
helix�loop�helix, and helix�turn�helix. Sometimes the
terms domain and motif are used interchangeably in the
context of proteins, such as “coiled-coil” domain/motif,
“leucine-zipper” domain/motif.

The domain analysis of Slco1a6 using InterProScan
(http://www.ebi.ac.uk/Tools/pfa/iprscan/)38 at the
European Molecular Biology Laboratory’s European
Bioinformatics Institute (EMBL-EBI) is shown in
Figure 8.4 and Figure 8.5. At the default setting, all

TABLE 8.6 Some Online Prediction Tools for Coiled Coils and
Zippers

Online Tool Comments and URL

ExPASy

COILS

COILS compares the input sequence to a database of
known parallel two-stranded coiled coils and derives
a similarity score. By comparing this score to the
scores in globular and coiled-coil proteins, COILS
calculates the probability that the sequence will adopt
a coiled-coil conformation35

(http://embnet.vital-it.ch/software/COILS_form.
html)

Paircoil2 at
MIT

New version of the Paircoil program, which uses
pairwise residue probabilities to detect coiled-coil
motifs. Paircoil2 achieves 98% sensitivity and 97%
specificity on known coiled coils36

(http://groups.csail.mit.edu/cb/paircoil2/paircoil2.
html)

2ZIP Combines a standard coiled-coil-prediction algorithm
with an approximate search for the characteristic
leucine repeat. No further information from homologs
is required for prediction37

(http://2zip.molgen.mpg.de/)
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FIGURE 8.4 InterProScan home page at EMBL-EBI from where the search and analysis can be launched. The page shows that at the
default setting all applications are checked; each one scans the input sequence against a specific database.

FIGURE 8.5 The graphical display of InterProScan analysis. Two major domains identified are Kazal and MFS. More information
on these domains can be obtained from various links under the “Summary Table” tab. The predictions from different databases may not be
identical (see text). Nevertheless, these tools are very important in identifying specific signatures in protein sequence.
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applications are checked; each one scans the input
sequence against a specific database (see “Help &
Documentation” for details; Figure 8.4). The graphical
display of the analysis is shown in Figure 8.5.
Two major domains identified are Kazal and MFS
(see Box 8.1). Clicking “Summary Table” shows various
links for more information on the domains and their
distribution. The predictions from different databases
may not be identical; for example, PROFILE predicts
the Kazal domain spanning from residue 433 to 488,
whereas Pfam predicts the Kazal domain spanning
from residue 447 to 486. PROFILE predicts the MFS
domain spanning from residue 21 to 627, whereas
SuperFamily predicts the MFS domain spanning from
residue 1 to 625. Despite small differences in prediction,
these tools are very important in identifying specific
sequence signatures in protein sequence.

The domain analysis of Slco1a6 using the NCBI CDD
is shown in Figure 8.6, Figure 8.7, and Figure 8.8.
CDD (Conserved Domain Database) of NCBI provides

annotation of protein sequences with the location
of conserved-domain footprints and functional sites
inferred from these footprints. CDD is built on NCBI-
curated domains and data imported from Pfam,
SMART, COG, PRK, and TIGRFAM.39 CDD can be
accessed directly at http://www.ncbi.nlm.nih.gov/cdd,
or from the NCBI home page. Figure 8.6 shows the CDD
home page. Clicking “CD-Search” (circled) takes the
user to the search launch page, shown in Figure 8.7.
Submitting the Slco1a6 sequence in FASTA format under
default settings returns the analysis shown in Figure 8.8.
The result can be displayed in a “concise format” that
displays the best hits, or “full format” that displays
all hits. Figure 8.8 shows the concise format. Like
InterProScan, CDD analysis also shows that Slco1a6
contains Kazal (Kazal_SLC21) and MFS domains.
However, the predicted MFS domain is shorter (21�270)
than that predicted by InterProScan (PROFILE).

It should be remembered that the domain/motif prediction
is predicated on sequence alignment. Just like with any other

BOX 8.1

KAZAL AND MFS DOMA INS

The activity of proteases in cells is under tight control

to prevent any unintended tissue damage. Cells produce

various types of proteases along with peptide protease

inhibitors to regulate the protease activity. Serine

protease� activities are regulated by serine protease inhi-

bitors, which are distributed in a wide range of organ-

isms from all kingdoms of life. Pancreatic acinar cells

produce two types of serine protease inhibitors; one is

the Kunitz inhibitors (e.g. PTI, or pancreatic trypsin

inhibitor) that remain in the pancreatic cells, and the

other is Kazal inhibitors (e.g. PSTI, or pancreatic secre-

tory trypsin inhibitor) that are secreted with the zymo-

gens in the pancreatic juice. Some other examples of

Kazal-type inhibitors are avian ovomucoid, acrosin

inhibitor, and elastase inhibitor. Kazal-type inhibitors

are the most studied protease inhibitors, and they con-

tain one or more Kazal-type domains. The typical Kazal

domain is a small α/β fold, consisting of one α-helix

surrounded by an adjacent three-stranded β-sheet and

loops of peptide segments†.40

The major facilitator superfamily (MFS) is the largest

known superfamily of secondary transporters found in

living organisms. Secondary transporters do not use ATP

directly for transport, but use an already-existing electro-

chemical gradient‡. More than 70 families are known;

members of each family transport a different set of related

compounds, such as simple monosaccharides, oligosac-

charides, amino acids, peptides, vitamins, enzyme

cofactors, drugs, nucleobases, nucleosides, nucleotides,

and organic and inorganic anions and cations. MFS pro-

teins are single-polypeptide secondary transporters, and

theMFS domain consists of either 12 or 14 transmembrane

helices connected by hydrophilic loops��.42,43 Secondary

active transport can move materials against the concentra-

tion gradient, and can also transport just one substrate

(uniporter), or two substrates in the same direction (sym-

porter), or in the opposite direction (antiporter).

�Serine proteases contain a reactive serine in their active site and
this serine is crucial for their function. Trypsin, chymotrypsin, and
elastase are three important eukaryotic serine proteases; subtilisin is
an important bacterial serine protease. Trypsin is involved in the
activation of pancreatic zymogens. Serine proteases also constitute
over one-third of all proteases41

†http://www.ebi.ac.uk/interpro/entry/IPR002350; http://prosite.
expasy.org/PDOC00254
‡An electrochemical gradient is a gradient of electrochemical
potential, which is generated by the differential distribution of
electrical potential and chemical concentration across the
membrane. Differential distribution of ions across the membrane,
for example sodium ions, generates an electrochemical gradient.
It consists of two components: the electrical potential difference
caused by the uneven distribution of the charge, and the
concentration difference caused by the uneven distribution of
sodium itself. The electrochemical gradient generates potential
energy because the ions involved are ready to move across the
membrane. However, the ions cannot pass through the membrane
lipid bilayer without the help of an active transport mechanism.
The MFS transporters convert this potential energy into kinetic
energy when they transport the respective substrates
��http://www.ebi.ac.uk/interpro/entry/IPR016196;jsessionid;
http://pfam.sanger.ac.uk/clan/CL0015
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predictions, there is an element of uncertainty—that is, a
domain may be falsely predicted or a true domain may be
missed, particularly conformational domains.

Another good online tool for domain analysis is
PROSITE (http://prosite.expasy.org/prosite.html).44,45

PROSITE scan (ScanProsite) of Slco1a6 produces the
following results: Kazal domain spanning residues
433�488 and MFS domain spanning residues 21�627
(not shown).

8.8.1 Transmembrane-Helix Prediction

Because domain analysis shows the existence of
an MFS domain in Slco1a6, a specific search for the

transmembrane (TM) helices can be done. There are
a number of good online TM-helix-prediction tools,
as shown in Table 8.7.

RHYTHM produces a nice graphical output of TM
helices, showing the amino-acid sequence in each helix.
Figure 8.9 shows the gist of TM-helix prediction by all
four prediction tools. TMHMM (version 2.0) predicted
11 TM helices, whereas RHYTHM, OCTOPUS, and
Phobius each predicted 12 TM helices (Figure 8.9). The
graphical outputs of RHYTHM and OCTOPUS are
shown in Figure 8.10. In the span of residue 110 to resi-
due 240 (approximately), TMHMM predicted one TM
helix, whereas RHYTHM, OCTOPUS, and Phobius pre-
dicted two. As a result, the assignment of inside and

FIGURE 8.6 The Conserved Domain Database (CDD) home page. Clicking CD-search (circled) takes the user to the search and analysis
launch page (Figure 8.7).

FIGURE 8.7 The CDD search and analysis launch page. Submitting the Slco1a6 sequence in FASTA format under default settings returns
the analysis shown in Figure 8.8. In the default settings, the “low-complexity” filter is on. This can be turned off.
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outside segments is reversed between the TMHMM
prediction and those of the other three programs from
residue 214/223 onwards. However, TMHMM is a
widely used, good TM-helix-prediction program, and
TMHMM prediction is focused on TM helices only
and not necessarily on the cytoplasmic and the extra-
cellular segments. Overall, the TM helices were pre-
dicted correctly by all four programs. Nevertheless,
this example further underscores the fact that it is a
good idea to run an analysis simultaneously using
multiple programs.

8.9 VIEWING THE 3D STRUCTURE OF
PROTEINS (AND OTHER BIOLOGICAL

MACROMOLECULES)

The 3D structures of many proteins and other bio-
logical macromolecules have been determined using
various techniques of modern structural biology. These
structures are deposited in the PDB (Protein Data
Bank) database and are given a PDB ID. The PDB ID
is a four-character unique identifier, consisting of num-
bers and letters, assigned to a protein or other biologi-
cal macromolecule submitted to the PDB. The PDB is
an archive of the structure of proteins and other bio-
logical macromolecules; the structures have been
determined using techniques like X-ray crystallogra-
phy, nuclear magnetic resonance (NMR) spectroscopy,
and cryo-electron microscopy. After structural infor-
mation is submitted to the PDB, the submission is
annotated and publicly released by the wwPDB
(http://www.wwpdb.org/). As of July 30, 2013, there
were 92,689 structures in the PDB. PDB IDs are usually
written in uppercase. Some examples of PDB IDs are
2HHD (human hemoglobin, deoxy form), 9INS (pig
insulin), and 2VRY (mouse neuroglobin). The PDB can
be searched by simply typing the description, or par-
tial sequence, or the PDB ID (if known).

FirstGlance in Jmol (http://bioinformatics.org/
firstglance/fgij/index.htm) is a user interface to the
free molecular visualization program named Jmol
(http://jmol.sourceforge.net/). Jmol is a free and

FIGURE 8.8 Result of CDD domain analysis. The result is displayed in the “concise format.” Analysis shows that Slco1a6 contains Kazal
(Kazal_SLC21) and MFS domains. The predicted MFS domain is shorter (21�270) than that predicted by InterProScan (see text). Holding the
cursor over MFS or Kazal_SLC21 produces a drop-down box that contains detailed description of the specific hit.

TABLE 8.7 Some Online Tools for Transmembrane-Helix
Prediction

Online
Tool Comments and URL

TMHMM Hidden-Markov-model-based46

(http://www.cbs.dtu.dk/services/TMHMM/)

RHYTHM Utilizes the structural information from ever-growing
data sets and evolutionary information from conserved-
sequence patterns in a representative data set of
membrane proteins47

(http://proteinformatics.charite.de/rhythm/)

Phobius Hidden-Markov-model-based48

(http://phobius.sbc.su.se/)

OCTOPUS Artificial-neural-network-based49

(http://octopus.cbr.su.se/)
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open-source software program written in Java for
viewing chemical structure in 3D. It runs on various
operating systems, such as Windows, MacOS, and
Unix, and is also downloadable. The Jmol website has
a user-friendly tutorial. FirstGlance in Jmol provides
an easy way to look at the 3D structures of proteins,
DNA, RNA, and their complexes, including with ani-
mation. In order to use FirstGlance in Jmol, one has to
know the PDB ID of the macromolecule or have the
data as PDB file format. On the FirstGlance in Jmol
website, help is displayed automatically with links to
further information about structural biology terms and
concepts. The website also provides links to a “Gallery
of Interactive Molecules” and a “Snapsot Gallery.”
Therefore, between the Jmol tutorial and FirstGlance
in Jmol helpful links, the beginner will find it quite
easy to understand the output.

8.10 ALLERGENIC PROTEIN DATABASES
AND PROTEIN-ALLERGENICITY

PREDICTION

Substances that cause allergic reactions are called
allergens. Almost all allergens are proteins and they

induce allergic response in susceptible individuals.
Because allergic reactions result from complex interac-
tions between the allergenic proteins and the immune
system (see footnote on epitopes), and because allergic
reactions are seen only in susceptible individuals, the
allergenic potential of proteins is difficult to predict.

8.10.1 WHO/IUIS Allergen Nomenclature
and Database of Allergenic Proteins

The World Health Organization/International
Union of Immunological Societies (WHO/IUIS)
Allergen Nomenclature Subcommittee is responsible
for developing a systematic Linnaean nomenclature of
allergens and maintaining a database of confirmed
allergenic proteins.50,51 A Linnaean nomenclature of an
organism consists of a genus and a species term. The
allergen name is normally made up of the first three
letters of the genus name, first one letter from the spe-
cies name, and a number that represents the order of
its identification. In some instances, this rule has to be
modified, such as Asp fl 13 (from Aspergillus flavus)
and Asp f 13 (from Aspergillus fumigatus). Note that for
Aspergillus flavus Asp fl 13, two letters from the species
name, instead of one letter, have been used.

FIGURE 8.9 Transmembrane-helix prediction at a glance by RHYTHM, OCTOPUS, Phobius, and TMHMM. TMHMM (version 2.0) pre-
dicted 11 TM helices, whereas RHYTHM, OCTOPUS and Phobius predicted 12 (see text for details). This example underscores the fact that it
is a good idea to run an analysis simultaneously using multiple programs.
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The WHO/IUIS allergen database contains informa-
tion of approved and officially recognized allergens—
that is, for a protein to be designated an allergen by
WHO/IUIS, the allergenicity of the protein should be
clinically documented. The database can be quickly
searched for an allergen or an allergen source on
the home page (http://www.allergen.org/index.php).
Alternatively, an advanced search can be performed
on the search page by clicking the “Search” tab or
using the direct link http://www.allergen.org/search.
php. By clicking the “Tree View” tab or using the
direct link http://www.allergen.org/treeview.php, a
list of allergens in fungi, plants, and different animal
phyla can be directly obtained. An allergen record
shows much important information about the allergen,
such as the source, the evidence of allergenicity,
allergenicity reference in PubMed, information on
whether the allergen is a food allergen or not, any

isoallergens and variants, and finally the sequence in
both GenBank and UniProt.

8.10.2 Other Databases of Allergenic Proteins

In addition to the WHO/IUIS database, there are a
number of other databases of allergenic proteins. Three
of these databases are described in Chapter 5 (the
Structural Database of Allergenic Proteins (SDAP),
Allergenonline, and Allermatch). Both the SDAP and
Allergenonline databases are periodically updated;
they both list more than 1500 allergenic proteins from
food and non-food sources. Many allergens listed in
these databases do not have IUIS designations yet. For
a more comprehensive list of currently available aller-
gen databases and allergen semantics, see Gendel52

and other publications by the same author referenced
in the paper.

FIGURE 8.10 The graphical outputs of RHYTHM and OCTOPUS. The RHYTHM graphical output shows the relative length of the pre-
dicted helices and the amino-acid sequence of each predicted helix, as well as the residues that are in contact with the membrane and the resi-
dues involved in helix contact.
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8.10.3 Linear Epitopes, Conformational
Epitopes, and Allergenicity

Although a protein acts as an allergen, the immune
system actually recognizes smaller sections of the pro-
tein to trigger an allergic response. These small segments
of the allergenic protein are called allergenic determi-
nants, or epitopesd. The cognate antibody (IgE) binds to
these allergenic epitopes to trigger the allergic response.
Epitopes can be linear or conformational. In a linear epi-
tope, the amino-acid sequence is continuous, whereas in
a conformational epitope, the 3D conformation of the
protein brings two separate sequence segments together
to create the epitope. Conformational epitopes are usu-
ally destroyed when the protein is denatured, but linear
epitopes are not affected by denaturation. Because many
food allergens are stable in heat processing and diges-
tion, it has been proposed that linear epitopes are more
important than conformational epitopes for food aller-
gens. However, the allergenicity of some foods, such as
cow’s milk and egg, is partly due to the IgE-binding con-
formational epitopes of their constituent proteins, such
as α- and β-casein in cow’s milk and ovomucoid in egg.
Individuals whose immune system reacts to these con-
formational epitopes tend to grow out of the allergy as
they get older, but reaction to the linear epitopes results
in persistent allergy.53�55 Conformational epitopes are
also important for environmental allergens that are
primarily inhaled.56

8.10.4 Allergenicity-Prediction Paradigm

Bioinformatics tools have been developed to identify
the allergenic potential of an unknown protein by com-
paring its sequence to the sequences of known allergenic
proteins in the database. A paradigm for assessing
the allergenic potential of a protein in food was devel-
oped by the Food and Agricultural Organization/World
Health Organization (FAO/WHO) as part of a
multi-step safety-assessment process for foods produced
through agricultural biotechnology.57 The FAO/WHO
paradigm uses two criteria: (1) an exact match of 6 con-
tiguous amino acids, and (2) an overall sequence identity

of more than 35% in a sliding window of 80 amino
acids. Any protein that satisfies one or both of these cri-
teria should trigger additional investigation to confirm
whether the protein may truly have allergenic potential.

At the time the FAO/WHO paradigm was
developed, it was already known that the smallest
IgE-binding epitopes in an allergen could be only six-
amino-acids long, as had been reported for Ara h 1 and
Ara h 2.58,59 The findings in these publications were
based on epitope mapping with synthetic peptides that
reacted with serum IgE from individuals with docu-
mented peanut hypersensitivity. Also, a publication by
Burkhard Rost60 had described the basis for a 35% iden-
tity cutoff and 80-amino-acid window threshold in
pairwise sequence alignment. The author reported that
protein pairs with similar structure (and function) are
likely to have. 35% sequence identity. The author ana-
lyzed more than a million sequence alignments
between protein pairs of known structure. The goal
was to distinguish between true and false positives for
low levels of similarity. The author noted that sequence
alignments could unambiguously distinguish between
protein pairs of similar and non-similar structure when
the pairwise sequence identity was .40% for long
alignments. The signal, however, became blurred when
the sequence identity was between 20 and 35%; this
20�35% range was termed the twilight zone of
sequence identity. The pairwise sequence identity by
itself is not meaningful without the context of a length-
dependent threshold. In other words, a significant
sequence identity can only be defined in the context of
an optimum window of sequence length, which was
determined to be around 80 amino acids. Such a
requirement for a length threshold (around 80 amino
acids) to determine a significant sequence identity had
been described earlier by Sander and Schneider61 and
was also discussed by Rost.

8.10.5 Allergenicity-Prediction Servers

The bioinformatic tools to analyze the sequence of a
protein according to FAO/WHO rules are available
from multiple sources, such as SDAP, and Allermatch.

dAn epitope, also called an antigenic determinant, is a region of the antigen (protein) that binds a secreted antibody, such as

immunoglobulin G (IgG), or a membrane receptor on a lymphocyte, such as the T-cell receptor (TCR). Normally, such binding results

in a humoral (antibody-mediated) immune response or a cellular (T-cell-mediated) immune response. Allergy is a special type of

immune response that occurs in some individuals whose immune system overreacts to certain environmental substances that do not

bother most other people. During an allergic response, IgE binds to the IgE receptor on mast cells (in tissues) and basophils (in

circulation). When two or more IgEs bound to receptors on the mast cells or basophils are cross-linked by the allergen through the

allergenic epitope, these cells are activated. Both mast cells and basophils contain special cytoplasmic granules that store many

mediators of inflammation. The extracellular release of these mediators following activation of these cells is known as degranulation.

A well-known mediator of inflammation released by mast cells is histamine. The released mediators of inflammation trigger allergy

symptoms.
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Allergenonline allows searching for an eight- (instead
of six-) contiguous-amino-acid exact match. This
change is based on the argument that searching for an
exact match of six contiguous amino acids has the
potential of generating many false positives.

In this section, we will focus on the information avail-
able from the SDAP database and analysis tools avail-
able on the SDAP62,63 (https://fermi.utmb.edu/SDAP/)
and AlgPred64 (http://www.imtech.res.in/raghava/
algpred/) servers. Figure 8.11A shows a partial (upper)
screenshot of the SDAP database, whereas Figure 8.11B
shows recent SDAP developments, as of August 2013.

On the panel on the left there are various links. One
such link is “FAO/WHO Allergenicity Test.” Clicking
this link takes the user to the screen shown in
Figure 8.12. The search for allergenicity of a protein can
be launched from this page. Hitting the “Search” button
returns a list of allergenic protein sequences that share
one or more segments of six-contiguous-amino-acid
identity with the input sequence. For demonstration,
the sequence of mouse Slco1a6 has been pasted in the
box (Figure 8.12) and analyzed using FAO/WHO rules.
In this example, a total of six different segments of
Slco1a6 (each segment is six-contiguous-amino-acids
long) were found to match with segments of six

different allergens from the database (Figure 8.13A
and B). Figure 8.13A is a partial screenshot as displayed
in the output. Figure 8.13B lists the other five hits
between Slco1a6 and five different allergenic proteins.
For these five hits, the screenshots of alignment are not
shown, to save space. No sequence identity 35% or
greater was found in a sliding window of 80 amino
acids. In practice, it is more common to have one or more six-
contiguous-amino-acid sequence matches than to have .35%
sequence identity in a sliding window of 80 amino acids.

In the situation when there are six-contiguous-
amino-acid segment matches between the input protein
sequence and various allergenic proteins in the database,
additional sequence comparison can be performed.
For example, the distribution of these six-contiguous-
amino-acid sequence segments can be verified using
BLASTP against a curated protein database, such as
UniProtKB/Swiss-Prot. The goal is to find out if these
six-amino-acid sequence segments widely occur in
various proteins that are not known to be allergenic.
Additionally, the input sequence can be further ana-
lyzed using other prediction tools, such as AlgPred.
Figure 8.14A shows that AlgPred offers several differ-
ent approaches for predicting the allergenic potential
of a protein (the input sequence). Five different

FIGURE 8.11 The SDAP database home page. (A) Partial (upper) screenshot of the SDAP database home page. Note the panel with links
on the left-hand side, including links to SDAP tools. (B) Further down the home page is the “Recent SDAP developments” section (as of
August 2013).
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FIGURE 8.12 FAO/WHO Rule-Based Allergenicity Prediction at the SDAP database. The search for allergenicity of a protein according to
FAO/WHO rules can be launched from this page. The default settings are 6 for contiguous amino acids, and 35 for % cutoff in a sliding window
of 80 amino acids. These values can be changed by the user if needed. Selecting any one of these two options and hitting the “Search” button
returns the results of the analysis. The sequence of mouse Slco1a6 has been pasted in the box for analysis according to FAO/WHO rules.

FIGURE 8.13 Results of the FAO/WHO Rule-Based Allergenicity Prediction of Slco1a6. A total of six different segments of Slco1a6,
each six-contiguous-amino-acids long, were found to match with six different allergens from the database. (A) A partial screenshot of the
six-contiguous-amino-acid hit, as displayed in the output. (B) The other five hits between Slco1a6 and five different allergenic proteins.
No sequence identity 35% or greater was found in a sliding window of 80 amino acids.
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approaches can be chosen for the prediction (listed
on the home page), or the combination of all five in
the “Hybrid Approach”. Figure 8.14B shows that the
hybrid approach predicts Slco1a6 as a non-allergen.
The same approach can be used to predict the potential
allergenicity of a non-food protein. It should be remem-
bered that the sequence-based approach of allergenicity
prediction is one of many tools utilized to assess
whether a protein has the potential to be allergenic.

In addition to predicting the allergenic potential of a
protein, there are a number of online T-cell and B-cell
epitope-prediction tools that can be used to predict
T-cell and B-cell epitopes, both continuous and discon-
tinuous, in an input protein sequence. Such prediction
methods take into account many aspects of protein
structure, such as amino-acid properties (e.g. hydrophi-
licity and antigenicity, solvent accessibility, secondary
structure, flexibility), amino-acid sequence, 3D structure
wherever available, and information about the known
epitopes from databases. The machine-learning predic-
tion methods include the hidden Markov model (HMM),
artificial neural network (ANN), and support vector
machine (SVM). The SVM was found to be a better
predictor compared to the other machine-learning pre-
diction methods.65 Some easily accessible online T-cell

and B-cell epitope-prediction tools are available from the
following sources:

http://www.imtech.res.in/raghava/
http://www.cbs.dtu.dk/services/
http://tools.immuneepitope.org/main/.

8.11 INTRINSICALLY DISORDERED
PROTEIN ANALYSIS

Intrinsically disordered proteins (IDPs), also known
as intrinsically unstructured proteins (IUPs), are char-
acterized by the lack of a stable tertiary structure under
physiological conditions. The lack of structural order in
a protein goes against the traditional wisdom that pro-
tein function depends on a stable tertiary structure (the
structure�function paradigm). It has long been realized
that proteins possess configurational adaptability (e.g.
induced fit). However, the presence of disordered seg-
ments in a functional protein became apparent when the
crystal structures of various proteins became available.
Techniques, such as NMR, X-ray crystallography, and
circular dichroism helped uncover the disordered/
unstructured state of certain proteins (e.g. missing

FIGURE 8.14 Analysis of the input sequence using AlgPred. (A) AlgPred offers several different approaches for predicting the allergenic
potential of a protein (the input sequence). The hybrid approach that combines all five other approaches was chosen for the prediction (box
checked). (B) The hybrid approach predicts Slco1a6 as a non-allergen. The same approach can be used to predict the potential allergenicity of
a non-food protein.
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electron density of certain segments; hence, missing
segments in X-ray crystallography). For these proteins,
the intrinsically disordered state is necessary for func-
tion; some of these proteins fold only in complex with
the substrate. It has been estimated that at least 50% of
eukaryotic proteins possess at least one long (.40-
amino-acid) loop, while this fraction is lot lower in pro-
karyotes and Archaea. Protein disorder is found within
loops. Coiled coils may also assume disorder as they only
assume globular structure when the coiled-coil partners
interact with one another. IDPs play an important role in
signaling, recognition, and regulation; recognition and reg-
ulation may involve processes like substrate recognition,
catalysis, transport, DNA and RNA binding, and gene
regulation. The presence of flexible structure and flexible
structural segments helps accommodate a greater spec-
trum of binding targets, and also allows the IDP�target
interaction to be short-lived, which is crucial for proper
regulation. Because IDPs play an important role in

signaling and regulation, they are much more abundant
in eukaryotes than prokaryotes.66�68

8.11.1 IDP Databases

There are a number of databases of IDPs available;
three are indicated in Table 8.8, along with their
respective URLs.

Figure 8.15 shows a screenshot of the DisProt data-
base home page. It is a curated database. The current

TABLE 8.8 IDP Databases

URL

DisProt http://www.disprot.org/69

IDEAL http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/70

MobiDB http://mobidb.bio.unipd.it/71

FIGURE 8.15 Screenshot of the DisProt database home page. On the left it displays the release number and the number of entries in the
database. The entire database can be browsed by clicking the “Browse” link from the home page (circled). Alternatively, clicking the “Search”
link (circled) takes the user to the search page, where a specific search can be launched (see text for details).
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version (release 6.02) of the database has 694 proteins
and a total of 1539 disordered regions. Clicking the
“Search” link (circled) takes the user to the search
page. An unknown sequence can be searched for the
presence of a potential disordered segment by local-
similarity search with other known disordered pro-
teins from the database. Alternatively, a search can be
launched by typing a keyword. In the absence of any
specific search term, simply typing the keywords
“signaling” or “regulation” will return a series of rele-
vant entries from the database. An entry can be clicked
to obtain more information, such as general informa-
tion about the protein, sequence, percentage of the
sequence that is disordered, map of the ordered and
disordered segments, details of the disordered seg-
ments, and the references. The entire database can
also be browsed by clicking the “Browse” link from
the home page (circled). The other databases can also
be searched/browsed in a similar fashion.

8.11.2 IDP Prediction

A number of online tools are also available to ana-
lyze a protein sequence for the existence of potentially
disordered segments. Some of these tools are men-
tioned in Table 8.9, along with their respective URLs.

Figure 8.16 shows the DisProt disorder-prediction
launch page. The sequence is pasted in the box, the
desired analysis algorithm is checked, and the sequence
is submitted for analysis. The Slco1a6 sequence was
analyzed separately using VSL2B, VLXT, and PONDR-
FIT. Because three different screenshots could not be

TABLE 8.9 Online Tools for IDP Prediction

Online

Tool Comments and URL

PONDR-FIT Artificial-neural-network-based meta-predictor
developed by combining several individual disorder
predictors, such as PONDR-VLXT, PONDR-VSL2,
PONDR-VL3, FoldIndex, IUPred, and TopIDP72

(http://www.disprot.org/metapredictor.php)

DisEMBL Artificial-neural-network-based. Trained for predicting
several definitions of disorder, such as loops/coils as
defined by DSSP�73; hot loops, i.e. the loops with a high
B-factor from X-ray crystal structure†; missing
coordinates (disordered regions) in X-ray structure as
defined by REMARK465 entries in PDB, which
indicate missing residues listed74

(http://dis.embl.de/)

DISOPRED2 The link for PSIPRED analysis workbench is http://
bioinf.cs.ucl.ac.uk/psipred/?disopred5 1. Check the
box for DISOPRED2 in order to predict disordered
protein

RONN Bio-basis function neural network (BBFNN)-based. In
BBFNN, the prediction is based on the likelihood of
disorder determined by the alignment of the target
sequence to a large group of sequences of known
folding state (including known state of disorder)75

(http://www.strubi.ox.ac.uk/RONN)

�DSSP (Dictionary of Secondary Structure of Proteins) is a program and database

developed to standardize secondary-structure assignment for proteins of known 3D

structure (hence entries in PDB database). DSSP describes eight states of protein

secondary structure with single-letter codes: G (3/10 helix), H (α-helix), I (pi-helix),

B (β-bridge), E (extended strand in β-sheet), S (bend), T (H-bonded turn), and C (coil).
†In X-ray crystallography, the B-factor (temperature factor) is a measure of the extent

of oscillation or vibration of an atom around the position specified in the model. So, a

higher B-factor means more spread-out (lower) electron density, which indicates

greater flexibility and disorder of the region.

FIGURE 8.16 The DisProt

disorder-prediction launch
page. Providing options for
analysis using PONDR-VSL2B,
PONDR-VL3, PONDR-VLXT,
and PONDR-FIT.
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accommodated in one figure, only the graphical outputs
of the analysis are shown, in Figure 8.17. All three algo-
rithms predict three regions of Slco1a6 to be disordered.
These predicted common residues are shown in red
(Figure 8.17).

A separate analysis using RONN predicted three
regions of disorder: 120�147, 272�299, and 630�670
(output not shown). Another analysis, using DisEMBL,
predicted two regions of disorder: 279�296 and
640�670. Thus, different analysis programs consistently
predicted two segments of Slco1a6 as potentially disor-
dered regions: around 275�300 and around 635�670.
Both these regions of Slco1a6 are part of the inside
(cytoplasmic) segments, as predicted by RHYTHM,
OCTOPUS, and Phobius (Figures 8.9 and 8.10).
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9.1 PHYLOGENETICS AND THE
WIDESPREAD USE OF THE

PHYLOGENETIC TREE

Phylogeny refers to the evolutionary history of spe-
cies. Phylogenetics is the study of phylogenies—that
is, the study of the evolutionary relationships of spe-
cies. Phylogenetic analysis is the means of estimating
the evolutionary relationships. In molecular phyloge-
netic analysis, the sequence of a common gene or pro-
tein can be used to assess the evolutionary relationship
of species. The evolutionary relationship obtained from
phylogenetic analysis is usually depicted as branching,
treelike diagram—the phylogenetic tree. Historically,
the use of phylogenetic trees was restricted more or
less to the study of evolutionary biology, and to disci-
plines like systematics and taxonomy. However, with
the advent of sequencing and the widespread use of
cladistics, the use of phylogenetic trees has pervaded
many branches of biology and beyond. Construction of

phylogenetic/evolutionary trees is now widespread in
many areas of study where evolutionary divergence
can be studied and demonstrated; be it pathogens, bio-
logical macromolecules, or languages.

Phylogenetics also provides the basis for compara-
tive genomics, which is a more recent term that came
into existence in the age of genomics. Comparative
genomics is the study of the interrelationships of gen-
omes of different species. Comparative genomics helps
identify regions of similarity and differences among
genomes. The comparison can be made at different
levels, such as comparison of whole-genome sequences,
comparison of genome sequences involving blocks
of conserved synteny, comparison of the number
of protein-coding genes, comparison of regulatory
sequences, or other focused comparisons. An important
application of comparative genomics is gene finding.
From the standpoint of evolutionary biology, compar-
ative genomics helps understand the evolutionary
relationships among genomes.

�The opinions expressed in this chapter are the author’s own and they do not necessarily reflect the opinions of the FDA, the DHHS,

or the Federal Government.
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A resource for comparative genomic analysis is
VISTA, which can be accessed at http://genome.lbl.
gov/vista/index.shtml.

9.2 PHYLOGENETIC TREES

A phylogenetic tree or evolutionary tree is a diagram-
matic representation of the evolutionary relationships
among various taxa (Figure 9.1 A�D). It is a branching
diagram composed of nodes and branches. The branch-
ing pattern of a tree is called the topology of the tree.
The nodes represent taxonomic units, such as species
(or higher taxa), populations, genes, or proteins. A
branch is called an edge, and represents the time esti-
mate of the evolutionary relationships among the taxo-
nomic units. One branch can connect only two nodes. In
a phylogenetic tree, the terminal nodes represent the
operational taxonomic units (OTUs) or leaves. The
OTUs are the actual objects—such as the species,

populations, or gene or protein sequences—being com-
pared, whereas the internal nodes represent hypotheti-
cal taxonomic units (HTUs). An HTU is an inferred
unit and it represents the last common ancestor (LCA)
to the nodes arising from this point. Descendants (taxa)
that split from the same node form sister groups, and a
taxon that falls outside the cladea is called an outgroup.
For example, in Figure 9.1 B, T2 and T3 are sister groups,
and T1 is an outgroup to T2 and T3.

Phylogenetic trees can be scaled or unscaled. In a
scaled tree, the branch length is proportional to the
amount of evolutionary divergence (e.g. the number of
nucleotide substitutions) that has occurred along that
branch. In an unscaled tree, the branch length is not
proportional to the amount of evolutionary divergence,
but usually the actual number is indicated somewhere
on the branch.

Phylogenetic trees can be rooted (Figure 9.1 A and B)
or unrooted (Figure 9.1 C). A rooted tree has a node
(the root) from which the rest of the tree diverges.

FIGURE 9.1 Different forms of presentation of the phylogenetic tree. The phylogenetic tree in D is a dendrogram derived from hierar-
chical clustering (see text). A, B, and D show rooted trees, while C shows an unrooted tree. Taxa that share specific derived characters are
grouped into clades. (A) Smaller clades located within a larger clade are called nested clades. (B) The terminal nodes represent the operational
taxonomic units, also called “leaves”; each terminal node could be a taxon (species or higher taxa), or a gene or protein sequence. The internal
nodes represent hypothetical taxonomic units. An HTU represents the last common ancestor to the nodes arising from this point. Two descen-
dants that split from the same node are called sister groups and a taxon that falls outside the clade is called an outgroup. Rooted trees have a
node from which the rest of the tree diverges, frequently called the last universal common ancestor (LUCA).

aTaxa that share specific derived characters are grouped more closely together than those who do not. The groups are called clades;

each clade consists of an ancestor and all of its descendants.
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This root is frequently referred to as the last universal
common ancestor (LUCA), from which the other taxo-
nomic groups have descended and diverged over time.
In molecular phylogenetics, the LUCA and LCA are
represented by DNA or protein sequences. Obtaining
a rooted tree is ideal, but most phylogenetic-tree-
reconstruction algorithms produce unrooted trees.

9.2.1 Phylogenetic Trees, Phylograms,
Cladograms, and Dendrograms

In the context of molecular phylogenetics, the
expressions phylogenetic tree, phylogram, cladogram,
and dendrogram are used interchangeably to mean the
same thing—that is, a branching tree structure that
represents the evolutionary relationships among the
taxa (OTUs), which are gene/protein sequences. In the
traditional evolutionary sense, the OTUs in the phylo-
genetic tree are represented by species. A phylogram
is a scaled phylogenetic tree in which the branch
lengths are proportional to the amount of evolutionary
divergence. For example, a branch length may be
determined by the number of nucleotide substitutions
that have occurred between the connected branch
points. A cladogram is a branching hierarchical tree
that shows the relationships between clades; clado-
grams are unscaled. The word dendrogram means a
hierarchical cluster arrangement where similar objects
(based on some defined criteria) are grouped into clus-
ters; hence, a dendrogram shows the relationships
among various clusters (Figure 9.1 D). Dendrograms
are also used outside the scope of phylogenetics and
even outside of biology. Dendrograms are fequently
used in computational molecular biology to illustrate
the branching based on clustering of genes or proteins.

9.3 PHYLOGENETIC ANALYSIS TOOLS

The most convenient way to construct a phylo-
genetic tree is to use online tools. A good online phyloge-
netic analysis tool is available at Phylogeny.fr (http://
www.phylogeny.fr/). This server provides “robust
phylogenetic analysis for the non-specialist.” The user
can build a phylogenetic tree using the “One Click”
option with all the default settings. Another tool for
phylogenetic-tree construction is MEGA version 51

(as of October 2013). MEGA stands for Molecular
Evolutionary Genetics Analysis, and it was developed
by a group of well-known evolutionary biologists.
MEGA can be downloaded from http://www
.megasoftware.net/. MEGA is easy to operate, the tool-
bar is self-explanatory, and there are instructions pro-
vided. A recent publication by Hall2 is also a good

resource to understand MEGA. Another widely used
and versatile downloadable software tool is PHYLIP
(Phylogenetics Inference Package), which is a free
package of programs for inferring phylogenies. It was
developed by Joseph Felsenstein of the University
of Washington (http://evolution.genetics.washington.
edu/phylip.html). A widely used and affordable com-
mercial software program for phylogenetic analysis
is PAUP (Phylogenetic Analysis Using Parsimony
(and Other Methods)), written by David Swofford.
Another downloadable phylogenetic software tool is
MacClade (http://macclade.org/macclade.html), writ-
ten by David Maddison and Wayne Maddison. On the
MacClade link, click on “Acquiring MacClade” or
access the downloadable link directly at http://
macclade.org/download.html.

There are several other phylogenetic analysis tools
available on the web. Many of these require special
formatting of data for entry, and they send the results
through e-mail instead of providing real-time display
of results. These tools can be checked out at the follow-
ing link: http://molbiol-tools.ca/Phylogeny.htm.

9.4 PRINCIPLES OF PHYLOGENETIC-
TREE CONSTRUCTION

Although a number of online resources have been
mentioned above that can be used to construct/recon-
struct phylogenetic trees, it is nevertheless important
to understand the assumptions and steps involved in
phylogenetic-tree construction for conceptual clarity.

There are certain assumptions behind making a phy-
logenetic tree, such as (1) the sequences are homolo-
gous—that is, the sequences share a common ancestry
and they diverged through time as they evolved—and
(2) each position evolved independently. The quality of
multiple sequence alignment is the key to obtaining a
reliable phylogenetic tree. When using coding sequences,
it is desirable to use the protein sequences to reconstruct the
phylogenetic tree.

Construction of a phylogenetic tree involves the
following steps: (1) Selection of the appropriate molec-
ular marker (genes/proteins/mitochondrial DNA),
(2) Multiple sequence alignment, (3) Selection of a
model of evolution, (4) Construction of the phyloge-
netic tree, (5) Assessment of the reliability of the tree.

9.4.1 Selection of the Appropriate
Molecular Marker

The choice of nucleic acid or protein sequences
as the appropriate marker depends on the need.
A molecular marker in phylogenetic analysis is the
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biological information that is used to infer the evolu-
tionary relationships among taxa. In general, when
coding sequences are used, it is desirable to use pro-
tein sequences to construct the phylogenetic tree. Some
of the reasons why protein sequences are more appro-
priate are as follows:

1. There are more possible character states for amino
acids (20) than nucleotides (4); the terminals may
share a character state by chance simply because a
given position can have only one of 4 possible
character states (as opposed to 20 for amino acids).

2. Amino-acid-substitution matrices are more
sophisticated than nucleotide-substitution matrices.

3. The existence of codon bias for the same amino acid
in different species might artificially inflate the
nucleotide sequence variation.

However, nucleotide sequences can also be used
under certain circumstances to obtain a reliable tree,
such as when comparing genes whose sequences are
highly conserved among species, or comparing the
evolution of genes in geographically separated popula-
tions within a species. Slowly evolving gene sequences
can be used to assess the evolutionary relationship
between distantly related species and, conversely, rap-
idly evolving gene sequences can be used for recently
evolved species.

9.4.2 Multiple Sequence Alignment

Alignment of sequences is the most important step
in constructing a reliable phylogenetic tree. Multiple
sequence alignment identifies blocks of conserved resi-
dues. A good alignment should also have fewer gaps/
long gaps. Gaps indicate sequences gained or lost
(insertions�deletions) during evolution. The user may
decide to use the entire alignment or use parts of it.
There are no set rules regarding which sections of
the alignment to remove; the user should apply judg-
ment. If the alignment is ambiguous at the two ends,
the ends can be removed. Such editing can also be
done using Gblocks3,4. Gblocks eliminates poorly
aligned positions and divergent regions of a DNA or
protein alignment to make it more suitable for phylo-
genetic analysis. Gblocks can be accessed at http://
www.phylogeny.fr/version2_cgi/one_task.cgi?task_
type5 gblocks, or at http://molevol.cmima.csic.es/
castresana/Gblocks_server.html. The former link pro-
vides an example of how to enter the alignment data.
The latter link provides an example of an output file
showing the blocks selected from a protein alignment.

The “One Click” link of Phylogeny.fr (http://www.
phylogeny.fr/) provides the option to utilize Gblocks
to eliminate poorly aligned positions and divergent

regions. This option is selected as part of the default
settings. The user may choose to uncheck this option
in order to use the entire sequence instead of the
edited sequence.

9.4.3 Selection of a Model of Evolution

An evolutionary model of sequence data is a model
of nucleotide or amino-acid substitution and conse-
quent divergence of sequences. The evolutionary
(substitution) models play an important role in the
analysis of molecular sequence data. These models
filter the complexity of the biological mutation process
into simpler patterns that can be described and
predicted using a small number of parameters.
Substitution models attempt to predict the rate of sub-
stitution for nucleotides or amino acids at a given site,
and also the distribution of substitutions across the
entire sequence. The differential rate of substitutions
across the sequence is called the rate heterogeneity.

Multiple alignment is followed by the selection of
an appropriate evolutionary model. There are many
such models. All statistical models are based on certain
assumptions. One assumption is that each position in
the nucleic acid or protein evolves independently.
In reality, that is not the case; there are hot spots of
mutation, and also some mutations are more tolerated
than others.

The simplest way to determine divergence is to
count the number of substitutions. However, there are
caveats in such a simplistic approach. For example, an
observed substitution (e.g. A-G) may not be the origi-
nal substitution, but may have involved an intermedi-
ate substitution (e.g. A-T-G). Likewise, the absence
of substitution at a position may also mean that an
original substitution has been reversed (reverse muta-
tion) during evolution to restore the original residue
(e.g. A-G-A). Substitution models are statistical
models that are supposed to correct for these biases.
Note that these methods are based on general mathematical
and statistical principles that have their own set of assump-
tions. The simplest substitution model for nucleotides is
the Jukes�Cantor (JC) one-parameter model, which
assumes that all nucleotides occur in equal frequency
(25%) and are substituted with equal probability. This
model requires a single parameter denoting rate.
However, it is well known that transition mutations
are more common than transversion mutations.
Kimura’s two-parameter model accounts for this, and
proposes that transition mutations provide a better
estimate of evolutionary divergence than transversion
mutations. This model requires two parameters denot-
ing rate. Like the Jukes�Cantor model, Kimura’s
model also assumes that all nucleotides occur in equal
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frequency (25%). There are other more complex mod-
els of nucleotide substitution, such as the Felsenstein
model and the Hasegawa�Kishono�Yano (HKY)
model, which assume that nucleotides occur at differ-
ent frequencies, and that transitions and transversions
occur at different rates. The general time reversible
(GTR) model, also known as the general reversible
(REV) model is even more complex and assumes dif-
ferent rates of substitution for each pair of nucleotides,
in addition to assuming different frequencies of occur-
rence of nucleotides. For these models, the nucleotide
frequencies are estimated by the observed frequencies
in the alignment. Some amino acid substitution models
are the Dayhoff model (PAM), the Bishop�Friday
model, the Jones�Taylor�Thornton (JTT) model, the
Whelan and Goldman (WAG) model, and the Le
Gascuel (LG) model. The simplest model is the
Bishop�Friday model, which assumes that all amino
acids occur at equal frequency and all substitutions
occur at the same rate. All other models assume differ-
ent amino-acid frequencies and different substitution
rates, which are experimentally determined.

The substitution model utilized for a particular data
set can be displayed by the software, such as MEGA
version 51 (discussed above).

9.4.4 Construction of the Phylogenetic Tree

The choice of an appropriate tree-building method
for a given data set is a crucial but complex issue.
Many methods have been described for reconstructing
phylogenetic trees; each one has its own merits and
demerits5. This is a highly specialized area of computa-
tion and statistics. Therefore, only some overall princi-
ples are discussed here. The methods to construct
phylogenetic trees can be classified into two major
types: (1) distance-based and (2) character-based, also
called the discrete method.

9.4.4.1 Distance-Based (Distance-Matrix) Methods

In distance-based methods, the distance between
each pair of sequences is calculated, and a distance
matrix is computed. This distance matrix is used
for tree construction. Distance-based methods use sub-
stitution models; hence, they are model based.
Figure 9.2 A shows a simple distance matrix of four
10-nt-long sequences that differ from one another by 1,
2, 3, or 4 nucleotides. These nucleotide differences are
used to compute the evolutionary distances among
these sequences. There are two popular distance-
based methods, the unweighted pair group method
with arithmetic mean (UPGMA) and neighbor
joining (NJ).

The UPGMA is the simplest distance-matrix
method, and it employs sequential clustering to build
a rooted phylogenetic tree. First, all sequences are
compared through pairwise alignment to compute the
distance matrix. Using this matrix, the two sequences
with minimum distance are identified and clustered as
a single pair. Next, the distance between this pair and
all other sequences is recalculated to form a new
matrix. Using this new matrix, the sequence that is
closest to the first pair is identified and clustered.
This process is repeated until all sequences have been
incorporated in the cluster. Figure 9.2 B shows how
an UPGMA tree is computed. Because the process is
“unweighted,” all pairwise distance are assumed to contrib-
ute equally.

The neighbor-joining (NJ) method6 is the most
widely used distance-matrix method. It starts with a
star tree—that is, it is assumed that the branches lead-
ing to the respective OTUs (the sequences) radiate
from one internal node forming a star-like pattern.
Next, a pair of sequences is chosen at random,
removed from the star, and attached to a second inter-
nal node which is connected by a branch to the center
of the star-like pattern (Figure 9.3). The branch lengths
are calculated. These two sequences are then returned
to their original positions and another pair is selected
to repeat the same operation. The goal of these repeti-
tive operations until all possible pairs have been exam-
ined is to find out the combination of neighbors that
minimizes the total length of the phylogenetic tree.

9.4.4.2 Character-Based Methods

In contrast to the distance-matrix methods, the
character-based methods utilize the sequence itself
rather than the pairwise distance obtained from the
sequence features. A character is a site (position) in the
alignment. There are two popular character-based
methods, maximum parsimony (MP) and maximum
likelihood (ML).

The maximum parsimony method computes many
trees from the given data set and assigns a cost to each
tree. The assumption of maximum parsimony is that
the simplest tree is the most plausible tree. The sim-
plest tree is the one that requires the fewest number
of changes to explain the data in the alignment.
Thus, parsimony uses the data and does not attempt to
use any model to estimate the total number of changes.
The tree score is the sum of character lengths over all
sites. If more than one tree with a smallest number of
changes can be obtained, then the trees are said to be
equally parsimonious. In maximum parsimony, the
site (position of the sequence) that has at least two dif-
ferent kinds of nucleotides (bases) represented in at least two
of the sequences is considered to be an informative site
(Figure 9.4 A). Figure 9.4 B shows the principle of tree
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construction by maximum parsimony using the infor-
mative sites (positions 7 and 9) of the sequences shown
in Figure 9.4 A. The figure shows that tree 1 is the
most parsimonious tree because its topology is based
on the minimum number of mutations.

Maximum likelihood is a statistical method that esti-
mates the unknown parameters of a probability model.
The maximum-likelihood method is currently widely
used for the construction of phylogenetic trees because
of increased computational ability. Maximum likelihood
evaluates the probability that the selected evolutionary
model predicts the observed sequences. In other words,
the topology of the phylogenetic trees constructed using
maximum likelihood should yield the highest probabil-
ity of producing the observed sequences.

The use of Bayesian phylogenetic analysis is far
more recent than the maximum-parsimony and
maximum-likelihood methods. The Bayesian phyloge-
netic method has gained considerable ground ever
since the use of Bayesian statistics in phylogenetics
was proposed in the mid-1990s. The Bayesian method
draws inference on the probability of an unknown
event by deriving a “posterior probability.” Unlike

FIGURE 9.3 Construction of phylogenetic tree using Saitou and
Nei’s neighbor-joining method. See text for details.

FIGURE 9.2 Construction of phylogenetic tree using the distance-matrix method. (A) A simple distance matrix of four 10-nt-long
sequences is shown; the sequences differ from one another by 1, 2, 3, or 4 nucleotides. (B) The UPGMA method involves sequential clustering,
with calculation of a new distance matrix at each step (see text).
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standard statistical tests, in which the existing data are
used to test a hypothesis, Bayesian statistics uses prior
knowledge, in addition to the existing data, to test a
hypothesis. The prior knowledge/data provide an esti-
mate of the prior probability of an event, whereas inte-
grating the existing data with the prior probability
helps estimate the posterior probability of the event. A
prior probability might be derived based on a set of
known principles or experimental results. Tree con-
struction in the Bayesian method utilizes repetitive
random sampling using a Markov chain Monte Carlo
(MCMC) process, which seeks the tree topology with
increasingly higher score with each repetitive sam-
pling. Finally, the consensus tree with the highest pos-
terior probability is built from a set of high-scoring
tree topologies. The Bayesian method is faster than the
ML method, and hence can handle large data sets.
MrBayes is a Bayesian phylogenetic analysis tool.

An online version is available at http://www.phylogeny
.fr/version2_cgi/one_task.cgi?task_type5mrbayes. This
link also shows the format of data entry. Alternatively,
MrBayes can be downloaded from http://mrbayes.
sourceforge.net/. MrBayes was written by John
Huelsenbeck, Bret Larget, Paul van der Mark, Fredrik
Ronquist, Donald Simon, and Maxim Teslenko (http://
mrbayes.sourceforge.net/authors.php).

9.4.5 Assessment of the Reliability
of a Phylogenetic Tree

Construction of a phylogenetic tree is followed
by an assessment of the reliability of the tree.
Determining the reliability of the tree means determin-
ing whether the topology of the tree is accurate or
whether a better tree can be obtained. These questions
are answered by bootstrapping the reconstructed tree.

FIGURE 9.4 The maximum parsimony method. (A) Informative and non-informative sites considered in maximum parsimony. Non-
informative sites do not have each of the alternative bases occurring in at least two sequences. In contrast, in an informative site, each of the
alternative bases occurs in at least two sequences. (B) Principles of tree construction by the maximum parsimony method. Tree 1 is the most
parsimonious tree because its topology is based on the minimum number of mutations (see text).
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Felsenstein7 first applied the bootstrap method to
phylogenetic analysis to assess the reliability of the
tree. (Phylogenetic) tree bootstrapping is a computa-
tionally performed statistical analysis, which is based
on Efron’s original bootstrap technique of resampling
one’s own data to infer the variability of the estimate.
The bootstrap method involves repeated resampling
(with replacement) from the original samples to create
many new subsets of pseudosamples that are subjected
to the same analysis as the original samples. The
resampling with replacement means that some of
the characters/data of the original samples will be in
the bootstrap sample multiple times, whereas others
will not appear at all. The statistical concept behind
such resampling is that if a parameter can be estimated
from samples drawn from a population, then the reli-
ability of the estimate of that parameter can be verified
by drawing new samples from the same population.
The higher the number of resamplings, the greater is
the confidence level of the estimate.

In the case of the bootstrap method using
sequences, once the phylogenetic tree is constructed
after aligning the original set of sequences, the
sequences are repeatedly resampled to create many
new subsets of derived sequences, i.e. the bootstrap
samples. Each round of resampling (with replacement)
of the original set of sequences creates a new subset of
bootstrap samples of derived sequences. In each
derived sequence, some of the bases from the original
sequence will be represented multiple times, whereas

other bases will not appear at all. One bootstrapping
may perform 500�1000 such resamplings from the
original sequences.

The derived sequences of each subset are then
aligned and a new phylogenetic tree (bootstrap tree) is
constructed using the same tree-construction method
used to construct the original tree (e.g. neighbor-
joining method, maximum-parsimony method, etc.).
When the splitting pattern of an interior branch
(branch topology) in the original tree is reproduced in
the bootstrap tree, that branch is given a value of 1
(identity value). In other words, when an interior
branch is given a value of 1, it is assumed to accurately
predict the clade and the sister taxa, as reflected not
only in the original tree but also in the bootstrap tree.
Conversely, when the splitting pattern of an interior
branch in the original tree is not reproduced in the
bootstrap tree, that branch is given a value of 0. This
process is repeated hundreds of times, and the per-
centage of times each interior branch is given a value
of 1 is computed. This is known as the bootstrap value
or bootstrap confidence value. As a general rule, if the
bootstrap value for a given interior branch is 95% or
higher, then the topology at that branch is considered
accurate. Bootstrap values, expressed as percentages,
are indicated on the branches. Therefore, a bootstrap
value of 95 indicated on a branch means that 95% of
the bootstrap trees support the topology at the branch
obtained in the original phylogenetic tree. Figure 9.5
shows the principle of bootstrapping.

FIGURE 9.5 Principles of bootstrapping the phylogenetic tree. The bootstrap method involves repeated resampling (with replacement)
from the original sample to create many new subsets of pseudosamples that are subjected to the same analysis as the original sample to obtain
many bootstrap trees. The topology of these bootstrap trees is compared with that of the original tree to statistically assess the reliability of the
original phylogenetic tree.
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It should be remembered that, despite the rigor, the
construction of phylogenetic trees is not exact and it
involves general mathematical and statistical principles
that have their own set of assumptions. As a result,
many phylogenetic trees reconstructed from molecular
sequences may conflict with common sense; they may
be partially correct or even be incorrect8.

9.5 MONOPHYLY, POLYPHYLY,
AND PARAPHYLY

This concept relates to the groupings of organisms.
If the classification is performed based on synapo-
morphic characters (shared derived characters), mono-
phyletic groups are obtained. A monophyletic group
includes the last common ancestor (LCA) plus all the
descendants of the LCA. Monophyly can be assigned
based on nodes as well as apomorphies (Figure 9.6).
For example, mammals form a monophyletic group; so
do birds, fish, etc. Monophyletic groups form clades
and provide accurate information about the evolution-
ary history.

If the classification is performed based on homo-
plastic characters (similar characters that evolved
independently in different groups through convergent
evolution), polyphyletic groups are obtained. A poly-
phyletic group includes the descendants only and
excludes the LCA, and the taxa are grouped based on
superficial similarities (Figure 9.6). Thus, polyphyletic
taxa could be evolutionarily very distant but linked

by homoplasy. Polyphyletic groups do not provide
any accurate information about the evolutionary his-
tory. In fact, once it is realized that a group of taxa
are polyphyletic, they are reclassified. For example,
birds and bats could form a polyphyletic group based
on homeothermy and the ability to fly. Similarly,
sharks and dolphins could form a polyphyletic group
based on the ability to swim and other aquatic
adaptations.

If the classification is performed based on symple-
siomorphic characters (shared ancestral characters),
paraphyletic groups are obtained. A paraphyletic
group includes the LCA but does not include one or
more descendants. Therefore, a paraphyletic group is
an incomplete clade and does not provide much infor-
mation about the recent evolutionary history of the
taxa concerned (Figure 9.6).

The terms polyphyly and paraphyly are of academic
and historical interest. From the phylogenetic perspec-
tive, only monophyletic groups are important.

9.6 SPECIES TREES VERSUS
GENE TREES

Phylogenetic trees can be constructed to depict the
evolutionary history of species/populations or genes.
A phylogenetic tree that shows the evolutionary
history of species/populations is called a species
tree. Speciation involves the splitting of an ancestral
population into two populations that diverge and
become reproductively isolated, giving rise to two
species. Therefore, the branching in a species tree
shows the time when the two species descended from
the ancestral population and became reproductively
isolated.

In contrast, when the phylogenetic tree is con-
structed based on a group of homologous gene
sequences, where each sequence is sampled from a dif-
ferent species, then a gene tree is obtained. The general
assumption is that gene trees are less ambiguous than
species trees because gene trees are constructed based
on definitive molecular data. However, the event that
drives divergence between two populations leading to
speciation is reproductive isolation, whereas the event
that drives divergence between two homologous gene
sequences is mutation. Mutations in genes and specia-
tion do not necessarily happen at the same rate.
Genetic polymorphism and multigene families add
additional twists to the problem of gene tree to species
tree extrapolation. When there is allelic polymorphism
within species, a gene tree constructed from DNA
sequences for a given gene can be quite different
from the species tree, and this is particularly so when
the time of divergence between different species is

FIGURE 9.6 Character-based classification to obtain monophy-

letic, polyphyletic, and paraphyletic groups. A monophyletic group
includes the last common ancestor (LCA) plus all the descendants of
the LCA. A polyphyletic group includes the descendants only and
excludes the LCA. A paraphyletic group includes the LCA but does
not include one or more descendants.
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short9. When the gene whose evolutionary history is
being studied belongs to a multigene family, it may
be difficult to correctly assign the homology of the
sequences under study.

Therefore, inferring species trees from gene trees
requires a great deal of caution. In general, gene trees
are useful in studying the evolutionary history of the
members a gene family, and inferring the evolutionary
relatedness of the species from which the genes are
obtained.
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P-value, 148
Z-score, 148�149

SDAP database, 201
FAO/WHO Allergenicity Test, 202f
home page, 201f

Secondary databases, 97
Expert Protein Analysis System

(ExPASy), 97
NCBI databases, 98�101
on nucleic acid/protein sequences, 98
publicly available, 98�101, 98t
Swiss-Prot, 97
UniMES, 97
UniParc, 97
UniProtKB/TrEMBL, 97

Secondary-structure prediction
accuracy of, 193
advances in, 190�193
Chou�Fasman methods, 190
GOR methods, 190, 191t
protein, online tools for analysis,

192t
Secondary structure, protein, 192t
Selenocysteine, 5
Self-fertilization, 46
Sequence alignment, evolutionary basis,

133�134
Sequence-assembly data, 130, 159�160
Sequence data formats, 78�79
FASTA format, 78�79
PHYLIP format, 79

Sequence determination, hypothetical
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sequence comparison, 38�39
short nucleotide-sequence matches,

150�151
NCBI BLAST home page, 151f

SNPs. See Single nucleotide polymorphisms
(SNPs)

SOAPdenovo, 160
SOLiD sequencing, 59�60

principles of, 61f
sequencing library preparation, 60

Spea multiplicata, 44�45
Speciation, 27
Spidey, 161
Splice acceptor, 7
Splign, 161

online tool, 162f
splice-site detecting alignment

algorithms, 161
Staphylococcus aureus, 167
Structural Database of Allergenic Proteins

(SDAP), 199
Subfunctionalization, 36�37
Submitted SNP ID number, 177
Sulfolobus solfataricus, 36�37
Supercontigs, 157�159
Swiss-Prot database, 97
Symmetrical exon, 9
Synapomorphy, 51
Synonymous substitution, 47
Syntenic block, 155
Synteny anchors, 155
Systema naturae, 50

T
TAL effector nuclease (TALEN) technology,

65�66
TATA box, 11, 21
TATA-less promoters, 167�168
Taxonomic categories, 50
Taxonomy database, 101
tbl2asn, 80
The Institute for Genomic Research

(TIGR), 176
assembler, 159
multiexperiment viewer (MeV), 176
Spotfinder, 176

Tiling path, 157�159
TMHMM, transmembrane-helix

prediction, 205t
TM4 suite, 176
Torsion angle, 185
Trace archive, 80
Transcription-factor-binding sites,

prediction, 167�169
Transcription-related factors (TRFs), 24
Transcriptomics, 78
Transfer-messenger RNA (tmRNA), 172
Translational reprogramming, 169�172
Translation initiation sites, prediction,

167�169
Transmembrane domains (TMDs), 107
Transmembrane (TM) helices, 196
Transmembrane-helix prediction

online tools, 197t
by RHYTHM, OCTOPUS, Phobius, and

TMHMM, 205t
Transmission electron microscopy, 62
Transposable element (TE) domestication,

20
Transversion, 30�31
Trap cassette, 65
Two-base encoding, 60
Two rounds (2R) hypothesis, 34
Typical eukaryotic gene structure, 5�12

transcribed genes
30-flanking region, 11�12
50-flanking region, 11

transcribed region, 7�11
alternative splicing, intron phase, 9
introns, evolution of, 10�11
intron-splicing signals, 7�8

U
UniGene database, 91�92, 101
UniProtKB/Swiss-Prot, 201�203
UniProtKB/TrEMBL, 97
Universal Protein Resource Knowledgebase

(UniProtKB), 97
University of California Santa Cruz (UCSC)

Genome browser, 117
home page, partial screenshot, 120f
mouse
gateway, 121f
for Slco1a6, 121f

50/30-Untranslated region (UTR), 86
Unweighted pair group method

with arithmetic mean (UPGMA)
tree, 213
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V
VEGA. See Vertebrate genome annotation

(VEGA)
Velvet, 160
Vertebrate genome annotation

(VEGA)
genome browser, 127
home page, 128f

VisiGene image browser, 124, 125f

W
Watson-Crick edge, 13
Web-Based FASTA servers, 154t
Webin, 81
Whelan and Goldman (WAG) model, 212�213
Whole.-genome duplication, 36�37
Whole-genome shotgun (WGS) sequencing,

157�159
Whole-genome tiling arrays, 64
Woods plot, 189f

Z
Zero-mode waveguide (ZMW), 62
Zinc-finger nuclease (ZFN), 65�66
Zippers, online tools for analysis, 193t
Zn-finger DNA-binding domains,

65�66
Zn-finger nuclease, gene/genome

manipulation, 66f
Zwitterions, 16
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